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Abstract—Smart grid systems are designed to enable the
efficient capture and intelligent distribution of electricity across
a distributed set of utilities. They are an essential component
of increasingly important renewable energy sources, where it is
vital to forecast the levels of energy being fed into and drawn
from the grid. However, because of the high levels of uncertainty
affecting real-world environments, accurate forecasting for ex-
ample of wind power generation - being directly dependent on
meteorological parameters and climatic conditions - is extremely
challenging. Fuzzy Logic systems are frequently used in control
systems to leverage their capacity for handling varying levels
of uncertainty. In most cases, while uncertainty affecting the
systems is captured in fuzzy sets (FSs), the final output of such
systems is reduced to a crisp number (e.g. a control output). The
latter process, while providing an efficient pathway to generating
a specific control output, at the same time implies substantial
information loss, as the uncertainty information captured in the
FS outputs of these systems is effectively discarded. In this paper,
we explore the potential of Mamdani fuzzy logic system based
forecasting in order to generate not only a numeric forecast of
the energy generated, but to also generate uncertainty intervals
around said forecast indicating the level of uncertainty associated
with the prediction. The proposed model is explored using both
synthetic and smart-grid specific real-world (wind power) time
series datasets. The results of the study indicate that utilising the
‘complete’ FS output can provide valuable additional information
in terms of the reliability of the forecast without any extra
computational cost. At a general level, the approach indicates
strong potential for leveraging the uncertainty information in
fuzzy system outputs - which is commonly discarded - in real
world applications.

Index Terms—Forecasting, Uncertainty Intervals, Smart-Grid,
Renewable Energy

I. INTRODUCTION

Smart grid systems are designed to enable the efficient
capture and intelligent distribution of electricity across a
distributed set of utilities. Increasingly, renewable energy is
taking a more prominent role in these utilities of smart grid
applications, due to its advantages [1] over fossil fuels. Wind
power is frequently one of the most cost-effective resources
among renewable energy technologies [2], already delivering
substantial energy resources through wind parks across the
world. While wind power and similar renewable energy re-
sources such as solar have substantial benefits, their use also
poses new challenges to smart grid infrastructure. Specifically,

as these sources are weather dependent, in order to maintain
a stable electricity grid, accurate forecasting of the energy
produced by the renewable sources becomes vital in order
to manage the production level and power output of other
energy sources (such as pumped water storage, nuclear and
fossil fuel), ensuring that any shortfall in for example wind
energy production is matched with other sources.

Real-world environments are exposed to many different high
levels of uncertainty sources e.g. climatic conditions. These
uncertainty sources have a detrimental effect on forecasting.
In the literature, many different methods have been devel-
oped/improved to handle the uncertainty in real-world and
enable an increasingly accurate energy time series forecasting
[3]–[5]. Beyond the forecasting of discrete time series, recent
approaches have also targeted the forecasting of what are
effectively interval-valued time series, providing a confidence
interval for each step of the forecast, rather than only a
discrete value. The key rationale here is that in practice, a
numeric forecast is of limited value: what is really needed is
information on the expected minimum and maximum power
output which will arise from renewable energy sources - to
inform the production level by alternative sources (i.e. produce
enough to match the minimum expected renewable power
output, but definitely not more than is needed).

Limited research has addressed the prediction of interval
rather than crisp values. In [6], one of the key foci was
the forecast interval coverage as well as the point forecast
accuracy throughout the three models of Forecast Pro, ARIMA
and exponential smoothing based algorithms. In [7], a new
end-to-end Bayesian neural network architecture is utilised to
implement a more accurate time series predictions as well as
uncertainty estimations in the prediction. In [8], the results
of the ARIMA forecasting models are converted to FSs and
alpha-cut is applied to the generated FS to obtain intervals
of forecasting. In [9], Takagi Sugeno (T-S) fuzzy models are
utilised and by following the principles in [10] and upper-
lower prediction interval bounds -based on a given percentage
value- are provided by utilising the covariance of data. There-
after, a new prediction interval modelling methodology based
on fuzzy numbers is proposed [11] which generate the size of
prediction intervals based on a given percentage value.



Fig. 1: The sample of output FSs with a crisp value.

Fuzzy Set (FS) theory was introduced by Zadeh [12] and is
applied to Fuzzy Logic Systems (FLSs) which are considered
as explainable and robust systems for capturing and handling
uncertainty in decision making applications. In the context
of FLSs, various approaches have also been put forward to
improve time series forecasting applications [13]–[18].

