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ABSTRACT A 3D model of the human iris provides an additional degree of freedom in iris recognition,
which could help identify people in larger databases, even when only a piece of the iris is available.
Previously, we reported developing a 3D iris scanner that uses 2D images of the iris from multiple
perspectives to reconstruct a 3D model of the iris. This paper focuses on the development of a 3D iris
scanner from a single image by means of a Convolutional Neural Network (CNN). The method is based
on a depth-estimation CNN for the 3D iris model. A dataset of 26,520 real iris images from 120 subjects,
and a dataset of 72,000 synthetic iris images with their aligned depthmaps were created. With these datasets,
we trained and compared the depth estimation capabilities of available CNN architectures. We analyzed
the performance of our method to estimate the iris depth in multiple ways: using real step pyramid printed
3D models, comparing the results to those of a test set of synthetic images, comparing the results to those
of the OCT scans from both eyes of one subject, and generating the 3D rubber sheet from the 3D iris model
proving the correspondence with the resulting 2D rubber sheet and binary codes. On a preliminary test the
proposed 3D rubber sheet model increased iris recognition performance by 48% with respect to the standard
2D iris code. Other contributions include assessing the scanning resolution, reducing the acquisition and
processing time to produce the 3D iris model, and reducing the complexity of the image acquisition system.

INDEX TERMS 3D iris reconstruction, 3D iris scanner, biometrics, iris recognition, depth estimation.

I. INTRODUCTION
The human iris is composed of two muscle systems and a
sphincter to control the amount of light entering the retina [1].
These muscular fibers, as well as the pigmentation, provide
a unique texture to each iris that can be used for identifica-
tion [2]. Traditionally, the texture of the iris has been analyzed
using 2D images to produce accurate iris recognition [2]–[8].
However, in recent years, a 3D iris scanning method that
exploits the 3D relief of the iris has been proposed [9]–[11].
This method reconstructs a 3D model of the iris surface
using images from several perspectives and Structure from
Motion (SfM) algorithms [12], [13]. The 3D iris model
opens new frontiers for biometric applications, as well as in
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ophthalmology [10]. For example, the 3D iris model can
potentially be used as a screening method for Closure Angle
Glaucoma, a disease currently diagnosed with Optic Coher-
ence Tomography (OCT) scans [9], [10], [14].

A method for reconstructing a 3D model of the iris surface
from several images was introduced by Bastias et al. [9] and
improved by Benalcazar et al. [10]. The improved method
consists of the following steps: First, visible light (VL)
images of the iris are captured from different perspec-
tives. These images are acquired with a custom device that
illuminates the iris with Lateral and Frontal Visible Light
(LFVL) [15]. Then, a modified SfM algorithm estimates
the camera pose of every image jointly with a sparse 3D
model of the iris [9], [10]. Then, a dense 3D point-cloud
reconstruction is performed by extracting Shi-Tomasi key-
points from each image [10], [16]. Finally, the point-cloud
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model is converted into a mesh surface by the Screened
Poisson Surface Reconstruction technique [17]. This mesh
helps interpolate the depth information in areas of the iris with
low texture [10]. The result is a 3D model that incorporates
both depth and color information of the iris surface. The addi-
tional dimension aims to increase iris recognition accuracy
particularly when the iris is occluded by eyelids, eyelashes,
and reflections [9], [11]. The system recently developed by
Cohen et al. [11] tracks fiducial points from two or more
near-infrared (NIR) images of the eye to create the 3Dmodel.
They then calculate the geometric error between two 3Dmod-
els as the Mean Square Error (MSE) of candidate matching
points. They tested their method on a dataset of 20 irises,
correctly classifying all of them.

As previously described, the 3D iris scanning method can
produce a complete model of the human iris, but there are
limitations to this technique. First, the SfM method requires
a moving camera, which adds complexity to the system.
Second, SfM was conceived to scan inanimate objects; how-
ever, the human iris can dilate from frame to frame, adding
a source of distortion. This was solved by acquiring many
images per position, and selecting those with a consistent
dilation level [10]. This solution increases both acquisition
and processing time. Third, because SfM relies on keypoints
and descriptors, irises with richer texture generate more
3D points than those with fewer details. Finally, it is difficult
to acquire 3D points from areas in the image that present no
texture; thus the point-cloud 3D model has an uneven distri-
bution of points in space. The mesh representation solves this
issue at the expense of more processing time [10].

However, SfM is not the only method that can produce
3D scene reconstruction from 2D images. In recent years,
Convolutional Neural Networks (CNN) have increased accu-
racy in depth prediction tasks [18]–[20]. Most of the CNNs
rely on training an encoder-decoder architecture with the
image of a scene as the input, and an aligned depthmap as the
target [21]–[23]. As a result, the CNN learns to identify visual
cues, such as perspective, that allow prediction of the depth
of every object in the scene. The output depthmap captures
the depth value of every pixel, even in low texture areas
such as uniform color furniture or roads [23]. Therefore, the
3D model is always complete and evenly sampled regardless
of the texture in the image.

The main contribution of this paper is to propose a new
method to obtain a 3D model of the iris from a single image
using CNNs. The method is based on a depth-estimation
CNN for the 3D iris model. A dataset of real iris images
from 120 subjects, and a dataset of synthetic iris images
with their aligned depthmaps were created. Then, depth-
estimation CNNs were trained using the real and synthetic
irises [18], [19], [24], [25], and two network architectures
were combined to improve performance. We analyzed the
performance of our method in predicting the iris depth by
using real step pyramid printed 3D models, comparing the
results to those of a test set of synthetic images, comparing
the results to those of the OCT scans from both eyes of one

subject and generating the 3D rubber sheet from the 3D iris
model, and proving the correspondence with the resulting
2D rubber sheet and binary codes. Other contributions of the
proposed method include assessing the scanning resolution,
reducing the acquisition and processing time for producing
the 3D iris model, and reducing the complexity of the image
acquisition system since the camera does not need to move to
scan the iris.

II. RELATED METHODS IN DEPTH ESTIMATION USING
CONVOLUTIONAL NEURAL NETWORKS
Depth estimation by a CNN can be formulated as a regression
problem, in which the input is an image, and the target is
the depth value of every pixel, also known as the depthmap.
Eigen et al. [21] used a single image of an indoor scene as
input, and the aligned depthmap of the same scene as the
target. Such a depthmap had been acquired previously with an
RGB-D camera. As a result, the CNN learned the depth of the
walls and objects in indoor environments with great accuracy
from their contexts [21]. Since then, several methods have
been reported in the literature that have used similar training
schemes and improved architectures with excellent depth
estimation performance [18]–[20], [22], [23], [25].

