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REPRESENTACIÓN DE SERIES DE TIEMPO ASTRONÓMICAS
UTILIZANDO TEORÍA DE RECUPERACIÓN DE LA INFORMACIÓN

Series de Tiempo son un tipo de dato ampliamente utilizado en muchos campos como
ciencias, ingeniería, finanzas o industria, para la clasificación de objetos astronómicos, análisis
de indicadores económicos o análisis de fenómenos meteorológicos entre otros. La mayoría
de los trabajos propuestos en esta área son diseñados para Series de Tiempo regularmente
muestreadas y no aplican cuando la Serie de Tiempo presenta muestreo irregular y variables
multi-dimensionales, como ocurre usualmente en Astronomía con las Series de Tiempo multi-
banda.

En esta tesis estudiamos métodos de representación de Series de Tiempo y los aplicamos al
desafiante problema de clasificación en grandes conjuntos de datos astronómicos. Proponemos
un nuevo método de representación de Series de Tiempo, llamado IBOPF (Irregular Bag-of-
Pattern Features), el cual es una extensión del clásico BOPF, pero adaptado para Series
de Tiempo irregulares y multivariadas. Adicionalmente, hemos extendido nuestro método
para aplicaciones de múltiples cantidades estadísticas y múltiples niveles de resolución en
un intento de incrementar el rendimiento de la representación, a estas extensiones las hemos
llamado Extended IBOPF. IBOPF calcula los vectores de características utilizando Teoría
de Recuperación de la Información, transformando la Serie de Tiempo en secuencias de
palabras, las cuales son representadas en vectores compactos a través de métodos de selección
de features o reducción de dimensión.

Para las evaluaciones experimentales utilizamos el set de datos PLaSTiCC (The Photo-
metric LSST Astronomical Time Series Classification Challenge), un set de datos altamente
desbalanceado con un set de entrenamiento no representativo. El método propuesto es com-
parado con el método del estado-del-arte AVOCADO en clasificación, búsqueda por similitud
y tiempo computacional. En general, los resultados muestran que AVOCADO supera nues-
tro método propuesto en clasificación (0.82 y 0.65 acc., respectivamente), y búsqueda por
similitud (0.67 y 0.34 mAP@10, respectivamente), pero nuestro método tiene menores tiem-
pos computacionales (256 ± 66 y 4 ± 1 ms por Serie de Tiempo, respectivamente). Sobre
los resultados concluimos que aunque es posible aplicar IBOPF a Series de Tiempo Irregu-
lares y Multivariadas, se necesita realizar más estudios y ajustes para producir resultados
competitivos, en donde hemos detallado algunas posibles líneas de investigación futura.
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Abstract

Time Series data are used in many different fields such as science, engineering, finance
or business for tasks like astronomical object classification, economic indicator analysis or
Meteorologic phenomenon analysis, among others. Most of the works proposed in this area
are designed for regular sampled Time Series and cannot be applied for irregularly sampled
and multivariate data such as the Astronomical Time Series, also known as Multi-band Time
Series.

We study Time Series representation methods and apply them to the challenging problem
of classification in large astronomical datasets. We propose a new representation method, ca-
lled Irregular Bag-of-Pattern Features (IBOPF), which is an extension of classical BOPF
adapted for Irregular Multivariate Time Series. This proposed method is extended to use
multiple statistical quantities and levels of resolutions in an attempt to produce more repre-
sentative feature vectors, proposing what we call Extended IBOPF. IBOPF computes features
using Information Retrieval theory, transforming Time Series into sequences of words, which
are then represented in compact vector form using a feature selection or dimension reduction
method.

For experimental evaluations we use The Photometric LSST Astronomical Time Series
Classification Challenge (PLaSTiCC), a highly unbalanced dataset with non-representative
train-set. The proposed approach is compared to the state-of-the-art method AVOCADO on
classification, similarity search and computing times. In general, the results show that AVO-
CADO outperforms our proposed method in classification (0.82 and 0.65 acc., respectively)
and similarity search (0.67 and 0.34 mAP@10, respectively), however, our method achieves
smaller computing times on the same dataset (256 ± 66 ms and 4 ± 1 ms per Time Series,
respectively). We see that while it is possible to apply IBOPF to Irregular Multivariate Ti-
me Series, the method needs further explorations and optimizations to produce competitive
results, where we outline some potential future research directions.
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Chapter 1

Introduction

In this chapter, we introduce the reader to our work, describe our motivations (Section
1.1) and discuss the focus of this research, describing our Problem Statement (Section 1.2),
Hypothesis (Section 1.3), Goals (Section 1.4) and Methodology (Section 1.5). Finally, we
describe our contributions (Section 1.6) and the organization of this document (Section 1.7).

1.1. Time Series

Sciences like Astronomy, Meteorology or Medicine, among many other fields such as en-
gineering, finance, business or industry, require the collection of data for solving problems,
performing experiments or creating new theories. The data are usually collected at different
times, presenting in some cases temporal variations with relevant information. To analyze
and visualize this information, the data are sorted by time, producing a Time Series.

1.1.1. Time Series in general

In general, diverse data mining tasks can be performed on Time Series Data, for exam-
ple, anomaly detection, classification, clustering or similarity search. In the past few deca-
des, many works have been proposed to solve these data mining tasks using representation
methods or indexing techniques [1, 4, 8, 41, 44, 68, 107], some of them addressing large data-
set problems. However, most of the works focus on the simplest and most common variation
of Time Series, called regular Univariate Time Series (from now on abbreviated as regular
UTS).

When collecting data with temporal variations, it is desired to have control over the
measurement intervals producing regular time intervals. A Time Series with regular time
intervals can be simplified to a sequence, dropping the time component and simplifying the
application of any data mining task. In general, the data collection aims to generate a regular
Time Series and most of the work out there works with this kind of Time Series. Some
complex variations involve multivariate data [14, 36, 81, 120] or Time Series with missing
data [15], however, they mostly consider regular time intervals.
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Figure 1.1: Example of irregular Multi-band Time Series with 6 passbands, each capturing
data at different time instances. Each band captures data at different time instants of sources
that can behave different, producing different Time Series which are mostly likely correlated.

1.1.2. Time Series in Astronomy

Astronomy is a science where every experiment is based on the collection of electromag-
netic waves (light) coming from astronomical objects such as Stars or Galaxies, or events
such as Supernovae, transit of exoplanets or gravitational microlensing. These observations
are performed using telescopes and are conditioned by the earth rotation, earth translation,
meteorological conditions or instrumental conditions, producing Time Series with irregular
intervals between measures. Furthermore, due to the nature of electromagnetic waves, the
full electromagnetic spectrum cannot be measured in one single variable. To address this,
astronomers have defined the measured variables as frequency intervals called bands or pass-
bands.

For every astronomical object or event, several bands can be observed producing a co-
llection of highly correlated Univariate Time Series (UTS) of the same object, where each
UTS can be measured at different time instants (non-simultaneous multivariate measures)
or have a different number of samples. These kinds of Time Series are usually identified
as Multivariate Time Series (MTS), but Astronomers usually refer to such Time Series as
Multi-band Time Series [45, 48, 82, 112] (from now on abbreviated as MbTS). In the most
general case, we will be working with irregular MbTS (equivalent to irregular MTS) which
are the most complex variation of Time Series (see Figure 1.1). Although various literature
work studied different data mining tasks in the astronomical Time Series considering single-
band [10, 21, 50, 74, 88, 111] and multi-band [16, 49], there are still some challenges that
need to be solved, which are described below.
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Figure 1.2: Taxonomy used by the ALeRCE broker [39] for classifying light curves, as an
example of how complex the Astronomical objects are. ALeRCE covered this complex taxo-
nomy structure using 4 different models.

In astronomy, the most used data mining tasks are classification, clustering and anomaly
detection. Two approaches are used to solve these tasks: neural networks and (dis)similarity
searches. The first has been widely explored in astronomy where, for example, Recurrent
Neural Networks (RNN) [21, 88] with Long Short-Term Memory (LSTM) units [100] or
its variation Phased LSTM units [31] is used over irregular UTS. The base idea of neural
networks is to train a model to solve a particular data mining task based on features (i.e.
supervised learning) or the learning of features (i.e. unsupervised learning). On the other
hand, a (dis)similarity approach aims to solve the data mining task by comparing Time
Series, looking for their similarities or dissimilarities. Only a few works can be found about
solving data mining tasks on astronomical datasets using (dis)similarity approaches [74, 111],
but limited to one-band Time Series.

The (dis)similarity approach is more powerful than the neural networks approach in the
sense that it supports more applications. As an example, suppose we have a dataset with
N irregular MbTS, and we want to get the k most similar objects to a query Time Series
Q, or every object with a (dis)similarity value under a threshold ϵ compared to Q. A neural
model like RNN cannot solve this kind of query. Furthermore, getting the k most similar
objects, known as k-nearest neighbor, can be used on many other data mining tasks such as
classification, clustering or anomaly detection.

The challenges related to the problem of (dis)similarity search in astronomical Time Series
are: 1) the complex nature of irregular MbTS , 2) the complex taxonomy of astronomical
objects, 3) the large size of the datasets, and 4) the need for fast processing. The first
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challenge is related to the irregular time intervals and the non-simultaneous multivariate
measures. The second challenge is illustrated in Figure 1.2 where a complex ramification of
classes is constructed. The third and fourth challenges are related to the recent expansion
in the astronomical data collection. New telescopes and new technologies produce a large
amount of data in short periods of time, and thus there is a need to process all this data
faster. A series of related works about speeding up (dis)similarity approach algorithms for
large datasets have been proposed in the past decades, mostly focused on the use of indexing
structures. However, they ignore irregular Time Series and especially irregular MbTS. In
this work we cover these challenges by designing a new representation method for irregular
MbTS based on Information Retrieval (IR) theory. Challenges 1) and 2) are addressed by
the representation method while challenges 3) and 4) can be addressed by the IR theory
of indexing inverse documents. The experimental evaluation of our approach is based on
efficiency, speed and performance on classification using Light Gradient Boosting Machine
and similarity search using k-Nearest Neighbor.

1.2. Problem statement

There is a need in astronomy to solve data mining tasks such as Classification or Outlier
Detection on irregular MbTS, while optimizing the space usage and computing times. In
order to achieve this, three main factors have to be handled: a fast representation method
that extracts relevant features from the irregular MbTS, a dimensionality reduction or feature
selection technique that produces a compact representation, and a data mining algorithm that
works on the given representation vector. Defining our problem formally, for a database B
(train set), and a query Time Series Q (test set), we want to get the most likely class within
B to which Q may belong.

1.3. Hypothesis

H1 A representation method for irregular Multivariate Time Series (i.e. irregular MbTS)
based on Information Retrieval theory, using symbolic approximation with different
statistical quantities, discretization alphabets and/or resolution windows, yields faster
means of extracting representative features (under classification or similarity search
metrics) than state-of-the-art methods.

H2 A representation method for irregular Multivariate Time Series (i.e irregular MbTS)
based on Information Retrieval theory, using symbolic approximation with different
statistical quantities, discretization alphabets and/or resolution windows, yields better
classification accuracy or similarity search mean Average Precision at k (mAP@k) than
state-of-the-art methods.

1.4. Objectives
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General Objective

Design, develop and evaluate, in theory and practice, a representation method based on
Information Retrieval theory that supports similarity search and classification algorithms.

Specific Goals

O1 Survey existing techniques to work with Time Series under the (dis)similarity search
approach, for Astronomy and other fields.

O2 Identify the most relevant factors to be considered to develop a good representation
method of irregular MbTS using Information Retrieval theory.

O3 Design a base method using the explored theory that works on irregular MbTS.

O4 Explore and design extensions and generalizations to this base method in order to
produce a more representative feature vector.

O5 Develop and implement the designed approach.

O6 Evaluate the performance and efficiencies of implemented algorithms when solving clas-
sification tasks, including a reference method for comparison.

1.5. Methodology

Our approach is based on the Information Retrieval theory, and it is summarized in
Figure 1.3. Here the approach starts by extracting sub-sequences from the Time Series in the
dataset (for training), and for each sub-sequence it applies a pattern discretization process
that produces a symbolic representation in the form of a word, transforming the whole time
Series into a document of words. Then, for all of the documents in the dataset, Information
Retrieval theory is applied so that a compact representation model is trained, which is then
applied to a query Time Series to produce the features vector. This whole pipeline has
a series of constraints in order to work on irregular Multivariate Time Series, which are
addressed in Chapters 3 and 4. For the Sliding Window, an adapted version called two-
ways Sliding Window is applied. For the pattern discretization, two general extensions are
proposed, called Multi-Quantity and Multi-Resolution. For the compact representation model,
two options are described, Latent Semantic Analysis (LSA) and Multivariate Analysis of
Variance (MANOVA).

To evaluate our proposed methods, we use Light Gradient Boosting Machine (LightGBM)
for classification and K-Nearest Neighbor (k-NN) for similarity search. Classification experi-
ments are limited to LightGBM only since it has been shown to be one of the best methods
to classify the PLaSTiCC dataset [16]. For comparison, we use the state-of-the-art method
AVOCADO, where we also evaluate the computing times required to produce the feature
vector using our proposed method and state-of-the-art method.
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Figure 1.3: Diagram of the general methodology pipeline of proposed approach, where a
model is trained from the train set, which is used to generate the feature vectors for each
Time Series in the test set.

The source code for all of our implementations and evaluations can be found on Github
as open-source software 1.

1.6. Contributions

The main contributions of this thesis are:

A Survey of the existing methods and techniques designed to solve (dis)similarity
search in Time Series from Astronomy and other fields.

Formalization of Information Retrieval theory applied to Time Series, where
we have detailed the vector space model more suited for irregular Time Series datasets
and how they can be transformed into a compact form.

Proposition of Irregular Bag-of-Pattern Feature which is an extension of an
existing method called Bag-of-Pattern Features but applied to irregular Time Series.

Generalization of Irregular Bag-of-Pattern Features where we adapt the method
to work on irregular Multivariate time Series.

1 https://github.com/frmunozz/irregular-bag-of-pattern
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Multi-Quantity and Multi-Resolution extensions for Irregular Bag-of-Pattern
Feature as extensions for the adapted method which improve the performance of the
resulting feature vector on classification tasks.

Experimental validation of our proposed approach, with comparisons to the state-
of-the-art method using PLaSTiCC dataset.

Open-source software with our approach available for others to duplicate our expe-
rimental work and further applications.

1.7. Outline

This thesis work is organized in 6 Chapters as follows:

Chapter 1: Presents the introduction, motivation, objectives and hypothesis of this
thesis.

Chapter 2: Presents a review of related works to this thesis, grouped in three ca-
tegories: representation methods, (dis)similarity measures and indexing techniques for
Time Series. In addition, a few key concepts are defined formally to allow the reader
a better comprehension of the problem. At the end of the chapter, a brief discussion
is made about the challenges and opportunities of research for the astronomical Time
Series.

Chapter 3: Describes and defines the most important concepts of Information Retrie-
val theory for Time Series data, focusing on vector space models and feature reduction.

Chapter 4: Presents our Bag-of-Pattern Feature method designed for irregular Time
Series. Including the generalization for irregular Multivariate Time Series and the ex-
tensions using multiples statistical quantities (Multi-Quantity) and multiple levels of
resolutions (Multi-Resolution).

Chapter 5: Presents our experimental evaluation performed on PLaSTiCC dataset. A
parameter exploration was performed which validates the extensions for Multi-Quantity
and Multi-Resolution. Experiments on classification tasks and computing times for
our proposed method and an additional literature method (for comparison) are finally
performed.

Chapter 6: Presents the conclusions of this thesis and a perspective on directions for
future work.
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Chapter 2

Related work

In this chapter, we review the basic concepts and related work necessary to understand the
problem and goals of this thesis, providing evidence for its relevance. First, we define formally
what a time series is and its variations (Section 2.1), including some data-mining concepts.
Then we describe the existing (dis)similarity measures (Section 2.2), indexing structures
for efficient similarity search (Section 2.3), and the Time Series Representation approaches
(Section 2.4) in Astronomy and other fields like Medicine or Finance. We conclude this
chapter with a discussion about the reviewed works (Section 2.5).

2.1. Key concepts on Time Series representation

Before we start reviewing the literature, some key concepts need to be introduced related
to Time Series data (Section 2.1.1) type and representation methods (Section 2.1.2).

2.1.1. Time Series data

To create a Time Series data, several measurements have to be made at different time
instants. If the time intervals between consecutive measurements are always the same, it is
called regular sampling. Otherwise, it is called irregular sampling. Furthermore, in some
application domains, using one variable to measure an experiment is not enough for further
analysis, and thus more variables are measured. When a Time Series has one single variable
measured, it is called Univariate Time Series (UTS), and if it has two or more, it is
called Multivariate Time Series (MTS) [98]. In some applications domains (e.g., Astro-
nomy), the MTS are also called Multi-band Time Series where the variables are identified as
bands [76].

As we can see, four different groups are identified for Time Series data:

Regular-Univariate (RU) data: Time Series data with regular sampling and one variable
measured (UTS)

Regular-Multivariate (RM) data: Time Series data with regular sampling and two or
more variables measured (MTS)
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Irregular-Univariate (IU) data: Time Series data with irregular sampling and one varia-
ble measured (UTS)

Irregular-Multivariate (IM) data: Time Series data with irregular sampling and two or
more variables measured (MTS)

In the case of IM data, the multivariate measures do not have to be made simultaneously.
This means that we can have different number of measures for each variable with different
measuring times. This is a very complex challenge when the variables measured are correlated,
and it is the main reason for the shortage of works on this application domain.

2.1.2. Basis of representation method

As previously mentioned, a representation method is basically a transformation from
the raw-space Time Series to a feature-space sequence. Furthermore, the ideal representation
method should address dimensionality reduction, fast construction, support similarity measu-
res and efficient reconstruction. However, previous experiments could not provide conclusions
for the existence of such a method [122]. For example, a method cannot achieve dimensio-
nality reduction and efficient reconstruction at the same time, there is a trade-off between
those two properties. The same goes for fast construction and efficient reconstruction. For
the cases of Multivariate Time Series (MTS), the ideal representation method should also
consider the correlation between variables, which yields to slower constructions.

For general purpose, we will include in our study any representation method that satisfied
at least one of the properties of the ideal representation method.

2.1.3. Data mining applications.

Here we will describe some key concepts on data mining applications that are going to
be used during this work.

For data mining applications, we focus our review on classification and similarity search,
which are among the most commonly used tasks. There are very simple classifiers such as
K-Nearest Neighbor, which takes a query Time Series Q and compute its distance to all
Time Series in a labeled dataset R, finding the closest in terms of distance or similarity
between vectors and assigning the respective label to Q. To optimize the query, specialized
data structures can be used, such as M-Trees [26] or TS-Trees [6], among many others.
Alternatively, there are more complex classifiers such as Decision trees, where a tree-like
structure of decisions is used to classify a Time Series depending on the features values. The
decision can be of the form: if feature A has a value less than 0.5 (or any other threshold),
then take the left branch, otherwise, take the right branch. These methods are escalated to
very complex and powerful tree-structures of decisions, even combining different approaches.
For example, Light Gradient Boosting Machine (LightGBM) combines a Gradient Boosting
Machine framework with decision trees to produce a fast and robust classifier.

To visualize the performance of a classifier over a dataset, we usually use a confusion
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Figure 2.1: Example on how a confusion matrix works. On the left, a binary-classifier confu-
sion matrix is shown, on the right, a multi-class classifier confusion matrix is shown.

matrix. With a confusion matrix we can visually observe the 4 possible outcomes when
classifying a dataset, True-Positive (TP), False-Positive (FP), True-Negative (TN), False-
Negative (FN). For example, if we have two classes A and B, where we define A as non-B.
Predicting B for a B object is a TP (good prediction), predicting B for a non-B is a FN
(bad prediction), predicting non-B for a non-B is a FP (good prediction), and predicting
non-B for a B is a FN (bad prediction). Figure 2.1 illustrates this Confusion matrix and
shows how it can be extended for multi-class classifiers. The key fact is that the diagonal of
the confusion matrix will always show the good predictions and the non-diagonal ones are
the bad predictions. These confusion matrices can be normalized by row in order to get a
predicted probability per class.

Another useful way of describing results on data mining application is the Five-Number
Summary, used when experiments involve repetitions and those repetitions show certain dis-
tributions. Here we compute the quartiles Q1, Q2, Q3, and the interquartil range IQR =
Q3 − Q1, which gives account of data dispersion. Then, the Five-Number Summary consist
of: minimum value of the results, Q1, median (Q2), Q3, and maximum value of the results. For
outliers identification, the IQR is used, where value above Q3+1.5IQR or below Q1−1.5IQR
are considered outliers and the respective minimum or maximum values are replaced, trans-
forming the summary (min, Q1, Q2, Q3, max) into (Q1 − 1.5IQR, Q1, Q2, Q3, Q3 + 1.5IQR).
Additionally, The Five-Number Summary can be visualized using box-plots (See Figure 2.2).

