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Abstract

In the case of astronomical observations, it is useful to work with new methods

that are effective to complement the characterization of systems for which only limi-

ted information is available. The generality of the Horizontal Visibility Graph method

on time series allows us to cover two systems of interest in this thesis: solar wind and

blazars. The solar wind corresponds to the continuation of the solar corona where

its plasma expands in space with velocities between ≈ 250–800 km s−1. On the other

hand, blazars are a type of active galactic nuclei that are very luminous and variable

throughout the electromagnetic spectrum. First, we tested the algorithm on Particle

In Cell simulations of magnetized plasma. Second, we worked on solar wind magne-

tic fluctuations using Wind satellite measurements. Third, we worked on blazar light

curves, to characterize different sources monitored with the OVRO 40m telescope in

the 15 GHz radio band. We model the information presented in time series for each

object of study as a complex network in the search for a new study perspective for

astrophysical systems. The goal is to explore their variability and dissipative cha-

racteristics by obtaining the Kullback-Leibler Divergence, a measure of the degree of

irreversibility between directed degree distributions, and the critical exponent of the

undirected degree distribution, a measure that recognizes between correlated sto-

chastic and uncorrelated chaotic time series. In the case of plasma simulations, both

complexity parameters are related to the shape of the velocity distribution function.

The Kullback-Leibler Divergence proves to be sensitive enough to detect differences

between the slow and fast solar wind, while the critical exponent could play a role in

distinguishing between spectral classes of blazars.
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Resumen

Frente a observaciones astronómicas resulta útil trabajar con nuevos métodos

que sean efectivos para complementar la caracterización de sistemas de los que sólo

se cuenta con información reducida. La generalidad del método Horizontal Visibility

Graph sobre series de tiempo nos permite abarcar dos sistemas de interés en esta tesis:

viento solar y blazares. El viento solar corresponde a la continuación de la corona so-

lar donde su plasma se expande en el espacio con velocidades entre ≈ 250–800 km s−1.

Por otro lado, los blazares son un tipo de núcleos galácticos activos muy luminosos

y variables en todo el espectro electromagnético. Primero, probamos el algoritmo

en simulaciones Particle in Cell de plasma magnetizado. Segundo, trabajamos sobre

fluctuaciones magnéticas de viento solar utilizando las mediciones del satélite Wind.

Y tercero, sobre las curvas de luz de blazares, para caracterizar distintas fuentes

monitoreadas con el telescopio OVRO 40m en la banda de radio a 15 GHz. Modela-

mos la información presentada en series de tiempo de cada objeto de estudio como

una red compleja en la búsqueda de una nueva perspectiva de estudio para sistemas

astrof́ısicos. El objetivo es explorar en torno a su variabilidad y sus caracteŕısticas

disipativas a partir de la obtención de la Divergencia Kullback-Leibler, una medida

de la irreversibilidad entre las distribuciones de grado de la red dirigida, y del ex-

ponente cŕıtico de la distribución de grado de la red no dirigida, una medida que

reconoce entre series de tiempo estocásticas correlacionadas y caóticas no correlacio-

nadas. Ambos parámetros de complejidad están relacionados con la distribución de la

velocidad de las simulaciones de plasma. La Divergencia Kullback-Leibler demuestra

ser lo suficientemente sensible como para detectar diferencias entre el viento solar

lento y el rápido. Mientras, el exponente cŕıtico podŕıa tener un rol en la distinción

de las subclases de blazares.



Chapter 1

Introduction

Graph theory seeks to schematically extract data sets employing specific geome-

trical criteria based on nodes or vertices and some kind of relationship with other

nodes through edges, where these nodes can have a defined orientation, with a source

node and a destination node. This theory was introduced in 1736 by Leonhard Eu-

ler, in an article that dealt with the problem known as the bridges of Königsberg [1]

whose initial purpose was to determine the route across all the bridges of the city

with the restriction of crossing them only once. Euler proved the impossibility of

the case. However, this milestone prompted the development of important studies,

allowing since then great advances in several areas, such as urban planning [2], econo-

mics [3], biological networks [4], and even in the selection of fundamental approaches

in health, such as the spread of diseases [5], delivering substantial solutions to com-

plex problems.

Complex networks are a powerful tool to study physical phenomena in a wide

variety of systems and topics from a different perspective than usual approaches [6].

Depending on the characteristics sought to be explored in each research, there are dif-

ferent types of graphs and representation structures to work with. In the analysis of

the data relevant to this thesis, we are interested in modeling time series as complex

1
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networks. For this purpose, we have the tools of the family of visibility algorithms

that convert time series into graphs, where the structure of the series, in terms of

its temporal ordering and magnitude of the data, is preserved in the topology of

the graph [7], managing to build a natural bridge between the theory of complex

networks and time series analysis. The method of Visibility Graph [8] has been deve-

loped in the last years, it allows us to study and analyze time series avoiding tedious

and the high computational cost that other methods offer. With this algorithm, each

data in the series corresponds to a node, and two nodes are connected if there is

oblique visibility between the height of the data (height determined by their magni-

tude). The Visibility Graph method develops a simple and direct time series analysis

in self-organized critical phenomena, such as macroeconomic systems [9], biological

systems [10], seismicity [11], or space plasmas [12–14].

Within the Visibility Graph algorithm, there is a simplification: the Horizontal

Visibility Graph (HVG), proposed by Luque et al. [15]. In this case, the nodes are

connected if it is possible to draw a horizontal line between them. This method as-

signs a network to a time series according to a geometric criterion that considers

the magnitude of the data and its horizontal visibility with others. From the degree

distributions of the complex network, Lacasa and Toral [16] associated a characte-

ristic exponent γ with the nature of the correlations dominating time series, and

Lacasa et al. [17] measured the irreversibility of real-valued time series with the

Kullback-Leibler Divergence (KLD). So far, the HVG has been applied to different

systems, from earthquakes [18] and plasmas [19] to chaotic processes [16]. It has

been demonstrated that the method is computationally efficient since it correctly

distinguishes between reversible and irreversible stationary time series. This analy-

sis was based on analytical and numerical studies for reversible stochastic processes
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(uncorrelated and linearly correlated Gaussian), irreversible stochastic processes (a

discrete intermittent ratchet in asymmetric potential), reversible (conservative) and

irreversible (dissipative) chaotic maps and dissipative chaotic maps in the presence

of noise [17]. The KLD is sensitive to non-evident characteristics of time series [20],

being an indicative feature of the presence of nonlinearities in the time series pro-

duced by the underlying dynamics associated with non-equilibrium systems in the

field of thermodynamics [21]. The latter contributes to obtaining an approach to the

entropy production from the time series generated by the physical system, where a

high degree of irreversibility is related to a dissipative system.

Various missions are providing a wide range of time series data to understand im-

portant astrophysical phenomena that challenge us to implement new methods that

are effective in complementing the characterization of this constantly new informa-

tion and, sometimes, extremely reduced especially when dealing with observational

data with intermittent gaps. The methodology of this thesis uses the directed and

undirected versions of HVG to obtain degree distributions in both cases. It leads

us to explore the dissipative characteristics of the time series by obtaining the γ-

exponent, a measure proposed as a degree of stochasticity of the undirected network,

and the KLD, a measure of the degree of irreversibility of the directed network.

This last complexity parameter is known under various names, including the Kull-

back–Leibler distance, cross-entropy, information divergence, and information for

discrimination [22]. Meanwhile, stochastic processes also play a fundamental role in

many scientific fields where we can find dynamics in a collection of random variables

evolving [23]. The advantage of KLD is that unlike other measures used to estima-

te irreversibility over time, KLD is statistically significant, as demonstrated by the

Chernoff–Stein lemma [17]. Moreover, in the case of astronomical observations, it is
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common for the data measured by telescopes to be contaminated by atmospheric

(reversible) noise, yet irreversible signals continue to be well characterized by the

HVG method and the KLD measurement [17].

Among the first approaches to astrophysical systems through the use of horizon-

tal visibility graphs, Suyal et al. [19] worked on the solar wind, a turbulent plasma

whose variations in terms of velocity, proton density, temperature, and helium con-

tent lead to evolving dynamical phenomena throughout the heliosphere on various

temporal and spatial scales [24]. Today it is already known that the solar wind has a

three-dimensional structure that varies along with the 11-year solar cycle [25], that

some complexity parameters such as entropy [26], Lyapunov exponent [27], and co-

rrelation dimension [28], show that solar wind velocity fluctuations are a consequence

of complex nonlinear dynamical processes.

It is not only the analysis of electromagnetic effects in the solar wind plasma that

has been an area of considerable research interest in recent years. While the solar

wind is the best-studied system as one of the closest astrophysical plasma laborato-

ries to Earth, the study of blazars is another area of interest with an ever increasing

amount of data available. In this thesis, we are extending the application of a novel

methodology to a particular type of Active Galactic Nuclei (AGN), blazars, to cha-

racterize their high-energy emission mechanisms by analyzing the variability of the

light curves of more than a thousand sources. Emission within an AGN is produ-

ced by the accretion of matter by a black hole at its center, where the surrounding

material forms an accretion disk that is heated by the dissipation of gravitational

energy, generating, in some cases, the expulsion of matter and energy in relativistic

jets [29]. Blazars are fascinating AGN, as they are characterized by a very luminous

and rapidly varying continuum emission at all observed frequencies, from radio to
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gamma-rays [30], with a jet oriented close to our line of sight.

Here, we apply the HVG method to study time series in two different astrophysical

contexts of great interest: solar wind and blazars. Specifically, we work with the

magnetic field fluctuations associated with the solar wind, whose data are obtained

from the Wind mission, where we look for correlations between the classification of

the fast and slow solar wind at 1 AU during solar cycles 23 and 24, with the degree of

irreversibility and stochasticity of the time series, being able to relate with the region

of origin of emission of the expanding plasma. For this purpose, we first apply the

method on time series of magnetic field fluctuations obtained from Particle In Cell

(PIC) simulations of a non-collisional magnetized plasma. We plan to validate the

technique by mastering parameters of particle velocity distributions considering the

well-known kappa-distributions [31] along with the Maxwell-Boltzmann distribution,

i.e., non-thermal and thermal distributions respectively, to assess whether there is

any relationship with the KLD. Because solar wind is a well-described system, we

aim to learn what the results of applying HVG to this system mean physically.

Then, based on what we have learned in the study of the solar wind with HVG, we

can extend this knowledge to the study of blazars observed with a large-scale, fast

cadence 15 GHz radio monitoring program with the Owens Valley Radio Observatory

(OVRO) 40 m Telescope. In the latter, we seek to describe the light curves of the

sources, i.e., to analyze the observed flux density as a function of time as a first

approximation of the complexity parameters in AGN. We propose to analyze which

physical properties could be conditioning the behavior of the light curves, behavior

that could be represented in the parameters of the complex network extracted from

these time series, to find possible correlations with their spectral classification and

luminosity [32, 33].
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Faced with the underlying phenomenology in the data series for these two as-

trophysical systems, essentially due to the effect of their magnetohydrodynamic acti-

vity, the main question to answer is: What dissipative characteristics can we associate

with each system from the information provided by a time series?

This thesis is organized in three main parts. In Chapter 2, the HVG method is

introduced, and it defines how the stochasticity degree and the KLD value of the

complex network are obtained. In the three following chapters, the application of the

method in PIC plasma simulations (Chapter 3), solar wind (Chapter 4), and blazars

(Chapter 5) is displayed. Each chapter includes the bibliographical antecedents ne-

cessary to go deeper into each system, the context of their most used methodologies,

a description of the available time series, and the results obtained. These results

are discussed in Chapter 6 individually, to finally conclude what we have learned by

analyzing the time series with horizontal visibility graphs in these different contexts.



Chapter 2

Mapping time series to networks

Our study aims to interweave the key aspects driving the topology of complex

networks with the physical mechanisms responsible for the variability of the time

series. It is essential to study the topology of the interactions between the compo-

nents, i.e., the networks through the connections between the nodes [34]. Tools and

measures need to be applied to quantitatively assess the principles that organize

the information in the time series. The tools of complex networks offer a different

approach to describe this non-trivial interconnected information. With the visibility

algorithms, these connections are related to the variability and the succession of

events over time.

The visibility algorithm proceeds to map a times series into a complex network

under a geometric principle of visibility. In this sense, the algorithm could be conside-

red as a geometric transformation of the time series in which this method decomposes

a time series in connections between nodes that could be repeated or not, forming a

particular weave that represents the time series as a topological object. The visibi-

lity graph is constructed under a visibility criterion. Within the time series, two data

(ta, ya) and (tb, yb) see each other if there is another data (tc, yc), with ta < tc < tb,

7
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such that it satisfies the condition [8, 17]:

yc < ya + (yb − ya)
tc − ta
tb − ta

. (2.1)

Thus, this condition must be evaluated on all data. This implies oblique visibility

between nodes. In this chapter, we detail the method that gives basis to this thesis,

which consists of a simplification of the principle of the visibility graph in the sense

that a horizontal visibility criterion will be considered from nodes (connections arise

from the heights of the data, determined by their magnitude). The HVG method

brings parameters that characterize the time series, the critical exponent γ, and the

Kullback-Leibler Divergence D. Here, we describe in full detail the derivation of

these complexity parameters, which are relevant to our purpose of characterizing the

astrophysical systems under study.

