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Tree containment and degree conditions

Maya Stein∗

University of Chile

Abstract

We survey results and open problems relating degree conditions with tree
containment in graphs, random graphs, digraphs and hypergraphs, and their
applications in Ramsey theory.

1 Introduction

A fundamental question in extremal graph theory is how to guarantee certain sub-
graphs by imposing a global condition on the host graph. Often, this is a condition
on the degree sequence. Classical examples include Turán’s theorem on containment
of a complete subgraph, or Dirac’s theorem on containment of a Hamilton cycle. One
of the most intriguing open questions in the area is to determine degree conditions a
graph G has to satisfy in order to ensure it contains a fixed tree T , or more generally,
all trees of a fixed size.

Let us start with an easy observation. A greedy embedding argument yields that
for k ∈ N, a minimum degree δ(G) of at least k is enough to ensure that each tree T
with k edges is a subgraph of G. Note that T is not necessarily an induced subgraph.
Also note that although a copy of each k-edge tree is present, these copies need not
be disjoint. For instance, if |V (G)| = k+ 1, we are considering a complete graph and
its spanning trees.
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Basal, Código AFB170001, and by Fondecyt Regular Grant 1183080.
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Although the minimum degree condition δ(G) ≥ k is tight (it cannot be lowered
to k−1), the condition seems quite strong. It might not be necessary that all vertices
of the host graph have large degree. For path containment, there is a famous result
relying on the average degree: Erdős and Gallai [42] showed in 1959 that if G has
average degree d(G) > k then G contains a k-edge path. Erdős and Sós conjectured
in 1963 (see [40]) that this bound on the average degree should in fact guarantee
all trees with k edges to appear as subgraphs. This conjecture, its variants and
generalisations, will be one of the guiding themes of this survey.

We discuss the Erdős-Sós conjecture in Section 2 and then turn to related ques-
tions. Namely, various other conditions have been suggested that might ensure the
appearance of all trees of some fixed size. One well known conjecture in this direction
is the Loebl–Komós–Sós conjecture from 1995 (see [41]). This conjecture replaces
the assumption on the average degree with an assumption on the median degree. We
will discuss the Loebl–Komós–Sós conjecture and related results in Section 3.

More recent conjectures with the same conclusion employ a condition on a com-
bination of the maximum and the minimum degree. The first conjecture in this
direction is due to Havet, Reed, Wood and the author [70]. The idea is that a mini-
mum degree below k may still be sufficient to find all fixed-size trees, as long as we
require one vertex of large degree in the host graph. This vertex both caters for a
possible large degree vertex in the tree T , and ensures we have enough space for the
embedding of all of T . See Section 5 for details.

If we only wish to condition on the minimum degree of the host graph, with
no assumptions on the maximum degree, and if our minimum degree condition is
strictly below k, it is clearly necessary to exclude some trees, for instance stars,
from our considerations. More precisely, it will make sense to add a restriction on
the maximum degree of the trees we wish to find. There is a well-known result
of Komlós, Sárközy and Szemerédi [91] from 1995, which had been conjectured by
Bollobás [18] in 1978. It states that in large graphs G, a minimum degree slightly

above |V (G)|
2

is sufficient to guarantee all bounded degree spanning trees. This result
will be another recurring theme of this survey. We discuss variations of Komlós,
Sárközy and Szemerédi’s result in Section 4.

It has also been considered to require, apart from a minimum degree condition,
additional properties in the host graph, for instance expansion (in terms of large
girth, excluded subgraphs, or neighbourhood conditions). With expansion, and for
bounded degree trees, the degree bounds on the host graph can be lowered. This
naturally leads to considering random graphs as well. A conjecture of Kahn [86]
regarding the threshold for containment of bounded degree spanning trees was re-
cently solved by Montgomery [101]. For several of the above mentioned extremal
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results for tree containment (such as Komlós, Sárközy and Szemerédi’s result), there
are resilience versions for random graphs. Also, randomly perturbed graphs have
been considered as host graphs. Expansion and random graphs will be discussed in
Section 6.

Some of the above conjectures have direct applications in Ramsey theory, giving
upper bounds on Ramsey numbers of trees. For most trees, however, these bounds
do not seem to be sharp, and it might be that the correct numbers need to take
into account the relative size of the partition classes of the tree. A conjecture of
Burr [23] from 1974 for Ramsey number of trees, although asymptotically confirmed
for bounded degree trees in [75], has turned out to be far from correct, leaving plenty
of open questions in this area. To date, not even the two-colour Ramsey number
of double stars is understood. We will give an overview of the state of the art of
Ramsey theory for trees in Section 7.

Tree containment is also being studied for oriented trees in oriented graphs and
digraphs. It is not sufficient to simply consider the degree of the underlying graph,
so even the case of the tournament as a host graph is interesting. In Section 8, we
will first look at two famous conjectures on tree containment in tournaments from
the 1980’s, due to Sumner [115] and Burr [24], respectively. Then, we will highlight
a recent conjecture from [1] which attempts to generalise the Erdős–Sós conjecture
and Burr’s conjecture at the same time. Finally, we turn to results generalising
the theorem of Komlós, Sárközy and Szemerédi to digraphs, and some more open
questions.

Finally, tree containment problems have been translated to the hypergraph set-
ting. We will describe this thriving area in Section 9. We cover three types of trees:
Tight trees, expansions of trees and Berge trees. Each of these notions corresponds
to the respective notion for hyperpaths (and these are the most commonly studied
hyperpath notions). For tight trees, Kalai’s conjecture (see [48]) is widely regarded
as an analogue of the Erdős–Sós conjecture for hypergraphs. There is also a gen-
eralisation of Komlós, Sárközy and Szemerédi’s theorem to tight hypertrees. For
expansions of trees and Berge trees, we will present some Erdős–Sós type results,
phrased in terms of their Turán numbers.

For the reader’s convenience, we summarise here how the survey is organised:
Section 2: Average degree; Section 3: Median degree; Section 4: Minimum de-
gree; Section 5: Maximum and minimum degree; Section 6: Expanders and random
graphs; Section 7: Ramsey theory; Section 8: Directed graphs; Section 9: Hyper-
graphs.
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2 Average degree

The most prominent conjecture on tree containment is a classical conjecture of Erdős
and Sós from 1963 which focuses on the average degree. It appeared for the first time
in [40].

Conjecture 2.1 (Erdős–Sós conjecture, see [40]). Every graph with average degree
d(G) > k − 1 contains every tree with k edges as a subgraph.

A different way to state this conjecture would be in terms of the extremal number
or Turán number of trees. Namely, we define as usual the Turán number ex(n,H) of
a graph H to be the largest number of edges an n-vertex graph may have without
containing H as a subgraph. Then, Conjecture 2.1 states that

ex(n, T ) ≤
k − 1

2
n

for any k-edge tree T .
The Erdős–Sós conjecture is tight for every k ∈ N: If k divides n, consider the n-

vertex graph consisting of the union of n
k

disjoint copies of cliques on k vertices. This
graph has average degree k−1 but it does not contain any tree with k edges since its
connected components are too small. One can also consider any other (k−1)-regular
graph, for instance the complete bipartite graph Kk−1,k−1, which does not contain
the star with k edges.

A structurally different example is given by a complete graph on n vertices, in
which all edges inside a set of ⌊k

2
⌋ − 1 vertices have been deleted. This graph does

not contain any balanced tree on k edges. The graph is not extremal, however, as
its average degree is slightly lower than the average degree of the examples from the
previous paragraph.

Before giving an overview of the known results concerning the conjecture, let us
insert here a quick observation on the minimum degree we may assume the host
graph from the Erdős–Sós conjecture to have. Since every graph of average degree
greater than k− 1 has a subgraph of minimum degree at least k

2
and average degree

greater than k − 1 (this subgraph can be found by successively deleting vertices of
too low degree), one can assume that the host graph from the Erdős–Sós conjecture
has minimum degree at least k

2
.

