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RESUMEN: MODELAMIENTO GEOSTADÍSTICO DE VARIABALES GEOTÉCNICAS 
CONSIDERANDO LA DEPENDENCIA DIRECIONAL  
 

Junto con el modelamiento geológico y geometalúrgico, el modelamiento geotécnico 
es uno de los componentes esenciales para la planificación y desarrollo de proyectos mineros 
a rajo abierto y subterráneos. Una característica particular de muchas variables geotécnicas 
es su dependencia direccional, es decir, la medición de una muestra de sondaje depende no 
solo de su posición geográfica sino también de su orientación. La práctica común en el 
modelamiento geotécnico no considera esta característica y extrapola o promedia la 
información del soporte de muestra (sondaje o línea de exploración) a soportes de bloques 
tridimensionales o a todo el macizo rocoso, asumiendo que este macizo rocoso es un medio 
continuo e isótropo. Para considerar la dependencia direccional, se propone regionalizar las 
variables geotécnicas en un espacio de cinco dimensiones correspondiente al producto del 
espacio geográfico tridimensional y la esfera bidimensional, de modo que cada medición se 
indexe por su este, norte, elevación, azimut e inclinación. En lugar de hacer predicciones y 
simulaciones condicionadas a una dirección particular, este nuevo paradigma permite 
interpolar variables geotécnicas en cualquier lugar del espacio geográfico, para cualquier 
dirección. La estructura de correlación espacial se puede inferir y modelar utilizando 
covarianzas separables o combinaciones de covarianzas separables, bajo un supuesto de 
estacionaridad en el espacio geográfico e isotropía en la esfera. Además, la simulación 
condicional se puede realizar mediante métodos espectrales o de bandas rotantes, basados 
en productos de campos aleatorios estacionarios básicos en el espacio geográfico y campos 
aleatorios isotrópicos en la esfera. 

La metodología propuesta se ilustra con tres casos de estudio. El primero presenta las 
bases teóricas para el modelado 5D de correlaciones espaciales, propone un algoritmo 
novedoso para la simulación condicional e ilustra los conceptos anteriores con una aplicación 
al modelamiento de la frecuencia de discontinuidad lineal (P10) en una base de datos del 
depósito de cobre El Teniente (Chile). La comparación entre los resultados de la simulación 
en ausencia o presencia de componente direccional permite visualizar la variabilidad espacial 
esperada en terreno para una dirección dada. Se puede ser consciente de las variaciones de 
las variables geotécnicas no solo en el espacio geográfico sino también en el espacio 
direccional. El segundo caso de estudio se centra en el problema del escalamiento o cambio 
de soporte, es decir, la extensión de una muestra a un bloque más voluminoso, para la 
Designación de Calidad de la Roca (RQD). Se propone una estrategia de escalamiento 
basada en el promedio de los valores RQD correspondientes a la misma dirección que evita 
mezclar valores RQD medidos en diferentes direcciones o restringir el estudio a una sola 
dirección. Además de la definición de un RQD de bloque dependiente de la dirección, 
proponemos derivar un RQD no direccional (mínimo), que cuantifica el grado de fractura en 
un bloque, y un índice de anisotropía (AI) del grado de fracturamiento para macizos rocosos, 
indicando cuánto varía el RQD entre una dirección y otra. El tercer caso de estudio extiende 
las metodologías anteriores al escenario multivariante, con la definición de modelos de 
covarianza directas y cruzadas en el espacio 3D cruzado con la esfera 2D, mediante el 
análisis de una base de datos del yacimiento cuprífero Radomiro Tomic (norte de Chile) para 
estimar la calidad del macizo rocoso. En concreto, el Slope Mass Rating (SMR) se obtiene a 
partir del Rock Mass Rating (RMR) básico añadiendo un ajuste factorial en función del talud 
del rajo y la máxima orientación local de fracturamiento que aflora en el talud. El modelado 
geoestadístico conduce a un criterio de aceptación de constructibilidad de taludes para el 
diseño de minas a rajo abierto. 

Los resultados de la tesis destacan las ventajas de considerar el espacio direccional al 
modelar variables geotécnicas y sustentan el impacto beneficioso de este enfoque en la 
zonificación geotécnica, el conocimiento del comportamiento espacial de los macizos rocosos 
y el manejo de incertidumbres en proyectos de minería a rajo abierto o subterránea. 
Complementariamente a las herramientas estándar utilizadas para la representación 
tridimensional de variables regionalizadas, también propone nuevas herramientas de 
visualización que pueden ser de interés para geólogos estructurales y geotécnicos, tales 
como proyecciones azimutales regionalizadas que mapean las variaciones direccionales de 
las propiedades del macizo rocoso en ubicaciones determinadas en el espacio geográfico.



 
 

ABSTRACT 
 
Together with geological and geometallurgical modeling, geotechnical modeling is 

one of the essential components for the planning and development of open pit and 
underground mining projects. A particular characteristic of many geotechnical variables is to 
be direction-dependent, i.e., the measurement of a core sample depends not only on its 
geographical position but also on its orientation. The common practice in geotechnical 
modeling overlooks this characteristic and extrapolates or averages sample-support 
information (from boreholes or scanlines) to three-dimensional block supports or to the entire 
rock mass by assuming that this rock mass is a continuum and isotropic medium. To account 
for direction-dependence, it is proposed to regionalize geotechnical variables in a five-
dimensional space corresponding to the product of the three-dimensional geographical 
space and the two-dimensional sphere, so that each measurement is indexed by its easting, 
northing, elevation, azimuth, and dip. Instead of making predictions and simulations 
conditioned to a particular direction, this new paradigm allows geotechnical variables to be 
interpolated at any place in the geographical space, for any direction. The spatial correlation 
structure can be inferred and modeled by using separable covariances or combinations of 
separable covariances, under an assumption of stationarity in the geographical space and 
isotropy on the sphere. Also, conditional simulation can be performed by turning bands or 
spectral methods, based on products of basic stationary random fields in the geographical 
space and isotropic random fields on the sphere.  

The proposed methodology is illustrated with three case studies. The first one 
presents the theoretical basis for the 5D modeling of spatial correlations, proposes a novel 
algorithm for conditional simulation, and illustrates the previous concepts with an application 
to the modeling of the linear discontinuity frequency (P10) in a dataset from El Teniente 
copper deposit in Chile. The comparison between the simulation results in the absence or 
the presence of a directional component allows visualizing the spatial variability to be 
expected in the field for a given direction. One can be aware of the variations of geotechnical 
variables not only in the geographical space but also in the directional space. The second 
case study focuses on the problem of upscaling or change of support, i.e., the extension from 
a sample to a more voluminous block, for the Rock Quality Designation (RQD). An upscaling 
strategy to large blocks is proposed, based on block-averaging the RQD values 
corresponding to the same direction that avoids mixing RQD values measured along different 
directions or restricting the study to a single direction. In addition to the definition of an 
upscaled direction-dependent RQD, we propose to derive a non-directional (minimum) RQD, 
which quantifies the degree of fracturing in a block, and an anisotropy index (AI) of jointing 
degree for rock masses, indicating how much RQD is likely to vary between one direction 
and another. The third case study extends the previous methodologies to the multivariate 
setting, with the definition of direct and cross covariance models in the 3D space crossed 
with the 2D sphere, through the analysis of a dataset from the Radomiro Tomic copper 
deposit (northern Chile) to estimate the rock mass quality. Specifically, the Slope Mass 
Rating (SMR) is obtained from the basic Rock Mass Rating (RMR) by adding a factorial 
adjustment in function of the pit slope and the maximum fracturing local orientation that 
outcrops at the slope. The geostatistical modeling leads to a slope constructability 
acceptance criterion for Open Pit Mine design.  

The results of the thesis highlight the advantages of considering the directional space 
when modeling geotechnical variables and hold up the beneficial impact of this approach in 
the geotechnical zoning, knowledge of spatial behavior of rock masses, and management of 
uncertainties in open pit and underground mining projects. In complement to the standard 
tools used for the three-dimensional representation of regionalized variables, it also proposes 
new visualization tools that can be of interest to structural geologists and geotechnicians, 
such as regionalized azimuthal projections that map the directional variations of the rock 
mass properties at given locations in the geographical space.  
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RÉSUMÉ 
 
Avec la modélisation géologique et géométallurgique, la modélisation géotechnique 

est l'une des composantes essentielles de la planification et du développement de projets 
miniers à ciel ouvert et souterrains. Une caractéristique particulière de nombreuses variables 
géotechniques est d'être dépendante de la direction, c'est-à-dire que la mesure d'une carotte 
de sondage dépend non seulement de sa position géographique mais aussi de son 
orientation. La pratique courante de la modélisation géotechnique néglige cette 
caractéristique et extrapole ou fait la moyenne des informations au support d'échantillon 
(provenant de sondages ou de lignes de mesure) à des supports de blocs tridimensionnels 
ou à l'ensemble de la masse rocheuse en supposant que cette masse rocheuse est un milieu 
continu et isotrope. 

Pour tenir compte de la dépendance directionnelle, il est proposé de régionaliser les 
variables géotechniques dans un espace à cinq dimensions correspondant au produit de 
l'espace géographique à trois dimensions et de la sphère à deux dimensions, de sorte que 
chaque mesure soit indexée par ses coordonnées est, nord, élévation, azimut et pendage. 
Au lieu de faire des prédictions et des simulations conditionnées à une direction particulière, 
ce nouveau paradigme permet d'interpoler des variables géotechniques à n'importe quel 
endroit de l'espace géographique, et pour n'importe quelle direction. La structure de 
corrélation spatiale peut être inférée et modélisée en utilisant des covariances séparables ou 
des combinaisons de covariances séparables, sous une hypothèse de stationnarité dans 
l'espace géographique et d'isotropie sur la sphère. De plus, une simulation conditionnelle 
peut être effectuée par des méthodes spectrales ou de bandes tournantes, basées sur des 
produits de champs aléatoires stationnaires dans l'espace géographique et de champs 
aléatoires isotropes sur la sphère. 

La méthodologie proposée est illustrée par trois études de cas. Le premier présente 
les bases théoriques de la modélisation 5D des corrélations spatiales, propose un nouvel 
algorithme de simulation conditionnelle et illustre les concepts précédents avec une 
application à la modélisation de la fréquence de discontinuité linéaire (P10) sur un jeu de 
données du gisement de cuivre d'El Teniente au centre du Chili. La comparaison entre les 
résultats de la simulation en l'absence ou en présence d'une composante directionnelle 
permet de visualiser la variabilité spatiale à attendre sur le terrain pour une direction donnée, 
minimisant le risque de biais pouvant apparaître lors de l'extrapolation des informations 
d'échantillonnage d'une direction à une autre. On peut être conscient des variations des 
variables géotechniques non seulement dans l'espace géographique mais aussi dans 
l'espace directionnel. Ce dernier est en outre utile pour définir quantitativement les conditions 
favorables à l'avancement de l’excavation d'un point de vue non qualitatif, comme cela se fait 
actuellement dans la classification RMRM de Bieniaswski. 

La deuxième étude de cas porte sur le problème de changement d'échelle ou de 
changement de support, c'est-à-dire l'extension d'un échantillon à un bloc plus volumineux, 
pour la désignation de la qualité de la roche (RQD). Une stratégie de mise à l'échelle 
physiquement significative vers de grands blocs est proposée, basée sur la moyenne des 
valeurs RQD correspondant à la même direction. Cette stratégie évite de mélanger les 
valeurs de RQD mesurées dans différentes directions ou de restreindre l'étude à une seule 
direction pour (a) mesurer et (b) régulariser au support de bloc les valeurs de RQD. En plus 
de la définition d'un RQD de bloc dépendant de la direction, nous proposons de dériver un 
RQD non directionnel (minimum), qui quantifie le degré de fracturation dans un bloc, et un 
indice d'anisotropie (AI) du degré de jointure de la masse rocheuse, indiquant de combien 
RQD est susceptible de varier d'une direction à l'autre. De cette manière, il est possible de 
connaître la variabilité directionnelle du RQD dans chaque bloc, reflétant l'anisotropie du 
massif rocheux et donnant un aperçu de la géométrie des fragments formés par l'intersection 
des joints dans un massif rocheux. 

La troisième étude de cas étend les méthodologies précédentes au cadre multivarié, 
avec la définition de modèles de covariances directes et croisées dans l'espace 3D croisé 
avec la sphère 2D, à travers l'analyse d'un jeu de données du gisement de cuivre de 
Radomiro Tomic (nord du Chili) pour estimer la qualité du massif rocheux. Plus précisément, 



 
 

iii 
 

le Slope Mass Rating (SMR) est obtenu à partir du Rock Mass Rating (RMR) de base en 
ajoutant un ajustement factoriel en fonction de la pente de la fosse et de l'orientation locale 
de fracturation maximale qui affleure à la pente. La modélisation géostatistique permet de 
construire des cartes de qualité géomécanique des pentes et conduit à un critère 
d'acceptation de la constructibilité des pentes pour la conception de la mine à ciel ouvert. 

Les résultats de la thèse mettent en évidence l'intérêt de considérer l'espace 
directionnel lors de la modélisation des variables géotechniques et soutiennent l'impact 
bénéfique de cette approche dans la zone géotechnique, la connaissance du comportement 
spatial des massifs rocheux et la gestion des incertitudes dans les projets miniers à ciel 
ouvert ou souterrains. En complément des outils standards utilisés pour la représentation 
tridimensionnelle des variables régionalisées, la thèse propose également de nouveaux 
outils de visualisation qui peuvent intéresser les géologues structuralistes et les 
géotechniciens, tels que les projections azimutales régionalisées qui cartographient les 
variations directionnelles des propriétés du massif rocheux à des endroits donnés de 
l'espace géographique. 
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CHAPTER I. 

INTRODUCTION 
 

1.1. Spatial characterization of a rock mass  

The identification of the mechanical, hydraulic and engineering properties of a 

rock mass is a crucial task for the development of open pit and underground mining 

operations, tailings tanks, hydrocarbon and geothermal reservoirs, aquifers and 

underground nuclear waste disposals (National Research Council, 2006; Bonnet et 

al., 2001). The management of costs in geotechnical engineering is critical but must 

be balanced with a detailed and comprehensive characterization of the subsurface, 

so as to reduce uncertainty and increase workers' safety at the lowest cost possible. 

To achieve an optimal characterization of the rock mass, it is necessary to know the 

rock mass quality to adequately design the underground infrastructures or to define 

the slope geometry in the case of open-pit mining. 

 

Geological phenomena in the subsurface often present spatial heterogeneities, 

showing a high contrast at a short scale, e.g., transitions between zones of greater or 

lesser strength and rigidity. Accordingly, it is difficult to predict without any error the 

mechanical properties of the rock mass by means of deterministic approaches. Then, 

other methodologies must be considered to model the geotechnical behavior. In this 

context, the use of probabilistic techniques has increased in recent decades (Fenton, 

1997; Christian and Baecher, 2003; Le Goc et al., 2014; Popescu et al., 2005; 

Sejnoba et al., 2007), aiming to obtain ranges of values and safety factors instead of 

deterministic values. One of the practical limitations to implement these approaches 

is that they do not account for the fact that the variables under consideration are 

regionalized and spatially structured. Spatial variability can mean adverse conditions 

not detected in the design phase that bring about accidents in the construction phase 

(Karim et al., 2007). 

 

The complexity of geotechnical and hydrogeological problems requires the use 

of methods that significantly reduce the uncertainty associated with geological and 

geotechnical variability to avoid the problems generated by open pit and underground 



Chapter I: Introduction 
 

 

2 
 

excavations (Lei, 2016). The deterministic models and probabilistic techniques 

traditionally implemented in the characterization of the rock mass have in common 

the limitation in the identification of natural heterogeneities, because they assume 

that the variables are normally distributed and their values are independent from 

sample to sample, which is not the case in the earth sciences where regionalized 

data usually do not satisfy these assumptions (Chilès and Delfiner, 2012). Instead, 

geostatistics is capable of integrating spatial variability and heterogeneities in the 

modeling of the rock mass. In this respect, geostatistics offers tools that take into 

account the spatial behavior of the variables, contrarily to traditional probabilistic 

techniques, and methods that provide an accurate prediction of these variables, 

accompanied by uncertainty measures, contrarily to deterministic approaches.  

 

The application of geostatistical methods in geotechnics is a recent topic, so the 

number of works published in this field is not as voluminous as it might be expected 

when considering the potential of this technique in the modeling of regionalized 

phenomena. In the past decades, several authors have been using geostatistics to 

predict or to simulate lithological properties, such as the works developed by 

Rosenbaum et al. (1997), Mao and Journel (1999), Emery et al. (2008). Regarding 

the classification of rock mass using empirical methods and some geotechnical 

parameters, the number of published works increases, and it is essential to highlight 

the following: 

 

• Rock Quality Designation (RQD): this is a measure of the degree of jointing 

or fracturing of a rock mass, consisting of 100 times the ratio between the 

total length of core pieces larger than 100 millimeters and the total core run 

length (Deere et al., 1966). Ozturk and Nasuf (2002) applied cokriging to 

predict RQD using correlated covariates. In a more recent work by Ozturk 

and Simdi (2014), kriging techniques are also used to predict the intact 

rock and rock mass elastic modulus. Madani and Asghari (2013) simulated 

RQD values to detect failures in 3D blocks (RQD <20 interpreted as fault 

zones). Séguret and Guajardo (2015) argued that RQD, as well as the 

fracture frequency (FF), are actually direction-dependent variables and 

proposed to predict them by accounting for sampling direction classes. 

Séguret and Emery (2019) suggested that a solution to direction 
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dependence is to consider the regionalization space as a 5D space, three 

for the usual coordinates and two for the space crossed by the dip and the 

azimuth, which is a key idea developed in this thesis. 

 

• Rock Mass Rating (RMR), an index of rock mass quality that combines the 

most significant geologic parameters of influence: uniaxial compressive 

strength, rock quality designation, spacing of discontinuities, conditions of 

discontinuities, groundwater conditions and orientation of discontinuities 

(Bieniawski, 1989). The number of publications about this classification 

method is significant. Since 2002, Choi et al. (2002), Ryu et al. (2003), You 

(2003), Oh et al. (2004), Stavropoulou et al. (2007) and Exadaktylos and 

Stavropoulou (2008) applied kriging techniques to map RMR values. Some 

of the abovementioned works (Stavropoulou et al., 2007 and Exadaktylos 

and Stavropoulou, 2008) used the prediction obtained in the numerical 

analysis of underground works (tunnels). Jeon et al. (2009), Egaña and 

Ortiz (2013), Ferrari et al. (2014) and Pinheiro et al. (2016a, b) presented 

some applications to the simulation of RMR, with algorithms such as the 

sequential Gaussian or the turning bands that consider RMR as a 

continuous random field, or the truncated Gaussian algorithm that 

considers the different parameters underlying the definition of RMR as 

discrete random fields. 

 

• Geological Strength Index (GSI), a parameter that accounts for both the 

rock structure and block surface conditions (Hoek, 1994). The prediction of 

GSI can be obtained by applying a correlation function with the RMR 

system, therefore all the works mentioned above can be included. 

However, it is worth mentioning works such as Deisman et al. (2013) or 

Ozturk and Simdi (2014) about the direct simulation of GSI. 

 

• Fracture frequency (FF), consisting of the number of observed fractures or 

discontinuities per unit length of borehole. The research of Ellefmo and 

Eidsvik (2009) used kriging techniques to predict the spatial frequency of 

discontinuities and the associated variability in an iron ore located in 
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Norway. Besides, Etminan and Seifi (2008) combined sequential Gaussian 

and sequential indicator simulation to build a fractured rock mass model 

considering its azimuth, depth, and density integrated with the porosity and 

permeability of the rock mass. Séguret et al. (2014) also used kriging 

techniques to predict the fracture frequency to assess its relationship with 

the crushed length and the number of fractures in a core sample, 

suggesting including in the RMR evaluation the probability or proportion of 

crushing. 

 

• Fracture intensity (Pxy, where x is the dimension of the sampling space and 

y the dimension of the sample measure): several recent developments 

focused on stochastic methods (Jing, 2003; Chilès, 2005; Dershowitz et al., 

2004; Dowd et al., 2007). The consistency between models and field 

observations is achieved by restricting 3D density and orientation maps 

derived from seismic attributes (Dershowitz, 1984; Maerten et al., 2000; 

Will et al., 2004; Freudenreich et al., 2005) and/or deformation analysis 

(Priest and Hudson, 1976; Kloppenburg et al., 2003). The works of Chilès 

et al. (2008) and Hekmatnejad et al. (2016, 2017) suggest studying the 

three-dimensional fracture intensity P32 (fractured area per unit rock 

volume) instead of the one-dimensional intensity (linear fracture frequency 

P10 observed along boreholes) or the two-dimensional intensity (P21) 

observed in areal samples (such as outcrops), since P32 is an additive and 

non-directional variable, characteristics that P10 and P21 do not share. 

 

These works confirm the advantages of using geostatistical techniques to model 

geotechnical parameters, but most are limited to applying prediction techniques such 

as kriging. However, simulation is the most effective and robust technique to identify 

the spatial variability of geotechnical properties and the existence of heterogeneities. 

Based on this fact, more works, and practical applications must be developed in the 

context of geostatistical simulation of geotechnical variables. Also, except for Séguret 

et al. (2014, 2015, 2019), no author has accounted for the direction dependence of 

geotechnical parameters such as the linear fracture frequency or the RMR, a key 

property that makes traditional prediction or simulation methods inadequate when 
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used directly in the three-dimensional Euclidean space without accounting for the 

azimuth and dip of the measurements. Therefore, the developed models lack this 

essential feature in the characterization of rock masses. 

 

1.2. Limitations of Geostatistics in Geotechnics  

The application of geostatistical techniques in the modeling of geotechnical 

parameters faces several challenging issues, such as the lack of additivity of most 

regionalized variables, which complicates the change of support (extension from a 

sample to a more voluminous block), as well as the direction dependence (the 

measurement depends on the sampling direction). In the following, these difficulties 

found in the implementation of geostatistics in the modeling of geotechnical variables 

are analyzed into detail. 

 

1.2.1. Direction dependence (directionality) 

Unlike other variables that studied in geosciences, such as the grade of a 

metal or the thickness of a vein, several of the geotechnical parameters have some 

peculiar characteristics that complicate working with them, such as the direction 

dependence. Direction dependence means that the measured value depends on the 

sampling direction. In practice, what is generally done is averaging all the sampled 

values that belong to a given geotechnical domain without discriminating in 

directional terms, which amounts to indiscriminately mixing different populations of 

data. For example, the RQD is direction dependent because its value depends on the 

angles between the direction of the sample and the fractures. Figure 1.1 shows three 

extreme examples where the RQD has values 0 and 100 for the same type and 

degree of fracturing, due to the change in the core direction. RQD refers to intact 

rock lengths and is related to the number of discontinuities (Fracture Frequency, FF). 

In addition, the measurements of the separations between the fractures are also 

subject to a directional bias depending on the type of fracture network (Séguret et al., 

2014).  
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Figure 1.1. Three boreholes in different directions in the same rock mass, where RQD is 0 or 100 
(Palmstrom, A., 2005). 

 

FF is also a directional variable since the fracture count varies depending on the 

angle between the fracture network and the sampling direction. In practice, one can 

assess FF without bias by calculating the fracture frequency in the direction of the 

measurement and correcting by a factor equal to the sine of the angle between the 

fracture direction and the sampling direction (Terzaghi, 1965). Such an operation is 

not possible with RQD. One solution to study directional variables such as RQD is to 

classify the samples according to the sampling directions (Séguret and Guajardo 

2015), but this is not enough, since it only allows predicting RQD in these directions, 

without any interpolation between them. These authors suggest that a solution to 

account for direction dependence is to consider the real space of regionalization as 

the usual geographical 3D space crossed by the 2D space of dip and azimuth, 

meaning that RQD measurements should be assigned five coordinates. It is worth 

mentioning that, with the exception of Séguret et al. (2014, 2015, 2019), very few 

authors have considered the direction dependence of geotechnical parameters such 

as fracture frequency, RQD or RMR, so that the models developed lack this essential 

feature in the characterization of rock masses.  

The direction dependence of the geotechnical variables suggests that a 

regionalized variable can be defined not only in the 3D Euclidean space (with east, 

north and elevation coordinates), but also in the 2D sphere (with the spherical 

coordinates corresponding to the azimuth and the inclination of the measurement), 

which gives rise to a space of five dimensions: east, north, elevation, azimuth, 

inclination. This idea will be crucial in this thesis. Let us develop and exemplify this 
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idea by focusing on the fracture frequency (FF). FF corresponds to the number of 

fractures or any discontinuity per unit length measured in the core (see Figure 1.2). 

The core contains discontinuities of various structural sets, each of which has a 

different geometry, dip, and azimuth. Thus, FF will depend on the borehole direction, 

from which it follows that this variable depends on the direction of the measurement, 

i.e., it is directional.  

 

Figure 1.2. Two samples of cores that present fracturing and crushing, considered for the prediction of 
the fracture frequency (FF). Séguret et al., 2014 

 

To illustrate this statement, let us consider a network of parallel fractures. The 

“intrinsic” fracture frequency can be defined as the one measured along the direction 

orthogonal to the fracture plane (¡Error! No se encuentra el origen de la 

referencia.). According to the correction proposed by Terzaghi (1965), the fracture 

frequency at a point x of the Euclidean space along the direction  (with  a point of 

the unit sphere 𝕊2 embedded in ℝ3) is: 

 

FF(𝐱, 𝛂)  =  FF (𝐱, 𝛉)⏟      
Intrinsic
 fracture 
frequency

 | < 𝛉, 𝛂 > |     (1) 
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where <, > is the scalar product and θ is a point of 𝕊2 that indicates the direction 

orthogonal to the fracture plane (fracture pole); <θ, > represents the cosine of the 

angle between θ and . Now, if the intrinsic fracture frequency FF (𝐱, 𝛉) has a non-

centered covariance function C(h) in the 3D Euclidean space, which only depends 

on the spatial separation (assumption of second-order stationarity), then the non-

centered covariance function of FF is: 

 

CFF(𝐱, 𝛂; 𝐱′, 𝛂′) =  C𝛉(𝐱 − 𝐱′)⏟      
spatial

component

|< 𝛉, 𝛂 > < 𝛉, 𝛂′ >|⏟            
directional
component

   (2) 

 

which involves the product of a stationary spatial covariance (defined in the 3D space 

with east, north, elevation coordinates) depending on the geographical separation x – 

xʹ between the measurements, and a directional component that depends on the 

orientations  and ʹ of the measurements taken at x and xʹ, respectively. This 

directional component has a periodicity of 2 for the azimuth and the dip of the 

measurements. 

 

The previous example is voluntarily simplistic, and things are more complex in 

practice, in particular the fracture network rarely consists of parallel fractures, reason 

for which the covariance model (2) is probably unsuitable in most cases. However, 

the idea of constructing covariance models by multiplying a covariance function that 

only depends on the geographic separation in the 3D space by another covariance 

function that only depends on the orientations of the measurements on the 2D 

sphere will be kept, as a way to obtain a flexible class of covariance models for data 

regionalized in a 5D space.  

 

 As for covariance models on the sphere, there have been several recent 

developments in such a space intended to represent phenomena on the surface of 

the Earth (e.g., in climatology or environmental sciences) or in the sky (e.g., in 

astronomy), mostly restricted to isotropic, i.e., rotation-invariant, models (Gneiting, 

2013; Emery et al., 2022).  
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1.2.2. Lack of additivity 

A regionalized variable is said to be additive when the value in the union of 

several domains is equal to the arithmetic mean of its values over each of them. This 

restriction is necessary so that the calculation of the average value in a support 

larger than the support of the measurements has a physical sense. Geotechnical 

variables such as RMR, Mining Rock Mass Rating (MRMR), GSI and Rock Tunneling 

Quality Index (Q), present a non-linear scale (Carrasco et al., 2008), so that these 

variables are non-additive. The practical limitations of non-additive variables when 

applying geostatistical techniques are (Egaña, 2008): 

 

i. The calculation of arithmetic averages is nonsensical. Then neither will it 

be to model a change of support based on an arithmetic averaging. From 

the preceding, it becomes impossible to regularize the support of the 

data on the original variable (to create composite samples) and, ideally, 

one needs that sampling to be carried out in a constant support. 

 

ii. It is not convenient to perform block kriging, as this implies a change of 

support. Only point-support kriging or point-support simulation is feasible 

to spatially interpolate the variable on the same support as the available 

samples (when they have the same support). 

