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Abstract

This work proposes a new approach for mapping GPU threads onto a family of discrete embed-
ded 2D fractals. A block-space map λ : Z2

E 7→ Z2
F is proposed, from Euclidean parallel space

E to embedded fractal space F, that maps in O(log2 log2(n)) time and uses no more than O(nH)
threads with H being the Hausdorff dimension of the fractal, making it parallel space efficient.
When compared to a bounding-box (BB) approach, λ(ω) offers a sub-exponential improvement
in parallel space and a monotonically increasing speedup n ≥ n0. The Sierpinski gasket fractal is
used as a particular case study and the experimental performance results show that λ(ω) reaches
up to 9× of speedup over the bounding-box approach. A tensor-core based implementation of
λ(ω) is also proposed for modern GPUs, providing up to ∼ 40% of extra performance. The
results obtained in this work show that doing efficient GPU thread mapping on fractal domains
can significantly improve the performance of several applications that work with this type of
geometry.

Keywords: GPU computing; thread mapping; tensor cores; discrete embedded 2D fractals;
block-space fractal domains; Sierpinski gasket.

1. Introduction

Fractals can be described as self-similar structures [1] where a similar1 geometrical pattern
is found at all scales. Several natural phenomena produce fractal patterns that obey a self-similar
structure [2], such as plant and tree growth [3, 4], terrain formation [5, 6], molecular dynamics
[7], snowflake crystallization [8], blood vessels [9], morphological features of living organisms
[10], among many others, display a fractal design where self-similarity is a relevant feature for
modeling its geometrical structure. Computer applications related to these fields may choose to
embed the 2D fractal into a discrete Euclidean domain which acts as a bounding-box in mem-
ory. Using an embedding space for a fractal helps in achieving an efficient simulation in terms
of memory access patterns (i.e., high memory bandwidth), as data-parallel computations (for
example, computation of nearest neighbors) can perform aligned memory accesses and exploit

∗Corresponding author.
E-mail address: cristobal.navarro.g@gmail.com

1Depending on which fractal, the term similar can refer to exactly similar or quasi similar.
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the spatial locality within the fractal structure. In other words, memory locations (x ± 1, y ± 1)
define a neighborhood in both the embedded space and the actual fractal as well (some of the
elements of this neighborhood belong to the fractal domain). Figure 1 illustrates as an example
the H-fractal embedded in a space of n × n with n being its its side length.

Figure 1: A H-fractal embedded in a discrete n × n Euclidean space.

Several of the processes performed on a fractal are combinations of map and reduce opera-
tions in different proportions. The map component relates to the per-element computations while
the reduce component relates to global results being computed from the parts of the problem
(e.g. a global measure from all discrete elements of the fractal). One typical simulation pattern
that is a combination of a full map with multiple local reductions is the tiled nearest-neighbors
computation, which operates on all data elements of a fractal and for each one considers a small
reduction from its neighborhood data. Such pattern is found in cellular automata transition func-
tions, spin lattice Monte Carlo simulation steps and finite difference method (FDM) time-step
computations, among others. Another computational pattern frequently used is the computation
of a global measure of the fractal at a given state, which would involve a full reduction of the
values of all data elements of the fractal passed through a mathematical expression. This second
pattern can be found when computing macroscopic measures from microscopic definitions, such
as in Spin Lattice models or n-body simulations. Eventually, when the fractal is large enough to
the point of containing millions of data elements, a sequential computation can take an excessive
amount of time for the practical requirements of a certain field, especially if there are real-time
requirements. In these situations GPU computing becomes an attractive tool for accelerating
these tasks [11].

GPU computing has become an important tool for leveraging the performance of several
compute demanding applications that contain data-parallel workloads [11]. The two main mo-
tivations to use GPU Computing are the (1) high TFLOPS and memory bandwidth, which can
be up to an order of magnitude faster than traditional CPU hardware, and (2) the high energy
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efficiency with respect to traditional CPU based systems. It is important to mention however
that exploiting these two features efficiently requires a dedicated algorithm design and imple-
mentation as GPUs are more restricted than CPUs in terms of control logic (scheduling, branch
prediction, prefetching) and memory access patterns (cache, global memory access). One aspect
of GPUs that has been recently studied is achieving efficient GPU thread mapping, an optimiza-
tion technique that can minimize the number of necessary threads when working with non-trivial
data domains. In the GPU programming model, for every GPU computation there is a stage in
the pipeline where threads are mapped from parallel work space to data space. A map, defined
as f : Zk → Zm, transforms each k-dimensional point x = (x1, x2, ..., xk) in parallel space Pk

into a unique m-dimensional point f (x) = (y1, y2, ..., ym) in data space Dm. This work uses the
notation introduced by previous GPU thread mapping works [12, 13, 14], which defines GPU
parallel spaces as orthotopes2 Πk ∈ Pk in k = 1, 2, 3 dimensions. In this work the orthotope of
interest is the two-dimensional one, Π2. A known way of mapping threads to any data-domain is
to use the bounding-box approach, that builds an orthotope Π2 sufficiently large to cover the cor-
responding bounding-box of the data space and threads are mapped using the identity f (ω) = ω.
Such a map is highly convenient and efficient for the class of problems where data space is also
defined by an orthotope; such as vectors (Π), tables (Π2), matrices (Π2) and box-shaped volumes
(Π3). However, for a discrete embedded 2D fractal, this approach is no longer efficient in terms
of parallel space as many threads would fall inside the embedded space but outside the fractal
domain, introducing a performance penalty to the execution time when discarding these threads
at run-time. For such cases, an efficient orthotope would be one with asymptotically the same
number of threads as data elements of the fractal. Figure 2 illustrates the unwanted (left to center)
and wanted scenarios (right to center) for the case of the Vicsek fractal.

