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Abstract
Starting from the observation that the reduced state of a system strongly coupled to a bath is, in
general, an athermal state, we introduce and study a cyclic battery–charger quantum device that is
in thermal equilibrium, or in a ground state, during the charge storing stage. The cycle has four
stages: the equilibrium storage stage is interrupted by disconnecting the battery from the charger,
then work is extracted from the battery, and then the battery is reconnected with the charger;
finally, the system is brought back to equilibrium. At no point during the cycle are the
battery–charger correlations artificially erased. We study the case where the battery and charger
together comprise a spin-1/2 Ising chain, and show that the main characteristics—the extracted
energy and the thermodynamic efficiency—can be enhanced by operating the cycle close to the
quantum phase transition point. When the battery is just a single spin, we find that the output
work and efficiency show a scaling behavior at criticality and derive the corresponding critical
exponents. Due to always present correlations between the battery and the charger, operations that
are equivalent from the perspective of the battery can entail different energetic costs for switching
the battery–charger coupling. This happens only when the coupling term does not commute with
the battery’s bare Hamiltonian, and we use this purely quantum leverage to further optimize the
performance of the device.

1. Introduction

Quantum batteries store and deliver energy to a quantum system coherently. For such a device, energy
leaking during the storing phase is a key issue [1–10] that is absent if kept at thermodynamic equilibrium
[1, 3, 9]. This observation motivated analyzing quantum systems in thermodynamic equilibrium as
candidates for quantum batteries [1, 9]. In particular, in reference [9], we showed that a system (the
battery), strongly coupled to a bath (the charger), can efficiently store energy, avoiding leakage. An agent
can successively deliver such energy to another quantum system after disconnecting the battery from the
bath. To have a meaningful definition of efficiency, one has to close the cycle and reconnect the battery to
the charger. After that, the total system thermalizes either under the influence of an external bath or, when
the charger is large, as a result of internal evolution (in which case only local observables thermalize
[11–14]). The cycle has an energy cost, the ratio of which to the energy delivered by the battery defines the
efficiency.

In reference [9], we considered the case where the battery and the charger become uncorrelated after the
battery is disconnected and discharged. In this paper, we lift that restriction: the battery and the charger
keep their correlations after the energy extraction process. This opens up new possibilities to optimize
battery performance in terms of efficiency, as discussed in the following.

Additionally, we study the regime in which the battery–charger system is at a quantum phase transition
point during the charge storage stage, revealing the effect of criticality on the performance of the device. In
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Figure 1. Graphic representation of the thermodynamic cycle, made of four strokes. A set of M units (here M = 3) is
disconnected (I → II) from the rest of the chain (represented by the A and B parts). The ergotropy is extracted in II → III, and
finally the exhausted subsystem is reconnected to the chain (III → IV).

particular, when the total system is a quantum lattice, we observe an increase in the efficiency near the
quantum critical point. Interestingly, second-order phase transitions (quantum or classical) are known to
boost thermodynamic performance in a variety of thermal devices [15–28]. However, in those instances, it
is the working medium that is critical, and the enhancement is related to the increased collectivity of its
constituents due to strong and long-range correlations (exhibited by both classical [29] and quantum [30]
critical systems). Whereas in the present case, the working medium (the battery) consists of just one or two
spins, and therefore the observed enhancement is of a fundamentally different nature.

Our workhorse is the 1D transverse-field spin-1/2 Ising chain, whose critical behavior has been fully
characterized both in the ground state [31] and in the thermal state [32–34]. We consider the
thermodynamic cycle depicted in figure 1, where a subset of spins (the battery) is disconnected from the
chain initially in the ground or in a thermal state; energy is extracted from it; and the exhausted battery is
then reconnected to the rest of the chain playing the role of the charger. We show that the optimal working
regime of such a quantum battery occurs on the brink of a phase transition. To characterize the ‘useful’
operation of the device, we use both the efficiency and the extracted energy, expressed in terms of the
battery ergotropy. The ergotropy, defined as the maximum extractable energy from a system in a cyclic
unitary process [35] is appropriate in our context since we are interested in systems that deliver the energy
coherently. Besides focusing on the phase transition, we emphasize the importance of correlation between
the subset-of-spins and rest-of-the-chain during the cycle. Indeed the presence of strong coupling and
battery–charger correlation brings out the fact that locally equivalent operations can have very different
global manifestations. We observe that a set of phases of the unitary operator that extracts the battery’s
ergotropy, which are irrelevant for the (reduced) state of the battery, play a significant role in the
reconnecting energy when the battery–charger correlations are taken into account. This provides us with an
additional set of parameters that, as we will see in the following, can be tuned so as to further increase the
cycle efficiency.

The paper is organized as follows. In section 2, we first describe the cycle for implementing a quantum
battery, discuss the work output and efficiency of the device, and the role of local phase manipulation in the
energetics of the full system. Then in section 3, we introduce the system, a transverse-field 1D spin-1/2 Ising
model, in which the cycle is studied and summarize the statistical properties of the chain in the ground state
and the thermal state. Section 4 illustrates our results for a single spin battery in the limit of an infinite
chain. Here, we can derive the exact critical exponent characterizing the ergotropy around the critical point.
In section 5, we study numerically larger batteries and finite chargers in initial thermal states. We conclude
in section 6.

2. The working cycle

The working cycle is depicted in figure 1. We do not consider a specific working substance at this stage: the
cycle requires a system (the battery) that is strongly coupled to a bath (the charger) and the ability of an
agent to connect and disconnect the system from the bath. As illustrated in figure 1, we consider system
units and bath units of the same type. We assume the ability to perform any unitary operation on the
battery without affecting the coherence between the battery and the charger, i.e. we treat them as an isolated
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quantum system as we perform stages I to IV of the cycle. The closing step IV → I might involve coupling to
some external systems, for instance, a weak coupling to a super-bath or, if the battery–charger system is
large, internal evolution causing return to equilibrium [11–14]. Either way, this step is not relevant for the
energetic budget of the agent. In this sense, we assume that the initial thermal or ground state, denoted by
�I, is a resource given to us.

The available resources and operations we have described above are very similar to those considered in
[9] except for the fact that there, in the reconnecting stage III → IV, the battery was uncorrelated to the bath
(charger). This fundamental difference affects the efficiency but not the ergotropy, as we discuss below.

The Hamiltonian of the total battery–charger system is

Htot = HS + HR + Hint, (1)

where HS and HR are the Hamiltonians of the battery ‘system’ S and of the charger R respectively. The
interaction Hamiltonian between S and R is Hint. In the following we will use the symbol � to indicate the
state of the total system, while the symbol ρ will be used for the reduced state of S—the battery—alone.

The cycle consists of the following four strokes:

• In the stroke I → II, with the battery and charger in the state �I, we instantaneously disconnect S from
R. The energy cost for the quench reads

Ed = −tr[Hint�I] (2)

Immediately after the quench, at the beginning of stage II, the system S will be in the reduced state

ρII = trR[�I]. (3)

• Given ρII and HS we can extract the ergotropy E from S (stroke II → III), taking ρII to ρIII, where

ρIII = UE ρII U†
E (4)

is now the exhausted (or passive) state of S and UE is a unitary operator that extracts the ergotropy E
from the system.