In conventional Mamdani fuzzy model [19], the output FSs
are defuzzified into a crisp value though a defuzzification pro-
cess (See ‘x’, marking the defuzzified centroid in Fig. 1). This
process of acquiring a crisp value from the FS-valued output
discards substantial information on the uncertainty captured
in the outputs FS model. In this paper, we explore a different
approach designed to minimise this information loss by not
reducing the FS-valued output to a numeric value used for
forecasting, but by also generating uncertainty interval around
said forecast to provide information akin to an associated level
of confidence (See Fig. 1).

The overall approach to generate uncertainty intervals is
based on the idea of using α-level cuts of the output FSs
to generate interval outputs (illustrated in Fig. 1) for each
individual forecasting value. The resulting predictions incur
a very minimal additional computational cost, as the output
FSs are commonly generated as-standard in Mamdani fuzzy
logic systems.

This paper puts forward a first exploration of this approach,
highlighting its potential and articulating outstanding questions
including on the relationship between different levels of α
and traditional confidence levels and general advances required
to optimise fuzzy systems to generating meaningful interval-
valued outputs. In the experiments conducted in this paper,
a synthetic chaotic Mackey-Glass [20] and a real-world wind
speed dataset are used to demonstrate the proposed approach
and conduct preliminary evaluation.

The structure of this paper is as follows: Section II provides
brief background information about Smart Grid, Fuzzy Sets,
α-cuts and Mamdani Inference model. Section III gives the
proposed method to provide uncertainty intervals around the
forecasting points. In Section IV, the experimental setup and
associated results of the proposed method are provided with
the discussion. Lastly, in Section V, the conclusions of the
current work with possible future work directions are given.

Fig. 2: A Gaussian sample FS.

II. BACKGROUND

A. Energy Management System in Smart Grid

Energy Management System (EMS) in smart grid systems
is designed to provide continuous operation under variable
generation and load. EMSs can be structurally categorised
under two main approaches as centralised and distributed. In a
centralised design, dispatch of units is determined throughout
an optimisation procedure. To achieve a suitable optimised
stage, the relevant information is provided to the system.
Generally, this relevant information contains each generation
unit and loads (e.g., cost functions, tec hnical characteris-
tics/limitations, network parameters, and modes of operation),
as well as information from forecasting systems (e.g., local
load, wind speed, and solar irradiance).

B. Fuzzy Sets

Fuzzy Set (FS) theory was introduced by Zadeh [12] and
the following definition is stated: “A fuzzy set is a class with
a continuum of membership grades.” So FS is formed in a
universe of discourse (X) by membership function (MF) that
associated with each element x ∈ X where the membership
grade µI(x) takes values in the range [0,1]. The definition as
follows:

I : X → [0, 1] (1)

I = {x, (µI(x)) | ∀x ∈ X} (2)

where µI(x) is the membership degree of x on the FS I .
Surely, the FSs can be formed as non-convex, convex and

sub-normal, normal. As an example, a non-singleton Gaussian
input FS is illustrated in Fig. 2 and it is formulated in 3.

Fig. 3: A block diagram of fuzzy Mamdani model.



Fig. 4: Applying the proposed 4 steps approach by using the output FS to provide uncertainty intervals of the prediction.

µI(x) = exp

[
−1

2

(
x− xi
σ

)2
]
, (3)

where x is the mean and σ is the standard deviation of the
FS.

C. Alpha Cut

The general idea of alpha cut (α) is to decompose fuzzy
sets into a collection of crisp sets related together via the α
levels [21], [22]. For all membership degrees α level is defined
in [0, 1] and given a Fuzzy set A in a universe of discourse
(X), usually, (α) cuts definitions are as follows:

[µ]α = {∀x ∈ X| µ(x) ≥ α} (4)

The illustration of a α cut can be seen in Fig. 1.

D. Mamdani FLS

Traditional Mamdani [19] FLSs are completed in 4 main
steps which are illustrated in Fig. 3. In the rule base step,
different approaches can be used to create the rule set of the
model. In fuzzification step, crisp input values are transformed
into FSs which can be formed as in various shape convex non-
convex. In the inference engine step, the generated input FSs
are processed over the generated rules throughout the selected
operators and the output FS is formed. In defuzzification
step, the obtained output FSs is reduced to a crisp value by
using a selected defuzzification technique. The details of these
procedures can be found in [23].

