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ABSTRACT

As CO2 emission regulations increase, fleet owners increas-
ingly consider the adoption of Electric Vehicle (EV) fleets in
their business. The conventional Vehicle Routing Problem
(VRP) aims to find a set of routes to reduce operational costs.
However, route planning of EVs poses different challenges
than that of Internal Combustion Engine Vehicles (ICEV).
The Electric Vehicle Routing Problem (E-VRP) must take
into consideration EV limitations such as short driving range,
high charging time, poor charging infrastructure, and battery
degradation. In this work, the E-VRP is formulated as a Prog-
nostic Decision-Making problem. It considers customer time
windows, partial midtour recharging operations, non-linear
charging functions, and limited Charge Station (CS) capac-
ities. Besides, battery State of Health (SOH) policies are
included in the E-VRP to prevent early degradation of EV
batteries. An optimization problem is formulated with the
above considerations, when each EV has a set of costumers
assigned, which is solved by a Genetic Algorithm (GA) ap-
proach. This GA has been suitably designed to decide the
order of customers to visit, when and how much to recharge,
and when to begin the operation. A simulation study is con-
ducted to test GA performance with fleets and networks of
different sizes. Results show that E-VRP effectively enables
operation of the fleet, satisfying all operational constraints.

1. INTRODUCTION

Fleet owners continuously strive to operate their fleets ef-
ficiently. In economic affairs, fleet owners attempt to
minimize operational costs while ensuring operational con-
straints. Nonetheless, the minimization of operational costs
does not imply an environmental-friendly operation (Dekker,
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Bloemhof, & Mallidis, 2012). In the case of land vehi-
cles, their operation phase contributes to the most Greenhouse
Gasses (GHG) emission of their whole life cycle (Faria et al.,
2013). Moreover, they contribute to significant space usage
and noise pollution (Lee & Sener, 2016).

The well-known Vehicle Routing Problem (VRP) arises as
an intuitive optimization problem to look for efficient routes.
The VRP aims at finding the least-cost routes a set of vehicles
can follow to serve a finite number of customers (Kumar &
Panneerselvam, 2012)(Cattaruzza, Absi, Feillet, & González-
Feliu, 2017). The routes are constrained to the nature of the
operation to execute. The VRP is an NP-hard problem, i.e.
the computational effort required to solve it grows exponen-
tially when the problem size increases. Consequently, exact
solutions of large real-world problems become computation-
ally intractable quickly, even when only a few hundred cus-
tomers are considered (Nazari, Oroojlooy, Snyder, & Takác,
2018). Despite this issue, fleet owners require solving big
problem instances in short periods. This hard requirement
makes exact algorithms unpractical; thus, researchers and
commercial solvers have focused on metaheuristics, which
are generic heuristics dedicated to efficiently explore the
search space so as to determine near–optimal solutions. Some
of these metaheuristics include: Genetic Algorithms (GA),
Ant Colony Optimization (ACO), Tabu Search (TS), Sim-
ulated Annealing (SA), among others (Gendreau, Potvin,
Bräumlaysy, Hasle, & Løkketangen, 2008).

The Electric Vehicle Routing Problem (E-VRP) is a VRP
variant where all vehicles are Electric Vehicles (EV)
(Montoya, Guéret, Mendoza, & Villegas, 2017) (Erdelic &
Caric, 2019). We consider Battery Electric Vehicles (BEV),
which are only powered from batteries installed inside the
vehicles. Therefore, many advantages and disadvantages
arise. Some of the most critical BEV advantages include:
they are much quieter than Internal Combustion Engine Ve-
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hicles (ICEV), they do not emit GHG locally, and there is
the possibility to recharge batteries from clean sources (Faria
et al., 2013)(Notter et al., 2010). Most BEV disadvantages
derive from the limited battery capacity and the little recharg-
ing infrastructure available. Battery capacity directly impacts
the driving range of a BEV, which averages around 200
km, nearly one-third the average driving range of an ICEV
(Erdelic & Caric, 2019)(Feng & Figliozzi, 2013). This limi-
tation forces BEVs to visit charging stations (CS) frequently.
However, most cities around the world are not equipped
with large and robust recharging infrastructure yet. Con-
sequently, a properly formulated E-VRP must address both
BEV constraints and recharging infrastructure limitations.

