
HAL Id: hal-02422532
https://hal.archives-ouvertes.fr/hal-02422532

Submitted on 22 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mechanized Formalization of GraphQL
Tomás Díaz, Federico Olmedo, Éric Tanter

To cite this version:
Tomás Díaz, Federico Olmedo, Éric Tanter. A Mechanized Formalization of GraphQL. CPP 2020
- 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan 2020, New
Orleans, United States. �10.1145/3372885.3373822�. �hal-02422532�

https://hal.archives-ouvertes.fr/hal-02422532
https://hal.archives-ouvertes.fr

A Mechanized Formalization of GraphQL

Tomás Díaz
IMFD Chile
tdiaz@imfd.cl

Federico Olmedo
Computer Science Department

University of Chile & IMFD Chile
folmedo@dcc.uchile.cl

Éric Tanter
Computer Science Department

U. of Chile & IMFD Chile & Inria Paris
etanter@dcc.uchile.cl

Abstract

GraphQL is a novel language for specifying and querying
web APIs, allowing clients to flexibly and efficiently retrieve
data of interest. The GraphQL language specification is un-
fortunately only available in prose, making it hard to de-
velop robust formal results for this language. Recently, Har-
tig and Pérez proposed a formal semantics for GraphQL
in order to study the complexity of GraphQL queries. The
semantics is however not mechanized and leaves certain
key aspects unverified. We present GraphCoQL, the first
mechanized formalization of GraphQL, developed in the
Coq proof assistant. GraphCoQL covers the schema defini-
tion DSL, query definitions, validation of both schema and
queries, as well as the semantics of queries over a graph
data model. We illustrate the application of GraphCoQL by
formalizing the key query transformation and interpretation
techniques of Hartig and Pérez, and proving them correct, af-
ter addressing some imprecisions and minor issues. We hope
that GraphCoQL can serve as a solid formal baseline for
both language design and verification efforts for GraphQL.

CCSConcepts • Information systems→Web services;
Query languages; • Theory of computation→ Semantics

and reasoning.

Keywords GraphQL, mechanized metatheory, Coq.

ACM Reference Format:

Tomás Díaz, Federico Olmedo, and Éric Tanter. 2020. A Mechanized
Formalization of GraphQL. In Proceedings of the 9th ACM SIGPLAN

International Conference on Certified Programs and Proofs (CPP ’20),

January 20–21, 2020, New Orleans, LA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3372885.3373822

∗This work is partially funded by ERC Starting Grant SECOMP (715753).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’20, January 20–21, 2020, New Orleans, LA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7097-4/20/01. . . $15.00
https://doi.org/10.1145/3372885.3373822

1 Introduction

GraphQL is an increasingly popular language to define in-
terfaces and queries to data services. Originally developed
internally by Facebook as an alternative to RESTful Web Ser-
vices [21], GraphQL was made public in 2015, along with
a reference implementation1 and a specification—both of
which have naturally evolved [16]. Since early 2019, as a
result of its successful adoption by major players in indus-
try, GraphQL is driven by an independent foundation2. The
key novelty compared to traditional REST-based services is
that tailored queries can be formulated directly by clients,
allowing a very precise selection of which data ought to be
sent back as response. This supports a much more flexible
and efficient interaction model for clients of services, who
do not need to gather results of multiple queries on their
own, possibly wasting bandwidth with unnecessary data.

The official GraphQL specification, called Spec hereafter,
covers the definition of interfaces, the query language, and
the validation processes, among other aspects. The specifica-
tion undergoes regular revisions by an open working group,
which discusses extensions and improvements, as well as
addressing specification ambiguities. Indeed, as often hap-
pens, the Spec is an informal specification written in natural
language. Considering the actual vibrancy of the GraphQL
community, sustained by several implementations in a vari-
ety of programming languages and underlying technologies,
having a formal specification ought to bring some welcome
clarity for all actors.
Recently, Hartig and Pérez [18] proposed the first (and

so far only) formalization of GraphQL, called H&P here-
after. H&P is a formalization “on paper” that was used to
prove complexity boundaries for GraphQL queries. Having
a mechanized formalization would present many additional
benefits, such as potentially providing a faithful reference
implementation, and serving as a solid basis to prove formal
results about the GraphQL semantics.
For instance, the complexity results of Hartig and Pérez

rely on two techniques: a) transforming queries to equivalent
queries in some normal form and, b) interpreting queries
in a simplified but equivalent definition of the semantics.
However, Hartig and Pérez do not provide an algorithmic
definition of query normalization, let alone proving it cor-
rect and semantics preserving; nor do they prove that the

1https://github.com/graphql/graphql-js
2https://foundation.graphql.org/

https://doi.org/10.1145/3372885.3373822
https://doi.org/10.1145/3372885.3373822

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

simplified semantics is equivalent to the original one when
applied to normalized queries.
This work presents the first mechanized formaliza-

tion ofGraphQL, carried out in theCoq proof assistant [13],
calledGraphCoQL (|græf·co·k el|).GraphCoQL currently in-
cludes the definition of the Schema DSL, query definition,
schema and query validation, and the semantics of queries,
defined over a graph data model as in H&P (§3).

As well as precisely capturing the semantics of GraphQL,
GraphCoQL makes it possible to specify and prove the cor-
rectness of query transformations, as well as other exten-
sions and optimizations made to the language and its algo-
rithms. We illustrate this by studying H&P’s notion of query
normalization (§4). Specifically, we define an algorithmic
presentation of normalization, which we then prove correct
and semantics preserving. We also formalize and prove the
equivalence between the original query evaluation semantics
and the simplified semantics used by H&P for normalized
queries. In the process, we address some imprecisions and
minor issues that Coq led us to uncover.

We discuss the limitations and validation of GraphCoQL,
including its trustworthiness, in §5.We hope thatGraphCoQL
can serve as a starting point for a formal specification of
GraphQL from which reference implementations can be
extracted. Although we have not yet experimented with ex-
traction, GraphCoQL facilitates this vision by relying on
boolean reflection as much as possible.
We briefly introduce GraphQL in §2. We discuss related

work in §6 and conclude in §7. The fundamental challenge
of the Coq formalization of GraphQL in comparison to sim-
ilar formalization efforts (e.g. [1, 2, 4]) resides in the non-
structural nature of most definitions related to GraphQL
queries. In particular, as we will see, both query semantics
and query normalization are defined by well-founded induc-
tion on a notion of query size (§ 3.3).

GraphCoQL and the results presented in this paper have
been developed in Coq v.8.9.1 and are available online on
GitHub3. GraphCoQL extensively uses the Mathematical
Components [20], Ssreflect [15] and Eqations [22] li-
braries. This work is based on the latest GraphQL specifica-
tions, dated June 2018 [16].

2 A Brief Introduction to GraphQL

We briefly introduce GraphQL by means of the running
example that we use in the rest of the presentation. The
example is about a fictional dataset Artists, containing in-
formation about artists and the artworks they have been
involved in, particularly movies and books. We discuss the
dataset schema, the underlying data model and the query
evaluation.

3https://github.com/imfd/GraphCoQL

type Artist
{
id: ID
name: String
artworks(role:Role): [Artwork]

}

enum Role {
ACTOR
DIRECTOR
WRITER

}

union Artwork = Fiction
| Animation
| Book

interface Movie
{
id: ID
title: String
year: Int
cast: [Artist]

}

type Fiction implements Movie
{
id: ID
title: String
year: Int
cast: [Artist]

}

type Animation implements Movie
{
id: ID
title: String
year: Int
cast: [Artist]
style: Style

}

enum Style {
2D
3D
STOPMOTION

}

type Book
{
id: ID
title: String
year: Int
ISBN: String
author: Artist

}

type Query {
artist(id:ID): Artist
movie(id:ID): Movie

}

schema {
query: Query

}

Figure 1. Example of GraphQL schema.