Similarly, one can argue that if we replaced the condition d(G) > k − 1 with the
condition d(G) > 2k − 1, then a greedy embedding of any k-edge tree into an ap-
propriate subgraph of G will succeed, and therefore, such a version of Conjecture 2.1
trivially holds. The bound d(G) > 2k−1 can be lowered to d(G) > 2 k

k+1
(k−1) [122].
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In the early 1990’s Ajtai, Komlós, Simonovits and Szemerédi announced a proof
of the Erdős–Sós conjecture for large graphs. Nevertheless, many particular cases
have been settled since then, or, in some cases, earlier.

The results mainly group into four types. First, the conjecture has been verified
for special types of trees. Most prominently, and as we mentioned before, a classical
result of Erdős and Gallai [42] from 1959 implies that the Erdős–Sós conjecture holds
for paths. The Erdős–Sós conjecture is also true for stars and double stars. Indeed,
for stars this is trivial, while for double stars it suffices to establish the existence of
an edge between a vertex of degree ≥ k and a vertex of degree ≥ k

2
in the host graph.

Since we can assume that the minimum degree of the host graph is at least k
2
, such

an edge clearly exists. Moreover, it is easy to see that the Erdős–Sós conjecture holds
for all trees having a vertex adjacent to at least k

2
leaves. McLennan [100] showed the

conjecture holds for all trees of diameter at most 4. Fan, Hong and Liu [45] recently
proved the conjecture for all spiders, i.e. for all trees having at most one vertex of
degree exceeding 2.

Second, the Erdős–Sós conjecture has been verified for special types of host
graphs. Brandt and Dobson [21] proved in 1996 that the Erdős–Sós conjecture is
true for graphs with girth at least 5. Saclé and Woźniak [120] improved on this
result showing in 1997 that the Erdős–Sós conjecture holds for all graphs that do not
contain C4, the cycle on 4 vertices. The conjecture also holds if we exclude certain
complete bipartite subgraphs in the host graph or its complement [7, 37, ?], and if
the host graph is bipartite [122].

Third, there are results building on the relation between k and n. In particular,
Conjecture 2.1 has been established for several cases when k is very close to n, the
order of the host graph (note that the largest possible value of k is k = n−1 and then
we need to find a spanning tree in an almost complete host graph). More precisely,
the conjecture holds if k + 1 ≤ n ≤ k + 4 (for all k), and even for the case n ≤ k + c,
where c is any given constant and k is sufficiently large depending on c (see [59]
and references therein). Furthermore, it is shown in [16] that if we additionally
assume that k ≥ 106, then the Erdős–Sós conjecture holds for all graphs G with

|V (G)| ≤ (1 + 10−11)k and trees T with ∆(T ) ≤
√
k

1000
.

Finally, there are some recent results building on the regularity method, thus
only applying to the case when k is linear in n, and n is large. In 2019, Rozhoň [119]
and independently, the authors of [16] (and [14]) gave an approximate version of
the Erdős–Sós conjecture for trees with linear maximum degree and large dense host
graphs.
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Theorem 2.2. [16, 119] For each δ > 0 there are n0, γ such that for each k and
for each n-vertex graph G with n ≥ k ≥ δn ≥ δn0 the following holds.
If G satisfies d(G) ≥ (1 + δ)k, then G contains every k-edge tree T with ∆(T ) ≤ γk.

In [16], this is used to obtain the following sharp version of Conjecture 2.1 for large
dense host graphs, which unfortunately relies on the tree having constant maximum
degree.

Theorem 2.3. [16] For each δ > 0 and ∆ there is n0 such that for each k and for
each n-vertex graph G with n ≥ k ≥ δn ≥ δn0 the following holds.
If G satisfies d(G) > k − 1, then G contains every k-edge tree T with ∆(T ) ≤ ∆.

3 Median degree

A well-known variant of the Erdős–Sós conjecture, which replaces the assumption on
the average degree with an assumption on the median degree, is the Loebl-Komlós-
Sós conjecture from 1995. Two variants of this conjecture first appeared in [41].

Conjecture 3.1 ((n
2
–n
2
–n
2
)–Conjecture [41]). Every n-vertex graph having at least n

2

vertices of degree at least n
2
contains each tree on at most n

2
vertices as a subgraph.

The (n
2
–n
2
–n
2
)-Conjecture has been attributed to Loebl, while according to [41],

Komlós and Sós are the originators of the following variation.

Conjecture 3.2 (Komlós–Sós Conjecture [41]). Every n-vertex graph having more
than n

2
vertices of degree at least k contains each tree with k edges as a subgraph.

The following amalgamation came to be called the Loebl–Komlós–Sós Conjecture.

Conjecture 3.3 (Loebl–Komlós–Sós Conjecture). Every n-vertex graph having at
least n

2
vertices of degree at least k contains each tree with k edges as a subgraph.

Note that the Loebl-Komlós-Sós conjecture neither implies nor is implied by
Conjecture 2.1.

Also note that the bound on the degrees in the conjecture cannot be lowered,
because because we might need to embed a star. Another example is the disjoint
union of cliques of order k, which contains no tree with k edges.

As for the number of vertices of large degree, we do not know of any example
making the bound n

2
sharp. The best example we know of is the following. If k is

odd, consider the complete graph on k + 1 vertices and delete all edges inside a set
of k+3

2
vertices. It is easy to check that this graph has k+1

2
vertices of degree k, and
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it does not contain the k-edge path. Taking the disjoint union of several such graphs
we obtain examples for other values of n (and we can add a disjoint small graph to
reach any value of n). The total number of vertices of large degree is somewhat lower
than n

2
, and in [76], it was conjectured that the number given by this example might

be the correct number.

Conjecture 3.4. [76] Let G be a graph on n vertices having more than n
2
−⌊ n

k+1
⌋−(n

mod k + 1) vertices of degree at least k. Then G contains each k-edge tree.

The Loebl-Komlós-Sós conjecture (Conjecture 3.3) clearly holds for stars, and it
has been proved for several other special classes of trees. One of the first results of
this type is due to Bazgan, Li, and Woźniak [13], who proved the conjecture for paths
in 2000. Piguet and the author [109] proved that Conjecture 3.3 is true for trees of
diameter at most 5, which improved earlier results of Barr and Johansson [12] and
Sun [124] for smaller diameter.

Conjecture 3.3 has also been proved for special classes of host graphs. Soffer [121]
showed that the conjecture is true if the host graph has girth at least 7. Dobson [37]
proved the conjecture for host graphs whose complement does not contain the com-
plete bipartite graph K2,3.

The use of a different approach to the Loebl-Komlós-Sós conjecture based on the
regularity method has been initiated by Ajtai, Komlós, and Szemerédi [3] in 1995
who solved an approximate version of Conjecture 3.1 for large graphs. Their strategy
(see also [91] which appeared around the same time) relies on the regularity method,
and has been replicated in similar forms in numerous articles on tree embeddings in
large dense graphs. The leading idea in [3] is to cut up the tree into many tiny trees
connected by a constant number of vertices (of possibly very large degree), and addi-
tionally, to find a useful matching structure in the regularised host graph. The tiny
trees are then embedded into the regulars pairs corresponding to the matching, while
the connecting vertices are embedded in suitable clusters that see a large amount of
matching edges.

Zhao [126] used a refinement of the approach from [3] plus stability arguments
to prove the exact version of Conjecture 3.1 for large graphs. Also using regularity,
an approximate version of Conjecture 3.3 for k linear in n was proved by Piguet
and the author [110]. Finally, adding stability arguments, Hladký and Piguet [80]
and independently, Cooley [29] succeeded in proving Conjecture 3.3 for large dense
graphs.

Theorem 3.5. [29, 80] For every q > 0 there is n0 such that for any n > n0 and
k > qn, each n-vertex graph G with at least n

2
vertices of degree at least k contains

each k-edge tree.
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The regularity method described above fails in sparse host graphs. A new ap-
proach covering also this type of host graphs was explored by Hladký, Komlós,
Piguet, Simonovits, Szemerédi and the present author in [76, 77, 78, 79] (for a 10-
page overview of the proof see [81]). These authors introduced a decomposition
technique for graphs (stemming from previous work of some of the authors on the
Erdős–Sós conjecture) whose output resembles the regularity lemma if applied to a
dense graph but is also meaningful in the sparse setting. This enabled them to show
the following approximate version of Conjecture 3.3 for large trees.