Another significant BEV limitation comes from battery
degradation. Studies have shown that improper handling of
batteries can lead to an increase in long-term operational
costs (Perez, Moreno, Moreira, Orchard, & Strbac, 2016).
This cost increase occurs because mishandled batteries de-
grade faster, which forces fleet owners to replace them early.
Furthermore, this replacement produces a large environmen-
tal burden: GHG emissions from battery manufacturing are
comparable to manufacturing all the rest of the vehicle itself
(Faria et al., 2013) (Notter et al., 2010).

To increment the battery lifespan, one can constrain the State
of Charge (SOC) of the battery (Perez et al., 2016). We de-
nominate this method as State Of Health (SOH) policy. Some
studies consider this kind of policy into the E-VRP formu-
lation. In (Barco, Guerra, Muñoz, & Quijano, 2017), they
address an airport shuttle with BEVs, and directly constrain
SOC to prevent the battery from degrading faster. In (Sassi,
Cherif, & Oulamara, 2014), they tackle the delivery of goods
with a mixed fleet of ICEV and BEV, while incorporating the
same SOH policy. However, the latter two works do not men-
tion CS capacity, which, according to (Froger, Mendoza, Ja-
bali, & Laporte, 2017), influences the feasibility of solutions.

In this work, we propose a new formulation of the E-VRP
considering non-linear charging functions, battery degrada-
tion, and limited CS capacity. To solve the problem, we
develop a custom Genetic Algorithm (GA). This GA is ca-
pable of inserting charging operation on-execution; thus, no
additional methodologies and heuristics are required. Results
show that the GA is capable of finding optimal feasible routes
each vehicle can follow.

The paper structure is as follows. Section 2 describes the
problem in detail. Section 4 introduces the GA to solve the
problem. Section 5 shows results of four experiments of
different complexity. Finally, section 6 concludes about the
work and future trends to improve research.

2. THE E-VRP-NL-TW WITH BATTERY DEGRADA-
TION

2.1. Problem Statement

Consider a directed network D = ({0} ∪ N ∪ F,A), where
{0} is the depot, N = {1, . . . , n} are n nodes representing
customers to be visited, and F = {n + 1, . . . , n + l} are l
nodes representing all available CS. The set V represents all
the nodes in the network, i.e. V = N ∪ {0} ∪ F . The set
A = {(i, j) : i, j ∈ N ∪ {0} ∪ F, i 6= j} are all the arcs
connecting the network nodes.

Each customer j ∈ N requires a demand Dj , which is deliv-
ered by an EV. When the EV arrives at j, it takes a known time
Tj until the EV departs from j. A time window [T−j , T

+
j ]

constrains this service, i.e., the EV must arrive after T−j and
leave before T+

j . Both T−j and T+
j belong to the set Ω ⊂ R+,

which contains the times of the day. The time window is such
that its width is larger than the service time.

In order to serve all customers, a fleet M of m EVs is avail-
able. Each EV i ∈ M must visit a set of previously assigned
customers N i. This assignation of customers per vehicle is
always the same throughout operation, and it is such that the
EV does not carry more weight than its weight limit. Addi-
tional to its weight limit, each EV i has a battery capacity Q̄i.
All EVs have the same maximum tour time duration of T̄ .

Travel across arc (i, j) ∈ A defines the travel time the EV
must spend, and energy consumption the EV battery spends.
The travel time is tij , while the energy consumption is

eij(w) = ēij × (w + wEV ),

where ēij is the per-weight-unit energy cost, w is the weight
the EV carries across the arc, and wEV is the EV weight.
There are two methods to calculate both tij and ēij : first,
assume they are a function of the Euclidean distance among i
and j; second, solve the Shortest Path Problem (SPP), which
aims to find the road path that minimizes the distance among
two nodes.

The SOC is a representation of the remaining energy in the
battery (Pola et al., 2015). When the battery is full, the SOC
is one; on the other hand, when the battery is empty, the SOC
is zero. Several studies tackle the E-VRP by assuming SOC
instead of energy consumption because it does not rely on
EV parameters(Montoya et al., 2017)(Sassi et al., 2014). Fol-
lowing the same assumption, we will assume that eij is the
decrease in the battery SOC when the EV travels from i to j.