Figure 2: GPU thread mapping for the Vicsek fractal. The left-to-center mapping illustrates the bounding-box approach
and its cost in thread resources, while the right-to-center mapping shows the proposed approach, using significantly less
thread resources, but a more elaborate map, namely λ(ω).

Two research questions arise from this GPU efficiency problem; the first question: Is there
any parallel-space efficient function, namely λ(ω), that can map threads only on the data ele-
ments of an embedded 2D fractal? The second question relates to performance: Will the parallel-
space improvement translate into a significant GPU performance improvement?

The present work presents theoretical and experimental results that answer these two ques-
tions positively. A dedicated analysis is devoted to show that an alternating unrolling strategy

2A k-orthotope is the generalization of the notion of a rectangle or box, for k dimensions.
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allows to define a parallel-space efficient λ(ω) that only requires O(nH) threads, with H being the
Hausdorff dimension of the fractal. In terms of performance, by taking advantage of intra-block
parallelism, λ(ω) becomes computable in O(log2 log2(n)) time which is fast enough to produce
a monotonically increasing speedup with respect to a bounding-box approach, once n > n0 with
n0 being a threshold size different for each fractal. In addition to these results, the λ(ω) map is
also adapted to GPU tensor core computation, further increasing its performance by up to 40%.
This last result serves as an evidence that GPU tensor cores may be utilized in more ways than
what they were initially thought for (deep learning).

This work is an extension and generalization of a previous conference work [13] where pre-
liminary results were presented for a specific fractal. This work generalizes the map for a family
of embedded 2D fractals and includes an extensive presentation of experimental results with rel-
evant tests, as well as a new section in which the proposed mapping is further accelerated by
encoding the expression into tensor core operations. The rest of the manuscript is organized as
follows: Section 2 presents related work on the field, Section 3 characterizes the NBB fractals
family, Section 4 formulates the map with new theoretical results, Section 5 describes several
approaches for intra-block mapping, Section 6 offers the case study of the Sierpinski gasket with
experimental performance measurements and Section 7 concludes the work highlighting the main
results, discussing them and describing possible further work within this line of research.

2. Related Work

Jung et al. [15] explored the possibilities of improving the GPU mapping on triangular
domains, by proposing packed data structures that represent triangular and symmetric matrices
with applications to LU and Cholesky decomposition. Their strategy is based on building a
rectangular box for accessing and storing a triangular matrix (upper or lower). Data structures
become practically half the size with respect to classical methods based on the full matrix. The
strategy was originally intended for saving memory (i.e., the matrix memory usage), however
one can apply the concept analogously to save parallel space.

Ries et al. contributed with a parallel GPU method for the triangular matrix inversion [16].
The authors identified that the parallel space indeed can be improved by using a recursive parti-
tion of the grid3, based on a divide and conquer strategy. The mapping approach takes O(log2(n))
with n being the side of a square matrix.

Navarro, Hitschfeld and Bustos have proposed a block-space map function for 2-simplices4

and 3-simplices [14, 17, 12], based on the solution of an m order equation that is formulated from
the linear enumeration of the discrete elements. The authors report performance improvement
for 2-simplices, and for the 3-simplex case, the mapping technique is extended to the discrete
orthogonal tetrahedron, where the parallel space usage can be 6× more efficient. However the
authors clarify that it is difficult to translate such space improvement into performance improve-
ment, as the map requires the computation of several square and cubic roots that introduce a
significant amount of overhead to the process. From the point of view of data-reorganization, a
succinct blocked approach can be combined along with the block-space thread map, producing
additional performance benefits with a sacrifice of o(n3) extra memory.

3A grid is a collection of thread-blocks which are spatially organized and execute asynchronously one from another.
4A k-simplex is the generalization of the notion of a triangle to k-dimensions. A 2-simplex corresponds to the triangle

while a 3-simplex corresponds to a tetrahedron.
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Exploring the benefits of efficient GPU mapping onto embedded 2D fractals is a relevant
yet unexplored topic of research, as its geometry is no longer Euclidean as in the related works.
Finding a proper efficient λ(ω) would produce an asymptotic improvement in parallel space and
a potential performance improvement that could eventually be exploited.

3. Characterizing Discrete Embedded 2D Fractals

This Section characterizes embedded 2D fractals and defines two Lemmas regarding dimen-
sion and space packing, which provide useful insights to formulate an efficient GPU thread map
for a family of embedded 2D fractals that share the same construction principle. Also, a block-
space mapping strategy is proposed to further improve on the number of map computations
performed.

3.1. The Non-overlapping Bottom-up Boxes (NBB) Family
Embedded 2D Fractals are discrete non-Euclidean structures that live in Z2 and are contained

inside a tight Euclidean embedding space, i.e., a 2D bounding box. By being discrete structures,
these fractals have a lower-bound when scaling down, i.e., a unit of space, but can scale-up
infinitely. Because of this, discrete embedded 2D fractals are best described using a bottom-up
approach rather than a top-down one. The bottom-up approach consists of defining the fractal as
replications of itself from the previous level of scale, with different translations to each replica.
An additional restriction is introduced to this type of fractals, which is that the bounding boxes5

of the replicas cannot overlap in space, that is, a location in the embedding space cannot be
occupied by more than one replica. The rest of the manuscript will refer to this kind of fractals
as Non-overlapping Bottom-up Boxes fractals, or NBB fractals.

Several fractals can be built following this scheme, including the Sierpinski Gasket, Cantor
set, Vicsek fractal, H-Fractal, among others. Table 1 presents a list with examples of NBB
fractals with their bottom-up building step and their Hausdorff dimension as well.

