
HAL Id: hal-02962334
https://hal.inria.fr/hal-02962334

Submitted on 9 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Suggesting Descriptive Method Names: An Exploratory
Study of Two Machine Learning Approaches

Oleksandr Zaitsev, Stéphane Ducasse, Alexandre Bergel, Mathieu Eveillard

To cite this version:
Oleksandr Zaitsev, Stéphane Ducasse, Alexandre Bergel, Mathieu Eveillard. Suggesting Descriptive
Method Names: An Exploratory Study of Two Machine Learning Approaches. QUATIC 2020 - 13th
International Conference on the Quality of Information and Communications Technology, Sep 2020,
Faro / Virtual, Portugal. �hal-02962334�

https://hal.inria.fr/hal-02962334
https://hal.archives-ouvertes.fr

Suggesting Descriptive Method Names:
An Exploratory Study of Two Machine Learning

Approaches

Oleksandr Zaitsev1,2, Stephane Ducasse1,
Alexandre Bergel3, and Mathieu Eveillard2

1 Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL
{oleksandr.zaitsev,stephane.ducasse}@inria.fr

2 Arolla
mathieu.eveillard@arolla.fr

3 ISCLab, Department of Computer Science (DCC), University of Chile
abergel@dcc.uchile.cl

Abstract. Programming is a form of communication between the per-
son who is writing code and the one reading it. Nevertheless, very often
developers neglect readability, and even well-written code becomes less
understandable as software evolves. Together with the growing complex-
ity of software systems, this creates an increasing need for automated
tools for improving the readability of source code. In this work, we focus
on method names and study how a descriptive name can be automatically
generated from a method’s body. We experiment with two approaches
from the field of text summarization: One based on TF-IDF and the
other on deep recurrent neural network. We collect a dataset of methods
from 50 real world projects. We evaluate our approaches by comparing
the generated names to the actual ones and report the result using Pre-
cision and Recall metrics. For TF-IDF, we get results as good as 28%
precision and 45% recall; and for deep neural network, 46% precision and
32% recall.

Keywords: Software Evolution · Machine Learning · Method Names.

1 Introduction

The approach to programming has significantly changed in the past few decades.
Instructions written by programmers are not solely meant for a computer to ex-
ecute. Source code must be read by humans in many critical situations (e.g., bug
fixing, maintenance) [15]. Developers spend most of their time reading the source
code. According to Kent Beck and Robert Martin [6, 18], the ratio of time spent
reading versus writing is well over 10 to 1. Making source code easier to read
decreases the cost of software development and maintenance. In practice, the
readability of source code is often overlooked. Despite understanding the impor-
tance of clean code, developers choose poor names for their entities, create long
functions and God classes (a well known code smell), fail to write documentation

2 O. Zaitsev et al.

comments [16, 9]. But even good development ethics can not ensure that the sys-
tem remains clean and comprehensive over time. Software evolves [8], code gets
refactored and modified, which often changes the purpose of variables, functions,
and classes, as well as the relations between them. Good identifier names will
degrade over time, bad ones will become even more misleading. Improving and
updating identifier names is one of the key aspects of maintaining an evolving
software system. This is a complicated task that requires a profound understand-
ing of the entire system at all times. In the context of large software systems
that continue growing in size and complexity [17], such understanding is virtu-
ally impossible without the assistance of automated tools. We need tools that
will support developers in maintaining the consistency and understandability of
the codebase. In this paper, we focus on the quality of method names and study
how a descriptive name can be generated from a method’s body. We approach
this problem as a problem of text summarization and explore two approaches:
one based on TF-IDF [19] and the other one using a deep recurrent neural net-
work [23]. These methods were chosen because the first one is a most widely
used extractive approach, meaning that it generates the summary by extracting
the words from the text it is given; and the second one is a state of the art
abstractive approach, meaning that it can produce words that were not present
in the original text. In our case, the summary to generate is the method name,
and the original text is the method body. We collected a dataset of 132,046
methods from 50 of real world projects. We cleaned and tokenized this code and
used it to train the two models to suggest descriptive names for methods. We
evaluate the approaches by comparing method names proposed by our models
to the actual names of these methods. Those actual names were given by the
programmers so they can be considered the ground truth. After training the
models on 70% of methods and evaluating their suggestions on other 20% of
methods, we achieved 28% precision, 45% recall with TF-IDF model and 46%
precision, 32% recall with a deep learning model. The contribution of this paper
are: (i) we argue that programming languages syntax and conventions influence
the preprocessing of source code and names, and we propose a methodology for
the Pharo programming language; and (ii) we give and compare first results for
two text summarization approaches, one abstractive and one extractive.