2.2. Similarity measures

A representation method by itself cannot solve any problem of interest since on its basis it
is only a transformation from raw data space to a feature data space. In general, a similarity
or dissimilarity measure is applied to compare Time Series on the feature data space and solve
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Figure 2.2: Example on how boxplots are constructed. Where Q1, median (Q2) and Q3 are
the Quartiles, and IQR is the Inter Quartile Range. The limits Q1 - 1.5IQR and Q2 +
1.5IQR defines outliers (lower than/higher than respectively). These limits can be adjusted
depending on the application, the expected distribution and the number of outliers desired.

data mining tasks based on similarity search. Some of the most used similarity/dissimilarity
measures in literature are described next.

2.2.1. Minkowski distance

The Minkowski distance is a similarity measure between two points in vector space. Dif-
ferent normalization are identified in Minkowski space, the most famous being the L2-norm,
also known as the Euclidean distance (Figure 2.3 at left):

L1-Norm(P , Q) = ∥P − Q∥2 =
√√√√ n∑

i=1
(pi − qi)2 (2.1)

Another example is the L1-norm, also known as the Manhattan distance:

L2-Norm(P , Q) = ∥P − Q∥1 =
n∑

i=1
|pi − qi| (2.2)

where both vectors (Time Series) P and Q have the same number of samples n. These
distance measures are used in Time Series due to their linear complexity. However, they are
very simple and can fail in more complex cases scenarios [22].

2.2.2. Cosine Similarity

The Cosine similarity is a measure of similarity between two non-zero vectors. This simi-
larity is based on the angle generated between the two vectors and is defined as:
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CS(P , Q) = cos(θ) = P · Q

∥P ∥∥Q∥
=

∑n
i=1 piqi√∑n

i=1 p2
i

√∑n
i=1 q2

i

(2.3)

where P and Q are vectors (Time Series) of the same length n. If the vectors are nor-
malized, in which case ∥P ∥ = ∥Q∥ = 1, this similarity measure can be seen as the euclidean
distance if we apply the conversion:

L2 − Norm(P , Q)2 = ∥P − Q∥2
2

= ∥P ∥2
2 − 2P · Q + ∥Q∥2

2

= 2 − 2CS(P , Q)
(2.4)

2.2.3. Dynamic Time Warping (DTW) distance

The Dynamic Time Warping (DTW) distance is a technique that finds the best path of
alignments between two Time Series (Figure 2.3, right). The idea is to compute a cumulative
cost matrix C in the following way [98]:

C[0, 0] = 0 C[i, 0] = ∞ C[0, j] = ∞

C[i, j] = cost(pi, qj) + min


C[i − 1, j]
C[i, j − 1]
C[i − 1, j − 1]

⇒ DTW (P , Q) = C[nP , nQ]

(2.5)

Where nP and nQ are the last index of Time Series P and Q respectively. The cost
function cost(pi, qj) can vary between applications, but it is mostly based on the Minkowski
distances. An example of a cost function is:

cost(pi, qi) =

(pi − qi)2 based on L2-Norm
|pi − qi| based on L1-Norm

(2.6)

DTW distance is widely used on different application domains since it works fine on Time
Series with more complex variations such as time shifting or longitudinal scaling. However,
since the original algorithm of DTW distance has a computational complexity of O(nP · nQ),
it is not well suited for large datasets. To speed up the distance, various modifications to
the algorithm have been proposed. For example, the constrained Dynamic Time Warping
(cDTW) distance is an application of DTW to a reduced range around the diagonal of the
cost matrix reducing the number of computations [47, 57]. There are other optimizations of
DTW distance such as lower bounding distance LB_Keogh [54], DTW distance in multi-level
resolutions[96] or techniques for early abandoning the DTW distance algorithm [93].
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Figure 2.3: Example of two distance measures for the Time Series. Euclidean distance on the
left, where the elements are compared one-by-one, represented by the vertical yellow lines.
Dynamic Time Warping (DTW) on the right, where the best alignment is found, which can
be one-to-one or one-to-many matching, this is represented by many different yellow lines
going from one single point on one of the curves to many points on the other curve. As long as
the matches never go back in the sequences, one point can have as many matches as required
to find the best alignment.

2.2.4. Edit Distance

Edit-based distances are designed to measure the similarity of two symbol sequences
counting the minimum number of operations (insertion, deletion, substitution) required to
transform a sequence into the other [98]. Edit Distance on Real sequences (EDR) [23] was
the first method to adapt edit-based distance for time series and is defined as:

EDR(P , Q) =



n if m = 0
m if n = 0

min


EDR(Rest(P ), Rest(Q)) + subcost

EDR(Rest(P ), Q) + 1
EDR(P , Rest(Q)) + 1

otherwise
(2.7)

where Rest(P ) is the sub-sequence of P without the first element, the same for Rest(Q).
subcost is a value defined by:

subcost =

0 if match(p1, q1)
1 otherwise

(2.8)

where match(p1, q1) is True if and only if |p1,x − q1,x| ≤ ϵ and |p1,y − q1,y| ≤ ϵ with ϵ the
matching threshold, p1 = (p1,x, p1,y) and q1 = q1,x, q1,y. This definition assumes that the cost of
a replace, insert or delete operation is always 1. Another adaptation of edit distance for time
series is Edit distance with Real Penalties (ERP) [22]. The main difference between EDP and
ERP is that the last one has the properties of a metric measure, including triangle inequality
property, which is used to define a lower bounding function. Another measure based on edit
distance is Longest Common Sub-Sequence (LCSS) [115], which finds the largest number of
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Table 2.1: Summary of studied (dis)similarity measures, specifying the paper that defined
the measure, the theoretical time complexity, if it is considered a metric or not, if it has a
lower-bounding version (DistLB) for fast computing and for which data type it was designed.

Dist Complexity Metric DistLB Data type
L2/L1-Norm [94] O(n) ✓ [94] Regular
CS [66] O(n) - - Regular
DTW [64] O(n2) - [57] Regular
EDR [23] O(n2) - [23] Regular
ERP [124] O(n2) ✓ [22] Regular
LCSS [115] O(n2) - - Regular
ACSS [117] O(n2) - - Regular
TWED [74, 111] O(n2) ✓ [78] Irregular

matching values between two sequences. This measure was later extended to All Common
Sub-Sequences (ACSS) [117].

Time Warp Edit Distance (TWED) [78] is a different approach to adapt edit distance for
the Time Series, in this case the operations of insert, delete and match are replaced by the
operations of match, delete-x, delete-y. The idea of TWED is to provide an elastic metric
for Time Series matching by taking the time difference into account when penalizing edit
operations. Table 2.1 summarizes comparisons between all of these similarity measures.

2.2.5. Similarity measures for irregular-multivariate Time Series

Distance measures for Univariate Time Series (UTS) can be adapted to work in a Multiva-
riate case (MTS). Many authors have proposed adapted methods that works on MTS [7, 14,
23, 36, 64, 91, 98, 115, 116, 118, 122] with regular sampling, for example, Correlation Based
Dynamic Time Warping (CBDTW) [11]. Other works propose distance measures especially
designed for multivariate application, for example: correlation measure for streaming Time
Series [99], triangle distance to measure the triangle cosine between two Time Series [126]
and Bounded Coordinate System (BCS) [121].

For irregularly sampled Time Series representations, measures like the DTW distance,
the Time Warp Edit Distance (TWED) or the Fréchet distance [24, 32, 34] can be used on
the similarity search problem. However, how to use distance measures for irregularly sampled
MTS is yet an open problem.

2.3. Efficient similarity search

A Time Series similarity search can be described as a query search of a query Q in a
database B. If the database B is so large that does not fit in main memory (RAM), a query
search can result in a sequential scan of the database, making several reads to secondary
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Figure 2.4: Diagram of the general multistep query processing architecture. The Time Series
in the dataset are preprocessed and indexed into a database, which uses a filter-and-refine
techinque to solve the query.

memory (disk), which is time-consuming. Filter-and-refine methods have been proposed to
reduce computational time of similarity search in large datasets [6, 38, 115, 125]. The basic
of these methods is to apply a multistep query process (See Figure 2.4), where the first step
is to filter the database to get a reduced set of candidates, and the second step is to refine the
search applying a similarity/dissimilarity measure. Indexing strategies and lower bounding
distances are two filter methods usually used.

2.3.1. lower bounding distance

A Lower Bounding Distance (DistLB) is an adaptation of a true distance (Disttrue)
with the characteristic of faster computation and lower value compared to true distance
(DistLB(P , Q) ≤ Disttrue(P , Q)) without getting any false dismissal (discard Time Series
that are actually similar). Some distances that were adapted to a lower bounding function are:
Dynamic Time Warping [57], Edit distance [61], Edit Distance on Real sequences (EDR) [23],
Edit distance with Real Penalties (ERP) [22], Time Warp Edit Distance (TWED) [78].
Furthermore, any metric distance can be adapted to lower bounding distance by using the
triangle inequality property.
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2.3.2. indexing strategies

Depending on the dimensionality of the input data, different types of indexes can be
applied. In general, this can be divided into two groups, an index for 1-dimensional data
and an index for high-dimensional data. Here we will make a quick review of some indexing
structure.

2.3.2.1. One-dimensional data

When a Time Series is represented by 1-dimensional data like text symbols or bit sequence,
an index structure such as B-tree can be applied. Signature Tree and Paged Trie Structure [4]
are text indexing methods designed for symbolic representation of Time Series. The first
one provides results with very low false rate, and the second one is especially designed for
main memory applications. Symbolic Aggregate approXimation (SAX) [70, 75, 103] is a
representation method that transforms raw Time Series into text strings. Several indexes
where applied over SAX strings such as hashing [69], prefix tree [56], suffix tree [70] and
iSAX multi-resolution indexing [103].

2.3.2.2. High-dimensional data

For high-dimensional data, Spatial Access Methods (SAMs) such as R-Tree, R*-Tree,
TS-Tree [6] and M-Tree [26] can be applied by mapping the Time Series representation to a
Minimum Bounding Rectangle (MBRs). However, in high dimensional space MBRs of sub-
trees overlap to a high degree, producing more access during the query process. This is called
the curse of dimensionality [114] and affects almost every SAM index.

To address this problem, several approaches have been proposed. M-Tree was adapted
for a low-dimensional representation using Wavelets Transform. L-index [85] was a special
index designed for a representation method based on Piecewise Approximation approach. For
LCSS similarity measure, a 2-dimensional index structure was proposed [115] based on the
construction of MBRs and Minimum Bounding Envelope (MBE) as an additional pruning.
Time Warping in Indexed Sequential sTructure (TWIST) [89] is an index structure proposed
for Time Series that works with sequential structures and index structures using MBEs. A
structure that joins properties from R*-Tree and B-Tree is TS-Tree (Time Series Tree) [6]. B-
tree properties help TS-Tree to avoid overlapping in sub-trees, producing better performance
for higher dimensional data.

2.3.2.3. Irregular sampled and multivariate data

For irregular Time Series, almost every SAM structure can be applied using the correct
similarity measure and representation method. For example, TWED, DTW or Fréchet Dis-
tance can be applied over unevenly sampled Time Series without major variations in the
algorithm [74, 111].

For Multivariate Time Series, if the representation method produces a global feature
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Table 2.2: Distribution of studied work on the four different groups of Time Series data defined
by sampling (regular or irregular) and number of variables (univariate or multivariate).

Regular Irregular
Univariate [2, 9, 12, 13, 18, 20, 27, 46, 55, 59, 66, 69, 71,

73, 75, 79, 80, 85, 90, 97, 102, 103, 119, 127]
[21, 74, 88, 111]

Multivariate [15, 36, 52, 64, 98, 120, 123] [16, 42, 43, 87, 106]

vector or if the Time Series is projected to univariate case, the indexation can be directly
made with SAM structure [4, 83] such as R*-Tree variant for Time Series [14, 57]. If the
Multivariate Time Series is evenly sampled and represented as a matrix, a metric access
method can be used for indexing such as M-Tree [25]. However, indexing irregular MTS has
not direct indexing structure yet, which means that the most viable possibility is to design
a creative representation method or similarity measure.

2.4. Time Series Representations

We group existing methods into four major categories depending on their target Time
Series data. Methods that work with Regular Sampling Time Series on one variable (RU
data) are reviewed in Section 2.4.1, for the ones working with Regular Sampling Time Series
and two or more variables (RM data) are reviewed in Section 2.4.2. Section 2.4.3 and 2.4.4
reviews the studies on methods that work with Irregular Sampling Time Series of one variable
(IU data) and two or more variables (IM data) respectively. Table 2.2 shows how the studied
works distribute over the different Time Series data types.

2.4.1. Regular-Univariate data approaches

Methods that work with regular sampled Time Series of one variable (RU data) are
studied here. The Time Series to compare are usually sampled at the same sampling rate but
with variable length (number of measures). Since most of the literature work can be found in
this category, we group the studied works in three sub-groups: Feature extraction, Piecewise
approximation and Symbolic representation.

2.4.1.1. Feature extraction

Fourier Transform was one of the first methods applied to represent Time Series in a
different feature space. Agrawal et. al. [2] proposed a representation method using Discrete
Fourier Transform (DFT) and an indexing structure for Fourier features called F-index.
Inspired by the same approach, Chan [20] proposed a Wavelet representation using Discrete
Wavelet Transform (DWT). In particular, he uses the Haar Wavelet, which is a sequence of
square-shaped functions used to build a Wavelet Familiy (basis). As an indexing structure,
Haar Wavelet has a better pruning capability compared to DFT. Using a R-tree structure
on the first few coefficients of Haar wavelet is enough to outperform the F-index structure in
terms of pruning power, number of pages access and complexity.
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2.4.1.2. Piecewise approximation

Shatkay et. al. [102] were one of the first to suggest piecewise segmentation for repre-
senting Time Series. They propose a method that breaks the Time Series into regions that
are approximated by a function (e.g. line). The key idea is to compress the information of
each region by a well-defined, continuous, differentiable function producing a representation
method that generates a lower dimensional Time Series. The break algorithm to generate the
regions is based on Bézier curve fitting, with a recursive implementation that starts by fitting
a curve to the whole sequence, finding the point in the sequence with a maximum deviation
from the curve and repeat for the two new generated sequences. Their experiments are based
on query search by number of peaks using electrocardiograms (ECG) data. For an ECG they
look for all 24-hour sequences that presented exactly two peaks.

Continuing with the concept of piecewise segmentation, several different variations can be
found in literature. Keogh et. al. [58, 59] proposed Piecewise Linear Approximation (PLA).
This algorithm initializes with the smallest segments and starts merging neighboring seg-
ments that lead to the least increase in square error, until it reaches K segments (defined by
the user). Piecewise Aggregate Approximation (PAA) [55] is a work where the Time Series
is divided into equal length segment and each segment is represented by the mean value, this
approach was extended in Piecewise Linear Aggregate Approximation (PLAA) [46] by com-
bining mean-value and slope-value to produce a more meaningful symbolic representation.
Other variations of PLA/PAA include monotonically increasing or decreasing segments [90],
adapting break points according to slope values [127] or local-trend values [27], using splines to
fit on each segment [12, 85], representing each segment by different statistical quantities [18],
or using probabilistic models for each segment [59].

Sanchez and Bustos [97] proposed Multi-resolution Trend-Value Approximation (MT-
VA), a method based on Trend-Value Approximation (TVA), which was originally designed
for regular-multivariate data. In MTVA, a bottom-up construction algorithm is proposed
where the representation starts at the lower level of resolution (1 large segment) and itera-
tively increase the level of resolution until a threshold limit resolution level is reached. All
levels of resolution are concatenated into one single feature vector. Each segment on this
representation method is represented by the mean value and the slope of the best linear fit.
Since the representation takes into consideration two variables (mean and trend), the resul-
ting representation is a multivariate sequence, which needs a special similarity measure. In
this work, they define the special cost function:

cost(pi, qi) = |vp
i − vq

j |2 + |sp
i − sq

j |2 (2.9)

Where both value-domain and slope-domain need to be normalized and the distance
measure is defined as:

MDist(P, Q) =
L∑

l=1

2l−1∑
i=2(l−1)

cost(pi, qi) (2.10)

Furthermore, they include a symbolic representation based on SAX and an indexing
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Table 2.3: Overview of representation methods for Regular-Univariate Time Series. Sub-groups are: Feature Extraction (FE), Piecewise
Segmentation (PS), Symbolic Regresentation (SR) and Bag-of-Words (BOW).

Article Sub-
group

Build
Time

Distance
measure

Characteristics

Agrawal et. al. [2] FE O(nlog(n)) L2-Norm Discrete Fourier Transform.
Chan et. al. [20] FE O(n) L2-norm Discrete Haar Transform.
Shatkay et. al. [102] PS O(n) L2-norm Curve fitting (linear, Bezier).
Keogh and Pazzini [58] PS O(n) Custom Linear interpolation on segments and weighting scheme.
Keogh and Smyth. [59] PS O(n) Probabilistic

similarity
Linear interpolation on segments using a prototype template
for probabilistic similarity.

Keogh et. al. [55] PS O(n) L2-Norm Compute mean-value to represent each segment.
Hung et. al. [46] PS O(n) L2-Norm Mean-value and slope on each segment.
Park et. al. [90] PS O(n) DTW Monotonically increasing or decreasing segments.
Zhou et. al. [127] PS O(n) L2-norm Segments based on slope change.
Dan et. al. [27] PS O(n) DTW Segments based on local-trend and global-trend.
Morinaka et. al. [85] PS O(n) L1-norm Approximate segments with lines.
Bar et. al. [12] PS O(n) L2-norm Spline Curves for each segment.
Sanchez et. al. [97] PS O(n) DTW Mean-value and slope for each segment.
Cai et. al. [18] PS O(n) DTW Computes several different statistical values for each segment.
Lin, et. al. [69] SR O(n) MINDIST Defines special distance and introduces SAX.
Shieh and Keogh [103] SR O(n) MINDIST SAX but using bits instead of symbols allows multi-levels of

discretization and fast indexation.
Malinowski et. al. [75] SR O(n) MINDIST Combines mean-value and slope-value with SAX.
Lkhagva et. al. [73] SR O(n) L2-Norm Extends SAX to work with 3 values per segment.
Lin, Khade and Li [71] BoW O(n) L2-norm Uses SAX on sub-sequences to generate a document of words.
Li and Lin [66] BoW O(n) CS Feature selection using ANOVA.
Megalooikonomou et. al. [79] BoW O(n2)1 Hist. Model Clustering algorithm to find its own vocabulary (codebook).

Continued on next page

1 Time build is dominated by clustering algorithm. Taking k-means as reference.
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Table 2.3 (continued)
Article Sub-

group
Build
Time

Distance
measure

Characteristics

Baydogan et. al. [13] BoW O(nlog(n)) DTW Combines local features with global features.
Wang, Liu, et. al. [119] BoW O(n2)1 Several Generates discretization on Wavelet coefficients.
Bailly et. al. [9] BoW O(n2) Several Extract features using SIFT-framework.

Table 2.4: Overview of representation methods for Regular-Multivariate Time Series, identifying the original Article that proposed
the method, the time required to build the representation, the distance measure used (if any), and some relevant characteristics.

Article Build
Time

Distance
measure

Characteristics

Wang et. al. [120] O(n3) Custom Address correlation using PCA and design special multivariate similarity measure
based on BORDA voting.

Yang and
Shahabi [123]

O(n3) PCA-based Propose a PCA-based similarity measure for multivariate data.

Kane and Shiri [52] O(n3) Pearson co-
rrelation

Applies PCA to each Time Series and perform similarity query using a correlation
function.

H. Li [64] O(n) DTW Combines multivariate sequence using element-wise mean-value.
H. Sanchez [98] O(n) Correlated

L2-norm
Applies a representation method on each variable and then uses a correlation
similarity measure.

Bianchi et. al. [15] Heuristic L2-norm Applies Auto-encoders to learn features.
Esmael et. al. [36] O(n) None2 Combines mean-value and trend-value to generate a matrix representation.

2 Uses a classification algorithm that doesn’t need any similarity measure.
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structure for fast similarity search. Their experiments are performed on anomaly detection
tasks using the approach of discord discovery.

2.4.1.3. Symbolic representation and Bag-of-Words

Lin et. al. [69, 70] introduced a discretization technique for Time Series based on PAA
and symbolic representation. This representation method, called Symbolic Aggregate appro-
Ximation (SAX) takes a normalized Time Series, computes its PAA representation, and each
segment value is discretized and represented by a symbol. The breakpoints for the discretiza-
tion are computed by dividing the normal distribution curve in k segment of equal area. SAX
has been used in many application domains and extended by several different works. Indexa-
ble SAX (iSAX) [103] , 1d-SAX [75] and Extended SAX [73] are examples of improvements
made to SAX method.

