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ABSTRACT: The functions of microtubule-

associated protein 1B (MAP1B) have historically been

linked to the development of the nervous system, based

on its very early expression in neurons and glial cells.

Moreover, mice in which MAP1B is genetically inacti-

vated have been used extensively to show its role in axo-

nal elongation, neuronal migration, and axonal guidance.

In the last few years, it has become apparent that

MAP1B has other cellular and molecular functions that

are not related to its microtubule-stabilizing properties

in the embryonic and adult brain. In this review, we pres-

ent a systematic review of the canonical and novel func-

tions of MAP1B and propose that, in addition to

regulating the polymerization of microtubule and actin

microfilaments, MAP1B also acts as a signaling protein

involved in normal physiology and pathological condi-

tions in the nervous system. VC 2014 Wiley Periodicals, Inc.
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The function of the nervous system relies on the ability

of neurons to couple information received in the form

of an electrochemical signal in one part of the cell,

mainly dendrites, with a response in the axon, which

communicates with effector cells, generating networks

with a directional flux of information. This morphologi-

cal asymmetry, or neuronal polarity, is generated and

maintained by several factors (Arimura and Kaibuchi,

2007; Cheng and Poo, 2012). One of the main effectors

involved in polarity acquisition and maintenance is the

neuronal cytoskeleton and its associated proteins

(Bradke and Dotti, 1999; Conde and Caceres, 2009).

MAPs (microtubule-associated proteins) are a group

of proteins with either enzymatic or structural activity,

which can interact with tubulin polymers. Members of

this family include, among others, the well-

characterized MAP2 and tau proteins (Dehmelt and

Halpain, 2005) and also members of the MAP1 family,

a class comprised of MAP1A, MAP1B, and MAP1S.

All these proteins, to a greater or lesser extent, have

the ability to bind and stabilize microtubules (Halpain

and Dehmelt, 2006). MAP1 proteins are differentially

expressed, both with respect to time and cell type.

Here, we focus on MAP1B, a developmentally regu-

lated protein that is able to interact with both microtu-

bules and actin microfilaments (Gonzalez-Billault

et al., 2004). We will discuss its expression pattern

and function in nascent and adult neurons, the molecu-

lar mechanisms regulating its expression and will

explore novel functions either described or inferred

from MAP1B interactomic analysis.

MAP1B STRUCTURE, EXPRESSION
PATTERNS IN THE BRAIN AND OTHER
CELL TYPES, AND CANONICAL
FUNCTIONS

Structure

MAP1B was discovered in the mid-1980s by differ-

ent groups, which named it MAP1.2, MAP1(x),
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MAP5, and MAP1B (Asai et al., 1985; Bloom et al.,

1985; Calvert and Anderton, 1985; Riederer et al.,

1986); eventually the last name prevailed. MAP1B

consists of 2459 amino acids (according to the rat

sequence), with a predicted molecular mass of

255.534 kDa but with an apparent size of 320 kDa in

SDS-polyacrylamide gels (Noble et al., 1989). It

exists in a nonstructured filamentous shape, with an

average length of 186 6 38 nm and a spherical por-

tion at one end (Sato-Yoshitake et al., 1989). It is first

synthesized and then is proteolytically cleaved to

generate a heavy chain (HC) from the N-terminal end

until about residue 2210 and a light chain (LC1),

which begins at the cleavage site and includes the C-

terminal end of the original protein (Hammarback

et al., 1991), similarly, MAP1A is processed to give

rise to MAP1A-LC2 (Langkopf et al., 1992).

Although the exact MAP1B-LC1 cleavage site has

not been mapped yet, studies on Drosophila mela-
nogaster Futsch, the fly homolog of MAP1 (Hummel

et al., 2000; Roos et al., 2000), show a conserved pro-

teolytic site, which corresponds to the peptide bond

after rat Gln2197 (Zou et al., 2008). Additionally, the

sequence from amino acids 508 to 1022 enhances

processing efficiency (Togel et al., 1999). MAP1B-

HC can bind both LC1 and LC2 (Schoenfeld et al.,

1989) and also LC3, another LC that copurifies with

MAPs (Kuznetsov and Gelfand, 1987) but is

expressed from a different gene (Mann and Hammar-

back, 1994). LC1/LC2 heterodimers have also been

detected (Noiges et al., 2006) and may regulate

MAP1B features during the transition between devel-

oping and mature neurons.

MAP1B has a microtubule-binding domain

(MBD) and an actin-binding domain (ABD), both of

which are in the HC (Noble et al., 1989; Cueille

et al., 2007a) and in LC1 (Zauner et al., 1992; Togel

et al., 1998), indicating that MAP1B might act as a

linker between microtubules and microfilaments, as

has been described for microtubule cross bridges

(Sato-Yoshitake et al., 1989). Other MAP1B func-

tional domains have been proposed, including a

putative microtubule assembly helping domain,

which could increase the microtubule assembly rate

of the MBD (Bondallaz et al., 2006); a sequence

showing homology with the MAP1S mitochondrial

aggregation and genome destruction (MAGD)

domain in the LC1 (Liu et al., 2005); a putative third

MBD between the first 126 amino acids, which may

subtly interact with microtubules (Gomi and Uchida,

2012) and a noncanonical transmembrane a-helix

domain (Muramoto et al., 1994; Tanner et al.,

2000). The MAP1B structural features are depicted

in Figure 1(B).

Expression Patterns

MAP1B expression is developmentally regulated,

being the first MAP expressed in the nervous system

(Tucker and Matus, 1988). Its expression has been

observed even in neuronal progenitor cells before the

last mitotic division (Cheng et al., 1999). MAP1B is

expressed at high levels during development and at

low levels during adulthood. The decrease in the

amount of MAP1B starts at 2 weeks postnatally in

rodents (Calvert and Anderton, 1985; Safaei and

Fischer, 1989; Schoenfeld et al., 1989; Garner et al.,

1990). Its expression does, however, remain high in

areas of the adult brain that retain plasticity, such as

the olfactory bulb, olfactory epithelium, and the hip-

pocampus (Safaei and Fischer, 1989; Schoenfeld

et al., 1989; Tucker et al., 1989). Indeed, MAP1B is

expressed in areas with structural plasticity during

adulthood (Nothias et al., 1996). MAP1B phospho-

rylation by proline-directed protein kinases (PDPKs),

known as Mode I phosphorylation, also decreases

with development (Fischer and Romano-Clarke,

1990), whereas the phosphorylation by Casein Kinase

II, known as Mode II phosphorylation, remains unal-

tered (Ulloa et al., 1993a).

MAP1B is mainly expressed in neurons, although

it has also been detected in oligodendrocytes, astro-

cytes, and their progenitor cells (Fischer and

Romano-Clarke, 1990; Ulloa et al., 1994b). It is not

phosphorylated in astrocytes, whereas oligodendro-

cytes express MAP1B with Mode II phosphorylation.