The rest of this paper is structured as follow: In Section 2 we present the
two machine learning models that we considered. In Section 3, we describe the
collection, tokenization and filtering of source code and method names. Then, in
Section 4 we present the experiment setup used to test the two approaches. We
present and discuss the results in Section 5. We close the paper with discussion
of related work, Section 6 and the conclusion 7.

2 Two Approaches for Text Summarization

Source code written by programmers has statistical properties similar to the
natural languages such as English or Chinese. In fact, code is even more repetitive
and predictable than natural languages [12]. Which means natural language

Suggesting Descriptive Method Names 3

processing approaches should be applicable to it. In this context, method names
can be seen as summaries of their method bodies in the same way as title is
a summary of an article. Therefore, the problem of generating method names
can be seen as a problem of summarizing the source code in method’s body
with a couple of English words. We will just extract all identifiers in a method
body, then we split them into words either by CamelCase or on underscores.
That way, a method body becomes a document that we want to summarize.
This preparation step is described in Section 3. Text summarization is divided
into extractive approaches and abstractive ones. We selected one approach from
each for our experiment: extractive is done with TF-IDF combined with an n-
gram language model; abstractive is done with an attention based sequence to
sequence neural network.

2.1 Extractive Model: TF-IDF with N-grams

This approach is based on two steps: first extract the important words with
TF-IDF, and then order them with n-gram language model. TF-IDF stands for
Term Frequency-Inverse Document Frequency, a measure of word importance
that works by determining the relative frequency of a word in a specific docu-
ment compared to the inverse proportion of that word over the entire corpus of
documents [19]. Intuitively, this means that the high TF-IDF scores will be as-
signed to words that are frequent in a given document and rare in all other ones.
It allows one to find the most representative words (keywords) in a document
and therefore can be used to summarize the given document. TF-IDF score is
low for words that frequently occur in the language — such as “and”, “the”, etc.
for English — and high for words that are frequent only in a given document.
The word scores are also used to decide how many words there will be in the
summary, the naive solution being to fix a threshold score above which words
will make up the summary. However, to get a human readable summary of a
document, the keywords also need to be ordered in a “natural” way. For this we
use the n-gram language model, a probabilistic model that learns the probability
distribution of n-grams (sequences of n words) which can be used to compute
the joint probability of any given sequence of words. For summarization, a sim-
ple solution consists in generating all possible permutations of the keywords
extracted by TF-IDF, and then find the most likely one. TF-IDF, as used in
Information Retrieval, is trained and applied on the same data. To use it on pre-
viously unseen data (summarizing new documents) it must be slightly adapted.
IDF is computed on the initial dataset, that can be called training dataset. This
allows to compute a measure of “surpriseness” of each word within the domain
of the training dataset. Then TF is computed on a, possibly new, document to
be summarized. This can raise a problem if the new document contains words
never appearing in the training dataset. In this case, IDF would be a division by
0. A simple solution is to remove such new words. To avoid a similar problem
with n-gram model, words that do not appear both in documents and summaries
are removed. If they appeared in the documents but not the summaries, they
could be extracted by TF-IDF, but not ordered by the n-gram model.