III. METHODOLOGY

In the literature, there are many different time series fore-
casting implementations which utilise various models and
techniques [6], [8], [9], [11], [13]–[18]. However, generally,
the predicted values are constrained to crisp numbers, whereas
uncertainty is likely to exist in respect to the predicted values.
Therefore, in this paper, along with the predicted crisp values,
we focus on the generation of an interval capturing the
uncertainty level associated with the prediction, akin to a
confidence interval. Alpha cuts on Mamdani [19] Fuzzy logic

system based output FSs (commonly defuzzified to a crisp
number to generate a discrete output) are used to provide this
interval using the following 4-step process:

• Step 1 FLS Design: A Mamdani [19] FLS is designed
to conduct time series prediction. Standard approaches to
FLS time series prediction are applied, including input FS
design [16]–[18], rule set generation [24], etc. We note
that in future the design process may be tailored specifi-
cally to optimally generating interval-valued predictions,
but we are not addressing this in this pilot paper.

• Step 2 Generating Output FSs: After constructing the
standard Mamdani FLS, the inferencing over the input
FSs and the rules are processed with conventional opera-
tors [23]. By implementing the selected operators in the
inference step, the output FSs of the Mamdani FLSs are
generated.

• Step 3 Defining alpha-cut level: The output FSs of
Mamdani FLSs can be complex, including non-normal
and non-convex FSs, and there is substantial scope for
research on how to select an appropriate level of α for
a given application. In general, the higher the selected
value of α, the more narrow the output interval (Fig.
5a). However, generally, the height of each output FS
may differ. Thus, some α levels (those which are greater
than the height of the output FS) may not result in
any uncertainty interval output (α-cut is an empty set)
as shown in Fig. 5b. In addition, as illustrated in Fig.
5c, some α levels may lead the traditional centroid
defuzzification results (marked as blue x) falling outside
of the generated uncertainty intervals.
The prospect of addressing non-convexity/non-normality
and selecting a particular alpha-cut level serves as an
incentive for future research. While a detailed discussion
of this α level selection is outside the scope of this paper,
as a possible research direction, we note that one direct
approach to addressing this would be application of a
multi (two) objective optimisation technique, optimising
the FLS toward prediction quality and maximum α level
(minimum uncertainty interval). For simplicity, in this
paper, we use α = 0.4 throughout.



(a) Example output FS where the output
uncertain interval at α = 0.4 is consistent
(i.e. overlapping) with the crisp centroid of
the FS.

(b) Example output FS where α = 0.4. The
output uncertain interval is the empty set.

(c) Example output FS where the output
uncertain interval at α = 0.4 is inconsistent
(i.e. not overlapping) with the crisp centroid
of the FS.

Fig. 5: Uncertainty intervals (gray scale vertical bar) with the α level 0.4 (dashed line) and Mamdani prediction results (blue
x) on three different output FS samples.

• Step 4 Generate alpha cut and centroid based outputs:
Based on the selected α level, the support is used as the
uncertainty interval of the prediction. These uncertainty
intervals are visualised with a grayscale to represent
the depth of the Oα set. Thereafter, a defuzzification
technique is implemented on the gathered output set (O)
set and a crisp value is calculated.

The general idea of using output FSs is applicable in many
different areas. In this paper, we proceed to develop one
specific instance of the general framework for time series
forecasting as shown in Fig. 4. In the first step, the Mamdani
FLS is built and the inputs x1... x5 are operated on the model
rules conventionally. In the second step, the model output (O)
is obtained and retained. In the next step, the α level is selected
and the uncertain bounds ([µ]α) is determined. In the last step,
the uncertainty boundary of the prediction (x6) is visualised
(interval in grayscale). All four steps of the proposed method
are shown in Fig. 4.

Overall, the employing output FSs and utilise uncertainty
intervals enable to provide the advantage of more information
in regards to the confidence of the prediction that incur a
very minimal additional computational, as the output FSs of
Mamdani FLSs.

IV. EXPERIMENT AND RESULT

In the experiments of this study, first, synthetic chaotic
Mackey-Glass [20] and second a real-world wind speed dataset
are used to implement the forecasting experiments. The wind
speed time series dataset was collected -with a sampling time

Fig. 6: Illustration of the 11 antecedent FSs (A1, A2, ..., A11)
used.

of 15 min- from the isolated micro-grid, in the village of
Huatacondo (20o 55′ 36.37′′ S 69o 3′ 8.71′′ W ) in the
Atacama Desert, Chile.