In the peripheral nervous system, MAP1B is highly

expressed in sensory and motor neurons, as well as in

the somatic compartment of neurons of the dorsal

root ganglion (Ma et al., 1997).

At the subcellular level, MAP1B is localized in

neuronal soma, dendrites, and axons; however, both

total and Mode I-phosphorylated MAP1B are

enriched toward the distal part of the axon (Fischer

and Romano-Clarke, 1991; Black et al., 1994) and

the axonal growth cone (Mansfield et al., 1991; Gar-

cia Rocha and Avila, 1995). Mode II-phosphorylated

MAP1B can be found both in the somatodendritic

and axonal compartments during development (Ulloa

et al., 1994a) and is enriched in the former domain

during adulthood (Moreno et al., 1999). MAP1B is

present in postsynaptic terminals and is commonly

retrieved in proteomics analyses of postsynaptic den-

sities (Kawakami et al., 2003).

Canonical Functions

The prevailing view regarding MAP1B functions is

associated with the fact that it copurifies with
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microtubules and, similar to other MAPs, promotes

their polymerization. Its biological properties have

also been extensively studied both in vitro and in

genetic mouse models in which MAP1B is inacti-

vated (Gonzalez-Billault and Avila, 2000). MAP1B

polymerizes tubulin in vitro and in vivo, being more

efficient than MAP2 in microtubule elongation

(Takemura et al., 1992; Pedrotti and Islam, 1995).

However, MAP1B is less efficient than other MAPs

in the reduction of the critical concentration for tubu-

lin polymerization and in the decrease of the microtu-

bule disassembly rate, and is unable to suppress

microtubule-dynamic instability (Vandecandelaere

et al., 1996). Indeed, other MAPs such as MAP2 and

tau are more efficient microtubule-polymerizing fac-

tors than MAP1B (Takemura et al., 1992; Pedrotti

and Islam, 1995).

It has been shown that MAP1B overexpression

does not induce microtubule bundles in COS cells, as

tau and MAP2 does (Takemura et al., 1992). How-

ever, LC1 overexpression in PtK2 cells generates

wavy bundles, similar to those observed in neuronal

growth cones (Noiges et al., 2002), suggesting that

the MBD present in the LC1 subunit could have dif-

ferent properties compared to the MBD present in

MAP1B HC. Furthermore, JNK1 or MAP1B knock-

down in neuroblastoma cells interfere with microtu-

bules bundle formation during neuritogenesis (Feltrin

et al., 2012). However, JNK1 can also modify

MAP2, a MAP linked to microtubule bundles forma-

tion (Feltrin et al., 2012). Therefore, it is not com-

pletely clear whether MAP1B roles on microtubule

bundles formation could be a cell specific phenotype.

Further research is needed to clarify this point.

Recent evidence suggests that MAP1B preferably

associates to tyrosinated/dynamic microtubules, rather

than detyrosinated/stable microtubules (Tymanskyj

et al., 2012), helping to maintain a pool of dynamic

microtubules (Utreras et al., 2008; Tortosa et al.,

2013). This is also reinforced by the fact that in a

MAP1B loss-of-function model, levels of tyrosinated

microtubules are decreased (Gonzalez-Billault et al.,

2001). This apparent inefficiency to stabilize microtu-

bules and the novel proposed roles as microtubule-

dynamizing protein, may suggest that MAP1B func-

tion differs from other MAPs (Tymanskyj et al.,

2012). Such behavior could be of great relevance for

several biological processes, such as growth cone

Figure 1 Rat MAP1B genomic and structural organization. MAP1B gene is depicted in (A), with

codifying exons in green and alternative exons in orange (introns are not to scale). The first ATG

codon represents translation start of the canonical protein, whereas the second ATG defines the ini-

tiation of alternative spliced transcripts if they were translated. The figure also indicates the sites in

which each MAP1B mutant mice exhibit a stop codon. Rat MAP1B protein features are described

in (B), showing a microtubule-binding domain (MBD) in the HC (523–843) and other in the LC1

(2210–2331). There are two actin-binding domains (ABD) in HC and LC1. The LC1 binding

domain (211–508) in the HC is also represented. A putative microtubule assembly helping site or

MTA (976–1401) and a transmembrane domain (789–805) have been proposed in the HC. New

evidence suggests the existence of another MBD in the first 126 aminoacids of the HC, and a

sequence inside LC1 related to mitochondrial aggregation and genome destruction (MAGD),

between aminoacids 2367–2391. Finally, phosphorylation sites with known kinases and the S-

nitrosylation site are presented. The numeration of MAP1B aminoacids depicted here has been

adapted to the rat sequence. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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pathfinding and axon elongation (Lowery and Van

Vactor, 2009).

Four MAP1B knockout (KO) mice have been gen-

erated [Fig. 1(A)], with notorious differences in their

phenotypes. The first mouse model, which lacks full-

length MAP1B, was generated by inserting a stop

codon at amino acid 571. Homozygous mice die at

embryonic day 8.5, and heterozygous mice have

severe body weight loss, reduction in the size of the

retina and the cerebellum, ataxia, and spastic tremors

in the posterior limbs (Edelmann et al., 1996). These

abnormalities were hypothetically attributed to a

dominant-negative effect of the N-terminal 64-kDa

fragment. The second mutant mouse model was gen-

erated with a stop codon inserted after amino acid 11

and showed just a mild reduction in the axonal myeli-

nation rate (Takei et al., 1997). This subtle phenotype

was explained by the fact that the mutant mice

expressed MAP1B splicing variants, which could res-

cue some of the alterations related to the absence of

full-length MAP1B. The third mutant mouse model

was generated using the gene trapping strategy,

which was used to introduce a stop codon after amino

acid 95. Those animals express approximately 5% of

the normal protein levels, as some alternative splicing

can still occur; they, therefore, represent a hypo-

morph model. These mutant mice present postnatal

lethality; enlargement of the brain ventricles; absence

of the corpus callosum; malformations of commis-

sures; and abnormalities in the laminated structure of

the cortex, cerebellum, and hippocampus (Gonzalez-

Billault et al., 2000). The last KO mouse carries a

stop codon after amino acid 96, and the most striking

phenotype found in this mouse line showed agenesis

of the corpus callosum, delocalized myelination of

axons, reduced diameter in peripheral axons, reduced

thickness of myelin sheaths, and a decrease in the

nerve conduction velocity of some motor neurons

(Meixner et al., 2000; Table 1).

MAP1B was implicated early on in the molecular

mechanism involved in axonal elongation, as its

knockdown reduces neurite and axonal length in cul-

tured PC12 cells and neurons, respectively (Brugg

et al., 1993; DiTella et al., 1996). Additionally,

MAP1B deficiency reduces DRG axonogenesis (Gon-

zalez-Billault et al., 2002b). The axon elongation

defects observed in MAP1B KO mice are even more

severe when MAP2 or tau expression levels are

knocked down (Gonzalez-Billault et al., 2002a).

