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REDES NEURONALES DE GRAFOS SIMPLES Y EFICIENTES

El éxito de los modelos de aprendizaje profundo en datos Euclideanos es innegable. Esto,
en conjunto con la prevalencia de datos no Euclideanos ha resultado en una importante alza
en popularidad de modelos de aprendizaje profundo para este tipo de datos. En particular, las
redes neuronales de grafos (GNN) se han vuelto uno de los principales modelos de aprendizaje
automático para grafos. Debido a su gran popularidad, se han utilizado en aplicaciones
relacionadas a redes de citaciones, redes sociales y estructuras moleculares. La popularidad y
rápido desarrollo de GNNs ha resultado en modelos cada vez más complejos, que utilizan una
gran variedad de trucos para alcanzar el estado del arte. Debido al enfoque que se le ha dado
a modelos complejos, los investigadores no han estudiado GNNs más simples en detalle. En
el siguiente trabajo proponemos GNNs más simples que: i) logran resultados comparables
al estado del arte en varios conjuntos de datos y tareas; ii) requieren un menor número de
cómputos que modelos comprables. Los resultados muestran que los componentes básicos de
las GNNs se deberían estudiar en mayor detalle para entender qué componentes contribuyen a
su rendimiento. Los resultados invitan a enfocar más investigación de GNNs en la simplicidad
de los modelos, buscando entender sus componentes, en vez de agregar complejidad a éstos
para obtener mejoras marginales de rendimiento.
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SIMPLE AND EFFICIENT GRAPH NEURAL NETWORKS

The undeniable success of deep learning models in Euclidean data, combined with the recent
prevalence of non-Euclidean data has resulted in a surge in popularity of deep learning models
for this type of data. In particular, graph neural networks (GNN) have gained significant
popularity for graph-structured data, finding use in a variety of areas such as citation networks,
social networks and molecules. The hasty development of GNNs has resulted in increasingly
complex models that use a variety of tricks to obtain state-of-the-art results. Due to their
infatuation with more complex models, researchers have glossed over simpler models, both
in terms of number of parameters and computational complexity. In the following work, we
propose simpler GNN models that: i) achieve comparable performance to state-of-the-art
models in a variety of benchmarks; ii) require less computation than comparable models. The
results invite more GNN research to focus on simplicity and understanding of the models
rather than adding complexity for marginal gains.
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Chapter 1

Introduction

1.1. Motivation

During the last few decades, deep learning has found success in areas that used to rely in
handcrafted features, such as computer vision and natural language processing [1, 2, 3]. The
success of these methods has been fueled by advances in hardware and a significant increase of
available training data. The newfound success of deep learning methods has also piqued the
interest of researchers around the world, who look to extract representations from Euclidean
data, i.e., data that is represented in an Euclidean space.

While the success of deep learning in Euclidean data is undeniable, non-Euclidean data, or
data with an underlying structure that is not Euclidean, is becoming ever more prevalent.
This results in the need for deep learning models that focus on this type of data. Particularly,
models that operate on graph-structured data, known as graph neural networks (GNN) [4, 5]
have gained great popularity, being applied to a wide variety of different data sources such as
social networks [6, 7], citation networks [8] and molecules [9, 10].

Recently, research in GNNs has focused on increasingly complex models that mix a
variety of tricks to obtain state-of-the-art results [11, 12, 13]. We believe that simpler GNN
models, both in terms of number of parameters and computational complexity, have not been
sufficiently studied and could provide an alternative to state-of-the-art GNN models, by being
more efficient while achieving similar performance to its more complex counterparts. With
this in mind, we pose the following hypothesis for this thesis.

1.2. Hypothesis

“Simple GNN models, in terms of number of parameters and computational complexity,
can achieve results that are competitive with more complex state-of-the-art models.”

1



1.3. General Objectives

In order to evaluate the hypothesis, we propose the following general objectives for the
work.

• Propose simple GNN models that have lower computational complexity than state-of-
the-art methods while being competitive in terms of performance.

• Study the advantages and limitations of the proposed methods with respect to more
complex alternatives.

1.4. Specific Objectives

The general objective captures the overarching goal of the thesis. Alongside the general
objective, these are the main specific results achieved in the thesis.

• Propose and implement a spectral GNN for static graphs that has lower computational
complexity and number of parameters than other such models, while outperforming state-
of-the-art methods in graph classification tasks and obtaining comparable performance
in node classification tasks.

• Propose and implement a temporal GNN for dynamic graphs that has lower computational
complexity and memory usage than other such methods. The method should present
significant speedup over other state-of-the-art methods while achieving comparable
performance or even outperforming them. It should also be a fully online streaming
method to enable its usage in real world applications.

• Analyze the different components of the proposed methods to understand how they achieve
competitive performance with state-of-the-art methods while maintaining simplicity.

• Study the limitations of the proposed methods when compared to more complex alterna-
tives.

2



Chapter 2

Preliminaries

In order to understand how neural networks are applied to graph-structured data, we need
to introduce some key concepts about graphs. Further, due to the content of the work we
also need to introduce concepts for spectral graph theory and temporal graphs. The following
section serves the purpose of introducing these key concepts and presenting the notation that
is used throughout the work.

2.1. Graphs

Graphs are a type of data structure that is represented as a set of nodes connected by
edges [14]. This is denoted as G = (V,E), where G is the graph, V is the set of vertices
and E is the set of edges. We use vi ∈ V to denote that a node is part of the graph, and
eij = (vi, vj) ∈ E to denote that there is an edge from node vi to vj in the graph. The number
of nodes and edges in the graphs are expressed as n = |V | and m = |E| respectively. Each
node in the graph has a neighborhood, which we denote by N (vi) = {vj ∈ V : (i, j) ∈ E},
and contains all of the nodes that share an edge with vi.

An alternate way to represent a graph is through its adjacency matrix A ∈ Rn×n. This
matrix takes the value Aij = 1 if eij ∈ E, and takes the value Aij = 0 if eij /∈ E. A special
case is when A is symmetric, in which case the graph is called undirected. In these type of
graphs, if edge (i, j) is in the graph, the inverse direction (j, i) is also in the graph. We can also
define the degree matrix, D ∈ Rn×n, as the matrix that contains the number of neighbors that
node vi has in Dii. The elements of D can be computed as Dii = ∑

j,vj∈N (vi)Aij. Elements
outside of the diagonal of D are zero.

Graph data often includes node and edge features. We denote the node feature for node
vi ∈ V as hi ∈ Rd, with d the size of node features. The edge feature for for edge eij ∈ E is
denote by hij ∈ Rc, with c the size of edge features. The features can also be represented
in a matrix, where each row contain a single feature vector. For node features we call the
matrix Hn ∈ Rn×d, and for edge features we call the matrix He ∈ Rm×c. Frequently, datasets
contain node features, but no edge features. If this is the case, we denote the node features
simply by H ∈ Rn×d.

3



2.2. Graph spectral theory

2.2.1. Convolutions in Euclidean space

To understand and motivate graph neural networks, it is necessary to introduce concepts
of Graph Spectral Theory. In particular, we look to introduce the concept of convolutions on
graph-structured data. To do this, we begin by introducing the concept of a convolution in a
Euclidean Space and then generalizing this concept for graphs. We denote the convolution
between two functions f, g : Rd → R as f ? g. The convolution outputs a function h : Rd → R
which is defined as follows.

h(x) = (f ? g)(x) =
∫
Rd
f(y)g(x− y)dy. (2.1)

A key characteristic of the convolution operator is that it becomes an element-wise
multiplication when the Fourier transform is applied. Formally, if we denote the Fourier
transform by F , the following equality holds.

F ((f ? g)(x)) = F(f(x))�F(g(x)), (2.2)

where � denotes the element-wise multiplication, and the Fourier transform is defined as
follows.

F(f)(s) = f̂(s) =
∫
Rd
f(s)e−j2π(x·s)dx. (2.3)

We use the property provided in Equation 2.2 as a key component to define convolutions
on graphs. The second key definition we require is the Laplacian in an Euclidean Space. Let
f : Rd → R be a smooth function, we can define the Laplacian of f , denoted as ∆f , as follows.

∆f = ∇ · (∇f) =
n∑
i=1

∂2f

∂x2
i

. (2.4)

Note that in Equation 2.4 we use ∇f to denote the gradient of function f and ∇· to
denote the divergence operator. The gradient and the divergence are of great importance to
generalize the Fourier Transform in graph-structured data, so we explain them in detail.

The gradient of a differentiable function f : Rd → R returns a vector field, let us call it F ,
that points in the direction of steepest ascent for the function f . Further, the magnitude at a
point x is proportional to the change of function f at point x. We denote the value for the
gradient of f at a point x as F (x) = ∇f(x), and it takes the value F (x)i = ∂f

∂xi
(x). A visual

representation for the gradient can be seen in Figure 2.1.

