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Abstract: In gold cyanidation plants, which include a zinc cementation process, there is a progressive
increase in zinc content in the solution and a higher cyanide concentration in leaching tailings. Con-
sequently, there are opportunities to: (i) recover zinc and cyanide from these solutions, (ii) generate a
saleable ZnS by-product, and (iii) reduce cyanide consumption and cyanide concentration in leaching
tailings. Previous studies have proposed the use of the SART (Sulfidization, Acidification, Recycling,
and Thickening) process for this purpose; however, this process has disadvantages that must be
addressed. This study presents the results of the experimental assessment of an alternative process,
the SuCy process, which uses an integrated membrane process. The SuCy process is composed of
a metal sulfide precipitation coupled with a membrane filtration stage, a membrane contactor step
to recover and concentrate cyanide, and a final neutralization and ultrafiltration stage. The flux
obtained for zinc sulfide separation was around 0.01 L/m2s, with cyanide recovery of 95% at 60 min,
whereas flux for ultrafiltration was 0.22 L/m2s. A comparison with an experimental study of the
SART process at laboratory scale showed that the SuCy process could obtain a higher zinc recovery
and can reduce the solid–liquid separation equipment by around five times. Therefore, the SuCy
process could be a promising alternative for zinc and cyanide recovery in gold cyanidation.

Keywords: metal sulfide precipitation; membrane filtration; membrane contactors; SART process;
SuCy process; gold cyanidation; zinc cementation; Merrill–Crowe; cyanide recovery; metal recovery

1. Introduction

The conventional method to extract gold and/or silver from ores, tailings, or wastes
is cyanidation. The recovery of gold from cyanide solutions can be conducted by zinc
cementation, or the Merrill–Crowe (MC) process [1]. In gold plants with MC process, the
zinc concentration increases progressively because the unique zinc output of the system is
the leaching tailings, promoting a build-up of zinc in the cyanidation plant and the rise of
cyanide concentration in solutions and leaching tailings. In this regard, there are studies
proposing the use of the SART (Sulfidization, Acidification, Recycling and Thickening)
process to recover zinc and cyanide, as an opportunity to produce a saleable by-product
and to reduce cyanide consumption, respectively [2–5]. The SART process uses the metal
sulfide precipitation method [6,7] in cyanide solution to remove copper (then recovery
as a by-product) and regenerate free cyanide. Nevertheless, there are still no industrial
experiences on recovering zinc and cyanide using the SART process, perhaps due to the
low price of zinc, which limits the feasible economic window of this option [2], or due to
the characteristics of the zinc sulfide precipitate. ZnS precipitate presents colloidal behavior
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and low settling rates, affecting the solid–liquid separation stage [8]. In the latter, the option
to assess different methods to perform the solid–liquid separation more efficiently could be
needed to deal with these complex precipitates.

Recently, a membrane filtration process coupled with metal sulfide precipitation
was proposed to recover copper from cyanide solutions [9] and from acid mine drainage
(AMD) [10], obtaining permeate fluxes (i.e., separation rates) between 0.1 L/m2s and
1.4 L/m2s for different copper concentrations and operational conditions. These values and
the compact design of membrane modules significantly reduce the residence time of the
solid–liquid separation stage, from 90–120 min to less than 5 s, compared to a conventional
thickener used in the SART process [11].

The membrane filtration coupled with metal sulfide precipitation is the first stage of
this new integrated membrane process, proposed not only to recover copper, but to include
a step for recovering a concentrated free cyanide solution and a final neutralization with
ultrafiltration process to return an alkaline and treated solution to the cyanidation plant [11].
The SuCy process is proposed as an attractive alternative to the SART process due to its
promising results. The SuCy process could enhance the process efficiency of copper and
cyanide recovery with respect to the SART process, minimizing the plant size and the
capital costs. The plant size reduction (up to 90%) can be very attractive for gold tailings
reprocessing [12], when compact and mobile plants are advantageous in minimizing the
transport of tailings.