Along with decreased axonal elongation, MAP1B KO

mice also exhibit lower levels of tyrosinated tubulin

and an increase in detyrosinated microtubules (Gon-

zalez-Billault et al., 2001), decreased acetylated tubu-

lin in the axonal shaft and increased axonal branching

(Bouquet et al., 2004). Growth cone turning is also

regulated by MAP1B, as Mode I-phosphorylated

MAP1B depletion by microCALI in one side of the

growth cone induces retraction of the lamellipodia in

the affected region, with the consequent turning of the

structure in the opposite direction (Mack et al., 2000).

Another function associated with MAP1B is the cou-

pling between the collapse of microfilaments and

microtubules in the axonal growth cone, which is

induced by repulsion cues (Bouquet et al., 2007) and

the negative regulation of mitochondrial retrograde

transport in the axon (Jimenez-Mateos et al., 2006).

Finally, alterations in neuronal migration and axonal

guidance have been reported, linking the signaling of

Netrin-1 and Reelin upstream to MAP1B by way of

Mode I phosphorylation (Del Rio et al., 2004;

Gonzalez-Billault et al., 2005).

NEW CONCEPTS IN MAP1B
EXPRESSION, REGULATION, AND
FUNCTION

Regulation of Transcriptional Control

map1b includes two promoters, which confer its neu-

ronal specificity (Liu and Fischer, 1989). MAP1B is

highly expressed under the control of its upstream pro-

moter during development, whereas the second pro-

moter accounts for MAP1B expression in the adult

brain. The homeoprotein transcription factors

Engrailed and Hoxa5 regulate MAP1B expression

(Montesinos et al., 2001), with the former inhibiting

MAP1B expression in cerebellar neurons and in the

neuronal tube of chick embryos and activating map1b
transcription in CHP-100 human neuroblastoma cells

(Montesinos et al., 2001). Hoxa5 also promotes

MAP1B expression in neuroblastoma cells, although

its role in neurons has not been determined. The activ-

ity of homeoprotein transcription factors is regulated

by their expression levels, their combinatorial func-

tions and by the presence of cofactors that bind them.

For example, the transcriptional factor Foxa2 both

binds Engrailed and competes with it, so in a model in

which high amounts of Engrailed promotes MAP1B

expression, as in the N2a neuroblastoma cell line

(Foucher et al., 2003), Foxa2 represses Engrailed-

driven MAP1B expression. In contrast, Foxa2 expres-

sion in the absence of Engrailed activates map1b
transcription in the same model (Foucher et al., 2003).

The KO mice for the transcriptional factor COUP

TFI have reduced MAP1B and MAP2 expression lev-

els and also altered commissural axons, as well as

abnormal axonal branching (Armentano et al., 2006),

956 Villarroel-Campos and Gonzalez-Billault
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suggesting that COUP TFI could promote MAP1B

expression. In mice, the knockdown of Bcl11A/

CTIP1, a transcriptional factor that is functionally

coupled to COUP TFI, also results in lower levels of

MAP1B expression, in conjunction with increased

axonal branching and a higher proportion of multiax-

onic neurons (Kuo et al., 2009). It is likely that both

transcription factors promote MAP1B expression,

although it is not yet known if they act directly or

indirectly on the map1b promoter. In the case of

either mechanism, this regulation is downstream of

NMDA receptor activation, as glutamate treatment

reduces the amount of Bcl11A and MAP1B in culture

(Kuo et al., 2010).

Post-Transcriptional Regulation of
MAP1B

MAP1B has two exons that can be alternatively

spliced, which are depicted in Figure 1(A). They are

located between exons 2 and 3 and are called 3U and

3A. Exon 3U is upstream of 3A, and the latter is con-

tiguous with exon 3. About 10% of MAP1B tran-

scripts correspond to alternatively spliced variants

that lack the first two exons and start at either 3U or

3A. However, the first start codon downstream of the

alternative exons is located in exon 4, implying that

if the alternatively spliced mRNA was translated, it

would produce a protein that starts at amino acid 127

(Kutschera et al., 1998). Although it is tempting to

speculate that some of the differences among genetic

models in which MAP1B has been inactivated could

be linked to the presence of uneven levels of shorter

transcripts, the fact that MAP1B N-terminal truncated

forms still could not be detected suggests that shorter

alternatively spliced variants of MAP1B may not

have physiological roles.

MAP1B protein expression is controlled by several

RNA-binding proteins that associate with MAP1B

mRNA and regulate its translation. QKI binds the 30

Table 1 MAP1B/Futsch Animal Models

Animal Model MAPlB/Futsch Expression Phenotype References

Edelmann KO mice Absent Embryonic lethality at E8,5,

heterozygous mice present

severe body weight loss,

smaller retina size and motor

system abnormalities

Edelmann et al., 1996

Takei KO mice Splicing variants are

still present

Slight reduction in the axonal

myelination rate

Takei et al., 1997

Gonzalez-Billault

hypomorphic mice

About 5% of WT expression

levels are still retained

Postnatal lethality, enlargement

of brain ventricles, agenesis of

the corpus callosum, abnormalities

in commisures and in laminated

structures of the brain, due to

neuronal migration alterations

Gonzalez-Billault

et al., 2000

Meixner KO mice Absent Agenesis of the corpus callosum,

delocalized myelinated fibers

due to misguided axons, decreased

number of large myelinated axons

in peripheral nerves and reduced

thickness of some myelin sheaths

Meixner et al., 2000

FutschP158 fly Undetectable Lethal mutation, dendrites and axons

development is severely affected in

embryos, as well as the motoneuron

innervations pattern

Hummel et al., 2000

Futsch K68 fly Undetectable Fewer and larger synaptic boutons in

Drosophila NMJ, microtubule loop

formation in boutons is lost, showing

a diffuse tubulin staining

Hummel et al., 2000,

Roos et al., 2000

FutschN94 fly About 20% of WT

expression is still detected

Phenotype similar to futschK68, however

the remaining expressed futsch is

misslocalized within the nerve terminals

Hummel et al., 2000,

Roos et al., 2000

Genetic models to inactivate MAP1B function in mice and fruit fly and their phenotypes. In addition to futschP158, futschK68, and futschN94, it

also exist futschM455 and futschP28, with futsch expression levels similar to futschN94. For a comprehensive description on futsch loss-of-

function models, please see Hummel et al., 2000.

Novel Roles for MAP1B 957
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UTR of MAP1B mRNA in oligodendrocytes, which

promotes MAP1B translation (Zhao et al., 2006).

