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ABSTRACT  

We describe a system being developed for measuring the shapes of the mirrors of the Fred Young Submillimeter Telescope 
(FYST), now under construction for the CCAT Observatory. “Holographic” antenna-measuring techniques are an efficient 
and accurate way of measuring the surfaces of large millimeter-wave telescopes and they have the advantage of measuring 
the wave-front errors of the whole system under operational conditions, e.g. at night on an exposed site. Applying this to 
FYST, however, presents significant challenges because of the high accuracy needed, the fact that the telescope consists 
of two large off-axis mirrors, and a requirement that measurements can be made without personnel present. We use a high-
frequency (~300GHz) source which is relatively close to the telescope aperture (<1/100th of the Fresnel distance) to 
minimize atmospheric effects. The main receiver is in the receiver cabin and can be moved under remote control to different 
positions, so that the wave-front errors in different parts of the focal plane can be measured. A second receiver placed on 
the yoke provides a phase reference. The signals are combined in a digital cross-correlation spectrometer. Scanning the 
telescope provides a map of the complex beam pattern. The surface errors are found by inference, i.e. we make models of 
the reflectors with errors and calculate the patterns expected, and then iterate to find the best match to the data. To do this 
we have developed a fast and accurate method for calculating the patterns using the Kirchhoff-Fresnel formulation. This 
paper presents details of the design and outlines the results from simulations of the measurement and inference process. 
These indicate that a measurement accuracy of ~3μm rms is achievable. 
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1. INTRODUCTION  
The Fred Young Submillimeter Telescope (FYST), formerly known as CCAT-prime, is currently in fabrication before 
shipment to the Atacama region of northern Chile for installation on Cerro Chajnantor at an altitude of 5600m. The 
telescope has a clear aperture of 6m diameter and the optics are based on the two-mirror crossed-Dragone1,2 design, which 
provides zero blockage, low cross-polarization and a very large field of view (FoV). Additional coma-correction terms3 
are applied to its two mirrors to further improve its diffraction-limited FoV to 26deg2 at 2mm wavelength and 4.4deg2 at 
350μm. The dry high-altitude site offers superb observing conditions with routine access to the submillimeter atmospheric 
windows between 850μm and 350μm and opens up the possibility of observing in the 200-μm (1.5THz) window. To 
preserve the performance of the telescope at these high frequencies, the surface accuracy is required to be better than 
10.7μm rms, with a goal of < 7.1μm under good conditions, e.g. stable temperature and moderate winds.  

Although the mirrors will be set to the correct shape with high precision in the factory and then shipped to the site fully 
assembled, we regard it as essential to have an accurate method of measuring them under operational conditions. We plan 
to use microwave holography4,5 for this. The holography technique, which involves measuring the complex field pattern 
of the antenna and deriving the surface errors from that, has a well-proven record for the measurement of large high-
frequency radio telescopes, but applying it to FYST presents several significant challenges:  
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1. The requirement on surface accuracy is for the whole telescope system, including manufacturing errors and items 
like deformations due to the changing orientation of the telescope and environmental temperature. We expect the 
results from the holography measurements to be used for the final adjustment of the mirror surfaces, so any errors 
in the measurement will also contribute to the final error. We cannot therefore allow them to take up more than a 
small fraction of the overall error budget. We have adopted a goal of 3μm rms for the measurement accuracy, 
where this should include both random errors, e.g. those due to noise or atmospheric fluctuations, and systematic 
errors due, for example, to inaccurate modelling of electromagnetic effects. This is, to the best of our knowledge, 
a significantly higher accuracy than has been reported for such measurements thus far. 

2. The crossed-Dragone optical layout consists of two large off-axis mirrors. The conventional approach to 
holography6 employs a simple inverse Fourier transformation of the (complex) pattern of the antenna. This 
provides a map of the deformations of the wavefront at the aperture, but it cannot discriminate between the errors 
contributed by different components in the optical system. A new technique is therefore required to break the 
degeneracy in the two-mirror system. 

3. Since the measurements will often be made at night, when it may not be possible to have personnel present at the 
telescope because of the high altitude, it must be possible to operate all aspects of the system remotely. 
 

We address the first issue by using a high frequency (295.74GHz) and putting the source relatively close to the telescope 
(~300m away). Using a higher frequency means that a given fractional error in measuring the pattern converts into a 
smaller error in the surface and also reduces effects like diffraction from the edges of the panels out of which the mirrors 
are made. In addition, it enables us to use narrow beams for the source and the receiver which reduces the problems of 
scattering and reflection of the signals by the ground or other objects. The short path to the source minimizes atmospheric 
effects and gives us a high signal-to-noise ratio (SNR), which means that receiver noise produces small errors in the 
surface, even with measurement times as short as a few milliseconds per point.  

To solve the degeneracy problem and recover the surface errors on both mirrors individually, we have developed a new 
method we call ‘multi-map’ holography, described in the next section. This requires us to make beam maps with the 
receiver located at several different positions in the focal plane. Because of the third challenge in the list above, we have 
designed an automated system, which will be mounted behind the focal plane in the receiver cabin, to transfer the receiver 
between the designated positions.  

    
Figure 1. Renderings of FYST showing the locations of the signal and reference receivers. 

Since both amplitude and phase of the radiation field are required, a second receiver will be placed on the yoke of the 
telescope (see figure 1) and used to provide a reference. This observes the source continuously and shares a common 
microwave reference for its local oscillator (LO) with that of the main receiver. Before correlating the intermediate-
frequency (IF) signals from the two receivers, we pass them through a high-resolution digital filter (actually an FFT 
spectrometer). This greatly improves the SNR and reduces the effects of noise in the source and the LO. All these sub-
systems are designed to satisfy the stringent requirements that have been set for the project and to withstand the hostile 
environment at the site. 