The architecture of some depth estimation CNNs
has been improved to produce more robust solutions.
Eigen and Fergus [22] expanded their previous work to
also predicting surface normals and labels. Laina et al. [23]
trained a ResNet50 [26] based auto-encoder to increase
accuracy. Alhashim and Wonka [18] developed DenseDepth,
a DenseNet-169 based encoder with upsampling layers in
the decoder to obtain high resolution depthmaps of indoor
and outdoor scenes. Xu et al. [27] integrated Convolutional
Neural Fields and a structured attention model to generate
pixel precision in depth estimation. Fu et al. [19] developed
DORN, with a space-increasing discretization strategy to
recast depth estimation as an ordinal regression problem.
CNNs have been trained to produce more complex methods
formap reconstruction and navigation. For example, the CNN
SLAM not only estimates depth from a single frame, but also
integrates successive predictions of a video feed into a larger
and more complete map of the environment [28]. Another
deep network, FastDepth, by Wofk et al. [20] focused on a
real time implementation for robotic navigation.

One limitation of the previously described methods is the
need for a large number of aligned depthmaps for train-
ing. That is why Godard et al. [29] developed Monodepth,
an encoder-decoder CNN that is trained with stereo images.
The input of that network is the left image and generating
the right image is the target. In this sense, the network has
to understand the 3D geometry of the scene implicitly to
perform the task. Kuznietsov et al. [30] combined stereo
image information with sparse depthmap ground truth to
produce a semi-supervised implementation. Their approach
uses a small number of aligned image-depthmap pairs as
ground truth in a supervised manner, along with a greater
number of stereo image pairs in an unsupervisedmanner [30].
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The latter two methods [29], [30], outperformed previous
existing methods in depth estimation. However, the most
recent methods, DenseDepth [18], and DORN [19] have
already achieved better results.

Another solution for the limited availability of training
data in depth estimation is the use of synthetic images.
Tian et al. [31] trained detection and classification networks
using a combination of real and synthetic images. In their
work, CNNs trained with real and synthetic data outper-
formed those trained with only real images [31]. More-
over, Zheng et al. [25] developed a depth-estimation CNN
(Translation and Task Network, T2Net) that incorporates the
use of synthetic and real images in its architecture. The T2Net
is composed of a Generative Adversarial Network (GAN) that
translates synthetic images to the domain of the real ones.
The task component is an encoder-decoder that then pre-
dicts depth from the translated images [25]. T2Net achieved
state-of-the-art results in widely used datasets, such as
NYU-DepthV2, and KITTY [25].

Zheng et al. [25] analyzed various strategies for incorpo-
rating synthetic data in depth estimation tasks. As a result,
they propose that the best alternative is incorporating both the
translation and the task in the same training loop. In this way
the GAN will learn to modify synthetic images only in their
appearancewhile keeping themain features alignedwith their
depthmaps. They call it the full approach, and it had the best
results among the other strategies analyzed [25].

III. METHODOLOGY
Our methodology for developing a new method to obtain
the 3D model of the iris from a single image using CNNs
is based on a depth-estimation CNN. First we defined the
requirements of the training images so that the CNNs could
infer depth information from visual cues. Then, we acquired
both real and synthetic iris datasets with the desired char-
acteristics. After that, we used our datasets to train avail-
able depth-estimation CNNs for 3D iris scanning. We then
analyzed the performance of our method in predicting iris
depth, and using printed 3D step pyramid models, we com-
pared the results to those of a test set of synthetic images,
compared the results to those of the OCT scans from
both eyes of one subject, and generated the 3D rubber
sheet from the 3D iris model demonstrating the correspon-
dence between the resulting 2D rubber sheet and binary
codes.

A. LEARNING DEPTH INFORMATION
Several visual cues provide depth information to humans.
Cutting and Vishton [32] identified nine distinct
mechanisms from which humans perceive depth. Occlusions
indicate whether an object is behind or in front of another.
The relative size of an object also indicates depth. Due to
perspective, an object that is closer to a camera appears bigger
than another that is farther away [33]. Similarly, the texture
density of a cobble road appears to be coarser close to the
viewer than farther away [32]. Binocular disparity allows

triangulation to compute the distance of an object from the
camera depending on how its position changes from one view
to the next [12], [13], [33]. These visual cues are exploited
by most SfM and CNN systems to reconstruct the precise
3D model of an object or a scene [13], [21].

Depth information of the human iris images has some
particular issues that are different from those of general visual
scenes. In iris images, the iris is the main object in the
scene, and its size is normalized. Therefore, depth informa-
tion cannot be inferred by occlusions or perspective. How-
ever, shadows cast by objects are another type of visual cue
that provides depth information [32]. Elevations and craters
can be identified by the shadows they cast. Similarly, in our
method it is desirable to learn the relationship between the
shadows on the surface of the iris, and the depth of the features
that produce them.

In order for the iris features to cast shadows, a lateral source
of illumination is needed. For this purpose, we developed a
device with lateral and frontal lighting [15]. The device has
a black frame that blocks external light sources, and has six
white LEDs in front of each iris and three white LEDs on
the side of each iris (LFVL illumination), to illuminate both
eyes. The lateral illumination creates shadows from the relief
of the iris surface, increasing the texture in the image [15].
This texture improved results in iris recognition [15].
LFVL illumination has also been used in 3D iris scanning
with good results [10]. It was shown in [10] that LFVL
improved the iris texture by producing more keypoints for
3D iris reconstruction. In our work, however, the use of LFVL
illumination is important because shadows from iris features
carry depth information.

B. REAL IRIS DATASET
The real iris dataset contains iris images with a wide range
of dilation levels from 120 subjects. The study was properly
approved as states the resolution No.011, on May 9, 2019, by
the Ethics and Biosafety Committee for Research, Faculty of
Physical and Mathematical Sciences, Universidad de Chile.
Each of the 120 subjects signed a letter of consent for partic-
ipating in this study. Iris images were captured under LFVL
illumination using the device described in both the previous
section, and in [15]. Iris images were captured in 3-second
videos of pupil reaction to light changes. The pupil reaction
test consisted of dark adaptation for 10 seconds, so that pupils
would dilate, followed by turning on the LFVL illumination
for 3 seconds. This experiment is harmless to the human
eye since the LEDs used in this study are catalogued Risk
Group 0-1 [34]. The maximum admissible exposure time
is 10,000s for those risk groups, and our subjects were only
exposed for 3 seconds [34]. The video captures how the
pupil contracts from a dilated state, frame by frame, at 30 f/s
(frames per second). Figure 1 shows some frames of the
pupil reaction experiment for 3 subjects, while Figure 2 illus-
trates the evolution of the dilation level over time for one
subject. The dilation level is measured as the ratio between
the radii of the pupil/iris boundary (Rp) and the iris/sclera
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FIGURE 1. Seven frames from the pupil reaction from 3 different subjects
with different pupil dilations.