Staufen2 regulates MAP1B expression in neurons

during metabotropic glutamate receptor (mGluR)-

dependent long-term depression (LTD). Staufen2

knockdown reduces MAP1B levels in dendrites,

releasing MAP1B mRNA from the RNA granules

where it is translated (Lebeau et al., 2011). Fragile X

mental retardation protein (FMRP) associates with

the 50 UTR of MAP1B mRNA and regulates its trans-

port and expression (Darnell et al., 2001); this topic

will be discussed more extensively below. Finally,

Caprin1 is a FMRP-interacting protein that binds

MAP1B mRNA independently from FMRP and

exhibits a translation-repressing activity (El Fatimy

et al., 2012).

MAP1B can also be regulated by microRNAs,

either in the axon or dendrites. Interestingly, two dif-

ferent microRNAs exert subcellular-specific regula-

tion of MAP1B. miR-9 loss-of-function increases

axonal branching and reduces axonal length. This

microRNA interferes with MAP1B translation in the

axon and shows a biphasic behavior in response to

Brain-derived neurotrophic factor (BDNF). Whereas

acute doses of BDNF downregulate miR-9 levels,

leading to an increase in MAP1B expression and axo-

nal outgrowth, long-term BDNF administration

increases miR-9 expression, with a subsequent

decrease in MAP1B expression and induction of axo-

nal branching (Dajas-Bailador et al., 2012). In den-

drites, miR-146a-5p represses MAP1B mRNA

translation, leading to reduced MAP1B-mediated a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPAR) endocytosis (Chen and Shen,

2013). On group I mGluR (mGluR1 and mGluR5)

activation by (S)-3,5-Dihydroxyphenylglycine

(DHPG), miR146a-5p is reduced, and the levels of

MAP1B are thus increased, allowing the induction of

LTD. The local microRNA expression control on

MAP1B, both in axon and dendrites, is depicted in

Figure 2(C).

Post-Translational Modifications

MAP1B protein can be post-translationally modified

at different sites. Some lines of evidence suggest that

MAP1B may associate with membranes directly or

through either transmembrane proteins or the cortical

actin cytoskeleton. In this regard, MAP1B associates

with vesicles formed by acidic phospholipids, such as

phosphatidylserine, phosphatidylinositol, and phos-

phatidic acid, and also with vesicles formed by phos-

phatidylcholine and phosphatidylserine in a ratio that

emulates biological membranes (Yamauchi et al.,

1997). This interaction decreases the association of

MAP1B with microtubules, as the domain involved

is located within the C-terminal part of the MBD (rat

sequence, 738–786). This suggests a competition

between microtubules and phospholipids for binding

to MAP1B.

Another post-translational modification of MAP1B

is S-nitrosylation. The LC1 C-terminal domain inter-

acts with the PDZ domain of neuronal nitric oxide

synthase, and this mediates LC1 S-nitrosylation at

Cys2455, preventing an autoinhibitory interaction

between the N- and C-terminal domains of LC1

(Stroissnigg et al., 2007) and potentiating LC1 bind-

ing to microtubules. At the cellular level, the calcium

ionophore calcimycin induces S-nitrosylation of

LC1, which leads to retraction of neurites; however,

dorsal root ganglia cultures from MAP1B KO mice

do not show this neuritic collapse, which suggests

that MAP1B is necessary for axonal retraction

induced by nitric oxide, through LC1 S-nitrosylation

and increased MAP1B-LC1/microtubule interactions

(Stroissnigg et al., 2007). The mitochondrial E3-

ubiquitin ligase MITOL specifically ubiquitinates

mitochondria-associated S-nitrosylated LC1, avoid-

ing LC1-induced mitochondrial aggregation (Yona-

shiro et al., 2012).

Phosphorylation is the main post-translational

modification of MAP1B and has been, by far, the

most widely studied modification of this protein.

MAP1B was initially described as being phosphoryl-

ated in differentiated N2a cells. This phosphorylation

was inhibited by heparin, a casein kinase II inhibitor

(Diaz-Nido et al., 1988). This type of MAP1B phos-

phorylation is referred to as Mode II phosphorylation

and induces a twofold increase in the binding of

MAP1B to microtubules or tubulin oligomers (Diaz-

Nido et al., 1988). If casein kinase II phosphorylation

is abolished, MAP1B is released from the microtu-

bules (Ulloa et al., 1993b), suggesting that this phos-

phorylation event is important for maintaining a pool

of MAP1B-stabilized microtubules. The site(s) of

casein kinase II-dependent phosphorylation on

MAP1B are unknown; however, antibody Ab125 rec-

ognizes epitopes located in the N-terminal half of

MAP1B.

In addition to Mode II phosphorylation, MAP1B

can be phosphorylated in a PDPK-dependent manner

(Mode I phosphorylation; Ulloa et al., 1993a). Stud-

ies in differentiated SH-SY5Y cells showed that

Mode I phosphorylation is more efficiently inhibited

by Li1, which targets GSK3, whereas in proliferating

neuroblastoma cells, it may be more dependent on

cyclin-dependent kinases (CDKs; Garcia-Perez et al.,

1998). Mode I-phosphorylated MAP1B is detected
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with the antibody SMI-31, which recognizes

phosphor-epitopes between amino acids 1244 and

1264 and in a region located between amino acids

1836 and 2076 (Johnstone et al., 1997).

GSK3b phosphorylates MAP1B both in vitro and

in vivo at Ser1260 and Ser1265 (Lucas et al., 1998;

Trivedi et al., 2005). MAP1B phosphorylated at these

sites binds to tyrosinated microtubules and maintains

a pool of dynamically unstable microtubules (Goold

et al., 1999). Wnt7a inhibits GSK3b phosphorylation

on MAP1B, increasing stable microtubules, growth

cone surface area, and axonal branching (Lucas et al.,

1998). Conversely, NGF promotes GSK3b phospho-

rylation on MAP1B, through the TrkA receptor

(Goold and Gordon-Weeks, 2003) and the ERK1/2

pathway (Goold and Gordon-Weeks, 2005), although

this regulation seems to be indirect, as ERK1/2 does

not phosphorylate GSK3b. Ser1388 can also be phos-

phorylated by GSK3b, but this site requires the phos-

phorylation of a priming site by DYRK1A at Ser1392

(Scales et al., 2009). Similarly to Ser1260 and

Ser1265, Ser 1388 phosphorylation also maintains a

Figure 2 MAP1B functions according to its subcellular localization. Mode I phosphorylation in

the developing neuron in (A) is represented by the green gradient toward the distal part of the axon,

whereas Mode II phosphorylation is depicted as gray dashed lines. The inset at the growth cone

shows some MAP1B functions related to axonal elongation, as the control of microtubule dynamics

and GTPase activities (extended in Table 2). Some MAP1B roles during adulthood are presented in

(B), mainly the regulation of the activity or distribution of neurotransmitter receptors, spine struc-

ture, and the transport of mRNP. The regulation of MAP1B translation in axon and dendrites is

depicted in (C), showing MAP1B translation inhibition by microRNAs and by FMRP. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Table 2 MAP1B Interactome in Neurons and Nervous System Derived Cells Lines

Interactor Physiological Effect References

Channels, receptors and related proteins

GABAcR q1 and q2 MAP1B reduces GABAcR sensitivity. Hanley et al., 1999,

Billups et al., 2000

GRIP1 GRIP1 participates in MAPlB-dependent

AMPAR endocytosis.