Although a Time Series can be transformed to a word by SAX representation, this is not
the only possibility for symbolic approaches. Lin et. al. [71] proposed a representation method
using concepts of Information Retireval Theory. In their work, a Time Series is transformed
to a document of words by extracting all sub-sequences of the Time Series and represent
each one of them as a word using SAX representation. Then, the sequence of words can be
represented as a Bag-of-Word (BoW) vector, called Bag-of-Patterns, where the words in the
document are counted and represented as a histogram. Furthermore, as we can see in Li
and Xin [66], this representation method will generate a sparse high-dimensional vector that
can easily be reduced to only the relevant features for classification tasks. Using Analysis of
Variance (ANOVA) [108], the vectors are reduced to the top k-features that best represent
the dataset.

In order to get a BoW representation, we don’t necessarily need to generate a word
transformation. Megalooikonomou et. al. [79] proposed a representation method based on
key sequences, clustering algorithm and Histogram representation. Here, the Time Series are
segmented into equal-length sub-segments, and each sub-segment is represented by its closest
sub-sequence from a codebook. The k sub-sequences in the codebook are obtained by a clus-
tering algorithm, and the distance between sub-sequences of the codebook are precomputed.
Later, the same author extended this algorithm to the Multiresolution Vector Quantized
(MVQ) approximation [80].

Baydogan et. al. [13] proposed a combination of BoW representation and global features
to represent each Time Series for classification tasks. Wang et. al. [119] applies Discrete
Wavelet Transform (DWT) to obtain local features that are used to generate the codewords
and the BoW vector. Bailly et. al. [9] used the SIFT framework (Scale-Invariant Feature
Transform) to extract key-points from each Time Series and use them for the BoW vector.

Table 2.3 shows an overview of all the works studied here, summarizing the major cha-
racteristics of each method. We see that most of the representation methods are very fast,
with a linear build time.
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2.4.2. Regular-Multivariate data approaches

Using multivariate data involves correlation between variables that may contain relevant
information for the representation method. There are different ways to handle correlation
between variables, some more efficient than others, but they all depend on the target ap-
plication and the field of study. Because of this, a method that works well on multivariate
data on a specific field may not work well on a different field since the correlation behaves
different. The works studied here are summarized in Table 2.4.

Using Principal Component Analysis (PCA) is the straightforward approach to transform
a correlated set of data to an uncorrelated and lower dimensional space. Wang et. al. [120]
applies this approach. On each uncorrelated variable, a separated similarity search algorithm
is used to match similar sequences. Then, top k matching sequences are aligned and most
similar multivariate candidates are chosen based on weighted BORDA voting algorithm [65].
This method was tested on different application fields of regular-multivariate series such as
EEG, Japanese vowel and robot execution failure.

Yang and Shahabi [123] proposed a PCA-based similarity measure called eros on which
PCA is computed for multivariate sequences and a similarity measure is generated from
eigenvectors and eigenvalues. Kane and Shiri [52] proposed an algorithm to transform regular-
multivariate sequences to regular-univariate sequences by linear combination where the weights
are computed using PCA. This approach uses PCA as unsupervised learning and extracts the
weighted scores from the implicitly computed Singular Value Decomposition (SVD) matrices.

Since PCA has high computational complexity, some alternatives are presented in the lite-
rature for applications that require faster algorithms. Trend-Value Approximation (TVA) [36]
is an alternative method based on piecewise segmentation but applied to multivariate data.
The algorithm generates a representation for each variable and represents the multivariate
sequences as a matrix of features, where the features are two values per each segment, the
mean value and the slope value. They train a memory-based classifier, which takes as input
the computed features for each multivariate segment. Li [64] proposed a PAA-based method
where a new univariate sequence is generated by computing the element-wise mean-value of
the multivariate sequence.

Sanchez [98] proposed a different approach to similarity search problem on multivariate
Time Series, especially designed for anomaly detection using discord discovery technique. He
designed a univariate representation method called Multi-resolution Trend-Value Approxi-
mation (MTVA), which is applied to each variable of the multivariate sequence. Then, two
multivariate Time Series P and Q are compared through their univariate MTVA represen-
tations using a special adaptation of euclidean distance for multivariate sequence defined
as:

ED(P, Q) =

√√√√√ d∑
i=1

n∑
j=1

(pi,j − qi,j)2 (2.11)

Where n is the number of features on each variable, d is the number of variables compared
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and pi,j, qi,j are the MTVA value corresponding to the j-th feature of the i-th variable of P
and Q, respectively.

Bianchi et. al [15] proposed an autoencoders-based approach for RU data where the mul-
tivariate Time Series is flattened into a uni-dimensional vector and fed to an autoencoder,
using the latent space vector as the representation features. The authors also consider an
algorithm to work with RM data with missing values, which is similar to IM data. Their ex-
periments are performed on blood measurements and different approaches to replace missing
data are compared.

2.4.3. Irregular-Univariate data approaches

In the case of univariate Time Series with irregular time intervals, a representation method
has to solve some extra challenges related to the data format. In particular, for most of
the data mining algorithm we cannot use directly the raw irregular Time Series since the
algorithm expects a regular sequence of features. Usually, representation methods designed
for irregular data transform the raw Time Series to a regular feature space that can be used
easily on different data mining tasks. Here we study methods based on clustering and Machine
Learning that produce a representation vector of Time Series. Table 2.5 shows an overview
of all studied works.

Mackenzie et. al. [74] proposed a cluster-based approach for representing irregular Time
Series. They apply a clustering algorithm called affinity propagation [40], which aims to find
representative exemplars from its input data by transmitting real-value messages between
data points. The input to the algorithm is a distance matrix, which in this case is computed
using Time Warp Edit Distance (TWED). After training and generating k clusters with
affinity propagation, each irregular Time Series sequence is transformed into a k-dimensional
vector, where the value of the i-th element will represent the similarity of the sequence with
the i-th cluster centroid. The method is tested on astronomical Time Series using Support
Vector Machine (SVM) classifier [17].

Valenzuela and Pichara [111] proposed an extension of Mackenzie et. al. [74] by developing
a tree-based representation method. In this approach, the clustering algorithm is built on a
tree-structure, producing a hierarchical tree-structure of clusters and sub-clusters. On this
tree-structure, each node represents a cluster, and they will be divided into sub-clusters until
a threshold condition is met. To build and populate the tree-structure, random sub-sequences
are extracted from the irregular Time Series dataset and the branching factor of the tree,
which is the number of clusters to build on each level of the tree, must be defined by the user.
To build the representation vector of each Time Series, a sliding window technique is applied
to extract sub-sequences of the Time Series and pass them to the tree-structure, counting the
number of times each node is visited. A node is visited when a sub-sequence is closer to the
centroid of the respective cluster. Finally, the representation vector of each Time Series will
be a n-dimensional vector, with n the number of nodes, where the i-th value is the number
of times the node i-th was visited by the sub-sequences of the respective Time Series.

From the machine-learning approach, there are a few algorithms based on recurrent net-
works that aim to learn features from a dataset of irregular Time Series. Naul et. al. [88]
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Table 2.5: Overview of representation methods for Irregular-Univariate Time Series, identifying the original Article that proposed the
method, the time required to build the representation, the distance measure used (if any), and some relevant characteristics.

Article Build
Time

Distance
measure

Characteristics

Mackenzie, Pichara And
Protopapas [74]

O(n3) TWED Generates a codebook using a k-medoids clustering algorithm with
TWED for irregular time serie.

Valenzuela And
Pichara [111]

O(n3) TWED Generate a more detailed codebook with hierarchical clustering on
a tree-structure.

Naul, Bloom, et. al. [88] Heuristic None 3 Applies Recurrent Neural Network to learn features and directly
classify Time Series.

Charnock and Moss [21] Heuristic None 3 Applies Deep Recurrent Neural Networks to learn features.

3 Method uses Machine learning classification algorithms without the need for similarity measures.
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proposed a Recurrent Neural Network (RNN) feature extraction architecture in which the
network takes as input the measurement value of the raw Time Series and the difference
between sampling times, and learns to generate a feature vector of fixed length. This fea-
ture extraction method was tested on different datasets of astronomical Time Series using
a Random Forest classifier. Charnock and Moss [21] proposed the application of deep recu-
rrent neural networks to learn relevant features of Time Series and use them on classification
tasks. They design their method for a specific sub-group of Astronomical Time Series called
supernovae, solving classification of different kinds of supernovae events.

2.4.4. Irregular-Multivariate data approaches

So far we have studied many different Time Series representation methods designed for
different Time Series data across a variety of disciplines. However, there is an additional varia-
tion of Time Series characterized by multivariate measurement at irregular, non-simultaneous,
time samplings. This means that two or more variables may be observed at different time
instants without the need for simultaneous measurement. This variation of the Time Series
is less common and mostly limited to Astronomy, where the telescopes may observe different
variables of the same object at different times. Furthermore, since the irregular-multivariate
case is the most general, we can expect a solution that works on this variation to work on
any other variation of Time Series data.

Although we can find other fields of study with special cases of IM data (RM data
with missing values), we will focus our study on works related to Astronomy field. Luckily,
Astronomy usually presents challenges to the community to help the development and impulse
further research on this field. One of those challenges is PLaSTiCC.

The Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC)
was a challenge presented in 2018-2019 where the participants have to classify a simulated
dataset of 14 different astronomical objects (classes) with irregular-multivariate Time Series
(usually called in astronomy Multi-band Time Series). The objective of the challenge was to
classify, with the highest precision as possible, a very large test set using a very small train
set, which was not representative of the test set. Many different solutions were proposed to
this challenge, most of them using feature extraction methods to transform the raw irregular-
multivariate Time Series into a regular feature vector.

One of the top results during the challenge was proposed by Gabruseva et. al. [42] based on
gradient boosting of decision trees, feature extraction and selection, and data augmentation.
Their solutions include the computation of a variety of features of different kinds. Statistical
quantities such as median, standard deviation or skewness, peak analysis, parametric curve
fitting and magnitude (derived from the observed flux) are some of the features computed.
Then, they rank the features importance and choose the top 100 features to represent each
Time Series.

Boone [16] proposed the algorithm that won the challenge with the best classification per-
formance. Its algorithm, named Avocado, apply a feature extraction based on Gaussian Pro-
cess (GP) regression. The key to this approach is to apply GP regression on time-wavelength
space (where different variables measure different wavelengths), where the raw astronomical
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Table 2.6: Overview of representation methods for Irregular-Multivariate Time Series, identifying the original article where the method
was proposed, the time required to build the representation, the distance measure used (if any), and some relevant characteristics.

Article Build
Time

Distance
measure

Characteristics

Gabruseva, Zlobin and
Wang [42]

Heuristic None 4 Computes many different features using Pearson correlation function
to compare and remove redundant features.

K. Boone [16] O(n3) None 4 Perform multivariate GP-regression to generate a model that takes
into consideration correlation.

Soraisam, Saha, et.
al. [106]

O(n) KDE-based Using as features value and time-difference, probabilistic models are
used for each variable and cross-variables.

Muthukrishna, Narayan,
et. al. [87]

MCMC 5 None 4 Model the Time Series and interpolate values using linear interpola-
tion.

Gomez, et. al. [43] MCMC 5 None 4 Combines a model-based representation with contextual data.

4 Method uses Machine learning classification algorithms without the need for similarity measures.
5 Build time is dominated by time complexity of Markov Chain Monte Carlo (MCMC) algorithm.
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Time Series lives. Using the two-dimensional GP regression, the correlation between variables
is captured in the fitted model from which several different features are computed. Thanks
to the effect of redshift on wavelength (true wavelength is affected by redshift producing a
different observed wavelength), the GP regression model can also be used to augment the
dataset by sampling Time Series at different wavelengths and redshifts. This advantage on
data augmentation was key for this solution to win the challenge.

After the challenge was finished, authors kept using the PLaSTiCC set (unblinded, which
was released after the challenge was closed) to evaluate their algorithms. Soraisam et. al. [106]
proposed a feature extraction method based on a probabilistic approach. They take as input
the differences in time and value of each Time Series on each variable measured. Then, two
quantities are derived from these differences, a probabilistic density function for each variable
on the Time Series and a likelihood score between a train and test set. The classification
experiments are performed using naive Bayes on different datasets, including PLaSTiCC.

Muthukrishna et. al. [87] developed two different approaches to classify IM data. One
is based on deep learning where the Time Series are preprocessed before start feeding the
neural network. First, the Time Series are corrected and normalized using different astrono-
mical concepts. Then, using this Time Series, a model of the peaks of each event is fitted
and the Time Series are re-sampled. This first method designed was called RAPID and it is
a model-based representation of astronomical Time Series. To compare the performance of
RAPID, the authors adapted a traditional feature-based approach computing different sta-
tistical quantities to use as features and feed to a random forest classifier. They discovered
that both approaches work similarly well with the difference that RAPID is a more flexible
method allowing different time-length events.

FLEET is another model-based feature extraction method proposed by Gomez et. al. [43].
FLEET is a method that combines contextual data with feature extraction based on parame-
tric model-fit. Their method is tested on different astronomical datasets using random forest
to classify a specific type of astronomical event called Super Luminous Super Novae (SLSN).

An overview of the studied representation methods for IM data is presented in Table 2.6.

2.5. Discussion

2.5.1. Data mining application

During this study we found that by itself, a representation method of Time Series can-
not solve any data mining problem. Most of the work in the literature applies data mining
algorithms based on similarity/dissimilarity measures for which many different measures ha-
ve been proposed. Classical distances, like Minkowski Distance and Cosine Similarity, have
proved to be the faster and simplest options for comparing two Time Series Vectors. For
raw Time Series or more complex representation vectors (i.e with time shifting or longitu-
dinal scaling), Dynamic Time Warping (DTW) distance is the most suited measure, being
widely used across different application domains. From the very few works presented on irre-
gularly sampled Time Series, it seems that Time Warp Edit Distance (TWED) is the best
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option for such application domain as it takes into consideration the time intervals between
measurements.

Additionally, we found several works on time series presenting different pruning techniques
for speeding up the query process based on similarity search. We identified two families of
approaches: those based on Lower-Bounding (LB) function and those based on indexing
structures. For LB function, most of the similarity measures introduced in the literature
have some LB function formulation, except for LCSS/ACSS.. For indexing structures, we
identify two categories related to the kind of data we would like to index. For 1-dimensional
data (e.g. SAX), indexing structures like B-Tree or suffix-tree are preferred. In the case of
high-dimensional data (e.g., PAA), Spatial Access Methods (SAMs) are mostly used, for
example, R-Tree. A special structure that combines properties from B-Trees and SAM is
TS-Tree, which was especially designed to handle high-dimensional Time Series.

For representation methods, among the four groups identified in this study, the one with
the most variety of works is RU data. Some methods such as PAA [55] and SAX [70] divides
the Time Series into equal-length segments, and for each segment they compute one value,
usually the mean-value. Few cases includes the computation of two values (e.g. the pair mean-
value/trend-value used in MTVA [97]) or more (e.g. the statistical quantities computed in
PSA [18]).

Most of the representation methods designed for RM data are extensions from methods
designed for RU data (except for MTVA, which was designed after its RM data version).
PCA seems to be the best option for RM data since it handles the correlation between
variables properly (Wang et. al. [120], and Yang and Shahabi [123]). However, it has a very
high computational complexity and is not well-suited for large datasets. Despite some loss
of information about the correlation, some alternative and faster methods compared to PCA
have been proposed. Li [64] proposed to compute the element-wise mean value between
variables in order to transform the RM data into RU data. Although this approach was
naive and simple, it has the same basis of AVOCADO [16] where they use Gaussian Process
(GP) regression to fit a model on IM data. The MTVA algorithm was also extended for
RM data [98] by designing a multivariate euclidean distance, which addresses the correlation
between variables but at a very high computational cost.

For IU data, the few works studied in this chapter presented representation methods that
transform the IU raw data to a RU feature vector. Valenzuela et. al. [111] and Mackenzie
et. al. [74] proposed a representation method based on clustering sub-sequences of the Time
Series, using Bag-of-Word to represent the number of times each cluster is used to represent
each Time Series. In order to apply the clustering algorithm directly to IU data, they used
Time Warp Edit Distance (TWED), which, as we see from Table 2.1, is the only distance
measure (studied here) designed for IU data. On the other hand, Naul et. al. [88] and Char-
nock et. al. [21] proposed a feature extraction method based on the application of neural
networks. In the first, the features are directly learned during the execution of the neural
network that solves the classification task, and in the second, a special neural network is
designed to learn features from the IU data.

In the case of IM data, which is the most complex and general data type we have studied
here, we found that most of the current work is related to Astronomy, including some works
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on Medicine using RM data with missing values [15]. Among all the methods studied for IM
data, AVOCADO [16] is the only one that addresses the correlation between variables using
two-dimensional Gaussian-Process regression. Sorsaim et. al. [106] is the only one proposing a
linear time representation method, with a similarity measure that takes into account the co-
rrelation between variables. Although all of the studied works here presented experiments for
Classification, only this last one used similarity-based methods, where the rest used Machine
Learning algorithm to learn to compare and classify the features.

2.5.2. Research directions

From the study presented, we can outline various different research directions that could
be explored. First, from Table 2.2 we noted that there are very few works related to irregular
sampled Time Series, being a potential direction of research, mainly for Astronomy where
most of the data used is irregular sampled. Here, the principal challenges to solve are lower
computational complexity, correlation between variables and large dataset sizes. Additionally,
many works reviewed here have some potential to be extended for more general applications.
For example, Bag-of-Pattern Feature (BOPF) [66] can be extended for IU data and IM data,
the same goes for MVQ [80]. As another example, Variablity Tree [111] is a very solid work
that could be tested on different fields of study, applied to RU data and extended to RM/IM
data. Another possible research direction is to design a similarity measure that can be used
on IM data, which would help to develop new data mining algorithms for IM data without
the need of applying feature extraction.
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Chapter 3

Information Retrieval theory for Time
Series

This chapter introduces the use of Information Retrieval theory for Time Series. We des-
cribe shortly the base of Information Retrieval theory and how it can be used for representing
Time Series. In Section 3.1 we describe the characteristics of a Time Series represented as a
document of words. Next, we introduce the theory of Vector Space Models (Section 3.2) whe-
re representation models based on counting words are described. In particular, we describe
the Bag-of-Words (Section 3.2.1) and Term-Frequency Inverse-Document-Frequency (Section
3.2.2) vector models, including variants and normalization. To address the high dimensiona-
lity of the resulting representation by using Vector Space Model, two techniques to generate
compact vectors are described in Section 3.3, Latent Semantic Analysis, which is a transfor-
mer of dimensional space, and Analysis of variance, which is a feature selection method, with
an extension for multivariate application. Finally, in Section 3.4 we present a brief summary
about the described theory and how it is used for Time Series.

3.1. Time Series Transformation

Before we start using Information Retrieval theory on Time Series data, we have to
transform those Time Series into documents of words. Our goal is to extract all the relevant
information of a Time Series and generate a representation vector of symbols called words.

3.1.1. Document representation

A Time Series is composed of many patterns, some of them overlapped depending on the
complexity of the Time Series. A naive approach to extract those patterns, or at least, a part
of them, is to slide a window across the Time Series data, extracting the corresponding sub-
sequences (Figure 3.1 left side). These windows can be of variable or fixed width and the offset
applied to the window while slides over the data can be constant or variable. Furthermore,
the sub-sequence extraction can be done using many different windows at once. Here we
assume that the sub-sequences are already extracted without knowing which method was
used to extract them, which is addressed in Chapter 4.
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Figure 3.1: Two examples of transforming a sub-sequence of a regular UTS to a SAX word
using sliding window. Extracted sub-sequences are of length 30 (measure time), the generated
words have 4 characters each and the SAX alphabet is {A, B, C, D}. Resulting words are
AACD (top) and DBAB (bottom).

For each sub-sequence (pattern) a discretization process has to be applied in order to re-
present that pattern as a word. The most used discretization method in literature is Symbolic
Aggregate Aproximation (SAX) [70]. In SAX, the sequence is divided into w equal-width seg-
ments for which a representative quantity is computed, reducing the data from n measures in
the sequence to w values. When the representative quantity is the mean value of the segment,
this process is called Piecewise Aggregate Approximation (PAA) [55]. Having the represen-
tative sequence of w values, k break-points are defined, and the representative values of each
segment is transformed into representative symbols for each break-point interval to build a
word. An example of this process can be seen in Figure 3.1.

When all possible sub-sequences of a Time Series are transformed to symbolic represen-
tation, they are grouped together in a document. If q sub-sequences are extracted from a
regular UTS of length n, where q < n, then the corresponding document has q words. In
general, the SAX method is defined to generate words of fixed length w based on a fixed
alphabet Σ of size |Σ| = α, this means that we always know the possible words that can be
produced by the SAX transformation. The collection of possible words or patterns is called
vocabulary, whose size |vocabulary| is defined as:

|vocabulary| = αw (3.1)
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When all the Time Series of a dataset are transformed to documents, they are grouped
together in a corpus. In summary, we transform a dataset of m Time Series, each with ni

measures, i ∈ {1, 2, ..., m}, to a corpus of m documents, each with qi words, i ∈ {1, 2, ..., m},
of length w living in an alphabet of size |Σ| = α with a total vocabulary size of αw.