GraphQL schema. The first stepwhen defining aGraphQL
API is to define the service’s schema, describing the type
system and its capabilities. The type system describes how
data is structured and precisely what can be requested and
received. A schema consists of a set of types, which can
have declared fields. Only fields that are part of such type
definitions can be accessed via a GraphQL query. In con-
trast to traditional data management systems, field accesses
in GraphQL are handled by the backend via user-defined
functions (called resolvers).

Figure 1 depicts the schema for theArtists dataset, which
contains artists and their artworks. The definition is done
using theGraphQL Schema Definition Language. The object
type Artist declares three fields: an identifier, a name, and
a list of artworks in which the artist has participated. The
list of artworks is declared of type [Artwork]. Note that
the field may receive an argument, role, which can be used
to select only those artworks for which the author plays a
certain role, such as being the director. Possible roles are
modeled with the enum type Role, containing three scalar
values. An Artwork is a disjoint union of fictional movies,
animated movies and books. Both fictional and animated
movies are defined as object types, namely Fiction and
Animation, implementing the same interface type Movie.4
An object implementing an interface may add more fields,
such as the field style in the type Animation. To model the
animation style, we use the enum type Style containing
4Note that GraphQL still requires objects to redeclare the implemented
fields.

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Figure 2. Example of GraphQL graph.

three scalar values. We define books with the object type
Bookwhich, for simplicity, does not implement any interface.
Finally, GraphQL requires that the schema includes a

query type, which, for convenience, we call Query. This type
is the same as a regular object type5, however it is special
in the sense that it represents the entry point from where
users have to start querying the API and explore the dataset.
In this API, a user may only access the Artists dataset by
requesting a particular artist or movie (with a given id).

Graph data model. The complete Artists dataset can be
represented with the graph in Figure 2. Nodes in the graph
represent object values as defined in the schema; they are
tagged with the corresponding object type and include a
set of properties (key-value pairs) that describe the object’s
content. Edges between nodes are accompanied with a label
that indicates the relationship they establish. For instance,
the central node in the graph represents an object of type
Artist. The node properties say that the artist is called
Tom Hanks and his id is 1000. The node’s outgoing edges
indicate that the artist performed as an actor in the movies
Forrest Gump and Toy Story (represented by the leftmost and
rightmost nodes, respectively), and that he was the author
of book Uncommon Type (represented by the bottommost
node).

GraphQL query and response. With the schema and data
defined, it is possible to query the service. As previously
hinted, GraphQL queries are simply requests over the fields
of types defined in the schema. They have a tree structure,
similar to JSON, which follows the fields and relations estab-
lished between the types in the type system.

5The query type can e.g. have any custom name and even implement
interfaces.

query {
artist[id:1000] {
name
artworks[role: ACTOR] {
title
. . . on Animation {
style

}
. . . on Fiction {
releaseYear:year

}
}

}
}

{
"artist": {
"name":"Tom Hanks",
"artworks":[

{
"title": "Toy Story",
"style": "3D"

},
{
"title": "Forrest Gump",
"releaseYear": 1994

}
]

}
}

Figure 3. GraphQL query (left) and its response (right).

To illustrate this, we define the query in Figure 3. Intu-
itively, the query is asking for the name of the artist with id
1000, as well as the title and some additional information of
the artworks where he performed as an actor. The request
starts with the keyword query, which allows proceeding
with any of (and asmany as) the dataset entry points declared
by the query type Query. Concretely, we select field artist
and include the value of argument id to indicate which artist
we want to retrieve. Because the field is of an object type,
namely Artist, we can continue making requests over the
fields of this type, precisely specifying the desired informa-
tion about the fetched artist. In this case, the query continues
with the field name and the field artworks. The argument
role of field artworks is used to restrict the search to those
artworks where the artist performed as an actor. For such
artworks, we request on one hand their title and on the other
hand further information which depends on the concrete
kind of artwork. (Recall that union type Artwork is com-
posed by the object types Book, Fiction and Animation).
For animated movies, we request the animation style, while
for fictional movies, we request the year of release; for books,
we require no related information. This is achieved by the
pair of selections ... on Animation { style } and ... on
Fiction { releaseYear:year }, called inline fragments. In
the latter, the field selection releaseYear:year introduces
a field alias, indicating that in the response the original field
year should be renamed to releaseYear. Field aliasings
are particularly relevant when validating and transforming
queries, and originated one of the imprecisions uncovered
in H&P’s definitions (see § 4.5).
This query is then evaluated, resulting in the response

depicted on the right of Figure 3. Observe that the response
structure closely resembles the query, which is a key usabil-
ity asset of GraphQL. While data accesses are handled by
resolvers in the backend, the query evaluation process of
GraphQL can be intuitively understood by considering a
graph data model. In such a model, the selections in a query
indicate what edges to traverse in the graph and what prop-
erties to access on each node. In this manner, starting from

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

TypeDefinition ::=
| scalar name

| type name (implements name
+)? {Field+}

| interface name {Field+}
| union name = name (|name)∗

| enum name {name
+}

Field ::= name (Arg+)? : Type

Arg ::= name : Type

Type ::=
| name

| [Type]

Inductive TypeDefinition : Type :=
| ScalarTypeDefinition (name : Name)
| ObjectTypeDefinition (name : Name)

(interfaces : seq Name)
(fields : seq FieldDefinition)

| InterfaceTypeDefinition (name : Name)
(fields : seq FieldDefinition)

| UnionTypeDefinition (name : Name)
(members : seq Name)

| EnumTypeDefinition (name : Name)
(members : seq EnumValue).

Inductive type : Type :=
| NamedType : Name -> type
| ListType : type -> type.

Figure 4. Definition of GraphQL types: (left) Spec grammar; (right) GraphCoQL definition.
The (·)? notation denotes optional attributes.

the node with type Query, the field artist(id:1000) indi-
cates that we are looking for an adjacent node that can be
reached after traversing an edge whose label matches the
field and id. The first step then takes the evaluation process
to the central node, of type Artist. From there, it accesses
the value of the node’s property matching the field name and
then continues navigating the graph in search of the artist’s
artworks.

To summarize, in order to define a GraphQL service it is
necessary to define the schema that describes the service’s
type system, to which both the underlying dataset and the
queries must adhere. GraphQL queries consist of selections
over fields and types defined in the schema, and their re-
sponses closely match the queries tree structure.

3 GraphCoQL

In this section we describe our formalization of GraphQL
in Coq. We start by defining a schema and its properties
(§3.1), then the graph data model (§3.2), and finally present
queries (§3.3) and their semantics (§3.4). We highlight key
connections with the Spec [16] and H&P [18] along the way,
and end this section with a discussion of various design
considerations (§3.5).

3.1 Schema

We formalize schemas and type definitions following the
Spec. A schema is represented as a record, containing a list of
type definitions and a root query type that specifies the entry
points to the dataset. A Name is simply a string, according to
the Spec.

Record graphQLSchema := GraphQLSchema {
query_type : Name;
type_definitions : seq TypeDefinition

}.

Schemas may also include additional root types for speci-
fying mutations and subscriptions (cf. [16, §3.2.1]). These
operations are, however, out of the scope of this work.
Type definitions in GraphCoQL closely follow the Spec,

as depicted in Figure 4. A type may be a scalar type, an
object type, which possibly implements a set of interfaces, an
interface type, a union type or an enumeration type. Object
and interface type definitions comprise a set of fields; union
types are defined by a set of type names and enumeration
types by a set of scalar values.