Theorem 3.6. [76, 77, 78, 79] For every ε > 0 there is k0 such that for every
k ≥ k0, every n-vertex graph having at least (1 + ε)n

2
vertices of degree at least

(1 + ε)k contains each k-edge tree as a subgraph.

In [89], Klimošová, Piguet, and Rohzoň suggest an interesting generalisation of
the Loebl-Komlós-Sós conjecture, inspired by a question of Simonovits. Let us say
that a k-edge tree is r-skew if one of its colour classes has size at most r(k + 1).

Conjecture 3.7 (Skew LKS conjecture). Let G be a graph on n vertices having more
than rn vertices of degree at least k. Then G contains each r-skew k-edge tree.

The authors of [89] show an approximate version of this conjecture for large
dense graphs. Conjecture 3.7 has also been verified for paths and trees of diameter
at most five [118]. Examples similar to the ones given earlier in this section show
the conjecture would be close to tight.

4 Minimum degree

As mentioned in the introduction, any n-vertex graph G with minimum degree at
least k contains every tree with k edges. Clearly, the bound on the minimum degree
is tight, as we might have to embed a star. Even if we disregard for a moment stars
and other trees having vertices of very large degree, it is not possible to lower the
bound on the minimum degree of the host graph. In order to see this, it suffices to
consider the union of several disjoint copies of Kk which does not contain any tree
with k edges. However, the latter example only works if k divides n. In particular,
it fails if k > n

2
. So one might suspect that for k > n

2
, a lower minimum degree

condition could be sufficient to ensure that G contains all k-edge trees that have
bounded maximum degree.

In this direction, Bollobás [18] conjectured in 1978 that any graph on n vertices
and minimum degree at least (1 + o(1))n

2
would contain every spanning tree whose
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maximum degree is bounded by a constant. This conjecture was proved by Komlós,
Sárközy and Szemerédi [91] in 1995, giving one of the earliest applications of the
Blow-up lemma.

Theorem 4.1 (Komlós, Sárközy and Szemerédi [91]). For all δ > 0 and ∆ ∈ N,
there is n0 such that such that every graph G on n ≥ n0 vertices with δ(G) ≥ (1+δ)n

2

contains each n-vertex tree T with ∆(T ) ≤ ∆.

Subsequently, each of the two bounds in Theorem 4.1 has been improved.

Theorem 4.2 (Csaba, Levitt, Nagy-György and Szemerédi [30]). For all ∆ ∈ N,
there are n0 and c such that every graph G on n ≥ n0 vertices with δ(G) ≥ n

2
+c logn

contains each n-vertex tree T with ∆(T ) ≤ ∆.

Theorem 4.3 (Komlós, Sárközy and Szemerédi [92]). For all δ > 0, there are n0

and c such that such that every graph G on n ≥ n0 vertices with δ(G) ≥ (1 + δ)n
2

contains each n-vertex tree T with ∆(T ) ≤ c n
logn

.

The bound on the minimum degree in Theorem 4.2 is essentially tight (see [30]).
Also the bound on the maximum degree in Theorem 4.3 is essentially best possible.
This can be seen by considering the random graph with edge probability p = 0.9
which a.a.s. does not contain a forest of stars of order n

logn
(and thus also does not

contain any tree containing such a forest).
In contrast to the results from earlier sections, the results from [30, 91, 92] are

all for the case when the tree and the host graph have the same order. In view of
the examples from the beginning of the section, we know that these results cannot
be generalised to non-spanning trees in host graphs of smaller minimum degree.
However, if in addition we require the host graph to have a connected component of
size at least k + 1, then it does at least contain the k-edge path Pk. This is the core
observation behind the Erdős–Gallai Theorem. Let us state the observation here for
later reference.

Observation 4.4 (Erdős-Gallai [42], Dirac (see [42])). If δ(G) ≥ k
2
, G is connected

and |V (G)| ≥ k + 1 then Pk ⊆ G.

In order to see that this observation is true, note that a variant of of Dirac’s
theorem [35] states that every 2-connected n-vertex graph G has a cycle of length
at least min{n, 2δ(G)}. So, if G has a 2-connected component of size at least k + 1,
then this component contains a cycle of length at least k, and thus also a k-edge
path (possibly using one edge that leaves the cycle). Otherwise, we can embed
either the middle vertex of the path, or a vertex adjacent to the middle edge, into
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any cutvertex x of G, and then greedily embed the remainder of the path into two
components of G− x, using the minimum degree of G.

This argument, however, only seems to work for the case when the tree we are
looking for is the path. Already the following tree, which has only one vertex of
degree > 2, cannot be embedded into all large enough connected graphs obeying the
minimum degree condition from above. Assume 3 divides k and consider the tree
obtained from identifying the starting vertices of three distinct k

3
-edge paths. This

tree is not a subgraph of the graph obtained from adding an edge between two cliques
of size ⌈k

2
+ 1⌉.

Still, there is hope: It has been suggested that requiring one large degree vertex
in the host graph might remedy the situation. This vertex will at the same time
provide the necessary space in the host graph, and cater for a possibly existing large
degree vertex of the tree. See the next section for details.

5 Maximum and minimum degree

As noted in Section 2, we may assume that the host graph from the Erdős–Sós
conjecture has minimum degree at least k

2
, and as we have seen in the previous

section, this alone is not enough to force all k-edge trees as subgraphs. However,
a graph H of average degree exceeding k − 1 does not only have a subgraph H ′

of minimum degree ≥ k
2
, but this subgraph H ′ also maintains the average degree

of H (that is, d(H ′) ≥ d(H)). Therefore, H ′ has a vertex of degree at least k. So,
in Conjecture 2.1, we may assume the host graph G to obey the following three
conditions: δ(G) ≥ k

2
, d(G) > k − 1, and ∆(G) ≥ k.

Now, the conditions δ(G) ≥ k
2

and ∆(G) ≥ k alone are not sufficient for guaran-
teeing all k-edge trees as subgraphs. This is because of a variation of the example
given in the penultimate paragraph of Section 4: Adding a universal vertex to the
disjoint union of two cliques of size ⌈k

2
+ 1⌉, we obtain a graph G satisfying the

maximum and minimum degree conditions from above. But the tree obtained from
joining any three trees on roughly k

3
vertices each to a new vertex (of degree 3) is

not contained in G.
However, if we elevate either the bound on δ(G) or the bound on ∆(G) sufficiently,

this example ceases to work. So one may suspect there is a suitable combination of
conditions on the minimum and the maximum degree of the host graph that might
replace the condition on the average degree in the Erdős–Sós conjecture. In this
spirit, Havet, Reed, Wood and the present author [70] put forward the following
conjecture.
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Conjecture 5.1 (2
3
-conjecture [70]). Every graph of minimum degree at least ⌊2k

3
⌋

and maximum degree at least k contains each k-edge tree.

In [17], Besomi, Pavez-Signé and the present author suggested another combina-
tion of bounds on the maximum and the minimum degree of the host graph.

Conjecture 5.2 (2k-k
2

conjecture [17]). Every graph of minimum degree at least k
2

and maximum degree at least 2k contains each k-edge tree.

Conjectures 5.1 and 5.2 are asymptotically best possible, as we will discuss later
in this section.

Each of the conjectures is clearly true for stars and double stars. They also hold
for paths, because of Observation 4.4. In [17], both Conjectures 5.1 and 5.2 were
proved in an approximate form for large dense host graphs and trees whose maximum
degree is bounded by k

1

49 and k
1

67 , respectively. (For trees of constant maximum
degree, the maximum degree of the host graph can even be lowered slightly.)

For Conjecture 5.1, more is known. Recently, Reed and the present author [113,
114] showed that the conjecture holds if we are looking for a spanning tree in a large
graph.

Theorem 5.3. [113, 114] There is n0 such that for every n ≥ n0, every n-vertex

graph of minimum degree at least ⌊2(n−1)
3

⌋ and maximum degree at least n−1 contains
each n-vertex tree.