Assuming that this step is also instantaneous, from the perspective of the total system, the II → III
transition results in the new state

�III = UE �IIU†
E = UE �IU†

E , (5)

where the second equality is due to the fact that �II = �I, and the total unitary operator reads

UE = UE ⊗ IR. (6)

The identity operator acting on R manifests the assumption of a fast ergotropy extraction and represent a
simplification. The important assumption is that the full system evolves unitarily and that there is no
control or manipulation of the bath R.

The ergotropy thus reads
E = tr[HS(ρII − ρIII)]. (7)

• In the next stroke III → IV we suddenly reconnect S to R. The energy cost of this operation reads

Ec = tr[Hint�III] = tr[U†
EHintUE�II], (8)

but the state is unchanged: �IV = �III.

• Lastly, to close the cycle, we may perform the step IV → I and bring the system back to its initial state
�I by, e.g. connecting the full system weakly to a super-bath. In that case, the energy (heat) delivered
to the total system will be

Eth = tr[(�I − �IV)Htot], (9)

and it is not a cost for the agent running the cycle. In the case when the total system is left to
rethermalize by itself (e.g. when the total system is large and the temperature is >0), the energetic cost
of that will of course be zero. Although the system will locally appear thermal, self-rethermalization
does affect the global state, and therefore the price of zero-energy reset is that the energetics of the
cycle will be affected in the long run.
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In the following, we shall study the maximal work E that can be extracted from the battery (the
ergotropy) during the cycle, equation (7), and the cycle efficiency [9], as given by

η =
E

Ec + Ed
. (10)

We notice that in this expression both E and Ec are determined by the ergotropy-extracting unitary operator
UE appearing in equation (4).

2.1. The unitary UE
The ergotropy-extracting operator UE , appearing in equation (4), is a unitary that achieves the
minimization of the final energy, defining [35] the ergotropy:

E = Tr[HSρII] − min
U

Tr[HSUρIIU
†].

For UE , an explicit expression can be found in terms of the normalized eigenvectors of ρII and HS [35].
Consider the spectral decompositions of ρII and HS

ρII =
2M∑
α=1

r↓α|r↓α〉〈r↓α|, (11)

HS =
2M∑
α=1

ε↑α|ε↑α〉〈ε↑α|, (12)

where ↓ and ↑ indicate that the eigenvalues are ordered, respectively, decreasingly and increasingly. We can
thus write UE in equation (4) as

UE[ �θ ] :=
∑
α

eiθα |ε↑α〉〈r↓α|, (13)

where �θ = {θα}α is a 2M-tuple of arbitrary real numbers, manifesting the arbitrariness of the normalized
eigenvectors |ε↑α〉 and |r↓α〉. Note that one of these numbers determines a global phase and thus we can
reduce their number to 2M − 1.

Usually, these phases are omitted (i.e. one takes θα = 0, ∀α) since ρIII = UEρIIU
†
E =

∑
α r↓α|ε↑α〉〈ε↑α| and

thus neither the final passive state ρIII nor the ergotropy E depend on them. We note here, for later
convenience, that ρIII is diagonal in the energy basis

{
|ε↑α〉

}
and the population decreases as the energy

increases; these are the so-called passive states [36, 37], characterized by the property that no energy can be
extracted from them through a cyclic unitary process.

Thus, the operator UE is not unique even if the spectra of ρII and HS are non-degenerate. However,
while this freedom is irrelevant for any observable property of S, the choice of �θ will affect the global state
�III [cf equation (5)]. As a result, it will affect Ec; see equation (8). In order for this effect to occur, it is
essential that the coherence, manifested by the unitary evolution of the full chain, and the correlation
between the battery and the charger, are maintained during the steps I → IV.

Indeed, had we considered a different setup such that after the stroke II → III the correlations between S
and R were lost, we would have obtained another state �′III = ρIII ⊗ ωR at the end of the stroke III. The state
of the charger ωR before the reconnection stroke (III → IV) could be the reduced state of the charger after
stroke II → III or another ‘fresh’ charger state, as in reference [9]. The reconnecting energy
Tr[HintρIII ⊗ ωR] would then be independent of �θ.

To summarize this section, when the coherence and correlations are preserved during the evolution of
the total system during the first three strokes, the phases of the eigenstates of ρIII and HS influence the
connecting energy Ec(�θ) and thus the efficiency of the cycle η. Such phases can in principle be manipulated
by the agent extracting the ergotropy, and in the following we investigate the effect of these phases on the
cycle and use them as free parameters to optimize the performance of a battery–charger system made of 1/2
quantum spins.

2.2. Remarks on the thermodynamics of the cycle
As a result of the first three strokes, the state of full system evolves unitarily: �I → �IV = UE�IU†

E ; whereas
the total Hamiltonian is changed cyclically—H(IV)

tot = H(I)
tot. Since the initial state of the total system is passive

due to the fact that it is either a Gibbs state or a ground state [36, 37], this can only increase its average
energy:

Tr[Htot(�IV − �I)] � 0. (14)
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In other words, one can perform only positive work on the total system.
Therefore, since the work performed on the total system during the first three cycles is Ed − E + Ec, we

have that Ed + Ec � E . Since, by definition, E � 0, the definition of efficiency in equation (10) is indeed
meaningful and, moreover, η � 1.

Finally, if the closing step IV → I is achieved by coupling the system weakly to a bath, the dissipation
(entropy production) for the cycle will be −Eth/T, where T is the temperature of the bath. In view of
equations (9) and (14), −Eth/T � 0, as one would expect from the second law.

In our previous work [9], additional sources of dissipation included the change �III → ρIII ⊗ ωR

modeling the loss of correlation between the battery and the charger, plus the ‘refreshing’ of the charger;
those are absent in the present setup.

3. The working substance: transverse spin-1/2 Ising chain

We introduce now the specific working substance we use to study the cycle depicted in figure 1—the
transverse spin-1/2 quantum Ising chain described by the Hamiltonian

Htot = −(1 − f )
N−1∑
i=0

σx
i σ

x
i+1 − f

N−1∑
i=0

σz
i , (15)

with periodic boundary conditions (PBC) σα
N = σα

0 , the latter ensuring translation symmetry and reflection
symmetry around any site. Some (completely different) thermodynamic aspects of subsystems of the
quantum Ising chain were studied in reference [38].

The battery S consists of M consecutive nodes of the chain, and the charger R consists of the remaining
nodes; see figure 1 for an illustration. The interaction Hamiltonian between S and R is

Hint = −(1 − f )(σx
i−1σ

x
i + σx

i+M−1σ
x
i+M), (16)

with i arbitrary given the PBC, and where HS and HR are the bare Hamiltonian of S and R, respectively:

HX = −(1 − f )
∑

{j}∪{j+1}⊆X

σx
j σ

x
j+1 − f

∑
j∈X

σz
j , (17)

with X being either S or R.
When N →∞, the system described by the Hamiltonian (15) presents a quantum phase transition at

fc = 1/2. Using some known results about the quantum Ising model [31–33], we can study our battery
analytically for M = 1 and partially for M = 2. For general M and N, we will have to analyze the problem
numerically.