 

The lack of additivity of geotechnical variables is related to the extensively 

studied size or scale effect. Size effect means that the rigidity and strength of a 

region decrease as the size of this region increases. The size effect is highly affected 

by fracture characteristics, such as their density, strike, dip angle, and diameter. For 

an intact rock, heterogeneity is the most important factor for the size effect (Cunha, 

1990). Elsewhere, the mechanical behavior of a rock mass depends on the strength 

of the blocks created by random patterns of discontinuities and their strength. Hoek 

and Brown (1980) show how the size effect influences the rock mass strength for a 

tunnel with a constant cross-section and joint directions, see Figure 1.. On a small 

scale, the rock was intact compared to a very jointed rock mass in their larger chosen 

scale. When the volume is greater or the dimensions of the tunnel cross-section are 

changed, it is evident that the scale of the construction versus the rock mass and its 
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block size has a great influence on the rock mass strength. Thereby, the failure 

mechanism varies with the scale, i.e., the rock mass is seen in a distinct manner 

depending on the rock volume involved. 

 

 

Figure 1.3. Size effect on rock strength and possible mechanisms of failure in a tunnel and a slope 
(Edelbroc, 2004 - modified from Hoek, 1983). 

 

Discontinuities present less resistance and stiffness than blocks of intact 

material. These discontinuities produce the size/scale effect where the stiffness and 

strength of a region decrease as the size of the region increases. According to the 

concept of the size effect in rock masses, the characteristics of rock masses change 

gradually with increasing sample size. When the size is larger than a critical value, 

the characteristic values remain unchanged. The critical value is called the 

Representative Volume Element (REV) size. The concept of REV is introduced in the 

context of the abovementioned size effect (Esmaieli et al., 2010; Zhang et al., 2012). 

The REV is the basis to determine a rock mass mechanics model, and it is necessary 

to search the REV of fractured rock mass (Zhang et al., 2017). In Figure 1.4, one can 

see that, when the volume involved is higher than the REV, it is justifiable to use 

average properties for the rock mass as it can be considered as a homogeneous 

continuous equivalent whose discontinuities are implicit. 
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Figure 1.4. Influence of scale or size effects in the physical properties of a rock mass 

 

Now, a block model is a discretization of the deposit into a three-dimensional 

array of cells or blocks, in each of which the geotechnical variables under study are 

predicted or simulated, but there is no agreement about the way to determine the 

REV. For example, Schultz (1996) says that the scale problem exceeds the block 

size by a factor of 5 to 10. Instead, Cundall et al. (2008) report that the REV is 

approximately 20 times the dimensions of the average block. Other authors, such as 

Rocha (1974), state that the REV is several times greater than the average spacing 

of discontinuities. Also, Esmaeili et al. (2010) suggested that the REV can be 

determined based on P30 (number of intersected fractures) and P32 (fracture area per 

unit rock volume). Although P32 does not depend on the fracture orientation and 

diameter distribution, it is influenced by the fracture spacing (Filion, 2018). As the 

fracture spacing is non-isotropic, since it depends on fracture orientation and the 

orientation of the mapped rock mass exposure, it follows that REV should be 

quantified on a directional basis. Thereby, it is complex to determine the REV by 

numerical methods and expensive through in situ testing. For the latter, generating 

an easy and economical way of calculating the REV is necessary.   

 

Currently, empirical methods have been developed to skip the size effect and to 

determine the representative mechanical properties of a rock mass. These methods 

 

 

 
VOLUME TESTED 

 

PROPERTY WHOSE MAGNITUDE 

DECREASES WITH INCREASING 

VOLUME TESTED (e.g., STRENGTH) 

PROPERTY WHOSE MAGNITUDE 

INCREASES WITH DECREASING 

VOLUME TESTED  

(e.g., HYDRAULIC CONDUCTIVITY) 



Chapter I: Introduction 
 

 

12 
 

combine intact rock measurements with discontinuity characteristics to classify/rate 

the rock mass. Subsequently, the classification correlates with the mechanical 

properties of the rock mass for the design of excavations. The rating attempts to 

"scale" features of the intact rock to the rock mass. In other words, the current 

solution is to consider that the rock mass at the engineering work scale is isotropic. 

Thus, the rock mass is isotropic when there is a sufficient number of discontinuities 

that are not widely spaced compared to the structure (slope, tunnel, etc.). The RMR 

and Q classification systems have an underlying assumption that the rock mass 

contains enough randomly oriented fractures and that it can be treated as a 

homogeneous isotropic mass (Hadjigeorgiou, 2012). Accordingly, rock mass 

classification systems may not be appropriate for rock masses with a dominant 

structural orientation (Milne et al., 1998). Therefore, the proposal of a classification 

system that allows for considering a wide range of mineral deposit types, including 

anisotropic and heterogeneous rock masses, is necessary. 

 

1.3. Spatial correlation modeling on spheres 

In application fields such as climatology, geophysics, oceanography and 

remote sensing, there has been a growing interest in modeling random fields defined 

on the sphere to deal data distributed globally over planet Earth (Emery et al., 

2019.a). Other applications include astronomy and cosmology, where observations 

are associated with an azimuth and an altitude in the sky (Marinucci and Peccati, 

2011). The spatial structure of such random fields is characterized by their 

covariance functions (or, following the common geostatistical practice, by their 

variograms), most often assumed to be isotropic, i.e., invariant under a rotation of the 

reference frame (Schoenberg, 1942; Gneiting, 1999, 2013; Lang and Schwab, 2015; 

Anh et al., 2018; Perón et al., 2018; Alegría et al., 2019). 

The assumption of isotropy used in random fields on the sphere is similar to 

the assumption of stationarity (invariance of the finite-dimensional distribution under 

a translation) when dealing with random fields distributed in the Euclidean space. By 

restricting to the first- and second-order moments, the assumption of isotropy implies 

that the mean value exists and is constant on the sphere and that the covariance 

function only depends on the angular separation (geodesic distance) between the 

measurements. In the general case of vector random fields (multivariate models), 
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  𝒂ℓ𝑪 𝜃(𝒙ℓ, 𝒙𝑟) 

𝑛

𝑟=1

𝒂𝑟

𝑛

ℓ=1

≥ 0 

Schoenberg (1942) characterizes continuous isotropic covariances on the unit 

sphere 𝕊𝑑 embedded in ℝ𝑑+1, expressed as matrix-valued functions of the form C(θ) 

whose elements are Cij θ(𝐱, 𝐱
′) = cov{Zi(𝐱), Zj(𝐱

′)}, where θ( ∙, ∙ ): 𝕊𝑑 × 𝕊𝑑  → [0, ]  

is the geodesic distance defined as θ(𝐱, 𝐱′) = arccos(< 𝐱, 𝐱′ >). The matrix-valued 

covariance function C must be positive semi-definite, that is 

 

   (3) 

 

for any positive integer 𝑛, {𝒙1, … , 𝒙𝑛} ⊂ 𝕊𝑑 and {𝒂1, … , 𝒂𝑛} ⊂ ℝ𝑝, p being the number 

of variables under consideration. This condition is met if and only if (Yaglom, 1987) 

 

𝑪(𝜽) =  𝑩𝑘,𝑑𝒢𝑘
𝜆(cos 𝜃),               𝜃𝜖[0, 𝜋]

∞

𝒌=𝟎

                                (4) 

with  𝜆 ∶=
𝑑−1

2
 , 𝒢𝒌

𝝀 is the Gegenbauer polynomial of degree k and order 𝜆 (Abramowitz 

and Stegun, 1970) and {𝑩𝑘,𝑑: 𝑘 = 0, 1, … } is a sequence of p × p positive semi-

definite matrices, known as a multivariate d-Schoenberg sequence (Daley and Porcu 

2014), such that ∑ 𝑩𝑘,𝑑 𝒢𝒌
𝝀(1)+∞

𝑘=0  converges. Considering only the case d = 2, 𝒢𝑘
1/2

=

𝑃𝑘 is the Legendre polynomial of degree k (Abramowitz and Stegun, 1970), and the 

isotropic function C(θ) is a matrix-valued covariance on the 2D sphere if:  

𝑪(𝜽) =  𝑩𝑘,2𝑃𝑘 (cos 𝜃) 

∞

𝒌=𝟎

                                         (5) 

here {𝑩𝑘,2: 𝑘 = 0, 1, … } is a convergent sequence of positive semi-definite matrices.  

For instance, the spherical and exponential models are valid covariances on 

the sphere when the Euclidean separation vector h is replaced by the geodesic 

distance θ (Huang et al., 2009), while this is not the case for the Gaussian model 

(Gneiting, 1999). Another subclass of valid isotropic models on the sphere is 

obtained by restricting isotropic covariances in the Euclidean 3D space (Yadrenko, 

1983; Yaglom, 1987): in fact, because the Euclidean distance between two points 

separated by a central angle θ in the unit sphere is 2sin (θ/2), if CE(h) is an isotropic 

covariance in ℝ3, then the function 
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𝐶(𝜃) = 𝐶𝐸(2𝑠𝑒𝑛(𝜃/2))    (6) 

 

it is a valid isotropic covariance model on the sphere. In that case, it is equivalent to 

work with covariance C and the central angular distance θ, or with covariance CE and 

the separation distance h in the Euclidean space.  

Geometric anisotropy, which is widely used in the geographical space, has no 

equivalent in the sphere. Anisotropic models exhibiting non-stationarity along latitude 

and/or longitude, such as axially symmetric models, have been proposed in the past 

decade (Jones, 1963; Stein, 2007; Jun and Stein, 2008; Porcu et al., 2019; Emery et 

al., 2019.b). 

 

1.4. Spatial correlation modeling on spheres crossed with Euclidean 

spaces 

As mentioned earlier, the direction dependence of geotechnical variables suggests 

that a regionalized variable can be defined not only in the Euclidean space but also 

on the sphere or, more generally, in a five-dimensional space (product of the 3D 

Euclidean space and the 2D sphere) with coordinates consisting of the easting, 

northing, elevation, azimuth and dip of the measurement. There have been few 

model developments in such spaces, except for some works on the sphere crossed 

with time aimed to represent global phenomena on the Earth's surface that evolve in 

time (Porcu et al., 2018). 

Emery et al. (2021) gives spectral representations together with some parametric 

families of scalar-valued and matrix-valued covariance functions on product spaces 

consisting of a sphere crossed with a Euclidean space, that are isotropic (depending 

only on the geodesic distance) on the sphere and stationary (depending only on the 

Euclidean distance) in the Euclidean space. A simple approach, which will be used in 

the next chapter of this thesis, is given by the so-called separable model, where the 

covariance function is the product (elementwise product in the multivariate case) of a 

second-order stationary covariance function defined the Euclidean space and an 

isotropic covariance function defined on the sphere. 
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CHAPTER II. 

MODELING OF DIRECTIONAL VARIABLES 

IN A 5D SPACE 
 

Consider a direction-dependent geotechnical variable distributed in a region of 

the 3D Euclidean space and measured along borehole samples. The measured 

value varies with the geographic coordinates of the sample and with its direction, that 

is: 

z = {z(x,u): x  R3 and u  S2},   (7) 

where x is a vector indicating the in-situ position in the geographic space (R3), while u 

is a vector on the unit 2D sphere (S2) representing the in-situ direction of the sample. 

The geostatistical model interprets the regionalized variable z as one among many 

possible realizations of a random field Z, defined in the same space: 

     Z = {Z(x,u): x  R3 and u  S2}.    (8) 

 

The basis of the model, therefore, is to define the regionalized variable and the 

parent random field in a five-dimensional space (R3 × S2) that accounts for the real 

spatial continuity. The modeling of random fields in more complex spaces than 

Euclidean spaces is not new in spatial statistics. In particular, there has been a 

growing interest in sphere-time models that attempt to represent global phenomena 

distributed over the surface of the planet Earth and evolving through time, which are 

regionalized in a space consisting of the Cartesian product of a Euclidean space with 

a sphere; the reader is referred to Porcu et al. (2018) for a thorough review. The 

proposed in this work is to replace the 1D time axis with the 3D geographic space, a 

generalization that seems to be novel. 

 

 

 



Chapter II: Modeling of directional variables in a 5D space 
 

 

16 
 

2.1. Spatial correlation modeling 

2.1.1. Modeling in the three-dimensional Euclidean space 

In the Euclidean space, one traditionally uses the assumption of stationarity in 

the geostatistical modeling of random fields. The concept enables the inference of 

the random field parameters from a finite set of data, such as the expected value, the 

covariance or the variogram, by replacing the repetition over the realizations of the 

random field (which is theoretically needed to infer expected values) by a repetition in 

space over the same realization. In a nutshell, the underlying idea is that the values 

observed in different regions of space have the same statistical characteristics, so 

that they can be considered as different realizations of the same random process. 

From a mathematical viewpoint, the (strict) stationarity hypothesis occurs when every 

finite-dimensional distribution of the random field, based on k points x1… xk in space, 

is invariant under an arbitrary translation of the points by a vector h: 

𝑃{𝑍(𝑥1) < 𝑧1, … , 𝑍(𝑥𝑘) < 𝑧𝑘} = 𝑃{𝑍(𝑥1 + ℎ) < 𝑧1, … , 𝑍(𝑥𝑘 + ℎ) < 𝑧𝑘}, (9) 
 

with P indicating a probability measure.  

In other words, stationarity means that the regionalized phenomenon is 

homogeneous in space and repeats itself throughout space, so that the properties of 

a dataset do not depend on their absolute positions in space, but only on their 

relative positions. When the random field is stationary, its moments, if they exist, are 

invariant through translations.  

In practice, the hypothesis can be weakened in several ways, by assuming 

that only the first- and second-order moments are invariant by translation (second-

order stationarity) or that the increments of the random field are second-order 

stationary (intrinsic stationarity). In the former case, the mean value of the random 

field is constant and the covariance between the two random variables located at x 

and x depends only on the separation vector h = x-x. One convenient approach to 

model the covariance function of a second-order stationary random field is the linear 

model of regionalization (Wackernagel, 2003), where the covariance is constructed 

as a positive linear combination of basic nested correlation functions: 
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=

=
max

1

)()(
S

s

ssbC hh      (30) 

where, for s = 1,… Smax, bs ≥ 0 and s is a correlation function (positive semi-definite 

function taking the value 1 at h = 0). 

2.1.2. Modeling in the two-dimensional sphere 

For random fields on the sphere, the above assumption of stationarity cannot 

be defined and is often traded off against an assumption of isotropy, that is, an 

invariance of the finite-dimensional distributions under a rotation. In the case of data 

on the unit sphere S2, a simplification is to assume that the first- and second-order 

moments exist and are invariant under a rotation. In such a case, the mean value of 

the random field is constant and the covariance between the two random variables 

located at u and u depends only on the angular separation (geodesic distance) 

(u,u) = arccos(<u,u>),     (41) 

where < , > denotes the inner product.  

The covariance function of an isotropic random field on the sphere S2, viewed 

as a function of the geodesic distance   [0,], has a representation similar to the 

linear model of regionalization. Indeed, Schoenberg (1942) showed that it can be 

expanded into a positive linear combination of the following form: 


+

=

=
0

)(cos)(
n

nn PbC ,    (52) 

where Pn is the Legendre polynomial of degree n, bn ≥ 0 and +
+

=0n

nb .  

 

Legendre polynomials form an orthogonal basis of polynomials for an internal 

product defined as the simple product of continuous functions in the closed interval x 

∈ [−1, 1], defined as follows: 

 

∫ 𝑃𝑚(x)𝑃𝑛(x)𝑑𝑥 =
2

2𝑛 + 1
𝛿𝑚𝑛

1

−1

                                             (13) 
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where 𝛿𝑚𝑛 denotes the Kronecker delta, equal to 1 if m = n and 0 otherwise. 

Therefore, any function in the interval [−1, 1] can be express in that basis: 

 (6) 

 

Legendre polynomials are symmetric or antisymmetric according to Pn(-x) =  

(-1)n Pn(x), that is, they have a definite parity relationship for all n. In geotechnical 

applications, since a borehole core sample taken along a direction u is the same as 

the one taken along the opposite direction -u, one needs to add a restriction on the 

isotropic models, so the symmetric property of Legendre polynomials will be used. In 

spherical coordinates, changing u into -u amounts to changing (u,u) into -(u,u), 

and Pn (cos ) into Pn (-cos ). In this regard, the covariance model in Eq. (12) can be 

invariant when one only considers the Legendre polynomials of even degrees, which 

are even functions, and discards the Legendre polynomials of odd degrees that are 

odd functions, i.e.: 


+

=

=
0

22 )(cos)(
n

nn PbC ,                (75) 

where b2n ≥ 0 and +
+

=0

2

n

nb .  

2.1.3. Modeling in the product of the 3D Euclidean space and 2D sphere  

To model the spatial correlation of regionalized data in a 5D space consisting 

of the product of the 3D geographic space R3 and the 2D sphere S2, the simplest 

approach is to consider (strict or second-order) stationarity in the geographic space 

and (strict or second-order) isotropy on the sphere. Accordingly, the covariance 

function between the two random variables located at (x,u) and (x,u) in R3 × S2 only 

depends on the separation vector h = x-x and on the geodesic distance or angular 

separation (u,u) = arcos(<u,u>). Based on the previous statements, the linear 

model of regionalization can be extended in the following form: 


=

=
max

1

),(),(
S

s

ss CbC hh     (16) 

𝑓(𝑥) =  
2𝑘 + 1

2
 ∫ 𝑓(𝑡)𝑃𝑘

1

−1

(𝑡)𝑑𝑡 
⏟                

𝑎𝑘

∞

𝑘=0

𝑃𝑘(𝑥)  
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where, bs ≥ 0 for s = 1,… Smax, and Cs is a basic correlation (positive semi-definite) 

function defined on R3 × [0,]. A simple family of such basic correlation functions are 

separable models of the form 

)()(),( = sssC hh ,     (178) 

 

with s a second-order stationary correlation function in R3 and s an isotropic 

correlation function on S2 obtained by combining Legendre polynomials of even 

degrees. This model can be rewritten in terms of the variogram: 


=

=
max

1

),(),(
S

s

ssb hh ,    (18) 

 

with s = 1 – s.  

In practice, a linear model of regionalization of the form (16) or (18) can be 

fitted to a given experimental covariance or variogram by choosing an appropriate set 

of the separable basic structures {Cs: s = 1… Smax} and nonnegative coefficients {bs: 

s = 1… Smax}. The model parameters can be determined with automatic algorithms 

that reduce the deviations between experimental and modeled covariances or 

variograms, in the same way as it is done in standard 3D geostatistics (Goulard and 

Voltz, 1992).  

Note that the restricted class of covariance models on R3 × S2 formed by 

models of the form (16) with separable basic covariances (Eq. 17) is not the only one 

that can be considered. More general models, not limited to sums of separable 

covariances, can be designed by extending to 5D the models presented by, for 

instance, Porcu et al. (2016) in the case of the sphere-time processes. 

 

2.2. Multivariate modeling 

It is common for several regionalized variables to refer to the same 

phenomenon, requiring joint analysis to consider the relationships between them and 

the information provided by auxiliary variables on the main variable of interest. To 
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analyze the spatial continuity of the variables, the assumption is maintained that the 

associated random fields are jointly stationary and isotropic, so their direct and cross 

covariances will be functions of the separation vector between data (h) and the 

geodesic distance (). Simple and cross covariances of a set of variables cannot be 

modeled independently due to mathematical constraints. In particular, the linear co-

regionalization model satisfies the constraints on the matrix-valued covariance 

function C(h,), which must be positive semi-definite. The direct and cross 

covariances are assumed to be combinations of the same set of basic models: 

∀𝑖, 𝑗 ∈ [1, 𝑁], 𝐶𝑖𝑗(𝒉, 𝛿) = ∑ 𝑏𝑖𝑗
𝑠 𝐶𝑠(𝒉, 𝛿)

𝑆𝑚𝑎𝑥
𝑠=1    (19) 

To ease the notation, the upper indices represent the different basic nested 

models (not to be confused with a power). That is, matricially 

𝐂(𝒉, 𝛿) = ∑ 𝑩𝑠𝐶𝑠(𝒉, 𝛿)
𝑆𝑚𝑎𝑥
𝑠=1      (20) 

where 𝐂(𝒉, 𝛿) = [𝐶𝑖𝑗(𝒉, 𝛿)]
𝑖,𝑗=1…𝑁

 is the matrix of direct and cross covariances, and 

𝑩𝑠 = [𝑏𝑖𝑗
𝑠 ]

𝑖,𝑗=1…𝑁
 is called a coregionalization matrix, with all the eigenvalues of Bs 

being positive or zero. 

 

 

2.3. Non-conditional simulation 

 

A typical assumption requested in geostatistics to simulate quantitative 

variables is that the observed process is a realization of a Gaussian random field Z = 

{Z(x,u): x  R3 and u  S2}. This assumption will be made throughout for the 

observed process itself or for a transform of it (through an anamorphosis procedure). 

The problem therefore amounts to simulating a Gaussian random field in a 

five-dimensional space (R3 × S2) that reproduces the desired mean (hereafter, set to 

zero, which does not lose generality) and the covariance represented by a linear 

model of regionalization (Eqs. 19-20). A few generic simulations algorithms, such as 

the covariance matrix decomposition and the sequential algorithm, can be used for 

this purpose, but when the number of locations targeted for simulation is too large 

(more than a few tens of thousands), these algorithms are no longer applicable or 

become approximate (Emery and Peláez, 2011; Chilès and Delfiner, 2012). 

Henceforward, we propose an algorithm that does not suffer from this limitation and 
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relies on simulating Z as a sum of products of a geographic component and a 

directional component, i.e.:  x  R3,  u  S2, Zs(x,u) = Ts(x) Ws(u), where the 

subscript s stands for the index of the basic nested structure used in the linear model 

of regionalization. 

The geographic component Ts is a stationary random field in the Euclidean 

space R3 with zero mean and correlation function s(h). It can be simulated, for 

instance, by the continuous spectral or the turning bands methods (Matheron, 1973; 

Lantuéjoul, 2002; Emery and Lantuéjoul, 2006).  

Concerning the directional component, for u  S2, let us introduce its spherical 

coordinates (u)  [0,] (colatitude) and (u)  [0,2[ (longitude). In a first instance, 

consider the problem of simulating an isotropic random field Wn with zero mean and 

covariance function Pn(cos ), where n is a nonnegative integer and  is the geodesic 

distance (angular separation). Following Lantuéjoul et al. (2019) and Emery and 

Porcu (2019), the simulation can be obtained by putting: 

 

))(),((2)(, ,

2
uuuu = Lnn YUWS

   (21) 

 

where L is a random integer uniformly distributed on [-n,…,n], U is a random variable 

with zero mean and unit variance (e.g., a standard Gaussian variable) independent of 

L, and Yn, is the real (tesseral) spherical harmonic of degree n and order , which 

can be expressed as a function of an associated Legendre polynomial and sine or 

cosine functions (Arfken and Weber, 2005): 

𝒀𝒏,𝓵(𝜽,𝝋) =

{
  
 

  
 (−𝟏)𝓵√𝟐√

(𝟐𝒏+𝟏)(𝒏−|𝓵|)!

(𝟒𝝅)(𝒏−|𝓵|)!
 𝑷𝒏

|𝓵|(𝐜𝐨𝐬(𝜽)) 𝐬𝐢𝐧(|𝓵|𝝋)  𝒊𝒇 𝓵 < 𝟎,

√
𝟐𝒏+𝟏

𝟒𝝅
𝑷𝒏

𝟎(𝐜𝐨𝐬(𝜽)) 𝒊𝒇 𝒎 = 𝟎

(−𝟏)𝓵√𝟐√
(𝟐𝒏+𝟏)(𝒏−𝓵)!

(𝟒𝝅)(𝒏−𝓵)!
  𝑷𝒏

𝓵(𝐜𝐨𝐬(𝜽)) 𝐬𝐢𝐧(𝓵𝝋)  𝒊𝒇 𝓵 > 𝟎,

 

 (22) 

 

where 𝑃𝑛
ℓ stands for the associated Legendre polynomial of degree n and order . 

The fact that Wn(u) has a zero expected value comes from the fact that U has a zero 



Chapter II: Modeling of directional variables in a 5D space 
 

 

22 
 

mean and is independent of L. For u and u′ on S2, the covariance between Wn(u) and 

Wn(u′) is  

.))(),(())(),((
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4

))}(),(())(),(({}{4)}(),(cov{
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 EE

  (93) 

Using the addition theorem for spherical harmonics (Arfken and Weber, 2005) 

it is seen that this covariance matches the desired one:  

)),((cos),()}(),(cov{ uuuuuu ==
nnnn PPWW      (24) 

Accordingly, the random field Wn defined at Eq. 20 is isotropic on S2, with zero 

mean and covariance function Pn(cos ), where  is the geodesic distance on the 

sphere.  

Without losing the generality, the linear model of regionalization in Eqs. (16)-

(18) can be rewritten as follows: 


=

=
max

1

)(2 )(cos)(),(
S

s

snss PbC hh

     (28) 

 

with Smax  N  {+} a nonnegative integer, n(s)  N, bs ≥ 0 and += 
=

max

0

S

s

sbb  . 

Based on the previous statements, the simulation of a random field with such 

a covariance can be achieved as follows:  

 

1) Simulate a nonnegative integer S such that P{S = s} = bs/b. 

 

2) Simulate a second-order stationary random field TS in R3 with zero mean and 

correlation function S(h). 

 

3) Simulate an isotropic random field WS on S2 with zero mean and correlation 

function P2n(S)(cos ), such that, conditionally on S = s, Ws and Ts are 

independent. 
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4) Generate the simulated random field as 

)()(),(,, 23
uxuxux SS WTbZ = SR

.    (25) 

 

Conditional to S = s, Z is the product of two zero-mean independent random 

fields (Ts and Ws) and a positive scalar coefficient (b1/2). Accordingly, its mean value 

is zero and its covariance function is b times the product of the covariances of Ts and 

Ws, i.e., b s(h) P2n(s)(cos ). The prior mean and covariance function are obtained by 

randomizing s: 

 x  R3,  u  S2, E{Z(x,u)} = 0}|),({
max

1

==
=

S

s
b

b
sSZs uxE   (26) 
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=

=
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b
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  (27) 

 

Finally, to obtain a random field whose finite-dimensional distributions are 

approximately Gaussian, it suffices to add and to rescale a large number of 

independent copies of (29): 


=

=
K

k

kkSkkS WT
K

b
Z

1

),(),(

23 )()(),(,, uxuxux SR
   (28) 

 

where K is a large integer and {(S(k), TS(k),k, WS(k),k): k = 1,… K} are independent 

copies of (S, TS, WS).  

 

2.4. Conditional simulation 

 

Under the multivariate Gaussian assumption, conditioning the simulation to a 

set of sampling data can be achieved classically by means of a kriging step (Chilès 
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and Delfiner, 2012). Let {ZNCS(x,u): x  R3, u  S2} be a non-conditional simulation of 

Z. Then, the random field defined by 

 

∀𝐱 ∈ ℝ𝟑, ∀𝐮 ∈ 𝕊𝟐, 𝑍𝐶𝑆(𝐱, 𝐮) =  𝑍𝑁𝐶𝑆(𝐱, 𝐮) + [𝑍(𝐱, 𝐮) − 𝑍𝑁𝐶𝑆(𝐱, 𝐮)]𝑆𝐾  (29) 

 

constitutes a conditional simulation, i.e. it reproduces the distribution of {Z(x,u): x  

R3, u  S2} conditional to the Z-data. In Eq. (27), the superscript SK stands for a 

simple kriging (with mean zero and covariance 𝐶(𝒉, 𝛿)) at location (x,u) based on the 

values at the data locations.  

 

To summarize, the conditional simulation is constructed as follows: 

 

1. Generate a non-conditional realization at all the target locations (x,u) 

and the data locations. 

2. Compute the deviations (residuals) between the data values and 

simulated values at the data locations. 

3. Perform simple kriging of the residual from its values at the data 

locations. 

4. Add the result to the non-conditional realization, following Eq. (29). 

 

2.5. Multivariate simulation 

 

Let Z be a vector Gaussian random field with p scalar components defined in 

R3 × S2. To jointly simulate the components of Z, one can split this vector random 

field as follows: 

 x  R3,  u  S2, 𝒁(𝐱, 𝐮) = ∑ 𝒁𝑠(𝐱, 𝐮)𝑆𝑚𝑎𝑥
𝑠=1 .    (30) 

According to the linear coregionalization model, Z1, … , Zs are independent 

vector Gaussian random fields, with B11, … , BSmaxs as their respective matrices of 

direct and cross-covariance functions. Since each coregionalization matrix is positive 

semi-definite, it can be decomposed as follows: 
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𝐁s = 𝐐s∆s𝐐s
T = 𝐀s𝑨s

T    (31) 

where T is the transposition operator, Qs is an orthogonal matrix of eigenvectors, s 

a diagonal matrix of non-negative eigenvalues and s = 𝐐s√∆s. 