FIGURE 2. Pupil reaction experiment for the right eye of subject 003.
Dilation level decreases over time in a non-linear manner due to
transition from low light to brighter light.

boundary (Rs) [1], [35]:

λ = Rp
/
Rs. (1)

In order to remove artifacts and normalize the number
of images per subject, 60 valid frames were selected per
video. At 30 f/s, each video has 90 available frames; however,
some frames in the videos contained motion blur, occasioned
by eye movements and blinking. Additionally, there were
redundant frames with similar dilation levels, as can be seen
in Figure 2 in the interval between 2.5 s and 3 s. There-
fore, all images with motion blur or artifacts were removed
manually, and 60 frames with different dilation levels were
selected from the remaining images. The selection consisted
of keeping the images with a steeper slope in the curve
of Figure 2, and randomly sampling the images in the plateaus
until 60 images were selected. Therefore, all the videos
contain exactly 60 valid frames in the dataset. We captured
two videos of pupil reaction from each eye of each subject.
From the 480 videos of the 120 subjects, 38 were eliminated
since the number of available frames without motion blur
or artifacts was less than 60. Therefore, a total of 442 were
available from the 120 subjects. The total number of iris
images available was 26,520.

The dataset was acquired from 120 subjects with an aver-
age age of 23.2 ±5.0 years old. Of these subjects, 67% were
male and 33% were female. Of the 120 subjects, their iris
colors were 48 dark brown, 49 light brown, 19 green, 3 blue,
and one gray iris. The average minimum and maximum dila-
tion levels per iris among the subjects were 0.24 and 0.54

respectively in the dataset. However, the overall minimum
andmaximum dilation levels were 0.16 and 0.77 respectively.

The real iris dataset was partitioned in the following
manner: 96 subjects were selected randomly for training,
12 for validation, and 12 for testing. There are, there-
fore, 20,940 training images, 2,700 validation images, and
2,880 testing images. It is worth mentioning that we have
OCT scans available of both eyes of one subject in the dataset.
This subject was placed in the test set in order to assess the
generalization capacity of the 3D models in comparison to
OCTs of that subject. Finally, each video was captured at a
resolution of 8 Mpx, and the iris diameter is 800 pixels on
average. However, due to GPU limitations, we resized the
iris images to a resolution of 256× 256. The resized images
are similar in size to iris images in current commercial iris
sensors.

C. SYNTHETIC IRIS DATASET
In order to acquire a synthetic iris dataset we used Blender,
an open-source 3D-design application [36]. Blender can pro-
duce 3D models, simulate light sources and materials, render
2D images, and produce aligned depthmaps [36]. These char-
acteristics allowed us to simulate LFVL illumination in vir-
tual irises. We sculpted 100 virtual irises by obtaining texture
information from the real iris dataset, and depth information
from 36 OCT scans gathered from the internet. Figure 3 illus-
trates the process of sculpting irises using Blender. In this
study, we define the xy plane as the same plane used in 2D iris
images, while the z axis represents depth. First, one slide from
one OCT is aligned with the yz plane. Then, the iris contour
is carefully traced, and a revolution surface is created by
revolving the OCT slice around the z axis. The 3D texture is
then added to the model so that it will resemble that of the real
iris. Each of the 100 virtual irises has a different dilation level,
depth profile, and texture. To illustrate, Figure 3d shows four
virtual irises that come from different OCTs, and therefore
have different textures and dilation levels.

We then rendered synthetic iris images from those 3Dmod-
els simulating LFVL illumination [15]. Thus, all the images
have illumination sources from the side, and from the front.
We used the same resolution of the real iris dataset, which is
256×256. In the synthetic images a virtual iris of 12.1 mm in
diameter was assigned 230 pixels in the image. This diameter
corresponds to the average diameter of a human iris [37].
Figure 4 shows examples of synthetic images and their
respective depthmaps. The shadows in a synthetic image
(Figure 4) are simulated from the interactions of LFVL
light with the 3D relief of virtual irises (Figure 3). Next,
we used data augmentation on the 3D models rather than
on the 2D images to avoid aliasing and distortions. For this
purpose, we changed rotation, translation, scaling, mirroring,
and color in the 3D models. We used 4 colors, 9 positions,
5 rotations, 2 scales, and mirroring, generating a total of
720 images per each virtual iris. The synthetic iris dataset
therefore has 72,000 images. Since the 3D information of
each model is known, the corresponding synthetic images
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FIGURE 3. Virtual iris formation from OCT images in Blender [36]. (a) The OCT is aligned with the yz plane and the contour, in orange, is traced. (b) The
contour of the iris is used to make a revolution surface. (c) 3D texture is sculpted in Blender. (d) Four different examples of virtual irises with texture and
dilation levels to simulate the variability of those parameters found in the real iris dataset.

FIGURE 4. Examples of synthetic iris images, without eyelids, and their
corresponding depthmaps.

FIGURE 5. Examples of synthetic images with eyelids, eyelashes and
reflections.

are accompanied by their aligned depthmaps. However, since
color swapping produces the same depthmap, there are
only 18,000 depthmaps in the dataset. The depthmaps were
encoded using 8 bits (0-255). The scale range of 255 is
equivalent to 1.936 mm in Blender for our virtual irises.

We also added eyelids, eyelashes, and reflections to the
synthetic images, emulating the real iris dataset. This step
also helps the networks to learn to predict depth informa-
tion even in the presence of specular highlights. This will
also allow the network to learn how to segment eyelids and
eyelashes from the iris. Figure 5 shows the synthetic images
with the characteristics described. Eyelids were given a depth
value of 10 on the scale of 0-255. This number was selected
to avoid saturations during training using backpropagation.