When the EV battery operates with a SOC too close to zero
or one for long periods, it tends to degrade faster (Perez et al.,
2016). Therefore, to prevent early degradation of EV batter-
ies, we consider a State Of Health (SOH) policy. This pol-
icy consists of constraining the battery SOC in an interval
[α−, α+], where α−, α+ ∈ [0, 100]%.
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During operation, vehicles can visit any CS to recharge the
battery. Each CS j ∈ F can do a limited number of rj paral-
lel charging operations. A charging operation made at CS j
takes time ∆j(p, q), where p is the SOC when the EV reaches
the CS, and q is the SOC increase made by the charging oper-
ation. This operation is characterized by a charging function,
which is concave and non-linear (Montoya et al., 2017). To
calculate charging times, we consider the method presented
by (Montoya et al., 2017), where a piece-wise function ap-
proximates the charging function of a CS.

The criteria to choose the routes is to minimize total travel
times, total energy consumption, and total charging times. A
solution of the problem must return: an ordered sequence of
nodes each EV will visit, the time of the day each EV departs
from the depot, and, if visiting a CS, the SOC increase made
by the charging operation. A feasible solution satisfies:

• all customers are visited precisely once,
• all EVs do not exceed their limitations,
• CS capacities are not surpassed,
• all EVs begin and end operation at the depot,
• all customers are visited within their time windows.

2.2. Electric Vehicle State-Space Model

The path EV i ∈M will follow is

Si = [Si
0, . . . , S

i
si−1]T

where si is the length of Si. Each Si
k is the k-th node the

EV visits. As the number of customers each EV is serving is
fixed, the length si varies if charging operations are inserted.
The vector

Li = [Li
0, . . . , L

i
si−1]T

defines the charging plan, where Li
k represents the SOC in-

crease made in the k-th stop. Thus, if the node to visit is a
customer node, Li

k = 0. On the other hand, if the node to
visit is a CS, there must be a SOC increase, i.e., Li

k > 0.

EV i state variables are three:

• xi1(k) is the time of the day the vehicle arrives at the k-th
stop. The arrival time at stop k+1 depends on the arrival
time at stop k plus: the time the EV spends at stop k, and
the travel time from stop k to stop k+1. Initial condition
xi1(0) is the time of the day the vehicle leaves the depot;

• xi2(k) is the battery SOC when the vehicle arrives at k-th
stop. When the vehicle arrives at k + 1 stop, the battery
SOC depends on SOC at the previous stop k minus the
SOC decrease by traveling from stop k to stop k + 1.
The SOC decrease depends on the weight the EV carries
across the arc, with is tracked by state variable x3(k) If
the EV visits a CS at instant k, then the SOC at k + 1
must add this SOC increase. Initial condition xi2(0) is
the battery SOC when the vehicle leaves the depot;

• xi3(k) is the weight the vehicle carries when it arrives to
stop k. Thus, the weight at instant k + 1 is the weight at
instant k minus the requirement at stop k. If stop k is a
CS, then the requirement is zero. Initial condition xi3(0)
is the sum of all customer demands to be delivered by the
vehicle plus the EV weight.

The state equations use a discrete time k that represents when
the EV arrives to the k-th stop in its path. Consequently, each
vehicle has its own time k, which ranges from 0 to si − 1.
Equations (1) to (3) are case-wise defined. These cases de-
pend on the node type the EV visits: a customer or a CS.

xi1(k + 1) =


xi1(k) + TSi

k
+ tSi

kS
i
k+1

if Si
k ∈ N

xi1(k)+∆Si
k
(x2(k), Li

k)

+tSi
kS

i
k+1

if Si
k ∈ F (1)

xi2(k + 1) =


xi2(k)− eSi

kS
i
k+1

(xi3(k)) if Si
k ∈ N

xi2(k)−eSi
kS

i
k+1

(xi3(k))

+Li
k

if Si
k ∈ F (2)

xi3(k + 1) =

{
xi3(k)−DSi

k
if Si

k ∈ N
xi3(k) if Si

k ∈ F
(3)

where TSi
k

is the customer service time at node Si
k,

∆Si
k
(x2(k), Li

k) is the charging time at CS Si
k when the EV

arrives with SOC x2(k) and leaves with SOC x2(k) +Li
k; tij

and eij(w) are the travel time and SOC decrease when the
EV travels from node i towards node j; DSi

k+1
is the demand

requirement at node Si
k+1.