Seog, 2004, Davidkova

and Carroll 2007

Stargazin Not determined, however LC2 may regulate

GluR2/Stargazin traffic.

Ives et al., 2004

5-HT3A receptor LC1 reduces 5-HT3A surface expression,

promoting its desensitization.

Sun et al., 2008

5-HT6 receptor LC1 increases 5-HT6 surface expression

and reduces its endocytosis.

Kim et al., 2014

mGluR 4, 6, 7a, 7b, 8a, 8b Not determinted. Moritz et al., 2009

NR3A MAP1B KO mice present an increased

NR3A/NR1 ratio in NMDAR.

Eriksson et al., 2010

ee3 ee3 is not detected at the protein level

in MAP1B KO mice.

Maurer et al., 2004

Cav2.2 channel LC1 promotes Cav2.2 proteasomal degradation. Gandini et al., in press

Nav 1.6 MAP1B increases Nav 1.6 current

density in about 50%.

O’Brien et al., 2012

Apoptosis/Autophagy

MITOL MITOL induces mitochondria-associated

LC1 ubiquitination.

Yonashiro et al., 2012

DJ-1 Dj-1 inhibits ER stress-induced apoptosis

by LC1 overexpression.

Wang et al., 2011

p53 MAP1B inhibits p53 transcriptional activity. Lee et al., 2008

Nbr1 LC1 links Nbrl positive vesicles

to MT cytoskeleton.

Marchbank et al., 2012

Neurodegeneration linked proteins

Ab 1–42 Not determined Gevorkian et al., 2008

a-synuclein MAP1B is found in Lewy bodies. Jensen et al., 2000

Gigaxonin Gigaxonin induces LC1 degradation,

allowing cell survival.

Ding et al., 2002,

Allen et al., 2005

LANP LANP enhances neurite growth in cells

overexpressing FL-MAP1B.

Opal et al., 2003

RNA-binding proteins

mNXFs mNXF/MAPlB complex participates

in mRNA transport.

Tretyakova et al., 2005

HuB, HuC, HuD LCl/Hu targets mRNA granules

toward MT cytoskeleton.

Fujiwara et al., 2011

Transmembrane proteins

MAG Not determined. Franzen et al., 2001

Kidins220/ARMS Kidins220 knock-downreduces MAP1B

Mode I phophorylation.

Higuero et al., 2010

Cytoskeleton related proteins

Dystonin-a2 Regulation of Golgi organization

and MT dynamics.

Bhanot et al., 2011,

Ryan et al., 2012

TTL MAP1B enhances TTL activity and

tyrosinated MT.

Utreras et al., 2008

LIS1 MAP1B regulates LIS1 affinity

for MT and dynein.

Jim�enez-Mateos

et al., 2005b

EB1/3 EB1/3 is sequestered in the

cytoplasm by MAP1B HC.

Tortosa et al., 2013

Signaling proteins

EPAC1 LC1 Increases EPAC1 activity on Raplb. Borland et al., 2006
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pool of dynamic microtubules, despite the fact that

MAP1B phosphorylated at Ser1260 and S1265 is

concentrated toward the distal part of the axon and

Ser1388-phosphorylated MAP1B is evenly

distributed.

As noted earlier, MAP1B can also be phosphoryl-

ated by CDKs. Knockdown of either Cdk5 or p35

reduces axonal length and laminin-induced MAP1B

Mode I phosphorylation, as well as its binding to

microtubules (Pigino et al., 1997; Paglini et al.,

1998); however, the Cdk5 inhibitor roscovitine was

not able to modify the phosphorylation recognized by

SMI-31 (Kawauchi et al., 2005). It is interesting that

this type of phosphorylation was also unchanged in

cells overexpressing Cdk5/p35, however, Cdk5/p25

did lead to an increase in Mode I-phosphorylated

MAP1B (Kawauchi et al., 2005). A potential expla-

nation could be that Cdk5 phosphorylates MAP1B

only in a pathological context, when the kinase is

activated by p25, the proteolytic fragment of p35.

Mitogen-activated protein kinases (MAPKs)

have also been linked to MAP1B phosphoryla-

tion; in fact, pharmacological inhibition of the

MAPK JNK reduces the amount of Mode I-

phosphorylated MAP1B in cultured cortical neu-

rons, as recognized by SMI-31 (Kawauchi et al.,

2003). Consistently, KO of JNK1 and JNK2 leads

to a decrease in the amount of phosphorylated

MAP1B (Chang et al., 2003; Barnat et al., 2010).

Similarly, it has been proposed that JNK1/2 phos-

phorylation on MAP1B could be regulated by

MKK7 (Feltrin et al., 2012).

NGF activates nemo-like kinase (NLK) in PC12

cells, inducing MAP1B phosphorylation in a bimodal

manner. First, a peak in MAP1B phosphorylation (as

detected with SMI-31) occurs 10–30 min after NGF

addition, which is linked to NLK activation. In con-

trast, NGF also leads to long-term MAP1B phospho-

rylation (i.e., 3 days after NGF exposure) that is

dependent on NLK and GSK3b (Ishitani et al., 2009).

Many different kinases are able to phosphorylate

MAP1B in regions recognized by SMI-31, suggesting

that these epitopes seem to be promiscuous and rais-

ing the question of how the regulation of these

kinases could be coordinated to produce the classical

proximo-distal SMI-31 axonal gradient that is present

in cultured neurons. In addition, it is very likely that

other kinases may phosphorylate MAP1B. Synaptic

phosphoproteomic analysis and mass spectrum assays

have identified several new MAP1B phosphorylation

sites (33 and 28 new sites identified, respectively),

showing that MAP1B is a highly phosphorylated pro-

tein (Collins et al., 2005; Scales et al., 2009). Based

on bioinformatic analyses, these novel phosphoryla-

tion sites have been predicted to be linked to the

activity of several protein kinases. It would not be

Table 2 Continued

Interactor Physiological Effect References

PDZRhoGEF Anchoring of PDZRhoGEF to MT by

LC1 inhibits RhoA activity.

Longhurst et al., 2006

STEF Not determined. Takefuji et al., 2007

TIAM1 Enhanced TIAM1

activity on Racl, by LC1.

Montenegro-Venegas

et al., 2010

GEF-H1 Not determined. Tortosa et al., 2011

Osteopontin Not determined. Long et al., 2012

GAPDH Not determined. Cueille et al., 2007b

nNOS LC1 S-nitrosylation. Stroissnigg et al., 2007

al-syntrophin Not determined. Fuhrmann-Stroissnigg

et al., 2012

MAP1B interactors are presented. A short description above the relevance of the interaction was added. Some proteins described like MAP1B

interactors in non-neuronal models were not included (Pes1, DAPK-1, and RASSF1A).