The SuCy process (Figure 1) comprises three main stages: 1-Metal sulfide precipitation
coupled with membrane filtration (microfiltration, MF) to recover a metal sulfide precip-
itate in a saleable form (ZnS for this case); 2-A gas-filled membrane absorption process
(GFMA) [13] to transfer cyanide and concentrate it in an alkaline solution using membrane
contactors [14]; 3-Neutralization with lime and gypsum separation through membrane
ultrafiltration (UF).

Figure 1. Schematic flow diagram of the SuCy process for zinc and cyanide recovery (Adapted with
permission from reference [11], 2022, Elsevier).

To date, the SuCy process has been tested for cyanide solutions containing copper
or copper and zinc only [11]. There is a lack of performance results for cyanide solutions
having only zinc as the main metal, which can be expected in cyanidation plants with zinc
cementation. This study presents the first assessment of the integrated membrane process
(The SuCy process) at laboratory scale, targeting cyanide solutions containing zinc. In
order to compare the results obtained from the SuCy process, experimental runs at lab-scale
were carried out using the SART process under the same operational conditions in order to
establish comparisons in the process performance when using both alternatives.
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2. Materials and Methods
2.1. Synthetic Cyanide Solution and Experimental Set-Up

A synthetic cyanide solution containing zinc was prepared using NaCN, ZnSO4·7H2O
(reagent grade > 99%, Merck), and demineralized water (<5 µS/cm). Zinc and total cyanide
concentration were fixed at 1500 mg/L and 2500 mg/L, respectively, to mimic real cyanide
solutions with high zinc concentrations from gold plants with zinc cementation.

The MF and UF were conducted in the same prototype assembled, as shown in Figure 2,
using different reagents, feed solution and membrane as required. This membrane filtration
prototype included a jacketed, sealed, and stirred (200 rpm) 2 L reactor, where metal sulfide
precipitation or neutralization was carried out. The reactor was temperature-controlled by
a recirculated bath at 15 ◦C. Reagent solutions used were NaHS 4 M solution, H2SO4 4 M
solution, and Ca(OH)2 suspension at 5.0% solids and 99% purity of lime.

Figure 2. Simplified scheme of the MF and UF laboratory prototypes used for tests of metal sulfide
precipitation and clarification, and neutralization and gypsum clarification, respectively. (Adapted
with permission from reference [11], 2022, Elsevier).

A diaphragm pump fed the suspension into a monotubular membrane module
(Valisette, Tami Industries, France) at 650 mL/min. The membrane module contained
one ceramic membrane (TiO2 with an active layer of TiO2-ZrO2) of 0.14 µm pore size in
the case of MF, and 150 kDa of cut-off in the case of UF (Valisette, Tami Industries, Nyon,
France), both with 0.005 m2 filtration area. The trans-membrane pressure was controlled
by a syringe valve located at the retentate flow. The MF and UF stages were conducted
under batch-recirculation configuration, where the permeate is continuously removed,
and the retentate is recycled into the reactor. A balance located under the permeate tank
(2 L capacity) measured the permeate flow used to estimate the flux, according to the
following equation:

J =
Vp

t · A
(1)

where J is the permeate flux (L/m2s), Vp is the cumulated permeate volume (L) at a certain
time t (s), and A is the membrane area (m2).

For MF tests, samples were collected from the reactor tank at the beginning and the
end of each test by a syringe filter (0.2 µm pore size). Both samples were neutralized
with NaOH 1 M solution to obtain a pH 12, and they were analyzed by AAS (AAS, GBC
Scientific Equioment, model SensAA dual, Braeside, Austalia) for zinc. The zinc conversion
was estimated according to the following equation.

Conv. =
Zn0 − Znf

Zn0
100 (2)
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where Conv. is the zinc conversion (%), Zn0 is the initial zinc mass contained in the cyanide
solution (mg), and Znf is the final zinc mass in the reactor tank or the permeate tank (mg).
The conversion estimated in the permeate tank represents the overall conversion of the
SuCy process. The cyanide concentration in the permeate tank was measured by AgNO3
1 M titration with potentiometric end-point in an automatic titrator (Methrom, Model
888 Titrando, Herisau, Switzerland). A final sample taken from the suspension remaining
in the reactor was filtered, washed and then dried to be analyzed by X-ray fluorescence
(XRF) in order to determine the elemental characterization of solid precipitates. Precipitates
collected from the MF stage were a whole composite of the final suspension.