2.1. Horizontal Visibility Graph

The HVG method allows the study of dynamic systems through the characteriza-

tion of their networks associated with the time series [35]. As we can see in Figure 2.1,

the HVG algorithm consists first of assigning a node to each data in the time series.

Then, depending on the magnitude of the data, the node acquires horizontal visibi-

lity with other nodes. Thus two nodes i and j in the graph are connected if one can

draw a horizontal line in the time series joining xi and xj that does not intersect any

intermediate data height.

For directed Horizontal Visibility Graph (DHVG), first let {xi}i=1,...,n be a time

series of n data. The algorithm consists of assigning each data of the series to a node.

Then, for outgoing connections, i is a node that will always be connected with its
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Figure 2.1: (a) A graphical description for modeling a time series with
a horizontal visibility graph. Each data correspond to a node. (b) Accor-
ding to the visibility of each node, we can calculate the degrees kin and
kout for directed HVG and kud for undirected HVG: that is, how many
connections the node establishes in function, and independently, of the
temporal direction.

consecutive node i + 1, and it will be connected to other future nodes j if

xi, xj > xm ∀m : i < m < j , with j > i + 1 , (2.2)

and it is fulfilled within the time series for all the data that compose it [15]. Now in

reverse order, for ingoing connections, i is a node that will always be connected with

its previous node i− 1, and it will be connected to other past nodes j if

xi, xj > xm ∀m : i > m > j , with j < i− 1 . (2.3)

The presence of a data magnitude greater than or equal to the data under study

interrupts its visibility. Once all the links are established for the i node, each node will

have degrees denoted kout and kin for outgoing and ingoing connections, respectively,
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Figure 2.2: Construction of Horizontal Visibility Graph. Top, a time
series where the degree kin for in-going links and kout for out-going links of
each of the n = 10 nodes are detailed. Bottom, probability distribution P
as a function of degree k, where nin and nout correspond to the frequency
of appearance of the degrees kin and kout respectively, defining Pin and
Pout.

based on the number of times the condition 2.2 is satisfied in the time direction, and

2.3 in the inverse time direction. Then, within a graph directed in the direction of

the time axis, for a given node two different degrees are distinguished. These are the

in-going degree kin, related to how many nodes see a given node i, and an out-going

degree kout that is the number of nodes that node i sees [15]. With this temporal

direction, the in-going degree kin is associated with links of a node with other nodes

of the past. Meanwhile, the degree of output kout is associated with the links with

nodes of the future [17]. From the properties of these connections, it can be said that

if the graph remains invariant under the reversion of time, it could be stated that the

process that generated the series is conservative [15]. With the already constructed

DHVG, we can extract the undirected version (UHVG) considering a total degree as

the sum of both: kud = kin + kout.



11

To further detail the dynamics between nodes or how interconnected information

is related, degree distributions play a fundamental role. The degree distribution of a

graph describes the probability of an arbitrary node to have degree k (i.e. k links) [36].

Thus, by counting the frequency of occurrence of each degree, we obtain degree

distributions or probability distributions in the form P (k) = nk/n, where n is the

number of data points in the time series and nk is the number of nodes having degree

k. Namely, P = P (kud) for UHVG, Pin = P (kin) and Pout = P (kout) for DHVG. See

Figure 2.2 for a graphical illustration of directed degree distributions.

2.2. Characteristic exponent γ

According to a theorem for uncorrelated time series [15], the degree distribution

for the UHVG associated with a bi-infinite sequence of independent and identically

distributed random variables extracted from a continuous probability density, have

an exponential behavior of the form P (k) = 1
3

(
2
3

)k−2
[15]. This can be rewritten as

P (k) ∼ exp (−γunk) , (2.4)

with γun = ln(3/2) ≈ 0.405, that is a limit for the uncorrelated situation proposed

by Lacasa and Toral [16] to discriminate between correlated stochastic (γ > γun), or

chaotic (γ < γun) processes. Here, γ is the characteristic exponent (the γ-exponent)

of the degree distribution modeled as P (k) ∼ exp (−γk). In this sense, the probability

distribution of the undirected degrees gives information related to the correlations

in a process, in this case, time correlations. The value for γun was supported by

analytical developments that confirmed the results provided by numerical simulations

and experimental time series, but new studies show there are certain exceptions to

this rule to take in consideration. Ravetti et al. [37], Zhang et al. [38] studied in
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depth the methodology proposed by Lacasa and Toral [16] and found several cases

in which their hypothesis is not valid.

The choice of the domain for the fitted straight line of the logarithm of the

probability distribution is very delicate. Ravetti et al. [37] found that sometimes, non-

exponential behaviors occur, and the heavy tail of the degree distribution makes the

method dependent on additional adjustments on a case-by-case basis. However, the

gamma value gives useful information about the process thanks to the strengths of the

HVG method that manages to maintain the intrinsic characteristics by mapping each

time series conserving its properties, as long as exponential behaviors are obtained

and the fitting zone is properly chosen to determine the γ-degree. Independent of

the limit, it is a useful technique for a systematic analysis of long- and short-range

stochastic processes with the right criteria in the fitting domain (k range).

2.3. Kullback-Leibler Divergence D

Degree distributions Pin and Pout separately classify the succession between past

and future events; that is, they provide information about the temporal irreversibility

of the associated series. At the same time, they provide a relation with the entropy

production of the physical mechanism generating the series [39]. A rigorous way to

measure the difference between two degree distributions is through Kullback–Leibler

divergence, which is a statistical measure of “distinguishability” [17] to quantify the

degree of temporal irreversibility. The KLD between two probability functions is

defined as [22]

D[Pout(k)||Pin(k)] =
∑
k

P out(k) log
Pout(k)

P in(k)
, (2.5)

i.e., it is the weighted average of the logarithmic difference between the Pout and Pin

probabilities, where the average is taken using the Pout probabilities. The divergence
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is expressed with the natural unit of information when the logarithm is in base e. The

KLD is always positive by definition (can be proved using Jensen’s inequality [40])

and is vanishes if and only if Pin = Pout. As D moves away from zero, the distance

between the distributions increases and with it the irreversibility of the series. Since

it is not symmetrical, it is not a real distance measurement.

Each system under study provides different algorithmic challenges, depending

essentially on the number of data provided by its time series. Obtaining this measure

in some cases is not practical if we are strict to the definition when there are some

cases in which D → ∞ if Pin = 0. Thus, we propose and agree on the following

conventions for each system discussed in this thesis.

For the case of PIC simulations in Chapter 3 and solar wind in Chapter 4: Since

D is a weighted average between differences, the cases where, for some k, Pout(k) > 0

and Pin(k) = 0, we will consider it as a null contribution instead of infinity, since

there is no probability to compare with, which in the result sometimes generates

negative values in D. If this is the case, we define it as an outlier and discard it.

For the case of blazars in Chapter 5: We must take into consideration that so-

me events are unseen, especially when dealing with observational data with short

duration and gaps. While the presence of gaps is not a problem for the HVG, it is

not prudent to assume every event as absolutely impossible. Therefore, we reassign

a new, very low, probability when it is zero. The cases where Pout = 0 are contained

in the definition itself. So, to cover the other cases, we smooth the probabilities in

assigning a probability less than the minimum Pmin
in in the form Pmin

in /n when for

certain k the probability is zero, and we subtract this new probability from the others

to rescale. These considerations will allow us to compare degrees between spectral

classes of blazars.



Chapter 3

Plasma Simulations

In a turbulent collisionless plasma (in which Coulomb collisions are neglected),

movement on a kinetic scale (spatial scales of the order of the particles Larmor radius

or skin-depth) occurs in a chaotic manner, and is determined by large-scale collective

behavior and also localized small-scale processes. This kind of system can be com-

monly found throughout the Universe. The solar wind and the Earth’s magnetosphere

correspond to natural plasma physics laboratories in which plasma phenomena can

be studied [41]. Some non-linear phenomena include magnetic reconnection [42],

collisionless shocks [43], electromagnetic turbulence [44], collisionless wave-particle

interactions [45], or plasma energization and heating [46]. One of the fundamental

open questions in plasma physics is the understanding of the energy equipartition

between plasma and electromagnetic turbulence, and the role of non-thermal plasma

particles distributions ubiquitous in poorly collisional plasma environments.

One of the most used approaches to model non-thermal plasma systems is th-

rough the representation of the plasma velocity distribution function (VDF) using

the well-known Tsallis or kappa distributions. First proposed by Olbert [47] and

Vasyliunas [48] to fit electron measurements in the magnetosphere, it is accepted

that kappa distributions are the most common state of electrons [see e.g. 49, 50],

14
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and have been observed in space in the solar wind [51, 52], the Earth’s magnetosphe-

re [53, 54] or other planetary environments [55]. These distributions resolve both, the

quasi-thermal core and the power-law high energy tails measured by the κ parameter,

and correspond to a generalization of the Maxwell-Boltzmann distribution, achieved

when κ → ∞. Kappa distributions have been widely studied in the framework of

non-equilibrium statistical mechanism as corresponding to a class of expected proba-

bility distribution function when the system exhibits non-extensive entropy [56–58].

Regarding plasma physics, it has been found that in kappa-distributed plasmas, the

non-thermal shape of the distribution function plays a key role in the details of

kinetic processes such as wave-particle interactions [59, 60], that mediate the colli-

sionless relaxation of unstable plasma populations [61–63]. Moreover, even in the

absence of instabilities, in a plasma with finite temperature, the random motion of

the charged particles composing the plasma produces a finite level of electromagnetic

fluctuations. These fluctuations, known as quasi-thermal noise, can be explained by

a generalization of the Fluctuation-Dissipation Theorem [see e.g. 64, 65, and referen-

ces therein], and have been studied in the case of thermal and non-thermal plasma

systems. Recent results have shown that the fluctuations level in plasmas including

supra-thermal particles following a kappa distribution is enhanced with respect to

plasma systems in thermodynamic equilibrium [31, 65, 66].

Regardless of the nature of the distribution function (thermal or non-thermal),

plasmas show a self-organized critical behavior [67] allowing the introduction of con-

cepts from complex systems to studying this criticality. Those methods are applied

both in data sets and models [68–71]. Some authors have suggested that the change

of fractals and multifractals indexes could be associated with dissipative events or

related to the solar cycle, proposing a relation between multifractality and physical
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processes in plasmas related to the solar cycle, the Sun-Earth system or theoretical

models of plasmas [68, 72]. Other studies show a relation between intermittency fluc-

tuations and multifractal behavior, while the fluctuations at kinetic scales reveal a

monofractal behavior [73–75]. Wawrzaszek et al. [72] apply a multifractal formalism

to the solar wind suggesting a relation between the intermittency and the degree

of multifractality. Those studies show different time series analyses in plasmas. But

not only fractals and multifractals could be useful in the study of time series, com-

plex networks, particularly the Visibility Graph method, allow a simple and direct

time series analysis in self-organized critical phenomena, such as earthquakes [18],

macroeconomic systems [9] or biological systems [10].

In the field of space plasma physics, the VG has been applied to solar flares [12, 13]

and solar wind measurements [19]. In particular, Najafi et al. [13] show a complete

and detailed analysis of solar flares through a combination of two methods of complex

networks: a time-based complex network supported by the work of Abe and Suzuki

[76] and the VG method proposed by Telesca and Lovallo [11]. They characterize solar

flares based on the probability distribution of connectivity and clustering coefficient,

finding a good agreement with results obtained in other works with seismic data

sets. In addition, Suyal et al. [19] studied the irreversibility of velocity fluctuations.

Through the HVG method, they calculated the KLD of the fluctuations and found

that irreversibility in solar wind velocity fluctuations shows a similar behavior at

different distances from the Sun, and that there is a dependence of the KLD with

the solar cycle. Under this context, the results by Acosta et al. [77] have suggested

that the use of the HVG method can provide valuable information to characterize

turbulence in collisionless plasmas and that the KLD may be used as a proxy to

establish how thermal or non-thermal are the velocity distributions of a plasma,
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only by looking at the magnetic fluctuations and their properties.

Here we build a complex network based on the HVG technique [17] applied to

magnetic field fluctuations time series obtained from Particle In Cell (PIC) simula-

tions of magnetized collisionless plasma. We analyze the degree of irreversibility of

magnetic fluctuations self-generated by the plasma, comparing the case of a thermal

plasma (described by a Maxwell-Botzmann VDF) with the fluctuations generated by

non-thermal kappa distributions. In order to understand the degree of irreversibility

as a parameter that could be related to the shape of the particles’ velocity distribu-

tions, we computed the KLD for different values of the κ parameter for comparative

purposes and analyzed their time evolution throughout each simulation. The chapter

is organized as follows. Section 3.1 shows the model used to build the time series,

and in Section 3.2 the results are presented.