4 O. Zaitsev et al.

2.2 Abstractive Model: Sequence to Sequence Neural Network

Encoded
Vector

the cat is black

Encoded
Vector

<s> le chat

estchatle

est

noir

Decoder:

Encoder:

noir

<s>

Fig. 1. Using sequence to sequence recurrent neural network to translate an English
sentence ”the cat is black” to a French sentence ”le chat est noir”. Encoder takes a
sequence of English words as input and encodes it with a fixed sized vector of numbers.
Decoder takes this vector as input and produces the sequence of French words.

Recently [21] argued that abstractive summarization could be seen as a trans-
lation problem from text to summary. Automated text translation is a very
prolific research domain. Among the numerous approaches, we wanted one that
made as little assumption as possible on the problem to solve. We chose a neural
network approach that maps an input sequence (the document) to an output
sequence (the summary) and is commonly used for neural machine translation.
It can also be applied to the summarization problem additional knowledge about
the nature of the sequences other than the list of words they are made of. Specif-
ically, we use a sequence to sequence recurrent neural network with GRU cells
and attention-based decoder [23, 7, 13]. The fact that the neural network is recur-
rent allows one to have an input sequence of any length. In Figure 1, it means
that each cell (green or yellow boxes) is actually the same in the network that
links to itself. The figure itself shows an hypothetical unrolled network where
each word is processed by one cell. The Sequence to sequence neural network
(aka encoder decoder neural network) means that we join two recurrent neural
networks, where the first learns to encode the input sequence into a fixed sized
vector (see Figure) and the second learns to decode that vector into an output
sequence. Notice that this encoded vector is actually the (hidden) state of the
cell at the end of the input sequence. In the encoder, the output of the cell
(vertical arrow) is ignored, thus not represented in the Figure. In the decoder,
the output is plugged back as the input for the next step. The decoder gener-
ates the output sequence word by word including the special “end of sequence”

Suggesting Descriptive Method Names 5

word (<s> in the Figure). This way, the decoder decides by itself the length of
the output sequence. The fact that both are recurrent neural networks, means
that the size of the input and output sequences can be decorrelated which is
important for the purpose of summarization. Finally such networks tend to give
more importance to the latest words and possibly forget the first ones. This is
an issue for us because, if on average, English sentences have around 20 words,
in our experiments, the average size of methods exceeds 130 words [26]. The
common approach to fight against this problem is the attention mechanism (not
illustrated in the Figure) that ensures that the position of a word in the input
sequence does not affect the output. It takes the form of an additional layer that
decides independently what attention to give to each input word.

In Figure 1, we give two examples of the process, on top, of the translation
from English to French, and on bottom, of the translation of a tokenized source
code sentence into a tokenized method name.

3 Applying the Learning Models to Source Code

In this section, we first give some specificities of the Pharo language that influ-
ence how we applied the model. Then we describe how to prepare the methods
to train and apply the models described in the previous section.

Each method translates into two sequences of words:

– The words extracted by splitting all identifiers in the method’s body. This
will form a “document” that the models must summarize.

– The words extracted by splitting the method’s name. This will be used to
train the models on body summarization.

3.1 Pharo Language Specificities

As stated in the Introduction, the language syntax and conventions have an
impact on how we can apply the model. Pharo4 has a number of specificities
that illustrate this point:

1. Variables are not statically typed, a model could learn from the information
about the types of variables, but it is not available in Pharo.

2. Pharo has in-place argument in method names. Unlike C like language where
arguments are grouped in parentheses at the end of a function call, in
Pharo, arguments are inserted between the parts of a method name. This
way, for example, the Java statement “bob.send(email ,emma);” translates to
“bob send: email to : emma.” in Pharo. The consequences are that method
names are longer, their vocabulary larger and they must be split at the right
place to introduce the parameters. Longer names are not a problem per se,
this is part of the model training process to learn the right length for a
name. Splitting names at the correct place to introduce parameter is out
of the scope of this paper. We generate method names as a list of words
without the colons.