Figure 3 Classification of MAP1B interactomics. The dif-

ferent MAP1B interactors were grouped into seven different

categories, according their cellular function. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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surprising if novel modes of MAP1B phosphorylation

were discovered in the future. We envision that these

putative novel phosphorylation modes could be asso-

ciated with different subcellular domains of MAP1B

activity in neurons.

Novel Roles of MAP1B in the Adult Brain

MAP1B as a Regulator of the Actin Cytoskeleton and
Dendritic Spine Morphology. MAP1B is able to bind

F-actin through two ABDs, which (as noted above)

are located in the HC and LC1. Initially, in vitro
experiments indicated that MAP1B that was dephos-

phorylated at Mode I sites (i.e., purified MAP1B

treated with alkaline phosphatase) associates with

actin microfilaments, although with less efficiency

than dephosphorylated MAP2 and MAP1A (Pedrotti

and Islam, 1996). Purified MAP1B-HC binds actin

independently of its phosphorylation state or devel-

opmental stage (Cueille et al., 2007a). These contra-

dictory findings might be explained if the ABD

involved in these functions is not exactly the same.

The ability of MAP1B to associate with actin microfi-

laments becomes relevant to understanding its func-

tion in neurotransmission.

MAP1B is present in dendrites during synaptogen-

esis (Kitamura et al., 2007) and has also been

detected in dendritic spines (Tortosa et al., 2011),

although it is not clear if MAP1B protrudes into the

spine in association with the actin cytoskeleton or

with microtubules. MAP1B is present in 1–2% of

dendritic spines, a proportion consistent with the

fraction of spines that contain transient microtubules

(Hu et al., 2008; Jaworski et al., 2009; Shirao and

Gonzalez-Billault, 2013). Therefore, it is likely that

MAP1B is not associated with actin microfilaments

in spines. Further work is needed to precisely define

which cytoskeleton polymer is the main binding part-

ner for MAP1B in spines. In addition to its presence

in dendritic spines, neurons lacking MAP1B display

a decrease in the number of mature mushroom-type

dendritic spines and have decreased miniature excita-

tory postsynaptic currents (mEPSC) amplitude (Tor-

tosa et al., 2011). These changes in dendritic spine

morphology and PSC are paralleled by a reduction in

the activity of the small GTPase Rac1 and an increase

in the levels of active RhoA. Abnormal activity of

these GTPases modifies the dynamics of the actin

cytoskeleton, a feature that is dependent on the inter-

action of MAP1B with TIAM1 and GEF-H1, which

are guanine exchanging factors (GEFs) for Rac1 and

RhoA, respectively (Tortosa et al., 2011). Addition-

ally, in the brains of mice with heterozygous MAP1B

expression, LTD induction is disrupted because of a

reduction in AMPAR endocytosis, which can be res-

cued with TIAM1 overexpression, whereas the mag-

nitude of long-term potentiation is enhanced

(Davidkova and Carroll, 2007; Benoist et al., 2013).

Gain- and Loss-of-Function Models can Modify Dendritic

Spine Morphology, the FMRP Case. Fragile X syn-

drome is the most frequently inherited form of mental

retardation and is generated by transcriptional silenc-

ing of FMRP. This protein binds messenger ribonu-

cleoproteins and mRNAs through G quartets present

in the secondary structure of target RNAs (Darnell

et al., 2001; Menon et al., 2008), repressing its trans-

lation (Zalfa et al., 2003). In addition to its function

in translational repression, FMRP also regulates

mRNA transport toward dendrites, in response to

mGluR activation (Antar et al., 2005).

FMRP binds MAP1B mRNA and represses its

expression (Brown et al., 2001; Zalfa et al., 2003).

Consistent with this, FMRP KO mice show an abnor-

mal increase in the levels of dendritic MAP1B and in

stable microtubules (Lu et al., 2004); a similar condi-

tion occurs in MAP1B gain-of-function mice during

synaptogenesis. The FMRP KO phenotype, that is, an

increased number of filopodia spines and longer filo-

podia, can be compared with D. melanogaster that

are null for dFRX, the FMRP ortholog in this species.

This model has two interesting features: first, in the

neuromuscular junction, dFRX that is either overex-

pressed or absent increases the synaptic area and the

size of the synaptic bouton, which decreases neuro-

transmission, but in Drosophila eyes, either gain- or

loss-of-function of dFRX increases neurotransmis-

sion; the second feature is that an absence of Futsch

is sufficient to rescue the entire phenotype in the null

dFRX synapses (Zhang et al., 2001), even though

there are >400 other mRNAs associated with FMRP.

Altogether, this evidence suggests that either gain- or

loss-of-function of MAP1B is deleterious and that the

level of this protein as well as its activity must be

precisely regulated not only at the transcriptional

level but also as originally proposed.

MAP1B AS A NONCANONICAL
SIGNALING/ADAPTOR PROTEIN:
LESSONS FROM THE MAP1B
INTERACTOME

Interaction of MAP1B with
Neurotransmitter Receptors

In the last part of this review, we will focus our atten-

tion on noncanonical functions of MAP1B, most of
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which are unrelated to its role as a microtubule-

stabilizing factor. The majority of the studies dis-

cussed in this section derive from interactomics

approaches, with MAP1B interacting partners listed in

Table 2.

MAP1B interacts with several ligand-gated ion

channels or transmembrane receptors and shows dif-

ferent physiological effects in each case. The q1 and

q2 subunits of the ionotropic Cl2-permeable

GABAcR interact with MAP1B HC, anchoring the

channel subunits to microtubules, modifying channel

activity and reducing its sensitivity (Hanley et al.,

1999; Billups et al., 2000; Pattnaik et al., 2000).

LC1 and LC2 bind to Stargazin (Ives et al., 2004), a

protein involved in AMPAR trafficking toward the

synapses (Chen et al., 2000), which suggests a role for

MAP1B in the regulation of AMPAR. Indeed, LC1

also interacts with GRIP1, an AMPAR-interacting

protein, which anchors this receptor to the cytoskele-

ton (Seog, 2004). During DHPG-induced LTD,

MAP1B levels are enriched in dendrites, increasing

the interaction between MAP1B and GRIP1, ulti-

mately enhancing AMPAR endocytosis (Davidkova

and Carroll, 2007). This could be a mechanism for the

maintenance of LTD as suggested by recent experi-

ments using brain slices from MAP1B heterozygous

mice (Benoist et al., 2013). Stargazin is not the only

protein shown to interact both with LC2 and LC1 sub-

units. It has been shown that MAP1A and MAP1B

LCs bind Cav2.2 channels in hippocampal neurons

(Leenders et al., 2008; Gandini et al., in press). While

binding of LC2 promotes the anchoring and stabiliza-

tion of the calcium channel in presynaptic neurons

(Leenders et al., 2008); LC1 is involved in Cav2.2 pro-

teasomal degradation, mediated by the formation of a

multiprotein complex with the ubiquitin-conjugating

enzyme Ube2L3 (Gandini et al., in press).