3.1. Thermal and non-thermal plasma particle dis-

tributions

To build time series of magnetic fluctuations produced by a collisionless plasma

we performed PIC simulations. The simulations treat positive ions and electrons as

individual particles that are self-consistently accelerated by the electric and magnetic

field through the charge and current densities collectively produced by themselves.

For our study, we consider a so-called 1.5D PIC code, that resolves the movement of

the particles in one dimension but computes the three components of the velocity of

each particle, and therefore the three components of the current density. Our code

has been tested and validated in several studies [see e.g. 78, 79], and technical details

about the used numerical schemes can be found in [31].

We simulate a magnetized plasma composed by electrons and protons with mas-
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ses me and Mp, respectively, and realistic mass ratio Mp/me ∼ 1836. We assu-

me the warm plasma as quasineutral, in which both species have number density

n0, such that ωpe/Ωe = 5. Also, ωpe = (4πnoe
2/me)

1/2
is the plasma frequency,

Ωe = (eB0)/(mec) is the electron gyro-frequency, e is the elementary charge, c the

speed of light, and B0 is the background magnetic field. Our code solves the equations

in a one-dimensional grid with periodic boundary conditions, and the background

magnetic field aligned with the spatial grid (B0 = B0x̂). To resolve the kinetic phy-

sics of electrons we set up a grid of length L = 256λe, where λe = ωpe/c is the

electron inertial length. We divide the grid into N = 2048 cells, initially with 1000

particles per species per cell, and run the simulation up to t = 1330.72/Ωe in time

steps of length dt = 0.01Ωe. For each simulation, we initialize the velocities of the

particles following an isotropic VDF fj(v), with j = e for electrons and j = p for

protons, and v represents the velocity. For the case of a plasma in thermodynamic

equilibrium, fj corresponds to a Maxwell-Boltzmann distribution

fj(v) =
n0

π3/2α3
j

exp

(
− v2

α2
j

)
, (3.1)

and in the case of a non-thermal plasma fj is given by a kappa distribution. Namely:

fj(v) =
n0

π3/2α3
j

Γ(κj)

κjΓ(κj − 1/2)

(
1 +

1

κj

v2

α2
j

)−(κj+1)

. (3.2)

Here, αj = (2kBTj/mj)
1/2 is the thermal velocity of the distribution, κj and Tj are

the kappa parameter and the temperature of each species, and kB is the Boltzmann

constant. Also, Γ corresponds to the Gamma function, and note that kappa distribu-

tions (Equation (3.2)) becomes the Maxwell-Boltzmann distribution (Equation (3.1))

in the limit κ → ∞. However, for kappa values κ ⪆ 10 the kappa and Maxwellian

VDFs are relatively similar.
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Following all these considerations, for our study we run and compare the results

of three different simulations with different values of the electron κe parameter. Case

1: a plasma in thermal equilibrium with electrons following a Maxwell-Boltzmann

distribution given by Equation (3.1); case 2: non-thermal electrons following Equa-

tion (3.2) with κe = 3, representing a system far from thermodynamic equilibrium;

and case 3: a plasma with κe = 15, also non-thermal but closer to equilibrium. In

addition, to isolate the effects of thermal or non-thermal electrons, for all three ca-

ses we consider protons following a Maxwellian; i.e. κp → ∞. Finally, for all cases,

we consider a plasma with temperature Tj, such that the plasma beta parameter is

βj = 8πn0kBTj/B
2
0 = 0.01 for both species; i.e. βe = βp = 0.01.

Figure 3.1: (Left) Average magnetic field energy density fluctuations
(δB/B0)

2 as a function of time obtained from PIC simulations for
Maxwell-Boltzmann (where MB represents κe → ∞) and kappa distribu-
tions considering different values of the κe parameter. (Right) Detrended
average magnetic field energy density magnitude.

As already mentioned, even though a collisionless isotropic plasma is a system

at equilibrium according to the Vlasov Equation, the plasma will develop a certain

level of magnetic fluctuations spontaneously produced by the motion of the charged

particles [31, 64–66]. This is precisely the situation of our study for any of the three
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simulations (three cases) we have performed. Figure 3.1 shows the average magnetic

field energy density fluctuations (δB/B0)
2 as a function of time, for all three cases. To

build these time series, at each time step we have computed the transverse magnetic

fluctuations at the plane perpendicular to B0 and have averaged the magnitude

of the fluctuations at each grid point. Figure 3.1 (left) shows the fluctuation time

series for κe = 3 (blue), κe = 15 (purple), and the κe → ∞ or Maxwell-Boltzmann

distribution (black). As expected, we can see that the level of fluctuations increases

with decreasing value of κe and that the behavior of the fluctuations with κe = 15

is fairly similar to the Maxwellian case. In addition, Figure 3.1 (right) presents the

time series of the detrended fluctuations, where we can see that the amplitude of the

fluctuations also increases as κe decreases. In the next section, the HVG method will

be applied to all these time series.

3.2. Results

We apply the HVG method to study the time series of magnetic fluctuations

obtained from the PIC simulations. Considering the Maxwellian and kappa distri-

butions, we follow the HVG algorithm and build complex networks for three cases:

Maxwellian distribution (thermal equilibrium with electrons), κe = 3 (non-thermal

electrons), κe = 15 (non-thermal electrons, but closer to the equilibrium), using the

original and the detrended time series (see Figure 3.1). We calculate the in-going and

out-going degrees for the time series to characterize their distribution for each case.

First, if we now focus on the UHVG, where k(i) = kin(i) + kout(i), we obtain the

undirected degree distribution P (k) (Section 2.2). Figure 3.2 shows an exponential

distribution for the degree distribution for the three cases studied, this is understood

as do to short-range exponentially decaying correlations, where γ corresponds to the
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Figure 3.2: Semi-log plot of the degree distributions of HVG associated
with kappa and Maxwell-Boltzmann distribution. There is an exponential
behavior P (k) ∼ exp (−γk) and the γ value is shown for each distribution.
The left panel corresponds to the results for the magnetic field of the
trend data from Figure 3.1 (left), while the right panel corresponds to the
detrended data from Figure 3.1 (right).

slope of the linear fit in the semilog plot of the degree distribution (Equation 2.4).

The values of the slope are computed considering the tail of the distribution [11] in

Figures 3.2, in this case from the degree k = 5 up to the largest value of k at each
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plot. The values of the slope are between γ = 0.531 (κe = 3) and γ = 0.590 (Maxwell-

Boltzmann distribution), in the case of trended data and between γ = 0.520 (κe =

3) and γ = 0.579 (Maxwell-Boltzmann distribution), in the case of detrended data

sets. We observe that for each value of the slope, it is satisfied that γ > γun. This

suggests us all series correspond to correlated stochastic processes from which we

can extract consistent information. Also, the trend does not seem to greatly affect

these correlations.

Second, considering the DHVG we have computed the Kullback-Leibler Divergen-

ce, D from Equation 2.5, for each case mentioned before. The values of the divergence

D are in Figure 3.3 compared to standard deviation σ (vertical bars in the figure)

calculated from the algorithm applied on the randomly disarrayed data [see e.g. 18,

and references therein]. In this algorithm, the original data is randomly shuffled to

obtain a large number of disordered copies (in this case 1000 copies) of the original

data set, and the divergence D is computed for each copy. The vertical lines in Fi-

gure 3.3 correspond to the average value of the divergence D of all copies (central

value) plus and minus a standard deviation. After this procedure, if the D value is

contained inside the σ bar, the time series represents a reversible process. This is be-

cause by randomly disarraying the series and obtaining the same results regardless of

the temporal order of the data set, it is indicating that the information corresponds

to a reversible process. On the contrary, if D is outside the vertical range defined by

the random copies, then the value of D is statistically significant, and therefore it is

possible to state that the data set indeed represents an irreversible process.

Figure 3.3 shows that the dissipative degree of the system increases as the value

of κe decreases and the distribution function departs from the Maxwell-Boltzmann

equilibrium. In Figure 3.3 (left), the processes for κe = 15 is reversible, case close
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Figure 3.3: KL-Divergence (D) for the magnetic field time series with
different kappa distributions. (Left) HVG method applied on the original
data. (Right) HVG on the detrended data. The technique used to deter-
mine whether the data represent a reversible process consists of applying
the HVG algorithm to randomly disordered copies of the data, obtaining
the standard deviation σ around the average divergence computed using
the disordered data (black dot and vertical lines).

to thermal equilibrium. Meanwhile, in Figure 3.3 (right) all distributions correspond

to reversible processes by reducing the background trend. This last result could be

explained due to the fact that, independent of the value of κe, all considered distribu-

tions are steady state solutions of the Vlasov equation. Finally, to further analyze the

relationship between the κ parameter and the KLD, we compute the time evolution

of D as shown in Figure 3.4. Figure 3.4 (right) shows the same behavior found above,

exhibiting a decrease in the value of the divergence for the Maxwellian distribution,

whereas for κe = 3 this value tends to increase. That is, given the initial conditions of

the simulation, κe = 15 and Maxwellian coincide in their behavior over time towards

a low degree of divergence, while κe = 3 presents a behavior to the opposite extreme.
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Figure 3.4: Temporal evolution of the KL-divergence considering a mo-
ving window that covers 8000 data overlapping every 1000 data on the
magnetic time series. (Left) HVG method was applied on the original da-
ta and (right) on the detrended data.



Chapter 4

Solar Wind

Several different dynamics exist when studying solar wind depending on its origin

and the distance to the Sun. To discriminate and classify solar wind type between

slow and fast, we can consider five relevant parameters, such as radial velocity, proton

density, proton temperature, the oxygen ion ratio, and the magnetic compressibility

factor [80]. All these relevant parameters reflect the dynamic of the solar wind while

this is in expansion from the continuation of the solar corona until being in contact

and interacting with the Earth’s magnetosphere. In this path, this plasma reaches

velocities among 250−800 km s−1 approximately, and at the same time, this is subject

to the solar activity cycle of approximately 11 years and the solar magnetic cycle of

approximately 22 years (the Hale cycle) [81]. During its expansion, the solar wind

develops a strong turbulent character [82]. Wherever the solar wind is observed, there

are many non-linear phenomena involved in many scales.

The turbulence property is assigned to indicate that something behaves outside

what can be understood as regular. “The behavior of a flow that rebels against the

deterministic rules of classical dynamics is called turbulent” [82]. Turbulence in the

solar wind has been subject to study for different models of systems science. Wawr-

zaszek et al. [80] have developed a multifractal study of the intermittency of the

25
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magnetic field turbulence in the solar wind measured by Ulysses spacecraft, based

on a comprehensive data selection criteria to discriminate between the state of the

slow and fast solar wind not only with the velocity parameter. They reported a slow

decrease of intermittency with radial distance, and that the slow solar wind at solar

cycle 23 maximum exhibits a lower level of multifractality than the fast solar wind.

They justify the radial dependence of the multifractality by a slower evolution of the

turbulence beyond the ecliptic plane and by the lower efficiency of the intermittency

drivers with distance from the Sun. As for the distinction of the wind type with

respect to the cycle, they relate it to the idea of a new type of slow Alfvénic solar

wind.

The occurrence of intermittency in plasma turbulence has been well explored by

studying the deviation from the Gaussian distribution of the PDF for both velo-

city and magnetic fluctuations [83–85]. Other studies show a relationship between

intermittency fluctuations and multifractal behavior as the result of the multifractal

properties of the solar wind turbulent cascade [86], while kinetic-scale fluctuations

reveal monofractal behavior [73, 75, 87], as opposed to multifractality.

The Lyapunov exponent has been widely used in the analysis of the dynamics

of space plasmas. Gupta et al. [28] and Redaelli and Macek [27] have studied the

Lyapunov exponent of velocity fluctuations measured by the Helios spacecraft. Gupta

et al. [28] analyzed the time series of the solar wind speed fluctuations to understand

the local dynamics of the slow wind speed fluctuations. They analyzed the Lyapunov

exponents and suggested that there are inherent changes in the dynamics throughout

solar cycle 21, and that there is low-dimensional chaotic behavior in the underlying

dynamics. Redaelli and Macek [27], Macek and Redaelli [88] analyzed the fluctuations

of the low-speed stream of the solar wind using a nonlinear filter to approximate
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the nonlinear behavior of the flow, and also obtained more reliable estimates of

the Lyapunov exponent and the Kolmogorov entropy. Through their results, they

found that the solar wind in the inner heliosphere is probably a deterministic chaotic

system.

Continuing with natural complexity measures to detect dynamic changes in ti-

me series, Suyal et al. [26] calculated the permutation entropy of the solar wind

time series at different phases of solar activity cycle 23. They worked with measu-

rements obtained by the ACE spacecraft and observed that the complexity of the

solar wind velocity fluctuations at 1 AU is dominated by the hysteresis phenomenon

when following the ascending and descending phases of the solar cycle. This induced

them to suggest the presence of multistability in the dynamics governing the solar

wind speed throughout a solar activity cycle. Then, Suyal et al. [19] estimated the

Kullback–Leibler Divergence of the solar wind velocity via complex networks. They

analyzed solar wind speed measurements obtained by the ACE and Helios spacecraft

and calculated the KLD at different phases of the solar activity cycles 21 and 23.