 

Let Ws be a vector random field with independent components, each with 

covariance function s. Then, it can be shown that the random field AsWs has the 

same correlation structure as Zs. The simulation of the target vector random field Z, 

therefore, reduces to simulating independent scalar random fields (the components 

of Ws for s = 1, … , Smax) with covariance functions equal to the basic nested 

structures used in the linear coregionalization model. The simulation of the 

components of Ws can be performed via any Gaussian simulation algorithm. 

 

 Note that other multivariate simulation algorithms that accurately reproduce 

the covariance structure of the vector random field have been proposed in the recent 

literature, based on spectral representations of Z through finite expansions into 

spherical harmonics (Emery and Porcu, 2019), or finite expansions into Legendre 

polynomial waves (Alegría et al., 2020). 

 

To make the simulated vector random field conditional to a set of pre-existing 

data, one can post-process the obtained simulations with an additional step of 

cokriging of the difference between the simulation at the data locations and the actual 

conditioning data values. 
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CHAPTER III. 

APPLICATION IN GEOTECHNICS TO THE 

SIMULATION OF THE LINEAR DISCONTINUITY 

FREQUENCY 

 

This chapter addresses the problem of simulating the linear discontinuity frequency in 

a porphyry copper deposit (El Teniente, central Chile), based on a regionalization of 

the variable in a 5D space. The contents of this chapter have been published in 

Computers & Geosciences:  

 

Sánchez, L.K., Emery, X., Séguret, S.A., 2019. 5D geostatistics for directional 

variables: application in geotechnics to the simulation of the linear 

discontinuity frequency. Computers & Geosciences, 133: article 104325. 
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Abstract 

In geotechnics and geomechanics, many rock mass properties are quantified by 

numerical variables defined by the observation or the testing of a borehole core 

sample. The value measured depends not only on the in-situ geographic coordinates 

of the sample, but also on the in-situ borehole direction. Interpolating such numerical 

variables in space without accounting for their directionality may produce misleading 

results, insofar as the interpolated values are representative of the rock mass 

properties in the sampling directions and not necessarily in other directions. A 

solution to this issue is to regionalize the geotechnical variables in a five-dimensional 

space, consisting of the Cartesian product of the three-dimensional Euclidean space 

and the unit 2-sphere, in order to account for both their geographic and directional 

variations. Spatial correlation analysis can be performed easily under an assumption 

of stationarity in the three-dimensional Euclidean space and isotropy on the sphere, 

so that the covariance or the variogram between two data only depends on their 

geographic and angular separations. The fitting of nested separable covariance 

functions eases the search for a valid spatial correlation model and for algorithms to 

simulate the geotechnical variables in the above-defined five-dimensional space. The 

concepts are applied to the modeling of the linear frequency of weak veins in a 

Chilean porphyry copper deposit, where the importance of accounting for 

directionality is demonstrated. Regionalized azimuthal projections are introduced as 

a visualization tool for structural geologists and geotechnicians to map the directional 

variations of the weak vein frequency at given locations in the geographic space. 

Key words: 5D geostatistics; spatio-angular regionalization; nested separable 

covariances; Legendre polynomials; regionalized azimuthal projections; simulation 

3.1. Introduction 

 

The geotechnical characterization and classification of rock masses is critical 

in mining engineering in order to assess the nature and geological structure of the 

subsoil, to quantify the stability of slopes in open pit mining or the fortification of 

galleries in underground mining, and to ensure the security of the infrastructures and 

the personnel working in the mine. Similar issues are met in civil, petroleum and 

geothermal engineering, groundwater resources management and underground 
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nuclear wastes disposal, to design underground works. Rock masses exhibit spatial 

heterogeneities with transitions from zones with higher resistance and rigidity to 

others with lower resistance and rigidity, sometimes at short distances, making the 

mechanical behavior of the rock mass difficult to predict. 

 

Two main avenues have been explored for such a characterization and 

classification. The first one focuses on the modeling of the geological discontinuities 

viewed as objects distributed in space, such as faults, fractures, veins or joints, which 

often control the rock mass properties. In such a case, the parameters of interest are 

the number, position, orientation, spacing, shape, dimension, aperture and thickness 

of the discontinuities within the study area. The main challenges are the inference 

without bias of the distributions of these parameters using different data sources, 

such as borehole, scanline or window surveys or remote sensing information, and the 

simulation of discontinuity networks (Chilès, 2005; Dowd et al., 2007; Xu and Dowd, 

2010; Lato et al., 2013; Hyman et al., 2015). 

 

The second avenue does not focus on the discontinuity network as a set of 

objects in space, but on numerical properties measured on continuous or discrete 

quantitative scales, for instance the rock quality designation (RQD), the uniaxial 

compressive strength (UCS), the rock mass rating (RMR), the geological strength 

index (GSI), the rock tunneling index (Q) or the discontinuity intensity (Pxy, where x is 

the dimension being measured and y is the dimension of the measurement). Being 

regionalized, these properties can be modeled and interpolated in space on the basis 

of sampling information. A common practice is to define “geotechnical domains” and 

to assign an average value to each domain, which provides a rather rough 

characterization. To get a more detailed spatial modeling, geostatistical tools and 

methods can be used. In the past two decades, kriging and conditional simulation 

have been applied to the prediction of RQD (Ozturk and Nasuf, 2002; Madani and 

Asghari, 2013; Ozturk and Simdi, 2014; Séguret and Guajardo, 2015), UCS (Abdideh 

et al., 2014; Doostmohammadi et al., 2015), RMR (Choi and Park, 2002; Oh et al., 

2004; Stavropoulou et al., 2007; Choi et al., 2009; Jeon et al., 2009; Egaña and Ortiz, 

2013; Ferrari et al., 2014; Pinheiro et al., 2016a, 2016b; Santos et al., 2018), GSI 

(Deisman et al., 2013; Ozturk and Simdi, 2014), Q (Exadaktylos and Stavropoulou, 
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2008), P10 (Ellefmo and Eidsvik, 2009; Séguret et al., 2014) and P32 (Hekmatnejad 

et al., 2017). 

 

The geostatistical modeling of geotechnical variables faces specific difficulties 

that require attention. In particular, many variables are directional, i.e., their values 

depend not only on the in-situ position of the measurement, but also on its in-situ 

direction (Séguret and Emery, 2019). The definition of these variables is especially 

meaningful when the volumetric support of the measurement is a cylinder, e.g., a 

borehole core sample. Since the cylinder diameter is usually small in comparison with 

its length, the measurement can be approximated by a line segment and identified 

not only by the in-situ geographic coordinates (easting, northing, elevation) of its 

center of gravity, but also by its orientation (azimuth and dip in geological 

coordinates, or colatitude and longitude in spherical coordinates). Examples of 

directional variables include RQD, UCS, RMR, Q and P10, the latter variable 

representing the number of discontinuities per meter and being also known as the 

linear discontinuity frequency or linear fracture frequency (FF). In most cases, 

directionality stems from the fact that discontinuities perpendicular to the direction of 

the measurement are more prone to be observed than discontinuities in other 

directions (Terzaghi, 1965), which implies that the (geo)statistical properties of the 

variables are direction-dependent. This feature makes difficult a change of support or 

upscaling when the shape of the target support is not a line segment. It is also likely 

to affect the manner in which geotechnical variables are interpolated for any support, 

even a point-support, as will be demonstrated in this work. However, these aspects 

have not been addressed in most of the previously cited publications, with the 

notable exception of Séguret et al. (2014) and Séguret and Guajardo (2015). 

 

In this context, the goal of this work is to present a geostatistical methodology 

to model directional geotechnical variables together with an application to the 

simulation of the linear discontinuity frequency in a Chilean copper deposit. The 

background and technical details of the proposed methodology are explained in 

Section 3.2 and the case study is presented in Section 3.3. Conclusions follow in 

Section 3.4. 
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3.2. Methodology 

 

3.2.1. Representation of directional variables in a five-dimensional space 

 

Consider a directional geotechnical variable z distributed in a region of the 3D 

Euclidean space and measured by borehole sampling. The values of this variable 

vary with the geographic coordinate of the measurement (center of gravity of the 

borehole core sample) and with its direction, that is: 

z = {z(x,u): x  R3 and u  S2},    (1) 

where x is a vector indicating the in-situ position in the geographic space (R3), while 

u is a vector on the unit 2-sphere (S2) representing the in-situ direction of the sample. 

In a geostatistical context, the regionalized variable z is viewed as a realization of a 

random field Z: 

Z = {Z(x,u): x  R3 and u  S2}.    (2) 

 

The basis of the model, therefore, is to define that the regionalized variable 

and the parent random field in a five-dimensional space (R3 × S2). The use of the 

product of a Euclidean space with a sphere is not new, as there is a growing interest, 

especially in remote sensing, climatology and atmospheric sciences, in modeling 

variables distributed over the planet Earth and evolving through time. Here, the 1D 

time axis is replaced with the 3D geographic space, a generalization that seems to 

be novel. 

 

3.2.2. Spatial correlation modeling 

 

In practice, some simplifying assumptions are necessary to infer and model 

the spatial correlation of regionalized data. In the case of data in the Euclidean space 

R3, most often the random field is assumed to be second-order stationary, i.e., its 

first- and second-order moments exist and are invariant through translation 

(Matheron, 1971). Under such an assumption, the mean value of the random field is 

constant and the covariance between two random variables located at x and x 
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depends only on the separation vector h = x-x. A widespread approach to model the 

covariance function of a second-order stationary random field is the linear model of 

regionalization (Wackernagel, 2003), based on a positive linear combination of basic 

nested correlation functions:   


=

=
max

1

)()(
S

s

ssbC hh ,     (3) 

where, for s = 1,… Smax, bs ≥ 0 and s is a correlation function (positive semi-definite 

function taking the value 1 at h = 0). 

 

In the case of data on the unit sphere S2, the simplest assumption is that of 

isotropy, i.e., the first- and second-order moments exist and are invariant under a 

rotation. In such a case, the mean value of the random field is constant and the 

covariance between two random variables located at u and u depends only on the 

angular separation (geodesic distance) (u,u) = arccos(<u,u>), where < , > denotes 

the inner product. Schoenberg (1942) proved that the covariance function of an 

isotropic random field on S2 can be expanded into a positive linear combination of the 

following form: 


+

=

=
0

)(cos)(
n

nn PbC ,    (4) 

where Pn is the Legendre polynomial of degree n, bn ≥ 0 and +
+

=0n

nb .  

 

A restriction on the isotropic models is needed in geotechnical applications, 

insofar as the borehole core sample taken along a direction u is the same as the one 

taken along the opposite direction -u. Changing u into -u amounts to changing (u,u) 

into -(u,u), and Pn(cos ) into Pn(-cos ). To be invariant, the covariance model in 

Eq. (4) must therefore only consider the Legendre polynomials of even degrees, 

which are even functions, and discard the Legendre polynomials of odd degrees that 

are odd functions, i.e.:  


+

=

=
0

22 )(cos)(
n

nn PbC ,    (5) 
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where b2n ≥ 0 and +
+

=0

2

n

nb .  

 

The previous hypotheses can be combined for a random field defined in R3 × 

S2, by considering second-order stationarity in the geographic space and isotropy on 

the sphere. Accordingly, the covariance function between two random variables 

located at (x,u) and (x,u) only depends on the separation vector h = x-x and on the 

angular separation (u,u) = arccos(<u,u>). The linear model of regionalization can 

be extended in the following form: 


=

=
max

1

),(),(
S

s

ss CbC hh ,     (6) 

where, for s = 1,… Smax, bs ≥ 0 and Cs is a correlation (positive semi-definite) function 

defined in R3 × [0,]. A simple family of such correlation functions are separable 

models of the form 

)()(),( = sssC hh ,    (7) 

with s a second-order stationary correlation function in R3 and s an isotropic 

correlation function on S2 obtained by combining Legendre polynomials of even 

degrees. This model can be rewritten in terms of the variogram: 


=

=
max

1

),(),(
S

s

ssb hh ,    (8) 

with s = 1 – s. Given an experimental covariance or variogram, the fitting of a linear 

regionalization model can be done by choosing a suitable set of separable basic 

structures {Cs: s = 1… Smax} and nonnegative coefficients {bs: s = 1… Smax}. 

Automatic algorithms can be used to determine the model parameters that minimize 

the deviations between experimental and modeled covariances or variograms as is 

done in standard 3D geostatistics.  

Models of the form (6) with separable basic covariances (Eq. 7) constitute a 

restricted – yet flexible – class of covariance models on R3 × S2. More general 

models, not limited to sums of separable covariances, can be designed by extending 

to 5D the models presented by Porcu et al. (2016) in the case of sphere-time 

processes. 
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3.2.3. Conditional simulation 

 

We now deal with the problem of simulating a random field with zero mean 

and covariance represented by a linear model of regionalization (Eqs. 6-7) and with 

multivariate normal finite-dimensional distributions (Gaussian random field model). 

The covariance matrix decomposition and the sequential algorithms can be used to 

this end, but these algorithms are not applicable, or become approximate, when the 

number of locations targeted for simulation is large (Chilès and Delfiner, 2012). 

Hereafter, we propose an algorithm that does not suffer from this limitation. 

 

Without loss of generality, the model in Eqs. (6) and (7) can be rewritten as 


=

=
max

1

)(2 )(cos)(),(
S

s

snss PbC hh ,     (9) 

with Smax  N  {+}, n(s)  N, bs ≥ 0 and += 
=

max

0

S

s

sbb .  

 

A random field with zero mean and such a covariance function can be 

simulated as follows (Appendix A): 

1) Simulate a nonnegative integer S such that Prob{S = s} = bs/b. 

2) Simulate a second-order stationary random field TS in R3 with zero mean and 

correlation function S(h). 

3) Simulate an isotropic random field WS on S2 with zero mean and correlation 

function P2n(S)(cos ), such that, conditional to S = s, Ws and Ts are 

independent. 

4) Generate the simulated random field as 

)()(),(,, 23
uxuxux SS WTbZ = SR .    (10) 
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To obtain a random field whose finite-dimensional distributions are 

approximately Gaussian, it suffices to add and rescale a large number of 

independent copies of (10): 


=

=
K

k

kkSkkS WT
K

b
Z

1

),(),(

23 )()(),(,, uxuxux SR ,   (11) 

 

where K is a large integer and {(S(k), TS(k),k, WS(k),k): k = 1,… K} are 

independent copies of (S, TS, WS). Many algorithms are available to simulate the 

random fields needed at steps 2) and 3), such as turning bands, discrete or 

continuous spectral algorithms (Emery and Lantuéjoul, 2006; Chilès and Delfiner, 

2012) for TS, and algorithms based on expansions into spherical harmonics (Lang 

and Schwab, 2015; Le Gia et al., 2019; Lantuéjoul et al., 2019; Emery and Porcu, 

2019) or cosine waves (Emery et al., 2019.c) for WS. 

 

Under the multivariate Gaussian assumption, conditioning the simulation to a 

set of sampling data can be achieved classically by means of kriging (Chilès and 

Delfiner, 2012). 

 

3.3. Case study 

 

3.3.1. Data presentation 

 

The previous concepts are now applied to the modeling of the discontinuity 

frequency (P10) in the El Teniente porphyry copper deposit, located in the Chilean 

central Andes, approximately 70 km southeast to Santiago. The rock mass comprises 

several rock types, in particular a poorly mineralized breccia diatreme lying at the 

center of the deposit (Braden pipe), anhydrite breccias, felsic intrusive rocks (dioritic 

to tonalitic dacites and porphyries) and mafic intrusive rocks (gabbros, diabases and 

a mafic complex referred to as CMET, acronym for “Complejo Máfico El Teniente”) 

(Skewes et al., 2002, 2006). 
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Two types of discontinuities are observed in the mined primary ore: a system 

of wide-spaced faults (Skewes et al., 2006) and a stockwork of closely-spaced veins 

cemented with quartz, sulfides and anhydrite (Cannell et al., 2005) (Figure 3.1). El 

Teniente geologists and geotechnicians have observed that the latter, particularly the 

“weak veins” corresponding to veins and veinlets filled with a weak mineral 

assemblage (hardness less than 3 in the Mohs scale) and with a thickness greater 

than 1 mm, are the most important factors in explaining rock fragmentation, rock 

bursts and geomechanical instabilities in the mine (Brzovic and Villaescusa, 2007; 

Brzovic, 2009). 

 

Figure 3.1. Stockwork of veins (white and light gray rectilinear or curvilinear structures) in the primary ore, which 

are less resistant than the intact rock and affect the rock mass strength 

Geotechnical borehole data collected in the CMET rock between 2010 and 

2016 are available for this study. The boreholes were drilled from the surface or from 

underground galleries and, for each of them, several intervals (with a length generally 

comprised between 20 and 30 m) were logged. The logging information consists of a 

record of the positions of the weak veins intersecting the borehole and the angles 

between their poles and the borehole axis. Based on this information, the linear 

frequency of weak veins P10 was calculated for 10-meter long composites along the 

boreholes, yielding a set of more than 3500 data within in a volume of 1800 × 2100 × 

950 m3 (Figure 3.2). For confidentiality reasons, the values were modified by a 

multiplicative factor and rounded to one decimal place, therefore they do not 

represent the true values used for geotechnical modeling in El Teniente deposit. The 

purpose of this case study is to illustrate the methodology proposed in Section 3.2 on 

modeling and simulating geotechnical variables by accounting for their directionality. 
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Figure 3.2. (a) 3D location map and (b) histogram of weak vein frequency of borehole data composited at a 
length of 10 m 

 

3.3.2. Data modeling 

 

The P10 composite data are declustered with the cell method (Journel, 1983) 

and then normal-score transformed. The mapping that back-transforms the normal 

scores into original P10 values (anamorphosis) is modeled by a piecewise linear 

function within the data range and an exponential function beyond the extremal 

experimental values (Figure 3.3) (Emery and Lantuéjoul, 2006). 

The sample variogram of the normal scores data is calculated in the horizontal 

and vertical directions, which are the directions with the highest and lowest variability, 

respectively, for different separation angles () between paired data (Table 3.1). Each 

data pair is weighted by the geometric mean of the declustering weights assigned to 

both data.  

 

The behavior of the experimental variogram depends on the angular 

separation () between the paired data used for variogram calculation. In particular, 

for geographic separation distances less than 100 m, the variogram increases with 

the distance if the paired data have an angular separation of 30° or less (Figure 3.4a, 

b), but decreases if the angular separation is greater than 60° (Figure 3.4c, d). This 

behavior at short distances is deemed representative, as the calculations involve a 

large number of data pairs (up to several hundreds). 
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Figure 3.3. Gaussian anamorphosis giving the original P10 values as a function of their normal scores 

 

Table 3.1. Parameters for experimental variogram calculations 

 Horizontal direction Vertical direction 

Azimuth (°) 0 0 
Dip (°) 0 90 
Lag (m) 20 30 
Number of lags 25 17 

-angle between data (°) 0, 30, 60, 90 0, 30, 60, 90 

Azimuth tolerance (°) 90 90 
Dip tolerance (°) 20 20 
Lag tolerance (m) 10 15 

-angle tolerance (°) 15 15 

 

A linear model of regionalization (Eq. 9) consisting of Smax = 4 nested 

structures is fitted to the experimental variogram. The first structure is defined by the 

product of a short-range (40 m in the horizontal plane and 60 m in the vertical 

direction) spherical covariance and a Legendre polynomial of degree 2. The latter 

switches from positive to negative values when the angular separation increases, 

which allows modeling the change in the behavior (from increasing to decreasing) of 

the variogram at short distances. The second nested structure is also defined by the 

product of a spherical covariance, this time with a range of 500 m, and a Legendre 

polynomial of degree 2. The last two structures consider the product of large-range 

spherical models with a Legendre polynomial of degree 0, which equals 1 

irrespective of the angular separation, so that these two structures depend only on 

the geographic separation. The variogram model is superimposed on the 

experimental variogram in Figure 3.4 and its parameters are given in Table 3.2. 
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The negative values taken by the first two nested structures when the angular 

separation is large suggest that the weak vein stockwork is locally anisotropic, with 

(part of) the veins having approximately the same orientation, which may explain a 

negative correlation between measurements taken at the same geographic location 

along perpendicular directions (Appendix B). This behavior is not incompatible with a 

global isotropy assumption, insofar as the local orientation of the veins can vary in 

the geographic space so as to be, all in all, uniformly distributed on the unit sphere. 

 

Figure 3.4. Experimental (crosses, stars, squares or triangles) and modeled (solid lines) variograms of the normal 
scores data in the horizontal (black) and vertical (blue) directions, for geographic separation distances ranging 

from 0 to 500 m and angular separations between paired data ranging from 0° (a) to 90° (d) 
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Table 3.2. Parameters of the fitted variogram model 

Nested 
structure 

Sill Geographic 
component 

Directional 
component 

  Type Horizontal 
range (m) 

Vertical 
range 
(m) 

Type Degree 

1 0.25 spherical 40 60 Legendre 2 
2 0.06 spherical 500 500 Legendre 2 
3 0.25 spherical 500 500 Legendre 0 
4 0.44 spherical 600 3000 Legendre 0 

 

 

3.3.3. Conditional simulation 

 

The weak vein frequency is simulated with the algorithm presented in Section 

3.2.3, with K = 10,000 basic random fields as defined in Eq. (10), at the nodes of a 

regular grid covering part of the sampled region for three target directions: north, east 

and vertical. For k = 1,…, 10,000, the geographic component TS(k) is simulated by 

using a piecewise linear function (Emery and Lantuéjoul, 2006), whereas the 

directional component WS(k) is simulated by using a spherical harmonic (Appendix C). 

The computational complexity of this algorithm (number of required floating point 

operations) is directly proportional to the number of target grid nodes, which makes it 

extremely fast. Conditioning is done by using the dual form of kriging, allowing a 

unique neighborhood implementation. Maps of the first realization and of the average 

of one hundred realizations are depicted in Figure 3.5. 

 

The average of the realizations is smoother in the southern sector of the grid, 

where the conditioning data are absent. Conversely, the northern part exhibits clear 

contrasts in the realization average, depending not only on the geographic position, 

but also on the direction in which the weak vein frequency is simulated. These 

contrasts are explained by the presence of nearby conditioning data. 
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3.3.4. Regionalized azimuthal projections 

 

The proposed approach allows for interesting representations of geotechnical 

variables. Instead of mapping the geographic variations of the weak vein frequency 

for a few target directions, such as in Figure 3.5, one can map the directional 

variations for a few locations in the geographic space, e.g., via azimuthal projections 

in which the upper hemisphere of S2 is represented on a disc, the parallels appearing 

as concentric circles and the meridians as line segments radiating from the center. 

These projections are helpful for the structural geologist or the geotechnician to 

assess both the geographic and directional regionalization of the weak vein 

frequency.  
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Figure 3.5. Map of (a, c, e) the first realization and (b, d, f) the average of 100 realizations of the weak vein 
frequency in the north (a, b), east (c, d) and vertical (e, f) directions. The target directions (N, E and V, 

respectively) are represented by a vector on the unit sphere in the central part of the figure. The target locations 
are on a grid located at 2000 m above mean sea level and the positions of the conditioning data distant less than 

20 m from this grid are superimposed.  

As an illustration, Figure 3.6 shows orthographic azimuthal projections at six 

regularly-spaced locations in the area under study. They suggest that the vein 

stockwork is locally anisotropic, with an orientation changing in the geographic 

space. Specifically, veins oriented in a vertical north-south plane are abundant near 

the locations with coordinates (1425 m, 400 m, 2000 m) and (1425 m, 300 m, 2000 

m), for which the predicted weak vein frequency in the east direction is the highest, 

whereas they are scarce near the locations with coordinates (1425 m, 350 m, 2000 

m) and (1325 m, 300 m, 2000 m). 

 

Figure 3.6. Regionalized azimuthal projections of (a) the average weak vein frequency over 100 realizations and 
(b) the probability that the true frequency is greater than 3 veins per meter. Each projection corresponds to a 

location in the geographic space, at an elevation at 2000 m above mean sea level, and uses a discretization of 
the northern hemisphere of S2 into 1800 pixels. Parallels and meridians every 30° are superimposed, and 

azimuths (measured clockwise in degrees from the north) are indicated outside the projection.  

 

3.3.5. Checking the model hypotheses 

 

The assumption that the random field associated with the weak vein frequency 

is second-order stationary in the geographic space is corroborated by the fact that 
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the experimental variogram of the normal scores data (Figure 3.4) reaches the 

expected unit sill.  

 

The assumption of isotropy on the sphere is consistent with that of El Teniente 

geologists, who are not aware of any preferential direction of the vein stockwork, and 

with the illustration in Figure 3.1, which shows veins and veinlets distributed in 

various directions. It is possible to go further by using the original borehole logging 

information: for each observed vein, the angle  between the borehole axis and the 

pole of the vein has been recorded. Should the vein stockwork be isotropic, the pole 

of each vein would be uniformly distributed on the upper hemisphere of S2, so that its 

scalar product with the unit vector oriented upward along a borehole would be 

uniform between 0 and 1, i.e., the cosine of the recorded angle  should be uniform 

in [0,1]. Because the records of  are semi-quantitative (most often, a multiple of 

10°), the distribution of cos() is calculated for five discrete classes (0 to 0.2, 0.2 to 

0.4, until 0.8 to 1) and declustering weights are used to account for the irregular 

sampling design. The resulting histogram shows a reasonable agreement with a 

uniform distribution (Figure 3.7a). 

 

Finally, the assumption of multivariate Gaussian distributions can be assessed 

by comparing the variogram (h,) and the variograms of order 1 and 0.5 (1(h,) 

and 1/2(h,), respectively) of the normal scores data. For  > 0, the following relation 

should hold (Emery, 2005): 

2/
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= hh .     (12) 

 

This relation, linear in a log-log scale, is reasonably verified by the 

experimental variograms (Figure 3.7b). 
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Figure 3.7. (a) Declustered histogram of cos(a), with a the angle between the vein pole and the borehole axis. (b) 
Variograms of order 1 (blue) and of order 0.5 (red) as a function of the experimental variogram of the normal 

scores data; the crosses indicate the experimental values, while the solid lines represent the theoretical 
relationship under a multivariate Gaussian assumption 

 

3.3.6. Validation of the results 

 

The quality of the realizations is assessed by leave-one-out cross-validation, 

consisting of simulating 500 times the weak vein frequency at each data location by 

using only the data situated at a distance of at least 20 m from the target location. 

The weak vein frequency at any data location is predicted by averaging the 500 

realizations. The predictor so obtained is conditionally unbiased, and therefore also 

globally unbiased, as the regression of the scatter diagram between the predicted 

and true vein frequencies coincides with the 45° line (Figure 3.8a). On the other 

hand, for p  [0,1], a p-probability interval bounded by the 1-p/2 and 1+p/2 quantiles 

of the 500 simulated values is constructed at each data location. It would be 

expected that a proportion p of the sampling data should belong to such an interval 

(Deutsch, 1997), which is the case here, regardless the value of p between 0 and 1 

(Figure 3.8b). This indicates that the fluctuations across the realizations correctly 

quantify the uncertainty attached to the true weak vein frequency. 
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Figure 3.8. (a) Scatter diagram between the actual weak vein frequency (ordinate) at the sampling locations and 
the average of 500 realizations (abscissa) conditioned to the data distant at least 20 m from the target location. 
(b) Accuracy plot showing the proportion of data belonging to a probability interval as a function of the interval 

probability 

 

3.3.7. Importance of a spatial correlation model that accounts for directionality 

 

The impact of the directionality of P10 is assessed by mapping the simulated 

values that are obtained by using the “traditional” approach, in which the weak vein 

frequency is regionalized only in the three-dimensional geographic space, but not on 

the sphere (Figure 3.9a). In such a case, the results no longer depend on the target 

direction for measuring P10. Furthermore, the average of 100 realizations (Figure 

3.9b) is close to the map displayed in Figure 3.5d and is sensibly different from the 

values mapped in Figures 5b and 5f. This coincidence is an artefact, insofar as most 

of the boreholes in the area under study are close to horizontal and oriented in the 

east-west direction, as indicated by the positions of the composited data 

superimposed on the maps. The map in Figure 3.9b is therefore conditioned to the 

weak vein frequency observed in this particular borehole direction but is likely to be 

globally or conditionally biased for the vein frequency in another direction. 

 

Even if the vein stockwork is isotropic, taking into account the directionality of 

the vein frequency has a strong impact on the simulation results because the 
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correlations between measurements depend on their directions. In particular, a 

measurement is highly informative of the values at surrounding locations in the same 

or quasi-parallel directions, as indicated by the low variogram values at short 

separation distances and small separation angles (Figure 3.4a,b), but brings much 

less information on the vein frequency in a perpendicular direction (Figure 3.4d). 