Reference receiver 
on the yoke 

Signal receiver  
in the focal plane 



 
 

 
 

 
 

In this paper, we describe the FYST holography system, including the innovative analysis approach and the details of the 
hardware, and we present results from numerical simulations which indicate that the required accuracy of ~3μm should be 
achievable. 

2. HOLOGRAPHIC METROLOGY FOR A TWO-MIRROR SYSTEM 
The holographic method is based on the fact that the far-field pattern of a telescope is the Fourier transform of the field in 
the aperture. If, therefore, one measures the complex far-field and makes an inverse Fourier transform, one gets the 
complex aperture field. For a perfect antenna with the receiver at the nominal focus, the phase in the aperture plane would 
be constant, so a plot of the measured phase provides a map of any errors in the telescope optics, projected onto the aperture 
plane. In the standard approach6, it is usually assumed that the errors in the secondary mirror can be neglected and any 
errors in the phase for the receiver feed can be corrected (either from theory or laboratory measurements). Corrections can 
also be applied7 for the effects of having the source much closer than the far-field distance and the receiver at a displaced 
position with respect to the focal plane (e.g. defocused). The crossed-Dragone (CD) design is however composed of two 
large reflectors (primary M1 and secondary M2) of comparable size, as shown in figure 2. Clearly a single beam-pattern 
measurement cannot discriminate between the phase errors produced by the two mirrors. It could be argued that this does 
not matter since one could adjust one mirror, say M1, until the phase in the aperture was flat, which would provide a perfect 
beam even if there were errors in M2 which were being compensated by the deviations which had been put into M1. This 
is not correct for two reasons: 1) the mirrors are made of relatively large panels (roughly 0.7m square) and the projections 
of these onto the aperture plane do not match, so an exact compensation is not possible; and 2) the whole point of the CD 
design is to provide a wide field of view and the compensation would only work at one position in the field – as one moves 
to other positions the projection of the mirror surfaces onto the aperture plane changes. The converse of this is that, if we 
measure the beam-pattern with the receiver at several different positions, the degeneracy will be broken and we should be 
able to obtain separate maps of the errors in the two mirrors. It should, however, be noted that this separation will only 
work really well for errors with relatively small spatial scales: errors on larger scales will still be nearly degenerate. This 
can be seen by considering the limiting case of a linear phase error – a tilt of one mirror would be compensated almost 
exactly by the reverse tilt of the other. It is nevertheless true that, if we explore a sufficiently large area of the focal plane 
and adjust the mirrors to get good beam patterns at all positions, then we will have achieved our goal. 

In principle moving the holography receiver to three different well-separated points in the focal plane would be sufficient 
to break the degeneracy, but using more points will improve the results. Our simulations indicate that using five points – 
the center of the field and the corners of a square, as illustrated in figure 2, provides a good compromise between accuracy 
and the time needed to make a complete set of measurements.  

 
Figure 2. The modified ‘crossed-Dragone’ optics of FYST is composed of two ~6m reflectors. The ray trace shows the 
degeneracy between errors on M1 and M2. The ray tracing also indicates that moving the receiver to different well-separated 
points in the focal plane can change the reflection points on M2 breaking the degeneracy between the mirrors.  



 
 

 
 

 
 

There is no obvious direct method, analogous to an inverse Fourier transform, for converting the five measured beam 
patterns into two maps of the errors in the mirrors. Instead we treat this as a numerical inference problem. Specifically, we 
find the set of movements of the support points of the individual panels in both mirrors that can best account for the 
measured data. This requires a fast and accurate algorithm for calculating the “forward” problem – the beam patterns to be 
expected for a given set of movements. There are numerous advantages with this approach: 1) we can use an accurate 
formulation of the electromagnetic aspects that includes a proper treatment of the rather complex geometry of the telescope 
and of the diffraction that takes place between the components and in the path from the source; 2) we can include various 
systematic effects such as the uncertainty in the position of the receiver, the illumination pattern produced by the feed and 
telescope pointing errors; and 3) we can control the magnitudes of the terms (such as the tilts of individual mirrors discussed 
above) where degeneracies remain. The remainder of this section describes the method we have devised to do all this.  

2.1 Parameterization of the surfaces and other errors 

The mirrors consist of panels, 77 on M1 and 69 on M2, with panel sizes of 670 x 750mm and 700 x 710mm respectively. 
Each panel is supported by five adjustable mounts, one located in the center and the four others at the corners of a rectangle, 
440 x 500mm in size. Since we wish to be able to set the mirrors, rather than simply measure them, what we actually need 
are the values of the adjustments that should be made to obtain a perfect surface. We therefore choose these adjustment 
values to be the parameters that we vary to find the best fit to the beam-pattern data. With five adjusters we can control 
five surface error terms for each panel - piston, x or y tilt, curvature, and twist. This means that we should use a second-
order polynomial describing these forms of error to interpolate between the support points onto a grid suitable for 
performing the electromagnetic calculations. As an alternative, which may be useful for the diagnosis of some issues such 
as thermal deformations, we can ignore the panels and their mounting points and parameterize the whole of each mirror in 
terms of a set of orthogonal functions such as Zernike polynomials8. The maximum order of the polynomials is determined 
by the spatial resolution required. 

There are a number of effects other than the surface error in the mirrors which will cause a mismatch between the model 
and the data. These include an offset in the pointing of the telescope, bulk misalignments of the mirrors, an error in the 
position of the receiver and an error in the assumed distance to the source. So long as these errors are small, they all create 
either a slope or a curvature in the phase at the telescope aperture plane. We cannot, therefore, find the magnitudes of the 
effects separately from the data. Fortunately, we do not need to know these for the purpose of setting the mirrors, but we 
must allow for them in the model. We do this by including in the model a term, given by equation 1, for the phase at the 
aperture plane. Here x and y are the coordinates of a point in the aperture plane and p, q and r are free parameters. Note 
that these parameters will have slightly different values for each of the beam patterns.  