Considering the varying uncertain circumstances in the real
world and the chaotic behaviour in MG time series respec-
tively, an accurate crisp value prediction may not be possible.
Therefore, the output sets are used to provide uncertainty
intervals around the prediction. By doing so, the level of
uncertainty associated with the prediction can be captured, in
turn providing valuable information – such as for the control
of other power resources in the case of smart grid management
for renewable energy resources.

For both time series, 70% is used to train model and
30% is used for testing. In the experiments, one-step ahead
(15 minutes in the case of the wind dataset) forecasting is
implemented. In the rule generation phase of the Mamdani
[19] Fuzzy model, the commonly used one-pass Wang-Mendel
method [24] is implemented as follows:
• The domain interval of the training set [xmin, xmax] is

defined and evenly split into 2L−1 region where L is de-
fined as 6 to obtain 11 antecedent FSs (A1, A2, ..., A11).
The generated FSs can be seen in Fig. 6.

• Nine past values are used as inputs and the following
(10th) value is predicted, i.e. it is the output. The exam-
ples of the input-output pairs can be seen in (5).

x1 = [x1, x2...x9] y1 = x10

x2 = [x2, x3...x10] y2 = x11.

...

xN = [xn−9, xn−8... xn−1] yN = xn,

(5)

where n is the number of value in the training set and N
is the paired data value.

• After constructing the antecedent FSs and input-output
pairs, the inputs are assigned to the corresponding an-
tecedent FSs. For the consequent FSs, the same 11
FSs are used and the outputs (yi) are assigned to the
corresponding FSs as well.



Fig. 7: Sample MG prediction results. Traditional centroid based (blue x) and uncertainty intervals (gray vertical interval)
predictions, vs ground truth (black dashed line).

• Thereafter, a rule reduction procedure is implemented on
the conflicting rules. For details, please see [24].

During prediction, input values are fuzzified to singleton
FSs and they are processed in respect to the rules, where the
min and max operators are used for the t-norm and t-conorm
respectively. As noted above, while in standard Mamdani
FLSs, the final output FS is defuzzified to a crisp number,
in the approach considered in this paper, an α-cut at a pre-
specified α level is used as the final prediction output. In the
experiments, we define α level to be 0.4; however, we note
that in practice, different α levels can be investigated as well.

The performance of the proposed method is assessed on the
basis of whether the actual time series values (the ground truth)
lie within the prediction interval. In other words, we establish
the ‘coverage percentage’ where perfect performance means
that the intervals capture the actual time series for 100% of
the predicted values. This approach to performance assessment
is valuable, as it directly reflects the real-world requirement
for a prediction method which provides accurate min-max
bounds for the expected production of renewable energy to
enable the smart grid to balance power production across the
network. In other words, in this application, a less specific
prediction (i.e. an interval rather than a crisp value), which
is correct (i.e. which covers the actual wind level) is more
useful than a more specific prediction (e.g. a crisp prediction),
which is incorrect. Further, as part of the experiments, we
establish the relationship between various levels of α and the
coverage percentage. This analysis will be key in future work
in supporting the establishment of what suitable levels of α
are for specific applications.

A. Experiment 1 - Mackey-Glass Time Series Prediction

As part of the experiments, the commonly used chaotic
Mackey-Glass time series is used to implement time series
forecasting. In order to generate the respective datasets, ini-
tially 2000 samples (from t = −999 to t = 1000) are
generated and, in order to avoid fluctuations in the initial part
of the time series, only the last 1000 (from t = 1 to t = 1000)
points are preserved for use in the experiments.

Specifically, the Mackey-Glass (MG) time series is gener-
ated by using the nonlinear time delay differential equation:

dx(t)

dx)
=

ax(t− τ)
1 + x10(t− τ)

− bx(t), (6)

where a, b and n are constant real numbers, t is the current
times and τ the delay time. For τ > 17, (6) is known to exhibit
chaotic behaviour. In this paper values are set as τ = 30 ,
a = 0.2 and b = 0.1.

After generating 1000 values of the MG times series as
mentioned above, nine past points are utilised to make one-
step ahead prediction and the Wang-Mendel method is imple-
mented to generate rules from the first 70% of time series
dataset. Thereafter, the remaining 30% of the time series
dataset is used for testing. An example prediction results can
be seen in Fig. 7, where the proposed prediction results are
illustrated as gray vertical interval, the standard Mamdani
centroid defuzzification results are marked as blue ‘x’s and
the ground truth MG values black dashed lines.