A good forecasting of the EV state variables is essential to
provide a high-quality solution to the problem. In our case,
SOC prognosis is crucial to obtain solutions that satisfy the
SOH policy. The incorporation of the EV weight and the
per-weight energy consumption allows us to predict the SOC
decrease with great detail, which is determinant on E-VRP
research, and there is still a lack of E-VRP variants tackling
this issue (Erdelic & Caric, 2019).

To simplify notation, Eqs. (1) to (3) are redefined as:

xi1(k + 1) = F1

(
xi1(k), Si

k, S
i
k+1, L

i
k

)
(4)

xi2(k + 1) = F2

(
xi2(k), Si

k, S
i
k+1, L

i
k

)
(5)

xi3(k + 1) = F3

(
xi3(k), Si

k, S
i
k+1, L

i
k

)
(6)

2.3. Counting the Number of Vehicles at Each Node

The operation of different EVs is coupled by the constraint
of CS capacity, as the presence of an EV in a charging sta-
tion reduces the capacity for the remaining EVs. In order to
enforce this constraint, a method to count the number of ve-
hicles at each node at any time is needed. The purpose of this
section is to present this method, which cannot be done with
the standard EV state variables.
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In this case, a different discrete time counter is needed. A
global discrete time counter k̄ is used, which tracks the oc-
curence of two events: an EV arriving at a node and an EV
leaving from a node.

To count the number of vehicles, consider the vector θ(k̄) ∈
R|V |. This vector contains as many components as nodes in
the network. The j-th component of θ(k̄) contains the num-
ber of vehicles at node j at the moment the k̄-th event is trig-
gered. For example, if at instant k̄ two vehicles are visiting
node j, then θj(k̄) = 2. If any of the two vehicles leave j,
the event k̄ + 1 “leaving a node” is triggered, and the value
θj(k̄ + 1) = 1. This implies that the counting vector evolves
every time the counter k̄ changes as follows:

θ(k̄ + 1) = θ(k̄) + δ(k̄)γ(k̄) (7)

where γ(k̄) ∈ R|V | is a vector such that its j-th component
satisfies

γj(k̄) =

{
1 if at instant k̄, event occurs at node j
0 otherwise, (8)

and δ(k̄) is such that

δ(k̄) =

{
+1 if at instant k̄, a vehicle arrives to a node
−1 if at instant k̄, a vehicle leaves a node.

(9)

The vector γ(k̄) tracks the node where the event happens, and
δ(k̄) tracks the kind of event. The initial condition of θ(k̄) is
θ(0) = [m, 0, . . . , 0]T , since allm vehicles are at depot at the
start of operation.

3. NONLINEAR PROGRAMMING FORMULATION

The problem is formulated as a non-linear program. Decision
variables are node sequences Si, SOC increase sequences Li,
and departure times xi0 for each EV i ∈ M . The cost is
the weighted sum of three elements: total travel times among
nodes; total charging times; and total energy consumption:

J(S,L, x0) = ω1

m∑
i=1

si−1∑
k=0

tSi
kS

i
k+1︸ ︷︷ ︸

Total travel time

+ω2

m∑
i=1

∑
Si
k∈F

k∈Ki

∆Si
k
(xi2(k), Li

k)

︸ ︷︷ ︸
Total charging time

+ω3

m∑
i=1

si−1∑
k=0

eSi
kS

i
k+1

(
xi3(k)

)
︸ ︷︷ ︸

Total energy consumption

(10)

where S = [S1, . . . , Sm] L = [L1, . . . , Lm], and x0 =
[x0

0, . . . , x
m
0 ] are the decision variables. The weights ω1, ω2,

and ω3 tune the importance given to the item they multiply.

The following constraints are initial conditions. Equation
(11) forces all EV to start from depot; Eq. (12) indicates that
EVs do not increase their SOC at the beginning of the tour;
Eq. (13) forces each EV to have their own starting time; Eq.
(14) implies that each EV leaves the depot with the maximum
value allowed by the SOH policy; Eq. (15) implies that each
EV leaves the depot carrying a weight equal to the sum of the
demands of all customers the EV must visit.

