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Multi-sensor systems are proliferating the assetagament industry and by proxy, the structural
health management community. Asset managers gnertiieg to require a prognostics and health
management system to predict and assess maintedanistons. These systems handle big
machinery data and multi-sensor fusion and integexnaining useful life prognostic capabilities.

We introduce a deep adversarial learning approaafaimage prognostics. A non-Markovian

variational inference-based model incorporating@versarial training algorithm framework was

developed. The proposed framework was appliedgaldic multi-sensor data set of turbofan

engines to demonstrate its ability to predict rerimg useful life. We find that using the deep
adversarial based approach results in higher paifigr remaining useful life predictions.

Keywords. Prognostics and Health Management, Deep Learn{denerative Adversarial
Networks, Variational Autoencoders, Remaining Ukkfte.

1 Introduction

Reliability engineering has long been posed with phoblem of predicting failures by using all
data available. As modeling techniques have becmawe sophisticated, so too have the data
sources from which reliability engineers can dramnaiusions. The Internet of Things (loT) and
cheap sensing technologies have ushered in a nEamsive set of multi-dimensional data which
previous reliability engineering modeling technigw@e unequipped to handle.

Diagnosis and prognosis of faults and remainindulidiée (RUL) predictions with this new data
are of great economic value as equipment custoarerslemanding the ability of the assets to
diagnose faults and alert technicians when andevimaintenance is needed (Si 2011). This new
stream of data is often too costly and time consgno justify labeling all of it. RUL predictions,
being the most difficult, are also of the most ealor the asset owner. They provide information
for a state-of-the-art maintenance plan which redumscheduled maintenance costs by avoiding
downtime and safety issues. Therefore, taking mat@gge of unsupervised learning-based
methodologies would have the greatest economicfibeieep learning has emerged as a strong
technique without the need for previous knowled§eetevant features on a labeled data set
(Verstraete 2018). If faulty system states arevaitable or a small percentage of the fault data is
labeled, deep generative modeling techniques hawers the ability to extract the underlying
two-dimensional manifold capable of diagnosing taul



Deep learning has been employed with success taingmg useful life estimation (RUL).
Gugulothu (2017) employed a recurrent neural nekwWBNN) for RUL estimation. Malhotra
(2016), Zhao (2016), Yuan (2016), Zheng (2017),&z{2017), Wu (2017), Aydin (2017), and
Zhao (2017) all employ long short-term memory (LSTidtworks to estimate RUL. Ren (2017)
incorporates feature extraction coupled with a dempal network for RUL estimation. Li (2018)
uses convolutional neural networks (CNN) and timeelowing to estimate RUL.

These previous works into RUL estimation do notrafit to develop an understanding of the
underlying generative or inference model. Moreptley used datasets which were fully labeled.
Generative modeling provides the possibility toaaoplish this without having to label what
could be massive multi-dimensional noisy sensoa.databeling this data would be costly and
difficult. A valuable methodology would provideettilexibility to include a small percentage of
labeled data as it becomes available.

To address these problems, this paper proposefirshealgorithm which incorporates both
variational and adversarial training for RUL progtics. The novelty of this method has vast
applications for fault diagnosis and prognosisrtiiermore, it can be incorporated for both new
and existing system assets.

2 Background
2.1 Generative Adversarial Networks

Generative Adversarial networks (GANS) are a clti#sgenerative models where the density is
learned implicitly via minimax game (Goodfellow 20)1 This game’s objective is to learn a
generator distributio®; (x) identical to the real data distributidy,;,(x). When one does not
necessarily want to explicitly obtain an inferenmedel to diagnose a system fault and assign
probability to every data in the distribution, GANs are a viable alternativieo accomplish this,
the generator trains a neural network (NN) capalflgenerating the distributio®;(x) by
transforming a vector of random noise variabl®s,;.(z). The generator’s objectivé(z), is
trained byplaying against an adversarial discriminator network patenized by a separate neural
network whose objectiv) (x), is to classify the data as real or fakéne optimal discriminator
D(x) = Pyara(X)/[Paara (%) + P;(x)] would ideally converge to the Nash Equilibrium @Ka
1950); however, there is no mechanism to contisl tRormally, this value function is E€{L):

mGin max V(G,D) = Ex p,,,,c0llog(D(x)]

1
+ Eyry,,llog( = DG@)]. (1)

where,Pgaax) IS the data distributiomRnaise is the noise distributiorD(x) is the Discriminator
objective function, an(z) is the generator objective function.

2.2 Variational Autoencoders

Variational autoencoders (VAES) are a class of ieitpgenerative models which yields both
inference and generative models (Kingma &Wellin@12). VAEs attempt to learn a model,
p(x|z), of latent variables;, which generates the observed dataCommonlyp (x|z) = py (x|z)

is parameterized by a neural network with paramnséef~or most cases the posterior distribution
p(z|x) is intractable. However, an approximate postedistribution,q,(z|x), can be used to



maximize the evidence lower bound (ELBO) on thegimal data log-likelihood. Formally, this
is expressed as E2),

logp() = | E  [logps (x12)] = KL(4(z10)llp(2)) )

From this, the objective is equivalent to minimzithe Kullbeck-Liebler (KL) divergence
betweeng, (z|x) andp(z|x). Note thatg,(z|x) is usually parameterized by a neural network
with parameterg. VAEs have been successfully applied to faulgdasis problems in the recent
past (San Martin 2018).