On the other hand, the divergence operator takes a vector field and returns a scalar value
for every position x in the vector field. Intuitively, the divergence for a point x describes the
flux of the vector field in a given point. If the flux is coming out of the point, the divergence
has a value larger than 0, and if its going into the point the divergence has a value smaller than
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Figure 2.1: Visual representation for the Laplacian of a function f(x, y).
First the gradient ∇f(x, y) is computed. Then the divergence is applied
resulting in the Laplacian ∆f(x, y). [15]

0. The magnitude of the divergence in a point measures the magnitude of the flux in the point.
Formally, the divergence of a vector field F at a point x is given by ∇ · F (x) = ∑d

i=1
∂F
∂xi

(x).
A visual representation of applying the divergence to a vector field is shown in Figure 2.1,
where the divergence is applied to the vector field resulting from applying the gradient to a
function f(x, y).

Going back to the Laplacian operator, an interesting property is that its eigenfunctions are
the complex exponentials used in the Fourier Transform. The eigenfunctions of an operator
D are defined as the as the functions f that satisfy the following equality.

Df = λf, (2.5)

where λ is a scalar called the eigenvalue. It is easy to see that using the Laplacian as the
operator and the complex exponentials as the function, the equality in Equation 2.5 holds.

∆(e−j2πxs) = ∂2(e−j2πxs)
∂x2 = −(2πs)2e−j2πxs. (2.6)

Using λ = −(2πs)2 we can clearly see that Equation 2.5 holds for this particular case. As
mentioned previously, this indicates that the eigenfunctions of the Laplacian are the modes of
the frequency domain in the Fourier Transform, which is a characteristic we will use when
defining the Fourier Transform in graph-structured data.

To summarize, we want to generalize the convolution operation to graph-structured data
in a way that:

1. We want the frequency modes of our Fourier transform to be the eigenbasis of the
Laplacian operator defined in graph-structured data, as in Equation 2.6.

2. The Fourier transform of the convolution, results in the element-wise multiplication of
the respective Fourier transforms, as in Equation 2.2.
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2.2.2. Convolutions in graphs

To generalize the concept of convolutions to graphs, we begin by defining the Laplacian
operator for graphs. To do this, we will use the definition for the Laplacian operator that we
presented in Equation 2.4, and use it for graph-structured data by defining the gradient and
divergence in this domain.

To introduce the analogy for gradients and divergences in graphs, we consider that every
vertex is analogous to a position in an Euclidean Space. With this in mind, we define a
function in a graph, denoted by fG as a function that takes a vertex and outputs a real value,
fG : V → R. This is analogous to a function in an Euclidean Space, which takes a point and
outputs a real value.

With the previous definitions in mind, we can define the gradient of a function fG, as a
finite difference, similarly to how it’s done in discrete functions. The gradient for graphs
is computed for its edges, because it naturally encapsulates neighboring nodes, similarly to
neighboring points for discrete functions. With this, the gradient for an edge eij in the graph
is given by the following expression.

gG(eij) = ∇fG(eij) = fG(vi)− fG(vj). (2.7)

An important point to note is that the direction of the edge defines the order of the
difference in Equation 2.7. In undirected graphs, we have both edges eij and eji, which results
in both directions of the difference being in the gradient.

To generalize the divergence to graph-structured data, we remember the intuition for the
divergence in Euclidean Space. The divergence operator can be understood as a measure of
the flux that comes out of a point in space. Since in graph-structured data we consider the
nodes as the points in space and the edges to vectors around each point, it follows that we
compute the divergence as the sum of edges around each node. Taking this into consideration,
we can define the divergence for a point vi as follows.

(∇ · gG)(vi) =
∑

j,vj∈Ni

gG(eij). (2.8)

With the definition of the gradient and divergence for graph-structured data, we can define
the Laplacian for graphs as follows:

∆fG(vi) =
∑

j,vj∈Ni

(fG(vi)− fG(vj))

= |Ni|fG(vi)−
∑

j,vj∈Ni

fG(vj)

= DiifG(vi)−
∑
i∈V
AijfG(vj).

(2.9)
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Let us remember that A and D in Equation 2.9 denote the adjacency matrix and the
degree matrix respectively. From the way that Equation 2.9 is written, it is clear that it
can be rewritten as the product between a matrix and a vector. In fact, let us denote
f = [fG(v1), fG(v2), ...fG(vN)]> and L = D −A. We can re-write Equation 2.9 as:

∆f = ∆fG(vi) = (D −A)f = Lf . (2.10)

It is evident from Equation 2.10 that matrix L has a close relation to the laplacian operator
for graph-structured data. Because of this, we call matrix L the Laplacian Matrix. Note that
this is not the only possible definition of the Laplacian Matrix. Different definitions for the
gradient and divergence result in different Laplacian Matrices. One such Laplacian Matrix,
that we will use throughout the work is the normalized graph Laplacian, which we denote
Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2.

Let us remember that the reason we were looking to generalize the Laplacian operator to
graph-structured data, was so we could define the frequency modes and the Fourier transform.
Recall from Equation 2.6 that we want the frequency modes to be the eigenbasis of the
Laplacian operator. Since the Laplacian operator we defined in graph-structured data is a
linear operator with the matrix L, we can define our eigenbasis as the eigevectors for the
matrix.

To define the frequency modes, let us begin by assuming that the graph G we are considering
is undirected. In this type of graphs, A is symmetric. Since D is a diagonal matrix, and thus
always symmetric, L is also symmetric. Further, L is real valued, because A and D are real
valued. With this in mind, we can use the following well known theorem for real symmetric
matrices.

Theorem 1 (See Corollary 2.5.11 in [16]) Any square, real-valued symmetric matrix B ∈
Rn×n admits an eigendecomposition of the form B = UΛU>, where U ∈ Rn×n is an
orthogonal matrix and its columns u1, ...,un are the eigevectors for B. Furthermore, the
matrix U is orthonormal, which implies that U−1 = U>. Λ ∈ Rn×n is a diagonal matrix that
contains the eigenvalues for B.

The matrix U defined in Theorem 1 is specially useful since its columns form an eigenbasis
for the matrix. We can then apply this eigendecomposition to the Laplacian matrix L =
UΛU> and use the eigenbasis as the frequency modes of the Fourier transform that we define
in graph-structured data. Further, we also consider the eigenvalues Λ as the spectrum of
the Fourier transform. Taking this into account, we can define the Fourier transform for
graph-structured data, FG as follows:

FG(h) = U>h. (2.11)

U ∈ Rn×n denotes the eigenbasis for the graph Laplacian and h ∈ Rn denotes a signal in
the graph. From Theorem 1 the inverse of matrix U is given by U−1 = U>. We can use this
to easily define the inverse of the graph Fourier transform as:
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F−1
G (s) = Us. (2.12)

Where s ∈ Rn denotes the signal frequencies in the graph Fourier domain. To simplify
the notation we will use F to indicate the graph Fourier transform and F−1 to indicate the
inverse graph Fourier transform, unless specified otherwise. With this we have defined a
Fourier transform in graph-structured data, which parallels that of the Euclidean space by
using the eigenbasis of the Laplacian as its frequency modes. We can now use the definition
for the Fourier transform to define convolutions in graphs.

Let us remember that in Euclidean space the Fourier transform of the convolution results
in element-wise multiplication of the respective Fourier transforms. We define the Fourier
transform in graph-structured data in a way that preserves this property. Formally, we want
our convolution operation in graph-structured data, ?G, to have the following property:

f ?G h = F−1 (F(f)�F(h)) . (2.13)

Where f ∈ Rn can be a filter or signal on the graph and � denotes the element-wise
multiplication. We may also refer to U>f as the filter, since it is the equivalent of filter f in
the spectral domain, and is often easier to analyze. We can use the definitions in Equation 2.11
and Equation 2.12 in Equation 2.13 to define the convolutions in graph-structured data.

f ?G h = U
(
(U>f)� (U>h)

)
. (2.14)

To simplify the notation we will use ? to indicate the graph convolution unless specified
otherwise. With the result in Equation 2.14 we achieved the objective of defining a convolution
operator in graphs.

Let us note that Equation 2.14 may also be written by replacing U>f by a diagonal matrix
that contains the elements of vectorU>f . In fact, let us denote F = diag((U>f)1, ..., (U>f)n).
Then Equation 2.14 may be written as follows.

f ? h = UFU>h. (2.15)

The equivalence between Equation 2.14 and Equation 2.15 can be verified by noting that:

(FU>h)i = (F (U>h))i
= Fi(U>h)
= (U>f)i(U>h)i
=
(
(U>f)� (U>h)

)
i
.

(2.16)

Since Equation 2.16 shows that FU>h = (U>f)� (U>h), we can simply multiply both
sides of the equality by U to show the equivalence between Equation 2.14 and Equation 2.15.
By defining the filter directly in the spectral domain, as in Equation 2.15 by using F ∈ Rn×n,
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we can more easily design filters for specific use cases. Further, we can easily relate the filter
to the spectrum of the graph by defining the filter as a function of the eigenvalues of the
Laplacian Λ ∈ Rn×n. This will be useful when we analyze spectral graph neural networks.

2.3. Graph Neural Networks

In the following section we introduce the basic notions of static graph neural networks,
often referred to simply as graph neural networks (GNN). The section does not look to cover
state-of-the-art GNN methods, nor does it aim to be a thorough survey of GNN models.
Rather, this section should be thought of as a basic introduction to GNNs. At the end of the
section we present a brief literature review of methods referenced in the work.