Si
0 = 0 ∀i ∈M (11)

Li
0 = 0 ∀i ∈M (12)

xi1(0) = xi0 ∀i ∈M (13)
xi2(0) = α+ ∀i ∈M (14)

xi3(0) =
∑

Si
k∈N

DSi
k

+ wEV ∀i ∈M
∀k ∈ Ki

(15)

The following constraints are terminal conditions. Equation
(16) forces all EVs to end at depot; Eq. (17) prevents EVs
tour duration to exceed the maximum tour time.

Si
si−1 = 0 ∀i ∈M (16)

xi1(si − 1) ≤ T̄ + xi1(0) ∀i ∈M (17)

Equation (18) prevents EVs from carrying more weight than
their maximum weight limitation.∑

Si
k∈N

DSi
k
≤ D̄i ∀i ∈M

∀k ∈ Ki
(18)

Equations (19) and (20) define time windows.

T−
Si
k

≤ xi1(k) ∀i ∈M,
∀k ∈ Ki,
Si
k ∈ N

(19)

xi1(k) ≤ T+
Si
k

− TSi
k
∀i ∈M,
∀k ∈ Ki,
Si
k ∈ N

(20)

Equations (21) to (23) are state equations of each EV.

xi1(k + 1) = F1

(
xi1(k), Si

k, S
i
k+1, L

i
k

)
∀i ∈M
∀k ∈ Ki

(21)

xi2(k + 1) = F2

(
xi2(k), Si

k, S
i
k+1, L

i
k

)
∀i ∈M
∀k ∈ Ki

(22)

xi3(k + 1) = F3

(
xi3(k), Si

k, S
i
k+1, L

i
k

)
∀i ∈M
∀k ∈ Ki

(23)

Equation (24) are the dynamics of the counting vector and
Eq. (25) the initial value of the counting vector. Equation
(26) limit the maximum parallel charging operations at CSs.

θ(k̄ + 1) = θ(k̄) + δ(k̄)γ̂(k̄) ∀k̄ ∈ K0 (24)
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θ(0) = [m, 0, . . . , 0]T (25)
θj(k̄) ≤ rj ∀j ∈ F,

∀k̄ ∈ K0
(26)

The following constraints are SOH policies. Equation (27)
bounds SOC of vehicles arriving at a node, while Eq. (28)
bounds SOC of vehicles leaving from a node.

α− ≤ xi2(k) ≤ α+ ∀i ∈M
∀k ∈ Ki

(27)

α− ≤ xi2(k) + Li
k ≤ α+ ∀i ∈M

∀k ∈ Ki
(28)

The following constraints define decision variables domains.

Si
k ∈ N i ∪ F Li

k ∈ R+
0 xi0 ∈ Ω ∀i ∈M,

∀k ∈ Ki
(29)

Finally, the problem is to find a set of node sequences S∗,
a set of charging plans L∗, and a set of departure times x∗0
such that the cost function in Eq. (10) is minimized. These
optimal decision variables are such that all above constraints
are satisfied. Equation (30) summarizes the problem as an
optimization problem.

S∗, L∗, x∗0 = arg min
S,L,x0

J(S,L, x0)

s.t.
Eqs. (11) - (29)

(30)

4. GENETIC ALGORITHM TO SOLVE THE E-VRP-TW

The optimization problem of Eq. (30) is nonlinear, and con-
tains continuous and integer (combinatorial) variables; thus,
it cannot be solved in polynomial time. Because of this, a
Genetic Algorithm (GA) (Goldberg, 1989) is proposed for
solving the newly proposed E-VRP because of its capacity to
handle this type of problem. GA is a population-based opti-
mization scheme, that mimics natural evolution in a popula-
tion. Several operators inspired on the evolutionary process
(mutation, crossover, and selection) that are used over several
generations in the algorithm, are designed to drive a popula-
tion of individuals to find or approximate solutions to the opti-
mum. Mutation and crossover operations aid the diversity of
the population, which helps solving problems with multiple
minima, and selection drives the population to the best solu-
tions. A pseudo-code describing a generic GA is presented in
Algorithm 1.

In this section we define each of the used operators, including
the ad-hoc encoding and mutation operator, defined specifi-
cally for this formulation.

