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Abstract
With the availability of cheaper multi-sensor systems, one has access to massive and multi-dimensional sensor data for
fault diagnostics and prognostics. However, from a time, engineering and computational perspective, it is often cost pro-
hibitive to manually extract useful features and to label all the data. To address these challenges, deep learning techniques
have been used in the recent years. Within these, convolutional neural networks have shown remarkable performance
in fault diagnostics and prognostics. However, this model present limitations from a prognostics and health management
perspective: to improve its feature extraction generalization capabilities and reduce computation time, ill-based pooling
operations are employed, which require sub-sampling of the data, thus loosing potentially valuable information regarding
an asset’s degradation process. Capsule neural networks have been recently proposed to address these problems with
strong results in computer vision–related classification tasks. This has motivated us to extend capsule neural networks
for fault prognostics and, in particular, remaining useful life estimation. The proposed model, architecture and algorithm
are tested and compared to other state-of-the art deep learning models on the benchmark Commercial Modular Aero
Propulsion System Simulation turbofans data set. The results indicate that the proposed capsule neural networks are a
promising approach for remaining useful life prognostics from multi-dimensional sensor data.
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Introduction

Nowadays, in the context of reliability and mainte-
nance engineering as well as in prognostics and health
management (PHM), sensing technologies are getting
higher attention due to the increasing need to accu-
rately predict the future behavior of degradation pro-
cesses in complex physical assets such as compressors
and turbines.1 PHM aims to make diagnosis of asset’s
health status based on multi-sensory monitoring data,
predicting behavioral anomalies and executing suitable
maintenance actions before problems take place. In this
context, the estimation of remaining useful life (RUL)
has become a crucial task in PHM, where the goal is to
increase the asset’s operational availability and reduce
maintenance costs associated with unnecessary inter-
ventions.2 This is not an easy task for a data-driven
model since, in many real-world industrial applications,
it is usually not possible to precisely determine the
asset’s health condition and its associated RUL at each
time step without an accurate physics-based model.

Generally, PHM techniques can be categorized into
three types of approaches: model-based approaches,3

data-driven approaches4 and hybrid approaches.5

Model-based approaches incorporate a physical back-
ground of the asset’s behavior and degradation, but
require a large amount of prior knowledge about its
failure mechanisms, thus becoming ineffective if these
are unknown. However, data-driven approaches use
only historical sensor data to infer and learn meaning-
ful features to indicate an asset’s health condition like
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its damage state and RUL, usually making them easier
to be generalized. Therefore, various data-driven fra-
meworks and models have been proposed in recent
years to tackle prognostics problems such as the ones
based on support vector machines (SVMs),6 artificial
neural networks (ANNs)7 and, most recently, deep
learning networks,8 with the latter delivering results
that outperform the ones from the shallow models (i.e.
SVMs and ANNs).8 Hybrid approaches combine the
advantages of the previous two, but, to this day, it has
been very challenging to implement them.

Among the underlying reasons for the above-
mentioned success of deep learning networks based
models are their capacity and flexibility in dealing with
highly non-linear multi-dimensional sensor data, learn-
ing mappings between the features of the gathered data
to a physical asset’s RUL. These models are character-
ized as neural networks with deep architectures, where
many layers of neurons are stacked together to obtain
high-level abstractions of the data. For example, Tian9

proposed a deep ANN to estimate the RUL of pump
bearings using in-field inspection monitoring data.
Fink et al.10 developed a deep feedforward neural net-
work based on multi-values neurons for predicting the
degradation of railway track turnouts using time-series
real data in a turbocharger benchmark time-to-failure
data set. Ren et al.11 proposed a fully connected deep
neural network to estimate the RUL of rolling bearings
using the FEMTO-ST PRONOSTIA data set12 by col-
lecting features directly from raw-output sensor data.
Zheng et al.13 implemented a deep long short-term
memory recurrent neural network (DLSTM) for RUL
estimation in turbofans under complex operation
modes and hybrid degradations. A multi-objective deep
belief network (MODBNE), based on an evolutionary
ensemble method, was proposed by Zhang et al.14 that
involves multiple deep belief networks (DBNs) simulta-
neously subject to diversity and accuracy as conflicted
objectives that are combined to establish a model for
RUL estimation, evaluating its performance on
NASA’s Commercial Modular Aero Propulsion
System Simulation (C-MAPSS) turbofans time-to-
failure data set.15

Moreover, convolutional neural networks (CNNs)
have become the dominant technique among deep
learning architectures to handle computer vision (CV)
and image classification problems,16–21 in some cases
overcoming human accuracy.22,23 Since CNNs can
automatically collect high-level abstraction features
from raw data, they have recently been used in fault
diagnostics. Indeed, on machinery fault diagnosis,
Chen et al.24 used a shallow CNN architecture for gear-
box vibration data, obtaining a better classification
performance compared to SVMs. Wang et al.25 used
wavelet scalogram images as an input to a deep CNN
(DCNN) consisting of convolutional and sub-sampling
layers (i.e. pooling layers for feature dimensionality
reduction) for rolling bearing fault diagnosis. Guo
et al.26 implemented an adaptive DCNN for the Case

Western’s bearing data set27 to perform fault diagnosis.
Verstraete et al.28 proposed a DCNN architecture for
fault identification and classification on rolling bear-
ings in the context of the MFPT29 and Case Western’s
data sets with minimal data preprocessing, outperform-
ing other deep learning–based methods and showing
robustness against experimental noise. Modarres
et al.30 proposed a DCNN for detection and identifica-
tion of structural damage, obtaining strong results on
honeycombs structures and concrete bridge crack
identification.