The mere syntax of schema and types does not ensure that
only valid schemas are defined. For instance, one can build
an object that implements scalar types or use a nonexistent
type as the root query type. To avoid this problem, the Spec
provides several validation rules (cf. [16, §3]). We refer to
these rules as the well-formedness condition of a GraphQL
schema:6

Definition 3.1. A GraphQL schema is well-formed if:
• its query root type (is defined and) is an object type,
• there are no duplicated type names, and
• every type definition is well-formed.

In GraphCoQL, this is captured by the Boolean predicate
below.

Definition is_a_wf_schema (s : graphQLSchema) : bool :=
is_object_type s s.(query_type) &&
uniq s.(type_names) &&
all is_a_wf_type_def s.(type_definitions).

The notion of well-formedness for type definitions requires
e.g. that the members of union types are existent object
types and that object and interface types contain at least one
field. Note that the Spec syntactically requires certain sets
of elements to be non-empty (see the grammar on the left
of Figure 4). This requirement is not enforced at the level of
6In H&P, this condition is referred to as the consistency of schemas.

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

a type definition in GraphCoQL, but is instead part of the
well-formedness check. Full definitions can be found in our
Coq development.

For convenience, we encapsulate schemas with their well-
formedness proof in a single structure.

Record wfGraphQLSchema := WFGraphQLSchema {
schema : graphQLSchema;
_ : schema.(is_a_wf_schema);

}.

3.2 Data Model

Following H&P, we adopt a data model based on graphs,
where datasets are modeled as directed property graphs, with
labeled edges and typed nodes. Nodes contain a type and a
set of properties (key-value pairs) and edges contain single
labels. Properties and labels may contain a list of arguments
(key-value pairs). Values are either scalars or lists of values.

Definition 3.2. A GraphQL graph is defined by:
• a root node, and
• a collection of edges of the form (u, f[α], v), where
u,v are nodes and f[α] is a label with arguments.

To model graphs in Coq, we first model values. This requires
fixing a domain of scalar values with decidable equality.

Variable Scalar : eqType.

Inductive Value : Type :=
| SValue : Scalar -> Value
| LValue : seq Value -> Value.

Labels, nodes and graphs are all represented as records:

Record label :=
Label { lname : string; args : seq (string * Value) }.

Record node :=
Node { ntype : Name; nprops : seq (label * Value) }.

Record graphQLGraph :=
GraphQLGraph { root : node;

edges : seq (node * label * node) }.

Note that graphs are modeled using sequences—rather
than sets—of edges. In our experience, this design decision
led to a simpler formalization, as verifying edge unicity ex-
trinsically is straightforward.
Intuitively, the dataset modeled by a GraphQL graph is

built following a schema. However, the definition ofGraphQL
graph above is fully independent of any schema. To capture
this relationship, we employ the following notion of confor-
mance, partially based on H&P:

Definition 3.3. A GraphQL graph G conforms to a schema
S if:

• the types of G root node and S query root coincide,
• every node of G conforms to S, and

• every edge of G conforms to S.

The conformance of nodes validates that a node’s type is
declared as an object type in the schema and that its prop-
erties conform. In turn, a property conforms if its key and
arguments are defined in a field in the corresponding ob-
ject type, and any value, either in an argument or the prop-
erty’s value, is valid w.r.t. the expected types described in
the schema. For instance, if a field has type Float, the Spec
dictates that a node property matching the field must have
a value that represents a double-precision fractional value
(cf. [16, §3.5.2]). To model this validation of values, we pa-
rameterize the Coq development with a Boolean predicate
check_scalar : graphQLSchema → Name → Scalar → Bool.
The conformance of edges imposes some final natural

restrictions on graphs. For instance, given an edge, it requires
that the label match some field in the type of the source node,
and that the type of the target node be compatible with the
type of the matched field.
It is worth noting that, in accordance with the flexibility

advocated by graph databases, the notion of conformance
does not require that a graph contain full information about
the represented objects. More precisely, a node need not
provide values for all the fields in its type. For instance, in
our running example in Figure 2, the bottommost node of
type Book need not contain a property defining the book
title.
With this in mind, the notion of conformance of a graph

w.r.t. a schema is formalized as follows:

Variable check_scalar :
graphQLSchema -> Name -> Scalar -> bool.

Definition is_a_conforming_graph
(s : wfGraphQLSchema)
(g : graphQLGraph) : bool :=

root_type_conforms s g.(root) &&
edges_conform s g &&
nodes_conform s g.(nodes).

Similarly to GraphQL schemas, we define a structure that
encapsulates the notion of a conformed graph, containing a
graph and a proof of its conformance to a particular schema.

Record conformedGraph (s : wfGraphQLSchema) :=
ConformedGraph {

graph : graphQLGraph;
_ : is_a_conforming_graph s graph check_scalar }.

3.3 Queries

To define queries we faithfully follow the Spec, as shown
in Figure 5. A query consists of a list of selections, and can
optionally be named. A selection σ can be a single field with
arguments (f[α]), a field with arguments followed by a set
of subselections (f[α]{σ}) or an inline fragment comprising

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

a type condition and a set of subselections (... on t {σ}).
Fields can be aliased (a:f[α], a:f[α]{σ}). For notational
simplicity, when a field selection contains an empty list of
arguments, we omit it and simply write the field name.

Intuitively, a query has a tree structure, where leaves cor-
respond to fields of scalar types and inner nodes correspond
to either fields of some object type or abstract type (i.e. an
interface or union), or to inline fragments that condition
when their subselections are evaluated.

Observe that the definition of queries in Figure 5 is not
bound to any schema, thus requiring a separate validation
process to ensure that they adhere to a given schema. We
introduce the notion of query conformance, based on a set of
validation rules scattered throughout the Spec (cf. [16, §5]).
The validity of queries depends on the validity of their selec-
tion sets, which in turn requires the notion of type in scope

query {
movie[id:2000] {

. . . on Animation {
title
style

}
. . . on Fiction {
title
style

} } }

at a given selection location.
To illustrate this, consider the
query to the right with two
occurrences of field title.
In the first occurrence, the
field is requesting informa-
tion about the Animation
type, while in the second
it is requesting information
about the Fiction type. The
distinction is important because some field selections might
be valid in some contexts but not in others. For instance, this
is the case of field style, which is valid in the scope of the
Animation type but it is invalid in the scope of the Fiction
type, as the Fiction type does not contain any such field.
Now that we have clarified the notion of type in scope,

we define the notion of conformance for selection sets.

Definition 3.4. A GraphQL selection set σ conforms to a
schema S over a type in scope ts if:

• every selection in σ is well-formed w.r.t ts, and
• any two field selections in σ are type-compatible and
renaming-consistent.7

The first rule ensures that every selection is well-formed
on its own, w.r.t. the type in scope. This requirement depends
on the kind of selection. For instance, if the selection is a
field, the rule checks that the field is part of the type in scope
and that its arguments are correctly provided; if the selection
is an inline fragment, then the type condition must share
at least one subtype with the type in scope. This rule also
includes validating the values used in arguments, similarly
to the case of graphs.
In the second rule, the type-compatibility requirement

forbids the selection set to produce results of different types
for the same key; e.g. the following query

7In the Spec, these two notions roughly correspond to SameResponseShape

and FieldsInSetCanMerge, respectively (cf. [16, §5.3.2]).

φ ::= query (name)? {σ}

σ ::= f[α]
| a:f[α]
| f[α] {σ}
| a:f[α] {σ}
| ... on t {σ}

Record query :=
Query { qname : option string;

selection_set : seq Selection }.