3.1.2. Numerosity reduction

When extracting all sub-sequences from a Time Series, two or more consecutive sub-
sequences can be very similar depending on the sampling rate of the Time Series. Further-
more, once discretized and transformed to a SAX word, they could be mapped to the exact
same word. This will derive in repetitive data, which does not give any relevant information
about the Time Series.

Numerosity reduction is a technique used in previous works [66, 71] to reduce this redun-
dant information produced by consecutive sub-sequences. The main idea is to count only the
first occurrence of a word and ignore the rest until the occurrence of a different word. For
example, for the document:

{ABB, ACA, ACA, ACA, BBB, BCA, BAC, BAC, BAC, BAC, BBB, ...} (3.2)

Numerosity Reduction results in the following:

{(ABB)1, (ACA)2, (BBB)5, (BCA)6, (BAC)7, (BBB)11...} (3.3)

Where the subscript denotes the first occurrence position in the original document.

This technique modifies the document by reducing the impact of those common patterns,
especially useful when Time Series have smooth variations. Figure 3.2 exemplifies a case of
application. For a simple event of a peak with linear behavior, three different Time Series
are generated (Figure 3.2 left column), each one measuring the peak of the event at different
time instants. The figure shows the effect of Numerosity Reduction (NR) by generating two
histograms of counting words for each Time Series, one using the full document of words
and the other using the document of words after NR. It is clear that after using NR the
histogram are exactly the same for all Time Series, which correlates with the fact that they
all measured the same event. Although this is a potentially good approach to reduce bias on
documents of words, its performance may vary depending on the application domain.

3.2. Vector space model

We have achieved a representation of Time Series as a collection of patterns in the form
of a document of words. However, as it is now, we cannot apply this representation to any
data mining technique, so we need to apply an extra transformation, in this case, to a vector
space.
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Figure 3.2: Effects example of Numerosity Reduction (NR). For the same class event (simple
peak), three Time Series are generated (Q1, Q2, Q3), measuring the peak of the event at
different time instants (left column). Their documents are constructed and the NR is applied
(middle column). Finally, the documents are shown in the form of Histogram considering the
vocabulary {AA, AB, BB, BA}.

The representation of a set of documents as vectors in a common vector space is known
as the vector space model [77]. Applying this model is key for most of the data mining algo-
rithms. However, before we ensure common vector space for a corpus, we have to transform
that corpus of words into a set of document vectors. For that, we describe two well known
document vectors: Bag-of-Words and TF-IDF, including TF-IDF variants for special appli-
cations.

3.2.1. Bag-of-Words model

An intuitive approach to represent a document of words as a vector is based on histograms
(as in Figure 3.2). Since our document has a finite number of possible words, we can just count
the number of times each word occurs in the document and represent that information as an
Histogram. This intuition is applied in Bag-of-Words (BoW) with the addition of including
those words that are known to be present in the vocabulary even if they are not present in
the document. The BoW vector is written as:

BoW (d) = {tf(w1, d), tf(w2, d), ..., tf(wn, d)} (3.4)

Where tf(ωi, d) is the Term-Frequency (TF) of the word ωi in the document d and is
defined as follows:

Definition 3.1 (Term Frequency (TF)) For a document d and a vocabulary V , the term
frequency of a word ω ∈ V is the number of times that word occurs in the document:
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tf(ω, d) = |{ω′ ∈ d : ω′ = ω}| (3.5)

However, there is a main question that this approach cannot answer: are all words in a
document equally important? [77]. In short, the answer is no. For a Time Series application
of Information Retrieval all the Time Series are going to have several different patterns, but
some of them may be very rare and others may be very common depending on the taxonomy
nature of the used dataset. The common patterns are usually not relevant for classification
or other data mining tasks since they do not help differentiate between vectors. Furthermore,
they can produce a bias in the feature vector that affects negatively the representation method
(something that Numerosity Reduction tries to solve, but not totally).

3.2.2. TF-IDF model

Extending the idea of Term Frequency (TF) used in the Bag-of-Words (BoW) model, we
add a penalization factor depending on the frequency of a word on the whole document, this
penalization term is called Inverse Document Frequency (IDF) and penalizes the common
words, having high IDF values for rare words and low IDF values for common words. A
formal definition is presented below:

Definition 3.2 (Inverse Document Frequency (IDF))For a set of documents D and
a vocabulary V , the inverse document frequency of a word ω ∈ V is defined as:

idf(ω) = log
(

|D|
|{d ∈ D : ω ∈ d}|

)
(3.6)

The TF-IDF model is the product of TF and IDF values for each word on each document.
Then, a corpus (dataset) is transformed into a TF-IDF matrix, where each row contains the
TF-IDF value of each document. The dimensions of the matrix depends on the corpus size
and the vocabulary size, which can be arbitrarily big depending on the alphabet size and
the word length used during the SAX transformation of each sub-sequence. For clarity, the
TF-IDF matrix is defined next:

Definition 3.3 (TF-IDF matrix)For a set of documents D and a vocabulary V , the TF-
IDF matrix is defined as:

tf-idfD =


tf(ω1, d1)idf(ω1) tf(ω2, d1)idf(ω2) ... tf(ω|V |, d1)idf(ω|V |)
tf(ω1, d2)idf(ω1) tf(ω2, d2)idf(ω2) ... tf(ω|V |, d2)idf(ω|V |)

... ... ... ...

tf(ω1, d|D|)idf(ω1) tf(ω2, d|D|)idf(ω2) ... tf(ω|V |, d|D|)idf(ω|V |)

 (3.7)

TF-IDF vectors are likely to be more robust than Bag-of-Words in the sense that they
penalize common patterns focusing more on rare patterns as features. TF-IDF are the prefered
vector model in many Information Retrieval applications, however, it has some weak points
that are addressed by variants of TF-IDF like sublinear TF or class based TF-IDF.
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3.2.3. Sub-linear TF weights

The simple TF of counting the number of occurrences of a word has a problem with
complex structure documents. The linear nature of TF says that if a word occurs twenty times
in a document, it means it carries twenty times the significance of a single occurrence [77].
With this, the significance of a word is linearly related to the number of occurrences of that
word in the document, which results in common words TF dominating rare words TF. To
reduce the impact of words with more occurrences, sub-linear TF is used.

With a sub-linear TF, the significance of a frequent word is not much larger than the
significance of a rare word, but it is still more significant. A common sub-linear TF is to use
the logarithm of the term frequency, setting to 0 when the logarithm cannot be computed:

tflog(ω, d) =

1 + log(tf(ω, d)) if tf(ω, d) > 0
0 otherwise

(3.8)

In consequence, the TF-IDF matrix elements of eq. (3.7) are redefined as:

TF-IDFi,j = tflog(ωi, dj)idf(ωi) (3.9)

3.2.4. Cosine normalization

For some cases where the documents in a corpus contains a variable number of words,
the resulting TF weights may vary enormously. For example, for a document d1 where ||d1||
is small and another document d2 where ||d2|| is larger, the chances of match is higher for
document d2 since it has more data to match, producing a bias that must be handled properly.

With a normalization of any kind, the relevance of larger documents does not exceed
the relevance of short documents by much, resulting in a more balanced comparison and
not biased by the length of the document. A useful normalization in this sense is cosine
normalization, where each element in the vector is divided by its module:

nTF-IDFi,j = TF-IDFi,j

||d||
(3.10)

where ||d|| is the total number of words in the document d. To avoid the normalization
problem, cosine similarity is usually applied as the distance measurement, which by definition
normalizes the data.

3.2.5. Class based TF-IDF

In some cases the produced documents are too short for any real data mining tasks,
resulting in low-populated document vectors with non-representative values. To solve this
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problem, the documents can be merged by class label, resulting in more large and consistent
documents. Then, the same procedure is followed to compute TF, TFlog, IDF, TF-IDF and/or
nTF-IDF, with the only difference that now the documents represent classes and the number
of documents is smaller.

3.3. Compact vectors

Since the document vector may be really large and sparse depending on the size of the
alphabet and the length of the word constructed, the dimension of the vector needs to be
reduced to a more manageable size. We define this as compact representation:

Definition 3.4 (Compact Representation) For a raw Time Series T with spatial com-
plexity SC(T ), a representation R with spatial complexity SC(R), is compact if and only
if:

SC(T ) < SC(R) (3.11)

Where R is a feature vector that represents the original Time Series T through a trans-
formation algorithm.

The more compact a representation method is, the better. However, we have to consider
that a reduction in spatial complexity will likely come with a reduction of performance in
classification or similarity search tasks as well. To minimize the impact on the representation
method, we have to design a compact method that is able to reduce the dimension while
preserving as most information as possible.

Almost every variant of Vector Space Model (VSM) can easily be transformed to a com-
pact representation, but the usage theory depends on the variant of TF-IDF used and the
target application. For example, class-based TF-IDF may not need a compact representation
since they have been already merged into class vectors. On the other hand, if the original
dataset has Time Series with variable spatial complexity we need to define a criteria for the
compact representation. In this case we use the mean spatial complexity of the dataset.

We will describe two known approaches to generate compact representation: feature se-
lection through analysis of variance and dimensionality reduction through singular value
decomposition.

3.3.1. Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) was first proposed by Deerwest et. al. [28] as an Infor-
mation Retrieval technique for improving indexing and search query perfomance. The latter
was addapted for several other fields including representing the meaning of words by humans
or category judgments [62]. The base idea of LSA from the perspective of human words is
that the meaning of a paragraph or document is related to patterns of presence or absence
of individual words, whereas a collection of documents (corpus) is modeled as a system of
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Figure 3.3: Diagram of dimensionality reduction in LSA based on Truncated SVD.

simultaneous equations that can determine the similarity of meaning of words and document
to each other [37].

LSA is usually applied to text quantification vectors or Vector Space Models (VSM)
such as Bag-of-Words or TF-IDF. The mathematics behind LSA is based on Singular Va-
lue Decomposition (SVD) and it is very similar to Principal Component Analysis (PCA).
Applying LSa over VSM means we have as input a matrix A of m terms and n documents.
Subsequently, A is subjected to SVD:

A = UΣV T , (3.12)

Where U are the term eigenvectors, V T are the document eigenvectors transposed, and
Σ is the diagonal matrix of singular values, which can be identified as the square roots of
common eigenvalues between terms and documents, being UΣ the term loadings on the
common principal components of terms and documents, and V Σ the respective document
loadings.

Two important characteristics have to be noticed here. First, the generated matrix A
is highly sparse since most of the documents have a very small subset of words from the
whole possible vocabulary. Second, the vocabulary size of possible words can be extremely
large, producing a matrix A with a large number of features. Both factors influence in that
the computed matrix during SVD is very expensive in time and space. In particular, the
matrices U and V T are an orthonormal dense matrix with a much larger storage consumption
compared to A.

Over the years several different techniques have been proposed to reduce the dimensiona-
lity of the computed matrices [37], being one of the most used Truncated SVD. This methods
works by reducing the length of the eigenvectors used for computing the diagonal matrix.
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The idea is to define k < min(m, n) as the number of desired components on the SVD. Then,
U k is the matrix with the first k columns of U , V T

k is the matrix with the first k rows of V T ,
and Σk is the diagonal matrix with the k largest singular values (See Figure 3.3), defining
the Truncated SVD as:

Ak = U kΣkV T
k (3.13)

LSA with dimensionality reduction based on Truncated SVD generates a lower dimensio-
nal representation matrix Â that can be used on a variety of application domains such as
query search, clustering or classification. For complexity analysis, in the case of large number
of documents compared to number of features n > m, the time complexity will be dominated
by the decomposition of the matrix, which is O(n3) [67], otherwise, the time complexity will
be O(m2n)

3.3.2. One-way Analysis of Variance (ANOVA)

Any method that allows us to rank features and drop the least relevant ones can be used
as a feature selection method. For instance, we can take the IDF term and preserve only the
top 80 % features with the highest IDF values. Several different methods have been proposed
in literature as feature selections [30, 66, 72, 101]. Here we will describe one-way Analysis of
Variance (ANOVA) since it has potential for multivariate approaches.

ANOVA is a statistical technique used to analyze variation in a response variable mea-
sured under conditions defined by discrete factors [63]. In the literature discrete factors are
usually described as fixed factors with specific levels of interest, where each level represents
a distinct population with a unique response mean. In this context, the response variable
is going to be a vector with a set of scalar measures for a specific population on a specific
discrete factor. The discrete factors are just features sampled or observed from an underlying
continuous phenomena, which is assumed to be normal distributed. The population is the
statistical normal distribution that can describe a set of response variables by a unique mean
(i.e. response mean) and variance value. To our application on features extracted from astro-
nomical Time Series, ANOVA is a method that works on each feature, evaluating how these
features relate within and between populations in terms of variance, assuming normal distri-
bution. With the correct test statistic and ranking, ANOVA can be used to select features
with higher relevance in terms of variance.

Using our application case for the formula derivation, we have a dataset with c classes
and m Time Series transformed into a corpus matrix with w features using any Vector
Space Model. Here we have c different populations (treatment) and up to m response values
(observations) for each feature, which are considered as random variables. ANOVA is applied
to each feature independently since our goal is to perform a feature selection. However, before
we can use ANOVA, some assumptions have to be made [63]:

Independence : The observations are independent within each others. For our case, this
means no correlation between values of a feature.
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Additivity : The response data can be represented using a statistical model with additive
components. The model used for ANOVA is:

Yij = µ + τi + ϵij (3.14)

Where Yij is the j-th observations on the i-th group, µ is the grand mean, τi is the
treatment effect for group i, and ϵij is a random error. Here we can consider µi = µ+τi

with µi the group mean.

Normality : assume a normal distribution for the random errors.

Homogeneous Variance : Assume identical variance for all groups, represented by σ2.

Having defined the initial assumptions, we write the formulation of group mean and grand
mean. If each group (class) has ni, i = {1, 2, ..., c} observations Yij, j = {1, 2, .., ni}, such
that n1 + n2 + ... = m (i.e. all Time Series are labeled), the group total sum and group mean
are written as:

yi. =
ni∑

j=1
Yij, yi. = yi.

ni

i = 1, 2, ..., c (3.15)

In the same way, the grand total sum and grand mean are:

y.. =
c∑

i=1

ni∑
j=1

Yij, y.. = y..

m
i = 1, 2, ..., c (3.16)

Then, the ANOVA technique consists of a test hypothesis on the equality of group means.
We define a null hypothesis where all group means are the same with an alternative hypothesis
of at least one group mean with different value:

H0 : y1. = y2. = ... = yc.

H1 : yi. ̸= yk. for at least one i ̸= k
(3.17)

If the null hypothesis is true, there is no statistically significantly difference between
groups. Otherwise, we accept the alternative hypothesis, i.e., there is a difference between at
least two pairs of group means.

The ANOVA test is based on the total variability in the data, partitioned into two terms
using the sum of squares identity [84]:

c∑
i=1

ni∑
j=1

(Yij − y..)2 =
c∑

i=1
ni(yi. − y..)2 +

c∑
i=1

ni∑
j=1

(Yij − yi.)2

SStotal = SStreat + SSerror

(3.18)

The two terms on the right are identified as the treatment sum of squares (SStreat), and
the error sum of squares (SSerror), respectively. The degrees of freedom are also affected in
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Equation 3.18. SStotal has m−1 degrees of freedom given by the total number of observations.
There are c levels (classes), which means SStreat has c − 1 degrees of freedom. This gives as
result m − c degrees of freedom from SSerror in order to preserve the equality:

m − 1 = (c − 1) + (m − c) (3.19)

To have statistically comparable values based on SStreat and SSerror we need to normalize
those quantities by their respective degrees of freedom, computing their mean values:

MStreat = SStreat

c − 1 MSerror = SSerror

m − c
(3.20)

Where MStreat is called the mean square of treatments and MSerror the mean square of
errors. MSerror is an estimator of the variance error σ2 [84] and in the case of all treatments
with the same group mean (i.e. null hypothesis satisfied) then MStreat is also an estimator
of σ2. In this case, the ratio of the two variances:

F = MStreat

MSerror

(3.21)

follows the Fisher statistical distribution (F-distribution) and the ratio is called the F-
value, with (c − 1) and (m − c) degrees of freedom. Larger F-value provides evidence against
the null hypothesis. Then, features can be ranked by their F-value, selecting only the top-k
features. A more detailed deduction for ANOVA F-value is presented in Larson [63], and
Montgomery and Runger [84].

For a time complexity analysis, From Equation 3.18 we see that:

SStotal =
c∑

i=1

ni∑
j=1

(Yij − 1
m

c∑
l=1

nl∑
k=1

Ylk)2 (3.22)

If ni = n/c for all i, and the same for nl, then, the computational complexity is O(c · n/c ·
c · n/c) = O(n2), for n documents. Considering that ANOVA is computed for each feature,
the final time complexity is O(wn2) for w features.

3.3.3. One-way Multivariate ANOVA (MANOVA)

The ANOVA test statistic can be extended for multivariate observations by extending
some scalar quantities to vectors. Here, the observations, the group mean and the grand
mean are going to be vectors:

Y ij =


Yij1
Yij2
...

Yijw

 yi. =


yi.1
yi.2
...

yi.w

 y.. =


y..1
y..2
...

y..w

 (3.23)

Where
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yi.k = 1
ni

ni∑
j=2

Yijk, y..k = 1
m

c∑
i=1

ni∑
j=1

Yijk (3.24)

From this, the SStreat and SSerror are going to be matrices called SST and SSE respec-
tively. For each pair (p, q) we have:

SST (p, q) =
c∑

i=1
ni(yi.p − y..p)(yi.q − y..q) (3.25)

SSE(p, q) =
c∑

i=1

ni∑
j=1

(Yijp − yi.p)(Yijq − yi.q) (3.26)

Where the cross product was included into the original definitions of SStreat and SSerror.
An advantage of this cross product is the inclusion of correlation between multivariate ob-
servations.

For the hypothesis, they are almost the same, but now the group means are vectors and
the alternative hypothesis has an extra condition:

H0 : = y1. = y2. = ... = yc.

H1 : yi.l ̸= yk.l for at least one i ̸= k and at least one variable l
(3.27)

Since the hypothesis to be tested has vectors instead of scalars, alternative test statistics
based on the eigenvalues of the matrices SST and SSE have been proposed [35, 53, 86, 110]. In
particular, we describe the Wilks’s Lambda test without entering in detailed formulation (for
further details see Kent, Mardia and Bibby [53]). The Wilks’s Lamba function for MANOVA is
the ratio between the determinant of the matrix mean square error MSE and the determinant
of the total mean square MST = MSE + MST :

λ = |SSE/(m − c)|
|SSE/(m − c) + SST /(c − 1)| = |MSE|

|MST + MSE|
= |MSE|

|MST | (3.28)

This quantity works inversely compared to F-distribution, in the sense that relevant fea-
tures have a λ value closer to 0. Repeating the same procedure as that applied in ANOVA,
λ is computed for each feature and the top-k features are selected by ranking their λ, with
the only difference that now the best features are the ones with the lowest scores.

In the case of MANOVA, the time complexity includes the multivariate computation, an
aggregated computational cost compared to ANOVA. For each term in the matrices SST and
SSE the computational complexity is the same as ANOVA (O(n2)) where each matrix has
b2 terms, with b the number of variables, this results in a time complexity within O(wb2n2),
which reduces to O(wn2) when b is constant and small.
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3.4. Summary

We described the usage of the Information Retrieval theory for Time Series representation.
We presented some relevant concepts and definitions that are necessary to understand the
basics of Information Retrieval theory and how it is applied to the Time Series dataset. We
show that the key factors to use Information Retrieval theory for the Time Series dataset is
how we transform each Time Series into a document of patterns/words and a feature vector
using Vector Space Model (VSM).

We describe the use of the Numerosity Reduction technique and the SAX method to
transform a Time Series into a document of patterns/words. Next, we introduce the concept
of VSN and Bag-of-Words, which is a simple vector model used to represent a document of
words in a more manageable form.

Then we go deeper into the VSM by introducing the usage of TF-IDF vectors, which are a
more polished vector model compared to the simple Bag-of-Words. Furthermore, we presented
two variants for TF-IDF called log-TF-IDF and class-TF-IDF. The first one uses sublinear
Term Frequency to penalize those patterns, which repeats many times in a document. The
other variants, called class-TF-IDF, is used for a small dataset where the generated documents
are too short to be used to compute any representative vector space model. To solve this,
all the documents of a common class are merged into only one single document, reducing
a dataset of m Time Series and c classes into c large documents from which vector space
models are computed.