Algorithm 1: Generic GA
k← 0;
P(k)← Initial population;
evaluate(P(k));
while notFinished() do

P0← select(P(k));
P1← crossover(P0);
mutate(P1);
evaluate(P1);
P (k + 1)← newPopulation(P1, P (k));
k ← k + 1;

end
return bestIndividual(P(k))

4.1. Encoding Routes

We consider a hybrid strategy of direct and indirect represen-
tation of routes in the individuals. The whole individual is the
concatenation of several sub-individuals, as shown in Figure
1; each one of these sub-individuals stores the route informa-
tion of a single EV.

Three blocks form a sub-individual: a customer block, a
charging operation block, and a departure time block. For
EV i, a customer block is a vector of integers of length equal
to the number of customers in N i which defines the sequence
the customers will be visited. The k-th component of this
vector is the customer ID of the k-th customer the vehicle
will visit in its sequence. Notice this does not define the route
of the EV because this does not consider charging operations.

A charging operations block defines in-route charging opera-
tions. The whole block is the concatenation of several charg-
ing operations sub-blocks, as shown in Figure 2. A sub-block
structure is interpreted as follows. After the EV serves cus-
tomer N∗j , it goes to CS F ∗j and charges the amount qj . If
N∗j is -1, then the charging operation does not take place at
all. Each EV is allowed to make n∗ charging operations at
most. Consequently, the whole charging operations block is
made up of n∗ charging operation sub-blocks. A departure
time block is a single real number denoting the time of the
day the EV will leave the depot.

The operations ΨS(Ij), ΨL(Ij) and Ψx0(Ij) are decoding
operations that convert the individual Ij into decision vari-
ables S, L and x0, respectively. The operation Ψ(Ij) returns
the optimization vector as a result of the individual Ij .

4.2. Genetic Operators

4.2.1. Crossover

The crossover operator creates two children by recombina-
tion of two parents. In this work, the crossover first chooses
an EV and a block associated with this EV; the blocks can be
the customer block, the charging operation block or the de-
parture time block. Then, for two randomly selected parents,

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Sub-individual	vehicle	1

Customers Charging
operations

Departure
time Customers Charging

operations
Departure
time Customers Charging

operations
Departure
time

...

Sub-individual	vehicle	2 Sub-individual	vehicle	m

Figure 1. A full individual is made up of the concatenation of each vehicle sub-individual

Sub-block	1 Sub-block	n*

N*1 F*1 q1

Sub-block	2

N*2 F*2 q2 N*n* F
*
n* qn*...

Charging	operations	block

Figure 2. A full charging operations block is the concatena-
tion of n∗ charging operation sub-blocks.

the operator generates two children by copying the parents
with the chosen blocks swapped.

4.2.2. Mutation

The mutation operator modifies a randomly chosen block of
a single individual. The modification depends on the block
type:

• Customer block: the mutation operator will randomly
swap two customers in their positions.

• Charging operations block: the mutation operator modi-
fies a single randomly-chosen sub-block. The following
procedure is applied: the customer is replaced by a value
randomly sampled from N i ∪ {−1}, the CS is replaced
by a value randomly sampled from F , and the charging
amount is modified by a random number.

• Departure time block: the value is modified by adding a
random number sampled from the interval [−60, 60).

4.2.3. Selection

In this work, a tournament selection of size τ is considered.
Under this approach, the best individual might be lost; thus,
GA considers elitism as well. We implement elitism by pre-
serving the best κ individuals of generation k, and appending
them into generation k + 1. The worst κ individuals of gen-
eration k + 1 are dismissed.

4.3. Constraint Handling

In this work, inequality constraints are handled by a penaliza-
tion scheme. In some constraints a large negative constant is
added to the fitness when the individual is outside the feasible
zone. In other constraints, a value dependent on the distance
to the feasible zone is added to the fitness. The distance func-
tion is

D(Ij) =
∑
i∈Ω′

(fi(Ψ(Ij))− bi)2 (31)

where Ij is the j-th individual in the population, Ψ(Ij) is the
optimization vector after decoding Ij , and fi(Ψ(Ij)) and bi
are such that constraint fi(Ψ(Ij)) ≤ bi cannot be satisfied,
i.e. are outside the feasible zone Ω.