This theorem can also be seen as an extension of Theorem 4.3: By elevating the
bound on the minimum degree of the host graph, we can dispose of the bound on
the maximum degree of the tree.

Moreover, in [70], Havet, Reed, Wood and the present author prove the following
two variants of their conjecture.

Theorem 5.4.[70] There are a function f : N → N and a constant γ > 0 such that
if for a graph G, either of the following holds

(i) ∆(G) > f(k) and δ(G) ≥ ⌊2m
3
⌋; or

(ii) ∆(G) ≥ k and δ(G) ≥ (1 − γ)m,

then G contains each k-edge tree.

Theorem 5.4 confirms that, even if the bounds suggested by Conjectures 5.1
and 5.2 should be incorrect, the idea behind the conjectures is not: It is possible
to simultaneously bound the maximum and the minimum degree of a graph (with
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the bound on the minimum degree strictly below k) and as a result, guarantee the
appearance of each tree of size k as a subgraph.

The proof of part (i) of Theorem 5.4 is relatively easy, and relies on strategically
placing into a maximum degree vertex of the host graph a vertex of the tree that cuts
the tree into conveniently sized components. It would be very interesting to find an
extension of Theorem 5.4 (i), with the bound on the minimum degree lowered to k

2

(ideally), or to some other number strictly smaller than ⌊2m
3
⌋.

The following conjecture of Besomi, Pavez-Signé and the author [15] tries to
correlate the bounds on maximum and the minimum degree of the host graph given
in Conjectures 5.1 and 5.2.

Conjecture 5.5 (Intermediate range conjecture [15]). For each α ∈ [0, 1
3
) every

graph of minimum degree at least (1 + α)k
2
and maximum degree at least 2(1 − α)k

contains each k-edge tree.

As for the earlier conjectures from this section, it can be seen that Conjecture 5.5
holds for stars, double stars and paths. Moreover, an approximate version for large
dense host graphs and trees of bounded maximum degree is shown in [15].

Conjecture 5.5 is best possible for certain values of α. Namely, it is shown in [15]
that for all odd ℓ ∈ N with ℓ ≥ 3, and for all γ > 0 there are k ∈ N, a k-edge
tree T , and a graph G not containing T such that δ(G) ≥ (1 + 1

ℓ
− γ)k

2
and ∆(G) ≥

2(1 − 1
ℓ
− γ)k. Let us give a quick description of the example from [15].

Example 5.6. Consider two complete bipartite graphs Hi = (Ai, Bi) with |Ai| slightly
below ℓ−1

ℓ
k and |Bi| slightly below ℓ+1

ℓ
· k
2
. Let G∗ be obtained by adding a new vertex x

to H1 ∪H2, such that x is connected to all of A1 ∪A2.
Then the tree T ∗ formed by ℓ stars of order k

ℓ
and an additional vertex v connected

to the centres of the stars does not embed in G∗.

Taking ℓ = 3, or letting ℓ converge to ∞, we obtain examples that prove the
asymptotic sharpness of Conjectures 5.1 and 5.2. For Conjecture 5.1, one or both of
the bipartite graphs Hi may be replaced with a conveniently sized complete graph.
A structurally different example for the sharpness of Conjecture 5.1 is obtained by
joining a universal vertex to a bipartite graph whose sides are both slightly below 2

3
k,

which does not contain the tree T ∗ from above.
Example 5.6 only shows the asymptotic tightness of Conjecture 5.5 for values of α

that are equal to 1
ℓ
, for some odd ℓ. We are not aware of similarly good examples for

other values of α, and perhaps, the degree conditions from Conjecture 5.5 could be
lowered for these values, and there might be jumps. One such jump can be observed
when the minimum degree bound is close to 2

3
k. We believe that with δ(G) ≥ 2

3
k, we
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would only need to bound ∆(G) by k (according to Conjecture 5.1). However, with
the bound δ(G) ≥ (1 − ε)2

3
k, for any ε > 0, it becomes necessary to bound ∆(G) by

almost 4
3
k (because of Example 5.6).

Let us remark that if we exclude host graphs that are very close to the graph G∗, a
different set of maximum/minimum degree conditions might be sufficient. In [15], it
is shown that any large enough graph G with δ(G) ≥ (1 + δ)k

2
and ∆(G) ≥ (1 + δ)4

3
k

either looks very much like the graph G∗ from Example 5.6, or contains all k-edge
trees T with ∆(T ) ≤ k

1

67 .
We close the section with a new conjecture due to Klimošová, Piguet, and Rohzoň

which appeared in [119]. Their conjecture combines the essence of Conjecture 3.7
with the spirit of the minimum/maximum degree conjectures from the present sec-
tion.

Conjecture 5.7.[119] Every n-vertex graph with δ(G) ≥ k
2
and at least n

2
√
k
vertices

of degree at least k contains all k-edge trees.

Conjecture 5.7 would be tight [119].

6 Expanders and random graphs

In the results and conjectures we have seen so far, the degrees in the host graph are of
the same order as the tree we wish to embed. Examples showed that this is necessary,
even if we bound the maximum degree of the tree. However, adding the assumption
that the host graph has some expansion properties changes the situation. Different
types of expansion have been considered for this problem, among these are large
girth, guarantees of large neighbourhoods of small sets of vertices, and exclusion of
dense bipartite subgraphs. Also random graphs fall into this category.

An early result for tree containment in expanding graphs is due to Friedman and
Pippenger [49] who extended Pósa’s rotation-extension technique [111] from paths to
trees and showed that if each set X ⊆ V (G) with |X| ≤ 2k−2 has at least (∆+1)|X|
neighbours then G contains all k-edge trees of maximum degree ∆. This result has
been generalised in [8, ?].

A use of expansion in the form of large girth is the result by Brandt and Dob-
son [21] we cited in Section 2. They showed more generally that every graph of
girth at least 5 satisfying δ(G) ≥ k

2
contains every k-edge tree with ∆(T ) ≤ ∆(G).

A generalisation of this was conjectured by Dobson [36], and, after preliminary re-
sults by Haxell and  Luczak [73], confirmed by Jiang [83]: For any t ∈ N+, every
graph G of girth at least 2t + 1 satisfying δ(G) ≥ k

t
contains every k-edge tree with

13



∆(T ) ≤ δ(G). This result was greatly improved by Sudakov and Vondrák [123] who
used tree-indexed random walks to show that every graph G of girth at least 2t + 1
and δ(G) ≥ d contains every tree with ∆(T ) > (1 − ε)d and |V (T )| = cdk (where c
is a constant depending on ε). The same authors also show the requirement of large
girth may be replaced with forbidding the host graph to contain a complete bipartite
graph Ks,t for certain s, t.

Some of these results directly apply to random graphs. One natural possibility
in this setting is to replace the degree conditions with probability thresholds. Then,
the main problem amounts to determining the probability threshold p = p(n) for
the binomial random graph1 G(n, p) to contain asymptotically almost surely (a.a.s.)
each tree/all trees from a given class Tn of trees. Clearly, as the error probabilities
for missing individual trees might add up, there is a difference between containing
“each tree” and “all trees” (the latter is often referred to as universality).

Most of the relevant literature for tree containment in random graphs is focused
on spanning trees, or almost spanning trees, and the first case to be tackled was
the path. Komlós and Szemerédi [93] and Bollobás [19] showed the threshold for
spanning paths is p = (1 + o(1)) logn

n
. The lower bound follows immediately from

the fact that for smaller values of p, there are a.a.s. isolated vertices in G(n, p).
Kahn (see [86]) conjectured that the same threshold also applies to bounded degree
trees. Namely, he conjectured that, for each ∆, there is C such that, given any
sequence of n-vertex trees Tn, each with maximum degree at most ∆, the random
graph G(n, C logn

n
) a.a.s. contains a copy of T . After preliminary results due to a

number of authors (see e.g. [2, 5, 47, 84, 96]), Montgomery [101] recently solved
Kahn’s conjecture. He showed more generally the following statement.