3.1. Transverse Ising chain in the ground state
Let us review some of the well-known properties of the ground state of the transverse Ising chain [31–34].
As mentioned above, the system presents a quantum phase transition at fc = 1/2: the ground state |0〉 is not
degenerate for f > 1/2, but becomes doubly degenerate |0±〉 for f < 1/2. The longitudinal magnetization
〈σx

i 〉 changes from a vanishing value for f � 1/2 to a positive or negative value for f < 1/2, depending on
the ‘branch’ of the ground state. Without loss of generality, in the discussion that follows, we choose the
system to be in the eigenstate |0+〉 for f < 1/2, so that 〈σx

i 〉 � 0. Setting λ = (1 − f)/f, the following
formulas for the longitudinal magnetization (the ‘order parameter’) hold:

〈σx
i 〉 =

{
(1 − λ−2)β , f < 1/2 (λ > 1)

0, f � 1/2 (λ � 1)
(18)

with the critical exponent β = 1/8. Correspondingly, when the chain is in |0−〉, 〈σx
i 〉 = −(1 − λ−2)β in the

ordered phase. Thus, when the chain is in the thermal ground state,
(
|0−〉〈0−|+ |0+〉〈0+|

)
/2, 〈σx

i 〉 will be
0 for all values of f.

The transverse magnetization reads〈
σ

y
i

〉
= 0, (19)

〈σz
i 〉 =

1

π

∫ π

0
dφ

1 + λ cos φ√
1 + λ2 + 2λ cos φ

. (20)

Note that 〈σz
i 〉 changes smoothly at the transition and is positive for positive f.

5
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The two-site correlators read [31]: 〈
σx

i σ
y
i+1

〉
= 0, (21)

〈
σ

y
i σ

z
i+1

〉
= 0, (22)

〈
σx

i σ
x
i+1

〉
=

1

π

∫ π

0
dφ

cos φ+ λ√
1 + λ2 + 2λ cos φ

, (23)

〈
σ

y
i σ

y
i+1

〉
=

1

π

∫ π

0
dφ

cos φ+ λ cos 2φ√
1 + λ2 + 2λ cos φ

, (24)

〈
σz

i σ
z
i+1

〉
= 〈σz

i 〉
2 −

〈
σx

i σ
x
i+1

〉
−
〈
σ

y
i σ

y
i+1

〉
. (25)

An analytic expression for
〈
σz

i σ
x
i+1

〉
has not been found as after the Jordan–Wigner transformation the

correlation operator still contains non local terms [31, 34].
As we will see,

〈
σz

i σ
x
i+1

〉
determines the reconnecting energy Ec (8) and thus we resort to two different

numerical approaches to evaluate it. We first diagonalize directly the Hamiltonian (15), for a finite value N
of spins, and then with a density matrix renormalization group (DMRG) algorithm. We anticipate that the
results are not significantly different in the region of interest, besides a moderate discrepancy for f close to
fc; see appendix C for further details on the numerical methods.

When the spin chain is in the thermal state ∼e−Htot/kBT , similar expressions can be obtained for the
average magnetization and correlations [32]; we list them in appendix A.

4. Single spin battery (M = 1) in the ground state

Of particular interest is the case where only one spin is disconnected from an infinite chain
(M = 1, N = ∞). Besides being of pedagogical relevance, all but one of the thermodynamic quantities of
the single spin battery can be expressed in analytic form as discussed below.

We assume that at the beginning of the cycle the spin chain is in the ground state �I = |0+〉〈0+|.
Since the chain is translation-invariant, the choice of the battery site is arbitrary; for definiteness, we

choose it to be the zeroth site. In the stroke I → II, the battery spin is instantaneously disconnected with a
work cost

Ed = 2(1 − f ) 〈σx
0σ

x
1〉 , (26)

where 〈. . .〉 is the expectation value calculated over the initial state �I. Note that we have exploited the
translation-invariance of the chain for the nearest-neighbor correlators. Moreover, it is easy to see that
equation (26) is independent of the number of battery sites M.

The reduced state of the single spin (3) after the disconnection quench thus reads

ρII =
1

2
(I2 + 〈σx

0〉σx
0 + 〈σz

0〉σz
0) =

1

2
(I2 + a · σ0) (27)

represented by the vector a = (〈σx
0〉 , 0, 〈σz

0〉) in the Bloch sphere in terms of (18) and (20).
In the stroke II → III, a unitary operation extracts the ergotropy of the state ρII. Since the Hamiltonian

HS = −fσz
0, and the exhausted (or passive) state of the disconnected spin commute, the Bloch vector of the

exhausted state must point in the z direction. Unitary transformations on the spin corresponds to rotations
of the Bloch vector a. Thus, the unitary that extracts the ergotropy rotates the Bloch vector from a to
ā = (0, 0, σ̄0

z), where

σ̄z
0 =

√
〈σx

0〉
2 + 〈σz

0〉
2. (28)

i.e. the passive state (4) is

ρIII =
1

2
(I+ σ̄z

0σ
z
0). (29)

It is simple to see that the Bloch vector a was rotated an angle 2α with respect to the ŷ axis, where

sin 2α =
〈σx

0〉
σ̄z

0

(30)

cos 2α =
〈σz

0〉
σ̄z

0

. (31)

6
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Figure 2. Full line: ergotropy of the single spin battery (M = 1) in the ground state as a function of f, as given by equation (32).
Points: numerical approximation of the ergotropy as obtained by diagonalising the Hamiltonian (15) with N = 11 spins. Inset:
zoom of the plot in the critical region.

The ergotropy (7) of the single spin will thus be given by

E =
f

2
Tr[σz

0(σ̄z
0σ

z
0 − 〈σx

0〉σx
0 − 〈σz

0〉σz
0)] = f (σ̄z

0 − 〈σz
0〉). (32)

Comparing the last expression with equation (28), we conclude that we need 〈σx
0〉 �= 0, i.e. f < 1/2 for

the ergotropy to be non vanishing. In other words, the battery is charged only in the ordered phase.
Furthermore, given that the total longitudinal magnetization is zero in the thermal ground state, the
single-node battery will be passive in that case. This highlights that the spontaneous symmetry breaking,
which is what selects one of the ground states in the ordered phase, is responsible for the activation of the
single-node battery.

The magnetization along x, given by equation (18), grows smoothly from zero at fc = 1/2 as f decreases.
By expanding (32) to the leading order, we can thus obtain the critical behavior of the ergotropy

E ∼ (fc − f )1/4 + O((fc − f )1/2). (33)

Thus we find that the ergotropy critical exponent is 2β, where β is the critical exponent for the order
parameter 〈σx

i 〉: the two critical exponents are not independent, akin to the scaling relations in critical
systems [29]. Equation (32), together with equation (33), represents the first relevant result in this section.

Finally we note that the ergotropy as a function of f vanishes at f = 0 and for f > 1/2, and noticing that
E/f = σ̄z

0 − 〈σz
0〉 decreases monotonically from its maximum E/f = 1 at f = 0 to E/f = 0 at f = 1/2 we

conclude that E must have a single maximum in the interval 0 < f < 1/2. This is confirmed by inspection
of figure 2 where a plot of the ergotropy is shown.

To compute the ergotropy (32) we did not write explicitly the unitary operator UE introduced in
equation (4). We noticed that it corresponds to a rotation around the ŷ axis bringing the a vector to the ẑ

direction. On the Hilbert space of the single spin the corresponding unitary operator is eiασ
y
0 with 2α, see

equations (30) and (31), the angle of rotation in the sphere [39]. Once the Bloch vector points toward the ẑ
direction, an arbitrary rotation around that axes leaves the state invariant, i.e. given α, for any θ, the unitary
operator

UE(θ) = eiθσz
0eiασ

y
0 (34)

extracts the ergotropy. In appendix B, we derive the same expression for UE (θ) starting from equation (13)
with M = 1

As discussed in section 2.1, neither the value of the ergotropy as given by equation (7) nor ρIII in
equation (4) depend on the phase θ, while �III and Ec do.