Another MAP1B-interacting partner is the

NMDAR subunit NR3A, which binds to LC1 at the

N-terminal domain. This binding leads to an increase

in the NR3A-containing NMDARs and reduces the

conductance and permeability of the channel (Eriks-

son et al., 2010). LC1 is also able to interact with the

glycine receptor a1 subunit and with the 5-HT3A

receptor (Sun et al., 2008), reducing the expression of

the latter in the plasma membrane and promoting its

desensitization. Conversely, LC1 interaction with 5-

HT6 receptor increases the receptor activity, as LC1

promotes the 5-HT6 receptor surface expression, and

reduces the receptor endocytosis (Kim et al., 2014). It

is not clear if LC1 is able to bind other 5-HT recep-

tors, and if this could increase or reduce its activity.

MAP1B is also implicated in the regulation of

sodium channels, as suggested by studies showing

that LC1 can bind the channel Nav1.6, increasing its

current density by 50% in a mechanism that enhances

the density of these receptors at the cell surface

(O’Brien et al., 2012).

LC1 also interacts with an erythropoietin-

upregulated G protein-coupled receptor, called ee3,

and, interestingly, MAP1B KO mice have reduced

ee3 expression, indicating that ee3 expression or

folding is regulated by MAP1B (Maurer et al., 2004).

Finally, MAP1B binds to mGluR 6, 7a, 7b, 8a, and

8b, which can be inhibited by Ca12/calmodulin; this

interaction may regulate the function and/or trafficking

of the receptors (Moritz et al., 2009). Altogether, these

interactions with surface receptors support a role for

MAP1B during adulthood with respect to either recep-

tor subcellular localization or activity at synapses.

Interaction of MAP1B with Nonreceptor
Proteins

There are several new MAP1B interactors that are not

neurotransmitter receptors. In this section, we grouped

them arbitrarily to emphasize novel roles for MAP1B

based on these associations. The different classes of

MAP1B interactors are depicted in Figure 3.

The first group encompasses proteins that are

altered in neurodegenerative disorders or other patho-

logical conditions. This “neurodegeneration-linked

proteins” class includes a-synuclein, which is a com-

ponent of the Lewy bodies that are present in Parkin-

son’s disease. MAP1B binds a-synuclein fibers, and,

as a consequence, MAP1B also becomes a compo-

nent of Lewy bodies both in the brainstem and cortex

(Jensen et al., 2000).

The accumulation of Ab peptide aggregates is a

hallmark of Alzheimer’s disease (AD), and an inter-

action between Ab 1–42 and the MBD in the HC of

MAP1B has been described (Gevorkian et al., 2008).

An AD-MAP1B link is also supported by the fact

that phosphorylated MAP1B is present in neurofibril-

lary tangles (Hasegawa et al., 1990) and in sema-

phorin 3A–positive aggregates that are formed during

the onset of AD (Good et al., 2004).

Giant axonal neuropathy is an autosomal recessive

disease caused by a mutation in the gene codifying

the protein gigaxonin, which is a MAP1B interactor

(Ding et al., 2002). Gigaxonin also binds E1-

ubiquitin ligase and induces MAP1B degradation;

this is relevant as neurons derived from gigaxonin

null mice degenerate after 6 days in vitro, a process

that can be rescued by reducing the expression level

of MAP1B (Allen et al., 2005). It follows that over-

expression of MAP1B can be deleterious for neuronal

survival or functions (Jimenez-Mateos et al., 2005a).
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Finally, the protein mutated in spinocerebellar ataxia

type 1, known as LANP, binds LC1 and translocates

to the cytoplasm from the nucleus, where it enhances

neurite elongation in cells that overexpress MAP1B

(Opal et al., 2003).

As we have already discussed, some evidence has

suggested a toxic effect for gain-of-function MAP1B

mutations; however, the mechanisms involved in this

issue are not well defined. A group of MAP1B interac-

tors form a class related to “Apoptosis/Autophagy.”

The outer mitochondrial membrane-associated E3-

ubiquitin ligase MITOL induces the degradation of

mitochondrial-associated S-nitrosylated LC1, avoiding

the MAGD that results from LC1 overexpression

(Yonashiro et al., 2012).

Apoptosis that results from endoplasmic

reticulum-related stress has also been observed dur-

ing LC1 overexpression, as high levels of LC1

expression generate protein aggregates. This effect

can be inhibited by DJ-1, a Parkinson’s disease-

related protein that has been proposed to act like a

chaperone for LC1 (Wang et al., 2011).

Another LC1-interacting partner is p53, a tran-

scription factor that is typically associated with cell

cycle arrest and apoptosis; however, MAP1B overex-

pression does not induce p53-related cell death (con-

versely to the pro-apoptotic effects associated with

LC1 overexpression), but it does inhibit p53 tran-

scriptional activity and reduces doxorubicin-induced

apoptosis (Lee et al., 2008).

The role of MAP1B in autophagy emerges from its

association with LC3, a MAP1 LC that is also an

autophagosomal marker (Tanida et al., 2004), which

suggests a function in either autophagosome forma-

tion or transport. There is still, however, no direct

evidence of MAP1B direct or indirect participation in

any of these roles. It is noteworthy that LC1 and LC3

interact with Nbr1, a cargo receptor that selectively

binds ubiquitinated proteins for autophagosomal deg-

radation (Kirkin et al., 2009). MAP1B is not neces-

sary for the formation of Nbr1-positive vesicles, so it

is believed that LC1 could regulate the movement of

Nbr1 vesicles on microtubules (Marchbank et al.,

2012). More research is required to shed light on

MAP1B functions related to autophagy and on how

these apoptotic effects are inhibited during develop-

ment, when MAP1B expression levels are high. In

addition, it may be interesting to compare the sensi-

tivity to autophagy-promoting signals in cells that

either express or lack MAP1B, as its presence may

have an impact on LC3 availability for autophago-

some formation.

Another group of MAP1B-associated proteins con-

sists of the “mRNA-associated proteins,” such as

mNXF2, which participates in the export of mRNA

from the nucleus, and mNXF7, which has a role in

mRNA transport toward neurites in N2a cells, indi-

cating a role for MAP1B in the transport of mNXF-

containing ribonucleoproteins (Tretyakova et al.,

2005). Other members in this class are the Hu pro-

teins, among which all of the Hu protein expressed in

neurons are able to interact with LC1 (HuB, HuC,

and HuD) and, simultaneously, with mRNAs, indicat-

ing that Hu proteins can be involved in microtubule-

dependent mRNA transport in neurons (Fujiwara

et al., 2011). MAP1B interactions with these proteins

suggest a role in mRNA transport, likely toward neu-

ritic processes.