 

Figure 3.9. Map of (a) the first realization and (b) the average of 100 realizations of the weak vein frequency 
(simulation ignoring the directionality of P10). The target grid is located at 2000 m above mean sea level and the 

conditioning data distant less than 20 m from this grid are superimposed  

 

3.4. Conclusions 

 

The values of geotechnical variables such as RQD, UCS, RMR, Q and P10 

measured on a borehole core sample depend not only on the in-situ geographic 

position of the sample, but also on its in-situ direction. Regionalizing such 

geotechnical variables in a 5D space (R3 × S2) accounts for directionality. Under an 

assumption of stationarity in R3 and isotropy on S2, their spatial correlation structure 

depends only on the geographic separation vector h and on the angular separation  

between measurements, which facilitates the calculation of experimental covariances 

or variograms, the fitting of a model by means of separable nested structures, as 

stated in Eq. (9), as well as the simulation by means of products of basic random 

fields defined in R3 and S2, as stated in Eq. (11). The applicability of the tools and 

algorithms has been demonstrated with a case study on the modeling of the 

discontinuity frequency in El Teniente deposit, Chile, where attention has been paid 
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to the checking of the model assumptions and to the cross-validation of the 

simulation results. 

 

As a complement to the standard tools used for the three-dimensional 

representation of regionalized variables, the proposed methodology provides new 

visualization tools for structural geologists and geotechnicians, such as regionalized 

azimuthal projections to map the directional variations of rock mass properties at 

given locations in the geographic space. 

 

Future work includes the generalization of the proposed methodology to 

multivariate models aimed at jointly simulating cross-correlated geotechnical 

variables such as RQD, UCS and P10. Also, the design of models and simulation 

algorithms using non-separable covariances in R3 × S2 or anisotropic covariances in 

S2, together with exploratory tools to identify preferred directions of anisotropy on the 

sphere on the basis of sampling information, is of utmost interest to broaden the 

scope of application of the presented proposal. 

 

 

Appendix A 

 

Consider the random field Z defined in Eq. (10). Conditional to S = s, Z is the 

product of two zero-mean independent random fields (Ts and Ws) and a positive 

scalar coefficient (b1/2). Accordingly, its mean value is zero and its covariance 

function is b times the product of the covariances of Ts and Ws, i.e., b s(h) P2n(s)(cos 

). The prior mean and covariance function are obtained by randomizing s: 
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Appendix B 

 

In the two-dimensional plane, consider a network of parallel discontinuities 

(Figure 3.10). Denote by Z(x,u) and Z(x,u) the discontinuity frequencies for two 

composite samples taken at the same geographic position x along two perpendicular 

directions u and u. One has (Terzaghi, 1965): 
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where u0 is a unit vector in the direction of the discontinuity poles and  is the angle 

between u and u0.  

 

Figure 3.10. Network of parallel discontinuities in the plane (black) and two perpendicular sampling directions 
(blue) 

 

In this case, the covariance between Z(x,u) and Z(x,u) when u is uniformly 

distributed on the unit circle ( uniformly distributed between 0 and /2) is found to be 

negative: 
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A high value for one of the measurements occurs when this measurement is 

taken along a direction close to u0, implying a low value for the measurement taken 

along the perpendicular direction. 

 

Appendix C 

 

For u  S2, let (u)  [0,] be its colatitude and (u)  [0,2[ its longitude. For 

n  N, define the random field Wn as 

))(),((2)(, ,

2
uuuu = Lnn YUWS ,   (17) 

 

where L is an integer uniformly distributed in [-n,n], U is an independent random 

variable with zero mean and unit variance (e.g., Gaussian), and Yn, is the real 

(tesseral) spherical harmonic of degree n and order , which can be expressed as a 

function of an associated Legendre polynomial and sine or cosine functions (Arfken 

and Weber, 2005). 

 

Because U has a zero mean and is independent of L, the expected value of 

Wn(u) is zero. For u and u′ on S2, the covariance between Wn(u) and Wn(u′) is  
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The addition theorem (Arfken and Weber, 2005) therefore gives: 

)),((cos),()}(),(cov{ uuuuuu ==
nnnn PPWW .  (19) 

 

Accordingly, the random field Wn is isotropic on S2, with zero mean and 

covariance function Pn(cos ), where  is the geodesic distance on the sphere.  
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CHAPTER IV.  

GEOSTATISTICAL MODELING OF ROCK 

QUALITY DESIGNATION (RQD) AND 

GEOTECHNICAL ZONING ACCOUNTING FOR 

DIRECTIONAL DEPENDENCE AND SCALE 

EFFECT  
 

This chapter addresses the problem of simulating the rock quality designation (RQD) 

in a polymetallic deposit, coupled with a change of support that accounts for the 

direction dependence of RQD. The contents of this chapter have been published in 

Engineering Geology:  

 

Sánchez, L.K., Emery, X., Séguret, S.A., 2021. Geostatistical modeling of 

Rock Quality Designation (RQD) and geotechnical zoning accounting for 

directional dependence and scale effect. Engineering Geology, 293: article 

106338. 
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Abstract  

 

The characterization of rock masses is an essential component for the 

planning and development of engineering designs in rock mechanics and rock 

engineering. The Rock Quality Designation (RQD) is a widely used rock mass 

characterization system that is direction-dependent, i.e., the measurement of a core 

sample depends not only on the sample position but also on its orientation. This 

paper outlines the critical aspects of the determination of RQD and proposes a 

physically-based upscaling strategy from borehole samples to large blocks, based on 

block-averaging the RQD values corresponding to the same direction, then 

calculating the minimum value over all the directions. An anisotropy index indicating 

how much RQD varies between one direction, and another is also derived. Using 

geostatistical simulation, our proposal allows interpolating and upscaling direction-

dependent geotechnical variables like RQD at any place in the geographical space 

for any direction, avoiding directional biases. We illustrate this proposal by predicting 

RQD in a polymetallic deposit, achieving geotechnical zoning and comparing the 

results with those of the traditional approach where the directional dependence of 

RQD is ignored. 

 

Keywords: RQD; geostatistical simulation; geotechnical zoning; directional 

dependence; upscaling. 

 

4.1. Introduction 

 

Proper zoning or domaining of areas presenting similarities in the lithological, 

structural, hydrogeological and rock quality components is of utmost importance for 

successful geotechnical designs in mining, geological and geotechnical engineering. 

The strength and deformability parameters of rock masses and the nature of the 

discontinuity network constitute complex information whose incorporation into the 

definition of different geotechnical domains is challenging and still a subject of 

significant uncertainties (Barton, 1990; Hudson, 2012; Chowdhury et al., 2012) that 
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do not evade to the well-known RQD (Rock Quality Designation; Deere et al., 1967) 

classification system. 

 

The RQD values are sensitive to the direction in which the core sample is 

collected (Palmström, 1982; Elsayed and Sen, 1991; Choi and Park, 2004; Emery 

and Séguret, 2020) and cannot be extrapolated straightforwardly to a more 

voluminous support, e.g., a three-dimensional block or the entire rock mass (Hoek 

and Brown,1980; Sen and Kazi, 1984; Cunha, 1990) without a proper management 

of the directional nature of the measurements. The directional dependence and the 

change of volumetric support (upscaling) are two critical aspects overlooked today by 

many practitioners, preventing a correct understanding of the spatial behavior of the 

rock mass and leading to inaccurate predictions. 

 

 The widely accepted practice of scaling the mechanical properties from a 

small piece of rock (e.g., a cylindrical borehole core, idealized as a 'line' support) to a 

three-dimensional 'block' support implies an assumption of isotropy (i.e., no 

directional dependence) of these properties at the working scale. Nevertheless, the 

geological materials often present spatial heterogeneities exhibiting a high contrast of 

the mechanical properties measured at two different locations, even at small 

distances (e.g., Cai, 2011; Song et al., 2011; Matonti et al., 2015; Pinheiro et al., 

2016; Vatcher et al., 2016; Gao et al., 2018). Such a contrast may also vary with the 

relative angle between the measurements, being less when comparing two parallel 

borehole cores than when comparing two perpendicular cores. The integration of 

these subsurface variabilities into models to simulate the behavior of the rock 

masses would be theoretically the right way to go. Therefore, the predictive reliability 

of any model applied to rock engineering is strongly dependent on an accurate 

representation of the spatial and directional variability of the modeled variable(s). In 

this context, we propose to use a geostatistical model taking account of the 

directional sensitiveness of RQD to facilitate the upscaling from line-supports to 

block-supports and to obtain a better representation of the degree of jointing or 

fracturing of rock masses. 
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Geostatistical tools allow integrating spatial variability into the modeling of the 

rock mass. The application of geostatistics in geotechnics is not a new topic (e.g., Oh 

et al., 2004; Stavropoulou et al., 2007; Exadaktylos and Stavropoulou, 2008; Choi et 

al., 2009; Ferrari et al., 2014; Pinheiro et al., 2016; Chen et al., 2017; Hekmatnejad et 

al., 2017; Boyd et al., 2019). However, the traditional geostatistical modeling applied 

to RQD for characterizing rock masses (Ozturk and Nasuf, 2002; Ozturk and Simdi, 

2014; Madani and Asghari, 2013) only considers its variability in the three-

dimensional geographical space, disregarding its directional dependence, e.g., when 

there is a predominant joint set, such as foliation and schistosity joints in 

metamorphic rocks. This work aims to compare the traditional approach (ignoring 

directional dependence) with a new proposed approach considering the directional 

dependence of RQD, illustrated with a case study of a polymetallic deposit. The 

results will highlight the advantages of the latter approach in the geotechnical zoning, 

knowledge of the spatial behavior of rock masses, and management of uncertainties 

in underground projects. The background and details of the proposed methodology 

are explained in Sections 4.2 and 4.3 and Appendix A, whereas the case study is 

presented in Section 4.4. A discussion, conclusions, and perspectives for future work 

follow in Sections 4.5 and 4.6. 

 

4.2. Background: directional dependence and upscaling of 

RQD 

 

The RQD rating (Deere et al., 1967) provides a quantitative measure of the 

degree of jointing or fracturing of rock mass from boreholes, consisting of 100 times 

the ratio between the total length of core pieces larger than 100 millimeters and the 

total core run length. The RQD classification system uses a continuous scale ranging 

from 0 to 100 to assign the rock mass quality and position it within one of five classes 

(excellent, good, fair, poor, very poor). In addition to the direct RQD calculation 

method, indirect methods have also been developed to estimate RQD considering 

different input data (Priest and Hudson, 1976; Palmström, 1982, 2005; Zheng et al., 

2018) and to incorporate it into rock classification schemes (Bieniawski, 1973; Barton 

et al., 1974; Hoek et al., 2013). However, already since its conception, there is an 
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awareness of one of its most obvious shortcomings: its directional dependence (e.g., 

Deere, 1989; Choi and Park, 2004). In the following, the directional dependence and 

upscaling will be described, providing details on how previous researchers have 

tackled them and how we will deal with them in our geostatistical model. 

 

4.2.1. Directional dependence 

 

The RQD values vary in space and according to the angle between the 

direction of the sample (borehole or scanline) and the discontinuities present in a 

rock mass. Since this directional dependence cannot be fixed, it is impossible to 

directly assess joint spacing conditions unless they do not depend on the direction 

(isotropic discontinuity network, whose properties are invariant under a rotation). 

Some attempts to minimize the biases caused by the directional dependence 

focused on drilling as many boreholes with different directions as possible (Deere, 

1989), modifying the original RQD concept, such as estimating RQD from the 

volumetric joint count Jv (Palmström, 2005), considering Terzaghi's correction and a 

fractured zone effect (Haftani et al., 2016), or performing the calculation based on 

weak zones (core washed, crushed zones, karst cavities) and joint orientation 

(Azimian, 2016). However, an alternative definition of RQD is unknown to most 

engineers, practitioners, and researchers. Moreover, these new RQD 

conceptualizations lose their most potent and engaging property: simplicity. On the 

other hand, cost-efficiency and other practical considerations limit the number of 

boreholes drilled for an underground exploratory campaign.  

 

An alternative solution to deal with RQD directional dependence has been 

proposed by Séguret and Guajardo (2015), who classified the borehole samples 

according to their sampling directions. However, this proposal does not circumvent all 

the limitations since RQD values can be predicted only in the directions that have 

been drilled, lacking any proper interpolation between them. Recently, Zheng et al. 

(2018) provide a new perspective about the directional dependence of RQD, 

considering this property as an advantage and proposing to estimate an anisotropy 

index of the jointing degree. The latter authors suggest selecting the minimum RQD 

value and its corresponding direction as the most representative of a specific rock 
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mass, which potentially reflects its real jointing degree and directly compares with 

other rock masses. However, this approach only applies to scanlines (in outcrops or 

excavation faces) with different orientations for the same location, in relatively intact 

rock masses (from medium weathered to fresh hard), and statistically homogeneous 

regions. Except for the case of an isotropic discontinuity network, the selection of a 

representative direction (here, the one corresponding to the minimum RQD) implies a 

loss of information on the directional behavior of RQD. 

 

We build on the best of each previous attempt to propose an alternative 

solution that considers the real regionalization space of RQD as the usual 

geographical 3D space crossed by the 2D space of dip and azimuth. Specifically, the 

RQD for one composite sample depends on the geographical position x (x1, y1, z1) of 

its gravity center and the direction u (𝛼, 𝜙) of the sample, with u a point of the unit 

sphere S2 of R3 characterized by its azimuth 𝛼 and dip 𝜙, see Figure 4.1 and 

Appendix A. This approach leads to the RQD measurements being assigned to five 

coordinates, which will allow evaluating the correlation between RQD values 

observed at different locations of this five-dimensional space (thus, depending not 

only on the geographical coordinates of the measurements but also on their angular 

coordinates). 

 

Figure 4.1. Geographical and angular spaces. Each core sample (blue cylinder) is indexed by the easting, 
northing and vertical coordinates of its gravity center in the geographical space, as well as its azimuth and dip in 

the angular space, totaling 5 coordinates. The measured RQD values depend on both the geographical and 
angular coordinates.  
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4.2.2. Upscaling  

 

The dependence of the mechanical properties of a rock mass with the 

geometric dimensions of the sample is known as the scale or support effect 

(Bieniawski, 1968; Pratt et al., 1972; Bandis et al., 1981; Barton, 1990; Cunha, 1990; 

Cuisiat and Haimson, 1992). This effect is a potential drawback for the spatial 

interpolation of mechanical properties observed at a limited (in size) sample to the 

overall rock mass. Considering that RQD in line supports (at borehole core or 

scanline scale) has a directional dependence, this dependence should remain in any 

subsequent change of support. In particular, such a change of support should not mix 

RQD values measured along different directions unless the discontinuity network in 

the rock mass is isotropic, in which case directional dependence does not arise.  

In practice, the support effect can be overlooked when a particular rock mass 

consists of purely intact rock or individual jointed block pieces are too small 

compared to the overall size of the engineering structure being considered. Hoek and 

Brown's criterion can thus be applied at the excavation/pit scale (Edelbro, 2004, 

Marinos and Carter, 2018). In such a situation, rock masses can be assumed as a 

continuum and isotropic medium, and the calculation of arithmetic averages from 

boreholes or scanlines (line-supports) to rock mass (block-supports) is justifiable 

(Marinos et al., 2005; Hoek, 2006). Then, when comparing the construction scale of 

rock excavations with the block size of intact rock, one can assume the rock mass is 

closely jointed and be treated as a homogeneous continuous equivalent whose 

discontinuities are implicit. However, such an assumption is not always possible and 

rarely occurs due to the nature of geological materials affected by tectonism, 

weathering, and alteration processes. 

 

Our approach to addressing the support effect is twofold. On the one hand, it 

is proposed to define a direction-dependent upscaled RQD value in a given block by 

averaging the RQD values measured along the same direction at different points 

discretizing the block, without mixing values measured in different directions. In this 

way, it is possible to know the directional variability of RQD in each block, accounting 

for the anisotropy of the rock mass and giving insights into the geometry of the 

fragments formed by the intersection of joints in a rock mass. On the other hand, in 
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addition to this 'directional' block-support RQD, we will also propose a 'non-

directional' block-support RQD by selecting the minimum RQD value (not the 

average) across all the directions of the two-dimensional angular space represented 

by a unit sphere, which is deemed the most representative value of the real jointing 

degree of the block. Accordingly, the 'directional' block-support RQD will be 

regionalized in the five-dimensional (geographical × angular) space, as is the RQD 

measured on core samples, while the 'non-directional' one will be regionalized only in 

the 3D geographical space. 

 

 

4.3. Methodology: geostatistical modeling and simulation 

 

Since it is defined on a continuous quantitative scale, RQD can be 

transformed into a variable (hereafter, denoted as Z) with a standard Gaussian 

distribution, a process known as Gaussian anamorphosis or normal-scores 

transformation (Chilès and Delfiner, 2012). Such a transformation is the first stage for 

geostatistical modeling, where the transformed variable (Z) is viewed as a Gaussian 

random field. In practice, the characterization of such a random field reduces to that 

of its mean value (here, the mean is set to zero) and its autocovariance function or, 

equivalently, its variogram. 

 

To simulate RQD, the following steps should be accomplished (details in 

Appendix A): 

I. The original RQD data are transformed into Gaussian data (normal 

scores), and an anamorphosis function that maps the RQD data into 

normal scores is defined. 

II. A variogram analysis of the normal scores data is performed, consisting 

in computing an experimental variogram that measures half the 

variance of the increment between two measurements based on their 

geographical and angular separations when RQD is regionalized in a 

5D space or just on their geographical separation when RQD is 
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regionalized in the 3D space. Subsequently, the experimental 

variogram is fitted with a theoretical model. 

III. A Gaussian random field is simulated at all the target locations and 

conditioned to the available data. The latter implies that the simulated 

values at locations with data must coincide with the data values. Here, 

we use the turning bands algorithm (Matheron, 1973) for the random 

field simulation and a post-processing kriging (Chilès and Delfiner, 

2012) for conditioning the simulated outcomes to the sampling data. 

IV. The Gaussian simulation is back-transformed to the RQD original scale 

by using the anamorphosis function defined at step I. 

 

4.4. Case study: jointed rock mass in a polymetallic deposit 

 

To illustrate the proposed methodology and compare it with the traditional 

approach, we present a case study corresponding to an underground mining 

operation. The aims are to simulate RQD within the deposit, considering its 

directional dependence and a change of support that can adequately characterize a 

volumetric support and be used for geotechnical zoning.  

 

4.4.1. Geological setting and data preparation 

 

The case study corresponds to a polymetallic deposit, the name and location 

of which will not be disclosed for confidentiality reasons. In an irregular tubular body, 

the mineralization is of the distal skarn type, related to intrusives of intermediate 

composition, where the most frequent alterations are chloritization and skarn type. 

The ore zone mainly comprises skarn and limestones. 

 

The deposit is located along a deformed belt composed of back-arc siliciclastic 

and carbonates rocks, unconformably covered with volcanic rocks, intruded by 

intermediate granodiorite and quartz-monzonite stocks and sills, the emplacement of 

which is structurally controlled by north-to-south-oriented faults. The structural 

evolution involves compressional reactivation of pre-existing extensional faults and 
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strike-slip episodes of deformation. Two main structural domains have been 

identified: an ENE-vergent fold-and-thrust system with steep dip angles (75° SE), 

while the second one is linked to dextral strike-slip movements with variable strikes 

and steep dips angles (60-80° SE). The discontinuities identified from geotechnical 

boreholes can be grouped into three main families, two sub-vertical and one sub-

horizontal, the orientations of which corroborate the influence of the regional 

structural background at the ore deposit scale rock mass (Figure 4.2). Locally, sub-

vertical and mid-dip secondary discontinuity systems also arise. 

 

Figure 4.2. Block modeling of rock mass class (based on rock quality designation observed at 3800 core 
samples) in a volume of 350 m along the east direction, 500 m along the north direction, and 700 m along the 

vertical direction (polymetallic deposit). The classes can be associated with lithological and structural 
characteristics of the deposit. 

 

The rock mass is stratified with a moderate weathering, the spacing of the 

strata being  between 6 and 20 cm, with a persistence greater than 20 m, opening 

less than 1 mm without filling, except for a slime patina. The metamorphosed 

limestone rock mass is more competent than rocks of similar composition, but is 

more brittle, with a higher Hoek-Brown modulus value (mi = 14) compared with their 

unmetamorphosed parent carbonate rocks (mi = 12). The ore zone and its 

environment have rock mass qualities that generally range from fair to good (RMR 

between 50 and 75), except for localized fault zones where the rock mass quality is 

poor (RMR between 25 and 35). The water condition is humid and adversely 
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influences the stability of the underground excavations and can vary to wet due to 

water seepage in fault areas.  

 

Boreholes have been drilled from the surface and from underground galleries, 

along which geologists have measured RQD and other geotechnical variables on 

intervals of lengths varying between 1 and 4 m. To model RQD, we calculated 

average values for 3 m long composites along the boreholes. The resulting database 

contains 3800 composited data with their locations (easting, northing, elevation, 

azimuth, dip) and rock quality designations. The sampled volume is about 350 × 500 

× 700 m3.  

 

4.4.2. RQD modeling  

 

As the distribution of RQD differs significantly from a Gaussian distribution 

(Figure 4.3), a normal score transformation (anamorphosis) is performed before 

variogram analysis and simulation. The transformation accounts for declustering 

weights calculated with the cell method (Journel, 1983), giving more importance to 

isolated data and downweighting clustered data to correct the effects caused by the 

irregularities of the sampling mesh. 

 

Figure 4.3. Experimental histogram of Rock Quality Designation (RQD) of borehole data composited at a length 

of 3 m. 
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We performed variogram calculations according to the parameters listed in 

Table 4.1 to identify preferential directions of continuity in the geographical space. 

The calculated variograms (Figure 4.4) show that no significant anisotropy in the 

geographical space exists for the normal scores data, be they regionalized in the 3D 

or the 5D space. The latter owes to experimental variograms calculated along 

different directions of the 3D space (with a fixed angular separation between paired 

data in the 5D approach) overlap to a great extent. Thus, henceforth, only 

omnidirectional variograms are calculated in the geographical space (Figure 4.5). 

The discontinuity observed at the origin ('nugget effect') is interpreted as a 

consequence of the small-scale variability of RQD, where continuity is not 

perceptible. On the other hand, it is also seen that the experimental variogram 

increases with the geographical separation distance and with the angular separation 

of the paired data until it reaches a sill at geographical separations of about 60 to 100 

m. The better continuity of RQD (slower increase and lower sill) occurs when the 

angular separation between the measurements is low. 

 

Table 4.1. Parameters for experimental variogram calculations 

  Horizontal variograms Vertical variograms 

Azimuth (°) 0, 90, 0 0, 0, 0 

Dip (°) 0, 0, 45 90, 0, 135 

Lag separation (m) 10 10 

Number of lags 45 45 

Angular separation between data (°) 0, 30, 60, 90 0, 30, 60, 90 

Azimuth tolerance (°) 90, 20, 90 90, 20, 90 

Dip tolerance (°) 20 20, 90, 20 

Lag tolerance (m) 5.0 5.0 

Angular separation tolerance (°) 15 15 

 

These experimental variograms of the 5D regionalized data are fitted by basic 

nesting models, each being the product of two components: a stationary 

geographical correlation and an isotropic angular correlation. The fitted variogram 

model is the following:  

𝛾𝑅𝑄𝐷(𝒉, δ) = (0.19)𝑛𝑢𝑔𝑔𝑒𝑡(𝒉) + (0.20)𝑠𝑝ℎ20,0
(𝒉, δ) + (0.35)𝑠𝑝ℎ40,0

(𝒉, δ)

+ (0.14)𝑠𝑝ℎ130,0
(𝒉, δ) + (0.10)𝑠𝑝ℎ130,2

(𝒉, δ) + (0.14)𝑠𝑝ℎ
,2

(𝒉, δ) 

 

with h and  being the geographical and angular separations between two 

measurements (Figure 4.4e), and sphLa,n(h,) being one minus the product of an 
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isotropic spherical correlation with a range a evaluated at h, and a Legendre 

polynomial of degree n evaluated at cos(), see Eq. (A.4) in Appendix A.  

 

 

Figure 4.4. Experimental variograms of normal scores data in horizontal, vertical, and oblique directions, for 
geographical separations ranging from 0 to 500 m and angular separations equal to (a) 0°, (b) 30°, (c) 60°, and 
(d) 90°. The geographical separation measures the distance between the gravity centers of the paired samples, 

while the angular separation measures the difference between their orientations (e).  
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The variogram model for the 5D regionalized data fits quite well the calculated 

experimental points for all the different geographical and angular separations 

between paired data (Figure 4.5). The first milestone on the ordinate axis 

corresponds to the nugget effect, with a partial sill of 0.19. After that, one uses three 

nested structures corresponding to the product of a spherical covariance with a range 

of 20, 40, or 130 m and a zero-degree Legendre polynomial. The latter is identically 

equal to 1, so that the three nested structures exclusively depend on the 

geographical separation. Finally, two nested structures consider the product of long-

range spherical covariances with a second-degree Legendre polynomial, varying with 

the angular separation. The use of a zonal anisotropy (spherical structure with an 

infinite range) and the fact that the second-degree Legendre polynomial changes 

from positive to negative values as the angular separation increases allow modeling 

the increase in the variogram sill with the angular separation.  

 

Figure 4.5. Experimental (asterisks) and modeled (solid lines) variograms of the normal scores data for 
geographical separation distances ranging from 0 to 150 m and angular separations between paired data ranging 

from 0° to 90°. 

 

For the traditional approach (3D regionalized data), we consider only the basic 

nested structures that depend on the geographical coordinates, and the variogram 

model remains as follows: 

𝛾𝑅𝑄𝐷(𝒉) = (0.19)𝑛𝑢𝑔𝑔𝑒𝑡(𝒉) + (0.20)𝑠𝑝ℎ20,0
(𝒉) + (0.35)𝑠𝑝ℎ40,0

(𝒉) + (0.24)𝑠𝑝ℎ130,0
(𝒉) 
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The proposed variogram models (for both the traditional and directional 

approaches) are validated using leave-one-out cross-validation techniques (Figure 

4.6). The RQD at each data location is simulated 500 times conditionally to the 

neighboring data in a radius of 200 m, excluding the five adjacent composites from 

either side of the same borehole to avoid considering data too close to the target 

location. The outcomes of the 500 simulations are then averaged to obtain a 

prediction at the data location, which is compared against the true RQD value. The 

dispersion diagram between predicted and true RQD values for both approaches has 

a regression line that matches the first bisector (Figs. 6a, c), proving that the 

simulations are conditionally unbiased (Chilès and Delfiner, 2012). Furthermore, 

accuracy plots (Goovaerts, 2001) allow evaluating the capability of the 500 

simulations to measure the uncertainty associated with the true values: the fraction of 

true values belonging to the p-probability interval is practically equal to p, whatever 

this probability is in [0,1] (Figs. 6b, d). 
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Figure 4.6. Leave-one-out cross-validation results: (a, c) scatter plots between true RQD (vertical axis) at the 
sampling locations and the average of 500 simulations (horizontal axis) conditioned to the data in a neighborhood 

of the target location (excluding the five nearest composites on either side of the same borehole), and (b, d) 
accuracy plots showing the proportion of data belonging to a probability interval as a function of the interval 

probability, (a, b) for traditional and (c, d) directional approaches. 

4.4.3. Conditional simulation 

 

Simulation is performed in the geographical space on a regular grid with a 

mesh of 2 m x 2 m x 20 m covering part of the sampled region, for three directions in 

the angular space: north, east and vertical. Five hundred simulations of RQD are 

constructed at each target grid node and direction. The maps plotted in Figs. 7 and 8 

show a horizontal slice (43,750 nodes) at elevation 350 m above the mean sea level 

of the geographical space. The borehole data distant less than 10 m from the target 

grid (Figure 4.7) or less than 10 m from the target grid and 45° from the target 

direction (Figure 4.8) are superimposed, together with envelopes delimitating 

'confidence regions' inside which the kriging error variance is less than 90% of the 

data variance (i.e., the borehole data are informative and significantly reduce the 

uncertainty inside the envelope). In the maps of the average of the 500 simulations, 

the most remarkable contrast in RQD is observed in areas where the borehole data 

are present for both the traditional (Figure 4.7b) and directional (Figs. 8b, d, f) 

approaches. This contrast is consistent with field information, according to which the 

rock mass quality is good (RQD > 75) in the eastern side of the sampled area, 

corresponding to the ore zone, and becomes regular (RQD < 50) in the western side. 

