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FECHA: 2022
PROF. GUÍA: CESAR AZURDIA MEZA

EVALUACIÓN DE EXTREME LEARNING MACHINE COMO
ECUALIZADOR DE CANAL PARA SISTEMAS DE COMUNICACIÓN POR

LUZ VISIBLE BASADOS EN COLOR-SHIFT KEYING EMPLEADOS EN
ESCENARIOS DE MINERÍA SUBTERRÁNEA

En el contexto de la minería subterránea, los sistemas de comunicación por luz visible
se han propuesto como sistemas auxiliares a la comunicación inalámbrica tradicional, pues
tienen el potencial de otorgarle mayor fiabilidad y flexibilidad a esta última. El canal de
comunicación por luz visible en una mina subterránea es mucho más complejo que el de
entornos in-door comunes (por ejemplo, oficinas, centros comerciales, etcétera): polvo, ma-
quinaria pesada, paredes irregulares son solo algunos de los factores que degradan la señal
de luz en una mina subterránea. Dada la potencial hostilidad del canal de comunicación en
el entorno minero, es interesante evaluar un método de ecualización complejo y compararlo
con el método de ecualización estándar para sistemas de comunicación por luz visible.

Extreme learning machine es un algoritmo basado en redes neuronales que ha demostrado
ser efectivo como ecualizador de canales altamente hostiles. Color-shift keying es una de las
técnicas de modulación utilizadas en sistemas de comunicación por luz visible que alcanza
altas tasas de datos. El objetivo de este trabajo es evaluar la factibilidad de utilizar un
ecualizador basado en extreme learning machine en un sistema de comunicación por luz
visible, desplegado en una mina subterránea y haciendo uso de la modulación color-shift
keying.

Para cumplir el objetivo, se diseñó un escenario de simulación y un montaje experimental
computacional, cuyo resultado es la probabilidad de error de bit del sistema simulado. El
escenario de simulación consistió en una mina subterránea en la que un único transmisor
enviaba datos a un único receptor, usando un enlace de comunicación por luz visible basado
color-shift keying y ateniéndose a las especificaciones del estándar IEEE 802.15.7. Usando la
probabilidad de error de bit obtenida como métrica, los métodos de ecualización basados en
extreme learning machine se compararon con el método de ecualización tradicional, propuesto
por el estándar IEEE 802.15.7 para color-shift keying. Los fenómenos inherentes a las minas
subterráneas que degradan la señal de luz se consideraron en el escenario de simulación
incorporando un modelo de canal de mina subterránea del estado del arte.

Los resultados dan a entender que, para las tasas de datos definidas en el estándar IEEE
802.15.7 y para el entorno de simulación evaluado, el método estándar de ecualización de canal
es perfectamente capaz de ecualizar la señal; de hecho, el método estándar tiene mejor ren-
dimiento que la ecualización basada en extreme learning machine, y además requiere menor
complejidad computacional. Sin embargo, para descartar completamente extreme learning
machine como método de ecualización de canales por luz visible, es necesario futuro trabajo,
ya sea evaluándolo en simulaciones más complejas o incluso implementando el sistema en la
realidad.
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EVALUATION OF EXTREME LEARNING MACHINE AS CHANNEL
EQUALIZER FOR COLOR-SHIFT KEYING-BASED VISIBLE LIGHT

COMMUNICATION SYSTEMS EMPLOYED IN UNDERGROUND MINING
SCENARIOS

In the context of underground mining, visible light communication systems have been pro-
posed as auxiliary systems to traditional wireless communications, as they have the potential
to provide greater reliability and flexibility to the latter. The visible light communication
channel in an underground mine is much more complex than that of common in-door envi-
ronments (e.g. offices, shopping malls, etc.): dust, heavy machinery, irregular walls are just
some of the factors that degrade the light signal in an underground mine. Given the potential
harshness of the communication channel in underground mining environments, it is interes-
ting to evaluate a complex equalization method and compare it to the standard equalization
method for visible light communication systems.

Extreme learning machine is a neural network-based algorithm that has proven to be
effective as channel equalizer of extremely harsh channels. Color-shift keying is one of the
modulation techniques used in visible light communication systems which reaches the high
data rates. The objective of this work is to evaluate the feasibility of using an equalizer
based on extreme learning machines in a visible light communication system, deployed in an
underground mine and making use of color-shift keying modulation.

To meet the objective, a simulation scenario and a computational experimental setup
were designed, the result of which is the bit error probability of the simulated system. The
simulation scenario consisted of an underground mine in which a single transmitter sent data
to a single receiver using a visible light communication link based on color-shift keying and
confined to the specifications of the IEEE 802.15.7 standard. Using the bit error probability
obtained as metric, the extreme learning machine-based equalization methods were compared
with the standard equalization method proposed by the IEEE 802.15.7 standard for color-
shift keying. The phenomena inherent to underground mines that degrade the light signal
were considered in the simulation scenario by incorporating a state-of-the-art underground
mine channel model.

The results imply that, for the data rates defined in the IEEE 802.15.7 standard and
for the simulation environment evaluated, the standard channel equalization is perfectly
capable of equalizing the signal; in fact, the standard equalization method performs better
than equalization based on extreme learning machines, and also requires less computational
complexity. However, to completely rule out extreme learning machine as a visible light
channel equalization method, future work is needed, either by evaluating it in more complex
simulations or even by implementing the system in reality.
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Chapter 1

Introduction

1.1. Motivation
Mining can be defined as the activity, occupation and industry concerned with the ex-

traction of minerals. [1] This activity can be further divided into two groups according to
the type of excavation: strip mining and underground mining. The differences between these
two groups is that in the former, people and machinery operate at ground level, while the
latter operates underground [1]. Underground mining is considered one of the most dangerous
occupations, mainly for two reasons:

• Work is performed in hazardous environments, with hazards such as fires, explosions,
roof collapses, toxic gases, floods and vehicle accidents that might result in serious
injuries or disabilities, and in the worst cases, fatalities [1].

• When an accident occurs during underground mining operations, the emergency respon-
se is met with a lot more obstacles than in other work environments. This is due to the
fact that the underground mine’s own structure does not allow for a swift emergency
response [1].

Despite the extreme work conditions, productivity and efficiency in mining operations
must always be maintained as to meet market demand. In other words, mining operations
are expected to extract minerals as efficiently, and safely, as possible. Communications are
at the center of both concerns: daily mining operations require a communication system
for their coordination and monitoring, while in the case of an accident, the information
flow is essential in order to locate workers in urgent need [1]. Currently, the most common
underground mine communication systems consist of cable or radio communication systems.
Both kinds of systems have respective disadvantages. On the one hand, wired systems are
prone to damage, while radio signals are extremely attenuated by the mining environment,
leading to low data rates. In recent years, a new communication system has been proposed to
complement existing systems over short distances: visible light communications (VLC) [2].

These VLC systems have multiple applications as alternatives to traditional wireless sys-
tems: hospitals and aircraft cabin (both are electromagnetic sensitive areas), Vehicle-to-X
communications, museums and street lighting (as to give access to information/entertain-
ment in public areas), industrial applications (specially where resistance to electromagnetic
interference is important), mobile underwater communications, sensor node communications,
etc. [3]
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Some advantages of this kind of system are that both the illumination and communi-
cation functions are integrated, and that the devices needed, light-emitting diodes (LEDs)
and photodiodes (PDs), are relatively cheap [2]. Another advantage is that the frequency
spectrum of visible light is entirely different from radio communications, and thus there is no
electromagnetic interference and the spectrum is completely unlicensed, allowing for faster
data rates [4]. One modulation scheme exclusive to VLC systems known as color-shift keying
(CSK) is of particular interest due to its high data rates.

The disadvantage is that underground mining environments are usually more hostile to-
wards light transmission than other environments where visible light communications are
traditionally deployed, such as offices or shopping complexes. Factors such as LED and pho-
todiode tilting, irregular walls, light being obstructed by large machinery, light scattering
due to dust, all contribute to the deterioration of the visible light communication signal in
underground mining environments [4]. In order to reduce the detrimental impact of these fac-
tors, not seen in conventional visible light communication channels, unconventional channel
estimation and equalization methods are needed.

In recent years, demand for faster and more reliable wireless communications has spiked
research interest in machine learning-based solutions for channel estimation and equalization.
These machine learning algorithms use data sequences known both at the transmitter and
at the receiver to fine-tune its own internal parameters iteratively, in a process known as
training. This method entails two problems: on the one hand, the need for data sequences
used in training requires significant amounts of overhead. On the other hand, the need for
iterative training requires significant computational power in order to perform the training
operations as fast as real-time communications demand it. The family of machine learning-
based algorithms known as extreme learning machine (ELM) was proposed as a solution to
both these problems. The main advantage of extreme learning machine is that, at its most
basic implementation, it performs the training process in only one iteration, making it a
simple and fast alternative.

Extreme learning machines-based algorithms have proven effective in radio frequency (RF)
channel equalization [5, 6, 7], and as post-distortion algorithms used to mitigate the inherent
LED non-linearity in visible light communications [8]. Yet to be proven is their effectiveness
in channel equalization for visible light communications, let alone in underground mining
scenarios, but given their performance in radio frequency channels and simplicity, they are an
attractive candidate for such task. In this work, ELM-based algorithms are proposed as VLC
channel estimation and equalization algorithms under the CSK modulation scheme, in order
to compare their performance against the estimation and equalization method proposed by
the Institute of Electrical and Electronics Engineers (IEEE) in their IEEE 802.15.7 standard
[9], commonly known as least squares (LS) equalizer.

This work is concerned with two main scientific inquiries: firstly, the assumption that
the least squares equalizer is a feasible equalization method for CSK-based VLC systems,
even in harsher channel conditions such as underground mining scenarios, to the best of our
knowledge, has not been put to the test in the literature. And secondly, even though extreme
learning machine has been studied as an equalizer for harsh channel conditions in wireless
systems, these are in the RF bands. Extreme learning machines-based equalizers, to the best
of our knowledge, have not been employed in CSK-based visible light communication systems
under harsh environments such as underground mining scenarios.
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1.2. Hypothesis
“It is feasible, in terms of bit error probability and computational complexity, to
employ the least squares estimator as the equalizer in a single-input single-output
visible light communication system based on the color-shift keying modulation sche-
me and deployed in an underground mine scenario, all the while adhering to the
system specifications of the IEEE 802.15.7 standard.”

1.3. Objectives

1.3.1. General Objective

The general objective of this work can be formulated as

“To evaluate and analyze the feasibility of employing extreme learning machine as
channel equalizer for a color-shift keying-based visible light communication system
in an underground mine”

1.3.2. Specific Objectives

The specific objectives are

• To analyze the extreme learning machines-based equalizer and compare it to the equa-
lizer proposed in the IEEE 802.15.7 standard, in terms of probability of error

• To analyze the extreme learning machines-based equalizer and compare it to the equa-
lizer proposed in the IEEE 802.15.7 standard, in terms of computational complexity

• To evaluate and analyze the communication system considering the technical specifica-
tions presented in the IEEE 802.15.7 standard

• To evaluate and analyze the performance of the equalizers considering different commu-
nication system parameters

1.4. Structure
This thesis is structured as follows. Chapter 2 presents an overview of the theoretical

aspects of this work. Chapter 3 covers the methods used in this work to attain the objectives,
which can be summarized as the color-shift keying modulation, the extreme learning machine
algorithm and the VLC system simulation. Chapter 4 shows the results obtained from the
experiments laid out in Chapter 3 and then discusses them. Finally, Chapter 5 presents the
conclusions drawn from the entire experience.
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Chapter 2

Literature Review

2.1. Digital Communication Systems
The principal characteristic of a digital communication system (DCS) is that during a finite

time interval, it transmits a waveform from a finite set of possible waveforms. In opposition,
analog communication systems transmit a waveform from an infinite set of waveform shapes.
The goal of a DCS at the receiver is not to reproduce a transmitted waveform accurately but
rather to determine, by looking at the received signal, which waveform from the finite set of
waveforms was sent by the transmitter [10].

The source output, be it analog or digital, is converted into a sequence of binary digits by
the source encoder, in a process called source encoding or data compression. This process seeks
to represent the source output using as few binary digits as possible to represent the source
output. The binary digits from the source encoder are then passed to the channel encoder,
which, contrary to the source encoder, seeks to add redundancy in the binary sequence,
making the communication system more robust against noise and interference. The channel
encoder outputs a binary sequence which is then passed to the digital modulator [11].

The digital modulator functions as the interface to the channel, mapping the binary se-
quence into signal waveforms that are compatible with the requirements imposed by the
channel. In the modulation process, the binary sequence is divided into groups of m bits, with
each group being treated as a single unit called a symbol. Each symbol si, for i = 1, . . . , M ,
is found in the finite symbol set {s1, . . . , sM}, also known as the alphabet. The size of the
alphabet is given by M = 2m, where m is the number of bits found in each symbol. For a
given data rate Rb (bits per second, bps), the symbol rate is given by Rb/m (symbols per
second, baud) [10].

Each symbol takes the form of a compatible waveform. Depending on the channel requi-
rements, either a baseband waveform or a bandpass waveform is used. These two kinds of
waveforms are differentiated by their frequency spectrum: in a baseband waveform, usually
known as a pulse, the frequency spectrum of the signal extends from DC up to a finite value,
while in a bandpass waveform, the baseband waveform is translated in the frequency space
by a carrier wave to a frequency that is much larger than the bandwidth of the baseband
waveform [10].

In the transmission process, the symbol waveform is affected by the channel. This inter-
action can be described by the channel impulse response (CIR). Additive random noise also
impacts the symbol waveform. At the receiver, the demodulator restores the received symbol
to an optimally shaped baseband pulse. It also applies several filters in order to prepare
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the signal for detection: filters are applied to remove unwanted high frequency components
and for pulse shaping. A special case of filter is called equalizer. Equalization is the filtering
process in or after the demodulator in which the degrading channel effects on the signal are
reversed. Equalization is essential when the channel impulse response is of very poor quality,
since its function is to compensate any signal distortion caused by a non-ideal CIR. After
being processed in the demodulator, the received symbol is sampled and assigned one of the
finite symbols in {s1, . . . , sM}.