Δ𝜙𝜙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦) = 𝑝𝑝 ⋅ 𝑥𝑥 + 𝑞𝑞 ⋅ 𝑦𝑦 + 𝑟𝑟 ⋅ (𝑥𝑥2 + 𝑦𝑦2) (1) 

A term of this form could, however, also be produced by certain combinations of movements of the adjusters in either of 
the mirrors. This would give rise to degeneracies in the solution when seeking the best fit. We avoid these by using a 
regularization term, as described below.  

We also need to account for the possibility that the amplitude pattern in the aperture is not an exact match to the one that 
we have assumed, which is based on electromagnetic models of the feed horn and the source. For small deviations, this 
can be treated in a similar manner to the phase, with a second-order polynomial which multiplies the amplitudes. Here an 
error in the alignment of the feed would result in a linear term, while an incorrect estimate of the beam-width would 
produce a quadratic one. In this case there is no issue of degeneracy with the panel movements. 

2.2 Modelling the antenna radiation fields 

In the actual experiment, the signal propagates from the distant source, through the two telescope mirrors and into the 
receiver. It is more convenient, however, to model the equivalent time-reversed process, starting from the receiver and 
through the optics, to find the field on a spherical surface at the distance of the source. (The pattern is mapped by scanning 
the whole telescope in azimuth and elevation, so this ~300m diameter sphere should be centered on the crossing point of 
the axes.) The standard approach for such a calculation is physical optics (PO) integration9. In our case this involves finding 
the currents excited in M2 by the field radiated from the receiver feed, then calculating the fields at the surface of M1 
produced by those currents in M2, and hence finding the currents in M1, and finally calculating the radiating fields that 
the currents on M1 produce at the required spherical surface. The PO method is accurate and reasonably fast for systems 
whose optical components are no more than a few hundred wavelengths in aperture. In our problem, however, the mirrors 
are more than 6000 wavelengths in diameter, which makes the calculation very time consuming. To provide a “gold 



 
 

 
 

 
 

standard” model we have nevertheless carried out this simulation using the TICRA GRASP software, which is a standard 
commercial software package used to analyze reflector antennas. It took around 10 days to calculate a single pattern using 
a machine with 120 CPU cores.  

By contrast, we need a procedure for calculating the patterns that is fast enough to run within an iterative loop but which 
maintains sufficient accuracy for our quite-demanding application. We have found a way of doing this by incorporating 
the following changes of approach:  

1. Instead of the full PO expressions, we use Fresnel-Kirchhoff diffraction theory8 where the field is described as 
scalar quantity, so polarization information is lost, and terms which fall off faster than one over the distance are 
dropped.  

2. We model the propagation from M2 to M1 in two steps10, going first from M2 to the intermediate focal plane and 
from there to M1, see figure 3. This greatly reduces the density of points needed to represent the fields at the two 
mirrors. 

3. We exploit the fact that the errors in the mirror are small compared to the overall dimensions, so we only need to 
do the full calculation once to set up the problem and can then leave out many of the time-consuming steps on 
subsequent iterations.  

4. We use automatic differentiation to provide efficient evaluation of the gradient of the fit with respect the 
parameters. 

 
We tested the effects of the approximations by comparing the results to those obtained with GRASP. In particular, we 
experimented to find what density of points on the mirrors are required and how large an area in the auxiliary plane needs 
to be included. With these values chosen to give adequate accuracy for our purposes (errors ~70dB below the peak) the 
full calculation takes about 2 minutes per beam pattern on a standard laptop. More importantly we can perform ~1 iteration 
per second when fitting ~700 parameters to five 2,500-point patterns. Using a GPU provides a further increase in speed of 
nearly a factor of 10. The details of this work, including an evaluation of the errors introduced by the approximations, will 
be given in a forthcoming paper. 

 
Figure 3. Illustrating the calculation process for the two-step ‘Fresnel-Kirchhoff’ technique. The field at M2 produced by the 
feed F is calculated straight-forwardly. To obtain the field at M1 we proceed in two steps, first finding the field at the imaginary 
intermediate focus – the auxiliary plane – and then back-propagating the field from there to M1. Because we only need to 
know the final pattern on the “sky” over a limited range of angles, it is sufficient to calculate the field in the auxiliary plane 
over a relatively small area. This means that far fewer points are needed to describe the fields at M2 than would be the case if 
we went directly from M2 to M1. The calculation of the beam pattern at the source from the field at M1 is again straight-
forward.  

 



 
 

 
 

 
 

2.3 Fitting procedure 

The data Di consist of the complex field measured at a set of points i and normalized to have unit total power and zero 
phase at the origin. We calculate the model fields Yi as described above, assuming initially that the surfaces are perfect, 
and apply the same normalization. The mismatch between the data and the model is characterized by the vector differences 
Ei = Yi – Di. We wish to find the set of parameters – the movements Sn and Sm of the adjusters on M1 and M2 and the other 
terms described in section 2.1 above – which minimizes the mismatch, i.e. the sum of |Ei|2 over all the data points. To 
avoid the degeneracies between large scale terms and to ensure that any linear or defocus terms are not included in the 
adjuster movements, we include in the quantity to be minimized the magnitudes of the adjuster movements multiplied by 
the regularization factor λ, the value of which is not very critical: it needs to be large enough to suppress the degeneracies 
but not so large that it prevents the method from finding real deformations in the surfaces. The quantity to be minimized 
is therefore that given by equation 2.  