Finally, we introduce the concept of compact vector and describe two techniques that
can help to achieve compact vectors: Latent Semantic Analysis (LSA) for dimensionality
reduction and Analysis of Variance (ANOVA) for feature selection. Furthermore, we derive the
multivariate version of ANOVA, called Multivariate ANOVA (MANOVA), which addresses
the correlation between variables when selecting the best features.
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Chapter 4

A new representation method for
astronomical Time Series

In this chapter, we describe our proposed method for representing astronomical Time
Series (irregular Multivariate Time Series), based on Information Retrieval theory (see Chap-
ter 3) and Bag-of-Pattern Feature method [66]. In Section 4.1 we define the procedure adop-
ted to extract sub-sequences (patterns) from irregular Univariate Time Series and transform
those patterns to words using a special character approach for empty segments. Next, we
describe our adapted version of Irregular Bag-of-Pattern Feature method (Section 4.2), com-
bining the classic method with the procedures defined in Section 4.1. Section 4.3 generalizes
the method for irregular Multivariate Time Series, presenting the application of feature re-
duction techniques such as Latent Semantic Analysis (LSA) or Multivariate Analysis of Va-
riance (MANOVA). Two additional extensions are proposed to improve the base algorithm of
the Irregular Bag-of-Pattern Feature method, one focusing on the use of multiple statistical
quantities (Section 4.4.1) and another focusing on the use of multiple levels of resolution
(Section 4.4.2). Finally, we conclude this chapter in Section 4.5 with a theoretical analysis of
performance and computational complexity of our method.

4.1. Irregular time Series

In order to apply a representation method based on Bag-of-Pattern Feature representation
for irregular Time Series, we need to address the irregularity in the sampling intervals. Here
two major factors are identified, the technique used to extract patterns from Time Series and
the further segmentation of each pattern to generate a symbolic representation.

4.1.1. Pattern extraction

The first step on Bag-of-Pattern approaches is to extract the respective patterns to be used
for the feature representation. The classical approach applies a Sliding Window technique on
the number of measures, which we refer to as Sample-based Sliding Window. More generalized
approaches use Sliding Windows on the time of measures, which we refer to as Time-based
Sliding Window.
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(a) Forward Sliding Window.

(b) Backward Sliding Window.

Figure 4.1: Two-ways Sliding Window example. A fixed window width slides forward across
a Time Series, reaches the end, and then slides backward.

On Sample-based Sliding Window, a window of W measures is defined and a fixed step
of ∆n measures is used to slide the window across the Time Series. With this, the window
starts at the beginning (first measure on the Time Series), extract all the measures that are
contained in the window (the pattern) and advance ∆n measures to repeat the process.

For Time-based Sliding Window, the window is defined based on a time interval T and
the step is now a ∆t time. Here, the window starts at the time of the first measure (time
zero) and advances across the Time Series in ∆t steps.

A combination of both approaches is to define the window based on a fixed time interval
T such that on every step it has a different sample aligned at the beginning of the window,
i.e., if the window starts at the first measure (time zero), then on the next step it will have
the second measure aligned with the start of the window, next the third measure, and so
goes on. This approach extracts all possible sub sequences from a Time Series regardless of
its sampling intervals.

The challenge for irregular Time Series is that some extracted patterns may have empty
tails due to high irregularities in the time intervals. Furthermore, to generalize the procedure,
we can combine generation of empty-tail patterns with empty-head patterns, since the pattern
extraction process should not be affected by the time direction of the sliding window. The
direct approach to address this is to apply a two-way Sliding Window, which slides the
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window forward and backwards, aligning each measure once with the start of the window and
once with the end of the window. Figure 4.1 shows this two-way Sliding Window approach.

4.1.2. Pattern segmentation

After the patterns are extracted, two main approaches can be used for the representation
method. One is based on codebooks, where a custom set of key-patterns is generated using a
clustering strategy such as K-means or K-medoids [111]. Then, each pattern is represented by
its closest key-pattern, and the Bag-of-Pattern matrix is constructed. The second approach
is based on discretization, where each pattern is discretized to a symbolic representation
(word) and a Bag-of-Pattern matrix is constructed based on a vocabulary of possible words.
The first approach was already explored for the irregular Time Series by Valenzuela and
Pichara [111] and Mackienzie et. al. [74]. Here we focus our work on the second approach, since
it has more potential for linear time algorithms. Using a codebook implies using a similarity
measure between the raw Time Series to find the best match between the sequences. Since
our objective Time Series are irregular and multivariate, the similarity measure would most
likely require a complex and computational expensive function.

To discretize a pattern to a collection of symbols, we have to divide each pattern into k
segments and discretize each segment to a symbol. The segmentation criteria can be based on
a number of samples or time intervals. Here, for our application domain we decide to segment
each pattern by using the second case since it allows us to keep the time-significance of each
segment. The number k is an argument introduced by a user or selected through grid-search
with cross-validation.

As a result of this approach, some patterns are produced with empty segments. For exam-
ple, as in figure 4.2, a pattern extracted from an irregular Time Series can have large gaps
without any data, which leads after the segmentation to segments without data. The cha-
llenge of representing these empty segments is addressed by the discretization step described
below.

4.2. Irregular Bag-of-Pattern Feature approach

Once we have defined the fixed methods of pattern extraction and pattern segmentation
for irregular Time Series, we can apply the same approach as Li et. al. with Bag-of-Pattern
Feature (BOPF) [66] for the pattern discretization. The first step here is to compute the
mean-value for each segment as the representative quantity, excepting the empty segments
for which no value is computed.

For discretization, the whole range of possible values is divided into α intervals defined
by a distribution function. In the case of Symbolic Aggregate Approximation (SAX) [70],
they use a normal distribution fitter for the whole pattern, which is divided into α intervals
of the same area under the curve. An alternative option is to use a uniform distribution for
a simpler discretization. The selected option will depend on the statistical quantity used.
For example, for mean-value we can directly use a normal distribution. However, in the case
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Figure 4.2: Pattern segmentation example, where a sub-sequence was divided into 5 segments
and for each one of them a mean value is computed.

of slope-value, it is better to use a uniform distribution, dividing the whole possible range
[−π/2, π/2] into equal arcs.

Once the α intervals are defined, a symbol is assigned to each one and the patterns are
discretized to a word. If the number of segments k is large enough, it will produce empty
segments just as it was described before. Here we propose a naive approach based on the
assumption that the absence of information (empty segment) is also relevant information,
which is represented by a special character. For the example shown in Figure 4.2 the resulting
word is AB#E# where # is the special character. However, this approach is not useful on
all possible values of k and its application variates depending on the value of k. For k ≤ 2
we will directly ignore sub-sequences with empty segments since using the special character
approach will produce meaningless words. In the case of k > 2, we will allow empty segments
as long as they are less than half of the word and non-consecutive. For example, if k = 5, we
will allow at most 2 non-consecutive empty segments, otherwise, we drop the sub-sequence.
this is the more simpler choice to ensure integrity of symbolic representation, however, the
threshold could be defined as an hyper-parameter and adjusted depending on the specific
application.

Having defined our approach for discretizing a pattern, the following steps of Bag-of-
Pattern Feature (BOPF) [66] can be applied in a straightforward way, after some modifi-
cations. Code 4.1 shows the general algorithm followed by our proposed method. Here it
starts by defining a slider object, which has a window that will slide following the two-ways
Sliding Window technique across the Time Series, extracting the respective sub-sequences.
Then, each sub-sequence is segmented into ω segments, computing for each one of them the
respective statistical quantity value and discretize using the Bag-of-Pattern approach. The
discretization has α levels with the special character positioned at the discretization level
α + 1. The words are represented numerically with the corresponding position on the vo-
cabulary size, which has (α + 1)ω different words, producing a list of numbers as the final
document.
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Code 4.1: I-BOPF algorithm for generating the document of words.
1 Inputs:
2 - Irregular Univariate Time Series ’ ts ’
3 - Statistical quantity ’ s ’
4 - Window Width ’T’
5 - Word length ’ω’
6 - alphabet size ’α’
7 output: document of word ids ’d’
8

9 slider = TwoWaysSlidingWindow(ts, T)
10 d = ∅
11 while slider .not_finished() do
12 sub_sequence = slider.get_sequence()
13 symbols_set = ∅
14 i = 0
15 for segment ∈ segmentate_sequence(sub_sequence, ω) do
16 if is_empty(segment) then
17 val = α + 1
18 else
19 val = compute_quantity(s, segment)
20 end if
21 word_code = power(α + 1, i) * val
22 symbols_set.add(word_code)
23 i += 1
24 end for
25 word_id = symbols_set.sum()
26 d.add(word_id)
27 slider .advance_window()
28 end while

4.3. Generalized approach for Multivariate cases

For any irregular Multivariate Time Series, different types of correlations can exist bet-
ween the measured variables. These correlations could be simple, like dependencies at the
same time instant or more complex, like dependencies at large-scale or at different time
instants. Most literature methods address the correlation between variables on the irregular
Multivariate Time Series by re-sampling the Time Series to regular intervals. One of the most
robust methods to perform this re-sampling is Gaussian Regression, which allows to modelate
the irregular Multivariate Time Series in 2-dimensional space, addressing correlation between
variables, even at different time instants [16]. However, these types of re-sampling techniques
are extremely expensive and not suitable for a fast computing method. An alternative to
re-sampling is to explore the application of Neural Network architecture to astronomical Ti-
me Series such as deep Recurrent Neural Networks using Phased Long Short-Term Memory
units [31]. Although they can be more optimized than costly re-sampling methods, they are
still computational expensive due to the large number of matrices involved in the many layers
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of the deep architecture.

A middle ground alternative is to only address correlation of variables at relatively clo-
se time instants, which will capture short-scale correlation but it will miss the large-scale
correlation. This could be easily included in our proposed method by applying a synchro-
nous Sliding Window on the irregular Multivariate Time Series, extracting features on each
variable for the same time window. In the case of an irregular Multivariate Time Series,
which has large time intervals without measure on any variable, an empty word is generated,
using the special character strategy (See Section 4.1.2). Although this alternative addresses
some part of the correlation, it produces a large number of empty-segments for large words,
which leads to a large presence of words with empty-segments deriving in less significant
representations. This can be seen from the fact that empty-segments represent the absence
of information, which means that a high presence of words with empty-segments is a low
level of valid information.

A simpler and naive approach is to consider the irregular Multivariate Time Series as many
separate irregular Univariate Time Series and apply the Irregular Bag-of-Pattern Feature
method to each one of them. This approach is simpler than previously described options
and reduces the usage of special character strategy while losing most of the information of
the correlation in raw-data. In the case of a Time Series without measures on one of the
variables, the resulting feature vector for that irregular Univariate Time Series will be empty
(only zeros).

We chose to use the latter method and left the handling of correlation to the compact
technique. Two options are presented in Chapter 3 for producing a reduced and compact fea-
ture representation of the astronomical Time Series, MANOVA and LSA. MANOVA handles
the correlation between multivariate-equivalent patterns. This is achieved after transforming
each variable of the astronomical Time Series, producing its respective bag-of-Words (BOW)
vectors and evaluating the relevance and correlation of each BOW symbol through all the
variables. In the case of LSA, the method tries to characterize the latent relationships within
a collection of documents (matrix of features). Here the strong assumption is that words
close in meaning will occur in similar pieces of text [51]. To our representation method, this
translates to similar patterns occurring in similar sequences of patterns or similar documents.
If we include the multivariate patterns, similar patterns in one variable can be related to se-
quences of patterns involving multiple variables. Although this approach is not strictly the
same as a correlation between variables, it has the potential to capture a large portion of this
correlation.

4.3.1. Compact representation using MANOVA

For Multivariate Analysis of Variance (MANOVA), the features are ranked by their sta-
tistically significant score based on a hypothesis test on the variance between groups. Here
we apply this feature selection on the BoW matrix, reducing the number of features and then
apply TF-IDF Vector Space Model (VSM) for weighting the features.

Here MANOVA handles the correlation of the dataset in text-form, which is different
from the correlation in raw-form. Since our representation method separates the variables in
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Figure 4.3: Generalized Irregular Bag-of-Pattern Feature diagram.

Univariate Time Series, we have lost the correlation information from raw-data and cannot be
recovered. Instead, MANOVA handles the correlation between similar patterns represented
by the same textual words and selects those more relevant by computing their cross-product
impact to the variance between classes.

4.3.2. Compact representation using LSA

For Latent Semantic Analysis (LSA), the multivariate features are flattened and consi-
dered as separate features with some degree of correlation between them. LSA acts by de-
composing the feature matrix, which was already flattened from 3D to 2D, into eigenvectors
and coefficients, using them to represent the features in a dimensionaly reduced space. Here,
LSA addresses the correlation between words and documents (rows and columns) during the
Singular Value Decomposition (SVD). The final dimensional space includes the information
of the top features in terms of variance. LSA quantifies the lost information due to dimen-
sionality reduction by the loss of variance from those eigenvectros and coefficients not used
on the transformation.

LSA is applied to the TF-IDF matrix normalized by cosine normalization, and the output
can be directly introduced to any data mining algorithm. LSA directly handles the sparsity
level of the TF-IDF matrix giving as output a dense matrix. An extra filter step is introduced
in this compact technique, which discard features with zero variance across the dataset since it
is expected that those features only produce bias to the representation method. This slightly
speeds up the LSA method by reducing the number of features to be compacted.

A diagram showing how our Generalized Irregular Bag-of-Pattern Feature method works
is presented in Figure 4.3, including both options for compacting the features. On the dia-
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Figure 4.4: Example of early and late fusion schemes for statistical quantities. For the same
sequence, divided into 5 segments, early-fusion and late-fusion are applied separately, gene-
rating two different word representations.

gram, we first split the astronomical Multi-Band Time Series into irregular UTS according
to the measured variables. For each UTS we apply the proposed Irregular Bag-of-Pattern
Feature method, producing its respective Bag-of-Word vector representation. For the exam-
ple, an astronomical Time Series with 6 bands (variables) is used, which produces 6 different
representation vectors. These vectors are then processed using either LSA or MANOVA
techniques. For LSA, we concatenate the 6 representation vectors, apply a normalization
weighting scheme and reduce its dimension through LSA. For MANOVA, we first apply the
feature selection technique on the multivariate representation vectors, where each feature
has 6 dimensions, then, the selected multivariate-features are flattened into one single 1-
dimensional vector and a normalization weighted scheme is used. For our application we
decided to use Term-Frequency Inverse-Document-Frequency (TF-IDF) as the normalization
weighted scheme, which is described in Chapter 3.

4.4. Extensions on Irregular Bag-of-Pattern Feature

Although we presented an adaptation of BOPF method for irregular Time Series and
generalized to irregular Multivariate Time Series by proposing the Generalized Irregular Bag-
of-Pattern Feature method, it is still a very limited approach that may miss some relevant
information on more complex applications. Two different extensions are introduced for a more
robust representation method, which first needs to be validated in order to prove that they
are actually improving the performance of the method.

4.4.1. Including Multi-Quantity representation

Our first proposed extension is based on adding more representative quantities to each pat-
tern segment. Existing work have proposed to use mean-value combined with trend-value [75]
or mean-value combined with min-value and max-value [73]. We propose a method to combine
an arbitrary number of quantities using early fusion or late fusion schemes.
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Code 4.2: I-BOPF algorithm for generating the document of words using early-fusion Multi-
Quantity extension.

1 Inputs:
2 - Irregular Univariate Time Series ’ ts ’
3 - Statistical quantities ’S’
4 - Window Width ’T’
5 - Word length ’ω’
6 - alphabet size ’α’
7 output: document of word ids ’d’
8

9 slider = TwoWaysSlidingWindow(ts, T)
10 combined_alpha = power(α, |S|) + 1 \\ new line
11

12 d = ∅
13 while slider .not_finished() do
14 sub_sequence = slider.get_sequence()
15 symbols_set = ∅
16 i = 0
17 for segment ∈ segmentate_sequence(sub_sequence, ω) do
18 if is_empty(segment) then
19 val = combined_alpha \\ modified
20 else
21 val = 0
22 weight = 1 \\ new line
23 for s ∈ S do \\ new line
24 quantity_result = compute_quantity(s, segment)
25 val += weight * quantity_result \\ new line
26 weight *= α \\ new line
27 end if
28

29 word_code = power(combined_alpha, i) * val \\ modified
30 symbols_set.add(word_code)
31 i += 1
32 end for
33 word_id = symbols_set.sum()
34 d.add(word_id)
35 slider .advance_window()
36 end while

For Q = {q1, q2, ...} statistical quantities, early fusion combines the computed values for
each segment and produce a higher discretization level. For example, if we define a discreti-
zation level of α intervals (symbols) and use the Q statistical quantities through early fusion
scheme, the final discretization level for each segment will raise to:

αQ = αq1 · αq2 · ... · αq|Q| (4.1)
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However, we set the same discretization level α for all statistical quantities qi ∈ Q, which
reduces eq. 4.1 to:

αQ = α|Q| (4.2)

where |Q| is the number of quantities used. This early fusion scheme increases the comple-
xity of the discretization but also adds more precision and information to the representation
method.

For the late fusion scheme, we consider the Q statistical quantities as separate quantities,
generate the respective symbolic word for each pattern and each statistical quantity, and
add all the resulting words to the final document. For example, if we use two statistical
quantities combined by late fusion, then for each pattern, two words are generated, one for
each statistical quantity. Figure 4.4 illustrates the early fusion and late fusion schemes for
Multi-Quantity approach. This diagram presents an example pattern, which is transformed
into symbolic words using mean-value and variance-value. If we only use mean-value, the
resulting word is ABDCC, and if we only use variance-value, the representation is EHFEG.
Under a late-fusion scheme, we would just concatenate these two symbolic words into a
phrase ABDCC EHFEG. However, if we use the early-fusion scheme, the symbolic words
are merged symbol by symbol, producing one combined symbolic words of twice the length of
the original, in this case, AEBHDFCECG. Code 4.2 shows how the original code presented
in Code 4.1 is modified to work with early-fusion scheme on Multi-Quantity.

The quantities proposed to use are Mean-value, Trend-value, Variance-value, Min-value,
Max-value and MinMax-value. The formulation and discretization strategy used for each
quantity are presented below.

Mean-value Computes the statistical mean value within a pattern segment by

µ = 1
n

n∑
i=1

vi (4.3)

Where n is the total number of measures vi in the segment. The discretization is based
on fitting normal distribution to the whole pattern and divide the distribution curve
into α intervals of the same area.

Trend-value Computes the slope of a segment by linear regression.

m =
∑n

i=1(ti − t)(vi − µ)∑
i = 1n(ti − t)2 (4.4)

Where ti is the time instant of the measure vi and t is the mean time of the segment.
The slope is then transformed to angle by mangle = tan−1(m) and discretized in the
range of [−π/2, π/2] using uniform distribution.

Variance-value Computes the statistical sample variance within a pattern segment by
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Figure 4.5: Generalized Irregular Bag-of-Pattern Features diagram with Multi-Resolution
extension.

V ar[segment] = σ2 = 1
n − 1

n∑
i=1

(vi − µ)2 (4.5)

The discretization is defined by the range of [0, max(pattern) − min(pattern)] using a
uniform distribution.

Min-value Takes the minimum value within a pattern segment min(segment) and discretize
in the same way as Mean-value does.

Max-value Takes the maximum value within a pattern segment max(segment) and discre-
tize in the same way as Mean-value does.

MinMax-value Takes the difference between the maximum value and the minimum value
within a pattern segment max(segment) − min(segment) and discretize in the same
way as Variance-value.

All of these quantities have linear computational complexity, which is key for a fast
method. However, we cannot expect to use all of these five quantities to represent a Time
Series, mainly because they will add a large number of features to the representation method
resulting in an extremely large BoW matrix. To reduce this, the user can define the desired
quantities to use or apply a grid-search algorithm to find an optimal combination of quantities.
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4.4.2. Including Multi-Resolution representation

We also propose to extend the Bag-of-Pattern method for a Multi-Resolution scheme of
multiple pattern extractions and pattern segmentation. For pattern extraction, the window
width T of the two-ways Sliding Window technique is a fixed value. The same goes for the
number of segments ω of the pattern segmentation process. Here we propose to use a series
of combinations (Ti, ωi) for different levels of resolution.

For example, a direct approach is to change T over different values and fix ω, producing a
Multi-Resolution representation defined by {(T1, ω), (T2, ω), ..., (Tmr, ω)} for mr levels of re-
solution. The values of Ti are defined by an arbitrary sequence. Another option is to fix T and
vary ω producing a Multi-Resolution representation defined by {(T, ω1), (T, ω2), ..., (T, ωmr)}
for mr levels of resolution and ωi defined by an arbitrary sequence of natural numbers.
Furthermore, a user can choose to vary both T and k simultaneously, producing a represen-
tation defined by {(T1, ω1), (T2, ω2), ..., (Tmr, ωmr)}. The levels of resolutions can be defined
by the user or through an incremental grid-search algorithm.

For the representation method, the levels of resolution are combined by late fusion scheme
where the final feature matrix is a concatenation of feature matrices for each level of resolu-
tion. Depending on how many levels of resolution we use, and the values of ωi, the resulting
number of features for each Time Series can be extremely large. However, the sparsity level
is high as well, allowing us to reduce the memory usage drastically. Figure 4.5 shows an
illustration example of our Multi-Resolution approach.

