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Resumen
MÉTODOS BASADOS EN REDES INTERDEPENDIENTES PARA ANALIZAR LA

ROBUSTEZ DE INTERNET

El Internet nos permite comunicarnos, acceder a educación online, comercio online, etc.
Su relevancia se ha vuelto aún más evidente en los últimos tiempos, pues se ha visto la
necesidad de depender más de comunicación y servicios online. Para garantizar su correcto
funcionamiento durante eventos adversos, se debe estudiar y comprender la robustez de
Internet. Hay una variedad de formas de estudiar la robustez de Internet dependiendo del
área desde la cual se aborde. Aquí, este problema se aborda desde el área de redes complejas.

Esta tesis presenta y evalúa un nuevo modelo físico-lógico de redes interdependientes
inspirado en el Internet actual. Este modelo considera una red lógica inspirada en la red
lógica de Internet (red a nivel de Sistemas Autónomos), una red física inspirada en la red
física de Internet (Backbone de Internet), y las interdependencias entre ambas. Se propone
una medida de robustez para evaluar la robustez del modelo, y esta es usada para probar
el efecto que diferentes tipos de ataques físicos pueden tener sobre el sistema. Además, se
propone una forma novedosa de atacar redes complejas para representar mejor el efecto que
catástrofes naturales, como terremotos, podrían tener sobre la robustez de Internet.

Los principales aportes de este trabajo de tesis son: (1) el desarrollo de una red interde-
pendiente físico-lógica inspirada en el Internet y su caracterización bajo diferentes tipos de
daño físico. (2) El hallazgo de “nodos puente” en la red lógica, su efecto sobre la robustez de
redes interdependientes físico-lógicas y su relación con los hubs en Scale-Free networks. Los
resultados muestran que encontrar y proteger nodos puente puede mejorar drásticamente la
robustez de un sistema. (3) El análisis del efecto que tiene la adición de enlaces a la red
física sobre la robustez del modelo de redes interdependientes presentado. (4) El desarrollo
de una nueva forma de atacar redes complejas: Ataques localizados con fallas probabilís-
ticas (LAPF por su sigla en inglés). Estos ataques dañan elementos de la red siguiendo
una distribución de probabilidad F y pueden ser usados para modelar el daño causado por
catástrofes naturales. En este trabajo se muestra cómo se pueden utilizar estos LAPF para
modelar el daño causado por terremotos y estos ataques son probados sobre el modelo de
red interdependiente físico-lógico propuesto.

Según el análisis presentado, al estudiar la robustez de redes interdependientes físico-
lógicas como las presentadas en este trabajo, debemos prestar especial atención a la presencia
de “nodos puente” ya que estos nodos se relacionan con eventos que pueden dañar gran parte
del sistema, llegando incluso a producir un fallo total del sistema. Los resultados muestran
que agregar más enlaces a la red física puede ser útil para reducir el impacto de los nodos de
puente. Sin embargo, estos resultados también muestran que la adición de enlaces físicos no
es suficiente y que agregar más enlaces de interdependencia espacialmente separados entre
sí puede ser una mejor solución.
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Abstract
The Internet allows us to communicate, access online education, commerce, etc. Its relevance
has become even more apparent in recent times as we have seen the need to rely more on
online communication and services. In order to ensure its proper functioning during adverse
events we must study and understand the Internet’s robustness. There are different ways to
study this, depending on the field of study approaching the subject. Here, we use a complex
networks approach.

In this work we present and evaluate a newly proposed physical-logical interdependent
network model inspired by today’s Internet. This model considers a logical network inspired
by the Internet network (Autonomous System level network), a physical network inspired by
the physical Internet network (Internet backbone), and the interactions and dependencies
between both networks. We propose a robustness measure to assess the model’s robustness,
and use it to test the effect that different types of physical attacks can have over such a
system. Furthermore, we propose a novel way to attack complex networks that could allow
us to better represent the effect that natural catastrophes, such as earthquakes, could have
over the Internet’s robustness.

The main contributions of this thesis work are: (1) the development of a physical-logical
interdependent network inspired by the Internet, and its characterization under different
types of physical damage. (2) The finding of “bridge nodes” in the logical network, their
effect on the overall robustness of the physical-logical interdependent networks tested, and
their relation with hubs in Scale-Free networks. Our results show that finding and protecting
bridge nodes can dramatically improve the robustness of a system. (3) The analysis of the
effect that adding links to the physical network has over the robustness of the presented
interdependent network model. (4) The development of a novel way to attack complex
networks: Localized Attacks with Probabilistic Failures (LAPF). These attacks damage
network elements following a probability distribution F , and can be used to model the
damage caused by natural catastrophes. In this work we show how LAPF can be used to
model the damage caused by earthquakes, and test these attacks over the physical-logical
interdependent network model proposed.

Our analysis shows that when studying the robustness physical-logical interdependent
networks such as the one presented here, we must pay especial attention to the presence
of “bridge nodes” as these nodes are related to events that can damage a great part of the
system, even resulting in total system failure. Our results show that adding more links to
the physical network can be useful to reduce the impact of bridge nodes. However, these
results also show that physical link addition is not enough and adding more interlinks far
apart from each other may be a better solution.
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Chapter 1

Introduction

The Internet is a critical infrastructure that allows us to communicate, access online edu-
cation and commerce, maintain other critical infrastructures, etc. Its relevance has become
even more apparent in recent times as we have seen the need to rely more on online commu-
nication and services. Given its importance it is of special interest to maintain the Internet’s
proper functioning, especially during adverse events. To do this we must study the Inter-
net’s robustness. Several different sets of tools and methods can be used to try to understand
and/or test the Internet’s robustness, depending on the field of study approaching the sub-
ject. One of these fields is the complex networks area.

Within the complex networks area, interdependent networks studies observe the emerging
behavior that arise when two or more networks interact with one another. In the context of
complex networks, robustness is the ability of a network to resist perturbations or failures.
Methods based on interdependent networks are particularly useful to study infrastructures
that naturally present interactions between two or more systems such as the power grid
[83, 53, 61], transportation networks [124], supply chains [104], etc. As a multi-layered
system, the Internet contains several different layers or networks that interact and depend
on one another, however few methods based on interdependent networks have been applied
to the Internet and its interactions with other infrastructures [27]. Furthermore, there is a
lack of methods that consider the interactions and dependencies among the different network
layers that compose the Internet.

In this thesis we intend to contribute to the theory of complex networks by presenting
and evaluating a newly proposed physical-logical interdependent network model inspired by
today’s Internet. Here, we develop and test a set of methods or tools based on interdependent
networks that allow us to analyze the robustness of the proposed model. We are particularly
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interested in studying its robustness against natural catastrophes. To do this we start by
proposing a physical-logical interdependent network inspired by today’s Internet. This model
considers a logical network inspired by the Autonomous System level network, a physical
network inspired by the Internet backbone, and the interactions and dependencies between
both networks. Then we propose a robustness metric and use it to assess the robustness of the
proposed physical-logical interdependent network. Using the tools developed, we simulate
the effect that different types of attacks can have over such a system, and use this to analyze
its behavior under different adverse scenarios and constraints. Finally, we propose a new
way to attack complex networks that allow us to better represent the effect that natural
catastrophes, such as earthquakes, could have over the Internet’s robustness. Since this
thesis focuses on developing a theoretical framework within the field of complex networks,
we must note that this thesis makes no claims about the practical relevance of the proposed
model or of the reported model-based findings on aspects of the actual Internet such as its
robustness with respect to the considered failure/attack scenarios.

Please note that this thesis has been organized to be read in order as each chapter refer-
ences previous chapters to build the concepts and results.

1.1 Motivation

The Internet’s robustness has been commonly studied considering the Internet as an isolated
network, such as the Border Gateway Protocol (BGP) network, or the physical Internet net-
work [116]. However, the Internet is a multi-layered system with each layer being a different
network. These networks have dependencies with one another that create a complex system
whose robustness can not be properly understood by studying a single isolated network.
Thus, in order to better understand what would happen to the Internet under different
failure scenarios we should study its robustness using interdependent network methods.

Dependencies between networks are known to affect the robustness of interdependent
systems [21]. In the past, cases of critical infrastructures such as power grids suffering mas-
sive blackouts due to the interdependencies between the power grid and its communication
network [29, 91] have motivated the study of complex systems as interdependent networks.

In the current literature, multiple problems have been studied using methods based on
interdependent networks. Among these we can find methods to study power grids [22, 49,
52, 75], spatially constrained networks [4, 17, 31], geographically interdependent networks
[111, 92], etc. However, within the literature reviewed for this thesis it was found that
almost none of these methods referred to the case of the Internet robustness [27]. This
means that most of the methods developed to analyze the Internet robustness assume that
the Internet can be represented without considering interaction between networks. This
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approach oversimplifies the way in which the Internet works and omits the interactions
between networks that influence the Internet’s behavior under adverse scenarios such as the
interactions between the BGP network and the Internet Backbone, the interactions between
the Internet and the power grid network, etc. Indeed, this type of approach has been
criticized in the past for not being able to capture the Internet’s complex behavior [116].

When studying the Internet we want to focus on different sets of networks depending
on the way we want to measure the robustness. An interesting approach is the one that
measures the effect that physical catastrophic events can have over the user’s ability to
access the Internet through an Internet Service Provider (ISP). To measure if users have
Internet access we can use the Autonomous Systems level network or the logical Internet
network. By measuring if a logical node has access to the Internet through an ISP we can
estimate the user’s ability to access the rest of the Internet. However, we cannot directly map
logical nodes into physical nodes since the existence of a physical link does not guarantee
communication between two physical nodes. Indeed, if a pair of physical nodes are connected
through a physical link but they do not host logical nodes (Autonomous Systems) that
directly exchange traffic with one another in the logical network, they will not communicate
through the shared physical link. Hence, to measure the effect that physical catastrophic
events could have over the user’s ability to access the Internet, we should consider both the
physical Internet network and the logical Internet network, along with their interactions with
each other.

In this thesis work we propose a physical-logical interdependent network model inspired
by today’s Internet, and a set of methods or tools that allow us to analyze its robustness.
Here, we develop and test a physical-logical interdependent network model inspired by the
Internet, a simple but useful way to measure its robustness, and a new way to test the
robustness of physical networks.

1.2 Hypothesis and Goals

Hypothesis: It is possible to increase the expressiveness of complex network’s models ori-
ented to study the Internet robustness using interdependent networks to model the interac-
tions of the different elements that compose the Internet. Here we consider the expressiveness
of such a model is measured by the number of characteristics and/or behaviors of the object
being modeled that it captures.

General goal: The general goal of the proposed thesis is to generate an interdependent
networks model to approximate the behavior of the Internet, and a set of methods to
study the robustness of the proposed model.
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Specific goals: The following specific goals will allow us to develop an interdependent
network model, and a set of methods inspired by the Internet. These specific goals increase
the overall expressiveness by progressively adding characteristics and/or behaviors associated
to the Internet.

(A) Perform a survey of the study of the robustness of interdependent networks. This will
allow us to find current interdependent network models that intend to approximate
characteristics and/or behaviors of the Internet, and measure its robustness.

(B) Generate an initial model that captures some of the characteristics and behaviors of
the Internet, considering the interactions between the Internet Backbone and the BGP
network.

(C) Establish indexes or measures to capture the robustness of the generated model.

(D) Generate a set of tests that include failures and attacks to test the behavior of the
proposed model against adverse events.

(E) Perform tests to measure the robustness of the proposed model, and analyze its be-
havior under different adverse scenarios.

(F) Establish and generate a refined version of the initial model that captures more char-
acteristics of the Internet’s behavior.

(G) Refine the robustness measurement tests to simulate events that are closer to real world
failure scenarios.

(H) Test the refined model using the refined tests.

1.3 Methodology

In this section we present the general methodologies used to accomplish this work’s objective.
Since the main objective is to generate analysis methods, we used an iterative methodology
that allows incremental development. This methodology was used on all specific objectives
with the exception of objective (A). For objective (A), the Kitchenham protocol [60] was
followed. This protocol establishes a specific methodology to develop systematic reviews.

1.3.1 Iterative methodology

This methodology consists of four stages which are repeated on a cycle until the desired
development level is reached. These stages are: Observation, research, selection, and appli-
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cation.

1. Observation: Here the characteristics of what we want to develop are observed and
identified.

2. Research: In this stage related literature is studied to look for information that helps
reach a solution.

3. Selection: Given the characteristics observed in the observation stage, useful data
obtained in the research stage is selected to be used or applied to reach a solution.

4. Application: In this stage the information collected is applied as a modification to the
current solution.

1.4 Contributions

Our first contribution is the development of a physical-logical interdependent network model
inspired by the Internet, and its characterization under different adverse scenarios. Here
we test two existing types of physical attacks: physical random attacks, and localized at-
tacks. We also test a third type of physical attack developed in this thesis work: seismic
attacks. The model developed uses complex networks concepts to specifically represent the
interactions between a logical network inspired by the logical Internet network, and a phys-
ical network inspired by the physical Internet network. To the best of our knowledge no
other interdependent network models have been developed before with the goal of capturing
Internet characteristics this way.

Our second contribution corresponds to the finding of “bridge nodes” in the logical net-
work, their effect on the overall robustness of the physical-logical interdependent networks
tested, and their relation with hubs in Scale-Free networks. We have found that bridge
nodes play an important role in characterizing the robustness of our model, as finding and
protecting bridge nodes can dramatically improve the robustness of a system. Furthermore
we found that “bridge nodes” whose removal results in a higher damage level are likely to be
hub nodes, although not all bridge nodes are hubs.

Our third contribution is the analysis of the effect that adding links to the physical network
has over the robustness of the physical-logical interdependent networks tested. Here, we test
simple strategies to add links to the physical network while maintaining the logical network
and the interdependencies between the networks unchanged. During the literature review we
found that few works have addressed the effect of link addition within a single network of an
interdependent system [55, 112, 59]. However, none of these works have been oriented to the
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case of interdependent networks intended to represent the Internet network. Similarly, we
found that for the specific case of communication networks the addition of physical links has
been used before to enhance the network’s robustness, and improve the recovery process after
failure [105, 5, 78], however these works have not considered the systems as interdependent
networks.

Finally, we develop a novel way to attack complex networks: Localized Attacks with
Probabilistic Failures (LAPF). These attacks damage network elements following a given
probability distribution F . Here, we show how LAPF could be used to model the dam-
age caused by earthquakes, and test these attacks over the interdependent networks tested
throughout this work. To the best of our knowledge these types of attacks have not been
presented before. The attack most closely related to the presented LAPF corresponds to
Localized Attacks (LA) [101, 17]. Localized attacks damage or remove all the nodes within
the affected areas. Unlike localized attacks, LAPF consider probabilistic damage, that is,
nodes within the area affected by a LAPF may or may not be damaged. Furthermore, two
LAPF with the same initial conditions may result in different outcomes.

1.4.1 Publications

In this section we provide a list of all the accepted papers related to this thesis since the
beginning of the program.

• Ivana Bachmann, Javier Bustos-Jiménez. “Improving the Chilean Internet Robustness:
Increase the Interdependencies or Change the Shape of the Country?” International
Workshop on Complex Networks and their Applications. Springer, Cham, 2017. [8]

• Ivana Bachmann, Felipe Espinoza. "Modelling the interactions between the Internet
backbone and the BGP network." 2018. [11]

• Ivana Bachmann, Javier Bustos-Jiménez, Benjamin Bustos. "A Survey on Frameworks
used for Robustness Analysis on Interdependent Networks". Hindawi Complexity Jour-
nal, 2020. [10]

• Ivana Bachmann, Francisco Sanhueza, Javier Bustos-Jiménez. "Space Geometry Ef-
fect over the Internet as a Physical-Logical Interdependent Network". International
Conference on Network Science. Springer, Cham, 2020. [12]

• Ivana Bachmann, Valeria Valdés, Javier Bustos-Jiménez, Benjamin Bustos. "Effect of
adding physical links on the robustness of the Internet modeled as a physical-logical
interdependent network using simple strategies". International Journal of Critical In-
frastructure Protection, 2021. [13]
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• Ivana Bachmann, Javier Bustos-Jiménez. "Using Localized Attacks with Probabilistic
Failures to Model Seismic Events over Physical-Logical Interdependent Networks".
International Conference on Network Science. Springer, Cham. [9]

1.5 Work structure

This thesis has been organized in an incremental fashion. Each chapter in this work uses data,
concepts, and/or results obtained in previous chapters. References to previous chapters are
clearly pointed out. However, we recommend the reader to follow this work in the intended
order.

This thesis is organized as follows:

• In Chapter 2 we present definitions of the main concepts used throughout the thesis
work, and provide relevant related work.

• In Chapter 3 we present a physical-logical interdependent network model inspired by
today’s Internet. In this chapter we also provide a robustness definition, and a robust-
ness index to measure the Internet’s robustness. Finally, we test our model robustness
against physical random attacks using the robustness index proposed.

• In Chapter 4 we analyze the interplay between the logical network of our model and
the interlinks. In this chapter we introduce the concept of “bridge nodes”.

• Chapter 5 tests the effect of adding links to the physical network using four link addition
strategies. We compare the cost of adding these links, and their effect over the system
robustness against physical random attacks.

• In Chapter 6 we test the effect of using localized attacks instead of physical random
attacks, and compare the effect of both types of attacks. In this chapter we test
the robustness of all the physical-logical interdependent networks tested in previous
Chapters, including systems with extra physical links added.

• In Chapter 7 we define “Localized Attacks with Probabilistic Failures” (LAPF), and use
them to define “seismic attacks”. We then test the effect that seismic attacks have over
the robustness of all the physical-logical interdependent networks tested in previous
chapters, and compare its effect with the effect of localized attacks.

• Finally, in Chapter 8 we present the conclusion of this work and discuss possible future
research lines for the project.
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Chapter 2

Background

In this chapter we present the definitions of the main concepts used throughout this work,
and review related work relevant for this thesis.

2.1 General concepts

• Definition 1 (Complex network): A complex network corresponds to a network
that exhibits a non-trivial topology. Thus, these networks can be distinguished from
graphs generated at random. These systems emerge when several single element units
or individuals interact in such a way that the behavior of the system cannot be ex-
plained just as a combination of the units’ behavior [64].

• Definition 2 (Interdependent networks): Within the complex networks field, in-
terdependent networks refer to systems that consider complex networks that interact
with one another. On these systems each network exhibits its own internal behavior,
and two interdependent networks may present vastly different behaviors. Interdepen-
dent networks use special links between nodes from different networks to encode the
interactions between networks [18]. Here, we refer to these types of systems as ‘inter-
dependent networks’ or ‘interdependent systems’ interchangeably.

• Definition 3 (Interdependent link, interlink or interconnection): An interde-
pendent link, interlink or interconnection corresponds to a link that connects nodes
belonging to different networks within an interdependent networks system. These links
encode the nature of the interactions between nodes, and may carry varying levels of
dependence.

8



• Definition 4 (Coupling): In the context of interdependent networks, coupling refers
to the way in which two different networks interact with each other [84, 125]. Thus,
the term coupling can be understood as the way in which the interlink set is allocated
between networks.

• Definition 5 (Attacks or failures): An attack or failure corresponds to the damage
experienced by a network. This damage can be targeted to specific nodes or links, or
random [114, 25]. Elements damaged by attacks or failures are usually considered to
have been removed from the network. If a node is removed by an attack it is assumed
that all its associated links and interlinks are also removed.

• Definition 6 (Cascading failure): Cascading failures refer to failures that prop-
agate back and forth between interdependent networks. These types of failures fre-
quently appear on interdependent networks due to the dependencies between nodes of
different networks [18].

• Definition 7 (Percolation): In the context of complex networks percolation theory
is used as a theoretical framework to study failure propagation or cascading failures
[102]. In the context of percolation studies, (1 − p) is the probability that a node
gets disconnected from its network (i.e. fails). The percolation threshold, typically
denoted by pc, represents the critical value at which if p < pc, then it is not possible
to identify a giant connected component on the system. Here, the lower the pc value,
the more robust the system is considered to be, as this implies a higher (1 − pc)
value. The robustness interpretation of this metric is that a lower pc means that it is
possible to disconnect a larger amount of nodes before reaching the system’s collapsing
point. When studying the percolation of an interdependent system, first and second
order phase transitions may occur. Second order phase transitions represent a
continuous decay of the system where no abrupt collapse can be detected. Second
order phase transitions are characteristic of single or isolated networks. First order
phase transitions represent an abrupt collapse of the system as (1 − p) increases.
First order phase transitions usually appear on interdependent networks systems.

• Definition 8 (Proximity graphs): Given a set of points or nodes V allocated in a
space such that there is a distance measure d : V × V −→ R, and d(u, v) is defined
for any pair u, v ∈ V , a proximity graph is a graph G = (V,E(V )) where a link (u, v)
belongs to the link set E(V ) if and only if nodes u, v ∈ V meet some previously defined
proximity requirement. [74].

• Definition 9 (Autonomous System): Autonomous Systems (AS) [1] are IP net-
works that manage their own internal routing. That is, each AS contains several IP
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addresses that communicate with one another through an internal routing protocol
chosen by the AS. Different autonomous systems might have different sizes, and might
use different internal routing protocols to suit their needs. ASes are managed by or-
ganizations or administrative entities such as companies, universities, Internet Service
Providers, etc. Furthermore, a single organization can have more than one AS. Al-
though each AS manages its own internal routing, they communicate with one another
through external routing according to the Border Gateway Protocol (BGP) [2].

• Definition 10 (Border Gateway Protocol ): The Border Gateway Protocol (BGP)
[2] is the routing protocol used to handle the traffic routing between different au-
tonomous systems or external routing. BGP handles the routing and reachability
among autonomous systems taking into consideration internal AS policies, and paths
available. We must note that BGP can be also used as an internal routing protocol.

• Definition 11 (AS traffic exchange): The traffic exchange between autonomous
systems is largely determined by business relationships between the organizations be-
hind each AS. These relations influence the BGP routing policies. Relationships be-
tween ASes can be grouped in three categories: Customer–to–Provider (c2p), where
an AS pays a better connected AS to transit its traffic to the rest of the Internet.
Peer–to–Peer (p2p), where two ASes agree to bilateral free transit between their net-
works or their customers. Sibling–to–Sibling (s2s), where two ASes under the same ad-
ministrative entity exchange traffic without any cost or routing limitations [47]. Thus,
relationships between autonomous systems are not intrinsically bidirectional. For ex-
ample, if an AS1 is a customer of AS2 and AS3 then AS1 can send its traffic through
both AS2 and AS3. However, AS2 will not be able to send traffic to AS3 through AS1,
since AS1 is its customer and does not transit traffic from AS2..

• Definition 12 (Shared Risk Link Group): In the physical network, a single fiber
or physical link can be shared by more than one logical link. Shared Risk Link Groups
(SRLG) denote links that share a fiber or physical attribute. Links in the same SRLG
share risk, that is, if a link in the SRLG fails, other links in the group might fail as
well. The concept of SRLG can be used to find backup paths such that the backup
path uses links that do not belong to SRLGs present in the path being protected.
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2.2 Interdependent network robustness

To ensure the proper functioning of these systems we must understand how networks work,
what their vulnerabilities are, and how these vulnerabilities can be corrected. Real world
networks do not exist in isolation, but rather interact with other networks. Particularly,
network vulnerabilities are affected by the interactions that networks have with other net-
work systems. These interaction can induce new vulnerabilities that are not present in single
networks [21]. Big failures due to the interactions of networks have already occurred in the
past, such as the Italy blackout of 2003, where a large portion of the country lost power sup-
ply, generating further degradation of services such as the railway networks, communication
networks, healthcare systems, etc. [91].

To analyze the vulnerabilities induced by the interactions and dependencies between net-
works, we need to study the robustness using interdependent networks methods. Thus, we
need to define what it means to be a robust interdependent network, and how the robustness
should be measured given the nature of the system. Several frameworks have been developed
to study the robustness of interdependent networks systems. The development of this type
of frameworks is relatively new, starting in 2010 with the work of Buldyrev et al. [21], and
has slowly grown over the past years. Since then, several types of frameworks have been
created to represent different systems and scenarios. These frameworks go from simple and
general frameworks, to more complex and specific ones. Some examples of these frame-
works include representations of power grid networks interacting with their control network
[83, 53, 61, 22], transportation networks where the bus network interacts with the subway
network [124], interdependent cyber-physical supply chain networks [104], etc.

Having specific frameworks for the interdependent networks’ case has become more and
more relevant, as they allow us to describe scenarios that would not occur when studying
the robustness of single isolated networks. Frameworks also allow us to simplify the analysis
process by providing a systematic way to study the robustness of interdependent networks.
In our previous work [10] we identified four main aspects that characterize frameworks used
to study the robustness of interdependent networks: the interdependent network model, the
robustness metric, the studies performed by the framework, and the data used to test the
framework. In this section we will give a brief summary of the most important aspects for
the work presented in this thesis.

2.2.1 Interdependent network model

As identified in our previous work [10], one of the defining aspects of these types of frame-
works is the interdependent network model used. These models must define the interactions
and dependencies among the networks that compose the interdependent network. These
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models are not restricted to only modeling the interactions, and can include information
about the internal functioning of the networks within the system. The interactions between
two networks can be defined between nodes, edges, or both. These interactions may differ
among different interdependent networks to represent the networks’ specific behaviors, and
the nature of their interactions.

Among the frameworks developed to study the robustness of interdependent networks,
we can find different models and robustness measures depending on what is being modeled,
and how the robustness of the system is defined [10]. The seminal work of Buldyrev et al.
[21] proposed the “one to one” model, which considers two interacting networks where each
node depends on exactly one node in the other network with mutual dependency, meaning
that if a node fails, then necessarily its interdependent neighbor will also fail. Several other
interdependent models have been developed since then. Some of them are variations of the
“one to one” model [51, 59, 87, 95, 114, 126], whereas other models are entirely different.
We can find models that focus on specific networks such as power grids [22, 49, 52, 75], the
Internet [27], spatially constrained networks [4, 17, 31], and models with “many to many”
interdependencies where each node may be interconnected to 0 or more nodes in the other
network [99, 35, 80, 85, 90, 26, 120]. For “many to many” models the type of dependency
between nodes must be clearly established. In some models, a node will fail if any of its
interlinks fail [120]. Whereas in other models, a node will fail only if all of its interlinks fail
[99, 35, 80, 85, 90, 26].

2.2.2 Robustness measures

Another defining aspect of these types of frameworks corresponds to the way in which the
robustness of the system is measured [10]. The robustness of a network can be measured
using one or more robustness metrics that focus on relevant characteristics to assess the
robustness of the system.

The robustness of interdependent networks can be measured in several different ways.
One of the most common robustness measures is the size of the Giant Connected Component
(GCC) or Giant Mutually Connected Component [10]. The GCC measures the fraction of
nodes contained in the largest connected component after an attack [84, 126, 70, 107, 128,
122]. Here, a node is considered to be functional if (1) it meets the dependency criteria
established by the interdependent model, and (2) it is connected to the largest mutually
connected component.

Another relevant robustness measure is the percolation threshold pc that can be used
to identify the maximum fraction of nodes that can be removed before the system col-
lapses [21, 51, 68, 45, 46, 50, 125, 56, 114, 100, 119, 87, 72]. The generalized k-core percola-
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tion can be considered as a variation of the classic percolation threshold [118, 82]. The k-core
percolation measures the fraction of nodes within the k-core, the subgraph obtained by re-
cursively removing nodes with degree lower than k (or k-leaves) along all nearest neighbors
and incident links, as well as nodes that do not meet the functionality criteria established
by the interdependent model. The resulting subgraph can be viewed as a generalization of
the k-core, which is the maximum subgraph containing nodes with degree at least k [98].

Other measures include the average avalanche size induced by an attack measure the
average amount of nodes removed during the cascading failure induced by the attack [65,
71, 110], the number of iterations that a cascading failure takes [50, 31, 16, 127, 35, 28, 65],
and the cost of increasing the robustness of the interdependent network [86, 85, 121].

In the present work, we will be specially interested in measuring the fraction of functional
nodes, where the node functionality conditions do not require a node to be connected to the
largest connected component. However, to the best of the author’s knowledge, few articles
use this approach. One of these articles being our own work published in 2017 [8], and
another being the more recently presented work of Dong et al. [36]. Both of these articles
use the work previously presented by Schneider et al. [94], which defines the robustness
measure R index that represents the fraction of nodes contained in the largest connected
component after node failure.

2.2.3 Robustness testing

In order to test the robustness of a network we need to simulate possible adverse scenarios.
This is usually done in the form of attacks. There are many ways to damage a system to
test its robustness, however we can classify attacks on three main categories:

• Random attacks: Random attacks, also referred in literature as random failures,
randomly select a set of network elements that are simultaneously removed during the
attack [21, 126, 26, 81, 62]. These attacks are commonly used as the baseline to test
complex networks robustness.

• Targeted attacks: Targeted attacks select the nodes to be removed using some cri-
teria such as the node degree, node load, etc. [80, 114, 103, 38, 59].

• Localized attacks: Localized attacks damage all the nodes within a specific area
[101, 119, 17, 97, 96]. Usually these attacks affect a circular area of radius r centered
at some point c within the space in which the network is embedded.
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2.3 Internet robustness

The Internet has been mostly studied as the Autonomous System level network (Border
Gateway Protocol network or Internet’s logical layer). However, many more layers interact
and affect the Internet’s logical layer. Each of these layers corresponds to a network with its
own set of nodes and edges. The interactions among these layers generate dependencies that
affect one another in ways that can lead to cascading failures on the system. Even more,
dependencies between networks are known to affect the robustness of the whole system in
ways that can not be understood by studying each network in isolation [21]. Cases of massive
power grid blackouts in the past due to interdependencies between the power grid and its
communication network [29, 91], have motivated the study and analysis of complex systems
as interdependent networks. However, as of the writing of this thesis, we only found one
interdependent network model including a direct reference to the Internet [27].

It has been stated before that in order to understand the Internet’s behavior we must
first understand the underlying structures that compose it, and how they affect one another.
Previously, Willinger and Roughan have mentioned the need for a way of modeling the
Internet that considers real-world AS-connection policies, multiple links, and geographic
location among others, instead of considering just the AS-level Internet in isolation as a
simple connected di-graph [116].

On the one hand, there is the logical Internet network composed of autonomous systems
(AS) [1]. Autonomous Systems are IP networks that manage their own internal routing. ASes
communicate with one another through external routing according to the Border Gateway
Protocol (BGP) [2]. The routes between autonomous systems are in part determined by
the business relationships between the entities behind the AS. These relationships dictate
whether an AS will transit traffic from other ASes to go through it so the traffic can reach
its destination (see section 2.1).

On the other hand, there is the physical Internet network comprising cables, antennas,
routers, etc. This network is usually represented by Points-of-Presence (PoP) [116]. A single
PoP may represent a group of buildings containing equipment in a relatively close area, a
neighborhood, an isolated infrastructure that is relevant enough to be represented as a single
node, among others. In case of a physical catastrophic event the physical Internet network
would be directly damaged by it.

The physical Internet network and the logical Internet network interact with one another,
and damage on one network may affect the other. Physical damage, such as physical node
failure, can damage the information flow between Internet consumers or customers, and
Internet Service Providers (ISPs). Damaging this flow can leave users without Internet
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access as they stop being able to send their traffic towards its destination. The negative
effects of this damage over the system can end up disrupting the user’s ability to access the
Internet. Severe damage to the Internet’s functionality due to natural catastrophes has been
observed before: after the 8.8 Mw earthquake in Chile in 2010 a one day Internet outage
was reported [88]. Whereas damage to the logical network can affect the proper functioning
of the physical network.

The Facebook outage of October 2021 [3] was an example of how damaging the BGP
can disrupt communications, despite the physical equipment being functional. During this
incident the Facebook’s DNS servers were operational, however since the BGP network
considered Facebook’s nodes to be non-existent, these DNS servers became unreachable.
This in turn rendered these servers unreachable for the physical network too, as they could
not answer any request from other physical nodes. Although in this example the Internet as
a whole was not affected, it shows how damaging the logical Internet network results in users
not being able to access online services, despite physical equipment being fully functional.

As for modeling the Internet as an interdependent network system, few models have been
found where the Internet is explicitly part of an interdependent system. An example can be
observed in the work of Chen et al. where the AS-level Internet is coupled with a power-grid
[27]. However, to the best of our knowledge there have not been other works, aside from
the work presented here, that attempt to create an interdependent network model entirely
inspired by the Internet.
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Chapter 3

Initial interdependent model

We start this chapter by defining what we consider to be a robust Internet network. According
to this definition we identify the minimal set of components that an interdependent model
should have to capture characteristics from the Internet network, and allow the measurement
of its robustness. We then propose an interdependent network model inspired by the Internet,
and define the robustness measure accordingly.

Here, we propose to use road network models to represent the physical Internet network.
More specifically, we use Relative Neighborhood Graphs [106] since they have been proven
useful for modeling roads networks [123, 32]. To model the logical Internet network we use
Scale-Free networks as they have been widely used to model BGP networks [42].

Finally, we test the robustness of the proposed model against physical random attacks.
In this chapter we test the coupling effect over the Internet’s robustness, as well as the effect
of the physical space shape in which we build the physical network.

3.1 Robustness definition

In this thesis, we consider the Internet to be robust if after a failure, most of their users
still have access to the rest of the network, that is, they still have access to the Internet
and retain most of their speed and throughput. Here, we consider that a user has Internet
access if it is able to reach an Internet Service Provider (ISP) that can transit its traffic. In
particular, if several users are connected to each other but none of them is an ISP, then we
do not consider them as having access to the Internet. Thus, in this work we propose the
following Internet robustness definition:

16



Definition 13 (Internet robustness): We consider the Internet to be robust against
failures if most of its users still have Internet access after a failure.

3.2 Proposed model

The proposed model aims to capture the interactions and dependencies of a logical network
inspired by the AS-level network, and a physical network inspired by the physical Internet
network. To do this, we define a physical-logical interdependent network model.

3.2.1 Model requirements

Given the proposed Internet robustness definition in section 3.1, and considering the objective
of this thesis, we can identify the minimal set of components that our interdependent model
should have. Here we list the identified components. For each component, we explain the
reason why they should be considered within the proposed model.

• Provider and consumer nodes: To be able to measure whether users have Internet
access or not, we must first be able to distinguish users from ISPs. Thus, our model
must consider nodes that provide the Internet service, and user nodes that consume
the Internet service. The former are referred to as ‘provider nodes’, and the latter are
referred to as ‘consumer nodes’. Here, we consider a node to provide “Internet service”
if it is associated with an ISP and transits consumer or customer traffic to the rest of
the Internet. If a logical network only contains nodes associated to a single country
or region, its provider nodes must be able to transit traffic outside of the country or
region.

• Logical Internet network: Given the proposed robustness definition, we need to be
able to measure the number of users that have access to the Internet after a failure. We
could estimate how many users have Internet access by observing the BGP network,
that is, the logical Internet network. In this network the nodes represent Autonomous
Systems (AS), while the links represent BGP routes between different AS. Within this
network there are nodes that correspond to Internet Service providers. Thus, we can
estimate the number of logical nodes that have access to the Internet by observing if
they have a path to an ISP node or not. In this work, we use a logical network inspired
by the logical Internet network to capture this behavior.

• Physical Internet network: In this work we want to measure the effect that events,
such as natural catastrophes, might have over our model’s robustness. To test this,
we must measure the effect of physical failures over the robustness. Physical failures
directly affect the physical Internet network, which in turn may affect the logical net-
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work. Thus, to measure the effect of physical failures over the Internet’s robustness
we must consider the physical Internet network in our model. To do this, we use a
physical network inspired by the physical Internet network.

• Physical-logical coupling: To understand the effects that physical failures would
have over nodes in the logical network, we must model the interactions and dependen-
cies between them. Here, we model these interactions considering broad characteristics
of the interactions between the physical Internet network and the logical Internet net-
work.

3.2.2 General definition

Consider P = (VP , EP ) the physical network where VP is the set of physical nodes, and EP

the set of physical links, and L = (VL, EL) the logical network where VL is the set of logical
nodes, and EL is the set of logical links. The physical network has a total of |VP | = NP

nodes, and the logical network has a total of |VL| = NL nodes. The logical network is
inspired by the Autonomous System level network, and the physical network is inspired by
the physical Internet network. Thus, in this model no restrictions are imposed regarding the
number of nodes in each network, thus NP may differ from NL. The interactions between
both of these networks are modeled as a set I of bidirectional interlinks. The physical-logical
interdependent network is described by the tuple (P,L, I) where P is the physical network,
L is the logical network, and I = {(u, v) : u ∈ VL, v ∈ VP , u and v are interdependent} is the
set of interlinks between both networks.

In our model we do not specify the topology that each network should have. Thus, any
network topology can be used to model each network (physical or logical). In order to test
physical attacks, the physical network must be spatially embedded, that is, each physical
node v ∈ VP must be allocated into a physical space. Therefore each physical node v ∈ VP
has an associated set of coordinates (xv, yv) to represent its allocation in space. For the case
of the logical network the nodes are not allocated into space as the logical network is inspired
by the Autonomous System level network.

We must note that the logical network is considered to be a snapshot in time of the state
of the network in a given moment. Thus, the logical network does not incorporate the ability
to re-route or recover of the logical Internet network. In particular, in this model the logical
network does not make use of Shared Risk Link Groups (SRLG).

In the physical network it is assumed that each physical link might be a bundle of fibers
or cables connecting the same physical nodes. We must note that in this model, the physical
network cannot distinguish between two fibers that connect the same pair of nodes but
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Figure 3.1: Interdependent model graphic example.

traverse different physical paths. However, different physical links are assumed to belong to
different bundles.

In the following, we provide a detailed explanation of the consumer-provider behavior of
our model, as well as the coupling conditions. In Figure 3.1 we can see a graphic example of
the model proposed. The upper half of Figure 3.1 corresponds to the logical network, and
the lower half corresponds to the physical network. Here, dotted lines represent interlinks
between both networks. Darker colored nodes represent provider nodes within each network.

Consumer-provider behavior

Within each network we have provider nodes to represent ISPs, and consumer nodes that
represent the users. A consumer node is considered to have Internet access if it has a path
to a provider node within its own network. That is, there has to be a link sequence from the
consumer node to the provider node, such that traffic from the consumer node can reach the
provider node.

This consumer-provider behavior is based on the previous work of Parandehgheibi et
al. [83]. In this work, it was used to model an interdependent network intended to represent
a power grid coupled to its supporting Control and Communication Network. More recently,
the work of Dong et al. [36] used an equivalent consumer-provider behavior to model the
access to critical facilities in transportation networks after a disaster.

In our model, within each network there are one or more provider nodes to represent
ISPs. This means that the physical network can represent the infrastructure of several ISPs
combined. Specifically, there are pL ≥ 1 provider nodes in the logical network, where each
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is intended to represent an autonomous system associated with an ISP.

For this work, provider nodes are assumed to be selected at random, however this can be
modified to select these nodes according to specific parameters such as centrality measures
or real world data. As for the providers in the physical network, physical nodes connected
through an interlink with a logical provider node are considered to be provider nodes within
the physical network. Since each provider node must have at least one physical counterpart,
the physical network has a total pP ≥ pL physical provider nodes.

Coupling

As for the interdependencies, we want to represent the interactions between both networks.
On one hand, each logical node has to be allocated on one or more physical nodes. If every
physical node in which a logical node is allocated fails, then said logical node will not be
able to function within the logical network. On the other hand, each physical node can have
multiple logical nodes allocated within itself. However, if every logical node allocated within
a physical node fails, then it will not be able to answer to other physical nodes, thus we
consider it is no longer functional. Hence, a node u will remain functional if at least one of
its interlinks is functional. Conversely, if all the interdependent nodes of a given node u fail,
u will also fail. This condition is applied for both physical nodes, and logical nodes.

In this model we consider that each logical node uL is interdependent with NI(uL) ∈
{1, . . . , Imax} nodes in the physical network. The Imax value represents the maximum num-
ber of interlinks that any logical node can have. To establish the interlinks between both
networks, for each uL ∈ VL we randomly select NI(uL) physical nodes (v1P , . . . , v

NI(uL)
P ), and

add an interlink (uL, v
i
P ) to I for each viP , i ∈ (1, . . . , NI(uL)). For simplicity, in this work

we randomly select each value NI(uL) from the set {1, . . . , Imax} following a uniform distri-
bution. However, we must note that the probability distribution used to select the values
NI(uL) can be tailored to be a better approximation of the the network being modeled. This
can be achieved by considering logical node characteristics such as node importance, size,
centrality measures, etc.

3.2.3 Cascading failures

Considering the functionality conditions of our physical-logical interdependent network model,
we can summarize the cascading failure process as follows:

1. A fraction (1 − p) of physical nodes is attacked. These nodes are considered to have
failed.

2. Since physical nodes were lost in the previous step, a new set of physical consumer
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nodes may lose all their paths to a provider node, and thus they fail.

3. The failure of physical nodes means their interlinks are no longer functional. Because
of this some logical nodes may lose all their interlinks, and thus fail.

4. Since logical nodes were lost in the previous step, a new set of logical consumer nodes
may lose all their paths to a provider, and thus fail.

5. The failure of logical nodes means their interlinks are no longer functional. Hence, a
set of physical nodes may lose all their interlinks, and thus fail.

6. This process repeats from step 2) until no new nodes are lost.

3.3 Robustness measure

According to our robustness definition, we consider the Internet to be robust if it can keep
users with Internet access in case of failure. Given our proposed model, we measure its
robustness as ‘the fraction of functional logical nodes after a failure’. To do this, we define
the robustness measure GL:

GL =
N f

L

NL

where NL is initial number of functional logical nodes, and N f
L is the number of functional

logical nodes after the system has been damaged and the cascading failure has stopped. We
must note that this measure was inspired by the R index presented by Schneider et al. which
measures the fraction of nodes in the largest connected component [94].

Since a node is considered to be functional if (1) it has a path to a provider node, and
(2) at least one of their original interlinks is still functional, if there are two or more logical
provider nodes (pL > 1), it is possible to have more than one connected component in the
logical network (or physical network) with all its nodes still functional (see Figure 3.2). More
specifically, it is possible to have up to pL functional connected components on the logical
network after an attack.
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Figure 3.2: Example of a model with a physical network split in two that fully retains
its functionality.

3.4 Experiments

In this section we describe the experiments performed to test the proposed model’s robustness
against physical failures using the proposed robustness measure. We test varying Imax values,
physical network models, and space constraints to build the physical network.

3.4.1 Physical random attacks

To observe the effect of physical failures we use physical random attacks. These attacks
randomly select a set of nodes to be removed. Here, a fraction p of the physical nodes
survives the attack, and thus a fraction (1 − p) of physical nodes is selected at random to
be removed. Given a fraction (1 − p) of physical nodes to be removed, a physical random
attack will simultaneously remove NP (1 − p) physical nodes from the initial undamaged
physical-logical interdependent network.

The experiments presented here test the effect of randomly removing physical node sets
of every non-trivial size possible. More specifically, we test 100 full physical random attacks
iterations. Each one of these iterations tests the full range of possible fractions (1− p) ∈ W
that a random attack can remove, with W = { i

NP
: i ∈ {1, . . . , NP − 1}}. Thus, a total of

100× |W | random attacks are performed over each of the systems tested.

The results from these experiments show the average GL value (〈GL〉) obtained by av-
eraging all the 100 GL values obtained for a given fraction (1 − p) ∈ W of nodes to be
removed.
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Figure 3.3: Representation of the physical spaces used for the experiments.

3.4.2 Spatial constraints

In our experiments we considered two spaces with the same total area and different width to
length ratios: a square space with a (1:1) width to length ratio, and a long and narrow space
with a width to length ratio of (1:25). The objective is to test whether the space shape in
which we build the physical network has an effect over the robustness of the model or not.