We then partitioned the synthetic iris dataset randomly,
using 80 virtual irises for training, 10 for validation, and
10 for testing. We thus have 57,600 synthetic images for
training, 7,200 for validation, and 7,200 for testing. The
synthetic iris dataset will be available on GitHub.1

1https://github.com/dpbenalcazar/irisDepth

D. NETWORK ARCHITECTURE AND TRAINING
In this work we trained several state-of-the-art CNNs to
compare their performances in solving the iris depth estima-
tion problem. We compared DenseDepth [18], DORN [19],
and T2Net [25], those that have demonstrated great depth
estimation performance in outdoor and indoor settings.
We then introduce irisDepth, which combines the GAN of
T2Net with the sophisticated depth prediction architecture of
DenseDepth, to increase performance. Figure 6 shows the
architectures of T2Net and irisDepth. The yellow module
GS→R is a GAN that is shared in both networks. In order to
use iris images with these networks, we added lateral illumi-
nation (LFVL) of the iris, which enhances shadows produced
by iris features [15]. Thus, LFVL illumination allows the
networks to relate shadows in RGB images to depth infor-
mation. The networks were then trained to relate shadows in
RGB images to depth information [32]. Both real and syn-
thetic images were illuminated with LFVL in this work.

To make use of synthetic and real data in the training
process, Zheng et al. described two training schemes, called
vanilla and full [25]. In the vanilla approach, the translation
component is trained first, and the task component is trained
afterwards. In the full approach, both translation and task
are trained simultaneously. In the context of iris depth esti-
mation, the translation component performs domain adap-
tation to the synthetic iris images to look realistic, and the
task component estimates the depth value of every pixel in
the iris image. We used both vanilla and full approaches to
train available state-of-the-art networks for 3D iris scanning
with the datasets that were described in the Methodology,
subsections B and C.

For the vanilla approach, we trained CycleGAN [38], [39]
to perform domain adaptation on synthetic images. We used
the synthetic iris images as the input, and the real iris
images as the target. We trained the network using the train
partition of both datasets, and the stop epoch was deter-
mined with the validation set. After that, we used Cycle-
GAN to translate all 72,000 of the synthetic images, and
thus formed a photo-realistic iris dataset. This dataset was

98588 VOLUME 8, 2020



D. P. Benalcazar et al.: 3D Iris Scanner From a Single Image Using CNNs

FIGURE 6. Architectures of T2Net [25] and irisDepth in the context of iris depth estimation. (a) T2Net consists of two parts translation, in blue,
and task, in red. The translation network is comprised of a GAN that enhances the realism of synthetic images. The task part is comprised of an
encoder-decoder architecture fT, which makes depth predictions from real and translated images. (b) irisDepth uses the DenseDepth [18]
architecture to improve depth prediction performance. A pre-trained T2Net GAN enhances the realism of synthetic images while leaving iris
features aligned with the corresponding depth features. After training with realistic irises with aligned depthmaps, irisDepth can make depth
predictions in real iris images. The yellow module GS→R is first trained in (a), and then used in (b) to generate the inputs.

partitioned identically to that of the synthetic iris dataset.
Then, with the photo-realistic irises as the input, and the depth
ground truth of the synthetic images as the target, we trained
DenseDepth [18], DORN [19], pix2pix [24] and T2Net [25].
In all these cases, we used the same networks available on
the original code, with the exception of adjusting image sizes
to 256 × 256. We used the train partition of the dataset to
train these networks. The validation partition was used to
determine the stop criterion for each network.

The full version of T2Net, shown in Figure 6a, was trained
using a similar procedure. We also made no changes in the
network architecture other than adjusting input and output
image sizes. The GAN part of T2Net (GS→R) is based on
SimGAN in the generator and PatchGAN in the discrimina-
tor [25]. The task network (fT) uses ResNet-50 in the encoder
and up-sampling layers in the decoder [25]. Due to GPU
constraints, we had to reduce image resolution to 192× 192
only for this network. Then, we used the train partitions of
both real iris and synthetic iris datasets as the input, and the

depth ground truth of the synthetic images as the target. Using
the validation partition, we determined the stop epoch.

We propose a method to increase performance by merging
Densedepth and T2Netn. As Zheng et al. described in their
paper [25], the problem with the vanilla approach is that
while the GAN could morph image features in favor of better
appearance, those image features might no longer be aligned
with depth features in the corresponding depthmap [25].
We experienced this phenomenon with CycleGAN. As a
solution to this problem, we propose using the GAN pre-
diction of a pre-trained T2Net along with the auto-encoder
of DenseDepth, instead of using a GAN that is blind to
depth information. We call this approach irisDepth, and it
makes use of the precision of DenseDepth while solving the
main problem of the vanilla approach. Figure 6b illustrates
irisDepth’s architecture.

The following steps were performed for the purpose of
using irisDepth in our problem: First, we changed the con-
figuration of T2Net to handle images with a resolution
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FIGURE 7. Evolution of the loss functions in the training process of T2Net,
as an example of convergence.

of 256×256. We used 6 down-sample layers in the transform
network, 3 down-sample layers in the task network, 3 down-
sample layers in the discriminator, and kept the rest of the
parameters of the original configuration of T2Net. Then,
we trained T2Net (Figure 6a) with our datasets, and used
the validation set to find the stop point. Figure 7 shows the
evolution of the translation and task loss functions. This illus-
trates an example of convergence with the proposed method.
We then discarded the task part of this T2Net, and used only
its GAN at the best epoch for the next steps. This is the
yellow GS→R module in Figure 6. After that, we translated
all the images in the synthetic iris dataset to obtain a realistic
dataset. We partitioned this dataset to be identical to the
synthetic iris dataset. Finally, we trained the standard version
of DenseDepth using the train partition of the realistic dataset
as the input, and the corresponding depthmaps of the original
synthetic images as targets, as illustrated in Figure 6b. In this
way, our irisDepth uses a GAN with information about depth
data and a robust auto-encoder for the task part.

E. DEPTH EVALUATION WITH SYNTHETIC IMAGES
As one performance evaluation, we compared each network
depth estimation capacity using the test set of 7,200 synthetic
images. The goal of this test is to evaluate the depth estimation
part of each network rather than the photo-realism of the
translated images. The results of this test do not generalize
to the performance on a real iris, but give a good indication
of the precision of each network in the depth estimation task.
First, the synthetic images were translated to the realistic
domain using CycleGAN for the vanilla networks, as well
as their respective GAN for the full networks. Both T2Net
and irisDepth have loss functions for the translation, as well
as for the task part. Therefore, the networks perform domain
adaptation instead of leaving synthetic images unchanged.
Depthmaps were then predicted from the translated images
using each network. Finally, we evaluated how similar the
depthmaps that were predicted from the translated images
were to the ground-truth depthmaps of the synthetic images.