The notation F k,s
n is introduced to denote an embedded 2D fractal of the NBB family, where

n ∈ N is its linear size in one axis, k ∈ N the number of self-similar replicas for the next recursive
step and s ∈ N the scale-up factor between a given scale level and the upcoming one, along each
dimension6(for example, for the H-fractal k = 7, s = 3 and for the Candy fractal k = 12, s = 4).
The space used by a fractal, denoted asV(F k,s

n ) may be expressed recursively as

V(F k,s
n ) =

k∑
i=1

Vi(F k,s
sn ) (1)

withV(F k,s
1 ) = 1 being the limit condition of the recursion. Since k is fixed, and n scales up by

factors of s, the volume may expressed as

V(F k,s
n ) = kr (2)

where r = logs(n) is defined as the scale level.

5Not to be confused with the bounding-box approach used in GPU computing, which refers to a programming mode
that uses the identity f (x) = x to map from parallel space to data space.

6It is important to mention that these definitions work for irregular fractals as well, as in the case of the Chandelier
fractal, where it can have two definitions; F 4,3

nx or F 4,2
ny along the x and y axis, respectively.
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Fractal Name Illustration NBB Step Hausdorff
Dimension
(H =

log(k)
log(s) )

Sierpinski
Gasket log(3)

log(2) ≈ 1.58

Chandelier
(Custom) log(4)

log(3) ≈ 1.26

H-Fractal
log(7)
log(3) ≈ 1.77

Candy (Cus-
tom) log(12)

log(4) ≈ 1.79

Sierpinski
Carpet log(8)

log(3) ≈ 1.89

X-Fractal
(Custom) log(5)

log(3) ≈ 1.46

Vicsek Fractal
log(5)
log(3) ≈ 1.46

Empty-
Bottles
(Custom)

log(7)
log(3) ≈ 1.77

Cantor set
log(2)
log(3) ≈ 0.63

Table 1: Example fractals of the NBB family.

3.2. Dimension and Packing of NBB Fractals

The following Lemma guarantees that the dimensionality of NBB fractals, in theirV(F k,s
n ) =

kr form, is actually fractal.

Lemma 1. The space occupied by an NBB fractal is in correspondence with its Hausdorff di-
mension in the scale-up limit.

Proof. The space occupied by an NBB fractal is V(F k,s
n ) = kr. Given that r = logs(n) and
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klogs(n) = (s)logs(k) logs(n), the space expression can be rearranged into

V(F k,s
n ) = nlogs(k)= log(k)

log(s) = nH (3)

where the exponent H is the Hausdorff dimension, i.e., the quotient of the logarithm of the
number of replicas and the logarithm of the scaling factor.

Lemma 1 guarantees that discrete embedded 2D fractals, which have a lower bound in scale
and can only grow by scaling up, still exhibit their Hausdorff dimension when n 7→ ∞. Another
useful fact is that by having one GPU thread per unitary element of the fractal is already resource-
efficient as it would yield a fractal space occupancy in the parallel space as well. The next Lemma
relates the geometries of parallel-spaces with fractal domains.

Lemma 2. A NBB fractal F k,s
n can pack into a 2-orthotope Π2 of dimensions kd

r
2 e × kb

r
2 c at any

scale level r.

Proof. By induction on r:

• Base case: At scale r = 0 the fractal has a space ofV(F k,s
1 ) = 1 element that packs into a

regular 2-orthotope of 1 × 1 = kd
0
2 e × kb

0
2 c satisfying kd

r
2 e × kb

r
2 c.

• Induction step: It is assumed that the orthotope at scale level r is quasi-regular or regular.
If r is even, the packing for r + 1 will scale by k in the horizontal dimension of the 2-
orthotope. If r is odd, the packing for r + 1 will scale by k in the vertical dimension of Π2.
Since even and odd must alternate, the dimensions of the packed 2-orthotope Π2 for r + 1
can only be k · kd

r
2 e × kb

r
2 c for even r, or kd

r
2 e × k · kb

r
2 c for odd r, which is quasi-regular or

regular, respectively.

In GPU Computing the parallel space (grid, blocks, threads) can only be defined as Euclidean
boxes in 1D, 2D or 3D, which becomes a constraint when processing NBB fractals. In this
context, Lemma 2 gives useful insights on how one could map the Euclidean space onto the
Fractal one.

3.3. Changing from Thread-space to Block-space
An important aspect to consider is at which level the parallel space will be mapped. Two

approaches are possible; (1) thread-space mapping and (2) block-space mapping. Let λ(ω) be the
map from GPU parallel-space (Euclidean) to embedded 2D fractal space. For the first approach,
λ(ω) defines ω as a unique thread location in parallel space. For the second approach, λ(ω)
definesω as a block coordinate in which several threads are contained. The block-space approach
has three important advantages over thread-space mapping. First, in block-space, the fractal
becomes a coarsened version of the original, requiring fewer elements to be mapped. Second,
since the fractal is a simplified version of itself, it is possible to work on higher sizes of n before
the CUDA grid maximum dimensions or numerical limits are reached. Third, the block-space
approach allows the possibility for threads inside a block to preserve locality, which is essential
for doing efficient coalesced memory accesses on GPU global memory.

The next Section formulates λ(ω) with ω = (ωx, ωy) being the two-dimensional block coor-
dinate of constant size |B| = ρ × ρ threads. The change from thread-space to block-space means
that blocks are mapped to a simplified version of the fractal of linear size nb = n/b with b = ρ.
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4. Formulation of GPU map λ(ω)

The function λ : Z2
E 7→ Z2

F is introduced as a mapping of block coordinates ω from GPU
parallel-space Π2, which lies in Euclidean space ZE, onto block coordinates in the embedded
fractal space ZF. The intuition behind the formulation of λ(ω) is an unrolling process applied
in parallel to each ω ∈ Π2 through all the scale levels of the fractal in the scale-down direction
until the unit scale limit is reached. At each scale level, different ∆x,∆y offsets are accumulated
to form the final (λx(ω), λy(ω)) coordinate in the embedded domain of the fractal.

Theorem 1. There exists λ(ω) that maps a GPU parallel-space of size |Π2| = O(nH ) to any NBB
fractal in O(log2 log2(nb)) time using |B| = θ( log2(nb)

log2 log2(nb) ) threads per block.