Theorem 6.1.[101] For each ∆ > 0, there is a C > 0 such that the random graph
G(n, C logn

n
) almost surely contains a copy of every n-vertex tree T with maximum

degree at most ∆.

Predating [101], some results for almost spanning trees appeared. Most impor-
tantly, Alon, Krivelevich, and Sudakov [5] proved that for all ε and ∆ there is C such
that G(n, C

n
) a.a.s. contains all trees of order (1−ε)n of maximum degree at most ∆.

The value of the constant C was improved by Balogh, Csaba, Pei and Samotij [8] by
using the embedding result from [?]. Their result, as well as many of the results we

1The graph G(n, p) is defined as a probability space on the set of all graphs on n (fixed) vertices
where every edge appears with probability p, independently, but we also refer to an element of
this space as the random graph G(n, p). The random graph G(n, p) is said to have a property P
asymptotically almost surely (a.a.s.) if the probability of G(n, p) having P tends to 1 as n tends to
infinity.
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cited in the last two paragraphs, also apply to other types of expanding graphs (not
only random graphs).

Balogh, Csaba and Samotij [9] showed a result in the spirit of Theorem 4.1 for
subgraphs of random graphs. In order to appreciate their result, let us observe that
Theorem 4.1 can be stated in terms of local resilience: If we delete some edges from
the complete graph Kn, in a way that at each vertex, at least a (1

2
+ δ)-fraction of its

incident edges is preserved, then the resulting graph still contains all spanning trees
of maximum degree ∆ (where δ, n and ∆ are as in the theorem). Now, in [9] this is
translated to random graphs (and almost spanning trees).

Theorem 6.2.[9] For all ∆, ε and δ there is C such that after deleting any set of
edges from G(n, C

n
) in a way that at each vertex, at least a (1

2
+ δ)-fraction of the

original incident edges are preserved, then the resulting graph a.a.s. contains all trees
of order (1 − ε)n and of maximum degree at most ∆.

There are also some global resilience results for random graphs (in this type of
result, a fraction of the edges is deleted without any restrictions on the number of
edges deleted at each vertex). Balogh, Dudek and Li [10] proved a version of the
Erdős–Gallai theorem for random graphs. Namely, they determine asymptotically
the number of edges a subgraph of G(n, p) needs to have in order to guarantee a
k-edge path, for different ranges of p and k. Araújo, Moreira and Pavez-Signé [6]
show a version of the Erdős–Sós conjecture for random graphs, and linear sized trees.
More precisely, they show that for all ∆, ε and t ∈ (0, 1) there is C such that after
deletion of at most a (1− t− ε)-fraction of the edges of G(n, C

n
), the resulting graph

still contains w.h.p. all trees of order tn and of maximum degree at most ∆. It seems
not to be known whether analogues of the results from [9] and [6] for spanning trees
exist.

Finally, there are some recent results for randomly perturbed graphs. This model
relies on a graph of linear but very small minimum degree, which is ‘randomly per-
turbed’ by adding a few random edges to it. More precisely, we consider the union
of a graph Gα of minimum degree at least αn and the random graph G(n, p), on the
same set of vertices. The study of bounded degree spanning trees in this model was
initiated by Krivelevich, Kwan and Sudakov [97]. They determined the threshold
p = C

n
(with C depending on α and ∆) for containment of a single tree of maximum

degree ∆, and conjectured the same threshold for the corresponding universality
result. This was confirmed by Böttcher, Han, Montgomery, Kohayakawa, Parczyk
and Person [20]. Joos and Kim [85] show a variant of Theorem 4.1 for randomly
perturbed graphs.
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7 Ramsey numbers

Both Conjecture 2.1 (the Erdős–Sós conjecture) and Conjecture 3.3 (the Loebl–
Komlós–Sós conjecture) have a direct application in Ramsey theory. Let us start
with 2-colour Ramsey numbers. The (2-colour) Ramsey number R(H1, H2) of a pair
of graphs H1, H2 is the smallest integer n such that every 2-colouring of the edges
of Kn contains a copy of H1 in the first colour, or a copy of H2 in the second colour.
Generalising the notion to classes H1,H2 of graphs, we write R(H1,H2) for smallest
integer n such that every 2-colouring of the edges of Kn contains a copy of each
H1 ∈ H1 in the first colour, or a copy of each H2 ∈ H2 in the second colour. We
write short R(H) (R(H)) for R(H,H) (R(H,H)).

Some of the earliest results on Ramsey numbers for trees were the following. In
1967, Gerencsér and Gyárfás [58] determined the Ramsey number of two paths. They
showed that

R(Pk, Pℓ) = k + ⌊
ℓ + 1

2
⌋

for k-edge and ℓ-edge paths Pk and Pℓ with k ≥ ℓ ≥ 2. For stars, the Ramsey number
is known to be larger. Harary [67] observed in 1972 that

R(K1,k, K1,ℓ) = k + ℓ

if at least one of k, ℓ is odd, and R(K1,k, K1,ℓ) = k + ℓ− 1 in the case that k and ℓ
are both even.

Conjectures 2.1 and 3.3 can be applied as follows in the Ramsey setting. Given a
2-edge-coloured Kk+ℓ, say with colours red and blue, it is easy to see that either the
red graph has average degree greater than k−1, or the blue graph has average degree
greater than ℓ − 1. Also, either the red graph has median degree at least k, or the
blue graph has median degree at least ℓ. Therefore, each of the two conjectures would
imply that every 2-edge-colouring of Kk+ℓ with colours red and blue contains either
all k-edge trees in red, or all ℓ-edge trees in blue, and therefore, R(Tk, Tℓ) ≤ k + ℓ,
where Tj is the class of all trees with j edges. If k and ℓ are both even, the bound
we can infer from Conjecture 2.1 is even lower: In that case R(Tk, Tℓ) ≤ k + ℓ − 1.
Accordingly, and focusing on the case k = ℓ, Burr and Erdős [25] conjectured in
1976 that R(Tk) ≤ 2k, and R(Tk) ≤ 2k − 1 if k is even. The bound R(Tk) ≤ 2k
has been confirmed for large k, by Zhao’s solution of Conjecture 3.1 for large host
graphs [126].

However, the bound R(Tk, Tℓ) ≤ k + ℓ for a k-edge tree Tk and an ℓ-edge tree Tℓ

seems to be far from best possible for non-star trees. As noted above, the Ramsey
number for paths differs significantly from the Ramsey number for stars with the
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same number of edges. Note that paths are (almost) completely balanced trees, while
stars are the most unbalanced trees. Believing this difference to be the reason for the
variation in their Ramsey numbers, Burr [23] put forward the following conjecture
in 1974. He suggested that if T is a tree whose bipartition classes have sizes t1, t2,
with t2 ≥ t1 ≥ 2, then the Ramsey number of T is

RB(T ) := max{2t1 + t2, 2t2} − 1.

Standard examples show this number would be best possible, and RB(T ) matches
the Ramsey numbers for paths from [58].

Haxell,  Luczak, and Tingley [75] confirmed Burr’s conjecture asymptotically for
trees with (linearly) bounded maximum degree in 2002. However, already shortly
after the conjecture was posed, Grossman, Harary and Klawe [60] found that it
was not true for certain double stars. A double star Dt1,t2 is a union of two stars
K1,t1−1 and K1,t2−1 whose centres are joined by an edge. The examples from [60] still
allowed for the possibility that Burr’s conjecture was off only by one, that is, that
the Ramsey number of any tree T would be bounded by RB(T ) + 1. The authors
of [60] conjectured this to be the truth for double stars. This has been confirmed for
a range2 of values of t1, t2. But recently, Norin, Sun and Zhao [106] disproved the
conjecture from [60] in general by showing that the numbers R(Dt1,t2) and RB(Dt1,t2)
differ considerably if t2 lies between 7

4
t1 + o(t1) and 105

41
t1 + o(t1). In particular, for

the case t2 = 2t1 they find that

R(Dt1,t2) ≥ 4.2t1 − o(t1)

while
RB(Dt1,t2) = 4t1 − 1.

The authors of [106] pose the following question.

Question 7.1 (Norin, Sun and Zhao [106]). Is it true that R(Dt1,t2) = 4.2t1 + o(t1)
if t2 = 2t1?