𝑅𝑅 = �(|𝒀𝒀𝑖𝑖 − 𝑫𝑫𝑖𝑖|)2
𝑖𝑖

+ 𝜆𝜆 ⋅ ��𝑆𝑆𝑛𝑛2
𝑛𝑛

+ �𝑆𝑆𝑚𝑚2
𝑚𝑚

� (2) 

The fitting process is illustrated in figure 4. 

 
Figure 4. Flowchart of the inference process used to find the adjuster movements required to set the surfaces.  

3. HARDWARE DESCRIPTION 
We now describe the design of the hardware needed to make the measurements. There are four main items: 1) the source 
which will be mounted on a small tower on the shoulder of the mountain, about 20m higher than the telescope and 300m 
away; 2) the signal receiver, which is supported by a frame close to the focal plane; 3) the reference receiver mounted on 
the yoke, immediately below the telescope aperture, where it has a direct view of the source; and 4) a correlation receiver 
housed in the electronics space inside the yoke. The specifications of the source and receivers are summarized in table 1. 

Table 1. Specifications of the holography hardware 

 Source  Receiver 
  Reference Signal 

Frequency 295.74 GHz LO Frequency (x2) 295.68 GHz 295.68 GHz 
Beam FWHM 1.8° Beam FWHM 1.1° 16° 
Antenna gain 34 dB Antenna gain 40 dB 84 dB 
Frequency stability 1 x 10-9 Noise temperature < 5800 K < 5800 K 
Ouput power >10 uW IF Frequency 60 MHz 60 MHz 
Phase noise @ 1kHz  -80 dBc/Hz Bandwidth 70 MHz 70 MHz 

 



 
 

 
 

 
 

The source and the receivers are all enclosed in temperature-controlled boxes to provide stability and protection from the 
cold environment. The LO signals for the two receivers are derived from a common microwave reference at 12.32GHz 
which is also located in the electronics space. Since coherence during the measurement is paramount, identical high-quality 
and phase-stable cables will be used to carry this reference signal to the two receivers. 

3.1 Feed horns 

The same design of profiled diagonal horn11 was used for all three RF modules. The horn of the signal receiver illuminates 
the telescope directly, whereas the source and the reference receivers contain additional optics to provide narrow well-
defined beams, which serves both to increase the power level of the signal and to reduce unwanted reflections.  

This horn design was chosen because it is relatively simple to machine but has good properties for our application. The 
half-power beamwidth is 16°, which was chosen to provide an edge taper of 7dB on the telescope. This relatively modest 
taper enables us to measure the outer parts of the mirrors accurately. The sidelobes are more than 20 dB below the co-polar 
maximum and the peak cross-polar components are below –25 dB. We have manufactured the horns and verified their 
compliance with the predictions of electromagnetic modelling by measuring the pattern at 296 GHz in the laboratory, using 
the planar near-field technique. The reconstructed far-field pattern is shown in figure 5. 

 
Figure 5. Radiation pattern of the conical-spline horn. The black circle represents the edge of the 6m telescope aperture.  

3.2 Source 

The 295.74GHz signal is produced by multiplying a 16.43GHz dielectric resonance oscillator in two stages – the first 
active and the second passive. The DRO is in turn locked to a GPS-disciplined 10MHz oscillator. This combination is 
designed to provide a stable signal with low phase noise. The components making up the source are shown in figure 6. All 
these components were obtained from commercial sources. 

 
Figure 6. Schematic of the source.  
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The feed horn illuminates a small off-axis parabolic mirror producing a beamwidth of 1.8° FWHM, which means that it is 
~10m wide when it reaches the telescope. This beam size is chosen as a compromise between making it small to minimize 
the chance of reflections from the ground between the source and the telescope and making it large to ensure that the 
wavefront across that telescope aperture is spherical. After reflection off a flat mirror, which is used to align the beam, the 
signal passes through a hermetic window, which is tilted to avoid reflections. Figure 7 shows the layout of the source.  

 
Figure 7. View of the source.  

The source will be in an exposed location and will be subjected to low environmental temperatures. The steel enclosure is 
therefore tightly sealed and lined with thermal insulation. The sensitive components are mounted on a plate which is 
thermally isolated from the enclosure and thermally stabilized by a heater. The source operates from 24VDC, which is 
provided by car batteries. These have sufficient capacity for overnight operation, i.e. up to ~12 hours, which will enable 
us to monitor the effects of temperature variations on the surface errors in the telescope. Since the source will be located 
beside the road going up to the summit, so that access is relatively easy, no provision for remote control of the source has 
been made at this point.  

3.3 Common receiver modules 

The two receivers contain almost-identical RF modules. The main components are shown in figure 8. 

 
Figure 8. Schematic of the receiver modules.  



 
 

 
 

 
 

Each module contains a horn, a sub-harmonic mixer, an active multiplier chain for the LO, and amplifiers for the LO and 
IF signals. Apart from the horn, these are again commercially available devices. The LO frequency is 147.84GHz, which 
means that the IF frequency is 60MHz. The signal and reference receiver modules differ only in the amount of IF gain, 
which is determined by the peak signal level expected. The use of an ambient-temperature subharmonic mixer means that 
the noise temperature is relatively high, ~5,000K but, because we have a relatively powerful source that is quite close and 
there is a substantial amount of gain in the optics, this is sufficient to give a signal to noise ratio of more than 70dB.  

For this application, simplicity and stability are more important than sensitivity. To assist in this, the components are again 
mounted on an isolated, temperature-controlled plate and enclosed. See figure 9. 

 
Figure 9. View of receiver module with part of the cover removed.  

3.4 Signal Receiver 

The receiver module to sample the signal in the focal plane is supported by a stiff frame which will be erected in the 
instrument space when measurements are to be undertaken, see figure 10. The receiver module sits on one of a set of 
mounting points on this frame, chosen to give the required coverage of the focal plane. 