 

For both approaches, the simulated RQD values vary from a poor (RQD 

~40%) to an excellent (RQD >90%) rock quality in just a few tens of meters apart 

(Figs. 7a, 8a, 8c, 8e). The map for the average of the 500 simulations using the 

traditional approach (Figure 4.7b) shows a more significant similarity with the average 

map of the directional approach when RQD is simulated along the north direction 

(Figure 4.8b). This coincidence is an artifact since most of the boreholes in the study 

area are oriented sub-horizontally and mainly in a north-southeast direction, as 

corroborated by the superimposed borehole data on the maps. 
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Figure 4.7.  Simulation of RQD using the traditional approach (ignoring directional dependence and regionalizing 
RQD in the 3D geographical space only). (a) Map of the first simulation. (b) Map of the average of 500 

simulations. Black dots correspond to the borehole data distant less than 10 m from the grid, and the contour 
represents the envelope of the kriging variance equal to 0.9 times the data variance.  
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Figure 4.8.  Simulation of RQD using the directional approach (regionalizing RQD in the 3D geographical space 
crossed with the 2D angular space). (a, c, e) Maps of the first simulation for (a) north, (c) east, and (e) vertical 

target directions. (b, d, f) Maps of the average by direction of 500 simulations for (b) north, (d) east, and (f) vertical 
target directions. Black dots correspond to the borehole data distant less than 10 m from the grid and 45° from the 
target direction. The contour represents the envelope of the kriging variance equal to 0.9 times the data variance. 
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Geologists and mining engineers could interpret very favorable conditions 

towards the east of the study area only based on Figure 4.7b (traditional approach), 

corroborating the influence of the major structural domains (ENE-vergent fold-and-

thrust system with dip angle 75° SE, and dextral strike-slip movements with dips 

angles 60-80° SE). Even though it is true that a better rock quality is present in that 

sub-area, this interpretation is conditioned by the RQD values measured along a 

specific sampling direction, which is likely to be biased with respect to the RQD 

measured in other directions for the same area. The risk of bias is minimized when 

RQD is simulated along different directions using the directional approach, and one 

can be aware of the variations of RQD in the geographical space and the angular 

space. The good rock quality towards the east, evidenced in all the maps, above all 

along the vertical and north directions (Figs. 8b, d, f), can be confidently interpreted 

as the real behavior of the rock mass. The comparison between the simulation 

results in the absence or presence of a directional component allows visualizing the 

spatial variability to be expected in the field for a given direction. The latter is helpful 

in quantitatively define favorable conditions for the advance of the excavation from a 

quantitatively and non-qualitatively point of view, as is currently done in Bieniaswski's 

RMR classification. 

 

4.4.4. Change of support (upscaling) 

 

The change from the sample support (cylindrical borehole composite) to block 

support implies averaging simulated RQD values in the geographical space. 

However, it does not make sense to average RQD values associated with different 

directions. For the change of support to be meaningful, a single direction has to be 

chosen, and all the RQD values being averaged should correspond to this direction. 

In the traditional approach, the selection of an appropriate direction to conduct a 

change of support is a challenge, insofar as it is necessary to find a 'representative' 

direction for (a) measuring RQD and (b) averaging the RQD values on the block: 

otherwise, one calculates a non-directional block-support RQD value that mixes 

different directions (Figure 4.9, right panel). In the proposed (directional) approach, 

the problem is solved straightforwardly by defining as many block-support RQD as 

directions of interest, with no need for the data to be measured along the same 
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direction because RQD can be simulated for each geographical coordinate and each 

direction (Figure 4.9, top left). The regionalization in a 5D space (left panel) therefore 

allows calculating a directional RQD. All the calculations can be made on each 

simulation separately or averaged over the 500 simulations to obtain a prediction. 

 

Figure 4.9. A synthesis of the different upscaling proposals. Ns stands for the number of samples per block, Nb 
for the number of blocks in the geographical space, Nk for the number of simulations, and Nj for the number of 

directions in the angular space. 

If a block has to be characterized by a single RQD value, the minimum RQD 

over all the directions should be considered, which leads to a 'non-directional' block-

support RQD (Figure 4.9, middle left). In such a case, the change of support is 

essentially non-additive as it relies on a minimum and not an average over the 

directions. Since the use of a single RQD value to represent the degree of jointing or 

fracturing in a block is less informative than a direction-dependent RQD (given the 

high variability in the angular space), we propose to complement the non-directional 

(minimum) RQD with an anisotropy index (AI) of jointing degree for rock masses, 

following Zhen et al. (2018). The AI measures the spread or dispersion of the RQD 

for each block within the angular space. In this work, the AI of the jointing degree is 

defined for each block and each simulation as one hundred times the difference 

between the maximum and minimum RQD values across all the directions, divided by 

the maximum RQD value (Figure 4.9, bottom left): 
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𝐴𝐼 = 100 (
𝑅𝑄𝐷𝑚𝑎𝑥 − 𝑅𝑄𝐷𝑚𝑖𝑛

𝑅𝑄𝐷𝑚𝑎𝑥
). 

 

Figure 4.10 shows that the anisotropy index is between 30% to 80%, with a 

marked contrast in the eastern part of the map close to the sampled area. This 

anisotropy of the jointing degree for the rock mass (directional variability of RQD) is 

not negligible and cannot be detected when RQD is regionalized in the three-

dimensional geographical space and the directional component is discarded (i.e., 

using the traditional approach).  

 

Figure 4.10. Map of anisotropy index (AI) of jointing degree using the directional approach (average index over 
500 simulations). The blue contour represents the envelope inside which the kriging variance in all the directions 
is less than 0.9 times the data variance (intersection of the directional envelopes as defined in Figure 4.8). The 
black contour represents the envelope inside which the kriging variance in at least one direction is less than 0.9 

times the data variance (union of the directional envelopes as defined in Fig. 8). Both envelopes enclose 
'confidence regions' in which the borehole data are informative.  

 

In addition to the minimal RQD over all the directions (as the representative 

value of a block) and the anisotropy index (indicating how much RQD varies from 

one direction to another), one can identify the direction for which the minimal RQD is 

reached. This direction sheds light on the anisotropy of the discontinuity network in 

the rock mass and on the existence of preferential fracturing directions, as in the 

Terzaghi concept (Zhen et al., 2018) (the minimum RQD is expected to occur along 

the direction perpendicular to the fracture planes). Such an analysis can be made 

locally (for a single block) or for a group of blocks. As an illustration, Figure 4.11 is an 

azimuthal projection of the upper hemisphere of an equal-angle polar net (Priest, 

1985) showing the directional concentration for the minimum simulated RQD at a 
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regular grid of the geographical space (1,750 blocks) and 100 directions spanning 

the space at intervals of 36° and 18° in azimuth and dip, respectively, where the gray 

dots represent the sampling directions. On average, the RQD rating decreases by 

20.66% when considering the direction of the minimum value per block due to its 

directional dependence. The minimum RQD is more frequently reached along 

directions of azimuth between 330° to 350° and dip between 30° and 45°, or 

directions with azimuth between 285° and 315° and dip between 30° and 45°. The 

latter suggests that the fracture planes tend to be sub-horizontal to oblique with a 

northwest-north direction, similar to the orientation of the parallel structural domain 

(NW-SE). 

 

Figure 4.11. Upper hemispherical equal angle polar projection net or regionalized azimuthal projection showing 
the concentration of the directions for which the minimum block-support RQD is reached. Calculations consider 

500 simulations and 1,750 blocks of 10 × 10 × 20 m in a horizontal section of the geographical space. The sphere 
is discretized into 100 directions. Concentric circles represent the dip/plunge each 30°, increasing from outside 
and azimuths measured clockwise in degrees from north indicated in the out end the projection. The grey dots 

correspond to the sampling directions of the borehole data. 

 

RQD can be predicted at the block support by averaging the simulated RQD 

over many scenarios, as shown in Figs. 7 and 8 for the composite support. When the 

results of the 3D traditional approach (Figure 4.12a) are compared with those using 

the directional approach (Figure 4.12b-f), several differences arise, highlighting the 

influence of the directional dependence of RQD in the geomechanical zoning of the 

rock mass. In essence, Figure 4.12a bears more resemblance to Figure 4.12e, where 

RQD is simulated along the north direction, than to Figure 4.12e and 12f 

corresponding to RQD simulated along the east and vertical directions. This reveals 

a bias of the RQD predicted with the traditional approach, conditioned to particular 
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sampling directions, and cannot be extrapolated to other directions. In contrast, the 

directional block-support RQD (Figure 4.12d-f) is more informative and helpful for 

geotechnical designs and rock mass rating or geotechnical zoning. Since it is an 

unbiased representation for a specific direction, it can evaluate the impact of the 

advance of the rock excavation in this direction in rock mass mechanical behavior. 

 

Figure 4.12. Map of the average of 500 simulations of block-support RQD obtained with the (a) 3D traditional 
approach and with the directional approach; (b) average block-support RQD over all the directions; (c) minimum 

block-support RQD over all the directions; directional block-support RQD along the (d) north, (e) east and (f) 
vertical directions. The maps in (a) and (b) mix different directions and do not have a clear physical meaning, 

while the maps in (c-f) only refer to a single direction per block (most conservative direction in (c), which may vary 
from block to block, and fixed direction in the other maps). 
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To exemplify the impact of directional RQD modeling in engineering decision-

making, consider a tunnel bored along the north-south direction with a width of 30 ft 

(9.4 m) in an igneous/metamorphic rock, typical in the study area, where real rock 

pressures or swelling/squeezing ground do not exist. According to the rock support 

classification system based on RQD for tunnels of varying widths (Deere, 1989), 

either steel sets or reinforced shotcrete or RIB is compulsory almost everywhere if 

one relies on the RQD corresponding to the worst-case scenario for each block (Fig 

12c), which may be too pessimistic. In contrast, based on the directional block-

support RQD associated with the tunnel direction (north-south) (Fig 12d), only a 

pattern bolting (4-6 ft centers) or a 4-6 cm shotcrete is required in the eastern side of 

the area under study. On the other hand, considering the RQD models obtained with 

the traditional approach (Figure 4.12a) or with the average scenario (Fig 12b) 

(average RQD over all the directions and all the simulations) gives a misleading 

representation of the actual rock quality in the eastern part, with a minimal 

requirement (no support or local bolts, which is too optimistic). 

 

4.4.5. Geotechnical zoning  

 

The lithological characteristics and the degree of alteration are homogeneous 

in the studied area; therefore, the rock mass quality is the most relevant criterion for 

its geotechnical zoning. Our results on the upscaled RQD may conveniently be 

integrated into widely used rock mass classification systems, such as the RMR and 

its modifications (Bieniawski, 1973, 1989; Hoek et al., 2013; Bertuzzi et al. 2016), the 

Tunneling Quality Index (Q; Barton et al., 1974) and the Geological Strenght Index 

(GSI; Marinos and Carter, 2018). Following Deere et al. (1967), we relate our 

simulated block-averaged RQD value with the engineering rock mass quality and 

implement a geotechnical zoning map (Figure 4.13). For each block and each 

simulation, the simulated block-support RQD is assigned one of five classes 

(excellent, good, fair, poor, very poor), then the class that most frequently appears 

across the 500 simulations is retained as the final classification of the block.  
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The zoning maps so obtained strongly differ, depending on whether one 

considers the non-directional RQD calculated with the traditional approach (Figure 

4.13a), or the average (Figure 4.13b) or the minimum (Figure 4.13c) RQD over all the 

directions calculated with the proposed approach. The former approach ignores the 

directional dependence of RQD and mixes measurements made in different drilling 

directions. Therefore, the map in Figure 4.13a lacks physical sense, where the 

primary class is a fair quality rock, with 85% of the blocks, followed by a good quality 

rock with 8%. The remaining are between poor (3.7%) and excellent (3.3%). A similar 

mixing arises with the map in Figure 4.13b: although RQD is regionalized in a 5D 

space, the simulated values are then averaged over all the directions, yielding zoning 

similar to the traditional approach (poor 0.3%, fair 88.1%, good 11.5%, and excellent 

0.1%). In contrast, the map in Figure 4.13c only considers the 'worst' direction for 

each block (the one associated with the lowest RQD) and yields a more conservative 

definition of the geotechnical domains, where almost three-quarters of the blocks are 

classified as poor to fair rock (73.4%) and the rest as very poor. This is the price to 

pay to get geotechnical zoning that is non-directional and, at the same time, 

physically meaningful. 

 

Figure 4.13.  Geotechnical zoning map using block-support (upscaled) RQD. (a) The most probable class is 
based on 500 simulations obtained with the traditional 3D approach. (b) and (c) Most probable class based on 

500 simulations obtained with the 5D directional approach: average over all the directions (b) and minimum RQD 

over all the directions (c).  
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4.5. Discussion  

 

Contribution of our work. Like all types of one-dimensional measurements 

(borehole cores and scanlines), RQD depends not only on the geographical position 

of the sample but also on its direction, precluding a direct averaging that mixes 

different directions as a proper upscaling strategy. Upscaling must appropriately 

address the directional dependence to reduce uncertainties in geotechnical projects. 

Our proposal considers regionalizing the RQD data in a five-dimensional space 

corresponding to the three-dimensional geographical space crossed with the two-

dimensional sphere, allowing RQD to be interpolated at any place in the geographical 

space and for any direction. Knowing the rock mass quality in specific directions is 

beneficial to evaluate the impact of the discontinuity orientations for tunnels, slopes, 

or foundation designs. The latter becomes critical, bearing in mind that the rock mass 

behavior is influenced by the regional geological structures rather than by the 

strength of intact rock, as shown, for instance, by the coincidence of the orientation of 

minimum RQD values (Figure 4.11) with regional structural faults. 

 

 Applicability. The 5D geostatistical approach requires sampling data 

with information on RQD and on the borehole positions and orientations, information 

that should always be logged and readily available in any good geotechnical 

database. The spatial and directional behaviors of RQD can be modeled in a flexible 

manner, using basic nested structures to fit the experimental variogram of the RQD 

data. This makes the proposal applicable to an extensive range of rock masses and 

conditions, including both weak and complex situations, such as tectonized 

(disturbed and broken by structural dislocation, shearing, folding, or compression) or 

heterogeneous (flysch formations or molassic formations) rock masses. 

 

Practical limitations. If all the boreholes have the same or almost the same 

orientation (e.g., vertical), then it can be challenging to infer the directional behavior 

of RQD and to apply the 5D geostatistics approach. Other practical limitations of this 

approach are the assumptions of stationarity in the geographical space and isotropy 

on the sphere (see Appendix). The former assumption is often sensible after 
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partitioning the deposit into areas (‘geotechnical domains’) with similar structural and 

mechanical characteristics and performing the geostatistical analysis within each 

domain separately. As for the latter assumption of isotropy, it may be questionable 

when there is only one network of parallel fractures, in which case it would make 

sense to work with anisotropic variogram models on the sphere. 

 

3D vs. 5D modeling. The traditional (three-dimensional, non-directional) and 

proposed (five-dimensional, directional) approaches to modeling RQD in rock 

engineering applications have been cross-validated, providing a good fit in terms of 

prediction and uncertainty assessment. Each approach has its pros and cons. For 

lower computational requirements and pre-processing time, the traditional approach 

achieves a globally good prediction of RQD but is locally biased as per the drilling 

direction. The directional approach is more demanding in terms of modeling and 

computational capacity but provides information on the directional RQD behavior, 

which is valuable for geotechnical zoning and decision-making as it reflects the 

inherent nature of the geotechnical parameters (their directional dependence) and 

can give an insight into the geometry of the rock fragments when combined with 

other direction-dependent parameters such as the fracture frequency. This approach 

accounts for the fact that, in the presented case study, one measurement of RQD 

provides much information about values at surrounding locations along the same or 

nearly parallel directions, as indicated by low variogram values at short separation 

distances and small separation angles (Figure 4.5). However, an RQD measurement 

provides less information in a perpendicular direction. Therefore, it constitutes good 

practice to account for the directional dependence of RQD in any geostatistical 

modeling and upscaling analysis. 

 

4.6. Conclusions and perspectives 

 

The common practice in geotechnical modeling overlooks the directional 

dependence of geotechnical variables and characterizes volumetric support 

assuming rock masses as a continuum and isotropic medium and extrapolating or 

averaging sample-support information (from boreholes or scanlines) to a three-
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dimensional block support or to the rock mass. However, rock masses are seldom 

isotropic and are generally heterogeneous, hence our proposal to tackle the change 

of support problem by accounting for the inherent directional dependence of RQD 

(5D regionalization) and for its uncertainty at unsampled locations (use of 

geostatistical simulations). This change of support is performed by averaging the 

RQD simulated along a specific direction on a grid, discretizing each block in the 

geographical space. The upscaled directional RQD is practical, simple, and does not 

modify the original concept of RQD, making it suitable and serviceable in engineering 

applications, e.g., to determine required tunnel support. The directional approach 

better reproduces the geographical and directional heterogeneity and real nature of 

the rock mass. A non-directional upscaled RQD can also be derived from this 

approach by considering the minimum value obtained over all the directions 

(corresponding to the most unfavorable direction of fracturing, i.e., the worst-case 

scenario) and complemented with an anisotropy index of jointing degree (sensu 

Zheng et al., 2018). Both the directional and non-directional RQD so obtained directly 

impact the prediction of safety factors and control measures in rock engineering 

projects.  

 

Our directional approach can be used for geotechnical zoning (Figure 4.13), 

i.e., classifying the rock mass into similar design areas. Besides helping determine 

fault zones, and by applying empirical formulas, it is also possible to calculate other 

mechanical parameters such as the modulus of elasticity or the unconfined 

compressive strength (Zhang and Einstein, 2004, Zhang, 2016). This approach is 

helpful in any stage of a geotechnical project. At the exploratory or early stages, it is 

suggested to use adaptive geometries in the block model: the size of the block will 

depend on the variability of the geotechnical parameter in the sector and the 

available information, i.e., the less amount of available information (and the more 

variability of RQD), the larger the block size. At the development and production 

stages, it is possible to model the geotechnical parameters, whether in a parallel or 

perpendicular direction, to advance the construction of the excavation in rock. 

 

One way to optimize the analysis is to use adaptive geometries in the block 

model in further developments, giving a higher resolution (smaller block size) in 
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areas with a higher anisotropy index or vice versa. Moreover, for upscaling 

directional variables such as RQD, it is interesting to analyze the relationship 

between strength and stiffness versus block size to determine the Representative 

Volume Element size, REV (Zhang et al., 2017).  

 

To broaden the scope of application of the presented proposal, future works in 

the 5D geostatistical modeling should include the design of variogram models and 

simulation algorithms using non-separable covariance functions or anisotropic 

covariances on the sphere, together with exploratory tools to identify preferred 

directions of anisotropy on the sphere based on sampling information. 

 

Appendix A 

 

A.1. Traditional approach: modeling RQD in the 3D Euclidean space 

 

This approach considers that RQD varies only with the geographical 

coordinates (easting, northing, and elevation), i.e., regionalized in the Euclidean 

space R3. A common practice for geostatistical modeling is to assume second-order 

stationarity, i.e., the mean value and the covariance function or the variogram are 

invariant under a translation in space, which allows their inference from a set of 

sampling data (Chilès and Delfiner, 2012). A convenient way to model the 

experimental covariance (or experimental variogram) is through a positive linear 

combination of basic nested structures: 

                                𝐶(𝒉) = 𝑐𝑜𝑣{𝑍(𝒙 + 𝒉), 𝑍(𝒙)} =  𝑏𝑠

𝑆𝑚𝑎𝑥

𝑠=1

𝜌𝑠(𝒉)                                           (𝐴. 1) 

where Z is the Gaussian random field associated with RQD, x and x+h are two 

points in the geographical space separated by vector h and, for s = 1,… Smax, bs is a 

nonnegative real value, and 𝜌s is an autocorrelation function (positive semi-definite 

function taking the value 1 at h = 0).  

 The Gaussian random field can then be simulated as a sum of Smax 

components, each associated with a particular nested structure: 
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                                                                          𝑍(𝑆)(𝒙) =  √𝑏𝑠

𝑆𝑚𝑎𝑥

𝑠=1

𝑍𝑠
(𝑆)(𝒙)                                   (𝐴. 2) 

where the superscript (S) stands for 'simulated'. The reader is referred to Emery and 

Lantuéjoul (2006) for algorithmic details on the simulation process for the nested 

structures commonly used in geostatistical applications. 

 

A.2. Directional approach: modeling in a 5D product space 

 

To account for the fact that RQD is direction-dependent, the associated 

random field Z is now defined in a five-dimensional space (R3 × S2, with S2 the unit 

sphere), i.e., Z = {Z(x,u): x  R3 and u  S2}, where x represents the geographical 

coordinates of the measurement, and u the direction (azimuth and dip) of this 

measurement.  

 

The simplest way to model the spatial correlation of regionalized data in such 

a 5D space is to consider second-order stationarity in the geographical space and 

second-order isotropy on the sphere. These assumptions imply that the mean value 

is constant and that the covariance function or the variogram between the two 

random variables located at (x,u) and (x,u) in R3 × S2 only depends on the 

separation vector h = x-x and on the geodesic distance or angular separation (u,u) 

= arcos(<u,u>), with < , > the inner product. The modeling can be extended as 

follows: 

       𝐶(𝒉, 𝛿) =  𝑏𝑠𝐶𝑠(𝒉, 𝛿)

𝑆𝑚𝑎𝑥

𝑠=1

                                                   (𝐴. 3) 

where, bs ≥ 0 for s = 1,… Smax and Cs is a basic autocorrelation (positive semi-

definite) function defined on R3 × [0, ]. In this work, separable basic autocorrelation 

functions are used: 

𝐶𝑠(𝒉, 𝛿) = 𝜌
𝑠
(𝒉)𝑃𝑛(𝑠)(cos 𝛿)                                                     (𝐴. 4) 

where 𝜌s is an autocorrelation function in R3 and 𝑃𝑛 the Legendre polynomial of 

degree 𝑛. Schoenberg (1942) showed that the mapping 𝛿 ⟼ 𝑃𝑛(cos 𝛿) is an isotropic 

correlation function on the sphere. Because the Legendre polynomial 𝑃𝑛 has the 
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same parity as 𝑛, and because the RQD measurement along a direction u is the 

same as along the opposite direction -u, the covariance should remain the same 

when changing (u,u) into -(u,u), i.e., when changing Pn(cos ) into Pn(-cos ). 

Accordingly, only even degrees 𝑛(𝑠) should be considered in Eq. (A.4). 

 

As for the previous approach, the Gaussian random field can be simulated as 

a sum of Smax components. Each component is associated with a particular nested 

structure and separates into the product of a geographical component and a 

directional component (Sanchez et al., 2019): 

                         𝑍(𝑆)(𝒙, 𝒖) =  √𝑏𝑠

𝑆𝑚𝑎𝑥

𝑠=1

𝑍𝑠
(𝑆)(𝒙)𝑊𝑠

(𝑆)(𝒖)                                              (𝐴. 5) 

 

with 𝑍𝑠
(𝑆)(𝒙) a zero-mean random field in the Euclidean space with autocorrelation 

𝜌𝑠(𝒉), and 𝑊𝑠
(𝑆)(𝒖) a zero-mean random field on the sphere with autocorrelation 

𝑃𝑛(𝑠)(cos 𝛿), see Emery and Porcu (2019) or Lantuéjoul et al. (2019) for examples on 

how to simulate random fields on the sphere.
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CHAPTER V.  

SLOPE CONSTRUCTABILITY ACCEPTANCE 

CRITERIA FOR OPEN PIT MINE DESIGN: A 

CASE STUDY ON A CHILEAN COPPER MINE 
 

 

This chapter addresses the problem of simulating the slope mass rating (SMR) in a 

porphyry copper deposit (Radomiro Tomic, northern Chile), through a multivariate 

simulation of the underlying factors defining SMR. The realizations are post-

processed to provide analyses on the slope performance and stability of open pit 

excavations. The contents of this chapter have been submitted to Rock Mechanics 

and Rock Engineering:  

 

Sánchez, L.K., Emery, X., Delonca, A., 2022. Slope constructability 

acceptance criteria for open pit mine design: A case study on a Chilean 

copper mine. Rock Mechanics and Rock Engineering, submitted. 
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Abstract  

 

Geotechnical modeling plays a crucial role in the optimization of open pit mine 

planning and design, given that the final pit slope configurations are constrained by 

stability considerations. One of the most useful methods for rock slope stability 

analysis is the Slope Mass Rating (SMR) classification. SMR is obtained from the 

basic Rock Mass Rating (RMR) by means of corrective factors that depend on the pit 

slope and discontinuity orientations and on the excavation method. In this work, a 

methodology is proposed to map the geomechanical quality of the pit slope, which 

allows to predict structurally controlled failures and to determine stability classes at a 

local scale across a mineral deposit, to delineate likely instability zones. The key to 

our proposal is to regionalize the variables that define RMR in the geographical 

space crossed with an angular space, in order to account not only for their spatial 

variations but also for their directional dependence, and to construct outcomes of 

these variables through geostatistical simulation, in order to account for their 

uncertainty at unsampled locations. The methodology is applied to a data set from a 

Chilean copper mine and leads to the selection of acceptable slope design criteria for 

the pit, based on a chart considering SMR and height design to predict a safe slope 

angle. 

 

Key words: geostatistical modeling, rock mass rating, slope mass rating, local 

prediction 

 

5.1. Introduction  

 

Geotechnical engineering in open pit mining deals with a rock mass whose 

behavior must be inferred from limited and expensive observations using geological 

knowledge and statistical reasoning. As the engineering properties of the rock are not 

well known, the probability of slope failure is uncertain. Discontinuities govern one 

typical breakage of the rock mass. It occurs according to formed surfaces by one or 

more joints., i.e., the mode of failure involves a block of material sliding on two or 
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three planes of discontinuity and may occur on either a bench scale or as a failure of 

the overall pit slope, and it is not unusual to encounter several of these failure types 

or combinations of failure types in an open pit slope. The consequences of a mine 

slope failure are varied, and slope risk profiles are commonly driven by short design-

life scenarios and the ability to control access to the slope. The safety, 

environmental, and business risks associated with slope failures must be weighed 

against mining costs for a particular slope design. Still, it is formally considered in the 

decision-making process as a part of the cost structure for the mine. An excellent 

geotechnical mine slope design integrates all these factors to produce a balanced 

compromise between safety on the one hand, and operational and economic 

efficiency on the other. It means that the design must be adjusted until an acceptable 

trade-off is reached, which requires reliable approaches to cover both the structurally 

controlled failures (e.g., planar, wedge, and toppling) and circular type failures 

associated with strongly fractured rock masses.  

 

The assessment of the stability of these slopes depends on good geological, 

geotechnical, and groundwater models and an understanding of the risks and 

economic consequences of slope instability. Geotechnical modeling is one of the 

essential components of the planning and development of open pit mining projects. 

The basis for a geotechnical model is often a resource geology model and an 

exploration drilling data set. Although engineering properties of soils and rocks in the 

slopes will vary from place to place around the mine site, current geotechnical 

approaches applied in most of the mining operations assume average values and 

uniformity of the geotechnical parameters such as the fracture frequency, strength, or 

rock mass quality (RQD, GSI, or RMR) over large distances. These assumptions 

have negative impacts on the design of the rock excavations because geological 

phenomena have spatial heterogeneities that result in high contrasts of strength and 

rigidity properties at a small scale. Spatial heterogeneity implies that a rock mass with 

good strength and rigidity can exhibit rapidly contrasting properties just a few meters 

apart. Consequently, predicting the mechanical behavior of the rock mass and 

reducing uncertainty is further complicated. Such complexities regarding the spatial 

variability and uncertainty measurement inherent to current rock mass modeling 

approaches can be addressed by using geostatistics.  
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Geostatistical techniques have been applied in geotechnics for over two 

decades, mainly in view of predicting or simulating geotechnical parameters for the 

classification of rock mass using empirical methods (e.g., Ozturk and Nasuf, 2002; 

Madani and Asghari, 2013; Ozturk and Simdi, 2014; Pinheiro et al., 2016; Santos et 

al., 2018). These works confirm the advantages of using geostatistics to model 

geotechnical parameters, but they lack a systematic analysis of the direction-

dependence of most geotechnical variables. Direction-dependence means that the 

measured value depends not only on the geographical position of the sample, but 

also on the sampling direction. This is an intrinsic characteristic that must be 

incorporated into prediction or simulation methods to avoid biases when looking for a 

representative value of the classification of the rock mass (Séguret et al. 2015; 

Sánchez et al., 2019; Emery and Séguret, 2020).  