There is another MAP1B-interacting group of pro-

teins composed of “membrane-associated proteins”

that are not neurotransmitter receptors, such as the

myelin-associated glycoprotein, the physiological

consequences of which are still unknown (Franzen

et al., 2001). The other integral membrane protein

that binds LC1 is Kidins220/ARMS, a protein that

inhibits neuronal development in cultured neurons

(Higuero et al., 2010). The context and relevance of

MAP1B interactions with transmembrane proteins

remain unknown, but they could be related to the

putative transmembrane domain that has been

described in MAP1B HC (Tanner et al., 2000).

Additionally, another class of MAP1B-binding

proteins contains “cytoskeleton-related proteins,”

such as the cytoskeletal linker dystonin-a2 (Bhanot

et al., 2011). In the dystonin mutant mice, MAP1B

maintains a population of acetylated microtubules in

the perinuclear region, which prevent Golgi fragmen-

tation and allow vesicle trafficking by the secretory

pathway (Ryan et al., 2012).

MAP1B HC interacts with tubulin tyrosine ligase

(TTL), enhancing its activity and promoting the for-

mation of tyrosinated microtubules (Utreras et al.,

2008). In neurons, MAP1B could, therefore, induce

both acetylated and tyrosinated microtubules; differ-

entiation between the two may be explained by com-

partmentalized MAP1B activity. A good candidate

for such regulation could be MAP1B phosphoryla-

tion. Although the MAP1B-TTL interaction is inde-

pendent of GSK3b-dependent phosphorylation, other

post-translational modifications cannot be ruled out.

LIS1 is a MAP that can bind MAP1B, an interac-

tion that is inhibited by Mode I phosphorylation. In

MAP1B KO mice, LIS1 association with microtu-

bules is reduced, whereas its interaction with dynein

is enhanced, resulting in Golgi fragmentation (Jime-

nez-Mateos et al., 2005b).

MAP1B also interacts with the 1 TIPs EB1/3,

sequesters the protein in the cytoplasm and restricts
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EB1/3 binding to microtubules. This is an alternate

indirect mechanism for MAP1B to regulate microtubule

dynamics, as in MAP1B KO mice there is an increase

in the association of EB1/3 with the plus ends of micro-

tubules, which leads to more stable and looped microtu-

bules in the neuronal growth cones (Tortosa et al.,

2013). This is in good agreement with recent reports

showing that MAP1B associates with dynamic microtu-

bules, enhancing their elongation rate (Tymanskyj

et al., 2012). Altogether, these MAP1B interactor pro-

teins suggest that MAP1B acts through multiple mecha-

nisms to regulate microtubule dynamics.

The last class of MAP1B-binding proteins com-

prises “signaling proteins,” molecules involved in

signaling pathways or acting as molecular hubs. One

such interactor is EPAC1, a cAMP-activated GEF for

Rap1b, which seems to use MAP1B as a molecular

chaperone that promotes the GEF activity of EPAC1

in in vitro assays (Borland et al., 2006).

LC1 and LC2 are able to interact with the PDZ

domain of PDZRhoGEF, a GEF for RhoA, regulating

its subcellular localization and reducing its activity, as

the PDZRhoGEF mutant that is unable to interact with

LC1/LC2 has increased RhoA and Cdc42 activity,

which leads to altered cell morphology (Longhurst

et al., 2006). PDZRhoGEF is not the only Rho GEF pro-

tein that interacts with MAP1B. MAP1B-GEF-H1 inter-

action is involved in the regulation of dendritic spines in

long-term cultures of neurons (Tortosa et al., 2011).

LC1 binds to the GEFs for Rac1, STEF, and

TIAM1 (Takefuji et al., 2007; Henriquez et al.,

2012), enhancing TIAM1 GEF activity, which is rele-

vant during axonal growth and synaptic plasticity, as

TIAM1 overexpression can rescue MAP1B KO mice

phenotypes during both processes (Montenegro-Ven-

egas et al., 2010; Benoist et al., 2013).

There are other MAP1B interactors involved in

signaling pathways that are not GEFs, such as osteo-

pontin, a protein with pleiotropic effects that protect

neurons during Parkinson’s disease; however, the

consequences of this interaction are still not deter-

mined (Long et al., 2012).

MAP1B is able to interact with GAPDH (Cueille

et al., 2007b), a classical glycolytic enzyme with a

wide spectrum of nonglycolytic functions, from

microtubule bundling to nuclear RNA export, includ-

ing apoptosis and others (Sirover, 1999). Similar to

osteopontin, consequences of the MAP1B-GAPDH

interaction have not yet been determined.

Finally, LC1 interacts with the adaptor protein a1-

syntrophin, which reinforces the viewpoint that

MAP1B is a protein involved not only just in cyto-

skeleton dynamics but also in the regulation of sev-

eral molecular pathways (Fuhrmann-Stroissnigg

et al., 2012). Figure 2(A,B) shows graphical models

of some MAP1B interacting proteins in axon and

dendrites, respectively.

FUTURE DIRECTIONS

Although MAP1B has been extensively studied since

its discovery, there are some features that remain

unknown, as well as new evidence arguing for novel

functions that are not related to its role as a MAP.

Regarding MAP1B structure, neither the protease that

generates HC and LC1 nor the proteolytic site have

been determined, although the site has been delimited

and good predictions exist for Futsch in

D. melanogaster. Phosphorylation sites also remain to

be discovered, as phospho-proteomic assays have

revealed more sites of phosphorylation in MAP1B

than were previously known, which implies that novel

kinases could phosphorylate MAP1B, modifying our

conception of Mode I and Mode II phosphorylation.

MAP1B expression is developmentally regulated;

however, the increasing evidence of its role in the

adult brain suggests that its levels during adulthood

are enough to regulate synaptic-related processes. It

is not clear which functions are shared or overlap

with MAP1A. This is an interesting area of study, as

MAP1B has been linked to some neurodegenerative

disorders, and now its role in the pathogenesis of

those diseases has begun to be revealed.

Finally, MAP1B interactions with proteins not

related to its role in stabilizing microtubules suggest

that MAP1B may be considered a “signaling protein”

that regulates molecular pathways through key ele-

ments, such as GEFs, adaptor proteins, and others.

The analysis of the MAP1B interactome indicates

that both HC and LC1 interact with other proteins,

although LC1 interactors reported in the literature are

more abundant and diverse. We have grouped

MAP1B binding proteins to shed light on the proc-

esses in which these partners are involved, although

we expect that new interactors will be found, consoli-

dating our belief that MAP1B is a multitasking pro-

tein. In this regard, it will be interesting to consider

whether the main function of MAP1B is to promote

microtubule stabilization or whether this is just one

of the many cellular functions of this protein.
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