We are now in the conditions to calculate the reconnecting work Ec, equation (8), after the ergotropy
extraction (step III → IV in figure 1). Such a quantity for the M = 1 case reads:

E(1)
c = 2(1 − f ) cos 2θ(sin 2α 〈σx

0σ
z
1〉 − cos 2α 〈σx

0σ
x
1〉), (35)

where we have used the fact that the correlations do not depend on the specific site, that
〈
σx

0σ
y
1

〉
= 0, see

equation (21), and that the equality
〈
σx

i σ
z
i+1

〉
=

〈
σz

i σ
x
i+1

〉
holds due to the inversion and translation

symmetry.
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Figure 3. Left: disconnecting and connecting energies as functions of f, for the single spin battery (M = 1) in the ground state of
(15), as given by equations (2) and (36), respectively. Right: efficiency of the single spin battery, η = E/(Ed + Ec) with E form
equation (32) and Ed + Ec from equation (37). In both panels

〈
σx

i σ
z
i+1

〉
and thus Ec(θ) are obtained numerically with the DMRG

algorithm (full symbols) or by direct diagonalization of the Hamiltonian (15) (empty symbols), for a finite system with N = 11
spins. Inset: zoom of the plot with θ = 0 in the critical region.

By using equations (30) and (31), or the more explicit expression equations (B.5) and (B.6), the
connecting energy equation (35) can be written as

E(1)
c = 2(1 − f )

cos 2θ

σ̄z
0

(〈σx
0〉 〈σx

0σ
z
1〉 − 〈σz

0〉 〈σx
0σ

x
1〉). (36)

Equation (36) is the second relevant result of this section: we find that while the other two energies
involved in the cycle, namely the disconnecting energy Ed and the ergotropy E , are independent of the
arbitrary phase θ appearing in equation (34), the reconnecting energy does depend on this phase. In
particular, one can tune it such as to minimize E(1)

c , and by noticing that (〈σx
0〉 〈σx

0σ
z
1〉 − 〈σz

0〉 〈σx
0σ

x
1〉) � 0

(numerically checked, data not shown), we conclude that θ = 0 corresponds to the minimal value of Ec for
any f. The connecting and disconnecting energies are plotted in the left panel of figure 3 as functions of f
and for different values of the phase θ: the effect of the phase on Ec is clearly visible in the figure.

Having derived the expression for the cycle output energy, the ergotropy [equation (32)], and the input
energy

Ed + Ec = 2(1 − f )

{
cos 2 θ

σ̄z
0

〈σx
0〉 〈σx

0σ
z
1〉+

(
1 − 〈σz

0〉 cos 2θ

σ̄z
0

)
〈σx

0σ
x
1〉
}

(37)

(equations (26) and (36)), we can proceed to study the efficiency (10) of the cycle for a single spin (M = 1)
which is maximized for θ = 0. This behavior is confirmed by inspection of the right panel in figure 3. We
also notice that the maximum of the efficiency is achieved for values of f just below the critical value and
decreases abruptly as it approaches it.

One can outline an analysis of the scaling behavior of the efficiency η = E/(Ed + Ec) near the critical
point. We notice that for f → fc, both 〈σz

0〉 and 〈σx
0σ

x
1〉 (equations (20) and (23) respectively) go to 2/π and

thus Ec + Ed → 4 sin2 θ/π if θ �= kπ with k an integer, as follows from equation (37). Therefore, the
efficiency exhibits the same critical scaling as the ergotropy [see equation (33)]:

η(1) ∼ 〈σx
0〉

2 � (fc − f )1/4, (θ �= kπ), (38)

with exponent 2β.
For θ = kπ, both E → 0 and Ec + Ed → 0 as f → fc and one finds that, to the left of the critical point

(f � fc),

η(1) ∼ 〈σx
0〉

〈σx
0σ

z
1〉

, (θ = kπ). (39)

Therefore it is not possible to derive a critical exponent for the efficiency when θ = kπ, because the
expression for

〈
σx

i σ
z
i+1

〉
, as discussed above, is not available. However, the numerical results reported in

appendix C clearly show that the correlation
〈
σx

i σ
z
i+1

〉
vanishes for f > fc, similarly to 〈σx

i 〉. Making the
physically reasonable assumption that

〈
σx

i σ
z
i+1

〉
goes to zero continuously as f → f −c with a scaling〈

σx
i σ

z
i+1

〉
∼ (fc − f )δ, for thermodynamic consistency of equation (39) the inequality δ � β must hold.

Thus, for θ = kπ, the overall critical exponent for η(1) is β − δ < β, which explains the abrupt decrement
in the curve for θ = 0 as f → f −c in figure 3. The numerical results in appendix C shows that

〈
σx

i σ
z
i+1

〉
is

well fitted with δ = β/2 as f → f −c . Thus we find a scaling law for the critical exponent of the efficiency too:

8
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its value is determined by a combination of the critical exponents of the order parameter and of the
correlations, and is close to β/2.

Note that the critical exponents for the efficiency and ergotropy describe the scaling of these quantities
for a single spin analogously to the critical exponent β for the magnetization. The analogy goes even further
as both the magnetization density and ergotropy are local (i.e. single-site) quantities.

5. Case T > 0

Given that in a thermal state with T > 0, the spin chain (15) is always in the paramagnetic phase 〈σx
i 〉 = 0

[34], equation (32) implies that no ergotropy can be extracted when a single spin is disconnected (M = 1)
from a thermal state. Therefore, in order to study the thermodynamic properties of the cycle in figure 1 at
finite temperature, we will consider here the case where M � 2 spins are disconnected from the chain. We
present a few results for M = 2 in appendix D. Obtaining the reduced state (3) and the exhausted state (4)
becomes a daunting task as M increases. Therefore in the following we will resort on the numerical analysis
to obtain the thermodynamic quantities of interest. In the previous section, we have seen that direct
diagonalization of the Hamiltonian (15), or the DMRG algorithm, give results very close to the exact ones
when available.

The initial state of the cycle in figure 1 is now �I = exp(−Htot/kBT)/Ztot. To compute the ergotropy and
the post-ergotropy state �III in equation (5), one must chooses the phases in UE introduced in equation (4).
For the following results, we chose them to minimize the reconnection energy. Thus, we proceed as follows.