The permeate solution generated by the MF stage was fed into a 2 L sealed, jacketed,
and stirred feed tank of the GFMA stage (Figure 3). The pH was adjusted at 4.5 with
H2SO4 1 M solution, and then the solution was fed into a hollow fiber membrane contactor
(HFMC) module (MiniModule 1.7 × 5.5, 3 M LiquiCelTM, Charlotte, NC, USA) by the
shell side, whereas the absorption solution (NaOH solution at 5 wt. %) was fed into the
HFMC module by the lumen side from the 2 L sealed, jacketed, and stirred absorption
tank. Samples were collected from the feed and absorption tanks to measure the cyanide
concentration by AgNO3 1 M titration with potentiometric end-point at different times.
Cyanide recovery at each time was estimated according to the following equation:

RecCNt =
CN0 − CNt

CN0
100 (3)

where RecCNt is the cyanide recovery (%) at a certain time t (min), CN0 is the mass of
cyanide (mg) at time 0 min in the feed solution, and CNt is the mass of cyanide (mg) at
time t in the feed tank.

Figure 3. Schematic representation of the GFMA prototype at laboratory scale for tests of HCN
recovery in the form of NaCN. (Adapted with permission from reference [11], 2022, Elsevier).

The neutralization was performed until reaching a pH value of 10.5 by lime. The
suspension generated in the reactor was fed into the membrane module at 2 bar of trans-
membrane pressure (TMP). At the end of the test, the permeate turbidity was measured by
a turbid-meter (Hanna Instruments, HI 88703-02, Santiago, Chile).

The methodology and experimental set-up for the membrane separation systems were
identical to our previous study [11]. All tests were conducted at pH 3.5 and with sulfide
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stoichiometric dosage of 120% with respect to zinc. In this case, the residence time in the
reactor was 15 min and the TMP for MF of zinc sulfides was determined here.

2.2. Characterization of Zinc Sulfide Precipitates

A sulfide precipitation test at pH 3.5 and 120% NaHS stoichiometric dosage was
performed in the reactor at 15 ◦C with the aim of obtaining zinc sulfide precipitates. The
resulting sample was analyzed using optical microscopy (Leica, model DM 750, connected
to a digital camera HD 5 MGPXL WI-FI, Leica ICC50W, Wetzlar, Germany) to determine
the aggregation behavior. Particle size distributions were also determined using laser
diffraction (Malvern Mastersizer 2000, Malvern Panalytical Ltd., Malvern, UK).

2.3. Determination of Limiting Flux and Critical TMP

Limiting flux (JL) and critical TMP (TMPC) were determined using the MF prototype
(Figure 2), following the same methodology described in Section 2.1. Different tests were
carried out for TMP, ranging between 1 and 3 bar. A curve between average flux and TMP
allowed determining the TMPC and JL [15].

2.4. Sequential Tests of the SuCy Process

Sequential tests for the SuCy process were conducted according to the methodology
described in our previous study [11] and using the synthetic solution defined in 2.1 (solution
at pH 3.5 and 120% sulfide stoichiometric dosage). The TMP of the MF stage was fixed at
1.0 bar, according to the TMPC results (see Section 3.2).

During these tests, the cyanide synthetic solution was sequentially treated in each
stage of the SuCy process under batch conditions. This meant that the generated permeate
in the MF stage was then processed in the GMFA process. After that, the resulting solution
from the GFMA step was treated in the neutralization and UF stage.

Additionally, the fouling mechanism in the MF test was analyzed using the Hermia
model [16] modified for cross-flow [15], which comprised four equations derived from the
value of n of the general equation:

d2t
dt

= K(J − Jss)J
2−n (4)

where n is the type of fouling (n = 2 is the complete pore blocking, n = 1.5 is the Standard
pore blocking, n = 1 is the Intermediate pore blocking, and n = 0 is the Cake formation),
Jss can be taken as the “steady-state flux” achieved at long times, and K is a constant
depending on the fouling phenomena. The adjustment of the experimental data to the
fouling model was performed by a least-squares fitting procedure [10,17]. In addition,
validation of each model was performed using the residual analysis to corroborate that
these residuals come from a normal distribution. This process ensures that none of the
explanatory or predictive information of the model is included in the error. In this sense,
Shapiro–Wilk and Kolmogorov–Smirnov statistics were used for this purpose. The statistic
and mathematical computations were performed in Statgraphics Centurion 19 (Statgraphics
Technologies, VA, USA).