Proof. By construction: let rb = logs(nb) be the block-space scale level of the fractal, Π2 the
2-orthotope of kd

rb
2 e × kb

rb
2 c blocks that maps onto the discrete embedded 2D fractal F k,s

nb , with
each block having b × b threads. By Lemma (1), Π2 is parallel-space efficient in block-space,
i.e., |Π2| = O(nH ). A helper index function βµ(ω) is defined as

βµ(ω) =
(ωx(µ mod 2) + ωy((µ + 1) mod 2)

kd
µ
2 e−1

)
mod k (4)

to generate indices in the range βµ(ω) ∈ [0, k − 1] that identifies, within scale level µ ∈ [0..rb],
which of the k regions of the fractal does block ω belongs to. For even µ, βµ(ω) acts on ωx. For
odd µ, it acts on ωy.

An arbitrary numbering is chosen for associating the k blocks of the fractal’s NBB step with
the k different βµ(ω) values7. A perfect hash table8 H[ ] of size k can be used to map the k values
of βµ(ω) to (τµx , τ

µ
y ) replica offsets of the form

τµ = H[βµ(ω)] = (τµx , τ
µ
y ), τu

x, τ
u
y ∈ [0..s − 1]. (5)

The replica offsets combined with the corresponding fractal replica side length kµ−1, gives the
corresponding offset in embedded space

∆µ = (τµx(s)µ−1, τ
µ
y (s)µ−1) = (∆µ

x ,∆
µ
y ) (6)

that contributes to the final mapped coordinate. The summation of all partial coordinates pro-
duces the map

λ(ω) = (λx(ω), λy(ω)), (7)

λx(ω) =

logs(nb)∑
µ=1

∆
µ
x (8)

λy(ω) =

logs(nb)∑
µ=1

∆
µ
y (9)

7For example, for the Vicsek fractal, where k = 4, the regions can follow a numbering of the form top (0), bottom (1),
left (2) and right (3). For the Sierpinski gasket, where k = 3, a valid numbering could be top (0), bottom (1) and right
(2). In the same way, the Candy fractal would require a numbering for its k = 12 replicas.

8The hash table may be replaced by an arithmetic expression, yielding the same values.
8



which can be computed in O(log2 log2(n)) time (i.e., nb ∈ θ(n)) using a parallel reduction with
the threads contained in the ω block. Finally, by Brent’s Theorem [18], |B| = θ

( log2(n)
log2 log2(n)

)
threads

are sufficient for a block of threads to reduce efficiently in parallel.

Theorem 1 guarantees the existence of an efficient λ(ω) map for any NBB fractal. It is
important to mention that the hash table is of fixed size k and the same table is reused at every
scale level. In practice this hash table may be defined at compile time as a static resource, or as a
GPU shared memory constant array for a whole block of threads. For some fractals it is possible
to replace the hash table for an arithmetic hash function that returns the replica offsets directly.

Theorem 2. Processing a NBB fractal with λ(ω) requires asymptotically less work than using a
bounding-box approach.

Proof. The asymptotic work improvement factor of λ(ω) with respect to the bounding-box ap-
proach is the quotient of the costs of mapping all blocks using their corresponding Π2 structures
with the consideration nb ∈ θ(n)

S λ(ω) =
O(1)V(Π2

BB)

O(log2 log2(n))V(Π2
λ(ω))

(10)

(11)

where Π2
BB and Π2

λ(ω) are the parallel-spaces for the bounding-box and λ(ω) approaches, respec-
tively. The parallel-space of Π2

BB corresponds to the Euclidean box of nb × nb blocks, and the
parallel-space of Π2

λ(ω) is O(nH ) by Lemma (1). Applying the limit n→ ∞ gives

lim
n→∞

S λ(ω) = lim
n→∞

∂
∂n (n2−H )

∂
∂n (log2 log2(n))

(12)

= lim
n→∞

(2 −H)n1−H

1
n log2(n)

= ∞ (13)

The importance of Theorem (2) is that it guarantees the existence of a fractal size n > n0
where the speedup provided by λ(ω) behaves as a monotonically increasing function. The smaller
the Hausdorff dimension of the fractal, the stronger the behavior. The next Section covers the
possible approaches to handle intra-block mapping, i.e., how threads inside a block can access
individual fractal locations reached by the block-space mapping.

5. Intra-Block Mapping

Once λ(ω) maps a block ω, all of its threads contained share the same block-space mapped
coordinate in embedded space which serves as a reference location for each thread to compute
their individual location in the fractal. This phase of organizing the threads within a block is
defined here as Intra-Block Mapping, and this Section describes three possible approaches to
accomplish it.

9



5.1. Further Unrolling
In this approach threads inside their mapped block may use the same λ(ω), with the same

hash table or arithmetic hash function, but this time applied to each thread in local space. By
Theorem (1), the Intra-block map is still parallel-space efficient and the mapping time becomes
O(log2 log2(|B|)) ∈ O(1) as the size ρ × ρ of a block is constant.

5.2. Shared Lookup Table
This second approach is to use a shared lookup table of size ρ × ρ = O(1) holding the final

offset coordinates for each thread within the same block. Mapping each thread would cost O(1)
memory accesses and the extra memory introduced by the shared table is O(ρ × ρ) ∈ O(1).

5.3. Bounding Sub-boxes
The third approach consists of using the mapped blocks as bounding sub-boxes. This ap-

proach introduces a constant number of extra threads in each block, but allows each thread to be
mapped just with f (x) = x which costs O(1). If this method is chosen, then threads require a fast
method to know if they belong to the fractal or not.