The square space and the long and narrow space were selected as two extreme shapes
that real countries have. Countries such as Spain, France, Sudan, and Colombia have a
roughly square (1:1) width to length ratio. Whereas countries like Vietnam, Chile, Japan,
and Norway have long and narrow shapes. Particularly, among the long and narrow countries
Chile has the narrowest width to length ratio of (1:25). Figure 3.3 shows a representation of
the spaces tested: both spaces have the same total area but different width to length ratios.
We must note that the figure representing a space with a (1:25) width to length ratio has
been placed horizontally for convenience.

3.4.3 Physical networks

In this section we show and explain the different physical network models used throughout
this thesis. These models were used to generate the physical networks of the physical-logical
interdependent networks used for the experiments.

First, we talk about our initial approach to generate physical networks: Relative Neigh-
borhood Graph (RNG). Here, we explain the reasons for using physical networks based on
RNGs. Then, we proceed to talk about other network models that were used to generate
physical networks for our experiments. These models were selected after our initial approach,
so we could compare the effect of having different physical networks.
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First approach: Relative Neighborhood Graph (RNG)

Connections between nodes in the Internet backbone are usually placed alongside existing
roads and highways to decrease the installation costs associated with adding new connections.
Thus, we can expect the physical Internet topology and the roads/highway network topology
to be similar. Urban roads networks (URN) have been studied and modeled as proximity
graphs. Furthermore, URNs have been found to be planar fully connected graphs [23].

Among planar proximity graphs used to model roads networks, we find the Relative
Neighborhood Graph (RNG), also referred to as RNG networks. RNG networks were first
presented by Toussaint [106], following the definition of “relatively close neighbors” proposed
by Lankford [63]. Relative neighborhood graphs are proximity graphs related to Minimum
Spanning Trees (MST) and the Delaunay (Voronoi) Triangulation (DT). More specifically,
relative neighborhood graphs are a superset of Minimum Spanning Trees, and a subset of
the Delaunay Triangulation: EMST ⊆ ERNG ⊆ EDT . Because of these characteristics RNG
networks have been used in the area of urban transportation design [123, 33, 32], and the
mobile networks and wireless communications area [58, 69].

In this work we use RNG networks as a first approximation of the physical network as
it has been previously shown that RNG networks can be used to represent the evolution
of urban roads [123, 32], and the railway network [33]. We must note that the usage of
existing models such as RNG networks to represent the physical network is intended only as
an approximation to test the interdependent network model presented.

• Generating a RNG network: Since relative neighborhood graphs are proximity
graphs, to build an RNG network we must check each pair of nodes u, v ∈ VP and
determine whether they meet the RNG proximity requirement or not. Consider a
finite 2-dimensional space, a set of nodes V with |VP | = NP allocated into the described
space, and d(u, v) the euclidean distance between node u and v with u, v ∈ VP . For
RNG we have that two nodes u and v meet the proximity requirement, and thus can
be connected, if there is no other node in the intersection area of the circles centered
at u and v, each of radius d(u, v) (see Figure 3.4). This way two nodes will get to be
connected if there is no other node closer to them in the area between them.

Other models for the physical network

To further understand the effect of the physical network topology over the robustness of the
proposed model, we test other five models to generate the physical network: Yao Graphs
[117], Geometric Preferential Attachment (GPA) [43], Gabriel Graphs (GG) [44], k-nearest
neighbors (k-NN) [39], and Erdös-Rényi (ER) [48, 40].
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(a) Link (u, v) is added. (b) Link (u, v) is not added.

Figure 3.4: (a) Shows a node configuration in which nodes u and v meet the proximity
requirements, and thus can be connected. (b) Shows a node configuration in which nodes u
and v do not meet the proximity requirements because of node w.

Yao Graphs

Yao Graphs [117] are spatially embedded networks, that is, nodes must be allocated into
some space. These graphs are known to be geometric spanners [113]: weighted graphs that
connect points in space such that any pair of points or nodes u and v are connected through
a path whose weight is at most t times the spatial distance between u and v. Yao graphs
have applications on wireless ad-hoc networks [69], and wireless sensor networks [113].

• Generating Yao graphs: Given a set of nodes V allocated into a space, and k ≥ 6 an
integer, we build a Yao graph by adding links using the following procedure. Using each
node u ∈ V as center, we divide the space into k equal areas using k rays originating
at u. For each area, we select the node v 6= u ∈ V that is the closest to u and add
the link (u, v) to the Yao Graph. In order to obtain a single connected component
while adding the least number of links, in this work we use k = 6. Please note that we
are interested in keeping the number of links low whenever possible so the generated
networks are comparable to RNG networks.

Geometric Preferential Attachment (GPA)

Networks generated using Geometric Preferential Attachment (GPA) [43] use the preferen-
tial attachment principles to add links [14], and incorporate a geometric component that
ensures the presence of small separators [43]. We say that a graph has small separators if
its subgraphs can be partitioned into two approximately equally sized parts by removing a
relatively small number of vertices. Note that the subgraphs of a graph include the graph
itself. Most nearest neighbor graphs in 3-dimension have small separators. Structures such
as the network generated by the links of the web also present small separators [19]. We must
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note that in GPA networks nodes might not be embedded into space, however the existence
of a distance function between nodes is required. In the following, we will assume that nodes
are embedded into some space.

• Generating GPA networks: Given a set of nodes V allocated into a space, to build a
GPA network we follow an iterative algorithm. First, a random node u ∈ V is selected.
Within a specific radius r from node u the usual rules of preferential attachment are
used [14]. That is, the node u will be connected to another node v ∈ V within the
radius r with a probability proportional to the degree of v. In the present work, we
add five edges on each iteration.

k-nearest neighbors graphs (kNN)

Given a set of points or nodes allocated into a metric space, Nearest Neighbor Graphs (NNG)
[39] are graphs formed by connecting each node to its nearest neighbor. These graphs are
usually described as directed graphs since the ‘nearest neighbor’ relation is not symmetric.
However, NNG can also be created as undirected graphs. The generalization of NNG are
the k-nearest neighbors graphs (kNN) [39] where each node is connected to its k nearest
neighbors. Here, the usual NNG is equivalent to a 1NN.

• Generating k-nearest neighbors graphs: In this work we will use undirected links
to generate our k-nearest neighbors graphs. Consider V a set of nodes allocated into
space. To generate our kNN we connect each node u ∈ V into the k nodes closest to it.
In this work, in order to obtain a single connected component while adding the least
number of links we use k = 5. Thus we obtain a 5-nearest neighbors graph (5NN).
Using k < 5 may result in a network with multiple connected components, that is, a
network that is not fully connected. Please note that we are interested in keeping the
number of links low whenever possible so the generated networks are comparable to
RNG networks.

Gabriel graphs (GG)

Gabriel Graphs (GG) [44] are spatially embedded networks known to be geometric spanners
[113]: weighted graphs that connect points in space such that any pair of points or nodes
u and v are connected through a path whose weight is at most t times the spatial distance
between u and v. Particularly, Gabriel graphs are proximity graphs [74] related to Mini-
mum Spanning Trees (MST), the Delaunay (Voronoi) Triangulation (DT), and the Relative
Neighborhood Graph (RNG). Gabriel graphs are subset of the Delaunay Triangulation, and
superset of the Relative Neighborhood Graph: EMST ⊆ ERNG ⊆ EGG ⊆ EDT [113]. These
graphs have been used on wireless networks routing [69, 58, 20], geographic variation [76],
and urban networks [33].
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• Generating GG networks: Consider a set of nodes V allocated into a space. Given
two nodes u and v with u, v ∈ V , we add a link (u, v) between them if the circular
area between both nodes does not contain any other nodes. The diameter of this area
is the distance between u and v, with u and v are located on the circumference of this
area (see Figure 3.5).

(a) Link (u, v) is added. (b) Link (u, v) is not added.

Figure 3.5: (a) Shows a node configuration in which nodes u and v meet the proximity
requirements, and thus can be connected. (b) Shows a node configuration in which nodes u
and v do not meet the proximity requirements because of node w.

Erdös-Rényi (ER) networks

Erdös-Rényi (ER) networks [48, 40] are randomly generated networks. In the literature
Erdös-Rényi networks refer to two models for generating random networks, one proposed by
Gilbert [48], and another proposed by Erdös and Rényi [40]. In Gilbert’s model each link
has a fixed probability of being present in the network and this probability is independent of
the other links already present in the network. In Erdös and Rényi’s model all graphs that
have the same number of nodes and the same number of links are equally likely to be picked
as the final randomly generated graph. These networks do not require a distance function,
and do not have any spatial conditions.

In the present work we use this model as control for our experiments since this model
does not use any spatial parameters to allocate its links.

• Generating ER networks: For our experiments we build ER networks following
Gilbert’s model. Consider a set of nodes V allocated into a space, with |V | = n.
Given two nodes u and v with u, v ∈ V , with probability p we add a link (u, v) to
our ER network. For each pair of nodes in V , we repeat this process. Here we set
the probability p = log(n)

(n)
since this value is more likely to generate a single connected

component [40].
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3.4.4 Networks tested

Since we are testing physical-logical interdependent networks, to build each system we must
generate a physical network P , a logical network L, and a set of interlinks I. In this section
we explain how each of the interdependent networks tested was generated, and show the
parameters used to generate them.

Interdependent networks

Let us begin with the physical network P . Consider model m one of the models described in
section 3.4.3. To build the physical network, we start by randomly allocating NP nodes into
the space. Using these node locations, links are then placed according to the rules of model
m. For each space shape, 10 sets of physical node locations are generated. Thus, for each
space, and each physical model we generate 10 different physical networks. With this, we
can characterize each physical network as follows: Given the space shape s ∈ {(1:1),(1:25)},
and model m ∈ {RNG ,YAO ,GPA, 5NN ,GG ,ER}, for each j ∈ {1, . . . , 10} we generate a
physical network:

Pj(m, s) = (VP , E
m
P (locj(VP , s)))

Where VP is the set of physical nodes with |VP | = NP , locj(VP , s) is the j-th set of physical
nodes allocations over the space shape s, and Em

P (locj(VP , s)) is the set of links generated
according to physical model m, given the set of physical nodes allocations locj(VP , s).

For simplicity, the logical network was modeled as a Scale-Free network with λ = 2.5
[42]. We tested a total of 10 instances of logic networks Lq, with q ∈ {1, . . . , 10}. We must
notice that this model assumes that the network links are non-directed, and thus it cannot
fully capture the nature of the relationships between real ASes. Here, we model the logical
network using Scale-Free networks as it can be used as a rough approximation of the topology
of the logical Internet network.

For the interdependencies, we test Imax ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For each Imax = u, we
generated a set I(u) of interlinks according to the proposed physical-logical interdependent
model. Thus, for each node vL in the logical network, we randomly select up to u physical
nodes and add an interlink between vL and each of the selected physical nodes. In particular,
if the logical node vL is a provider node, we add exactly u interlinks between vL and the
physical network.

As for the provider nodes, on each logical network we randomly select pL provider nodes.
For each Imax value tested, we generated a different provider configuration. Thus, the
provider node configuration is associated with u the Imax value used to generate the in-
terlink set I(u). Physical nodes connected through an interlink to a logical provider node
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are considered to be provider nodes within the physical network. Thus, the physical network
has a total of u · pL provider nodes.

This way, given a space shape s, a model m ∈ {RNG ,YAO ,GPA, 5NN ,GG ,ER}, an
interlink set I(u), a logic network Lq with q ∈ {1, . . . , 10}, and a set of physical nodes
allocations locj(VP , s) with j ∈ {1, . . . , 10} we can characterize each physical-logical interde-
pendent network by the tuple:

(Pj(m, s), Lq, I(u))

We must note that each network starts as a single connected component. Thus, we start with
each logical node having a path to all other logical nodes, and each physical node having a
path to all other physical nodes.

Network parameters

The narrowest space (1:25) is based on Chile’s geography. To observe the effects that a
wider space shape would have over the Internet robustness of a country with such restrictive
conditions, we use for both spaces the number of physical nodes, logical nodes, and the
number of logical providers that simulate the conditions of Chile. For each physical-logical
system, we consider pL = 6 to be the number of ISPs, NL = 300 to be the number of logical
nodes, and NP = 2000 as the number of physical nodes. Please note that this data was
obtained at the beginning of this work (2017), since then new AS have been added to the
Chilean network, and others have stopped being used. As of October 05, 2021, the number
of logical nodes in the Chilean network has increased to 375 [6].

3.5 Results

In this section we present and discuss the results obtained according to the experimental
settings described in section 3.4. The results shown here were obtained by testing the
robustness of a total of 12,000 different interdependent networks against physical random
attacks. Given a physical-logical system, to present the results more succinctly we define its
total GL as:

TGL =

NP−1∑
i=1

〈GL(
i

NP

)〉

where 〈GL( i
NP

)〉 is the GL value obtained on the experiments after removing a fraction
i

NP
= (1 − p) of nodes from the physical network, averaged across all 100 iterations tested

(see section 3.4.1).
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3.5.1 General robustness behavior

In Figures 3.7 and 3.8 we can see the average robustness behavior of systems built using
logical network version q = 1. Figures for the remaining q values can be found in the
appendix section A.1. Given a physical modelm, in these figures we observe the average 〈GL〉
across all 10 node location configurations j (GL). Here, we observe that our physical-logical
interdependent network model, on average, presents a continuous decay against physical
random attacks. This behavior is observed across all systems tested. These results suggest
that physical-logical systems built as shown in 3.2 undergo a second order phase transition
against physical random attacks when we consider the averaged results. However, given the
small size of the networks being tested we cannot argue that these systems always undergo
a second order phase transition.

Indeed, given a physical-logical interdependent network, if we observe each random phys-
ical node removal iteration, we observe that some iterations result in an abrupt collapse of
the network, other iterations result in a smooth decay, whereas other iterations result in a
mixed behavior (see figure 3.6).

Figure 3.9 shows the pc values, and GL(pc) values of systems built using logical network
version q = 1 that undergo an abrupt collapse. Figures for the remaining q values can be
found in the appendix section A.1. Here, we observe that the pc values tend to decrease as
the Imax value increases. Furthermore, we can see that physical-logical networks using m =
RNG have the highest pc values, whereas physical-logical networks using m = ER have the
lowest pc values.

Table 3.1 shows the fraction of iterations that undergo an abrupt collapse. Tables for the
remaining q values can be found in the appendix section A.2. In these tables we observe that
the fraction of iterations that undergo an abrupt collapse have a wide value range. Thus,
although the average behavior shows a second order phase transition, we observe that in
many of the iterations tested the physical-logical interdependent network undergoes a first
order phase transition. Furthermore, in most cases, most of these iterations result in a first
order phase transition.
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(a) (b)

(c)

Figure 3.6: Decay of different iterations of the same physical-logical interdependent network.
Here m = RNG, s = (1:25), q = 1, and Imax = 6.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure 3.7: Average robustness by model for interdependent networks built over a (1:25)
space, and logical network version q = 1.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure 3.8: Average robustness by model for interdependent networks built over a (1:1) space,
and logical network version q = 1.
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(a) (1:25) (b) (1:1)

Figure 3.9: Average values of pc and GL(pc) for each model m, space s, Imax, and logical
network version q = 1. Bars represent the standard deviation.

s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.766 0.86 0.848 0.888 0.813 0.705 0.9 0.399 0.841 0.787
GG 0.652 0.765 0.708 0.81 0.844 0.72 0.884 0.486 0.817 0.719
5NN 0.514 0.744 0.606 0.768 0.837 0.699 0.842 0.537 0.679 0.595
YAO 0.556 0.695 0.552 0.749 0.82 0.711 0.867 0.552 0.746 0.676
GPA 0.592 0.73 0.545 0.686 0.809 0.652 0.847 0.696 0.669 0.54
ER 0.585 0.651 0.411 0.618 0.861 0.646 0.766 0.703 0.471 0.539

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.757 0.804 0.765 0.824 0.811 0.707 0.866 0.482 0.824 0.736
GG 0.654 0.708 0.662 0.76 0.801 0.783 0.883 0.536 0.784 0.669
5NN 0.641 0.674 0.5 0.7 0.838 0.752 0.839 0.554 0.67 0.621
YAO 0.598 0.662 0.537 0.701 0.853 0.757 0.833 0.56 0.659 0.648
GPA 0.646 0.772 0.56 0.704 0.816 0.725 0.837 0.663 0.599 0.576
ER 0.549 0.634 0.418 0.644 0.854 0.64 0.762 0.725 0.473 0.535

Table 3.1: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 1.
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3.5.2 Space shape effect

In Figure 3.10 we can observe the average TGL values (TGL) obtained for each physical-
logical interdependent network for Imax = 3 versus the logical network version q used to
build the system. For this figure, we obtained each TGL value by averaging the 100 TGL

values obtained for each of the 100 physical random attacks tested (see section 3.4.1) given
a fixed m, Imax = u, s, and q. Figures for the remaining Imax values tested can be found
in the appendix section A.3. A more detailed version of this data can be found in Table
3.2 where we can see the average TGL and its standard deviation for Imax = 3. Here, the
average TGL is obtained by averaging TGL values across all 10 node location configurations
j. Tables for the remaining Imax values tested can be found in the appendix section A.4. In
these tables, the averages were obtained across the 10 physical network instances for a given
space s, and physical model m.

In Figure 3.10 we can see the results for interdependent networks with physical networks
built in a (1:1) space, and the results for interdependent networks with physical networks
built in a (1:25) space. Here we observe that interdependent networks with a physical
network based on a physical model m ∈ {RNG, GG, 5NN, YAO} built over a (1:1) space
have a TGL higher than that of interdependent networks with a physical network built on
a (1:25) space. For interdependent networks that use physical networks based on GPA and
ER models we observe that the space shape does not have a clear effect over the robustness
of the interdependent network. We observe this behavior regardless of the Imax value (see
appendix section A.3).

Our results show that the robustness of interdependent networks that use RNG, GG, 5NN,
or YAO models to build their physical networks is affected by the space shape in which the
physical network is built, with a (1:25) space resulting in more fragile systems than a (1:1)
space. Whereas the robustness of systems that use GPA or ER based physical networks are
not affected by the space s. This behavior can be explained by looking at whether or not the
physical network topology is affected by the differences between both spaces. The structure
of RNG, GG, 5NN, and YAO models depends on the node allocations into space locj(VP , s).
As the location of each node is selected uniformly at random, changing the space shape from
(1:1) to (1:25) will result in noticeable changes in the node allocation distribution, with nodes
being much closer in one axis than the other for s = (1:25). In the case of the GPA model
and ER model, node allocation does not play such a crucial role. In GPA networks the role
of node allocation is only relevant to decide whether a node will be included or not in the
preferential attachment process associated with a certain node. The ER model completely
ignores node allocation.

We also note that the difference between the robustness of interdependent networks that
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use RNG, GG, 5NN, and YAO models built over a (1:1) space, versus interdependent net-
works using the same models built over a (1:25) space tends to decrease as the Imax increases.
This suggests that we can decrease the fragility induced by the narrowness of the space by
adding more interlinks between the logical and physical network.

Imax = 3

q space RNG GG GPA 5NN YAO ER

1 (1:25) 256.55 (31.17) 447.33 (32.6) 455.07 (24.21) 578.39 (25.02) 621.42 (13.73) 821.26 (18.12)
(1:1) 317.2 (24.44) 457.31 (37.63) 536.91 (19.43) 643.34 (18.63) 694.08 (19.04) 812.3 (20.94)

2 (1:25) 323.51 (23.32) 594.27 (32.84) 549.32 (12.01) 703.99 (13.17) 740.46 (14.35) 995.28 (14.06)
(1:1) 394.88 (25.46) 584.35 (28.25) 640.37 (11.79) 783.58 (9.74) 826.11 (12.95) 997.92 (12.19)

3 (1:25) 232.38 (18.13) 461.01 (34.74) 435.92 (17.54) 577.37 (18.43) 626.92 (9.15) 848.05 (13.66)
(1:1) 304.29 (17.97) 467.13 (19.62) 532.26 (11.9) 662.3 (14.48) 709.53 (10.45) 845.78 (17.08)

4 (1:25) 310.1 (20.03) 567.9 (30.27) 530.5 (15.93) 679.03 (21.98) 727.06 (12.68) 982.54 (17.82)
(1:1) 382.69 (12.81) 563.68 (21.71) 625.65 (9.37) 773.28 (13.95) 817.97 (8.83) 981.1 (13.28)

5 (1:25) 327.44 (53.26) 489.94 (36.75) 502.79 (35.86) 601.04 (56.5) 649.54 (23.39) 826.43 (23.74)
(1:1) 370.81 (30.1) 489.67 (35.15) 556.94 (29.49) 669.93 (21.32) 710.49 (21.65) 834.47 (40.27)

6 (1:25) 448.87 (17.16) 688.81 (27.49) 668.26 (9.49) 811.13 (11.1) 845.07 (9.18) 1055.35 (16.14)
(1:1) 505.45 (8.0) 689.71 (26.36) 738.85 (8.22) 876.37 (11.22) 904.87 (11.7) 1041.73 (16.06)

7 (1:25) 300.62 (17.31) 566.18 (26.87) 525.37 (14.14) 667.8 (18.62) 712.94 (11.03) 963.15 (7.8)
(1:1) 370.71 (17.8) 566.47 (13.25) 608.52 (17.29) 756.89 (14.54) 796.28 (14.53) 954.98 (20.89)

8 (1:25) 289.33 (40.52) 492.39 (38.22) 471.68 (25.94) 595.9 (31.77) 638.6 (24.66) 813.46 (37.36)
(1:1) 375.55 (25.92) 502.16 (37.57) 559.6 (27.46) 659.11 (37.25) 708.28 (23.79) 814.29 (25.94)

9 (1:25) 369.78 (20.53) 629.09 (22.01) 595.23 (11.62) 747.03 (15.85) 783.38 (12.01) 1038.47 (19.22)
(1:1) 429.24 (9.58) 627.28 (31.85) 673.47 (3.17) 828.27 (13.7) 865.21 (8.83) 1046.99 (11.08)

10 (1:25) 292.5 (45.01) 460.77 (38.3) 477.74 (36.04) 579.01 (38.09) 632.16 (31.17) 789.27 (26.18)
(1:1) 345.43 (20.24) 455.22 (45.2) 546.58 (26.05) 645.23 (22.38) 674.94 (33.51) 775.26 (27.44)

Table 3.2: Average TGL results for Imax = 3, standard deviation in parenthesis. Variable q
indicates the logical network version used.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure 3.10: TGL values obtained for each physical-logical interdependent network for Imax = 3
versus the logical network version q used to build the system.
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3.5.3 Physical network model effect

Tables in the appendix section A.4 show the average TGL and standard deviation of a given
physical network model m, space s, and Imax = u. In Figure 3.11 we can see the results of
the average TGL for Imax ∈ {3, 7} tested. Figures for all Imax tested can be found in the
appendix section A.5. Our results show that on average we have the following relations.

(1) TGL(RNG) ≤ TGL(GG) ≤ TGL(5NN) ≤ TGL(YAO) ≤ TGL(ER)

(2) TGL(RNG) ≤ TGL(GPA) ≤ TGL(5NN)

This can be observed regardless of the space s, logical network version q, and Imax value u.
We observe that the relation between TGL(GG) and TGL(GPA) is not clear as depending
on the space shape s and Imax value u we can have that TGL(GPA) ≈ TGL(GG), or
TGL(GPA) < TGL(GG), or TGL(GPA) > TGL(GG).

From Table 3.3 we observe that GPA networks have a number of links that is similar
to the number of links of RNG networks. However, as we can see from figures in the
appendix section A.5, interdependent networks built using RNG networks are on average
much more fragile than systems that use GPA networks. Something similar is observed
for interdependent networks that use 5NN and YAO networks, where the average number
of links of YAO networks is slightly lower than the number of links of 5NN networks, but
using a YAO physical network results in interdependent networks with higher TGL values
than that of interdependent networks using a 5NN physical network. This suggests that
the robustness of these interdependent networks is not directly correlated to the number of
physical links that the physical model has, and that the way in which the physical links are
allocated might be more relevant.

m (1:25) (1:1)
RNG 2453.5 (11.4) 2518.6 (15.0)
GG 3743.2 (25.5) 3907.0 (32.8)
GPA 2599.7 (74.2) 2601.3 (58.1)
5NN 5881.8 (26.3) 6014.8 (61.8)
YAO 5560.7 (9.1) 5858.0 (4.7)
ER 7623.3 (60.7) 7540.8 (99.1)

Table 3.3: Average number of links of each physical network. Parenthesis shows standard
deviation.
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(a)

(b)

Figure 3.11: Comparison of the average TGL for a given physical network model, for Imax ∈ {3, 7}.
Black line on top shows the TGL standard deviation.
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3.5.4 Imax value effect

From the definition of our model we know that a node is functional if it has a path to a
provider node and at least one of its original interlinks is still functional. The more interlinks
a node has, the more robust the node is against failures caused by interlink loss. Thus, we
would expect systems with more interlinks to be more robust. The number of interlinks of
a system is associated with its Imax value and the distribution used to assign the number of
interlinks of each logical node. Since, for the interdependent networks tested, the number
of interlinks of each logical node was assigned uniformly at random, we have that a higher
Imax results in a higher number of total interlinks.

We would expect the robustness of a system to monotonically increase with the Imax value.
However, as we can see in Figure 3.12 there are cases where a higher Imax value results in a
lower TGL. We define U(q,m,s) the set that contains these Imax values as follows.

U(q,m,s) = {û ∈ {1, . . . , 10} : TGL(q,m, s, û) < TGL(q,m, s, û− 1)}}

Where TGL(q,m, s, û) is the TGL value obtained in our experiments for an interdependent
network built using logical network version q, physical modelm, space shape s, and Imax = û.
In Table 3.4 we can see all the sets U(q,m,s).

We observe that, for a fixed logical network version q, in most cases the set U(q,m,s) does
not depend of the space or physical model. Furthermore, the set U(q,m,s) changes for different
logical network versions. An example of this can be seen in Figure 3.12, where for q = 7
having Imax = 5 results in a lower TGL when compared to the TGL values that result for
Imax ∈ {3, 4}. Whereas for q ∈ {1, 3, 7} an Imax = 5 does not result in a TGL lower than the
TGL values obtained for Imax < 5. This behavior occurs across all logical network versions
as we can see from the figures in the appendix section A.6, and Table 3.4. This suggests
that there might be some interplay between the logical network version q and the interlink
set I(u) (Imax = u) that results in some interdependent networks having a lower TGL than
expected, which results in the emergence of set U(q,m,s). We further analyze this interplay in
Chapter 4.
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(c) (d)

Figure 3.12: Average TGL versus Imax, for logic network versions q ∈ {1, 3, 7, 10}.
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q space RNG GG GPA 5NN YAO ER

1 (1:25) {7,9} {7,9} {7,9} {7,9} {7,9} {7,9}
(1:1) {7,9} {7,9} {7,9} {7,9} {7,9} {7,9}

2 (1:25) {4,7} {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9}
(1:1) {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9}

3 (1:25) {7,8} {7,8} {7,8} {7,8} {7,8} {7,8}
(1:1) {7,8} {7,8} {7,8} {7,8} {7,8} {7,8}

4 (1:25) {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9}
(1:1) {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9} {4,7,9}

5 (1:25) {7} {7} {7} {7} {7} {7}
(1:1) {7} {7} {7} {7} {7} {7}

6 (1:25) {4,6,8,10} {4,6,8,10} {4,6,8} {4,6,8} {4,6,8} {4,6,8}
(1:1) {4,6,8} {4,6,8} {4,6,8} {4,6,8} {4,6,8} {4,6,8,10}

7 (1:25) {5,9} {5,9} {5,9} {5,9} {5,9} {5,9}
(1:1) {5,9} {5,9} {5,9} {5,9} {5,9} {5,9}

8 (1:25) {3,7} {3,7} {3,7} {3,7} {3,7} {3,7}
(1:1) {3,7} {3,7} {3,7,9} {3,7} {3,7} {3,7}

9 (1:25) {4,8,10} {4,8,10} {4,8,10} {4,8,10} {4,8,10} {4,8,10}
(1:1) {4,8,10} {4,8,10} {4,8,10} {4,8,10} {4,8,10} {4,8,10}

10 (1:25) {7} {7} {7} {7} {7} {7}
(1:1) {7} {7} {7} {7} {7} {7}

Table 3.4: Sets U(q,m,s) for each logical network version q, physical model m, and space shape
s.
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3.6 Summary

In this chapter we presented a definition of what we consider to be a robust Internet network.
Using this definition we proposed a physical-logical interdependent network model inspired
by the logical Internet network, the physical Internet network, and their interactions. We
also proposed a robustness measure according to the presented robustness definition, and
the proposed interdependent model.

Using the proposed physical-logical interdependent network model, and robustness mea-
sure, we performed experiments to measure the model robustness against physical failures.
For the experiments we considered 6 different models to generate the physical network: Rel-
ative Neighborhood Graphs (RNG), Gabriel Graphs (GG), 5-Nearest Neighbors (5NN), Yao
Graphs (YAO), Geometric Preferential Attachment (GPA), and Erdös-Rényi (ER). We also
considered two space shapes as spatial constraints: a space with a (1:25) width to length ra-
tio based on continental Chile’s geography, and a square space with a (1:1) width to length
ratio. For each physical model, and each space shape we generated 10 different physical
networks according to 10 different node allocation configurations. For the interlinks we con-
sidered Imax ∈ {1, . . . , 10}, which resulted in varying amounts of interlinks. For the logical
network we generated 10 different logical networks. Thus, we tested a total of 12,000 different
interdependent systems against physical random attacks.

The results in this chapter show that, on average, physical-logical interdependent networks
present a continuous decay against physical random attacks. These results suggest that, on
average, physical-logical interdependent networks undergo a second order phase transition
against physical random attacks. However, upon further inspection we observe that there
are attack iterations that result in an abrupt collapse of the network. This means that
there is a mix of attacks that result in first order phase transitions, and attacks that do not.
Furthermore, in most cases, most of these iterations result in a first order phase transition.

As for the space shape effect, we found that interdependent networks built using physical
networks based on RNG, GG, 5NN, and YAO models over a (1:1) space are more robust than
those built over a (1:25) space. For the case of interdependent networks built using physical
networks based on GPA, and ER models the space shape effect is not clear. This behavior
can be explained because RNG, GG, 5NN, and YAO models heavily on the node allocation
configuration. Since the location of each node is selected uniformly at random, changing
the space shape from (1:1) to (1:25) results in noticeable changes in the node allocation
configuration, with nodes being much closer in one axis than the other for s = (1:25). For
GPA, and ER models, node allocation does not play such a crucial role. In GPA networks
the role of node allocation is only relevant to decide whether a node will be included or
not in the preferential attachment process associated with a certain node, and ER networks
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completely ignore node allocation.

Our results also show that the physical model used to generate the physical network
does impact the robustness of the physical-logical interdependent system. We found that
the most fragile systems use RNG model, whereas the most robust systems use ER model.
Although RNG networks have on average the lowest number of links, and ER networks have
on average the highest number of links, we observe that the number of physical links is not
directly related with the system robustness. These results suggest that the way in which the
physical links are allocated might be more relevant.

Given the characteristics of the proposed physical-logical interdependent network model
we would expect interdependent networks with more interlinks to be more robust. More
specifically we would expect the robustness of an interdependent network to monotonically
increase with the Imax value. However, we found that this is not always the case. We found
that, given a fixed logical network version q, it is possible to find one or more Imax values such
that the robustness of interdependent networks built using a lower Imax results in a more
robust interdependent network. Here, given logical network version q, physical model m, and
space shape s we defined the set U(q,m,s) that contains Imax values û such that systems built
using Imax = û − 1 are more robust systems built using Imax = û. We found that, in most
cases, the values contained in U(q,m,s) do not depend on the space or physical model, but they
do vary with the logical network version q. Suggesting that there might be some interplay
between the logical network version and the interlink set which results in this behavior. We
further analyze this interplay in Chapter 4.
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Chapter 4

Interplay between the logical network
and the interlinks

In the previous chapter we found that, contrary to the intuition, there are cases where a
higher Imax does not result in a more robust interdependent network. To further understand
this phenomenon we defined the set U(q,m,s). The set U(q,m,s) contains all the Imax values û
such that the robustness of the interdependent network built using the interlink set I(û) is
lower than the robustness of the interdependent network built using the interlink set I(û−1),
given logical network version q, physical model m, and space s. We found that for a fixed
logical network version q, the set U(q,m,s) presents very few variations for different spaces
and physical models. These results suggest that there might be some interplay between
the logical network version q and the interlink set I(u) (Imax = u) that strongly affects the
emergence of the set U(q,m,s).

In this chapter we analyze the interplay between the logical network and the interlink
set I(u). Using the results from the analysis, we present and test a hypothesis to explain
the emergence of the set U(q,m,s) as shown in section 3.5.4. We find that the set U(q,m,s) is
strongly affected by a special type of logical node; we refer to these logical nodes as “bridge
nodes”.

4.1 Logical network analysis

In the previous chapter, we showed that given two Imax values u1, u2 with u1 < u2, we would
expect that TGL(q,m, s, u1) ≤ TGL(q,m, s, u2). However, in section 3.5.4 we found that
this is not always true, and that given the logical network version q, the physical model m,
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and the space s, it is possible to find a set U(q,m,s) of Imax values as follows.

U(q,m,s) = {û : TGL(q,m, s, û) < TGL(q,m, s, û− 1)}}

where TGL(q,m, s, û) is the TGL value obtained in our experiments for an interdependent
network built using logical network version q, physical modelm, space shape s, and Imax = û.

For a fixed q, the set U(q,m,s) in most cases does not depend on the space shape s or
physical model m. This suggests that there could be some weak point in the logical network
that becomes particularly fragile to physical random attacks when paired with the interlink
set I(û) with û ∈ U(q,m,s).

To test this, we started by searching for nodes that could act as weak points in the logical
network. Here, we used the same physical-logical interdependent networks tested in Chapter
3.4. For each logical network q, and each provider configuration u, we removed a single
logical node vL ∈ VL and observed the number of logical nodes lost (NL − N f

L) after the
removal. In these tests we did not consider the interactions between the logical and the
physical network, that is, we observed the effect of removing a single logical node over the
isolated logical network. We repeated this process for each logical node vL for each logical
network, and each provider configuration u.

In Table 4.1 we can see the total percentage of logical nodes attacked that result in a given
range of logical nodes lost (NL−N f

L). These results were obtained across all logical network
versions, and all provider node configurations. We observe that 84.5% of the nodes result
in a (NL − N f

L) = 1. This means that most single node removals result in only losing the
removed node itself. However, we also observe that there are nodes that result in a higher
number of lost nodes, with some of them resulting in (NL −N f

L) > 150, that is, more than
50% of the logical nodes are lost after removing a single logical node. Since here we are not
considering the interactions with the physical network, these nodes are lost because they lost
access to all 6 provider nodes after the removal of a single logical node. Furthermore, Table
4.1 shows the percentage of provider nodes that result in a given range of logical nodes lost.
Here, we can see that most nodes that result in (NL −N f

L) > 1 are not provider nodes. We
will refer to nodes that result in (NL −N f

L) > 1 as bridge nodes.

• Bridge node: A bridge node is a node that acts as a bridge between areas of the
network that contain one or more provider nodes, to areas that do not contain any
provider node. If a bridge node is removed from the network the areas that do not
contain any provider node lose all paths to a provider node, and thus become non-
functional.
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(NL −N f
L) Total % of nodes % of provider nodes

1 84.5 1.66
(1,3] 11.57 0.25
(3,5] 1.9 0.027
(5,15] 1.56 0.027
(15,30] 0.07 0.0
(30,60] 0.07 0.003
(60,90] 0.07 0.007
(90,120] 0.0 0.0
(120,150] 0.05 0.0
(150,180] 0.02 0.003
(180,210] 0.08 0.007
(210,240] 0.08 0.01
(240,270] 0.03 0.007
(270,300] 0.01 0.0

Table 4.1: Total percentage of logical nodes attacked or removed, that result in a given
(NL − N f

L). Third column shows the percentage of provider nodes that result in a given
(NL − N f

L). Results were obtained for all 10 logic network versions, and all 10 provider
configurations.
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In our model, we observe that logical bridge nodes in most cases are not provider nodes.
However, in the actual logical Internet network the links between logical nodes are highly
influenced by the business decisions of the administrative entities behind them. These ad-
ministrative entities will do their best to ensure connections with nodes that can transit their
traffic to the rest of the Internet, such as ISP nodes or “provider nodes”. Thus, if there are
bridge nodes in the actual logical Internet network, these are likely to be provider nodes.

Note that all bridge nodes are cut vertex or cut nodes: a node that if removed results
in an increment in the number of connected components. However, being a cut node is not
sufficient to be a bridge node since, after removing a cut node, it is possible that each resulting
connected component contains at least one provider node, and thus remain functional (see
section 3.3, Figure 3.2).

Given that the logical networks tested are modeled after Scale-Free networks, we must
wonder whether there is a relation between bridge nodes and “hubs” or high degree nodes
[15]. Hubs in Scale-Free networks have been pointed out before as a source of fragility in
interdependent networks [21]. In Figure 4.1(a), we can see that bridge nodes that result
in a higher damage after being removed are indeed nodes of higher degree. However, from
table 4.1 we can see that most bridge nodes damage less than 10% of the network, and as
we can see in 4.1(a) these bridge nodes are not hubs. Thus, although bridge nodes are not
the same as hubs, bridge nodes that result in higher damage are likely to be hubs within
the logical network. In Figure 4.1(b) we can see the percentage of nodes from the nodes
lost that belonged to a cluster with more than one node NC>1. Here, NC>1 is defined
as NC>1 = ((NL − N f

L) − NC=1)(NL − N f
L)−1 with NC=1 the number of nodes lost after

removing a bridge node that belonged to a cluster of size 1. In Figure 4.1(b) we can see
that there are bridge nodes that only disconnect clusters of size 1 (NC>1 = 0), and bridge
nodes that disconnect clusters containing more than one node. Approximately 19% of the
bridge nodes found on the logical networks tested disconnect clusters of varying sizes after
being removed. Furthermore, in figure 4.1(b) we observe that all bridge nodes whose removal
result in the loss of at least 10% of the network also remove clusters of varying sizes.

Using the concept of bridge nodes, we proceeded to observe if there was a relation between
the TGL and the damage caused by bridge nodes, given its number of interlinks. To do this,
let us define the damage contribution DC(vL, q, u) of bridge node vL given the interlink set
I(u), and the logical network version q as follows.

DC(vL, q, u) =
D(vL, q, u)

NI(u)(vL)

where u is the Imax value, D(vL, q, u) corresponds to the damage (1−GL) caused by removing
node vL from the isolated logical network q given the provider configuration associated to
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(a)

(b)

Figure 4.1: Each dot represents the effect of removing a single bridge node. (a) Degree of each
bridge node versus the damage caused by its removal (1 − GL). (b) Percentage of nodes from the
nodes lost that belonged to a cluster of size at least two.
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u, and NI(u)(vL) is the number of interlinks that logical node vL has for the given interlink
set I(u). Using the damage contribution of a single bridge node we define the total damage
contributed by the bridge nodes TDC(q, u).

TDC(q, u) =
∑

vL∈V
(bn,q,u)
L

DC(vL, q, u)

where V (bn,q,u)
L contains all the bridge nodes of the logical network version q, and the provider

configuration associated to Imax = u. Here, for a fixed q, the value TD(vL, q, u) will vary
according to the interlink set I(u). This happens because: (1) the set V (bn,q,u)

L may vary
depending on the provider configuration associated to the interlink set I(u), and (2) different
interlink sets may assign a different number of interlinks to each bridge node in the set.

With this we measured the relation between the damage contributed by bridge nodes
over a given logical network q and the interdependent network robustness. In Table 4.2
we can see the Pearson’s correlation between TDC and TGL for each model m, space s,
and logic network version q. Here, we observe that there is an inverse relation between
the total damage contributed by the logical bridge nodes and the interdependent network
robustness. We also note that for a fixed q, and a fixed m, this correlation has minimal
variation across different space shapes. This suggests the set U(q,m,s) emerges due to bridge
nodes vL ∈ V

(bn,q,û)
L having a higher damage contribution for û ∈ U(q,m,s). Therefore, set

U(q,m,s) would be related to the number of interlinks that each vL ∈ V
(bn,q,u)
L has, and the

damage D(vL, q, u) caused by its removal.

The results shown here suggest that we may be able to decrease the size of set U(q,m,s) by
increasing the number of interlinks associated with bridge nodes. In the remainder of this
chapter we will test this hypothesis.
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q space RNG GG GPA 5NN YAO ER

1 (1:25) -0.955 -0.97 -0.985 -0.983 -0.985 -0.992
(1:1) -0.942 -0.976 -0.98 -0.987 -0.988 -0.991

2 (1:25) -0.927 -0.952 -0.966 -0.962 -0.962 -0.972
(1:1) -0.934 -0.963 -0.967 -0.972 -0.974 -0.972

3 (1:25) -0.931 -0.959 -0.964 -0.971 -0.979 -0.988
(1:1) -0.939 -0.969 -0.965 -0.981 -0.986 -0.988

4 (1:25) -0.91 -0.945 -0.955 -0.957 -0.966 -0.983
(1:1) -0.918 -0.956 -0.951 -0.971 -0.976 -0.986

5 (1:25) -0.94 -0.968 -0.975 -0.98 -0.982 -0.995
(1:1) -0.926 -0.968 -0.976 -0.984 -0.986 -0.995

6 (1:25) -0.953 -0.964 -0.97 -0.967 -0.972 -0.968
(1:1) -0.947 -0.968 -0.975 -0.972 -0.973 -0.97

7 (1:25) -0.845 -0.882 -0.916 -0.903 -0.914 -0.941
(1:1) -0.854 -0.899 -0.902 -0.928 -0.926 -0.935

8 (1:25) -0.917 -0.941 -0.931 -0.946 -0.948 -0.961
(1:1) -0.922 -0.952 -0.93 -0.957 -0.956 -0.954

9 (1:25) -0.909 -0.934 -0.939 -0.941 -0.945 -0.954
(1:1) -0.906 -0.944 -0.928 -0.953 -0.96 -0.962

10 (1:25) -0.936 -0.964 -0.974 -0.977 -0.978 -0.99
(1:1) -0.924 -0.964 -0.974 -0.978 -0.984 -0.988

Table 4.2: Pearson’s correlation between TDC and TGL for each model m, space s, and
logic network version q.
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4.2 Experiments

In this section we will describe the experiment conditions to test if we can decrease the size
of the set U(q,m,s) by adding interlinks to bridge nodes.

4.2.1 Test

In section 4.1 we showed that there is an inverse correlation between the total damage
contributed by the logical bridge nodes and the robustness of the interdependent network,
which suggests that the emergence of set U(q,m,s) is related to the number of interlinks that
each vL ∈ V (bn,q,u)

L has, and the damage D(vL, q, u) caused by its removal. Here, we want to
test the relation between the emergence of the set U(q,m,s) and the number of interlinks that
bridge nodes have.

To test this, we will add interlinks to bridge nodes such that for each interlink set I(u),
bridge nodes have the highest number of interlinks possible u. This way, bridge nodes will
have more interlinks as the Imax value increases.

However, since around 15% of the logical nodes correspond to bridge nodes, adding the
maximum amount of interlinks to each bridge node would have a noticeable impact in the
interlink distribution. To avoid this, we will only add interlinks to bridge nodes that result in
(NL−N f

L) ≥ 0.1×NL. That is, we will add interlinks only to bridge nodes that result in the
loss of at least 10% of the logical network after being removed, which correspond to less than
0.5% of the logical nodes across all logical network versions, and provider configurations.