Let us introduce
Uα = |ε↑α〉〈r↓α| ⊗ IR, (40)

so that UE =
∑

α eiθαUα, and rewrite equation (8) accordingly:

Ec[ �θ ] =
∑
α,γ

ei(θα−θγ) tr[HintUα�IU†
γ]. (41)

Further introducing

Aα,γ :=
∣∣tr[HintUα�IU†

γ]
∣∣ and φα,γ := arg tr[HintUα�IU†

γ], (42)

which are quantities that do not depend on �θ, and noting that φγ,α = −φα,γ , we finally obtain

Ec[ �θ] =
∑
α

Aα,α + 2
∑
α<γ

Aα,γ cos(θα − θγ + φα,γ). (43)

The problem of minimization of Ec can thus be formulated as

Emin
c =

∑
α

Aα,α + 2 min
�θ∈[0,2π)×···×[0,2π)

∑
α<γ

Aα,γ cos(θα − θγ + φα,γ). (44)

We immediately see that, when [Hint, HS ⊗ IR] = 0 and HS has a nondegenerate spectrum, Aα,γ = 0

whenever α �= γ, meaning that all that �θ-dependent terms vanish, and hence there is no room for
optimizing Ec. Indeed, plugging equation (40) into equation (42) and keeping in mind that, by definition,
HS|ε↑α〉 = ε↑α|ε↑α〉, we can write∣∣ε↑α∣∣Aα,γ =

∣∣tr [IR ⊗ |r↓γ〉〈ε↑γ |Hint(HS|ε↑α〉)〈r↓α| ⊗ IR �I

]∣∣
=

∣∣tr [IR ⊗ |r↓γ〉〈ε↑γ |(HS ⊗ IR)Hint|ε↑α〉〈r↓α| ⊗ IR �I

]∣∣
=

∣∣ε↑γ tr
[
IR ⊗ |r↓γ〉〈ε↑γ |Hint|ε↑α〉〈r↓α| ⊗ IR �I

]∣∣
=

∣∣ε↑γ∣∣Aα,γ ,

from which, in view of the assumed nondegeneracy of the spectrum of HS, the statement follows
immediately.

Note that, once M � 2, the amount of (α < γ) pairs is strictly larger than the amount of α’s, therefore,
it will not generally be possible to choose �θ so that min

∑
α<γ Aα,γ cos(θα − θγ + φα,γ) = −

∑
α<γ Aα,γ .

The numerical minimization can be carried out by the ‘differential evolution’ method, e.g. in Python. The
results for the ergotropy, the disconnecting energy, the minimal connecting energy and the efficiency for a
finite chain with N = 8 are shown in figure 4.

In the first row of figure 4 we can see that the ergotropy is still maximum around the value fc = 1/2, but
it is non-negative for f > fc = 1/2, because the reduced state of the disconnected M spins is ‘charged’ (or

9
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Figure 4. Energetic characteristics of all possible battery–charger configurations of an eight-node quantum Ising chain with
periodic boundary condition. The first column is for T = 0.1 and the second is for T = 1. M is the size of the battery. In the last
row the efficiency is calculated as η = E/(Ed + Emin

c ). The abrupt jumps in the efficiency are likely to be related to the error in the
multiparameter optimization that is complicated by the presence of multiple local optima (the target function is a sum of cosines,
and the optimization is carried over 16 angles for M = 4 and 64 angles for M = 6; see equation (44).

active). The bumps on the curves for Emin
c for T = 1, M = 4, 6, signal possible numerical errors in the

multiparameter optimization (2M angles θα). Furthermore, as f approaches and exceeds 1/2 the sum
Emin

c + Ed becomes quite small. These combined factors result in rather imprecise curves for the efficiency,
in particular for M = 4 and 6.

At least for M = 2, the efficiency becomes large in the f → 1 regime. This is the weak coupling limit in
our model, and, along with the ergotropy, also Ed and Ec vanish, maintaining a finite ratio in equation (10).
The maximization of the efficiency in the limit of zero output is a type of power–efficiency tradeoff akin to
the similar tradeoff for ordinary heat engines [40–42]. In a sense, this limit corresponds to the regime of

10
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reversible, quasi-static operation of the device, which, in analogy with the Carnot cycle, is marked by high
efficiency at the expense of vanishing output power.

In contrast, figure 4 shows that, when the temperature is low (T = 0.1), the efficiencies of four- and
six-spin batteries quickly decay for f > 1/2, thereby breaking the tradeoff. Although the evidence for this is
only partial—the numerical optimization of Ec for M = 4, 6 could not be carried out precisely enough—we
observe in figures 2 and 3 a similar behavior (efficiency and ergotropy both peaking around f = 1/2; note
that, in figure 2, the peak for M = 6 is only local) for a single-spin battery when the chain is in the ground
state |0+〉. In both cases, the violation of the power-efficiency tradeoff is due to the proximity of the system
to criticality. In this context, it is worth noting that critical systems are responsible for breaking the
power-efficiency tradeoff also in ordinary heat engines [19, 26], albeit by a completely different mechanism
and in a completely different setting.

6. Conclusions

In this paper, we have studied a four-stroke thermodynamic cycle representing the operation of a quantum
battery and its charger. The total system consisting of the battery and the charger is initially either in a
ground state or in a thermal equilibrium state, thus protecting the battery’s charged state, which is only
accessible when disconnected from the charger.

Here we have expanded our previous work [9] by considering a fully coherent manipulation in the first
three strokes of the cycle. Moreover, we consider a battery–charger system that exhibits a quantum phase
transition. We have shown that the phases of the eigenstates of the battery’s reduced state can be
manipulated by the energy extracting protocol to increase the efficiency of the process without
compromising the extracted energy. This aspect highlights an important general point that, when
manipulating a subsystem of a strongly interacting system, locally irrelevant phases may have a nontrivial
effect on the global energetics of the system. This is a purely quantum effect brought about by correlations
and noncommutativity.

By operating the working fluid at the verge of the quantum phase transition, both work output and
efficiency of the device can be further increased. In particular, we found that if the charger–battery is in the
ground state, the single spin device only works in the ordered phase, and the critical exponents
characterizing the phase transition manifest in the properties of the device close to criticality. Moreover, the
arbitrary phase θ of the unitary that extract the ergotropy can change the scaling exponent of the efficiency
from 2β to a value close to β/2.

For a battery with M = 2 and initially in the thermal ground state (|0+〉〈0+|+ |0−〉〈0−|)/2, the
ergotropy does not present a critical behavior akin to equation (33). However, the ergotropy does show a
special behavior: dE/df diverges at the critical point; see appendix D. When the ground state is pure (e.g.
|0+〉), the critical behavior of 〈σx

i 〉 given by equation (18), and the expected critical behavior of
〈
σx

i σ
z
i+1

〉
suggested by figure C2(b), imply that any expectation value calculated on the reduced state (D.19) will have
a discontinuous derivative at fc, also signaling a special behavior at criticality.

When the charger–battery system is in a thermal state, a minimum of two spins are needed for the
battery to deliver energy. As this size increases, the optimization of the relative phases to increase the
efficiency becomes nontrivial.

Overall, our results highlight that collective phenomena can be fruitfully exploited in order to enhance
the thermodynamic performance of quantum many-body devices.
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Appendix A. Magnetization and nearest neighbors correlation functions at finite T

At finite temperature, the magnetization and near neighbors correlation functions needed for the analytical
computations of the single and double spin batteries are [32, 34]

〈σx
i 〉 = 0, (A.1)〈

σ
y
i

〉
= 0, (A.2)

〈σz
i 〉 =

1

π

∫ π

0
dφ

1 + λ cos φ

ωφ
tanh

(
ωφ

2kBT

)
, (A.3)

and

〈
σx

i σ
y
i+1

〉
= 0 (A.4)〈

σ
y
i σ

z
i+1

〉
= 0 (A.5)〈

σx
i σ

z
i+1

〉
= 0 (A.6)

〈
σx

i σ
x
i+1

〉
=

1

π

∫ π

0
dφ

cos φ+ λ

ωφ
tanh

(
ωφ

2kBT

)
, (A.7)

〈
σ

y
i σ

y
i+1

〉
=

1

π

∫ π

0
dφ

cos φ+ λ cos 2φ

ωφ
tanh

(
ωφ

2kBT

)
, (A.8)

〈
σz

i σ
z
i+1

〉
= 〈σz

i 〉
2 −

〈
σx

i σ
x
i+1

〉
−
〈
σ

y
i σ

y
i+1

〉
(A.9)

where we have denoted ωφ =
√

1 + λ2 + 2λ cos φ and 〈·〉 = Tr[· eH/kBT

Z ]

Appendix B. The unitary operator UE(θ) for the M = 1 case

Starting from equation (13) for M = 1, i.e.