Regardless of which Intra-block mapping approach is chosen, the final mapping time will
not surpass the O(log2 log2(n)) time, as the blocks have a constant size of threads, regardless of
the value of n. Still, it is worth considering the differences in the approaches; Further Unrolling
introduces a constant cost in mapping time, the Shared Lookup Table approach introduces a
constant cost in memory and the Bounding Sub-boxes introduce a constant in the number of
extra threads. Choosing one or another can depend on the specific application, i.e., to avoid
competing with the application in the use of memory bandwidth or arithmetic operations.

6. Case Study: The Sierpinski Gasket

This Section applies the formulations and approaches from Sections 3 and 4, which were
generic to all NBB fractals, now for the specific case of the Sierpinski gasket. Experimental
performance results are presented for different test cases (involving different compute patterns
that are frequently found in discrete simulations), using different fractal sizes of the Sierpinski
gasket.

The Sierpinski Gasket, illustrated in Figure 3. was described by Waclaw Sierpinski in 1915.

Figure 3: Bottom-up construction of the discrete Sierpinski gasket.

Being over a century old, this NBB fractal is still relevant as it is object of study in different
fields such as the construction of antennas [19, 20], cellular automata [21, 22], fractal molecular
assembly [23], DNA self-organization [7], self-assembly theory [24, 25] and phase transitions
on fractal spin lattices [26, 27, 28], among others. The Sierpinski gasket is denoted F 3,2

n , where
k = 3 and s = 2.

10



6.1. Defining λ(ω) for the Sierpinski Gasket

The packing process of Lemma (2) describes an unrolling process, in which each block of
threads, with coordinate ω in parallel space, accumulates a series of offsets to return a final
mapped block coordinate in embedded fractal space. The specific case of the Sierpinski Gasket
is illustrated in Figure 4 where the unrolling principle is visible by the different shades that are
in correspondence with the shaded replicas of the fractal.

Figure 4: Each scale of the Sierpinski fractal packs into a 2-orthotope Π2 of dimensions 3d
r
2 e × 3b

r
2 c.

The helper parameter βu, for the case of the Sierpinski gasket, is

βµ(ω) =
(ωx(µ mod 2) + ωy((µ + 1) mod 2)

3d
µ
2 e−1

)
mod 3. (14)

Replica regions are numbered as 0 (top), 1 (middle) and 2 (right) (see Figure 4, top, for visual
reference). The hash table for this fractal is H[0] = (0, 0),H[1] = [0, 1],H[2] = [1, 1] where each
pair is the corresponding replica offset. In the case of the Sierpinski gasket, it is also possible to
use the following arithmetic hash function

h(βµ) = (τµx , τ
µ
y ) = (

⌊βµ
2

⌋
, βµ −

⌊βµ
2

⌋
) (15)

as an alternative to the hash table, giving the same replica offsets for each of the x and y directions
at scale level µ. The replica offsets are combined with the replica linear sizes to form the offsets
in embedded space

∆µ = (∆µ
x ,∆

µ
y ) = (τµx2µ−1, τ

µ
y 2µ−1) (16)

Having defined the required functions and parameters, the λ(ω) map for the Sierpinski gasket
becomes

λ(ω) =

( rb∑
µ=1

∆
µ
x ,

rb∑
µ=1

∆
µ
y

)
(17)

with rb = log2(nb). By Theorem 2, λ(ω) is asymptotically faster than a bounding box approach.
The theoretical parallel space improvement as well as the speedup are presented in Figure 5.
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Figure 5: Theoretical improvement for parallel-space and mapping speedup for the Sierpinski gasket.

In the plot, one can observe that in theory λ(ω) applied to the Sierpinski gasket produces a
monotonically increasing speedup starting from n ≥ n0 = 10. The parallel space improvement
in the number of threads used has also been included (dashed lines), showing a fixed exponential
rate of improvement.

For the intra-block mapping phase, the bounding sub-boxes approach was used. In order to
know if a location is part of the fractal, each thread evaluates if tx & (b − 1 − ty) == 0 is true or
false to know if it belongs to the Sierpinski gasket or not, respectively, with & being the bitwise
AND operator, b the dimensional block size, and tx and ty the thread’s coordinate in local space.
Figure 6 illustrates how the block-space map and intra-block mapping are organized compared
to a thread-space map.

Figure 6: In thread-space mapping, threads are directly mapped one-to-one to the elements of the fractal of linear size
n = 64. In block-space mapping, |B| = 8 × 8 and blocks of threads are mapped onto a simplified version (green) of the
fractal of linear size nb = 64/8 = 8.

6.2. Implementation and Performance Results for the Sierpinski Gasket
The case for the Sierpinski gasket was implemented using NVIDIA’s CUDA C++ toolkit as a

program that performs computations on the data elements of the fractal of side length n (chosen
12



at execution time) using both the bounding-box and λ(ω) approaches. In the case of λ(ω) the x, y
arithmetic reductions per-block coordinate w from Eq. (17) are computed using the warp-shuffle
parallel reduction, which allows efficient register-level communication among threads within a
warp9. Experimental benchmarking of GPU thread maps is accompanied with work instructions
in the GPU kernel to represent realistic application scenarios10. The following three tests were
designed, using different workloads:

• Single write (SW): To write a constant value on all the elements of a Sierpinski gasket of
scale level r, which is embedded in a n × n matrix initially filled with zeros.

• Reduction (RD): To perform an arithmetic reduction with all the elements of the Sierpinski
gasket.

• Cellular Automata (CA): To perform a Cellular Automaton simulation using a fractal adap-
tation of Conway’s game of life-like rules. This adaptation still uses the Euclidean Moore
neighborhood, but only considers as neighbors the cells that belong to the fractal and the
cells of the empty embedded space are ignored in the neighborhood counting.