Their work concluded that the solar wind speed is more variable during the maxi-

mum and minimum activity phases, while it is less variable during the ascending

and descending phases of the solar activity cycle, and the irreversibility parameter

(KLD) over a solar activity cycle is similar to 0.3 AU and 1 AU.

These studies support the non-universal and complex nature of solar wind turbu-

lence. Complex networks are a tool that often describes the origin of complexity in

complex systems. Systems science analysis can work even before much of the physics

can be assimilated and integrated [89].

This chapter is organized as follows. Section 4.1 explains a summary of the signi-

ficant features of observations and characteristics of solar phases along solar cycles
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23 (SC23) and 24 (SC24). Then, Section 4.2 exposes our results after applying the

HVG method on magnetic time series.

4.1. Solar wind and solar cycles

The solar wind is a stream of charged ions and electrons that escape from the solar

corona rapidly and continuously into the interplanetary medium. It is a combination

of a slow, dense, and highly variable at lower heliolatitudes, and also a faster, tenuous,

and uniform wind at high heliotitudes [90–93]. 75 % of the solar wind velocities show

a value on the order of 530.38 ± 2.22 km s−1 for SC23 [94]. If we focus on solar

wind classification based on speed, the slow solar wind would be in the range 300–

450 km s−1, and the fast wind between 500–800 km s−1. The fastest streams, i.e.,

fast solar wind, can travel from the Sun up to 1 AU in ≈ 2.0–3.5 days [95]. The

slow solar wind originates above the active regions on the Sun and tends to be

highly structured. While the fast wind, plasma originating from polar coronal holes,

is usually considered to be structure-free or relatively homogeneous [96]; however,

according to more recent studies, it is not homogeneous [97]. What we certainly know

is that the typical equatorial slow wind is more variable than the pure coronal fast

wind.

The intercorrelation between solar activity and solar wind is a topic of funda-

mental importance. The global structure of the three-dimensional solar wind at solar

maximum is completely different than at solar minimum [92]. The sunspot number

is a synthetic index that quantifies the relationship between solar variability and its

magnetic activity [98]. Thus, the sunspot number Sn is a direct indicator of solar

activity, because its cyclic variations have been characterized by smoothed sunspot

numbers as a first proxy for solar phases [99]. The Sun’s magnetic activity increases
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Figure 4.1: Time series of the data used in this study. This data set
is composed of solar wind magnetic field (B in the top panel), as input
for the HVG method, solar wind proton bulk speed (vp in the middle
panel), and sunspot number (Sn in the bottom panel), as variables for
comparison. The first two data sets were obtained from NASA CDAweb
by Wind Mission (observations at 1 AU), while the last data set was ob-
tained from World Data Center SILSO by Royal Observatory of Belgium.
The data shown correspond to measurements taken during the period
from 1995-01-01 to 2019-12-31, covering solar cycles 23 and 24. B, vp, Sn

time resolution are 1 hour, 92 seconds and 1 day, respectively.
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as solar activity does, which can be visualized in four phases: minimum, ascending,

maximum, and descending [100, 101]. In particular, the solar minimum is a period

of low magnetic activity in the Sun that occurs between the descending phase of the

old cycle and the ascending phase of the new cycle. This transition is marked by the

reversal of the magnetic activity gradient, a phase in which the Sun’s magnetic field

is completely flipped.

Compared to SC23, SC24 exhibited the lowest activity. The previous five cycles

had been notably productive in terms of sunspots, but SC24 was not. The minimum

phase transition between SC23 and SC24 took a longer period than usual (2007-01-

07 to 2009-10-31), and reached the lowest level in about a century, specifically since

1913. This can be understood due to the slow decrease in the activity of SC23 and

the slow increase in SC24. This decrease in Sun’s activity was also manifested in

the solar magnetic field variations [102], as the interplanetary magnetic field showed

very low values during the years of the minimum. The observations made in the near-

Earth ecliptic plane were also surprisingly the lowest values in the in situ solar wind

measurements from 1963 until then, according to the OMNI database compilation.

Therefore, this very particular cycle change offers a special opportunity to base our

study on the comparative search for intercorrelations with complexity parameters.

We work with magnetic field and proton bulk speed data measured by the Mag-

netic Field Investigation (MFI) [103] and the Solar Wind Experiment (SWE) [104]

instruments onboard the Wind spacecraft, which provides observations of the eclip-

tic plane (obtained from NASA CDAweb); and with sunspot number obtained from

World Data Center SILSO. We use one-hour cadence Wind-MFI data to characterize

magnetic field measurements at 1 AU. The data set corresponds to measurements

taken during the period from 1995-01-01 to 2019-12-31, so it includes the end of
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SC22, completely covers cycles 23 and 24, and the beginning of SC25. We focus on

SC23 and SC24. SC23 dates from 1996-05-06 to 2008-11-23, and SC24 dates from

2008-11-24 to 2019-11-24, according to the cycle and phase start and end dates spe-

cified by Reyes et al. [101]. Figure 4.1 displays the time series of the data set used

in this study, where Figure 4.1a shows the solar wind magnetic field used as input

for the HVG method, Figure 4.1b shows the proton bulk speed with a 92-second

cadence, and Figure 4.1b shows the daily sunspot number. In our analysis, the latter

two are used as variables for comparing the behavior of solar wind and solar activity.

4.2. Results

This study modeled the time series of magnetic fluctuations data collected from

the Wind satellite observations as HVGs over time. For this purpose, moving win-

dows in time were used, covering approximately two months of magnetic data (1440

data/nodes covered by each network), with an overlap of approximately one day

(the distance between data windows is 24 data/nodes). The moving windows begin

in 1995-01-01, and when the series cannot contain the same amount of 2-month da-

ta towards the end of the series, the calculation is stopped. Each of these windows

encapsulates the data information. In that way, we map it into a network under the

geometrical criterion of horizontal visibility. Thus through this mapping, we built

every complex network with the same amount of nodes and assign it the mean of the

time interval covered by the moving window. Every network has a degree distribu-

tion P given by the undirected HVG and two degree distributions, Pin and Pout, from

directed HVG. From these, we calculated the γ (Equation 2.4) and D (Equation 2.5)

values in time using data shown by Figure 4.1a. As mentioned in Section 2.3, there

are a few points where D can be negative. For the data analyzed, this occurs in only
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4 % of the networks (39 out of 8959 moving windows), so we discard these cases,

which is consistent with them being considered outliers, as defined in Section 2.3.

Figure 4.2 contains the temporal evolution of these parameters for the magnetic field.

In Figure 4.2a, the limit γun ≈ 0.405 between correlated stochastic and chaotic time

series [16] is indicated (as defined in Section 2.2), and the error in γ, σγ, was cal-

culated from the exponential fit. In addition, for each window, networks have been

constructed from 1000 randomly disordered copies of the data. Thus, Figure 4.2b

plots the standard deviation σrev and average D for each window, in order to have

an estimate of the level of reversibility. γ is almost always above the limit, and D

goes in and out of the reversibility range.

The information in Figure 4.3 allows us to infer a statistical analysis of our results

relative to the behavior of the solar wind through the solar cycles. In Figures 4.3a–

b regarding information for unclassified solar wind, i.e., solar winds combined. On

average and in terms of cycles, the γ exponent was higher for SC24, and the D diver-

gence was higher for SC23. Also, D measure appears to vary as a function of phase.

However, the γ value does not vary much, as all values within the central quartiles

are concentrated around γ = 0.5 > γun. These latter results suggest that these are

predominantly correlated stochastic and not uncorrelated chaotic time series. When

γ has a slight decrease, D increases and is prominent in the maximum phases, beco-

ming lower in the minimum phases, and in the ascending and descending transitions,

the values are intermediate. This encourages us to look deeper for correlations with

solar activity.

We can also analyze in Figures 4.3a–b statistical information distinguishing fast

wind from slow wind around the 500 km s−1 threshold. The differences in both com-

plexity measures between solar wind types are very small, but they exist and are at
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Figure 4.2: The black curve is the temporal evolution of (a) γ and (b)
D of the magnetic field, considering a moving window that covers two
months with a one-day overlap. (a) In the first case, the light blue color
indicates the γ error, σγ, obtained from the linear fit of log(P (k)). (b) In
the second case, the light blue color indicates the reversibility range, that
is, when we apply the HVG algorithm to randomly disordered copies of
the data in every window, obtaining the standard deviation σrev around
the average divergence (in dark blue) computed using the disordered data.
The period is from 1995-01-31 to 2019-12-02, so covers SC23 and SC24.
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Figure 4.3: Solar wind: Boxplot diagrams in the first two panels show the
mean (diamond symbol), median (horizontal line), and 25–75 % percenti-
les of (a) γ and (b) D values for overall data, by cycle, and by total cycle-
independent phases, according to the following classification: slow/fast
for solar wind speeds under/over 500 km s−1. The whisker indicates the
range between minimum and maximum values calculated. (c) Scatter plot
of the means of γ and D values. Means for solar wind without classifying
(black color), slow (blue color), and fast (red color) wind.
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least more evident in the D divergence means than for the γ exponent means. Even

with the classification between solar wind types, γ behaves similarly. On the other

hand, D for both wind types, slow and fast, shows the same dependence on the solar

phases, as for the unclassified wind (black boxplots). We can also realize that D is

always slightly higher for slow wind than for fast wind, except in ascending phases.

In general, the slow wind is highly variable, and the D divergence is characterizing it

as the solar wind with the highest degree of irreversibility. If we plot just the mean

values of Figures 4.3a–b (diamond symbols), Figure 4.3c verifies the anti-correlation

between γ and D. The correlation coefficients between the complex parameters for

the phase values only (i.e. if we focus on the triangles in Figure 4.3c are −0.992 for

unclassified solar wind (black triangles), −0.998 for slow wind (blue triangles), and

−0.882 for fast wind (red triangles). So, although the variations in γ are small, the

anti-correlation between the two measurements is clear, as can be seen in Figure 4.3c.

In addition, as can be seen in the same plot, the correlation between γ and D also

depends on solar wind speed, and the highest anti-correlation corresponds to slow

solar wind magnetic fluctuations (blue symbols in Figure 4.3c). More details about

the values associated with the boxplots of Figure 4.3 are given in Tables 4.1 and 4.2.

We have also performed the analysis according to solar cycle phases. Figure 4.4

and 4.5 show γ and D in black curves, comparing them with Sn and vp (in blue),

respectively. In both figures, all curves have been smoothed by a yearly running

average. The colored areas indicate the phases of the solar cycles and help us to

distinguish the curves’ behavior according to solar activity.

First, relative to the sunspot number, from Figure 4.4a we can see that γ exhibits

anti-correlation with it especially within SC23. In general, the yearly smoothed curve
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Figure 4.4: Solar activity: All curves are smoothed by a yearly running
average of the values of γ and D (black curves) at the left, and Sn (blue
curves) at the right. Horizontal dashed black lines indicate the limit γun
between chaotic and stochastic information in (a), and indicate the upper
half of the reversibility range over the continuous black line in (b). Ver-
tical dashed blue lines delimit solar cycles 23 and 24. The colored blocks
represent the phases of the solar cycles. The period now is from 1995-08-
05 to 2019-05-29.
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presents values above γun, suggesting that magnetic fluctuations time series corres-

pond to correlated stochastic processes, observing also that the curve tends to de-

crease stochasticity as it approaches the maximum (it approaches the γun limit).

From Figure 4.4b, we observe a particular match between the most prominent peaks

of both curves in the maximum of SC23. In the maximum of SC24, the peak for the

curve of D is in the gap between the double peaks of Sn. Also, the baselines (inferior

envelopes) follow each other except for some delays, as in the ascending phase in

SC24. At the minimum phases, the KLD values indicate reversible processes because

the smoothed values of D are contained in the reversible range. Our results suggest

a correlation between KLD and solar activity.

Second, relative to the proton bulk speed, in Figure 4.5a at the beginning of the

SC23, during the minimum and ascending phases, γ and vp are correlated, but in

the following transitions, this behavior tends to be reversed, as opposed to D in

Figure 4.5b, since it shows an anti-correlation with vp from the beginning of the

series, with few partial exceptions (the second half of the ascending phase in SC23,

and the descending phase in SC24 for instance). In most of the phases both γ and

D exhibit a certain anti-correlation with vp in different manners.