This quadratic penalization scheme allows the GA to violate
inequality constraints by small amounts. We permit this be-
havior because most of these constraints are soft constraints,
as it is possible that EVs reach customers outside their time
windows or operate the battery outside the SOH policy by
little amounts.

Equality constraints are hard-constraints; thus, the penalty
function does not make use of them. Instead, equality con-
straints are input-evaluated via recursion. Therefore, the GA
requires the definition of the one-step prediction, the initial
conditions, and the sequence of future inputs. All of these
requirements are obtained by decoding the individual.

4.4. Fitness

For feasible individuals, the fitness function Γ is minus the
cost function in Eq. (10). For infeasible individuals, the fit-
ness function adds a penalization equal to minus the distance
function in Eq. (31) minus a large positive number C. The
above two cases are summarized in the following case-wise
function:

Γ(Ij) =

{
−Jcost if feasible,
−Jcost −D (Ψ(Ij))− C if infeasible. (32)

where Jcost = J
(
ΨS(Ij),Ψ

L(Ij),Ψ
x0(Ij)

)
.

Fitness evaluation consists of four steps: first, decode each
individual to obtain all decision variables; second, use these
decision variables to evaluate all EV state variables; third,
evaluate cost and constraints; four, evaluate fitness according
to feasibility.

5. RESULTS AND DISCUSSION

5.1. System Configuration

Three computational experiments were conducted. Each ex-
periment varies in the number of customers and the fleet size,
as detailed in Table 1. All experiments consider two CS; each
of them with a limit of three parallel charging operations and
the charging function in Figure 3. The charging function is
an adaptation from the normal and slow charging functions
provided by (Montoya et al., 2017).
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Figure 3. Charging function of each CS

Table 1. Experiments description

Exp. # Network
size

Customer
nodes

Fleet
size

Exp. 1 13 10 2
Exp. 2 38 35 3
Exp. 3 58 55 11

Instances are created by generating random nodes in a space
of 20 km by 20 km. Travel times are the distance among all
nodes multiplied by a factor of 1.7e-3, which is equivalent
to EVs traveling at 35 km/hr. Similarly, per-weight energy
consumption is obtained as the product of the distance among
all nodes and the factor 2.8e-4. Customer time windows are
generated from 9:00 hrs to 13:00 hrs with a random width
within 1.5 hrs to 3.5 hrs.

The SOH policy is determined byα− = 38% andα+ = 82%.
Therefore, all EVs leave the depot with a SOC of 82%. An
EV weight of 1.52 tonnes is considered. The maximum tour
time duration is 360 minutes. The cost function weights are
set to (ω1, ω2, ω3) = (0.2, 0.8, 1.2). We choose these val-
ues to turn travel times and energy consumption into similar
scales, while giving more importance to charging times and
energy consumption.

The GA is implemented in Python 3.7.7 using the DEAP
v1.3.0 library and runs in Windows 10 in an Intel Core i7-
8750H @ 2.20GHz CPU with 16GB RAM. Each experiment
has its set of GA hyper-parameters, which are detailed in Ta-
ble 2.

Table 2. GA hyper-parameters per experiment

Hyperparameter Exp. 1 Exp. 2 Exp. 3
Individuals 90 170 180
Generations 150 510 540
Crossover prob. 0.55 0.65 0.65
Mutation prob. 0.85 0.85 0.85
Penal. const. 5e5 5e5 5e5
Tournament size 3 3 3
n∗ 2 3 3
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Figure 4. Visualization of a feasible operation obtained from
Experiment 1, case EV 0. In (a), the EV visits all customers
within their time windows, even though two charging opera-
tions have been inserted. In (b), charging operations prevent
EV SOC from operating outside SOC constraints.

5.2. Experiment Results

Table 3 summarizes the results of all experiments. All of them
accomplish all constraints; thus, penalization is zero in all of
them.

5.3. Contribution of Charging Operations to Feasibility

A proper insertion of charging operations allows EVs to: ac-
complish the SOH policy and accomplish time windows. The
former result is evident, while the second one occurs because
charging operations act as time-delay events. This time de-
lays allow EVs to arrive at customers within their time win-
dows. An example of this case is shown in Figure 4.a where,
after visiting CS 11, the EV visits customer 2. If the charg-
ing operation is not inserted, then the EV arrives too early.
Furthermore, Figure 4.b shows that the charging operation is
required to fulfill the SOH policy.
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Table 3. Experiments results

Experiment Best
fitness Penalization Total

travel time
Total

charging time
Total

energy consumption
Max. CS

occupation
Exp. 1 -201.85 0.0 273.34 57.53 97.68 1
Exp. 2 -225.98 0.0 336.83 30.19 152.97 2
Exp. 3 -511.56 0.0 768.05 18.33 419.93 1
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Figure 5. Number of EVs per CS. In (a), original result from
Experiment 2. In (b), new result with less CS capacity.