2.5. Tests of the SART Process

A test of the SART process was also performed using the same prototype and ex-
perimental methodology described in our previous study for copper recovery [11]. The
SART prototype (Figure 4) comprised a feed tank (25 L) of cyanide solution containing
zinc (identical to the solution tested for the sequential SuCy process), a sealed and stirred
precipitation reactor (1 L), a gravitational clarifier of 15 cm diameter and 60 cm length,
and a stirred neutralization reactor (2 L). This small-scale prototype was operated under
steady-state conditions. NaHS 1 M and H2SO4 1 M solutions were added into the pre-
cipitation reactor by two dosage pumps to keep pH 3.5 and 120% sulfide stoichiometric
addition. The feed flow of cyanide solution was around 90 mL/min. Flocculant (FL2030,
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supplied by SNF) solution 0.5 g/L was fed into the feed-pipe of the clarifier. A fraction of
the underflow (80%) was semi-continuously recycled into the reactor in order to keep a
constant bed volume at the system and then analyzed by XRF (therefore, suspended solids
were not analyzed). Finally, the clarifier overflow was neutralized with lime suspension to
reach a pH value of 10.5. The overflow discharged from the neutralization tank was finally
collected in a reception tank.

Figure 4. Schematic representation of SART small-scale prototype. (Adapted with permission from
reference [11], 2022, Elsevier).

Samples were collected in the overflow of the precipitation reactor, the overflow of the
clarifier, and the overflow of the neutralization reactor to be analyzed by AAS for zinc. A
sample from the clarifier overflow without filtering was analyzed in a turbid-meter.

3. Results
3.1. Characterization of the Zinc Sulfide Precipitates

Optical microscopy and laser diffraction techniques were used to determine the ag-
gregation behavior and particle size distribution of precipitates as shown in Figure 5. The
precipitates generated tended to form small clusters of aggregates, with a maximum size of
~50 µm. This result agreed with visual observations, as can be seen in the micrograph in
Figure 5. These aggregates were smaller than those obtained for copper sulfide precipitates,
which reached sizes even above 500 µm [11]. The particle size distribution (PSD) shows
that 91% of particles were smaller than 10 µm, and 17% were even below 1 µm. These
values confirm that zinc sulfide precipitates are fine and small. Likewise, these results are
in line with previous studies [8,18,19]. The fraction smaller than 0.5 µm (~3%) establishes
that the pore size of the membrane chosen for the first stage must be smaller than 0.2 µm.
Therefore, this result confirms the correct pore size selection (0.14 µm) for the membrane
used in the MF stage.

In addition, particle size distributions can be characterized in terms of the span, which
gives an indication of the distance between the 10th (D10) and 90th (D90) percentile,
normalized with respect to the 50th percentile (D50) [A,B]. A smaller span indicates a
narrower particle size distribution [20]; however, the span obtained here was 2.94 (span > 1),
which indicates that size distribution can be considered as non-homogeneous.



Minerals 2022, 12, 229 7 of 14

Figure 5. Characterization results of the zinc sulfide precipitates. (a) Particle size distribution obtained
by a laser diffraction method, and (b) micrograph obtained by optical microscopy.

3.2. Determination of TMPC and JL

Results of flux at different TMP levels are shown in Figure 6. This curve confirms a
TMPC value of 2.0 bar. Therefore, the JL is around 0.023 L/m2s. According to these results,
the operational TMP should be between 0.5 and 1.5 bar in order to avoid the operation near
the JL [15,21].