4 pharo.org

6 O. Zaitsev et al.

3. Because of the in-place arguments, method names in Pharo contain many
stop words such as on, with, and, to, etc. Method names in languages like
Java, Python, or C contain mostly nouns, verbs, and adjectives that are
highly representative of method’s purpose, for example, print (string , stream)
or add(element, array). Method names in Pharo use stop words to sepa-
rate and describe those arguments, for example, print : string on: stream
or add: element to: array . It can be harder for extractive model to generate
stop words because they do not necessarily appear in source code, and will
most likely be discarded as too generic. We will explore the issue of stop
words in Section 5.1.

4. Programming conventions dictate that methods should be very short in
Pharo. In our experiment, the median length was three lines of code (mean
around six) [26]. This means that documents are short with few words which
may influence the models.

5. Some meta information about the methods is specified by calling certain
methods from the body of the given method. For example an abstract method
is a method that calls self subclassResponsibility . This obviously affects the
model because the body of an abstract method has no relation with its name.

3.2 Data Preparation: Extracting Words from Source Code

To extract words from the methods body we: (1) only keep the identifiers in
the method’s body; (2) split the identifiers into alphabetic words; (3) convert
words to lowercase. Only keeping identifiers means that we remove comments,
symbols, numbers, strings, and characters. Note that in Pharo, true, false , and
nil are not reserved words but variable containing predefined objects. As such
we keep them as identifiers. Local variable declarations (see below, |n|) and
block arguments (see below, :char) are also ignored. Because there is no type
associated to them and they, normally, appear elsewhere in the source code,
they bring very little information. After splitting the identifiers, we may end up
with numbers that were part of the identifier, these are discarded as they are
not alphabetical words (we also ignore the underscores and/or colons that were
parts of the identifiers). So for example, the following hypothetical method body
that computes the length of a string5:

"Computes the length of aString"

| n |

n := 1.

self do: [:char | n := n + 1].

↑ n

will result in the “document”: ”n self do n n n”. This is a perfect example of the
issue that short methods raise. It is impossible to abstract a correct name for this
method from the sequence of words we extract. Fortunately, many methods are

5 The actual meaning of the code is not important, but, double quotes delimit com-
ments, pipes delimit local variables declaration, square brackets delimit lambda func-
tions, and caret is a return

Suggesting Descriptive Method Names 7

more informative. Method names are decomposed in the same way. For example,
the name printOn: delimiter : last : becomes: “print on delimiter last”

3.3 Data Preparation: Filtering the Dataset

Furthermore, to apply the model, some methods need to be discarded:

– Methods with names from which no words could be extracted. Overloaded
operators (e.g. +) or strangely named methods (e.g. 42) would produce no
words at the tokenization step described in Section 3.2;

– Methods with empty body after preparation. Similarly, some very short
methods, for example returning only a constant, or empty hooks, would
have an empty body after preparation;

– Fully duplicated methods, with same name and implementation, are reduced
to only one instance so as not to bias the model. Note that duplicated method
names with different bodies (e.g. toString in Java) are kept;

– Too long methods, more than 500 words in the body, are rejected for prac-
tical reasons. Training the model with such methods becomes too long to
be practical. This problem comes from the attention mechanism (see Sec-
tion 2.2) that requires to know the maximum input length and becomes very
slow because of that, even for the shorter methods;

– Getters and setters are very easy to generate (most IDEs can actually do
it), yet probabilistic models could fail on them. Therefore it seems better to
leave them out of the scope of a method name generation model;

– Test methods name can also be easily generated, but this is done from a
completely different source of information, usually the name of a method
or class that is being tested, not their own body. Test method naming also
follows different conventions that would require a specific model to learn;

– We said that abstract methods in Pharo were implemented with only a call
to subclassResponsibility . It makes sense to remove them from the training
set as it is impossible to learn anything from their body and this would just
introduce noise in the model. The same goes for methods consisting of the
sole call to shouldNotImplement call, that allows to “remove” an unwanted
inherited method.