Although CNNs are designed for CV and classifica-
tion, their applicability to fault prognostics problems
have also been explored. Indeed, NASA’s C-MAPSS
turbofans time-to-failure data set have been extensively
analyzed15 with RUL estimation as the main focus.
Sateesh Babu et al.31 proposed the first CNN-based
model for RUL prediction where convolution and pool-
ing filters were applied along the temporal dimension of
data. Also, Li et al.32 proposed a DCNN where a time-
window approach is employed as preprocessing of the
turbofans C-MAPSS data set and convolution filters
were applied along the temporal dimension.

Even though CNNs have displayed strong perfor-
mance in automatic feature extraction, they do present
some weaknesses. Indeed, as stated by Hinton et al.,33

CNNs are misguided in what they are trying to achieve:
they do not aim to a ‘‘viewpoint invariant’’ (i.e. equivar-
iant; this means that the network will not lose accuracy
if changes are made in the test set, such as alterations in
rotation and skewness among others) feature extraction
using ‘‘neurons’’ that use a single scalar output to sum-
marize the activities of the convolutional and pooling
layers. This is also perceived in fault diagnosis and
prognosis. In fact, a common practice for RUL estima-
tion with CNNs is to apply the convolution and pool-
ing filters along the temporal dimension of sensoring
input data.31,32 This might lead to loss of information
and subsequent poor fault diagnosis and prognosis
performance as some important features could be lost,
such as periodicity and low-valued amplitudes in
signals (e.g. vibration and acoustic emission monitor-
ing).34 The main underlying reason is that, using the
pooling operation in CNNs, ‘‘neurons’’ in one layer are
allowed to ignore all but the most active feature detec-
tor in local pool from a previous convolutional layer
and thus throwing away information about its precise
position.

As an attempt to address these difficulties in
classification-related problems, Hinton et al.33 pro-
posed that neural networks should use ‘‘capsules of
neurons’’ that encapsulate the extracted features by the
convolution operation in a vector-shaped highly infor-
mative output with the goal of achieving a better hier-
archical feature extraction of the input data, without
losing relevant positional information in the process.
This new concept was introduced by Sabour et al.35 as
a new neural network architecture known as capsule
neural networks (CapsNets), achieving state-of-the-art
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results in CV-related classification tasks involving the
MNIST and Multi-MNIST data sets.36 In the context
of PHM, Zhu et al.37 applied an inception-based
CapsNets model as image-based data feature extractor
(as commonly done with CNNs) to Case Western and
Paderborn University38 data sets to perform bearing
fault diagnostics, outperforming CNN-based models in
this task. Furthermore, Zhu et al. proposed a regres-
sion output branch for the model used in Case Western
data set, with the aim of estimating the damage size in
the bearing, which was limited to a discrete assessment
and therefore it could be of only three possible values.
Although this is a first approximation for performing
regression with CapsNets, having only three possible
target damage sizes values can be redundant to sepa-
rate from a classification model, being the continuous
target data regression a much more interesting and use-
ful problem to solve from a PHM perspective.

The above-mentioned perceived weakness of CNNs
and the results obtained for fault classification tasks by
Zhu et. al. with the use of CapsNets have motivated us
to extend CapsNets’ capabilities in classification for
which they were made (i.e. discrete diagnostics tasks) to
regression problems in general (i.e. using continuous
data estimation as a target), which, in the context of
PHM, is achieved by putting forward a CapsNet
model, architecture and algorithm for RUL prognos-
tics. To the best of the authors’ knowledge, this is the
first time a CapsNet is proposed for RUL estimation.
To tackle this challenge, the proposed model’s architec-
ture consists of two convolutional layers for feature
extraction from sensor signals (i.e. the spatial domain)
and then the feature maps are reshaped as an array of
primary high-informative capsule layers designed to
contain low-hierarchy temporal features. These low-
level capsules are connected to a secondary capsules
layer designed to detect and extract more complex

high-hierarchy temporal features from the signal data.
These last set of features are then fed to two consecu-
tives fully connected multi-layer perceptron (MLP)
layers for RUL prediction. The proposed model is
exemplified and validated by means of the C-MAPSS
turbofans data set and compared against other deep
learning models such as CNNs and long short-term
memories (LSTMs).

The remaining of this article is structured as follows:
section ‘‘CNNs and their limitations’’ gives a brief back-
ground on CNNs and also discusses their main limita-
tions and drawbacks. Section ‘‘CapsNets for RUL
estimation’’ introduces and discusses the proposed
CapsNet model, architecture and algorithm for RUL
estimation. In section ‘‘Case study: C-MAPSS turbo-
fans,’’ the effectiveness of the proposed model is ana-
lyzed by means of the C-MAPSS turbofans data set.
The final section provides some concluding remarks.

CNNs and their limitations

Among deep learning architectures, CNNs have been
applied to the learning of mappings between features of
gathered sensory data and its related diagnosis or prog-
nosis metric. To do this, CNNs were inspired by the
visual cortex,39 where a series of layers of neurons are
connected to model hierarchical abstractions of data to
interpret more complex representations, performing
automatic feature extraction using two types of opera-
tions: convolution and pooling.