 

Our proposal, detailed hereinafter, uses empirical rock and slope quality 

classification systems because it appears to be the most practical solution for the 

preliminary analysis of structurally controlled failures. Slope mass rating (SMR), 

suggested by Romana (1985), is a popular geotechnical slope classification system 

to predict potential failures controlled by discontinuities establishing a correlation 

between slope and discontinuity orientations. The effect of joints and other structural 

defects should be accounted for in the assessment of the rock mass strength (e.g., 

when using the Hoek-Brown strength criterion) and/or the stability analyses. We 

recognize and address these challenges of including all important defects in the rock 

mass classification. It means considering the directional dependence of the 

measurements (directional bias), heterogeneities (loss of spatial continuity introduced 

by the orebody genesis), large scale geometry, and orientation.  

 

The outline is as follows. Section 5.2 presents empirical rock and slope quality 

classification systems that will be used. Section 5.3 includes a synthesis of how to 

tackle the directional-dependence and provides some technical details of the 

proposed methodology to model geotechnical variables in a five-dimensional space 

corresponding to the three-dimensional geographical space crossed with a two-

dimensional angular space. Section 5.4 presents the results of a real study case in 
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the Radomiro Tomic copper mine in northern Chile. Finally, conclusions and future 

challenges are presented in Section 5.5. 

 

5.2. Empirical classification systems 

 

The backbone of all current limiting equilibrium and numerical methods of 

slope stability analyses is the Mohr-Coulomb failure criterion, which requires knowing 

friction and cohesion values for the rock mass. Since triaxial testing of representative 

rock mass samples is difficult by sample disturbance and equipment size limitations, 

the preferred method has been to derive empirical values of friction and cohesion 

from rock mass rating schemes. Rock mass rating schemes are based on subjective 

ratings of specific attributes of the rock mass to partition the rock mass into 

geotechnical domains or units. Further, most of the methods for estimating the shear 

strength of component materials for incorporation into continuum models are based 

on some form of rock mass rating scheme and, for the preliminary analysis of 

structurally controlled failures, the empirical rock and slope quality classification 

systems appear to be the most practical solution. 

 

5.2.1. Rock mass rating (RMR) 

 

In open pit slope engineering, one of the most used schemes nowadays is the 

Rock Mass Rating (RMR), originally introduced for tunneling and civil engineering 

applications (Bieniawski, 1973, 1976, 1979, 1989). The value of RMR determines the 

geotechnical quality of the rock mass on a scale that ranges from 0 to 100 and 

considers five classes: very good (RMR 100–81), good (80–61), fair (60–41), poor 

(40–21), and very poor (<20). The rock mass rating scheme is helpful exclusively for 

predesign stage. It is based on six parameters to which statistical rating significances 

are assigned:  

• the uniaxial compressive strength of the intact rock (UCS), preferably based 

on UCS tests, or on point load strength index tests on rock lumps at the 

natural moisture content; 
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• the rock quality designation (RQD), a modified core recovery percentage and 

an index of rock quality; 

• the joint or discontinuity spacing (JS), the linear distance between two 

adjacent discontinuities whose rating is for the most critically oriented 

discontinuities, or the lowest rating (Edelbro, 2004) given that the presence of 

joints reduces the strength of a rock mass and their spacing governs the 

degree of such a reduction (Bieniawski, 1973); 

• the joint condition (JC), including roughness of discontinuity surfaces, their 

separation, length of continuity, weathering of the wall rock or the planes of 

weakness, and infilling (gouge) material; 

• the groundwater condition (GW), for which the rock mass should be assumed 

to be completely dry, and any pore pressures in the rock mass should be 

accounted for in the stability analysis; 

• the joint orientation, for which the influence of the strike and dip of joints is 

considered with respect to the direction of tunnel drivage, slope face 

orientation, or foundation alignment. 

 

 

The sum of the ratings for the first five parameters provides the basic RMR 

score (Table 5.1), which does not discount the effect of the orientation of joints given 

that this study uses a factorial approach to rating adjustment for the discontinuity 

orientation parameter in the RMR scheme developed by Romana (1985):  

𝑅𝑀𝑅𝑏𝑎𝑠𝑖𝑐 = 𝑈𝐶𝑆 + 𝑅𝑄𝐷 + 𝐽𝑆 + 𝐽𝐶 + 𝐺𝑊.  (1) 

 

The modifications and extensions of RMR should not be interpreted as new 

schemes, e.g., the extensions slope stability (SMR, Romana, 1985) is a valuable new 

application but still a part of the same overall RMR scheme. 
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Table 5.1. RMR parameter ratings (Bieniawski, 1979) 

Parameters Range of values 

1 Strength 
of 
intact 
rock 
material 

Point-load 
strength 
index 

>8 MPa 4–8 MPa 2–4 MPa 1–2 MPa For this low range 
uniaxial compressive test 
is preferred. 

Uniaxial 
compressive 
strength 

>200 
 

100–200 MPa 50–100 MPa 25–50 MPa 10–25 
MPa 

3–10 
MPa 
 

1-3 
MPa 

 Rating 15 12 7 4 2 1 0 

2 Drill core quality RQD 90–100% 75–90% 50–75% 25–50% <25% 

 Rating 20 17 13 8 3 

3 Spacing of joints >2 m 0.6–2 m 0.2–0.6 m 60–200 mm <60 mm 

 Rating 20 15 10 8 5 

4 Condition of joints Non-continuous 
structures. 
Very rough 
structures. 
Structures with 
unweathered 
and non-altered 
rock walls. 
Closed or 
sealed 
structures. 

Slightly rough 
structures. 
Structures with 
slightly 
weathered 
and/or slightly 
altered rock 
walls. 
Open 
structures 
(aperture <1 
mm) or filled 
structures 
(thickness <1 
mm). 

Slightly rough 
structures. 
Structures with 
weathered 
and/or altered 
rock walls. 
Open 
structures 
(aperture <1 
mm) or filled 
structures 
(thickness <1 
mm). 

Continuous 
structures. 
Slickensided 
structures or 
open 
structures 
(aperture 1–
5 mm), or 
structures 
with soft 
rouge fillings 
(thickness 
1–5 mm). 

Continuous structures 
Open structures (aperture 
>5 mm), or structures with 
soft gouge fillings 
(thickness >5 mm). 

 Rating 30 25 20 10 0 

5 Groundwater in joints Completely dry Damp Wet Dripping Flowing 

  15 10 7 4 0 

 

5.2.2. Slope mass rating (SMR) 

 

Slope Mass Rating (SMR) is an essential contribution in applying rock mass 

classification to assess the stability of a rock slope (Romana 1985), recognizing that 

rock slope stability is governed by the behavior of the discontinuities and that, in the 

original RMR system, specific guidelines for favorability of joint orientations are 

lacking. SMR is obtained from the basic RMR by adding a factorial adjustment 

depending on the relative orientation of joints and slope (through the product of three 

factors), and another adjustment factor depending on the excavation method. The 

basic RMR has a scalar character, but SMR endows the rock mass with a vector 

character by considering the direction and dip of the discontinuities that affect the 

rock mass. The adjustment rating for discontinuities is the product of three factors as 

follows (Figure 5.1): 

F1 reflects the parallelism between the discontinuity and slope face dip 

directions. 
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F2 is a measure of the probability of joint shear strength, referring to the 

discontinuity dip angle in the plane mode. 

F3 denotes the relationship between the slope face and the discontinuity, 

referring to the probability that the discontinuities outcrop on the slope. 

 

Figure 5.1. Adjusting factors for discontinuities (F1, F2, F3 ) (Singh and Goel, 1999) 

 

The fourth factor F4 depends on the excavation method and on whether one 

deals with a natural slope, or one excavated by pre-splitting, smooth blasting, 

mechanical excavation, or poor blasting. Thus, SMR is given as:  

  

𝑆𝑀𝑅 = 𝑅𝑀𝑅𝑏𝑎𝑠𝑖𝑐  −  (𝐹1  ∙ 𝐹2  ∙  𝐹3) + 𝐹4    (2) 

 

where 𝐹1 = (1 − sin 𝐴)2, with A being the angle between the strikes of slope angle 

and the discontinuity, 𝐹2 = tan2 𝐵, with B being the discontinuity dip angle, while 𝐹3 is 

the rating adjustment for discontinuity orientation from the modification of 

Bieniawski’s RMR (Bieniawski, 1979). In particular, if the difference between the 

slope face and the discontinuity dip is equal to 0° with F3=-25, there is a normal 

condition, i.e., a few discontinuities will outcrop; otherwise, if the slopes dip more 

than the discontinuities, almost all of them outcrop, and the conditions will be very 

unfavorable (for differences higher than 10°) with F3=-60 or unfavorable with F3=-50 

(for differences lower than 10°).  
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SMR is a tool for potential failure mode detection considering the slope and 

discontinuity orientations and has found good agreement with stability assessment 

(rock mass quality) predicted by the RMR system; therefore, it can be regarded as a 

reliable preliminary slope design tool (Yardimci and Karpuz, 2018) and provides a 

division into stability classes and recommendations for support and/or correction 

methods. Based on the failure modes, the suggested score intervals for factors F1, 

F2, and F3 can be seen in Table 5.2. So, SMR is suitable for preliminary slope 

stability assessment in rock, including very soft or heavily jointed rock masses. The 

SMR concepts have been used in three different ways as a geomechanics 

classification, taking F1, F2 and F3 as risk parameters (generally in natural slopes), 

and as a complementary method of work. The interpretation of SMR scores in terms 

of slope mass description, stability state, failure type, and support recommendation 

are summarized in Table 5.2.  

 

Table 5.2. SMR adjustment factors for different failure types and discontinuity orientations (Romana 1985) 

j = dip direction of joint, s = dip direction of slope, j = dip of joint, s = dip of slope 

Adjusting factors for 
joints (F1, F2, F3) 

Very 
favorable 

Favorabl
e 

Fair Unfavora
ble 

Very 
unfavorable 

Plane failure 

|j − s| 
Toppling 

|j – s -180| 

>30 30–20 20–10 10–5 <5 

F1 value 0.15 0.40 0.70 0.85 1.00 

Equation  𝐹1 =  1 − sin|𝛼𝑗 − 𝛼𝑠| 
2
 

|𝛽𝑗| < 20 ° 20° - 30° 30° - 
35° 

35° - 45° > 45° 

F2 value Plane 
failure 

0.15 0.40 0.70 0.85 1.00 

Toppling 1.00 

Equation 𝐹2 = 𝑡𝑎𝑛2 𝛽𝑗 

Plane failure 

β 
j 
- β 

s 
 

>10º 10º - 0º 0º 0º-(-10º) <(-10º) 

Toppling 

β 
j 
+ β 

s 
 

< 110º 110º - 
120º 

> 120º - - 

F3 value 0 - 6 - 25 - 50 - 60 

Excavation method Natural 
slope 

Presplitti
ng 

Smoot
h blasting 

Blasting 
or Mechanical 

Deficie
nt blasting 

F4 value + 15 + 10 + 8 0 - 8 

SMR Value 

 0-20 21-40 41-60 61-80 81-100 

Class no. Vb Va IVb IVa IIIb IIIa IIb IIa Ib Ia 

Description  Very bad Bad Fair Good Very good 

Stability  
Completely 

unstable 
Unstable Partially stable Stable 

Completely 
stable 

Failures  
Big planar or soil-

like 
Planar or big 

wedges 
Some joints 

or many wedges 
Some blocks None 

Support  Reexcavation 
Important / 
corrective 

Systematic Occasional None 
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5.3. Geostatistical modeling applied to geotechnics  

 

5.3.1. Regionalizing geotechnical variables in a five-dimensional space 

 

To predict the behavior of geotechnical variables, we will use a 5D 

geostatistical approach to solve directional dependence issues (Sánchez et al., 2019, 

2021). The rationale is that the classical geostatistics we know in three dimensions 

(e.g., Chilès and Delfiner, 2012) is extended to five dimensions for the variogram 

analysis and simulation of geotechnical variables. The five-dimensional space 

consists of the 3D geographical space (with east, north, and elevation coordinates) 

crossed with a 2D sphere (with azimuth and dip angular coordinates) (Figure 5.2). 

 

 

Figure 5.2. Each core sample (blue cylinder) is located by the easting, northing, and vertical coordinates of its 
gravity center in the geographical space (3D parallelepiped box), and by its azimuth and dip in the angular space 

(2D sphere), totaling five coordinates (Sánchez et al., 2021) 
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5.3.2. Spatial structure identification 

 

Fitting a covariance or a variogram model, which is required to carry out 

geostatistical prediction or simulation, is a complex task when working in such a five-

dimensional space, so simplifying assumptions are considered, namely the 

geotechnical variable of interest can be represented by a random field that is 

stationary (i.e., with translation-invariant finite-dimensional distributions) in the 3D 

geographical space and isotropic (i.e., with rotation-invariant finite-dimensional 

distributions) on the 2D sphere. These assumptions imply that the covariance 

function and the variogram between a pair of data only depend on their geographical 

separation vector (denoted by h) and on their angular separation (denoted by ), i.e., 

the calculation of experimental covariances or variograms must be done for a fixed 

angular separation and a fixed geographical separation between paired data.  

 

In the multivariate setting, covariances and variograms are matrix-valued 

functions, with the diagonal elements representing the autocorrelation of each 

variable and the off-diagonal elements representing the cross-correlation between 

each pair of variables (Chilès and Delfiner, 2012). Fitting the experimental 

covariances or variograms with a matrix-valued model is simplified by decomposing 

the covariance function as the product, or a sum of products, of a positive 

semidefinite matrix (called coregionalization or sill matrix), a purely spatial correlation 

function depending on the geographical separation vector h and a purely directional 

correlation function depending on the angular separation . The reader is referred to 

Sánchez et al. (2019, 2021) for details on spatio-angular covariance models and to 

Wackernagel (2003) for details on matrix-valued covariances and variograms. 

 

5.3.3. Conditional simulation  

 

Under an additional assumption of multivariate normality, the random field 

representing the geotechnical variable of interest can be simulated by a spectral 

method, consisting of adding and rescaling many independent repetitions of basic 

random fields with the prescribed correlation structure in the 5D space. This basic 
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random field can be obtained as the product of a geographical component (a cosine 

wave defined in the geographical space) and a directional component (a Legendre 

polynomial wave defined in the angular space), see Sánchez et al. (2019) for details. 

The computational complexity of such a method is proportional to the number of 

target locations, which makes it extremely fast for simulating geotechnical variables 

in a large region of the geographical space and for different target directions in the 

angular space. Conditioning the simulation to sampling data, so that the simulated 

random field reproduces the values observed at sampling locations, is done by a 

post-processing step based on kriging (univariate case) or cokriging (multivariate 

case) (Chilès and Delfiner, 2012).  

 

5.4. Case Study  

 

5.4.1. Research area and structural domain 

 

The Radomiro Tomic mineral deposit in northern Chile is associated on a 

regional scale with the Domeyko strike-slip system (to the east of the West Fault and 

the west of the Mesabi Deformation Zone) (Tomlinson et al., 2018). It corresponds to 

a system of N-S oriented dextral transpression faults parallel to the Chilean oceanic 

trench, linked to a period of oblique convergence of plates (Maksaev et al., 1994; 

Tomlinson and Blanco, 1997). 

 

The deposit is an Eocene-Oligocene copper-bearing porphyry located in the 

Chuquicamata mining district, immediately north of the homonymous deposit. It 

presents sericitic, argillic, intense potassic, background alterations, and the economic 

mineralization corresponds to copper oxides and sulfides. The orebody is limited in 

its EW extension by two main inverse faults with the movement of dextral trend and 

NS orientation: West Fault and Ckaari Fault. Namely, the deposit does not extend 

further to the East or the West because these faults prevent it or lock the deposit. 

Mineralizations along these N-S faults are called the Kala domain (for the western 

part of the deposit) and the Ckaari domain (for the eastern part of the deposit) 

(Figure 5.3). However, there are other NE and NW-oriented faults. Both systems 
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appear vertical or sub-vertical and are the ones that control the exotic mineralization 

and oxides. The NE-oriented fault system controls the hypogene mineralization (the 

deepest one, called the Kalatche domain). The NW-oriented faults control the 

supergene or exotic mineralization (the most superficial, called the Corina domain). 

Then one could say that blocks of rhomboid geometry are formed (seen in a plane), 

but the area is structurally complex at a general level. There are possibly clockwise 

block rotations. In summary, the main structural systems that control the 

mineralization and are considered in the calculation of SMR are (Rojas, 2021): 

A) Kalatche system, NE/sub-vertical orientation 

B) Corina system, orientation NW/70-80SW 

C) Kala system, NS/sub-vertical orientation 

D) Ckaari system, NS/80W to sub-vertical orientation. 

 

 

Figure 5.3. Mineralized zones in the Radomiro Tomic deposit (Rojas, 2021) 

 

5.4.2. Presentation of data  

 

A multivariable geotechnical dataset is available for this study. It comprises 

about 67,800 data from geotechnical drill core samples, each with a length of 1.5 

meter, located at elevations between 935 m and 1145 m above mean sea level 

(Figure 5.4). Hereinafter, we consider the five parameters of the basic RMR, namely, 

the uniaxial compressive strength (UCS) of intact rock material, the rock quality 
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designation (RQD), the discontinuity spacing (JS), the condition of discontinuities 

(JC), and the groundwater conditions (GW).  

 

The presence of groundwater in joints in the study area is considered constant 

due to its aridity (the rock mass is completely dry) and we will assign a rating of 15 at 

GW for all the data and target locations. Regarding UCS, the intact rock sample is 

homogeneous, not containing zones of weaker rock due to internal defects such as 

microfractures, foliation, or weaker mineral clasts. It is therefore considered that the 

intact rock strength (IRS) value is equal to the UCS value.  

 

The sampling is further affected by a so-called crushing phenomenon, which 

corresponds to the solid section of the core over its nominal length (1.5m) (Emery 

and Séguret, 2020).  In other words, the drill core loses its integrity in sections whose 

length changes from place to place, making it difficult to have an accurate 

measurement of JS: there is a bias given that the observed core length is variable 

and cannot consider the crushed fraction (Séguret, 2016). To address this issue, we 

propose to replace JS with its calculation from its empirical relation with RQD, given 

that RQD does not change with crushing, because the intact length greater than 10 

cm leaves out the crushed drilling sections. Specifically, we assume that JS has a 

negative exponential distribution and that, for values between 6/m to 16/m, the 

following relation linear holds (Priest and Hudson, 1976): 

𝑅𝑄𝐷 = 110 − 3.68 𝐽𝑆.     (3) 

 

Based on the previous assumptions, we can derive the basic RMR using only 

RQD, JC and IRS. 
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Figure 5.4. Horizontal projection of the available core samples, colored according to the measured RQD, JC and 

IRS values 

 

5.4.3. Spatial structure analysis 

 

Since the spectral simulation technique produces a Gaussian random field 

(Chilès and Delfiner, 2012), the geotechnical data of each target variable (RQD, JC 

and IRS) are first transformed into normal scores (i.e., data with a standard Gaussian 

distribution), prior to perform variogram analysis and simulation. The experimental 

variograms of the normal scores data are calculated omnidirectionally in the 

geographical space (i.e., each variogram is considered a function of the geographical 

distance, but not of the direction, between paired data) for distances ranging from 0 

to 350 m, and for three angular separations between paired data ( = 0°, 30°, and 

60°, with a tolerance of 15° in each case), as shown in Table 5.3 and Figure 5.5.  
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Table 5.3. Parameters for experimental variogram calculations 

Azimuth (°) 0 

Dip (°) 0 

Lag (m) 15 

Number of lags 50 

-angle between data (°) 0, 30, 60 

Azimuth tolerance (°) 90 

Dip tolerance (°) 90 

Lag tolerance (m) 7.5 

-angle tolerance (°) 15 

 

 

Figure 5.5. Experimental (crosses) and modeled (solid lines) direct and cross-variograms for the normal scores 
data of RQD, JC and IRS. Calculations are omnidirectional in the geographic space, and associated with an 

angular separation of 0° (black), 30° (blue) or 60° (green) between paired data 

 

Since the problem is trivariate, direct and cross-variograms are calculated to 

account for the spatial dependencies between variables, totalizing six variograms 

(three direct variograms, each related to a single variable, and three cross-

variograms, each related to a pair of variables). The fitted model comprises five 

nested structures (Table 5.4), each one being the product of a geographical 

component (an exponential or a spherical covariance) and an angular component (a 

Legendre polynomial covariance), see Sánchez et al. (2019) for mathematical 

details. The variogram model for the 5D regionalized data fits quite well the 

calculated experimental points for all the different geographical and angular 
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separations between paired data (Figure 5.5). The use of a zonal anisotropy (basic 

exponential covariance with an infinite range) and the fact that the Legendre 

polynomial changes from positive to negative values as the angular separation 

increases allow modeling the increase in the variogram sill with the angular 

separation (see Table 5.4). 

 

 Table 5.4. Fitted direct and cross-variograms with their respective structures and parameters 

Geographical 
component: 

structure 
Type 

Angular 
component: 

degree of 
Legendre 

polynomial 

Geographical 
range (m) 

Sill matrix 

Spherical 6 45 

  RQD JC IRS 

RQD 0.413 0.079 0.181 

JC 0.079 0.297 0.184 

IRS  0.181 0.184 0.739 

        

Exponential 4 100 

  RQD JC IRS 

RQD 0.051 -0.118 -0.027 

JC -0.118 0.274 0.065 

IRS  -0.027 0.065 0.017 

        

Exponential 0 180 

  RQD JC IRS 

RQD 0.325 -0.048 0.150 

JC -0.048 0.167 0.077 

IRS  0.150 0.077 0.141 

        

Exponential 6 315 

  RQD JC IRS 

RQD 0.109 -0.076 0.022 

JC -0.076 0.103 -0.033 

IRS  0.022 -0.033 0.012 

        

Exponential 4 ∞  

  RQD JC IRS 

RQD 0.049 0.072 0.070 

JC 0.072 0.108 0.101 

IRS  0.070 0.101 0.175 

        

 

5.4.4. Conditional simulation of RQD, JC and IRS 
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The Gaussian random fields associated with the three variables (RQD, JC, 

IRS) are jointly simulated and conditioned to the normal scores data (Section 5.3.3), 

then are back-transformed in order to recover the original scale of each variable 

RQD, JC or IRS. A total of one hundred realizations (i.e., outcomes) are generated 

on a 3D geographical grid with a mesh of 5 m x 5 m x 5 m with an east-west 

extension of 1050 m, a north-south extension of 2100 m and a vertical extension of 

75 m, for 121 directions covering the 2D angular space. Each realization is finally 

block-averaged in the geographical space to blocks with size 15 m x 15 m x 15 m 

(Figure 5.6). 

 

Figure 5.6. One realization of RQD, IRS and JC at four different layers from z=950m to z=1010 m in the 
geographical space, for a particular direction (vertical) in the angular space 

 

5.4.5. SMR calculation 

 

The results of the RQD simulation are used to derive the spacing between 

fractures (JS), through Eq. 3, allowing the calculation of the basic RMR (Eq. 1), i.e., 

without considering the discontinuities parallelism, the probability that the plane of 

weakness will outcrop the slope, or the dependence on the mining method. At this 

stage, all the variables (RQD, IRS, JC and basic RMR) are regionalized in the five-

dimensional space, so that the results are available for 49,000 blocks in the 3D 

geographical space and 121 directions in the 2D angular space (Figure 5.7, top 

panel). Following Sánchez et al. (2021), to characterize each block by a single basic 

RMR value (instead of a set of 121 directional values), the minimum RMR over all the 

directions is considered, i.e., one retains the basic RMR measured along the most 
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unfavorable direction (which may vary from block to block and from realization to 

realization). 

 

 
Figure 5.7. Workflow involved in evaluating SMR 

 

To estimate SMR from RMR, one must consider three correction factors 

depending on the direction of the main structural systems and select the most 

unfavorable, which considers only the directional behavior at a regional scale, where 

stability is controlled by both the rock mass properties and large geological features 

(Grenon and Hadjigeorgiou, 2010). However, the traditional guideline will not allow a 

realistic geotechnical model for stability analysis given the structural complexity of the 

study area to the general level. Instead, we can take advantage of the results of our 

5D modeling to derive this directional information at a local scale. Indeed, RQD also 

allows to determine the direction of maximum fracturing since greater fracturing 

implies lower RQD. That is, the minimum RQD is expected to occur along the 

direction perpendicular to the fracture plane, as indicated on the Terzaghi concept to 

the existence of preferential fracturing directions. Then, the fracturing direction 
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appears associated with RQD, which is one of the primary variables in the study that 

has been simulated at a block-by-block scale in the geographical space and along 

multiple directions in the angular space. 

To summarize, SMR is calculated from the basic RMR along the direction of 

maximum fracturing, by adding the product of three factors (described in Section 

5.2.2) that depend on the relative orientation of this direction of maximum fracturing 

(direction of minimum RQD) and the slope orientation, plus the adjustment factor 

based on the qualified excavation method in +10 (presplitting) (Figure 5.7, bottom 

panel). To define the maximum angle of the slope, we use the circular failure graph 

of Hoek and Bray (1981) considering a material density of 2.7 g/cm3, a conservative 

work safety factor of 1.5, a completely drained slope, an angle of friction of 27° and a 

cohesion of 1.85 MPa. The slope dip was set to 70°, an interramps height was 140 

m, and the ramp width was 32 m. The resulting interramp angle is 48° and the global 

angle is 45°, which agrees with the values used in the operation.  

 

Our pit design (a synthetic case) considers a truncated cone whose mining 

bench height has the vertical block length (15 m), as it is done in the operation, and 

an inclination angle (dip) of 70° (see Figure 5.8). Also, as the angular convention, we 

consider the right-hand rule where we have a dip direction of 0° at the north, east 

90°, south 180°, and west 270°. The dip direction of the slope for each block varies 

according to the wall of the pit in which it is located, directly affecting the accuracy of 

the evaluation of the favorability of the discontinuities. To consider the change in the 

dip direction in the calculation of SMR, we consider the angle formed between the 

central point of the section and the center of the target block. Hence, the changes in 

the dip direction on either a bench-scale may imply potential instability associated 

with the different modes of slope failure (planar, wedge, circular and toppling failure) 

that allow outcrops of planes or zones that are significantly weaker than the 

remaining rock mass on the slope face in the different domains. 
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Figure 5.8. Open pit slopes design scales and schematic preliminary evaluation of slope stability of proposed 

open pit mine from Wylie and Mah, 2004. 

 

5.4.6. Results 

 

• Expected SMR and kinematic analysis  

 

SMR can deliver an indication of the different types of failure expected in each 

block (see Table 5.5) and of the measures to be implemented. The adjustment 

factors to derive SMR from basic RMR depend on the angle formed by the relation 

between the orientation of set of discontinuities and the slope face angle, so its value 

varies depending on the position in space and angle of the bench (dip direction 

depending on the wall of the pit where the target block is located) and the direction of 

maximum fracturing or jointing (direction of minimum RQD, among the 121 directions 

considered for simulation). Indeed, the stability of the selected slopes is determined 

by potential instability associated with a planar, wedge, circular and toppling failure 

modes that are structurally controlled by local geological structures. As explained 

earlier, our determination of SMR does not consider the dip and dip direction of the 
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main structural systems that affect the rock mass as indicated in the traditional 

guideline, given that it corresponds to regional geological features that do not allow 

evaluating the stability of the slope at a local level (bench-scale).  

 

 Table 5.5. SMR values by each failure mode (Romana et al. 2003) 

 

 

 

 

 

 

 

 

 

On average over the 100 realizations, the SMR exhibits lower values on the 

western and northwestern sides (Figure 5.9), where the pre-failure overall slope 

angles are assumed to be quite high (70°), and the SMR scores indicate that 

absolute failures (all structurally controlled failures) are likely to occur. The expected 

SMR in relation to the direction of maximum fracturing is fair (approximately 50), seen 

as partially stable, and presents some joints that can form many wedges requiring 

systematic support. In the northeastern and southwestern sectors, there are small 

areas with a slightly higher rock mass quality.  

 

The results of the expected SMR rating allow distinguishing the probability that 

a type of failure will occur, facilitating kinematic analyses. In particular, the western 

sector requires important corrective support or even re-excavation due to completely 

unstable to unstable areas. It is possible to associate the behavior of the rock mass 

in the west area with the outcrop of the Corina System on the slope, whose 

orientation is the most unfavorable for the construction of the pit. The western sector 

exhibits a higher probability of failure mechanisms of big planar, big wedges, or soil-

like that can point out a local failure (like a single bench). 