– Methods whose body would consist only of the words super, self 6, true,
false , nil are also filtered out. Such bodies only add noise and are akin to
empty bodies.

3.4 Finetuning the Models

Training the probabilistic models involves hyperparameter tuning. This is done
by training them on a (large) subset of the dataset and validating them on a
disjoint (smaller) subset. By fine tuning the parameters, one tries to achieve
the best possible results. Assuming the dataset used is large and representative

6 this

8 O. Zaitsev et al.

enough, this needs to be done only once for a given programming language.
For training set, we used 70% of the whole dataset, and for validating, we used
another 10%. The remaining 20% were required for the study and comparison of
the two models and will be discussed in the next section. The Extractive model
(TF-IDF), unlike the abstractive one, cannot automatically decide how many
words it should generate. Therefore we used the following heuristics: We keep
only those words with TF-IDF score above a certain threshold. There is a lower
and upper boundaries on the number of words that can be kept. If no words
pass the threshold, we keep the one with the highest TF-IDF score. If too many
words pass the threshold, we keep only the highest TF-IDF scores. The TF-IDF
threshold was fixed to the one that gave the best F1 score (see Section 4.1) on
the validation dataset. The value is 2.5 for Pharo. The upper bound value was
set to 5 words, so that the n-gram model would not take too much time to find
the most meaningful order of those words. For the Abstractive model (Sequence
to Sequence Neural Network) one needs to tune parameters such as the size of
the hidden state vector, the learning rate, and the teacher forcing ratio7. These
parameters were selected to give the highest F1 score on the validation dataset.
The quality measures are discussed in Section 4.1). For Pharo, we recommend to
set hidden state vector=256 ; learning rate=0.01; and teacher forcing ratio=0.5.

4 Experiment Setup

To compare the two models, we set up an experiment on some real world Pharo
projects. We shuffled and split our data into three non-intersecting subsets. The
first two were already presented in the previous section: training set (70%) and
validation set (10%). For comparing the models, we also need a third independent
set — test set (20%) — it is used to evaluate the final trained model on data
not seen during the training itself so that the training and parameter tunning
are not biased towards the test.

4.1 Quality Metrics

A given method name can be considered good by one developer and bad by
another. In this study, we adopt a simplified approach for automatic evaluation
which assumes that most methods in our dataset are well named, and therefore
can be used as ground truth to evaluate our models. The actual name is called
reference name, the ones generated by the models are the candidate names. We
report four different metrics of similarity between candidate and reference names:
exact match, average precision, average recall, and average F1 score. Exact match
score is the simplest and the strictest metric. It is the percentage of candidate
names that match exactly the reference names. This is our only metric that
takes into account the order of words. Exact match score is easy to interpret,

7 The probability that during training the word generated by the model is substituted
by the word from a real name. It is used to make the training smoother

Suggesting Descriptive Method Names 9

but very restrictive. Candidate name that is similar to the reference but does not
match it exactly, will receive the score of 0, as if it was completely different. We
used precision, recall, and their derived metric F1. These three metrics consider
every name as a set of words. Precision counts the percentage of words from
the candidate name that also appear in a reference name. Recall counts the
percentage of words from the reference name that also appear in a candidate
name. F1 Score is the harmonic mean8 of precision and recall [22]. We compute
these three metrics for each method and report the average of those values.

4.2 Random baseline

Because of the limited vocabulary [26] and the fact that source code is highly
repetitive [12], we can get good results just by selecting the words randomly.
Therefore we will also compare our models to a random model as a baseline:
The random extractive model generates name for a given method by selecting K
random words from its source code. A random abstractive model, selecting K
random words from all method names in our training set, would make little sense
as it would have close to 0% chance of finding the right word (in our dataset,
there are 8,211 words [26]). We set K equal to 3, which is the average number
of words in the method names from out training set.