We classify GNNs as either spatial graph neural networks or spectral graph neural networks,
depending on how the convolution operator is defined in the graph. It is important to note that
there is overlap between spatial graph neural networks and spectral graph neural networks.
Convolution operations defined in the spatial domain might have a spectral interpretation
and convolutions in the spectral domain might have an equivalent spatial operation. Thus,
this classification is not strict and is closely related to the motivation of each model.

2.3.1. Spatial Graph Neural Networks

Spatial GNNs are a type of GNN that define the convolution operation directly on the
graph structure by taking the graph topology into account.[14] There are countless ways of
defining spatial convolutions over graph-structured data. Thankfully, many of the popular
spatial GNNs share characteristics that can be captured in a common framework. Arguably,
the most popular spatial GNN framework is the message passing neural network (MPNN)[17].
For this description of spatial GNNs we will restrict ourselves to describing the MPNN
framework and presenting examples of spatial GNNs that fit the framework. However, it is
important to be aware of the existence of other spatial GNNs.

The MPNN framework considers two steps, a message passing step and an update step.
In the message passing step, information in the form of messages is aggregated from the
neighborhood of the node. In the update step, the nodes are updated using the messages
that were previously aggregated. More concretely, if each node v ∈ V has a feature vector
h(k)
v , the MPNN updates them as follows.

m(k+1)
u = Aggregate({M(h(k)

v ,h(k)
u )}v∈N (u)),

h(k+1)
u = Update(h(k)

u ,m(k+1)
u ).

(2.17)

In Equation 2.17, M(·, ·) is the message function that takes the feature vector of node u
along with that of a neighboring node v ∈ N (u) to build a message from node v to node u.
The Aggregate(·) function is then used to aggregate the messages from the neighboring
nodes into a single message m(k+1)

u . Finally, the Update(·, ·) function takes the aggregated
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message m(k+1)
u and the previous feature vector h(k)

u to compute the updated feature vector
h(k+1)
u . With the description in mind, the steps of the MPNN can be understood as updating

the node representation by aggregating information from neighboring nodes.

To give an example of the MPNN framework we will show how Graph Convolutional
Network (GCN) can be expressed by using this framework. The basic GCN operation
corresponds to updating the features in the graph, H(k), through the following expression.

H(k+1) = θ
(
(I +D−1/2AD−1/2)H(k)W (k)

)
. (2.18)

In Equation 2.18, θ is an activation function and W (k) are learnable weights that mix
the channels for each node’s feature vector. To implement GCN as a MPNN we need
to implement the (I +D−1/2AD−1/2)H(k) multiplication with message passing, since the
remaining operations can be implemented node-wise. To understand how to implement the
operation through message passing we can look at the (u, v) position of the matrix. This
position the effect of the v-th node of the graph on the u-th node.

(I +D−1/2AD−1/2)uv =


1 u = v

1√
didj

v ∈ N (u)

0 ∼ .

(2.19)

Note that for the previous expression we are assuming that the original graph does not
contain nodes that are connected to itself. The representation in Equation 2.19 shows a clear
way to implement GCN as a MPNN, since any node u only interacts with its neighboring
nodes. With this in mind we can define the following functions.

M(hu,hv) = hv√
didj

,

Aggregate({Mv}v∈N (u)) =
∑

v∈N (u)
Mv,

Update(hu,mu) = θ ((hu +mu)W ) .

(2.20)

Which is the message passing implementation for GCN. Note that by defining the operations
through message passing, the complexity of the method is O(m) with m the number of edges
in the graph, instead of O(n2) with n the number of nodes which would be the case if the
matrix multiplication were done directly.

2.3.2. Spectral Graph Neural Networks

Spectral GNNs are a type of GNN that define the convolution operation on the spectral
domain. This type of GNN has a inspired by Graph Spectral Theory introduced in Section 2.2.

10



In fact, the convolution operator we will use in the spectral domain is the one defined in
Equation 2.15. Though many GNN methods may be interpreted in the spectral domain
[18], we will only consider those that were originally formulated through the spectral graph
convolution as spectral GNNs.

To give an example of a spectral GNN, we will analyze GCN from a spectral perspective,
similar to what was done for spatial GNNs. As GCN was initially conceived in the spectral
domain, it fits our description of a spectral GNN. To analyze GCN, we will use the normalized
Laplacian Lnorm = I −D−1/2AD−1/2 introduced in Section 2.2. We can re-write the graph
operation for GCN as follows.

(I +D−1/2AD−1/2)H = (2I −Lnorm)H . (2.21)

Let us remember that we can apply the eigendecomposition to the Laplacian to write
it as Lnorm = UΛU>. Further, since the matrix U is orthonormal for undirected graphs,
UIU> = I. We can use this in Equation 2.21 to obtain the following expression.

(2I +Lnorm)H = (2UIU> −UΛU>)H
= U(2I −Λ)U>H .

(2.22)

We can notice that Equation 2.22 has the same structure as Equation 2.15, with F = 2I−Λ.
With this, the filter that GCN is applying is given by f(λ) = 2−λ, with lambda the respective
eigenvalue. It is also known that the eigenvalues values of the normalized Laplacian take
values between 0 and 2 [19]. Taking this into account, the filter of a GCN layer can be
understood as a low-pass filter from a spectral point of view.

Rather than analyzing GNN models from a spectral perspective, it is also possible to build
GNNs from the spectral formulation presented in Equation 2.15. We could do this by directly
learning the values for the the matrix representing the filter in the spectral domain, F . Note
that U is given by the graph’s structure and h is the graph’s features, so the filter is the
only learnable portion of Equation 2.15. The problem with this non-parametric approach of
learning F is that the number of parameters of the filter is tied with the number of nodes in
the graph. It also does not guarantee that F leads to localized filters [20].

A way to circumvent the aforementioned problems is to approximate the filter F using a
polynomial of the eigenvalue matrix Λ. We can then represent the polynomial spectral filters
with base spectrum Λ as follows.

F =
K∑
k=0

θkΛ
k. (2.23)

θ0, . . . , θK in Equation 2.23 are the polynomial coefficients for the filter. With the
parametrization in Equation 2.23, the graph convolution presented in Equation 2.15 can be
re-written resulting in the following expression.
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f ? h = UFU>h

= U
K∑
k=0

θkΛ
kU>h

=
K∑
k=0

θkUΛkU>h

=
K∑
k=0

θk∆
kh.

(2.24)

Since the filtering operation presented in Equation 2.24 does not explicitly require the
eigendecomposition of the graph Laplacian, it is often referred to spectrum-free [5]. Also note
that in the last step of Equation 2.24 we used the fact that ∆k = UΛkU>. This can be
shown by induction by noting that ∆ = UΛU>, and that if ∆k = UΛkU>, then:

∆k+1 = ∆k∆

= UΛkU>UΛU>

= UΛkΛU>

= UΛk+1U>.

(2.25)

The parametrization presented in Equation 2.24 can be used to build a basic polynomial
spectral GNN. To achieve this we take inspiration on convolutional neural networks (CNN),
where a layer consists of: i) filtering operations; ii) a summation over channels; and iii) a
nonlinear activation function. With this in mind, consider a graph signal X ∈ Rn×d with d
channels, and let H(0) := X. At layer `, a basic polynomial spectral GNN computes:

H(`) = φ

(
K∑
k=0

∆kH(`−1)Θ
(`)
k

)
. (2.26)

In Equation 2.26, φ is a nonlinearity, and Θ(`) ∈ Rd×d are the coefficients of the spectral
filters. From the formulation in Equation 2.26 we can see that it contains a filtering operation
resembling that of Equation 2.24, a summation over the channels by using Θ(`), and a
nonlineaar activation function φ.

Despite its intuitive nature, the model in Equation 2.26 was only hinted at by [21], but was
never explored in detail. The closest model in the literature is ChebNet [21] that replaces the
monomials over ∆ in Equation 2.26 by Chebyshev polynomials of a transformed Laplacian
∆̃ = (2/λmax)∆− I. The idea was to exploit the orthogonality of Chebyshev polynomials to
obtain more stable filters [21].

Recent works on spectral GNNs aim to improve ChebNets and GCNs by increasing model
flexibility with rational filters. Nonetheless, the exact computation of these filters involves
matrix inversion. CayleyNets [22] avoid this problem by solving a sequence of linear systems
with the Jacobi method. [23] propose a design that approximates autoregressive moving
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average filters based on recursions derived by [24].

2.3.3. Literature review

In the following section we introduce GNN methods that we reference throughout the
manuscript. We present a brief description of each model along with the update operation
used in the respective GNN layers.

LapGCN. We refer to the basic formulation for a polynomial spectral GNN presented in
Equation 2.26 as LAPGCN. Even though this specific formulation has not been explored in
detail in the literature, it is an important formulation as we use it as a base for our model. A
LapGCN model consists of several layers of Equation 2.26, with K being a hyperparameter of
the model.