  
Figure 10. The mount for the receiver in the telescope focal plane, showing the support frame (brown) and the X-Y stage 
(light grey). 

There is a motorized X-Y drive behind the frame that can pick up the receiver module and move it from one mounting 
point to another under remote control. This should take less than a minute. 



 
 

 
 

 
 

 
Figure 11. Close-up view of the signal receiver module at one of the mounting positions.  

The support of the receiver module is kinematic to ensure that it can be moved and replaced with repeatability.  The 
locations of the mounting points can be changed (manually) if we find that a different spacing is necessary. In addition, 
the mounting frame can be moved nearer or closer to the focal plane to change the amount of defocus.  

3.5 Reference receiver 

The reference receiver, which will be mounted directly on the structure of the telescope yoke to ensure a stable attachment, 
contains the second receiver module and optical components, see figure 12.  

 
Figure 12. Cut-away view of the reference receiver.  

Two off-axis mirrors produce a collimated beam with a FWHM of 1.1°. This is again a compromise between making the 
beam narrow, to reduce reflections and increase the signal level, and making it wide so that the change in phase and 
amplitude during the scanning movement, which will typically be ~+/-0.4°, is small. A third flat mirror is mounted on a 
motorized rotation stage which directs the beam at the source. The rotation is controlled remotely over an Ethernet 
connection. This is needed because the telescope azimuth at the center of the scan will change when we move the signal 
receiver to a different position in the focal plane (by about 1.6° for a 400mm offset). We can also make a small scan with 



 
 

 
 

 
 

this stage, while keeping the telescope stationary and pointed at the source, to calibrate the phase and amplitude of the 
reference system as a function of azimuth. The mirror can also turn the beam in the opposite direction so that we can make 
measurements with the telescope flipped “over the back”, which will be important for testing whether the deflections in 
the telescope mirrors due to the force of gravity are consistent with the designers’ predictions. 

3.6 Back-end: a vector-voltmeter with high spectral resolution 

We need to measure the amplitude and phase of the signal that has come via the telescope mirrors relative to that from the 
reference receiver. Since we are using a coherent source it is advantageous for us to make this measurement using a narrow 
bandwidth. We do this using digital rather than analogue techniques which provides more flexibility and, most importantly, 
guarantees that the signal and reference are treated in an identical way. 

Our approach is to use a dual-input high-resolution spectrometer, essentially acting as a narrow-band filter on the signal 
and reference, followed by digital multiplication and integration stages. This has been implemented in the Reconfigurable 
Open Architecture Computing Hardware 2 (ROACH2) platform, composed of two 8-bit high speed analogue to digital 
converters (ADCs), a Virtex6 FPGA and a PowerPC 440 microprocessor. Figure 13 shows the configuration of this 
subsystem. 

 
Figure 13: Diagram of vector voltage meter subsystem. The architecture consists in a FX correlator with an oversampling 
and decimation stage. Concurrently a timestamp subsystem based on the IRIG protocol is running.  

We run the ADCs at a high rate, ~2GS/s, and then reduce the sampling frequency by a factor of 16 using a polyphase 
decimation FIR filter with 80dB of rejection, which gives us a usable bandwidth of 67MHz and reduces the quantization 
noise by ~12dB12. The resampled data are then passed through a pipelined FFT using a polyphase window13, which 
provides high isolation between spectral channels and a relatively flat frequency response within a channel. We fine-tune 
the ADC sampling frequency to place the signal in the middle of a channel. We then select the real and imaginary outputs 
from this channel and form the cross-product and the magnitudes. These are produced at a rate of ~8kHz and integrated 
for a selectable time, typically between 1 and 20ms. The data are stored in the internal memory of the PowerPC for post-
processing offline.   



 
 

 
 

 
 

Concurrently, we run a finite-state machine to provide timestamps so we can align the data samples with the corresponding 
telescope pointing position. The timestamp subsystem is calibrated using an Inter-Range Instrumentation Group (IRIG) 
time code signal fed by the observatory’s master clock and uses each pulse of the IRIG packet to update its internal value, 
ensuring that the system is locked to the master clock with a time resolution of 957ns. 

We have run numerous tests on this system, of which one is illustrated in figure 14. Here we compare the results from our 
system with those from a commercial vector network analyzer (Keysight E8364C VNA). We use two signal generators 
locked to the same frequency, keeping one at a fixed power level (to represent the reference in the holography 
measurement) while making a sweep in the power level of the other (to represent the signal). Note that the relative phase 
of the two outputs will alter as the power level is changed because of the switching of the internal attenuators: this is seen 
in the results – figure 14c. The signals from the two oscillators are split so that we can make measurements simultaneously 
with the ROACH2 system and the VNA. With the ROACH2 system we collect 128 measurements and calculate averages 
and standard deviations producing the blue curves in the plots. The red curves are the VNA values.  

 
Figure 14: Characterization of the vector voltage meter system. ROACH2 measurements in blue and VNA measurements in 
red, for input difference in the range (0-85) dB. (a) Average power difference; (b) ROACH2 standard deviation for the 
power differences; (c) Average phase difference; (d) ROACH2 standard deviation for the phase differences.  

We find that the agreement is better than 0.2 dB in amplitude and 1 degree in phase when the ratio of the powers is in the 
range 0 to 65dB. At lower power levels differences start to appear, but the VNA values become noisy. These results do 
however confirm the accuracy of our system over a larger dynamic range than we need. The measured standard deviations 
(figure 14b and 14d) represent an upper limit on internal random errors due to things like round-off in the ROACH2 system.  
These are well below the levels that would affect our measurements.  