4.2.2 Physical-logical interdependent networks

For these experiments we will use the physical-logical interdependent networks tested in
Chapter 3.4, with their physical networks built over a (1:25) space. Previously we observed
that the set U(q,m,s) in most cases is not influenced by the space used to build the physical net-
work (see section 3.5.4, Table 3.4). Furthermore, in section 4.1 we observed that correlation
between the total damage contributed by the logical bridge nodes and the interdependent
network robustness has minimal variations across different space shapes. Thus, we will not
test interdependent networks with physical networks built over a (1:1) space.

4.2.3 Adding interlinks to bridge nodes

For these experiments, we will add interlinks to bridge nodes that result in the loss of at
least 10% of the logical network after being removed. For the experiments we add interlinks
as follows.
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• Interlink addition: Given Imax = u, q the logical network version, we define the set
of bridge nodes that result in the loss of at least 10% of the logical network after being
removed B(q,u)

h

B
(q,u)
h = {vL ∈ V (bn,q,u)

L : D(vL, q, u) ≥ 0.1×NL}

For each vL ∈ B
(q,u)
h , we will add (u − NI(u)(vL)) interlinks at random. Here, u is

the maximum number of interlinks that each logical node can have (Imax = u), and
NI(u)(vL) is the number of interlinks that the logical node vL has for the given interlink
set I(u). The interlinks added must be different to those already present in I(u).
Notice that it is possible that (u − NI(u)(vL)) = 0. Particularly, we have that no
extra interlinks are added to interdependent networks using the interlink set I(1) as
all logical nodes already have the maximum number of interlinks.

Cost of adding interlinks

In our model, adding interlinks between an existing physical node and a logical node can be
interpreted as having an autonomous system allocate physical resources in a location that
is considered to be a PoP. This means that it can be interpreted as an AS buying resources
from a datacenter, renting space in an office building to set up part of its network, building
a new structure within a neighborhood, or using resources that already belonged to the
administrative entity in charge of the AS.

Each possible scenario has its own challenges that will add to the overall cost of adding
an interlink. Thus, the cost of adding an interlink can greatly vary from case to case. Since
there is not a reasonable way to estimate the cost from the perspective of the proposed
physical-logical interdependent network model, we will not consider the costs associated
with interlink addition.

4.3 Results

In this section we present and discuss the results obtained according to the experimental
settings described in section 4.2. The results shown here were obtained by testing the
robustness of a total of 6.000 different interdependent networks against physical random
attacks. These interdependent networks were obtained by adding interlinks to physical-
logical interdependent networks tested in Chapter 3.4, with their physical networks built
over a (1:25) space.

Figures 4.3, 4.4, and 4.5 shows the comparison of the average TGL value of interdependent
networks with and without extra interlinks added to bridge nodes in B(q,u)

h . We observe that
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after adding interlinks, we obtain a behavior that is much closer to a TGL that monotonically
increases with the Imax value (see section 3.5.4). Furthermore, in Table 4.3 we can see that
after adding extra interlinks to bridge nodes in B(q,u)

h on interdependent networks with q = 1,
the average robustness of each interdependent network either increases or is maintained. This
happens for all q ∈ {1, . . . , 10} (see appendix section B.1).

Something similar is observed for attack iterations where the physical-logical network
abruptly collapses. In Table 4.4 we can see the fraction of iterations that undergo an abrupt
decay after extra interlinks have been added, for q = 1. The remaining tables can be found
in the appendix section B.1. In Figure 4.2 we observe that, for systems with q = 1, after
adding extra interlinks each pc values either decreases or is maintained, and the GL value
at pc also decreases. Furthermore, the pc values show a behavior that is much closer to
monotonically decreasing functions. This can be observed regardless of the logical network
version q (see appendix section B.2).

q = 1

Imax +I RNG GG GPA 5NN YAO ER

1 × 164.83 (11.07) 327.53 (14.72) 307.93 (33.96) 402.73 (15.78) 463.75 (8.68) 596.58 (21.47)
X 164.86 (13.7) 325.43 (8.99) 308.07 (27.87) 409.96 (16.86) 464.31 (7.33) 592.63 (16.49)

2 × 202.29 (17.89) 378.51 (29.48) 359.78 (45.08) 484.42 (30.19) 532.64 (17.85) 687.58 (21.5)
X 235.81 (13.92) 438.24 (19.11) 453.74 (34.15) 566.87 (17.3) 611.95 (14.61) 810.06 (23.25)

3 × 256.55 (31.17) 455.07 (24.21) 447.33 (32.6) 578.39 (25.02) 621.42 (13.73) 821.26 (18.12)
X 315.61 (15.43) 542.27 (14.27) 575.83 (20.42) 693.24 (17.59) 735.49 (8.28) 984.9 (12.36)

4 × 332.13 (29.83) 558.14 (25.86) 586.43 (41.86) 708.9 (22.5) 747.63 (13.52) 990.42 (16.36)
X 367.16 (19.05) 604.43 (11.92) 667.08 (29.4) 766.94 (10.95) 802.57 (11.79) 1065.87 (12.7)

5 × 376.92 (26.95) 614.65 (21.6) 679.97 (27.39) 795.38 (14.25) 828.23 (20.28) 1055.31 (28.33)
X 397.32 (21.16) 643.85 (24.03) 729.05 (25.21) 834.42 (17.07) 851.58 (13.81) 1124.32 (11.11)

6 × 506.27 (30.75) 746.52 (14.35) 802.33 (31.0) 933.58 (13.19) 946.75 (10.11) 1227.81 (9.5)
X 509.79 (28.63) 759.14 (12.06) 819.77 (24.49) 943.82 (13.48) 957.37 (10.94) 1241.04 (6.96)

7 × 440.65 (35.32) 675.17 (28.79) 714.93 (22.19) 859.59 (28.51) 878.59 (21.23) 1130.48 (18.09)
X 484.48 (20.85) 729.65 (17.44) 790.6 (9.12) 916.67 (18.64) 940.15 (14.2) 1220.38 (6.77)

8 × 537.49 (11.93) 767.22 (14.86) 810.24 (25.83) 941.13 (13.49) 959.89 (9.11) 1224.65 (12.37)
X 548.37 (10.91) 778.8 (12.36) 838.54 (31.89) 965.58 (8.77) 973.07 (9.52) 1246.7 (7.16)

9 × 465.61 (21.66) 696.2 (18.54) 720.65 (34.82) 848.95 (26.03) 873.83 (14.53) 1110.41 (12.29)
X 559.66 (17.17) 798.11 (13.36) 877.2 (17.25) 975.6 (13.7) 997.05 (6.71) 1274.64 (6.73)

10 × 548.84 (27.08) 803.96 (27.17) 834.6 (45.24) 981.66 (21.56) 989.59 (16.85) 1240.85 (17.8)
X 665.24 (20.89) 891.26 (12.03) 951.28 (23.93) 1077.56 (14.58) 1081.07 (6.38) 1345.49 (7.05)

Table 4.3: Average TGL of interdependent networks with q = 1, and s = (1 : 25). Column
+I shows whether the interdependent networks has extra interlinks added to bridge nodes
in B(q,u)

h or not.
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(a) (1:25) with extra interlinks (b) (1:25)

Figure 4.2: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 1.

In Table 4.6 we can see the detail of sets U(q,m,(1:25)) for interdependent networks with
and without extra interlinks. Here, we observe that in most cases the size of set U(q,m,(1:25))

decreases after adding interlinks to nodes in B
(q,u)
h . Even more, we can see that in some

interdependent networks the set U(q,m,(1:25)) becomes completely empty.

However, we must note that in some cases the size of the set U(q,m,(1:25)) does not change
after adding extra interlinks. What is even more interesting is that in these cases the contents
of set U(q,m,(1:25)) do change, meaning that there was indeed a change in the networks’ behavior
against physical random attacks after adding extra interlinks. We can see something similar
on interdependent networks where the size of the set U(q,m,(1:25)) decreases, but the new set
contains elements that were not present in the original set.

This behavior might be caused by the combined effect of bridge nodes in V (bn,q,u)
L \B(q,u)

h ,
that is, bridge nodes that result in losing less than 10% of the logical nodes. Although most
of these nodes damage less than 1% of the logical nodes (see Table 4.1) they represent 15.1%
of all the logical nodes. Another explanation may be that the effect of the physical network
model becomes more noticeable once we add extra interlinks to bridge nodes in B(q,u)

h . The
cause could also be related to properties of the interlink set itself. In Table 4.5 we can
see that some Imax values appear more often in the set U(q,m,s) than others. In particular,
Imax = 5 appear at the same rate before and after adding extra interlinks.
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q = 1

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.762 0.685 0.669 0.757 0.725 0.703 0.745 0.321 0.737 0.463
GG 0.606 0.735 0.668 0.761 0.754 0.66 0.755 0.438 0.707 0.511
5NN 0.547 0.705 0.705 0.737 0.737 0.68 0.753 0.493 0.722 0.578
YAO 0.572 0.738 0.682 0.767 0.763 0.69 0.772 0.548 0.728 0.535
GPA 0.581 0.769 0.69 0.684 0.742 0.656 0.772 0.694 0.715 0.63
ER 0.582 0.769 0.686 0.749 0.837 0.688 0.854 0.807 0.823 0.781

Table 4.4: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q = 1, after adding extra interlinks.

Our results suggest that adding more interlinks to bridge nodes in B
(q,u)
h does decrease

the number of elements found in the set U(q,m,s). Furthermore, adding interlinks to these
nodes improves the average robustness of each of these networks. However, we also found
that the number of interlinks that bridge nodes in B(q,u)

h have is not enough to fully avoid
the emergence of set U(q,m,s). This suggests that some other characteristics such as the effect
of bridge nodes in V (bn,q,u)

L \ B(q,u)
h , the effect of the physical network model, and properties

of the interlink set itself may also influence the emergence of set U(q,m,s).

Imax Combined (1:1) + (1:25) (1:1) (1:25) (1:25) + extra interlinks
1 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0%
3 10.0% 10.0% 10.0% 0.0%
4 40.0% 40.0% 40.0% 3.33%
5 10.0% 10.0% 10.0% 10.0%
6 10.0% 10.0% 10.0% 0.0%
7 70.0% 70.0% 70.0% 45.0%
8 30.0% 30.0% 30.0% 21.67%
9 40.0% 41.67% 38.33% 8.33%
10 12.5% 11.67% 13.33% 0.0%

Table 4.5: Percentage of sets U(q,m,s) that contain a given Imax value u.
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q space RNG GG GPA 5NN YAO ER

1 × {7, 9} {7, 9} {7, 9} {7, 9} {7, 9} {7, 9}
X {7} {7} {7} {7} {7} {7}

2 × {4, 7} {4, 7, 9} {4, 7, 9} {4, 7, 9} {4, 7, 9} {4, 7, 9}
X {8} {8} {7} {8} {8} {8}

3 × {7, 8} {7, 8} {7, 8} {7, 8} {7, 8} {7, 8}
X {5, 7} {5, 7} {5, 7} {5, 7} {5, 7} {5}

4 × {4, 7, 9} {4, 7, 9} {4, 7, 9} {4, 7, 9} {4, 7, 9} {4, 7, 9}
X φ φ {7} {7} φ {7}

5 × {7} {7} {7} {7} {7} {7}
X {8} φ φ φ φ φ

6 × {4, 6, 8, 10} {4, 6, 8, 10} {4, 6, 8} {4, 6, 8} {4, 6, 8} {4, 6, 8}
X {4, 8} {4, 8} {8} {8} {8} φ

7 × {5, 9} {5, 9} {5, 9} {5, 9} {5, 9} {5, 9}
X {7, 9} {7, 9} {7, 9} {7, 9} {7, 9} {7}

8 × {3, 7} {3, 7} {3, 7} {3, 7} {3, 7} {3, 7}
X {7} {7} {7} {7} {7} {7}

9 × {4, 8, 10} {4, 8, 10} {4, 8, 10} {4, 8, 10} {4, 8, 10} {4, 8, 10}
X {8} {8} φ φ φ φ

10 × {7} {7} {7} {7} {7} {7}
X φ φ φ φ φ φ

Table 4.6: Sets U(q,m,(1:25)) for each logical network version q, physical model m, and space
shape s = (1:25). Column +I shows whether the interdependent network has extra interlinks
added to bridge nodes in B(q,u)

h or not.
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(a) (b)

(c) (d)

Figure 4.3: Average TGL versus Imax with and without added interlinks for logic network versions
q ∈ {1, 2, 3, 4}.
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(a) (b)

(c) (d)

Figure 4.4: Average TGL versus Imax with and without added interlinks for logic network versions
q ∈ {5, 6, 7, 8}.
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(a) (b)

Figure 4.5: Average TGL versus Imax with and without added interlinks for logic network versions
q ∈ {9, 10}.
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4.4 Summary

In Chapter 3 we found that, contrary to the intuition, there are cases where a higher Imax,
that is, a higher number of interlinks, does not result in a more robust interdependent
network. To capture this behavior, given a logical network version q, physical model m, and
space shape s, we defined the set U(q,m,s) that contains Imax values û such that interdependent
networks built using Imax = û− 1 are more robust than interdependent networks built using
Imax = û. The results from Chapter 3 showed that there might be some interplay between the
logical network version and the interlink set that causes this behavior. To better understand
these findings, in this chapter we analyzed this interplay.

First we analyzed each logical network tested in Chapter 3. Here, we found there are
nodes in the logical network that result in the loss of more than 50% of the network after
being removed from the isolated logical network. We found that these nodes result in such
severe damage because they act as bridges between areas of the network that contain one
or more provider nodes, to areas that do not contain any provider node. Thus, we refer to
these types of nodes as bridge nodes. We found that approximately 15% of the logical nodes
correspond to bridge nodes. However, most of these bridge nodes result in the loss of less
than 10% of the network after being removed. Our analysis found that only 0.5% of logical
nodes correspond to bridge nodes that result in the loss of more than 10% of the logical
network. Furthermore, we found that bridge nodes that result in higher damage are likely
to be hubs within the logical network, although not all bridge nodes are hub nodes.

Using the concept of bridge nodes, we studied the relation between the total damage
contributed by logical bridge nodes and the interdependent network robustness. Here, the
damage contributed by a bridge node was measured as the damage caused by a bridge node
divided by the number of interlinks connected to said bridge node. Our results show that
there is an inverse relation between the total damage contributed by logical bridge nodes
and the interdependent network robustness, suggesting that we may be able to decrease the
size of set U(q,m,s) by increasing the number of interlinks associated with bridge nodes.

To test this hypothesis we studied the robustness of physical-logical interdependent net-
works after adding interlinks to bridge nodes. Specifically, we added interlinks such that
each bridge node has the highest number of interlinks possible Imax = u. Since approxi-
mately 15% of the logical nodes correspond to bridge nodes, adding the maximum amount
of interlinks to each bridge node would have a noticeable impact in the interlink distribution.
To avoid this, we decided to add interlinks only to bridge nodes that result in the loss of at
least 10% of the logical network after being removed, which corresponds to less than 0.5%
of the logical nodes across all logical network versions and provider configurations.
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Our results show that, in most cases, adding interlinks to bridge nodes that result in the
loss of at least 10% of the logical network does decrease the size of the set U(q,m,s). However,
there are some cases where the size of U(q,m,s) does not change, but the contents of the set
do change. We also found that in some cases the size of the set U(q,m,s) decreases, and/or
changes. In terms of robustness, we found that adding interlinks to bridge nodes that result
in the loss of at least 10% of the logical network improves the overall robustness. Even more,
after adding extra interlinks, we obtain a behavior that is much closer to a robustness that
monotonically increases with the Imax value. Our results show that adding more interlinks
to bridge nodes that result in the loss of at least 10% of the logical network does decrease
the number of elements found in the set U(q,m,s). Furthermore, adding interlinks to these
nodes improves the average robustness of each of these interdependent networks. However,
our results also suggest that some other characteristics such as the effect of bridge nodes
that result in the loss of less than 10% of the logical network, the effect of the physical
network model, and properties of the interlink set itself may also influence the emergence of
set U(q,m,s).
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Chapter 5

Effect of adding physical links

In this chapter we test the effect of adding links to the physical network over our physical-
logical interdependent network model. We use four physical link addition strategies: Ran-
dom, Distance, Local hubs, and Degree based addition.

We compare the effects of adding physical links over our interdependent model for different
space shapes, and physical network models. To test the robustness we use physical random
attacks.

5.1 Background

Within the area of communication networks, the addition of physical links has been used
before to enhance the network’s robustness and improve the recovery process after failure
[105, 5, 78]. The addition of physical links increases the number of possible paths that can
be used as a backup within the physical communication network. Furthermore, links can be
added to the physical network with the specific goal of adding paths with high availability
within the network [105, 5].

Similarly, within the area of complex networks, we can find studies regarding the effect of
adding links within a single network of an interdependent system (connectivity links) over
its robustness [55, 112, 59]. Here, the networks do not present a consumer-provider behavior,
and the link addition is made using link addition strategies that use a variety of network
properties and centrality measures such as degree, betweenness, algebraic connectivity, and
inter degree-degree difference [55]. These works show that adding connectivity links using
this type of link addition strategy does improve the robustness of interdependent networks.
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Since our interdependent model is inspired by a communication network (the Internet),
having more links within a network could increase the interdependent network’s robustness
by increasing the number of alternative paths from consumer nodes to provider nodes. Fur-
thermore, it has been shown that adding connectivity links to interdependent networks does
improve its robustness, even when it does not exhibit a consumer-provider behavior. In sec-
tion 3.5.3 we observed that the number of links in the physical network is not directly related
to the Internet’s robustness, and that systems with similar numbers of physical links might
show very different robustness behaviors. This suggests that the way in which physical links
are allocated into space also plays a role in the robustness of our physical-logical model.

Our model currently does not handle SRLGs, thus in order to add a new physical link we
must connect two nodes that were not previously connected. A new connection is interpreted
as a single link even if multiple fibers or physical elements belonging to different SRLGs are
added in the real world. As defined in section 3.2.2, different physical links are assumed to
belong to different bundles. Thus, for the proposed model, adding a physical link ensures
that the new physical connection does not share risks with previously existing elements.

To better understand the effect of having more physical links over the robustness of our
physical-logical model against physical random attacks, we test the effect of adding links to
the physical network. Furthermore, we want to add links using strategies that are simple
enough to be used even when information of the physical network is incomplete or not
accurate enough to use more complex strategies.

5.2 Physical link addition strategies

We want to measure the effect of adding links to the physical network using simple strategies,
without modifying the logical network nor the interlinks. As mentioned in section 5.1, new
links added cannot be already contained in the physical network being enhanced. Thus, for a
given strategy, for each physical network Pj(m, s), a different set of links must be generated.
Here we developed and tested the following link addition strategies:

• Random link addition: For each graph (physical network) a set of physical links is
selected at random from the set Ec

P = Eclique
P \ EP , where Eclique

P is the set of physical
links where each physical node is connected to all the other physical nodes, and EP is
the set of links of the original network P . For each physical network Pj(m, s), a new
random link set is generated.

• Degree based addition: Links are generated so as to connect low degree nodes with
high degree nodes. The objective is to increase the possible paths that low degree
nodes have to provider nodes. To do this, we add links between low degree nodes and
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high degree nodes only if they were not previously connected. Here, for each low degree
node, we add one link to a high degree node and then we mark high degree nodes as
‘used’ to avoid adding multiple links to the same high degree node. If all high degree
nodes have been marked as ‘used’ and there are more links to be added, then all nodes
are unmarked and the process starts again. We will add links to low degree nodes
within the 97% of the lowest degree nodes in ascending order from low to high degree
until Nst links have been added.

The link addition process is described by algorithm 1.

• Distance based addition: Similar to Degree based link addition, links are generated
to increase the number of links of low degree nodes. However, here we pair low degree
nodes to nodes that are physically close to them. If two nodes are at the same distance
of a low degree node, we choose the one with the highest degree. Links are added
only if they were not previously present in the network. The objective is to increase
the possible paths that low degree nodes have to provider nodes while minimizing the
length of new links. Once a link is added we mark the higher degree node as ‘used’
to avoid adding multiple links to the same high degree node. If all nodes are marked
‘used’ and there are more links to add, nodes are unmarked and the process starts
again. We will add links to low degree nodes within the 97% of the lowest degree
nodes in ascending order from low to high degree until Nst links have been added.

The link addition process is described by algorithm 2.

• Local hubs: The link addition process for the Local hubs strategy is the same as
the one described for Distance strategy. However, here we pair low degree nodes with
nodes within the top 3% of highest degree nodes. Thus, for each low degree node v
within the 97% of the lowest degree nodes, we add a link to the closest high degree
node u, with u in the top 3% of highest degree nodes. Unlike Degree and Distance
strategies, each high degree node can have multiple links to low degree nodes. The
links added using this strategy result in several local hub nodes across the physical
network.

The link addition process is described by algorithm 3.

We must note that for both Distance based link addition strategy, and Degree based
link addition strategy only 97% of the nodes with the lowest degree have new links added.
Whereas for Local hubs strategy links are added between nodes within the 97% of the lowest
degree nodes, and nodes within the top 3% of highest degree nodes. This decision was made
due to the node degree distribution of RNG physical networks (see Figure 5.1), since RNG
based systems lead to the most fragile systems among the systems tested (see Chapter 3).
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We must also note that the links added by any strategy do not discriminate on whether
the pair of nodes connected by the new links are consumer-consumer, provider-consumer, or
provider-provider.

Algorithm 1: Degree based addition algorithm.

1: procedure degree_links(Nst, (VP , EP ))
2: N ← |EP |
3: V high

P ← VP . ordered by decreasing degree
4: U low ← 97% lowest degree nodes in VP ordered by increasing degree
5: M ← φ . Marked nodes
6: Est ← φ . Extra links set
7: for v ∈ U low do
8: for w ∈ V high

P \M do
9: if (v, w) /∈ EP ∪ Est and v 6= w then
10: Est ← (v, w)
11: M ←M ∪ {w}
12: break
13: end if
14: end for
15: if |Est| = Nst then
16: return Est

17: end if
18: end for
19: N r

st ← Nst − |Est|
20: Er

P ← EP ∪ Est

21: Er
st ← degree_links(N r

st, (VP , E
r
P ))

22: return Est ∪ Er
st

23: end procedure
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Algorithm 2: Distance based addition algorithm.

1: procedure distance_links(Nst, (VP , EP ))
2: N ← |EP |
3: V high

P ← VP . ordered by decreasing degree
4: U low ← 97% lowest degree nodes in VP ordered by increasing degree
5: M ← φ . Marked nodes
6: Est ← φ . Extra links set
7: for v ∈ U low do
8: d←∞
9: w ← φ
10: for u ∈ V high

P \M do
11: if (v, u) /∈ EP and v 6= u then
12: if distance(v, u) < d then
13: d← distance(v, u)
14: w ← u
15: end if
16: end if
17: end for
18: Est ← (v, w)
19: M ←M ∪ {w}
20: if |Est| = Nst then
21: return Est

22: end if
23: end for
24: N r

st ← Nst − |Est|
25: Er

P ← EP ∪ Est

26: Er
st ← distance_links(N r

st, (VP , E
r
P ))

27: return Est ∪ Er
st

28: end procedure
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Algorithm 3: Local hubs addition algorithm.

1: procedure hubs_links(Nst, (VP , EP ))
2: N ← |EP |
3: Uhigh ← 3% highest degree nodes in VP ordered by increasing degree
4: U low ← 97% lowest degree nodes in VP ordered by increasing degree
5: Est ← φ . Extra links set
6: for v ∈ U low do
7: d←∞
8: w ← φ
9: for u ∈ Uhigh do
10: if (v, u) /∈ EP and v 6= u then
11: if distance(v, u) < d then
12: d← distance(v, u)
13: w ← u
14: end if
15: end if
16: end for
17: Est ← (v, w)
18: if |Est| = Nst then
19: return Est

20: end if
21: end for
22: N r

st ← Nst − |Est|
23: Er

P ← EP ∪ Est

24: Er
st ← distance_links(N r

st, (VP , E
r
P ))

25: return Est ∪ Er
st

26: end procedure
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Figure 5.1: Average degree distribution of RNG physical networks across all 10 physical
network versions j.
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5.3 Experiments

In this chapter we test the robustness of the physical-logical interdependent networks against
physical random attacks as described in section 3.4.1. The conditions over the physical space,
and interlinks between the physical and logical network are the same in section 3.4.

In the remainder of this section we describe the interdependent networks tested, and how
we measured the cost of adding physical links.

5.3.1 Networks tested

For these experiments we will add interlinks to a subset of the systems tested in Chapter
3.4 in order to present a more manageable amount of information. Here, we will only use
logical network version q = 1, and Imax = u with u ∈ {3, 5, 7, 10}. We have chosen q = 1
because, as we can see in Table 5.1, the bridge nodes that appear in this network result in
moderate damage when compared to other logical network versions. The Imax values have
been selected such that if u1 < u2 then TGL(q,m, s, u1) < TGL(q,m, s, u2) for q = 1.

Interdependent networks

We build our interdependent networks starting from the networks tested in section 3.4.4.
We then add physical links to each system according to section 5.2. Thus, we initially have
physical-logical interdependent network described by the tuple:

(Pj(m, s), L1, I(u))

where Pj(m, s) the physical network, L1 the logical network, and I(k) is the interlink set.
Here j ∈ {1, . . . , 10}, u ∈ {3, 5, 7, 10}, s the space shape in which we build the physical
network, and m ∈ {RNG ,YAO ,GPA, 5NN ,GG ,ER} the physical network model.

Then, for each strategy st described in section 5.2, and each physical network Pj(m, s)
we generate a set of physical links

Est(Pj(m, s)) = Est
(j,m,s)

with Est
(j,m,s) ∩ Pj(m, s) = φ. After adding these links we obtain the following physical

network:
P st
j (m, s) = (VP , E

m
P (locj(VP , s)) ∪ Est

(j,m,s))

Thus, the interdependent network after physical link addition is described by the tuple:

(P st
j (m, s), L1, I(k))
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q GL range
1 (0.50, 0.997)
2 (0.71, 0.997)
3 (0.81, 0.997)
4 (0.16, 0.997)
5 (0.02, 0.997)
6 (0.31, 0.997)
7 (0.04, 0.997)
8 (0.28, 0.997)
9 (0.37, 0.997)
10 (0.19, 0.997)

Table 5.1: Bridge nodes GL values ranges for each logical network version q. The GL ranges
were obtained considering Imax ∈ {1, . . . , 10}.

with L1 the logical network and I(u) the interlink set given Imax = u.

In this chapter we test all the interdependent networks with the form (P st
j (m, s), L1, I(u))

derived from each strategy st described in section 5.2.

Network parameters

The parameters for each base interdependent network (Pj(m, s), L1, I(u)) are the same as
those described in Chapter 3. Here, we considered for each physical-logical network pL = 6
the number of provider nodes, NL = 300 the number of logical nodes, and NP = 2000 the
number of physical nodes. To generate each final network (P st

j (m, s), L1, I(k)) we add the
same number of links |Est

(j,m,s)| ≈
ERNG

4
for every strategy st.

5.3.2 Costs

For each link addition strategy, we add the same amount of links, however these links connect
different nodes at different distances from one another. Higher distances usually mean higher
link costs.

Given u, v ∈ VP physical nodes, we calculate the average cost of each system, and each
addition strategy assuming that the cost of adding a link is equivalent to the euclidean
distance d(u, v) between the nodes connected by that link. We also assume that the total
cost of adding n links is the sum of their costs.

We define the cost of a physical network built over a space s, based on physical model m,
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using the j-th node allocation configuration locj(VP , s) as follows.

Cost(j,s)(m) =
∑

(u,v)∈Em
P (locj(VP ,s))

d(u, v)

The average cost of physical networks built over a space s, based on physical model m is
denoted by Costs(m). We obtain Costs(m) by averaging Cost(j,s)(m) across all j values.

Similarly, we define the cost of adding extra physical links according to a strategy st to
a physical network built over a space s, based on physical model m, using the j-th node
allocation configuration locj(VP , s) as follows.

Cost(j,m,s)(st) =
∑

(u,v)∈Est
(j,m,s)

d(u, v)

The average cost of adding links using strategy st over physical networks built over a space s,
based on physical model m is denoted by Cost(m,s)

(st). We obtain Cost(m,s)
(st) by averaging

Cost(j,s)(m) across all j values.

5.3.3 Cost efficiency

Along with the costs we also calculate the cost efficiency of each strategy in terms of im-
proving the robustness. To measure how cost efficient is each physical link addition strategy,
we define ∆TGL(j,m, s, u, st) as the average total GL improvement induced by strategy st
over an interdependent network built using a physical model m over a space s, using the
j-th node allocation configuration, and interlink set I(u).

∆TGL(j,m, s, u, st) = TGL(j,m, s, u, st)− TGL(j,m, s, u)

Here, TGL(j,m, s, u, st) is the average TGL obtained after adding links to the physical
network using strategy st, and TGL(j,m, s, u) is the average TGL obtained on the original
interdependent network, that is, before adding extra links to the physical network. Note that
since for all experiments we have q = 1 we have TGL(j,m, s, u, st) = TGL(1, j,m, s, u, st),
and TGL(j,m, s, u) = TGL(1, j,m, s, u).

Given Cost
(m,s)

(st) the average cost of adding physical links using strategy st over a
physical model m, and space s. We define CostE(st) to measure how cost efficient is a
strategy as follows

Cost
(m,s)
E (st) =

〈∆TGL(m, s, u, st)〉
Cost

(m,s)
(st)

where 〈∆TGL(m, s, u, st)〉 is obtained by averaging TGL(j,m, s, u) across all 10 node allo-
cation configurations j.
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5.4 Results

In this section we present and discuss the results obtained according to the experimental
settings described in section 5.3.

5.4.1 General robustness behavior

In Figure 5.2 we can see the average robustness behavior of systems built using physical model
m = RNG over a (1:25) space after extra physical links have been added. Figures for each
model and each strategy can be found in the appendix section C.1. Given a physical model
m, in these figures we observe the average GL (GL) across all 10 node location configurations
j. In Figure 5.2 we can see that, on average, physical-logical interdependent networks built
using physical model m = RNG present a continuous decay against physical random attacks,
regardless of the link addition strategy used. Furthermore, this behavior is observed across
all the systems tested. These results suggest that, on average, after adding extra links to the
physical network, physical-logical systems undergo a second order phase transition against
physical random attacks.

However, as we have shown in previous chapters, this does not mean that each attack
iteration undergoes a second order phase transition. Indeed, in Table 5.2 we can see the
fraction of iterations that undergo an abrupt decay for systems built using a (1:25) space
after extra physical links have been added. Tables for each model and each strategy can
be found in the appendix section C.2. In Figure 5.3, we can see the pc and GL(pc) values
obtained for systems built using a (1:25) space after extra physical links have been added.
Figures for each model, and each strategy can be found in the appendix section C.1. These
results suggest that the interdependent network tested are likely to undergo a first order
phase transition, even after adding extra physical links.

5.4.2 Effect of adding physical links

Let us start by observing the effect of adding links to the physical network over the inter-
dependent networks’ robustness against physical random attacks. In Figures 5.4 and 5.5 we
observe the TGL comparison of interdependent networks with Imax = 5. See appendix sec-
tion C.3 to see the figures for Imax ∈ {3, 5, 7, 10}. Figure 5.4 shows the results for s =(1:25),
and Figure 5.5 shows the results for s =(1:1). In these Figures we can see that adding extra
links to the physical network results in a TGL improvement for almost every physical model
tested regardless of the physical space s. The only exception to this are interdependent
networks built using physical networks based on ER networks.

Figures 5.6 and 5.7 show the average TGL of all systems tested. Here, we can observe
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 5.2: Average robustness for interdependent networks built using RNG physical model
over a (1:25) space, and logical network version q = 1 after adding extra physical links.

that Random and Degree strategies result in the highest average TGL, followed by Local
hubs strategy in second place, and Distance strategy in third place. Since we have added
the same number of physical links for each link addition strategy, this shows that the way
in which we add the physical links plays an important role. In Figures 5.6 and 5.7 we also
observe that some interdependent networks improve much more than others for the same
link addition strategy. More specifically, the more robust the original system is, the lower
the increment of its TGL values.
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st = Distance
m/Imax 3 5 7 10
RNG 0.803 0.826 0.897 0.773
GG 0.662 0.855 0.861 0.723
5NN 0.608 0.818 0.844 0.609
YAO 0.555 0.822 0.819 0.671
GPA 0.517 0.802 0.818 0.567
ER 0.402 0.859 0.75 0.552

st = Local hubs
m/Imax 3 5 7 10
RNG 0.714 0.825 0.882 0.678
GG 0.616 0.831 0.867 0.642
5NN 0.532 0.834 0.835 0.594
YAO 0.537 0.811 0.834 0.618
GPA 0.512 0.838 0.8 0.514
ER 0.433 0.866 0.76 0.536

st = Degree
m/Imax 3 5 7 10
RNG 0.573 0.857 0.861 0.771
GG 0.501 0.843 0.852 0.683
5NN 0.492 0.857 0.795 0.606
YAO 0.453 0.856 0.823 0.67
GPA 0.513 0.878 0.803 0.566
ER 0.413 0.87 0.762 0.577

st = Random
m/Imax 3 5 7 10
RNG 0.537 0.881 0.882 0.753
GG 0.494 0.841 0.835 0.676
5NN 0.429 0.848 0.819 0.65
YAO 0.446 0.856 0.811 0.624
GPA 0.458 0.853 0.81 0.547
ER 0.418 0.84 0.766 0.529

Table 5.2: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using s = (1:25), after adding extra physical links.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 5.3: Average values of pc and GL(pc) for each physical-logical interdependent network
built using s = (1:25), after adding extra physical links. Bars represent the standard devia-
tion.
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(a) (b)

(c) (d)

Figure 5.4: TGL comparison of interdependent networks with and without extra physical
links for s =(1:25), and Imax = 5.
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(a) (b)

(c) (d)

Figure 5.5: TGL comparison of interdependent networks with and without extra physical
links for s =(1:1), and Imax = 5.
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(a) (b)

(c) (d)

Figure 5.6: Average TGL comparison of interdependent networks with and without extra
physical links for m ∈ {RNG,GG,GPA, 5NN}.
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(a) (b)

Figure 5.7: Average TGL comparison of interdependent networks with and without extra
physical links for m ∈ {YAO,ER}.
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5.4.3 Relation between robustness and link length

Our results so far show that random link addition is one of the best physical link addition
strategies in terms of improving the robustness of physical-logical interdependent networks.
These results may seem counterintuitive, since random link addition does not require any
information about the physical network structure other than which links are already present
in the physical network, and thus, are not eligible to be added. We observe that, by the
definition of the addition strategies tested, Degree and Random strategies do not limit the
length of the links added. In contrast, Local hubs and Distance strategies do impose limits
in the length of the links added. This suggests that there might be a relation between the
length of the added links and the robustness improvement that a particular strategy induces.
To test this we define ρ as the length of the longest link added by a strategy as follows.

ρ(st)(j,m,s) = max
(u,v)∈Est

(j,m,s)

d(u, v)

Where st is the strategy, Est
(j,m,s) is the set of physical links added by strategy st over a

physical network built using model m, space s, and physical node locations locj(VP , s). And
d(u, v) is the length of the link (u, v).

s = (1:25)
Strategy RNG GG 5NN GPA YAO ER
Distance 5.29 (0.28) 5.41 (0.48) 5.87 (0.66) 3.99 (0.2) 6.01 (0.39) 4.02 (0.4)
Local hubs 25.3 (5.9) 25.22 (6.96) 24.96 (5.66) 25.09 (2.66) 25.92 (4.52) 21.67 (3.11)
Degree 485.5 (8.23) 481.58 (9.28) 482.28 (7.24) 484.96 (6.73) 486.09 (9.48) 478.03 (8.07)
Random 478.15 (12.45) 485.52 (7.57) 481.52 (6.85) 483.6 (6.35) 479.45 (14.1) 487.75 (7.28)

s = (1:1)
Distance 4.93 (0.32) 5.32 (0.41) 5.61 (0.91) 3.82 (0.36) 5.82 (0.56) 3.72 (0.37)
Local hubs 22.7 (2.75) 24.91 (3.16) 21.53 (2.61) 18.43 (1.53) 21.31 (2.16) 19.86 (2.82)
Degree 123.08 (3.17) 120.07 (2.6) 120.41 (5.0) 118.78 (4.27) 124.49 (5.56) 122.4 (5.48)
Random 122.03 (7.43) 122.69 (3.85) 122.24 (5.92) 124.24 (6.14) 123.52 (4.61) 121.63 (4.05)

Table 5.3: Average ρ for each model and space. Each value was obtained by averaging across
the 10 systems associated to each pair model-space.

Table 5.3 shows the average ρ for each model and space. We observe that the strategies
that result in higher average ρ values are also the ones that improve the robustness the most.
Indeed, in Figure 5.8 we observe that there is a relation between the average total robustness
TGL and ρ for systems built using Imax = 3. Figures for Imax ∈ {3, 5, 7, 10} can be found
in the appendix section C.4. Here we observe that the relation between the average total
robustness TGL and ρ is also present for interdependent networks with Imax ∈ {3, 5, 7, 10}.

81



(a) (1:25) (b) (1:25)

(c) (1:1) (d) (1:1)

Figure 5.8: Length of the longest link added by each strategy over each interdependent
network tested ρ versus the TGL for interdependent networks built using Imax = 3. ρ axis is
shown using logarithmic scale.

To further study this relation we test the effect of adding physical links at random with
the condition that the links added cannot surpass a specific length. We refer to links added
in this way as random addition with maximum link length. Here, for a given maximum link
length we add the same number of physical links as the original strategies tested Eadd. Let
us define ρrand = ρ(Random)(j,m,s), and ρ(st)(j,m,s) = ρ(st). We test the effect of setting the
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maximum link length to ρ(Distance), to ρ(Local hubs), and varying fractions of ρrand. In
Table 5.4 we can see the maximum link lengths tested, and the average ρ obtained for each
case.

s = (1:25)
Max. link length RNG GG 5NN GPA YAO ER
ρ(Distance) 5.29 (0.28) 5.41 (0.48) 5.87 (0.66) 3.98 (0.2) 6.01 (0.39) 4.02 (0.4)
ρ(Local hubs) 25.27 (5.9) 25.19 (6.97) 24.9 (5.65) 25.05 (2.65) 25.86 (4.49) 21.66 (3.11)
0.25× ρrand 119.37 (3.1) 121.28 (1.84) 120.24 (1.7) 120.59 (1.59) 119.67 (3.54) 121.72 (1.84)
0.5× ρrand 238.56 (6.17) 242.3 (3.73) 239.95 (3.44) 241.4 (3.17) 239.49 (7.04) 243.24 (3.59)
0.75× ρrand 356.53 (9.76) 362.96 (5.84) 360.37 (4.99) 361.14 (4.58) 358.84 (10.58) 365.08 (5.67)

s = (1:1)
ρ(Distance) 4.93 (0.32) 5.32 (0.41) 5.6 (0.91) 3.81 (0.36) 5.81 (0.56) 3.72 (0.37)
ρ(Local hubs) 22.69 (2.75) 24.88 (3.13) 21.51 (2.6) 18.42 (1.54) 21.29 (2.17) 19.84 (2.83)
0.25× ρrand 30.48 (1.85) 30.64 (0.96) 30.51 (1.45) 31.04 (1.54) 30.86 (1.16) 30.39 (1.02)
0.5× ρrand 60.96 (3.7) 61.29 (1.92) 61.02 (2.95) 62.03 (3.05) 61.68 (2.36) 60.75 (2.02)
0.75× ρrand 91.24 (5.5) 91.78 (2.85) 91.5 (4.45) 92.77 (4.48) 92.34 (3.33) 91.05 (3.05)

Table 5.4: Average ρ values obtained for random addition with maximum link length. Each
value was obtained by averaging across the 10 interdependent interdependent networks as-
sociated to each pair model-space.

In Figures 5.9 and 5.10 we can see the TGL after randomly adding physical links with dif-
ferent maximum link lengths. Figures for Imax ∈ {3, 5, 7, 10} can be found in appendix
section C.5. In Figures 5.9 and 5.10 we observe that the robustness decreases as the
maximum link length decreases. Furthermore, for interdependent networks built using
m ∈ {RNG,GG, 5NN,YAO} and Imax = 3 we can see that there is a rapid increment in
the robustness for maximum link lengths 0.25× ρrand and below. The robustness increment
becomes slower for maximum link lengths 0.5 × ρrand and above, with some cases resulting
in a similar robustness for link lengths 0.75 × ρrand and ρrand. For the case of interdepen-
dent networks built using m = GPA and Imax = 3 we observe that the increment in the
robustness for maximum link lengths 0.25× ρrand and below is slower compared to systems
with m ∈ {RNG,GG, 5NN,YAO}. In the case of m = ER and Imax = 3 we can see that
the link length does not impact the robustness. From appendix section C.5 we observe that
this behavior occurs regardless of the Imax value used to build the interdependent networks.
These results suggest that Random strategy results in such a great robustness improvement
because the picked link set likely contains longer links.
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(a) RNG (b) GG

(c) 5NN (d) YAO

Figure 5.9: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 3). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) GPA (b) ER

Figure 5.10: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 3). Each point shows the TGL of a single physical network P st

j (m, s).
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5.4.4 Cost of adding physical links

In Table 5.5 we can see the average cost of each link addition strategy st for each space s
and model m. Here, we observe that the most expensive strategies are also the strategies
that result in a higher increment of TGL as shown in section 5.4.2. That is, Random and
Degree strategies are the most expensive strategies, followed by Local hubs in second place,
and Distance in third place. This can be further observed in Figure 5.11 which shows the
robustness gain ∆TGL versus the cost of adding extra physical links for interdependent
networks with Imax = 3. Figures for Imax ∈ {3, 5, 7, 10} can be found in the appendix
section C.7. Table 5.6 shows the average cost of each type of physical network. We observe
that, similar to the link addition strategy costs, physical models that result in more robust
interdependent networks are also more expensive (see section 3.5.3).

In Tables 5.5 and 5.6 the cost is calculated according to section 5.3.2. That is, the cost is
given by the sum of the length of all physical links added using a given model or strategy.
Thus, these costs suggest that there is an association between the length of the links used
in a given physical network, and its robustness against physical random attacks.

So far we have seen that more expensive link addition strategies result in higher TGL

values. Thus, we would like to know which strategy is the most cost efficient in terms of
improving the robustness. In Table 5.7 we can see the cost efficiency of each link addition
strategy for Imax = 5. The results for Imax ∈ {3, 5, 7, 10} can be found in the appendix
section C.6. Note that cost efficiency values in these Tables have been amplified by a factor
of 103 to improve its readability. In these Tables we can see that lower cost strategies are
much more efficient than higher cost strategies, with Distance strategy being the most cost
efficient, followed by Local hubs in second place, and Random and Degree in third place.
This suggests that it might be better in terms of cost to add more physical links using
Distance addition strategy, than to add fewer physical links using other strategies.

5.4.5 Adding more physical links using Distance strategy

Let us test the effect of adding more physical links using Distance strategy. To do this, we
added to each interdependent network tested in this chapter approximately ERNG

2
physical

links using Distance strategy. We will refer to this addition as Distance+. Figures 5.12 and
5.13 shows the effect of the initial link addition according to each strategy plus the effect of
adding approximately twice as many links using Distance strategy (Distance+).