The final pipeline is presented in Code 4.3, where each run of I-BOPF(T, w, s) has a
computational complexity of O(n) for a Time Series of n measures. VectorSpaceModel() is
a function that generates the respective space model according to the Information Retrieval
theory described in chapter 3. LSA and MANOVA both require the target number of features
for the features reduction, with MANOVA also requiring the labels of each Time Series on
the dataset in order to fit the model. The Vector Space Model labeled as bow-3d is just a
method that generates a 3-dimensional Bag-of-Word matrix where each feature has multiples
values, one for each variable.

4.5. Discussion

We have proposed a new representation method oriented for irregular Multivariate Time
Series data with extensions on Multi-Resolution and Multi-Quantity approaches. Our method
combines the classic Bag-of-Pattern Feature (BOPF) method [66] with an adaptation for
irregular Time Series and Multivariate measures, and the option to apply Latent Semantic
Analysis (LSA) or Multivariate Analysis of Variance (MANOVA) for reducing the number
of features.
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Code 4.3: Generalized I-BOPF, with Multi-Quantity and Multi-Resolution.
1 Inputs:
2 - Dataset D
3 - Statistical quantities ’Q’
4 - Levels of resolution ’R’
5 - alphabet size ’α’
6 - Compact method ’C’ (options: LSA, MANOVA)
7 - Number of components ’N’
8 output: feature matrix ’M’
9

10 corpus = ∅
11 for ts ∈ D do:
12 document = ∅
13 for (T, w) ∈ R do
14 for q ∈ Q do
15 words_feature = I-BOPF(T, w, s, α)
16 document.add(words_feature)
17 end for
18 end for
19 corpus.add(document)
20 end for
21

22 if C == LSA then
23 tf_idf_corpus = VectorSpaceModel(corpus, ’tf_idf’)
24 M = LSA(n_components=N).fit_transform(tf_idf_corpus)
25 else
26 bow_3d_corpus = VectorSpaceModel(corpus, ’bow-3d’)
27 bow_reduced_corpus = MANOVA(k=N).fit_transform(bow_corpus, D.labels)
28 M = VectorSpaceModel(bow_reduced_corpus, ’tf_idf’)
29 end if

4.5.1. Proposed methods

Our work includes the suggestion of an extended Sliding Window technique called two-
ways Sliding Window, which extracts all sub-sequences (patterns) from the Time Series by
sliding a window forward and backward. We also propose a symbolic representation method
for sequences with missing values by adding a special character to represent the absence of
information. This produces a representation method where the measuring instants have an
impact on the representation method.

The generalization proposed for irregular Multivariate Time Series consist of a naive
approach of using the multivariate values by separate, applying Irregular Bag-of-Pattern
Feature to each irregular Univariate Time Series and combining all of those features into one
single representation, letting the compact method (LSA or MANOVA) decide whether there
is any correlation between the respective features. Although this approach is naive, it is as
faster as we can achieve for our method on multivariate data while somehow still addressing
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a correlation between variables.

The extensions proposed to our Irregular Bag-of-Pattern Feature method are two. The
first is related to statistical quantities where we allow the algorithm to work with two or more
quantities for symbolic representation. For example, classic BOPF only uses Mean-value as
discretization quantity, in our method we can use Mean-value, Trend-value, Variance-value,
Min-value, Max-value, MinMax-value or a combination of them adding more precision to
the representation method. The second extension is for the resolution level defined by the
window width T of the Sliding Window process and the segmentation size ω of the pattern
segmentation step. We propose to use an arbitrary number of resolutions (Ti, ωi) with values
defined by the user or optimized by a grid-search algorithm.

4.5.2. Computational complexity

The computational complexity of our methods has the advantage of being linear O(n).
The training phase may be more expensive due to the application of MANOVA or LSA
techniques, but after the computation of those methods, the time required to transform a
Time Series to a feature vector is always O(n).

The computational complexity of MANOVA is O(wb2n2) for w features, b bands and n
Time Series, being w a large constant and b a small number. On the other hand, LSA has a
computational complexity of O(n3b3) when n is larger than w, otherwise it is O(nbw2). For
a large train-set (n > w), we will have that MANOVA should be faster than LSA. For small
datasets (n < w), we should have LSA faster than MANOVA.

In the case of our proposed grid-search algorithm for Multi-Quantity and Multi-Resolution,
we do a series of repetitions for each combination of parameters, where each repetition in-
volves the re-computation of the whole algorithm. This is the most expensive step from our
representation method since it performs cross-validation on each iteration of the grid-search.
Luckily, we only need to run the grid-search algorithm once.

4.5.3. Data Mining application

Our proposed method takes as input the raw Time Series data, applies a series of trans-
formations and generates a feature vector for each Time Series. These vectors are of the same
length, and they live in a regular feature space where element-wise comparison can be applied
(for example, L2-norm or Cosine Similarity). This means that our representation method can
be applied on almost any data mining algorithm without major issues.

In particular, we propose our method to solve classification tasks and similarity search
queries. Our method is designed to work by itself or in combination with other features (from
metadata or quantities computed by the user).
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Chapter 5

Experimental Evaluation

In this chapter, we describe our experiments and results related to our proposed repre-
sentation method (see Chapter 4). In Section 5.1 we describe the implementation of our
algorithm, which is an open source code. Then, we present the dataset used for the expe-
rimental evaluation (Section 5.2) and the literature methods used for comparison (Section
5.3). On the parameter exploration, we evaluate the performance of including Multi-Quantity
(Section 5.4.1) and Multi-Resolution (Section 5.4.2) extensions to our proposed method, in-
cluding a summary with the hyper-parameter selected to run our proposed representation
method algorithm. The final experiments are on classification tasks (Section ??) and com-
puting times (Section 5.7) where our proposed method shows to be faster but AVOCADO
shows to be better at classifying the dataset.

5.1. Implementation

We implement our method using Python language under open source license MIT. The
principal libraries used are Scikit-learn for machine learning methods and Numpy for fast
numerical computation. The whole code is available on github for free 1.

The implementation includes a feature extraction module designed for Multivariate Time
Series where patterns are extracted following the method described in Chapter 4. This feature
extraction module is programmed using Numpy and optimized using Numba. The rest of
the code consist on adaptations of different Scikit-learn modules (e.g. KNeighborsClassifier,
TruncatedSVD or TfidfTransformer) for our usage case. Although Scikit-learn is a very
complete library, which has almost every machine learning method we use, it does not have
implemented Multivariate Analysis of Variance (See Section 3.3.3) for which we have used
the library Statsmodels.

The public code also includes the scripts used for experimental evaluation and visualiza-
tion, for which results are shown in the following sections.

1 https://github.com/frmunozz/irregular-bag-of-pattern
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(a) well-sampled, high Signal-to-Noise ratio light
curve.

(b) poorly-sampled, low Signal-to-Noise ratio light
curve.

Figure 5.1: PLaSTiCC Light curve examples with GP-fit model, where the mean GP flux
prediction is shown as a solid line surrounded by a shaded contour indicating the 1σ devia-
tion [16].

5.2. Dataset

Our experimental evaluation focuses on PLaSTiCC (Photometric LSST Astronomical
Time-series Classification Challenge) dataset. This dataset contains synthetic irregular Mul-
tivariate Time Series and, as the name indicates, was generated for a classification challenge.
The data simulates observations from the Large Synoptic Survey Telescope (LSST) on two
different kind of suverys, the Deep Driling Fields (DDF) that captures less objects (i.e. a
small portion of the sky) more often, and the Wide-Fast-Deep (WDF) that captures more
objects (i.e. a larger portion of the sky) less frequently. The DDF survey is oriented to ob-
serve a small number of fainted objects with precise light curves and the WDF is oriented to
discover more new objects with noisy light curves (see Figure 5.1). The challenge consist on
classifying an extremely large test set (more than 3 million objects) using a very small train
set (only 7846 objects), which is highly unbalanced (see Figure 5.3) and not representative,
containing only 14 classes out of the 19 used for simulating the observations [109]. Table 5.1
shows a brief summary of the object types distribution on PLaSTiCC.

As it was shown in Figure 5.1, the objects included in PLasTiCC dataset have irregular
Multivariate Time Series curves, with extreme variations in the number of observations per
Time Series (see Fig 5.2), mainly due to the DDF/WDF surveys. The variables measured
in this Time Series are electromagnetic wavelength passbands identified with the labels u, g,
r, i, z, y. The u-band measures the range of 300-400 nanometers, the g-band measures the
400-600 nanometers, the r-band measures the 500-700 nanometers, the i-band measures the
650-850 nanometers, the z-band measures the 850-950 nanometers, and the y-band measures
the 950-1050 nanometers.

To handle the unbalanced train set, a data augmentation is performed following the pro-
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Table 5.1: Summary of the object types included in the PLaSTiCC dataset. The table includes
the random ID number, the full and short name of each object type, the number of objects on
train set Ntrain, test set Ntest, and the ratio between both sets Ntrain/Ntest. A more complete
summary can be found on the Unblinded release of PLaSTiCC [109]

ID Object type name Ntrain Ntest Ntrain/Ntest

90 Type Ia Supernova (SNIa) 2,313 1,659,831 0.0014
67 Peculiar type Ia-91bg Supernova (SNIa-91bg) 208 40,193 0.0052
52 Peculiar type Ia Supernova (SNIax) 183 63,664 0.0029
42 Type II Supernova (SNII) 1,193 1,000,150 0.0012
62 Type Ibc Supernova (SNIbc) 484 175,094 0.0028
95 Superluminous Supernova (SLSN) 175 35,782 0.0049
15 Tidal Disruption Event (TDE) 495 13,555 0.0365
64 Kilonova (KN) 100 131 0.7634
88 Active Galactic Nuclei (AGN) 370 101,424 0.0036
92 RR Lyrae (RRL) 239 197,155 0.0012
65 M-dwarf stellar flare (M-dwarf) 981 93,494 0.0105
16 Eclipsing Binary stars (EB) 924 96,572 0.0096
53 Pulsating Variable Star type Mira (Mira) 30 1,453 0.0206
6 Microlens from single lens (Single µ-lens) 151 1,303 0.1159

991 Microlens from binary lens 0 533 0.0000
992 Intermediate Luminuos Pptical Transient 0 1,702 0.0000
993 Calcium Rich Transient 0 9,680 0.0000
994 Pair Instability Supernova 0 1,172 0.0000

TOTAL: sum of all types 7,846 3,492,888 0.0022

cedure designed in AVOCADO [16]. This method consists in performing a Gaussian Process
regression in two-dimensions (time and wavelength) and creating a new Time Series modif-
ying both values, time and wavelength. Given the data augmentation method, the procedure
we follow is:

1. Generate up to 100 augmented Time Series from each Time Series in the train set.
Well sampled Time Series can easily be augmented 100 times using Random number
Generation (RNG). However, when the Time Series are poorly samples, such as the ones
in the WDF survey, most of the RNG augmentations are going to produce augmented
Time Series that are only noise and thus discarded. This produce an imbalance in the
data augmentation that it is solved in the next step.

2. Set a target train set size and maximum number of augmented Time Series per class.
This is included to reduce those classes with an excessive number of augmented Time
Series due to well sampled sequences, for example, those Time Series in the DDF-
Survey. The method ensures to keep the original Time Series and only drop augmented
sequences.
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Figure 5.2: Number of observations per Time Series on train set grouped by DDF/WDF
surveys.

For our experimental evaluation we choose to use up to 6000 augmented Time Series
per class, this means, for example, that if the class on the original train set has 600 Time
Series, then each Time Series needs to produce 10 new augmented Time Series, resulting
in 6600 Time Series in the augmented train set. Sadly, not all Time Series can produce
the same number of augmented Time Series since the augmentation method uses random
parameters, which in some cases can produce Time Series that are only noise, which are
discarded. Each augmented Time Series simulates detections through a Random Number
Generation probability on the Signal-to-Noise ratio (SNR). The SNR is defined as

SNRi = yi

err(yi)
(5.1)

where yi is the simulated flux and err(yi) is the simulated flux error for the i-th measure,
both produced through Gaussian Process regression. Using the error function

erf(z) = 2√
π

∫ z

0
e−t2

dt (5.2)

A simulated detection is valid if and only if [16]

RNGi <
erf((SNRi − 5.5)/2) + 1

2 (5.3)

Where RNGi is the Random Probability produced for the given detection. Finally, an
augmented Time Series is considered only noise if it has 2 or less valid detections. This results
in some classes not having more than 6000 Time Series after the augmentation. Figure 5.3
shows the histogram of this augmented train set. One important remark about the original
dataset is that there are 4 classes that are not present in the train set (See Table 5.1). They
were ignored in our experiments and dropped from the test set for the sake of simplicity.
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Figure 5.3: Class distribution on the PLaSTiCC train set and augmented train set.

5.3. Literature methods for comparison

For comparison we use the winning method of PLaSTiCC, proposed by Kyle Boone and
called AVOCADO [16]. This solution proposes to modelate each irregular Multivariate Time
Series as a 2D Gaussian Process (2D-GP) on time-wavelength domain. The 2D-GP model
is used to fit the light curve on a target wavelength passband, allowing to re-sample the
observations and compute different features used for classification such as Peak magnitude of
the flux, fraction of observations that have an absolute signal-to-noise less than 3, the total
absolute signal-to-noise ratio or the positive flux ratio, among many others [16], using in
total 41 features, where some of them can be undefined if the respective Time Series does not
have enough data. The main advantage of 2D-GP is that it handles the correlation between
passbands (variables) by generating a multivariate model. Furthermore, the same 2D-GP fit
is used for data-augmentation, which is explained in the AVOCADO’s article [16].

AVOCADO performed very well using a Light Gradient Boosting Machine (LightGBM)
classifier with the features extracted from the Time Series. On this classifier, 27 features
were provided from the AVOCADO method and 2 additional features were added from the
metadata table, which results in a balanced accuracy score of 90 % [16]. For comparison, we
evaluate our proposed method on the same classifier using our computed features and the
same 2 metadata features. The only difference is the augmented dataset, which for our case
is smaller and more balanced than the one used in previous works for AVOCADO.

5.4. Parameter explorations

Our proposed method requires many different hyper-parameters, most of them defined by
the user and other computed internally by the algorithm. From literature we already know
that the idea of Bag-of-Pattern Feature can work on Time Series, and from that we can
expect that our adaptation to irregular Multivariate Time Series can work too. However, we
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Figure 5.4: Results of Multi-Quantity evaluations for the statistical quantities Mean (Me),
Min (Mn), Max (Mx), Min-Max (mm), Trend (Tr) and Variance (Va). The notation follows
the pattern s1-s2-... where each si is a statistical quantity, single or composed through early-
fusion, and all si are combined through late-fusion. For an explanation on what these boxplot
are, see Section 2.1.3.
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do not know if our proposed extensions for this method, called Multi-Quantity and Multi-
Resolution, can effectively improve the performance of the representation method. In order to
validate this assumption, we perform many different experiments using k-fold cross-validation
technique on the original train set (not augmented). In particular, two explorations are made,
first for the Multi-Quantity and second for the Multi-Resolution, using on the last one the
results obtained from the first.

The values for all of the other hyper-parameters are based either on theory or previous
literature results:

Alphabet size (α): we choose α = 4 since it is the most used value on literature, where
they have shown that for α < 4 the performance is worst and for α > 4 the increase in
performance does not compensate the increase in the vocabulary size [66, 71].

Word length (ω): can vary between some margins given by the vocabulary size, which
is set to be not higher than 46 features. In practice, this means that ω ∈ (1, 6).

Window Width (T ): can vary between an interval given by the data itself. If the dataset
has a mean time duration of Time Series of µ and a variance of σ, then T < µ + σ.
Furthermore, for PLaSTiCC a lower limit is also present, where for T < 20 the method
is not able to capture enough information to produce a meaningful representation. The
discrete values are produced through a logarithmic scale following the equation

log10(Ti) = (i − 1)
mi

[log10(µ + σ) − log10(20)] + log10(20), i ∈ {1, 2, 3, ..., mi}, (5.4)

Which produces closer short windows and distant long windows.

Compact technique (C): either LSA or MANOVA could be used. For parameter explo-
ration we choose to use LSA, but all experiments can be replicated using MANOVA as
well.

Target number of features (N): the target value is set to be the highest possible value
as long as the representation method can still be considered a compact representation.
Although we know that on the multi-variate measures each observation on the Time
Series involves (time, measure, variable), we will only consider (time, measure) as the
used data. Following this, for PLaSTiCC we have 181 observations per Time Series
in average, which mean 362 values in average, resulting in N = 361 values for the
compact representation method. LAter on this chapter we will explore representations
with different number of features to see how it changes when N variates.

5.4.1. Multi-Quantity search

In the literature we found some work that proposed more than one statistical quantity for
representing Time Series on the Bag-of-Pattern Feature approach with promising results [18].
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Figure 5.5: Results of Multi-Resolution evaluations for an incremental number of levels of
resolution. On each level, different values for word length ω and window width T were tested
and the best pair on each level is selected.

However, they only provide a theoretical analysis as a basis for choosing the statistical quan-
tities, and they only combine them using a late-fusion scheme.

As we described in Chapter 4, there are two ways of combining statistical quantities, early-
fusion and late-fusion, with an additional possibility of combining both schemes, applying
first many different early-fusions, and combining all of them with a late-fusion scheme. Here
we try to evaluate which one is the best combination of statistical quantities using a k-fold
cross-validation score. For the experimentation we set a maximum number of early-fusion
to be 3 and a maximum number of late-fusion to be 6, having as absolute upper limit a
vocabulary size of 48. For each combination of statistical quantities, we get the k-fold cross-
validation score for different combinations of window width T and word length ω, this is
made in order to produce more robust results testing the performance of the combination of
statistical quantities on different parameter configurations.

The exploration start considering six different statistical quantities: Mean (Me), Min
(Mn), Max (Mx), Min-Max (Mm), Trend (Tr) and Variance (Va), and the first evaluation
is made on single-quantities, without early-fusion and with late-fusion. Then we proceed to
evaluate double-quantities, with an early-fusion of 2 quantities and a late-fusion of at most
5, where the top-3 quantities from the previous single-quantity step are used as basis for
the early fusion, reducing the spectrum of possibilities. The final step is for triple-quantities,
with an early-fusion of 3 statistical quantities and a late-fusion of at most 4, where again
the top-3 quantities from the previous double-quantity step are used as basis for the early-
fusion. In total, 41 different combinations of statistical quantities were tested, from which the
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Table 5.2: Parameters required by our proposed method, describing each parameter name,
symbol, criteria applied for its use and used value.

Parameter Symbol Criteria Value
Alphabet size α Optimized 4
Statistical quantities S Optimized (MmTr-MmMn-MmM-TrMn)
Levels of resolution R Optimized [(110.428, 1), (406.482, 1)]
Representation size N User-defined < 362
Compact repr. method C To be chosen LSA/MANOVA/UMAP

selected Multi-Quantity is (MmTr-MmMn-MmMx-TrMn) since it provides the highest score
while having a relatively small vocabulary size. A Summary of all the experiments can be
seen on Figure 5.4, where the distribution correspond to evaluations performed on different
combinations of (T, ω).

5.4.2. Optimal Levels of resolution

Having decided the best combination of statistical quantities S, we find the best com-
bination of levels of resolutions R. For this, we perform an incremental grid search, where
on each step we use as a base the best combination of the previous step. The search starts
looking the best pair (T1, ω1), once it is selected, it search again for a second pair (T2, ω2)
such that both pairs combined gives better accuracy than before. The process repeats until
4 pairs are selected.

In this case we cannot repeat the procedure used before of testing on different pairs (T, ω)
since here we are looking for an optimal set of pairs (T, ω). Instead, we perform an incremental
grid-search on the evaluated pairs (T, ω), where we first find one optimal pair, then search for a
second optimal pair that combined with the previus pair increase the classification score, and
repeat the procedure until no new pair can increase the score. The incremental steps can be
seen on Figure 5.5. Here we directly see that the improvement made by the Multi-Resolution
is not that relevant compared to the improvement made by the Multi-Quantity. This can be
noticed by the relatively high standard deviation obtained from the k-fold cross-validation,
which on 3-levels of resolution made it very difficult to differentiate any improvement. Hence,
we found that 2-levels of resolution is enough to increase the performance of our method to
its best results.

A summary of the optimal parameters selected for further experimental evaluations can
be seen on Table 5.2, which translates into 816 sparse features per Time Series using our
proposed method. The compact method is yet to be defined in the next sections, but we
already know that for the representation to be compact there must be at most 361 dense
features.
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5.5. Classification Comparison with the State-of-the-
art

The classification comparison experiments are divided in three steps. First, we perform
a comparison among the three compact techniques described in Chapter 3, including com-
binations of our proposed method with the state-of-the-art method. Here we find which one
of the three compact techniques is going to be used for further evaluations by performing
classifications on 10 % of the full test-set. Then, we perform a full-classification experiment
where we use the full test set to evaluate performance of the selected configuration of our
proposed method and the state-of-the-art method. Finally, we include additional experiments
where we evaluate classification on subsets dataset using certain classes.