A question of Erdős, Faudree, Rousseau and Schelp [43], who, in 1982, asked
whether R(T ) = RB(T ) for all trees T with colors classes of sizes t1 and t2 = 2t1,
has also been answered in the negative by the above mentioned results from [106].
The authors of [106] offer the following alternative.

2The current best results are R(Dt1,t2) ≤ RB(Dt1,t2) + 1 if t2 ≥ 3t1 − 2 (obtained using ad hoc
arguments [60]) and R(Dt1,t2) ≤ RB(Dt1,t2) if t2 ≤ 1.699t1+1 (obtained using flag algebras [106]).
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Question 7.2 (Norin, Sun and Zhao [106]). Is it true that R(T ) ≤ 4.2t1 + o(t1) for
all trees T with colors classes of sizes t1 and 2t1?

Another natural question in this context seems to be whether there is an exact
version of the asymptotic results of Haxell,  Luczak, and Tingley [75] (which would
interesting even if we had to restrict the maximum degree of the tree by, say, a
constant). A second question is whether their result can be extended to graphs of
slightly larger maximum degree. In the main result from [75], the bound on the
maximum degree of the tree is δ|V (T )|, with δ depending on the approximation.
On the other hand, the known counterexamples to Burr’s conjecture are all double
stars D of maximum degree exceeding 7

11
|V (D)|. So, there might be a chance that

for some reasonable constant c ≤ 7
11

, Burr’s conjecture still holds for all trees T of
maximum degree at most c|V (T )|.

Question 7.3. Is there a constant c such that R(T ) = RB(T ) for all trees T with
∆(T ) ≤ c|V (T )|?

Let us now briefly look at results and questions for multi-colour Ramsey numbers
of trees. The r-colour Ramsey number Rr(H) of a graph H is defined as the smallest
integer n such that every r-colouring of the edges of Kn contains a monochromatic
copy of H .

Multicolour Ramsey numbers for trees have not been studied much. The most
studied case is the path Pk. The 3-colour Ramsey number of the k-edge path Pk

has been conjectured to be 2k for even k and 2k + 1 for odd k by Faudree and
Schelp [46], and this is best possible. This conjecture has been confirmed for large k
by Gyárfás, Ruszinkó, Sárközy and Szemerédi [63]. For more colours, less is known.
Constructions based on affine planes show that Rr(Pk) ≥ (r− 1)k if r− 1 is a prime
power. An upper bound on Rr(Pk) can be obtained by applying the Erdős–Gallai
theorem to the most popular colour in a given r-colouring. This yields Rr(Pk) ≤
r(k + 1). Recently, the latter bound has been improved to (r − 1

4
)(k + 1) + o(k) by

Davies, Jenssen and Roberts [31].
Multicolour Ramsey numbers for k-edge stars were determined by Burr and

Roberts [26] in 1973. They showed that (k− 1)r + 1 ≤ Rr(K1,k) ≤ (k− 1)r + 2. The
lower bound is tight if and only if both k and r are even.

General bounds for all trees have also been considered. Erdős and Graham [44]
observed that an affirmative answer to the following question would follow from
the Erdős-Sós conjecture. (A version for skew trees would also follow from Conjec-
ture 3.7.)

Question 7.4 (Erdős and Graham [44]). Is the r-colour Ramsey number for a k-edge
tree Tk equal to rk + O(1)?
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The authors of [44] observe that Rr(Tk) is bounded from above by 2rk. This
bound can be obtained using a similar argument as for the 2-colour Ramsey number,
and the fact that Conjecture 2.1 holds if the average degree bound is replaced by 2k,
as we observed in Section 2.

8 Directed graphs

In this section, we will shift our focus from trees and graphs to their oriented versions,
that is, oriented trees and digraphs/oriented graphs. An oriented tree (graph) is a
tree (graph) all whose edges have been given a direction. A digraph may have (at
most) two edges between a pair of vertices, as long as these go in opposite directions.
A tournament is an oriented complete graph, and a complete digraph is a digraph
having all possible edges.

Let us start with oriented graphs and trees. Before we turn to possible gener-
alisations of the results in the earlier sections, let us illustrate how the orientations
of the edges bring new difficulties. Just considering the degree in the underlying
graph is clearly not enough. Indeed, it is fairly easy to construct an orientation of
a complete graph Kk+1 that does not contain the k-edge star having all its edges
directed inwards, thus preventing even the easiest observation for graphs to carry
over to digraphs.

So, let us consider the class of tournaments as possible host graphs. One of the
first results on oriented trees in tournaments was established by Rédei [112] in 1934.
It states that every tournament on k + 1 vertices contains the directed k-edge path
(i.e. the k-edge path having all its edges directed in the same direction). More
results on oriented paths appeared in, e.g. [61, 117, 125], until in 2000, Havet and
Thomassé [72] showed that with three exceptions, all oriented k-edge paths appear
in any (k + 1)-vertex tournament. Similar results have been shown for some classes
of oriented trees with bounded maximum degree (see [103] and references therein).

A generalisation of these results for containment of all oriented trees of some fixed
size was conjectured by Sumner in the 1980’s.

Conjecture 8.1 (Sumner, see [115]). Every tournament on 2k vertices contains
every oriented k-edge tree.

This conjecture is best possible, which can be seen by considering a (k−1)-regular
tournament (that is, a tournament whose vertices each have in- and out-degree k−1)
on 2k − 1 vertices, which does not contain the k-edge star with all edges directed
inwards (or outwards).
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Variants of Conjecture 8.1 replacing 2k with a larger number are known [39, 66,
68, 71]. The current best bound is 21

8
k, and was found by Dross and Havet [38].

Havet and Thomassé [71] showed that Conjecture 8.1 holds for arborescences, that
is, oriented trees having all their edges directed away from (or towards) a specific
vertex. After proving an approximate version [98], Kühn, Mycroft and Osthus [99]
confirmed Sumner’s conjecture for large n, using the regularity method. For oriented
trees of bounded degree, the size of the host tournament can be lowered to n + o(n)
(see [99, 103, 105]).

In 1996, Havet and Thomassé proposed that the size of the host tournament can
be smaller if we add a restriction on the number of leaves of the tree. This gives the
following generalisation of Conjecture 8.1.

Conjecture 8.2 (Havet and Thomassé, see [69]). Let T be an oriented k-edge tree
with ℓ leaves. Then every tournament on k + ℓ vertices contains a copy of T .

Note that for oriented stars, Conjecture 8.2 gives the same bound as Conjec-
ture 8.1, but for other trees, the bound is lower. As we saw above, if T is a path, the
tournament may be by one smaller than required by Conjecture 8.2. For progress on
Conjecture 8.2 see [27, 66, 69].

Turning now to oriented graphs as possible host graphs for oriented trees, there is
a natural generalisation of the results and conjectures from above, which involves the
chromatic number of a digraph. An oriented graph is n-chromatic if the underlying
graph has chromatic number n. The well-known Gallai-Hasse-Roy-Vitaver (GHRV)
theorem (see e.g. [11]) states that every (k + 1)-chromatic oriented graph contains
the directed path with k edges. As any n-vertex tournament is n-chromatic, this is
a generalisation of Rédei’s theorem mentioned above.

An extension of the GHRV theorem to oriented trees was suggested by Burr [24]
in 1980. His conjecture would imply Sumner’s conjecture.

Conjecture 8.3 (Burr [24]). Every 2k-chromatic oriented graph contains each ori-
ented k-edge tree.

A version of Conjecture 8.3 for large k, replacing oriented trees with oriented
paths, and ‘2k-chromatic’ with ‘k-chromatic’, is attributed in [11] to Bondy. There
is also a generalisation of Conjecture 8.2 in the spirit of Conjecture 8.3: Every
(k + ℓ)-chromatic digraph contains each oriented k-edge tree having ℓ leaves (this
was conjectured in [71]). Furthermore, Naia [105] conjectures that for every oriented
k-edge tree T , the minimum n such that every tournament of order n contains T
coincides with the minimum n such that every n-chromatic oriented graph contains T .
This would imply that Conjecture 8.3 and Conjecture 8.1 are equivalent.
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Conjecture 8.3 is only known for some specific classes of oriented paths (see [1] for
references) and for all oriented stars [105]. Burr [24] showed that Conjecture 8.3 is
true if we replace 2k with k2, and Addario-Berry, Havet, Linhares Sales, Thomassé
and Reed [1] improved this (roughly by a factor of 2). A better bound only for
oriented graphs with large chromatic number is given in [105].