Different fractal sizes were tested in the range r = 0..16 (up to r = 15 in tests RD and CA due
to memory limitations), equivalent to embedding sizes of n×n = [{1×1}, ..., {65536×65536}], and
using different GPU block sizes in the range ρ = 1, 2, 4, 8, 16, 32 in order to find the setting that
provides the best performance for both the bounding-box and the λ(ω) approaches. The average
performance measures are taken by averaging 100 sub-averages, each one being an average time
of 10 consecutive synchronized kernel calls. The standard error for each mean was below 1%.
The hardware for performance test is listed in Table 2.

Table 2: Hardware used for performance tests.

# Device Model
GPU Titan V, 5120 cuda cores 12GB

0 CPU Intel i7-6950X 10-core Broadwell
RAM 128GB DDR4 2400MHz
GPU Titan RTX, 4608 cuda cores, 24GB

1 CPU Intel i7-6950X 10-core Broadwell
RAM 128GB DDR4 2400MHz

Figure 7 presents the speedup of λ(ω) over the bounding-box approach, as well as the running
times for the two mapping techniques in all three different tests. For values of n < 29, one can
note that only some curves offer speedup. Once n > 29, the speedup begins to increase for all
block-size configurations, reaching the higher values at n = 216 = 65536, which was the highest
problem size that fit in the GPU memory (i.e. a fractal embedded in a region of 65536 × 65536).
An important aspect to note from the speedup curves is that for the largest possible block size,

9A warp is a group of 32 threads that execute instructions in a lock-step mode and can also communicate their register
data among themselves.

10Also it may not be clear if the compiler and scheduler optimizes the program, ignoring the mapping instructions,
when no writes are performed on memory.

13



2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

Sλ(ω)

n

SW - λ(ω) Speedup over Bounding-Box - TITAN V

ρ = 1

ρ = 2

ρ = 4

ρ = 8

ρ = 16

ρ = 32

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T[s]

n

SW - Mapping Running Times, Bounding-box vs λ(ω) - TITAN V

BBρ=1

BBρ=2

BBρ=4

BBρ=8

BBρ=16

BBρ=32

λ(ω)ρ=1

λ(ω)ρ=2

λ(ω)ρ=4

λ(ω)ρ=8

λ(ω)ρ=16

λ(ω)ρ=32

2
2

2
4

2
6

2
8

2
10

2
12

2
14

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

Sλ(ω)

n

RD - λ(ω) Speedup over Bounding-Box - TITAN V

ρ = 1

ρ = 2

ρ = 4

ρ = 8

ρ = 16

ρ = 32

2
2

2
4

2
6

2
8

2
10

2
12

2
14

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T[s]

n

RD - Mapping Running Times, Bounding-box vs λ(ω) - TITAN V

BBρ=1

BBρ=2

BBρ=4

BBρ=8

BBρ=16

BBρ=32

λ(ω)ρ=1

λ(ω)ρ=2

λ(ω)ρ=4

λ(ω)ρ=8

λ(ω)ρ=16

λ(ω)ρ=32

2
2

2
4

2
6

2
8

2
10

2
12

2
14

 5
 10
 15
 20
 25

 30
 35
 40
 45
 50

 55
 60
 65
 70

Sλ(ω)

n

CA - λ(ω) Speedup over Bounding-Box - TITAN V

ρ = 1

ρ = 2

ρ = 4

ρ = 8

ρ = 16

ρ = 32

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T[s]

n

CA - Mapping Running Times, Bounding-box vs λ(ω) - TITAN V

BBρ=1

BBρ=2

BBρ=4

BBρ=8

BBρ=16

BBρ=32

λ(ω)ρ=1

λ(ω)ρ=2

λ(ω)ρ=4

λ(ω)ρ=8

λ(ω)ρ=16

λ(ω)ρ=32

Figure 7: The left column shows the speedup of λ(ω) with respect to the bounding-box approach at different block-size
configurations and on the right column, their absolute running times at different block-size configurations. Each row
shows the results of different test being: first row, test 1 simple write. Second row, test 2 reduction. Third row, test 3
Cellular automata.

|B| = ρ×ρ = 32×32, the λ(ω) map runs the tests between 6× to 12× faster than the bounding-box
approach. Furthermore, as blocks become smaller in ρ, that improvement increases dramatically,
reaching up to 75× of speedup.

The plot of the running times provides further insights on what configuration is the best suited
for each mapping technique. By looking at the running times of the small block configurations,
one can note that regardless of their high speedup, their running times are the lowest, therefore
these block sizes would not be used in practice. For the bounding-box approach the best per-
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formance is obtained when the block-size is |B| = 32 × 32. For λ(ω) the best performance is
found when using a block of |B| = 16 × 16 threads. If the curves of the best configuration for
each implementation are considered, i.e., the ones with bold mark from Figure 7, right, then the
speedup provided by λ(ω) still reaches almost an order of magnitude. The running time using
other block sizes are still useful to visualize that as blocks become smaller, the value of n0 where
λ(ω) starts giving monotonically increasing speedup moves closer to the origin, and vice versa. It
is important to consider that the GPU, with its current organization and architecture, is not fully
utilized when using very small block configurations, leading to an inferior performance than if
larger blocks were used. Therefore, in practice large blocks would be utilized and by Theorem
(2), beyond n = 216 the speedup would keep increasing in favor of λ(ω).

We believe that these performance results can be useful for the GPU computing community
as they show that for any modern programmable GPU, its performance can significantly improve
when working with embedded NBB fractals just by employing a different thread map, not chang-
ing the rest of the application kernel code at all. In the next Section we describe how it is possible
to further accelerate the performance of λ(ω) by adapting it to GPU tensor cores.