A generic two-dimensional (2D) CNN is shown in
Figure 1, where the input layer is the preprocessed data
to be analyzed as a 2D array (i.e. a spectrogram). Then,
a set of convolutional filters (i.e. kernels) is applied, cre-
ating a stack of feature maps. As shown in equation (1),
these filters consist of a locally summed set of weights,
which are subsequently passed through to a non-linear

Figure 1. Generic two-dimensional CNN architecture.
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activation function. A rectified linear unit (ReLU) acti-
vation function, shown in equation (2), is commonly
used due to its faster training time.40 Thus

x
(k)
l =f

PC
c=1

w
(c, k)
l � x(c)l�1 + b

(k)
l

� �
ð1Þ

ReLU xð Þ= max x, 0ð Þ ð2Þ

where � represents the convolution operator; x(k)l is the
output of a neuron in the convolutional layer l and fea-
ture map k; f is the non-linear activation function;
w
(c, k)
l is the filter weight matrix of any neuron in the

feature map k and convolutional layer l associated with
its input in feature map c in the layer (l� 1); and b(k)l is
the bias term for the feature map k in the convolutional
layer l.

After the convolutional layer, a pooling layer is
applied over its output. This operation has three pur-
poses: dimensionality reduction, translational invar-
iance and, subsequently, computational cost
reduction. Dimensionality reduction is achieved by
replacing the output of the convolutional layer at a
certain location by a statistic summary of the neigh-
boring outputs. Consequently, the output of the pool-
ing layer becomes approximately invariant to small
translations of the input.41 Without pooling, CNNs
would only fit for data which are very close to the
training set. Two typical pooling operations are max-
pooling (MaxPool) and average-pooling (AvgPool),
where a pooling filter is applied over the convolu-
tional layer output, keeping only the highest value
and the filter-average value, respectively. Finally, the
output of the pooling layer is fed into a fully con-
nected MLP that performs the fault diagnosis (usu-
ally simple classification) or prognosis (regression)
tasks.

As discussed before, the pooling operation is a very
important component in a CNN architecture as it
introduces translational invariance that reduces the
model’s overfitting and thus being less susceptible to
accuracy reduction when the test set is not close to the
training set.41 However, as stated before, translational
invariance is not enough for a CNN to extract useful
features for fault diagnosis and prognosis, and one
should make equivariance as a new goal. Although
translational invariance makes the CNN less sensitive
to small changes in the test set, equivariance makes the
CNN ‘‘understand’’ these changes and adapt itself
accordingly so that the spatial location of a local
extracted feature is not lost, thus positional hierarchy
relationships between low- and high-level features are
assured.33

This is a key feature in the context of PHM since
engineers usually do not have prior knowledge about
the features that are automatically extracted by the
convolution and pooling operations and their relevance
to map the relationships between the sensor data and
their related classification or regression metrics.28 Thus,
when a pooling layer is employed in CNNs, important

information could be lost. For example, Figure 2 shows
a normalized sub-sample of a random signal from
vibration sensor data in the ball bearings MFPT data
set29 along with the MaxPool and AvgPool one-
dimensional filters of size four applied to the signal.
Note how some information is lost, such as consecutive
picks and low-valued amplitudes, thus reducing the
model’s capability to extract potentially relevant fea-
tures for PHM-related tasks, such as RUL estimation.

To address the above weakness and limitations of
CNNs in PHM tasks, the next section introduces a
novel CapsNet architecture developed for regression
problems, such as RUL prognostics.

CapsNets for RUL estimation

The idea of adding capsules of neurons in a CNN
structure to enhance its feature extraction capabilities
was first introduced in Hinton et al.33 This was inspired
by the cortical microcolumns present in the cerebral
cortex for human vision, where low-level microcolumns
store low-hierarchy representations of an object and
are connected to high-level microcolumns, which in
turn store high-hierarchy representations of the same
object, allowing its identification. Then, when a new
object is seen, the cerebral cortex deconstructs a hier-
archical representation of it and tries to match it with
already learned features present in cortical microcol-
umn connections.42

In the following sections, CapsNets are introduced,
being the first neural networks that use capsules, how-
ever only for addressing classification problems. Then,
the proposed CapsNet for RUL estimation is presented.

CapsNets

As mentioned before, CNNs use convolutional filters
to extract features from an image, where, as seen in
equation (1), high-level features combine low-level

Figure 2. MFPT normalized raw signal with MaxPool and
AvgPool operations applied.
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features as a weighted sum. But this operation has a
weakness: equivariance of information through the
network is not necessarily achieved, so positional
hierarchy relationships in the high-level features is
not assured. This problem, as mentioned in section
‘‘CNNs and their limitations,’’ is partially addressed
by ill-based pooling layer operations that only aim
for translational invariance. These difficulties are
tackled by Hinton and colleagues33,35,43 by means of
CapsNets, which replace scalar-based outputs from
‘‘neurons’’ in CNNs by vector-based outputs from
‘‘capsules of neurons’’ to encapsulate highly informa-
tive hierarchical features that can be used for classifi-
cation tasks.

As shown in Figure 3, a basic CapsNet architecture
is composed by the following layers: input layer, con-
volutional layer, primary capsules layer and second-
ary capsules layer. The convolutional layer is applied
in the same way as in CNNs, creating an output of
feature maps of the input layer applying a convolu-
tional filter.

To understand the other layers, two concepts must
be introduced: capsules and routing between capsules.
A capsule can be thought as a set of neurons whose
main objective is to summarize features in a set of high-
dimensional vectors of information. Therefore, a pri-
mary capsule layer is the output of a convolutional
layer reshaped as a set of capsules representing a low
positional hierarchy part of the input (see Figure 3).
Then, these primary capsules are connected to a sec-
ondary capsule layer, composed by high-dimensional
capsules that represent high positional hierarchy fea-
tures of the input layer.