4. TELESCOPE SCANNING PATTERN, DATA TAKING AND ANALYSIS 
To obtain adequate spatial resolution (~0.1m) in mapping the errors in the mirror surfaces, we need to measure the beam 
pattern over a region about 0.7° in extent. We do this by scanning the telescope in both coordinates while taking data 
continuously – “on-the-fly” measurements. Note that, because we have adopted the inference approach in our data analysis, 
we do not need the data points to be on a regular grid and we do not have to have uniform coverage of the whole area. 
Instead the important criteria are that we can make the maps reasonably quickly, that the pointing positions are known 
accurately and that we have a way of calibrating the amplitude and phase at frequent intervals. The latter can be 
accomplished by making the pattern pass repeatedly through the same point in the map, so that any changes in the amplitude 
and phase can be tracked and taken out of the data. 



 
 

 
 

 
 

    
Figure 15. A possible scan pattern showing, left, the first 4 scans and, right, the full pattern with 50 scans. The line is the 
path of the telescope pointing position and the scales are in degrees.  

Figure 15 shows an example of the sort of pattern that we plan to use. This consists of a series of straight lines, all passing 
through the center point, connected by turn-around loops. Data is taken in the straight sections, where the motion is at 
constant velocity, so the pointing accuracy should be good. The turns are executed as quickly as is possible without exciting 
vibrations in the telescope structure and no data is taken during those periods. A pattern with 50 scans samples the beam 
sufficiently well and this would take 500 seconds to execute if we spend 7 seconds on the straight sections and 3 seconds 
in the turns. These numbers are conservative in that they require only a small fraction of the full velocity and acceleration 
capability of the telescope drives. An additional feature of the pattern illustrated here is that successive scans pass through 
the center point in nearly orthogonal directions. This means that it should be possible to measure, and correct for, any drifts 
in the telescope pointing that occur on timescales longer than a few scans. 

We now outline the steps involved in taking and processing the data: 
1. In the case above the scanning rate is ~0.1°/s. The size of smallest angular scales in the pattern is set by the ratio 

of the measurement wavelength to the telescope aperture and is close to 0.01°. This means we only need about 
10 data points per second to sample the pattern fully. To avoid smearing the data along the scan, however, we 
oversample – e.g. we set the integration time in the back-end to 0.01s giving ~100 points per second. These data 
are read out, together with their time-stamps, and put in a file. 

2. We also read the encoders on the telescope, in this case at a 200Hz rate, again with timestamps which are generated 
from the same clock as is used for the data. The encoder values are interpolated to find the actual pointing positions 
at the times when the data samples were taken and these positions are combined with the data.  

3. Since the quantity that we need in order to have a result that is independent of amplitude fluctuations in the source 
is the ratio of the signal to the reference, we divide the values of the voltage product delivered by the back-end 
by the reference power, i.e. we form AxB/|B|2.  

4. The values are corrected for the amplitude and phase response of the reference optics as a function of telescope 
azimuth. (These are measured in a separate experiment where we scan the mirror built into the reference receiver 
while keeping the telescope fixed and pointing at the source.)  

5. The data is smoothed using a sinc function. The width of this is chosen to make sure that all the real structure in 
the pattern is preserved but the noise on the samples is reduced as far as possible. It is then resampled at coarser 
intervals (roughly Nyquist sampling) so that we do not have to process an unnecessarily large number of samples 
in the later analysis. 

6. The data from each scan is interpolated to find the amplitude and phase at the center of the map. Ideally these 
values would all be the same, but in practice there will be drifts from scan to scan due to changes in the instrument 
and, probably more significantly, in the atmospheric path between the source and the telescope. (It is of course 
only the differences between the atmosphere along the path from the source to the telescope aperture and that 
along the path to the reference receiver that matter, but we cannot expect these to be negligible at the few-micron 
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level that we are concerned about here.) We therefore fit suitable smooth functions of time to the amplitude and 
phase measured at the center points of the scans and adopt these as representing the drifts that occurred during 
the course of making the map. We then use these fitted functions to correct the data. 

7. We then find the set of surface errors that is most consistent with these measurements using the inference 
technique described in section 2. Points to note are: 

a. The model has to include the pattern of the feed horn in the signal receiver. While we can fit for the 
amplitude of this pattern, any error in the phase will be transferred to the mirrors. We do not think that 
we can measure the horn pattern well enough for our purposes, so we will rely on theoretical modelling 
of the horn for this. The measurements shown above (figure 5) do confirm that the horn basically works 
as expected and we are confident that the phase must be very smooth on small and medium angular 
scales because the physical dimensions of the horn aperture are small in terms of the wavelength. We 
can check for phase errors on large scales by, for example, making measurements with the horn rotated 
to different angles about the line of sight. (We will need to use a wire grid to suppress the cross-polar 
response in this case.) 

b. The processing described above assumes that the pointing of the telescope is stable throughout the course 
of the map. We can look at the residuals – the differences between the data and the best-fitting models 
for the beam patterns – to see if there is evidence for pointing errors. If there is, then we can construct a 
model for these, including possible dependence on time and things like the direction and velocity of 
motion of the antenna – and fit for these. Corrections to the pointing could then be made and a second 
iteration of the solution for the surface errors carried out. If really necessary, this “outer loop” could be 
repeated. 

c. Since the parameters of the fit are the errors at the points where the panels are supported, these values 
can be used directly to make the adjustments required to bring the surfaces to the desired shape. We 
would then repeat the measurements. The adjustment is unlikely to be perfect in a single step, especially 
if the initial errors are large: amongst other things some of the approximations in our model require that 
the errors be small compared to the observing wavelength. We nevertheless expect the adjustment 
process to converge after a small number of iterations.  

d. In other cases, where we are simply monitoring the deformations, e.g. as a function of temperature or 
simply over time, it may be more convenient to fit for the surface shapes as a sum of polynomials. This 
will give us numerical values for errors of various forms, such as astigmatism and can be used to make 
images of the surface deformations. Note that, because we are using a source at a fixed elevation, we 
cannot measure the changing effect of gravity on the structure as the telescope is pointed to different 
elevations. It is however possible to flip the telescope over and turn the azimuth through 180 degrees so 
that it again points at the source. This essentially reverses the gravity vector with respect to the mirrors, 
so we should be able to check whether or not the response to this component of gravity is as expected.  