6.3. Adapting λ(ω) for accelerated tensor core computation

The Nvidia Volta GPU micro-architecture introduced a specialized hardware component
called the Tensor Core. Actual GPUs of year 2018 and beyond can contain up to 640 tensor
cores in addition to the regular GPU cores (which perform integer, floating point and read/write
operations in parallel). Each tensor core is able to perform matrix-multiply-accumulate (MMA)
operations on 4x4 matrices in one GPU clock cycle, which translates into a significant increase
of TFLOPS compared to the classic operation mode of the GPU which is through the execution
of floating point and integer arithmetic instructions. In order to make use of the Tensor Cores,
the programmer must previously divide the problem into sub-problems of 16 × 16 sub-matrices,
called fragments. This fragments are then given to the MMA subroutines which internally sub-
divide them into 4x4 fragments to perform the operations in a warp-synchronized manner. Cur-
rently, as of 2020, details on how warps map to the fragments, or how tensor core perform the
MMA operation are not fully specified by NVIDIA, moreover it is not guaranteed that a tensor-
core based computation that works efficient in the Volta architecture (2017), will achieve the
same level of performance in the Turing architecture (2019), or vice versa, as there are imple-
mentation details that are not exposed to the programmer. What is known is that the potential
performance improvement will depend on how well the MMA operation can be exploited. These
tensor-core related questions introduce additional motivations for knowing if the theoretical extra
TFLOPS provided by a Tensor Core MMA operation, which were originally designed for Linear
Algebra and Deep Learning, can be exploited to further speed up the calculation of λ(ω). Re-
cent results support the idea that some computations may adapt well to tensor cores, such as the
work of R. Carrasco et al. where they study the potential speedup of computing the traditional
arithmetic reduction based on tensor-core MMA operations [29]. From their work, the authors
conclude that the new tensor-core based reduction is in theory faster than a CUDA-Core based
reduction. In this section we show how the computations for λ(ω) can be adapted as tensor-core
MMA operations to calculate the tensor-core version of the map, namely λtc(ω).

In order speedup the calculation of λ(ω) with tensor cores, its equations must be encoded
into a MMA operation in the form D = A × B + C where A, B, C, D are fragments, and C can
be the same as D. There can be several ways to perform this encoding, and this section presents
three variants of tensor core adaptation with their performance for the same tests.
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6.3.1. Variant 1: Simple per-block Tensor Core operation
This variant employs one MMA computation for each block by exploiting the MMA-like

behaviour from Eq. (8) and (9). This is done by expanding the sum, as well as the ∆
µ
x ,∆

µ
y terms

with the expression from Eq. (6), resulting into two sums of products; one to calculate λx and the
other to calculate λy. Each left multiplier from the sum terms is placed as an element of a row of
fragment A and each right side of the sum terms is placed as a column of fragment B. Terms are
placed in parallel and in the same order to match the corresponding pairements.

The left side of both sums correspond to powers of two, from 0 to µ− 1, and are the same for
λx and λy. Therefore these factors can be encoded only using one row of fragment A and can be
re-utilized for both x and y coordinates. The final encoding can be visualized in Figure 8.

A =


20 21 . . . 2µ−1

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 B =


τ1

x τ1
y 0 . . . 0

τ2
x τ2

y 0 . . . 0
...

...
...

. . .
...

τ
µ
x τ

µ
y 0 . . . 0


Figure 8: Encoding of Variant 1 in a MMA manner. Note that this matrices are dimensions µxµ and when loaded into
fragments of 16 × 16, remaining elements are filled with zeroes.

An important technical note is that Fragment B was defined as column major matrix and
fragment A as a row major to ease the memory access during the calculations and minimize data
divergence. Once the Tensor core operation is done, the results λx and λy become the first and
second elements of the first row of fragment D, respectively.

6.3.2. Variant 2: Sub-blocked tensor core operation
This variant shares the principle of Variant 1, but expands the idea it by subdividing the block

of threads into sub-blocks, calculating more block coordinates (one for each sub-block) still using
one tensor core MMA operation. Since every fragment has 16 rows and columns, there is the
potential of calculating 16 different values; 8 pairs of (λx, λy). The approach assumes a thread
block size large enough, to contain 4 sub-blocks of size b/2 × b/2 threads that are still large
enough to produce an efficient computation. These sub-blocks are now treated as independent
blocks of threads that are not yet mapped and sit in parallel space ready to be mapped with λ(ω).
Figure 9 shows an example using a block size of 32× 32 subdividing into sub-blocks of 16× 16.

Figure 9: On the left a 2-Orthotope for a Sierpinski gasket of scale level is 6 with a sub-block size of 16 × 16. On the
right, the 2-Orthotope when treated with block size of 32 × 32 and then subdivided.
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Once the MMA operation is done, the mapped coordinates for each sub-block are found in
the first row of the resulting fragment D. It is worth noticing that this approach introduces some
chunks of unused threads which lie outside of the 2-Orthotope generated. The uncolored blocks
marked with X in the right side of Figure 9 represents unused sub-blocks of threads. These
extra threads do not introduce a significant cost as they are upper bounded by O(

√
nH ) (i.e, the

perimeter of the packed fractal) in comparison to the domain of the 2-Orthotope which is O(nH ).

6.3.3. Variant 3: Full A, B and C usage
The two variants described rely only on fragments A and B for its calculation while most of

their fields are empty, while fragment C is unused, therefore not taking advantage of the addition
operator of the MMA operation. This third variant maintains the same encoding for A and B, but
including C in the calculation, filling completely all fields of the 3 fragments. Figure 10 shows
the arrangement of each matrix.

A =


20 21 . . . 2µ−1

20 21 . . . 2µ−1

...
...

. . .
...

20 21 . . . 2µ−1

 Bx =


τ1

x τ1
x . . . τ1

x
τ2

x τ2
x . . . τ2

x
...

...
. . .

...
τ
µ
x τ

µ
x . . . τ

µ
x



Cx =


tx
1,1 tx

1,2 . . . tx
1,µ

tx
2,1 tx

2,2 . . . tx
2,µ

...
...

. . .
...

tx
µ,1 tx

µ,2 . . . tx
µ,µ


Figure 10: MMA scheme of variant 3. Fragments By and Cy share the same representation as their x counterpart. Note
that these matrices are dimensions µxµ and when loaded into fragments, the extra elements get filled with zeroes.