The authors of [1] also propose an interesting conjecture of their own. In order
to be able to state their conjecture, we need a definition. An antidirected tree is
an oriented tree each of whose vertices either has no incoming edges or no outgoing
edges.

Conjecture 8.4 (Addario-Berry, Havet, Linhares Sales, Thomassé and Reed [1]).
Every digraph D with more than (k−1)|V (D)| edges contains each antidirected k-edge
tree.

This conjecture is best possible because of the (k− 1)-regular tournament which
does not contain the k-edge out-star, or alternatively, because of the complete di-
graph on k vertices which does not contain any oriented k-edge tree. Also note that
a version of Conjecture 8.4 for oriented trees that are not antidirected fails (even if
we made the condition on the number of edges stronger): Consider a large complete
bipartite graph G = (A,B), and orient all its edges from A to B. The resulting
oriented graph only has antidirected subgraphs.

The authors of [1] verify Conjecture 8.4 for antidirected trees of diameter at
most 3, and they note it is not difficult to see that Conjecture 8.4 implies Conjec-
ture 8.3 (and therefore also Conjecture 8.1) for antidirected trees. (This is because
every 2k-chromatic graph has a subgraph H of minimum degree at least 2k − 1,
and thus H has more than (k − 1)|V (H)| edges.) They also note that if we re-
strict Conjecture 8.4 to symmetric digraphs (a digraph is symmetric if all its edges
are bidirected), then the conjecture becomes equivalent to the Erdős–Sós conjecture
(Conjecture 2.1). So one can interpret Conjecture 8.4 as a common generalisation of
Conjecture 2.1 and Conjecture 8.3.

It seems, however, slightly dissatisfying that Conjecture 8.4 only applies to anti-
directed trees. We have seen above that this is necessary, as there are oriented graphs
on 2n vertices with n2 edges that do not even contain a two-edge directed path. In
fact, any antidirected host graph with enough edges would serve as an example. Now,
in order to avoid these examples, one might try requiring that the vertices of the
host digraph, on average, had both large enough in-degree d−(v) and large enough
out-degree d+(v).

That is, defining the semidegree of a vertex v as

d0(v) := min{d−(v), d+(v)},
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we would require the average of the semidegrees, taken over all vertices v of the
digraph D, to be larger than k − 1 (or more generally, to be larger than some
function of k). Although this would clearly exclude all antidirected host graphs, it
is not sufficient to guarantee all oriented trees as subdigraphs. In order to see this,
just consider an appropriate blow-up3 of a (k−1)-edge directed path. (Observe that
this example also shows that a näıve extension of the Loebl-Komlós-Sós conjecture
that replaces d(v) with d0(v) fails.)

Another possibility is to consider the minimum semidegree

δ0(D) := min{d0(v) : v ∈ V (D)}

of a digraph D. Using a greedy embedding argument, it is clear that any digraph
with δ0(D) ≥ k must contain each oriented k-edge tree.

This trivial bound can be lowered if k = n, and the tree is a path. Indeed, results
from [33, 34] imply that if D is an n-vertex digraph with δ0(D) ≥ n

2
, then D contains

every orientation of the path on n vertices, and this is sharp. This might extend to
oriented paths of smaller size. A first question in this direction would be whether
Observation 4.4 extends to oriented graphs.

Conjecture 8.5. Does every oriented graph D with δ0(D) > k
2
contain each oriented

k-edge path?

If this conjecture is true, it would be sharp. This can be seen by considering, for
even k, a blow-up of the directed triangle, replacing each vertex with an independent
set of size k

2
. The antidirected path with k edges is not contained in this graph.

Moreover, the conjecture is true for directed paths, by a result of Jackson [82]. If
we replace the bound on the minimum semidegree with 3

4
k, it holds for antidirected

paths [90]. If the host graph is a tournament, Conjecture 8.5 follows from Conjec-
ture 8.1.

An analogous question can be asked for digraphs. Observe that now, we need
to require, in addition to the minimum semidegree condition, a lower bound on the
size of the largest component (in order to prevent the digraph being the union of
complete digraphs of order k

2
+ 2).

Question 8.6. Does every digraph D with δ0(D) > k
2
having a component of size at

least k + 1 contain each oriented k-edge path?
If not, can we lift the bound on the minimum semidegree (to some bound strictly
below k) so that the question can be answered in the affirmative?

3A blow-up of a digraph D is obtained by replacing each vertex with an independent set of
vertices, and adding all edges from such a set X to a set Y , if X and Y originated from vertices x
and y belonging to an edge

→

xy of D.
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If necessary, one might additionally require a larger component (or a large strong
component).

Let us shift our attention from oriented paths to oriented bounded degree trees.
Mycroft and Naia [104] used the minimum semidegree notion to give an extension of
Theorem 4.1 to digraphs.

Theorem 8.7 (Mycroft and Naia [104]). For all positive real α,∆ there exists n0

such that for all n ≥ n0 every n-vertex digraph D with δ0(D) ≥ (1
2

+ α)n contains
every oriented n-vertex tree of maximum degree at most ∆.

In view of their result we feel encouraged to ask whether generalisations to di-
graphs, using the minimum semidegree notion, of the results and conjectures from
Section 5 exist. In particular, if Conjecture 8.5 (Question 8.6) is true, one might try
for results in the spirit of Theorem 5.4 and Conjectures 5.1, 5.2 and 5.5.

Question 8.8. Are there constants c < 1 and C such that every oriented graph
(digraph) D with δ0(D) ≥ ck that has a vertex v with d0(v) ≥ Ck contains each
oriented k-edge tree?

Another possibility is to substitute the semidegree with another degree notion.
One natural candidate is the total minimum degree δtot(D), which is defined as the
minimum of the sums of the in- and out-degrees of the vertices of the digraph D.
Mycroft and Naia asked the following question [104, Problem 4.1].

Question 8.9.[104] Does Theorem 8.7 remain true if δ0(D) is replaced by δtot(D)
2

?

If this is true, one could ask for similar variants of the other open questions from
this section.

We close the section with a short remark on Ramsey numbers for oriented trees.
There are two natural notions. The oriented Ramsey number R→

k (T ) of an oriented
tree T is the smallest integer n such that every k-coloured tournament on n ver-
tices contains a monochromatic copy of T . The directed Ramsey number R↔

k (T )
is defined in the same way, replacing the k-coloured tournament with a k-coloured
complete digraph. Early results using these notion focused on directed paths and
two colours [28, 62]. An interesting insight gives a recent work of Bucic̀, Letzter and
Sudakov [22] who establish a difference in the order of magnitude of the two num-
bers, by showing that R→

k (T ) = ck|V (T )|k and R↔
k (T ) = ck|V (T )|k−1. As observed

in [22], the former of these two equalities would also follow from Conjecture 8.3
(Burr’s conjecture).
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9 Hypergraphs

We will only discuss r-uniform hypergraphs, and call such hypergraphs r-graphs
for short. As one might expect, there is more than one natural generalisation of
trees to hypergraphs. In what follows, we will discuss tight r-trees, linear r-trees,
r-expansions and Berge r-trees. We refer to [57, 88] for an overview of more Túran
type results for hypergraphs.

9.1 Tight hypertrees

We start our overview with tight hypergraphs. Call an r-graph a tight r-tree if its
edges can be ordered such that except for the first edge, every edge consists of an
(r − 1)-set contained in some previous edge, and an entirely new vertex. Note that
for instance, the widely studied tight r-paths are examples of tight r-trees. (A tight
r-path has vertices v1, . . . , vn and edges {vi, . . . , vi+k−1} for 1 ≤ i ≤ n− k + 1.)