For this purpose, we used the standard metrics: Absolute
Relative Difference (abs_rel), Squared Relative Difference
(sq_rel), Root Mean Square Error (rmse), Logaritmic Root
Mean Square Error (rmse_log), and theAccuracyMetrics (a1,
a2 and a3) [18]–[23], [25]. The accuracy metrics a1, a2 and
a3 are computed using:

th (u, v) = max
(
depth(u, v)
GT(u, v)

,
GT(u, v)
depth(u, v)

)
[25], (2)

an = (W · H)−1 ·
∑

u,v

(
th (u, v) < 1.25n

)
[25], (3)

where u and v are the coordinates of a pixel, depth(u,v) is the
intensity of the predicted depthmap at the (u,v) coordinate,
GT(u,v) is the intensity of the ground truth depthmap at the
same coordinate, and n = {1, 2, 3}.

F. 3D RECONSTRUCTION OF HUMAN IRISES
After all the networks are trained and tested, they can be
used to generate depth estimates on human iris images. With
an iris image and the predicted depthmap we can construct
a 3D model of the iris. The 3D pointcloud model consists
of a list of (x,y,z) coordinates of each 3D point. The x and
y coordinates come directly from scaling the position of the
pixels in the image, while the z coordinate is related to the
depth value. If we use u and v to describe the horizontal and
vertical position of a pixel in the image, and x, y and z to
describe the 3D position of a point in the point-cloud model,
the coordinates of such a point in millimeters are obtained by:

x(u, v) =
13.47
W

(
u−

W
2

)
, (4)

y (u, v) = −
13.47
H

(
v−

H
2

)
, (5)

z (u, v) =
1, 936
255

(255− depth (u, v)+min (depth)) , (6)

where W is the image width, and depth(u,v) is the intensity
value of the predicted depthmap at the (u,v) coordinate. The
constants in (4)–(6) depend on the size of the virtual iris
and the distance to the camera. The constant 13.47 in the
xy plane is computed assuming a design criterion where
a virtual iris of 12.1 mm in diameter uses 230 pixels in
the rendered image. Therefore, 256 pixels are 13.47 mm.
The constant 1.936 mm is the maximum depth size equiv-
alent of a variation of 255 levels in the depth map. Then,
a 3Dmesh model is formed by connecting neighboring points
in the pointcloud. As a result, two 3D model representa-
tions are formed, and they are compatible with our previous
SfM approach [10]. These models can easily be sliced and
compared with OCT scans.

G. DEPTH EVALUATION WITH OCT SCANS
For one subject in the test dataset, we acquired four Anterior-
Segment OCT slices of each eye, using the VisanteTM OCT
system [40]. These 8 OCT slices provide a ground truth
for the evaluation of depth estimation from real iris images.
First, we normalized the scale of the OCTs and rotated them
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FIGURE 8. OCT edge detection of one subject in the test dataset.

so that the intersections of the cornea and the iris lay in a
horizontal line. Then we used Canny edge detection to obtain
the positions of the points on the iris surface. Figure 8 shows
an example of the OCT with its corresponding iris surface
in red. After that, one 3D model was estimated for each
iris using real images of the same subject, and using the
trained CNNs. We also produced one 3D model for each iris
using the SfM 3D-iris-scanning method described in [10].
Then we sliced each 3D model using the same angles as in
the available OCTs: 0◦, 45◦, 90◦ and 145◦. To compensate for
dilation differences between the OCTs and the iris images,
we transformed the 3D model slices linearly to match the
beginning and ending points of the irises. Finally, we com-
pared each 3Dmodel slice with the corresponding OCT slice,
and measured the mean absolute error (MAE). The scale
information on the OCT scans allowed us to calculate MAE
in micrometers.

H. RESOLUTION ASSESSMENT
We assessed the minimum depth that we could detect with
our method, as well as the amount of error on all three axes.
For the analysis, we manufactured and scanned 3D patterns
of known dimensions. We printed them in 3D real truncated
pyramids of various heights, as shown in Figure 9a. The
x and y dimensions of every step are fixed, and the step height
1Z varies from 25 µm to 500 µm in increments of 25 µm.
In total, we manufactured 20 pyramids for training and 5 for
testing, using the FORMLABS FORM-2 stereolithography
3D printer.We set the 3D printer for the best resolution, which
is 25µm per layer. Then we trained our irisDepth network
with images of the 3D patterns.We used the same architecture
and the same training scheme described in the Methodology,
in subsection D. In this way, we used real images, as well as
synthetic images with aligned depthmaps.

For the real pyramid image dataset, we used the same
device and setup that was used for the iris images to assess the
depth performance of ourmethod. Figure 9b shows one image
captured under these conditions as an example. We captured
360 images of the 20 real step pyramid printed 3D models,
which included 6 different angles on the z axis and 3 angles
on the y axis. We augmented the data using translation and
scaling to produce a total of 7,200 images.

FIGURE 9. Truncated 3D pyramids for resolution assessment. (a) General
shape of all 3D patterns. Red dimensions are fixed for every pyramid,
while 1Z, blue, change from model to model. Within a 3D model, all
3 steps have the same 1Z value. (b) Example of a real image of the
3D patterns captured under LFVL illumination. (c) Example of a synthetic
image of the 3D pattern, produced in Blender. (d) Depthmap of the
synthetic image in (c).

For the synthetic dataset, we used Blender to create
20 virtual pyramids with similar characteristics to those
of the 3D printed ones. Then, we simulated the same
LFVL illumination as was used in the synthetic iris dataset.
Figure 9c shows an example of a synthetic image, and
Figure 9d shows its corresponding depthmap. Using 3D data
augmentation, we included 45 different angles from the z axis,
and 6 angles from the y axis, rendering 5,400 synthetic images
with aligned depthmaps. Then, using 2D data augmentation
of 6 random translations and scales, we obtained 32,400
synthetic images. Finally, we partitioned the image dataset
into 80% (25,920) for training, 10% (3,240) for validation,
and 10% (3,240) for testing.