We can see that, for most physical models, Distance+ results in an average TGL that is
similar to the robustness obtained using Local hubs. Furthermore, as we can see in Table
5.9, Distance+ costs less than Local hubs strategy. In Table 5.8 we can see the cost efficiency
obtained for Distance+. We observe that Distance+ is more cost efficient than Local hubs,
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(a) s = (1 : 25) (b) s = (1 : 25)

(c) s = (1 : 1) (d) s = (1 : 1)

Figure 5.11: Robustness gain ∆TGL versus the cost of adding extra physical links for inter-
dependent networks with Imax = 3.
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(1:25)
m/st Distance Local hubs Degree Random
RNG 1,345.94 (16.04) 5,053.18 (285.33) 108,260.99 (2,901.07) 108,007.94 (3,394.89)
GG 1,450.28 (15.54) 5,348.77 (374.71) 106,637.27 (3,164.92) 108,196.79 (3,918.48)
GPA 826.92 (17.22) 5,303.49 (161.1) 109,073.1 (3,729.8) 108,132.88 (3,434.76)
5NN 1,574.63 (11.57) 5,525.47 (180.68) 107,967.13 (27,74.5) 108,008.62 (2,627.47)
YAO 1,602.83 (23.68) 5,303.41 (166.48) 107,249.68 (2,881.09) 108,428.97 (3,555.51)
ER 820.1 (14.73) 4,701.63 (326.96) 107,844.99 (2,248.73) 106,857.63 (1,814.87)

(1:1)
RNG 1,295.18 (16.96) 4,830.97 (87.96) 33,474.73 (443.23) 33,555.28 (678.25)
GG 1,379.3 (20.17) 5,230.64 (409.03) 34,003.93 (656.48) 33,542.83 (552.82)
GPA 805.06 (18.56) 5,795.72 (100.93) 33,998.42 (749.23) 33,339.42 (1,327.97)
5NN 1,530.73 (16.75) 5,260.35 (148.66) 33,613.86 (619.23) 33,659.34 (641.82)
YAO 1,521.17 (18.95) 5,051.47 (174.42) 34,129.78 (703.31) 33,352.85 (845.19)
ER 794.78 (10.48) 4,325.52 (150.99) 33,323.48 (622.11) 33,328.96 (820.4)

Table 5.5: Average cost of adding links to the physical network for each link addition strategy.
Standard deviation is shown in parenthesis.

s model RNG GG GPA 5NN YAO ER

(1:25) mean 4,386.83 8,276.02 47,189.99 16,881.52 15,108.9 1,277,914.9
std 42.4 77.74 1,739.73 178.34 47.74 17,765.85

(1:1) mean 4,504.97 8,691.3 14,752.24 17,076.08 16,310.33 393,755.05
std 63.15 100.03 379.29 280.59 117.53 6,884.71

Table 5.6: Average cost of each physical network given a model m, and a space s.
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Imax = 5
(1:25)

m/st Distance Local hubs Degree Random
RNG 51.16 39.91 3.44 3.57
GG 41.01 21.97 2.51 2.52
GPA 82.34 25.83 1.52 1.44
5NN 17.5 13.97 1.8 1.84
YAO 15.39 12.2 1.59 1.57
ER 24.39 2.4 0.07 0.06

(1:1)
RNG 58.34 43.28 9.72 9.82
GG 42.02 20.93 6.14 6.07
GPA 39.48 19.02 4.56 4.56
5NN 19.19 13.87 4.05 4.15
YAO 17.4 9.32 3.39 3.43
ER 26.51 2.81 0.16 0.08

Table 5.7: Cost efficiency Cost(m,s)
E of each link addition strategy, for interdependent networks

built using Imax = 5. Cost efficiency values have been amplified by a factor of 103 to improve
its readability.
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s Imax RNG GG GPA 5NN YAO ER

(1:25)

3 44.27 30.42 73.81 19.25 14.26 13.7
5 56.65 36.24 64.2 17.93 15.74 10.32
7 56.59 34.61 63.42 18.81 16.51 13.9
10 56.73 34.4 58.15 16.94 16.11 12.84

(1:1)

3 47.93 27.58 34.46 13.75 13.1 4.5
5 56.17 32.91 36.44 17.32 17.29 11.88
7 56.49 35.63 39.66 17.7 14.86 10.83
10 53.81 31.02 40.07 16.11 15.63 12.65

Table 5.8: Cost efficiency Cost(m,s)
E of Distance+. Cost efficiency values have been amplified

by a factor of 103 to improve its readability.

but not as cost efficient as Distance. These results suggest that indeed adding more links
using Distance is more cost efficient than to add less physical links using other strategies.
However, it also suggests that the TGL increments become smaller as we add more physical
links.

Another way to test the effect of adding more physical links is to fix the budget instead
of the number of physical links. Since RNG physical networks are both the most fragile and
the least expensive among the built physical networks, we test the effect of adding physical
links using Distance strategy given the following budget Bs.

Bs = Cost
s
(GG)− Costs(RNG)

Here, Costs is the average cost of physical networks built using a given model on a space
s. Note that the budget Bs is given by the difference between the cost of RNG networks,
and the cost of GG networks since GG networks result in systems that are more robust than
RNG systems, but not as robust as systems built using other physical models. Here, we have
B(1:25) ≈ 3, 889, and B(1:1) ≈ 4, 186. We will refer to the physical links added using Distance
strategy and budget Bs as Distance(Bs).

Table 5.10 we show the average TGL results obtained after adding physical links to RNG
physical networks using Distance(Bs) strategy compared to the robustness of GG systems,
and the robustness of RNG + Local hubs interdependent networks. We have included RNG
+ Local hubs interdependent networks to this comparison because these systems have a total
cost similar to GG interdependent networks, and thus to RNG + Distance(Bs). In Table
5.10 we can see that the robustness TGL of RNG interdependent networks, after adding
links to the physical network using Distance(Bs), is still lower than the average robustness
of GG interdependent networks, despite having similar costs. This suggests that in order for
RNG interdependent networks to be as robust as GG interdependent networks it might be
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(a) (b)

(c) (d)

Figure 5.12: Average TGL comparison of systems with and without extra physical links
(including strategy Distance+) for m ∈ {RNG,GG,GPA, 5NN}.

91



(a) (b)

Figure 5.13: Average TGL comparison of interdependent networks with and without extra
physical links (including strategy Distance+) for m ∈ {YAO,ER}.

(1:25)
m Distance Distance+ Local hubs Degree Random
RNG 1,345.94 (16.04) 2,897.24 (16.85) 5,053.18 (285.33) 108,260.99 (2,901.07) 108,007.94 (3,394.89)
GG 1,450.28 (15.54) 3,148.79 (27.84) 5,348.77 (374.71) 106,637.27 (3,164.92) 108,196.79 (3,918.48)
GPA 826.92 (17.22) 1,832.63 (19.41) 5,303.49 (161.1) 109,073.1 (3,729.8) 108,132.88 (3,434.76)
5NN 1,574.63 (11.57) 3,408.5 (19.73) 5,525.47 (180.68) 107,967.13 (27,74.5) 108,008.62 (2,627.47)
YAO 1,602.83 (23.68) 3,429.99 (29.91) 5,303.41 (166.48) 107,249.68 (2,881.09) 108,428.97 (3,555.51)
ER 820.1 (14.73) 1,805.55 (21.77) 4,701.63 (326.96) 107,844.99 (2,248.73) 106,857.63 (1,814.87)

(1:1)
RNG 1,295.18 (16.96) 2,810.95 (28.86) 4,830.97 (87.96) 33,474.73 (443.23) 33,555.28 (678.25)
GG 1,379.3 (20.17) 3,043.44 (26.67) 5,230.64 (409.03) 34,003.93 (656.48) 33,542.83 (552.82)
GPA 805.06 (18.56) 1,798.96 (25.26) 5,795.72 (100.93) 33,998.42 (749.23) 33,339.42 (1,327.97)
5NN 1,530.73 (16.75) 3,321.78 (24.43) 5,260.35 (148.66) 33,613.86 (619.23) 33,659.34 (641.82)
YAO 1,521.17 (18.95) 3,313.66 (28.81) 5,051.47 (174.42) 34,129.78 (703.31) 33,352.85 (845.19)
ER 794.78 (10.48) 1,761.92 (23.2) 4,325.52 (150.99) 33,323.48 (622.11) 33,328.96 (820.4)

Table 5.9: Average cost of adding links to the physical network. Distance, Local hubs,
Degree, and Random strategies add approximately ERNG

4
physical links each. Distance+

adds approximately ERNG

2
physical links using Distance strategy.
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s Imax RNG + Distance(Bs) RNG + Local hubs GG

(1:25)

3 424.61 (13.69) 415.95 (18.88) 456.51 (22.57)
5 581.58 (22.44) 583.51 (30.16) 618.66 (24.22)
7 648.48 (32.56) 656.05 (33.99) 680.21 (26.79)
10 776.3 (25.29) 778.11 (20.04) 796.76 (20.82)

(1:1)

3 507.53 (15.17) 488.72 (15.09) 532.53 (16.14)
5 665.79 (21.87) 650.8 (20.52) 695.82 (13.59)
7 706.99 (15.64) 697.98 (19.42) 730.11 (18.36)
10 835.55 (22.89) 817.92 (22.67) 859.71 (20.03)

Table 5.10: Average TGL comparison of RNG + Distance(Bs) systems, GG systems, and
RNG + Local hubs systems.

necessary to increase the budget, and highlights the importance of the way in which physical
links are added.

In Table 5.10 we also observe that TGL of RNG + Distance(Bs) systems is similar to
the average robustness of RNG + Local hubs systems. From Table 5.5 we can see that the
cost of adding physical links to RNG networks using the Local hubs strategy is higher than
the budget Bs regardless of the space s. Thus, for RNG systems, we can obtain a similar
robustness improvement to the one obtained with Local hubs by adding more physical links
using Distance strategy. Furthermore, adding more physical links using Distance strategy is
less expensive than adding less physical links using Local hubs.

5.5 Summary

In this chapter we tested the effect of adding links to the physical network over the robust-
ness of physical-logical interdependent networks against physical random attacks. Here, we
studied the effect of four physical link addition strategies: Random, Distance, Local hubs,
and Degree based addition. We studied the robustness improvement obtained after adding
physical links according to each strategy, and analyzed the cost efficiency of each strategy
in terms of the robustness improvement.

For the experiments we used a subset of the interdependent networks tested in Chap-
ter 3 as base systems. We then added extra physical links to each base system according
to each link addition strategy. For each base interdependent network, and for each ad-
dition strategy, we added the same number of physical links. For the base systems, we
considered the same physical networks and space shapes from Chapter 3. That is, we have
m ∈ {RNG,GG,5NN,YAO,GPA,ER}, s ∈ {(1:25),(1:1)}, plus the 10 different node alloca-
tion configurations as described in Chapter 3. For the logical network we only use logical
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network version q = 1, and for the interlinks we considered Imax = u with u ∈ {3, 5, 7, 10}.
We chose q = 1 because the bridge nodes that appear in this network result in moderate
damage compared to other logical network versions. The Imax values were selected such that
the physical-logical interdependent networks’ robustness monotonically increases with the
Imax value. In this chapter we tested a total of 1,920 new interdependent networks against
physical random attacks.

Our results show that Random and Degree strategies result in the highest robustness
improvement, followed by Local hubs strategy in second place, and Distance strategy in third
place. Since, we added the same number of physical links for each link addition strategy,
these results suggest that the way in which we add the physical links plays an important
role. We also found that the more robust the base system is, the lower the improvement of
its robustness.

Here, we note that the results show that random addition strategy is one of the best
strategies in terms of improving the robustness against random attacks despite this strategy’s
simplicity. We found that this can be explained by the length of the links added by random
strategy. Specifically, we found that these results are related to the maximum link length
of the added physical links. Indeed, if we condition random strategy to only consider links
below a specific length, we observe that the robustness obtained decreases as the maximum
link length decreases. The physical models tested in our experiments use relatively short
links as they use proximity criteria to add the links. Thus, the set of available physical links
to add using a strategy contains a high number of long links. These results suggest that
Random strategy results in such a great robustness improvement because the picked link set
likely contains longer links.

As for the costs, we observe that the most expensive strategies are also the strategies
that result in a higher robustness improvement. That is, Random and Degree strategies
are the most expensive strategies, followed by Local hubs in second place, and Distance in
third place. Interestingly, in terms of cost efficiency we observe that lower cost strategies
are much more efficient than higher cost strategies, with Distance strategy being the most
cost efficient, followed by Local hubs in second place, and Random and Degree in third
place. This suggests that it might be better in terms of cost to add more physical links using
Distance addition strategy, than to add fewer physical links using other strategies.

To test whether adding more physical links using distance strategy than to add fewer
physical links using other strategies we studied the effect of adding more physical links using
Distance strategy in two ways: (1) by adding twice as much physical links as the original
strategies using Distance strategy, and (2) by adding more physical links according to an
increased “budget”. We refer to the first way of adding more links using distance strategy
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as Distance+, and to the second one as Distance(Bs) with Bs the available budget to add
more physical links for an interdependent network built over a space s.

The results obtained by adding physical links according to Distance+ show that, for
most physical models, Distance+ has a lower cost than Local hubs, and results in a similar
robustness improvement. Thus, Distance+ is more cost efficient than Local hubs. However,
we also observe that Distance+ is not as cost efficient as Distance. Our results suggest that
adding more links using Distance strategy is more cost efficient than adding less physical
links using other strategies. However, it also suggests that robustness increments become
smaller as we add more physical links.

To test Distance(Bs) strategy we set as a budget the difference between the cost of interde-
pendent networks built using GG physical networks, and the cost of RNG physical networks.
With this budget we tested the effect of adding physical links according to Distance(Bs) strat-
egy over interdependent networks built using RNG physical networks. Our findings show
that, similar to the case of Distance+, interdependent networks built using RNG physical
networks and Distance(Bs) result in robustness improvement similar to that of interdepen-
dent networks built using RNG physical networks and Local hubs strategy. Our results also
show that the robustness of RNG systems after adding links to the physical network us-
ing Distance(Bs) is still lower than the average robustness of GG interdependent networks,
despite having similar costs. These results suggest that in order for RNG interdependent
networks to be as robust as GG systems it might be necessary to increase the budget, and
highlight the importance of the way in which physical links are added.
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Chapter 6

Robustness against localized attacks

In previous chapters we tested the robustness of our physical-logical model against physi-
cal random attacks. Using these types of attacks we tested the effect of the space shape,
the number of interlinks, the physical network model, and physical link addition over the
interdependent network’s robustness. However, physical random attacks are not the best
representation for physical damage caused by physical events such as earthquakes, floods,
tsunamis, etc. A better representation of these types of adverse events are ‘localized attacks’.

In this chapter we test the effect of localized attacks over the robustness of physical-
logical interdependent networks as modeled in Chapter 3. We use the physical link addition
strategies presented in Chapter 5 to test the effect of localized attacks over the robustness
of interdependent networks with and without extra physical links added, and compare it to
the effect of physical random attacks.

6.1 Background

One way to test the robustness of a physically embedded network is by using localized attacks.
Given a network allocated into a 2-dimensional space S, localized attacks damage all the
nodes and/or links contained within a circular area of radius r and centered in (x, y) ∈ S
[101, 17].

Localized attacks are often used to model natural disasters or intentional attacks. Indeed,
physical adverse events such as earthquakes, floods, tornadoes, as well as physical attacks
cause damage within a contiguous area in the physical world. Protecting fiber infrastructures
associated with communication networks from these types of events first motivated the study
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of attacks that affect a specific area [79]. The work of Neumayer et al. studied the effects of
damaging all network components that intersect a line in space, and attacks that damage all
network components within a disk or circular area. The objective was to model the damage
caused by tornadoes (line), and the damage caused by other events such as earthquakes
(disk). Definitions for Localized attacks would later emerge from the works of Berezin et al.
[17], and Shao et al. [101].

It has been shown that localized attacks cause substantially more damage than an equiva-
lent random attack in interdependent lattices when measuring the damage using percolation
methods [17], making these attacks especially interesting to test over interdependent net-
works that contain physically embedded networks.

6.2 Experiments

In this chapter we test the robustness of physical-logical interdependent networks under
localized attacks. To do this we use the same interdependent networks used for the exper-
iments of Chapter 5. Here we describe localized attacks, how we tested them, and how we
compared localized attacks versus physical random attacks.

6.2.1 Localized attacks

Localized Attacks (LA) remove all physical nodes within a circular area of radius r in the
physical network. For each LA, all the physical nodes within the LA radius are simultane-
ously removed from the initial undamaged physical-logical interdependent network. Once
the cascading failure has stopped we measure the GL value associated with that LA. We
must note that two LA with the same radius but different centers may contain different
fractions (1− p) of physical nodes within their attack areas (see Figure 6.1).

For each space shape s ∈ {(1:1),(1:25)}, a set C(s) of 100 LA centers were generated to
be used for testing. Centers in C(s) were spread uniformly to cover the space s. For each
center, five r values were tested, with r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1}, and wln the width
of the (1:25) space. We must note that the set of centers C(s) is not necessarily a subset of
the node allocation set locj(VP , s). Given a space shape s, the same set of centers was used
for all interdependent networks and all LA radii tested. Here, each LA can be described by
the tuple (c, r) with c ∈ C(s) the attack center, and r the attack radius. The results for
these experiments show the GL value obtained for each LA (c, r).
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(a) 5 nodes affected by LA (b) 13 nodes affected by LA

Figure 6.1: Example of two localized attacks with the same radius r and different centers
that affect different fractions of nodes (1− p).

Localized attacks versus physical random attacks

Consider physical-logical interdependent network (P,L, I), LA radius r, and C(s) the set of
LA centers for space s. To compare the effects of localized attacks over the robustness of
(P,L, I) versus the effects of physical random attacks over the same interdependent network,
we measure the difference between the average system robustness GL obtained for localized
attacks and the GL obtained for physical random attacks. Let (1 − pLA(r)) be the average
fraction of physical nodes affected by localized attacks of radius r. We define the difference
between the damage caused by localized attacks of radius r, and physical random attacks
that remove a similar amount of physical nodes ∆GL(r) as

∆GL(r) = GL(LA(r))−GL(RA(1− pLA(r)))

where GL(LA(r)) is the average GL value obtained across all 100 the localized attacks (c, r)
tested over interdependent network (P,L, I), and GL(RA(1 − pLA(r))) is the average GL

obtained after damaging the interdependent network using physical random attacks that
remove a fraction (1− pLA(r)) of physical nodes.

With this, a ∆GL close to 0 means that on average the damage caused by localized attacks
is similar to the damage caused by comparable physical random attacks.

6.2.2 Networks tested

In this chapter we use the interdependent networks previously used in Chapter 5. Here, we
test physical-logical interdependent networks before adding extra physical links.

(Pj(m, s), L1, I(u))
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And after adding links using a strategy st, with st a physical link addition strategy defined
in section 5.2.

(P st
j (m, s), L1, I(u))

Here Pj(m, s) is the physical network generated using model m over the space s, and
the j-th physical node allocation configuration locj(VP , s), P st

j (m, s) is the physical net-
work obtained after adding extra physical links to network Pj(m, s) according to strategy
st, L1 is the logical network (q = 1), and I(u) is the set of interlinks generated given
Imax = u. In this chapter we use the same physical-logical interdependent networks tested
in Chapter 5, thus we consider u ∈ {3, 5, 7, 10}, j ∈ {1, . . . , 10}, s ∈ {(1:25), (1:1)}, and
m ∈ {RNG ,YAO ,GPA, 5NN ,GG ,ER}.

The parameters for each base interdependent network (Pj(m, s), L1, I(u)) are the same
as those described in Chapter 3. Thus, for each physical-logical interdependent network,
we have pL = 6 the number of provider nodes, NL = 300 the number of logical nodes, and
NP = 2000 the number of physical nodes. To generate each network (P st

j (m, s), L1, I(u)) we
add the same number of links |Est

(j,m,s)| ≈
ERNG

4
for each strategy st as defined in Chapter 5.

6.3 Results

In this section we will show the results of testing the robustness of each physical-logical
interdependent network described in section 6.2 against LA. Here, we will show the results
with and without extra physical links added using the strategies presented in Chapter 5.

6.3.1 Comparison: LA versus RA

First, let us compare the robustness of the interdependent networks against localized attacks
(LA), and against physical random attacks (RA). In Figure 6.2 for each LA radius r, we can
see the comparison of the difference between the average interdependent network robustness
GL obtained for each type of attack for systems with Imax = 3. We can observe that,
before adding links to the physical network, the average damage that LA and RA make are
relatively similar for most interdependent networks. Here we can see that interdependent
networks using m ∈ {RNG, GPA} result in higher ∆GL values, meaning that these systems
are more fragile against localized attacks than physical random attacks.

Results for Imax ∈ {3, 5, 7, 10} show that having a higher Imax value results in a decrease
of ∆GL (see appendix D.1). In Figure 6.2 we observe that, for Imax = 3, after adding physical
links to the physical network the ∆GL decreases, suggesting that adding more physical links
increases the interdependent networks’ robustness against localized attacks. The same is
observed on interdependent networks with Imax ∈ {5, 7, 10} (see appendix D.1).
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(a) No links added

(b) Distance links added (c) Local hubs links added

(d) Degree links added (e) Random links added

Figure 6.2: GL value difference between LA and RA for Imax = 3. Here, ∆GL = GL(LA)−
GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1}, with wln the width of the (1:25)
space.
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6.3.2 High damage localized attacks

Although the average GL values of LA are somewhat similar to that of RA, we found that
some LA can damage more than half of the logical network, and even result in its total
destruction. In Figures 6.3 and 6.4 we can see the effect of localized attacks with a = 1. For
each LA we can see the GL value, versus the fraction of physical nodes (1 − p) contained
within the LA area. We observe that some localized attacks result in GL ≤ 0.5. Furthermore,
some of these LA result in GL = 0. These attacks do not appear as a continuum, but rather
as a distinct group that always damages at least half of the logical network. We will refer to
LA that result in a GL ≤ 0.5 as High Damage Localized Attacks (HDLA).

We must note that HDLA are only observed in interdependent networks with Imax = 3.
Interdependent networks with higher Imax values do not present HDLA. This suggests that
HDLA are related to the number of interlinks in the physical-logical interdependent network.
Furthermore, the gap between the GL values of HDLA and non-HDLA suggests that HDLA
might be caused by the removal of bridge nodes during the cascading failure process. Indeed,
for q = 1 and Imax = 3 we have that the set of bridge nodes that result in the loss of at
least 10% of the logical network after being removed B(q,u)

h contains only one node ubL, and
removing node ubL from the isolated logical network results in a GL = 0.517. Thus, HDLA
could be related to the removal of node ubL during the cascading failure process.

In Figures 6.5 and 6.6 red dots correspond to LA that remove node ubL during the cascading
failure process (denoted as CF), and black dots show LA that do not remove ubL. We observe
that indeed HDLA remove node ubL during the cascading failure process, while non-HDLA do
not remove said node. In Figures 6.7 and 6.8 we can see that this behavior is also observed
after adding links to the physical network on interdependent networks with Imax = 3. In the
appendix section D.2 we can see this holds true for all Imax value tested.
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 6.3: Each localized attack GL versus the fraction of nodes contained within the attack
radius (1−p) for interdependent networks built using s = (1:25) without extra physical links
(r = 1 · wln).
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 6.4: Each localized attack GL versus the fraction of nodes contained within the attack
radius (1− p) for interdependent networks built using s = (1:1) without extra physical links
(r = 1 · wln).
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 6.5: Each localized attack GL value versus (1− p) for interdependent networks built
using s = (1:25) without extra physical links (r = 1·wln). Dots in red correspond to localized
attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 6.6: Each localized attack GL value versus (1− p) for interdependent networks built
using s = (1:1) without extra physical links (r = 1 ·wln). Dots in red correspond to localized
attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 6.7: Each localized attack GL value versus (1− p) for interdependent networks built
using s = (1:25) and Imax = 3 after adding extra physical links (r = 1 · wln). Dots in red
correspond to localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 6.8: Each localized attack GL value versus (1− p) for interdependent networks built
using s = (1:1) and Imax = 3 after adding extra physical links (r = 1 · wln). Dots in red
correspond to localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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6.3.3 Physical link addition and localized attacks

In Table 6.1 we can see the total number of localized attacks that result in HDLA, and the GL

ranges of HDLA and non-HDLA for interdependent networks with Imax = 3, and localized
attacks with a = 1. Results for other Imax tested can be found in appendix section D.3. Here,
we can see these results before and after adding links to the physical network. In Table 6.1
we can see that the addition of physical links decreases the number of HDLA, and increases
their GL values compared to physical-logical interdependent networks without physical links
added. In Tables 6.2, 6.3, 6.4, and 6.5 we can see that the same behavior is observed for
interdependent networks with Imax = 3, and localized attacks with a ∈ {0.2, 0.4, 0.6, 0.8}.
Furthermore, we observe that even localized attacks with a = 0.2 can result in HDLA over
interdependent networks built using Imax = 3.

In appendix section D.3 we observe that for Imax > 3 the GL range of the localized
attacks with a = 1 tends to contain higher GL values or remain unchanged after adding
extra physical links. We also observe that, as seen in section 6.3.2, localized attacks with
a = 1 over interdependent networks with Imax > 3 do not result in HDLA. Note that localized
attacks with a < 1 remove a subset of the physical nodes removed by LA with a = 1. Thus,
if LA with a = 1 do not result in HDLA for a given interdependent network, then LA with
a < 1 will not result in HDLA over said system.

Our results show that adding links to the physical network does improve the system’s
robustness. However, our results also show that, for systems with Imax = 3, adding physical
links cannot fully protect the interdependent networks against HDLA.

Imax = 3, a = 1

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 480 74 73 114 73 73 73 (0.0, 0.5) (0.837, 1.0)
Distance 458 74 73 92 73 73 73 (0.23, 0.5) (0.893, 1.0)
Local hubs 447 74 73 81 73 73 73 (0.323, 0.5) (0.893, 1.0)
Degree 442 73 73 77 73 73 73 (0.353, 0.5) (0.897, 1.0)
Random 458 74 73 92 73 73 73 (0.353, 0.5) (0.873, 1.0)

(1:1)

Original 619 100 99 122 100 99 99 (0.0, 0.5) (0.827, 0.997)
Distance 618 100 99 121 100 99 99 (0.043, 0.5) (0.827, 0.997)
Local hubs 607 99 99 112 99 99 99 (0.017, 0.5) (0.83, 0.997)
Degree 594 99 99 99 99 99 99 (0.057, 0.5) (0.853, 0.997)
Random 596 99 99 101 99 99 99 (0.313, 0.5) (0.83, 0.997)

Table 6.1: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of interdependent net-
work with and without physical links added for Imax = 3, and a = 1.
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Imax = 3, a = 0.2

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 48 8 8 10 8 7 7 (0.0, 0.5) (0.963, 1.0)
Distance 46 8 8 8 8 7 7 (0.367, 0.5) (0.973, 1.0)
Local hubs 43 7 7 7 8 7 7 (0.367, 0.5) (0.97, 1.0)
Degree 42 7 7 7 7 7 7 (0.367, 0.5) (0.97, 1.0)
Random 43 7 7 8 7 7 7 (0.37, 0.5) (0.963, 1.0)

(1:1)

Original 25 4 4 5 4 4 4 (0.0, 0.5) (0.96, 1.0)
Distance 25 4 4 5 4 4 4 (0.417, 0.5) (0.967, 1.0)
Local hubs 24 4 4 4 4 4 4 (0.017, 0.5) (0.967, 1.0)
Degree 24 4 4 4 4 4 4 (0.457, 0.5) (0.967, 1.0)
Random 24 4 4 4 4 4 4 (0.45, 0.5) (0.967, 1.0)

Table 6.2: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of interdependent net-
works with and without physical links added for Imax = 3, and a = 0.2.

Imax = 3, a = 0.4

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 107 16 15 31 15 15 15 (0.0, 0.5) (0.927, 1.0)
Distance 100 16 15 24 15 15 15 (0.367, 0.5) (0.947, 1.0)
Local hubs 92 15 15 17 15 15 15 (0.367, 0.5) (0.95, 1.0)
Degree 92 15 15 17 15 15 15 (0.367, 0.5) (0.95, 1.0)
Random 100 15 15 25 15 15 15 (0.367, 0.5) (0.953, 1.0)

(1:1)

Original 123 19 19 28 19 19 19 (0.0, 0.5) (0.927, 1.0)
Distance 120 19 19 25 19 19 19 (0.403, 0.5) (0.933, 1.0)
Local hubs 115 19 19 20 19 19 19 (0.017, 0.5) (0.933, 1.0)
Degree 114 19 19 19 19 19 19 (0.443, 0.5) (0.94, 1.0)
Random 115 19 19 20 19 19 19 (0.443, 0.5) (0.953, 1.0)

Table 6.3: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of interdependent net-
works with and without physical links added for Imax = 3, and a = 0.4.
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Imax = 3, a = 0.6

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 230 36 34 57 35 34 34 (0.0, 0.5) (0.903, 1.0)
Distance 217 34 34 46 35 34 34 (0.357, 0.5) (0.917, 1.0)
Local hubs 208 35 34 37 34 34 34 (0.357, 0.5) (0.917, 1.0)
Degree 207 34 34 37 34 34 34 (0.357, 0.5) (0.937, 1.0)
Random 213 34 34 43 34 34 34 (0.36, 0.5) (0.937, 1.0)

(1:1)

Original 252 40 40 51 41 40 40 (0.0, 0.5) (0.893, 1.0)
Distance 252 40 40 51 41 40 40 (0.09, 0.5) (0.907, 1.0)
Local hubs 245 40 40 45 40 40 40 (0.017, 0.5) (0.903, 1.0)
Degree 240 40 40 40 40 40 40 (0.103, 0.5) (0.903, 1.0)
Random 242 40 40 42 40 40 40 (0.35, 0.5) (0.917, 1.0)

Table 6.4: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of interdependent net-
works with and without physical links added for Imax = 3, and a = 0.6.

Imax = 3, a = 0.8

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 366 55 54 95 54 54 54 (0.0, 0.5) (0.88, 1.0)
Distance 347 55 54 76 54 54 54 (0.353, 0.5) (0.9, 1.0)
Local hubs 336 55 54 65 54 54 54 (0.353, 0.5) (0.9, 1.0)
Degree 328 54 54 58 54 54 54 (0.353, 0.5) (0.907, 1.0)
Random 344 55 54 73 54 54 54 (0.353, 0.5) (0.917, 1.0)

(1:1)

Original 453 73 72 92 72 72 72 (0.0, 0.5) (0.857, 1.0)
Distance 448 72 72 88 72 72 72 (0.09, 0.5) (0.86, 1.0)
Local hubs 441 73 72 80 72 72 72 (0.017, 0.5) (0.86, 1.0)
Degree 432 72 72 72 72 72 72 (0.103, 0.5) (0.873, 1.0)
Random 434 72 72 74 72 72 72 (0.343, 0.5) (0.88, 1.0)

Table 6.5: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of interdependent net-
works with and without physical links added for Imax = 3, and a = 0.8.
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6.4 Summary

In this chapter we tested the effect of localized attacks over the robustness of physical-logical
interdependent networks as modeled in Chapter 3. Here, we used the physical link addition
strategies presented in Chapter 5 to test the effect of localized attacks over the robustness
of interdependent networks, and compare it to the effect of physical random attacks.

For the experiments we tested the effect of using localized attacks over the robustness of
interdependent networks with and without extra physical link added. Extra physical links
were added to base interdependent networks according to the link addition strategies de-
scribed in Chapter 5: Random, Distance, Local hubs, and Degree based addition. Here we
use the same base interdependent networks tested in Chapter 5. Thus, for the base systems
we consider space shape s ∈ {(1:1),(1:25)}, logical network version q = 1, Imax ∈ {3, 5, 7, 10},
model m ∈ {RNG,GG,5NN,YAO,GPA,ER}, and the 10 different node allocation configura-
tions described in Chapter 3.

In order to test localized attacks, we generated an attack set as follows. For each space
shape s ∈ {(1:1),(1:25)}, we generated a set C(s) of 100 localized attack centers. Centers in
C(s) were spread uniformly to cover the space s. For each center, five radii values r were
tested with r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1}, and wln the width of the (1:25) space. Then,
each localized attack was performed over each physical-logical interdependent network.

Our results show that, for interdependent networks without extra physical links added,
the average damage caused by a localized attack is relatively similar to the damage caused
by comparable physical random attacks. We also found that for Imax = 3, interdependent
networks using m ∈ {RNG,GPA} are on average more fragile against localized attacks
than against physical random attacks. However, this difference decreases as the Imax value
increases. A similar effect is observed after adding extra physical links. This suggests that
adding more physical links increases the systems’ robustness against localized attacks.

For base systems with Imax = 3 we found that some localized attacks can damage more
than 50% of the logical network, and even result in its total destruction. We refer to localized
attacks that result in the loss of more than half of the logical network as High Damage
Localized Attacks (HDLA). We found that HDLA occur because during their cascading
failure they remove the logical bridge node ubL. Removing node ubL from the isolated logical
network is enough to lose more than 45% of the logical nodes. We found that adding
extra physical links increases the robustness against localized attacks, and decreases the
number of HDLA (but does not fully prevent them). This suggests that adding physical
links does improve the interdependent networks’ robustness, but in order to avoid HDLA
other measures must be implemented.
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Chapter 7

Localized attacks with probabilistic
failure: Seismic attacks case

In this chapter we present a novel type of attack: Localized Attacks with Probabilistic
Failures (LAPF). We start by explaining the motivation for these attacks, and then we
present the definition of LAPF.

We show an application of LAPF by using them to define “seismic attacks” or attacks that
simulate the effect of seismic events over the physical network. Finally, we test the effect of
seismic attacks over the robustness of physical-logical interdependent networks as modeled
in Chapter 3, and compare it to the effect of localized attacks.

7.1 Motivation

So far we have aimed to test the effect of physical adverse events over the robustness of the
proposed physical-logical interdependent network in an attempt to represent the effect that
natural disasters such as earthquakes, floods, tsunamis, etc. would have over its robustness.
In Chapters 3 and 5 we tested the effect of physical random attacks, and in Chapter 6 we
tested the effect of localized attacks. From the attacks tested, localized attacks are the
best approximation to natural disasters. Indeed, natural disasters cause damages within a
geographic area, similar to how localized attacks affect a circular area of the physical space.
However, while localized attacks cause everything within its attack area to fail, natural
disasters can cause different levels of damage for different infrastructures located in the
same area. This damage may induce failure on some infrastructure, and leave others fully
functional. Here, the damage perceived by an infrastructure depends on the characteristics
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of the event, local geographical conditions, infrastructure characteristics, etc.

Let us look at some examples. In the case of tsunamis, the damage level perceived by
an infrastructure will depend on variables such as the distance to the shore, the elevation
at which the infrastructure was built, the tsunami characteristics, etc. Another example
is earthquakes. In the case of earthquakes, the damage level perceived by an infrastruc-
ture will depend on the distance to the epicenter, the soil in which the infrastructure was
built, the earthquake magnitude, and the type of earthquake, among others. Because of
this, two infrastructures that are geographically close to each other can experience different
damage levels despite being affected by the same event. Assimaki et al. [7] observed that,
after the 2010 earthquake in Chile, two adjacent multi-story buildings located in downtown
Concepción suffered vastly different damage levels due to the soil conditions assumed when
designing each building. Here, one of the buildings collapsed, whereas the other building only
suffered minor damages. The distance between these buildings was approximately 20 meters.
Differences as the ones observed by Assimaki et al. are not captured by localized attacks.
To capture these differences we need to consider the specific characteristics that contribute
to the damage caused by a natural disaster. Furthermore, since the damage caused by an
earthquake cannot be modeled in the same way as the damage caused by a tsunami, flood,
or tornado, we need to consider the characteristics specific to the type of natural disaster
that we wish to represent.

To have a more accurate representation of the damage caused by natural disasters over
physical networks we propose to use localized attacks such that the elements of the network
affected by the attack have a “probability of failure” or probabilistic failures. Here, we
propose to describe the probability of failure using probability distributions. Given a type of
natural disaster, the failure probability distribution can be tailored to consider the specific
characteristics that contribute to the damage caused by it. We refer to these localized attacks
as: Localized Attack with Probabilistic Failures (LAPF).

We must note that a similar probabilistic approach was used by Dong et al. [36] to simulate
the damage caused by an earthquake over a transportation network. Here, each link has a
failure probability, which was obtained using publicly available data. We can capture the
probabilistic failures presented by Dong et al. using LAPF.

7.2 Definition

7.2.1 Localized Attack with Probabilistic Failures (LAPF)

Consider a physical network P (VP , EP ). We define a localized attack with probabilistic
failures or (LAPF) as an attack that affects a circular area of radius r ∈ [0,∞), where each
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node u ∈ VP contained within the attack area has a failure probability given by the failure
probability distribution F . In Figure 7.1 we can see a visualization of a LAPF. Here we
observe that different areas within the attack area have different failure probabilities. We
must note that LAPFs can be tailored to affect areas of any shape by using an appropriate
failure probability distribution F .

Figure 7.1: Graphic example of the failure probability distribution associated to a specific
LAPF.

7.2.2 Failure probability

The failure probability distribution F is defined as a function F : X −→ [0, 1], where X
is the set of network elements that can be affected by the attack. In order to capture
the local conditions that affect the failure probability of an element we define the function
g : X −→ Γ where Γ contains n-tuples that describe the necessary data to determine the
failure probability of a node, and the function Φ : Γ −→ [0, 1] that determines the failure
probability that an event induces given the local condition described by γ ∈ Γ. Using
functions g and Φ we can define F as the function composition of Φ and g (F = Φ ◦ g).

7.3 Application: Seismic attacks

Given an infrastructure located at a geographic point x, the damage caused by an earthquake
or seismic event over said infrastructure will depend on variables such as the event magnitude,
the distance from the x to the epicenter, the depth of the event, the soil type at x, etc. Some
of these variables are characteristics of the seismic event itself, such as the event magnitude
and depth. Other variables are related to local characteristics of the geographic point, such
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as the soil type, and the distance to the epicenter of the event. Variations in the local
properties of a point can lead to infrastructures located in different points to experience
vastly different levels of damage. When we translate this behavior to a physical network,
such as the physical Internet network, this means that not all the nodes affected by the same
seismic event will be affected in the same way. Furthermore, two nodes located at similar
distances of the same seismic event epicenter might experience different damage levels. The
higher the damage level experienced by a node, the more likely is the node to fail.

To capture this behavior we model seismic events using localized attacks with probabilistic
failures (LAPF). As defined in section 7.2 in order to test LAPF we must define a failure
probability distribution F . Here, we estimate the damage perceived by a node after a seismic
event using the Ground Acceleration at the node’s location. Then, we use this data to define
the failure probability distribution used by the LAPF.

7.3.1 Ground Motion Prediction Equations

The ground acceleration describes the acceleration perceived in a given location during an
earthquake and it can be measured using instruments. This acceleration can be used to
estimate how strong the shaking produced by an earthquake in a specific location. Given a
single seismic event, the acceleration of two different locations during the event can differ.

In the literature we can find different Ground Motion Prediction Equations equations
(GMPE) to estimate or predict the acceleration perceived in a given point in space given the
local conditions [30, 77, 108, 54]. In this work we aim to represent the conditions of Chile,
to do this we use the equations presented by Idini et al. [54] which were developed for the
specific case of the Chilean subduction zone.

The equations presented by Idini et al. consider the contribution of the seismic source
FF , the path contribution FD, and the local site effects FS as follows.

log10Y = FF (Mw, H, Feve) + FD(R,Mw, Feve) + FS(Vs30, sT ∗)

In this formula, Y is the ground acceleration,Mw is the moment magnitude of the event, Feve

is a variable representing whether the event is an interface event (Feve = 0) or an intraslab
event (Feve = 1), H is the hypocentral depth, R is the hypocentral distance, Vs30 is the
average shear wave velocity down to 30 meters depth, and sT ∗ is the site effect coefficient
given by the local soil.

In the work of Idini et al. we find that the GMPE proposed can be used to calculate the
ground acceleration for several different time periods, including the Peak Ground Acceler-
ation (PGA). In a given location, the PGA is the highest acceleration registered during a
seismic event.
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7.3.2 Failure probability for seismic attacks

In this application we want to observe the effect of seismic events over the physical-logical
interdependent network. In particular we are interested in the effect of seismic events over
the physical nodes. To estimate the failure probability of a physical node after a seismic event
we want to use the ground acceleration experienced by the node. To obtain this acceleration
we use the GMPE provided by Idini et al. [54].

Following the definition given in section 7.2, we have that X = VP the set of physical
nodes, and the set Γ must contain all the necessary data to calculate the ground acceleration.
This means that γ ∈ Γ is a 6-tuple that contains the moment magnitude of the event Mw,
the depth of the event H, the type of event Feve, the hypocentral distance from the node
to the event R, the average shear wave velocity down to 30 meters depth Vs30 at the node’s
location, and the site effect coefficient of the soil in which the node is located sT ∗ .

Given a physical node v ∈ VP , and a seismic event ev centered in (xev, yev), with depth H,
type Feve, and moment magnitude Mw, we have that the failure probability of node v during
a seismic event ev is given by Fev(v) = Φ(gev(v)) where gev : VP −→ Γ is the function that
returns the 6-tuple that contains all the necessary data to calculate the ground acceleration
perceived by a node given the characteristics of the seismic event ev. Given γ ∈ Γ, we define
the function Φ(γ) = Φ2(Φ1(γ)) where Φ1 corresponds to the equation provided by Idini et al.
[54], that is, the equation that returns the ground acceleration associated to the conditions
described by γ, and function Φ2 gives us the failure probability given a ground acceleration
value. Here, we define Φ2 as follows.

Φ2(a) =


0 if a ≤ c1

φ(a) if c1 ≤ a ≤ c2

1 if a ≥ c2

In this formula we have that a = Φ1(γ), c1 is the limit below which we assume that node
failure will not occur, and c2 is the limit above which we assume failure will always occur.
Limits c1 and c2 have been selected based on the Japan Meteorological Agency (JMA) Seismic
Intensity Scale [57]. The JMA Seismic Intensity Scale describes 10 intensity levels, with its
lowest intensity level being 0 and its highest intensity level being 7. Each intensity level is
associated to a seismic intensity defined by the JMA,

IJMA = 2log(a) + 0.94

where a is the ground acceleration measured in gal (1gal = 0.01m/s2) at time period τ = 0.3s
[57]. Since the IJMA is calculated using τ = 0.3s, we set Φ1 using the coefficients associated
to a time period of 0.3s as described in [54]. We must note that the GMPE used here give
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acceleration measured as fractions of g with g = 9.81m/s2, thus we have set Φ1 to convert
the results of the GMPE to m/s2. Using the JMA Seismic Intensity Scale as guideline we
chose c1 as the lowest ground acceleration for intensity 3 of the seismic scale (c1 = 0.06m/s2),
and c2 as the ground acceleration above which the seismic event is considered to have an
intensity of 7 (c2 = 6m/s2). For simplicity in this application we define φ as a linear function
with φ(c1) = 0 and φ(c2) = 1, however we must note that Φ2 and φ can be tailored to follow
any function that gives a probability as its output.

7.4 Experiments

In this chapter we test the robustness of physical-logical interdependent networks against
seismic attacks. In particular, here we test the effect of seismic events using data from
Chile’s geography and seismic activity. Thus, we only test interdependent networks built
over a (1:25) physical space. In this section we describe the seismic attacks tested, the seismic
data used to run these tests, and the set of networks tested.