The presence of clear correlations indicates the possible responsibility of a phy-

sical process relating to the quantities under study. To explicitly follow correlations

through these physical measures and the parameters of the complex network extrac-

ted from magnetic time series of the solar wind, we tabulate correlation coefficients

with their statistical significance overall (from 1995-08-05 to 2019-05-29), by cycle,

and by phase in each cycle, in Tables 4.3 and 4.4. These tables precise what we have

previously described from Figures 4.4 and 4.5, with more robust statistical results.
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Figure 4.5: Solar wind speed: All curves are smoothed by a yearly run-
ning average of the values of γ and D (black curves) at the left, and vp
(blue curves) at the right. Horizontal dashed black lines indicate the li-
mit γun between chaotic and stochastic information in (a), and indicate
the upper half of the reversibility range over the continuous black line in
(b). Vertical dashed blue lines delimit solar cycles 23 and 24. The colored
blocks represent the phases of the solar cycles. The period now is from
1995-08-05 to 2019-05-29.
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Table 4.1: Statistical information from Figure 4.3a for γ. These are the
mean, median, minimum (Min.), maximum (Max.), and 25–75 % percen-
tiles. The first panel covers the values for the entire solar wind, then the
second and third panels cover the values for the solar wind classified bet-
ween slow and fast wind. As in Figure 4.3, the periods are for overall data,
by cycle, and by total cycle-independent phases.

γ Exponent
Period(s) Mean Median Min. 25% 75% Max.

Unclassified Overall 0.505 0.512 0.198 0.482 0.537 0.644
SC23 0.498 0.505 0.198 0.467 0.537 0.644
SC24 0.513 0.517 0.306 0.494 0.537 0.604
Minimum 0.524 0.525 0.414 0.501 0.549 0.617
Ascending 0.498 0.510 0.306 0.475 0.533 0.604
Maximum 0.488 0.500 0.198 0.451 0.525 0.614
Descending 0.507 0.511 0.271 0.486 0.537 0.644

Slow wind Overall 0.506 0.512 0.199 0.483 0.537 0.644
SC23 0.497 0.506 0.199 0.466 0.537 0.644
SC24 0.513 0.517 0.307 0.493 0.537 0.604
Minimum 0.524 0.526 0.414 0.502 0.549 0.617
Ascending 0.498 0.509 0.307 0.475 0.533 0.604
Maximum 0.489 0.501 0.199 0.453 0.527 0.614
Descending 0.508 0.512 0.271 0.490 0.539 0.644

Fast wind Overall 0.504 0.510 0.198 0.480 0.537 0.640
SC23 0.498 0.504 0.198 0.471 0.535 0.640
SC24 0.511 0.516 0.306 0.495 0.537 0.601
Minimum 0.522 0.523 0.427 0.497 0.551 0.615
Ascending 0.500 0.512 0.306 0.474 0.533 0.601
Maximum 0.481 0.495 0.198 0.442 0.520 0.596
Descending 0.504 0.508 0.272 0.481 0.534 0.640
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Table 4.2: Statistical information from Figure 4.3b for D. These are
the mean, median, minimum (Min.), maximum (Max.), and 25–75 % per-
centiles. The first panel covers the values for the entire solar wind, then
the second and third panels cover the values for the solar wind classified
between slow and fast wind. As in Figure 4.3, the periods are for overall
data, by cycle, and by total cycle-independent phases.

D Divergence
Period(s) Mean Median Min. 25% 75% Max.

Unclassified Overall 0.0111 0.0094 1.7 × 10−5 0.0062 0.0140 0.0458
SC23 0.0121 0.0102 2.7 × 10−4 0.0062 0.0164 0.0457
SC24 0.0104 0.0092 1.7 × 10−5 0.0066 0.0124 0.0439
Minimum 0.0081 0.0074 2.1 × 10−4 0.0052 0.0104 0.0215
Ascending 0.0129 0.0110 1.7 × 10−5 0.0073 0.0171 0.0458
Maximum 0.0141 0.0124 9.6 × 10−4 0.0079 0.0179 0.0439
Descending 0.0106 0.0095 2.7 × 10−4 0.0063 0.0130 0.0419

Slow wind Overall 0.0112 0.0095 6.7 × 10−5 0.0064 0.0142 0.0447
SC23 0.0125 0.0107 3.0 × 10−4 0.0065 0.0168 0.0447
SC24 0.0105 0.0091 1.7 × 10−4 0.0065 0.0125 0.0439
Minimum 0.0083 0.0077 2.1 × 10−4 0.0054 0.0108 0.0215
Ascending 0.0127 0.0110 1.7 × 10−4 0.0073 0.0168 0.0447
Maximum 0.0142 0.0124 9.6 × 10−4 0.0079 0.0182 0.0439
Descending 0.0107 0.0094 3.0 × 10−4 0.0063 0.0130 0.0419

Fast wind Overall 0.0105 0.0090 1.7 × 10−5 0.0059 0.0134 0.0458
SC23 0.0111 0.0092 2.7 × 10−4 0.0055 0.0148 0.0458
SC24 0.0100 0.0093 1.7 × 10−5 0.0069 0.0119 0.0364
Minimum 0.0071 0.0066 5.1 × 10−4 0.0046 0.0086 0.0211
Ascending 0.0136 0.0109 1.7 × 10−5 0.0071 0.0189 0.0458
Maximum 0.0135 0.0121 1.9 × 10−3 0.0076 0.0171 0.0388
Descending 0.0105 0.0096 2.7 × 10−4 0.0061 0.0132 0.0415
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Table 4.3: Pearson correlation coefficients and p-values from the curves
contrasted in Figure 4.4. The first column indicates the period, where
“min”, “asc”, “max” and “des” denotes the phase (minimum, ascending,
maximum, descending) corresponding to the cycle indicated by its subin-
dex. The second and fourth columns show the correlation coefficients bet-
ween the Sn index with γ-exponent and D-divergence. Then the third and
last columns display the p-values related to correlation coefficients of Sn

with γ and D, respectively.

Period Sn vs. γ p Sn vs. D p
Overall −0.72 < 0.001 0.59 < 0.001
SC23 −0.76 < 0.001 0.62 < 0.001
SC24 −0.44 < 0.001 0.27 < 0.001
min23 −0.88 < 0.001 0.91 < 0.001
asc23 0.13 < 0.001 0.41 < 0.001
max23 −0.25 < 0.001 0.57 < 0.001
des23 −0.68 < 0.001 0.05 0.07
min23−24 −0.56 < 0.001 −0.38 < 0.001
asc24 −0.62 < 0.001 −0.29 < 0.001
max24 0.72 < 0.001 −0.66 < 0.001
des24 0.30 < 0.001 0.59 < 0.001
min24 −0.85 < 0.001 −0.76 < 0.001
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Table 4.4: Pearson correlation coefficients and p-values from the curves
contrasted in Figure 4.5. The first column indicates the period, where
“min”, “asc”, “max” and “des” denotes the phase (minimum, ascending,
maximum, descending) corresponding to the cycle indicated by its subin-
dex. The second and fourth columns show the correlation coefficients bet-
ween the vp solar wind speed with γ-exponent and D-divergence. Then
the third and last columns display the p-values related to correlation coef-
ficients of vp with γ and D, respectively.

Period vp vs. γ p vp vs. D p
Overall −0.21 < 0.001 −0.08 < 0.001
SC23 −0.02 0.17 −0.20 < 0.001
SC24 −0.11 < 0.001 −0.33 < 0.001
min23 0.87 < 0.001 −0.97 < 0.001
asc23 0.28 < 0.001 0.39 < 0.001
max23 −0.14 < 0.001 −0.71 < 0.001
des23 −0.60 < 0.001 −0.05 0.06
min23−24 −0.67 < 0.001 −0.95 < 0.001
asc24 −0.46 < 0.001 −0.21 < 0.001
max24 0.10 < 0.01 −0.03 0.44
des24 −0.01 0.76 0.24 < 0.001
min24 −0.74 < 0.001 −0.81 < 0.001



Chapter 5

Blazars

In one of the first approaches to astrophysical systems through the use of Hori-

zontal Visibility Graph (HVG), we have shown that this method is able to detect dif-

ferences in particle velocity distributions in plasma simulations [20] (see Chapter 3).

Moreover, the HVG has proved to be a robust method to characterize the solar wind

plasma and has been used to study turbulent magnetic field [105], velocity fluctua-

tions [19] and light curves of pulsating variable stars [106]. Being the closest star

to Earth, the Sun and the solar wind are arguably the most studied astrophysical

systems, corresponding to a valuable laboratory of natural plasma physics. During

the last decades, several space missions have been launched and surveyed the spa-

ce environment, making many discoveries. In contrast, the study of distant objects,

such as blazars, has comparatively fewer high-quality datasets available.

Angel and Stockman [107] indicated that the word blazar was proposed by Ed-

ward A. Spiegel in the Pittsburgh Conference on BL Lac Objects in 1978, which is

a combination of BL Lacertae object and quasar. Blazars are a particular type of

active galactic nuclei (AGN). Emission within an AGN is produced by the accretion

of matter from a black hole at its center, where the surrounding material forms an

accretion disk that is heated by the dissipation of gravitational energy, generating

43
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in some cases the expulsion of matter and energy in relativistic jets. An AGN is

powered by the conversion of gravitational potential energy into radiation, although

the rotational kinetic energy of the black hole can also serve as an important energy

source; moreover, plasma jets are formed when the black hole rotates and the ac-

cretion disk is strongly magnetized [29]. The above details comprise what we can

consider the main idea of the unified model of an AGN. This model accounts for ob-

servational differences among AGN, which are due to the different orientations of the

objects as seen from Earth and the different accretion rates and masses of the central

black holes [30]. Observations show that a blazar is an AGN with a jet of matter

moving at relativistic velocities oriented near our line of sight. Blazars are the most

violent AGN, emitting predominantly non-thermal radiation with strong variability

across the electromagnetic spectrum [29], from the radio band to extremely high

gamma-ray energies on time scales that can be as short as minutes. Among blazars,

we can distinguish BL Lacertae (BL Lac) objects, which have weak emission lines

or a featureless continuum in the optical spectrum, and flat-spectrum radio quasars

(FSRQ), which have prominent emission lines in the optical spectrum.

The variability of blazars can be observed in different energy bands. To investigate

the physical mechanisms that generate the observed variations in blazar light curves,

many studies have been carried out at various wavelengths. Some techniques work

from the frequency domain and others work from the time domain. The main tool

of analysis to use in different bands is to determine their Power Spectral Densities

(PSD) [108], since the PSD can provide clues about the mechanism driving the varia-

bility. For instance, Max-Moerbeck et al. [109] have modeled light curves as red noise

processes with the PSD to model the variability and to set constraints on the statis-

tical significance of interband correlations. In addition, light curves and PSDs have
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been investigated with several other methods. Gaussian Process (GP) is especially

useful for analyzing astronomical time-series data, and there are even studies that

have initiated more active methodological discussion on multiband time-series data

by implementing multi-output GP [110]. In Tarnopolski et al. [111], the toolset inclu-

des Lomb-Scargle Periodogram (LSP) [112], wavelet scalogram [113], Autoregressive

Moving Average process (ARMA) [114], Continuous-time ARMA (CARMA) [114],

the Hurst exponent (H) [115] and others. In fact, an algebraic relationship between

the H-exponent of the time series and the exponent of the power-law degree distri-

bution of the visibility graph (non-horizontal) has been obtained. It has been shown

that the exponent of the power-law degree distribution depends linearly on H [116].

H measures the statistical auto-similarity of a time series, i.e., the long-range depen-

dence or memory of a process. Small-scale studies have been made to classify light

curves with the H, where it has been found that two FSRQs and four BL Lac exhibit

long-term memory in the underlying process governing the optical variability of 44

identified blazar candidates [115]. The overall challenge is to apply effective techni-

ques to model the complex nature of light curve variations that occur in different

bands and time scales.

We have started a study of the variability properties in the radio band of blazars

observed with a large-scale, fast cadence 15 GHz radio monitoring program with

the Owens Valley Radio Observatory (OVRO) 40 m Telescope that has produced

12 years of data for over 1800 sources observed twice a week [117]. Thus, this set of

time series corresponds to the most comprehensive study of blazar variability in the

radio band available at this time and is ideal for conducting our study, presenting a

new perspective on the methods commonly used to study AGN. We focus on charac-

terizing the high-energy emission mechanisms of blazars by analyzing the variability
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in the radio band of the light curves of more than a thousand sources. We seek to

describe the light curves, i.e., to analyze the observed flux density as a function of

time of these sources as a first approximation of the complexity parameters in active

galactic nuclei. We are interested in assigning degrees of stochasticity to blazars, mo-

deling the time series of light curves as complex networks. For this purpose, we rely

on visibility algorithms that convert time series into graphs [7], which offers another

perspective for the study of variability in light curves.

In this part of the thesis, we map time series of the light curves with the Horizontal

Visibility Graph algorithm. Thus, we measure the characteristic exponent to describe

their stochasticity (Section 2.2), and the Kullback-Leibler Divergence to describe

their irreversibility (Section 2.3). These metrics, which guide the analysis of our

study, are obtained this time in order to detect a different behavior of the blazar

light curves. We will analyze if the properties of degrees distributions are related

to the spectral classification of blazars, and we are interested in contrasting with a

common measurement of variability in light curves, the excess variance. To the best

of our knowledge, this is the first approach to the study of blazars using HVG, which

manages to identify different ranges of the KLD for different astronomical sources.

The chapter is organized as follows. Section 5.1 explains technical details about these

radio observations and shows a sample of a light curve to illustrate the characteristics

of data series used by this study. Section 5.2 exposes our results after applying the

method on all available blazar light curves.