We followed the same procedure for training our irisDepth
network with the real and synthetic pyramid dataset as was
used for real and synthetic irises. Using the trained irisDepth
network, we reconstructed five 3D models from images of
the real truncated pyramids, one for each of the five different
heights (from 25 µm to 500 µm in increments of 25 µm).
We then measured the height of each step in the reconstructed
pyramids along the x and y axes. Figure 10a shows a recon-
structed 3D pattern, and Figure 10b and Figure 10c show
the segmented version of the 3D pattern in Figure 10a. After
that, we measured the average z value, as well as the stan-
dard deviation (STD), of the 3D points that form each step.
Figure 10c shows the height of each step, and the mean step
size 1Z of the 3D model. We determined the measurement
errors on each axis, using the absolute difference between the
measured step on the 3D model and the measured step on the
ground truth. The ground truth values (1ZGT) were measured
using a Mitutoyo 293-330 micrometer on the real truncated

VOLUME 8, 2020 98591



D. P. Benalcazar et al.: 3D Iris Scanner From a Single Image Using CNNs

FIGURE 10. Analysis of the 3D reconstructed truncated pyramid model. (a) Example of one 3D truncated pyramid model reconstructed by irisDepth.
(b) Segmentation of each step of the truncated pyramid model. (c) Description of the height estimation of each step (1Z) and the standard deviation of
the 3D points (STD) on the truncated pyramid model.

pyramids. The precision of the ground truth measurements is
given by the micrometer precision, which is ±1µm.

I. 3D RUBBER SHEET MODEL PROOF OF CONCEPT
As indicated in the Introduction, a 3D model of the human
iris could be used in the future to improve accuracy in iris
recognition. In this paper we explore a proof of concept of
constructing a 3D rubber sheet from the 3D iris. Addition-
ally, we evaluate iris recognition performance in the test set
of 12 subjects.

With the purpose of building the 3D rubber sheet model,
we applied a slicing procedure at regular intervals as
described in the Methodology section, in sub-section F. Each
slice is a 2D curve that represents the relief of the iris in a
radial manner. If the radial axis of the slices is normalized
between 0 and 1, the 3D rubber sheet is resilient to dilation
within certain ranges, as is the case with 2D rubber sheet
models. The slices, then, obtained at different angles, are
concatenated linearly to form a 3D structure. We built the
3D rubber sheet of the same subject used in the OCT test.
We tested the similarity of a regular rubber sheet obtained
from a 2D image [3] with the flattened version of the
3D rubber sheet. We tested separately the similarity
using MAE, the zero crossing normalized cross correlation
(ZNCC) [41], as well as with the HammingDistance (HD) [2]
of the iris codes from both rubber sheets. A close similarity
would indicate that our 3D models contain the same informa-
tion on the xy plane as a 2D iris image; but, we would have
additional information available on the z axis to be exploited.

A preliminary 3D iris recognition method was
implemented using a 3D rubber sheet model to extract
3D keypoints and descriptors, and to compare their distances.
For this purpose, we constructed 480 3D rubber sheet models
using 20 images per eye of the 12 subjects in the test set.
We enrolled the 20 images with the dilation level closest
to the median value of the subject, as recommended by
Ortiz et al. [42]. We constructed the 3D rubber sheet models
using 75 samples on the radial axis, and 360 slices on
the angular axis. Our 3D rubber sheets, therefore, contain
75× 360 = 27, 000 3D points. Our proposed method for iris
recognition in 3D has the following steps: First, we sample

TABLE 1. Designed and measured step sizes as well as estimated errors
on the x , y and z axes, for the 3D truncated pyramids.

the 3D rubber sheet model with a 4× 15 grid to find 60 key-
points. Then, we obtain the Spin Image descriptor [43], [44]
for each keypoint. Finally, we assess the similarity of two
3D rubber sheet models as the average ZNCC [41] between
corresponding Spin Images on the sampling grid. As with
the 2D iris code, we account for small angular displacements
by translating the 3D rubber sheet ± 5◦ and storing the best
result [2].

We compared the iris recognition performance of our
3D proposed method with that of the 2D iris code. For this
purpose, we obtained the 2D rubber sheets and iris codes of
the 480 images in the test set using Osiris V4.1 [45]. We then
used the d ′ index to score iris recognition performance [2].
This index shows how well we can separate intra-class from
inter-class comparisons, and it is computed using:

d ′ =
|µ1 − µ2|√

0.5 ∗
(
σ 2
1 + σ

2
2

) [2], (7)

where µ1 and µ2 are the mean values of the intra-class and
inter-class distributions, respectively, and σ1 and σ2 are the
standard deviations (STD) of both distributions. The higher
the d ′ value, the easier it is to separate intra-class from inter-
class distributions.

IV. RESULTS AND ANALYSIS
A. RESOLUTION ASSESSMENT
The results on the 3D real truncated pyramids of different
step sizes are as follows: Table 1 shows the five sizes for
the 3D printed pyramids of the test set with a designed step
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FIGURE 11. Examples of depth estimation using synthetic images. Each row is a different example. The first two columns are synthetic images and their
corresponding ground truth depthmap (Depth GT). The succeeding columns show the outputs of each network. DenseDepth and pix2pix make depth
predictions from the synthetic images translated by CycleGAN. T2Net and irisDepth make depth predictions from the results of their own GANs.
The second row shows a red circle highlighting an iris feature that can be followed into the corresponding depthmaps.

size (1ZDesign) of 25 µm, 50 µm, 100 µm, 200 µm, and
400 µm. The values of the step size measured with the
micrometer are the ground truth for our depth measurements
(1ZGT); the mean step sizes measured in the 3D reconstruc-
tions (1Z ); the standard deviation of the 3D points that form
each step (STD); as well as the absolute errors measured
along each z (Zerr), x (Xerr), and y (Yerr) axis.
The results of Table 1 show that the measured step size

1Z is close to the ground truth value (1ZGT) for all five
3D patterns. The average absolute error on the z axis
is 4.1 µm. The standard deviation represents how much the
3D points deviate from a perfect plane [10]. Its average value
is 17.7 µm. This means that a feature on the z axis that
is smaller than 17.7 µm is within the noise level of the
3D points. Features larger than 17.7 µm, however, can be
detected by our system. Therefore, the resolution limit of our
method is 17.7 µm. This figure is about 1/30th of the iris
thickness [37]. Additionally, the resolution limit of 17.7 µm
is almost twice as high as the 10µm of conventional
OCT scans, as well as the 11 µm reported in [10] for SfM.
Our results show a reasonable level of precision from a single
256× 256 image.
The scale values on the OCT scans, as well as

equations (2), (3) and (4) allow estimating the theoretical
resolution of our method. According to (2) and (3), a variation
of 1 mm on the x or y axis produces a variation of 19 pixels
for the 256 × 256 images. Therefore, the resolution of the
3D model on the xy plane is 52.6 µm/px. This figure is
around 1/230th of the iris diameter [37] and can be improved
by increasing image resolution. For instance, if we used
800 × 800 images, equations (2) and (3) yield a resolution
of 16.8 µm/px. A variation of 1mm on the z axis produces a
depth change of 132 on the depth scale between 0 and 255.
Therefore, the resolution on the z axis is 7.56 µm. Measure-
ments are therefore 7 times more precise along the z axis than

on the xy plane. These figures roughly match those shown
in the experimental results of Table 1, where there is almost
10 times more error along the xy plane than on the z axis.