5.5.1. Optimal compact technique

Once the parameters for the textual sparse representation are selected, we have to find
the compact method with the best feature space for classification. On Chapter 3 we have
described two potential compact methods; LSA and MANOVA. Additionally, we evaluate
Uniform Manifold Approximation and Projection (UMAP), a dimension reduction method
mostly used for visualization that can be applied to transform new data [5, 33, 95]. Since
UMAP is a non-linear method that mostly focuses on preserving local structure (manifold
approach), we use it as a comparison with LSA and MANOVA, which are linear-methods
that preserve global structure (variance approach). Three variations for UMAP are included,
UMAP using Cosine distance, UMAP using Euclidean distance and UMAP using a semi-
supervised approach, where it uses the labels during the training set to guide the learning of
the representation space. Since the UMAP method involves computing K-Nearest Neighbor,
we set the number of neighbors to 100 so it can capture more global structure, and the
minimum distance to 0.0 to reduce the dispersion on the inferred space.

In addition to the compact method variants on our proposed method, we evaluate the
possibility of combining the features produced by our method with the features produced by
AVOCADO, which evaluates if the information captured by both methods can be comple-
mented or not.

Figure 5.6 shows the classification results of our proposed method with all the previously
described compact method variants and the combinations of AVOCADO features with our
proposed method on certain configurations. For the classification, LightGBM classifier was
applied, using the parameter configuration established by AVOCADO [16]. Since we tested a
large number of configurations, we have used only 10 % of the test set. IBOPF-(LSA), IBOPF-
(MANOVA), IBOPF-(UMAP Euclidean), IBOPF-(UMAP Cosine) and IBOPF-(sup-UMAP)
shows the classification accuracy using our proposed method with a compact technique at dif-
ferent number of components. IBOPF-sparse|AVOCADO-(LSA), IBOPF-sparse|AVOCADO-
(UMAP) and IBOPF-LSA|AVOCADO shows the classification accuracy using a combination
of our proposed method with AVOCADO, the first combines the sparse IBOPF representa-
tion with AVOCADO and then applies LSA to reduce dimension, the second is similar to
the previous one, but applies UMAP Cosine instead of LSA, the last one combines IBOPF
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Figure 5.6: Comparison of different combinations of IBOPF with compact methods. The me-
tric used is balanced accuracy on classification tasks considering a random 10 % of the full test-
set. The figure includes configurations that combines the proposed method with state-of-the-
art method, these are named IBOPF-sparse|AVOCADO (LSA), IBOPF-sparse|AVOCADO
(UMAP), and IBOPF-LSA|AVOCADO. The dashed horizontal lines represent the balanced
accuracy achieved by AVOCADO alone.

compacted through LSA with AVOCADO.

The results show that combining the features of our proposed method with the features
of AVOCADO is not a viable option on classification tasks, since it does not improve the
accuracy compared with the state-of-the-art method alone. For the compact methods, we
see that the supervised UMAP is not able to produce a robust representation and fails
drastically on classifying the test set. For MANOVA we see that it has the lowest accuracy
for low dimensions and performs average on high dimension. Finally, LSA shows the best
results for 10 dimensions or higher. Furthermore, since LSA is orders of magnitude faster
than UMAP, we directly choose to use LSA as the main compact technique for our proposed
method.

On the number of components, we see that LSA improves significantly up to 10 compo-
nents, and from there the increase in accuracy is very slow up to 100 components, from where
it remains almost constant until reaching 361 components, which is the maximum number
of components to keep the concept of compact. This means that although we could use 361
components to minimize the loss of information, with 100 components is enough to generate
an optimal representation for solving classification tasks. Furthermore, with 10 components
we could produce a good classifier considering the trade-off between spatial complexity and
accuracy. For less than 10 dimensions, UMAP shows the highest results, which is expected
since it is a method designed for visualization on low dimensions.
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Figure 5.7: 2-dimensions visualization of compact methods LSA, UMAP with Cosine distance
and Supervised UMAP with Cosine distance, on train set (fit) and test set (transform). The
transform is evaluated on a small subsample of the test set. Colors represents the classes,
where it is expected that similar color groups closer and separated from the rest.

Figure 5.7 shows a two-dimensions visualization of IBOPF-(LSA), IBOPF-(UMAP Cosi-
ne) and IBOPF-(sup-UMAP Cosine). This visualization helps to clarify the extremely bad
performance of Supervised UMAP on classification tasks. Here we see that although Super-
vised UMAP learns an excellent compact space for the sparse features on the training set,
showing very dense visual clusters, it is not able to reproduce this learned space on the test
set, producing a similar effect to overfitting. This is related to the issue of the training set
not being representative of the test set since it is small and imbalanced (even after data
augmentation). On the figure, we see that the features on the test set are very dispersed in
the 2-dimensional feature space, and the original visual clusters are almost lost. On IBOPF-
LSA, although we see that points are overlapped, we can still identify some visual clusters.
On IBOPF-UMAP we see that classes of super novae (SNIa, SNII, SNIax, etc) are overlap-
ped, and classes of variable stars (RR-Lyra, EB, MIRA) are clearly separated. However, on
the test set, UMAP shows some degree of dispersion on these classes as well.

5.5.2. Classification on full test set

To perform a full comparison with the state-of-the-art method, we evaluate IBOPF-LSA
and AVOCADO on the full test set using LightGBM classifier. This evaluation also includes
the case of combining AVOCADO with IBOPF-LSA for completitud. Table 5.3 shows the
Balanced Accuracy, Presicion, Recall, Adjusted Mutual Information, Adjusted Rand and
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Table 5.3: LightGBM classifier results on the full test-set, comparing the proposed method
with the state-of-the-art method. The methods evaluated are AVOCADO as the state-of-the-
art method, the proposed IBOPF-LSA method, and the combination of AVOCADO features
with IBOPF-LSA features, named COMBINED. Flat-weighted metric is a classification me-
tric using in the original AVOCADO’s paper [16], which is computed from the multi-logloss
metric on the training set.

LightGBM Classifier (Features with metadata)
Metric AVOCADO IBOPF-LSA COMBINED

Balanced accuracy 0.82 0.65 0.81
Precision weighted 0.85 0.73 0.84
Recall weighted 0.75 0.57 0.75
Adjusted Mutual Information score 0.55 0.38 0.55
Adjusted Rand score 0.57 0.35 0.57
Flat-weighted metric 0.595 0.976 0.598
AUC - 90: Type Ia SN 0.945 0.873 0.941
AUC - 67: Peculiar Type Ia SN - 91bg-like 0.958 0.864 0.956
AUC - 52: Peculiar Type Ia SN - SNIax 0.837 0.690 0.815
AUC - 42: Type II SN 0.923 0.780 0.922
AUC - 62: Type Ibc SN 0.915 0.795 0.910
AUC - 95: Superluminous SN 0.990 0.975 0.990
AUC - 15: Tidal disruption event 0.990 0.868 0.990
AUC - 64: Kilonova 0.997 0.984 0.997
AUC - 88: Active galactic nuclei 0.997 0.966 0.997
AUC - 92: RR Lyrae 0.999 0.999 0.999
AUC - 65: M-dwarf stellar flare 0.999 0.999 0.999
AUC - 16: Eclipsing binary stars 0.999 0.997 0.999
AUC - 53: Mira variables 0.999 0.999 0.999
AUC - 6: Microlens from single lens 0.999 0.995 0.999

Flat-weighted metric (from AVOCADO’s paper) results on these classifications, including the
AUC scores for each individual class from LightGBM classifier probabilities. The input used
for these classifications consist of a combination of computed features and metadata features
that potentially add relevant information to differentiate classes [16], and the LightGBM
classifier will decide which features (or metadata features) are relevant for classification.

The overall results show that our proposed method does not improve the accuracy com-
pared to AVOCADO, however, on some classes it shows very similar results. This can be
identified on the AUC values, where for RR Lyrae, M-dwarf stellar flare and Mira variables it
has the same AUC score up to the third decimal. Furthermore, for Eclipsing Binary stars and
Microlens from single-lens, it shows almost similar AUC scores. The confusion matrix for our
proposed method on the full test set is shown on Figure 5.9a where we see that the highest
confusion classes are SNII, SNIax, SNIbc and SNIa-91gb, and the more accurate classified
classes are Mira, RR Lyrae, Eclip. Binary and M-dwarf. The rest of the confusion matrices,
including ROC-AUC curves plots, are included in Appendix ??.
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Figure 5.8: 2-dimensions visualization of AVOCADO, IBOPF-LSA and their combination,
using LSA and UMAP as the dimension reduction technique. The visualization is produced
from features extracted from the train set. Colors represents the classes, where it is expected
that similar color groups closer and separated from the rest.

On the combination of both methods, the results shown on Table 5.3 indicates that our
proposed method does not add any valuable information to AVOCADO features. Even more,
it shows worse performance by some metrics, such as accuracy, precision and AUC score on
certain classes. Figure 5.8 shows a 2-dimension visualization of the inferred spaced on the
training set produced by AVOCADO, IBOPF and their combination, using LSA and UMAP
as the dimension reduction technique. On the figure, it is easy to identify some clusters on
AVOCADO using the UMAP method. On IBOPF we see that visual clusters are more separa-
ted and less dense compared to AVOCADO. However, both methods show clear confusion on
objects of supernovae-type. On the combination of IBOPF-LSA and AVOCADO we see that
on UMAP it shows a complex, spaghetti-like structure where it is very difficult to visually
identify clusters. However, they seem to be very well-separated, except for supernovae-type
classes.

5.5.3. Extra case study on classification

Results from the previous section have shown that our proposed method is not able to
produce comparable accuracy to AVOCADO when classifying all of the 14 classes. However,
since most of its confusion comes from supernovae-type classes, it is of interest to produce a
split on datasets that separates supernovae-type classes from the dataset. To achieve this, we
produce a subset from the original dataset (augmented train and test set) without supernovae-
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(a) Confusion Matrix IBOPF, full-dataset.

(b) Confusion Matrix IBOPF, subset supernovae-
type only.

(c) Confusion Matrix AVOCADO, subset
Supernovae-type only.

Figure 5.9: Confusion Matrices of classification results using LightGBM Classifier on PLaS-
TiCC dataset. (a) The confusion matrix of our proposed method for the full test-set. (b) The
confusion matrix of our proposed method for the subset with only Supernovae-type classes.
(c) The confusion matrix of AVOCADO for the subset with only supernovae-type classes. The
rest of confusion matrices, including the ROC-AUC curves, can be found on Appendix ??

71



Table 5.4: Extra LightGBM classification experiments on subsets from the original PLaSTiCC
dataset. The first subset consists of dropping the supernovae-type classes and the second
subset consist of using only the supernovae-type classes. The same metrics are evaluated for
both subsets. Flat-weighted metric is a classification metric used in the original AVOCADO’s
paper [16], which is computed from the multi-logloss metric on the training set.

Dataset without supernovae-type classes
metric AVOCADO IBOPF-LSA COMBINED

Balanced accuracy 0.95 0.87 0.95
Precision weighted 0.97 0.91 0.97
Recall weighted 0.96 0.88 0.96
Adjusted Mutual Information score 0.90 0.77 0.90
Adjusted Rand score 0.92 0.80 0.93
Flat-weighted metric 0.146 0.330 0.134
ROC-AUC weighted score 0.998 0.988 0.998

Dataset with only supernovae-type classes
Balanced accuracy 0.70 0.52 0.69
Precision weighted 0.82 0.70 0.81
Recall weighted 0.72 0.59 0.73
Adjusted Mutual Information score 0.33 0.15 0.32
Adjusted Rand score 0.48 0.27 0.48
Flat-weighted metric 0.961 0.126 0.975
ROC-AUC weighted score 0.917 0.820 0.914

type classes, reducing from 14 to 7 classes, and a subset with only supernovae-type classes,
with also 7 classes. The classification results on these subsets using the LightGBM classifier
are shown on Table 5.4, where we have replaced the AUC score per class by an AUC macro-
weighted.

The results show that even without supernovae-type classes, AVOCADO is still superior
to our proposed method. Furthermore, we see that although the separation produces a slightly
better classification accuracy per class for our proposed method, it is not enough to open the
possibility of a hierarchical classification. We can see the Confusion on the subset with only
Supernovae-type classes for our proposed method and state of the art method on Figures 5.9b
and 5.9c, respectively, where it is clear that our proposed method has more confusion than
avocado, specially on classes SNIax and SNIbc. When comparing these confusion matrices
with the results on full dataset (Figure 5.9a) we see that the accuracy improvement most
likely comes from the reduction of confusion between Tidal Disruption Event (TDE) or Active
Galactic Nuclei (AGN) with Supernovae-type classes.
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Table 5.5: Similarity search results using K-Nearest Neighbor approach with Euclidean dis-
tance. The input used for both methods is computed features plus metadata, as specified by
AVOCADO [16]. The metric used to evaluate similarity search is the mean Average Precision
at k (mAP@k) for k = {1, 5, 10, 20}. The table includes a macro average of mAP@k and
separated mAP@k for each class on the dataset.

Class IBOPF-LSA AVOCADO
k=1 k=5 k=10 k=20 k=1 k=5 k=10 k=20

mAP - macro average 0.31 0.34 0.34 0.32 0.67 0.69 0.67 0.64
mAP - 90: Type Ia SN 0.24 0.30 0.30 0.27 0.52 0.54 0.51 0.45
mAP - 67: Type Ia SN - 91bg-like 0.18 0.24 0.25 0.23 0.51 0.54 0.51 0.46
mAP - 52: Type Ia SN - SNIax 0.15 0.21 0.22 0.21 0.31 0.37 0.35 0.32
mAP - 42: Type II SN 0.15 0.21 0.22 0.21 0.38 0.43 0.41 0.36
mAP - 62: Type Ibc SN 0.14 0.19 0.20 0.19 0.38 0.43 0.41 0.37
mAP - 95: Superluminous SN 0.18 0.21 0.20 0.19 0.81 0.81 0.80 0.77
mAP - 15: Tidal disruption event 0.13 0.16 0.17 0.16 0.79 0.78 0.76 0.73
mAP - 64: Kilonova 0.11 0.17 0.18 0.17 0.64 0.64 0.63 0.60
mAP - 88: Active galactic nuclei 0.23 0.26 0.25 0.23 0.77 0.77 0.75 0.73
mAP - 92: RR Lyrae 0.97 0.97 0.97 0.96 0.95 0.95 0.94 0.94
mAP - 65: M-dwarf stellar flare 0.46 0.50 0.47 0.41 0.85 0.84 0.82 0.80
mAP - 16: Eclipsing binary stars 0.47 0.49 0.46 0.41 0.94 0.94 0.93 0.92
mAP - 53: Mira variables 0.56 0.57 0.54 0.50 0.94 0.94 0.94 0.93
mAP - 6: Microlens from single lens 0.32 0.33 0.32 0.30 0.66 0.67 0.65 0.63

5.6. Similarity search experiments

Similarity search experiments are performed based on a distance metric and K-NN algo-
rithm. The evaluations are made on the full test set using Euclidean distance as the similarity
measure for finding the neighbors. The methods compared are IBOPF-LSA, the best confi-
guration for our proposed method, and AVOCADO, the state-of-the-art method. The metric
evaluated is mean Average Precision at different k values (mAP@k). Table 5.5 shows the
mAP@k for k = {1, 5, 10, 20} describing the metric for each class by separate and for the
overall dataset under a macro average scheme.

In general, it is shown that AVOCADO has significant better performances on similarity
search under the mAP metric. For our proposed method, the only class that was correctly
searched was RR Lyrae with 97 % mAP, 2 % more than AVOCADO. This class shows to be
almost perfectly searched on the first neighbor (mAP@1) and does not improve performance
for higher k values. For AVOCADO the highest mAP was at k=5, reducing its performance
afterwards.

5.7. Computing time experiments

Although having a method with high performance on classification is a really important
part of this work, it is not the only relevant one. We also want to produce a representation
method that is fast to compute compared to the literature method. In particular, our proposed
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Table 5.6: Computing times per representation method. For AVOCADO only 10 % of the
whole test set was measured for computing times, which means that the average value could
fluctuate. third column indicates the average time that takes to transform 1 time series and
fourth column indicates the estimated time that could take to transform the whole test set,
with 3.479.801 Time Series.

Method Threads Time Series time (ms) Dataset time (hours)
AVOCADO 6 256 ± 66 247.5 ± 63.8
Extended I-BOPF 1 24 ± 5 3.9± 0.8

method has a theoretical asymptotic upper bound of O(n) since all the computing algorithms
that involve the method are of linear nature. However, the method can have a significant bias
due to the complex nature of the algorithm or un-optimized code, which can impact negatively
on the computing times.

To evaluate the effective computing times, we measure the time it takes to transform each
Time Series in the test set using AVOCADO and our proposed method, and estimates the
total time that would take to transform the whole dataset. This is summarized on Table 5.6.
Both experiments were performed on the same machine with an i5-9400f CPU (6 cores/6
threads), where AVOCADO transform 1 Time Series in 256 milliseconds using 6 parallel
process and our proposed method IBOPF-LSA transform 1 Time Series in 24 milliseconds
using 1 process, which means it can transform 6 Time Series in 24 milliseconds, with each
Time Series running in a different process. This leads to our proposed method being 2 orders
of magnitude faster than AVOCADO.

Following the results, we get that to transform the 3,479.801 Time Series included in the
test set (excluding classes not present in the train set), AVOCADO takes around 250 hours
(approximately 10 days), and our proposed method takes around 4 hours. However, due to
the sequential read bias and pre-processing required for our proposed method, the effective
computing time results in around 7 hours.
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Chapter 6

Conclusion

In this chapter, we present our conclusions on the experimental evaluations presented in
Chapter 5 and the proposed method presented in Chapter 4. In Section 6.1 we summari-
ze the experimental results. Then, a complete discussion of the current work is performed
(Section 6.2), including an analysis of the proposed method and the experimental results.
Finally, we describe some possible future research directions (Section 6.3) related to our
proposed method and the application of Information Retrieval theory on Time Series.

6.1. Contributions

Our contributions focus on a new proposed method for which different experimental eva-
luations were performed using the PLaSTiCC dataset. This dataset contains approximately
3.5 million Time Series on the test set and 7846 Time Series on the train set (augmented
to 80856 Time Series). The first part of the evaluations focuses on validating the proposed
method, in particular, the proposed generalizations of Multi-Quantity and Multi-Resolution.
For Multi-Quantity, 41 different combinations of statistical quantities where evaluated, from
which the selected statistical quantities were a late-fusion combination of the early-fusion
pairs (Min-Max, Trend), (Min-Max, Min), (Min-Max, Max), (Trend, Min-Max). These com-
binations show to be better to represent the dataset than using only one statistical quantity,
which validates the inclusion of this generalization in the algorithm.

For Multi-Resolution, we evaluate through an incremental grid-search if adding more
resolution levels does effectively improve the performance. The experiments were performed
for different resolutions levels, defined within specific ranges of window width and word length,
and iterating using an incremental grid-search technique. The algorithm was designed to work
until adding more resolution levels improved the accuracy by less than 1 %. The results show
that 2-levels of resolutions was optimal, using the pairs (110 days window, 1-length word)
and (406 days window , 1-length word), which give a relatively small improvement in the
accuracy compared to using only one resolution level.

Having evaluated and selected the parameters for the Multi-Quantity and Multi-Resolution
generalizations, we proceeded to perform the experiments on classification and computing ti-
me. For these experiments, we extracted the maximum number of features using our method
such that the method can still be recognized as a compact representation. This means that,
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for the PLaSTiCC dataset, we extracted 361 compact features from the 816 sparse features
produced by the algorithm, reducing the features dimensionality by approximately 44 %. For
the literature method, we used AVOCADO, which is one of the best methods for classif-
ying PLaSTiCC dataset. This method applies Gaussian Process to re-sample the irregular
Multivariate Time Series to a regular-space and then computes 41 relevant features.

On classification tasks, we first evaluate which compact technique gives the better clas-
sification performance and how it changes depending on the number of components (i.e.,
dimensionality) used. Once this configuration is selected, a full classification comparison is
performed between our proposed method and AVOCADO method, using the LightGBM clas-
sifier. The results show higher classification on AVOCADO when compared to our proposed
method, with higher confusion on Supernovae-type Time Series on our method. Further eva-
luations separating the Supernovae-type classes from the dataset shows that our proposed
method on the selected configuration effectively fails to separate different supernovae-type
classes, since they have very similar patterns.

On the similarity search experiments, AVOCADO is again the highest performance methods,
showing mAP scores of 69 %. On the other hand, our proposed method fails to retrieve good
similarity matches for almost every class, expect for RR Lyrae, where it shows almost 100 %
performance. These results show that our proposed method, on the selected configuration, is
not appropriate for performing similarity search queries in the full PLaSTiCC dataset.