2.1.1. Channel effects

The channel effects comprise two main sources of corruption: channel noise and intersym-
bol interference (ISI). Channel noise is caused by the inherent thermal noise of the physical
medium and interference from other users or other external sources. Intersymbol interference
refers to the spreading of a signal pulse past the symbol duration, causing successive signal
pulses to overlap. For a signal pulse not to be spread by the channel, the channel would have
to be a perfect filter, or, in other words, the channel would have to be band-limited. The
closer the channel bandwidth is to the signal bandwidth, the more pulse spread there is and
thus, the worse the ISI becomes [10].

2.1.2. Bit error ratio

Given a time period T and a data rate of Rb, then the total number of bits transmitted
in the period T is given by RbT . The bit error ratio (BER) is defined as

BER[T ] = # of incorrectly received bits during T

RbT
(2.1)

The bit error probability pe is the expected value of the BER,

pe = lim
T →∞

BER[T ] (2.2)

due to the law of large numbers. In practical terms, the BER is an approximation of the bit
error probability.

2.1.3. Mathematical models for communication channels

Most communication channels can be classified in the following three categories:

• Additive noise channel: In this model, the transmitted signal s(t) is corrupted by an
additive random noise process n(t). Additionally, the signal can be attenuated by the
channel by a factor a, called the attenuation factor. Thus, the received signal r(t) can
be expressed as [11]

r(t) = as(t) + n(t) (2.3)

• Linear filter channel: In some channels, filters are used to ensure that the transmitted
signals fall in a specified frequency band, as to not interfere with one another. Such
channels can be modeled as linear filter channels with additive white Gaussian noise
(AWGN). For a linear filter with impulse response h(t), the output of the linear filter
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channel can be expressed as, [11]

r(t) = s(t) ∗ h(t) + n(t)

=
∫ ∞

−∞
h(τ)s(t − τ)dτ + n(t)

(2.4)

where ∗ denotes convolution.

• Linear time-variant filter channel: There are channels that transmit the signal over
multiple paths which vary over time. These channels may be modeled as time-variant
linear filters. These linear filters are defined by the time-variant channel impulse response
h(τ, t), where h(τ, t) designates the response of the channel at time t, due to an impulse
applied at time t−τ . The output of the time-variant linear filter channel can be expressed
as, [11]

r(t) = s(t) ⊛ h(τ, t) + n(t)

=
∫ ∞

−∞
h(τ, t)s(t − τ)dτ + n(t).

(2.5)

2.2. Machine Learning
Machine learning is a field of study concerned with understanding and developing algo-

rithms, methods or models that can improve their performance at a certain task, i.e. learn,
from data. The classical machine learning approach to the learning process is to consider a
training set {x1, . . . , xN} and feed it to a machine learning model, which in turn uses the
given data to tune its internal parameters [12].

In the supervised learning approach, the training set is complemented with a label set
{t1, . . . , tN}, where ti is the desired model output for the model input xi, with i = 1 . . . , N .
The supervised training dataset, S, can be expressed as

S = {(xi, ti)}N
i=1 . (2.6)

In the training phase, also known as the learning phase, the machine learning model tunes
its internal parameters such that it generates a desired output given a certain input. What
a “desired output” is, the model learns from the dataset. The result of the training phase is
a machine learning model Θ, which takes a new input x i.e. x ̸∈ {x1, . . . , xN}, and outputs
a vector y, encoded in the same way as the vectors in the label set, namely

Θ(x) = y . (2.7)

In other words, after training, the model can identify new inputs x by associating a label
y to them. The set of new inputs that are given to the model after training are known as
the test set. The ability to correctly identify inputs different from the ones in the training
set is known as generalization. When the output labels can take the form of just one of a
finite number of discrete categories, then the task at hand is called classification. When the
output labels can take the form of one or continuous variables, then the task at hand is called
regression [12].

In the unsupervised learning approach, the training dataset consists of a set of input vectors
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without a corresponding label set. The unsupervised training dataset, U , can be expressed as

U = {xi}N
i=1 . (2.8)

Usually, the goal of unsupervised learning is to form clusters, or groups, of input vectors
with similar characteristics, process known as clustering. It is also useful for determining the
distribution of data in the input space, process known as density estimation [12].

2.2.1. Hyperparameters

Machine learning models usually employ parameters in the training phase that do not
change during training and also do not depend on the training data, but rather must be
pre-set. These parameters are called hyperparameters and can have an important impact on
the efficacy, speed, and quality of the training phase. Consequently, choosing appropriate
hyperparameters is an important step in the machine learning model design. Unfortunately,
there is no clear-cut way to choose the hyperparameters, meaning that heuristic methods
must be employed.

The method known as grid search is the most well known heuristic employed in hyperpara-
meter selection. It requires the selection of a set of candidate values for each hyperparameter,
found by trial and error or by an educated guess, and then training the model for all com-
bination of these candidate values. The trained models are then evaluated according to an
objective function which must be maximized or minimized. Examples of such objective fun-
ctions are the accuracy (to be maximized), or the mean squared error (to be minimized), of
the model predictions in the test set. The combination of hyperparameter values that gene-
rates the model that achieves the minimum (or maximum) objective function value out of all
the other models, is selected as the optimal hyperparameter value combination.

2.3. Visible Light Communication Systems
Visible light communication (VLC) is founded on the idea of providing both illumination

and data transmission simultaneously. This is achieved via the modulation of the light sour-
ce, be it white light or other selected colors in the visible spectrum. The most used light
source are light-emitting diodes (LEDs), which can be turned on and off millions of times
per second without decreasing their lifespan. VLC systems are as much an alternative as a
complementary system to RF communications. Some key advantages of VLC systems are: [3]

• Energy efficiency: No extra power is needed for data transmission. The same power used
in illumination is re-used for communication purposes.

• Large unregulated bandwidth: The wavelengths usable with LEDs in the visible range go
from 380 to 780 nm, which roughly translates into 750 THz of signal bandwidth. This
large bandwidth allows for Gbps data rates, at least in theory. Furthermore, international
radio frequency spectrum regulations usually go up to 3 THz, meaning that license-free
operation is possible.

• Interference immunity: Light does not penetrate through walls, unlike radio waves in the
microwave frequency range. This means that the entire light bandwidth can be re-used
in adjacent rooms, without causing interference.
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• Low-cost hardware: VLC receiver and transmitter hardware is much simpler than RF
front-ends, at least below 1 Gbps, meaning that low-cost consumer products are possible.

2.3.1. Fundamentals of Light

Light can be thought of as a quantum particle, called photon, or as an electromagnetic
wave. A classical wave has its energy spread out in space, while a classical particle is located
at a single point in space with all of its energy in said location. The property of light to
be interpreted in these two contradictory ways is called the wave-particle duality [3]. Light
visible by human eyes, or simply visible light, is located in the electromagnetic spectrum
from 390 nm (770 THz) to roughly 720 nm (420 THz) [3]. For electromagnetic waves, given
a particular wavelength λ (in m), the equivalent frequency f (in Hz) is given by

f = c

λ
, (2.9)

where c is the speed of light, roughly 3 × 108 m/s in free space.

2.3.2. Radiometry

Radiometry is the field concerned with the measurement of electromagnetic radiation,
independent of the detector or observer of said radiation. Radiometry measures the energy
or the power of optical radiation and works with four basic measures: radiant power, radiant
intensity, irradiance and radiance. Radiant power or radiant flux Φe is the total electromag-
netic energy dQe emitted by a light source per unit time dt. It is measured in watts (W) and
it is given by [13]

Φe = dQe

dt
. (2.10)

Radiant intensity Ie is the radiant flux dΦe emitted, reflected, transmitted or received per
unit solid angle dΩ. It is measured in watts per steradian (W/sr) and is given by [13]

Ie = dΦe

dΩ . (2.11)

Irradiance Ee is the radiant flux dΦe received by a surface per unit area dA. It is expressed
in watts per square meter (W/m2) and it is given by [13]

Ee = dΦe

dA
. (2.12)

When considering a point source, which obeys the inverse square law, a detector with area
dA at a distance r from the source defines the solid angle dΩ = dA/r2. Considering this, it
is possible to relate the radiant intensity and the irradiance by replacing dΦe from Equation
2.11 into Equation 2.12, resulting in [13]

Ee = IedΩ
dA

= Ie

r2 . (2.13)

Radiance Le is the radiant flux dΦe emitted, reflected, transmitted or received by a surface,
per unit area dAe per unit solid angle dΩ. It is expressed in watts per steradian per square
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meter (W · sr−1 · m−2) and it is given by [13]

Le = d2Φe

dAedΩ . (2.14)

2.3.3. Photometry

Photometry performs analogous measurements to radiometry, but the former takes into
account the visual perception of the human eye. It does this by taking the radiometric
measurements and weight-averaging them over the visible spectrum. The weights in this
averaging process correspond to the light sensitivity of the human eye in function of the
wavelength. Radiant flux, radiant intensity, irradiance and radiance are analogous to the
photometric measures known as luminous flux Φv, luminous intensity Iv, illuminance Ev and
luminance Lv, respectively. These are measured in lumen (lm), lumen per steradian (lm/sr,
or candela — cd), lumen per square meter (lm/m2, or lux — lx), and candela per square
meter (cd/m2), respectively. In particular, the luminous flux is given by [13]

Φv = Km

∫ 780 nm

380 nm
Φe(λ)V (λ)dλ (2.15)

where Φe(λ) is the spectral power distribution (SPD), that is, the radiated flux per unit wa-
velength, and Km = 683 lm/W is the constant that establishes the relationship between the
watt and the lumen. V (λ) is the spectral sensitivity curve of the human eye. The other photo-
metric measures are calculated by taking the weighted integral of their respective radiometric
measures.

2.3.4. Lambertian sources

A light source or reflecting surface is said to be Lambertian when the emitted luminous
intensity is proportional to the cosine of the azimuth angle θ, for all θ, namely [13]

Iv(θ) = Iv(0) cos θ . (2.16)

This is called the Lambert’s cosine law. Similarly, a light source or reflecting surface which
obeys

Iv(θ) = Iv(0)m + 1
2 cosm θ , (2.17)

is said to be generalized Lambertian. The mode number m, also called the order of the
Lambertian, is given by [13]

m = − 1
log2(cos θ1/2)

(2.18)

where θ1/2 is the angle between the axis of maximum luminous intensity and the axis where
the intensity is half of that maximum value, usually known as the half-power angle. Note that
for m = 1 (and thus θ1/2 = 60◦), the source or surface is Lambertian.
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2.3.5. Color mixing

Not all colors that humans perceive are generated by individual beams of light. Colors can
mix to form other colors. There are two ways in which colors are mixed, additive mixing and
subtractive mixing. In additive mixing, two or more light beams superimpose. The primary
colors in additive mixing are red, green and blue (RGB), as when all three primary colors are
superimposed in equal amounts, the result is white. In the absence of all three primary colors,
the result is black. Secondary colors are obtained when two primary colors are superimposed,
red and green results in yellow, green and blue results in cyan, and blue and red results
in magenta. Yellow, cyan and magenta (YCM) are the three secondary colors in additive
mixing. When two light beams superimpose, the original wavelengths are preserved. White
light, being the mixture of RGB, cannot be expressed by a single wavelength [3].

In subtractive mixing, two or more substances (like paint or ink) are mixed. In this case,
the three primary colors are yellow, cyan and magenta. The subtractive mixing of YCM in
equal amounts results in black. RGB are the three secondary colors in subtractive mixing.
Mixing yellow and cyan results in green, cyan and magenta results in blue, and magenta and
yellow results in red [3].

2.3.6. CIE 1931 XYZ color space

Figure 2.1: CIE 1931 xy color space diagram. Obtained from the public
domain [14].

A color model is a mathematical representation of color, modeling all or most colors
perceivable by humans as numbers. A color space is the multidimensional set of all colors
which can be generated by a particular color model. The CIE 1931 XYZ color space or
simply CIE 1931 color space, was proposed in 1931 by the International Commission on
Illumination (CIE, for the French name Commission Internationale de l’Éclairage). It is
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the first color space based on experimental results of human color perception, and it can
represent all colors that the standard human eye can perceive. [3] The experimental basis of
the standard comes from the three standard colorimetric observer functions x̄(λ), ȳ(λ) and
z̄(λ), also called color-matching functions. These functions represent the average spectral
responsivity of the human retina, determined by experiments with multiple test subjects, all
of them with different colorimetric sensitivity [3].

The tristimulus values X, Y, and Z, for a given light source of radiance Le(λ) are given
by [3]

X =
∫ 780 nm

380 nm
Le(λ) · x̄(λ) dλ , (2.19)

Y =
∫ 780 nm

380 nm
Le(λ) · ȳ(λ) dλ , (2.20)

and
Z =

∫ 780 nm

380 nm
Le(λ) · z̄(λ) dλ , (2.21)

respectively. X and Z represent the chrominance and Y represents the luminance or bright-
ness. This stems from the fact that ȳ(λ) is identical to the spectral sensitivity function V (λ).
The chromaticity coordinates xyz are obtained by normalizing the tristimulus values XY Z:
[3]

x = X

X + Y + Z
, y = Y

X + Y + Z
, z = Z

X + Y + Z
. (2.22)

Since x+y+z = 1, it is possible to express z in terms of x and y, as z = 1−x−y. This means
that the chromaticity coordinates can be represented entirely in a two-dimensional plane, as
shown in the chromaticity diagram presented in Figure 2.1, where y is plotted against x.
This diagram is known as the CIE 1931 xy chromaticity diagram, and it is not a complete
color space, but rather a two-dimensional projection of the CIE 1931 XYZ color space. If
additionally to xy, one considers the luminance Y , then the entire CIE 1931 XYZ color space
can be recovered: given x, y and Y , X can be recovered with X = x · Y/y and Z can be
recovered with Z = (1 − x − y) · Y/y [3]. The color space given by x, y and Y is called CIE
xyY color space.