5. SIMULATIONS 
We have carried out extensive simulations of the measurement and fitting process in order to test the accuracy and 
sensitivity of the method and to find the optimum set-up. As an example, we need to decide where to locate the receiver 
with respect to the focal plane of the telescope. Because the source is only 300 meters away from the aperture, the “best” 
focus, i.e. that giving the peak on-axis gain, is ~705mm behind the astronomical focal plane. Our method of calculating 
the pattern does not however rely on having the receiver at this “best” focus and it is easy to see that it is in fact better to 
have it somewhat closer to the focal plane. Figure 16 shows cuts through the beam pattern for the in-focus case and for the 
case with the receiver moved forwards by 105mm. The effect is to spread out the beam so that the peak gain is reduced by 
~20dB. This is advantageous since it means that the dynamic range required in the measurement is reduced by 20dB. We 
could in principle defocus further but, if we spread the beam too far, we will start to lose some of the detailed information 
about the surface errors because parts of the pattern will be pushed outside the area being measured. It can be seen that 
with 105mm of defocus the power is still largely contained within a region ~0.2° in diameter which is small compared to 
the ~0.7° diameter of the map. Detailed simulations confirm that this amount of defocus gives good results, so we plan to 
use that initially, but we have designed the mount for the receiver to allow for changes in this offset over the range 0 to 
500mm with respect to the “best” focus position in case we need to try different amounts of defocus. 



 
 

 
 

 
 

 
Figure 16. Cuts through the in-focus beam (black) and the defocused case (blue) with the horn 105mm closer to the focal 
plane than the nominal best-focus position.  

The patterns in figure 16 include the full geometry of the telescope but assume perfect mirror surfaces. To test our data 
analysis process, we introduce a set of random movements at the panel adjusters with a magnitude to 30µm rms. Figure 
17 shows the resulting surface errors. 

 
Figure 17. Surface deformation maps with 30μm rms random movements at the adjusters: secondary mirror (M2) on the left 
and primary mirror (M1) on the right.  

For the simulations we use four positions of the receiver at the corners of a square which is 800mm on a side. The resulting 
beam patterns, with and without the surface errors, are shown in figure 18. If we take these four maps and feed them into 
our iterative fitting process (taking perfect surfaces for the starting point), we recover the same set of adjuster movements 
to high accuracy (<<1 µm). This is not surprising since we are using the same method to calculate the beam patterns and 
to do the forward calculation in the fitting. (As explained in section 2, we have separately checked our calculation method 
by comparison with the industry-standard GRASP software.) 



 
 

 
 

 
 

 
Figure 18 Amplitude of the beam patterns (relative to the in focus peak) with the receiver located at four different points in 
the focal plane, from left to right, receiver located at: [400,400], [400,-400], [-400,400] and [-400,-400]. Top row – ideal 
mirror surfaces; bottom row – with the surface errors shown in figure 17.  The squares cover 0.57 by 0.57 degrees. 

5.1 The effects of the noise in the data 

To test the effects of noise in the data we replace the calculated (complex) data values 𝑫𝑫𝑖𝑖 with 𝑫𝑫𝑖𝑖
′, given by equation 3.  

𝑫𝑫𝑖𝑖
′ = 𝑫𝑫𝑖𝑖 ⋅ (1 + ∆𝐺𝐺𝑖𝑖)𝑒𝑒𝑗𝑗∆𝜙𝜙𝑖𝑖 + 𝑵𝑵𝑖𝑖 (3) 

Here 𝑵𝑵𝑖𝑖 is a set of random Gaussian variables with zero mean and rms σ on each component, representing additive noise, 
and Δ𝐺𝐺𝑖𝑖 and Δ𝜙𝜙𝑖𝑖 are multiplicative errors which could arise from gain and phase fluctuations in the equipment or the 
atmosphere. We define the signal-to-noise ratio (SNR) as the ratio of the peak amplitude, for the case of map made with 
perfect mirrors and with the receiver at the best-focus position, to the noise, σ. The multiplicative terms are random but, to 
make them realistic they are not white noise but instead filtered to produce a smoother variation with time. This enables 
us to test the process of correcting for the gain and phase variations described above (step 6 in section 4). The details of 
that work is beyond the scope of this paper: here we outline the most important examples. 

Figure 19 shows the deviation of the derived surface from that assumed (i.e. the surface shown in figure 17) for a case with 
additive white noise and a SNR of 65dB. 

 
Figure 19. Deviations of the best-fitting surfaces from the input surfaces where noise with amplitude –65dB with respect to 
the peak power was added to the data. The root-mean-square of the surface error is 1.2μm on M1 and 1.7μm on M2. 



 
 

 
 

 
 

In this case the overall root-mean-square of the adjuster differences, ϵ, is around 1.5µm. It can be seen, however, that most 
of the errors occur near the edges of the mirrors, particularly on M2. In the case of M1 the reason for this is the lower 
illumination at the outer edge by the receiver horn. On M2, only the inner region contributes to all four of the beam patterns 
– the regions near the corners are in the signal path for only one of the maps. This means that the rms over the whole 
surface is a pessimistic estimate of the actual operational performance of the telescope.  

Figure 20 shows how the error depends on the signal to noise ratio and on the spacing of the receiver locations in the focal 
plane. The SNR is expressed in terms of the voltage ratio, so that the range covered is from 55dB (voltage ratio 560) to 
70dB (3200). As might be expected, using a small spacing (+/-200mm in each direction) produces rather large errors, while 
+/-400mm is good and +/-600mm is only a little better. The mount for the receiver allows us to use up to +/-500mm. 