Failure modes  SMR value Description  

Plane Failure 

SMR > 60 None 

60 > SMR > 40 Majors  

40 > SMR > 15 Very big 

Wedge failure 

SMR > 75 Very few 

75 > SMR > 49 Some 

55 > SMR > 40 Many 

Toppling 

SMR > 65 None 

65 > SMR > 50 Minors 

40 > SMR > 30 Majors  

Mass failure 
SMR > 30 None 

30 > SMR > 10 Possible 
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Figure 5.9. Average SMR over 100 realizations considering the direction of maximum fracturing (minimum RQD) 
to calculate the factorial adjustment (horizontal projection view) for the benches with elevations [950,695] m (left) 

and [1010,1025] m (right). 

 

According to Table 5.5, an important to a very large plane failure occurring in 

the study area, i.e., dip discontinuity in the same direction of the slope, is probable for 

41% of the blocks in the area under study. For the wedge failure mode to analyze the 

relationship between the line of maximum slope and the wedge dips in the same 

direction (otherwise it would dip towards the interior of the wedge), one has that 55% 

of the blocks can present some or many wedges’ failures. Toppling failure occurs 

when the discontinuity dips against the slope face; according to SMR values, 23% of 

the blocks can have minor to major toppling. Slope instability dominated by circular 

failure is an important risk and slope and discontinuity orientations are not sufficient 

to predict such mechanically complex behavior, but 10% of the blocks may present a 

mass (or circular) failure. All these results based on the direction of maximum 

fracturing (minimum RQD) are conservative, obtaining that the blocks present some 

wedges, major plane reaching very big plane in the western sector at depth, some 

blocks classify as possible mass or circular at the west, and minor toppling in blocks 

in the southeast sector (25%) and major toppling in the west, increasing the number 

of blocks at greater depths.   
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• Stability classification 

Followed by the prediction of structurally controlled failures, we continue to the 

determination of the stability classes according to SMR (Romana, 1985). For each 

block and each realization, the simulated SMR is assigned one of five classes (very 

good, good, fair, bad, very bad), then the class that most frequently appears across 

the 100 realizations is retained as the final classification of the block. The rock mass 

classification using the SMR score has low variability, with poorer quality sectors 

closer to the surface mainly in the northwest, then attenuates in northwest-southeast 

direction, where one has very bad to bad ratings following what is seen in Figure 5.9. 

The classification of the rock mass finds that most blocks are classified as fair quality 

(41 -60), 2% of the blocks located at the west and southwest are classified as very 

bad to bad, and less than a dozen blocks are classified as good at a greater depth of 

the rock mass (see Table 5.6). All benchs identified with SMR values below 20 fail 

very quickly, which is mandatory to revise the different remedial measures that can 

be implemented to support a unstable slope.  

 

Table 5.6. Most frequent stability class according to simulated SMR  

Class of SMR  

Very bad 1.28% 

Bad 0.77% 

Fair 97.92% 

Good 0.02% 

Very good 0.00% 

 

• Sensitivity analysis of slope performance 

The simulated SMR allowed obtaining a preliminary kinematic analysis that 

determines that the structural domains, in their majority, allow supporting a bench 

face angle of 70°. However, the western sector does not accept this situation due to 

a large number of blocks with a probable major toppling, possible mass (or circular), 

and very large plane failure, so the bench angle must be decreased in this western 

sector to mitigate the consequences of expected slope failure modes. Figure 5.10 

shows how the value of the minimum expected SMR is quasi-constantly below 52°, 

so it establishes this value for the western sector. Reducing the bench face angle 
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from 70° to 52° generates a transition from very bad/bad quality graded blocks to fair 

quality that is close to 6%, as illustrated in Figure 5.10 and Table 5.7. In this case, to 

solve the problem of an unstable formation of zones due to the parallelism between 

the discontinuities (structures) and the bench, and/or that the dips of the structure are 

opposite to the orientation of the bench face on the west wall, it is recommended to 

reduce the bench face angle in this sector to 52°. This measure would avoid the 

formation of possible ruptures or, in the case of contemplating the occurrence of this 

failure within the design, tolerate them because they involve less removal of material, 

and the slope slip can be stopped by the lower benches. To analyze the influence of 

the angle of the face of the bench in the geographical space, an adrift graph (see 

Figure 5.11) is used on the Y-axis (North), where between 2500 - 2900 m the angle 

of 70° presents an expected value of SMR similar to the angles with a lower 

inclination, which would allow maintaining the initial angle in this section to optimize 

mining recovery. While between 2900 and 3500 m with an angle of 30°, a 

considerable improvement in the expected values of SMR is observed, so it is a 

sector to be subjected to more exhaustive analysis and monitoring. 

 

 
Figure 5.10. Expected SMR according to slope face angle and depth for the western sector 
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Table 5.7. Stability class of western sector according to slope face angle 

 =  =  =  =  =  =  

Very bad 3.66% 1.63% 0.05% 0.05% 0.05% 0.05% 

Bad 2.26% 1.61% 0.00% 0.00% 0.00% 0.00% 

Fair 94.05% 98.04% 99.89% 99.89% 99.89% 99.89% 

Good 0.03% 0.03% 0.06% 0.06% 0.06% 0.06% 

Very good 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 

 

Figure 5.11. Drift of expected SMR according to slope face angle in Y-axis for the western sector 

 

5.4.7. Discussion  

 

In contrast to many geotechnical studies based on global average values that 

do not provide enough detailed information, in this study the geotechnical parameters 

are regionalized in the geographical space and in an angular space, i.e., their values 

depend on the easting, northing, elevation, azimuth and dip of the core sample under 

consideration. Additionally, geostatistical simulations allow generating multiple 

realizations (outcomes) that quantify the uncertainty in the values for any unsampled 
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location and any direction of interest, hence the interest in its application in 

geotechnics.  

 

The process of logging drill holes in areas affected by core crushing is an 

additional source of uncertainty, and it is a challenge to interpret the fracture 

continuity, their large-scale geometry, and their orientation, since the rock mass 

cannot be seen in 3D on a large scale. The use of RQD as a parameter in 

Bieniawski’s RMR and derived SMR systems presents some problems, in particular, 

biases due to the orientation of the drill hole with respect to the joint orientation, an 

issue that is circumvented in our 5D modeling approach. Another drawback of the 

SMR system classification is to not consider in an explicit manner the slope height as 

part of the failure mechanism analysis.  

 

Figure 5.10 seeks to establish a slope design acceptance criterion that 

considers the slope height and the geotechnical characteristics (spatial and angular 

behavior) of the area under study to obtain results adapted to the rock mass, thus 

improving Bieniawski’s original chart that relies on historical case studies in metallic 

mines, quarries, and dams. For preliminary design purpose, a slope performance 

chart can be considered as an enhanced slope stability analysis using the results 

obtained in our 5D space. Nevertheless, this does not aim to replace the analytical 

solutions or numerical methods, such as the stability slope charts proposed by Hoek 

and Bray (1981) that work well in the initial stage of a preliminary slope stability 

investigation. The Mohr-Coulomb shear strength model is more effective to 

investigate a circular failure mechanism, where the slope and discontinuity 

orientations are not sufficient to predict such mechanically complex behavior. 

However, the determination of shear strength parameters requires numerous 

mechanical tests and technical interpretations by experts, which are not available 

since the study area is not within the exploitation area.  
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5.5. Conclusions  

 

The recovery of low-grade mineral deposits requires the construction of large 

scale open-pit mines for which rock engineers face new challenges to design slopes. 

One objective in geotechnical analysis and designs of excavation in rock is to collect 

the minimum number of orientation data (dip/dip direction) to reach targeted levels of 

confidence and different degrees of precision. However, a rock mass comprises 

blocks of intact rock separated by discontinuities such as faults, shear zones, 

bedding planes and joints, making it hard to predict in space.  

 

The proposed methodology accounts for (1) the inherent nature of 

geotechnical parameters (namely, their directional dependence) through a 

regionalization of RQD, JC and IRS in the geographical space crossed with an 

angular space, and (2) their uncertainty at unsampled locations by the recourse to 

geostatistical simulations, reproducing better the geographical and directional 

heterogeneity and the real nature of the rock mass, thus delivering a more reliable 

geotechnical model for stability analysis. 

 

 The failure of the rock mass is mostly governed by discontinuities and occurs 

according to surfaces formed by one or more joints, involving sliding on multiple 

discontinuity sets as well as tensile and shear failure of rock bridges and intact rock 

blocks. In this research, we used SMR classification as the tool for potential 

structurally controlled failure detection, correcting the basic RMR by four factors that 

depend on the slope and discontinuity orientations. Also, since the studied mineral 

deposit is structurally complex, considering the large structures to establish these 

SMR adjustment factors, as suggested by the traditional approach, would not be 

representative of the local rock mass behavior. Instead, a directional approach has 

been chosen, where SMR is derived by considering the direction of minimum RQD 

(corresponding to the most unfavorable direction of fracturing, i.e., the worst-case 

scenario). The product of the correction factors F1 × F2 × F3 can therefore be 
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regionalized with less fieldwork and gives an excellent indication of slopes stability 

risk.  

The simulation of SMR makes it possible to map the geomechanical quality of 

the slope, differentiating through a kinematic analysis the different types of failure 

compatible with the slope-discontinuity relationship, finding blocks compatible with 

complex mechanisms or faults such as soil, the presence of large plane failures and 

wedges in the western sector of the area under study.  

 

The SMR system provides an estimate of the behavior of the rock mass and 

quantitatively defines correction factors, allowing to differentiate the types of failure 

kinematically compatible with the geometry of the slope and the discontinuity in each 

block. In the study area, the angle values (for the bench) used in the slope stability 

evaluation in the western sector may be too steep, which could result in a slope 

design that is too optimistic for pit stability and the recommendation is to reduce this 

angle from 70° to 52°. Though, the safety factor and the probability of failure of a 

slope are not, in themselves, the unique basis for judging the acceptability of a slope 

design. The decision should also include a consideration of the costs of cleanup and 

limitation of access versus the cost of remedial action such as changing the slope 

geometry to reduce the probability of failure. The outcomes of the developed 

methodology would allow to evaluate stability constraints for various geometric 

configurations of the pit at the mine planning stage, into an integrated approach with 

the pit design tools, providing immediate and accurate insight into the economic 

implications of multiple design scenarios.  

 

As a perspective for future works, we propose to analyze the quality of the 

approximations (linear discontinuity frequency vs. RQD) and to determine measures 

of how closely the discontinuity spacing values follow a negative exponential 

distribution in each location. 
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CHAPTER VI. 

GENERAL DISCUSSION 
 

• Data collection and preparation   

 

Geotechnical models play a vital role in the optimization of mine planning and 

design as they contribute to understanding the spatial variability of rock mass 

engineering properties and improving the prediction of the rock mass behavior during 

excavation and during comminution, thus beneficiating the safety of the mine and its 

personnel, the mining process and the mineral processing process. The geostatistical 

approaches require a sufficient amount of data for statistical inference, but cost-

efficiency and other practical considerations limit the number of boreholes drilled for 

an exploratory campaign, prevailing the uncertainty in the real spatial continuity of 

rock mass engineering properties. Therefore, geotechnical information is often 

scattered or widely dispersed in the area of study, added to a significant degree of 

subjectivity in the data collection during the site investigation (coming from the 

subjective definitions of some geotechnical properties), which can make difficult to 

apply geostatistical approximation techniques properly. Nowadays, drillings are being 

scanned, so that the fracture counting can be automatic and not restricted to portions 

of boreholes being logged by geologists; also, instead of using a rock quality 

designation (RQD) associated with 10 cm, complete information on the fragment size 

distribution on linear supports can be obtained, allowing an improved modeling of  

the fracturing density and fragment sizes. In underground operations, something 

similar is done with the scanning of drift heading, where the geological strength index 

(GSI) or other similar variables can be inferred. However, these advanced 

technologies and equipment are used in different periods of time and can cause the 

inhomogeneity of the geotechnical data in time and space used for modeling. 
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• Direction dependence  

 

The values of geotechnical properties logged in the process of core logging 

may change significantly, depending upon the borehole or scanline orientation. In 

other words, the measured value depends not only on the in-situ geographic 

coordinates of the sample but also on the in-situ borehole direction. Interpolating 

such geotechnical variables in space without accounting for their directional 

dependence may produce misleading results, insofar as the interpolated values are 

representative of the rock mass properties in the sampling directions and not 

necessarily in other directions. An ideal solution to this issue is to collect logging 

information using the boreholes/scanline in various orientations to allow for better 

detection of rock mass directional behavior. In practice, this may not always be 

possible because the exploration boreholes are generally oriented preferentially in 

the direction in which the orebody extends. The key proposal of this thesis is to 

regionalize the geotechnical variables in a five-dimensional space, consisting of the 

Cartesian product of the three-dimensional Euclidean space and the unit two-

dimensional sphere, in order to account for both their geographic and directional 

variations. Spatial correlation analysis can be performed easily under an assumption 

of stationarity in the three-dimensional Euclidean space and isotropy on the sphere, 

so that the covariance or the variogram between two data only depends on their 

geographic and angular separations. The fitting of nested separable covariance 

functions eases the search for a valid spatial correlation model and for algorithms to 

simulate the geotechnical variables in the above-defined five-dimensional space.  

 

The anisotropy indicator defined in Chapter 3 can be an important input for 

new post-blast P80 fragmentation models, as well as rock mass property scaling 

using RQD, JC, FF as input, and even mineral resources models. Drill-induced 

damage from a natural joint to an open fracture must identify or separate its 

mechanically induced breaks from natural breaks, before analyzing the in-situ 

anisotropy of geotechnical variables such as RMR, given its influence on the block 

and rock mass strength. 
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• Additivity and change support (upscaling) 

 

The application of geostatistical techniques in geotechnics has a challenge in 

that some variables, such as the rock mass rating (RMR), present a non-linear scale 

and cannot be block-averaged to represent the behavior of a rock mass. Thus, the 

calculation of the average value in supports more voluminous than the 

measurements may not have a physical sense, i.e., the variable is non-additive. This 

fact agrees with the concept of size effect in rock masses, where the characteristics 

of rock masses may change gradually when increasing the sample size until this size 

is larger than a critical value (Representative Volume Element or RVE) and the 

characteristic values remain unchanged.  

 

As an exception, some variables (like the fracture frequency FF or the rock 

quality designation RQD) are additive when they are measured along the same 

direction, i.e., the variables are directionally additive. In such a case, the five-

dimensional regionalization proposed in this thesis allows the prediction or simulation 

accounting for a change of support. As for the point-support variable, the regularized 

(block-averaged) variable is still direction-dependent. Thus, it is necessary to define a 

rule to derive a single representative value of a block volume from the set of 

directional values. In the case of FF and RQD, the ‘worst case’ (direction along which 

the maximum FF or minimum RQD is reached) reflects the maximum fracturing of the 

rock mass and can be used to define a non-directional block value. This change of 

support proposal is general, and applicable even if the fracture network is not a set of 

parallel planes. 

 

• Stationarity and isotropy assumptions  

 

In practice, some simplifying assumptions are necessary to infer and model 

the spatial correlation of regionalized data. In the case of geotechnical data, we 

considered second-order stationarity in the Euclidean space and isotropy on the 

sphere, so that the correlation structure only depends on the geographic and angular 

separations between paired data. If these two assumptions are not taken into 

account, the non-stationary and anisotropic experimental function (variogram or 
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covariance) will depend on ten parameters (X, Y, Z, azimuth, and dip of each paired 

data). So, it would be hardly possible to identify the spatio-angular correlation 

structure of the regionalized variable with a limited number of experimental data: The 

ten-dimensional parameter space is too large for inferring the experimental 

covariance or variogram function. Under the stationarity and isotropy assumptions, 

one gets a function that only depends on four parameters (projections hx, hy, hz of 

the geographic separation upon the coordinate axes, and angular separation ). The 

representation of the phenomenon in R3 x S2 is better than the traditional 

representation in R3, as it captures the directional behavior of the variable under 

study with a minimal increase of the parameter space. 

 

To broaden the scope of application of the presented proposal, future works in 

5D geostatistical modeling should include the design of variogram models and 

simulation algorithms using non-separable covariance functions (e.g., Alegría et al., 

2021), or anisotropic covariances on the sphere (e.g., Emery and Alegría, 2020), 

together with exploratory tools to identify preferred directions of anisotropy on the 

sphere based on sampling information. 

 

• Computational requirements 

 

The traditional approach (3D) achieves a prediction that is generally cheap in 

terms of computational requirements and pre-processing time but may be locally 

biased as per the drilling directions of the available samples. The directional 

approach (5D) is more demanding in terms of modeling and computational capacity 

(the developments shown in Chapters 3, 4 and 5 use 121 directions to discretize the 

sphere, i.e., the computational time is multiplied by two orders of magnitude with 

respect to the 3D case) but provides information on the directional behavior of the 

variables under study and predictions that are unbiased. This is valuable for 

geotechnical zoning and decision-making as the predicted or simulated values reflect 

the inherent nature of the geotechnical parameters (their directional dependence) 

and can give an insight into the geometry of the rock fragments when combined with 

other direction-dependent parameters such as the fracture frequency.  
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• Stages of Project Mining   

 

The directional approach is helpful in any stage of a geotechnical project. At 

the exploratory or early stages, it is suggested to use adaptive geometries in the 

block model: the size of the block to predict or to simulate will depend on the 

variability of the geotechnical parameter in the sector and on the available 

information, i.e., the less amount of available information (and the more variability of 

geotechnical parameter), the larger the block size. At the development and 

production stages, it is possible to model the geotechnical parameters in a direction 

that is parallel or perpendicular to the advance of the construction of the rock 

excavation. One way to optimize the analysis is to use adaptive geometries in the 

block model in further developments, giving a higher resolution (smaller block size) in 

areas with a higher anisotropy index or vice versa.  
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CHAPTER VII. 

CONCLUSIONS AND FUTURE WORKS 
 

Identifying the geomechanical and hydraulic properties of a rock mass is a 

crucial task for the economic development of underground and open pit mining, in the 

petroleum industry, tailings tanks, geothermal reservoirs, groundwater resources, 

underground nuclear waste, among others. Geological phenomena have spatial 

heterogeneities evidencing a high strength and rigidity contrast on a small scale, 

making it more challenging to predict the mechanical behavior of the rock mass. 

Geostatistics allows  spatial prediction and uncertainty quantification accounting for 

such heterogeneities. However, its application to geotechnics faces specific 

difficulties or limitations, in particular due to the fact that most variables are direction-

dependent and are defined on a line support, which raises the question on how to 

upscale them to a block support.  

 

The thesis addressed the problem of modeling direction-dependent 

geotechnical variables in the context of mineral resources evaluation, mine design or 

mine planning. The proposed solution is to regionalize these variables in a five-

dimensional space: 3D geographical space × 2D sphere. The geostatistical modeling 

and simulation can be realized in a simple way by assuming stationarity in the 3D 

space and isotropy on the sphere and by using separable nested structures, from the 

viewpoints of the calculation of an experimental covariance or variogram and the 

fitting of a theoretical model. The main idea is to decompose the covariance functions 

of the direction-dependent variables as the sum of products of non-directional and 

directional components. Conditional simulation can be performed via spectral or 

turning bands algorithms, providing results for any geographic location and any target 

direction. Upscaling can be done by block-averaging the values associated with the 

same direction. 

 

Three applications have been developed throughout the thesis. The first 

application set the theoretical basis of the spatial correlation modeling, proposed a 

novel algorithm for conditional simulation, and demonstrated the applicability of the 



Chapter VII: Conclusions and future works  
 

 

115 
 

tools and algorithms with a case study on the modeling of the discontinuity frequency 

in the El Teniente copper deposit (central Chile), where attention was paid to the 

checking of the model assumptions and the cross-validation of the simulation results. 

The second application, presented through a case study on a polymetallic deposit, 

tackled the directional bias characteristic of one-dimensional measurements 

(boreholes and scanlines) and their extension to volumetric supports like selective 

mining units, considering the maximum fracturing direction and defining an 

anisotropy index that quantifies how much a variable is likely to vary, at the same 

geographic location, when changing the measurement direction. The last application 

presented the extension of the covariance models in the 3D space crossed with the 

2D sphere to the multivariate setting, as well as the adaptation of tools and 

algorithms to co-simulation, with an application to  an open pit mine (Radomiro 

Tomic, northern Chile), seeking to establish an acceptable slope design criterion for 

the open pit based on a chart considering SMR and height design to predict a safe 

slope angle. These applications provide elements to geologists, geotechnicians, and 

engineers for decision-making in rock mass characterization and classification and in 

mine design. 

 

As a general result, the tools and methods that are usually used in the 

traditional geostatistics in Euclidean spaces (in particular, variogram analysis, 

multivariate modeling, and simulation) have been extended to the 3D space crossed 

with a 2D sphere, which makes the concepts fully applicable to practitioners, 

although the computational cost still remains expensive for large-scale problems. 

This new paradigm allows geotechnical variables to be interpolated at any place in 

the geographic space for any direction. In practice however, most of the boreholes 

are often close to vertical, some are horizontal, and very few are inclined, so it may 

be difficult to characterize the geotechnical parameters along any direction using only 

borehole information. Another limitation is that two assumptions were considered to 

model the geotechnical variables: the parent random field is stationary in the 3D 

space, and isotropic on the 2D sphere. Future work includes the design of random 

field models and simulation algorithms using non-separable covariances or 

anisotropic covariances in the sphere, together with exploratory tools to identify 

preferred directions of anisotropy on the sphere based on sampling information. 
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In general, quantitative fracture network characterization has traditionally been 

investigated using 1D scanline or borehole data but recent advances in fracture 

network data acquisition (e.g., remote sensing, microseismic) have made it possible 

to examine the spatial attributes of fracture networks reducing the uncertainty and 

considering the directional dependence using all the potential of 5D geostatistics. 

The spatial variability of the fracture intensity and intersection density are proxies for 

secondary porosity and permeability and, as such, are indicators of the efficiency of 

fluid storage and flow through fractured rock masses, so it can be used to improve 

the calculations of cave ability, water drainage, roof stability, fragmentation, flow 

gravity, slope stability, blast ability, and in-situ leaching. The understanding of 

fracture systems is a critical factor, given that fractures reduce the structural integrity 

of materials and create conduits and barriers that can enhance or impede subsurface 

fluid flow. This has a wide range of industrial applications not only limited to mining 

operations but also such as tailing dam disposal, modeling of oil/gas reservoirs 

(fractured reservoirs and unconventional reservoirs) or geothermal reservoirs, 

groundwater resources management, underground nuclear wastes disposal, 

between other. 

 

In addition, the tools and methodologies developed in the thesis can be useful 

to several other application domains in the geosciences and environmental, 

atmospheric, or oceanographic sciences, in which one also deals with direction-

dependent variables, such as the hydraulic conductivity or permeability, 

electromagnetic radiation, wind velocity, ocean current velocity, temperature gradient 

or gravity gradient. 

 



References 
 

 

117 
 

BIBLIOGRAPHY 
 

[1] Abdideh, M., Mahmoudi, N., Moghadasi, J., 2014. Geostatistical analysis of 

the uniaxial compressive strength (UCS) of reservoir rock by petrophysical 

information. Energy Sources, Part A: Recovery, Utilization, and Environmental 

Effects 36(21): 2320–2327. 

[2] Abramowitz, M., & Stegun, I. A., 1970: Handbook of Mathematical Functions, 

Dover Publications, Inc., New York. 

[3] Alegría, A., Emery, X., & Lantuéjoul, C., 2020. The turning arcs: a 

computationally efficient algorithm to simulate isotropic vector-valued 

Gaussian random fields on the d-sphere. Statistics and Computing, 30(5), 

1403-1418. 

[4] Arfken, G., Weber, H.J., 2005. Mathematical Methods for Physicists, 6th ed. 

Elsevier Academic Press, Amsterdam. 

[5] Alegría, A., Porcu, E., Furrer, R., & Mateu, J., 2019. Covariance functions for 

multivariate Gaussian fields evolving temporally over planet earth. Stochastic 

Environmental Research and Risk Assessment, 33(8-9), 1593-1608. 

[6] Anh, V. V., Broadbridge, P., Olenko, A., & Wang, Y. G., 2018. On 

approximation for fractional stochastic partial differential equations on the 

sphere. Stochastic environmental research and risk assessment, 32(9), 2585-

2603.  

[7] Azimian, A., 2016. A new method for improving the RQD determination of rock 

core in borehole. Rock Mechanics and Rock Engineering, 49(4), 1559-1566. 

[8] Bandis, S., Lumsden, A.C., Barton, N.R., 1981. Experimental studies of scale 

effects on the shear behaviour of rock joints. International Journal of Rock 

Mechanics and Mining Sciences & Geomechanics Abstracts, 18(1), 1–21. 

[9] Barton, N., 1990. Scale effects or sampling bias? In Proceedings of the 1st 

International Workshop Scale Effects in Rock Masses, Loen, Norway, 7–8 

June 1990; Balkema: Rotterdam, The Netherlands; pp. 31–55. 

[10] Barton, N., Reidar, L., Lunde, J., 1974. Engineering classification of 

rock masses for the design of tunnel support. Rock mechanics 6(4), 189–236. 



References 
 

 

118 
 

[11] Bertuzzi, R., Douglas, K., Mostyn, G., 2016. Comparison of quantified 

and chart GSI for four rock masses. Engineering Geology, 202, 24–35. 

[12] Bieniawski, Z.T., 1968. The effect of specimen size on compressive 

strength of coal. International Journal of Rock Mechanics and Mining Sciences 

& Geomechanics Abstracts, 5(4), 325–326. 

[13] Bieniawski, Z.T., 1973. Engineering classification of jointed rock 

masses. Civil Engineer in South Africa, 15(12), 335–353. 

[14] Bieniawski, Z.T., 1976. Rock mass classification in rock engineering 

applications. In Proceedings of a Symposium on Exploration for Rock 

Engineering, 1976 (Vol. 1, pp. 97-106). Balkema, Cape Town. 

[15] Bieniawski, Z.T., 1979. The geomechanics classification in rock 

engineering applications. In Proceedings of 4th Congress of International 

Society of Rock Mechanics, Montreux, vol. 2, pp. 41–48. Balkema, Rotterdam. 

[16] Bieniawski, Z. T.,1989. Engineering rock mass classifications: a 

complete manual for engineers and geologists in mining, civil, and petroleum 

engineering. John Wiley & Sons. 

[17] Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., & 

Berkowitz, B., 2001. Scaling of fracture systems in geological media. Reviews 

of geophysics, 39(3), 347-383. 

[18] Boyd, D.L., Walton, G., Trainor-Guitton, W., 2019. Quantifying spatial 

uncertainty in rock through geostatistical integration of borehole data and a 

geologist's cross-section. Engineering Geology, 260, 105246. 

[19] Brzovic, A., Villaescusa, E., 2007. Rock mass characterization and 

assessment of block-forming geological discontinuities during caving of 

primary copper ore at the El Teniente mine, Chile. International Journal of 

Rock Mechanics and Mining Sciences & Geomechanics Abstracts 44: 565–

583. 

[20] Brzovic, A., 2009. Rock mass strength and seismicity during caving 

propagation at the El Teniente Mine, Chile. In: Tan, C.A. (ed.), 7th 

International Symposium on Rockbursts and Seismicity in Mines (RaSiM7). 

Rinton Press, New York, pp. 838–852. 



References 
 

 

119 
 

[21] Cai, M., 2011. Rock mass characterization and rock property variability 

considerations for tunnel and cavern design. Rock mechanics and rock 

engineering, 44(4), 379-399.   

[22] Cannell, J., Cooke, D., Walshe, J.L., Stein, H., 2005. Geology, 

mineralization, alteration, and structural evolution of the El Teniente porphyry 

Cu-Mo deposit. Economic Geology 100: 979–1005. 

[23] Carrasco, P., Chilès, J. P., and Séguret, S., 2008. Additivity, 

metallurgical recovery, and grade. In: Ortiz, J. M., and Emery, X. (eds.) 

Proceedings of the Eighth International Geostatistics Congress. Gecamin 

Ltda, Santiago, pp. 237-246. 

[24] Chen, J.Q., Li, X.J., Zhu, H.H., Rubin, Y., 2017. Geostatistical method 

for inferring RMR ahead of tunnel face excavation using dynamically exposed 

geological information. Engineering Geology, 228, 214-223. 

[25] Chilès, J.P., 2005. Stochastic modeling of natural fractured media: a 

review. In: Leuangthong, O., Deutsch, C.V. (Eds.), Geostatistics Banff’ 2004. 

Springer, Dordrecht, pp. 285–294. 

[26] Chilès, J. P., Wackernagel, H., Beucher, H., Lantuéjoul, C. and Elion, 

P., 2008. Estimating fracture density from a linear or areal survey. In: Ortiz, 

J.M., Emery, X. (eds.), Proceedings of the Eighth International Geostatistics 

Congress. Gecamin Ltda, Santiago, pp. 535–544. 