B. Experiment 2 - Wind Speed Time Series Prediction

For experiment 2, the same procedures as in the previous
experiment is followed using the real world wind speed time
series dataset which contains 11254 samples. Here, no initial
data is omitted as the problem of ‘settling’ which is relevant for
the MG time series, is not relevant for the real world dataset.
The first 70% is used for training, the remained 30% is used
for testing as well. A part of the prediction sample can be seen
in Fig 8.

C. Results

As noted, as the main measure of performance, we explore
the coverage of the interval-valued prediction with respect
to the ground truth of the time series. For Experiment 1,
coverage is 79%, i.e. 79% of the numeric ground truth samples
are covered by the prediction interval. In experiment 2, this
percentage is substantially higher with 97.3%.

Further analysis is carried out and the relationship between
the chosen α-level and the coverage is examined and the



Fig. 8: Sample wind power prediction results. Traditional centroid based (blue x) and uncertainty interval (gray vertical bar)
predictions, vs ground truth (black dashed line).

results are reported in Figs. 9 and 10. As can be seen in Fig. 9,
above a level of 0.3, the coverage is declining rapidly and after
0.6, almost no ground truth is captured. Fig. 10 also indicates
that after alpha level 0.5, there is a sharp reduction of coverage
percentage. Conversely, the figures also highlight that at an α-
level of 0.2, we achieve close to 100% coverage. In other
words, the FLS time series prediction with α = 0.2 provides
extremely reliable forecasts expressed as the min-max bounds
of the expected MG or wind speed values. Of course on the
other hand, for small values of α, the actual predictions are of
low specificity (i.e. they result in large intervals), which can
limit the utility of the prediction. In real world applications,
there will be a trade-off between the levels of reliability and
the specificity required for forecasts but in key applications
such as wind speed prediction, the reliability is of primary
concern (to maintain a stable grid).

D. Discussion

Two different time series prediction experiments are imple-
mented by using the proposed approach to generating interval-
valued outputs using a standard Mamdani FLS. As shown
in Figs. 7 and 8, the resulting predictions provide a direct

Fig. 9: Mackey-Glass time series prediction coverage percent-
age with respect to the different α-cut levels applied to the
output FSs.

measure of the uncertainty associated with each prediction
– captured through the varying size of the intervals over
time. In addition, we note that in cases where the actual
(traditional) centroid-based prediction (‘x’ shape) is inaccu-
rate, the corresponding intervals are wider, providing a useful
indicator of the level of ‘confidence’ associated in the discrete
prediction. The latter aspect will require further research but
does provide an interesting glimpse of the value in preserving
more information than a crisp output from the generally rich
FS-valued output.

Finally, additional analysis is conducted on different α
levels with respect to the coverage percentage of the proposed
method. Figs 9 and 10 show a clear decline trend after a certain
alpha levels in both dataset. This sharp drop can be explained
as there are not many outputs which have a greater height
than the determined alpha level. Therefore, when the alpha
level is greater than the height of the output FSs, uncertainty
bounds are not generated which results in no coverage. Again,
determining the appropriate level of α for a given setting will
be a key research aspect for future research.

Fig. 10: Wind speed time series prediction coverage percentage
with respect to the different α-cut levels applied to the output
FSs.



V. CONCLUSION

In this paper, we explore an alternative approach to using
Mamdani FLSs in order to generate not only a forecast of
time series which is tailored to the requirements of smart grid
and similar applications. Specifically, the proposed approach
is designed to preserve uncertainty information in the FLS
output FS by generating an interval, rather than a discrete
prediction. Through this approach, the resulting FLSs do not
only provide the means to generate predictions which can
provide very high reliability in respect to capturing the actual
(ground truth) value which is being predicted, but can also
provide a measure of uncertainty which can be used on its
own or associated with a traditional (centroid-based) numeric
forecast. The proposed method requires quasi no additional
computational effort in comparison to traditional approaches
as it leverages information which is already captured within
standard output FSs but which is commonly not used.

While this paper puts forward the conceptual idea of the
approach and provides an initial empirical demonstration for
a synthetic and real-world smart-grid dataset in the context of
renewable energy production, in future, we expect substantial
research efforts targeting, in particular, the appropriate selec-
tion of specific α-cut levels, the relationship of the generated
intervals in respect to traditional confidence intervals, and, the
appropriate optimisation of FLSs designed to generate interval-
valued, rather than crisp outputs.
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