 
Figure 20. The root-mean-square error ϵ in deriving the mirror surfaces as a function of signal to noise ratio. The three traces 
are the results when using different sets of receiver positions as indicated in the legend.  

The plot indicates that we need an SNR of greater than 70dB to be sure that the measured errors ϵ are below one micron. 
Recall, however, that the SNR is here defined as the ratio of the peak in-focus power to the noise, whereas the case being 
modelled is for an out-of-focus receiver position where the peak power is reduced by 20dB.  Furthermore, the resulting 
wavefront errors, taking account of the real detector illumination pattern, are substantially lower than the calculated values 
of ϵ. The sensitivity of our system and the power levels in the signals mean that signal to noise ratio in the data, even with 
the defocus, will be well in excess of 50dB.  This means that additive noise should not have a significant effect on our 
results. 

We also expect the effects of gain and phase fluctuations in the instrumentation to be small.  For example we find that 
random gain or phase variations with a flat spectrum, i.e. white noise, at the level of 1 part in 100 – 〈𝛥𝛥𝛥𝛥𝑖𝑖2〉1/2 = 0.01 or 
〈𝛥𝛥𝛥𝛥𝑖𝑖2〉1/2 = 0.01 radians – each produce surface errors ϵ of about 0.5 microns.  The gain and phase fluctuations in the 
electronics of our system should be well below those levels. 

5.2 The effects of atmospheric phase errors 

As the signal from the source passes through the atmosphere, the effective path will fluctuate due to variations in the 
refractive index of the air. At millimeter wavelengths, these variations are mainly due to differences in the amount of water 
vapour in the turbulent cells, particularly near the ground, but temperature differences may also play a role. For example, 
even on the high dry site planned for the FYST where the atmospheric pressure is ~0.5bar and the temperature ~265K, the 
total additional path due to refraction over the 300m distance is about 45mm and, if the relative humidity is 20%, the water 
vapour contributes about 1mm. This means that either a change in the temperature of ~0.6K or a change in the humidity 
from 19% to 21% would change the path by ~100μm. The path from the source to the reference receiver is, however, close 
to that from the source to the telescope aperture, so most of the variations will be common-mode and will not affect the 
measurements. We expect nevertheless that the remaining fluctuations will often be significant. 

To model the atmospheric phase fluctuations, we assume that they are random with a power-law spectrum with a slope of 
–8/3, which is what is expected if they are produced by Kolmogorov turbulence14. We can make a suitable time series by 



 
 

 
 

 
 

generating white noise, transforming to the frequency domain and adjusting the magnitudes to have the desired slope, and 
then transforming back to the time domain again. Figure 21 shows the power spectrum of one such series.  

 
Figure 21. Temporal power spectrum of the phase fluctuations assumed for simulation of atmospheric effects.  

Figure 22 shows the time sequence of the phase errors. If we apply these to a model set of data and solve for the mirror 
surfaces we find that the rms error in the solution ϵ is 2.5μm.  

 
Figure 22. Simulated phase error due to atmospheric variations as a function of time (blue). The data points where the beam 
passes through the center of the map are in red.  The residuals after correction using these data points is in orange.  

We can, however, apply the correction procedure described in section 4, where we take out the more slowly varying 
components by using the data points taken when the beam is passing over the center of the pattern. This leaves the residual 
errors shown as the orange line in figure 22. With these applied to the model data, we find errors in the solution of only 
0.5μm. Although we cannot predict in advance what the magnitude of the atmospheric phase errors will really be at the 
site, this result demonstrates that the correction technique that we plan to use should make a large reduction in their effects. 

5.3 The effects of telescope pointing errors 

Given that the beam maps contain a lot of structure on angular scales of order the wavelength over the aperture diameter, 
it is not surprising that the results are quite sensitive to pointing errors.  A simulation with “random-walk” pointing errors 
of 2 arc seconds peak-to-peak in each coordinate gives surface errors ϵ of 2.5μm rms, which is already higher than we can 
tolerate. We do not know what the real pointing errors will be, but we expect that they will be low, given that the maps 
cover a small angular region and only take about ten minutes to complete.  As indicated in section 4 (point 7b), we believe 
that there is sufficient redundant information in the data, particularly near the center of the map where there is a high 
density of samples, to enable us to find and correct for pointing errors so long as these have a reasonably simple behavior, 
e.g. a slow drift with time and/or a straightforward dependence on the direction and velocity of motion of the antenna.      



 
 

 
 

 
 

6. DISCUSSION AND CONCLUSIONS 
The design of the holographic measurement system for FYST has been presented. This breaks new ground in both the 
accuracy that it is expected will be achieved and in the fact that it can measure and separate the errors in the two large 
mirrors making up the FYST optics. To achieve this, we have: 1) found a way of breaking the degeneracy between the 
mirrors by making measurements at multiple positions in the focal plane; 2) developed a method for calculating the beam 
patterns of a complex optical system that is very efficient but still takes proper account of diffraction effects, even when 
the system is very large in terms of the numbers of wavelengths across the aperture; and 3) designed the necessary hardware 
and software for carrying out these measurements. The simulations that we have carried out so far indicate that we should 
be able to reach the required measurement accuracy. We nevertheless anticipate that there will be many practical issues 
that will need to be resolved when we start taking real data, for example it is quite possible that actual forms of the 
atmospheric phase errors or of the telescope pointing errors will turn out to be quite different from what we have assumed. 
We are, however, confident that the basis of the approach set out here is sound. 

The various subsystems described here are presently in the final stages of construction. Laboratory testing of the system 
will start early in 2021 and this will be followed by tests on the telescope when it undergoes trial assembly at the factory.  
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