2.4. VLC Channel Modeling
Most VLC systems use intensity modulation with direct detection (IM/DD), due to its

low cost and reduced complexity. In this type of system, the transmitters are LEDs whose
instantaneous optical power Φe(t) is modulated in proportion to the driving electrical current
it(t), which in turn is modulated according the data to be transmitted. After passing through
the channel, the optical power signal reaches the receiver surface, usually a photodiode,
also known as a photodetector (PD). The received optical power induces a proportional
photocurrent ir(t) in the photodiode.

2.4.1. Receiver: Photodiode

Photodiodes convert optical power signals into electrical signals, meaning that they are
photoelectric transducers. For an incident optical power at a given wavelength Φ(λ), the
photodiode will produce a proportional output current ir. The proportionality constant at
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said wavelength is called responsivity, R(λ) and is given by [15]

R(λ) = ir

Φ(λ) , (2.23)

and it is expressed in amperes per watt (A/W). The responsivity curve of a PD depends on
the materials it is made of and its structure.

2.4.2. Transmitter: LED

Light emitting diodes are solid state semiconductor light sources that emit light when
current flows through them. They do this thanks to the electroluminescence effect, where
the forward current induces electrons in the semiconductor to recombine with electron holes,
releasing energy in the form of photons. The wavelength of the emitted light is given by the
energy required for electrons to cross the band gap of the semiconductor. There are two types
of LEDs widely used to produce white light: phosphor LEDs and RGB LEDs. The former
uses a blue LED and coats it with a yellow phosphor to produce white light. The latter uses
the additive mixture of red, green and blue light sources [15].

2.4.3. Channel model

IM/DD VLC systems are usually modeled in their baseband equivalent, given by [16]

ir(t) = R̄ · h(t) ∗ Φe(t) + n(t) , (2.24)

where ∗ is the convolution operation, ir(t) is the received current signal, R̄ is the luminosity
flux to current ratio for a given SPD, Φe(t) is the modulated optical power signal, h(t) is
the baseband channel impulse response (CIR) and n(t) is the additive white Gaussian noise
(AWGN). Φe(t) can be further expressed by [15]

Φe(t) = hLED(t) ∗ it(t) , (2.25)

where it(t) is the LED drive current and hLED(t) is the current to luminous flux impulse
response of the LED. R̄ can be calculated by [15]

R̄ =
∫

λ
R(λ)Φ(λ) dλ , (2.26)

where Φ(λ) is the SPD of the LED. Since Φe(t) represents optical power, it is non-negative,
i.e.

Φe(t) ≥ 0 . (2.27)

Additionally, the optical signal must be constrained for human-appropriate illumination. This
translates to maintaining the average optical power of the source at a desired PT,avg, i.e.

PT,avg = lim
T →∞

1
2T

∫ T

−T
Φe(t) dt . (2.28)
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There is also a peak optical flux Ppeak, which corresponds to the optical flux induced in the
LED by the maximum drive current, [15]

Φe(t) ≤ Ppeak . (2.29)

2.4.4. Channel response

In general, VLC channels are comprised of a line-of-sight (LOS) component and a non-line-
of-sight (NLOS) or diffuse component. The first component corresponds to the light beams
that reach the PD directly, while the latter corresponds to the light beams that are reflected
in one or more objects before reaching the PD. Consequently, the CIR h(t) can be expressed
as [3]

h(t) = hLOS(t) + hNLOS(t) . (2.30)

2.4.4.1. LOS link

Figure 2.2: LOS link diagram. Reproduced from [3]

In order to obtain hLOS(t), it is sufficient to consider the most basic VLC link: a single
light source (LS), which can be monochromatic or multichromatic, and a single PD, in an
indoor free-space environment. These two components are shown in Figure 2.2. The optical
received power PR,opt can be expressed, when considering LS a point source from the point
of view of the PD, as [3]

PR,opt = PT,optGconcGfilterf(θ, θ1/2)
AR,eff

πr2 for d ≫ λ and AR ≫ λ2 , (2.31)

where PT,opt is the optical transmit power, Gconc ≥ 1 is optical concentrator gain, Gfilter ≤ 1
is optical filtering loss, r is the distance between the LS and the PD, θ1/2 is the half-power
angle of the light beam, AR is the aperture area of the PD, and AR,eff is the effective aperture
area of the PD such that [3]

AR,eff = AR cos ϕ . (2.32)

The condition d ≫ λ stems from the point source assumption, while the condition AR ≫ λ2

implies that the optical power detection process at the PD is deterministic. Note that when
ϕ exceeds the field of vision (FOV) of the PD, ϕPOV, then PR,opt = 0 [3].
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For generalized Lambertian sources, the directivity function f(·) can be expressed as [3]

f(θ, θ1/2) = 1
2(m + 1) cosm(θ) , (2.33)

where m = − 1
log2(cos θ1/2) . Optical concentrators are collimators, devices that focus light rays.

Color filters are used for spectral shaping, polarization control, ambient light mitigation and
interference suppression. Gconc is primarily angle-dependent, while Gfilter is predominantly
wavelength-dependent, but also angle-dependent [3].

From Equation 2.31, and considering, for conciseness, that GconcGfilter = 1, it follows that
hLOS(t) can be expressed as [3]

hLOS(t) = PR,opt

PT,opt
δ
(

t − r

c

)
= f(θ, θ1/2)

AR,eff

πr2 δ
(

t − r

c

)
, (2.34)

where δ(·) is the Dirac function.

2.4.4.2. NLOS link

Figure 2.3: NLOS link diagram, one VLS, single-hop. Reproduced from [3].

In RF communications, multipath causes stochastic and time-varying signal distortion,
causing microwave channels to be modeled as random. In VLC, however, the multipath
channel is deterministic, since AR ≫ λ2, or in other words, the PD captures the optical signal
over an area millions greater than a square wavelength. As long as the objects in the room
are fixed, the indoor VLC channel is time-invariant. Nonetheless, multipath propagation can
still cause problems in VLC systems: at high data rates, it causes intersymbol interference
[3].

In order to obtain hNLOS(t), it is convenient to start with a single reflector, as shown in
Figure 2.3. This reflector acts as a virtual light source (VLS). Most reflections are diffuse,
meaning that the angle of irradiance θ2 is not necessarily the same as the angle of incidence
ϕ1. Additionally, reflections can usually be modeled as Lambertian. Denoting the distance
between LS and VLS by r1, and the distance between VLS and PD by r2, and considering
GconcGfilter = 1, Equation 2.31 can be extended as [3]

PR,opt = PT,optf(θ1, θ1/2)
Arefl,eff

πr2
1

· ρ(λ)f(θ2, 60◦)AR,eff

πr2
2

, (2.35)
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for d1, d2 ≫ λ and Arefl, AR ≫ λ2. If LS is considered generalized Lambertian, then

f(θ1, θ1/2) = 1
2(m + 1) cosm(θ1) . (2.36)

Likewise, if VLS is considered Lambertian, then

f(θ2, 60◦) = cos(θ2) . (2.37)

Arefl,eff and AR,eff are the effective areas of VLS and PD, respectively, with [3]

Arefl,eff = Arefl cos ϕ1 (2.38)
AR,eff = AR cos ϕ2 . (2.39)

ρ(λ) ∈ [0, 1) is the reflection coefficient or reflectance, accounting for the light absorption of
the reflective surface material. Note that when ϕ2 exceeds the field of vision (FOV) of the
PD, ϕFOV, then PR,opt = 0. For multichromatic transmission, the SPD of the LS, Φ(λ) must
be considered. Note that

PT,opt =
∫

λ
Φ(λ) dλ . (2.40)

The wavelength-dependency of ρ(λ) can be taken into account by defining

Γ =
∫

λ
Φ(λ)ρ(λ) dλ . (2.41)

With this, Equation 2.35 can be rewritten for the multichromatic case as [3]

PR,opt = Γf(θ1, θ1/2)
Arefl,eff

πr2
1

f(θ2, 60◦)AR,eff

πr2
2

. (2.42)

From this, the impulse response for the single-hop single-reflector, can be expressed as

h
(1)
NLOS, mono(t) = f(θ1, θ1/2)

Arefl cos ϕ1

πr2
1

· ρ(λ)f(θ2, 60◦)AR cos ϕ2

πr2
2

· δ
(

t − r1 + r2

c

)
, (2.43)

for the monochromatic case and [3]

h
(1)
NLOS, multi(t) = Γ

PT,opt
f(θ1, θ1/2)

Arefl cos ϕ1

πr2
1

f(θ2, 60◦)AR cos ϕ2

πr2
2

· δ
(

t − r1 + r2

c

)
, (2.44)

for the multichromatic case. In order to consider more reflectors, one can generalize Equations
2.43 and 2.44 for the n-th reflector, with 1, . . . N , where N is the total number of reflectors.
The result is [3]

h
(n)
NLOS, mono(t) = f(θ1,n, θ1/2)

Arefl,n cos ϕ1,n

πr2
1,n

· ρn(λ)f(θ2,n, 60◦)AR cos ϕ2,n

πr2
2,n

· δ
(

t − r1,n + r2,n

c

)
,

(2.45)
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for monochromatic LS and [3]

h
(n)
NLOS, multi(t) = Γn

PT,opt
f(θ1,n, θ1/2)

Arefl,n cos ϕ1,n

πr2
1,n

f(θ2,n, 60◦)
AR cos ϕ2,n

πr2
2,n

· δ
(

t − r1,n + r2,n

c

)
(2.46)

for multichromatic LS. The total CIR of the NLOS scenario with single LS, multiple reflectors
and single-hop reflections is given by

hNLOS(t) =
N∑

n=1
h

(n)
NLOS(t) . (2.47)

Note that in this sum, paths in which the reflected light beams reach the receiver FOV are
considered.

Let us consider the case of a multi-hop NLOS link. Considering a general Lambertian LS
and Lambertian reflectors, the CIR of a light beam that reaches the FOV of the receiver after
k bounces is given by [17]

h
(k)
NLOS(t) = 1

PT,opt

∫
s∈S

[
L1L2 · · · Lk+1Γ(k) · δ

(
t − d1 + d2 + · · · + dk+1

c

)]
dAs , (2.48)

where [17]

L1 = As(m + 1) cos ϕ1 cosm θ1

2πd2
1

(2.49)

Lk+1 = AR cos ϕk+1 cos θk+1

πd2
k+1

(2.50)

and in general, for i = 2, . . . , k, [17]

Li = As cos ϕi cos θi

πd2
i

. (2.51)

The integration in Equation 2.48 goes through all the reflectors s ∈ S, where As is the area
of the surface of reflector s. Γ(k) is the optical power of the reflected light beam after the k-th
bounce, and it is given by [17]

Γ(k) =
∫

λ
Φ(λ)ρ1(λ)ρ2(λ) · · · ρk(λ) dλ (2.52)

where ρi(λ) is the reflectance of the surface at the i-th bounce, for i = 1, . . . , k.

2.4.5. Channel noise

The total noise at the receiver is modeled as an AWGN process with variance σ2. This
variance can be expressed as [15]

σ2 = σ2
shot + σ2

thermal , (2.53)

where σ2
shot accounts for the shot noise, which stems from the stochastic process of photon

absorption and electron-hole recombination in semiconductors. Shot noise depends on the
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received number of photons, and consequently, it is affected by the ambient lighting and the
mean luminous intensity of the LED itself. σ2

thermal accounts for the thermal noise, which
stems from the random, temperature dependent, vibration of charges in the receiver circuit.
The optical and electrical SNR are defined by [15]

SNRo = PR,avg

σ
(2.54)

SNRe =
R̄2P 2

R,avg

σ2 (2.55)

where PR,avg represents the average received optical power, given by [15]

PR,avg = H(0)PT,avg , (2.56)

where H(0) is the DC channel gain, given by [15]

H(0) =
∫ ∞

−∞
h(t) dt . (2.57)

2.5. VLC Systems in Underground Mining Scenarios
Authors who have attempted to model a VLC channel in an underground mine environ-

ment typically assume that it can be modeled in the same way as an indoor VLC channel
[2, 18, 19, 20], namely, a generalized Lambertian channel model. In general, effects such as
light scattering due to dust, reflections off irregular walls, light obstruction, also known as
shadowing and LED and PD tilting and rotation with respect to each other, are not taken
into account or are not included in the CIR, and when they are, not all at once. In [4] it
is argued that ignoring these effects does not allow a modeling of the mining channel that
considers the complexities inherent in this environment, resulting in very optimistic expec-
tations regarding the performance of the VLC system. This is why they propose a channel
model that includes these effects explicitly in the channel transfer function, in addition to in-
cluding the LED and photodetector rotation and tilt angles as parameters. Thus, in order to
perform a simulation of a mining environment as close to reality as possible, the mining VLC
channel model proposed by [4] will be used in this work. Explaining in mathematical detail
the components of this channel model is out of the scope of this work, but a general overview
should be sufficient to understand the important differences with respect to the traditional
channel model. For a given position, rotation and tilt of a single LED and a single PD, the
CIR of the VLC underground mining channel between these two components is expressed as
[4]

hmine(t) = hLOS(sh)(t) + h
(1)
NLOS(sh)

(t) + hsca(t) . (2.58)

What each of these components encompass is explained next.
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2.5.1. LOS link in underground mining scenario

The hLOSsh(t) component represents the LOS component affected by shadowing and can
be further expressed as [4]

hLOS(sh)(t) = hLOS(tilt)(t) · PLOS , (2.59)

where hLOS(tilt)(t) is the commonly used VLC LOS channel model, but adjusted geometrically
such that it accounts for the tilt and rotation of the LED and PD with respect to each other.
PLOS ∈ [0, 1] is a weighting value proportional to the probability of the LOS link to not
be obstructed by random obstacles. PLOS is inversely proportional to the average amount of
shadowing experienced by the LOS link, and thus can be viewed as a deterministic expression
to an otherwise stochastic process.