UE = eiθ|e+〉〈r+|+ e−iθ|e−〉〈r−|, (B.1)

where the eigenkets |e±〉 = |±〉 of σz, are also eigenvectors of the single spin Hamiltonian Hs = −fσz
0 with

eigenvalues e+ < e−, and where |r±〉 are the eigenvectors of the reduced state matrix ρII given in
equation (27), with eigenvalues r+ > r−, and where we neglected an irrelevant global phase. The
eigenvalues of the single spin exhausted state ρIII given in equation (29) are thus r1 = r+ and r2 = r− as
given by

r± =
1

2
(1 ± σ̄z

0) (B.2)

and the eigenvectors read:

|r+〉 = cos α|+〉+ sin α|−〉 (B.3)

|r−〉 = − sin α|+〉+ cos α|−〉, (B.4)

where the angle α is implicitly defined through

cos α =
〈σx〉√

2σ̄z
0(σ̄z

0 − 〈σz
0〉)

(B.5)

sin α =
σ̄z

0 − 〈σz
0〉√

2σ̄z
0(σ̄z

0 − 〈σz
0〉)

(B.6)

which are equivalent to equations (30) and (31). Thus from equation (B.1) one finally finds

UE(θ) = eiθ cos α|+〉〈+|+ eiθ sin α|+〉〈−| − e−iθ sin α|−〉〈+|+ e−iθ cos α|−〉〈−|

= eiθσz
0eiασ

y
0 . (B.7)

12



New J. Phys. 24 (2022) 015003 F Barra et al

Figure C1. Left: magnetization 〈σx
i 〉 in the ground state of (15) as a function of f. Full line: exact result equation (18). Symbols:

expectation values in the two approximated ground states |ψ±〉, equations (C.1) and (C.2). We see that the numerical results
‘jump’ between the two branches of the exact solution, corresponding to positive and negative magnetization. This highlights the
fact that the two states equations (C.1) and (C.2) represent a good approximation of the ground state, up to a phase ±1. Right:
longitudinal magnetization 〈σx

i 〉 in the ground state of (15) as a function of f. Full line: exact result equation (18). Symbols:
expectation value as obtained with the DMRG algorithm.

Appendix C. Additional information on the numerical results

In order to obtain the numerical results shown in section 4, we use two different approaches. In the first
approach we diagonalise the Hamiltonian (15) for a finite value of N spins, so as to find its ground state.
Technically speaking, the ground state becomes doubly degenerate below fc only in the thermodynamic
limit N →∞. Thus for any finite N the ground state exhibits vanishing magnetization 〈σx

i 〉 even for f < fc,
with the energy gap between the ground state and the first excited eigenstate closing in that limit. We resort
to the following approximation to evaluate the two degenerate ground states: let |0〉N and |1〉N be the
ground state and the first excited state obtained numerically for finite N, respectively. We introduce

|ψ+〉 = (|0〉N +Θ(fc − f ) · |1〉N )/
√

2 (C.1)

|ψ−〉 = (|0〉N −Θ(fc − f ) · |1〉N )/
√

2, (C.2)

Θ(x) = 1 iff x > 0; 0 otherwise, (C.3)

where the kets |ψ±〉 are our approximation for the two degenerate ground states. We then compare the
exact result for the magnetization 〈σx

i 〉, equation (18), with the corresponding expectation values in the two
states |ψ±〉: the results are shown in the left panel of figure C1. We find an acceptable agreement that
worsens as f → f −c . In the right panel of the same figure we show the results for the magnetization obtained
with the other numerical technique employed in the present paper: namely the DMRG method [43, 44].
The DMRG method is a very efficient variational technique for the simulation of the static and dynamic
properties of one-dimensional quantum lattice systems of the type (15). In particular it is widely used to
study the ground state of such systems.

In this paper we have used the open-source code made available by the OpenMPS project [45, 46] to
study the ground state of (15). In our DMRG simulations we have taken N = 480 spins with bond
dimension 20. Inspection of the right panel in figure C1 indicates that for such a choice of simulation
parameters the agreement with the expected magnetization is excellent, even in proximity of the critical
region. In the DMRG simulations we have added a term −h

∑N
i=0 σ

x
i to the system Hamiltonian, with

h = +10−9 so as to break the symmetry in the ground state, and select the |0+〉 state.
As discussed in the main text the reason for using numerical techniques to find the ground state of the

Hamiltonian (15) lies in the fact that the correlation
〈
σx

i σ
z
i+1

〉
has no explicit expression in terms of the

system parameters. Such a correlation is required in order to calculate the connecting energy, equation (36).
In figure C2 we plot the correlation

〈
σx

i σ
z
i+1

〉
as a function of f, as obtained with the two numerical

approaches discussed above. By zooming in on the critical region, we see that the DMRG method gives a
vanishing longitudinal magnetization and correlation even for f smaller than fc, while one would expect
〈σx

i 〉 �= 0 below fc. This is clearly due to the failure of the algorithm: at the critical point the system becomes
infinitely correlated, so any numerical method based on finite size approximation will fail as the critical
point is approached. In the right panel of figure C2 we also propose a power law for the correlation based
on a fit to the numerical data.

13



New J. Phys. 24 (2022) 015003 F Barra et al

Figure C2. Left: correlation
〈
σx

i σ
z
i+1

〉
in the ground state of (15) as a function of f. Right: zoom of the plot in the critical region.

The magnetization 〈σx
i 〉 is also plotted for comparison. The full line corresponds to the analytical expression (18) for the

magnetization. The dashed line is a fit to the data with a function ∼(1 − λ−2)δ with δ = β/2.

Appendix D. Ergotropy of two sites

We are interested in evaluating the ergotropy of two spins (sites i = 0 and 1 in the following), disconnected
from the chain (M = 2 in figure 1). In this case the Hamiltonian of the system is

H′
S = HS/f = −λσx

0σ
x
1 − σz

0 − σz
1 =

⎛
⎜⎜⎝
−2 0 0 −λ

0 0 −λ 0
0 −λ 0 0
−λ 0 0 2

⎞
⎟⎟⎠ ,

with the 4 × 4 matrix being its representation in the canonical basis (++,+−,−+,−−). The eigenvalues
and eigenvectors are

ε↑1 = −
√

4 + λ2, |ε↑1〉 = (sin μ1, 0, 0, cos μ1) (D.1)

ε↑2 = −λ, |ε↑2〉 =
1√
2

(0, 1, 1, 0) (D.2)

ε↑3 = λ, |ε↑3〉 =
1√
2

(0,−1, 1, 0) (D.3)