Inductive Selection : Type :=
| SingleField (name : Name)

(arguments : seq (Name * Value))
| SingleAliasedField (alias : Name)

(name : Name)
(arguments : seq (Name * Value))

| NestedField (name : Name)
(arguments : seq (Name * Value))
(subselections : seq Selection)

| NestedAliasedField (alias : Name)
(name : Name)
(arguments : seq (Name * Value))
(subselections : seq Selection)

| InlineFragment (type_condition : Name)
(subselections : seq Selection).

Figure 5. Definition of GraphQL queries: (top) Spec gram-
mar; (bottom) GraphCoQL definition.
In the Spec grammar, symbols f, a and t correspond to identifiers for field
name, field alias, and type condition, respectively. Symbol α corresponds
to a key-value pair.

query {
artist[id:1000] {

artworks[role:ACTOR] {
. . . on Animation {
title

}
. . . on Fiction {
title:year

} } } }

// Possible invalid output
{

"artist": {
"artworks": [
{ "title": "Toy Story" },
{ "title": 1994 }
]

}
}

is invalid because its evaluation produces results with the
same key (title) but associated to values of different types
(i.e. string and integer).

Formally, the definition of field type-compatibility is re-
cursive. Two nested field selections are type-compatible if
whenever they have the same response name, any two fields
in the concatenation of their subselections (possibly reached
traversing inline fragments) are also type-compatible. Two
single field selections are always type-compatible, unless
they have the same response name and different type.

Finally, the renaming-consistency condition ensures that
fields with the same response name refer to the same piece
of information. Consider, for instance, the following query:

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

query {
movie[id:2000] {

title
. . . on Animation {
title:style

} } }

The query is considered invalid because the fields with re-
sponse name title both refer to distinct pieces of informa-
tion; the first occurrence refers to the field title of a Movie,
while the second occurrence refers to the field style of an
Animation.

Formally, two field selections are renaming-consistent if
whenever they have the same response name and lie un-
der types in scope with at least one common subtype, they
have the same (actual) name, the same arguments and any
two fields in the concatenation of their subselections (possi-
bly reached traversing inline fragments) are also renaming-
consistent. In the Spec, the last two rules are defined as a
single validation rule (cf. [16, §5.3.2]). We chose to split them
because it simplified both their implementation and reason-
ing about them.8

With the notion of conformance for selection sets at hand,
the notion of conformance for queries is straightforward:

Definition 3.5. A GraphQL query φ conforms to a schema
S if its selection set conforms to S over the query root type.

In GraphCoQL, this is captured by the following predicates:

Definition query_conforms
(s : wfGraphQLSchema) (φ : query) : bool :=

selections_conform s s.(query_type) φ.(selection_set).

Definition selections_conform (s : wfGraphQLSchema)
(ts : Name) (σs : seq Selection) : bool :=

let σs_with_scope := [seq (ts, σ) | σ <- σs] in
all (is_consistent ts) σs &&
σs_with_scope.(are_type_compatible) &&
σs_with_scope.(are_renaming_consistent).

As a technical observation, most of our recursive defini-
tions over selection sets are well-founded according to the
following notion of size:

Definition 3.6 ([18]). The size of a selection σ and selection
set σ , noted |·|, is recursively defined as:

|f[α]| = |a:f[α]| = 1
|f[α] {σ}| = |a:f[α] {σ}| = |... on t {σ}| = 1 + |σ |

|σ | =
∑
σi ∈ σ |σi |

8GraphCoQL uses an optimized version of the algorithm in the Spec. Re-
cently, a team at XING developed another optimized algorithm [29].

3.4 Semantics

Now we have all the prerequisites to define the semantics
of GraphQL queries and their selection sets. We begin by
briefly examining the responses generated by executing
queries and then we give an informal description of the
semantics, finishing with the formal definition.

Roughly speaking, a GraphQL response maps keys (field
names) to response values. We model response values with a
tree structure, similar to JSON. Concretely, a response value
can be either a value in Scalar or the distinguished value
null, an object mapping keys to other response values, or
an array of response values. Full definition is provided in
Figure 6.
As a first step to define the semantics of queries, we ob-

serve that it is not compositional, in the sense that the result
of a sequence of selections is not obtained by simply con-
catenating the results of individual selections. Therefore, the
evaluation function takes as input a (whole) selection set,
rather than single selections.
Informally, the evaluation of a selection set represents a

navigation over a graph, starting from the root node, travers-
ing its edges and collecting data from its nodes. To build
the response, the values in nodes are coerced into proper
response values. If this coercion fails or the data requested by
the selection set is not present in the graph, the evaluation
function simply returns null.

This validating transformation from values within graph
nodes into values within responses is captured by the func-
tion complete_value (cf. [16, §6.4.3]). To carry out the trans-
formation the function relies on two auxiliary functions:
coerce that coerces scalar values and check_scalar that checks
whether the resulting values have the expected type accord-
ing to the schema.9

With this in mind, we can now define the evaluation func-
tion of selection sets.

Definition 3.7. Let G be a graph and σ a selection set, both
conforming to a schema S. The evaluation JσKu

G
of σ over

graph G from node u ∈ nodes(G) is defined by the rules in
Figure 7. The evaluation function is parametrized by a co-
ercing function coerce : Scalar → Scalar and a value valida-
tion predicate check_scalar : graphQLSchema → Name →

Scalar → Bool.

In order not to clutter the notation, we omit the underly-
ing schema when defining JσKu

G
in Figure 7. The schema is

implicitly used e.g. when invoking function complete_value.
The definition starts with the base case of empty selection

set (1), which results in an empty response. Single fields (2)
correspond to accessing a node’s property that matches the
field name and using function complete_value to coerce and

9Function check_scalar is also used for verifying the conformance of graphs
w.r.t. schemas; see §3.2.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

ρ ::= v
| {(f : ρ) . . . (f : ρ)}
| [ρ . . . ρ]

Inductive ResponseValue : Type :=
| Leaf : option Scalar -> ResponseValue
| Object : seq (Name * ResponseValue) -> ResponseValue
| Array : seq ResponseValue -> ResponseValue.

Definition GraphQLResponse := seq (Name * ResponseValue).

Figure 6. Definition of GraphQL responses: (left) grammar à la JSON; (right) GraphCoQL definition.
The keywords v and f represent leaf values and keys in a key-value pair, respectively.

J·Ku
G

: seq Selection → GraphQLResponse

(1) J·Ku
G
= [·]

(2) Jf[α] :: σKu
G
= f:(complete_value(ftype(u.type, f), u.property(f[α]))) :: Jfilter(f,σ)Ku

G

(3) Jf[α] {β} :: σKu
G
=

f:[map (λvi . {Jβ ++merge(collect(u.type, f,σ))Kvi
G
}) u.neighborsG(f[α])] :: Jfilter(f,σ)Ku

G

if ftype(u.type, f) = list and {v1, . . . ,vk } = {vi | (u, f[α],vi) ∈ edges(G)}

f : {Jβ ++merge(collect(u.type, f,σ))Kv
G
} :: Jfilter(f,σ)Ku

G

if ftype(u.type, f) , list and (u, f[α],v) ∈ edges(G)

f:null :: Jfilter(f,σ)Ku
G

if ftype(u.type, f) , list and �v s.t. (u, f[α],v) ∈ edges(G)

(4) J... on t {β} :: σKu
G
=

{
Jβ ++ σKu

G
if fragment_type_applies(u.type, t)

JσKu
G

otherwise

Figure 7. Semantics of GraphQL selection sets, adapted from H&P and the Spec.
As usual, notation x :: y on the left denotes pattern matching deconstruction of a list into its head x and tail y ; on the right, it denotes list construction.
property and type are accessors to a node property and type. neighbors gets the neighbors of a node whose edge is labeled with the given field. edges gets the
set of edges of a graph. ftype retrieves the type of a field from the underlying schema. list represents the list type (over any other type).

validate the requested value. This function is implemented
by simply calling coerce and check_scalar .