The result of the tensor Core MMA is now a thread coordinate in data space for each thread,
whilst in the previous variants, it was a block coordinate in data space for all threads within that
block. This means that every thread accesses its corresponding coordinate in fragment D using
its parallel space coordinates in a 1:1 mapping. It is implied that this variant necessarily also
encodes the intra-block mapping phase into the tensor core operation. Bounding sub-boxes was
the mapping used by default. In order for this Variant to work, 2 tensor core MMA operations
must be performed per block, one for λx coordinate and the other for λy of each thread. This
variant was developed for block size ρ = 16 to fit the 256 λ coordinates of the 256 threads. The
ρ = 32 version is also possible and would require to sub-divide the block into four sub regions
of 16 × 16 performing 8 tensor core operations in total, with the access to data space being
contiguous by the sub-regions for they are not treated as independent blocks like in variant 2.

6.3.4. λtc(ω) results
The tensor core-based methods were tested with the same workloads and hardware as λ(ω)

and were compared within their corresponding versions. The speedups of the tensor core variants
with respect to the regular λ(ω) are shown in figure 11. It is important to review the results of
both Volta and Turing architecture, considering that the internal implementation of tensor core
operations may give different performances.
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Figure 11: The graphs shows the speedup of λtc(ω) with respect to non-tensor core based λ(ω). The left column shows the
results with a TITAN V GPU (Volta architecture) and right column results with a TITAN RTX GPU (Turing architecture).

Starting with the first test, the single-write (SW), results with the TITAN V show that when
n ≥ n0 = 210, speedup curves reach a stable behavior, whereas with n < n0 the speedup curves
show unstable behavior oscillating around 1.0 of speedup. In the large scale regime variant 2
gives up to 20% of extra performance over the regular λ(ω) map. With the TITAN RTX, the
speedup curves show that again variant 2 increases λ(ω) performance up to a 40%, and variant
1 becomes a usable choice as it gets a speedup above 1.0 in all configurations. In both GPUs,
variant 3 results in poor performance when n is greater than n0 with both ρ = 16 and ρ = 32
block sizes. In the reduction (RD) test the results were no different from SW, with variant 2
getting the best performance with a 20% and 30% of increased performance in TITAN V and
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RTX respectively. Variant 1 is only beneficial in TITAN RTX with ρ = 16, and variant 3 is
inefficient in all block configurations. Lastly, results on the Celullar Automata test (CA) when
n < n0 shows the same behaviour as previous tests, but as n grows from n0 in TITAN V, speedup
of all curves start to decrease below 1, the same happens with TITAN RTX except for variant
2 that gets a positive performance boost. The general performance hit observed for all variants
may be a consequence of the computation patterns found in the CA simulation.

Summarizing the tensor core results, the variant that showed better results overall was variant
2 with up to a 40% of performance boost over non-tensor core lambda when n > 210. Variant
1 is also better under certain configurations with a 5 ∼ 10% of performance boost. Variant 3
showed slower performance than the regular λ(ω) thus can be discarded.

7. Discussion and Conclusions

This work has shown that the λ(ω) map proposed for NBB fractals leads to a significant per-
formance speedup both in theory and in experimental tests with an embedded Sierpinski gasket.
The analysis and formulation of λ(ω) has provided three important results in the theoretical as-
pect; (1) There exists a correspondence between a quasi-regular 2-orthotope and NBB fractals,
(2) such correspondence can be computed in just O(log2 log2(n)) time and (3) the total work
required for mapping the 2-orthotope used with λ(ω) is asymptotically smaller than the work
generated by the bounding box approach, leading to a monotonically increasing speedup starting
from n ≥ n0. In particular, Theorem 2 serves as a guarantee that using λ(ω) on any NBB fractal
will provide a significant performance speedup starting from a certain fractal scale onward, as
the speedup monotonically increases with n.

The experimental performance results confirm the theoretical results, showing monotonically
increasing speedup once n ≥ n0 = 29 and up to 9× of speedup over a bounding-box approach
using optimal block-size settings for each approach. Using smaller block-sizes leads to even
higher speedups (up to 75×) but slower running times. It is uncommon for GPU applications
to use small block sizes, but in case it is required, a significant performance improvement is
available with this approach. Still, the exploration of GPU performance under different block-
sizes has allowed to understand that small block sizes behave as the theoretical results in a strong
way, while the largest block sizes, although still produce monotonically increasing speedup,
behave as the theory in a weaker form. The adaptation of λ(ω) to use tensor core computation
offered up to ∼ 40% of extra performance. In order to achieve efficient tensor core computation
it is important to exploit communication between tensor core fragments and shared memory as
most as possible, and in the case of non-Machine Learning tasks, to codify the computation with
the least redundant data into the fragments. The closer the task is to linear algebra, the easier this
adaptation will be.

It is important to note that the GPU thread map presented in this work, along with the tensor
core optimization, can be implemented for any fractal belonging to the NBB family. The imple-
mentation of the case study from this work, including the three tests with and without tensor-core
adaptations, is available for the community at https://github.com/crinavar/xxxxx11. Fu-
ture work on this line can follow two paths; (1) further study GPU thread mapping on fractals
and extend the NBB family to include other fractals which use rotations in the replicas, such
as the Koch curve, and (2) evaluate the performance of compact fractal manipulation in GPU,

11Note to the reviewers: the repository will be made open to the community in the published version of this article.
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that is, to pack the data space into an orthotope as the parallel space, and allow operations on
the structure without decompressing the fractal, just by using λ(ω) and λ(ω)−1 for unrolling and
rolling the computations. This last path could allow handling much larger fractals in GPU as
the memory used would be in the order of nH . Future research in these directions can provide
important insights on the potential benefits of efficient GPU computing for fractal geometry.
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