ChebNet [21]. As previously mentioned, ChebNet is a polynomial spectral GNN that
replaces the formulation in Equation 2.26 by replacing the monomials over ∆ by Chebyshev
polynomials of a transformed Laplacian. The formulation for ChebNet is given by the following
equation.

H(`) = φ

(
K∑
k=0

Tk
(
∆̃
)
H(`−1)Θ

(`−1)
k

)
. (2.27)

∆̃ in Equation 2.27 is a transformed Laplacian given by ∆̃ = (2/λmax)∆− I, with λmax
the largest eigenvalue of ∆. Θ

(`)
k is a matrix of learnable weights for the `-th layer of the

model. Tk(·) is the k-th order Chebyshev polynomial, given by the following recursion.

Tk
(
∆̃
)

=


I k = 0
∆̃ k = 1
2∆̃Tk−1

(
∆̃
)
− Tk−2

(
∆̃
)
∼ .

(2.28)

Using the Chebyshev polynomials instead of the monomials used in LapGCN has the
objective of exploiting the orthogonality of the Chebyshev polynomials to get more stable
filters.

CayleyNets [22]. The work proposes using a family of filters that is more general than
that of ChebNets, known as Cayley filters. The work argues that using this more general
family of filters gives the filters the capacity of focusing in specific frequency bands, along
with more stability and regularity of the filters.

A single layer of CayleyNets can be represented by the following equation.

H(`) = H(`−1)Θ
(`−1)
0 + 2Re

(
K∑
k=1

(h∆− jI)k (h∆ + jI)−kH(`−1)Θ
(`−1)
k

)
. (2.29)
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In Equation 2.29, Θ
(`−1)
k are complex matrices of learnable weights, h is a learnable scalar

used as the zoom of the filter and Re(·) is the real part of a complex value. The layer
presented in Equation 2.29 is not explicitly computed due to its computational complexity.
An approximation of the layer is computed by using the Jacobi method.

ARMA [23]. The work proposes the use of auto-regressive moving average (ARMA)
filters in GNNs. This family of filters is characterized by the following representation.

hK(λ) =
∑K
k=0 pkλ

k

1 +∑K
k=1 qkλ

k
. (2.30)

The denominator contains the auto-regressive part of the filter, while the numerator
contains the moving average part of the filter. Note that by setting qk = 0 in Equation 2.30,
the representation becomes a polynomial filter. Thus, polynomial filters are a particular case
of ARMA filters. The work argues that including the auto-regressive term in the filter makes
it more robust to noise, and captures longer dependencies and global structures better than
polynomial filters of the same degree.

Implementing the filter in Equation 2.30 directly into a graph filter would result in the
following representation.

H(`) =
(
I +

K∑
k=1

qk∆
k

)−1 ( K∑
k=0

pk∆
k

)
H(`−1). (2.31)

However, the matrix inversion in Equation 2.31 is slow, making the formulation impractical.
The work proposes approximating an ARMA filter of degree K = 1 by iteratively computing
H̄(`+1) = aMH(`) + bH(0) until convergence, with M = I −∆. This results in a filter with
frequency response of h(λ) = b/(1−aλ). By combining K of these filters, we can approximate
an ARMA filter of degree K, as shown in the following equation.

hK(λ) =
K∑
k=1

bk
1− akλ

. (2.32)

Applying the same idea of Equation 2.32 to a GNN, a layer of the ARMA filter is given by
the following equations.

H
(t+1)
k = φ

(
MH

(t)
k Θk +H(0)

k Θ̄k

)
,

H = 1
K

K∑
k=1
H

(T )
k .

(2.33)

In Equation 2.33 we use H to denote the updated features for the graph, φ denotes an
activation function, Θk and Θ̄k are matrices of learnable weights that are shared across each
parallel filter, and T denotes a fix number of iterations that each of the parallel filters uses.

GCNII [25]. Graph Convolutional Network via Initial residual and Identity mapping
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(GCNII) looks to extend GCN to simulate polynomial filters with arbitrary coefficients. To
do this, the model uses initial residual connections and identity mapping. The former consists
of adding a residual connection to the initial representation, while the latter adds an identity
to the weight used in the feature transformation of the model. With this in mind, the GCNII
model can be characterized by the following equation.

H(`+1) = φ
((

(1− α`)∆H(`) + α`H
(0)
)

((1− β`)I + β`Θ)
)
. (2.34)

In Equation 2.34, α` and β` are learnable parameters that control the effect of the initial
residual connection and identity mapping respectively. ∆ = Lnorm, φ is an activation
function, and Θ is a matrix of learnable weights. It can be seen from the equation that if
α` = 0 and β` = 0 the model simply becomes GCN. As the value of α` increases, the output
representation considers more information from the input representation, which helps to deal
with oversmoothing. As the value β` decreases, the effect of the learnable weights is replaced
by an identity matrix, which helps to decrease the interactions between different dimensions
of the features, and helps with regularization of the model.

S2GC [26]. The Simple Spectral Graph Convolution (S2GC) uses a modified Markov
diffusion kernel to propose a model that can aggregate over large neighborhoods of a node,
while limiting the effects of oversmoothing. The model consists of a single layer that is
characterized by the following equation.

Y = softmax
(

1
K

K∑
k=0

∆kHΘ

)
. (2.35)

In Equation 2.35, we use Y to denote the output of the model, Θ is a matrix of learnable
weights, and ∆ = Lnorm.

GIN [27]. The Graph Isomorphism Network (GIN) is a model built with the objective of
being expressive. The model is as powerful as the Weisfeler-Lehman graph isomorphism test.
A single layer of GIN is given by the following equation.

h(`+1)
u = MLP(`)

(1 + ε(`)
)
h(`)
u +

∑
v∈N (u)

h(`)
v

 . (2.36)

The update in Equation 2.36 is applied to every node u ∈ G.

GAT [28]. Graph Attention Networks (GAT) introduced self-attention to GNNs. By
having layers in which the nodes can attend over their neighborhoods’ features, the model
can learn to weight different neighbors. A GAT layer can be characterized by the following
equations.
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e(`)
uv = φ

(
a · [Θh(`)

u ||Θh(`)
v ]
)
,

α(`)
uv =

exp
(
e(`)
uv

)
∑
w∈N (u) exp

(
e

(`)
uw

) ,
h(`+1)
u = σ

 ∑
v∈N (u)

α(`)
uvh

(`)
v

 .
(2.37)

In Equation 2.37, e(`)
uv is the coefficient that was computed for the edge going from node u to

node v, which is later used to compute the attention weight α(`)
uv . || indicates the concatenation

operator. Θ and a are a matrix and a vector of learnable weights respectively. φ(·) and σ(·)
are activation functions. The original work uses LeakyReLU as function φ.

DAGNN [29]. Deep Adaptive Graph Neural Network (DAGNN) is a model that decouples
the representation transformation and the propagation steps of GNN, with the objective of
dealing with oversmoothing, and incorporating information from large receptive fields. The
model proposed in DAGNN is represented by the following equations.

Hk = ∆kMLP(H),
H̄ = [H0||, . . . , ||HK ],
S = φ (Hs) ,
Y = softmax (SH) .

(2.38)

In Equation 2.38, ∆ = Lnorm, φ is an activation function, s is a learnable projection vector
and Y is the output of the model. The decoupling proposed in DAGNN can be seen in the
fact that the transformation MLP(H) only contains node information, and the propagation
step (multiplying by ∆k) is separate from the aforementioned representation transformation.

MixHop [30]. The work proposes a model that aims to learn a general class of neighbor-
hood mixing relationships by explicitly mixing neighborhoods of different sizes. To do this,
the model concatenates representations resulting from aggregating multi-hop neighborhoods
independently. A single layer of MixHop is represented by the following equation.

H(`+1) =
K∥∥∥∥
k=0

φ
(
AkH(`)Θ

)
. (2.39)

In Equation 2.39 ‖ represents the concatenation operator, where each of the outputs will
be concatenated to each other, A indicates the adjacency matrix, φ is an activation function
and Θ is a matrix of learnable weights.

16



2.4. Dynamic graphs

Real-world graphs, such as social networks, often evolve over time through addition,
deletion and updating of nodes and edges. To take these types of graphs into account we
introduce the notion of dynamic graph, which is simply a graph that evolves over time. We
will consider a particular case of dynamic graphs, known as continuous-time dynamic graphs
(CTDGs) which can be represented by a sequence of timestamped events. As a simplification
we consider a fixed set of nodes V and edge events that modify the set of edges E .

Each edge in a CTDG is represented by a tuple (u, v, e, t), where u, v ∈ V are the nodes
that are interacting in the event, e ∈ Rm is a feature that represents the particular event and
t ∈ R+ is the timestamp of the event. The set of edges is then represented by a finite sequence
of events, E = ((ui, vi, e(i), ti))Ki=1, where K is the total number of events in the graph. We
assume that the events are temporally ordered, which means that ti−1 ≤ ti for all 1 < i ≤ K.