ε↑4 =
√

4 + λ2, |ε↑4〉 = (sin μ4, 0, 0, cos μ4) = (cos μ1, 0, 0,− sin μ1) (D.4)

tan μi =
2 − ε↑i
λ

⇒ μ4 = μ1 +
π

2

If the state �I of the spin chain is thermal, 〈σx
0〉 =

〈
σ

y
0

〉
= 0 and

〈
σζ

0σ
γ
1

〉
= 0 if ζ �= γ. The reduced state

of the M = 2 spins is

ρ2 =
1

4

⎛
⎝I4 + 〈σz

0〉 (σz
0 + σz

1) +
∑

γ=x,y,z

〈σγ
0σ

γ
1 〉σ

γ
0σ

γ
1

⎞
⎠

=
1

4

⎛
⎜⎜⎝
Ω+ 0 0 Δ

0 1 − 〈σzσz〉 〈σxσx〉+ 〈σyσy〉 0
0 〈σxσx〉+ 〈σyσy〉 1 − 〈σzσz〉 0
Δ 0 0 Ω−

⎞
⎟⎟⎠ , (D.5)

with

Ω+ = 1 + 〈σz
0σ

z
1〉+ 2 〈σz

0〉 , (D.6)

Ω− = 1 + 〈σz
0σ

z
1〉 − 2 〈σz

0〉 , (D.7)

Δ = 〈σx
0σ

x
1〉 −

〈
σ

y
0σ

y
1

〉
. (D.8)

14



New J. Phys. 24 (2022) 015003 F Barra et al

The magnetization and correlations were computed in [32]. The eigenvalues and eigenvectors of ρ2 are

r↓1 =
1

4
(1 +

√
Δ2 + 4〈σz

0〉
2 + 〈σz

0σ
z
1〉), |r↓1〉 = (sin ν1, 0, 0, cos ν1), (D.9)

r↓2 =
1

4
(1 + | 〈σx

0σ
x
1〉+

〈
σ

y
0σ

y
1

〉
| − 〈σz

0σ
z
1〉), |r↓2〉 =

1√
2

(0, 1, 1, 0), (D.10)

r↓3 =
1

4
(1 − | 〈σx

0σ
x
1〉+

〈
σ

y
0σ

y
1

〉
| − 〈σz

0σ
z
1〉), |r↓3〉 =

1√
2

(0,−1, 1, 0), (D.11)

r↓4 =
1

4
(1 −

√
Δ2 + 4〈σz

0〉
2 + 〈σz

0σ
z
1〉),

|r↓4〉 = (sin ν4, 0, 0, cos ν4) = (cos ν1, 0, 0,− sin ν1), (D.12)

with

tan ν1 =
2 〈σz

0〉+
√
Δ2 + 4〈σz

0〉
2

Δ
, (D.13)

tan ν4 =
2 〈σz

0〉 −
√
Δ2 + 4〈σz

0〉
2

Δ
, (D.14)

ν4 = ν1 +
π

2
. (D.15)

The explicit expression of the ergotropy extraction unitary UE({θ}) =
∑4

j=1 eiθj |ε↑j 〉〈r
↓
j | is quite involved but

it has two 2 × 2 independent blocks, one in the subspace associated to +−,−+ and the other to ++,−−.
The former is a trivial block because |ε↑2,3〉 = |r↓2,3〉 are independent of λ. There are three independent phases

in UE({θ}). In fact, factorizing a global phase e
i
2 (θ2+θ3) and defining ϑ1,4 = θ1,4 − θ2+θ3

2 ,ϑ ≡ θ2−θ3
2 we have

UE ({θ}) =

⎛
⎜⎜⎝

a11eiϑ1 + a44eiϑ4 0 0 a14eiϑ1 − a41eiϑ4

0 cos ϑ i sin ϑ 0
0 i sin ϑ cos ϑ 0

a41eiϑ1 − a14eiϑ4 0 0 a44eiϑ1 + a11eiϑ4

⎞
⎟⎟⎠ (D.16)

with

a11 = sin μ1 sin ν1, a14 = sin μ1 cos ν1, a41 = cos μ1 sin ν1, a44 = cos μ1 cos ν1.

(D.17)
As discussed in the main text, to compute the ergotropy, we can consider that all the phases vanishes.

Because H′
S, ρ2 and U ≡ UE({0}) have all the same block structure, and because the action of U in the

+−,−+ space is trivial (the difference ρ2 − Uρ2U† in the block +−,−+ vanishes), the ergotropy is only
associated to the ++,−− block, i.e.

E/f = Tr[hS(r − uru†)]

with

hS =

(
−2 −λ

−λ 2

)
, r =

1

4

(
Ω+ Δ

Δ Ω−

)
, u =

(
cos δ sin δ

− sin δ cos δ

)

with δ = μ1 − ν1, so we obtain

E/f = (Δ− λ 〈σz
0〉) sin 2δ − (Δλ+ 4 〈σz

0〉)sin2 δ. (D.18)

The ergotropy exists even in the thermal ground state at T = 0, i.e. (|0+〉〈0+|+ |0−〉〈0−|)/2. Note that
Δ is not differentiable at fc [31], in fact the derivative diverges logarithmically (dΔ/df ∝ ln|f − fc|), thus
although different to what we expect for the ergotropy in the state |0+〉〈0+|, the thermal ground state does
display critical behavior. The divergence of the derivative at f c can also be seen in figure D1, where the
ergotropy is plotted against f.

In the ‘symmetry broken’ ground state |0+〉 the subsystem with M = 2 has for reduced state

ρ2 =
1

4

⎛
⎝I4 +

1∑
μ=0

(〈σx
0〉 σx

μ + 〈σz
0〉 σz

μ) +
∑

γ,ζ=x,y,z

〈
σγ

0σ
ζ
1

〉
σγ

0σ
ζ
1

⎞
⎠ , (D.19)
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Figure D1. Ergotropy (D.18) of the two spin battery (M = 2) as a function of f = 1/(λ+ 1), for the infinite chain at T = 0.

which have additional non-vanishing terms 〈σx
0〉 �= 0 and 〈σx

0σ
z
1〉 �= 0 for λ > 1 destroying the X shape

structure of the reduced thermal state [cf equation (D.5)] that simplified the previous calculation.
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[24] Suñé M and Imparato A 2019 Out-of-equilibrium clock model at the verge of criticality Phys. Rev. Lett. 123 070601
[25] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Powerful harmonic charging in a quantum battery Phys. Rev. E 99 052106
[26] Abiuso P and Perarnau-Llobet M 2020 Optimal cycles for low-dissipation heat engines Phys. Rev. Lett. 124 110606
[27] Imparato A 2021 Out-of-equilibrium Frenkel–Kontorova model J. Stat. Mech. 013214
[28] Puebla R, Imparato A, Belenchia A and Paternostro M 2021 Open quantum rotors: connecting correlations and physical currents

(arXiv:2108.10955)
[29] Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[30] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press)
[31] Pfeuty P 1970 The one-dimensional Ising model with a transverse field Ann. Phys., NY 57 79–90