5 Results

In this section, we present and discuss the results of our experiment evaluation.
We experimented on 50 projects selected from Pharo ecosystem. The list of
projects, some information about them, and how they were selected, is available
in our technical report [26]. We collected 132,046 methods out of which we kept
92,127 (61%) after the filtering process described in Section 3. The three datasets
described in Section 4 have: 64,488 methods in the training set; 9,212 methods
in the validation set; and 18,425 methods in the test set. Table 1 contains several
examples of method names that were generated by our abstractive model.

5.1 Evaluation Results

We present the results of the experiment in Table 2. As could be expected, the
random model gives bad results for exact match (0%). Its results for precision
(20%), recall (26%), and F1 score (21%) are not so bad. This is caused by the
small vocabulary.

The extractive model shows an improvement over these results, with 2%
exact match, precision of 28%, recall of 45%, and F1 score of 33%. The extractive
model cannot propose new words that did not appear in the method body, this
should reflect on a low recall which is not the case. Many methods in Pharo call

8 Harmonic mean is more intuitive than the arithmetic mean when computing a mean
of ratios

10 O. Zaitsev et al.

Table 1. Examples of method names generated with the abstractive model. The first
column contains the source code of a method which was used as input, the second
column contains the real method name which was unknown to the model, and the
third column contains the generated name.

Source Code Real Name Generated Name

self assert : self newNode isComment. testIsComment testIsComment

r := aColor red. g := aColor green.
b := aColor blue .

color color

aVisitor visitDraggableInteraction : self
with: args

acceptWith accept

aPackage isPackage ifFalse : [ˆ self].
self addElement: aPackage
in : self packages.

addPackage addPackage

Table 2. Evaluation results calculated on the test set for three models: the random
model that selects three random words from source code, extractive model based on
TF-IDF and n-gram model, and the abstractive model based on a sequence to sequence
deep neural network.

Model Exact Match Precision Recall F1 Score

Random 0% 20% 26% 21%
Extractive 2% 28% 45% 33%
Abstractive 11% 46% 32% 36%

another one with a similar name (to add a default parameter for example) which
could be an explanation here. Further studies are needed to better understand
this issue. The abstractive model has the best results, with 11% exact match,
precision of 46%, recall of 32%, and F1 score of 36%. The high exact match is
surprising and may be as good as what a human would achieve. Additionally,
in Figure 2, we plot the intermediary results of the abstractive model, one data
point every 1,000 iterations. The scores are evaluated against the validation set,
not the test set. This is what we used to finetune the parameters of the model.
For comparison, we also draw the performance of the extractive model (dashed
lines) evaluated on the validation set. F1 scores of the extractive and abstractive
models are almost the same. However, extractive model performs worse based
on the exact match score. We can try to explain this by the presence of many
stop words (e.g. with, on, to) in the names of Pharo methods (see Section 3.1).
One might argue that a language like Java, that usually does not exhibit such
stop words in method names, could have better score here. To validate this
hypothesis, we have identified 127 generic words such as on, with, and, etc. that
are considered stop words in English9. We removed every occurrence of those
words in the method names of training, validation, and test sets. Then we rerun
the experiments and evaluated our three models on the new data to observe

9 The complete list of stop words that we used in this study can be found here:
https://gist.github.com/olekscode/125804150f2a559a171bf695c0a3f809

Suggesting Descriptive Method Names 11

0.0%

10.0%

20.0%

30.0%

40.0%

0 25000 50000 75000 100000

Iteration

S
co

re

Metrics

Exact match

F1

Precision

Recall

Models

Abstractive

Extractive

Fig. 2. Training of the abstractive model (measurements were taken once every 1000
iterations). The dashed lines are the scores achieved by the extractive model

the effect that stop words have on the generation of method names. Against our
hypothesis, the exact match of the extractive model was not affected by removing
the stop words, it remained 2%. As for the abstractive model, its exact match
score increased by 2% giving us 13% of exactly matched method names. The
changes of precision, recall, and F1 score for random, extractive, and abstractive
models are inconclusive and seem to be purely mechanical.