Since the number of events is finite, we can look at the dynamic graph by looking at it
as a sequence of multigraphs, a generalization of graphs that considers a multiset of edges.
To do this we define E(t) = {(ui, vi, e(i), ti) : ti ≤ t} the events up to a timestamp t ∈ R+.
We also define E(t−) = {(ui, vi, e(i), ti) : ti < t} the events before a timestamp t ∈ R+. The
multigraph can then be defined as G(t) = (V , E(t)) similarly to what was done for static graphs
in Section 2.1. The reason that G(t) is considered a multigraph is because there might be
multiple events that consider the same pair of nodes in E(t). With the previous definitions in
mind, we can represent a CTDG as the finite sequence of multigraphs (G(t1),G(t2), . . .G(tK)).

Analogous to the definition in static graphs, we denote v ∈ V to indicate the node v is in the
graph and (u, v) ∈ E(t) to indicate that there is an edge between u, v ∈ V in multigraph G(t).
The number of nodes and edges in the multigraph is denoted by n = |V| and m(t) = |E(t)|.
We define the concept of temporal neighborhood for a node u at a timestamp t ∈ R+ as the
set of neighbors of u in multigraph G(t); or formally as N (u, t) = {v : (u, v) ∈ E(t)}.

2.5. Temporal Graph Neural Networks

In the following section we will introduce temporal-graph neural networks (T-GNNs). The
section is not a thorough survey of T-GNN models, and is merely used to introduce basic
concepts of these models along with a brief literature review of methods referenced throughout
the work.

T-GNNs are neural networks built for dynamic graphs. Since the work focuses on CTDGs,
we will only consider T-GNNs built for this type of dynamic graphs. Further, we will use
T-GNNs to refer only to models built for CTDGs.

For an event (u, v, e, t), T-GNNs usually follow the same three steps: i) temporal sampling,
ii) neighborhood aggregation, iii) state update. With this in mind, we propose a framework
that looks to capture T-GNNs by considering these steps. Figure 2.2 illustrates the process
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Temporal Message Passing

uv
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Predict for 
a new event

Final embeddingNode state

u

Figure 2.2: T-GNNs: general framework to compute temporal node
representations. For clarity, we illustrate an example for node u with
L = 2. To predict for an event between nodes u and v at time t, T-GNNs
(i) iteratively sample a L-hop temporal neighborhood of u (Sample), (ii)
encode the continuous timestamps (TimeEnc), (iii) iteratively aggregate
the neighborhood information (Aggregate), and (iv) combine the resulting
neighborhood information vector with the state vector to obtain the final
embedding for node u (Combine).

to compute the embedding for a node u in the framework.

Temporal message passing. Computing the embeddings begins with temporal sampling
and neighborhood aggregation, which we combine into a single step called temporal message
passing. Temporal sampling involves iteratively selecting temporal neighbors to build a graph.
Then, neighborhood aggregation takes the sampled graph and aggregates neighbors iteratively
to compute an output graph. Let Φ be a time encoder used to generate time embeddings
for each event and let G(0)

u be a singleton graph, containing only node u and no edges. In
general, the updates that a T-GNN with L layers does to extract an embedding for node u go
as follows:

G(l)
u ← Sample(G(l−1)

u ), ∀l = 1, . . . , L, (2.40)
G̃(0)
u ← G(L)

u , (2.41)
G̃(l)
u ← Aggregate(G̃(l−1)

u ,Φ, e), ∀l = 1, . . . , L. (2.42)

Sample(·) in Equation 2.40 is the sampling function and G(l)
u is the graph obtained after

l layers of sampling. Similarly, G̃(l)
u denotes the graph after l steps of aggregation, i.e.,

Aggregate(·) in Equation 2.42. Since aggregation reduces the number of nodes, the graphs
follow G̃(l)

u ⊆ G̃(l−1)
u ... ⊆ G̃(0)

u , for all l = 1, . . . , L.

After aggregation, T-GNNs use a readout function to compute an embedding from graph
G̃(L)
u . Combining this embedding with the node state su, we obtain the output embedding hu

for prediction purposes. These steps are summarized as follows:
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zu(t) = Readout(G̃(L)
u ), hu(t) = Combine(su,zu(t)). (2.43)

Recursive state update. Once the output embedding is computed, the state of node u
is updated. This is done to keep information about the node’s previous interactions in its
state vector. To capture this information the step must use the node’s previous state su, the
state of the node its interacting with sv, the information about the interaction e and the
timestamp of the interaction t. The state is then updates as follows:

su ← Update(su, sv, e, t). (2.44)

2.5.1. Literature review

In the following section we introduce T-GNN methods that we use throughout the work.
We present a brief description for each method, along with a description of how it fits in the
framework presented in Section 2.5.

JODIE [31]. Joint Dynamic User-Item Embedding Model (JODIE) is a model that looks
to learn embedding trajectories for the nodes in the graph. Compared to learning static
representation for the nodes in the graph, learning trajectories let us the model project a
future embedding for an arbitrary time since its last interaction.

JODIE also assumes that the input graph is bipartite. It considers two sets of nodes
denoted as “users” and “items”. The embeddings for each of the set of nodes is computed
using different weights.

Since JODIE learns embedding trajectories for each node it does not use the temporal
message passing introduced in the T-GNN framework. Similarly since there is no temporal
message passing, the readout function is not needed. The combine function can be used to
compute the projection used for the prediction, which is defined as follows.

hv(t) = (1 + p)� sv(tv). (2.45)

In Equation 2.45, t is the time that we are predicting at, tv is the time of the last interaction
involving node v, � is the Hadarmard product, and p is a time-context vector that is computed
as p = w(t− tv), with w a vector of learnable weights. The state vector is then updated by
using the following equations.

su(t) = φ
(
Θu

1su(t−) + Θu
2si(t−) + Θu

3e+ Θu
4(t− tu)

)
,

si(t) = φ
(
Θi

1si(t−) + Θi
2su(t−) + Θi

3e+ Θi
4(t− ti)

)
.

(2.46)

In Equation 2.46, u and i indicate the user and item nodes respectively, Θ are learnable
weights, with the superscript indicating whether the weights are for the user or item node
updates, and t− indicates the instant right before timestamp t.

DyRep [32]. The work proposes a model that looks to jointly capture the evolution of
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the graph’s structure and interactions between nodes in the graph. We begin the description
of the model by introducing the temporal message passing layer used in DyRep, which is
denominated temporally attentive aggregation.

Temporally attentive aggregation takes the 1-hop neighborhood of a node u and aggregates
the information according to the following equation.

αuv = exp(Suv(t−))∑
w∈N (u) exp(Suw(t−)) ,

hv(t−) = Θhsv(t−) + bh,
hu(t) = max

(
{αuvhv(t−1), ∀v ∈ N (u)}

)
.

(2.47)

In Equation 2.47, Θh is a matrix of learnable weights, bh is a vector with a learnable bias
term, max(·) indicates the element-wise maximum operator, and S is a complex stochastic
matrix that captures complex temporal information for the graph. The matrix S is used to
attend over the neighbors of node u. Initially, the values for S are initialized as Suv = 0 if
Auv = 0, and Suv = 1/|N (u)| if Auv = 1. The values are updated whenever a new edge is
created between two nodes or when an interaction happens between two nodes in the graph.
In both cases, the value for Suv is updated proportionally to the events intensity.

With the formulation presented in Equation 2.47 we have the output of the combination
step presented in the T-GNN framework. Considering this, only the update step needs to be
described. The update for DyRep is given by the following equation.

su(t) = φ (Θnhv(t) + Θssu(tu) + Θt(t− tu)) . (2.48)

In Equation 2.48, Θ indicate learnable weights, hv is the feature calculated in Equation 2.47
for the node that u is interacting with, and tu is the time for the last event including node u.

TGAT [33]. Temporal Graph Attention Network (TGAT) introduces temporal graph
attention layer for dynamic networks. We begin the description of the model by describing its
temporal message passing.

The sampling function used in TGAT is a uniform sampling of the node’s neighbors. Then,
the aggregation is the temporal graph attention layer, which can be described by the following
equations.
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Z(`)
q (t) = [h(`)

u ||Φd(0)],
Z(`)(t) = [h(`)

1 ||Φd(t− t1),h(`)
2 , . . . ,h

(`)
N ||Φd(t− tN)],

Q(`)(t) = Z(`)
q (t)ΘQ,

K(`)(t) = Z(`)(t)ΘK ,

V (`)(t) = Z(`)(t)ΘV ,

Φd(t) =
√

1
d

[cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)],

h(`+1)
u = Attn

(
Q(`)(t),K(`)(t),V (`)(t)

)
.

(2.49)

In Equation 2.49, h(`)
u is the information of the target node after ` layers of temporal

attention, {h(`)
k }Nk=1 are the features of the neighbors sampled from u, N is a hyperparameter

indicating the number of neighbors to sample, Θ are learnable weight matrices, ωk are
learnable parameters and Attn indicates the self-attention layer. The initial value for the
features is given by h(0)

v = sv. After a fixed number L of attention layers the output feature
is hu = h(L)

u . There is no update operation for TGAT since the features are static for the
model.

TGN [34]. Temporal Graph Networks (TGN) introduces a generic model for T-GNNs.
The work provides various alternatives for different components of the model. In this work
we refer to the TGN-attn model, since it has the best results in practice.