2.5.2. NLOS link in underground mining scenario

The h
(1)
NLOS(sh)

(t) component refers to the single-hop NLOS component, affected by sha-
dowing. This model does not consider multi-hop since the contributions of further bounces
after the first one are deemed negligible in an underground mine scenario. The single-hop
NLOS component can be further expressed as [4]

h
(1)
NLOS(sh)

(t) =
N∑

n=1
h

(1,n)
NLOS(tilt)

(t) · P(n)
NLOS,1 · P(n)

NLOS,2 , (2.60)

where N is the number of single-hop reflectors, h
(1,n)
NLOS(tilt)

(t) is the commonly used VLC
single-hop NLOS channel model for the n-th reflector, but adjusted geometrically such that
it accounts for the tilt and rotation of the LED and PD with respect to each other, and also
for the non-flat irregular walls of the mine. The model accounts for the non-flat irregular
walls by modeling the reflector surfaces as having random tilt and rotation angles, drawn
from a uniform distribution in the range [0◦, 180◦). P(n)

NLOS,1,P
(n)
NLOS,2 ∈ [0, 1] are a weighting

values proportional to the probability of the NLOS paths to not be obstructed by random
obstacles. P(n)

NLOS,1 is inversely proportional to the average amount of shadowing experienced
by the path between the LS and the n-th reflector, while P(n)

NLOS,2 is inversely proportional
to the average amount of shadowing experienced by the path between the n-th reflector and
the PD [4].

2.5.3. Scattering

Scattering is the reflection or absorption of photons by particles suspended in the at-
mosphere. This effect is not considered in traditional VLC models, since indoor scenarios
do not have to deal with noticeable amounts of dust. In underground mines, however, the
presence of dust is inevitable and ever-present, and it can potentially affect the VLC channel.
This channel model accounts for the scattering effect by considering N dust particles, which
are inside a two-dimensional disk around the PD, as a single-hop reflector. The aforemen-
tioned disk is contained in the 2D plane which contains both the LS and the PD and is
perpendicular to the ground plane. Theoretically, the number of dust particles in this disk is
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so large that the CIR may be expressed as [4]

hsca(t) = lim
N→∞

N∑
n=1

h
(n)
NLOS(sca)

(t) , (2.61)

namely, as the infinite sum of multiple single-hop reflections. Different atmospheric charac-
teristics of the dust particles can be considered by selecting appropriate reflectances ρn(λ).

2.5.4. Time-invariability of the channel model

Note that this channel model is modeled as time-invariant. This is due to the fact that the
channel model accounts for highly dynamic, stochastic processes as deterministic variables in
the form of averages. Nevertheless, the time-invariability assumption is only valid for a small
period of time, since even the average of the stochastic variables change in such dynamic
environments, although slower than the stochastic variable itself. This consideration will be
important when simulating and estimating the channel-induced distortion in the following
chapters.

2.6. The IEEE 802.15.7 Standard
The IEEE 802.15.7 standard defines the physical (PHY) and medium access control (MAC)

layer for optimal short-range communications using visible light. The standard considers three
modes of physical layer operation: [9]

• PHY I: This mode of operation is intended for out-door use with applications that
require low data rates. There are two types of modulation supported in this mode:
On-off keying (OOK) and variable pulse position modulation (VPPM).

• PHY II: This mode is intended for in-door use with moderate data rate requirement
applications. This mode uses OOK and VPPM.

• PHY III: This mode is intended for applications using color-shift keying (CSK) with
multiple light sources and detectors.

2.6.1. On-off keying

In on-off keying (OOK) modulation, the signal is transmitted by turning the LED on and
off, making it the simplest method of transmitting a VLC signal. It is a type of amplitude
modulation, where the carrier signal (the visible light) has two amplitude levels, 0 (W) and
Ppeak, representing the bits 0 and 1 respectively. In this modulation scheme, the flickering of
the lights has to be control in order to not disrupt the illumination capabilities, since rapid
change of brightness can cause detrimental physiological effects in humans [21]. The IEEE
standard allows for data rates from 11.67 kbps up to 100 kbps in PHY I, and 6 Mbps up to
96 Mbps in PHY III, with this type of modulation [9].
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2.6.2. Variable pulse position modulation

Variable pulse position modulation (VPPM) is a modulation method in which symbols
are represented according to the position of the light pulse within the symbol period. Binary
0 occurs when the pulse is aligned to the left of the symbol period and binary 1 occurs when
the pulse is aligned to the right of the symbol period. By modulating each pulse duration,
dimming control is achieved, meaning that PT,avg can be decreased or increased according to
the illumination requirements. The average optical power of the binary 1 and binary 0 are
equal. The advantage of this modulation over OOK is that it offers protection against light
flicker, since each symbol, for a given level of attenuation, has the same average brightness
[21], while in OOK the average optical power for the binary 1 is Ppeak, and for the binary 0
is 0 (W). The IEEE standard allows for data rates from 35.65 kbps up to 266.6 kbps in PHY
I, and 1.25 Mbps up to 5 Mbps in PHY II, with this type of modulation [9].

2.6.3. Color-shift keying

The color-shift keying (CSK) modulation method is implemented using three RGB LEDs,
each transmitting a primary color, red, green or blue, and three photodetectors with optical
filters that let through one of the primary colors each. The symbols are encoded in the CIE
1931 xy color space so that the luminance of the light source remains constant while the
instantaneous chromaticity varies. The data is sent in the instantaneous color of the RGB
triplet, but the perceived average chromaticity is kept at a constant white light. The constant
luminance guarantees the absence of light flicker at all data rates [15]. The IEEE standard
allows for data rates from 35.65 kbps up to 266.6 kbps in PHY I, and 1.25 Mbps up to 5
Mbps in PHY II, with this type of modulation [9]. The IEEE standard allows for data rates
from 12 Mbps up to 24 Mbps with 4-CSK, and 18 Mbps up to 72 Mbps with 8-CSK and 48
Mbps up to 96 Mbps with 8-CSK [9].
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Chapter 3

Methods

3.1. Color-Shift Keying
Color-shift keying will be further explained, since it is the modulation scheme used in this

work. A CSK-based VLC system consists of three LEDs and three PDs, with each LED-PD
pair being configured as to transmit and receive light signals from a color band centered
around a primary color. The center of the color bands can be expressed in CIE 1931 xy space
coordinates as sR, sG, sB ∈ R2, known as the center of band symbols. All the colors that can
be reproduced by the LEDs via additive mixing form a triangle in the CIE xy space, with
sR, sG and sB being the vertices. This set of all reproducible colors by the three LEDs is called
the gamut of the system and can be expressed mathematically as the convex combination of
the center of band symbols in the CIE xy space, as in

G = {α1sR + α2sG + α3sB ∈ R2 | α1 + α2 + α3 = 1, α1, α2, α3 ≥ 0} , (3.1)

where G is the gamut of the system. In order to modulate binary information, the modulation
alphabet must be defined such that binary information can be encoded into distinct symbols.
Given the modulation order M , such that M = 2m and m ∈ {2, 3, 4, . . . }, the modulation
alphabet defines the matching up of all M possible binary sequences of length m to M
specific symbols taken from G, in a one-to-one correspondence. In mathematical terms, the
modulation alphabet is defined by the bijective function A : {0, 1}1×m → K ⊂ G, where
K = {s1, s2, . . . , sM} is known as the alphabet symbol set or constellation set. Note that
si ∈ G is a distinct symbol from all the others in K, for i = 1, . . . , M . The existence of
alphabet function A implies that

∀b ∈ {0, 1}1×m, ∃k ∈ {1 . . . , M}, A(b) = sk , (3.2)

and

∀k ∈ {1 . . . , M}, ∃b ∈ {0, 1}1×m, A−1(sk) = b , (3.3)

where A−1 is the inverse function of A and sk ∈ K. Once the constellation set K, the
alphabet function A and the center of band symbols {sR, sG, sB} are defined, then the M -
CSK modulation scheme has been completely defined.
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3.1.1. Standard CSK constellations

The IEEE 802.15.7 standard defines some guidelines for designing M -CSK constellations,
i.e. selecting the set K consisting of M constellation symbols. The constellation for 4-CSK is
presented in Figure 3.1. The vertices RGB correspond to the center of the three primary color
bands on the CIE 1931 xy space. {s1, . . . , s4} are the 4-CSK constellation symbols expressed
in xy coordinates. s1, s2, s3 are the vertices of the RGB triangle, while s4 is its centroid [9].

Figure 3.1: 4-CSK constellation.

The constellation for 8-CSK is presented in Figure 3.2. s1, . . . , s8 are the 8-CSK conste-
llation symbols expressed in xy coordinates. s1, s4, s8 are the vertices of the RGB triangle. s2
and s3 are points that divide side BG and side RG in the ratio 1:2. Point L and M are the
midpoints of lines BG and RG. s6 is the midpoint of the line BR. Point O is the centroid of
triangle R-M-s6. Point N is the centroid of triangle B-L-s6. s7 is the point that divides line
OM in the ratio 1:2. s5 is the point that divides line NL in the ratio 1:2 [9].

The constellation for 16-CSK is presented in Figure 3.3. s1, . . . , s16 are the 16-CSK symbols
expressed in xy coordinates. s1, s4, s7 are the vertices of the RGB triangle. s2 and s3 are points
that divide line RG in three equal parts. s5 and s6 are points that divide line BG in three
equal parts. s8 and s9 are points that divide line BR in three equal parts. s16 is the centroid
of triangle RGB. s10, s11, s12, s13, s14 and s15 are the centroids of each of the smaller triangles
[9].

3.1.2. Modulation

Given a M -CSK system with alphabet function A, constellation set K = {s1, . . . , sM} and
center of band symbols {sR, sG, sB}, then any binary sequence of length m, b ∈ {0, 1}1×m,
can be encoded as a CIE 1931 xy space symbol sk ∈ K, with k ∈ {1, . . . , M}, given by
sk = A(b). Let us denote the explicit CIE xy coordinates of symbol sk as sk = [xk, yk]T.

If constant luminance is considered, then each CSK symbol can be expressed as both a two-
dimensional CIE xy coordinate and as a three-dimensional radiant flux vector. The symbol
sk can be expressed as radiant flux vector Φ = [ΦR, ΦG, ΦB]T ∈ R3

≥0, where ΦR, ΦG, ΦB
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Figure 3.2: 8-CSK constellation.

Figure 3.3: 16-CSK constellation.

represent the radiant flux to be emitted by the red, green and blue LED respectively. The
radiant flux vector Φ can be obtained by solving the system of equations [9]

xk = ΦRxR + ΦGxG + ΦBxB

yk = ΦRyR + ΦGyG + ΦByB

1 = ΦR + ΦG + ΦB .

(3.4)

Note that this transformation works the other way around too, meaning that for a given
radiant flux vector Φ, using the Equations 3.4, it is possible to find sk = [xk, yk]T.
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3.1.3. Color calibration: Least squares equalizer

Due to the potential overlapping of SPDs of each LED and the responsivities of the PDs in
conjunction with their optical filter, the overall system is subject to chromacity distortions. In
the IEEE standard, a color calibration scheme, i.e. an equalizer, is recommended to reduce the
color distortion. If one considers only the LOS component of the channel, then the baseband
equivalent of the system can be written as [15]

Φ̂(i) = HΦ(i) + n(i) (3.5)

where Φ(i) ∈ R3
≥0 is the i-th transmitted symbol (expressed as a radiant flux vector), n(i) is

the AWGN noise, Φ̂(i) is the i-th received symbol (also expressed as a radiant flux vector)
and H ∈ R3×3 is the channel matrix. One can estimate this matrix via channel estimation
sequences and then the resulting estimation can be used to equalize the received symbols, as

z(i) = Ĥ−1Φ̂(i) (3.6)

where z(i) is the equalized i-th symbol and Ĥ is the estimated channel matrix. The IEEE
standard defines a channel estimation sequence of 24 symbol periods: each color band sends a
Walsh code of code length 4. Each bit of the Walsh code is transmitted for two symbol periods.
For the red band, the Walsh code is wR = {1, 0, 1, 0}, for the green band, the Walsh code is
wG = {1, 1, 0, 0} and for the blue band, the Walsh code is wB = {1, 0, 0, 1}. For each band,
the corresponding Walsh code is transmitted twice in the estimation sequence. Considering
one symbol period per Walsh bit, the channel estimation sequence can be expressed as [9]

w = PT,avg


1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1 1 0 0 1

 ∈ R3×12
≥0 , (3.7)

In order to have two symbol periods per Walsh bit, it suffices to repeat each symbol of w. The
channel estimation sequence, as defined in the IEEE standard, is then given by W ∈ R3×24

≥0 ,
with its i-th symbol being

W(i) = w(⌈i/2⌉) , (3.8)

for i = 1, . . . , 24. With the estimation sequence now established, consider Ŵ to be the
received channel estimation sequence, with

Ŵ = HW + N (3.9)

where N is the AWGN noise. Note that for a perfect estimation, one would like to find H
such that

Ŵ = HW . (3.10)

Unfortunately, this is an overdetermined system, meaning that there are more equations
than unknowns. This means that, at best, one can hope to find H such that ||Ŵ − HW||2 is
minimized. The classical least squares method provides an approximated solution for over-
determined systems, given by

Ĥ = ŴW† , (3.11)
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where W† denotes the Moore-Penrose pseudoinverse of the matrix W and Ĥ denotes the
estimated channel matrix via least squares. The equalization method consists of applying the
inverse of Ĥ to the received symbols, as shown in Equation 3.6.

3.1.4. Demodulation

Given a M -CSK system with alphabet function A, constellation set K = {s1, . . . , sM}
and center of band symbols {sR, sG, sB}, then any three-dimensional radiant flux vector
Φ = [ΦR, ΦG, ΦB]T ∈ R3

≥0 can be decoded into a binary sequence of length m. First, Φ is
converted into its CIE xy space equivalent via Equations 3.4, resulting in symbol c = [x, y]T.
Note that, in general, c ̸∈ K, and thus function A−1 cannot be directly applied on it to find
the corresponding binary sequence. Instead, the constellation symbol closest to c in the CIE
xy space will be selected as the symbol from which to extract the binary sequence by the
system:

sk = argmin
s∈K

∥s − c∥ , (3.12)

where sk ∈ K, with k ∈ {1, . . . , M}, is the constellation symbol the system chooses to decode
the binary sequence from. In effect, the binary sequence encoded by Φ is estimated by the
system to be A−1(sk).