6 Related work

Following the work of Gabel et al.[10] who performed the first study of the
uniqueness of code and found that source code is highly repetitive, Hindle et
al. [12, 11] explored the predictability of code, and claimed that source code
is even more repetitive and predictable than natural languages. They claimed
that this predictability allows us to model code with statistical language models,
proposed the notion of software naturalness and pioneered the applications of
natural language processing (NLP) to the source code. Deep learning proved
to be very effective in modelling source code — in recent years, deep learning
models for source code found many applications for code completion [24, 20,
2]. Bavi et al. [5] used auto-encoder network together with a recurrent neural
network to reverse the minification of JavaScript and generate names for local
variables. Allamanis et al. [1] introduced the first neural probabilistic language
model for source code and used it to suggest method names. This model required
a large set of hard-coded features, such as features from the containing class and

12 O. Zaitsev et al.

the method signature. In the later study, Allamanis et. al. [3] proposed an end-
to-end (meaning that it does not require manual feature selection) convolutional
neural network with attention for method name generation. Alon et al. [4] also
attempted to predict method names form their bodies by representing source
code as a collection of paths in its abstract syntax tree and aggregating these
paths into a single fixed-length code vector. Iyer et al. [14] proposed an LSTM
network with attention to generate sentences that describe C# code snippets and
SQL queries. Their model was trained to translate between the titles of questions
posted on StackOverflow and code snippets from the accepted answers.

7 Conclusion

In this work, we explored and compared two machine learning models for text
summarization when applied to the problem of generating descriptive method
names from method bodies and thus improving the readability of source code.
The first model is based on TF-IDF and n-gram language model, it performs
the extractive text summarization by selecting important words from the source
code of a method and putting them into a meaningful order. Second model
is an attention-based sequence to sequence neural network which performs an
abstractive summarization — it can generate method names from words that
have never appeared in source code. After applying and evaluating our models
on the dataset of methods collected from 50 real-life projects written in Pharo,
we have reported the average precision score of 28% for extractive and 46% for
abstractive models, as well as the average recall of 45% for extractive and 32%
for abstractive model. 11% of method names generated by our abstractive model
for methods from an independent test set are exactly the same as the real names
given to those methods by developers.

Threats to validity The method names generated with our abstractive ap-
proach are only as good as the names on which the model was trained. The
project that we have included into our dataset were handpicked by experts as
the ones that follow good coding practices. However, we did not manually vali-
date each one of the 64,488 method names in the training set, so this can be a
threat to validity. A similar threat is the validity of evaluation. We have consid-
ered the real method names from our dataset as ground truth and used them to
evaluate the generated names. Such approach is based on the assumption that
the original names are good. In the follow-up study, we plan to perform a manual
qualitative evaluation of the generated names.

Future work The evaluation technique could be enhanced by supporting the
four automatic metrics of exact match, precision, recall, and F1 score with a hu-
man evaluation performed on a small subset of methods. For example, a model
that generates a name, “on” for a method whose real name is “printOn:“, will be
awarded with 100% precision and 50% recall. Alternatively, if the real method

Suggesting Descriptive Method Names 13

name is “sumOfIntegers”, a reasonably good name such as “addAllIntegerNum-
bers” will be scored with 0 by all metrics. Those cases would be easily spotted by
a human evaluator. The same experiment should be tried with other program-
ming languages as we saw that Pharo methods are typically small (a few lines of
code) which limits the vocabulary available for both approaches. This can have
good or adverse consequences on the results. In this work, we removed code com-
ments and string literals because our study was focused on generating method
names by summarizing source code. However, as we discussed in Section 3.2,
many methods are very short and do not contain enough valuable information
in their source code to generate a meaningful method name. A good extension
for our study would be to utilize the natural language method descriptions pro-
vided in code comments. As it was mentioned in Section 1 where we discussed
the motivation, the automatic suggestion of method names can be used to im-
prove the readability of source code, which eventually would improve bug fixing
and feature request incorporation times. We plan to target this problem through
a controlled experiment or a longitudinal case study in the follow-up journal pa-
per. Another interesting follow-up study would be to do cross project (or cross
domain) training. In this paper, we trained on all projects (domains) mixed but
it seems reasonable to assume that different projects would have different naming
convention and vocabulary. Again, this could impact the results.