Nested fields (3) represent a traversal to neighboring nodes:
the evaluation function searches for nodes that are connected
to the current node by an edge whose label matches the field
name and then evaluates the subselections on these nodes.
If the field has list type, there is no constraint on the num-
ber of such neighboring nodes to recursively continue the
evaluation. On the contrary, if the field does not have list
type, then there should be exactly one neighboring node to
successfully continue the recursive evaluation on this node
(the case of multiple neighboring nodes is discarded by the
conformance assumption); if there is no neighbor, the result
is considered null.
To avoid the duplication of responses, rules (2) and (3)

handling the evaluation of fields ensure that within a selec-
tion set, fields with the same response name are evaluated
only once. This is achieved by collecting and merging all
fields in subsequent selections that have the same response
name as the current field being evaluated (using auxiliary
functions collect and merge) and removing these fields from
subsequent selections (using auxiliary function filter), before
they are evaluated.

Finally, inline fragments (4) simply condition whether
their subselections are evaluated (in the current node) or not.
The decision is based on the fragment_type_applies predicate
(cf. [16, §6.3.2]) that verifies whether the guard type matches
the current node type or supertype thereof.10

For space reason, Figure 7 does not present aliased fields.
They are evaluated the same way as unaliased fields, but
differ in that the produced key-value pairs are renamed ac-
cordingly.

Definition 3.8. Let G be a graph and φ a query, both con-
forming to a schema S. The result of evaluating φ over G is
obtained by evaluating the selection set of φ from the root
node of G, that is, JφK

G
= Jφ.selection_setKG .root

G
.

In GraphCoQL we have:

Definition execute_query (s : wfGraphQLSchema)
(g : conformedGraph s check_scalar)
(φ : query) :=
execute_selection_set s check_scalar g coerce

g.(root) φ.(selection_set).

10Function fragment_type_applies is called does_fragment_type_applies in
the Spec.

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

3.5 Design considerations and discussion

We now discuss some design considerations that manifested
when developing GraphCoQL, in particular with respect
to the two existing sources of information on GraphQL,
namely the Spec and H&P.

Representation choices. The definition of schemas in H&P
relies on defining sets of field names, types and values, and us-
ing a number of functions to relate the different elements. For
example, the object types of the schema from Figure 1 are de-
fined as the setOT = {Artist, Fiction,Animation, Book,Query}

and their fields are definedwith a functionfieldsS : OT → 2F ,
where F is a set of field names. In contrast,GraphCoQL uses
a more data-structure centric approach, in which schemas
are records. While H&P’s approach simplifies many valida-
tion rules, our approach is closer to the schema definition
language from the Spec (which did not exist yet when H&P
was published). Another advantage of the approach we take
is that it is closer to an actual implementation and hence
the definitions could be directly extracted as a reference
implementation. The same observation holds for the data
model.

Schema validation. The definition of well-formedness of
a schema given by H&P does not capture all the validation
rules established by the Spec. In particular, it does not prop-
erly account for arguments of implemented fields in objects
implementing interfaces. A corrected version of H&P has
been proposed recently by Hartig and Hidder [17], which
coincides with both the Spec and GraphCoQL.

Data model. We observe that both H&P and GraphCoQL
have a slightly limited graph model that does not entirely
describe the universe of a GraphQL service: graphs cannot
model nested lists, when the underlying type is an object or
abstract type.11 For instance, these semantics cannot account
for a selection over a field whose type is [[Artist]]. The
underlying question is how to interpret such nested lists in
a graph-based data model.
The importance of this limitation in practice remains to

be assessed. Recent empirical studies that analyze the struc-
ture of GraphQL schemas over a collection of industrial and
open-source projects provide some insights such as the most
common object types, which indeed do not have nested list
types [19, 27]. Regardless, we believe that while this limita-
tion might turn out problematic for an extracted reference
implementation of GraphQL, it should play little role in
metatheoretical results, as those studied in §4.

Responses. The Spec only states that responses are a map
from keys to values, but encourages the ordering of selec-
tions to be preserved (cf. [16, §7.2.2])—the similarity between

11The situation is worse in H&P, which cannot model nested list types for
scalar types.

query selections and responses being one of GraphQL’s at-
traction for programmers. We embrace this recommendation:
modeling of responses as trees allows us to preserve similar-
ity w.r.t. selections and ordering of response values.
The downsides of this representation choice are possible

duplication of response names, and access cost. We establish
unicity of names by extrinsic proofs, and consider that the
access cost is not of primary importance in this work.

Query semantics. The query semantics ofGraphCoQL (Fig-
ure 7) is similar to the Spec in that it performs a collection
of fields at the level of selections. In contrast, H&P adopt
a different formulation in which collection is done at the
level of responses, i.e. as a post-processing phase. Initially,
we experimented with the H&P approach in order to be as
close as possible to their formalization. However, the non-
structurally recursive nature of both the transformations and
the post-processing function made reasoning about semantic
equivalence of queries very hard. In contrast, we found that
following the Spec approach made such reasoning in Coq
much more convenient.
Finally, while the Spec presents the query evaluation se-

mantics in two separate phases, first grouping fields by name
and then evaluating each group, we define the whole query
evaluation in a single pass. The technical reason is that fol-
lowing the Spec approach makes Eqations produce a rea-
soning principle for the query evaluation function that is too
large and inconvenient to work with. With our presentation,
the reasoning principle is more concise and adequate, due to
a more localized handling of inline fragments.

4 Case Study: Normalization

To illustrate how GraphCoQL can be used to reason about
query transformations, we study the normalization process
proposed by Hartig and Pérez (H&P) [18], which is funda-
mental for the complexity results they prove. These results
are based on two premises: a) every query can be normalized
to a semantically-equivalent query; b) on such queries, one
can use a simplified evaluation function. For normalization,
H&P provide a set of equivalence rules to establish the ex-
istence of a normal form. However they do not provide an
algorithm for query normalization, let alone prove it cor-
rect and semantics preserving. Likewise, they do not prove
the equivalence of the simplified semantics when applied to
normalized queries.
In this section, we show how to define the property of

being in normal form inGraphCoQL, define a normalization
procedure, and prove it both correct and semantics preserv-
ing. Finally, we define the simplified semantics given byH&P,
and prove it equivalent to the original semantics (§ 3.4) when
applied to normalized queries.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

4.1 Defining Normal Forms

The notion of normal form introduced by Hartig and Pérez
consists of the conjunction of two conditions: being in ground-
typed normal form and being non-redundant.

Ground-typednormal form. Informally, a query is in ground-
typed normal form, or grounded for short, if any two selec-
tions within the same selection set are of the same kind,
either field selections or inline fragments. Consider for in-
stance the queries below:

// Not grounded query
query {
movie[id:2000] {

title
. . . on Fiction {

year
}

}
}

// Grounded query
query {

movie[id:2000] {
. . . on Animation {
title

}
. . . on Fiction {
title
year

} } }

The query on the left is not grounded because the selection
set under field movie contains two selections of different
kind. The query on the right represents a grounded version
thereof.

Definition 4.1 ([18]). AGraphQL selection setσ is in ground-
typed normal form if it can be generated by the following
grammar, where t is an object type:

σ ::= χ . . . χ χ ::= f[α]
| ψ . . .ψ | a:f[α]

| f[α] {σ}
ψ ::= ... on t {χ . . . χ} | a:f[α] {σ}

A GraphQL query φ is in ground-typed normal form if its
selection set is in ground-typed normal form.