[27] Chilès, J.P., Delfiner, P., 2012. Geostatistics: Modeling Spatial 

Uncertainty. Wiley, New York, pp. 699. 

[28] Choi, S.Y., Park, H.D., 2002. Comparison among different criteria of 

RMR and Q-system for rock mass classification for tunnelling in Korea. 

Tunnelling and Underground Space Technology 17(4): 391–401. 

[29] Choi, S.Y., Park, H.D., 2004. Variation of rock quality designation 

(RQD) with scanline orientation and length: a case study in Korea. 

International Journal of Rock Mechanics and Mining Sciences, 41(2), 207-221. 

[30] Choi, Y., Yoon, S.Y., Park, H.D., 2009. Tunneling Analyst: a 3D GIS 

extension for rock mass classification and fault zone analysis in tunneling. 

Computers & Geosciences 35(6): 1322–1333. 

[31] Chowdhury, R., Flentje, P., Bhattacharya, G., 2012. Geotechnics in the 

21st century, uncertainties and other challenges, with particular references to 



References 
 

 

120 
 

landslide hazard and risk assessment. J. Life Cycle Reliab. Saf. Eng., 1, 27–

43. 

[32] Christian, J. T. and Baecher, G. B., 2003. Reliability and Statistics in 

Geotechnical Engineering, John Wiley & Sons Ltd, 618 p. 

[33] Cuisiat, F.D., Haimson, B.C., 1992. Scale effects in rock mass stress 

measurements. International Journal of Rock Mechanics and Mining Sciences 

& Geomechanics Abstracts, 29(2), 99-117. 

[34] Cunha, A.P.,1990. Scale effects in rock mechanics. In proocedings of 

the first International workshop on scale effect in rock masses, Loen, 7-8 

June, 3-31. 

[35] Cundall, P. A., Pierce, M. E., & Mas Ivars, D., 2008, September. 

Quantifying the size effect of rock mass strength. In Proceedings of the 1st 

Southern Hemisphere International Rock Mechanics Symposium (Vol. 2, pp. 

3-15). Australian Centre for Geomechanics (ACG). 

[36] Daley DJ, Porcu E, 2014. Dimension walks and Schoenberg spectral 

measures. Proceedings of the American Mathematical Society 142(5):1813–

1824 

[37] Deere, D.U., Hendron Jr, A.J., Patton, F.D., Cording, E.J., 1967. Design 

of surface and near-surface construction in rock. In: Failure and Breakage of 

Rock, Proceedings of the 8th Symposium on Rock Mechanics, American 

Institute of Mining and Metallurgical Engineers (pp. 273-303). 

[38] Deere, D.U., 1989. Rock quality designation (RQD) after 20 years. US 

Army Corps Engrs. Contract Report GL-89-1. Waterways Experimental 

Station, Vicksburg, MS. 

[39] Deisman, N., Khajeh, M., Chalaturnyk, R.J., 2013. Using geological 

strength index (GSI) to model uncertainty in rock mass properties of coal for 

CBM/ECBM reservoir geomechanics. International Journal of Coal Geology 

112: 76–86. 

[40] Deutsch, C.V., 1997. Direct assessment of local accuracy and 

precision. In: Baafi, E.Y., Schofield, N.A. (Eds.), Geostatistics Wollongong’ 96. 

Kluwer Academic, Dordrecht, pp. 115–125. 

[41] Dershowitz, W.S., 1984. Rock joint systems, Ph.D. thesis, MIT, 

Cambridge, Mass., 764 p. 



References 
 

 

121 
 

[42] Dershowitz, W. S., P. R. La Pointe, and T. W. Doe. "Advances in 

discrete fracture network modeling." Proceedings of the US EPA/NGWA 

fractured rock conference, Portland. 2004. 

[43] Doostmohammadi, M., Jafari, A., Asghari, O., 2015. Geostatistical 

modeling of uniaxial compressive strength along the axis of the Behesht-Abad 

tunnel in Central Iran. Bulletin of Engineering Geology and the Environment 

74(3): 789–802. 

[44] Dowd, P.A., Xu, C., Mardia, K.V., Fowell, R.J., 2007. A comparison of 

methods for the stochastic simulation of rock fractures. Mathematical Geology 

39(7): 697–714. 

[45] Edelbro, C., 2004. Evaluation of rock mass strength criteria (Doctoral 

dissertation, Luleå tekniska universitet).   

[46] Egaña, M., Ortiz, J., 2013. Assessment of RMR and its uncertainty by 

using geostatistical simulation in a mining project. Journal of GeoEngineering 

8(3): 83–90. 

[47] Egaña, M. J., 2008. Geoestadística Aplicada a Parámetros 

Geotécnicos. Memoria de Ingeniería Civil de Minas, Universidad de Chile. 

[48] Ellefmo, S.L., Eidsvik, J., 2009. Local and spatial joint frequency 

uncertainty and its application to rock mass characterisation. Rock Mechanics 

and Rock Engineering 42(4): 667–688. 

[49] Elsayed, A.E., Sen, Z., 1991. Probabilistic simulation of rock quality 

designation (RQD). Bulletin of the International Association of Engineering 

Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 

43(1), 31-40. 

[50] Emery, X., 2005. Variograms of order : a tool to validate a bivariate 

distribution model. Mathematical Geology 37(2): 163–181. 

[51] Emery, X., Lantuéjoul, C., 2006. TBSIM: A computer program for 

conditional simulation of three-dimensional Gaussian random fields via the 

turning bands method. Computers & Geosciences 32(10): 1615–1628. 

[52] Emery, X., Ortiz, J. M. and Cáceres, A. M., 2008. Geostatistical 

modelling of rock type domains with spatially varying proportions: application 

to a porphyry copper deposit. Journal of the Southern African Institute of 

Mining and Metallurgy, 108, 284-292. 



References 
 

 

122 
 

[53] Emery, X., & Peláez, M., 2011. Assessing the accuracy of sequential 

Gaussian simulation and cosimulation. Computational Geosciences, 15(4), 

673-689. 

[54] Emery, X., Furrer, R., Porcu, E., 2019.a. A turning bands method for 

simulating isotropic Gaussian random fields on the sphere. Statistics and 

Probability Letters 144: 9–15. 

[55] Emery, X., Porcu, E., & Bissiri, P. G., 2019.b. A semiparametric class of 

axially symmetric random fields on the sphere. Stochastic Environmental 

Research and Risk Assessment, 33(10), 1863-1874.   

[56] Emery, X., & Porcu, E., 2019. Simulating isotropic vector-valued 

Gaussian random fields on the sphere through finite harmonics 

approximations. Stochastic Environmental Research and Risk Assessment, 

33(8-9), 1659-1667.  

[57] Emery, X., Séguret, S.A., 2020. Geostatistics for the Mining Industry - 

Applications to Porphyry Copper Deposits. CRC Press, Boca Raton, 247 pp. 

[58] Emery, X., & Alegría, A., 2020. A spectral algorithm to simulate 

nonstationary random fields on spheres and multifractal star-shaped random 

sets. Stochastic Environmental Research and Risk Assessment, 34(12), 2301-

2311. 

[59] Emery, X., Alegría, A., & Arroyo, D., 2021. Covariance models and 

simulation algorithm for stationary vector random fields on spheres crossed 

with Euclidean spaces. SIAM Journal on Scientific Computing, 43(5), A3114-

A3134. 

[60] Emery, X., Arroyo, D., & Mery, N., 2022. Twenty-two families of 

multivariate covariance kernels on spheres, with their spectral representations 

and sufficient validity conditions. Stochastic Environmental Research and Risk 

Assessment, 36(5), 1447-1467. 

[61] Esmaieli, K., Hadjigeorgiou, J., & Grenon, M., 2010. Estimating 

geometrical and mechanical REV based on synthetic rock mass models at 

Brunswick Mine. International Journal of Rock Mechanics and Mining 

Sciences, 47(6), 915-926. 



References 
 

 

123 
 

[62] Etminan, A. H. and Seifi, A., 2008. An improved model for geostatistical 

simulation of fracture parameters and their effect on static and dynamic 

models. The Open Petroleum Engineering Journal 1: 47-57.  

[63] Exadaktylos, G., Stavropoulou, M., 2008. A specific upscaling theory of 

rock mass parameters exhibiting spatial variability: Analytical relations and 

computational scheme. International Journal of Rock Mechanics and Mining 

Sciences 45(7): 1102–1125. 

[64] Fenton, G. A., 1997. Probabilistic methods in geotechnical engineering. 

In: Workshop presented at ASCE GeoLogan’97 conference, Logan, Utah. 

[65] Ferrari, F., Apuani, T., Giani, G.P., 2014. Rock Mass Rating spatial 

estimation by geostatistical analysis. International Journal of Rock Mechanics 

and Mining Sciences 70: 162–176. 

[66] Fillion, M. H., 2018. Optimizing Geotechnical Data Collection 

Campaigns in Open Pit Mines (Doctoral dissertation, University of Toronto 

(Canada)). 

[67] Gao, X., Yan, E.C., Yeh, T.C.J., Cai, J.S., Liang, Y., Wang, M., 2018. A 

geostatistical inverse approach to characterize the spatial distribution of 

deformability and shear strength of rock mass around an unlined rock cavern. 

Engineering Geology, 245, 106–119. 

[68] Gneiting, T., 1999. Correlation functions for atmospheric data analysis. 

Quaterly Journal of the Royal Meteorological Society, Part A, 125(559): 2449- 

2464. 

[69] Gneiting, T., 2013. Strictly and non-strictly positive definite functions on 

spheres. Bernoulli 19(4): 1327-1349. 

[70] Goovaerts, P., 2001. Geostatistical modelling of uncertainty in soil 

science. Geoderma 103: 3–26. 

[71] Goulard, M., & Voltz, M., 1992. Linear coregionalization model: tools for 

estimation and choice of cross-variogram matrix. Mathematical Geology, 

24(3), 269-286.  

[72] Grenon, M., Hadjigeorgiou, J., 2010. Integrated structural stability 

analysis for preliminary open pit design. International Journal of Rock 

Mechanics and Mining Sciences, 47(3), 450-460. 



References 
 

 

124 
 

[73] Hadjigeorgiou, J., & Harrison, J. P., 2011, January. Uncertainty and 

sources of error in rock engineering. In 12th ISRM Congress. International 

Society for Rock Mechanics and Rock Engineering.   

[74] Haftani, M., Chehreh, H.A., Mehinrad, A., Binazadeh, K., 2016. 

Practical investigations on use of weighted joint density to decrease the 

limitations of RQD measurements. Rock Mechanics and Rock Engineering, 

49(4), 1551-1558. 

[75] Hekmatnejad, A, Emery, X., Brzovic, A., Schachter, P., Vallejos, J.A., 

2017. Spatial modeling of discontinuity intensity from borehole observations at 

El Teniente mine, Chile. Engineering Geology 228: 97–106. 

[76] Hekmatnejad, A., Emery, X., Brzovic, A., Vallejos, J., 2016. Spatial 

prediction of fracture intensity based on drill hole observations. In: 

Proceedings of the 2016 SME Annual Conference and Expo: The Future for 

Mining in a Data-Driven World. Society for Mining, Metallurgy & Exploration, 

Englewood, Colorado, pp. 282-286. 

[77] Hoek, E., & Brown, E. T., 1980. Underground excavations in rock. Inst. 

Mining and Metallurgy, London, 156. 

[78] Hoek, E., Bray, J., 1981 Rock Slope Engineering. London: Institute of 

Mining and Metallurgy. 

[79] Hoek, E., 1983. Strength of jointed rock masses. Geotechnique, 33(3), 

187-223. 

[80] Hoek, E., 1994. Strength of rock and rock masses. ISRM News Journal, 

2, 4-16. 

[81] Hoek, E., 2006. Practical Rock Engineering. Rocscience: Rock mass 

classification 

[82] Hoek, E., Carter, T.G., Diederichs, M.S., 2013. Quantification of the 

geological strength index chart. In 47th US rock mechanics/geomechanics 

symposium. American Rock Mechanics Association. 

[83] Huang, C., H. Zhang, and S. M. Robeson, 2011. On the validity of 

covariance and variogram functions on the sphere. Mathematical Geosciences 

43(6): 721-733. 



References 
 

 

125 
 

[84] Hudson, J., 2012. Design methodology for the safety of underground 

rock engineering. Journal Rock Mechanics and Geotechnical Engineering, 4, 

205–214. 

[85] Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., 

Viswanathan, H.S., 2015. DFNWORKS: A discrete fracture network framework 

for modeling subsurface flow and transport. Computers & Geosciences 84: 

10–19. 

[86] Jeon, S., Hong, C., You, K., 2009. Design of tunnel supporting system 

using geostatistical methods. In: Ng, C.W.W., Huang, H.W., Liu, G.B. (Eds.), 

Geotechnical Aspects of Underground Construction in Soft Ground. CRC 

Press, Boca Raton, pp. 781–784. 

[87] Jing, L., 2003. A review of techniques, advances and outstanding 

issues in numerical modelling for rock mechanics and rock engineering. 

International Journal of Rock Mechanics and Mining Sciences, 40(3), 283-353. 

[88] Jones, R. H., 1963. Stochastic processes on a sphere. The Annals of 

mathematical statistics, 34(1), 213-218. 

[89] Journel, A.G., 1983. Non-parametric estimation of spatial distributions. 

Mathematical Geology 15(3): 445–468. 

[90] Jun, M., and M. L. Stein, 2008. Nonstationary covariance models for 

global data. The Annals of Applied Statistics 2(4): 1271-1289. 

[91] Kloppenburg, A., Alzate, J. C., & Rodríguez, G., 2003. Building a 

discrete fracture network based on the deformation history: a case study from 

the Guaduas Field, Colombia. In 8th Simposio Bolivariano-Exploracion 

Petrolera en las Cuencas Subandinas. 

[92] Lang, A., & Schwab, C., 2015. Isotropic Gaussian random fields on the 

sphere: regularity, fast simulation and stochastic partial differential equations. 

The Annals of Applied Probability, 25(6), 3047-3094. 

[93] Lantuéjoul, C., 2002. Geostatistical Simulation, Models and Algorithms. 

Springer, Berlin, pp. 256. 

[94] Lantuéjoul, C., Freulon, X., & Renard, D., 2019. Spectral simulation of 

isotropic Gaussian random fields on a sphere. Mathematical 

Geosciences, 51(8), 999-1020. 



References 
 

 

126 
 

[95] Lato, M., Kemeny, J., Harrap, R.M., Bevan, G., 2013. Rock bench: 

establishing common repository and standards for assessing rockmass 

characteristics using LiDAR and photogrammetry. Computers & Geosciences 

50: 106-114. 

[96] Le Gia, Q.T., Sloan, I.H., Womersley, R.S., Wang, Y.G., 2019. Isotropic 

sparse regularization for spherical harmonic representations of random fields 

on the sphere. Applied and Computational Harmonic Analysis, in press. 

https://doi.org/10.1016/j.acha.2019.01.005 

[97] Le Goc, R., Darcel, C., Davy, P., Pierce, M. and Brossault, M. A., 2014. 

Effective elastic properties of 3D fractured systems. In: Proceedings of the 1st 

International Conference on Discrete Fracture Network Engineering, Paper ID 

142, Vancouver, Canada 

[98] Madani, N. and Asghari, O., 2013. Fault detection in 3D by sequential 

Gaussian simulation of Rock Quality Designation (RQD). Arabian Journal of 

Geosciences 12(10): 3737-3747 

[99] Maerten, L., Pollard, D. D., & Karpuz, R., 2000. How to constrain 3-D 

fault continuity and linkage using reflection seismic data: a geomechanical 

approach. AAPG bulletin, 84(9), 1311-1324. 

[100] Maksaev, V., Tomlinson, A.J., & Blanco, N., 1994. Estudio geológico de 

la franja longitudinal comprendida entre Quebrada Blanca y Chuquicamata 

SERNAGEOMIN-CODELCO, internal report: 72 p. 

[101] Mao, S. and Journel, A., 1999. Generation of a reference 

petrophysical/seismic data set: the Stanford V reservoir. 12th Annual Report 

Stanford Center for Reservoir Forecasting, Stanford USA. 

[102] Marinucci, D. & Peccati, G., 2011. Random Fields on the Sphere, 

Representation, Limit Theorems and Cosmological Applications. New York: 

Cambridge. 

[103] Marinos, V.I.I.I., Marinos, P., Hoek, E., 2005. The geological strength 

index: applications and limitations. Bulletin of Engineering Geology and the 

Environment, 64(1), 55-65. 

[104] Marinos, V., Carter, T.G., 2018. Maintaining geological reality in 

application of GSI for design of engineering structures in rock. Engineering 

Geology, 239, 282-297. 



References 
 

 

127 
 

[105] Matheron, G., 1971. The Theory of Regionalized Variables and its 

Applications. Paris School of Mines, Paris. 

[106] Matheron, G., 1973. The intrinsic random functions and their 

applications. Advances in applied probability, 5(3), 439-468. 

[107] Matonti, C., Guglielmi, Y., Viseur, S., Bruna, P. O., Borgomano, J., 

Dahl, C., Marié, L., 2015. Heterogeneities and diagenetic control on the spatial 

distribution of carbonate rocks acoustic properties at the outcrop scale. 

Tectonophysics, 638, 94-111. 

[108] Milne, D., Hadjigeorgiou, J., & Pakalnis, R., 1998. Rock mass 

characterization for underground hard rock mines. Tunnelling and 

underground space technology, 13(4), 383-391. 

[109] National Research Council, 2006. Geological and geotechnical 

engineering in the new millennium: opportunities for research and 

technological innovation. National Academy Press, Washington, DC. 

[110] Oh, S., Chung, H., Kee Lee, D., 2004. Geostatistical integration of MT 

and boreholes data for RMR evaluation. Environmental Geology 46: 1070–

1078. 

[111] Ozturk, C.A., Nasuf, E., 2002. Geostatistical assessment of rock zones 

for tunneling. Tunnelling and Underground Space Technology 17: 275–285. 

[112] Ozturk, C.A., Simdi, E., 2014. Geostatistical investigation of 

geotechnical and constructional properties in Kadikoy–Kartal subway, Turkey. 

Tunnelling and Underground Space Technology 4: 35–45. 

[113] Palmström, A., 1982 The volumetric joint counted useful and simple 

measure of the degree of rock mass jointing. In: Proceedings of the 4th 

Congress of International Association of Engineering Geology, pp. 221e8. 

New Delhi. 

[114] Palmstrom, A., 2005. Measurements of and correlations between block 

size and rock quality designation (RQD). Tunnelling and Underground Space 

Technology, 20(4), 362-377 

[115] Pinheiro, M., Emery, X., Miranda, T. and Vallejos, J., 2016a. Truncated 

Gaussian Simulation to Map the Spatial Heterogeneity of Rock Mass Rating. 

Rock Mechanics and Rock Engineering 49(8): 1-6.  



References 
 

 

128 
 

[116] Pinheiro, M., Vallejos, J., Miranda, T. and Emery, X., 2016b. 

Geostatistical simulation to map the spatial heterogeneity of geomechanical 

parameters: A case study with rock mass rating. Engineering Geology 205: 

93-103. 

[117] Peron, A., Porcu, E., & Emery, X., 2018. Admissible nested covariance 

models over spheres cross time. Stochastic environmental research and risk 

assessment, 32(11), 3053-3066.   

[118] Popescu, R., Deodatis, G. and Nobahar, A., 2005. Effects of random 

heterogeneity of soil properties on bearing capacity. Probabilistic Engineering 

Mechanics 20: 324-341. 

[119] Porcu, E., Bevilacqua, M., Genton, M.G., 2016. Spatio-temporal 

covariance and cross-covariance functions of the great circle distance on a 

sphere. Journal of the American Statistical Association 111(514): 888–898. 

[120] Porcu, E., Alegria, A., & Furrer, R., 2018. Modeling temporally evolving 

and spatially globally dependent data. International Statistical Review, 86(2), 

344-377. 

[121] Porcu, E., Castruccio, S., Alegria, A., & Crippa, P., 2019. Axially 

symmetric models for global data: a journey between geostatistics and 

stochastic generators. Environmetrics, 30(1), e2555. 

[122] Pratt, H.R., Black, A.D., Brown, W.S., Brace, W.F., 1972. The effect of 

speciment size on the mechanical properties of unjointed diorite. International 

Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 

9(4), 513-516. 

[123] Priest, S. D. and J. A. Hudson., 1976. Discontinuity spacing in rock. 

International Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts 13(5): 135-148. 

[124] Priest, S.D., 1985. Hemispherical projection methods in rock 

mechanics. Allen & Unwin. 

[125] Rocha, M., 1974. Present possibilities of studying foundations of 

concrete dams, Advances in rock mechanics, National Academy of Sciences, 

Washington, D.C. 



References 
 

 

129 
 

[126] Rojas, R., 2021. Modelamiento de fallas principales en yacimiento 

Radomiro Tomic, Distrito Chuquicamata. In proceedings of the 7th 

International Conference on Geology and Mine Planning, Santiago, Chile.  

[127] Romana, M., 1985. New adjustment ratings for application of Bieniawski 

classification to slopes. In Proceedings of the International Symposium on 

Role of Rock Mechanics, Zacatecas, Mexico (pp. 49-53).  

[128] Rosenbaum, M.S., Rosen, L. and Gustafson, G., 1997. Probabilistic 

models for estimating lithology. Engineering and Geology 47: 43–55. 

[129] Ryu, D. W., Kim, T. K. and Heo, J. S., 2003. A study on geostatistical 

simulation technique for the uncertainty modelling of RMR. Tunnel and 

Underground 13: 87–99. 

[130] Sánchez, L.K., Emery, X., Séguret, S.A., 2019. 5D geostatistics for 

directional variables: Application in geotechnics to the simulation of the linear 

discontinuity frequency. Computers & Geosciences, 133, 104325. 

[131] Sánchez, L. K., Emery, X., Séguret, S. A., 2021. Geostatistical 

modeling of Rock Quality Designation (RQD) and geotechnical zoning 

accounting for directional dependence and scale effect. Engineering Geology, 

293, 106338. 

[132] Santos, V., Da Silva, P.F., Brito, M.G., 2018. Estimating RMR values for 

underground excavations in a rock mass. Minerals 8(3): 78. 

[133] Schoenberg, I.J., 1942. Positive definite functions on spheres. Duke 

Mathematics Journal, 9(1): 96–108. 

[134] Schultz, R. A., 1996. Relative scale and the strength and deformability 

of rock masses. Journal of Structural Geology, 18(9), 1139-1149.   

[135] Séguret, S.A., Guajardo, C., Freire, R., 2014. Geostatistical evaluation 

of fracture frequency and crushing. In: Castro, R. (Ed.), Proceedings of the 3rd 

International Symposium on Block and Sublevel Caving. Universidad de Chile, 

Santiago, pp. 280–288. 

[136] Séguret, S.A., Guajardo, C., 2015. Geostatistical evaluation of rock 

quality designation & its link with linear fracture. In: Schaeben, H., Tolosana 

Delgado, R., van den Boogaart, K.G., van den Boogaart, R. (Eds.) 

Proceedings of IAMG 2015 - 17th Annual Conference of the International 



References 
 

 

130 
 

Association for Mathematical Geosciences. Curran Associates, Red Hook, NY, 

pp. 1043–1051. 

[137] Séguret, S.A., 2016. Fracturing, crushing, and directional concentration. 

Mathematical Geosciences, 48(6), 663-685. 

[138] Séguret, S., Emery, X., 2019. Géostatistique de Gisements de Cuivre 

Chiliens – 35 Années de Recherche Appliquée. Presses des Mines: Paris, 

France, 266pp. [in French]. 

[139] Sen, Z., Kazi, A., 1984. Discontinuity spacing and RQD estimates from 

finite length scanlines. International Journal of Rock Mechanics and Mining 

Sciences & Geomechanics Abstracts, 21(4), 203-212. 

[140] Singh, B., Goel, R., 1999. Slope mass rating (SMR). In: Rock mass 

classification: a practical approach in civil engineering. Elsevier science, 

Oxford, pp 171–183 

[141] Skewes, M.A., Arevalo, A., Floody, R., Zuñiga, P., Stern, C.R., 2002. 

The giant El Teniente breccia deposit: hypogene copper distribution and 

emplacement. In: Goldfarb, R. (ed.), Global Exploration 2002 - Integrated 

Methods of Discovery. Society of Economic Geologist Special Publication, vol. 

9, pp. 299–332. 

[142] Skewes, M.A., Arevalo, A., Floody, R., Zuniga, P., Stern, C.R., 2006. 

The El Teniente megabreccia deposit, the world’s largest deposit. In: Porter, 

T.M. (ed.), Super Porphyry Copper and Gold Deposits – A Global Perspective. 

Porter Geoscience Consultancy Publishing, Adelaide, Australia, pp. 83–113. 

[143] Song, K.I., Cho, G.C., Lee, S.W., 2011. Effects of spatially variable 

weathered rock properties on tunnel behavior. Probabilistic Engineering 

Mechanics, 26(3), 413-426. 

[144] Stavropoulou, M., Exadaktylos, G. and Saratsis, G., 2007. A combined 

three-dimensional geological/geostatistical numerical model of underground 

excavations in rock. Rock Mechanics and Rock Engineering 40(3): 213-243. 

[145] Stein, M. L., 2007. Spatial variation of total column ozone on a global 

scale. The Annals of Applied Statistics, 1(1), 191-210. 

[146] Terzaghi RD, 1965. Sources of error in joint surveys. Geotechnique 

15(3): 287-304. 



References 
 

 

131 
 

[147] Tomlinson, A.J., Blanco, N., 1997. Structural evolution and 

displacement history of the West Fault system, Precordillera, Chile: part II, 

Postmineral history. In Congreso Geológico Chileno No. 8, Actas 3. 

[148] Tomlinson, A.J., Blanco, N., Dilles, J.H., Maksaev, V., Ladino, M., 2018. 

Carta Calama, Región de Antofagasta. Servicio Nacional de Geología y 

Minería, Carta Geológica de Chile, Serie Geología Básica No. 199: XX p., 1 

mapa escala 1:100.000. Santiago. 

[149] Vatcher, J., McKinnon, S.D., Sjöberg, J., 2016. Developing 3-D mine-

scale geomechanical models in complex geological environments, as applied 

to the Kiirunavaara Mine. Engineering Geology, 203, 140-150. 

[150] Wackernagel, H., 2003. Multivariate Geostatistics – An Introduction with 

Applications. Springer, Berlin, 387 pp. 

[151] Wyllie, D. C., Mah, C., 2004. Rock Slope Engineering. CRC Press. 

[152] Yardimci, A.G., Karpuz, C., 2018 Fuzzy approach for preliminary design 

of weak rock slopes in lignite mines. Bull Eng Geol Environ 77, 253–264.  

[153] Xu, C.S., Dowd, P., 2010. A new computer code for discrete fracture 

network modelling. Computers & Geosciences 36(3): 292–301. 

[154] Yadrenko, M. I., & Balakrishnan, A. V., 1983. Spectral Theory of 

Random Fields (Spektral'naja Teorija Sluchajnykh Polej). Optimization 

Software, Publications Division. 

[155] Yaglom, A., 1987. Correlation Theory of Stationary and Related 

Random Functions, Vol. I: Basic Results; Vol. II: Supplementary Notes and 

References. Springer, New York. 

[156] You, K. H., 2003. An estimation technique of rock mass classes for a 

tunnel design. Geotechnical Engineering 19: 319–326 (in Korean with English 

abstract). 

[157] Zhang, L., Einstein, H.H., 2004. Using RQD to estimate the deformation 

modulus of rock masses. International Journal of Rock Mechanics and Mining 

Sciences, 41(2), 337-341. 

[158] Zhang, W., Chen, J. P., Liu, C., Huang, R., Li, M., & Zhang, Y., 2012. 

Determination of geometrical and structural representative volume elements at 

the Baihetan dam site. Rock Mechanics and Rock Engineering, 45(3), 409-

419. 



References 
 

 

132 
 

[159] Zhang, L., 2016. Determination and applications of rock quality 

designation (RQD). Journal of Rock Mechanics and Geotechnical 

Engineering, 8(3), 389-397. 

[160] Zhang, L., Xia, L., & Yu, Q., 2017. Determining the REV for Fracture 

Rock Mass Based on Seepage Theory. Geofluids, 2017. 

[161] Zheng, J., Yang, X., Lü, Q., Zhao, Y., Deng, J., Ding, Z., 2018. A new 

perspective for the directivity of Rock Quality Designation (RQD) and an 

anisotropy index of jointing degree for rock masses. Engineering Geology, 

240, 81-94. 