To obtain the probability of existence of a feature
detected by a capsule, its norm is used. This is
accomplished by a non-linearity named ‘‘squash’’35 that
simply ‘‘squashes’’ a vector norm between 0 and 1,
without losing any positional information in it, aiming

for equivariance of information. This is presented in
equation (3)

squash að Þ= aj jj j2

1+ aj jj j2
a

aj jj j ð3Þ

where a is a vector.
To make the connections between primary and sec-

ondary capsules, a trainable routing process between
them is applied. In essence, a low-level capsule sends its
input to a high-level capsule that judges if ‘‘agrees’’
with its input; if that is the case, both capsules are con-
nected. To learn the best connections between capsules,
the model runs through an iterative agreement process
known as dynamic routing between capsules,35 com-
posed by the following steps:

1. For all capsule i in layer l and capsule j in layer
(l+1):
(a) A coefficient bi, j is initialized at zero.
(b) A prediction vector ûjji =Wi, jui is created,

where ui is the output of capsule i in layer l
and Wi, j is a weight matrix between this cap-
sule and capsule j in layer (l+1).

2. For r rounds of routing by agreement, do:
(a) For all capsule i in layer l, a couple coeffi-

cient is created: ci, j =softmax(bi, j)= exp
(bi, j)=

P
k exp (bi, k).

(b) For all capsule j in layer (l+1) a weighted

sum sj over all prediction vectors ûjji is cre-

ated: sj =
P
i

ci, jûjji.

(c) For all capsule j in layer (l+1) apply the
squash non-linearity, obtaining its output
vector vj =squash(sj).

(d) For all capsule i in layer l and capsule j in
layer (l+1), an agreement metric ai, j = ûjji � vj
is used to actualize b

r+1ð Þ
i, j = b

rð Þ
i, j + ai, j.

3. Return the output vj from capsule j in layer (l+1).

Figure 3. Basic CapsNet architecture.
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Therefore, the dynamic routing process replaces the
pooling operation and the way of connecting neurons
through a neural network, learning to encode intrinsic
spatial relationships between a part and a whole
through the depth of the network equivariance of infor-
mation between connected capsules,35 achieving the fol-
lowing advantages over CNNs:

1. Equivariance ensures that lower to higher posi-
tional hierarchy features connections are reached
deeper in the network layers, improving the feature
generalization capability of the model.

2. Sub-sampling for dimensionality reduction (i.e.
pooling operation) is not needed, so all the data is
used to automatically extract relevant features for
the aimed classification or regression tasks, with-
out losing any relevant information.

The first CapsNet architecture, as shown in Figure
4, was proposed by Sabour et al.35 for classification
problems, evaluating its effectiveness in the MNIST
and Multi-MNIST data sets. Here, the secondary cap-
sules layer is named as ‘‘digit capsules,’’ where each
capsule in this layer represents a particular class (or
digit in the case of MNIST). As before, the norm of
each digit capsule represents the probability of exis-
tence of each class in the input data.

Proposed CapsNets for RUL estimation

The proposed CapsNet for RUL estimation focuses on
automatic feature extraction from raw input sequential
sensor signals, without the invariance and positional
information loss problems associated with traditional
CNN architectures. Assuming that the input data are
normalized and preprocessed as a 2D sample from the
raw signals,14,32 with dimensions Nt 3Ns, where Nt

denotes the temporal dimension and Ns the raw sensor

signals (i.e. spatial domain), the proposed CapsNet for
automatic feature extraction and RUL estimation is
presented in Figure 5.

As seen in Figure 5, the idea behind the proposed
CapsNet is to first process the input data in the sensory
dimension (i.e. spatial domain) by two convolutional
layers, obtaining high-level relationships between sen-
sors. Then, in each time step, two layers of capsules
connect these sensory relationships from the primary
capsules to high-hierarchical relationships in the tem-
poral domain contained in the secondary capsules.
Finally, this information is passed to a two-layer fully
connected MLP architecture for the RUL estimation
(i.e. regression).

Note that, to extract relevant features from the raw
signals in each single time step, a convolutional layer
(Conv1) is applied over the spatial domain using filters
of size 13 2 with stride s= ½1, 2�, creating 32 feature
maps of relationships between each couple of consecu-
tive sensors. Assuming Ns as an even number, this
operation reduces the dimension of the input sample to
Nt 3 ½N0s =Ns=2�, where N0s denotes a new feature rep-
resentation of the raw sensor signals in the spatial
domain. Then, a second convolutional layer (Conv2) is
applied over the spatial domain, using filters of size
13N0s, relating all the features extracted by the first
convolutional layer in each time step and giving as out-
put a set of 32 feature maps of size Nt 3 1.

Next, the feature maps of the second convolutional
layer are reshaped as a primary capsules layer (Primary
Caps) consisting of Nt 3 13 32 four-dimensional cap-
sules that contain the spatial domain features and hav-
ing four different capsules for each time step. The
purpose of this is to let the capsules to detect and
extract relevant low positional hierarchy features only
from the temporal dimension. Then, these capsules are
connected to a secondary capsules layer (Secondary
Caps), where two eight-dimensional capsules are used

Figure 4. First CapsNet architecture for MNIST and multi-MNIST classification problems proposed in Sabour et al.35

156 Proc IMechE Part O: J Risk and Reliability 234(1)



to extract high positional hierarchy features from the
primary capsules. Two rounds of dynamic routing, as
shown in section ‘‘CapsNet,’’ are used to train (i.e. opti-
mize) the connections between both capsules’ layers.
Finally, high temporal hierarchy features from the sec-
ondary capsules layer are flattened and passed to two
fully connected layers with 102 and 32 neurons each,
which carry out the regression for RUL estimation.
Both convolutional layers and fully connected layers
use ReLU as activation function. Figure 6 shows the
proposed algorithm to implement the CapsNets for
RUL estimation shown in Figure 5.