Figure 6. Variation of permeate flux with respect to TMP for zinc sulfide precipitates at pH 3.5 and
120% sulfide stoichiometric dosage.
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The operational TMP selected for this study was 1.0 bar, different from the TMP
selected for copper precipitates, which was 2.0 bar [9]. Thus, the operational feed pressure
will be lower than the TMPC, and keeping the same point measured here, but at industrial
scale, the feed pressure could range between 0.5 and 1.5 bar. The aggregation behavior of
zinc precipitates, which tend to form bonds with water, drastically opposes copper sulfide
precipitates, since they are more hydrophobic and thus prefer bonding with other copper
precipitates instead of water [8,18]. Therefore, the fouling generated by zinc precipitates is
more detrimental than copper precipitates in flow resistance.

3.3. Sequential Tests of the SuCy Process

The permeate flux curve for the MF stage is shown in Figure 7, where a progressive
decline is observed until reaching values of 0.01 L/m2s at the end of the test. This flux
value is two orders of magnitude lower than those maximum values obtained for copper
sulfide precipitates [11]. In addition, the tendency towards a continuous decline in the flux
curve for this case differs from the flux curve observed for copper precipitates in cyanide
solutions, where the tendency did not show a decline during the test [9,11]. The aggregates
characteristics and small size of zinc sulfide can explain this significant difference between
both metal sulfide precipitates. In fact, the tendency of the flux curve of this case is similar
to the real solution tested in our previous study [11], which contained around 300 mg/L
zinc, but the Cu/Zn molar ratio was 1.9. Hence, zinc precipitates promote a detrimental
performance when copper precipitates are present. Future studies could be focused on
determining a critical Cu/Zn molar ratio where flux declines significantly.

Figure 7. Variation of permeate flux with respect to time in the MF stage for zinc sulfide precipitates
at pH 3.5 and 120% sulfide stoichiometric dosage.

The analysis of membrane fouling (Table 1) translates into the correlation of permeate
flux data with different types of fouling mechanism affecting the membrane, showing
that none of the models has been statistically validated given the normal distribution in
its residuals. Despite that, the models that showed higher values of R2 and lower values
of RSME (Table 1) were those related to cake formation, followed by standard blocking
and intermediate blocking, with R2 (coefficient of determination) values of 92.5, 87.2 and
86.2%, respectively. The above indicates that, in the MF experiment, different mechanisms
could have been acting simultaneously. During the experiment, some particles that did
not enter the pores formed a cake layer on the membrane surface, a process known as
cake formation. Alternatively, some particles smaller than the pores entered the membrane
pore, reducing the pore volume, a process known as standard blocking. In contrast, other
particles obstructed the pore entrance, but did not block it completely, producing the so-
called intermediate blocking. These mechanisms have a direct relation to the tendency of
the permeate flux obtained (Figure 7), where a progresive decline can be observed.
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Table 1. Fitted parameters for fouling models according to the modified Hermia models for crossflow
filtration, unified model of flux decline, and statistical model analysis for the studied membranes.
S-W: Shapiro–Wilks test; K-S: Kolmogorov–Smirnov test; RMSE: root mean square error.

Type of Fouling Equation

Fitted Model
Parameters and

Statistical Model
Analysis

Values

Complete
blocking J = (Jo − Jss)exp(−Kct) + Jss

Kc 8.45 × 10−4

R2 (%) 65.50

RSME 1.71 × 10−10

S-W test (p-value) ≤0.05

K-S test (p-value) ≤0.05

Standard blocking J =
(

J−0.5
o + Kst

)−2

Ks 2.17 × 10−2

R2 (%) 87.20

RSME 1.06 × 10−10

S-W test (p-value) ≤0.05

K-S test (p-value) ≤0.05

Intermediate
blocking

J = Jss[
1−
(

Jo− Jss
Jo

)
exp(−JssKit)

]
Ki 14.75

R2 (%) 86.20

RSME 2.18 × 10−11

S-W test (p-value) ≤0.05

K-S test (p-value) ≤0.05

Cake formation
Kgt =

1
J2
ss

[
ln
(

J
Jo
∗ Jo−Jss

J−Jss

)
− Jss ∗

(
1
J −

1
Jo

)]
Kg 445,538

R2 (%) 92.50

RSME 1.25 × 10−11

S-W test (p-value) ≤0.05

K-S test (p-value) ≤0.05

Results for the cyanide recovery in the GFMA process are shown in Figure 8. It can
be seen that this recovery reached a value of 95% at 60 min. These results agreed with
previous values obtained for sequential tests of copper precipitates [11] and for cyanide
solutions in similar conditions [22].