3.2. Extreme Learning Machine
Extreme learning machine (ELM) is a machine learning algorithm, based on the architec-

ture of artificial neural networks. Neural networks are machine learning models that usually
require multiple iterations in the training phase: it feeds the training data forward into the
network from input to output, and then it updates its internal parameters backwards, in
a process known as backpropagation. Due to its iterative nature, this training method is a
computationally expensive process. ELM promises to perform reasonably well but at a much
lower cost, since its training process is not iterative, but rather involves solving a linear
system (underconstrained or overdetermined, depending on the hyperparameter selection).

Given a training set X = [x1, . . . , xN]T ∈ RN×L with a corresponding label set T =
[t1, . . . , tN]T ∈ RN×P, then L denotes the number of input nodes of the network, P denotes
the number of output nodes of the network and N denotes the number of training examples.
The output of the ELM algorithm is denoted by Y ∈ RN×P and can be found with [6]

Y = Λβ , (3.13)

where Λ ∈ RN×K is the hidden layer output matrix and β ∈ RK×P is the output weights
matrix. K is the number of hidden neurons. Λ contains all the outputs from the hidden layer,
which can be expressed as [6]

Λ =


g(ωT

1 x1 + µ1) · · · g(ωT
Kx1 + µK)

... . . . ...
g(ωT

1 xN + µ1) · · · g(ωT
KxN + µK)

 (3.14)

where ω = [ω1, . . . , ωK]T ∈ RK×L is the input weights matrix, µ = [µ1, . . . , µK]T ∈ RK is the
bias vector.
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3.2.1. Training phase

In the training phase, ω and µ are randomly initialized. The objective of the training
phase is to find β such that T = Λβ. If N ≥ K, i.e. there are more training examples than
hidden neurons, then the linear system T = Λβ is overdetermined and there is no solution.
In this case, the best one can hope for is to find β such that ||T − Λβ||2 is minimized [22].
If N < K, i.e. there are more hidden neurons than training examples, then the linear system
T = Λβ is underconstrained and there are multiple solutions. In this case, the best one can
hope for is to find β such that ||β||2 is minimized [22]. In any case, the optimal solution, β̂
can always be expressed as [22]

β̂ = Λ†T , (3.15)

where (·)† denotes the generalized Moore-Penrose pseudoinverse.

3.2.2. Testing phase

For the testing set U = [u1, . . . , uQ]T ∈ RQ×L, the predicted output Ŷ ∈ RQ×P is given by

Ŷ =


g(ωT

1 u1 + µ1) · · · g(ωT
Ku1 + µK)

... . . . ...
g(ωT

1 uQ + µ1) · · · g(ωT
KuQ + µK)

 β̂ . (3.16)

3.2.3. Regression and classification in ELM

ELM can be used to solve both classification or regression problems. In case of a regression
problem, it suffices to follow Equation 3.15 for training and then Equation 3.16 for obtaining
regression outputs from inputs the model has not been trained on. For a classification pro-
blem, some pre-processing must be done in the training data. In a classification problem, it
is assumed that the label set has the form T = [t1, . . . , tN]T ∈ {1, 2, . . . ,Z}N, where Z is the
number of classes. These labels are transformed into a more convenient form via one-hot en-
coding. The one-hot encoded labels are arranged in matrix B = [Bij]N×Z ∈ {0, 1}N×Z, which
has the form

Bij =

1, if ti = j

0 otherwise .
(3.17)

Now B can be used as the new label set instead of T. Suppose that once trained, the ELM
is given as input F = [f1, . . . , fM]T ∈ RM×O such that the model output is a matrix in the
form M = [Muv]M×Z ∈ RM×Z, encoded in one-hot encoding. In order to get the labels back
in their numerical form, the following equation is used:

gu = argmax
v

Muv for u = 1, . . . ,M , (3.18)

where gu is the predicted numerical label for input fu. With this, the predicted labels, in
numerical form, for input F, are given by G = [g1, . . . , gM]T ∈ {1, 2, . . . ,Z}M.
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3.2.4. Semi-supervised and unsupervised ELM

While the original ELM algorithm is intended to use a training set with labels, modifi-
cations have been proposed in the literature where only a part of the training set is labeled
or none at all [23]. The version of the ELM algorithm that uses a labeled training set will
be referred from now on as supervised ELM (SELM), the one where only a part of the trai-
ning set is labeled, is known as semi-supervised ELM (SSELM) and the one that exclusively
uses unlabeled data is known as unsupervised ELM (USELM). Explaining the SSELM and
USELM algorithms is out of the scope of this work, but the details of their functioning can
be found on [23], the original paper where they were proposed.

3.3. Simulation of VLC System in Underground Mi-
ning Scenario

In order to compare the performance of different equalization schemes, one would like to
calculate the bit error ratio (BER) of the system at different noise levels, which results in the
BER curves of the system. These curves are the main metric in which different digital com-
munication systems are compared. Obtaining the BER curves for a VLC system operating
in an underground mine can be complicated. For instance, one could build an experimen-
tal setup either in an actual underground mine or some kind of chamber which simulates
an underground mine environment. Alternatively, one could perform a hardware-in-the-loop
simulation, where channel parameters are programmed into an embedded system. Both of
these approaches are expensive and time-consuming, mainly because they require the de-
ployment of costly and complex hardware. Consequently, they are out of the scope of this
work. Instead, in this work, the entire VLC system will be simulated in software, namely,
in MATLAB. Channel models for VLC systems in underground mine scenarios exist in the
literature, and are relatively straight-forward to implement in software. Of note is the channel
model proposed in [4], which accounts for elements such as scattering, shadowing, LED and
PD tilting and irregular walls, which are not found in other channel models, at least not all
at once.

In the following sections, a detailed description of the simulated VLC systems created to
obtain the BER curves is presented.

3.3.1. Simulation overview

The communication system simulated in this work implement a simplified version of the
IEEE 802.15.7 PHY protocol — namely, PHY frames are made up of nothing more than the
raw binary data to be transmitted and certain binary sequences that allow the receiver to
perform the channel equalization. There is no synchronization header because it is assumed
that transmitter and receiver are perfectly synchronized. There are no checksums, channel
coding or any other error correction methods, since the objective is to evaluate how well the
data is received after purely performing equalization.

Consider a M -CSK system with alphabet function A, constellation set K = {s1, . . . , sM}
and center of band symbols {sR, sG, sB}, where M = 2m. In each simulation execution of
this system, a random binary sequence a = (a(1), a(2), . . . , a(na)) ∈ {0, 1}1×na of length na

is transmitted. From this transmission, binary sequence â = (â(1), . . . , â(na)) ∈ {0, 1}1×na is
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Figure 3.4: Simulation diagram.

recovered at the receiver. By counting the number different bits between a and â, the bit
error ratio (BER) is calculated. Figure 3.4 presents a diagram that attempts to summarize
the following sections, meant to be used as a visual guide. The code used in this work
for simulating the VLC system and obtaining the BER values is open source; for more
information, the interested reader can consult the Annex.

3.3.2. Frame forming

Before transmission, a is formatted into a simplified form of the IEEE 802.15.7 PHY
frame, consisting of a channel estimation sequence and the data. Denoting by ℓa the number
of data bits allowed in each frame, then the number of frames to be transmitted is given by

Nf = na/ℓa , (3.19)

where na is chosen so that Nf is an integer. Now consider that the channel estimation sequence
is composed of ns symbols. Considering a M -CSK modulation, where m = log2 M denote
the bits per symbol, then the bit length of the channel estimation sequence ℓs, is given by

ℓs = m × ns . (3.20)

By denoting as q = (q(1), q(2), . . . , q(ns)) ∈ R3×ns
≥0 the modulated channel estimation se-

quence, then the binary channel estimation sequence is denoted by c = (c(1), c(2), . . . , c(ℓs)) ∈
{0, 1}1×ℓs , where

(c(i), c(i+1), . . . , c(i+m−1)) = A−1(q(i)) , (3.21)

for i = 1, . . . , ns. This means that one can design the channel estimation sequence as a
modulated signal i.e. as a sequence of optical power vectors, and then convert this sequence
into a binary sequence. The k-th frame, o(k) ∈ {0, 1}1×ℓf , where ℓf = ℓs +ℓa, can be expressed
as the binary sequence

o(k) = (o(1)
(k), . . . , o

(ℓf )
(k) ) = (c(1), . . . , c(ℓs), a(k), a(k+1), . . . , a(k+ℓa−1)) . (3.22)
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In this step of the process, the binary sequence a is transformed into a set of Nf binary
sequences of length ℓf , {o(1), o(2), . . . , o(Nf )} called frames. Note that depending on the equa-
lization method used, the channel estimation sequence q is going to be different. Namely,
in this work there are three different channel estimation sequences that were used, denoted
by qLS, qELM and qUSELM, depending on the equalization method. From now on, all M -CSK
symbols are considered to be a three-dimensional non-negative optical power vector, unless
explicitly stated otherwise.

3.3.2.1. Channel estimation sequence for LS

Following the IEEE standard, the channel estimation sequence for LS consists in three
successive Walsh code sequences of length 4, with each symbol being transmitted twice. This
translates into ns = 24. This channel estimation sequence was already defined in Equation
3.8. One can simply define

qLS = W . (3.23)

3.3.2.2. Channel estimation sequence for S-ELM and SS-ELM

This sequence is a modification of the channel estimation sequence defined in the IEEE
standard, but the assigned number of symbols ns = 24 is still maintained, so that the compa-
rison to LS is fair. The reason for the modification is that the LS channel estimation sequence
does not contain all the possible M symbols, and in consequence the ELM algorithm could
not learn to identify them. Defining

rs = ns mod M , (3.24)

and
ks = (ns − rs)/M , (3.25)

then the proposed sequence consists of the sequence of constellation symbols (s1, . . . , sM),
repeated successively ks times, adding the sequence (s1, . . . , srs) as a remainder at the end.
The sequence can be defined as

qELM =

(s1, . . . , sM ,
ks· · ·, s1, . . . , sM), if rs = 0

(s1, . . . , sM ,
ks· · ·, s1, . . . , sM , s1, . . . , srs), otherwise,

(3.26)

or more compactly
qELM = (q(i))ns

i=1 , (3.27)

where
q(i) = sj, with j = i − M

⌊
i − 1
M

⌋
, (3.28)

for i = 1, . . . , ns. This ensures that all symbols in the constellation set K are in the estimation
sequence at least once, as long as ns ≥ M .

3.3.2.3. Channel estimation sequence for US-ELM

Even though no channel estimation sequence is needed for performing the US-ELM equa-
lization, it is useful to send a sequence that can then help match up each cluster found by
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the US-ELM algorithm and its corresponding symbol. This sequence simply consists of the
M constellation symbols in sequence

qUSELM = (s1, . . . , sM) , (3.29)

and thus ns = M .

3.3.3. Modulation

Once the Nf frames are correctly formatted, they are modulated into a sequence of M -
CSK symbols. Each frame is divided into sequences of length m, and each of these sequences
are then codified into one symbol. If there are leftover bits at the end of the frame, then zeros
are used as padding in order to complete the sequence of m bits. In mathematical terms, one
can define

rf = ℓf mod m (3.30)

as the number of leftover bits after modulation. If rf = 0, then there are no leftover bits and
the binary sequence can be modulated directly. If rf > 0, then the leftover bits cannot be
modulated into a symbol with m bits of information, since m > rf . In order to modulate the
leftover bits, the binary sequence is padded with zeros until completion of the last modulation
symbol. The number of padding bits required, pf , is then given by

pf =

0, if rf = 0
m − rf , otherwise .

(3.31)

From these definitions, the number of symbols for each frame, nc, can be expressed as

nc =
⌈

ℓf

m

⌉
, (3.32)

where ⌈·⌉ denotes the ceiling function. The number of symbols which contain data, as opposed
to channel estimation symbols, is denoted by nd, with

nd = nc − ns . (3.33)

In between frames, there is a period of time when all three LEDs are turned off. This period
is given in number of optical clocks periods, and is denoted by Nopt, while the optical clock
frequency is denoted by fopt. The number of symbols periods to be used in the interframe
period, no, is given by

no =
⌈

1
m

(
Rb

Nopt

fopt
− pf

)⌉
, (3.34)

where Rb is the data rate of the system. The padding bits pf are subtracted since their bit
periods are lent from the interframe period to the preceding frame.