Non-redundancy. Informally, the notion of non-redundancy
further constraints that of groundedness by forbidding queries
that induce a repeated evaluation of selections. For example,
consider the two queries below:

// Redundant query
query {
movie[id:2000] {

. . . on Fiction {
title
title

}
. . . on Fiction {
year

} } } }

// Non-redundant query
query {

movie[id:2000] {
. . . on Fiction {
title
year

}
}

}

The query on the left is redundant for two reasons: it requests
the field title twice, and it contains multiple inline frag-
ments with the same type condition. Conversely, the query
on the right is semantically equivalent and non-redundant.

Definition 4.2 (Adapted from [18]). A GraphQL selection
set σ is non-redundant if:

• there is at most one field selection with a given re-
sponse name,

• at most one inline fragment with a given type condi-
tion, and

• subselections are non-redundant.

A GraphQL query φ is non-redundant if its selection set is
non-redundant.

4.2 Defining Normalization

The normalization procedure of selection sets is described
in Figure 8. It is parametrized by a type in scope and acts
as follows. Whenever a field selection is encountered (2-
3), normalization removes any field that shares the same
response name. This step ensures the non-redundancy of
the resulting selection set. However, in order not to lose
information during filtering, normalization collects fields
with the same response name and merges their subselections
in the first occurrence (3). This also serves to preserve the
order of selections.

Finally, to obtain a selection in ground-typed normal form,
normalization performs two separate steps, depending on
whether the selection is a field (3) or an inline fragment (4).
For the former, the process either directly normalizes the
subselections or wraps them with inline fragments, based
on the field’s type. For the latter, the process either removes
fragments or lifts their subselections, depending on whether
they apply to the given type in scope.
To normalize a query, we simply normalize its selection

set, setting the initial type in scope to the query root type of
the underlying schema.

Example. We illustrate the normalization procedure with
the example below.

// Query not in normal form
query {

. . . on Query {
movie[id:2000] {

title
}

}
movie[id:2000] {

title
} }

// Normalized query
query {

movie[id:2000] {
. . . on Animation {
title

}
. . . on Fiction {
title

}
} }

On the left we have the original query and on the right its
normalized version. Subselections from fragment with type
condition Query are lifted and the multiple occurrences of
field movie are merged into a single occurrence. Since the
type of the field movie is the abstract type Movie, the subse-
lections are wrapped in fragments for each concrete object
subtype, namely Animation and Fiction. The normalized
query is both non-redundant and in ground-typed normal
form.

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Nts(·) : seq Selection → seq Selection

(1) Nts(·) = [·]

(2) Nts(f[α] :: σ) = f[α] :: Nts(filter(f,σ))

(3) Nts(f[α] {β} :: σ) =

f[α] {N

ftype(ts,f)(β ++merge(collect(ts, f,σ)))} :: Nts(filter(f,σ)) if is_object_type(ftype(ts, f))
f[α] {map (λti on ti {Nti

(β ++merge(collect(ts, f,σ)))}) get_possible_types(ts)} :: Nts(filter(f,σ))

otherwise

(4) Nts(... on t {β} :: σ) =

{
Nts(β ++ σ) if fragment_type_applies(ts, t)
Nts(σ) otherwise

Figure 8. Normalization procedure for GraphQL selections.
is_object_type checks whether the given type is an object type in the schema. get_possible_types get all object subtypes of the given type.

4.3 Correctness and Semantic Preservation

We now establish two fundamental results about the nor-
malization procedure. The first result states that the normal-
ization procedure is correct in that it does indeed produce
queries in normal form.

Lemma normalized_selections_are_in_nf
(s : wfGraphQLSchema) (ts : Name) (σs : seq Selection) :

are_in_normal_form s (normalize_selections s ts σs).

Corollary normalized_query_is_in_nf
(s : wfGraphQLSchema) (φ : query) :

is_in_normal_form s (normalize s φ).

The proof of the main lemma proceeds by well-founded in-
duction over the size of the selection set and relies on some
auxiliary lemmas about subtyping. Each of the two condi-
tions (groundedness and non-redundancy) are established
separately.

The second result states that the normalization procedure
is semantics-preserving in that a normalized query has the
same evaluation semantics as the original query from which
it was derived. Formally, this requires proving that evaluating
a query and its normalized version from the root node of
a graph both yield the same result. To be able to establish
this equivalence, we must however consider a generalized
statement that quantifies over every node of the graph.

Lemma normalize_selections_preserves_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(σs : seq Selection) (u : node) :
u \in g.(nodes) ->
execute_selection_set s check_scalar g coerce

u (normalize_selections s u.(ntype) σs) =
execute_selection_set s check_scalar g coerce

u σs.

Corollary normalize_preserves_query_semantics
(s : wfGraphQLSchema) (g : conformedGraph s)
(φ : query) :

execute_query s check_scalar g coerce (normalize s φ) =
execute_query s check_scalar g coerce φ.

Similarly to the previous result, the proof of the main lemma
above proceeds by well-founded induction over the size of
the selection set.

4.4 Simplified Semantics of Normalized Queries

One of the main properties of queries in normal form is
that they produce non-redundant responses. This in turn
permits defining a simplified evaluation function whichH&P
crucially use to establish their complexity results. However,
H&P do not formally prove that this simplified semantics
is equivalent to the original, when considering normalized
queries.

We define the simplified semantics L·M
G
of H&P as shown

in Figure 9 and prove that, for queries in normal form, both
LφM

G
and JφK

G
produce the same response.

Lemma exec_sel_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(σs : seq Selection) (u : node) :
are_in_normal_form s σs ->
execute_selection_set s check_scalar g coerce

u σs =
simpl_execute_selection_set s check_scalar g coerce

u σs.

Corollary exec_query_eq_simpl_exec
(s : wfGraphQLSchema) (g : conformedGraph s)
(φ : query) :
is_in_normal_form s φ ->
execute_query s check_scalar g coerce φ =
simpl_execute_query s check_scalar g coerce φ.

The proof is once again performed by induction over the size
of the selection set.

4.5 Observations

Mechanizing normalization and the simplified semantics, as
well as associated properties and proofs, led us to identify
some issues inH&P’s definitions. While these are admittedly
minor, they confirm the value of mechanized formalization.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

L·Mu
G

: seq Selection → GraphQLResponse

(1) L·Mu
G
= [·]

(2) Lf[α] :: σMu
G
= f:(complete_value(ftype(u.type, f), u.property(f[α]))) :: LσMu

G

(3) Lf[α] {β} :: σMu
G
=

f:[map (λvi . {LβM

vi
G
}) u.neighborsG(f[α])] :: LσMu

G

if ftype(u.type, f) = list and {v1, . . . ,vk } = {vi | (u, f[α],vi) ∈ edges(G)}

f:{LβMv
G
} :: LσMu

G
if ftype(u.type, f) , list and (u, f[α],v) ∈ edges(G)

f:null :: LσMu
G

if ftype(u.type, f) , list and �v s.t. (u, f[α],v) ∈ edges(G)

(4) L... on t {β} :: σMu
G
=

{
Lβ ++ σMu

G
if fragment_type_applies(u.type, t)

LσMu
G

otherwise

Figure 9. Simplified semantics for selections in normal form, adapted from [18].

First, some queries are considered non-redundant byH&P
although they actually produce redundant results. A simple
example is the following query:

query {
movie[id:2000] { title }
movie:movie[id:2000] { title } }

which produces two repeated values. This occurs because
H&P’s definition of non-redundancy does not consider the
case when an unaliased field and an aliased field share the
same response name. This cornercase is properly handled
in GraphCoQL, by grouping fields by their response names.
We discovered this case when proving the equivalence of the
simplified semantics.