We begin TGN’s description by considering its temporal message passing. The sampling
step of the model takes the last N nodes that the node u has interacted with. Then, the
aggregation step uses a modified version of the temporal attention presented in Equation 2.49.
This aggregation step is characterized by the following equations.

Z(`)
q (t) = [h(`)

u ||Φd(0)],
Z(`)(t) = [h(`)

1 ||eu1||Φd(t− t1),h(`)
2 , . . . ,h

(`)
N ||euN ||Φd(t− tN)],

Q(`)(t) = Z(`)
q (t),

K(`)(t) = V (`)(t) = Z(`)(t),

Φd(t) =
√

1
d

[cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)],

h̃(`+1)
u = MultiHeadAttn

(
Q(`)(t),K(`)(t),V (`)(t)

)
,

h(`+1)
u = MLP

(
h(`)
u ||h̃(`+1)

u

)
.

(2.50)

The main modifications presented in Equation 2.50 with respect to Equation 2.49 is
changing the self-attention layer for a multi head attention, including the edge features euk in
the representation, and adding a residual connection with the previous layer. Similarly to
TGAT, after a fixed number L of attention layers, the output feature is hu = h(L)

u .
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The update operation uses a gated recurrent unit (GRU) as shown in the following equation.

mu(t) = [sv(t−)||euv||(t− tu)],
su(t) = GRU(su(t−),mu(t)).

(2.51)

In Equation 2.51, sv(t−) is the state of node v (the node u is interacting with) right before
the interaction, euv is the feature describing the interaction, and tu is the time of node u’s
last interaction.

CAW [35]. Causal Anonymous Walks (CAW) look to inductively represent dynamic
graphs by using temporal random walks to characterize network dynamics. An explanation of
the method is presented in Section B.1.
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Chapter 3

Methods

In the following chapter we introduce two methods, Polynomial Subspace Net (PSN) for static
graphs and Online Graph Nets (OGN) for dynamic graphs. We present complexity analysis
and theoretical properties for both methods.

3.1. Polynomial Subspace Net (PSN)

Unlike recent spectral GNNs [22, 23] which focus on increasing filter flexibility, our work
pursues a much simpler design for polynomial filters. We observe that these spectral GNNs
often achieve higher performance with low-order polynomials (usually K ≤ 5). This suggests
that the success of these networks may not come from sharpening filter responses with flexible
parameterizations. Rather, we believe the benefits stem from design choices that insert
positive inductive biases.

In this section, we introduce Polynomial Subspace Net (PSN), a spectral method that
builds on the simplest formulation of polynomial spectral GNNs (Equation 2.26). Our most
important design choice is to share parameters across monomials in Equation 2.26, i.e., setting
Θ

(`)
0 = Θ

(`)
1 = · · · = Θ

(`)
K . We further compensate this drop in flexibility in a minimalistic

way by adding a single scalar parameter (coefficient) to every monomial. That is, our main
building block is the equation

H(`) = φ

((
K∑
k=0

θ
(`)
k ∆kH(`−1)

)
W (`)

)
. (3.1)

whereW (`) ∈ Rd×d is a parameter matrix, and θ(`)
k ∈ R are scalar parameters. This formulation

can be seen as the application of a basic polynomial filter ∑K
k=0 θ

(`)
k ∆k to all input channels

in a graph signal, and then combining the channel information with a linear transformation
W (`).

Our simple filtering operation is different from standard spectral nets which employ
multiple distinct filters for each input channel. As an immediate consequence, PSN filters have
significantly fewer parameters compared to, e.g., ChebNets or CayleyNets: while ChebNet
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and CayleyNet convolutional layers have K × d2 parameteres, a PSN layer has only K + d2

parameters (see Table 3.1).

3.1.1. Further restrictions over the base filter

Figure 3.1: Polynomial Subspace Nets (PSNs). For
clarity, we only denote the first layer (H(0) = X)
and omit layer indexes in the model parameters.

We introduce two additional restric-
tions to the scalar coefficients motivated
by (i) mimicking residual connections that
have been proved useful in graph learning
with deep networks, and (ii) restricting
filter coefficient to a closed interval to ob-
tain numerical stability. For achieving this,
we use a reparameterization of the simple
filter ∑K

k=0 θ
(`)
k ∆k as

σ̃(`)I + (1− σ̃(`))
K∑
k=1

θ̃
(`)
k ∆k. (3.2)

in which we force σ̃(`) to be in the inter-
val [0, 1], and θ̃(`)

1 , . . . , θ̃
(`)
K to be in [−1, 1].

In practice, we implement these restric-
tions by setting σ̃(`) := sigmoid(θ(`)

0 ), and
θ̃

(`)
k := tanh(θ(`)

k ).

The reparameterization using σ̃(`) works as a gate that allows the filter to decide how much
it should weight the original input signal at each layer. This effectively acts as an inner-layer
residual connection [36]. Regarding the restriction for the higher-order filter coefficients to be
in the interval [−1, 1], we empirically show that this makes the learning process more stable
(Section 4.2.2).

Figure 3.1 shows the block diagram for a PSN layer. We split the computation of the PSN
convolution into two steps: (i) filtering the input signal in the spectral domain; and (ii) mixing
the filtered signals using a linear layer and a non-linearity. While we can understand the
linear layer as part of the spectral filter, it is useful to treat it separately since it is agnostic
to the graph structure.

Implementation. To implement a PSN layer, we first compute the sequenceH(`)
1 , . . . ,H

(`)
K

as H(`)
k := ∆H

(`)
k−1, in which H(`)

0 = H(`−1). We can compute this sequence using either
sparse-dense matrix multiplications or a message-passing architecture. We then use this
sequence to carry out the spectral filtering operation:

S(`) := sigmoid(θ(`)
0 )H(`)

0 +
(
1− sigmoid(θ(`)

0 )
) K∑
k=1

tanh
(
θ

(`)
k

)
H

(`)
k , (3.3)

and finally compute H(`+1) := ReLU(S(`)W (`)).
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Restricted polynomials and expressiveness. It may seem that the restrictions that
we impose over polynomial coefficients in Equation 3.2 may affect the expressiveness of our
resulting filter. Nevertheless, the next result shows that we can reconstruct any possible
polynomial filter.

Proposition 1 For every polynomial P (λ) with real-valued coefficients, there exist a constant
m and polynomial R(λ) of the form b + (1 − b)c1λ + (1 − b)c2λ

2 + · · · + (1 − b)cKλKwith
b ∈ [0, 1] and ci ∈ [−1, 1], such that P (λ) = mR(λ).

A proof of this proposition is provided in Section A.3. Since the [0, 1] and [−1, 1] intervals
are fully covered by sigmoid(·) and tanh(·), respectively, and since we are allowing a linear
transformation after the filter, then we know that with proper parameter values, our model
will be able to represent any general filter. The proof of Proposition 1 is in the Annex
(Section A.3). In Section 4.2.3, we show the flexibility of the responses that PSN filter can
produce.

PSNs as low-rank spectral GNNs. We can view PSNs as a low-rank version of the
polynomial spectral network described in Equation 2.26. Assume in that formulation that
Θ

(`)
0 = σ̃(`)W (`), and Θ

(`)
k = (1 − σ̃(`))θ̃(`)

k W
(`) for k ≥ 1, where σ̃(`), θ̃

(`)
1 , . . . , θ̃

(`)
K are as in

Equation 3.2, andW (`) ∈ Rd×d. In fact, the 3D tensor T constructed by stacking the matrices
Θ

(`)
0 , . . . ,Θ

(`)
K has rank at most rank(W (`)). This low-rank property implies regularization, i.e.,

PSNs are implicitly regularized spectral GNNs. This is a direct implication of our architectural
design that applies the same polynomial filter to all input channels, and implements separately
the channel-mixing operation. We provide additional details in the supplementary material.

Complexity and parameters. As in many other spectrally-inspired GNNs the main
computation for the terms of the form ∆kH(`) in PSN can be done with a message-passing
architecture. Assuming the number of edges in the input graph is m, each message-passing
iteration can be done in time O(md), with d the dimension of the node features. Thus for
a filter of degree K, we obtain a complexity of O(Kmd). What separates PSN from other
proposals is that coefficients in the spectral filter are just scalar values, thus having a total
complexity of O(Kmd) for the whole filtering part. This contrasts with architectures such as
ChebNet in which all the K filter terms are multiplied by a different d× d matrix, leading
to the total complexity per layer of O(Kmd + Knd2) where n is the number of nodes in
the input graph. In PSN, beyond the filtering part we have a linear mixer, thus having a
complexity of O(Kmd+ nd2) per layer. Table 3.1 shows the theoretical complexity per layer
for ChebNet and PSN. We also include a GCN with K layers (K-GCN). This is because a
PSN and ChebNet layer can aggregate information from a K-hop neighborhood, while a GCN
layer can only reach a one-hop neighborhood. In terms of total number of parameters per
layer, PSN is significantly more efficient especially when the degree of the polynomial filter
increases. In practice one can also observe a significant reduction in the number of parameters
(fourth column in Table 3.1).