B. DEPTH EVALUATION WITH SYNTHETIC IMAGES
This test illustrates the precision of each network in the
depth estimation task. The ground truth in this experiment
comes from the depthmaps in the synthetic iris dataset, while
the inputs are translated images. Figure 11 shows examples
of ground truth synthetic images in the test set, results of
translated images, and the network predicted depthmaps.
The vanilla networks, such as DenseDepth, DORN, and
pix2pix, make up a depth estimation from the photoreal-
istic images produced by CycleGAN. T2Net and irisDepth
make depth estimations from the output of their own GANs.
Figure 11 also illustrates the problem of training a GAN
blindly from depth estimation. The ground truth example in
the second row has a concave feature highlighted with a red
circle. Since this feature is not reproduced byCycleGAN, nei-
ther DenseDepth nor pix2pix can estimate its depth. However,
the GANs trained in the full approach learn to reproduce this
feature. Both T2Net and irisDepth were able to estimate the
depth of this concave feature correctly.

The results of the depth evaluation with the 7,200 syn-
thetic images in the test set are presented in Table 2. For
abs_rel, sq_rel, rmse, and rmse_log metrics, a lower value
means a better result, while for a1, a2 and a3, a higher value
is better [18]–[20]. The accuracy metrics an are computed
using (2)-(3). The best result of each column was highlighted
in bold. Table 2 shows that irisDepth produced the best
results on almost all the tests. DenseDepth and DORN also
produced good results due to their specialized architectures
in depth prediction tasks. IrisDepth produced the best overall
results since it combines a GAN that has information on
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TABLE 2. Similarity using standard metrics between depthmaps predicted from the translated images and depthmaps of the synthetic images in the test
dataset of 7,200 images.

FIGURE 12. Example for the comparison between the OCT slice with the
corresponding iris 3D model slice. (a) OCT slice with the ground-truth iris
surface in red, and the 3D model slice in blue. (b) An iris image showing
the slice angle in blue. (c) The 3D iris model with the OCT superimposed
at the same angle.

depth data, and the powerful depth prediction architecture of
DenseDepth.

C. DEPTH EVALUATION WITH OCT SCANS
We also assessed the performance of our method by com-
paring the generated 3D models against the depth ground
truth provided by iris OCT slices. Figure 12 shows the com-
parison between an iris 3D model slice and the correspond-
ing OCT. Figure 12a shows the OCT image with markings
of the ground truth iris surface, and the slice of the iris
3D model. Figure 12b illustrates the angle of the slice and
the iris features that are present along this line. Figure 12c
shows a spatial comparison of the 3D model with the OCT.
This visual comparison illustrates the changes in the
3D model across the profile, and shows how they closely
match the OCT.

We then compared the difference quantitatively between
the ground-truth iris surface in the OCT slices and
the corresponding slices of the 3D models produced by

FIGURE 13. Comparison of one OCT slice of the iris with all the
3D models produced by SfM, and all the trained CNNs.

both SfM, and the different CNNs trained in this work.
Figure 13 shows close-up comparisons between OCT slices
and all the various 3D models produced by the different
methods. Figure 13 shows that the models produced by
DenseDepth, T2Net_full, and irisDepth follow the depth
ground truth of the OCT closely. The model produced by
SfM has a great resemblance on the left side, but a significant
difference on the right side of the iris. For each method,
we have the curve of the OCT ground truth, and that of the
3D model slice. We computed the mean absolute error to
quantify the error between both curves. We compared the
3D iris models that are produced by each method for the left
and right eyes of the subject to the total of 8 available OCT
slices for the right and left eyes (4 for each eye). Table 3 shows
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FIGURE 14. Example of human 3D iris models. A red-green grid was drawn on the surface of the models for a better
visualization of 3D features. Each row shows the iris image of the subject on the left, and the iris 3D model on the right.

the results of the mean absolute error in micrometers when
comparing each 3D iris model to the ground truth (OCT).
The minimum average error of 77 µm was obtained with our
model irisDepth. The typical thickness of the iris is around
500 µm [37], and therefore, the error achieved with the iris-
Depth method is within 15% of the thickness. Figure 13 also
shows that irisDepth is the method that follows the ground
truth the most closely. SfM produced the second to last good

performance, and the error of SfM is 60% greater than the
best CNN method (irisDepth). This indicates that the CNN
irisDepth produces a more accurate 3D model from a single
image than was achieved with SfM from multiple images.

D. 3D RECONSTRUCTION OF HUMAN IRISES
We produced pointcloud and mesh 3D models of the subjects
in the test set using irisDepth. Figure 14 shows examples
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TABLE 3. Depth estimation errors in µm between 3D model slices and
OCT scans.

FIGURE 15. 3D Rubber Sheet obtained from 360 slices of the 3D model
in Figure 12c. The iris image of the subject is shown on the bottom left
corner along with the 0◦ line of the slicing process.

of 3Dmeshmodels for five different subjects. For the purpose
of appreciating the 3D information in a 2D image, a red-
green grid was drawn on the surface of the 3D model. In this
way, deformations in the grid illustrate depth variations across
the iris surface. This figure also shows the estimation of the
3D information performed by irisDepth from a single image
of the human iris. The pointcloud models produce depth
predictions from every pixel in the image. At a resolution
of 192 × 192, the models have 36,864 3D points, and at
256 × 256 pixels, there are 65,536 3D points. In contrast,
the SfM method reported an average production of 11,005
3D points [10]. Therefore, our CNN approach has more
information available for producing the 3D model of the iris
compared to that of the SfM approach.