Second, using H&P’s equivalence rules, some queries can-
not be normalized. For instance:

query {
movie[id:2000] { title }
. . . on Query { movie[id:2000] { title } } }

In H&P there are no rules that explicitly consider and use
the type in scope to transform selections. In this example, by
considering the Query type, either the fragment’s contents
could be lifted or the field could be wrapped in a fragment,
and then the existing rules would apply.

We uncovered this issue when working on the semantics
preservation proof of the normalization function. In fact, at
the time we were formalizing the query semantics following
H&P’s approach. Working on fixing this issue and the others
discussed in §3.5 led us to change the approach of the query
semantics, and to adjust the definition of responses.

5 Discussion

Limitations. Currently, GraphCoQL captures the core of
GraphQL, but not the full specification. While this is already
valuable to study key aspects of GraphQL—as illustrated in
§4—more work is needed to fully cover the specification. For
the sake of exhaustiveness, we now list all missing features,
referring to the Spec sections [16] where they are defined:

• Executable definitions: mutations (§2.3), subscriptions
(§2.3), fragments (§2.8).

• Types and type operations: Non-null types (§2.11-3.4.1-
3.12), schema and type extensions (§3.2.2-3.4.3), argu-
ment default values (§3.6.1), input object types (§3.10),
directives (§3.13).

• Queries: input object values (§2.9.8), variables (§2.10),
variable and argument coercion (§6.1.2-6.4.1), normal
and serial execution (§6.3.1), error handling (§6.4.4).

• Introspection: fully unsupported (§4).

Considering GraphCoQL’s current status, integrating some
of these missing features should be straightforward: frag-
ments, schema and type extensions, argument default values,
input object types and values. For directives, some of the
builtin cases have a clear semantics and should be simple to
include as well. However, custom directives would be quite
hard to integrate because they arbitrarily alter the seman-
tics of queries. It is not entirely clear how these should be
modeled and how normalization would be affected by it,
regardless of GraphCoQL’s current implementation. Simi-
larly, it is not clear how mutation and subscription should
be modeled, and what reasoning can be performed on these
operations.
Contrarily to custom directives, mutation and subscrip-

tion, features such as variables, non-null values and error
handling, can be properly modeled and implemented, though
at some engineering cost. Their implementation would re-
quire several changes to GraphCoQL, such as including
environments and error propagation, among others.

Supporting introspection would be challenging, given the
amount of details involved. Many adjustments would prob-
ably be based on case analyzing string values in search of
certain patterns, in order to identify introspection selections.
Note that many of the challenges in implementing these

features arise from either the fact that it is not entirely clear
how to model them (without recurring to generalizations
that might compromise valuable reasoning), or that most
definitions require nested well-founded recursion as result of

A Mechanized Formalization of GraphQL CPP ’20, January 20–21, 2020, New Orleans, LA, USA

the tree structure of queries, possibly increasing the difficulty
in reasoning about them.

Trustworthiness. We have striven to establish a direct “eye-
ball correspondence” between GraphCoQL and the Spec
whenever possible—though this correspondence has not
(yet) been as seriously and systematically established as in
other language formalization efforts such as JSCert [6] and
CoqR [7]. In particular, the GraphCoQL definitions closely
follow the algorithmic definitions of the Spec. Also, when-
ever it makes sense, we explicitly reference the correspond-
ing specific sections from the Spec, inside of comments in
the Coq definitions.
As mentioned earlier, GraphCoQL adopts a graph data

model in order to give semantics to data access. This ap-
proach, which follows H&P, goes beyond what the Spec
mandates. Indeed, the Spec defers to resolvers to give mean-
ing to data accesses, which are essentially arbitrary pieces
of code. However, reasoning about GraphQL requires some
sensible data model. In this respect, GraphCoQL follows
H&P almost literally, while the query evaluation algorithm
of GraphCoQL can be traced closely to Spec.

Validation. In order to further validate that GraphCoQL
adequately captures the semantics of GraphQL, we imple-
mented several examples, coming from different sources. In
all examples we define the values used in arguments and
properties of nodes as elements of an inductive type, which
wraps standard Coq types such as integers and strings, and
a coercion function to transform these values into the corre-
sponding JSON format.
First, we implement all of the examples used in the Spec

validation section (cf. §5 [16]), for features thatGraphCoQL
currently supports. These correspond to tests over fields,
such as valid definition in given types in scope, proper use
of arguments and whether they are are type-compatible and
renaming-consistent. Also, the examples include validation
of inline fragments and whether they can be used in certain
contexts.

Second, we implemented the main example used in H&P,
from its schema to its graph, query and corresponding re-
sponse. Note that this example is quite close to the running
example of this paper.
Finally, we also implemented the Star Wars example de-

fined in the reference implementation of GraphQL,12 up
to the currently-supported features in GraphCoQL. For in-
stance, we include the complete schema definition except
for the secretBackstory field, which resolves to an error,
as these are not yet supported.

12https://github.com/graphql/graphql-js/tree/master/src/__tests__

6 Related Work

To the best of our knowledge, the only formalization efforts
around GraphQL are H&P [18] and [17], which we have al-
ready discussed. The rest of the GraphQL literature focuses
on practical issues such as creating GraphQL services and
migrating REST-based web services GraphQL [10, 25, 26],
automatic migration [28], and testing techniques [24]. A cou-
ple of empirical studies analyze the structure of GraphQL
schemas in commercial and open-source projects [19, 27],
shedding interesting insights on GraphQL in practice.
Despite being used mostly for web services, there are ef-

forts to extend notions used in GraphQL to other areas of
database specification and querying. Hartig and Hidders [17]
use the GraphQL schema definition DSL to define the struc-
ture of property graphs, which can be linked to similar ef-
forts to define the structure of graph databases [9]. Tael-
man et al. study the transformation of GraphQL queries to
SPARQL [23]; however we are not aware of any mechanized
formalization of SPARQL.
The mechanized formalization of data management sys-

tems has received a lot of attention in the traditional rela-
tional data model [3], SQL and its semantics [2, 5, 11, 12],
as well as related query languages and engines [1, 4]. Coq
is the proof assistant of choice for all these efforts. The
tree-based nature of GraphQL queries and response differs
significantly from the tuple-based semantics in traditional
query languages, requiring different models and techniques.
Doczkal and Pous [14] develop a mechanization of graph
theory in Coq, including simple graphs, digraphs, and their
properties. Their work could possibly be extended to deal
with property graphs, and used for GraphCoQL. Bonifati
et al. [8] build a Coq incremental graph view maintenance
and evaluation engine; they experimentally assessed it on
synthetic graphs generated from real-world schemas. The
engine supports Regular Datalog queries and does not en-
tirely fit the GraphQL setting; it could however serve as a
base to extend GraphCoQL with mutation.

7 Conclusion

We have presented GraphCoQL, the first mechanized for-
malization ofGraphQL, implemented in theCoq proof assis-
tant. GraphCoQL currently covers most of the schema defi-
nition DSL, the query definition language, validity checking,
and the query semantics over a graph data model. We study
the query transformation proposed and exploited by Hartig
and Pérez to establish their complexity results. Specifically,
we provide an algorithmic definition of query normalization,
proving it correct and semantics preserving. In the process
we uncover and address some minor issues in the original
definitions.
This work is a first step towards a mechanization of all

of GraphQL, leaving several open venues for future work.
The most pressing are supporting mutation, directives and

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Tomás Díaz, Federico Olmedo, and Éric Tanter

non-null types, and experimenting with extraction in order
to (ideally) derive a reference implementation directly from
the mechanized specifications. We anticipate that extend-
ing GraphCoQL to support new features should be fairly
straightforward. More engineering work needs to be done
to adequately prepare the Coq development for such ex-
tensions, in particular through better modularity and au-
tomation. Finally, we would like to study a more abstract
evaluation function that is not tied to the graph data model,
which should then be derivable as a specific instance.