3.3.4. Transmission

The result of the previous modulation process are sequences of nc CSK symbols grouped
in individual frames. In this section, the simulation of the transmission of the Nf frames is
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explained. First, we calculate how many symbols periods are transmitted. Consider Nf frames
of nc symbols each. Plus, in keeping with the IEEE standard, consider Nf − 1 interframe
periods of no symbol periods each. In total then, the modulated signal has N symbols periods,
calculated as

N = Nfnc + (Nf − 1)no . (3.35)

The modulated signal, consisting of the Nf frames separated by interframe periods, can
then be expressed as the vector x ∈ R3×N

≥0 , which can can be represented as

x =
[
x(1) · · · x(N)

]
, (3.36)

where x(i) represents the i-th symbol in the signal, for i = 1, . . . , N . The i-th symbol can
then be represented as the radiant flux vector

x(i) =


x

(i)
1

x
(i)
2

x
(i)
3

 , (3.37)

where x
(i)
1 , x

(i)
2 , x

(i)
3 is the radiant flux or optical power transmitted, in the i-th symbol, by

the red, green and blue LED respectively. Alternatively, one can define

xj =
[
x

(1)
j · · · x

(N)
j

]
, (3.38)

as the optical signal transmitted by the j-th LED, where j = 1, 2, 3 represents the red,
green and blue LED respectively. Note that in the signal x, there is one sample per symbol.
Consequently, the sampling frequency is given by

fs = Rb

m
(3.39)

3.3.4.1. Channel transmission

As discussed in Section 2.5.4, time-invariability of the underground mine VLC channel
can be considered for only small periods of time. In this work, it will be assumed that for the
time duration of a frame and its subsequent interframe period, the channel is time-invariant.
This means that each frame will be subjected to a different, randomly-generated underground
mine CIR. The k-th frame, for k = 1, . . . , Nf , is subjected to the CIRs h

(k)
1 (t), h

(k)
2 (t) and

h
(k)
3 (t) for the red, green and blue wavelengths respectively. Note that these CIRs consider

both the CIR of the LED and the CIR of the underground mine channel, i.e. for the j-th
LED, with j = 1, 2, 3, h

(k)
j (t) is found with

h
(k)
j (t) = h

(k)
mine, j(t) ∗ hLED, j(t) . (3.40)

In order to simulate the analog, physical interaction between the channel and the optical
signal, the CIRs will be sampled at a high sampling frequency fh. This sampling results in
the vectors hj,(k) ∈ R1×Nh , for j = 1, 2, 3, where Nh is the total number of samples in each
CIR vector. Let us define the isolated frame signal for the k-th frame f(k) ∈ R3×N , by defining
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its i-th symbol as

f (i)
(k) =

x(i), if i ≥ 1 + (k − 1)(nc + no) and i ≤ k(nc + no)
0, otherwise

, (3.41)

for i = 1, . . . , N and where 0 ∈ R3 is the three-dimensional zero vector. From this, f(k) can
be expressed as

f(k) =
[
f (1)
(k) · · · f (N)

(k)

]
, (3.42)

and it represents the modulated signal but with the LEDs turned off outside the time window
corresponding to the k-th frame. This signal will be referred to as the k-th frame optical signal,
and it is useful because we want to simulate each frame being independently affected by the
channel. Note that f1,(k), f2,(k) and f3,(k) represent the red, green and blue component of this
optical signal, respectively.

The optical signal obtained after transmitting the fj,(k) signal through the channel defined
by hj,(k) is denoted by rj,(k) and can be simulated as the convolution between hj,(k) and fj,(k),
for j = 1, 2, 3. For the resulting convolution to have physical meaning, both vectors must
have the same sampling frequency, but the former has a sampling frequency of fh and the
latter of fs. In general, fh > fs. This means that f(k) has to be upsampled by a factor of
α = ⌊fh/fs⌋. In this work, f(k) is upsampled through linear interpolation, and the result is
denoted by uj,(k) ∈ R1×αN . With this, rj,(k) is defined as

rj,(k) = hj,(k) ∗ uj,(k) , (3.43)

with
rj,(k) =

[
r

(1)
j,(k) · · · r

(Nh+αN+1)
j,(k)

]
. (3.44)

Note that due to the convolution, rj,(k) ∈ R1×(Nh+αNu+1) is ahead of uj,(k) by Dj,(k) samples.
Dj,(k) depends exclusively on the CIR vector, hj,(k). At the receiver, Dj,(k) is known since,
in this work, perfect synchronization is assumed. The synchronized, channel-distorted k-th
frame optical signal from the j-th LED, is denoted by

ûj,(k) =
[
û

(1)
j,(k) · · · û

(αN)
j,(k)

]
=
[
r

(1+Dj,(k))
j,(k) · · · r

(αN+Dj,(k))
j,(k)

]
. (3.45)

The synchronized k-th frame optical signal ûj,(k) is then combined with the optical signals
from the other frames, by

ûj =
[
û

(1)
j · · · û

(αN)
j

]
=

Nf∑
k=1

ûj,(k) . (3.46)

Note that this sum is done exclusively to take into account the unlikely case where the channel
induces ISI from one frame into another. If there is no ISI between adjacent frames, then
they can be considered independent of each other, making this sum unnecessary. The optical
signal ûj represents the N symbols received at the PD, after being channel-distorted and
synchronized and sampled at a sampling frequency of fh. Nonetheless, it is assumed that the
receiver is only capable of sampling at a much lower sampling frequency, denoted by fr. The
number of samples per symbol, after sampling at the receiver, is then given by Ns = ⌊fs/fr⌋.
The sampled, synchronized, channel-distorted optical signal from the j-th LED is denoted
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by x̂j ∈ R1×Nu , with
x̂

(i)
j = û

(1+⌈ α
Ns

(i−1)⌉)
j , (3.47)

for i = 1, 2, . . . , Nu, with Nu = N · Ns.

3.3.4.2. Electrical conversion

The electrical signal obtained from the photodetection of the sampled, synchronized,
channel-distorted optical signal x̂j in the j-th PD, for j = 1, 2, 3, is denoted by yj ∈ R3×Nu

≥0 ,
with

yj =
[
y

(1)
j · · · y

(Nu)
j

]
=

3∑
k=1

Rkjx̂k +
3∑

k=1
nkj , (3.48)

where Rkj is the j-th PD net responsivity (i.e. including optical filters) for light coming from
the k-th LED, and nkj is the noise induced on the j-th photodiode due to light coming from
the k-th LED. The latter can be expressed as

nkj = H0,jPT,avgRkj√
SNR

n , (3.49)

where PT,avg is the average transmission power of the three LEDs combined, SNR is the
electrical signal-to-noise ratio under which the system is evaluated, n is a vector of length Nu

for which every element is drawn from the standard normal distribution N (0, 1) and H0,j is
the DC component of the channel coming from the j-th LED, averaged over all the frames,
i.e.

H0,j = 1
Nf

Nf∑
k=1

Nh∑
i=1

h
(i)
j,(k) . (3.50)

Note that the three electrical signals y1, y2, y3 can be also thought of as one demultiplexed
electrical signal y ∈ R3×Nu , where each i-th sample is given by three electrical values, namely,

y(i) =


y

(i)
1

y
(i)
2

y
(i)
3

 . (3.51)

This signal is downsampled back to one sample per symbol, by averaging the Ns samples
received in each symbol. The downsampled signal is denoted by ȳ ∈ R3×N

≥0 , and its i-th
symbol is given by

ȳ(i) = 1
Ns

Ns∑
k=1

y(k+Ns(i−1)) . (3.52)
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3.3.4.3. Frame extraction

From the received electrical signal ȳ, one can extract individual frames. For instance, the
first received frame, denoted by f̂(1) ∈ R3×nc

≥0 is simply

f̂(1) =
[
ȳ(1) · · · ȳ(nc)

]
. (3.53)

The second frame f̂(2) would start after the entire first frame and first interframe period
are transmitted, and so the starting index would be shifted by nc + no symbols. The index
of the last symbol in the frame is simply the starting index shifted by nc − 1 symbols. In
consequence, f̂(2) ∈ R3×nc

≥0 can be denoted as

f̂(2) =
[
ȳ(1+nc+no) · · · ȳ(2nc+no)

]
. (3.54)

In general, the t-th frame, for t = 1, . . . , Nf , is denoted by f̂(t) ∈ R3×nc
≥0 , with

f̂(t) =
[
f̂ (1)
(t) · · · f̂ (nc)

(t)

]
=
[
ȳ(1+(t−1)(nc+no)) · · · ȳ(tnc+(t−1)no)

]
. (3.55)

Once the frames are extracted, it is easier to define the received channel estimation se-
quences and the received data. The received modulated channel estimation sequence in the
t-th frame, q̂(t) ∈ R3×ns

≥0 is given by

q̂(t) =
[
f̂ (1)
(t) · · · f̂ (ns)

(t)

]
, (3.56)

and the received modulated data in the t-th frame, d̂(t) ∈ R3×nd
≥0 is given by

d̂(t) =
[
f̂ (1+ns)
(t) · · · f̂ (nc)

(t)

]
. (3.57)

3.3.5. Equalization

The equalization process is performed sequentially, frame by frame. Consider a nonspecific
received modulated frame, with received modulated data denoted by d̂ ∈ R3×nd

≥0 and received
modulated channel estimation sequence denoted by q̂ = (q̂(1), . . . , q̂(ns)). Also consider that
the receiver has access to the transmitted modulated channel sequence q = (q(1), . . . , q(ns)),
where

q(i) =


q

(i)
1

q
(i)
2

q
(i)
3

 (3.58)

is the i-th symbol in the channel estimation sequence, with i = 1, . . . ns and where q
(i)
1 ,

q
(i)
2 , q

(i)
3 ∈ R≥0 are the optical powers associated to the aforementioned symbol, set to be

transmitted from the red, green and blue LED respectively. The definition of q̂(i) is equivalent,
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q̂(i) =


q̂

(i)
1

q̂
(i)
2

q̂
(i)
3

 , (3.59)

but in this case, q̂
(i)
1 , q̂

(i)
2 , q̂

(i)
3 ∈ R≥0 are the electrical signals associated to the i-th symbol

received at the red, green and blue photodiode respectively.

3.3.5.1. Least squares

In the first place, subsequent symbols in the known channel sequence are averaged, resul-
ting in a new symbol v(i), given by

v(i) = q(i) + q(i+1)

2 , (3.60)

for i = 1, . . . , ns/2. v̂(i) is defined for the received channel sequence equivalently. Two matrices
can be formed with this, namely

V =
[
v(1) · · · v(ns/2)

]
∈ R3×ns/2

≥0 (3.61)

and

V̂ =
[
v̂(1) · · · v̂(ns/2)

]
∈ R3×ns/2

≥0 . (3.62)

Note that one can define the linear transformation H ∈ R3×3 such that ||V̂ − HV||2 is as
small as possible. H is the solution to the least squares problem, and it can be found with
the following formula

H = V̂V† , (3.63)

where V† denotes the Moore-Penrose pseudoinverse of the matrix V. The equalization method
consists of applying the inverse linear transformation of H to the received modulated data
d̂, as in

z = H−1d̂ , (3.64)

where z is the equalized modulated data. This signal is then demodulated using the
conventional M -CSK demodulation scheme.

3.3.5.2. Supervised and semi-supervised ELM

The equalization method using ELM can be seen as a classification problem, as each
received symbol is classified by the ELM algorithm into M classes, each class corresponding
to each of the pre-defined M -CSK constellation symbols. We can assign each of the M
constellation symbols a class label, simply given by its index in the sequence (s1, . . . , sM),
formed by all the constellation symbols. In order to train the algorithm, the received channel
sequence q̂ is paired with a sequence of labels Lq known a priori at the receiver. From
Equation 3.28, it is deduced that the label associated with q̂(i) is given by

L(i)
q = i − M

⌊
i − 1
M

⌋
, (3.65)
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for i = 1, . . . , ns and with L(i)
q ∈ {1, . . . , M}. The one-hot encoded version label L(i)

q will be
denoted as L̂(i)

q . The supervised training set S can be expressed as

S = {(q̂(k), L̂(k)
q )}ns

k=1 . (3.66)

For the unsupervised training used in SS-ELM, a sequence of received symbols corresponding
to actual data, are used. This sequence can be referred to as the unsupervised training set
U , and it can be expressed as

U = {d̂(k)}nt
k=1 , (3.67)

where nt is the number of data symbols to be considered in the unsupervised training phase.
The output of the ELM algorithms are the estimated labels of each of the received modulated
symbols d̂, which can be expressed as

SELM(d̂, S, nh) = {L̂(k)}nd
k=1 , (3.68)

and
SSELM(d̂, S, U , nh, C0, γ) = {L̂(k)}nd

k=1 , (3.69)

for the supervised and semi-supervised ELM algorithm respectively, where nh is the number
of hidden neurons, C0 and γ are hyperparameters exclusive to semi-supervised ELM, and L̂(i)

is the predicted class label, in one-hot encoding, of the received symbol d̂(i), for i = 1, . . . , nd.
By converting L̂(i) from one-hot encoding into its numerical value, L(i) ∈ {1, . . . , M}, one
can find the i-th predicted data symbol, denoted by z(i), via the following equation

z(i) = sL(i) (3.70)

3.3.5.3. Unsupervised ELM

In the unsupervised version of ELM, only the unsupervised training set is used as an
input, defined in the same way as in Equation 3.67. The application of the unsupervised
ELM algorithm onto the received modulated data d̂ can be expressed as

USELM(d̂, U , nh, ζ, η) = {C(i)}nd
i=1 , (3.71)

where nh is the number of hidden neurons, ζ and η are hyperparameters and C(i) ∈ {1, . . . , M}
is the class label of the i-th received data symbol, d̂(i), for i = 1, . . . , nd. In order to associate
each class with a particular symbol in {s1, . . . , sM}, the channel estimation sequence will be
used. First, one defines each class set Ck, for the class label k = 1, . . . , M , as

Ck = {d̂(i) ∈ R3
≥0 | i = 1, . . . , nd, C(i) = k} . (3.72)

Then, one defines the centroid of the class set Ck as the mean value of all elements in the
set, namely,

ck = 1
|Ck|

∑
g∈Ck

g , (3.73)

and associates each centroid to one of the symbols in the received channel estimation sequence
{q̂1, . . . , q̂M}, specifically, to whichever is closest in the CIE 1931 color space, in terms of
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Euclidean distance. The symbol label Lk associated to class k, is then

Lk = argmin
u=1,...,M

∥q̂∗
u − c∗

k∥ , (3.74)

where q̂∗
u is the u-th symbol in the received channel estimation sequence (q̂1, . . . , q̂M) and ĉ∗

k

is the centroid of class k, both expressed in the CIE 1931 xy color space. With this, one can
find the i-th predicted symbol label, denoted by L(i), with

L(i) = LC(i) , (3.75)

for i = 1, . . . , nd. Likewise, the i-th predicted symbol z(i), is given by

z(i) = sL(i) . (3.76)

3.3.6. Demodulation and BER calculation

The equalization step results in Nf sequences of nd symbols. Each sequence is the equalized
data signal from an specific frame. The k-th frame equalized data signal, denoted by z(k) ∈
R3×nd , for k = 1, . . . , Nf , can be expressed as

z(k) =
[
z(1)

(k) · · · z(nd)
(k)

]
. (3.77)

z(k) is demodulated using the standard M -CSK demodulation method, as explained in
Section 3.1.4, resulting in the binary sequence b(k) ∈ {0, 1}1×ℓb of length ℓb = m · nd, also
expressed as

b(k) =
[
b

(1)
(k) · · · b

(ℓb)
(k)

]
. (3.78)

Note that due to the eventual padding performed, the length of this sequence might be greater
than the length of the binary sequence originally transmitted in the k-th frame, i.e. ℓb ≥ ℓa.
The complete received binary sequence â ∈ {0, 1}1×na is given by

â =
[
â(1) · · · â(na)

]
=
[
b

(1)
(1) · · · b

(ℓa)
(1) b

(1)
(2) · · · b

(ℓa)
(2) · · · b

(1)
(Nf ) · · · b

(ℓa)
(Nf )

]
. (3.79)

The BER is then given by
BER = 1

na

na∑
i=1

ei , (3.80)

where ei is given by

ei =

0, if â(i) = a(i)

1, otherwise .
(3.81)

3.3.7. Simulation parameters

In terms of channel parameters, the simulation is identical to the one presented in [4].
Consequently, the simulated CIRs considers the following scenario: a tunnel of dimensions
6 m × 3 m × 5 m and three LEDs located in position T and three PDs located in position
R. In order to have some degree of spatial variability in the results, five R positions are
evaluated, the same positions used in [4]. These five positions are denoted by R1, R2, . . . , R5.