5.4. Impact of Charging Station Capacities

Experiment 2 results give an operation where two vehicles
visit a CS at the same time. This is not an issue because we
have constrained the maximum capacity to three. However,
if the maximum capacity is one, then the solution is infeasi-
ble. We repeat the experiment with CS capacities set to one,
and increasing the number of generations to 650 and the pop-
ulation size to 200. The GA finds a feasible solution, with a
maximum number of EVs of one. Figure 5 shows a compari-
son of the number of EVs per CS in both experiments.

The number of assigned customers influences the number of
charging operations: the more customers to visit, the more
likely to insert charging operations. Thus, it is not an issue
if the fleet size is large because there is little chance for EVs
to visit a CS and surpass the CS capacity. Experiments 2 and
3 show these cases: although the fleet size in Experiment 3
is larger than the fleet size in Experiment 2, the maximum
occupation in Experiment 3 is lower than the maximum oc-
cupation in Experiment 2. This situation occurs because, in
Experiment 2, EVs are assigned to 10 or more customers,
while, in Experiment 3, EVs are assigned to five or six cus-
tomers.

6. CONCLUSION AND FUTURE WORK

A Genetic Algorithm (GA) to solve the Electric Vehicle Rout-
ing Problem with Non-Linear Charging Functions, Battery
Degradation, and Time Windows has been developed. We
consider recharging infrastructure limitations, State of Health
(SOH) policies to prevent early degradation of the Electric
Vehicle (EV) batteries, and an EV model to accurately es-
timate travel times and energy consumption. Unlike other

works, which focus in addressing a single or a small set of
limitations, we tackle all limitations in a single formulation.

Our results show that the implemented GA is capable of find-
ing feasible solutions in small and medium-sized problems.
Feasible solutions ensure that CS capacities will never be ex-
ceeded, and the fleet will efficiently serve all customers. In
addition, it has been shown that the GA can find routes when
CS capacities are lowered. The resulting operation enables
the fleet to minimize both short-term and long-term opera-
tional costs.

Future work involves developing a methodology to assign
customers to EVs efficiently, in-depth analysis and im-
provement of genetic operators, and include traffic network
stochasticity into the problem, specifically, into the EV state-
space model. The latter will improve the prognosis of travel
times and energy consumption.
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NOMENCLATURE

Si Node sequence of EV i
Li SOC increase sequence of EV i
x1(0)i Departure time of EV i
xi(k) State vector of EV i
θ(k̄) Counting vector at instant k̄
Dj Requirement at node j
K0 Global counter range
Ki EV i counter range
m Fleet size
N i Customers vehicle i must visit
P̄i Maximum weight of EV i
Q̄i Battery capacity of vehicle i
rj Maximum capacity of CS j
Tj Service time of customer j
T+
j , T−j Customer j time window bounds
T̄ Maximum tour time

8
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α−,α+ SOC safe zone
Fj(·) State transition function of state variable j
δ(k̄) Binary value tracking event kind at instant k̄.
γ(k) Vector tracking the event position at instant k.
tij Travel time across arc ij
eij Per-unit energy consumption across arc ij
∆i Charging time at CS i
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APPENDIX

A. METHODOLOGY TO CONSTRUCT θ VECTOR

Vector θ is built by following these directions:

1. Initialize a zero-vector of size |V |, and initialize k̄ = 0

2. Calculate times each EV i arrives at each node in its path
Si.

3. Calculate times each EV i leaves from each node in its
path Si.

4. Repeat 3+2∗
∑m

i=0(si−1) times the following: identify
the next events according to arrival times and departure
times. The event is characterized by the node where it
occurs (γj(k̄)), and the event kind: arriving time or a
departure time (i.e. δ(k̄)). Do Eq. (7). Increase k̄ by
one.
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