To optimize the proposed CapsNet model, the
root mean squared error (RMSE) is used as loss
function. To calculate it, the RUL of the training data
set is used as the label to compare. This is presented in
equation (4)

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i=1

yp � yt
� �2

i

s
ð4Þ

where N is the number of samples in the training set, yp
is the predicted RUL and yt is the targeted true RUL.

In summary, the flowchart for RUL estimation via
the proposed CapsNet model is shown in Figure 7. To
train the model, a series of epochs are needed. The
training set is divided in randomly generated batches
(i.e. unrepeated sub-samples), so when all the batches
pass through the network, an epoch is complete.

Case study: C-MAPSS turbofans

C-MAPSS data sets

In this section, the proposed CapsNet model for RUL
prognosis is tested on the C-MAPSS benchmark data

sets developed by NASA found at: https://data.nasa.
gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data
/xaut-bemq/data.15 C-MAPSS is divided in four data
sets, FD001, FD002, FD003 and FD004, each one with
corresponding training and testing sets that represent
different simulations of a defined number of trajectories
performed by turbofans. A summary of the data set is
presented in Table 1. The time series corresponds to 21
raw sensor measurements that change from an unde-
fined initial condition to an end point. For the training
subset, this end point corresponds to a failure threshold,
whereas for the test samples, it corresponds to an early
stop before reaching the failure threshold. The objective
is to estimate the RUL of each engine sample present in
the testing subset. The actual RUL of each test sample
is provided in the data set for validation.

Data preprocessing

Since the RUL labels for the training set are not pro-
vided, the approach presented in Peel44 was employed
to generate them. Indeed, even though the RUL target
function can be represented as a linear degradation of
an asset along its cycles of operation (in this case, tur-
bofans), degradation can be assumed negligible in early
stages of use for the turbofans under consideration.
For the C-MAPSS data sets, this has been addressed
by using a piecewise linear degradation behavior, where
a number of operation cycles without the presence of
degradation (Rearly), with Rearly 2 ½120, 130�, is used as
maximum limit for the RUL labels in each data set.
This threshold was proposed by Heimes45 to preprocess
the C-MAPSS data sets, finding that almost no degra-
dation is present on test-engine samples running for
less than 120 operation cycles. In this article, an

Figure 5. Proposed CapsNets architecture for RUL estimation. In the primary and secondary caps layers, the capsules are marked
in green.
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Rearly=125 is assumed for all data sets so to be able to
compare the results from the proposed model with the
ones from other relevant works on C-MAPSS.31,32,45–47

As discussed in section ‘‘Proposed CapsNets for
RUL estimation,’’ a time window of size Nt 3Ns is
used to train and validate the proposed model. To build
these time windows, the following procedure is used:

1. Clean the data set, dropping sensor measurements
that are constant in time, thus leaving 14 sensors to
train the model (i.e. Ns =14).

2. Use the shortest test sequence as the length of the
window for each sub-data set. Then, Nt =30 for
FD001, Nt =21 for FD002, Nt =30 for FD003
and Nt =19 for FD004.

3. Apply Min-Max normalization between ½0, 1� using
equation (5) for each sensor measurement in the
whole training set before producing the time win-
dows of size Ns 3Nt, thus avoiding overfitting
over measurements with high values. This fitted
normalization (over only the training set) is then
applied to the test set

xnormalized=
x� xmin

xmax � xmin
ð5Þ

Data augmentation is also used to train the model.
To do this, each time window is generated with an over-
lap of Nt � 1 data points in the training set, increasing
the available data to train the model. It is important to

Figure 6. Proposed algorithm for feature extraction and RUL estimation.

Table 1. C-MAPSS data set summary.

Data set Training trajectories Testing trajectories Operating conditions Fault modes

FD001 100 100 1 1
FD002 260 259 6 2
FD003 100 100 1 1
FD004 248 249 6 2

C-MAPSS: Commercial Modular Aero Propulsion System Simulation.
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remark that the time windows of normalized raw sensor
data are used directly as an input for training, thus not
requiring any prior expertise in signal processing.

Model training

To train the model, each training set was randomly
split into training and validation sets at a ratio of 85%
and 15%, respectively. The validation set was used to
measure the model performance in each training epoch.
Then, for the training set, the flowchart shown in
Figure 7 is employed with RMSprop algorithm48 for
convergence optimization, using a total of 120 training
epochs and a batch size of 150 time windows.
Moreover, a varying learning rate (lrate) is adopted as
proposed by Li et al.,32 using lrate =0:001 for the first
70 epochs and then changed to lrate =0:0001 for the
remaining epochs. This ensures a faster optimization at

the beginning and, later, a more stable convergence. In
addition, initializer proposed in Glorot and Bengio49 is
used for weight initializations. To prevent overfitting,
L2 regularization50 is used in the convolutional layers,
and a dropout regularization rate of 0.2 is applied to
both fully connected MLPs (i.e. 20% of input units
would be dropped for each batch). The model was
developed using Python v3.6 and TensorFlow v1.7
library and trained in a PC with Intel Core i7 6700K
CPU, 32GB DDR4 RAM and 12GB NVIDIA Titan
XP GPU.