For the computing times evaluations, using the same machine with an i5-9400f CPU (6
cores/ 6 threads), AVOCADO took around 250 milliseconds to extract the features from a
Time Series using the 6 cores through multi-processing. On the other hand, our proposed
method took only 25 milliseconds in average to extract the features from a Time Series using
only 1 core, which means 6 Time Series are transformed to their respective feature vectors in
25 milliseconds using 6 parallel processes, running each Time Series on a different process.

6.2. Discussion

We have proposed, and evaluated, a new representation method for irregular Multivariate
Time Series using Information Retrieval theory. The proposed method includes extensions
on the use of multiple statistical quantities (Multi-Quantity) and multiple levels of resolu-
tion (Multi-Resolution). The evaluations were performed on classification performance and
computing time.

6.2.1. Proposed approach

This thesis presents basic foundations for the inclusion of Information Retrieval theory on
irregular Time Series, putting together all the involved concepts and formulas to produce a
compact feature vector using a modified Bag-of-Pattern approach. The modifications on the
approach are made in order to support irregular sampling, solving the challenges of empty
segments during the discretization and variations in sub-sequence lengths. The first is handled
by interpolation or adding a special character to represent this absence of information, the
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second is handled by proposing a two-ways sliding window with a fixed window width but
variable window steps based on data time instants.

Our proposed method consists in this adapted Bag-of-Pattern approach, generalized for
irregular Multivariate Time Series, where the Bag-of-Pattern method is applied to each varia-
ble in the Time Series by separating and then merging them together using Latent Semantic
Analysis (LSA) or Multivariate Analysis of Variance (MANOVA) to address the possible
correlations between representations. Nonetheless, this proposed method suffers from loss of
information on certain correlation between variables, for example, large-scale correlation or
correlation between variables at different time intervals are lost when we apply our proposed
method. This is because MANOVA and LSA only address correlation between patterns, droo-
ping the temporal order of sequences, and thus any large-scale correlation between patterns
is most likely lost. LSA could capture some of these large-scale correlations if they are found
to be happening on similar sequences of patterns. This loss in correlation information has
most likely a negative impact in the final representation method, being a possible explanation
to the low classification metrics obtained on our proposed method when compared to state-
of-the-art method (Figure 5.3). However, to prove this negative impact on classification, we
need to validate on a dataset with well-known correlation, which is an experiment we could
not include in our current work and thus is proposed as future work.

Together with the base method for irregular Multivariate Time Series, we have propo-
sed two extensions designed to improve the performance of the representation method. The
first extension was designed to include multiple statistical quantities, which allow to extract
more detailed information from the Time Series. The second extension focuses on the use of
multiples levels of resolution, which aims to combine different resolution levels to represent
different kinds of features for the Time Series. For example, for short-time patterns, a small
window width is better, but for large-time patterns, a large window width is better, which
means that if we combine a small window width with a large window width, it will improve
the performance.

6.2.2. Representation method performance

On the experiments, we have shown the effectiveness of our method applied to PLaSTiCC
dataset, validating the performance of our proposed representation method for irregular Mul-
tivariate Time Series, including the extensions with Multi-Quantity and Multi-Resolution.
In particular, we have shown that it is better to use a complex combination of statistical
quantities and simple discretization rather than complex discretization with a simple combi-
nation of statistical quantities. This directly means that Multi-Quantity has more impact on
the representation method than Multi-Resolution.

This is an interesting result considering that we are only using linear time complexity
quantities, which rise the question of: What could have been the performance of our proposed
method if we include more complex statistical quantities?. Possibilities on this topic are
discussed in Section 6.3 as Future Work. Another advantage of using Multi-Quantity with a
simple discretization of words with no more than 3 symbols (segments) is that allows us to
bypass the problem of empty segments. This happens because for simple discretization levels
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and a large enough window width, the cases where a word has a missing symbol (empty
segment) are so rare that they can be ignored without losing relevant information.

Finally, since our evaluation relies more on the use of Multi-Quantity rather than Multi-
Resolution, the experiments show that the latter does not improve the performance of the
method by a significant margin. However, using simple 2-levels of resolution in combination
with a complex Multi-Quantity is enough to get the optimal configuration of parameters for
PLaSTiCC dataset, which shows that both extensions together are useful to improve our
proposed method.

We have also shown that the applied technique for producing a compact representation
is capable of conserving enough relevant information even when reducing its dimensionality.
This is seen in Figure 5.6 where IBOPF-LSA shows no major change in classification accuracy
for 100 dimensions or more.

6.2.3. Classification comparissons

For classification evaluations, we first perform a comparison on all the candidate configu-
rations on our proposed method in terms of compact techniques. This experiment, performed
on 10 % of the test set using LightGBM classifier, evaluates many different possibilities of ap-
plication of our method. These possibilities are combinations between the features produced
by our proposed method, the features produced by AVOCADO, and the compact methods
LSA, MANOVA and UMAP, including the case of sparse representation (i.e., without using
any compact method). These evaluations are shown in Figure 5.6, where the selected confi-
guration is the combination of our proposed method with Latent Semantic Analysis (LSA),
a linear method that reduces dimensions using the Singular Value Decomposition method,
which preserves global structure. To further understand how the preservation of global struc-
tures impact on these results, we have included IBOPF-UMAP, which uses Uniform Manifold
Approximation and Projection (UMAP), a non-linear method that reduces dimensions using
the Maniforld approach, which preserves local structures. By comparing IBOPF-LSA with
IBOPF-UMAP, we can see that our proposed method produces features more suited for
the global structure approach, producing bad results when using methods like UMAP for
dimension reduction.

To analyze this, we consider the case of Supernovae-type classes where their Time Se-
ries are very hard to differentiate due to very similar and complex taxonomy. Our proposed
method extracts general features that do not differentiate very well between these slightly
different Supernovae-type classes. Although we do not have a way to prove that these diffe-
rences between Supernovae-type classes are of local-structure nature, this intuition leads us to
a most likely bad optimization on the Multi-resolution extension due to the use of very large
time windows with a compact method that preserves global structures (IBOPf-LSA). In fact,
almost every Supernovae-type event have a very short time duration on its light curve peak
(no more than a few weeks), and thus, using time windows of 100 and 400 days is too large for
extracting pattern features that can tell the slight differences between these Supernovae-type
classes. This could be easily validated and fixed if we evaluate Multi-resolution extension
using a different compact technique and on shorter time windows, comparing its resulting
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accuracy. However, due to time limit, we propose this extra validation as future work only
(See Section 6.3).

On the case of Supervised UMAP (sup-UMAP), Figure 5.6 and 5.7 show that this super-
vised approach, which uses the train labels to learn a better dimension reduction, has a very
clear over-fit on the model inferred space, differentiating extremely well on train set classes
but failing drastically on test set classes. This is a clear illustration of how PLaSTiCC dataset
has a non-representative train set, which renders extremely difficult the challenge of using a
method that can learn to differentiate Time Series on test set using the small, imbalanced and
non-representative train set extremely difficult. We know that these experimental evaluations
on UMAP are very superficial, and this method has much more potential to explore, but we
have limited our experimentation to its more common and simpler algorithms.

Once we have selected the compact technique, we performed evaluations and compari-
sons on classification between our proposed method and AVOCADO, one of the best known
methods for representing and classifying PLaSTiCC dataset.

For the Light Gradient Boosting Machine (LightGBM) Classifier, AVOCADO shows ex-
cellent classification results, with an accuracy of 82 %, very similar results to the ones exposed
in the literature [16]. On the other hand, our proposed method shows relatively good results,
with an accuracy of 65 %. On these classification experiments, a combination of computed
features and metadata was used, just like AVOCADO proposed, indicating that our propo-
sed method shows high confusion when classifying Supernova-type Time Series, not being
able to efficiently differentiate between all different sub-types like type II Supernova, type
Ia Supernova, Kilonova, etc. Table 5.3 shows the summary of classification experiments with
different metrics. Here we see that AVOCADO has higher metrics values such as precision
and recall and accuracy. Additionally, it has a lower flat-weighted metric, which is a metric
that combines multi-logloss score from cross-validation training on a train set, this means
that the features from AVOCADO are more easy to learn for the LightGBM Classifier. On
the AUC scores we see that for Supernovae-type classes it has lower scores, which directly
indicates higher confusion (more False-Positive or False-negatives). The confusion matrices
exposed in Figure 5.9 directly show this confusion when compared to AVOCADO, Here we
see for example that Superonvae type-II, type-Iax and Type-Ibc are confused with Type-Ia.
As we discussed before, this is mostly because Supernovae-type Time Series are very simi-
lar, with similar patterns hard to differentiate when using discretization, even more when
the Multi-resolution extension is using large time windows. We could try to find a custom
and complex statistical quantity that extracts more relevant information for Supernovae-type
classification, which is proposed as future work (See Section 6.3).

From the two clustering metrics; Adjusted Mutual Information score and Adjusted Rand
score, we see that if we consider our classification as a supervised clustering, then neither
method performs well on these metrics. For an optimal value of 1, AVOCADO achieved the
highest scores of 0.55 and 0.57, respectively. Since we do not employ a clustering method,
we cannot extract much information from these metrics. However, these results suggest that
neither IBOPF-LSA nor AVOCADO could work directly on clustering tasks and would re-
quire further adaptations.

A promising result obtained from classification on LighGBM is that our proposed method
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shows relatively good accuracy on classifying periodic Time Series while it remains with a
theoretical linear time complexity. This is more clearer on the extra experiment performed on
a subset of the dataset without Supernovae-type classes (see Table 5.4) where our proposed
method reaches 87 % accuracy and AVOCADO reaches 95 % accuracy, only 8 % more accu-
racy, which is a much better result compared to the difference of 17 % on the full dataset, even
more if we consider the computing times (discussed on Section 6.2.5). On the Supernovae-
classes subset no major difference are seen since our proposed method remains with the
same confusion, improving very little the accuracy thanks to the absence of Tidal Disruption
Events (TDE) and Active Galacitc Nuclei (AGN) classes, which are highly confused with
Supernovae-type classes (See Figure 5.9.(a)).

6.2.4. Similarity search

On the Similarity search, the experimental evaluation reflects a wrong optimization of our
method. Since during the parameter exploration we used classification accuracy as a score
for deciding on the parameter values, the used configuration is optimal only for classification
and not for similarity search. This is an interesting phenomena, since the classifier used
on the parameter exploration is a similarity-based classifier. We would have expected to
produce much better similarity search results. One possible explanation is that the parameter
exploration was performed only on the train set, which even after data augmentation is not
representative enough of the test set. This means that simple similarity-based algorithms will
perform very differently on a test set and a train set. In order to validate these results we
would need to re-calculate the parameter configuration using a similarity search score instead
of a classification accuracy score on the k-fold cross-validation, or use part of the test-set
during the k-fold cross validation. Due to limited time and since k-fold cross validation is a
very slow process, we could not perform this extra validation on the current work and it is
proposed as a future work.

In particular, the results shown on Table 5.5 indicates that AVOCADO’s features are
robust enough to produce relatively good similarity search results, obtaining an mAP@10 of
0.69, a much higher score compared to the mAP@10 of 0.34 obtained by our proposed method.
There is one particular class, the RR Lyrae, where our proposed method shows superior
query search results with an mAP@10 of 0.97, compared to mAP@10 of 0.95 obtained by
AVOCADO on this specific class. The fact that it gives so good results on only 1 class and
extremely bad results on the other classes is another indication that our proposed method
is most likely bad optimized to solve this certain data mining task and requires further
exploration.

6.2.5. Computational complexity

Although our proposed method has shown no improvement in the overall classification
accuracy compared to the literature method AVOCADO, which results in a rejection of
one of our hypotheses, this is not the only hypothesis we are evaluating. We also propose
our method to be faster than literature method. Although the variation in the number of
samples per Time Series is not big enough to prove the asymptotic upper bound O(n) of our
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proposed method, we can check if our proposed method is effectively faster than literature
method, which uses Gaussian Process, a very expensive algorithm with a time complexity
between O(n2) and O(n3) depending on the implementation. Experimental results show that
our proposed method is 2 orders of magnitude faster than literature method to generate the
features on PLaSTiCC test set, taking in average 24 milliseconds to process 6 Time Series
in parallel when AVOCADO takes 256 milliseconds to process only one Time Series. These
results directly validate our second hypothesis and open a different spectrum of possible
applications to our proposed method.

For example, following the results from classification on a subset without Supernovae-
type classes, we have a feature method 2 orders of magnitude faster than the state-of-the-
art method that only losses 7 % accuracy when classifying the same dataset. If we include
Supernovae-type classes, the difference in accuracy increases from 7 % to 17 % in the case of
differentiating Supernovae-type astronomical events by taxonomy, with a value between 7 %
and 17 % if we simplify this taxonomy, merging some similar Supernovae-type light curves in
one class.

A final remark on the computing time experiments is that, even when the projected time
required to process the 3.5 millions Time Series in the test set using our proposed method is
around 4 hours, transforming 6 Time Series each 24 milliseconds, in practice the whole run
will take more time due to a bias introduced by the sequential reads performed to the HDD
and the pre-processing applied to the time Series data, required to generate the input for our
proposed method. This bias also affects AVOCADO but at a minor scale since the method
takes much longer to transform each Time Series.

6.3. Future work

Applying Information Retrieval theory to Time Series and adapting it to work on irregular
Multivariate Time Series involves a wide variety of issues yet to explore. Although this thesis
contributes with a new representation method for irregular Multivariate Time Series, there
are a few possible lines of future research.

On the proposed method, the implemented code is not entirely optimized, having for-loops
that can be reduced and code that can be transferred to C++ or Cython for faster computing
times. On the method itself, we identify six possible research directions, described from less
relevant to more relevant. The first is to directly explore the combination of our computed
features with other method’s features or additional metadata. We already shown that a direct
combination of our computed features with AVOCADO’s features does not really improve the
performance compared to AVOCADO’s results. However, we could evaluate the combination
with other literature methods or the inclusion of more metadata to the classifier, trying to
improve its performance.

The second research direction is to apply more complex statistical quantities to the Multi-
Quantity extensions and not limit the algorithm to linear time statistical quantities, using
the Special Character technique for those cases where the statistical quantity fails to be com-
puted. Here the idea is to explore the trade-off between the time complexity of the algorithm
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and the classification performance, looking for an optimal depending on the application.

The third research direction is to directly explore the combination of our computed fea-
tures with other method’s features. For example, we could combine our proposed method
features with AVOCADO features, where AVOCADO will dominate the computing times.
However, depending on the relation of the features we would need to adapt the classifiers.
For example, if we combine directly our 361 features with the 27 features of AVOCADO
the LightGBM will be highly confused since the random sub-set of features used during the
training phase will hardly be representative from both set of features. In order to work, we
will need to adapt the classifier, use a different classifier or reduce our computed features to
a similar scale compared to AVOCADO’s features.

A fourth research direction is to handle the correlation between variables through syn-
chronous Sliding Window. In our work, we already discarded the use of synchronous Sliding
Window on the multivariate measures since they would produce a large number of empty-
segments on complex discretization schemes for windows matching data on a variable but
not on the others. However, during the experiments, we discovered that the representation
method works better for complex Multi-Quantity schemes and simple discretization schemes,
for which empty-segments are almost never present. This results directly opens the possi-
bility of including the correlation between variables on our proposed method, which is our
second proposed research direction. In particular, the correlation can be handled by using a
simple discretization scheme, in combination with a complex Multi-Quantity scheme and the
extraction of simultaneous sub-sequences through a synchronous Sliding Window.

The fifth proposed research direction is to apply our proposed method on outlier detec-
tion or event detection on streaming irregular Multivariate Time Series. Both applications
do not require a complex classification scheme since they work on a more simpler problem.
This is an advantage to our method, which works well on classification but fails when it
tries to differentiate too similar classes. Furthermore, outlier detection and event detection
on streaming irregular Multivariate Time Series require a fast computing algorithm or on-
line algorithm that can work in real time. Since our proposed method has proven to be a
linear-time complexity with fast computing times, it is a promising alternative to work on
these problems. Furthermore, our method can directly work as an online method since for
a new measure on the streaming irregular Multivariate Time Series, a new sub-sequence is
extracted, for which a feature value is modified (add 1 on the BoW vector). For the compact
representation, MANOVA can be used directly without any additional cost, while LSA would
require to re-compute the feature vector.

The seventh and final identified research direction involves evaluating different parameter
configuration through modifying the k-fold cross-validation steps. For example, we already
discuss that our representation method is focusing on global structure, which could be related
to large window widths. This can be further explored trying to use shorter window widths
with a different compact technique that focuses more on local structures. Additionally, we can
explore a customized parameter configuration for the specific data mining task of similarity
search, using a different metric and repeating all of the k-fold cross-validation steps.

An extra and very interesting research direction based on recent work would be to use
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Self-Attention mechanism [113]. In this approach, an encoder-decoder structure is used to
learn latent space from textual data. Complex Attention-based mechanism, such as Multi-
Head dot-Attention has been recently explored and applied to the astronomical Multi-Band
Time Series [92] using the Transformer model [3]. A direct extension of our proposed work,
which is related to this self-Attention mechanism, is to use our textual transformation on
the self-Attention mechanism in replacement to the compact technique and the normalizing
weighted scheme. With this, we would use this encoder-decoder structure to learn the la-
tent space representation and also classify the features. Furthermore, this can be combined
with improvements on the symbolic representation, exploring the use of codebooks instead
of discretization or tokenization instead of Bag-of-Words. For codebooks, some clustering
algorithms such as Variability trees [111] have already explored this approach for irregular
Univariate Time Series. They could be extended to multivariate irregular Time Series as
long as we propose or apply a similarity metric that can handle this specific type of Time
Series. On tokenization, many different alternatives already exist in the Natural Language
Processing (NLP) field such as N-grams [19], WordPiece Tokenization [104, 105] or Subword
Tokenization [29, 60]. The key factor to this approach is to design an architecture based
on self-attention mechanism that can effectively learn a latent space for astronomical Time
Series.

For the experiments, the evaluation with only 1 dataset is not wide enough to prove that
our proposed method could work on different application domains. For that, we require to
evaluate the classification performance of our algorithm on different datasets collected from
different fields. This will also allow to validate our proposed method to work not only on
irregular Multivariate Time Series but also on any kind of Time Series, regular or irregular
sampled, with one or many variables.
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Annexed

Additional classification figures
This annex includes additional Confusion Matrices and ROC-AUC curves figures from

the different classification experiments described in Chapter 5.

Figure A.1: Confusion matrix for IBOPF-LSA on full dataset using LightGBM classifier.
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Figure A.2: ROC-AUC curve for IBOPF-LSA on full dataset using LightGBM classifier.

Figure A.3: Confusion matrix for AVOCADO on full dataset using LightGBM classifier.
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Figure A.4: ROC-AUC curve for AVOCADO on full dataset using LightGBM classifier.

Figure A.5: Confusion matrix for IBOPF-LSA combined with AVOCADO on full dataset
using LightGBM classifier.
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Figure A.6: ROC-AUC curve for IBOPF-LSA combined with AVOCADO on full dataset
using LightGBM classifier.

Figure A.7: Confusion matrix for IBOPF-LSA on sub-dataset without Supernovae-type clas-
ses using LightGBM classifier.
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Figure A.8: ROC-AUC curve for IBOPF-LSA on sub-dataset without Supernovae-type classes
using LightGBM classifier.

Figure A.9: Confusion matrix for AVOCADO on sub-dataset without Supernovae-type classes
using LightGBM classifier.
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Figure A.10: ROC-AUC curve for AVOCADO on sub-dataset without Supernovae-type clas-
ses using LightGBM classifier.

Figure A.11: Confusion matrix for IBOPF-LSA combined with AVOCADO on sub-dataset
without Supernovae-type classes using LightGBM classifier.
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Figure A.12: ROC-AUC curve for IBOPF-LSA combined with AVOCADO on sub-dataset
without Supernovae-type classes using LightGBM classifier.

Figure A.13: Confusion matrix for IBOPF-LSA on sub-dataset with only Supernovae-type
classes using LightGBM classifier.
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Figure A.14: ROC-AUC curve for IBOPF-LSA on sub-dataset with only Supernovae-type
classes using LightGBM classifier.

Figure A.15: Confusion matrix for AVOCADO on sub-dataset with only Supernovae-type
classes using LightGBM classifier.
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Figure A.16: ROC-AUC curve for AVOCADO on sub-dataset with only Supernovae-type
classes using LightGBM classifier.

Figure A.17: Confusion matrix for IBOPF-LSA combined with AVOCADO on sub-dataset
with only Supernovae-type classes using LightGBM classifier.
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Figure A.18: ROC-AUC curve for IBOPF-LSA combined with AVOCADO on sub-dataset
with only Supernovae-type classes using LightGBM classifier.
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