Our results show that there are advantages to using CNNs
over SfM for 3D iris model generation. Besides using mul-
tiple images at a greater resolution, SfM has problems pro-
ducing 3D points in areas of the iris that have no significant
texture. In contrast, the CNN models produce a uniform
distribution of points regardless of iris texture. The number
of 3D points obtained by CNNs is always constant, and
it can be 6 times greater than those of SfM. Additionally,
artifacts such as lateral reflections produced noisy points in
the SfM model. One of the main advantages of our proposed

FIGURE 16. Comparison between the rubber sheet of an iris image in
Figure 12b and the flattened version of the 3D rubber sheet in Figure 15.
A mask was used in the comparison to avoid the effects of eyelids,
eyelashes, and reflections [2].

method is that CNNs require only a single image for the
3D model estimation. This saves acquisition and processing
time, as well as storage space. The acquisition time is relevant
for subjects in the use of biometric applications. The SfM
approach [10] requires capturing a burst of about 10 images
per camera position for the 3D model construction. A set
of one-hundred 16Mpx images, therefore, is typically used
to reconstruct a single 3D model. Consequently, obtaining a
3D model from a single image is a significant improvement.

E. RUBBER SHEET MODEL AND 3D IRIS RECOGNITION
PROOF OF CONCEPT
We reconstructed the 3D rubber sheet from the 3D model
in Figure 12c by obtaining one 2D slice every 1◦. The
3D rubber sheet is shown in Figure 15. The 3D rubber sheet
captures the color information of the 2D image, as well as
the depth of the iris. Just like a 2D rubber sheet, this is
a representation of the human iris that normalizes dilation
changes in a linear manner [2].

We then compared the rubber sheet from the iris image
of Figure 12b with the projection of the 3D rubber sheet of
Figure 15 onto the xy plane. Figure 16 shows the resulting
rubber sheets, as well as the mask of eyelids, eyelashes, and
reflections. This mask was used to ensure that those artifacts
would not affect the comparison. The resulting MAE value
for the comparison is 0.0313; ZNCC is 0.9385; and HD
is 0.226. These values indicate a small error and a large
correlation between the two images. This means that the
reconstructions of the 3D model and the 3D rubber sheet
preserve the information along the xy plane with a small
error. Additionally, the low HD ensures a true positive in
biometric tests. For context, in a previous work, we analyzed
that the mean intraclass HD of LFVL images is 0.243, while
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FIGURE 17. Iris Recognition performance in our test set of 12 subjects and 480 images. (a) Using the 2D Iris Code in Osiris V4.1 1 [2], [45].
(b) Using the proposed 3D rubber sheet model, with Spin Image Descriptors [43], [44] and ZNCC [41].

that of the interclass distribution is 0.48 [15]. Therefore, the
HD value of 0.226 falls in the range of two different images
from the same individual.

The results of the 3D iris recognition are presented
in Figure 17 which shows the iris recognition performance
of the 3D rubber sheet compared to that of the 2D iris code in
our test set of 12 subjects and 480 images. The distributions
in Figure 17 are normalized so that they have an area of 1.
The results with the 2D iris code yielded a d ′ of 8.51, using
Osiris V4.1. The 3D rubber sheet achieved a d ′ of 12.63,
which is 48% higher. The mean value of the intra-class
distribution is similar for both methods, with a value
of approximately 0.45. However, the mean value of the
intra-class distribution is 0.111 units less for the proposed
3D method. The results of this preliminary test show that
the 3D characteristics extracted from the human iris are more
discriminative than the 2D iris code.

The preliminary results of iris recognition in the test set
of 12 subjects, along with the proof of concept of the Rubber
Sheet model, and the depth evaluation tests with 8 ground-
truth OCT slices of one subject illustrate the capabilities
of the proposed method to reconstruct the surface of the
human iris, and its applications in iris recognition. The tests
with stepped pyramids of known dimensions demonstrate
the smallest resolution our method can measure. All these
evaluations show that our method can reconstruct a 3Dmodel
of the human iris with good performance.

V. CONCLUSIONS
Our proposed method for 3D iris model estimation from a
single image produced complete 3D representations of the
human iris using CNNs. Our method, irisDepth, uses the
GAN part of a pre-trained T2Net with the depth prediction
of DenseDepth. Therefore, the GAN is not blind to depth
information during training, and the depth prediction is more
powerful than T2Net alone. IrisDepth produced the best per-
formance among the trained networks in both the synthetic

and real iris tests. We used a dataset of 96 subjects randomly
selected for training, 12 for validation and 12 for testing.
There are 20,940 training images, 2,700 validation images
and 2,880 testing images. We also used synthetic irises with
72,000 images. Both datasets used lateral illumination of
the iris (LFVL) to enhance the shadows produced by iris
features [15]. Thus, lateral illumination allowed the networks
to relate shadows in RGB images to depth information.

We validated the results of our method for modeling the
human iris by comparing slices of the 3D models with corre-
sponding OCT slices of both eyes of one subject. The overall
shape of the 3Dmodels matches that of the OCT. Our method
produced 65,536 3D points, with an absolute error of 77 µm
on average. These numbers represent 6 times more 3D points
and a 60% increase in accuracy with respect to previous
3D iris models based on SfM [10]. We proposed a 3D rubber
sheet model proof of concept, which had a 0.9385 correla-
tion with a 2D rubber sheet on the xy plane, and additional
information on the z axis to be exploited. On a prelimi-
nary test with 480 images, the proposed 3D rubber sheet
model increased iris recognition performance by 48% with
respect to the standard 2D iris code [2]. Finally, the resolution
of our method is 17.7 µm, as was measured by scanning
3D pyramids of known dimensions. This is roughly 1/30th

of the iris thickness.
A 3D model of the iris may open research lines in iris

recognition and ophthalmology. In addition to increasing
accuracy in iris recognition [11], obtaining 3D information of
the iris could help in extreme pose detection [46]–[50]. Addi-
tionally, a 3D model of the iris could produce information
similar to that of an OCT, which could help ophthalmologists
in the detection of closure angle glaucoma [10], [14].

Future improvements could increase the precision of our
method. First, modifying the architecture to train with OCT
slices orOCTbased 3Dmodels would produce 3D irismodels
that correlate more closely with actual OCT scans. Also,
although CNN and SfM are traditionally used separately,
a combination of them could yield a more robust method [28].
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The CNN prediction could be the starting point for SfM,
which could output more 3D points from several views at a
higher resolution, thus improving the 3D model [12], [13].
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