References

[1] Auerbach, J. S., Hirzel, M., Mandel, L., Shinnar, A., and Siméon, J.
Q*cert: A platform for implementing and verifying query compilers. In
Proceedings of the 2017 ACM International Conference on Management

of Data (New York, NY, USA, 2017), SIGMOD ’17, ACM, pp. 1703–1706.
[2] Benzaken, V., and Contejean, E. A Coq mechanised formal se-

mantics for realistic SQL queries: formally reconciling SQL and bag
relational algebra. In Proceedings of the 8th ACM SIGPLAN Interna-

tional Conference on Certified Programs and Proofs, CPP 2019, Cascais,

Portugal, January 14-15, 2019 (2019), pp. 249–261.
[3] Benzaken, V., Contejean, E., and Dumbrava, S. A Coq formaliza-

tion of the relational data model. In Programming Languages and

Systems - 23rd European Symposium on Programming, ESOP 2014, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings

(2014), pp. 189–208.
[4] Benzaken, V., Contejean, E., and Dumbrava, S. Certifying standard

and stratified Datalog inference engines in Ssreflect. In Interactive

Theorem Proving - 8th International Conference, ITP 2017, Brasília, Brazil,

September 26-29, 2017, Proceedings (2017), pp. 171–188.
[5] Benzaken, V., Contejean, E., Keller, C., and Martins, E. A Coq

formalisation of SQL’s execution engines. In Interactive Theorem

Proving - 9th International Conference, ITP 2018, Held as Part of the

Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,

Proceedings (2018), pp. 88–107.
[6] Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S.,

Naudziuniene, D., Schmitt, A., and Smith, G. A trusted mechanised
JavaScript specification. In The 41st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, San

Diego, CA, USA, January 20-21, 2014 (2014), pp. 87–100.
[7] Bodin, M., Diaz, T., and Tanter, É. A trustworthy mechanized for-

malization of R. In Proceedings of the 14th ACM SIGPLAN International

Symposium on Dynamic Languages, DLS 2018, Boston, MA, USA, No-

vember 6, 2018 (2018), pp. 13–24.
[8] Bonifati, A., Dumbrava, S., and Arias, E. J. G. Certified graph view

maintenance with regular Datalog. TPLP 18, 3-4 (2018), 372–389.
[9] Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., and

Voigt, H. Schema validation and evolution for graph databases. CoRR
abs/1902.06427 (2019).

[10] Bryant, M. GraphQL for archival metadata: An overview of the EHRI
GraphQL API. In 2017 IEEE International Conference on Big Data (Big

Data) (2017), IEEE, pp. 2225–2230.
[11] Chu, S., Cheung, A., and Suciu, D. Axiomatic foundations and algo-

rithms for deciding semantic equivalences of SQL queries. Proceedings
of VLDB 11, 11 (2018), 1482–1495.

[12] Chu, S., Weitz, K., Cheung, A., and Suciu, D. HoTTSQL: proving
query rewrites with univalent SQL semantics. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017 (2017),
pp. 510–524.

[13] development team, T. C. The Coq proof assistant. https://coq.inria.fr/,

1984. [Online; accessed 2019].
[14] Doczkal, C., and Pous, D. Graph theory in Coq: Minors, treewidth,

and isomorphisms, May 2019. Available at https://hal.archives-

ouvertes.fr/hal-02127698.
[15] Gonthier, G., Mahboubi, A., and Tassi, E. A small scale reflection

extension for the Coq system. Research Report RR-6455, Inria Saclay
Ile de France, 2016.

[16] GraphQL Foundation. GraphQL specification. https://graphql.

github.io/graphql-spec/June2018/, 2018.
[17] Hartig, O., and Hidders, J. Defining schemas for property graphs

by using the GraphQL schema definition language. In Proceedings

of the 2nd Joint International Workshop on Graph Data Management

Experiences & Systems (GRADES) and Network Data Analytics (NDA)

(2019), ACM, p. 6.
[18] Hartig, O., and Pérez, J. Semantics and complexity of GraphQL.

In Proceedings of the 2018 World Wide Web Conference (Republic and
Canton of Geneva, Switzerland, 2018), WWW ’18, International World
Wide Web Conferences Steering Committee, pp. 1155–1164.

[19] Kim, Y. W., Consens, M. P., and Hartig, O. An empirical analysis of
GraphQLAPI schemas in open code repositories and package registries.
In AMW (2019).

[20] Mahboubi, A., and Tassi, E. Mathematical components. https://math-

comp.github.io/mcb/, 2018.
[21] Richardson, L., Amundsen, M., Amundsen, M., and Ruby, S. RESTful

Web APIs: Services for a Changing World. " O’Reilly Media, Inc.", 2013.
[22] Sozeau, M., and Mangin, C. Equations reloaded: High-level

dependently-typed functional programming and proving in Coq. Proc.
ACM Program. Lang. 3, ICFP (Aug. 2019), 86:1–86:29.

[23] Taelman, R., Sande, M. V., and Verborgh, R. GraphQL-LD: Linked
data querying with GraphQL. In Proceedings of the ISWC 2018 Posters &

Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th

International Semantic Web Conference (ISWC 2018), Monterey, USA,

October 8th - to - 12th, 2018. (2018).
[24] Vargas, D.M., Blanco, A. F., Vidaurre, A. C., Alcocer, J. P. S., Torres,

M. M., Bergel, A., and Ducasse, S. Deviation testing: A test case
generation technique for GraphQL APIs.

[25] Vázqez-Ingelmo, A., Cruz-Benito, J., and García-Peñalvo, F. J.
Improving the OEEU’s data-driven technological ecosystem’s inter-
operability with GraphQL. In Proceedings of the 5th International

Conference on Technological Ecosystems for Enhancing Multiculturality

(2017), ACM, p. 89.
[26] Vogel, M., Weber, S., and Zirpins, C. Experiences on migrating

RESTful web services to GraphQL. In International Conference on

Service-Oriented Computing (2017), Springer, pp. 283–295.
[27] Wittern, E., Cha, A., Davis, J. C., Baudart, G., and Mandel, L. An

empirical study of GraphQL schemas, 2019.
[28] Wittern, E., Cha, A., and Laredo, J. A. Generating GraphQL-

wrappers for REST(-like) APIs. In Web Engineering (Cham, 2018),
T. Mikkonen, R. Klamma, and J. Hernández, Eds., Springer Interna-
tional Publishing, pp. 65–83.

[29] XING. GraphQL: Overlapping fields can be merged fast. https://tinyurl.
com/y3wqmnrw, 2019. [Online; accessed 20-Sept-2019].

https://coq.inria.fr/
https://hal.archives-ouvertes.fr/hal-02127698
https://hal.archives-ouvertes.fr/hal-02127698
https://graphql.github.io/graphql-spec/June2018/
https://graphql.github.io/graphql-spec/June2018/
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://tinyurl.com/y3wqmnrw
https://tinyurl.com/y3wqmnrw

	Abstract
	1 Introduction
	2 A Brief Introduction to GraphQL
	3 GraphCoQL
	3.1 Schema
	3.2 Data Model
	3.3 Queries
	3.4 Semantics
	3.5 Design considerations and discussion

	4 Case Study: Normalization
	4.1 Defining Normal Forms
	4.2 Defining Normalization
	4.3 Correctness and Semantic Preservation
	4.4 Simplified Semantics of Normalized Queries
	4.5 Observations

	5 Discussion
	6 Related Work
	7 Conclusion
	References