The CIR will be considered to be the same across the RGB wavelengths, meaning that
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for any k-th frame,
h

(k)
mine, 1(t) = h

(k)
mine, 2(t) = h

(k)
mine, 3(t) . (3.82)

This is due to the assumption that the three LEDs have the same position T and the three
PDs are in the same position R. This is assumed because they are so close to each other
that their spatial difference is negligible. Furthermore, the three LEDs have the same tilt and
rotation angle, and the three PDs have the same tilt and rotation angle. This means that
there is no spatial difference whatsoever between the three channels in the simulation scenario.
Furthermore, that the underground mine CIR is the same for the three bands implies that
the walls of the underground mine and the dust particles have the same reflectance across
the three RGB wavelengths.

Additionally, the LED impulse response is modeled by a low pass filter, with impulse
response

hLED(t) = 10(e−t/Tfall − e−t/Trise) , (3.83)

where Tfall = 10−9 s and Trise = 0.5 · 10−9 s. In this work, it is assumed that the LED impulse
response is the same over the three RGB wavelengths, i.e.

hLED(t) = hLED, 1(t) = hLED, 2(t) = hLED, 3(t) . (3.84)

Relevant simulation parameters are presented in Table 3.1. Note that the data rates used are
the maximum data rates allowed in the IEEE standard for each modulation order. Simulation
parameters not defined here can either be calculated or they can be found in [4]. ELM
hyperparameters are discussed in Section 3.5.

3.3.7.1. CSK constellation

There are multiple CSK constellations defined by the IEEE standard. Furthermore, the-
re are methods to optimize CSK constellations, improving the performance of CSK links,
which are not considered in the IEEE standard. In this work, an IEEE standard-compliant
constellation is used, defined in [24] with center of band symbols

(xR, yR) = (0.73, 0.27)
(xG, yG) = (0.19, 0.78)
(xB, yB) = (0.09, 0.13) ,

(3.85)

which roughly correspond to the following wavelengths [25]

λR = 660 (nm)
λG = 535 (nm)
λB = 480 (nm) .

(3.86)

The M -CSK constellation symbols {s1, . . . , sM} used in this work is presented in Table 3.2,
along with their respective binary sequence correspondence. The net responsivity values Rkj,
represent the j-th PD net responsivity (i.e. including the optical filters) for light coming from
the k-th LED, where j, k = 1, 2, 3, correspond to red, green and blue wavelengths respectively.
The net responsivity can be expressed as the multiplication of the optical filter gain and the
PD responsivity for each wavelength, as follows
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Table 3.1: Simulation parameters.

Parameter Value
Binary sequence length, na (bits) 1048464

Data bits per frame, ℓa (bits) 524232 [9]
# of frames, Nf 2

# of optical clock periods in interframe period, Nopt 400 [9]
Optical clock frequency, fopt (MHz) 24 [9]

Data rate, Rb (Mbps)
4-CSK: 24 [9]
8-CSK: 72 [9]

16-CSK: 96 [9]
CIR sampling frequency, fh (GHz) 4 [4]

CIR vector length, Nh 140 [4]
Samples per symbol after receiver, Ns 2

Average optical transmitted power, PT,avg (W) 1
ELM activation function, g(·) g(x) = 1

1+e−x

LED position, T (x, y, z) (m) (3, 0.5, 4.5)

PD position, R (x, y, z) (m)

R1: (3, 1, 1.8)
R2: (3, 1.5, 1.8)
R3: (4, 2, 1.8)
R4: (2.2, 2.5, 1.8)
R5: (1, 2.5, 1.6)

Rkj = Gkj · pk , (3.87)

where G = [Gkj]3×3 is the optical filter gain matrix, given by [26]

G = 1
100


80.351 1.428 1.908
11.769 75.148 13.076
0.279 27.244 70.684

 , (3.88)

and p = [p1, p2, p3]T contains the PD responsivity for the red, green and blue wavelength,
respectively, and it is given by [27]

p =


0.3518
0.2063
0.1474

 (A/W). (3.89)

Consequently, the net responsivity values Rkj to be considered in this simulation are

[Rkj]3×3 = 1
100


28.2662 0.5023 0.6712
2.4274 15.4997 2.6970
0.0411 4.0147 10.4160

 (A/W). (3.90)
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Table 3.2: CSK symbols used in the simulation.

4-CSK 8-CSK 16-CSK
Symbol Data (x, y) Symbol Data (x, y) Symbol Data (x, y)

s1 [0 0] (0.19, 0.78) s1 [0 0 0] (0.19, 0.78) s1 [0 0 0 0] (0.19 0.78)
s2 [0 1] (0.337, 0.393) s2 [0 0 1] (0.157, 0.563) s2 [0 0 0 1] (0.239 0.651)
s3 [1 0] (0.09, 0.13) s3 [0 1 0] (0.37, 0.61) s3 [0 0 1 0] (0.157 0.563)
s4 [1 1] (0.73, 0.27) s4 [0 1 1] (0.509, 0.396) s4 [0 0 1 1] (0.37 0.61)

s5 [1 0 0] (0.09, 0.13) s5 [0 1 0 0] (0.206 0.434)
s6 [1 0 1] (0.189, 0.326) s6 [0 1 0 1] (0.337 0.393)
s7 [1 1 0] (0.41, 0.2) s7 [0 1 1 0] (0.419 0.481)
s8 [1 1 1] (0.73, 0.27) s8 [0 1 1 1] (0.386 0.481)

s9 [1 0 0 0] (0.123 0.347)
s10 [1 0 0 1] (0.172 0.218)
s11 [1 0 1 0] (0.09 0.13)
s12 [1 0 1 1] (0.303 0.177)
s13 [1 1 0 0] (0.55 0.44)
s14 [1 1 0 1] (0.599 0.311)
s15 [1 1 1 0] (0.517 0.223)
s16 [1 1 1 1] (0.73 0.27)

3.4. Equalization Method Proposal: LS + ELM
The application of [Rkj]3×3 to the received optical signal adds plenty of distortion, but in a

linear capacity. Since LS finds the optimal inverse linear transformation to reverse this linear
distortion, it would be interesting to study what happens when applying LS as a first, linear
equalizer (in order to remove the linear distortion), and then ELM as a second, non-linear
equalizer. This means that the output of LS passed as the input to the ELM equalizer. In
order to accommodate both LS and ELM, the channel estimation sequence for the combined
equalization types, denoted LS+SELM, LS+SSELM and LS+USELM, is qELM, i.e.

qLS+SELM = qLS+SSELM = qLS+USELM = qELM . (3.91)

Let us consider a frame with received modulated data d̂ ∈ R3×nd
≥0 , received channel estimation

sequence q̂ ∈ R3×ns
≥0 and transmitted channel estimation sequence q ∈ R3×ns

≥0 . In the first
place, the data is equalized with LS as follows

zLS = (q̂q†)−1d̂ . (3.92)

The received channel estimation sequence is also equalized with LS,

p̂ = (q̂q†)−1q̂ . (3.93)

Now that the LS equalization is complete, one can define the supervised training set as

SLS = {(p̂(k), L̂(k)
q )}ns

k=1 , (3.94)

and the unsupervised training set as

ULS = {zLS
(k)}nt

k=1 . (3.95)
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With these definitions, one can express

LS+SELM(d̂, S, nh) = SELM(zLS, SLS, nh) , (3.96)
LS+SSELM(d̂, S, U , nh, C0, γ) = SSELM(zLS, SLS, ULS, nh, C0, γ) , (3.97)

LS+USELM(d̂, U , nh, ζ, η) = USELM(zLS, ULS, nh, ζ, η) (3.98)

as the outputs of the combined equalization methods. The rest of the equalization process is
the same as with the regular versions.

3.5. Hyperparameter Tuning

Table 3.3: Candidate hyperparameters for grid search.

Equalization type Parameter Values
SELM nh {20, 35, 50, 65, 80, 95}

SSELM
nh {20, 35, 50, 65, 80, 95}
C0 {101, 102, . . . , 106}
γ {101, 102, . . . , 106}

USELM
nh {20, 35, 50, 65, 80, 95}
ζ {22, 23, . . . , 27}
η {10−4, 10−3, . . . , 104}

For the ELM algorithm to perform at its best, appropriate hyperparameters must be
chosen. In order to find appropriate hyperparameters, grid search will be used. In the case
of ELM, the objective function to be minimized through grid search is the BER, but since
the BER depends so heavily on the SNR, it is convenient to work at a fixed noise level. The
candidate hyperparameter values are presented in Table 3.3, mostly taken from [23]. Consider
Θ(λ, R) to be the equalization model for a given equalization method and modulation order,
trained with hyperparameters λ = {λ1, . . . , λn} and PD position R. In this work, the optimal
hyperparameters for a particular equalization method and modulation order were chosen
such that, given a noise level SNR = σ, the BER calculated after one simulation execution,
averaged over a set of positions R, is minimized. In mathematical notation, the optimal
hyperparameters, for a particular equalization method and modulation order, λ∗, are given
by

λ∗ = argmin
λ

1
|R|

∑
R∈R

BER[Θ(λ, R), σ] . (3.99)

BER[·] is obtained from the simulations outlined in previous sections. In this work, R =
{R1, R5} and σ = 20 dB were used. Those two positions are the most apart from each
other out of the five positions in consideration, granting the results some level of spatial
variability. The chosen noise level is considered a middle ground between a very noisy channel
and a noiseless channel, the assumption being that hyperparameters that do well in a mild
noise level do reasonably well in the extreme cases. The optimal hyperparameters for each
equalization method and modulation order are presented in Table 3.4.
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Table 3.4: Optimal hyperparameters found by grid search.

Equalization type Parameter Values
4-CSK 8-CSK 16-CSK

SELM nh 20 80 5

SSELM
nh 95 65 20
C0 106 106 103

γ 10 10 104

USELM
nh 80 20 35
ζ 4 64 64
η 100 0.1 10

LS+SELM nh 95 80 4

LS+SSELM
nh 80 95 95
C0 106 106 105

γ 104 105 106

LS+USELM
nh 65 20 95
ζ 4 128 4
η 100 10 104

3.6. Experiment Description
Since the simulations make use of random processes, such as the channel transmission,

and the initialization of the weights and biases for ELM, in order for the BER curves to have
statistical significance, multiple iterations of the same experiment must be performed. The
repetition of the same experiment when stochastic processes are involved, is called the Monte
Carlo method; each repetition of the experiment is called a Monte Carlo iteration.

In this work, the BER curves are calculated for the range of electrical SNR = {0, 2, 4, . . . , 38, 40}
(dB). At each SNR value, 50 Monte Carlo iterations will be performed, with the BER being
their output. Each iteration consists in running one instance of the simulation, with the para-
meters given in Table 3.1 and the hyperparameters given in Table 3.4, for all 21 combinations
of seven equalization methods {LS, SELM, SSELM, USELM, LS+SELM, LS+SSELM, LS+USELM}
and three modulation orders {4-CSK, 8-CSK, 16-CSK}. Additionally, the PD position is not
fixed throughout the 50 iterations, but rather 10 iterations are performed considering each
Ri, with i = 1, . . . , 5, as the PD position.
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Chapter 4

Results and Discussion

4.1. Histograms
In this section, 21 histograms for each equalization method and modulation order com-

bination are presented. Each histogram contains the frequency distribution of the BER at a
specific SNR level, calculated from 50 data points (since each of the 50 Monte Carlo iteration
outputs a BER value). When possible, a Gaussian fit is overlaid, with its mean plotted in red.
Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 present the histograms obtained for 4-CSK modu-
lation paired with LS, SELM, SSELM, USELM, LS+SELM, LS+SSELM and LS+USELM
equalization, respectively. Figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 do the same but for
8-CSK modulation, while Figures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21 do it for 16-CSK
modulation.
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Figure 4.1: Histograms for LS with 4-CSK.
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Figure 4.2: Histograms for SELM with 4-CSK.
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Figure 4.3: Histograms for SSELM with 4-CSK.
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Figure 4.4: Histograms for USELM with 4-CSK.
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Figure 4.5: Histograms for LS+SELM with 4-CSK.
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Figure 4.6: Histograms for LS+SSELM with 4-CSK.
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Figure 4.7: Histograms for LS+USELM with 4-CSK.
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Figure 4.8: Histograms for LS with 8-CSK.
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Figure 4.9: Histograms for SELM with 8-CSK.
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Figure 4.10: Histograms for SSELM with 8-CSK.
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Figure 4.11: Histograms for USELM with 8-CSK.
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Figure 4.12: Histograms for LS+SELM with 8-CSK.
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Figure 4.13: Histograms for LS+SSELM with 8-CSK.
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Figure 4.14: Histograms for LS+USELM with 8-CSK.
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Figure 4.15: Histograms for LS with 16-CSK.
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Figure 4.16: Histograms for SELM with 16-CSK.
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Figure 4.17: Histograms for SSELM with 16-CSK.
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Figure 4.18: Histograms for USELM with 16-CSK.
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Figure 4.19: Histograms for LS+SELM with 16-CSK.
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Figure 4.20: Histograms for LS+SSELM with 16-CSK.
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Figure 4.21: Histograms for LS+USELM with 16-CSK.
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4.2. BER Curves
From the same data used to plot the histograms, BER curves can be plotted. The mean

and standard deviation calculated from the 50 BER values, for each SNR value, can be plotted
in a BER versus SNR graph, resulting in the BER curves. Figure 4.22 shows the BER curves
for all combinations of the equalization methods {LS, SELM, SSELM, USELM} and the three
modulation orders {4-CSK, 8-CSK, 16-CSK}, while Figure 4.23 shows the BER curves for all
combinations of the equalization methods {LS, LS+SELM, LS+SSELM, LS+USELM} and
the three modulation orders {4-CSK, 8-CSK, 16-CSK}.
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Figure 4.22: BER curves, LS and ELM equalization methods. Error bars
represent one standard deviation.
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Figure 4.23: BER curves, LS and LS+ELM equalization methods. Error
bars represent one standard deviation.