Figure 8. Cyanide recovery vs. time in the GFMA process after treating the permeate obtained in the
MF stage.
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The solution with low contents of cyanide and zinc was processed in a neutralization
stage. The suspension formed here was fed into a UF membrane stage. Flux results
of gypsum separation are shown in Figure 9. The flux curve presented a slight decline
tending to a plateau of 0.22 L/m2s. This value was slightly lower than that obtained for the
sequential tests for copper precipitates of around 0.25–0.3 L/m2s.

Figure 9. Variation of permeate flux with time, obtained in the UF stage for gypsum formed after
neutralization at pH 10.5.

A summary with additional results is shown in Table 2. Zinc recovery was maximum
for the permeate of the MF stage, demonstrating that the SuCy process can efficiently
recover and separate metal sulfide precipitates. The zinc content in the precipitates was
closer to the stoichiometric value of ZnS. Differences could be attributed to traces of sulfate
crystallized salts remaining after the washing and filtering processes. On the other hand,
the final concentration of titratable cyanide in the MF stage was lower than the initial total
cyanide solution prepared. Taking into account the zinc recovery, the cyanide concentration
associated with zinc should be disregarded, and therefore the titratable cyanide measured
should be similar to free cyanide. According to these results, almost 10% of the cyanide was
lost in the MF stage, probably due to HCN volatilization in the reactor, SCN- generation
or cyanide oxidation. The HCN flux of the GFMA process was similar to the case study
of copper precipitate. Finally, the permeate turbidity in the UF was lower than 0.5 NTU,
demonstrating the efficient separation of gypsum.

Table 2. Additional results of sequential tests for the SuCy process.

Parameter Value

Zn recovery in reactor, % 97.8
Overall Zn recovery, % ~100

Solids content in retentate of MF, % 3.7
Zn content in precipitate, % 66.6
S content in precipitate, % 31.2

Titratable cyanide concentration at the end of
MF stage, mg/L 2270

Free cyanide concentration in the solution
treated at the end of GFMA process, mg/L 36.5

HCN flux in GFMA at 60 min, mg/m2s 2.2
Permeate turbidity in UF, NTU 0.3

3.4. Test of the SART Process

Zn conversion in the SART prototype was measured in the sulfide precipitation reactor
(discharge), in the thickener overflow, and in the neutralization reactor. Figure 10 shows the
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Zn conversion in each point of the system according to time. The average Zn conversion
was 94.5%, 93.6%, and 96.0% in the sulfide precipitation reactor, in the thickener overflow,
and in the neutralization reactor, respectively. Even though the conversion tended to
increase after 200 min of operation, the Zn conversion in the final flow of the process
(neutralization reactor) was lower, between 1% and 2%, than the one compared to the
sulfide precipitation reactor. In this case, the separation efficiency of the thickening stage
plays a relevant role. Figure 11 shows the turbidity evolution in the thickener overflow,
where the values obtained ranged between 120 NTU and 190 NTU. The zinc precipitates in
the overflow explain the decrease in zinc conversion. Figure 12 shows pictures of the lab-
scale thickener used, where the interphase of settled solids and the clarified solution can be
observed. The clarified solution was white because of the presence of fine ZnS precipitates,
and despite of the use of flocculant and the high residence time of the equipment (~3 h).
The fine ZnS particles were lost in the overflow, reducing the zinc conversion. The high
residence time of thickener also could explain the decline in zinc conversion in the thickener
overflow and in the neutralization reactor between 150 and 200 min. There is a retarded
response to the zinc recovery obtained in the precipitation reactor before 50 min.

Figure 10. Zn conversion in the SART process vs. time in each stage of the plant.

Figure 11. Thickener overflow turbidity vs. time in the SART process.
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Figure 12. Pictures of lab-scale thickener in the SART process.

Table 3 shows additional results obtained in the SART process tests. Solid content
obtained in the thickener underflow was similar to that obtained in the retentate of the SuCy
process (see Table 2). Moreover, zinc and sulfur contents in the precipitate were also similar
to those obtained from the SuCy process, although the zinc grade was slightly higher, even
exceeding the stoichiometric value of ZnS. This fact could be explained given the adsorption
of dissolved zinc as zinc–cyanide complex or zinc sulfate on precipitates surface.