7.4.1 Seismic data

To test the effect of seismic attacks as described in section 7.3 we need information regarding
the average shear wave velocity down to 30 meters depth Vs30 and soil type sT ∗ at the node’s
location, the distance between the seismic event and the node R, plus data regarding the
seismic event itself: the event’s depth H, moment magnitude Mw, and type Feve.

For the data regarding the seismic event conditions we use the data set provided in the
work of Idini et al. [54] which describes, among other things, the moment magnitude Mw,
depth H, and type Feve of several seismic events registered in Chile. The average shear
wave velocity down to 30 meters depth Vs30 at each node location was approximated from
the image provided on Rauld et al. work [89]. We must note that the raw data used by
Rauld et al. to generate this map is currently not available for public use, and efforts to
gain access to this data were unsuccessful. Finally, since not enough data regarding the soil
types as described in [54] is available, the soil type for the entire physical space has been
approximated to sII soil. This soil was selected because soil sII has been found to be present
in similar proportions in both soil (55%) and rock (45%) [66].

7.4.2 Seismic attacks

To test seismic attacks we use the definition provided in section 7.3. Here, the coefficients
used in equation Φ1 correspond to the coefficients described in [54] for τ = 0.3s. We must
note that since seismic attacks are LAPF they do not necessarily have a maximum radius
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r. However, for the experiments we set a maximum radius rev = 400km beyond which no
physical nodes can be affected by the seismic attack.

Given the physical space s we define C(s) as the set of attack centers tested. The set
C(s) contains a total of 100 centers uniformly spread over the space s. Each seismic event
is simulated over each center c ∈ C(s). Here, we test a total of 103 different seismic events
using the seismic data described in section 7.4.1. Thus, a total of 10300 seismic attacks are
tested over each physical-logical interdependent network considered for the experiments.

7.4.3 Networks tested

In this chapter we use interdependent networks previously used in Chapter 5. In this chapter
we aim to simulate the effect of seismic events over the Chilean country, thus we only
use interdependent networks built over space s = (1:25). Here, we test physical-logical
interdependent networks before adding extra physical links.

(Pj(m, s), L1, I(u))

And after adding links using a strategy st, with st a physical link addition strategy defined
in section 5.2.

(P st
j (m, s), L1, I(u))

Here Pj(m, s) is the physical network generated using model m over the space s, and the j-th
physical node allocation configuration locj(VP , s), P st

j (m, s) is the physical network obtained
after adding extra physical links to network Pj(m, s) according to strategy st, L1 is the logical
network (q = 1), and I(u) is the set of interlinks generated given Imax = u. In this chapter we
use the same interdependent networks tested in Chapter 5, thus we consider u ∈ {3, 5, 7, 10},
j ∈ {1, . . . , 10}, s ∈ {(1:25), (1:1)}, and m ∈ {RNG ,YAO ,GPA, 5NN ,GG ,ER}.

The parameters for each base interdependent network (Pj(m, s), L1, I(u)) are the same
as those described in Chapter 3. Thus, for each physical-logical interdependent network,
we have pL = 6 the number of provider nodes, NL = 300 the number of logical nodes, and
NP = 2000 the number of physical nodes. To generate each network (P st

j (m, s), L1, I(u)) we
add the same number of links |Est

(j,m,s)| ≈
ERNG

4
for each strategy st as defined in Chapter 5.

7.5 Results

In this section we will show the results of testing the robustness of each physical-logical
interdependent network described in section 7.4 against seismic attacks. Here, we will show
the results with and without extra physical links added using the strategies presented in
Chapter 5.
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7.5.1 Seismic attacks

In Figure 7.3 we can see the effect of each seismic attack tested over each of the physical-
logical interdependent networks before adding extra physical links. Here we can see that,
similar to localized attacks, seismic attacks can cause High Damage Seismic Attacks (HDSA),
that is, seismic attacks that result in GL ≤ 0.5. In Figure 7.3 we can see that HDSA occur
on interdependent networks with Imax = 3 and Imax = 10. As we can see in Figure 7.4, each
of these HDSA remove the logical bridge node ubL described in section 6.3.2. This suggests
that, for seismic attacks, HDSA are caused by the removal of the logical node ubL during the
cascading failure process.

Figure 7.5 shows the effect of each seismic attack tested over each of the physical-logical
interdependent networks before adding extra physical links, and the moment magnitude Mw

of the event associated with each seismic attack. Here we observe that for Imax = 3 the
magnitude of the event is not correlated with the occurrence of HDSA. However, we observe
that for Imax = 10 HDSA only occur with higher Mw events. This can be further observed
in Table 7.1, here we can see the detailed information regarding the number of HDSA, the
percentage that these HDSA represent from the total, the Mw range associated to HDSA,
and the range of GL values associated to HDSA and non-HDSA. In Table 7.1 we can see that
HDSA represent a very small percentage of the total number of seismic attacks tested. For
Imax = 3, all the HDSA combined represent less than 3% of all the seismic attacks tested.
For Imax = 10 this percentage drops to less than 0.0023%.

In Chapter 6 we observed that interdependent networks built using an Imax value u > 3
(u ∈ {5, 7, 10}) do not suffer High Damage Localize Attacks (HDLA). Here, we observe
that most HDSA occur on interdependent networks built using Imax = 3. However, unlike
against localized attacks, here we observe that some HDSA occur on systems built using
Imax = 10. We found that all HDSA occur on interdependent networks built using the
same physical nodes locations version j = 10 to generate the physical network P10(m, s) =
(VP , E

m
P (loc10(VP , s)). The combination of loc10(VP , s) with the interlink set I(10) results

in a physical network that contains all the physical counterparts of node ubL within an area
that can be damaged by higher intensity seismic attacks. In Figure 7.2 we can see the effect
of an HDSA over an interdependent network built using j = 10, m = RNG, and Imax = 10.
Here we can see all 3 physical counterparts of node ubL. We observe that although only one
ubL counterpart is removed during the first step of the cascading failure process (see section
3.2.3), the other two ubL counterparts become unable to reach any provider node once the
nodes damaged during the first step cascading failure process are removed.
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Imax = 3

m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 3360 (5.5, 8.8) (0.0, 0.487) (0.82, 1.0)
GG 1963 (5.5, 8.8) (0.027, 0.503) (0.84, 1.0)
GPA 3889 (5.5, 8.8) (0.01, 0.493) (0.767, 1.0)
5NN 1659 (5.5, 8.8) (0.027, 0.503) (0.86, 1.0)
YAO 1607 (5.5, 8.8) (0.027, 0.503) (0.853, 1.0)
ER 1652 (5.5, 8.8) (0.027, 0.503) (0.847, 1.0)

Imax = 5

m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.823, 1.0)
GG 0 - - (0.827, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.85, 1.0)
YAO 0 - - (0.84, 1.0)
ER 0 - - (0.893, 1.0)

Imax = 7

m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.867, 1.0)
GG 0 - - (0.867, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.873, 1.0)
YAO 0 - - (0.873, 1.0)
ER 0 - - (0.88, 1.0)

Imax = 10

m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 6 (7.8, 8.8) (0.46, 0.467) (0.943, 1.0)
GG 3 (7.8, 8.3) (0.48, 0.48) (0.95, 1.0)
GPA 0 - - (0.92, 1.0)
5NN 1 (8.8, 8.8) (0.483, 0.483) (0.95, 1.0)
YAO 1 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)
ER 3 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)

Table 7.1: Summary of seismic attacks performed over interdependent networks with no
extra physical links added.
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Figure 7.2: Effect of an HDSA over node ubL physical counterparts for an interdependent
network built using j = 10, m = RNG, and Imax = 10. Image shows the fraction of
the physical network that contains all node ubL counterparts. Nodes marked as ‘removed’
correspond to nodes removed during step 1) of the cascading failure process (see section
3.2.3). Nodes not removed during step 1) of the cascading failure process can be removed in
subsequent steps.
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 7.3: GL values obtained after each seismic attack tested. Each color represents a
different physical model m.
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 7.4: Each seismic attack GL value versus (1−p) for interdependent networks without
extra physical links. Dots in red correspond to localized attacks x with ubL ∈ CF (x), and
dots in black LA with ubL /∈ CF (x).
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 7.5: Each seismic attack GL value versus (1−p) for interdependent networks without
extra physical links. Colors show the moment magnitude Mw associated to each seismic
attack.
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7.5.2 Comparison: Seismic Attacks vs Localized Attacks

Unlike localized attacks, the damage made by a seismic attack is not deterministic. Thus, if
we perform a seismic attack with the same initial conditions twice we may observe that each
seismic attack damages a different fraction (1−p) of physical nodes. In contrast, for the case
of localized attacks, performing an attack with the same initial conditions twice will always
result in the same fraction (1 − p) of physical nodes being damaged. In order to compare
the effect of seismic attacks versus localized attack we must first establish a way to compare
the damages caused by each type of attack that allow us to account for their differences.

In Chapter 6 we tested 5 different localized attack radii r, and 100 attack centers c ∈ C(s),
with s the space shape. In the current chapter, for each pair (j, c) with j the physical network
version, and c ∈ C(s) the attack center a total of 103 seismic attacks were tested. To compare
these seismic attacks with localized attacks we classify them into three categories: (1) seismic
attacks that make more damage to the network than a localized attack that removes a similar
number of nodes, (2) seismic attacks that make less damage to the network than a localized
attack that removes a similar number of nodes, and (3) seismic attacks that make a similar
damage compared to a localized attack that removes a similar number of nodes.

Given a center c, space shape s, physical modelm, node allocation configuration version j,
and radius ri, a localized attack will always damage the same fraction of nodes f(ri,m, j, c, s)
and will result in a GL value GL = GLA

L (ri,m, j, c, s). Consider ŝ = (1:25), we define the set
Bŝ(m, j, c):

Bŝ(m, j, c) = {(f(ri,m, j, c, s), G
LA
L (ri,m, j, c, ŝ))} ∪ {(0, 1), (1, 0)}

This set contains tuples of the form (f,GL) where f = (1 − p) represents the fraction
of nodes removed by a localized attack, and GL corresponds to the GL obtained after the
attack. More specifically, the set Bŝ(m, j, c) contains tuple (0, 1) representing an attack that
damages a fraction f = 0 and thus results in a GL = 1, tuple (1, 0) representing an attack
that removes all the nodes (f = 1) and thus results in a GL = 0, and a tuple containing the
fraction of nodes removed f(ri,m, j, c, ŝ), and the GL(ri,m, j, c, ŝ) obtained for each of the
localized attacks tested in Chapter 6 over the interdependent network built using physical
model m version j, and space shape ŝ = (1:25) at center c.

With this we can classify each seismic attack as follows. Given a seismic event ev we
represent the effect that a seismic attack has over a system built using physical model m
version j, and space shape ŝ = (1:25) at center c as

(f(ev,m, j, c, ŝ), GSA
L (ev,m, j, c, ŝ))
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where f(ev,m, j, c, ŝ) is the fraction of nodes removed by the seismic attack, andGSA
L (ev,m, j, c, ŝ)

is the GL value obtained after the seismic attack. We can find 2 tuples (fa, Ga
L) and (f b, Gb

L)
in Bŝ(m, j, c) such that the following is true.

fa ≤ f(ev,m, j, c, ŝ) < f b

Using this we can classify the seismic attack into one of these 3 categories:

• Damage SA > Damage LA: If fa ≤ f(ev,m, j, c, ŝ) < f b and GSA
L (ev,m, j, c, ŝ) ≤

Gb
L. That is, the seismic attack removes a fraction of nodes within the range [fa, f b)

and results in more damage than the localized attack that removes the most number
of nodes (f b, Gb

L).

• Damage SA ∼Damage LA: If fa ≤ f(ev,m, j, c, ŝ) < f b andGb
L ≤ GSA

L (ev,m, j, c, ŝ) <
Ga

L. That is, the seismic attack results in a damage level similar to that of localized
attacks (fa, Ga

L) and (f b, Gb
L).

• Damage SA < Damage LA: If fa ≤ f(ev,m, j, c, ŝ) < f b and GSA
L (ev,m, j, c, ŝ) ≤

Gb
L. That is, the seismic attack removes a fraction of nodes within the range [fa, f b)

and results in less damage than the localized attack that removes the least number of
nodes (fa, Ga

L).

Table 7.2 shows the percentage of seismic attacks contained within each category for each
model, and each Imax tested for interdependent networks with no extra physical links added.
Here we can see that, regardless of the model or Imax value, most seismic attacks result in a
damage level comparable to that of localized attacks. In Table 7.2 we also observe that in
all cases the percentage of seismic attacks in the category Damage SA > Damage LA is
at least twice as much as the percentage of seismic attacks in the category Damage SA <
Damage LA. Furthermore, given a fixed Imax, we observe that less than 13% of the seismic
attacks result in less damage than localized attacks. These results show that seismic attacks
are much more likely to cause a similar or higher level of damage when compared to localized
attacks, than to cause a lower damage level.

In Figure 7.6 we can see the difference between the GL value of seismic attack and the GL

value of comparable localized attacks. To observe the damage difference between localized
attacks and seismic attacks we define GL(LA)−GL(SA) as follows. Given â a seismic attack
represented by (f(â), GL(â)) with f(â) = f(ev,m, j, c, ŝ) andGL(â) = GSA

L (ev,m, j, c, ŝ), and
(fa, Ga

L), (f b, Gb
L) ∈ Bŝ(m, j, c) such that fa ≤ f(â) < f b. We define the value GL(LA) −

GL(SA) for seismic attack â as:

(GL(LA)−GL(SA))(â) =

{
Gb

L −GL(â) if â in Damage SA > Damage LA
Ga

L −GL(â) if â in Damage SA < Damage LA
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Imax = 3

RNG GG GPA 5NN YAO ER Total
Damage SA > Damage LA 52.3% 37.6% 33.9% 34.2% 33.3% 32.4% 37.3%
Damage SA ∼ Damage LA 41.7% 51.4% 50.2% 52.7% 53.2% 52.7% 50.3%
Damage SA < Damage LA 6.0% 11.0% 16.0% 13.1% 13.5% 14.9% 12.4%

Imax = 5

RNG GG GPA 5NN YAO ER Total
Damage SA > Damage LA 41.5% 29.6% 29.6% 26.6% 25.9% 25.3% 29.7%
Damage SA ∼ Damage LA 52.3% 59.7% 54.8% 60.8% 61.0% 60.4% 58.2%
Damage SA < Damage LA 6.2% 10.7% 15.6% 12.7% 13.1% 14.3% 12.1%

Imax = 7

RNG GG GPA 5NN YAO ER Total
Damage SA > Damage LA 38.0% 28.2% 28.9% 26.2% 25.4% 24.8% 28.6%
Damage SA ∼ Damage LA 56.8% 63.1% 57.2% 63.5% 64.1% 63.7% 61.4%
Damage SA < Damage LA 5.3% 8.8% 13.9% 10.3% 10.6% 11.5% 10.1%

Imax = 10

RNG GG GPA 5NN YAO ER Total
Damage SA > Damage LA 30.5% 22.5% 26.0% 20.5% 19.9% 19.7% 23.2%
Damage SA ∼ Damage LA 65.5% 70.8% 63.4% 71.5% 71.9% 71.3% 69.0%
Damage SA < Damage LA 4.0% 6.8% 10.6% 7.9% 8.3% 9.1% 7.8%

Table 7.2: Comparison between localized attacks and seismic attacks for interdependent
networks with no extra physical links added.

With this we can observe how much more (or less) severe a seismic attack is compared to
localized attacks. In Figure 7.6 we can see the GL(LA)− GL(SA) values obtained for each
seismic attack classified within the Damage SA > Damage LA category or within the
Damage SA < Damage LA category. From Table 7.2 we know that there are more dots
within the Damage SA > Damage LA category than the Damage SA < Damage
LA category. In Figure 7.6 we observe that for Imax = 3 the range of GL(LA) − GL(SA)
values is similar for both seismic attack categories, despite there being more dots in the
Damage SA > Damage LA category. Furthermore we observe that some seismic attacks
result in GL(LA) − GL(SA) = 1 or GL(LA) − GL(SA) = −1, that is, there are seismic
attacks that completely destroy the logical network by removing a fraction of physical nodes
comparable to localized attacks that result in no damage to the logical network, and vice
versa. For Imax ∈ {5, 7} each GL(LA) − GL(SA) value can be found within the range
(−0.15, 0.15). Finally, for Imax = 10 we observe that for most seismic attacks the difference
GL(LA)−GL(SA) falls within the range (−0.05, 0.05). However, we also observe that some
GL(LA)−GL(SA) are greater than 0.5. These points correspond to the HDSA observed in
section 7.5.1.
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(a) Imax = 3 (b) Imax = 5

(c) Imax = 7 (d) Imax = 10

Figure 7.6: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Interdependent networks have no extra physical links added.
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7.5.3 Link addition effect against seismic attacks

Figure 7.7 shows the effect of each seismic attack tested over each of the physical-logical
interdependent networks after adding extra physical links for systems built using Imax = 3.
Here we observe that after adding extra links to the physical networks the range of GL values
of non-HDSA becomes narrower and contains higher GL values compared to the range of
GL values obtained for interdependent networks with no extra links added. This can be
observed in more detail in Table 7.3. Tables for Imax ∈ {3, 5, 7, 10} can be found in the
appendix section E.3. Although no physical link addition strategy is able to fully avoid
catastrophic HDSA or HDSA that result in a GL ≈ 0, we observe that range of GL values
for HDSA that result in a GL > 0.1 becomes narrower and contains higher GL values after
adding extra physical links. In Figure 7.8 we can see that, after adding extra physical
links, HDSA remove the logical bridge node ubL during the cascading failure process, whereas
non-HDSA do not.

In the appendix section E.1 we can see Figures showing the effect of each seismic attack
tested over each of the physical-logical interdependent networks after adding extra physical
links for systems built using Imax ∈ {5, 7, 10}. In these Figures we observe that in most
cases after adding extra links to the physical networks the range of GL values of non-HDSA
becomes narrower and contains higherGL values compared to the range ofGL values obtained
for interdependent networks with no extra links added. Tables in the appendix section
E.3 show the detailed summary of HDSA for systems with Imax ∈ {5, 7, 10}. However,
for interdependent networks built using Imax = 5 we observe that after adding physical
links using Degree strategy one seismic attack results in an HDSA, whereas the original
interdependent network did not have any HDSA. As this is not a trend but rather an isolated
case, it can be explained due to the probabilistic nature of seismic attacks which can result
in two seismic attacks with the same initial condition having different outcomes. In the
appendix section E.1 we can also see that, after adding extra physical links, HDSA remove
the logical bridge node ubL during the cascading failure process, whereas non-HDSA do not.

As for the relation between the magnitude associated to the seismic attack and its GL

value, in Figure 7.9 we can see that after adding extra links to the physical network the
moment magnitude Mw of the seismic attack is not correlated to the occurrence of HDSA
for interdependent networks using Imax = 3. However we observe that after adding physical
links catastrophic HDSA only occur for seismic events with a Mw = 6.5 or higher. In
appendix sections E.1 and E.3 we can see that for interdependent networks using Imax = 10
HDSA still only occur with higher Mw events. However adding physical links does not
necessarily result in HDSA being caused by seismic events with a higherMw when compared
to the interdependent network without extra physical links added.

In Table 7.3 we can see the comparison of the results obtained for interdependent networks
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with and without added physical links, for systems built using Imax = 3. Tables for Imax ∈
{5, 7, 10} can be found in the appendix section E.3. Here we can see the detailed information
regarding the number of HDSA, the Mw range associated with HDSA, and the range of
GL values associated with HDSA and non-HDSA. In Table 7.3 we observe that, with the
exception of models based on 5NN, adding physical links using any strategy results in a lower
number of HDSA compared to interdependent networks without extra physical links. For the
case of interdependent networks built using Imax = 10, in Table E.4 we observe a reduction
in the total number of HDSA after adding physical links. However, given a fixed model
m, we may not observe a consistent decrease in the number of HDSA after adding physical
links to a physical network. As the number of total HDSA in interdependent networks with
Imax = 10 before adding extra physical links represents less than 0.0023% of all the seismic
attacks tested, these variations are likely caused by the probabilistic nature of seismic attacks
rather than the addition of physical links. From Table 7.3 we can see that Degree strategy
results in the greatest HDSA reduction, and GL range improvement for non-HDSA, followed
by Random strategy in second place, Local hubs in third place, and Distance strategy in
fourth place. The same is true for interdependent networks built using other Imax values
as seen in the appendix section E.3. These results suggest that adding extra links to the
physical network does improve the robustness of physical-logical interdependent networks
against seismic attacks.

Now let us compare the effect of adding physical links against seismic attacks versus the
effect of adding physical links against localized attacks. In Table 7.4 we can see the percentage
of seismic attacks contained within each category defined in section 7.5.2, for Imax = 3, and
systems with and without extra physical links added. Figures for Imax ∈ {5, 7, 10} can
be found in appendix section E.2. For Imax = 3, we observe that adding physical links
always results in a reduction in the percentage of seismic attacks within the Damage SA >
Damage LA category, and an increment in the number of seismic attacks in the categories
Damage SA ∼ Damage LA, and Damage SA < Damage LA. From Table 7.4 we can
see that Degree strategy reduces the percentage attacks in the Damage SA > Damage
LA category the most, followed by Random strategy in second place, Local hubs in third
place, and Distance in fourth place. Furthermore, Degree strategy increases the percentage of
seismic attacks contained in the Damage SA < Damage LA category the most, followed
by Random strategy, Local hubs, and Distance. From Tables in appendix section E.4 we can
see the same behavior is observed for interdependent networks with Imax ∈ {5, 7, 10}. This
suggests that adding physical links can effectively decrease the severity of seismic attacks.
However we must note that even after adding links to the physical network 30% of the seismic
attacks tested result in a higher damage compared to localized attacks.

Figure 7.10 shows the GL(LA)−GL(SA) values obtained for each seismic attack classified
within the Damage SA > Damage LA category or within the Damage SA < Damage
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st = Original
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 3360 (5.5, 8.8) (0.0, 0.487) (0.82, 1.0)
GG 1963 (5.5, 8.8) (0.027, 0.503) (0.84, 1.0)
GPA 3889 (5.5, 8.8) (0.01, 0.493) (0.767, 1.0)
5NN 1659 (5.5, 8.8) (0.027, 0.503) (0.86, 1.0)
YAO 1607 (5.5, 8.8) (0.027, 0.503) (0.853, 1.0)
ER 1652 (5.5, 8.8) (0.027, 0.503) (0.847, 1.0)

st = Distance
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 2618 (5.5, 8.8) (0.013, 0.497) (0.85, 1.0)
GG 1829 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
GPA 2674 (5.5, 8.8) (0.027, 0.493) (0.827, 1.0)
5NN 1734 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
YAO 1608 (5.5, 8.8) (0.027, 0.503) (0.843, 1.0)
ER 1588 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)

st = Local hubs
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 2123 (5.5, 8.8) (0.02, 0.503) (0.847, 1.0)
GG 1730 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
GPA 2117 (5.5, 8.8) (0.027, 0.5) (0.85, 1.0)
5NN 1633 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
YAO 1635 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
ER 1562 (5.5, 8.8) (0.027, 0.503) (0.873, 1.0)

st = Degree
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 1564 (5.5, 8.8) (0.027, 0.503) (0.87, 1.0)
GG 1609 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)
GPA 1669 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
5NN 1570 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)
YAO 1540 (5.5, 8.8) (0.027, 0.503) (0.873, 1.0)
ER 1536 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)

st = Random
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 1856 (5.5, 8.8) (0.023, 0.503) (0.877, 1.0)
GG 1618 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)
GPA 2745 (5.5, 8.8) (0.027, 0.503) (0.82, 1.0)
5NN 1619 (5.5, 8.8) (0.027, 0.503) (0.88, 1.0)
YAO 1597 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)
ER 1557 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)

Table 7.3: Summary of seismic attacks performed over interdependent networks with extra
physical links added, and Imax = 3.
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LA category for interdependent networks with Imax = 3 and extra physical links. Figures for
Imax ∈ {5, 7, 10} can be found in appendix section E.2. In Figure 7.10 we can see that seismic
attacks within the Damage SA > Damage LA can result in GL(LA)−GL(SA) = 1, that
is, even after adding physical links, there are seismic attacks that completely destroy the log-
ical network by removing a fraction of physical nodes comparable to localized attacks that
result in no damage to the logical network. For the case of attacks within the Damage SA
< Damage LA category, we observe that after adding links the lowest GL(LA)−GL(SA)
values are within the range (-0.6, -0.65). This means that, regardless of the link addition
strategy used, after adding physical links the difference between the damage done by a
seismic attack in the Damage SA < Damage LA category and a comparable localized
attack is lower than before adding physical links. This happens despite there being more
seismic attacks in the Damage SA < Damage LA category after adding physical links.
In appendix section E.2 we can see that for interdependent networks with Imax ∈ {5, 7, 10}
adding physical links in some cases can result in an increase of the lowest GL(LA)−GL(SA)
value obtained for seismic attacks in the Damage SA < Damage LA. This is the case
of interdependent networks built using Imax ∈ {5, 7} after adding physical links using either
Degree or Random strategies. We also observe that after adding physical links using Degree
strategy to interdependent networks built using Imax = 10 the highest GL(LA) − GL(SA)
value obtained for seismic attacks in the Damage SA > Damage LA significantly de-
creases. These results suggest that adding extra physical links using Degree strategies can
reduce the differences between the GL values obtained for seismic attacks and the GL values
obtained for comparable localized attacks.
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st = Original
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 52.3% 37.6% 33.9% 34.2% 33.3% 32.4% 37.3%
Damage SA ∼ Damage LA 41.7% 51.4% 50.2% 52.7% 53.2% 52.7% 50.3%
Damage SA < Damage LA 6.0% 11.0% 16.0% 13.1% 13.5% 14.9% 12.4%

st = Distance
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 45.9% 35.5% 34.2% 33.2% 33.1% 32.5% 35.7%
Damage SA ∼ Damage LA 46.3% 52.2% 50.7% 53.1% 53.0% 52.7% 51.3%
Damage SA < Damage LA 7.8% 12.3% 15.1% 13.7% 13.9% 14.9% 12.9%

st = Local hubs
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 40.4% 34.7% 33.3% 32.9% 32.9% 32.2% 34.4%
Damage SA ∼ Damage LA 49.5% 52.7% 51.1% 52.8% 53.1% 53.0% 52.1%
Damage SA < Damage LA 10.1% 12.6% 15.6% 14.2% 14.0% 14.8% 13.5%

st = Degree
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 33.8% 32.8% 33.3% 32.7% 32.5% 32.4% 32.9%
Damage SA ∼ Damage LA 52.7% 52.7% 51.1% 52.7% 53.1% 52.8% 52.5%
Damage SA < Damage LA 13.5% 14.5% 15.6% 14.6% 14.4% 14.8% 14.6%

st = Random
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 36.0% 33.3% 34.0% 33.0% 32.5% 32.1% 33.5%
Damage SA ∼ Damage LA 51.6% 52.7% 50.9% 52.8% 52.8% 53.1% 52.3%
Damage SA < Damage LA 12.4% 14.0% 15.2% 14.2% 14.7% 14.8% 14.2%

Table 7.4: Comparison between localized attacks and seismic attacks for interdependent
networks with extra physical links added, and Imax = 3.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 7.7: GL values obtained after each seismic attack tested for interdependent networks
with extra physical links added, and Imax = 3. Each color represents a different physical
model m.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 7.8: Each seismic attack GL value versus (1 − p) for interdependent networks with
extra physical links added, and Imax = 3. Dots in red correspond to localized attacks x with
ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 7.9: Each seismic attack GL value versus (1 − p) for interdependent networks with
extra physical links added, and Imax = 3. Colors show the moment magnitudeMw associated
to each seismic attack.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure 7.10: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Interdependent networks have extra physical links added, and were built using
Imax = 3.
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7.6 Summary

In this chapter we presented a novel type of attack: Localized Attacks with Probabilistic
Failures (LAPF). Here, we showed and tested an application of LAPF by using them to
define “seismic attacks” or attacks that simulate the effect of seismic events over the physical
network. We used the physical link addition strategies presented in Chapter 5 to test the
effect of seismic attacks over the robustness of interdependent networks with and without
extra physical links added, and compare it to the effect of localized attacks.

For the experiments we tested the effect of seismic attacks over the robustness of inter-
dependent networks with and without extra physical links added. We define seismic attacks
using Ground Motion Prediction Equations (GMPE) specially developed for the case of
Chile. Using GMPE and real seismic data, we defined a set of seismic attacks as follows.
Given space shape s we generated a set C(s) of 100 localized attack centers. Centers in C(s)
were spread uniformly to cover the space s. For each center, a total of 103 different seismic
events with different initial conditions were tested. For the experiments we considered inter-
dependent networks with and without extra physical links added. Extra physical links were
added to base interdependent networks according to the link addition strategies described
in Chapter 5: Random, Distance, Local hubs, and Degree based addition. Here we use
base interdependent networks tested in Chapter 5 that were built over a (1:25) space shape.
Thus, for the base systems we consider space shape s = (1:25), logical network version q = 1,
Imax ∈ {3, 5, 7, 10}, model m ∈ {RNG,GG,5NN,YAO,GPA,ER}, plus the 10 different node
allocation configurations as described in Chapter 3.

For interdependent networks without extra physical links added, our results show that,
similar to localized attacks, seismic attacks can cause High Damage Seismic Attacks (HDSA):
seismic attacks that result in the loss of more than half of the logical network. These HDSA
were observed in interdependent networks built using Imax ∈ {3, 10}. Our results show that
HDSA occur because the cascading failure caused by the HDSA removes the logical bridge
node ubL. Removing node ubL from the isolated logical network is enough to lose more than
45% of the logical nodes. The results show that for interdependent networks with Imax = 3
the magnitude of the event is not correlated with the occurrence of HDSA. Whereas for
Imax = 10 HDSA only occur with higher magnitude events. Furthermore, we found that
seismic attacks tend to cause a damage level that is similar or higher than the damage
caused by comparable localized attacks.

As for interdependent networks with extra physical links added we found that link addition
does improve the systems’ robustness against seismic attacks. However, no physical link
addition strategy is able to fully avoid catastrophic HDSA, that is, HDSA that completely
destroy the logical network. As for the relation between the magnitude associated with the
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seismic attack, we found that after adding extra links to the physical network the magnitude
of the seismic attack is not correlated to the occurrence of HDSA for interdependent networks
using Imax = 3. However, we observe that after adding physical links catastrophic HDSA
only occur for seismic events with magnitude 6.5 or higher. For interdependent networks
using Imax = 10 we found that physical link addition does not impact the relation between
HDSA and the magnitude of the seismic attack, that is, HDSA still only occur with higher
magnitude events. Our findings show that adding extra physical links does decrease the
number of seismic attacks that cause more damage than comparable localized attacks. This
effect is accompanied by an increase in the number of seismic attacks that cause less damage
than comparable localized attacks.

These findings show that using LAPF to model seismic events as seismic attacks results in
a distinct behavior that is not fully captured by common localized attacks. Here, we found
that seismic attacks can cause more damage than comparable localized attacks, and that
robustness against seismic attacks can be improved by adding physical links.
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Chapter 8

Conclusions and Future Directions

In this Chapter we present the main conclusions of this thesis. We discuss and assess the
hypothesis, and goals presented in Chapter 1. Finally, we outline future research lines that
can be derived from this work.

8.1 Conclusions

In this thesis work, we have developed and tested a set of methods based on interdependent
networks that allow us to analyze the robustness of a physical-logical interdependent network
inspired by today’s Internet, with special interest in the robustness against physical failures
such as those caused by natural catastrophes.

In Chapter 3 we presented a physical-logical interdependent network model inspired by
functionality features present in the logical Internet network, and the physical Internet net-
work. We also presented a robustness measure to assess the system’s robustness. Here, we
tested the robustness of the proposed model against physical random attacks. In these tests
we used a variety of conditions to build the physical-logical interdependent network, such as
the maximum number of interlinks per logical node Imax, the physical model and space shape
used to build the physical network, the logical network, etc. The presented results show that
the same interdependent system may undergo a first order phase transition for some random
attack iterations, second order phase transition for others, and even mixed phase transitions.
Our results show that in most cases, most of these iterations will result in a first order phase
transition. Our results also showed that a narrower space shape results in system’s with
a lower robustness given that the systems use physical models that do depend on physical
conditions to be built. This effect was not observed in systems built using physical models
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that do not depend on physical conditions. We found that the network model used to build
the physical network has an impact over the system’s robustness, and that this impact is
not necessarily correlated to the number of links in a given physical network. We observed
that a higher Imax tends to increase the robustness of our interdependent model. However,
we also found that we can define set U(q,m,s) that contains Imax values u1 such that a system
built using Imax = u1 is less robust than a system built using Imax = (u1 + 1). Furthermore,
we found that this behavior could be explained by the interplay between the logical network
and the interlink set.

In Chapter 4 we studied the interplay between the logical network and the interlink set
to further understand the emergence of set U(q,m,s) found in Chapter 3. After analyzing
the logical network, we found that these networks may present ‘bridge nodes’: nodes that
connect areas that only contain logical consumer nodes with areas that contain provider
nodes. Bridge nodes can be consumer nodes or provider nodes, however we found that most
bridge nodes are actually consumer nodes. If a bridge node is removed, several consumer
nodes will lose access to any provider node, and thus will fail. We found that, given a
physical-logical system, there is an inverse correlation between the damage contribution of
a bridge node and the robustness of the system. In particular, we found that bridge nodes
that result in higher damage are likely to be hubs within the logical network, although not
all bridge nodes are hub nodes. Furthermore, we found that bridge nodes could explain the
emergence of set U(q,m,s), and that increasing the number of interlinks of bridge nodes can
help us decrease the size of this set. We tested this by adding interlinks to bridge nodes
that result in the loss of at least 10% of the logical network after being removed. We found
that adding more interlinks to these bridge nodes does decrease the size of set U(q,m,s), and
improves the average robustness of the systems. However we also found that adding interlinks
only to bridge nodes that result in the loss of at least 10% of the logical network after being
removed was not enough to fully avoid the emergence of set U(q,m,s).

With the information gathered in Chapter 4, we continued the testing of the proposed
model. In Chapter 5 we tested the effect of adding physical links over the robustness of the
proposed physical-logical interdependent network model against physical random attacks.
We also analyzed the cost efficiency in terms of robustness improvement of adding physical
links. In our experiments we used the length of the links added by a strategy to measure its
cost. We defined four physical link addition strategies: Random, Distance, Local hubs, and
Degree based addition. Here, we added the same number of physical links for each system
and each strategy. Our results showed that in almost every case adding links to the physical
network results in an improvement in the system’s robustness, the only exception being
system’s built using Erdös-Rényi networks as physical model. More specifically, we found
that Random and Degree strategies improve the system’s robustness the most, followed by
Local hubs strategy in second place, and Distance strategy in third place. These results
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show that the way in which physical links are added is more important than the number of
physical links added. We also found that the length of the links added by a strategy has a
great impact in the robustness improvement obtained after adding extra physical links. We
found that restricting the maximum length of the links added by Random strategy to match
maximum length of the links added by Distance strategy results in a sharp decrease in the
robustness improvement obtained after adding the extra physical links. Our cost analysis
showed consistent results, with higher cost strategies being also strategies that result in a
greater robustness improvement. However we must note that higher cost strategies such as
Degree and Random are the least cost efficient in terms of robustness improvement, whereas
Distance strategy is the most cost efficient. These results suggest that adding more links
using Distance strategy may be better in terms of cost than adding fewer physical links using
other strategies. To test this we tested two modifications of Distance strategy. Distance+
which adds twice as many physical links as the original strategy, and Distance(Bs) which
adds as many physical links as possible given the budget Bs. Here, we found that Distance+
results in a robustness improvement similar to that of Local hubs and has a lower cost than
Local hubs. For the case of Distance(Bs) we used a budget Bs for RNG systems that matches
the cost of GG systems. We found that despite RNG + Distance(Bs) having the same cost as
GG systems, RNG + Distance(Bs) systems are less robust than GG systems. This suggests
that to improve RNG systems using Distance strategy we would need a bigger budget.

In Chapter 6, to better represent a natural catastrophe scenario, we tested the robustness
of our physical-logical interdependent model against localized attacks. To do this we studied
the robustness against localized attacks of each system tested in Chapter 5. Thus, we tested
physical-logical systems with and without extra physical links added. Our results showed
that on average localized attacks damage the physical-logical systems as much as random
attacks do. However, for systems with Imax = 3, some localized attacks can damage more
than half of the logical network, even causing total system failure. We found that these high
damage localized attacks happen because during their cascading failure process they remove
logic bridge node ubL. We must note that node ubL is not a provider node, but a consumer
node that connects roughly half of logic consumer nodes to any other provider node. We
found that adding physical links does decrease the damage caused by high damage localized
attacks, and the number of high damage localized attacks. Furthermore, after adding links
to the physical network no localized attack caused total system failure (GL = 0). However,
high damage localized attacks that affect more than half of the logic network still happen.
These results, along with the results obtained in Chapter 4, suggest that in order to further
decrease the occurrence of high damage localized attacks we would need to add interlinks
to logical node ubL such that the physical nodes are sufficiently far apart from each other so
as to not be removed by a single localized attack. We must note that another solution is to
add links in the logical network to avoid the existence of bridge nodes. However this may be
much more difficult than adding interlinks or physical links for systems like the Internet, since
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logical links in this case are added through economic agreement between different parties,
whereas interlinks and physical links can be added by a single entity.

Finally in Chapter 7 we presented a novel way to test the robustness in physical envi-
ronments: Localized Attacks with Probabilistic Failures (LAPF). These attacks allow us to
model adverse events that affect a physical area, but do not necessarily affect the entire area
in the same way. Thus, these attacks can be used to model the effect of natural catastrophes
such as tsunamis, earthquakes, tornadoes, etc. Here, we showed an application of LAPF
to model seismic events or “seismic attacks”. We used these attacks to test the robustness
against seismic attacks of each system tested in Chapter 5. Thus, we tested physical-logical
systems with and without extra physical links added. We found that seismic attacks can
result in high damage seismic attacks that damage more than half of the logic network. Our
results show that only a small percentage of the seismic attacks tested result in high damage
seismic attacks. We found that, similar to high damage localized attacks from Chapter 6, all
high damage seismic attacks remove the logic bridge node ubL during the cascading failure
process. We also found that compared to localized attacks, in most cases, seismic attacks
tend to result in a similar or higher damage level. This tendency was observed even after
adding extra physical links. However, adding extra physical links did result in a decrease
of the number of seismic attacks that result in a higher damage than comparable localized
attacks. Furthermore we found that, similar to the case of localized attacks, adding phys-
ical links does improve the robustness of physical-logical systems against seismic attacks,
with Degree strategy resulting in the greatest improvement, followed by Random strategy
in second place, Local hubs in third place, and Distance in fourth place.

In the present work we have shown a physical-logical interdependent network inspired
by the Internet. We have studied its robustness against physical attacks such as physical
random attacks, and localized attacks. We have also presented a novel way to model physical
adverse events and applied it to model seismic events. Our analysis has shown that when
studying the robustness of systems like our proposed model, we must pay especial attention
to the presence of “bridge nodes” as we have seen throughout our experiments that bridge
nodes are related to events that can damage a great part of the system, even resulting in
total system failure. Our results have shown that adding more links to the physical network
can be very useful to reduce the impact of bridge nodes. However, these results also show
that physical link addition is not enough and that adding more interlinks far apart from
each other may be a better solution. Another solution is to add logical links, however this
is likely to be much more difficult for the case of the actual Internet network, since logical
links are added through economic agreement between different parties.
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8.2 Assessment of the thesis’ goals

For this thesis we proposed the following hypothesis “It is possible to increase the expressive-
ness of complex network’s models oriented to study the Internet robustness using interdepen-
dent networks to model the interactions of the different elements that compose the Internet.
Here we consider the expressiveness of such a model is measured by the number of character-
istics and/or behaviors of the object being modeled that it captures”. In the presented work
we have used interdependent networks to create a model inspired by today’s Internet. This
model specifically considers a logical network inspired by the logical Internet network, and
its interactions with a physical network inspired by the physical Internet network. In this
model we have considered a consumer-provider approach to capture access to the Internet
service for each network. We have integrated this behavior into the functionality conditions.
We defined interdependencies considering broad characteristics of the interactions between
the physical Internet network and the logical Internet network.

This model has allowed us to identify weak points, that we have called bridge nodes,
specific to networks that present a consumer-provider behavior. Our model has also allowed
us to represent the fact that it is possible to divide the physical Internet network of a
country in two connected components in such a way that each component remains fully
functional. Our tests have shown that bridge nodes play an important role in the robustness
of the proposed model against physical damage. We have been able to study the effect
that damaging the physical network can have over logical bridge nodes, and thus the entire
network. Here, we have shown and proposed ways to identify bridge nodes, as well as ways
to minimize the damage caused by them.

Existing Internet models proposed by the complex network area have mostly considered
single isolated networks or interdependent networks that do not consider multiple Internet
layers. Whereas in our model we have considered two interdependent networks, each inspired
by the Internet. Thus, we have indeed increased the expressiveness of models oriented to
study the Internet robustness using interdependent networks, as we have incorporated more
characteristics and/or behaviors presented by the Internet. However, the model we have
presented, although inspired by the Internet, still should be further refined to be considered
an accurate representation of the Internet network. In the future, we hope to further develop
our model, as well as other of the presented tools such as Localized Attacks with Probabilistic
failures.

In the following, we review the thesis’ goals and assess the level of accomplishment
achieved for each item.

(A) Perform a survey of the study of the robustness of interdependent networks:
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A comprehensive survey was performed at the beginning of this thesis work. The main
findings were presented in Chapter 2, and the complete survey has been published [10].

(B) Generate an initial model that captures the Internet’s behavior consider-
ing interactions between the Internet Backbone and the BGP network: In
Chapter 3 we presented a physical-logical interdependent model that represents the
interactions between a logical network inspired by the AS-level network, and a phys-
ical network inspired by the Internet backbone. We must note that in Chapter 3 we
presented the refined initial model.

(C) Establish indexes or measures that capture the robustness of the generated
model: In Chapter 3 we presented our definition of what we consider as a robust
Internet, and a way to measure the robustness of the presented model accordingly.

(D) Generate a set of tests that include failures and attacks to the system
considered to observe its behavior: In Chapter 3 we defined an initial set of
tests to observe the behavior of our model against physical random attacks.

(E) Perform tests to measure the robustness of the interdependent system and
understand the behavior of the system under different adverse scenarios:
In Chapter 3 we performed the initial tests defined. Based on the results obtained,
in Chapter 4 we performed a different set of tests to better understand the results
obtained in Chapter 3.

(F) Establish and generate a refined version of the initial model that captures
more precisely the Internet’s behavior: The model presented in Chapter 3 already
contained refinements. However, we must note that further refinements are possible.
This will be discussed in section 8.3.

(G) Refine the robustness measurement tests to simulate events that are closer
to real world failure scenarios: In Chapter 5 we refined our tests by testing the
model’s robustness against physical random attacks after adding extra links to the
physical network according to different link addition strategies. In Chapter 6 we further
refined our tests by testing the effect of localized attacks over the model’s robustness for
systems with and without added extra physical links. Finally, in Chapter 7 we proposed
Localized Attacks with Probabilistic Failure (LAPF), and used them to further refine
our tests by testing a LAPF application: seismic attacks. Here, we considered systems
with and without added extra physical links.

(H) Test the refined model using the refined tests: Each of the test refinements
were tested in the Chapters they were presented. That is, in Chapter 5 we performed
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experiments to study the effect of adding extra physical links, in Chapter 6 we studied
the effect of localized attacks, and in Chapter 7 we studied the effect of seismic attacks.