5.1. Blazar light curves

The blazar subclasses, BL Lac and FSRQ, are defined by the properties of their

optical spectra. The spectra of FSRQs show broad emission lines, while BL Lacs
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show very weak or no emission lines [29, 118]. Other properties of the sources are

also correlated with the subclasses as described in the references above. In this thesis,

we focus on working with observational data of blazars in the radio band.

The OVRO data were obtained from the OVRO 40 m Telescope Monitoring Pro-

gram [117]. The telescope uses off-axis dual-beam optics in which the beamwidth

(FWHM) is 157 arc seconds. The cryogenic receiver uses a HEMT amplifier and

is centered at 15 GHz with 2 GHz equivalent noise bandwidth. Gain fluctuations

and atmospheric and ground contributions are removed with the double-switching

technique where one of the beams is always pointed at the source. Details of the

observation and data reduction [117] cover the absolute calibration and the uncer-

tainties, which include both the thermal fluctuations in the receiver and systematic

errors that have been added under a rigorous procedure [117].

It is important to study the amplitude of variability in AGN light curves. The im-

portance of variability lies in the fact that, being a fundamental property of blazars,

it can be used as a tool to distinguish them from other astrophysical objects [115].

One of the quantities most commonly used to estimate this property is the excess

variance. According to Turner et al. [119], the normalized excess variance is

(σnorm
rms )2 =

1

nµ2

n∑
i=1

[
(Xi − µ)2 − σ2

i

]
, (5.1)

designating the flux density for the n points in each light curve as Xi, with its

arithmetic mean µ and errors σi. The excess variance is useful for comparing the

variability in different light curves. As a first application of complex networks to

radio light curves, we use σnorm
rms to contrast with measures that also distinguish the

amplitude of the light curve variability, now according to its visibility (explained

in Section 2). Note that we use the square root of the excess variance, which is
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also known as the fractional root mean square variability amplitude [120, 121]. Both

quantities give us the same information, but the last one is a linear statistic that

gives the root mean square variability amplitude in percentage terms [108].

If we want to compare our complexity parameters with the intrinsic properties of

the blazar sources, we must consider its anisotropy and associated relativistic effects

in the flux measurement. There are astrophysical objects such as stars, that can

be regarded as spherically symmetric and therefore isotropic emitters. The isotropic

luminosity is simply Li
ν = 4πFνd

2
L, where Fν is the flux density, dL the luminosity

distance which is related to redshift and is computed assuming a ΛCDM model [122].

However, AGN are not isotropic emitters. The flux of a blazar depends on the viewing

angle (see Figure 5.1, because the source emits different amounts of energy depending

on the direction of the relativistic jet. Also, to express the flux in the emitting frame,

F em evaluated at the observed frequency, the transformation between fluxes perceived

in the emission’s frame and observer’s frame has the form F rec
νrec = F em

νrecδ
3+α, with δ

the Doppler factor. A Lorentz boosting factor of δ3+α for a power-law radiation

spectrum Fν ∝ ν−α results when comparing the fluxes at the same frequency in

both frames [123]. Then, with these two corrections to the isotropic luminosity and

integrating from the source in the two orientations of the jet, the following is obtained

Lν = 4πd2LF
rec
νrecδ

−(3+α)

∫ π/2

0

e

−(θ2−θ2v)
2θ2op sin θdθ , (5.2)

where θop is the intrinsic opening angle of the jet lobe, and θv is the viewing angle,

as illustrated in Figure 5.1. The jet opening angle can largely influence the observed

jet emission [124].



49

Figure 5.1: A simple model of a blazar. The model includes a jet and a
symmetric counterjet. The jet is characterized by an opening angle and a
viewing angle to the line of sight to the observer. This anisotropy needs
to be considered to properly derive the intrinsic luminosity.

5.2. Results

We analyze the physical properties that could be conditioning the behavior of the

light curves using DHVG and UHVG. Initially, we work with a data set that contains

1298 sources, where 400 are BL Lac and 898 are FSRQ. The optical classes are taken

from the Roma BZCAT Multi-Frequency Catalog of Blazars 5th edition. The Multi-

Frequency Catalogue of Blazars is one of the most complete lists of Active Galactic

Nuclei whose emission properties are recognized as typical of blazars. It includes

the list of sources and an essential compilation of multifrequency data from radio to

gamma rays [125].

We applied the HVG algorithm to the time series of the light curves of blazars

finding an exponential behavior on the degree probability distributions in most light

curves, as shown in Figure 5.2 for both methods UHVG (black dots) and DHVG
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(color solid lines). Once we calculate the degree probability distribution P (k) of the

UHVG, we proceed to compute the critical exponent γ as the slope of the semilog

plot with the method of least squares in a range from k = 3 to some k with the

lowest probability, without including it and avoiding the low probability floor in the

heavy tails (see Figure 5.2b in Section 5.2). When making this adjustment, we find

that some degree probability distributions did not fit an exponential, so we discarded

those light curves.

Figure 5.2: (a) Example radio light curve for the blazar PKS
1502+106 [126], a FSRQ source. (b) Semilog plot of degree distributions
from DHVG, Pin in magenta and Pout in red, and from UHVG, P in black
dots with their fit on the dashed line. The value of the normalized excess
variance (σnorm

rms )2 of the light curve, D, from the distance between degree
distributions ingoing and outgoing, and γ, from the exponential beha-
vior P (k) ∼ e−γk, are shown.

As from the fit for the slope in the semilog plots for P (k) required to obtain the

γ-exponent from the exponential form P (k) ∼ e−γk (described in Section 2.2), we

proceeded to select source by source such that its degree distribution was represented

in this exponential behavior. Figures 5.3 and 5.4 show six of the 843 selected FSRQ

sources, and six of the 380 selected BL Lac sources, respectively. Figures 5.5 and 5.6

show six of the 55 discarded FSRQ sources, and six of the 20 discarded BL Lac sour-
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ces, respectively, in which some characteristics escape from the adequate behavior to

assign a representative γ value to the curve. Thus, just 5 % of BL Lac and 6.1 % of

FSRQ are discarded because they deviate from the exponential model being fit. We

are still left with 843 FSRQ and 380 BL Lac sources.

Now, having the degree distributions well-adjusted for each light curve, we have

the critical exponent γ (UHVG) per source and we plot the PDF for these data

sets, as is shown in Figure 5.7a. The statistical detail of those PDFs analyses is in

Table 5.1. Figure 5.7a shows a clear difference between the light curves of BL Lac and

the FSRQ. With a dotted line, we mark the limit proposed by Lacasa and Toral [16]

between stochastic time series and chaos for the UHVG analysis. From Figure 5.7a,

we observe when plotting the PDFs that the PDF curves separate around this limit.

That is, the BL Lac sources have a peak of the γ PDF on the left of the dotted line,

with γ = 0.392, whereas the FSRQ sources show the peak of the γ PDF on the right

of the limit γun ≈ 0.405, with γ = 0.446. Thus, following Reference [? ], most BL

Lac light curves show a chaotic behavior, while most FSRQ light curves show a time

series with a correlated stochastic behavior.

As a second analysis, we calculate the KLD using the technique explained in

Section 2.3. The results obtained for D correspond to a smoother weighting of the

original values. So, it is possible to analyze cases of high irreversibility without ne-

cessarily assigning an infinity. Figure 5.7b shows the PDF for the value of D, which

is a measure of the irreversibility of the time series. In this case, both classes of light

curves show the same behavior of this parameter, low values of D between 10−3 and

10−1 as is shown in Table 5.2, but the peaks of these PDF do not show a difference

between BL Lac and FSRQ.

As complementary analysis to the usual calculation of the KLD, we also calculate
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Figure 5.3: Examples of selected probability distribution fits to FSRQ
light curves. Degree distributions P (k) in blue dots with their fit with a
dashed black line.
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Figure 5.4: Examples of selected probability distribution fits to BL Lac
light curves. Degree distributions P (k) in blue dots with their fit with a
dashed black line.
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Figure 5.5: Examples of discarded probability distribution fits for FSRQ
light curves. Degree distributions P (k) in blue dots with their fit with a
dashed black line.
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Figure 5.6: Examples of discarded probability distribution fits for BL Lac
light curves. Degree distributions P (k) in blue dots with their fit with a
dashed black line.
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Figure 5.7: Probability density function (PDF) of (a) γ, (b) log(D), and
(c) log(Db) values for the different subclasses of blazars. Yellow for FSRQ
and blue for BL Lac. There are 843 FSRQ and 380 BL Lac sources. With
the dotted line in (a), we mark the limit γun ≈ 0.405 between correlated
stochastic and chaotic time series [16].
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our statistical measure KLD from the bootstrap resampling technique [127], whose

purpose is to take into account the observational uncertainty inherent in the data

and non-uniform sampling. The bootstrapping basically consists of having a parent

data sample Y= {Yi}i=1,...,m of m elements, we generate bootstrap samples Y∗ by

extracting m elements with random replacement from the parent list, keeping their

temporal occurrence. In our case, we perform this process 1000 times, in which

we compute the KLD for each bootstrap sample (using the smoothing technique

explained in Section 2.3). Then, we choose the median of this process, Db. Thus,

Figure 5.7c shows the PDF for the value of Db. As in Figure 5.7b, both classes of

light curves show the same behavior for the bootstrap KLD. There are much lower

values of Db since they are now on the order of 10−2 as shown in Table 5.3, without

yet finding much difference between BL Lac and FSRQ. This reiterates what was

obtained from the original time series in Figure 5.7b.

Table 5.1: Statistical information on the γ values from Figure 5.7a, i.e.,
the peaks of PDFs, the mean, median, standard deviation, minimum and
maximum values, and the 25 % and 75 % percentiles of the sample.

γ Exponent
Class peak mean median std min 25% 75% max
FSRQ 0.446 0.449 0.447 0.052 0.306 0.413 0.482 0.598
BL Lac 0.392 0.419 0.409 0.053 0.319 0.381 0.451 0.600

Table 5.2: Statistical information on the D values from Figure 5.7b, i.e.,
the peaks of PDFs, the mean, median, standard deviation, minimum and
maximum values, and the 25 % and 75 % percentiles of the sample.

D Divergence
Class peak mean median std min 25% 75% max
FSRQ 0.026 0.031 0.027 0.019 0.002 0.018 0.041 0.170
BL Lac 0.030 0.034 0.029 0.025 0.003 0.019 0.043 0.253
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Table 5.3: Statistical information on the Db values from Figure 5.7c, i.e.,
the peaks of PDFs, the mean, median, standard deviation, minimum and
maximum values, and the 25 % and 75 % percentiles of the sample.

Db Divergence
Class peak mean median std min 25% 75% max
FSRQ 0.023 0.025 0.023 0.007 0.010 0.019 0.029 0.058
BL Lac 0.024 0.026 0.025 0.008 0.014 0.021 0.031 0.084

In order to find possible correlations between parameters of the complex network

extracted from these time series and a physical measure of variability in AGN, we

compare the values of σnorm
rms (from Equation 5.1), that is the square root of the

normalized excess variance [119], with the critical exponent γ in Figure 5.8a and with

the divergences D and Db in Figures 5.8b–c, which are all dimensionless quantities.

From the previously selected sources, we found using NASA/IPAC Extragalactic

Database (NED)1 the redshift of 88 BL Lac and 829 FSRQ sources, so we calcu-

late the luminosity distance (with the cosmological parameters given in Aghanim

et al. [122]). Also, we use the median of the flux density of the radio light curves

under study, because a large flare moves the mean a lot, but does not significantly

affect the median. Given all this, we calculate the isotropic radio luminosity, Li
ν ,

as shown in Figures 5.9a–c. Next, as preliminary results to contrast our comple-

xity parameters with the corrected luminosity in the radio band, Lν , we use the

MOJAVE-XIV survey by Pushkarev et al. [128]. This catalog, which is provided by

the Monitoring of Jets in Active Galactic Nuclei with the VLBA Experiments (MO-

JAVE) project, collects the largest number of sources to which the Doppler factor,

and viewing and intrinsic opening angles are reported. Thus, we calculate the lumi-

nosity emitted by the jet considering the corrections described by Equation 5.2. The

1https://ned.ipac.caltech.edu

https://ned.ipac.caltech.edu
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Figure 5.8: Scatter plots of square root of the normalized excess variance
vs. (a) γ, (b) D, and (c) Db. Yellow for FSRQ and blue for BL Lac. There
are 843 FSRQ and 380 BL Lac sources.
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spectral indexes of the jet cores are similar between the BL Lac and FSRQ optical

classes of the MOJAVE program sample sources, and on average are close to being

flat, specifically αcore = 0.22 ± 0.03 [129]. In our study for some simplification and

understanding that we do not have the spectral index for all remaining sources, we

use α = 0. These results are shown in Figures 5.9d–f.