16

https://orcid.org/0000-0001-9346-2826
https://orcid.org/0000-0001-9346-2826
https://orcid.org/0000-0001-5034-4328
https://orcid.org/0000-0001-5034-4328
https://orcid.org/0000-0002-7053-4732
https://orcid.org/0000-0002-7053-4732
https://doi.org/10.1103/physrevlett.122.210601
https://doi.org/10.1103/physrevlett.122.210601
https://doi.org/10.1021/acs.jpcc.9b06373
https://doi.org/10.1021/acs.jpcc.9b06373
https://doi.org/10.1021/acs.jpcc.9b06373
https://doi.org/10.1021/acs.jpcc.9b06373
https://doi.org/10.1088/1367-2630/ab1731
https://doi.org/10.1088/1367-2630/ab1731
https://doi.org/10.1103/physrevb.99.035421
https://doi.org/10.1103/physrevb.99.035421
https://doi.org/10.1103/physreva.100.043833
https://doi.org/10.1103/physreva.100.043833
https://doi.org/10.1103/physreve.100.032107
https://doi.org/10.1103/physreve.100.032107
https://doi.org/10.1103/physrevresearch.2.013095
https://doi.org/10.1103/physrevresearch.2.013095
https://doi.org/10.1088/1367-2630/ab9ee2
https://doi.org/10.1088/1367-2630/ab9ee2
https://doi.org/10.1103/physrevresearch.2.033413
https://doi.org/10.1103/physrevresearch.2.033413
https://doi.org/10.1103/physreva.103.033715
https://doi.org/10.1103/physreva.103.033715
https://doi.org/10.1007/bf01646264
https://doi.org/10.1007/bf01646264
https://doi.org/10.1007/bf01646264
https://doi.org/10.1007/bf01646264
https://doi.org/10.1063/1.533334
https://doi.org/10.1063/1.533334
https://doi.org/10.1063/1.533334
https://doi.org/10.1063/1.533334
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/physrevlett.118.140601
https://doi.org/10.1103/physrevlett.118.140601
https://doi.org/10.1103/physrevlett.109.190602
https://doi.org/10.1103/physrevlett.109.190602
https://doi.org/10.1103/physreve.88.012114
https://doi.org/10.1103/physreve.88.012114
https://doi.org/10.1103/physreve.89.062118
https://doi.org/10.1103/physreve.89.062118
https://doi.org/10.1088/1367-2630/17/12/125004
https://doi.org/10.1088/1367-2630/17/12/125004
https://doi.org/10.1038/ncomms11895
https://doi.org/10.1038/ncomms11895
https://doi.org/10.1103/physreve.94.052122
https://doi.org/10.1103/physreve.94.052122
https://doi.org/10.1103/physreve.96.022143
https://doi.org/10.1103/physreve.96.022143
https://doi.org/10.1103/physrevx.8.031056
https://doi.org/10.1103/physrevx.8.031056
https://doi.org/10.1103/physreve.99.022135
https://doi.org/10.1103/physreve.99.022135
https://doi.org/10.1103/physrevlett.123.070601
https://doi.org/10.1103/physrevlett.123.070601
https://doi.org/10.1103/physreve.99.052106
https://doi.org/10.1103/physreve.99.052106
https://doi.org/10.1103/physrevlett.124.110606
https://doi.org/10.1103/physrevlett.124.110606
https://doi.org/10.1088/1742-5468/abda2a
https://arxiv.org/abs/2108.10955
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8


New J. Phys. 24 (2022) 015003 F Barra et al

[32] Barouch E, McCoy B M and Dresden M 1970 Statistical mechanics of the XY model: I Phys. Rev. A 2 1075–92
[33] Barouch E and McCoy B M 1971 Statistical mechanics of the XY model: II. Spin-correlation functions Phys. Rev. A 3 786–804
[34] Osborne T J and Nielsen M A 2002 Entanglement in a simple quantum phase transition Phys. Rev. A 66 032110
[35] Allahverdyan A E, Balian R and Nieuwenhuizen T M 2004 Maximal work extraction from finite quantum systems Europhys. Lett.

67 565–71
[36] Pusz W and Woronowicz S L 1978 Passive states and KMS states for general quantum systems Commun. Math. Phys. 58 273–90
[37] Lenard A 1978 Thermodynamical proof of the Gibbs formula for elementary quantum systems J. Stat. Phys. 19 575
[38] Campisi M, Zueco D and Talkner P 2010 Thermodynamic anomalies in open quantum systems: strong coupling effects in the

isotropic XY model Chem. Phys. 375 187–94
[39] Haroche S and Raimond J M 2006 Exploring the Quantum, Atoms, Cavities and Photons (New York: Oxford University Press)
[40] Sekimoto K, Takagi F and Hondou T 2000 Carnot’s cycle for small systems: irreversibility and cost of operations Phys. Rev. E 62

7759–68
[41] Allahverdyan A E, Hovhannisyan K V, Melkikh A V and Gevorkian S G 2013 Carnot cycle at finite power: attainability of maximal

efficiency Phys. Rev. Lett. 111 050601
[42] Shiraishi N, Saito K and Tasaki H 2016 Universal trade-off relation between power and efficiency for heat engines Phys. Rev. Lett.

117 190601
[43] Vidal G 2007 Entanglement renormalization Phys. Rev. Lett. 99 220405
[44] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys., NY 326 96–192
[45] Jaschke D, Wall M L and Carr L D 2018 Open source matrix product states: opening ways to simulate entangled many-body

quantum systems in one dimension Comput. Phys. Commun. 225 59–91
[46] Wall M L and Carr L D 2012 Out-of-equilibrium dynamics with matrix product states New J. Phys. 14 125015

17

https://doi.org/10.1103/physreva.2.1075
https://doi.org/10.1103/physreva.2.1075
https://doi.org/10.1103/physreva.2.1075
https://doi.org/10.1103/physreva.2.1075
https://doi.org/10.1103/physreva.3.786
https://doi.org/10.1103/physreva.3.786
https://doi.org/10.1103/physreva.3.786
https://doi.org/10.1103/physreva.3.786
https://doi.org/10.1103/physreva.66.032110
https://doi.org/10.1103/physreva.66.032110
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1209/epl/i2004-10101-2
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01614224
https://doi.org/10.1007/bf01011769
https://doi.org/10.1007/bf01011769
https://doi.org/10.1016/j.chemphys.2010.04.026
https://doi.org/10.1016/j.chemphys.2010.04.026
https://doi.org/10.1016/j.chemphys.2010.04.026
https://doi.org/10.1016/j.chemphys.2010.04.026
https://doi.org/10.1103/physreve.62.7759
https://doi.org/10.1103/physreve.62.7759
https://doi.org/10.1103/physreve.62.7759
https://doi.org/10.1103/physreve.62.7759
https://doi.org/10.1103/physrevlett.111.050601
https://doi.org/10.1103/physrevlett.111.050601
https://doi.org/10.1103/physrevlett.117.190601
https://doi.org/10.1103/physrevlett.117.190601
https://doi.org/10.1103/physrevlett.99.220405
https://doi.org/10.1103/physrevlett.99.220405
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.cpc.2017.12.015
https://doi.org/10.1016/j.cpc.2017.12.015
https://doi.org/10.1016/j.cpc.2017.12.015
https://doi.org/10.1016/j.cpc.2017.12.015
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1088/1367-2630/14/12/125015

	Quantum batteries at the verge of a phase transition
	1.  Introduction
	2.  The working cycle
	2.1.  The unitary 
	2.2.  Remarks on the thermodynamics of the cycle

	3.  The working substance: transverse spin-1/2 Ising chain
	3.1.  Transverse Ising chain in the ground state

	4.  Single spin battery in the ground state
	5.  Case 
	6.  Conclusions
	Acknowledgments
	Data availability statement
	Appendix A.  Magnetization and nearest neighbors correlation functions at finite 
	Appendix B.  The unitary operator for the case
	Appendix C.  Additional information on the numerical results
	Appendix D.  Ergotropy of two sites
	ORCID iDs
	References