It is also instructive to look at the minimum number of sequential operations per layer (K
layers in the case of GCN) as it gives a strict lower bound on the parallelism achievable for
each network. In this regard, PSN behaves similarly to ChebNet (third column in Table 3.1)
implying that the difference in time gains will be more evident with less parallelism. This
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is confirmed by numerical analysis (last two columns in Table 3.1): the difference in time is
bigger when we run the models in CPU (PSN is 2× faster than ChebNet) compared with
running them in GPU in which the difference between PSN and ChebNets is minimal. The
numbers are obtained over the MOLHIV dataset (see Section 4.1), for 8 layers of polynimial
filters of degree 4 (8 × 4 layers in the case of GCN), but we observe a similar behavior in
other datasets and for other configurations (see Section A.2.1 in the Annex for details).

Table 3.1: Complexity analysis and parameter count. In the table, n and m
denote the number of nodes and edges in an input graph, K the degree of
the polynomial filter, and d the input feature dimension.

Theoretical complexity 8 layers, K = 4, d = 128 over MOLHIV

Models params. complexity seq. ops. params. cpu sec./epoch gpu sec./epoch

K-GCN O(Kd2) O(K(md+ nd2)) O(K) 1.5M 1,148.4 45.7
ChebNet O(Kd2) O(K(md+ nd2)) O(K) 825K 477.6 16.0

PSN O(K + d2) O(Kmd+ nd2) O(K) 152K 214.2 15.6

3.2. Online Graph Nets (OGN)
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Figure 3.2: OGN vs SOTA T-GNNs
on Reddit (+500k interactions). The
horizontal axis shows the relative train-
ing time for each method as a multiple of
OGN’s running time. The vertical shows
average precision. OGN clearly outper-
forms the SOTA but runs approximately
10 times faster than TGN [34] and 374
times faster than CAW [35].

A core idea behind T-GNNs is to maintain a
state su for each node u, updating it whenever
an event involving u (or its temporal neighbors)
takes place. These updates require probing
temporal and topological information to aggre-
gate states from (possibly multi-hop) neighbors.
Nonetheless, this aggregation step is the com-
putational bottleneck of T-GNNs. To address
this limitation, we propose summarizing each
node’s neighborhood into an auxiliary variable,
which is incrementally updated as events un-
fold. Combining this idea with minimal design
choices, we develop OGN (Online Graph Nets)
— a fast and simple model for representation
learning on dynamic graphs.

In OGN every node is represented as a com-
bination of a state and a neighborhood sum-
mary. While previous works invest most of
their computation in ways to sample and aggre-
gate neighbors, our neighborhood computation
is embarrassingly simple and cheap: it is just
a weighted average of all temporal neighbors
states. To update the state of a node u, we
use a combination of its previous state, the novel edge incident on u, and the neighborhood
summary. In both computations we use the ordering of interactions between nodes as a proxy
for time information, thus not considering any form of continuous time data. We also develop
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a scheme to efficiently and dynamically compute the node and neighborhood representations.
With this, OGN does not need to store any information besides these two vectors per node,
and the update can be performed in O(1) time. Consequently, our method works as a fully
online streaming algorithm without the need to store any previous interaction, which is
especially useful for on-device predictions. Most importantly, OGN either outperforms or is
competitive against state-of-the-art T-GNNs, while being much faster than previous methods
(see Figure 3.2).

Basic notation. We assign a neighborhood variable ru ∈ Rd and a state variable su ∈ Rd

to each node u. We annotate these variables with superscripts to account for their evolution
in time. In our formulation, we replace timestamps by an enumeration of events over time,
which is equivalent to counting the events up to (and including) each interaction. For instance,
s(n)
u denotes the state vector for u after the n-th edge event. If the n-th added edge does

not have an endpoint in u, then we set s(n)
u = s(n−1)

u and r(n)
u = r(n−1)

u by default. Also, we
denote by N (n)

u the set of temporal neighbors of node u prior to the n-th event in history.

Expected neighborhood state. We define the neighborhood state r(n)
u as a weighted

average of the states of all nodes that u interacted with, exactly at the time of those interactions.
Thus, if node u had two distinct interactions with node i, then r(n)

u considers two states of i,
which need not be identical. To favor recent neighbors, we make the log-weight for i ∈ N (n)

u

decay linearly with the number of events (n−mi) since the interaction between i and u, which
is the mi-th event in the history. More specifically, the neighborhood state r(n)

u is given by

r(n)
u =

∑
i∈N (n)

u

wis
(mi)
i , with wi := exp (−α (n−mi))∑

j exp (−α (n−mj))
, (3.4)

where α is an hyperparameter controlling how fast the importance of temporal neighbors
decays. Note that the weight vector w = (w1, w2, . . . , wn−mi

) is the output of a temperature-
scaled softmax. As consequence, w defines a categorical distribution over the neighborhood
N (n)
u , and Equation 3.4 can be seen as the expected state of the neighbors of u. We provide

more details in Section B.6.

Online computation of neighborhood states. Naively updating r(n)
u requires a sweep

over all previous neighbors every time a new edge event with endpoint in u occurs. Additionally,
we would need to store the complete history of the states of each node. Summing up, after
the n-th event we would have an overhead of O(n) time and memory for each novel update.
To alleviate this cost, we propose an online updating of r(n)

u . Assume that the n-th event
connects nodes u and v, and let m be the number of events since the last interaction of u
(with any node). We recursively compute

a(n)
u = s(n)

v + exp(−αm) · a(n−1)
u , (3.5)

b(n)
u = 1 + exp(−αm) · b(n−1)

u , (3.6)

with a(0)
u = 0 and b(0)

u = 0. This recursion is particularly useful since r(n)
u = a(n)

u /b(n)
u — see

Proposition 2, with a simple proof in Section B.7. Thus, to implement our method we simply
store and update a(n)

u and b(n)
u . This scheme drops both time and memory complexity to O(1)

per update.
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Figure 3.3: Online Graph Nets (OGN). OGN maintains a state
vector and a neighborhood summary for each node. For a node u, to
predict for a new event with node v, OGN updates the state vector
of u using the neighborhood summary r(n−1)

u and the information of
the event (e(n) and t(n)), then updates its neighborhood information
using the updated state vector of v. OGN performs this update for
both nodes, and combines the resulting state vectors through an MLP
for prediction purposes.

Proposition 2 For any node u ∈ V, let a(n)
u and b(n)

u be defined according to Equation 3.5
and Equation 3.6, respectively, with a(0)

u = 0 and b(0)
u = 0. Then, for all n ∈ N, it holds that:

r(n)
u = a(n)

u

b
(n)
u

.

Updating node states. We now describe how we update the state s(n)
u when a new event

involving u occurs, with edge features e(n) ∈ R`. We first compute an intermediate state s̄(n)
u

by running the edge features, the previous node state s(n−1)
u , and the random Fourier features

t(n) of n through a linear layer followed by a non-linearity. Then, we feed [s̄(n)
u ‖r(n−1)

u ] to
another single-layer net to obtain the updated state s(n)

u , where ‖ denotes concatenation. The
resulting node state update is:

s̄(n)
u = φ

(
W1

[
e(n) ‖ s(n−1)

u ‖ t(n)
])
, (3.7)

s(n)
u = φ

(
W2

[
s̄(n)
u ‖ r(n−1)

u

])
, (3.8)

whereW1 ∈ Rd×(`+2d) andW2 ∈ Rd×2d are parameters, and φ is an element-wise non-linearity.
OGN performs this update for both nodes u and v, and uses the resulting node states s(n)

u

and s(n)
v as node representations for prediction purposes.

3.2.1. Complexity analysis

One key aspect of our formulation is that it incurs the same amount of computation for
each edge added to the graph, no matter how many events have happened thus far. Notably,
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the computation time for each edge does not depend on any particular graph property, nor
on the number of edges previously added or its distribution, nor in the degree of nodes,
etc. More specifically, in terms of the graph size, our computation for each addition is O(1).
Moreover, whenever an edge is added to the graph and values su, au and bu are updated
for the nodes incident to that edge, we no longer need that edge information in any way for
future computations and we can safely drop it. In this sense, our method is a fully online
streaming method, i.e., its computation time does not increase with the number of previous
events (graph size).

This clearly differs from previous methods that need access to some form of memory
about the previous events, and whose time complexity for processing new edges or making
predictions also depends on the total number of previous events. For concreteness, assume a
dynamic graph with E edges added so far, and with d as its maximum degree (maximum
amount of events for a single node). For instance, TGAT’s implementation requires a binary
search over the history of previous events for each node. This implies that every node should
store information of all its previous events, thus having a Ω(E) requirement for total memory
and a O(log d) time overhead to process each new event [33]. A naive implementation of the
path sampling in CAW would also need Ω(E) requirement for memory (potentially accessing
any edge in the graph) and O(d×L) when sampling paths of length L. In the CAW paper [35],
the authors state that sampling can be done with constant time and memory overhead,
nevertheless our experiments using their own implementation exhibit the bigger running times
of all methods we tested (Figure 4.3).