8.3 Future Work

In this thesis work we have developed and tested a set of methods based on interdependent
networks that allow us to analyze the robustness of a physical-logical interdependent network
inspired by today’s Internet, with special interest in the robustness against physical failures
such as those caused by natural catastrophes. Here, we defined a simple way to measure
Internet robustness, tested the effect of physical adverse events over the model presented,
and proposed a novel type of physical attack. The work we have presented can be further
developed to increase the expressiveness of the presented interdependent network model, and
improve the testing methods.

During this thesis, the logical network of our model was generated using Scale-Free net-
works [42]. Here, the logical network is inspired by the AS-level network. However, this
approach has been criticized before [37, 67, 115]. A better representation might be achieved
using highly organized/optimized tolerances/tradeoffs networks or HOT-Nets [41, 24]. HOT-
Nets allow to incorporate the optimized aspects that engineered networks, such as the BGP
network, present. Flexible models such as those based on HOT-Nets could allow to test the
effect of changing budgets, economic incentives, restrictions, and objective functions over the
logical Internet network. Furthermore, the logical network representation can be modified to
incorporate the relationships found between nodes in the BGP network: Peer-to-peer (p2p),
and customer-to-provider (c2p) [73].

Another interesting thing to study is the existence of bridge nodes in the actual AS-level
network. In this work we found bridge nodes in our logical network. We observed that, in
some cases, removing these nodes during the cascading failure process can greatly damage
the physical-logical interdependent network. In our experiments we found that in most cases
logical bridge nodes are not provider nodes. However, given the business relationships that
influence the link structure in the actual AS-level network, bridge nodes are likely to be ISP
nodes or “provider nodes”. Furthermore, it is yet to be tested whether the actual AS-level
network has bridge nodes or not.

For the case of the physical network, it would be interesting to incorporate physical
allocations for the physical links, such that the concept of Shared Risk Link Groups (SRLG)
can be considered within the physical-logical interdependent networks model. By considering
physical allocations for the links, we would be able to represent the case in which there is more
than one bundle connecting two points, and those bundles do not share risk. Furthermore,
by incorporating SRLGs, we could represent the dependencies between logical links and
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physical links, and incorporate backup routes in the logical network.

Another interesting thing to incorporate to the physical network would be Internet ex-
change points (IXPs). Exchange points allow Internet Service Providers (ISPs) to exchange
data destined for their respective networks. They do this by operating physical infrastructure
to connect different ISPs, and thus play a major role in the proper functioning of provider
nodes as described in the model we have proposed.

It would also be interesting to test the effect that interlink configuration might have
over the system robustness. In this thesis we focused on adding interlinks uniformly at
random. Here, we defined a maximum number of interlinks per logical node Imax. Logical
consumer nodes can have between 1 and Imax interlinks, whereas logical provider nodes
have exactly Imax interlinks. However, we could refine the interlink allocation to follow
different probability distributions, or to be allocated in function of characteristics of the
logical network. As we have shown in this work, changing the interlink set can greatly
impact the effect that existing bridge nodes might have over the robustness of physical-
logical systems.

Another research venue is that of the effect of adding links to the physical network follow-
ing some strategy. The strategies we have presented here were selected to be simple enough
to remain useful even in scenarios where the information regarding the physical network
structure is incomplete or not accurate enough to use more complex strategies. However,
more complex strategies may prove to be better in terms of cost efficiency and robustness
improvement. An interesting way to add physical links would be by using community detec-
tion algorithms as they have been shown to be useful in single isolated networks [109]. We
must note that given the lack of granularity consistency usually found in PoP data (physical
network data) [116], in order to use community detection we would need to first define and
develop a way to ensure that the communities obtained have a real meaning.

As for Localized Attacks with Probabilistic Failures (LAPF), there are several other ap-
plications to be tested. These attacks can be adapted to affect areas of various shapes and
sizes. Thus, LAPF could be used to model the damage caused by other natural catastro-
phes such as landslides, floods, volcanic eruptions, tornadoes, tsunamis, etc. Furthermore,
the seismic attacks we have presented here can be improved by including more complete,
and more accurate information regarding soil characteristics, and damage caused by seismic
events.

Finally, it would be interesting to incorporate other robustness measures. In this work
we have used a simple robustness measure as we were interested in pure node functionality.
However, there are many other measurements [93] that can be used to further understand
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and improve the interdependent networks’ robustness. Using other measures may help us
develop better physical links additions strategies by incorporating information that we may
have not considered in this work.
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Annexed A

Chapter 3: Initial interdependent model and testing

A.1 General robustness behavior figures

(a) RNG (b) GG

Figure A.1: Average robustness by model for systems built over a (1:25) space, logical network
version q = 1, and m ∈ {RNG, GG}.
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(a) 5NN (b) YAO

(c) GPA (d) ER

Figure A.2: Average robustness by model for systems built over a (1:25) space, logical network
version q = 1, and m ∈ {5NN,YAO,GPA,ER}.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.3: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 2.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.4: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 3.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.5: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 4.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.6: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 5.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.7: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 6.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.8: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 7.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.9: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 8.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.10: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 9.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.11: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 10.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.12: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 1.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.13: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 2.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.14: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 3.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.15: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 4.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.16: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 5.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.17: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 6.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.18: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 7.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.19: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 8.

179



(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.20: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 9.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.21: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 10.
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(a) q = 1, s =(1:25) (b) q = 1, s =(1:1)

(c) q = 2, s =(1:25) (d) q = 2, s =(1:1)

Figure A.22: Average values of pc and GL(pc) for each model m, space s, Imax value, and
logical network version q ∈ {1, 2}. Bars represent the standard deviation.
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(a) q = 3, s =(1:25) (b) q = 3, s =(1:1)

(c) q = 4, s =(1:25) (d) q = 4, s =(1:1)

Figure A.23: Average values of pc and GL(pc) for each model m, space s, Imax value, and
logical network version q ∈ {3, 4}. Bars represent the standard deviation.
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(a) q = 5, s =(1:25) (b) q = 5, s =(1:1)

(c) q = 6, s =(1:25) (d) q = 6, s =(1:1)

Figure A.24: Average values of pc and GL(pc) for each model m, space s, Imax value, and
logical network version q ∈ {5, 6}. Bars represent the standard deviation.
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(a) q = 7, s =(1:25) (b) q = 7, s =(1:1)

(c) q = 8, s =(1:25) (d) q = 8, s =(1:1)

Figure A.25: Average values of pc and GL(pc) for each model m, space s, Imax value, and
logical network version q ∈ {7, 8}. Bars represent the standard deviation.
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(a) q = 9, s =(1:25) (b) q = 9, s =(1:1)

(c) q = 10, s =(1:25) (d) q = 10, s =(1:1)

Figure A.26: Average values of pc and GL(pc) for each model m, space s, Imax value, and
logical network version q ∈ {9, 10}. Bars represent the standard deviation.
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A.2 General robustness behavior tables

s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.766 0.86 0.848 0.888 0.813 0.705 0.9 0.399 0.841 0.787
GG 0.652 0.765 0.708 0.81 0.844 0.72 0.884 0.486 0.817 0.719
5NN 0.514 0.744 0.606 0.768 0.837 0.699 0.842 0.537 0.679 0.595
YAO 0.556 0.695 0.552 0.749 0.82 0.711 0.867 0.552 0.746 0.676
GPA 0.592 0.73 0.545 0.686 0.809 0.652 0.847 0.696 0.669 0.54
ER 0.585 0.651 0.411 0.618 0.861 0.646 0.766 0.703 0.471 0.539

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.757 0.804 0.765 0.824 0.811 0.707 0.866 0.482 0.824 0.736
GG 0.654 0.708 0.662 0.76 0.801 0.783 0.883 0.536 0.784 0.669
5NN 0.641 0.674 0.5 0.7 0.838 0.752 0.839 0.554 0.67 0.621
YAO 0.598 0.662 0.537 0.701 0.853 0.757 0.833 0.56 0.659 0.648
GPA 0.646 0.772 0.56 0.704 0.816 0.725 0.837 0.663 0.599 0.576
ER 0.549 0.634 0.418 0.644 0.854 0.64 0.762 0.725 0.473 0.535

Table A.1: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 1.
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s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.361 0.607 0.673 0.675 0.597 0.271 0.733 0.62 0.441 0.455
GG 0.346 0.521 0.544 0.586 0.485 0.269 0.693 0.558 0.461 0.465
5NN 0.329 0.405 0.438 0.521 0.448 0.239 0.535 0.546 0.443 0.457
YAO 0.371 0.454 0.493 0.522 0.498 0.281 0.602 0.591 0.5 0.423
GPA 0.461 0.389 0.425 0.41 0.424 0.289 0.404 0.572 0.37 0.44
ER 0.487 0.298 0.391 0.296 0.42 0.42 0.349 0.597 0.403 0.52

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.506 0.714 0.643 0.711 0.529 0.351 0.739 0.6 0.456 0.471
GG 0.462 0.579 0.514 0.621 0.57 0.332 0.614 0.585 0.428 0.425
5NN 0.472 0.461 0.491 0.472 0.509 0.308 0.553 0.564 0.452 0.485
YAO 0.457 0.48 0.508 0.51 0.574 0.331 0.566 0.603 0.456 0.511
GPA 0.424 0.402 0.446 0.396 0.429 0.263 0.469 0.538 0.433 0.494
ER 0.48 0.28 0.403 0.284 0.412 0.412 0.365 0.611 0.453 0.543

Table A.2: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 2.

s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.811 0.742 0.814 0.761 0.777 0.247 0.545 0.559 0.499 0.423
GG 0.639 0.734 0.71 0.643 0.721 0.226 0.523 0.55 0.539 0.392
5NN 0.563 0.69 0.615 0.531 0.632 0.218 0.557 0.428 0.519 0.436
YAO 0.58 0.737 0.655 0.58 0.688 0.234 0.542 0.545 0.554 0.451
GPA 0.486 0.692 0.568 0.457 0.615 0.353 0.53 0.48 0.553 0.464
ER 0.436 0.699 0.455 0.377 0.547 0.496 0.635 0.375 0.696 0.537

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.743 0.821 0.864 0.773 0.775 0.325 0.535 0.609 0.547 0.397
GG 0.636 0.798 0.76 0.689 0.753 0.32 0.553 0.588 0.584 0.423
5NN 0.534 0.806 0.624 0.588 0.71 0.318 0.559 0.495 0.557 0.479
YAO 0.558 0.786 0.71 0.661 0.697 0.377 0.583 0.635 0.637 0.509
GPA 0.454 0.765 0.492 0.488 0.611 0.31 0.547 0.523 0.527 0.477
ER 0.419 0.722 0.406 0.382 0.579 0.457 0.64 0.366 0.67 0.515

Table A.3: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 3.
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s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.72 0.876 0.582 0.9 0.839 0.697 0.891 0.876 0.931 0.858
GG 0.689 0.72 0.673 0.832 0.84 0.747 0.897 0.879 0.789 0.842
5NN 0.693 0.623 0.745 0.714 0.866 0.782 0.85 0.817 0.611 0.86
YAO 0.662 0.595 0.738 0.668 0.829 0.769 0.869 0.853 0.62 0.844
GPA 0.84 0.626 0.839 0.63 0.858 0.801 0.847 0.803 0.668 0.79
ER 0.84 0.526 0.899 0.482 0.875 0.795 0.742 0.877 0.348 0.894

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.846 0.769 0.737 0.909 0.851 0.841 0.91 0.778 0.927 0.88
GG 0.806 0.662 0.803 0.752 0.833 0.834 0.896 0.761 0.748 0.862
5NN 0.846 0.598 0.815 0.598 0.844 0.82 0.845 0.798 0.598 0.837
YAO 0.824 0.545 0.82 0.583 0.821 0.834 0.834 0.81 0.555 0.853
GPA 0.868 0.615 0.83 0.635 0.841 0.818 0.88 0.796 0.61 0.776
ER 0.842 0.582 0.887 0.478 0.865 0.829 0.695 0.887 0.372 0.887

Table A.4: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 4.

s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.817 0.97 0.884 0.865 0.931 0.859 0.936 0.926 0.123 0.157
GG 0.822 0.909 0.863 0.906 0.934 0.847 0.93 0.911 0.182 0.184
5NN 0.864 0.811 0.742 0.919 0.881 0.873 0.913 0.899 0.288 0.295
YAO 0.874 0.75 0.698 0.895 0.866 0.875 0.924 0.919 0.244 0.228
GPA 0.907 0.795 0.68 0.904 0.855 0.836 0.907 0.907 0.601 0.598
ER 0.948 0.552 0.488 0.971 0.598 0.914 0.722 0.839 0.686 0.659

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.903 0.917 0.946 0.962 0.936 0.901 0.95 0.951 0.147 0.153
GG 0.956 0.758 0.747 0.943 0.887 0.893 0.944 0.894 0.196 0.194
5NN 0.947 0.64 0.631 0.936 0.802 0.865 0.934 0.916 0.297 0.314
YAO 0.952 0.592 0.619 0.928 0.794 0.881 0.904 0.9 0.257 0.244
GPA 0.931 0.694 0.685 0.937 0.787 0.858 0.898 0.882 0.6 0.622
ER 0.968 0.571 0.482 0.97 0.605 0.947 0.724 0.836 0.669 0.622

Table A.5: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 5.
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s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.767 0.81 0.097 0.943 0.835 0.963 0.098 0.993 0.885 0.939
GG 0.691 0.703 0.143 0.798 0.854 0.921 0.136 0.907 0.885 0.935
5NN 0.683 0.619 0.28 0.662 0.85 0.814 0.229 0.733 0.877 0.878
YAO 0.677 0.583 0.225 0.655 0.865 0.855 0.205 0.752 0.898 0.934
GPA 0.801 0.686 0.518 0.603 0.864 0.761 0.445 0.68 0.866 0.844
ER 0.733 0.552 0.709 0.439 0.792 0.666 0.695 0.561 0.84 0.784

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.829 0.88 0.096 0.947 0.952 0.957 0.08 0.95 0.946 0.914
GG 0.766 0.716 0.182 0.72 0.926 0.878 0.137 0.848 0.928 0.903
5NN 0.745 0.66 0.301 0.556 0.866 0.791 0.228 0.719 0.893 0.877
YAO 0.763 0.592 0.279 0.553 0.88 0.78 0.215 0.729 0.894 0.852
GPA 0.809 0.735 0.482 0.622 0.852 0.777 0.429 0.712 0.864 0.839
ER 0.742 0.542 0.672 0.42 0.785 0.681 0.694 0.594 0.848 0.783

Table A.6: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 6.

s =(1:25)
m|Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.706 0.825 0.725 0.84 0.905 0.84 0.769 0.042 0.932 0.72
GG 0.629 0.873 0.747 0.825 0.735 0.767 0.815 0.09 0.92 0.77
5NN 0.547 0.886 0.742 0.705 0.498 0.649 0.751 0.138 0.834 0.748
YAO 0.546 0.888 0.743 0.722 0.577 0.688 0.786 0.16 0.849 0.774
GPA 0.59 0.902 0.745 0.628 0.399 0.583 0.726 0.379 0.765 0.772
ER 0.597 0.922 0.704 0.555 0.287 0.484 0.829 0.635 0.641 0.809

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.772 0.892 0.762 0.84 0.83 0.839 0.748 0.049 0.895 0.87
GG 0.647 0.929 0.779 0.806 0.611 0.78 0.766 0.111 0.827 0.848
5NN 0.619 0.957 0.723 0.709 0.447 0.671 0.801 0.187 0.809 0.824
YAO 0.646 0.94 0.754 0.702 0.464 0.691 0.814 0.155 0.793 0.815
GPA 0.644 0.937 0.758 0.653 0.404 0.603 0.774 0.365 0.791 0.793
ER 0.588 0.931 0.721 0.574 0.297 0.513 0.802 0.606 0.628 0.818

Table A.7: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 7.
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s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.749 0.791 0.935 0.97 0.881 0.121 0.923 0.93 0.954 0.903
GG 0.689 0.803 0.903 0.77 0.876 0.135 0.923 0.909 0.957 0.907
5NN 0.613 0.742 0.773 0.647 0.859 0.241 0.927 0.895 0.93 0.923
YAO 0.624 0.711 0.741 0.622 0.881 0.243 0.934 0.913 0.933 0.897
GPA 0.756 0.763 0.729 0.633 0.865 0.481 0.876 0.88 0.909 0.864
ER 0.631 0.695 0.506 0.348 0.836 0.68 0.846 0.917 0.884 0.897

q =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.813 0.82 0.926 0.881 0.873 0.097 0.91 0.919 0.956 0.893
GG 0.684 0.783 0.756 0.686 0.847 0.166 0.922 0.914 0.912 0.855
5NN 0.622 0.735 0.586 0.52 0.845 0.267 0.91 0.903 0.919 0.872
YAO 0.621 0.722 0.6 0.524 0.855 0.225 0.897 0.902 0.913 0.907
GPA 0.714 0.743 0.75 0.6 0.833 0.54 0.897 0.889 0.91 0.883
ER 0.617 0.699 0.532 0.378 0.865 0.679 0.844 0.91 0.853 0.867

Table A.8: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 8.

s =(1:25)
m|Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.713 0.836 0.742 0.953 0.977 0.929 0.525 0.903 0.945 0.901
GG 0.669 0.649 0.75 0.742 0.913 0.888 0.575 0.718 0.915 0.813
5NN 0.619 0.591 0.735 0.526 0.79 0.835 0.662 0.521 0.888 0.628
YAO 0.614 0.568 0.761 0.536 0.807 0.871 0.657 0.591 0.889 0.714
GPA 0.637 0.576 0.754 0.478 0.729 0.788 0.766 0.486 0.842 0.572
ER 0.626 0.48 0.686 0.353 0.48 0.722 0.81 0.321 0.695 0.48

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.759 0.794 0.783 0.802 0.906 0.937 0.549 0.922 0.97 0.909
GG 0.633 0.644 0.81 0.594 0.863 0.885 0.602 0.692 0.927 0.82
5NN 0.611 0.555 0.768 0.494 0.747 0.857 0.675 0.524 0.871 0.656
YAO 0.596 0.54 0.746 0.481 0.752 0.866 0.626 0.497 0.853 0.711
GPA 0.615 0.572 0.749 0.463 0.713 0.829 0.783 0.503 0.804 0.598
ER 0.587 0.464 0.701 0.317 0.52 0.748 0.805 0.295 0.724 0.47

Table A.9: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 9.
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s =(1:25)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.691 0.945 0.853 0.839 0.926 0.797 0.928 0.868 0.083 0.063
GG 0.67 0.918 0.775 0.87 0.945 0.833 0.924 0.861 0.116 0.112
5NN 0.711 0.843 0.688 0.881 0.909 0.838 0.906 0.855 0.215 0.177
YAO 0.708 0.802 0.682 0.833 0.892 0.781 0.916 0.856 0.188 0.153
GPA 0.824 0.819 0.73 0.866 0.918 0.805 0.901 0.901 0.477 0.511
ER 0.815 0.776 0.61 0.797 0.832 0.864 0.842 0.88 0.676 0.64

s =(1:1)
m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.883 0.891 0.875 0.921 0.919 0.869 0.904 0.916 0.094 0.079
GG 0.847 0.809 0.746 0.889 0.892 0.872 0.921 0.867 0.141 0.096
5NN 0.821 0.779 0.651 0.858 0.833 0.834 0.91 0.86 0.261 0.206
YAO 0.836 0.75 0.629 0.855 0.85 0.831 0.887 0.878 0.211 0.177
GPA 0.883 0.802 0.735 0.884 0.877 0.828 0.91 0.883 0.561 0.483
ER 0.796 0.746 0.573 0.796 0.819 0.858 0.862 0.871 0.645 0.654

Table A.10: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks with logical network version q = 10.
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A.3 Space shape effect figures

(a) RNG (b) GG

(c) 5NN (d) YAO

Figure A.27: TGL values obtained for physical-logical interdependent networks with Imax = 1
and m ∈ {RNG,GG,5NN,YAO}, versus the logical network version q used to build the
system.
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(a) GPA (b) ER

Figure A.28: TGL values obtained physical-logical interdependent networks with Imax = 1
and m ∈ {GPA,ER}, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.29: TGL values obtained for each physical-logical interdependent network for
Imax = 2, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.30: TGL values obtained for each physical-logical interdependent network for
Imax = 3, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.31: TGL values obtained for each physical-logical interdependent network for
Imax = 4, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.32: TGL values obtained for each physical-logical interdependent network for
Imax = 5, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.33: TGL values obtained for each physical-logical interdependent network for
Imax = 6, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.34: TGL values obtained for each physical-logical interdependent network for
Imax = 7, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.35: TGL values obtained for each physical-logical interdependent network for
Imax = 8, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.36: TGL values obtained for each physical-logical interdependent network for
Imax = 9, versus the logical network version q used to build the system.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure A.37: TGL values obtained for each physical-logical interdependent network for
Imax = 10, versus the logical network version q used to build the system.
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A.4 Average TGL tables

Imax = 1

q space RNG GG GPA 5NN YAO ER

1 (1:25) 164.83 (11.07) 307.93 (33.96) 327.53 (14.72) 402.73 (15.78) 463.75 (8.68) 596.58 (21.47)
(1:1) 251.2 (13.4) 320.25 (33.47) 427.98 (15.56) 498.08 (9.26) 539.36 (12.29) 591.88 (17.19)

2 (1:25) 210.51 (13.43) 360.64 (16.66) 374.82 (12.18) 464.89 (17.09) 505.23 (9.48) 641.57 (15.57)
(1:1) 286.89 (8.95) 356.58 (23.6) 465.68 (14.59) 546.24 (17.52) 577.5 (11.38) 625.31 (17.52)

3 (1:25) 149.85 (8.37) 293.65 (24.88) 310.71 (7.65) 393.41 (15.08) 443.33 (7.53) 571.96 (8.6)
(1:1) 233.08 (7.39) 296.55 (12.57) 409.24 (6.51) 482.64 (16.56) 520.42 (8.44) 573.04 (13.1)

4 (1:25) 181.3 (14.53) 326.52 (20.01) 338.42 (16.34) 419.14 (13.16) 463.82 (16.05) 586.74 (22.86)
(1:1) 263.78 (18.47) 337.52 (21.89) 424.88 (14.18) 500.63 (13.56) 525.57 (21.72) 587.14 (26.74)

5 (1:25) 221.95 (30.48) 389.31 (43.23) 380.66 (26.46) 470.95 (22.79) 505.88 (17.06) 640.79 (32.26)
(1:1) 300.56 (19.22) 371.43 (30.11) 461.65 (30.68) 542.13 (17.29) 578.03 (12.94) 618.44 (52.65)

6 (1:25) 209.99 (22.44) 381.32 (32.52) 372.07 (21.19) 453.55 (18.04) 501.11 (11.02) 621.52 (25.22)
(1:1) 271.46 (23.17) 368.56 (34.25) 450.78 (17.09) 533.22 (8.26) 578.61 (22.74) 637.58 (15.04)

7 (1:25) 178.41 (17.22) 327.83 (22.13) 339.99 (19.3) 404.92 (33.77) 470.41 (16.86) 589.33 (21.62)
(1:1) 254.8 (8.05) 323.69 (20.62) 424.64 (16.64) 513.41 (17.79) 537.81 (8.7) 595.68 (15.0)

8 (1:25) 220.1 (16.57) 397.88 (27.47) 386.31 (18.66) 459.41 (32.12) 521.81 (12.71) 649.79 (35.32)
(1:1) 300.77 (12.62) 416.6 (18.27) 466.69 (15.96) 553.55 (18.43) 584.31 (19.04) 646.16 (28.95)

9 (1:25) 197.83 (17.71) 325.92 (38.13) 361.08 (9.67) 452.23 (20.81) 499.92 (13.61) 637.64 (18.53)
(1:1) 284.42 (11.6) 351.4 (24.81) 449.01 (16.74) 533.67 (14.71) 563.28 (14.54) 630.96 (27.49)

10 (1:25) 194.91 (23.01) 365.15 (36.42) 355.59 (22.27) 437.52 (21.25) 480.42 (14.11) 620.38 (16.5)
(1:1) 275.21 (15.66) 350.18 (32.73) 436.47 (16.66) 521.16 (12.36) 553.75 (15.12) 582.24 (37.71)

Table A.11: Average TGL results for Imax = 1, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 2

q space RNG GG GPA 5NN YAO ER

1 (1:25) 202.29 (17.89) 359.78 (45.08) 378.51 (29.48) 484.42 (30.19) 532.64 (17.85) 687.58 (21.5)
(1:1) 290.41 (19.84) 376.78 (27.84) 468.93 (22.61) 561.79 (15.35) 596.08 (19.78) 653.17 (26.63)

2 (1:25) 253.93 (10.42) 475.21 (27.84) 451.44 (9.5) 575.33 (12.83) 623.23 (4.49) 839.48 (11.49)
(1:1) 321.22 (12.01) 480.56 (24.36) 539.4 (15.67) 657.37 (15.65) 703.83 (8.33) 828.69 (16.45)

3 (1:25) 210.46 (17.1) 412.54 (23.59) 404.5 (10.08) 524.36 (14.47) 574.39 (9.49) 752.27 (12.11)
(1:1) 289.17 (4.81) 420.63 (18.38) 502.52 (7.55) 616.24 (7.08) 655.56 (6.09) 749.14 (9.43)

4 (1:25) 223.09 (18.16) 414.03 (53.83) 407.28 (17.09) 516.42 (16.18) 563.3 (20.41) 703.35 (46.6)
(1:1) 305.94 (21.47) 415.2 (33.57) 489.22 (22.04) 591.1 (16.2) 614.75 (14.48) 723.88 (18.85)

5 (1:25) 264.66 (26.12) 437.72 (36.68) 435.76 (28.43) 542.22 (24.18) 585.45 (20.78) 744.37 (27.41)
(1:1) 341.55 (26.35) 441.78 (36.64) 533.9 (19.32) 631.97 (22.29) 662.52 (26.43) 751.16 (23.14)

6 (1:25) 269.84 (21.58) 478.88 (33.13) 444.94 (23.39) 551.54 (44.05) 581.02 (15.97) 749.19 (20.36)
(1:1) 317.5 (29.17) 474.18 (54.62) 510.13 (17.22) 628.82 (20.61) 657.06 (22.44) 731.01 (23.0)

7 (1:25) 222.56 (18.07) 358.84 (24.9) 395.65 (18.89) 483.57 (27.84) 526.51 (18.2) 648.1 (21.5)
(1:1) 289.19 (21.98) 384.33 (26.7) 467.01 (14.48) 545.05 (32.85) 588.32 (20.85) 670.03 (32.15)

8 (1:25) 324.51 (28.49) 561.74 (32.92) 528.84 (15.07) 668.06 (21.1) 707.4 (18.34) 920.56 (17.77)
(1:1) 406.32 (20.29) 542.85 (32.09) 628.26 (12.62) 754.62 (14.87) 789.56 (15.01) 910.42 (40.22)

9 (1:25) 240.88 (17.68) 435.49 (23.96) 423.73 (15.49) 523.33 (16.7) 580.45 (19.61) 752.52 (26.58)
(1:1) 311.65 (29.25) 432.62 (31.59) 511.52 (32.89) 613.81 (18.85) 656.1 (22.59) 759.26 (24.41)

10 (1:25) 249.1 (29.52) 402.12 (32.17) 420.54 (15.43) 524.59 (33.56) 558.93 (18.06) 708.42 (45.95)
(1:1) 322.31 (24.3) 409.05 (28.21) 499.99 (15.78) 600.91 (17.81) 632.89 (29.94) 707.6 (24.13)

Table A.12: Average TGL results for Imax = 2, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 3

q space RNG GG GPA 5NN YAO ER

1 (1:25) 256.55 (31.17) 447.33 (32.6) 455.07 (24.21) 578.39 (25.02) 621.42 (13.73) 821.26 (18.12)
(1:1) 317.2 (24.44) 457.31 (37.63) 536.91 (19.43) 643.34 (18.63) 694.08 (19.04) 812.3 (20.94)

2 (1:25) 323.51 (23.32) 594.27 (32.84) 549.32 (12.01) 703.99 (13.17) 740.46 (14.35) 995.28 (14.06)
(1:1) 394.88 (25.46) 584.35 (28.25) 640.37 (11.79) 783.58 (9.74) 826.11 (12.95) 997.92 (12.19)

3 (1:25) 232.38 (18.13) 461.01 (34.74) 435.92 (17.54) 577.37 (18.43) 626.92 (9.15) 848.05 (13.66)
(1:1) 304.29 (17.97) 467.13 (19.62) 532.26 (11.9) 662.3 (14.48) 709.53 (10.45) 845.78 (17.08)

4 (1:25) 310.1 (20.03) 567.9 (30.27) 530.5 (15.93) 679.03 (21.98) 727.06 (12.68) 982.54 (17.82)
(1:1) 382.69 (12.81) 563.68 (21.71) 625.65 (9.37) 773.28 (13.95) 817.97 (8.83) 981.1 (13.28)

5 (1:25) 327.44 (53.26) 489.94 (36.75) 502.79 (35.86) 601.04 (56.5) 649.54 (23.39) 826.43 (23.74)
(1:1) 370.81 (30.1) 489.67 (35.15) 556.94 (29.49) 669.93 (21.32) 710.49 (21.65) 834.47 (40.27)

6 (1:25) 448.87 (17.16) 688.81 (27.49) 668.26 (9.49) 811.13 (11.1) 845.07 (9.18) 1055.35 (16.14)
(1:1) 505.45 (8.0) 689.71 (26.36) 738.85 (8.22) 876.37 (11.22) 904.87 (11.7) 1041.73 (16.06)

7 (1:25) 300.62 (17.31) 566.18 (26.87) 525.37 (14.14) 667.8 (18.62) 712.94 (11.03) 963.15 (7.8)
(1:1) 370.71 (17.8) 566.47 (13.25) 608.52 (17.29) 756.89 (14.54) 796.28 (14.53) 954.98 (20.89)

8 (1:25) 289.33 (40.52) 492.39 (38.22) 471.68 (25.94) 595.9 (31.77) 638.6 (24.66) 813.46 (37.36)
(1:1) 375.55 (25.92) 502.16 (37.57) 559.6 (27.46) 659.11 (37.25) 708.28 (23.79) 814.29 (25.94)

9 (1:25) 369.78 (20.53) 629.09 (22.01) 595.23 (11.62) 747.03 (15.85) 783.38 (12.01) 1038.47 (19.22)
(1:1) 429.24 (9.58) 627.28 (31.85) 673.47 (3.17) 828.27 (13.7) 865.21 (8.83) 1046.99 (11.08)

10 (1:25) 292.5 (45.01) 460.77 (38.3) 477.74 (36.04) 579.01 (38.09) 632.16 (31.17) 789.27 (26.18)
(1:1) 345.43 (20.24) 455.22 (45.2) 546.58 (26.05) 645.23 (22.38) 674.94 (33.51) 775.26 (27.44)

Table A.13: Average TGL results for Imax = 3, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 4

q space RNG GG GPA 5NN YAO ER

1 (1:25) 332.13 (29.83) 586.43 (41.86) 558.14 (25.86) 708.9 (22.5) 747.63 (13.52) 990.42 (16.36)
(1:1) 401.97 (23.1) 575.79 (38.58) 645.27 (8.64) 791.28 (18.39) 828.19 (12.16) 974.69 (21.08)

2 (1:25) 267.91 (23.2) 509.21 (26.55) 476.72 (23.73) 613.1 (36.67) 663.86 (21.35) 886.77 (24.67)
(1:1) 336.46 (32.98) 495.71 (39.86) 551.54 (28.85) 690.23 (21.88) 729.64 (13.38) 883.43 (26.68)

3 (1:25) 282.8 (26.39) 542.12 (23.71) 510.23 (22.82) 663.95 (18.89) 712.53 (14.37) 984.78 (13.93)
(1:1) 367.74 (15.13) 552.93 (21.79) 610.46 (9.97) 760.66 (16.03) 803.11 (11.94) 980.0 (7.8)

4 (1:25) 289.48 (24.49) 484.37 (30.27) 477.34 (19.36) 599.26 (35.89) 626.17 (23.88) 815.21 (44.3)
(1:1) 350.64 (26.96) 482.63 (36.83) 558.08 (24.1) 668.77 (20.8) 708.07 (27.84) 811.12 (27.75)

5 (1:25) 436.04 (28.46) 644.61 (35.22) 643.9 (21.19) 782.04 (24.3) 827.35 (20.75) 1022.05 (14.28)
(1:1) 462.1 (33.16) 627.76 (12.05) 710.06 (15.63) 836.31 (10.76) 877.53 (13.69) 1013.63 (33.56)

6 (1:25) 322.72 (45.23) 495.75 (33.03) 498.35 (32.27) 621.91 (32.78) 663.91 (21.8) 857.72 (29.92)
(1:1) 338.02 (38.9) 479.47 (33.38) 562.53 (29.68) 675.88 (35.48) 728.49 (25.62) 854.53 (35.5)

7 (1:25) 323.54 (24.8) 587.99 (30.42) 550.01 (19.65) 700.58 (18.14) 744.48 (21.65) 976.21 (16.3)
(1:1) 397.94 (12.04) 594.4 (26.37) 637.93 (16.04) 789.39 (13.2) 822.97 (16.42) 985.98 (14.3)

8 (1:25) 314.47 (53.29) 586.23 (48.96) 498.05 (48.3) 643.42 (37.56) 676.18 (39.59) 867.07 (23.87)
(1:1) 394.59 (49.73) 569.66 (58.59) 577.58 (47.7) 710.53 (29.09) 747.4 (26.65) 888.06 (18.49)

9 (1:25) 309.34 (41.8) 529.61 (33.85) 509.2 (47.43) 629.89 (45.56) 664.64 (39.39) 885.24 (29.93)
(1:1) 361.55 (36.73) 527.34 (59.82) 581.33 (34.96) 705.77 (43.49) 743.36 (26.44) 875.25 (28.07)

10 (1:25) 403.68 (35.12) 611.51 (42.11) 613.62 (17.04) 758.53 (20.84) 794.14 (18.7) 995.73 (30.7)
(1:1) 436.96 (29.56) 607.48 (22.98) 684.79 (15.73) 816.1 (33.84) 862.3 (15.42) 982.92 (17.65)

Table A.14: Average TGL results for Imax = 4, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 5

q space RNG GG GPA 5NN YAO ER

1 (1:25) 376.92 (26.95) 679.97 (27.39) 614.65 (21.6) 795.38 (14.25) 828.23 (20.28) 1055.31 (28.33)
(1:1) 438.67 (21.34) 677.22 (27.62) 694.89 (16.23) 861.36 (17.21) 888.48 (8.59) 1066.59 (21.9)

2 (1:25) 408.83 (26.6) 704.61 (23.69) 648.84 (13.47) 823.87 (16.54) 849.26 (12.96) 1144.5 (9.84)
(1:1) 475.28 (21.15) 711.11 (22.87) 734.63 (7.73) 896.41 (10.77) 929.73 (10.13) 1144.58 (9.46)

3 (1:25) 308.98 (16.41) 594.58 (25.22) 551.96 (14.78) 723.11 (9.13) 762.18 (12.31) 1043.82 (11.37)
(1:1) 379.3 (16.32) 596.24 (27.42) 634.71 (13.08) 802.16 (13.27) 842.35 (7.0) 1039.02 (5.47)

4 (1:25) 426.49 (19.84) 693.61 (25.37) 663.51 (16.81) 817.32 (23.59) 857.85 (12.51) 1100.24 (18.23)
(1:1) 483.24 (28.76) 693.66 (26.73) 734.2 (15.97) 887.69 (25.83) 916.98 (17.4) 1106.96 (14.11)

5 (1:25) 468.04 (36.99) 705.76 (19.4) 683.9 (27.21) 824.6 (23.53) 862.09 (17.91) 1093.7 (13.55)
(1:1) 510.19 (40.95) 692.51 (21.79) 756.14 (22.64) 896.49 (22.53) 933.37 (20.78) 1091.83 (28.19)

6 (1:25) 481.69 (17.36) 763.99 (25.67) 712.02 (20.05) 878.62 (21.12) 901.18 (20.97) 1152.77 (12.81)
(1:1) 515.52 (22.26) 761.91 (16.17) 767.72 (20.22) 924.13 (17.27) 958.63 (16.92) 1150.67 (16.33)

7 (1:25) 294.73 (43.78) 516.8 (25.12) 515.99 (38.99) 652.91 (39.17) 695.97 (29.48) 931.06 (12.32)
(1:1) 364.16 (27.65) 552.5 (31.24) 594.07 (27.69) 741.56 (28.55) 762.27 (25.89) 936.95 (29.1)

8 (1:25) 505.77 (27.01) 802.59 (27.24) 743.48 (27.35) 920.44 (12.87) 943.88 (9.19) 1235.3 (12.33)
(1:1) 571.54 (18.47) 817.23 (26.17) 822.52 (12.44) 983.73 (11.12) 1020.93 (8.61) 1237.91 (13.89)

9 (1:25) 401.34 (26.6) 656.63 (39.91) 642.14 (16.0) 789.78 (48.82) 823.78 (22.24) 1073.03 (20.39)
(1:1) 455.57 (28.63) 667.2 (28.47) 695.81 (22.62) 859.57 (38.17) 887.92 (17.36) 1079.06 (22.6)

10 (1:25) 413.95 (26.92) 648.65 (35.28) 638.59 (20.1) 782.51 (19.34) 819.04 (17.38) 1029.95 (23.01)
(1:1) 476.18 (30.26) 654.02 (25.96) 730.28 (19.26) 857.34 (25.76) 881.03 (17.47) 1035.97 (13.9)

Table A.15: Average TGL results for Imax = 5, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 6

q space RNG GG GPA 5NN YAO ER

1 (1:25) 506.27 (30.75) 802.33 (31.0) 746.52 (14.35) 933.58 (13.19) 946.75 (10.11) 1227.81 (9.5)
(1:1) 529.49 (23.77) 802.16 (29.25) 790.35 (13.11) 973.67 (13.28) 1005.75 (8.03) 1233.68 (9.16)

2 (1:25) 516.43 (19.53) 846.17 (16.22) 753.89 (15.17) 943.08 (10.01) 958.11 (9.22) 1236.24 (7.98)
(1:1) 557.32 (17.31) 838.3 (28.36) 811.0 (10.84) 990.06 (13.15) 1016.4 (8.67) 1234.41 (12.41)

3 (1:25) 465.19 (22.86) 756.46 (21.32) 710.41 (14.31) 897.73 (11.21) 914.27 (6.94) 1190.67 (6.81)
(1:1) 507.69 (14.52) 762.0 (33.11) 772.88 (9.7) 946.45 (10.33) 976.42 (4.25) 1192.26 (7.67)

4 (1:25) 509.49 (21.68) 817.79 (19.17) 744.84 (14.47) 930.65 (17.66) 952.53 (8.78) 1239.1 (5.78)
(1:1) 536.96 (20.99) 818.82 (20.87) 802.55 (10.73) 980.43 (11.92) 1011.84 (9.79) 1242.57 (9.67)

5 (1:25) 600.87 (32.06) 906.59 (23.76) 831.73 (25.14) 1007.0 (15.22) 1030.38 (11.66) 1312.32 (15.49)
(1:1) 627.38 (21.0) 908.13 (20.8) 879.49 (9.7) 1056.17 (12.85) 1082.99 (9.5) 1309.75 (13.2)

6 (1:25) 455.07 (49.94) 698.87 (40.98) 678.32 (33.43) 819.52 (33.14) 863.94 (32.97) 1115.05 (18.5)
(1:1) 502.52 (21.81) 688.07 (28.55) 737.5 (32.84) 880.27 (19.72) 930.0 (21.05) 1110.63 (31.62)

7 (1:25) 418.09 (40.26) 695.66 (21.0) 645.61 (23.72) 823.58 (37.31) 846.66 (24.83) 1114.26 (20.53)
(1:1) 475.2 (24.56) 695.19 (23.04) 715.7 (17.15) 881.57 (17.73) 911.88 (15.83) 1114.88 (8.94)

8 (1:25) 690.32 (9.7) 937.69 (24.03) 903.89 (6.56) 1070.4 (11.34) 1081.47 (7.57) 1317.44 (11.1)
(1:1) 718.5 (6.38) 926.21 (29.91) 949.7 (5.2) 1107.46 (11.41) 1132.12 (3.86) 1315.87 (7.96)

9 (1:25) 532.41 (25.46) 836.87 (18.15) 779.89 (18.23) 957.58 (16.31) 976.39 (9.84) 1253.45 (14.75)
(1:1) 574.68 (14.9) 836.43 (23.61) 833.45 (15.5) 1004.06 (7.57) 1037.08 (10.94) 1261.93 (15.58)

10 (1:25) 549.63 (29.44) 861.54 (29.72) 786.11 (17.12) 963.22 (17.53) 989.03 (11.77) 1272.23 (4.48)
(1:1) 582.59 (19.18) 854.9 (24.26) 834.66 (10.63) 1014.96 (14.02) 1045.24 (5.44) 1267.26 (11.44)

Table A.16: Average TGL results for Imax = 6, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 7

q space RNG GG GPA 5NN YAO ER

1 (1:25) 440.65 (35.32) 714.93 (22.19) 675.17 (28.79) 859.59 (28.51) 878.59 (21.23) 1130.48 (18.09)
(1:1) 483.67 (32.71) 713.13 (37.47) 729.64 (17.2) 898.08 (9.44) 931.17 (17.33) 1142.25 (9.79)

2 (1:25) 357.93 (28.89) 633.39 (33.86) 599.51 (20.52) 767.0 (17.7) 796.25 (17.49) 1054.16 (18.67)
(1:1) 422.65 (32.88) 615.73 (21.85) 661.54 (24.81) 807.41 (19.63) 853.79 (15.25) 1053.77 (19.45)

3 (1:25) 437.41 (20.17) 754.45 (24.28) 684.12 (14.75) 872.8 (9.53) 895.15 (10.01) 1185.07 (9.31)
(1:1) 496.99 (21.69) 750.95 (24.04) 749.51 (15.72) 929.27 (9.16) 961.47 (9.09) 1182.9 (9.78)

4 (1:25) 440.52 (36.73) 664.35 (35.87) 667.6 (22.54) 807.71 (22.46) 855.51 (15.88) 1080.25 (36.53)
(1:1) 484.4 (35.68) 661.68 (31.12) 709.88 (32.1) 866.54 (26.03) 901.42 (27.67) 1056.32 (36.81)

5 (1:25) 541.86 (46.79) 789.17 (22.72) 781.96 (32.13) 932.28 (24.47) 961.26 (29.68) 1217.02 (22.98)
(1:1) 594.31 (30.14) 801.28 (18.01) 836.17 (25.19) 994.5 (17.11) 1032.36 (20.91) 1203.68 (18.93)

6 (1:25) 695.25 (12.63) 959.64 (17.56) 908.66 (11.81) 1075.77 (7.58) 1089.04 (7.01) 1320.29 (11.33)
(1:1) 728.87 (10.2) 959.18 (16.49) 957.98 (6.7) 1117.08 (10.25) 1136.93 (4.54) 1320.59 (8.3)

7 (1:25) 476.0 (27.62) 775.94 (21.8) 709.71 (23.04) 901.17 (18.81) 921.82 (15.83) 1201.67 (6.52)
(1:1) 514.8 (13.17) 775.36 (22.46) 771.68 (16.51) 949.74 (9.96) 977.66 (11.63) 1203.06 (6.1)

8 (1:25) 548.76 (45.03) 874.17 (20.82) 781.33 (35.66) 957.51 (32.51) 981.92 (18.17) 1251.61 (11.99)
(1:1) 601.55 (22.11) 873.84 (26.63) 851.49 (15.39) 1025.21 (16.01) 1050.75 (13.65) 1258.88 (13.8)