Figure 5.9: Scatter plots of (left) isotropic radio luminosity and (right)
corrected radio luminosity vs. (a, d) γ, (b, e) D, and (c, f) Db. The left
panel shows 829 FSRQ and 88 BL Lac sources, while the right panel
shows 40 FSRQ and 9 BL Lac sources.
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We note that Figure 5.9 generally shows a large scatter in the values for the

values of γ and D (with Pearson correlation coefficients between −0.10 and 0.11,

without considering spectral classification), suggesting independence of the isotropic

luminosity. However, in the left panel, γ shows slightly less scatter relative to Li
ν ,

especially for BL Lac sources that have a Pearson correlation coefficient of 0.45 and a

p-value of less than 0.001. Although this is not a new fact, since from the histograms

we already saw that it can differentiate between spectral classes. Referring to the

results obtained for the corrected luminosity Lν in the right panel of the Figure 5.9,

there are still too few points for a robust statistical behavior to be established. The

reason there are fewer dots in the right panel is because there are still few sources

for which their jet parameters are known.

One might think that if there is a linear relationship between both luminosities,

we could compensate for the missing information from the sources and thus not lose

the consistency of the statistics. But Figure 5.10 shows the independence of both

magnitudes, which would not allow transforming the isotropic to the corrected one

so directly. Thus, knowing the viewing and opening angles, the redshift, the Doppler

factor, and even the spectral index, is relevant for a proper search of intercorrelations.
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Figure 5.10: Scatter plot for corrected radio luminosity νLν vs.
isotropic radio luminosity νLi

ν(at 15 GHz). The log-log fits are: for
all sources without considering spectral classification (dashed black
line): y = −0.009x + 45.460, for BL Lac sources (dashed blue li-
ne): y = −0.026x + 45.080, for FSRQ sources (dashed yellow line):
y = −0.014x + 45.965. Results with p-values greater than 0.6.



Chapter 6

Discussions and Conclusions

We have extended the limits of the applications of the Horizontal Visibility Graph

method by dealing with time series of plasma simulations and with two astrophysi-

cal systems: solar wind and blazars. Each system involved different challenges to be

faced. From the HVG model, we derived degree distributions that give information

about time correlations, from which we calculate two important parameters: the cri-

tical exponent, γ, and the Kullback-Leibler divergence, D. As D moves away from

D = 0, the physical mechanism generating the time series moves away from reversi-

bility and we are in the presence of a dissipative system; γ allows us to discriminate

between correlated stochastic or uncorrelated chaotic time series in relation to the

limit value γun ≈ 0.405 proposed by Lacasa and Toral [16].

Below, we will summarize the discussions on each system individually: PIC simu-

lations, solar wind and blazars. And finally, we conclude this thesis as a whole.

6.1. Discussion of PIC simulations results

In this study we have modeled a turbulent plasma as a complex network, applying

the method known as Horizontal Visibility Graph to study the reversibility on mag-

netic fluctuations. We have developed algorithms to build HVGs from magnetic field

63
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fluctuations time series obtained from PIC simulations of collisionless magnetized

plasmas. We have analyzed three cases for the time series: a time series of a plas-

ma far from the thermodynamic equilibrium (κe = 3), a time series closer to the

thermodynamic equilibrium (κe = 15), and a Maxwell-Boltzmann distribution, re-

presenting a plasma in thermal equilibrium. For these three time series, we have

computed the degree distribution of the connectivity, which gives information asso-

ciated with the time correlations in the distribution, and the KLD, which provides

information related to the reversibility of the time series.

In the case of the degree probability distribution:

1. We have found an exponential behavior for all cases analyzed, i.e, short-range

correlations for all time series (Kappa and Maxwell-Boltzmann distributions).

Our results show that the decaying critical exponent γ is the largest for the

Maxwellian-Boltzmann distribution, and decreases with decreasing kappa va-

lue. Moreover, for κe = 3 the critical exponent is closer to the limit value

γun = ln(3/2) in which the time series becomes uncorrelated, being chaotic for

smaller values (γ < γun). These results suggest a lower time correlation for

κe = 3 than the Maxwell-Boltzmann distribution, which is consistent with the

fact that in collisionless plasmas out of thermodynamic equilibrium long-range

interactions dominate [58]. As already mentioned, in all cases our simulations

correspond to isotropic plasmas that are steady-state solutions of the Vlasov

equation. Thus, the electromagnetic fluctuations correspond to spontaneous

emissions of a system composed of discrete charged particles in random mo-

tion. Consequently, the fluctuations provide information about the smallest

scales where fast short-range interactions dominate. In the case of a plasma

system these scales are strongly related to the Debye length λD.
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2. Inside the Debye sphere (a sphere of radius λD) particles interact individually,

and outside the Debye sphere, long-range collective interactions dominate. This

is directly related to the correlations between the particles that produce the

magnetic fluctuations, which depend on the shape of the velocity distribution

function. In the case of Kappa distributions the Debye length of the plasma is

a decreasing function of κ that collapses to zero for κ = 3/2 [130]. Therefore,

in plasmas described by a Kappa VDF, the short-range correlations are less

effective since the Debye length is smaller. Outside the Debye sphere the ther-

mal energy dominates the potential energy and the correlations are practically

dissolved [51]. In contrast, since the Debye length is greater, in a Maxwellian

plasma the short-range correlations dominate, as they decay faster, both tem-

porally and spatially. Regarding our results, this is reflected in the gamma

value that seems to behave as a increasing function of κe.

In the case of the KLD:

3. For both the original and detrended time series, we have obtained low values

of the divergence D for all cases, which is consistent with plasmas in a steady

state according to the Vlasov equation. However, the method has shown to be

sensitive enough to distinguish higher values of irreversibility for the Kappa

distribution than the Maxwell-Boltzmann case. The irreversibility associated

with the Kappa distributions is related to the non-extensive nature of these

distributions [131], showing an increase in the value of the KLD for decreasing

values of κ.

4. The increase in the value of the KLD indicates a larger value of the entropy in

the system. For Kappa distributions following the dynamics of a non-collisional
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plasma, particles lose individuality and interact collectively increasing the en-

tropy [58]. On the other hand, the Maxwell-Boltzmann distribution shows

low values for the KLD, consistent with the Gibbs-Boltzmann entropy. The

Maxwell-Boltzmann distribution is related to low values of entropy, in contrast

to non-thermal Kappa distributions where it is possible to find a higher (non-

extensive) entropy, associated to electromagnetic long-range interactions that

dominate the dynamics in the plasma.

In summary, considering only the limited information provided by the time se-

ries, our results seem to indicate a robust relation between the shape of the VDF

(given by the Debye length and its dependence on κ) and the nature of the corre-

lations dominating the magnetic field fluctuations time series represented by γ [16].

The connectivity probability distribution shows how the Kappa distribution for low

values of κ tends to produce uncorrelated time series, while the Maxwell-Boltzmann

distribution shows a stochastic time series behavior. Furthermore, we can see that

the KLD associated to the HVG is able to distinguish the level of reversibility in

the time series obtained from PIC simulations, and this reversibility seems to be

associated with the thermal equilibrium in the plasma. Our results suggest a high

sensitivity of the HVG algorithm and a relationship between KLD, κ, and the en-

tropy of the system. The technique applied here has allowed us to address the role

of non-thermal particles distributions in poorly collisional plasma environments.

6.2. Discussion of solar wind results

In this study, we extracted the information presented in time series of solar wind

magnetic fluctuations from 1995-01-01 to 2019-12-31, approximately during the so-

lar cycles 23 and 24, with the HVG model that establishes a geometric connection
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criterion based on the variability, sequence, and precedence of each data point of the

series. By calculating the time evolution of D and γ parameters, we can study the

dissipative and stochastic features of the Sun by periods. We have analyzed these

values as a function of solar activity (in terms of solar cycles and solar cycle phases)

and solar wind speed (slow and fast solar wind).

In terms of solar activity we conclude that:

1. The HVG method detects differences in intensity between SC23 and SC24 (it

can be seen in Figure 4.4). Previous studies show that SC24 had the lowest

activity in terms of sunspots, even compared to the last five previous solar cy-

cles [102]. From a general analysis between SC23 and SC24, γ-exponent reaches

its minimum values in SC23 (Figure 4.3a), while D-divergence was lower for

SC24. Then, the γ behavior suggests that during both solar cycles, the magne-

tic fluctuations of the solar wind at 1 AU from the Sun are correlated stochastic

time series, not chaotic. At large scales, magnetic fluctuations have a rather

Gaussian behavior regardless of the type of wind [82]. This can be observed

in the model of energy transfer among scales under the Langevin equation ap-

plied by Gallo-Méndez and Moya [132], whose study agrees with that of Greco

et al. [133] in that the Probability Density Function (PDF) of Partial Varian-

ce of Increments (PVI) of the magnetic fluctuations present more Gaussian

distributions at the fluid scale. This Gaussian PDF of PVI is associated with

Brownian motions in the solar wind, which corresponds to a properly stochas-

tic process. Also, we realize that D indicates correlation with solar activity,

and in contrast, γ-exponent indicates anti-correlation with solar activity. The

anti-correlation by period between these two complexity parameters is verified

in Figure 4.3c. So, this plasma has turbulent structures such that when the
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physical dissipative processes are less effective at large scales, they generate

more correlated stochastic magnetic fluctuations. In any case, the intercorre-

lations vary throughout the solar cycle (see Table 4.3) because different Sun’s

magnetic configurations were possible in these cycles, even during too quiet

periods, and the decrease in the index Sn may differ from the evolution of the

interplanetary magnetic field [102].

2. Exploring throughout solar phases, the minimum phases of each cycle coincide

with the reversibility range of the KLD, and the maximum phases are recogni-

zed as larger values of KLD. Since D is a ratio between outgoing and incoming

connections, when D increases, it indicates that the distribution of relative

magnitudes in the data is different between their forward and backward visi-

bility within the network, which makes the time series more irreversible. The

transfer of fluctuations in the turbulent solar wind is a memoryless process, i.e.

a Markovian process [134]. As greater irreversibility (Markovian processes) is

observed in solar maxima, large-scale instabilities, which are understood to be

the physical mechanisms responsible for the generation of turbulence, would be

dominating in these periods. Thus, at minima, the fluctuations are less complex

and less turbulent. In addition, the γ value seems to increase with decreasing

magnetic activity in the Sun, i.e., fewer sunspots in the photosphere. This cal-

culation means that the distribution of connections is more concentrated, i.e.,

a few nodes share all the connections. In summary, from Table 4.1 and 4.2, this

study reveals that γmin > γdes > γasc > γmax, and Dmin < Ddes < Dasc < Dmax,

in terms of solar phases. Thus the complexity parameters calculated here are

consistent with physical behavior.
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3. With the chosen time scale to calculate the complexity parameters in the study

and the yearly smoothing applied, we observed that each phase contains its own

peak in the value of D. This relation could provide relevant and complementary

information to the sunspot number measurement and possible forecasts of the

solar cycle. Namely, if a peak in D has occurred, it would be possible to estimate

that the phase is coming to its end. Moreover, the fact that the minimum phases

are captured by the reversibility range suggests that the series has memory at

those times, which is related to non-Markovian processes. Such behavior could

robustly contribute to the predictability of the onset of a solar cycle. Thus, the

KLD can be useful as a statistical measure to compare behaviors toward the

future with behaviors toward the past. However, more supporting information

would be needed to corroborate this idea.

In addition, regarding solar wind speed, we have found that:

4. Given the classification between fast and slow wind according to the speed, the

exponent γ behaves uniformly. Its variations for fast and slow solar wind con-

cerning the general (unclassified) behavior are not at all evident (Figure 4.3a).

This conclusion is in agreement with the results of Sorriso-Valvo et al. [84], in

which they indicated that the intermittency (interpreted as the result of the

multifractal properties of the turbulent cascade and due to the contribution

non-Alfvénic structures [80]) of the magnetic field intensity was similar for the

slow and fast wind. On the other hand, directed degree distributions can clearly

distinguish the type of solar wind due to the KLD. From Table 4.2, the slow

wind, which is more variable, is precisely the type of wind that achieves the

highest values in the D-divergence, except in the ascending phase, where only
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the median corroborates this and not the mean, see Figure 4.3b. Although the

fast wind has generally been observed to be less intermittent than the slow

wind [135] since the fast wind is more Alfvénic than the slow wind, Wawrzas-

zek et al. [80] surprisingly detected that the magnetic field turbulence of the

slow solar wind was less intermittent at the SC23 maximum. From our results,

we did not observe any peculiarity in the SC23 maximum that could support

the idea of a new type of slow Alfvénic wind. However, in the ascending phases,

the slow wind turned out to be less irreversible. Perhaps, this method could

detect the presence of Alfvénic slow wind (with some characteristics common

to the fast wind) before the maximum phases.

5. In Figure 4.5 the critical exponent and KLD have a dynamic intercorrelation

throughout the cycles. However, in Table 4.4 γ does not tend to exhibit sig-

nificant linearity with solar wind speed. Figure 4.5b shows an anti-correlation

between the D-divergence and the solar wind proton bulk speed. This anti-

correlation, according to the numbers in Table 4.4, is most significant at the

minimum of each cycle, which could also allow us to estimate the start of a

cycle combined with the fact that in the minimums D distinguishes better the

slow solar wind from the fast solar wind.