4.3. Discussion
In the first place, analyzing the Figure 4.22, it is clear that the LS equalizer performs

much better than any of the other equalizers. Of note is the fact that SSELM and USELM
are consistently over 0.1 of BER, even when the noise is low. This implies that there is
something inherent deficient in these two algorithms that make them not being able to
estimate the received symbols correctly. Looking at the histograms for USELM sheds a light
on what might be happening with this algorithm. For 8-CSK and 16-CSK, the USELM BER
distribution looks like it either does very badly or relatively well, but nothing in between.
This indicates that the clusters USELM is predicting are not getting better with less noise,
implying that the USELM algorithm is not capable of clustering the symbols in a useful way.
It is also interesting to see the impact of the modulation order, specially in 16-CSK, where
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LS seems to plateau at a BER of 10−4 approximately, while SELM is very affected, joining
SSELM and USELM well above 0.1 of BER.

Comparing the algorithms from Figure 4.22 with the ones from Figure 4.23, one can
see small improvements in SSELM and USELM. This is noticeable, for example, in the
zoomed-in BER curve for 16-CSK, where LS+SSELM and LS+USELM outperform SELM
and LS+SELM. Looking at the histograms for LS+USELM, and comparing them to the
histograms of USELM, one can see that the two-sidedness present in the USELM distribution,
is gone from the LS+USELM distribution.

Unfortunately, the number of simulations is too small to extract significant statistical
results from the histograms, like the probability distributions. The BER curves, however, tell
a clear story: the simpler equalizer, LS, has outperformed the more sophisticated ELM in all
experiments.

4.3.1. Further analysis
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Figure 4.24: Eye diagram, 4-CSK.

ELM has been evaluated as an equalizer mainly in OFDM-based wireless communication
channels, where it tends to outperform other equalization techniques. Wireless communica-
tion channels are very hostile, with ISI being one of the main concerns. On the other hand,
the LS equalizer was proposed in the IEEE standard as a way to combat color mismatching
stemming from optical filtering and the SPD of the LED. It explicitly does not consider ISI
by estimating the channel as a 3 × 3 matrix.

With this in mind, it might be worth considering the possibility that the VLC channel
model, as was simulated in this work, simply did not have enough non-linear distortion for
the ELM equalizer to be worth it. In other words, given that the channel model can be
approximated so well by a linear transformation, it is only natural that the algorithm that
actively optimizes for this matrix, even in closed form, performs better than the one who
starts with random weights.

But, is there really no ISI in the underground mine channel simulations? As it turns out,
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Figure 4.25: Eye diagram, 8-CSK.
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-4 Eye diagram for 16-CSK at normal data rate

(a) 96 Mbps.
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10
-4 Eye diagram for 16-CSK at high data rate

(b) 9.6 Gbps.

Figure 4.26: Eye diagram, 16-CSK.

when not taking into consideration the chromacity mismatching, there is pretty much no ISI
at these data rates. To show this, the eye diagrams for the channel-distorted optical signal
(specifically, the red band) were calculated, considering the PD position to be R1. Figure
4.24 presents the eye diagram for 4-CSK, 4.25 for 8-CSK and 4.26 for 16-CSK. These signals
do not consider the optical filtering nor the AWGN noise, and they were calculated for the
maximum allowed data rate in the IEEE standard, shown to the left, and for 10 times that
data rate, shown to the right. It can be seen, on the diagrams to the left, that there is a
sampling period where there is virtually no ISI, at least considering that specific color band.
In the case with the higher data rate, such ISI-free sampling periods do not exist.

What this shows is that the underground mine channel model used in this work is very

57



capable of inducing non-linear distortions, but the maximum data rates allowed in the IEEE
standard are too low for the channel distortion to affect the signal significantly. As a result,
the channel can be well approximated by a linear transformation, and consequently LS out-
performs algorithms such as ELM. The former finds an optimal solution, while the latter
tries to generalize.

4.3.2. Computational complexity

A common method of comparison between two algorithms is the number of floating point
operations (flops) it requires. Given a linear equation, Ax = b, where A ∈ Rm×n, MATLAB
can solve for x very efficiently by using the function mldivide. This function can employ
multiple algorithms depending on the characteristics of matrix A, each with different required
flops. For our purposes, MATLAB will use the LU solver when A is a square matrix, and
the QR solver when it is not. The number of flops required for solving the linear system
using each of the aforementioned algorithms is provided in Table 4.1. Both algorithms find
an adecuate solution even when the system is overdetermined (by minimizing ||Ax − b||2) or
underconstrained (by minimizing ||x||2). In the LS equalizer case, the linear problem takes

Table 4.1: Number of flops for solving the system Ax = b, when using
MATLAB’s mldivide function.

Matrix dimensions, A ∈ Rp×q Method Number of flops
p = q LU solver [28] 2

3q3 + 5
6q2 − 1

6q [29]
p ̸= q QR solver [28] 2pq2 − 2

3q3 + 2pq + q2 [22]

the form HV = V̂, or equivalently, VTHT = V̂T. In this case, HT is the unknown x and VT

is the matrix A, thus p = ns/2 and q = 3, making the cost 12ns − 9 flops according to Table
4.1, when p ̸= q. Note that the case p = q is not worth considering in the LS equalizer since
q = 3 is not a system parameter one can modify. Consider that the averaging of subsequent
symbols in the channel estimation sequence must also be considered: the sum of ns/2 pairs
of symbols is 3ns/2 flops (each sum is one flop, and each symbol consists of three values) and
the scaling by 1/2 of ns/2 symbols is 3ns/2 flops (each scalar division is one flop, and each
symbol consists of three values). In total, the training of the LS equalization method takes
15ns − 9 flops.

The training of the SELM equalizer is very similar, since the problem is to solve the linear
system Λβ = y. In this case, β is the unknown x and Λ is the matrix A, thus p = ns and
q = nh, making the cost 2

3n3
s + 5

6n2
s − 1

6ns flops if ns = nh, and 2nsn
2
h − 2

3n3
h + 2nhns + n2

h if
ns ̸= nh, according to Table 4.1. Additionally, the cost of calculating each Λij = g(ωT xi +µj),
for i = 1, . . . , ns and j = 1, . . . , nh, when initializing the matrix Λ must be added to the total
flop count. The cost of calculating each element Λij is approximately 11 flops: 6 for the vector
product ωT xi, 1 for the sum ωT xi + µj, and at least 4 for the application of g(·) (a sigmoid
function); considering there are nsnh elements in Λ, it makes the total cost of initializing the
matrix 11nsnh flops. With this, the total flops required for training the SELM equalizer is
approximately 2

3n3
s + 71

6 n2
s − 1

6ns when ns = nh, and 2nsn
2
h − 2

3n3
h +13nhns +n2

h when ns ̸= nh.
The total flop count for both the LS and SELM equalizer is summarized in Table 4.2. It

is clear from these results, that the computational complexity of SELM is much greater than
LS. Even though both involve solving a linear system of equations, LS is concerned with the
matrix VT whose columns are fixed at q = 3, while SELM is concerned with the matrix Λ,
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Table 4.2: Number of flops for LS and SELM in terms of number of channel
estimation symbols (ns) and number of hidden neurons (nh).

Equalization method Assumptions Number of flops

LS p = 1
2ns

q = 3
15ns − 9

SELM p = ns

q = nh

ns = nh
2
3n3

s + 71
6 n2

s − 1
6ns

ns ̸= nh 2nsn
2
h − 2

3n3
h + 13nhns + n2

h

nh = 3 57ns − 9

whose columns depend on the number of hidden neurons nh, an hyperparameter that must
be pre-set. The computational complexity for SELM grows in polynomial time with respect
to nh, making it very costly to add additional hidden neurons. Setting nh = 3, so Λ and VT

have the same number of rows, gives SELM a computational cost of 57ns − 9 flops. If we
select ns = 24 and nh = 3, then LS requires around 351 flops, while SELM requires 1359
flops, making LS about 4 times faster than SELM with this parameters. Since SSELM and
USELM are algorithms much more complex than SELM, and thus, more computationally
expensive, they were not considered in this analysis.
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Chapter 5

Conclusions and Future Work

5.1. Conclusions
In this work, a simulation scenario and computational experimental setup was designed

with the objective of evaluating the performance of different equalization methods based in
the ELM algorithm for a CSK-based VLC system in an underground mine. These equalization
methods were compared to the IEEE VLC standard proposed equalization method for CSK.
The simulation scenario consisted of an underground mine in which a single transmitter sent
data to a single receiver through a VLC system using the CSK modulation. Phenomena
inherent to underground mines such as optical signal blockage by heavy machinery, light
scattering due to dust particles, irregular non-flat walls, tilted and rotated LEDs and PDs,
were all considered in the simulation scenario by incorporating a state-of-the-art underground
mine channel model.

The performance results for the LS equalizer confirm the hypothesis that LS is a feasible
equalizer for the single-input single-output (SISO) VLC link based in CSK modulation, even
under the harsh conditions of underground mines. On the other hand, the results overwhel-
mingly show that the ELM-based equalizer is not suited for this kind of system, since it is
outperformed by the computationally cheaper LS equalizer. With these results, the general
objective of evaluating the feasibility of the ELM equalizer in this particular scenario is achie-
ved, and the result of this evaluation is that it is not feasible. All specific objectives were
also achieved: the ELM-based equalizer and the equalizer proposed by the IEEE were both
compared through the BER and their computational complexity. Furthermore, technical li-
mitations set by the IEEE standard were taken into account, such as the length of the data
frame, the length of the channel estimation sequences and most importantly, the data rate
of the system. Additionally, the performance of the equalizers was done considering different
communication system parameters, such as the modulation order and position of the receiver.

ELM has been used as equalizer successfully in other wireless communication systems.
What appears to be different in VLC systems is that the data rates allowed by the IEEE
VLC standard are too low for the multipath component to generate any significant non-
linear distortion in the received signal. The result is that the CSK-VLC channel can easily
be approximated by a 3 × 3 matrix. While the LS equalizer finds this optimal matrix easily,
ELM-based equalizers struggle.

To the best of the author’s knowledge, this is the first time a CSK-based VLC system has
been simulated in an underground mine scenario. It is also the first time that a ELM-based
equalizer has been tested in a simulated CSK-based VLC system at all.
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5.2. Future Work
Any additional experiment where the signal is heavily distorted in a non-linear fashion is

a good direction for a follow up. It would be interesting to see if the LS equalizer starts to
struggle against the ELM-based equalizer or not, when the ISI is increased. This could be as
easy as using a higher data rate. Another approach could be the study of a multiple-input
multiple-output system, where co-channel interference becomes a problem. Lastly, it would
be interesting to evaluate the ELM-based equalizer in other difficult VLC channels, such as
underwater light communications or vehicle-to-vehicle light communications.

Modifying the system simulation and making it more complex (and thus more non-linear)
is also an interesting line of inquiry to follow, since it appears that the simplifications done
on the simulation, such as considering that the channel affects all wavelengths of light in the
same fashion, underscores the non-linearity of the channel. Another option under this same
line of inquiry, would be to actually build the system in real life, but this could take years of
work.

Finally, in order to perform a more in-depth comparison of the computational cost of each
equalizer, it would be a good idea to also obtain the time each equalizer takes to equalize
the signal.
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Annex

Source Code

The code used for implementing the VLC system simulation and obtaining the results
presented in this work is open-source and can be found on [30]. Some of the most important
files are:

• monte_carlo_simulation.m: Main script, used for performing the 50 Monte Carlo ite-
rations. It consists of four nested for-loops, from the outermost to the innermost: loop
over each Monte Carlo iteration, loop over each SNR point, loop over each equalization
method and loop over each modulation order.

• get_channel_model.m: Given a LED and PD position, this function calculates the
VLC channel model in the underground scenario. This code was provided by the authors
of [4], and permission was given to use and modify it for this work.

• form_frames.m: Formats a random binary sequence (the message) into a series of fra-
mes, as described in Section 3.3.2.

• modulate_frames.m: Converts the series of frames into a modulated signal, as described
in Section 3.3.3.

• apply_channel.m: Simulates the transmission and reception of the modulated signal
as described in Section 3.3.4.

• extract_frames.m: Extracts the frames from the received modulated signal, as descri-
bed in Section 3.3.4.3.

• equalization.m: Equalizes each received frame as described in Section 3.3.5.

• selm_equalization.m: Equalizes the received signal using the supervised ELM algo-
rithm. This code is a modified version of the source code provided by the authors of [6],
and permission was given to use and modify it for this work.

• sselm_equalization.m: Equalizes the received signal using the semi-supervised ELM
algorithm. This code is a modified version of the source code uploaded by the authors of
[23] to public GitHub repository [31], under the Apache 2.0 license, granting permission
for use and modification in this work.

• uselm_equalization.m: Equalizes the received signal using the usupervised ELM algo-
rithm. This code is a modified version of the source code uploaded by the authors of
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[23] to public GitHub repository [31], under the Apache 2.0 license, granting permission
for use and modification in this work.
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