3 Proposed Framework

In this work, we propose a mathematical framewbst encapsulates the following features: non-
Markovian transitions for state space modeling.,(iieis not assumed that all information
regarding past observation is contained within thst system state), adversarial training
mechanism on the training of the recognitiQ(z;|z,..-1, x1,,), variational Bayes for the
inference and predictive modeJ (x;|x;..—1, Z1.t), and adversarial variational filtering algorithm.
We setx; as the observed sensor dataas the latent system stag, is the recognition model
parametersg;, is the inference model parameters, apds the target domain relevant to the
adversarial training € 0,1, ..., RUL.

We denote the latent sequenges Z c R"z as a set of real numberg. We denote observations
X, € X < R™ dependent on inputs € U ¢ R™. WhereX is potentially, but not limited to, a
multi-dimensional data set consisting of multiptesors from a physical asset. The observations
themselves are not constrained to a Markovianittansassumption. Therefore, these transitions
can be complex non-Markovian. This is often theedar engineering problems like crack growth
and environmental effects on RUL. We are inteckstethe probabilistic function sequence
p(x:lz1.:.—1) generated by the discrete sequences= (x;,x5,..,x;) and z;.,_ ;=
(21,23, -, Zt—1), @S Shown in Eq. (3).

p(xelX1.0-1) = fp(xtlxlzt—l'Zl:t)p(zlztlzl:t—l)dzl:t (3)

Z1t+-1,Z: € Z € R™ denotes the latent sequence. The underlyingtlagmamical system is
assumed to have a generative model basis with emissodelp (x;|x;..—1,z1.;) and transition
modelp(z;|z;..—,). Two assumptions, Eq.’s (4) and (5) are cladlyigaposed on emission and
transition models to obtain the state space model,

PGt s 7o) = | [pCeelz0 (4)
i=1
t-1
pCilze) = | [Pzl (5)
i=0



It is assumed that the current stateontains complete information for both the obstoves x,,

and the next statg, ;. These assumptions are insufficient for comptax-Markovian transitions
on noisy multi-dimensional sensor data. Therefae propose the objective function as shown
in Eg. (6) which gives us an expressive approximaference modelgy(z|x,). The
mathematical formulation characterizes the stadeempnodel without assumptions as outlined in
Eq.’s (2) and (3), and we also have both a gemneraind inference model of the system state to
perform diagnostics and prognostics on the remgingeful life of the system.

main mgx IED(’C)IE%(Zl;dxl:t )([logpg (x1:¢121:6)]

- KL[(I¢ (21:t|x1:t)”p(zlzt)])

This methodology is aided by GPU processing. Sthiszsmethod does not include the Markov
property, having to back propagate the biases amights through each timestep is
computationally expensive.

(6)

4 Experimental Results

To evaluate the proposed methodology the Commeidiatiular Aero-Propulsion System
Simulation (C-MAPPS) data set was used. CMAPPS@®bdeveloped and coded in MATLAB
and Simulink environment for the simulation of coemgial turbofan engines (Frederick 2007).
The model takes an input parameter of an engingooent degradation level or health indicator
and outputs corresponding sensor signal valueeralipnal profile, closed-loop controllers and
environmental conditions can all be adjusted totkei specific problem the user is trying to solve.
The 90,000-pound thrust class engine and the stronlpackage’s flexibility allows operations
at 1) altitudes ranging from sea level to 40,064,f2) Mach numbers from 0 to 0.90, and 3) sea-
level temperatures from -60 to 1€B The main elements of the engine are showngurgil.
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Figure 1: Simplified diagram of engine simulateddfMAPPS (Frederick 2007).

Specifically, for this paper, FD001 of the PHM 2G@8npetition data set using CMAPPS is used
for this analysis and application.
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Figure 2: FDOO1 RMSE results vs training step fitBrations with the lowest result (14.69) marked.

The results from training fifty iterations and Rléktimations are a mean of 16.91 RMSE and a
standard deviation of 1.48. The lowest result ftbmtraining was an RMSE of 14.69 as shown
in Figure 2. These results are very good and thesstate-of-the-art results for this data sete Th
output of the framework also includes a generatiaglel that gives the engineer the ability to
potentially generate more data. Moreover, theseli®are fully unsupervised learning, whereas
similar results are fully supervised estimationis2@18). Further research will address these gaps
and refine the results on a real-world application.

5 Conclusions

In this paper we have proposed a deep learningleshauversarial-variational mathematical
framework for remaining useful life estimation. dlpervised RUL estimation is a critical area
of structural health monitoring research. It hasynapplications into numerous industries. This
mathematical formulation is the first applicatidrits kind and shows great promise.

The proposed mathematical framework demonstrateslid ability to predict the remaining
useful life of the asset. An engineer can decitlether to plan for maintenance before a failure
occurs and make the necessary arrangements. Plieagipn of the mathematical framework is
not only limited to turbo-fan engines. Oil and gaénd turbine farms, automotive, and aero-
space can all benefit from this research.
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