Results and sensitivity analysis

To evaluate the performance on RUL estimation in the
C-MAPSS data sets, two metrics are used: RMSE and
scoring function. RMSE is shown in equation (4) and
calculated through every training sample in each sub-
data set. The scoring function given below (equation
(6)) was proposed by Saxena et al.15 with the purpose
to penalize late RUL predictions over early ones

s=

PN
i=1

exp � d
10

� �
� 1 for d\ 0

PN
i=1

exp d
13

� �
� 1 for d ø 0

8>><
>>: ð6Þ

where N is the number of test samples and d is the dif-
ference between the predicted RUL and the targeted
true RUL (i.e. d= yp � yt).

The proposed CapsNets for RUL prognostics are
demonstrated by comparing it with the latest state-of-
the-art results for each test dataset of the C-MAPSS
data set. To do this, every obtained result was averaged
through 10 runs. Also, a sensitivity analysis of the model
performance is presented for its main components: pri-
mary and secondary capsules layer and the number of
rounds of dynamic routing between them.

RUL prognostics performance. The RUL prognostics per-
formance of all turbofans testing samples from data
sets FD001, FD002, FD003 and FD004 are presented
in Figure 8, sorted from the lowest to highest RUL.

As shown in Table 1, data sets FD002 and FD004
were obtained under six different operational condi-
tions (instead of one as in FD001 and FD003). Also,
the testing and training trajectories in these data sets
were almost 2.5 times more than in data sets FD001
and FD003, showing that FD002 and FD004 data sets
are considerably more heterogeneous and complex in
nature. This can be clearly seen in Figure 8, where
higher noise is observed in the RUL predicted values of
the proposed CapsNet model for these data sets,
although the behavior of the targeted RUL function is
well estimated. Also, it can be observed that the pre-
dicted RUL values are generally close to the actual val-
ues for the simpler FD001 and FD003 data sets,

Figure 7. Flowchart for RUL estimation via the proposed
CapsNet.
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showing that for only one operation condition, the pro-
posed model prognostics performance is rather insensi-
tive to the number of faults modes presented by the
test-engines units. Therefore, it is inferred that the pro-
posed model’s performance is more sensible to changes
in the number of operational conditions than in the
number of fault modes.

Figure 8 also shows that for smaller RUL values, the
prediction accuracy increases for all data sets. When
the engine is closer to the failure threshold, features
attributed to the apparition of faults are enhanced in
the proposed model feature extraction, increasing its
prognostics performance. This can be seen in Figure 9
where a single engine sample in each data set is used to
show its whole lifetime RUL evolution. It should be
noted that these particular samples were selected due to
its long lifetimes in comparison with the whole data set.
Figure 9 shows that, initially, the rectified RUL zone is
slightly underestimated by the model. Afterward, the
linearly decreasing targeted behavior is well predicted
by the model for each data set. Also, for the late period

of the engine lifetime, the prognostics performance
accuracy increases, which is very critical for health
management in industrial applications, leading to an
enhanced operation performance and safety.

Furthermore, with the aim of showing the stability of
the prediction accuracy regarding its proximity to fail-
ure, Figure 9 shows the relative error, estimated accord-
ing to equation (7), associated with each data set sample
penalizing mispredictions nearer to the sample end life

er =
yp � yt
�� ��

yt
ð7Þ

where er is the relative error, yp is the predicted RUL
and yt is the ground truth RUL of the test sample.
Based on Figure 9, er is small for each data set, but, as
expected, larger for FD002 and FD004 test samples
compared with FD001 and FD003. Note that, in gen-
eral, er has a noisy behavior with respect of test sam-
ples time cycles, with similar maximum and minimum
values for both long- and short-term RUL estimations,

Figure 8. Predicted RUL for each test engine sample in each data set: (a) FD001, (b) FD002, (c) FD003 and (d) FD004.
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showing that the prediction capabilities do not have a
direct dependency to the test samples’ operational time
cycles.

The performance of the proposed CapsNet model
for RUL estimation is compared in Table 2 with other
relevant models on the C-MAPSS data sets. In particu-
lar, we compare against DLSTM model proposed by
Zheng et al.,13 the MODBNE proposed by Zhang et
al.,14 the more traditional CNN model with pooling
layers proposed by Sateesh Babu et al.31 (which was
the first attempt of using a CNN in this data set) and
Li et al.32 deep convolutional neural network (DCNN),
which, for the best of the authors’ knowledge, has the

best average results in these data sets. It is important to
notice that all four works make use of an
Rearly 2 ½120, 130�. Table 2 shows that the proposed
CapsNet model outperforms the other models for RUL
estimation on each data set for both mean RMSE and
mean Score, the only exception being the FD001, where
Li’s model obtained three less points in its Score. Thus,
one can argue that the CapsNet is a competent model
for RUL prediction under different combinations of
operating conditions and fault modes for the turbofans.
Also, the improved Scores show that the RUL predic-
tions are more conservative, which is a desirable prop-
erty in the context of safety and reliability, where early

Figure 9. Predicted lifetime RUL and its associated relative error for a sample test engine sample in each data set: (a) FD001, (b)
FD002, (c) FD003 and (d) FD004.
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predictions are preferred over late ones. Note also that
only Li’s model is explicitly evaluated over 10 runs,
thus providing the corresponding RMSE and Scores
mean and standard deviation (STD).