Acknowledgements

This work is based on the Master’s thesis of Oleksandr Zaitsev defended at the
Ukrainian Catholic University [25]. Oleksandr would like to thank the Univer-
sity of Chile, Inria Lille, Pharo Association, and Arolla for financial support.
Alexandre Bergel thanks the financial sponsor of Lam Research and project
FONDECYT Regular 1200067.

References

1. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and
class names. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. pp. 38–49. ACM (2015)

2. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning
for big code and naturalness. ACM Computing Surveys (CSUR) 51(4), 81 (2018)

3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: International Conference on Machine Learning.
pp. 2091–2100 (2016)

4. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: Learning distributed
representations of code. arXiv preprint arXiv:1803.09473 (2018)

5. Bavishi, R., Pradel, M., Sen, K.: Context2name: A deep learning-based approach to
infer natural variable names from usage contexts. arXiv preprint arXiv:1809.05193
(2018)

6. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman (2002)

14 O. Zaitsev et al.

7. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

8. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann (2002)

9. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison Wesley (1999)

10. Gabel, M., Su, Z.: A study of the uniqueness of source code. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. pp. 147–156. ACM (2010)

11. Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.: On the naturalness of
software. Communications of the ACM 59(5), 122–131 (2016)

12. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of
software. In: Software Engineering (ICSE), 2012 34th International Conference on.
pp. 837–847. IEEE (2012)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

14. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code us-
ing a neural attention model. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). vol. 1, pp.
2073–2083 (2016)

15. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
16. Koenig, A.: Patterns and antipatterns. Journal of Object-Oriented Programming

(Mar 1995)
17. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change.

London Academic Press, London (1985), ftp://ftp.umh.ac.be/pub/ftp infofs/1985/
ProgramEvolution.pdf

18. Martin, R.C.: Clean code: a handbook of agile software craftsmanship. Pearson
Education (2009)

19. Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Pro-
ceedings of the first instructional conference on machine learning. vol. 242, pp.
133–142 (2003)

20. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language
models. In: Acm Sigplan Notices. vol. 49, pp. 419–428. ACM (2014)

21. Rush, A.M., Harvard, S., Chopra, S., Weston, J.: A neural attention model for
sentence summarization. In: ACLWeb. Proceedings of the 2015 conference on em-
pirical methods in natural language processing (2017)

22. Sasaki, Y., et al.: The truth of the f-measure. Teach Tutor mater 1(5), 1–5 (2007)
23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural

networks. In: Advances in neural information processing systems. pp. 3104–3112
(2014)

24. White, M., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D.: Toward deep learn-
ing software repositories. In: Proceedings of the 12th Working Conference on Min-
ing Software Repositories. pp. 334–345. IEEE Press (2015)

25. Zaitsev, O.: Aspects of software naturalness through the generation of identifier
names. Master’s thesis, Ukrainian Catholic University, Faculty of Applied Sciences,
Department of Computer Sciences, Lviv, Ukraine (Jan 2019), http://er.ucu.edu.ua/
handle/1/1338, under sup. of Stéphane Ducasse and Alexandre Bergel

26. Zaitsev, O., Ducasse, S., Anquetil, N.: Characterizing pharo code: A technical re-
port. Technical report, Inria Lille Nord Europe - Laboratoire CRIStAL - Université
de Lille ; Arolla (jan 2020), https://hal.inria.fr/hal-02440055