9 (1:25) 602.16 (13.93) 863.62 (20.73) 827.26 (9.05) 991.93 (8.27) 1012.88 (9.91) 1290.61 (7.77)
(1:1) 631.1 (11.87) 858.98 (23.93) 876.41 (9.88) 1040.77 (9.99) 1069.31 (6.67) 1282.72 (10.9)

10 (1:25) 513.97 (37.1) 772.68 (30.37) 746.31 (29.05) 912.84 (18.23) 939.14 (27.67) 1181.15 (26.16)
(1:1) 567.27 (26.71) 774.7 (23.64) 804.93 (21.47) 962.28 (13.92) 1006.72 (19.22) 1188.08 (20.28)

Table A.17: Average TGL results for Imax = 7, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 8

q space RNG GG GPA 5NN YAO ER

1 (1:25) 537.49 (11.93) 810.24 (25.83) 767.22 (14.86) 941.13 (13.49) 959.89 (9.11) 1224.65 (12.37)
(1:1) 569.08 (19.17) 825.15 (18.37) 813.66 (17.83) 997.47 (8.11) 1008.82 (10.64) 1225.18 (7.07)

2 (1:25) 528.77 (25.9) 861.02 (27.6) 780.31 (9.62) 963.95 (11.01) 981.21 (16.44) 1272.52 (5.02)
(1:1) 587.75 (21.42) 874.62 (20.87) 835.52 (13.84) 1021.9 (12.43) 1042.16 (8.44) 1272.78 (6.81)

3 (1:25) 367.88 (28.8) 650.34 (33.06) 593.09 (23.46) 770.92 (20.51) 791.27 (16.6) 1057.38 (8.79)
(1:1) 410.31 (29.4) 665.12 (26.42) 661.32 (16.03) 820.5 (22.18) 853.81 (10.19) 1044.38 (19.91)

4 (1:25) 552.48 (26.17) 876.24 (29.17) 794.52 (23.99) 989.38 (9.91) 1001.54 (11.42) 1281.39 (7.28)
(1:1) 619.37 (21.05) 883.22 (26.23) 869.5 (9.08) 1042.18 (8.52) 1061.22 (9.29) 1280.05 (7.07)

5 (1:25) 633.33 (21.64) 931.77 (19.12) 859.76 (16.97) 1039.99 (10.25) 1044.2 (14.53) 1303.93 (11.04)
(1:1) 657.14 (31.58) 944.64 (17.74) 909.81 (18.08) 1087.18 (21.14) 1098.48 (8.64) 1310.3 (12.16)

6 (1:25) 363.14 (40.61) 556.44 (69.4) 576.85 (44.14) 686.83 (34.5) 714.77 (39.87) 902.03 (23.46)
(1:1) 445.72 (53.29) 513.19 (46.15) 633.17 (38.54) 743.15 (19.24) 777.75 (41.43) 889.66 (43.17)

7 (1:25) 618.29 (15.5) 898.04 (23.91) 845.27 (8.05) 1022.4 (6.22) 1029.53 (7.78) 1274.49 (8.08)
(1:1) 662.22 (15.29) 911.58 (13.92) 896.66 (9.53) 1065.44 (8.96) 1081.45 (6.05) 1271.28 (6.25)

8 (1:25) 585.16 (52.34) 912.83 (29.72) 830.95 (26.69) 1013.36 (32.8) 1025.56 (21.74) 1307.98 (11.18)
(1:1) 650.25 (27.73) 929.35 (19.52) 897.43 (16.52) 1071.27 (12.33) 1089.51 (6.83) 1300.24 (13.92)

9 (1:25) 389.8 (48.67) 580.17 (71.55) 588.86 (41.5) 722.36 (32.31) 756.46 (42.71) 972.89 (26.42)
(1:1) 437.64 (42.32) 607.59 (49.79) 617.87 (32.03) 772.55 (31.92) 782.2 (28.31) 955.37 (27.35)

10 (1:25) 558.61 (20.1) 880.69 (22.06) 806.59 (12.07) 988.43 (7.52) 994.73 (13.12) 1268.25 (11.0)
(1:1) 605.13 (21.08) 887.62 (13.8) 861.19 (16.34) 1029.84 (20.02) 1061.03 (10.24) 1265.45 (12.21)

Table A.18: Average TGL results for Imax = 8, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 9

q space RNG GG GPA 5NN YAO ER

1 (1:25) 465.61 (21.66) 720.65 (34.82) 696.2 (18.54) 848.95 (26.03) 873.83 (14.53) 1110.41 (12.29)
(1:1) 513.94 (35.24) 703.52 (28.62) 740.22 (21.88) 891.53 (19.86) 935.01 (14.51) 1113.46 (35.29)

2 (1:25) 537.32 (38.33) 814.31 (31.24) 763.37 (31.68) 942.26 (23.34) 959.18 (19.14) 1237.14 (14.36)
(1:1) 568.16 (25.03) 813.37 (24.05) 820.97 (9.81) 985.4 (16.65) 1015.39 (11.93) 1241.71 (17.51)

3 (1:25) 512.47 (17.22) 811.48 (25.37) 749.73 (16.31) 940.63 (10.39) 953.76 (12.32) 1252.16 (5.9)
(1:1) 553.35 (14.77) 799.62 (17.1) 808.79 (9.75) 991.41 (11.22) 1014.63 (7.97) 1249.67 (4.79)

4 (1:25) 409.82 (73.6) 568.78 (28.31) 581.08 (59.25) 725.06 (47.54) 743.35 (30.43) 925.55 (37.53)
(1:1) 429.79 (39.35) 575.19 (31.18) 647.81 (38.86) 760.55 (30.08) 792.22 (31.01) 932.84 (23.77)

5 (1:25) 808.53 (11.44) 1035.11 (13.57) 1006.1 (8.77) 1162.91 (3.68) 1171.33 (7.61) 1392.87 (9.1)
(1:1) 838.78 (9.3) 1024.04 (20.61) 1053.5 (7.89) 1196.83 (7.28) 1216.9 (5.66) 1394.59 (7.71)

6 (1:25) 643.65 (20.8) 932.2 (25.63) 868.61 (21.42) 1045.78 (12.19) 1051.11 (10.14) 1322.72 (9.3)
(1:1) 660.31 (18.07) 900.81 (28.77) 904.55 (17.66) 1086.47 (22.08) 1104.84 (10.41) 1322.55 (7.46)

7 (1:25) 504.91 (21.66) 786.72 (29.91) 737.35 (15.22) 916.77 (13.56) 937.41 (17.79) 1209.52 (22.4)
(1:1) 573.47 (33.44) 793.92 (21.96) 818.75 (17.69) 967.83 (15.66) 1001.26 (14.4) 1194.36 (16.12)

8 (1:25) 634.05 (27.03) 923.42 (25.13) 855.34 (19.84) 1041.47 (25.7) 1055.39 (12.75) 1316.9 (14.61)
(1:1) 660.41 (45.86) 905.55 (31.93) 919.89 (27.39) 1086.26 (15.6) 1111.47 (13.36) 1318.37 (21.91)

9 (1:25) 561.1 (32.18) 888.25 (29.14) 803.38 (20.27) 991.51 (15.58) 998.72 (19.22) 1268.8 (13.01)
(1:1) 620.41 (24.82) 898.18 (35.11) 873.95 (19.43) 1046.06 (19.06) 1057.72 (14.71) 1273.75 (10.34)

10 (1:25) 749.28 (15.43) 1009.99 (12.17) 960.75 (9.67) 1126.65 (9.15) 1134.18 (9.45) 1368.82 (4.65)
(1:1) 792.11 (8.21) 996.34 (15.48) 1011.12 (7.4) 1161.4 (6.7) 1181.87 (5.03) 1369.73 (10.64)

Table A.19: Average TGL results for Imax = 9, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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Imax = 10

q space RNG GG GPA 5NN YAO ER

1 (1:25) 548.84 (27.08) 834.6 (45.24) 803.96 (27.17) 981.66 (21.56) 989.59 (16.85) 1240.85 (17.8)
(1:1) 614.24 (30.33) 846.73 (43.52) 859.16 (22.1) 1025.24 (16.73) 1046.43 (14.7) 1246.08 (16.37)

2 (1:25) 629.88 (23.68) 911.5 (25.54) 858.97 (12.19) 1036.6 (20.18) 1048.68 (7.49) 1311.03 (9.26)
(1:1) 673.69 (21.43) 926.05 (25.3) 916.51 (12.74) 1083.97 (16.61) 1102.66 (9.47) 1311.06 (10.14)

3 (1:25) 538.27 (28.31) 868.43 (19.13) 786.95 (14.83) 976.76 (14.39) 982.36 (14.03) 1267.78 (6.8)
(1:1) 589.89 (18.45) 866.39 (21.11) 838.27 (10.73) 1026.32 (10.78) 1043.44 (7.31) 1261.98 (6.67)

4 (1:25) 624.11 (30.08) 955.33 (19.28) 859.3 (11.86) 1050.26 (14.29) 1054.05 (9.03) 1318.56 (11.12)
(1:1) 669.06 (27.68) 954.21 (22.9) 913.96 (16.43) 1088.3 (16.1) 1103.6 (6.67) 1313.45 (10.75)

5 (1:25) 851.55 (7.83) 1084.03 (20.07) 1050.39 (6.98) 1210.33 (11.59) 1214.55 (3.48) 1431.55 (8.0)
(1:1) 887.27 (9.49) 1089.72 (12.67) 1093.4 (7.27) 1242.28 (9.04) 1255.88 (5.54) 1429.72 (8.2)

6 (1:25) 639.74 (33.79) 935.34 (13.83) 861.3 (29.18) 1060.48 (24.52) 1061.61 (13.68) 1326.69 (14.18)
(1:1) 697.44 (31.32) 944.5 (27.24) 934.94 (24.41) 1100.52 (23.5) 1120.05 (13.7) 1319.83 (13.25)

7 (1:25) 646.89 (22.66) 939.63 (27.01) 880.84 (16.26) 1062.59 (10.43) 1066.31 (6.67) 1334.56 (6.82)
(1:1) 675.78 (27.26) 951.75 (20.94) 920.74 (21.57) 1094.01 (14.43) 1113.5 (11.04) 1329.95 (8.29)

8 (1:25) 715.95 (31.51) 1024.91 (26.83) 938.03 (21.98) 1114.97 (19.39) 1127.84 (18.4) 1391.5 (6.63)
(1:1) 764.16 (21.59) 1027.72 (18.13) 999.18 (12.78) 1161.22 (14.18) 1178.14 (11.6) 1389.12 (6.31)

9 (1:25) 540.25 (75.93) 811.02 (47.81) 760.3 (42.46) 927.27 (36.94) 945.53 (32.26) 1189.36 (13.71)
(1:1) 606.17 (45.23) 837.62 (49.25) 840.66 (24.23) 976.81 (41.47) 1012.65 (24.21) 1181.09 (19.72)

10 (1:25) 765.94 (10.93) 1016.12 (22.97) 975.83 (9.31) 1145.18 (8.46) 1146.61 (6.52) 1378.32 (5.5)
(1:1) 809.76 (11.32) 1028.71 (8.06) 1026.38 (8.96) 1180.37 (6.95) 1193.05 (4.83) 1376.59 (6.91)

Table A.20: Average TGL results for Imax = 10, standard deviation in parenthesis. Variable
q indicates the logical network version used. Averages were obtained across the 10 physical
network instances for a given space and physical model.
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A.5 Physical network model effect figures

(a)

(b)

Figure A.38: Comparison of the average TGL for a given physical network model, for Imax ∈ {1, 2}.
Black line on top shows the TGL standard deviation.
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(a)

(b)

Figure A.39: Comparison of the average TGL for a given physical network model, for Imax ∈ {3, 4}.
Black line on top shows the TGL standard deviation.
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(a)

(b)

Figure A.40: Comparison of the average TGL for a given physical network model, for Imax ∈ {5, 6}.
Black line on top shows the TGL standard deviation.
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(a)

(b)

Figure A.41: Comparison of the average TGL for a given physical network model, for Imax ∈ {7, 8}.
Black line on top shows the TGL standard deviation.
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(a)

(b)

Figure A.42: Comparison of the average TGL for a given physical network model, for Imax ∈
{9, 10}. Black line on top shows the TGL standard deviation.
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A.6 Imax effect figures

(a) (b)

(c) (d)

Figure A.43: Average TGL versus Imax for logic network versions q ∈ {1, 2, 3, 4}.
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(a) (b)

(c) (d)

Figure A.44: Average TGL versus Imax for logic network versions q ∈ {5, 6, 7, 8}.
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(a) (b)

Figure A.45: Average TGL versus Imax for logic network versions q ∈ {9, 10}.
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Annexed B

Chapter 4: Interplay between the logical network and
the interlinks

B.1 Robustness comparison tables

q = 1

Imax +I RNG GG GPA 5NN YAO ER

1 × 164.83 (11.07) 327.53 (14.72) 307.93 (33.96) 402.73 (15.78) 463.75 (8.68) 596.58 (21.47)
X 164.86 (13.7) 325.43 (8.99) 308.07 (27.87) 409.96 (16.86) 464.31 (7.33) 592.63 (16.49)

2 × 202.29 (17.89) 378.51 (29.48) 359.78 (45.08) 484.42 (30.19) 532.64 (17.85) 687.58 (21.5)
X 235.81 (13.92) 438.24 (19.11) 453.74 (34.15) 566.87 (17.3) 611.95 (14.61) 810.06 (23.25)

3 × 256.55 (31.17) 455.07 (24.21) 447.33 (32.6) 578.39 (25.02) 621.42 (13.73) 821.26 (18.12)
X 315.61 (15.43) 542.27 (14.27) 575.83 (20.42) 693.24 (17.59) 735.49 (8.28) 984.9 (12.36)

4 × 332.13 (29.83) 558.14 (25.86) 586.43 (41.86) 708.9 (22.5) 747.63 (13.52) 990.42 (16.36)
X 367.16 (19.05) 604.43 (11.92) 667.08 (29.4) 766.94 (10.95) 802.57 (11.79) 1065.87 (12.7)

5 × 376.92 (26.95) 614.65 (21.6) 679.97 (27.39) 795.38 (14.25) 828.23 (20.28) 1055.31 (28.33)
X 397.32 (21.16) 643.85 (24.03) 729.05 (25.21) 834.42 (17.07) 851.58 (13.81) 1124.32 (11.11)

6 × 506.27 (30.75) 746.52 (14.35) 802.33 (31.0) 933.58 (13.19) 946.75 (10.11) 1227.81 (9.5)
X 509.79 (28.63) 759.14 (12.06) 819.77 (24.49) 943.82 (13.48) 957.37 (10.94) 1241.04 (6.96)

7 × 440.65 (35.32) 675.17 (28.79) 714.93 (22.19) 859.59 (28.51) 878.59 (21.23) 1130.48 (18.09)
X 484.48 (20.85) 729.65 (17.44) 790.6 (9.12) 916.67 (18.64) 940.15 (14.2) 1220.38 (6.77)

8 × 537.49 (11.93) 767.22 (14.86) 810.24 (25.83) 941.13 (13.49) 959.89 (9.11) 1224.65 (12.37)
X 548.37 (10.91) 778.8 (12.36) 838.54 (31.89) 965.58 (8.77) 973.07 (9.52) 1246.7 (7.16)

9 × 465.61 (21.66) 696.2 (18.54) 720.65 (34.82) 848.95 (26.03) 873.83 (14.53) 1110.41 (12.29)
X 559.66 (17.17) 798.11 (13.36) 877.2 (17.25) 975.6 (13.7) 997.05 (6.71) 1274.64 (6.73)

10 × 548.84 (27.08) 803.96 (27.17) 834.6 (45.24) 981.66 (21.56) 989.59 (16.85) 1240.85 (17.8)
X 665.24 (20.89) 891.26 (12.03) 951.28 (23.93) 1077.56 (14.58) 1081.07 (6.38) 1345.49 (7.05)

Table B.1: Average TGL of systems with q = 1, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 2

Imax +I RNG GG GPA 5NN YAO ER

1 × 210.51 (13.43) 374.82 (12.18) 360.64 (16.66) 464.89 (17.09) 505.23 (9.48) 641.57 (15.57)
X 212.97 (11.35) 375.38 (17.36) 357.92 (22.25) 457.97 (15.13) 509.14 (12.92) 645.19 (17.02)

2 × 253.93 (10.42) 451.44 (9.5) 475.21 (27.84) 575.33 (12.83) 623.23 (4.49) 839.48 (11.49)
X 274.18 (10.76) 477.26 (8.69) 514.55 (25.04) 623.33 (9.07) 659.2 (9.74) 889.95 (11.53)

3 × 323.51 (23.32) 549.32 (12.01) 594.27 (32.84) 703.99 (13.17) 740.46 (14.35) 995.28 (14.06)
X 333.0 (21.17) 565.26 (17.35) 622.81 (26.0) 728.49 (17.88) 763.42 (13.64) 1025.89 (11.78)

4 × 267.91 (23.2) 476.72 (23.73) 509.21 (26.55) 613.1 (36.67) 663.86 (21.35) 886.77 (24.67)
X 369.27 (17.46) 614.14 (13.77) 687.42 (25.58) 784.48 (11.03) 818.59 (11.96) 1117.85 (7.53)

5 × 408.83 (26.6) 648.84 (13.47) 704.61 (23.69) 823.87 (16.54) 849.26 (12.96) 1144.5 (9.84)
X 448.23 (25.9) 691.83 (16.23) 758.78 (28.21) 871.59 (16.0) 899.91 (9.09) 1205.11 (6.68)

6 × 516.43 (19.53) 753.89 (15.17) 846.17 (16.22) 943.08 (10.01) 958.11 (9.22) 1236.24 (7.98)
X 553.87 (18.38) 790.94 (15.17) 872.51 (18.64) 975.86 (11.09) 988.52 (6.87) 1272.78 (7.22)

7 × 357.93 (28.89) 599.51 (20.52) 633.39 (33.86) 767.0 (17.7) 796.25 (17.49) 1054.16 (18.67)
X 565.39 (21.76) 805.78 (15.07) 864.48 (20.06) 991.54 (5.5) 1011.08 (12.01) 1299.68 (5.64)

8 × 528.77 (25.9) 780.31 (9.62) 861.02 (27.6) 963.95 (11.01) 981.21 (16.44) 1272.52 (5.02)
X 557.26 (21.73) 797.75 (14.09) 882.01 (22.45) 979.67 (13.07) 996.89 (11.06) 1293.58 (5.09)

9 × 537.32 (38.33) 763.37 (31.68) 814.31 (31.24) 942.26 (23.34) 959.18 (19.14) 1237.14 (14.36)
X 607.74 (27.21) 844.34 (24.48) 943.31 (21.68) 1038.43 (19.24) 1047.76 (16.99) 1336.87 (7.42)

10 × 629.88 (23.68) 858.97 (12.19) 911.5 (25.54) 1036.6 (20.18) 1048.68 (7.49) 1311.03 (9.26)
X 685.71 (17.52) 905.75 (15.79) 980.59 (24.01) 1095.24 (12.09) 1098.0 (7.65) 1372.9 (7.35)

Table B.2: Average TGL of systems with q = 2, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 3

Imax +I RNG GG GPA 5NN YAO ER

1 × 149.85 (8.37) 310.71 (7.65) 293.65 (24.88) 393.41 (15.08) 443.33 (7.53) 571.96 (8.6)
X 151.37 (7.03) 312.15 (5.92) 293.15 (19.32) 391.87 (12.86) 450.08 (8.15) 576.37 (6.08)

2 × 210.46 (17.1) 404.5 (10.08) 412.54 (23.59) 524.36 (14.47) 574.39 (9.49) 752.27 (12.11)
X 224.79 (12.62) 422.69 (6.86) 444.45 (24.14) 558.39 (11.64) 601.09 (7.88) 797.95 (10.74)

3 × 232.38 (18.13) 435.92 (17.54) 461.01 (34.74) 577.37 (18.43) 626.92 (9.15) 848.05 (13.66)
X 267.99 (17.97) 490.67 (13.89) 526.64 (26.6) 643.27 (15.28) 681.58 (9.14) 928.99 (3.95)

4 × 282.8 (26.39) 510.23 (22.82) 542.12 (23.71) 663.95 (18.89) 712.53 (14.37) 984.78 (13.93)
X 347.48 (21.18) 584.91 (17.06) 641.16 (15.1) 756.13 (20.67) 794.68 (13.75) 1078.19 (5.48)

5 × 308.98 (16.41) 551.96 (14.78) 594.58 (25.22) 723.11 (9.13) 762.18 (12.31) 1043.82 (11.37)
X 330.71 (16.54) 578.4 (18.99) 625.09 (27.08) 752.83 (8.85) 786.79 (11.68) 1075.76 (6.81)

6 × 465.19 (22.86) 710.41 (14.31) 756.46 (21.32) 897.73 (11.21) 914.27 (6.94) 1190.67 (6.81)
X 471.97 (19.71) 714.87 (13.96) 767.54 (21.55) 902.28 (6.75) 921.79 (9.38) 1200.64 (5.61)

7 × 437.41 (20.17) 684.12 (14.75) 754.45 (24.28) 872.8 (9.53) 895.15 (10.01) 1185.07 (9.31)
X 446.88 (19.02) 695.94 (14.19) 766.52 (18.35) 887.41 (11.17) 907.26 (9.79) 1202.62 (4.5)

8 × 367.88 (28.8) 593.09 (23.46) 650.34 (33.06) 770.92 (20.51) 791.27 (16.6) 1057.38 (8.79)
X 489.05 (10.23) 741.79 (15.09) 820.26 (25.9) 935.7 (10.21) 948.17 (11.79) 1229.3 (3.78)

9 × 512.47 (17.22) 749.73 (16.31) 811.48 (25.37) 940.63 (10.39) 953.76 (12.32) 1252.16 (5.9)
X 532.03 (17.79) 769.99 (15.54) 839.31 (24.26) 964.63 (4.52) 976.77 (5.16) 1275.27 (3.35)

10 × 538.27 (28.31) 786.95 (14.83) 868.43 (19.13) 976.76 (14.39) 982.36 (14.03) 1267.78 (6.8)
X 589.01 (15.62) 834.66 (9.47) 912.94 (13.85) 1031.52 (11.66) 1034.74 (10.2) 1327.45 (4.74)

Table B.3: Average TGL of systems with q = 3, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 4

Imax +I RNG GG GPA 5NN YAO ER

1 × 181.3 (14.53) 338.42 (16.34) 326.52 (20.01) 419.14 (13.16) 463.82 (16.05) 586.74 (22.86)
X 180.51 (16.59) 338.25 (12.25) 329.61 (17.64) 418.84 (11.35) 464.39 (13.05) 575.18 (34.64)

2 × 223.09 (18.16) 407.28 (17.09) 414.03 (53.83) 516.42 (16.18) 563.3 (20.41) 703.35 (46.6)
X 259.61 (15.43) 461.73 (13.67) 486.67 (35.67) 594.13 (14.3) 639.72 (12.87) 843.42 (17.49)

3 × 310.1 (20.03) 530.5 (15.93) 567.9 (30.27) 679.03 (21.98) 727.06 (12.68) 982.54 (17.82)
X 310.19 (19.32) 530.21 (11.96) 569.17 (26.04) 681.92 (14.5) 724.24 (12.78) 973.9 (19.0)

4 × 289.48 (24.49) 477.34 (19.36) 484.37 (30.27) 599.26 (35.89) 626.17 (23.88) 815.21 (44.3)
X 378.58 (21.37) 617.26 (20.28) 682.71 (22.25) 783.44 (12.7) 810.98 (12.51) 1081.64 (11.87)

5 × 426.49 (19.84) 663.51 (16.81) 693.61 (25.37) 817.32 (23.59) 857.85 (12.51) 1100.24 (18.23)
X 445.81 (19.95) 690.54 (17.13) 745.94 (22.96) 865.69 (19.32) 892.18 (6.24) 1171.11 (15.76)

6 × 509.49 (21.68) 744.84 (14.47) 817.79 (19.17) 930.65 (17.66) 952.53 (8.78) 1239.1 (5.78)
X 511.69 (23.46) 751.17 (15.89) 834.17 (22.18) 944.95 (19.89) 960.62 (9.48) 1260.06 (7.79)

7 × 440.52 (36.73) 667.6 (22.54) 664.35 (35.87) 807.71 (22.46) 855.51 (15.88) 1080.25 (36.53)
X 514.37 (20.01) 761.38 (19.41) 822.94 (25.24) 933.96 (19.89) 961.13 (13.65) 1256.09 (6.01)

8 × 552.48 (26.17) 794.52 (23.99) 876.24 (29.17) 989.38 (9.91) 1001.54 (11.42) 1281.39 (7.28)
X 567.51 (22.28) 800.59 (24.64) 882.14 (29.07) 994.65 (12.69) 1005.43 (11.44) 1293.82 (3.57)

9 × 409.82 (73.6) 581.08 (59.25) 568.78 (28.31) 725.06 (47.54) 743.35 (30.43) 925.55 (37.53)
X 613.0 (18.76) 847.71 (15.32) 932.37 (23.0) 1030.8 (11.5) 1044.0 (8.67) 1328.55 (8.41)

10 × 624.11 (30.08) 859.3 (11.86) 955.33 (19.28) 1050.26 (14.29) 1054.05 (9.03) 1318.56 (11.12)
X 648.82 (31.6) 884.07 (13.11) 965.95 (20.15) 1069.64 (12.28) 1069.71 (8.14) 1339.51 (5.35)

Table B.4: Average TGL of systems with q = 4, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 5

Imax +I RNG GG GPA 5NN YAO ER

1 × 221.95 (30.48) 380.66 (26.46) 389.31 (43.23) 470.95 (22.79) 505.88 (17.06) 640.79 (32.26)
X 221.51 (29.1) 381.78 (25.42) 392.76 (45.25) 463.06 (22.51) 508.91 (25.42) 632.18 (26.36)

2 × 264.66 (26.12) 435.76 (28.43) 437.72 (36.68) 542.22 (24.18) 585.45 (20.78) 744.37 (27.41)
X 305.95 (22.73) 518.71 (18.67) 575.4 (29.41) 655.54 (15.29) 702.47 (13.88) 920.04 (19.28)

3 × 327.44 (53.26) 502.79 (35.86) 489.94 (36.75) 601.04 (56.5) 649.54 (23.39) 826.43 (23.74)
X 408.27 (28.14) 634.17 (17.76) 664.44 (30.12) 786.35 (12.14) 818.08 (13.82) 1069.61 (13.06)

4 × 436.04 (28.46) 643.9 (21.19) 644.61 (35.22) 782.04 (24.3) 827.35 (20.75) 1022.05 (14.28)
X 471.42 (24.19) 702.71 (20.0) 757.02 (33.26) 859.22 (16.16) 893.21 (13.9) 1162.01 (16.97)

5 × 468.04 (36.99) 683.9 (27.21) 705.76 (19.4) 824.6 (23.53) 862.09 (17.91) 1093.7 (13.55)
X 531.78 (20.73) 771.27 (15.26) 830.56 (24.49) 937.86 (15.63) 969.01 (9.42) 1248.35 (9.46)

6 × 600.87 (32.06) 831.73 (25.14) 906.59 (23.76) 1007.0 (15.22) 1030.38 (11.66) 1312.32 (15.49)
X 596.82 (32.58) 831.9 (17.3) 904.44 (26.05) 1008.73 (14.37) 1029.82 (15.07) 1312.86 (11.36)

7 × 541.86 (46.79) 781.96 (32.13) 789.17 (22.72) 932.28 (24.47) 961.26 (29.68) 1217.02 (22.98)
X 666.15 (16.74) 879.71 (15.29) 934.35 (23.29) 1044.2 (17.92) 1065.23 (8.67) 1331.18 (5.16)

8 × 633.33 (21.64) 859.76 (16.97) 931.77 (19.12) 1039.99 (10.25) 1044.2 (14.53) 1303.93 (11.04)
X 659.15 (26.04) 892.36 (20.47) 974.08 (25.34) 1076.14 (12.76) 1077.27 (10.53) 1348.84 (6.04)

9 × 808.53 (11.44) 1006.1 (8.77) 1035.11 (13.57) 1162.91 (3.68) 1171.33 (7.61) 1392.87 (9.1)
X 807.88 (11.92) 1007.34 (7.36) 1037.01 (14.49) 1164.4 (7.96) 1172.01 (6.26) 1396.34 (5.99)

10 × 851.55 (7.83) 1050.39 (6.98) 1084.03 (20.07) 1210.33 (11.59) 1214.55 (3.48) 1431.55 (8.0)
X 849.03 (9.45) 1050.44 (6.67) 1081.87 (17.43) 1212.17 (9.34) 1214.72 (6.7) 1434.79 (4.54)

Table B.5: Average TGL of systems with q = 5, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 6

Imax +I RNG GG GPA 5NN YAO ER

1 × 209.99 (22.44) 372.07 (21.19) 381.32 (32.52) 453.55 (18.04) 501.11 (11.02) 621.52 (25.22)
X 211.09 (21.63) 374.63 (22.64) 383.14 (35.66) 457.7 (21.66) 499.03 (11.92) 629.06 (25.34)

2 × 269.84 (21.58) 444.94 (23.39) 478.88 (33.13) 551.54 (44.05) 581.02 (15.97) 749.19 (20.36)
X 301.81 (19.67) 502.69 (17.04) 554.4 (20.37) 638.41 (23.45) 684.11 (12.72) 893.08 (24.76)

3 × 448.87 (17.16) 668.26 (9.49) 688.81 (27.49) 811.13 (11.1) 845.07 (9.18) 1055.35 (16.14)
X 449.73 (14.76) 665.53 (11.63) 689.51 (35.95) 809.22 (12.35) 845.06 (10.07) 1037.75 (16.62)

4 × 322.72 (45.23) 498.35 (32.27) 495.75 (33.03) 621.91 (32.78) 663.91 (21.8) 857.72 (29.92)
X 436.1 (26.07) 662.04 (22.06) 724.54 (29.4) 833.66 (20.52) 864.03 (16.3) 1123.36 (21.65)

5 × 481.69 (17.36) 712.02 (20.05) 763.99 (25.67) 878.62 (21.12) 901.18 (20.97) 1152.77 (12.81)
X 514.79 (16.55) 742.6 (10.06) 810.7 (23.13) 916.48 (10.99) 940.08 (10.28) 1216.96 (14.02)

6 × 455.07 (49.94) 678.32 (33.43) 698.87 (40.98) 819.52 (33.14) 863.94 (32.97) 1115.05 (18.5)
X 553.04 (23.61) 789.09 (12.23) 863.02 (26.87) 974.81 (16.43) 987.14 (9.17) 1280.7 (7.97)

7 × 695.25 (12.63) 908.66 (11.81) 959.64 (17.56) 1075.77 (7.58) 1089.04 (7.01) 1320.29 (11.33)
X 692.73 (10.98) 909.12 (11.57) 955.49 (22.22) 1075.43 (7.1) 1091.3 (8.78) 1316.98 (10.14)

8 × 363.14 (40.61) 576.85 (44.14) 556.44 (69.4) 686.83 (34.5) 714.77 (39.87) 902.03 (23.46)
X 594.17 (23.41) 826.33 (21.87) 905.75 (31.3) 1019.05 (18.67) 1023.65 (13.09) 1320.85 (7.55)

9 × 643.65 (20.8) 868.61 (21.42) 932.2 (25.63) 1045.78 (12.19) 1051.11 (10.14) 1322.72 (9.3)
X 667.8 (21.18) 893.57 (14.48) 963.48 (25.63) 1074.22 (15.23) 1082.99 (6.94) 1358.63 (5.22)

10 × 639.74 (33.79) 861.3 (29.18) 935.34 (13.83) 1060.48 (24.52) 1061.61 (13.68) 1326.69 (14.18)
X 685.8 (26.13) 922.82 (22.53) 1007.37 (24.49) 1113.32 (14.83) 1115.36 (11.89) 1387.37 (6.7)

Table B.6: Average TGL of systems with q = 6, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 7

Imax +I RNG GG GPA 5NN YAO ER

1 × 178.41 (17.22) 339.99 (19.3) 327.83 (22.13) 404.92 (33.77) 470.41 (16.86) 589.33 (21.62)
X 175.41 (19.92) 333.95 (18.23) 328.05 (24.0) 404.93 (32.17) 467.08 (13.16) 592.73 (36.17)

2 × 222.56 (18.07) 395.65 (18.89) 358.84 (24.9) 483.57 (27.84) 526.51 (18.2) 648.1 (21.5)
X 256.7 (11.65) 464.52 (16.62) 456.83 (33.68) 575.33 (11.26) 634.34 (11.96) 812.7 (25.53)

3 × 300.62 (17.31) 525.37 (14.14) 566.18 (26.87) 667.8 (18.62) 712.94 (11.03) 963.15 (7.8)
X 299.59 (18.95) 519.03 (14.26) 565.47 (25.95) 673.0 (12.83) 711.09 (16.26) 966.07 (9.33)

4 × 323.54 (24.8) 550.01 (19.65) 587.99 (30.42) 700.58 (18.14) 744.48 (21.65) 976.21 (16.3)
X 356.58 (24.69) 594.08 (19.99) 649.46 (29.02) 756.17 (15.54) 793.83 (10.6) 1067.2 (11.7)

5 × 294.73 (43.78) 515.99 (38.99) 516.8 (25.12) 652.91 (39.17) 695.97 (29.48) 931.06 (12.32)
X 404.94 (25.05) 650.35 (22.1) 727.84 (21.03) 832.1 (23.38) 867.35 (16.64) 1168.41 (7.23)

6 × 418.09 (40.26) 645.61 (23.72) 695.66 (21.0) 823.58 (37.31) 846.66 (24.83) 1114.26 (20.53)
X 488.36 (29.11) 733.96 (16.65) 797.15 (21.13) 914.75 (21.69) 938.55 (13.24) 1235.89 (11.96)

7 × 476.0 (27.62) 709.71 (23.04) 775.94 (21.8) 901.17 (18.81) 921.82 (15.83) 1201.67 (6.52)
X 486.57 (31.55) 724.15 (20.32) 784.62 (21.43) 909.96 (22.35) 929.75 (15.87) 1212.43 (8.58)

8 × 618.29 (15.5) 845.27 (8.05) 898.04 (23.91) 1022.4 (6.22) 1029.53 (7.78) 1274.49 (8.08)
X 620.68 (12.91) 847.24 (9.78) 898.26 (26.38) 1023.62 (7.28) 1031.55 (5.5) 1279.75 (9.58)

9 × 504.91 (21.66) 737.35 (15.22) 786.72 (29.91) 916.77 (13.56) 937.41 (17.79) 1209.52 (22.4)
X 606.68 (17.39) 830.37 (15.15) 895.63 (18.61) 1018.56 (8.74) 1024.48 (12.49) 1304.05 (5.19)

10 × 646.89 (22.66) 880.84 (16.26) 939.63 (27.01) 1062.59 (10.43) 1066.31 (6.67) 1334.56 (6.82)
X 660.93 (16.6) 888.25 (15.18) 952.97 (19.99) 1075.66 (8.56) 1078.2 (8.51) 1341.26 (5.26)

Table B.7: Average TGL of systems with q = 7, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 8

Imax +I RNG GG GPA 5NN YAO ER

1 × 220.1 (16.57) 386.31 (18.66) 397.88 (27.47) 459.41 (32.12) 521.81 (12.71) 649.79 (35.32)
X 221.22 (16.9) 387.83 (9.88) 415.0 (36.36) 460.56 (41.69) 516.18 (18.01) 633.95 (16.22)

2 × 324.51 (28.49) 528.84 (15.07) 561.74 (32.92) 668.06 (21.1) 707.4 (18.34) 920.56 (17.77)
X 324.9 (29.77) 535.92 (14.59) 556.82 (34.99) 665.25 (24.8) 707.96 (19.29) 932.24 (18.06)

3 × 289.33 (40.52) 471.68 (25.94) 492.39 (38.22) 595.9 (31.77) 638.6 (24.66) 813.46 (37.36)
X 386.66 (41.12) 605.55 (31.74) 651.36 (32.24) 766.26 (20.28) 809.03 (21.43) 1052.91 (17.4)

4 × 314.47 (53.29) 498.05 (48.3) 586.23 (48.96) 643.42 (37.56) 676.18 (39.59) 867.07 (23.87)
X 448.75 (17.74) 678.96 (19.88) 740.07 (32.1) 849.45 (14.94) 886.98 (12.4) 1158.56 (16.12)

5 × 505.77 (27.01) 743.48 (27.35) 802.59 (27.24) 920.44 (12.87) 943.88 (9.19) 1235.3 (12.33)
X 505.04 (30.47) 735.04 (23.6) 803.45 (21.02) 915.35 (16.7) 942.61 (14.17) 1232.14 (7.32)

6 × 690.32 (9.7) 903.89 (6.56) 937.69 (24.03) 1070.4 (11.34) 1081.47 (7.57) 1317.44 (11.1)
X 687.57 (10.42) 904.1 (7.06) 936.1 (32.62) 1067.66 (8.8) 1080.32 (9.91) 1316.44 (9.99)

7 × 548.76 (45.03) 781.33 (35.66) 874.17 (20.82) 957.51 (32.51) 981.92 (18.17) 1251.61 (11.99)
X 592.09 (33.2) 829.04 (17.85) 919.81 (18.77) 1014.05 (18.11) 1032.82 (14.56) 1315.95 (10.78)

8 × 585.16 (52.34) 830.95 (26.69) 912.83 (29.72) 1013.36 (32.8) 1025.56 (21.74) 1307.98 (11.18)
X 634.41 (25.41) 858.68 (19.79) 941.27 (23.84) 1040.04 (23.72) 1050.1 (16.34) 1329.97 (8.52)

9 × 634.05 (27.03) 855.34 (19.84) 923.42 (25.13) 1041.47 (25.7) 1055.39 (12.75) 1316.9 (14.61)
X 723.81 (22.54) 934.19 (16.9) 993.07 (21.28) 1098.45 (17.0) 1116.41 (13.78) 1374.01 (6.99)

10 × 715.95 (31.51) 938.03 (21.98) 1024.91 (26.83) 1114.97 (19.39) 1127.84 (18.4) 1391.5 (6.63)
X 728.74 (34.2) 960.2 (17.54) 1038.95 (18.43) 1134.45 (17.02) 1142.74 (11.88) 1403.98 (5.84)

Table B.8: Average TGL of systems with q = 8, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 9

Imax +I RNG GG GPA 5NN YAO ER

1 × 197.83 (17.71) 361.08 (9.67) 325.92 (38.13) 452.23 (20.81) 499.92 (13.61) 637.64 (18.53)
X 199.44 (13.87) 360.35 (16.65) 333.08 (38.3) 441.95 (19.12) 492.39 (22.17) 640.34 (23.35)

2 × 240.88 (17.68) 423.73 (15.49) 435.49 (23.96) 523.33 (16.7) 580.45 (19.61) 752.52 (26.58)
X 271.45 (21.4) 475.37 (17.18) 523.48 (25.71) 603.3 (25.03) 658.72 (13.09) 874.03 (16.89)

3 × 369.78 (20.53) 595.23 (11.62) 629.09 (22.01) 747.03 (15.85) 783.38 (12.01) 1038.47 (19.22)
X 367.54 (22.61) 596.62 (11.03) 631.98 (29.28) 749.31 (16.56) 791.29 (8.74) 1042.42 (11.81)

4 × 309.34 (41.8) 509.2 (47.43) 529.61 (33.85) 629.89 (45.56) 664.64 (39.39) 885.24 (29.93)
X 417.51 (21.13) 650.57 (20.49) 707.94 (37.82) 820.28 (15.04) 853.32 (17.65) 1133.41 (7.59)

5 × 401.34 (26.6) 642.14 (16.0) 656.63 (39.91) 789.78 (48.82) 823.78 (22.24) 1073.03 (20.39)
X 466.65 (13.62) 709.9 (12.93) 786.51 (24.82) 894.73 (15.62) 916.45 (11.83) 1203.91 (10.13)

6 × 532.41 (25.46) 779.89 (18.23) 836.87 (18.15) 957.58 (16.31) 976.39 (9.84) 1253.45 (14.75)
X 540.44 (27.81) 785.95 (17.04) 848.06 (17.37) 970.6 (13.1) 987.19 (6.07) 1272.11 (10.12)

7 × 602.16 (13.93) 827.26 (9.05) 863.62 (20.73) 991.93 (8.27) 1012.88 (9.91) 1290.61 (7.77)
X 601.03 (15.45) 822.58 (13.88) 858.24 (21.41) 993.59 (11.49) 1011.15 (8.48) 1287.11 (5.99)

8 × 389.8 (48.67) 588.86 (41.5) 580.17 (71.55) 722.36 (32.31) 756.46 (42.71) 972.89 (26.42)
X 580.49 (27.58) 813.65 (23.43) 890.98 (21.67) 994.77 (14.64) 1012.46 (11.67) 1306.61 (5.7)

9 × 561.1 (32.18) 803.38 (20.27) 888.25 (29.14) 991.51 (15.58) 998.72 (19.22) 1268.8 (13.01)
X 638.21 (29.47) 874.55 (19.9) 956.52 (24.62) 1055.4 (9.01) 1063.9 (9.12) 1336.37 (8.82)

10 × 540.25 (75.93) 760.3 (42.46) 811.02 (47.81) 927.27 (36.94) 945.53 (32.26) 1189.36 (13.71)
X 718.46 (23.47) 943.08 (14.5) 1023.25 (18.55) 1124.31 (6.93) 1126.92 (11.62) 1394.19 (3.95)

Table B.9: Average TGL of systems with q = 9, and s = (1 : 25). Column +I shows whether
the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 10

Imax +I RNG GG GPA 5NN YAO ER

1 × 194.91 (23.01) 355.59 (22.27) 365.15 (36.42) 437.52 (21.25) 480.42 (14.11) 620.38 (16.5)
X 197.66 (26.23) 356.3 (17.3) 365.13 (36.17) 431.73 (25.62) 475.86 (16.25) 593.59 (28.76)

2 × 249.1 (29.52) 420.54 (15.43) 402.12 (32.17) 524.59 (33.56) 558.93 (18.06) 708.42 (45.95)
X 289.18 (12.37) 492.17 (11.02) 516.82 (40.57) 625.6 (18.25) 669.66 (12.54) 866.52 (13.56)

3 × 292.5 (45.01) 477.74 (36.04) 460.77 (38.3) 579.01 (38.09) 632.16 (31.17) 789.27 (26.18)
X 351.15 (31.73) 585.09 (19.21) 637.19 (35.28) 742.94 (23.88) 776.38 (12.68) 1016.23 (12.41)

4 × 403.68 (35.12) 613.62 (17.04) 611.51 (42.11) 758.53 (20.84) 794.14 (18.7) 995.73 (30.7)
X 438.74 (19.0) 661.29 (15.65) 699.38 (33.48) 825.26 (16.11) 857.71 (15.6) 1127.82 (16.21)

5 × 413.95 (26.92) 638.59 (20.1) 648.65 (35.28) 782.51 (19.34) 819.04 (17.38) 1029.95 (23.01)
X 474.45 (16.38) 713.8 (12.26) 783.03 (15.92) 886.0 (8.55) 915.16 (9.57) 1189.2 (8.08)

6 × 549.63 (29.44) 786.11 (17.12) 861.54 (29.72) 963.22 (17.53) 989.03 (11.77) 1272.23 (4.48)
X 545.03 (34.96) 786.75 (20.85) 867.11 (27.25) 965.41 (12.32) 986.36 (12.97) 1280.07 (5.53)