Even though, at first glance, the first convolutional
filter used in the proposed CapsNet model seems quite
dependent of the input data order, it is just used as a
dimensionality reduction, which is then summarized by
the second convolutional operation. To show the
robustness of the model regarding input sensor order,
the input data time-windows were shuffled by the col-
umns (i.e. the sensor domain) for 10 runs of the model
for FD001 and FD004 data sets. For FD001, the
RMSE and Score were 12.59 and 263.88, respectively,
showing almost no difference with the presented results
in Table 2. The same behavior was presented on
FD004, where the RMSE and Score were 18.91 and
2792.86, respectively.

The proposed CapsNet model also performs particu-
larly well for RUL estimation from the more heteroge-
neous and complex FD002 and FD004 data sets in C-
MAPSS. Sateesh Babu et al.31 presented the first
attempt of using a CNN model in this data set, employ-
ing a traditional approach with convolutional
and pooling layers. Based on the results reported in
Table 2, Sateesh’s model adapts well for the more sim-
ple and homogeneous data in FD001 and FD003 data
sets, but for FD002 and FD004, relatively worst perfor-
mances were obtained. For the DCNN model proposed
by Li et al.,32 the pooling layers were eliminated,
achieving better RUL prognostics performance in gen-
eral, but at the cost of a higher relative percentage

difference (RPD) between more homogeneous FD001
and FD003 RMSE compared with the more heteroge-
neous FD02 and FD004 RMSE. To show this, the
RPD between these data sets is obtained using equation
(7) and shown in Table 3, where

RPD=1003
RMSE1�3 �RMSE2�4
�� ��
RMSE1�3 +RMSE2�4
� �

=2
ð8Þ

with

RMSE1�3 = RMSEFD001 +RMSEFD003ð Þ=2
RMSE2�4 = RMSEFD002 +RMSEFD004ð Þ=2

ð9Þ

Table 3 indicates that a traditional CNN approach
with pooling layers shows better generalization on C-
MAPSS, being more insensitive to significant changes
between data sets. However, the exclusion of pooling
layers in a CNN architecture eliminates the only com-
ponent in it that contributes to invariance of informa-
tion, which can lead to overfitting as seen in Li’s model
for the more homogeneous data in FD001 and FD003,
and which, in turn, results in a relatively worst prog-
nostics performance for the heterogeneous data sets
(FD002 and FD004). This is observable in Table 3,
where a higher RPD of 57.59% is obtained by Li’s
model compared with the 42.28% of Sateesh’s.
However, it can be observed that the proposed
CapsNet model is more insensitive to changes in the
data sets due to the use of capsules that aims for equiv-
ariance of information in the automatic feature extrac-
tion process, thus achieving a much smaller difference
in RUL estimation performance between homogeneous

Table 2. Performance comparison of relevant works on the C-MAPSS data sets.

DLSTM13 MODBNE14 CNN first attempt31 DCNN32 Proposed CapsNet

RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score

FD001 Mean 16.14 338 15.04 334.23 18.45 1286.70 12.61 273.70 12.58 276.34
STD – – – – – – 0.19 24.1 0.25 25.95

FD002 Mean 24.49 4450 25.05 5585.34 30.29 13,570 22.36 10,412 16.30 1229.72
STD – – – – – – 0.32 544 0.23 53.07

FD003 Mean 16.18 852 12.51 421.91 19.82 1596.20 12.64 284.10 11.71 283.81
STD – – – – – – 0.14 26.5 0.26 29.46

FD004 Mean 28.17 5550 28.66 6557.62 29.16 7886.40 23.31 12,466 18.96 2625.64
STD – – – – – – 0.39 853 0.27 266.83

C-MAPSS: Commercial Modular Aero Propulsion System Simulation; DLSTM: deep long-short term memory recurrent neural network; MODBNE:

multi-objective deep belief network; CNN: convolutional neural networks; DCNN: deep convolutional neural networks; RMSE: root mean squared

error; STD: standard deviation.

Table 3. Relative percentage difference for C-MAPSS sub-data sets between CNN-based models and the proposed CapsNet based
model for RUL estimation.

Sateesh’s CNN31 Li’s DCNN32 Proposed CapsNet

RPD (%) 42.28 57.59 36.84

C-MAPSS: Commercial Modular Aero Propulsion System Simulation; CNN: convolutional neural networks; DCNN: deep convolutional neural

networks; RUL: remaining useful life; RPD: relative percentage difference.
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and heterogeneous data sets as shown by smaller RPD
of 36.84% compared with the other two models.

Sensitivity analysis. In this section, a sensitivity analysis
involving the hyperparameters of the proposed
CapsNet model for RUL estimation is presented for
data sets FD001 and FD004, that is, the simplest and
the most complex data sets, respectively. Three hyper-
parameters of the proposed CapsNet are varied during
the training process: the dimensions of primary cap-
sules, the number of secondary capsules and the num-
ber of rounds of dynamic routing between them. These
hyperparameters were selected because they were the
most relevant in determining the quality of the results
by the proposed model in terms of RUL performance
and Score for all four data sets. Note also that the

remaining model’s hyperparameters presented in sec-
tion ‘‘Proposed CapsNets for RUL estimation’’ were
left unchanged. Also, to show the robustness of the
model with respect to the amount of training data,
three different train–validation splits will be analyzed.