For r-graphs and tight r-trees, Kalai proposed in 1984 the following natural gen-
eralisation of the Erdős-Sós conjecture (see [48]).

Conjecture 9.1 (Kalai’s conjecture, see [48]). Let r ≥ 2 and let H be an r-graph
on n vertices with more than k−1

r

(

n

r−1

)

edges. Then H contains every tight r-tree T
having k edges.

As already noted in [48], it follows from constructions using a result of Rödl [116]
(or alternatively, one can use designs whose existence is guaranteed by Keevash’s
work [87]) that Conjecture 9.1 is tight as long as certain divisibility conditions are
satisfied.

It is not difficult to observe (see e.g. [51, Proposition 5.4]) that any n-vertex r-
graph on n vertices with more than (k − 1)

(

n

r−1

)

edges contains every tight r-tree
with k edges, which is a factor of r away from the conjectured bound. This bound
can be proved as follows: successively delete all edges at (r− 1)-sets of vertices that
lie in few edges until arriving at a subhypergraph of large minimum ‘codegree’. Then,
greedily embed the tree.

Not much is known on Kalai’s conjecture in general. Restricting the class of host
r-graphs, it is known that the conjecture holds if the host r-graph H is r-partite [122].

Restrictions on the type of tight r-trees have led to the following results. In 1987,
Frankl and Füredi [48] showed that Conjecture 9.1 holds for all ‘star-shaped’ tight
r-trees, that is, for all tight r-trees whose first edge intersects each other edge in
r − 1 vertices. Füredi, Jiang, Kostochka, Mubayi and Verstraëte show in [53] an
asymptotic version of Conjecture 9.1 for a broadened concept of ‘star-shaped’ (the
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first c edges have to intersect all other edges in r − 1 vertices, for a constant c),
and in [54] an exact result for a class of tight 3-trees. Füredi and Jiang [51] show
Conjecture 9.1 for special types of tight r-trees with many leaves.

On the opposite extreme of the spectrum of tight r-trees, there are the tight
r-paths. Improving on results of Patkós [107], Füredi, Jiang, Kostochka, Mubayi
and Verstraëte [52] show that for tight r-paths the bound in Conjecture 9.1 can be
replaced by k−1

2

(

n

r−1

)

if r is even, and by a similar bound if r is odd. Moreover, an
asymptotic version of Kalai’s conjecture for tight r-paths whose order is linear in
the order n of the host r-graph has been established by Allen, Böttcher, Cooley and
Mycroft [4] for large n. The authors of [4] remark that they do not believe their
result to be best possible, arguing that the constructions and designs from [87, 116]
only exist when the order of the host graph is much larger than the order of the tight
path.

It seems natural to seek extensions of other results for graphs to r-graphs and
tight r-trees. This has been done for Theorem 4.1. As usual, for any r-graph H ,
let δi(H) (∆i(H)) denote the minimum (maximum) number of edges any i-subset
of V (H) belongs to. With this notation, and using hypergraph regularity, Pavez-
Signé, Quiroz-Camarasa, Sanhueza-Matamala and the author [108] show a version
of Theorem 4.1 for hypergraphs. Namely, they show that for any γ,∆ > 0, every
large enough r-graph H with δk−1(H) ≥ (1

2
+ γ)|V (H)| contains each r-tree T of the

same order obeying ∆1(T ) ≤ ∆.
One might also ask for generalisations of the results/conjectures from Section 5

to tight hypergraph trees.

Question 9.2. Is there a function f such that every r-graph H with δk−1(H) ≥ k
2

and ∆k−1 ≥ f(k) contains each k-edge tight r-tree?

More cautiously, one could replace k
2

in Question 9.2 with (1 − γ)k, for some
fixed γ > 0. Perhaps it is also possible to extend Conjecture 3.3 to tight r-trees.

Question 9.3. Let H be an r-graph such that at least
( n

r−1
)

2
of its (r− 1)-tuples each

belong to at least k edges. Does H contain each k-edge tight r-tree?

9.2 Expansions of trees and linear paths

The r-expansion of a tree T is the r-uniform hypergraph obtained from T by adding to
each edge r−2 new vertices. A linear r-tree is obtained from an edge by subsequently
adding any number of new edges that each contain precisely one of the previous
vertices. An r-expansion of a path is also called a linear path, as it satisfies the
definition of a linear tree.
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The Turán number exr(n,H) of an r-graph H is defined (in complete analogy
to the Turán number of a graph) as the maximum number of edges a hypergraph
can have if it does not contain H . There is a considerable amount of literature on
Turán numbers of expansions. For an overview we refer to the survey of Mubayi
and Verstraëte [102]. One of the important results relevant for this survey is the
determination of the Turán number of the linear r-path with k edges for fixed r ≥ 4
and k and large n by Füredi, Jiang and Seiver [55] using the delta-system-method.
The case r = 3 was solved by Kostochka, Mubayi and Verstraëte [94] using an
approach based on random sampling.

Füredi [50] asymptotically determined the Turán number for r-expansions of trees
for r ≥ 4, and conjectured the corresponding asymptotics for r = 3; this was con-
firmed by Kostochka, Mubayi and Verstraëte in [95]. These results relate the Turán
number of an r-expansion T with the minimum size σ(T ) of a crosscut of T (where
a crosscut is a set of vertices met by every edge of T in exactly one vertex). More
precisely, for a fixed r-expansion T , and for r ≥ 3, the Turán number exr(n, T ) is
asymptotically determined as follows [50, 95]:

exr(n, T ) =
(

σ(T ) − 1 + o(n)
)

(

n

r − 1

)

.

That this bound is asymptotically best possible can be seen by considering the r-
graph consisting of all edges containing exactly one vertex from a fixed set of size
σ(T ) − 1: This r-graph does not contain T . See also [51] for some related results.

9.3 Berge hypertrees

Other recent activity has focused on Berge r-trees. A Berge r-tree is an r-graph H
such that there is a tree T (i.e. an acyclic connected 2-graph), an injection from V (T )
to V (H), and a bijection from E(T ) to E(H) such that the images of the endpoints
of any edge e ∈ E(T ) are contained in the image of e. This definition gives the usual
definition of a Berge path if T is a path.

The Turán number for Berge r-paths BP
(r)
k was almost completely determined

by Győri, Katona and Lemons [64], with the last remaining case solved in [32]. The

bound is ex(n,BP
(r)
k ) ≤ n(k−1)

r+1
if r ≥ k and ex(n,BP

(r)
k ) ≤ n

k

(

k

r

)

if r < k, and
extremal r-graphs are known.

Results for k-edge Berge r-trees BT
(r)
k have been obtained by Gerbner, Methuku

and Palmer [56] and by Győri, Salia, Tompkins and Zamora [65]. If r ≥ k(k − 2)
and the tree we are looking for is not a star, then the bound for Berge r-paths from
the previous paragraph applies [65]. In the case k > r the best known bound is
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ex(n,BT
(r)
k ) ≤ 2(r−1)n

k

(

k

r

)

, although this can be lowered by a factor of 2(r − 1), thus
reaching the bound for Berge paths from the previous paragraph, if we assume the
Erdős–Sós conjecture holds [56]. These bounds are sharp under certain divisibility
conditions.

It would be interesting to see extensions, both to linear trees and to Berge trees,
of the results we have seen in Sections 4 and 5 for graphs, that is, results that use
conditions on the minimum (and maximum) degree of the host graph, instead of the
average degree (i.e. number of edges).
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[50] Füredi, Z. Linear trees in uniform hypergraphs. Eurpoean Journal of Com-
binatorics 35 (2014), 264–272.
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shadows I: Paths and cycles. Journal of Combinatorial Theory, Series B 129
(2015), 57–79.

[95] Kostochka, A., Mubayi, D., and Verstraëte, J. Turán problems and
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[100] McLennan, A. The Erdős-Sós conjecture for trees of diameter four. J. Graph
Theory 49, 4 (Aug. 2005), 291–301.

[101] Montgomery, R. Spanning trees in random graphs. Preprint 2018,
arXiv:1810.03299.
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