7 × 513.97 (37.1) 746.31 (29.05) 772.68 (30.37) 912.84 (18.23) 939.14 (27.67) 1181.15 (26.16)
X 580.73 (21.4) 819.0 (18.09) 882.87 (23.75) 996.2 (10.76) 1011.29 (10.71) 1301.01 (6.05)

8 × 558.61 (20.1) 806.59 (12.07) 880.69 (22.06) 988.43 (7.52) 994.73 (13.12) 1268.25 (11.0)
X 626.93 (14.14) 851.23 (10.93) 931.26 (17.79) 1033.85 (10.31) 1035.02 (9.33) 1307.54 (11.59)

9 × 749.28 (15.43) 960.75 (9.67) 1009.99 (12.17) 1126.65 (9.15) 1134.18 (9.45) 1368.82 (4.65)
X 752.15 (12.19) 963.47 (11.16) 1006.28 (16.98) 1125.68 (7.96) 1135.11 (8.1) 1367.68 (6.36)

10 × 765.94 (10.93) 975.83 (9.31) 1016.12 (22.97) 1145.18 (8.46) 1146.61 (6.52) 1378.32 (5.5)
X 768.35 (8.68) 974.93 (10.49) 1013.56 (19.76) 1144.58 (8.47) 1147.02 (7.08) 1377.36 (6.25)

Table B.10: Average TGL of systems with q = 10, and s = (1 : 25). Column +I shows
whether the systems has extra interlinks added to bridge nodes in B(q,u)

h or not.
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q = 1

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.762 0.685 0.669 0.757 0.725 0.703 0.745 0.321 0.737 0.463
GG 0.606 0.735 0.668 0.761 0.754 0.66 0.755 0.438 0.707 0.511
5NN 0.547 0.705 0.705 0.737 0.737 0.68 0.753 0.493 0.722 0.578
YAO 0.572 0.738 0.682 0.767 0.763 0.69 0.772 0.548 0.728 0.535
GPA 0.581 0.769 0.69 0.684 0.742 0.656 0.772 0.694 0.715 0.63
ER 0.582 0.769 0.686 0.749 0.837 0.688 0.854 0.807 0.823 0.781

q = 2

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.364 0.649 0.641 0.694 0.665 0.424 0.469 0.579 0.444 0.471
GG 0.349 0.546 0.519 0.582 0.595 0.422 0.481 0.55 0.499 0.501
5NN 0.348 0.441 0.422 0.522 0.431 0.335 0.464 0.541 0.491 0.464
YAO 0.372 0.497 0.504 0.551 0.528 0.37 0.486 0.567 0.534 0.537
GPA 0.455 0.404 0.419 0.483 0.497 0.361 0.448 0.609 0.474 0.495
ER 0.469 0.356 0.427 0.513 0.533 0.512 0.507 0.664 0.576 0.603

Table B.11: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q ∈ {1, 2}, after adding extra interlinks.

q = 3

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.784 0.692 0.699 0.65 0.66 0.275 0.596 0.496 0.485 0.513
GG 0.652 0.665 0.61 0.635 0.659 0.253 0.568 0.53 0.5 0.517
5NN 0.556 0.587 0.554 0.563 0.575 0.264 0.564 0.502 0.512 0.517
YAO 0.583 0.665 0.59 0.6 0.646 0.278 0.583 0.514 0.531 0.554
GPA 0.502 0.666 0.599 0.505 0.573 0.374 0.543 0.492 0.568 0.585
ER 0.478 0.683 0.503 0.56 0.593 0.536 0.698 0.652 0.733 0.777

q = 4

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.733 0.714 0.603 0.692 0.823 0.683 0.79 0.844 0.732 0.801
GG 0.701 0.687 0.676 0.719 0.804 0.746 0.791 0.857 0.788 0.781
5NN 0.671 0.726 0.743 0.764 0.782 0.728 0.806 0.821 0.793 0.776
YAO 0.716 0.659 0.735 0.776 0.802 0.758 0.821 0.824 0.792 0.794
GPA 0.846 0.717 0.833 0.777 0.791 0.751 0.806 0.791 0.752 0.764
ER 0.829 0.746 0.902 0.848 0.89 0.843 0.913 0.864 0.882 0.872

Table B.12: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q ∈ {3, 4}, after adding extra interlinks.
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q = 5

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.821 0.957 0.813 0.853 0.876 0.862 0.659 0.9 0.142 0.166
GG 0.841 0.924 0.83 0.857 0.845 0.875 0.709 0.866 0.175 0.212
5NN 0.868 0.87 0.837 0.838 0.855 0.873 0.737 0.858 0.285 0.313
YAO 0.857 0.859 0.823 0.858 0.856 0.88 0.749 0.873 0.242 0.237
GPA 0.888 0.798 0.827 0.827 0.871 0.858 0.784 0.842 0.588 0.654
ER 0.957 0.784 0.803 0.935 0.85 0.924 0.841 0.898 0.666 0.623

q = 6

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.745 0.787 0.085 0.797 0.793 0.868 0.104 0.875 0.861 0.931
GG 0.718 0.802 0.15 0.845 0.818 0.892 0.149 0.86 0.833 0.895
5NN 0.692 0.747 0.292 0.781 0.842 0.886 0.231 0.874 0.817 0.859
YAO 0.684 0.759 0.25 0.805 0.833 0.865 0.173 0.875 0.844 0.856
GPA 0.788 0.769 0.509 0.812 0.82 0.851 0.455 0.868 0.823 0.823
ER 0.738 0.764 0.653 0.802 0.852 0.873 0.676 0.905 0.872 0.882

Table B.13: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q ∈ {5, 6}, after adding extra interlinks.

q = 7

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.696 0.686 0.73 0.738 0.728 0.614 0.674 0.045 0.489 0.693
GG 0.618 0.718 0.738 0.791 0.729 0.644 0.736 0.097 0.6 0.74
5NN 0.547 0.77 0.725 0.718 0.694 0.68 0.737 0.144 0.632 0.713
YAO 0.542 0.74 0.756 0.758 0.739 0.689 0.725 0.149 0.622 0.731
GPA 0.568 0.877 0.738 0.716 0.739 0.734 0.744 0.369 0.732 0.752
ER 0.58 0.865 0.719 0.738 0.729 0.763 0.825 0.631 0.791 0.82

q = 8

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.751 0.792 0.813 0.915 0.869 0.106 0.849 0.868 0.716 0.894
GG 0.689 0.771 0.853 0.915 0.883 0.151 0.87 0.874 0.74 0.867
5NN 0.627 0.728 0.831 0.855 0.876 0.252 0.851 0.865 0.794 0.901
YAO 0.602 0.742 0.831 0.846 0.883 0.228 0.884 0.866 0.738 0.87
GPA 0.778 0.756 0.856 0.843 0.848 0.494 0.82 0.863 0.838 0.853
ER 0.622 0.719 0.827 0.778 0.853 0.674 0.911 0.907 0.853 0.903

Table B.14: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q ∈ {7, 8}, after adding extra interlinks.
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q = 9

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.737 0.798 0.752 0.796 0.875 0.932 0.532 0.806 0.856 0.842
GG 0.66 0.734 0.742 0.782 0.827 0.897 0.597 0.858 0.854 0.814
5NN 0.597 0.704 0.715 0.771 0.821 0.863 0.651 0.831 0.85 0.799
YAO 0.576 0.708 0.714 0.763 0.802 0.863 0.641 0.85 0.829 0.848
GPA 0.64 0.747 0.74 0.751 0.799 0.802 0.792 0.847 0.821 0.777
ER 0.631 0.714 0.688 0.746 0.769 0.786 0.804 0.86 0.827 0.843

q = 10

m/Imax 1 2 3 4 5 6 7 8 9 10
RNG 0.711 0.867 0.781 0.7 0.853 0.786 0.86 0.503 0.076 0.075
GG 0.692 0.868 0.783 0.802 0.854 0.802 0.828 0.59 0.116 0.108
5NN 0.693 0.844 0.758 0.782 0.833 0.852 0.832 0.628 0.226 0.209
YAO 0.713 0.835 0.771 0.793 0.841 0.796 0.848 0.65 0.196 0.137
GPA 0.82 0.897 0.816 0.797 0.844 0.832 0.865 0.714 0.506 0.502
ER 0.825 0.881 0.823 0.903 0.895 0.871 0.895 0.877 0.659 0.667

Table B.15: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using q ∈ {9, 10}, after adding extra interlinks.
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B.2 Robustness comparison figures

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.1: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 1.

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.2: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 2.

235



(a) (1:25) with extra interlinks (b) (1:25)

Figure B.3: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 3.

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.4: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 4.
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(a) (1:25) with extra interlinks (b) (1:25)

Figure B.5: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 5.

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.6: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 6.
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(a) (1:25) with extra interlinks (b) (1:25)

Figure B.7: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 7.

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.8: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 8.
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(a) (1:25) with extra interlinks (b) (1:25)

Figure B.9: Average pc and GL(pc) values before and after adding extra interlinks for systems
with s = (1:25) and q = 9.

(a) (1:25) with extra interlinks (b) (1:25)

Figure B.10: Average pc and GL(pc) values before and after adding extra interlinks for
systems with s = (1:25) and q = 10.
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Annexed C

Chapter 5: Effect of adding physical links

C.1 General robustness behavior figures

(a) RNG (b) GG

(c) 5NN (d) YAO

Figure C.1: Average robustness by model for systems built over a (1:25) space, logical network
version q = 1, and m ∈ {RNG, GG, 5NN, YAO} after adding extra physical links according
to Distance strategy.
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(a) GPA (b) ER

Figure C.2: Average robustness by model for systems built over a (1:25) space, logical network
version q = 1, and m ∈ {GPA, ER} after adding extra physical links according to Distance
strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.3: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 1 after adding extra physical links according to Distance strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.4: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 1 after adding extra physical links according to Local hubs strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.5: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 1 after adding extra physical links according to Local hubs strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.6: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 1 after adding extra physical links according to Degree strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.7: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 1 after adding extra physical links according to Degree strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.8: Average robustness by model for systems built over a (1:25) space, and logical
network version q = 1 after adding extra physical links according to Random strategy.
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(a) RNG (b) GG

(c) 5NN (d) YAO

(e) GPA (f) ER

Figure C.9: Average robustness by model for systems built over a (1:1) space, and logical
network version q = 1 after adding extra physical links according to Random strategy.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure C.10: Average values of pc and GL(pc) for each physical-logical interdependent net-
work built using s = (1:25), after adding extra physical links. Bars represent the standard
deviation.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure C.11: Average values of pc andGL(pc) for each physical-logical interdependent network
built using s = (1:1), after adding extra physical links. Bars represent the standard deviation.
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C.2 General robustness behavior tables

st = Distance
m/Imax 3 5 7 10
RNG 0.803 0.826 0.897 0.773
GG 0.662 0.855 0.861 0.723
5NN 0.608 0.818 0.844 0.609
YAO 0.555 0.822 0.819 0.671
GPA 0.517 0.802 0.818 0.567
ER 0.402 0.859 0.75 0.552

st = Local hubs
m/Imax 3 5 7 10
RNG 0.714 0.825 0.882 0.678
GG 0.616 0.831 0.867 0.642
5NN 0.532 0.834 0.835 0.594
YAO 0.537 0.811 0.834 0.618
GPA 0.512 0.838 0.8 0.514
ER 0.433 0.866 0.76 0.536

st = Degree
m/Imax 3 5 7 10
RNG 0.573 0.857 0.861 0.771
GG 0.501 0.843 0.852 0.683
5NN 0.492 0.857 0.795 0.606
YAO 0.453 0.856 0.823 0.67
GPA 0.513 0.878 0.803 0.566
ER 0.413 0.87 0.762 0.577

st = Random
m/Imax 3 5 7 10
RNG 0.537 0.881 0.882 0.753
GG 0.494 0.841 0.835 0.676
5NN 0.429 0.848 0.819 0.65
YAO 0.446 0.856 0.811 0.624
GPA 0.458 0.853 0.81 0.547
ER 0.418 0.84 0.766 0.529

Table C.1: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using s = (1:25), after adding extra physical links.
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st = Distance
m/Imax 3 5 7 10
RNG 0.78 0.802 0.86 0.71
GG 0.64 0.805 0.865 0.674
5NN 0.538 0.828 0.864 0.626
YAO 0.523 0.822 0.829 0.668
GPA 0.557 0.826 0.829 0.558
ER 0.414 0.864 0.736 0.548

st = Local hubs
m/Imax 3 5 7 10
RNG 0.676 0.791 0.899 0.644
GG 0.563 0.818 0.84 0.66
5NN 0.487 0.83 0.836 0.602
YAO 0.495 0.823 0.801 0.622
GPA 0.555 0.844 0.825 0.562
ER 0.433 0.873 0.731 0.502

st = Degree
m/Imax 3 5 7 10
RNG 0.579 0.859 0.799 0.74
GG 0.526 0.846 0.838 0.664
5NN 0.471 0.858 0.797 0.62
YAO 0.455 0.851 0.791 0.645
GPA 0.529 0.88 0.815 0.601
ER 0.425 0.847 0.742 0.558

st = Random
m/Imax 3 5 7 10
RNG 0.536 0.873 0.886 0.728
GG 0.476 0.888 0.827 0.683
5NN 0.441 0.839 0.791 0.566
YAO 0.458 0.861 0.793 0.617
GPA 0.494 0.863 0.821 0.571
ER 0.42 0.839 0.742 0.484

Table C.2: Fraction of iterations that undergo an abrupt collapse for physical-logical inter-
dependent networks built using s = (1:1), after adding extra physical links.
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C.3 Effect of adding physical links figures

(a) (b)

(c) (d)

Figure C.12: TGL comparison of systems with and without extra physical links for s =(1:25),
and Imax = 3.
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(a) (b)

(c) (d)

Figure C.13: TGL comparison of systems with and without extra physical links for s =(1:1),
and Imax = 3.
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(a) (b)

(c) (d)

Figure C.14: TGL comparison of systems with and without extra physical links for s =(1:25),
and Imax = 5.
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(a) (b)

(c) (d)

Figure C.15: TGL comparison of systems with and without extra physical links for s =(1:1),
and Imax = 5.
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(a) (b)

(c) (d)

Figure C.16: TGL comparison of systems with and without extra physical links for s =(1:25),
and Imax = 7.
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(a) (b)

(c) (d)

Figure C.17: TGL comparison of systems with and without extra physical links for s =(1:1),
and Imax = 7.
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(a) (b)

(c) (d)

Figure C.18: TGL comparison of systems with and without extra physical links for s =(1:25),
and Imax = 10.
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(a) (b)

(c) (d)

Figure C.19: TGL comparison of systems with and without extra physical links for s =(1:1),
and Imax = 10.
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C.4 Relation between robustness and link length figures

(a) (1:25) (b) (1:25)

(c) (1:1) (d) (1:1)

Figure C.20: Length of the longest link added by each strategy over each system tested ρ
versus the TGL for systems built using Imax = 3. ρ axis is shown using logarithmic scale.
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(a) (1:25) (b) (1:25)

(c) (1:1) (d) (1:1)

Figure C.21: Length of the longest link added by each strategy over each system tested ρ
versus the TGL for systems built using Imax = 5. ρ axis is shown using logarithmic scale.
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(a) (1:25) (b) (1:25)

(c) (1:1) (d) (1:1)

Figure C.22: Length of the longest link added by each strategy over each system tested ρ
versus the TGL for systems built using Imax = 7. ρ axis is shown using logarithmic scale.

263



(a) (1:25) (b) (1:25)

(c) (1:1) (d) (1:1)

Figure C.23: Length of the longest link added by each strategy over each system tested ρ
versus the TGL for systems built using Imax = 10. ρ axis is shown using logarithmic scale.
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C.5 Robustness after randomly adding physical links with maximum
link length figures

(a) RNG (b) GG

(c) 5NN (d) YAO

Figure C.24: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 3). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) GPA (b) ER

Figure C.25: TGL values after randomly adding physical links with different maximum link
length (Imax = 3). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) RNG (b) GG

(c) 5NN (d) YAO

Figure C.26: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 5). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) GPA (b) ER

Figure C.27: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 5). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) RNG (b) GG

(c) 5NN (d) YAO

Figure C.28: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 7). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) GPA (b) ER

Figure C.29: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 7). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) RNG (b) GG

(c) 5NN (d) YAO

Figure C.30: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 10). Each point shows the TGL of a single physical network P st

j (m, s).
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(a) GPA (b) ER

Figure C.31: TGL values after randomly adding physical links with different maximum link
lengths (Imax = 10). Each point shows the TGL of a single physical network P st

j (m, s).
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C.6 Cost of adding physical links tables

Imax = 3
(1:25)

m/st Distance Local hubs Degree Random
RNG 42.74 31.9 3.12 3.07
GG 39.6 15.94 2.29 2.29
GPA 88.43 30.54 1.7 1.39
5NN 26.39 12.49 1.83 1.57
YAO 12.78 9.64 1.38 1.38
ER 13.43 2.94 0.15 -0.02

(1:1)
RNG 57.09 34.94 8.51 7.91
GG 42.07 17.97 5.53 4.89
GPA 37.97 20.5 4.81 4.78
5NN 20.56 10.19 3.67 3.38
YAO 15.12 6.44 2.51 2.39
ER 16.92 3.16 0.41 -0.08

Table C.3: Cost efficiency Cost(m,s)
E of each link addition strategy, for systems built using

Imax = 3. Cost efficiency values have been amplified by a factor of 103 to improve its
readability.
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Imax = 5
(1:25)

m/st Distance Local hubs Degree Random
RNG 51.16 39.91 3.44 3.57
GG 41.01 21.97 2.51 2.52
GPA 82.34 25.83 1.52 1.44
5NN 17.5 13.97 1.8 1.84
YAO 15.39 12.2 1.59 1.57
ER 24.39 2.4 0.07 0.06

(1:1)
RNG 58.34 43.28 9.72 9.82
GG 42.02 20.93 6.14 6.07
GPA 39.48 19.02 4.56 4.56
5NN 19.19 13.87 4.05 4.15
YAO 17.4 9.32 3.39 3.43
ER 26.51 2.81 0.16 0.08

Table C.4: Cost efficiency Cost(m,s)
E of each link addition strategy, for systems built using

Imax = 5. Cost efficiency values have been amplified by a factor of 103 to improve its
readability.
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Imax = 7
(1:25)

m/st Distance Local hubs Degree Random
RNG 58.76 42.77 3.26 3.33
GG 41.98 22.28 2.34 2.3
GPA 74.54 26.04 1.33 1.45
5NN 20.09 13.54 1.65 1.68
YAO 15.85 13.46 1.53 1.58
ER 13.91 3.14 0.08 0.11

(1:1)
RNG 60.32 42.22 9.74 9.19
GG 44.36 21.0 6.3 6.38
GPA 40.52 17.48 4.52 5.2
5NN 16.07 12.51 4.41 4.19
YAO 19.15 11.19 3.42 3.45
ER 11.01 2.81 0.48 0.32

Table C.5: Cost efficiency Cost(m,s)
E of each link addition strategy, for systems built using

Imax = 7. Cost efficiency values have been amplified by a factor of 103 to improve its
readability.
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Imax = 10
(1:25)

m/st Distance Local hubs Degree Random
RNG 53.27 45.07 2.86 3.04
GG 35.27 21.53 2.03 2.1
GPA 66.81 24.71 1.18 1.31
5NN 22.32 14.93 1.41 1.45
YAO 19.19 12.8 1.34 1.31
ER 15.65 3.03 0.27 0.09

(1:1)
RNG 56.77 42.56 8.16 8.73
GG 38.89 20.05 5.23 5.71
GPA 47.0 17.62 4.01 4.03
5NN 16.89 13.74 4.01 3.61
YAO 17.33 10.7 3.16 3.54
ER 22.91 3.45 0.59 0.2

Table C.6: Cost efficiency Cost(m,s)
E of each link addition strategy, for systems built using

Imax = 10. Cost efficiency values have been amplified by a factor of 103 to improve its
readability.
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C.7 Cost of adding physical links figures

(a) s = (1 : 25) (b) s = (1 : 25)

(c) s = (1 : 1) (d) s = (1 : 1)

Figure C.32: Robustness gain ∆TGL versus the cost of adding extra physical links for systems
with Imax = 3.
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(a) s = (1 : 25) (b) s = (1 : 25)

(c) s = (1 : 1) (d) s = (1 : 1)

Figure C.33: Robustness gain ∆TGL versus the cost of adding extra physical links for systems
with Imax = 5.
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(a) s = (1 : 25) (b) s = (1 : 25)

(c) s = (1 : 1) (d) s = (1 : 1)

Figure C.34: Robustness gain ∆TGL versus the cost of adding extra physical links for systems
with Imax = 7.
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(a) s = (1 : 25) (b) s = (1 : 25)

(c) s = (1 : 1) (d) s = (1 : 1)

Figure C.35: Robustness gain ∆TGL versus the cost of adding extra physical links for systems
with Imax = 10.
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Annexed D

Chapter 6: Internet robustness against localized attacks

D.1 LA vs RA comparison figures

(a) No links added

(b) Distance links added (c) Local hubs links added

Figure D.1: GL value difference between LA and RA for Imax = 3.
Here, ∆GL = GL(LA)−GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1},
with wln the width of the (1:25) space.
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(a) Degree links added

(b) Random links added

Figure D.2: GL value difference between LA and RA for Imax = 3.
Here, ∆GL = GL(LA)−GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1},
with wln the width of the (1:25) space.
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(a) No links added

(b) Distance links added (c) Local hubs links added

(d) Degree links added (e) Random links added

Figure D.3: GL value difference between LA and RA for Imax = 5.
Here, ∆GL = GL(LA)−GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1},
with wln the width of the (1:25) space.
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(a) No links added

(b) Distance links added (c) Local hubs links added

(d) Degree links added (e) Random links added

Figure D.4: GL value difference between LA and RA for Imax = 7.
Here, ∆GL = GL(LA)−GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1},
with wln the width of the (1:25) space.
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(a) No links added

(b) Distance links added (c) Local hubs links added

(d) Degree links added (e) Random links added

Figure D.5: GL value difference between LA and RA for Imax = 10.
Here, ∆GL = GL(LA)−GL(RA), and LA radius r = awln, a ∈ {0.2, 0.4, 0.6, 0.8, 1},
with wln the width of the (1:25) space.

285



D.2 High damage localized attacks figures

(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.6: Each localized attack GL value versus (1− p) for systems built using s = (1:25)
and Imax = 3 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.7: Each localized attack GL value versus (1− p) for systems built using s = (1:25)
and Imax = 5 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.8: Each localized attack GL value versus (1− p) for systems built using s = (1:25)
and Imax = 7 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.9: Each localized attack GL value versus (1− p) for systems built using s = (1:25)
and Imax = 10 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.10: Each localized attack GL value versus (1− p) for systems built using s = (1:1)
and Imax = 3 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.11: Each localized attack GL value versus (1− p) for systems built using s = (1:1)
and Imax = 5 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.12: Each localized attack GL value versus (1− p) for systems built using s = (1:1)
and Imax = 7 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure D.13: Each localized attack GL value versus (1− p) for systems built using s = (1:1)
and Imax = 10 after adding extra physical links (r = 1 · wln). Dots in red correspond to
localized attacks x with ubL ∈ CF (x), and dots in black LA with ubL /∈ CF (x).
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D.3 Physical link addition and localized attacks tables

Imax = 3

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 480 74 73 114 73 73 73 (0.0,0.5) (0.837,1.0)
Distance 458 74 73 92 73 73 73 (0.23,0.5) (0.893,1.0)
Local hubs 447 74 73 81 73 73 73 (0.323,0.5) (0.893,1.0)
Degree 442 73 73 77 73 73 73 (0.353,0.5) (0.897,1.0)
Random 458 74 73 92 73 73 73 (0.353,0.5) (0.873,1.0)

(1:1)

Original 619 100 99 122 100 99 99 (0.0,0.5) (0.503,0.997)
Distance 618 100 99 121 100 99 99 (0.043,0.5) (0.503,0.997)
Local hubs 607 99 99 112 99 99 99 (0.017,0.5) (0.503,0.997)
Degree 594 99 99 99 99 99 99 (0.057,0.5) (0.503,0.997)
Random 596 99 99 101 99 99 99 (0.313,0.5) (0.503,0.997)

Table D.1: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of systems with and
without physical links added for Imax = 3, and a = 1.

Imax = 5

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 0 0 0 0 0 0 0 φ (0.853,1.0)
Distance 0 0 0 0 0 0 0 φ (0.857,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.86,1.0)
Degree 0 0 0 0 0 0 0 φ (0.91,1.0)
Random 0 0 0 0 0 0 0 φ (0.91,1.0)

(1:1)

Original 0 0 0 0 0 0 0 φ (0.85,1.0)
Distance 0 0 0 0 0 0 0 φ (0.85,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.853,1.0)
Degree 0 0 0 0 0 0 0 φ (0.853,1.0)
Random 0 0 0 0 0 0 0 φ (0.86,1.0)

Table D.2: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of systems with and
without physical links added for Imax = 5, and a = 1.
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Imax = 7

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 0 0 0 0 0 0 0 φ (0.863,1.0)
Distance 0 0 0 0 0 0 0 φ (0.883,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.88,1.0)
Degree 0 0 0 0 0 0 0 φ (0.877,1.0)
Random 0 0 0 0 0 0 0 φ (0.887,1.0)

(1:1)

Original 0 0 0 0 0 0 0 φ (0.88,1.0)
Distance 0 0 0 0 0 0 0 φ (0.88,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.88,1.0)
Degree 0 0 0 0 0 0 0 φ (0.88,1.0)
Random 0 0 0 0 0 0 0 φ (0.88,1.0)

Table D.3: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of systems with and
without physical links added for Imax = 7, and a = 1.

Imax = 10

s st
Number of HDLA

GL range (HDLA) GL range (Non-HDLA)Total RNG GG GPA 5NN YAO ER

(1:25)

Original 0 0 0 0 0 0 0 φ (0.953,1.0)
Distance 0 0 0 0 0 0 0 φ (0.953,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.953,1.0)
Degree 0 0 0 0 0 0 0 φ (0.953,1.0)
Random 0 0 0 0 0 0 0 φ (0.953,1.0)

(1:1)

Original 0 0 0 0 0 0 0 φ (0.937,1.0)
Distance 0 0 0 0 0 0 0 φ (0.937,1.0)
Local hubs 0 0 0 0 0 0 0 φ (0.937,1.0)
Degree 0 0 0 0 0 0 0 φ (0.937,1.0)
Random 0 0 0 0 0 0 0 φ (0.937,1.0)

Table D.4: GL ranges of HDLA, and LA minus HDLA (Non-HDLA) of systems with and
without physical links added for Imax = 10, and a = 1.
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Annexed E

Chapter 7: Localized attacks with probabilistic failure:
Seismic attacks case

E.1 Link addition effect against seismic attacks figures

(a) Distance (b) Local hubs

Figure E.1: GL values obtained after each seismic attack tested for systems with extra
physical links added, and Imax = 3. Each color represents a different physical model m.
st ∈ {Distance, Local hubs}.
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(a) Degree (b) Random

Figure E.2: GL values obtained after each seismic attack tested for systems with extra
physical links added, and Imax = 3. Each color represents a different physical model m.
st ∈ {Degree, Random}.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.3: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 3. Dots in red correspond to localized attacks x with ubL ∈ CF (x), and
dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.4: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 3. Colors show the moment magnitude Mw associated to each seismic
attack.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.5: GL values obtained after each seismic attack tested for systems with extra
physical links added, and Imax = 5. Each color represents a different physical model m.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.6: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 5. Dots in red correspond to localized attacks x with ubL ∈ CF (x), and
dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.7: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 5. Colors show the moment magnitude Mw associated to each seismic
attack.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.8: GL values obtained after each seismic attack tested for systems with extra
physical links added, and Imax = 7. Each color represents a different physical model m.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.9: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 7. Dots in red correspond to localized attacks x with ubL ∈ CF (x), and
dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.10: Each seismic attack GL value versus (1−p) for systems with extra physical links
added, and Imax = 7. Colors show the moment magnitude Mw associated to each seismic
attack.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.11: GL values obtained after each seismic attack tested for systems with extra
physical links added, and Imax = 10. Each color represents a different physical model m.

306



(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.12: Each seismic attack GL value versus (1 − p) for systems with extra physical
links added, and Imax = 10. Dots in red correspond to localized attacks x with ubL ∈ CF (x),
and dots in black LA with ubL /∈ CF (x).
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.13: Each seismic attack GL value versus (1 − p) for systems with extra physical
links added, and Imax = 10. Colors show the moment magnitude Mw associated to each
seismic attack.
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E.2 GL(LA)−GL(SA) comparison figures

(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.14: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Systems have extra physical links added, and were built using Imax = 3.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.15: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Systems have extra physical links added, and were built using Imax = 5.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.16: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Systems have extra physical links added, and were built using Imax = 7.
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(a) Distance (b) Local hubs

(c) Degree (d) Random

Figure E.17: GL(LA) − GL(SA) values obtained for each seismic attack classified within
the Damage SA > Damage LA category or within the Damage SA < Damage LA
category. Systems have extra physical links added, and were built using Imax = 10.
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E.3 Link addition effect against seismic attacks summary tables

st = Original
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 3360 (5.5, 8.8) (0.0, 0.487) (0.82, 1.0)
GG 1963 (5.5, 8.8) (0.027, 0.503) (0.84, 1.0)
GPA 3889 (5.5, 8.8) (0.01, 0.493) (0.767, 1.0)
5NN 1659 (5.5, 8.8) (0.027, 0.503) (0.86, 1.0)
YAO 1607 (5.5, 8.8) (0.027, 0.503) (0.853, 1.0)
ER 1652 (5.5, 8.8) (0.027, 0.503) (0.847, 1.0)

st = Distance
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 2618 (5.5, 8.8) (0.013, 0.497) (0.85, 1.0)
GG 1829 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
GPA 2674 (5.5, 8.8) (0.027, 0.493) (0.827, 1.0)
5NN 1734 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
YAO 1608 (5.5, 8.8) (0.027, 0.503) (0.843, 1.0)
ER 1588 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)

st = Local hubs
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 2123 (5.5, 8.8) (0.02, 0.503) (0.847, 1.0)
GG 1730 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
GPA 2117 (5.5, 8.8) (0.027, 0.5) (0.85, 1.0)
5NN 1633 (5.5, 8.8) (0.027, 0.503) (0.85, 1.0)
YAO 1635 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
ER 1562 (5.5, 8.8) (0.027, 0.503) (0.873, 1.0)

st = Degree
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 1564 (5.5, 8.8) (0.027, 0.503) (0.87, 1.0)
GG 1609 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)
GPA 1669 (5.5, 8.8) (0.027, 0.503) (0.857, 1.0)
5NN 1570 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)
YAO 1540 (5.5, 8.8) (0.027, 0.503) (0.873, 1.0)
ER 1536 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)

st = Random
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 1856 (5.5, 8.8) (0.023, 0.503) (0.877, 1.0)
GG 1618 (5.5, 8.8) (0.027, 0.503) (0.887, 1.0)
GPA 2745 (5.5, 8.8) (0.027, 0.503) (0.82, 1.0)
5NN 1619 (5.5, 8.8) (0.027, 0.503) (0.88, 1.0)
YAO 1597 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)
ER 1557 (5.5, 8.8) (0.027, 0.503) (0.883, 1.0)

Table E.1: Summary of seismic attacks performed over systems with extra physical links
added, and Imax = 3.
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st = Original
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.823, 1.0)
GG 0 - - (0.827, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.85, 1.0)
YAO 0 - - (0.84, 1.0)
ER 0 - - (0.893, 1.0)

st = Distance
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.82, 1.0)
GG 0 - - (0.843, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.857, 1.0)
YAO 0 - - (0.847, 1.0)
ER 0 - - (0.897, 1.0)

st = Local hubs
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.823, 1.0)
GG 0 - - (0.837, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.847, 1.0)
YAO 0 - - (0.847, 1.0)
ER 0 - - (0.893, 1.0)

st = Degree
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.897, 1.0)
GG 0 - - (0.89, 1.0)
GPA 1 (7.8, 7.8) (0.437, 0.437) (0.883, 1.0)
5NN 0 - - (0.897, 1.0)
YAO 0 - - (0.893, 1.0)
ER 0 - - (0.893, 1.0)

st = Random
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.893, 1.0)
GG 0 - - (0.893, 1.0)
GPA 0 - - (0.893, 1.0)
5NN 0 - - (0.897, 1.0)
YAO 0 - - (0.897, 1.0)
ER 0 - - (0.893, 1.0)

Table E.2: Summary of seismic attacks performed over systems with extra physical links
added, and Imax = 5.
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st = Original
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.867, 1.0)
GG 0 - - (0.867, 1.0)
GPA 0 - - (0.833, 1.0)
5NN 0 - - (0.873, 1.0)
YAO 0 - - (0.873, 1.0)
ER 0 - - (0.88, 1.0)

st = Distance
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.867, 1.0)
GG 0 - - (0.867, 1.0)
GPA 0 - - (0.853, 1.0)
5NN 0 - - (0.87, 1.0)
YAO 0 - - (0.877, 1.0)
ER 0 - - (0.88, 1.0)

st = Local hubs
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.867, 1.0)
GG 0 - - (0.877, 1.0)
GPA 0 - - (0.84, 1.0)
5NN 0 - - (0.877, 1.0)
YAO 0 - - (0.873, 1.0)
ER 0 - - (0.88, 1.0)

st = Degree
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.873, 1.0)
GG 0 - - (0.873, 1.0)
GPA 0 - - (0.843, 1.0)
5NN 0 - - (0.877, 1.0)
YAO 0 - - (0.873, 1.0)
ER 0 - - (0.873, 1.0)

st = Random
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.87, 1.0)
GG 0 - - (0.873, 1.0)
GPA 0 - - (0.86, 1.0)
5NN 0 - - (0.873, 1.0)
YAO 0 - - (0.88, 1.0)
ER 0 - - (0.877, 1.0)

Table E.3: Summary of seismic attacks performed over systems with extra physical links
added, and Imax = 7.
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st = Original
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 6 (7.8, 8.8) (0.46, 0.467) (0.943, 1.0)
GG 3 (7.8, 8.3) (0.48, 0.48) (0.95, 1.0)
GPA 0 - - (0.92, 1.0)
5NN 1 (8.8, 8.8) (0.483, 0.483) (0.95, 1.0)
YAO 1 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)
ER 3 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)

st = Distance
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 5 (7.8, 8.8) (0.467, 0.48) (0.947, 1.0)
GG 1 (7.8, 7.8) (0.483, 0.483) (0.95, 1.0)
GPA 1 (8.8, 8.8) (0.483, 0.483) (0.943, 1.0)
5NN 0 - - (0.95, 1.0)
YAO 1 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)
ER 2 (7.8, 8.3) (0.483, 0.483) (0.95, 1.0)

st = Local hubs
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 7 (7.8, 8.8) (0.47, 0.48) (0.947, 1.0)
GG 2 (8.8, 8.8) (0.483, 0.49) (0.95, 1.0)
GPA 0 - - (0.937, 1.0)
5NN 2 (7.6, 7.8) (0.483, 0.493) (0.95, 1.0)
YAO 1 (8.8, 8.8) (0.477, 0.477) (0.95, 1.0)
ER 1 (7.8, 7.8) (0.49, 0.49) (0.95, 1.0)

st = Degree
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 0 - - (0.95, 1.0)
GG 0 - - (0.95, 1.0)
GPA 2 (7.8, 8.8) (0.49, 0.49) (0.943, 1.0)
5NN 0 - - (0.953, 1.0)
YAO 0 - - (0.95, 1.0)
ER 0 - - (0.947, 1.0)

st = Random
m Number of HDSA Mw range (HDSA) GL range (HDSA) GL range (Non-HDSA)
RNG 2 (7.7, 8.0) (0.48, 0.49) (0.95, 1.0)
GG 4 (7.8, 8.8) (0.477, 0.493) (0.95, 1.0)
GPA 0 - - (0.943, 1.0)
5NN 2 (8.0, 8.3) (0.49, 0.493) (0.95, 1.0)
YAO 1 (8.8, 8.8) (0.493, 0.493) (0.943, 1.0)
ER 0 - - (0.95, 1.0)

Table E.4: Summary of seismic attacks performed over systems with extra physical links
added, and Imax = 10.
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E.4 Link addition effect against seismic attacks SA-LA comparison
tables

st = Original
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 52.3% 37.6% 33.9% 34.2% 33.3% 32.4% 37.3%
Damage SA ∼ Damage LA 41.7% 51.4% 50.2% 52.7% 53.2% 52.7% 50.3%
Damage SA < Damage LA 6.0% 11.0% 16.0% 13.1% 13.5% 14.9% 12.4%

st = Distance
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 45.9% 35.5% 34.2% 33.2% 33.1% 32.5% 35.7%
Damage SA ∼ Damage LA 46.3% 52.2% 50.7% 53.1% 53.0% 52.7% 51.3%
Damage SA < Damage LA 7.8% 12.3% 15.1% 13.7% 13.9% 14.9% 12.9%

st = Local hubs
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 40.4% 34.7% 33.3% 32.9% 32.9% 32.2% 34.4%
Damage SA ∼ Damage LA 49.5% 52.7% 51.1% 52.8% 53.1% 53.0% 52.1%
Damage SA < Damage LA 10.1% 12.6% 15.6% 14.2% 14.0% 14.8% 13.5%

st = Degree
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 33.8% 32.8% 33.3% 32.7% 32.5% 32.4% 32.9%
Damage SA ∼ Damage LA 52.7% 52.7% 51.1% 52.7% 53.1% 52.8% 52.5%
Damage SA < Damage LA 13.5% 14.5% 15.6% 14.6% 14.4% 14.8% 14.6%

st = Random
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 36.0% 33.3% 34.0% 33.0% 32.5% 32.1% 33.5%
Damage SA ∼ Damage LA 51.6% 52.7% 50.9% 52.8% 52.8% 53.1% 52.3%
Damage SA < Damage LA 12.4% 14.0% 15.2% 14.2% 14.7% 14.8% 14.2%

Table E.5: Comparison between localized attacks and seismic attacks for systems with extra
physical links added, and Imax = 3.
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st = Original
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 41.5% 29.6% 29.6% 26.6% 25.9% 25.3% 29.7%
Damage SA ∼ Damage LA 52.3% 59.7% 54.8% 60.8% 61.0% 60.4% 58.2%
Damage SA < Damage LA 6.2% 10.7% 15.6% 12.7% 13.1% 14.3% 12.1%

st = Distance
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 36.1% 27.6% 29.4% 25.7% 25.6% 25.3% 28.3%
Damage SA ∼ Damage LA 56.0% 60.8% 55.6% 60.8% 60.9% 60.4% 59.1%
Damage SA < Damage LA 7.9% 11.6% 14.9% 13.4% 13.5% 14.3% 12.6%

st = Local hubs
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 31.8% 27.1% 28.9% 25.6% 25.4% 25.2% 27.3%
Damage SA ∼ Damage LA 58.5% 60.7% 56.0% 61.0% 61.1% 60.7% 59.7%
Damage SA < Damage LA 9.7% 12.2% 15.1% 13.4% 13.5% 14.1% 13.0%

st = Degree
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 26.9% 25.4% 28.6% 25.4% 25.2% 25.1% 26.1%
Damage SA ∼ Damage LA 59.9% 60.8% 56.2% 60.7% 60.8% 60.7% 59.8%
Damage SA < Damage LA 13.2% 13.8% 15.2% 14.0% 14.0% 14.2% 14.1%

st = Random
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 28.0% 25.9% 28.3% 25.6% 25.5% 25.0% 26.4%
Damage SA ∼ Damage LA 59.9% 60.6% 56.9% 60.7% 60.8% 60.8% 59.9%
Damage SA < Damage LA 12.1% 13.5% 14.9% 13.7% 13.8% 14.2% 13.7%

Table E.6: Comparison between localized attacks and seismic attacks for systems with extra
physical links added, and Imax = 5.
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st = Original
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 38.0% 28.2% 28.9% 26.2% 25.4% 24.8% 28.6%
Damage SA ∼ Damage LA 56.8% 63.1% 57.2% 63.5% 64.1% 63.7% 61.4%
Damage SA < Damage LA 5.3% 8.8% 13.9% 10.3% 10.6% 11.5% 10.1%

st = Distance
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 33.5% 26.7% 29.3% 25.6% 25.1% 24.8% 27.5%
Damage SA ∼ Damage LA 60.0% 63.8% 57.9% 63.7% 64.1% 64.0% 62.2%
Damage SA < Damage LA 6.5% 9.5% 12.8% 10.7% 10.8% 11.2% 10.3%

st = Local hubs
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 29.9% 26.2% 28.2% 25.2% 25.2% 24.5% 26.5%
Damage SA ∼ Damage LA 62.0% 63.9% 59.2% 63.8% 63.9% 63.9% 62.8%
Damage SA < Damage LA 8.1% 9.9% 12.6% 11.0% 10.8% 11.6% 10.7%

st = Degree
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 26.1% 25.0% 27.6% 25.0% 24.7% 24.5% 25.5%
Damage SA ∼ Damage LA 63.4% 63.8% 59.9% 63.5% 63.9% 63.9% 63.1%
Damage SA < Damage LA 10.5% 11.1% 12.5% 11.5% 11.4% 11.6% 11.4%

st = Random
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 27.0% 25.4% 27.5% 25.3% 25.1% 24.7% 25.8%
Damage SA ∼ Damage LA 63.1% 63.7% 59.9% 63.5% 63.7% 63.9% 62.9%
Damage SA < Damage LA 10.0% 10.9% 12.7% 11.2% 11.2% 11.4% 11.2%

Table E.7: Comparison between localized attacks and seismic attacks for systems with extra
physical links added, and Imax = 7.
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st = Original
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 30.5% 22.5% 26.0% 20.5% 19.9% 19.7% 23.2%
Damage SA ∼ Damage LA 65.5% 70.8% 63.4% 71.5% 71.9% 71.3% 69.0%
Damage SA < Damage LA 4.0% 6.8% 10.6% 7.9% 8.3% 9.1% 7.8%

st = Distance
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 26.5% 21.3% 25.7% 20.3% 19.8% 19.6% 22.2%
Damage SA ∼ Damage LA 68.5% 71.4% 64.6% 71.6% 71.6% 71.3% 69.8%
Damage SA < Damage LA 5.0% 7.4% 9.6% 8.1% 8.5% 9.0% 7.9%

st = Local hubs
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 23.8% 21.1% 24.3% 19.9% 20.0% 19.6% 21.4%
Damage SA ∼ Damage LA 69.9% 71.3% 65.6% 71.8% 71.4% 71.4% 70.2%
Damage SA < Damage LA 6.3% 7.7% 10.1% 8.3% 8.6% 9.0% 8.3%

st = Degree
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 20.6% 19.8% 23.9% 19.7% 19.8% 19.4% 20.5%
Damage SA ∼ Damage LA 71.1% 71.3% 66.3% 71.4% 71.2% 71.6% 70.5%
Damage SA < Damage LA 8.3% 8.8% 9.9% 8.9% 9.0% 8.9% 9.0%

st = Random
RNG GG GPA 5NN YAO ER Total

Damage SA > Damage LA 21.5% 20.2% 23.7% 20.0% 19.4% 19.6% 20.7%
Damage SA ∼ Damage LA 70.6% 71.3% 66.4% 71.4% 71.7% 71.4% 70.5%
Damage SA < Damage LA 8.0% 8.5% 9.9% 8.6% 8.9% 9.0% 8.8%

Table E.8: Comparison between localized attacks and seismic attacks for systems with extra
physical links added, and Imax = 10.
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