Figure 10 shows that an increasing number of
dimensions of the primary capsules mostly affect the
computation time of the model for both data sets.
Fewer dimensions correspond to a greater number of
capsules since the feature maps generated by the previ-
ous convolutional layer are only reshaped into cap-
sules, thus increasing the number of parameters in the
model, which in turn leads to increased training time.
However, the RUL prognostic performance is stable
both in mean and STD.

Similar behavior is observed in Figure 11 for varia-
tions in the number of secondary capsules, with more

Figure 10. Effect of the dimensions of the primary capsules in the computation time and prognostics performance in the training
process of data sets: (a) FD001 and (b) FD004.

Figure 11. Effect of the number of secondary capsules in the computation time and prognostics performance in the training
process of data sets: (a) FD001 and (b) FD004.
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capsules leading to an increase in the computation time
with no relevant differences in the prognostic perfor-
mance. Therefore, one can argue that the proposed
CapsNet model for RUL estimation seems to be robust
in relation to changes in the hyperparameters related to
the number and dimensions of capsules.

Another important hyperparameter is the number of
rounds of dynamic routing between capsules, since this
determines the relationships between low-level features
of the data set and high-level ones. Figure 12 shows
that the proposed model’s prognostic performance does
not present relevant differences with an increasing num-
ber of rounds for both FD001 and FD004 data sets.
However, it can be observed that the training computa-
tion time increases linearly with the number of dynamic

routing rounds, thus suggesting that no more than two
rounds are needed for the proposed model for RUL
estimation on C-MAPSS.

Finally, Figure 13 shows the robustness of the model
with respect of the amount of available training data.
For the simpler FD001 data set, the training data
reduced from 85% to 70% and 50% do not show
major changes regarding RMSE and training time,
showing that the model behavior for more homoge-
neous data is stable. In the case of the more complex
FD004 data set, a slight increase in both RMSE and its
STD can be observed, especially for the 50% case,
which is expected in the training of a more heteroge-
neous data set, where less data imply less information
about the heterogeneity of the data. Nevertheless, the

Figure 13. Effect of the number of used training data in the computation time and prognostics performance in the training process
of data sets: (a) FD001 and (b) FD004.

Figure 12. Effect of the number of dynamic routing rounds in the computation time and prognostics performance in the training
process of data sets: (a) FD001 and (b) FD004.
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proposed model still outperforms other relevant works
shown in Table 2, even though almost only half of the
available data are used to train the model.

Concluding remarks

Among the different deep learning techniques, CNNs
have shown remarkable results on different PHM-
related tasks, such as fault diagnostics and RUL prog-
nostics. Despite of this, as discussed in section ‘‘CNNs
and their limitations,’’ they do have some limitations:
translational invariance is only assured using pooling
layers that require sub-sampling of its input data, lead-
ing to a possible loss of relevant information from the
system’s sensor data. These limitations can be tackled
via CapsNets, which use vector-shaped capsules of neu-
rons instead of single scalar neurons that aim at equiv-
ariance of information, ensuring better relationships
between low- and high-level features extracted by the
network without the need for sub-sampling, so no posi-
tional information is lost in the process. Although
CapsNets were initially proposed for CV classification
tasks,33,35 the above-mentioned drawbacks of CNNs
motivated the proposed model, architecture and algo-
rithm that further develop and explore the flexibility of
CapsNets in the context of RUL estimation. The
benchmark C-MAPSS turbofans data sets were used as
a case study, with state-of-the-art RUL results in both
RMSE and Score metrics achieved by the proposed
CapsNet model. These results show that the proposed
CapsNet model is a competent and promising tool for
RUL prognostics and worth further exploring its cap-
abilities in other PHM applications beyond monitoring
signals of turbofans.

Indeed, as shown in section ‘‘RUL prognostics per-
formance,’’ the proposed CapsNet model for RUL esti-
mation achieved good prognostic performance on the
four FD001, FD002, FD003 and FD004 testing sets
that conforms C-MAPSS, especially for the late period
of the turbofans lifetime. Furthermore, the proposed
model showed to be more sensible to the number of
operational conditions than the number of fault modes
presented by the tested engines, thus achieving better
results in the simpler FD001 and FD003 data sets (both
with just one operational condition) than in the more
complex FD002 and FD004 (both with six operational
conditions).

The proposed CapsNet model’s prognostics perfor-
mance also compared favorably with both RMSE and
Score metrics obtained from other deep learning–based
models. The proposed model showed significant
improvements in RUL prognostics on the more com-
plex (i.e. with higher level on heterogeneity) FD002
and FD004 data sets. Also, as presented in Table 3, the
use of capsules decreased the relative RMSE difference
between simple and complex data sets in comparison
with other CNN-based models, a feature that is

believed to be triggered by the incorporation of equiv-
ariance through the CapsNet.

In addition, as discussed in section ‘‘Sensitivity anal-
ysis,’’ the proposed CapsNet model showed no relevant
sensibility in terms of RUL prognostics when changes
are made in its main architecture’s components.
Therefore, the proposed CapsNet model for RUL esti-
mation seems to be a propitious and robust model for
prognostics on PHM-related tasks.

However, the proposed CapsNets are still a new deep
learning architecture ought to be further explored. For
instance, a not so deep CapsNet model was presented
here, leaving for future attempts the analysis of deeper
architectures, considering that CNNs automatic future
extraction capabilities are usually improved under this
approach.50 Moreover, new routing algorithms might
also be considered such as expectation–maximization
(EM)-routing.43
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