Table 3. Additional results of the SART process.

Parameter Value

Solids content in thickener underflow, % 3.7 ± 0.8
Zn content in precipitate, % 69.7
S content in precipitate, % 28.6

4. Discussion

In this study, the application of the SuCy process for recovering zinc and cyanide
showed interesting results, similar to those obtained previously for copper and cyanide
recovery in the GFMA and UF unit operations. However, permeate flux values of MF
applied to zinc sulfide precipitates (see Figure 7) were two orders of magnitude lower than
those obtained for copper sulfide precipitates [11]. This difference can be explained by the
aggregation behavior of the zinc sulfide precipitates, which have hydrophilic characteristics,
contrary to copper sulfide precipitates, which present a hydrophobic behavior [8,18]. There-
fore, the particle size of zinc sulfide precipitates is lower than copper sulfide precipitates.
This results in a more detrimental fouling formation in the MF membrane.

In comparison to the SART process, the SuCy process could enhance the overall
zinc recovery, producing a concentrated cyanide solution and producing a clear final
permeate, obtaining a similar product of zinc sulfide in terms of zinc content and solids
concentration in the final suspension. Although the flux value for zinc sulfide clarification
was lower than the clarification of copper, the compact design of membrane modules
allowed obtaining smaller equipment volume than the SART process. For instance, the
treatment of 200 m3/h of feed cyanide solution with 1500 mg/L Zn in an MF stage with
0.01 L/m2s of MF flux implies that the total area required is 5556 m2. The larger industrial
ceramic membrane modules have around 110 m2, with 1.2 m of length and 1.2 m of diameter,
defining 51 membrane modules and a total equipment volume of 69 m3. In the case of
the SART process, the thickening stage typically uses a rise rate of 2.0 m3/m2h, showing
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a thickener diameter of 11.3 m with a volume of approximately 250 m3, i.e., 3.6 times
higher than the MF clarification stage of the SuCy process. Even though this difference
is lower than in the case of copper precipitates separation, the SuCy process is thus an
attractive alternative to the SART process. However, further economic assessments should
be explored to compare both options.

Finally, future research should be conducted to assess behavior under different opera-
tional conditions, for example, varying the pH and sulfide stoichiometric dosage. Although
previous studies have shown that the increase in pH promotes a decline in zeta poten-
tial [8,23], which indicates that precipitates tend to disaggregate, they might be detrimental
for solid–liquid separation performance. In this context, additional studies, including
investigating different ways to increase the aggregation capacity of zinc sulfide precipitates,
could allow the optimization of the SuCy process for zinc recovery.

5. Conclusions

The SuCy process has been tested at laboratory scale for recovering zinc sulfide
precipitates and a concentrated cyanide solution. Results showed low flux values after the
separation of zinc sulfide precipitates in the MF stage, reaching around 0.01 L/m2s. This
value was approximately two orders of magnitude lower than those obtained in previous
studies for copper sulfide precipitates clarification in MF. This significant difference is
explained by the aggregation behavior found for zinc sulfide and copper sulfide precipitates.
On the one hand, whilst copper precipitates tend to form large aggregates due to the
hydrophobic characteristics of copper sulfide, instead zinc sulfide forms smaller aggregates
because of its hydrophilic characteristics. On the other hand, the GFMA and neutralization
stages with UF presented similar results to previous studies for copper recovery, reaching
95% of cyanide recovery at 60 min and flux in UF of 0.22 L/m2s. In comparison to the
SART process, the SuCy process obtains high zinc recoveries, even considering its low flux
for zinc sulfide. A preliminary equipment sizing demonstrated that this process could
reduce the separation for the solid–liquid separation stage by five times. Therefore, the
SuCy process could be an interesting alternative for recovering zinc and cyanide in gold
cyanidation plants with high zinc contents in their solutions.

6. Patents

A SuCy process patent was presented in January 2020 at the Chilean patent office
(INAPI). The patent number is INAPI PCT/CL2020/050005.
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