6. The HVG technique to distinguish fast solar wind from slow wind seems more

useful during solar minimum than other phases. This ability is likely because

the minimum phase is when the Sun’s magnetic field is more dipolar, and

the solar wind structure is less complex. On the other hand, at the maximum

phase, the solar wind is a particularly nonlinear combination of various solar

wind types. McComas et al. [93] state that the current sheet is complex and



71

dynamic in itself, but around the maximum phase, highly variable solar wind

fluxes are observed at all heliolatitudes, which change the configuration of the

current sheet structure as a whole. Our results indicate that the slow solar

wind is more dissipative than the fast wind, in terms of magnetic fluctuations,

in most phases of the cycle. Further improvement in the solar wind classification

procedure by considering additional parameters than just speed [80] will allow

a more conclusive verification of this analysis.

In summary, our results suggest that the intercorrelations of the complexity para-

meters with the sunspot number index are persistent in time. They are appreciated in

long periods, in this case from 1995 to 2019, or by solar cycle, and in shorter periods

they are not lost either. In contrast, with the proton bulk speed, the intercorrelations

are short-range in time and are only best analyzed on shorter time scales, such as

solar phases. Both γ and D show larger and more statistically significant interco-

rrelations with sunspot number, rather than with solar wind speed. According to

the observational data input and the degree distributions output through the HVG

method, our results are consistent with the complex nature of solar wind turbulence

at 1 AU and its relation with the complexities of the solar cycle and the Sun.

6.3. Discussion of blazar results

We have applied the method of DHVG and UHVG to a sample of 1298 light

curves measured from blazars. From this analysis:

1. We find an exponential behavior on the degree probability distribution P (k)

for most studied sources (Figure 5.2b). We compute the critical exponent γ

from the P (k) in the UHVG, noting that the degree distributions are capable
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of detecting differences in the spectral classification of blazars, as is shown in

Figure 5.7a. In fact, the division between the peak reached by the PDF of

γ for the BL Lac sources is on the left of the γun limit; meanwhile, the peak

reached by the PDF of γ for the FSRQ sources is on the right of this limit. That

difference suggests a chaotic behavior in the time series for the BL Lac sources

and a correlated stochastic behavior in the time series for the FSRQ sources

although with a large overlap between these two classes. This result indicates

that the distribution of the degrees, i.e., how the flux density is distributed in

time, is not the same for the light curves sources studied. So, the distribution

of the degree k of the classes of light curves is not the same, and it seems

that the critical exponent γ from the exponential adjustment could be useful

to distinguish between these two types of blazars. On the other hand, when

measuring the irreversibility of the time series with the DHVG, the distance D

does not have the ability to separate the two types of blazars (Figure 5.7b).

2. In Figure 5.8a-b, we plot the critical exponent γ (UHVG) versus the square

root of the normalized excess variance, and the same for parameter D (DHVG),

in order to explore a possible correlation between the obtained complex net-

works and a variability parameter of blazars. The normalized excess variance

is a quantity that indicates the observed relative strength of the variability of

an astronomical source. Figure 5.8a shows a weak tendency for blazar classes,

whereas the KLD and the normalized excess variance do not seem to exhibit

a significant correlation in Figure 5.8b. However, as a first approach to the

study of blazars with HVG, in Figure 5.8b, we managed to identify a wide

range of D values among all sources (between 10−3 and 10−1 from Table 5.2)

but without distinguishing between subclasses. And in Figure 5.8c, with the
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bootstrap method the range of D is bounded to the order of 10−2, but the

KLD continues to not distinguish between subclasses. It would be convenient

to calculate the γ value through the bootstrap method as well. On the other

hand, it is recommended that for better comparison among sources, the nor-

malized excess variance should be calculated using observations of the same

duration [119]. This data set contains time series from 259 to 1140 data points.

Therefore, even if we could truncate the light curves to match the shortest ob-

servation, this would considerably reduce our data set and analysis. However,

these quantities may not be the best parameters to consider.

3. In Figures 5.9 and 5.10 we have looked for correlations with the isotropic lu-

minosity, and also with the luminosity corrected for anisotropy and relativistic

effects associated with the jet emission. However, preliminary results do not

yield an apparent dependence of the complexity parameters on the luminosity

of the sources. Moreover, the results of the KLD divergence through the boots-

trap method shown in Figures 5.7c, 5.8c and 5.9c-f do not improve the analysis

of correlations or the detection of the spectral classes of blazars with the KLD.

One aspect we can report is that the scatter plot in Figure 5.9a groups most of

the BL Lac sources below the limit γun at weaker isotropic radio luminosities,

while the FSRQ sources are mostly above the limit at higher isotropic radio lu-

minosities. The fact that the FSRQ sources have a higher isotropic luminosity

is consistent with the blazar sequence [136].

We will continue the analysis using other tools from complex networks analysis

as well as other physical parameters such as the black hole masses, radio spectral

indices, or jet parameters. Although we did not find a clear correlation between γ or

D with the normalized excess variance or blazar luminosities, the PDF of the critical
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exponent of the degree probability distribution does show a clear difference between

the two blazar classes.

6.4. Conclusions

On the whole, first, in Chapter 3 we validated the computational implementation

of the Horizontal Visibility Graph algorithm on PIC simulations of magnetized plas-

ma, where we tested with different parameters related to the velocity distributions of

the particles which compose the plasma. Second, in Chapter 4 we described qualita-

tively the correlation between complexity parameters and solar activity, classifying

between slow and fast wind during solar cycles 23 and 24 at 1 AU. And third, in

Chapter 5 we found correlations with the physical characteristics of blazars.

As a final observation, the Kullback-Leibler Divergence (Equation 2.5) proved

to be sensitive enough to detect differences in magnetic fluctuations of both PIC

simulations and the solar wind, while the critical exponent gamma (Equation 2.4)

showed some ability in distinguishing between spectral classes of blazars based on

the variability of light curves in the radio band.

Other ways to analyze the complex networks and their degrees distribution P (k)

also can be considered. For instance, in many cases, it is useful to consider also

the complementary cumulative distribution function or CDF of a variable with a

power-law distribution [38, 137]. However, here, we have systematically obtained ex-

ponential distributions represented by the γ exponent. Thus, here, we have focused

on the use of the HVG as a method to distinguish between slow and fast wind in

the case of the solar wind, and between BL Lac and FSRQ in the case of blazars.

To tackle this purpose, we have used the HVG and analyzed the distribution of the

values of the γ exponent. In addition, it is known that when using the HVG, any
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random series results in a network with a degree distribution of exponential type, and

it has been suggested that this is a universal feature [106]. If exponential forms are

not obtained, the series are related to non-randomness [15]. Nevertheless, it would

be interesting to explore with the CDF to obtain perhaps a more robust statistical

fitting, as discussed in the study of Zhang et al. [38].

We expect all the features observed in Chapter 3 on Kappa-distributions will

provide a framework in which complex networks analysis may be used as a relevant

tool to characterize turbulent plasma systems, and also as a proxy to identify the

nature of electron populations in space plasmas at locations where direct in-situ

measurements of particle fluxes are not available.

The results of Chapter 4 could be relevant for the understanding of the physics

of the solar wind. We hope that this type of analysis, used in complex networks and

systems science, can contribute to heliophysics through tools that allow data to be

analyzed in new ways, even when information is limited. Our analysis could be of

interest for the complementarity of physical variables that are possible to measure

thanks to the progress of space exploration, but also as an approach to characterize

stellar activity and stellar winds only reachable through distant observations.

Also, our results of Chapter 5 may provide some evidence for different mechanisms

producing the variability in the two source spectral classes (BL Lac and FSRQ), and

also open a new framework for the study of blazars, in which complex networks may

be a valuable alternative tool to study AGN according to the variability of their flux

density.

In closing, based on the time series associated with our systems under study,

this method of constructing complex networks has delivered parameters that have

characterized them in a physics-consistent manner. We have examined the intercorre-
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lations responsible for the physical processes that generated the time series. We have

discussed in terms of relevant systems descriptors related to dissipative characteris-

tics, such as irreversibility, stochasticity, and complexity. Considering all of these,

this thesis supports a novel study methodology for heliophysics and extragalactic

astrophysics. Thus, complex networks can be a valid choice to study astronomical

observations concerning the fluctuations and variability in the information presented

in their time series.
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[18] L. Telesca, D. Pastén, and V. Muñoz, “Analysis of time dynamical features in

intraplate versus interplate seismicity: The case study of Iquique area (Chile),”

Pure and Applied Geophysics, vol. 177, pp. 4755–4773, 2020.

[19] V. Suyal, A. Prasad, and H. P. Singh, “Visibility-graph analysis of the solar

wind velocity,” Solar Physics, vol. 289, no. 1, pp. 379–389, 2014.

[20] B. Acosta-Tripailao, D. Pastén, and P. S. Moya, “Applying the Horizontal

Visibility Graph Method to Study Irreversibility of Electromagnetic Turbulence

in Non-Thermal Plasmas,” Entropy, vol. 23, no. 4, p. 470, 2021.

[21] R. Kawai, J. M. Parrondo, and C. Van den Broeck, “Dissipation: The phase-

space perspective,” Physical Review Letters, vol. 98, no. 8, p. 080602, 2007.

[22] T. M. Cover and J. A. Thomas, “Elements of information theory second edition

solutions to problems,” Internet Access, 2006.

[23] E. Parzen, Stochastic processes, ser. Classics in Applied Mathematics 24. So-

ciety for Industrial and Applied Mathematics, 1999.

[24] M. L. Goldstein, D. A. Roberts, and W. Matthaeus, “Magnetohydrodynamic

turbulence in the solar wind,” Annual Review of Astronomy and Astrophysics,

vol. 33, no. 1, pp. 283–325, 1995.



81

[25] R. Schwenn, “Solar wind sources and their variations over the solar cycle,” in

Solar Dynamics and Its effects on the Heliosphere and Earth. Springer, 2007,

pp. 51–76.

[26] V. Suyal, A. Prasad, and H. P. Singh, “Hysteresis in a solar activity cycle,”

Solar Physics, vol. 276, no. 1-2, pp. 407–414, 2012.

[27] S. Redaelli and W. M. Macek, “Lyapunov exponent and entropy of the solar

wind flow,” Planetary and Space Science, vol. 49, no. 12, pp. 1211–1218, 2001.

[28] K. Gupta, A. Prasad, E. Saikia, and H. P. Singh, “Analysis of the solar wind

flow during an activity cycle,” Planetary and Space Science, vol. 56, no. 3-4,

pp. 530–536, 2008.

[29] R. Blandford, D. Meier, and A. Readhead, “Relativistic Jets from Active Ga-

lactic Nuclei,” Annual Review of Astronomy and Astrophysics, vol. 57, pp.

467–509, 2019.

[30] C. M. Urry and P. Padovani, “Unified schemes for radio-loud active galactic

nuclei,” Publications of the Astronomical Society of the Pacific, vol. 107, no.

715, p. 803, 1995.
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[115] N. Żywucka, M. Tarnopolski, M. Böttcher,  L. Stawarz, and V. Marchenko,

“Optical variability modeling of newly identified blazar candidates behind Ma-

gellanic Clouds.”

[116] L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, “The visibility graph: A new

method for estimating the hurst exponent of fractional Brownian motion,”

Europhysics Letters, vol. 86, no. 3, p. 30001, 2009.

[117] J. L. Richards, W. Max-Moerbeck, V. Pavlidou, O. G. King, T. J. Pearson,

A. C. Readhead, R. Reeves, M. C. Shepherd, M. A. Stevenson, L. C. Weintraub

et al., “Blazars in the FERMI Era: The OVRO 40 m telescope monitoring

program,” The Astrophysical Journal Supplement Series, vol. 194, no. 2, p. 29,

2011.

[118] T. Hovatta and E. Lindfors, “Relativistic Jets of Blazars,” New Astronomy

Reviews, vol. 87, p. 101541, 2019.

[119] T. Turner, I. George, K. Nandra, and D. Turcan, “On X-ray variability in

Seyfert galaxies,” The Astrophysical Journal, vol. 524, no. 2, p. 667, 1999.

[120] R. Edelson, J. Krolik, and G. Pike, “Broad-band properties of the CfA Seyfert

galaxies. III-Ultraviolet variability,” The Astrophysical Journal, vol. 359, pp.

86–97, 1990.

[121] P. Rodriguez-Pascual, D. Alloin, J. Clavel, D. M. Crenshaw, K. Horne, G. A.

Kriss, J. H. Krolik, M. A. Malkan, H. Netzer, P. T. O’Brien et al., “Steps

toward determination of the size and structure of the broad-line region in active

galactic nuclei. IX. Ultraviolet observations of Fairall 9,” The Astrophysical

Journal Supplement Series, vol. 110, no. 1, p. 9, 1997.



94

[122] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardi-

ni, A. Banday, R. Barreiro, N. Bartolo, S. Basak et al., “Planck 2018 results-VI.

Cosmological parameters,” Astronomy & Astrophysics, vol. 641, p. A6, 2020.
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