3.2.2. On-edge prediction

Dynamic graphs in real-life applications, such as social networks, may capture millions of
new events every day. Thus, methods that require storing and updating the history of events
for making predictions are not suitable for real-time applications. The updating must be
performed in a centralized system to keep the last version of the complete graph, encompassing
all the history, which becomes impractical when the graph size scales hugely. State-of-the-art
T-GNNs, such as TGN, TGAT, and CAW, fall into this category. These methods rely on
neighborhood sampling, thus requiring to at least update the (often multi-hop) neighborhood
of the involving nodes as events unroll.

In contrast to the latest T-GNNs, predictions for OGN only depend on the nodes involved
in the new event. Since OGN only relies on local information, it needs not an updated
version of the graph nor even the graph structure to make a prediction. This property enables
on-edge prediction. To illustrate, if nodes in the graph represent users in a social network and
edges represent interactions between them, the predictions and the updates can be performed
in each user’s device by considering its state and neighborhood vectors and the ones from
its interacting user, without requiring large computations and information exchange with a
centralized system. Changing the predictions and updates from centralized to on-edge makes
the models suitable for the aforementioned applications.
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Chapter 4

Results and discussion

In the following chapter we assess the performance of both PSN and OGN in a variety of
tasks. In particular, PSN is evaluated on a wide range of graph classification/regression and
semi-supervised node classification tasks, while OGN is evaluated in temporal link prediction
and node classification tasks.

4.1. Polynomial Subspace Net (PSN)

4.1.1. Graph-level prediction tasks

Datasets. [37] and [38] have recently shown that many popular benchmarks are inappro-
priate to assess GNNs. To avoid misleading conclusions, we consider two large-scale molecular
datasets from the Open Graph Benchmark (OGB) [39]: MOLHIV and MOLPCBA. Following
[37], we also consider ZINC [40], a graph regression dataset. These datasets are reproducible
benchmarks stemming from real-world problems and for which GNNs perform better than
structure-agnostic models.

We also evaluate PSN on five TU datasets [41]: TOX21, D&D, REDDIT-B, PROTEINS
and ENZYMES. Importantly, D&D and REDDIT-B contain larger graphs compared to the
other datasets we employ. We report summary statistics of the datasets in the Annex.

Baselines. We compare PSN against three spectral GNNs: GCN [42], ChebNet [21],
and the general polynomial model in Equation 2.26 — henceforth referred to as LapGCN.
We also consider Graph Isomorphism Networks (GINs) [27], MixHop [30] and Principal
Neighborhood Aggregation networks (PNA) [43] as representative state-of-the-art GNNs
based on message passing.

Experimental setup. To compare the model performance, we use the mean absolute
error (MAE) for ZINC. Following the standard protocol, we use the area under the Receiver-
Operating characteristic curve (ROC-AUC) for MOLHIV, and the average precision (AP) for
MOLPCBA. We report mean and standard deviation of the performance metrics computed over
five independent runs. We provide further implementation details in the Annex (Section A.1).
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Table 4.1: Graph-level prediction on OGB datasets and ZINC. PSN reaches
the best result for ZINC and MOLPCBA, and is competitive against PNA
in MOLHIV. For ZINC, the lower the better. Boldface indicates the best
average result in each dataset, and underline the second best.

Models ZINC ↓ MOLHIV ↑ MOLPCBA ↑

GIN 0.408±0.008 75.58±1.40 0.2266±0.0028

MixHop 0.442±0.014 73.73±1.70 0.1646±0.0041

PNA 0.320±0.032 79.05±1.32 0.2284±0.0085

GCN 0.469±0.002 76.06±0.97 0.2020±0.0024

LapGCN 0.313±0.009 75.01±1.88 0.0926±0.0017

ChebNet 0.360±0.028 76.31±1.27 0.2306±0.0016

PSN 0.264±0.014 78.84±1.71 0.2314±0.0062

We report results for ChebNet on ZINC, MOLHIV, and MOLPCBA as provided by [44].
The results for GIN are available in [37] and in the OGB leaderboards [39]. Moreover, we take
performance numbers for PNA from the original work [43], except for MOLPCBA, for which
we run the model using the official released code. Since there are neither common dataset
splits nor a standard evaluation protocol for TU datasets, we run all methods from scratch.

Results. Table 4.1 shows the results for ZINC, MOLHIV, and MOLPCBA datasets. PSN
is the best-performing model for ZINC and achieves similar performance to PNA on MOLHIV
with only 0.21% difference in ROC-AUC. In both datasets PSN clearly outperforms all other
spectral graph nets. For MOLPCBA, the results of PSN, ChebNet, and PNA are very close to
one another. Although PSN presents the best result, there is only a 0.3% difference in average
precision among the three best models. Table 4.2 shows that PSN obtains significantly better
results for all TU datasets.

Table 4.2: Graph classification on TU datasets. PSN shows better overall
performance than other methods.

Models TOX21 D&D REDDIT PROT. ENZ.

GIN 74.2±2.8 75.5±2.8 90.3±3.0 74.8±4.1 59.6±4.5

MixHop 80.6±0.6 87.8±5.3 92.3±1.0 67.4±4.3 81.0±4.8

GCN 77.3±4.0 61.7±1.1 89.3±3.3 75.9±4.3 58.0±7.3

ChebNet 82.3±0.7 61.0±1.1 96.6±0.6 74.6±3.5 78.3±3.4

PSN 82.4±0.3 93.6±3.6 97.0±1.1 79.8±6.4 84.2±0.8

4.1.2. Node classification

Datasets & Baselines. We gauge the performance of PSN on three semi-supervised node
classification tasks over citation networks: Arxiv, Cora, and Citeseer. The Arxiv dataset is
part of OGB [39] whereas Cora and Citeseer [45] have been broadly used to assess GNNs. We
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Table 4.3: Node classification on citation networks. Despite its simple
formulation, PSN is competitive with recently proposed methods, such as
DAGNN and GCNII.

Models Arxiv Cora Citeseer

GIN 67.74± 0.29 75.1± 1.7 63.1± 2.0
DAGNN 72.09± 0.25 84.4± 0.5 73.3± 0.6
GCNII 72.74± 0.16 85.5± 0.5 73.4± 0.6
GAT 73.65± 0.11 83.0± 0.7 72.5± 0.7
MixHop N/A 81.9± 0.4 71.4± 0.8

GCN 71.74± 0.29 81.6± 0.4 70.1± 0.7
ChebNet 70.78± 0.16 80.5± 1.1 70.1± 0.8
CayleyNet N/A 81.9± 0.7 67.1± 2.4
ARMA 69.56± 0.20 83.4± 0.6 72.5± 0.4
S2GC 72.01± 0.25 83.5± 0.0 73.6± 0.1

PSN 72.27± 0.21 83.1± 0.4 73.7± 0.9

compare PSN to five spectral GNNs: GCN [42], ChebNet [21], CayleyNet [22], ARMA [23]
and S2GC [26]. We also consider five message-passing representative models: GIN [27],
DAGNN [29], GCNII [25], GAT [28] and MixHop [30].

Experimental setup. We evaluate all models in a transductive setting. We recover most
results from existing works that use the same data splits and training setup [22, 23, 29].
Additionally, we run the ARMA model on Arxiv using the implementation available in the
PyTorch Geometric framework [46]. We provide further implementation details in the Annex
(Section A.1).

Results. Table 4.3 reports the results for all node-level tasks in terms of accuracy. Notably,
PSN presents the best values for Citeseer. On Arxiv and Cora, PSN is competitive with
message-passing GNNs. Compared to the other spectral GNNs, PSN shows the best overall
results, being surpassed only by ARMA in Cora by a very small margin.

4.2. Where is the gain coming from?
In this section, we analyze the components that make PSN either surpass or be competitive

with more complex spectral GNNs. We first carry out an ablation study to assess the impact
of each model component. After that, we show that our restrictions on the coefficients make
PSN training more stable. We then show that our simple design can learn a variety of filters
depending on the task at hand. Like other high-order spectral GNNs, we show that PSNs can
handle oversmoothing and benefit from deep architectures. Lastly, we discuss the limitations
of PSN and potential solutions.
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Table 4.4: Ablation study. For each model, we report the number of
layers inside parenthesis.

Models ZINC ↓ MOLHIV ↑ TOX21 ↑

no-tanh/res 0.311± 0.005 (32) 75.42± 0.94 (8) 81.95± 0.68 (1)
no-tanh 0.283± 0.007 (16) 76.47± 1.06 (4) 82.63± 0.75 (1)
no-res 0.316± 0.010 (16) 76.53± 1.60 (8) 81.81± 0.35 (1)

PSN 0.264± 0.014 (16) 78.84± 1.71 (8) 82.66± 0.69 (2)
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Figure 4.1: Filter responses for PSN in different datasets. We show the
individual filters at each layer (red) and the combined filter response
(blue). PSN layers combine to generate diverse filters: high-pass (ZINC),
band-stop (REDDIT-B), and band-pass (MOLHIV). On Citesser, PSN
learns a low-pass filter, meeting well-known efficient filter designs for
node classification tasks [47].

4.2.1. Ablation study

Table 4.4 shows the best performance that we could obtain with each PSN-like model
that does not use all the architectural components of PSN’s filters. Regarding terminology,
“no-res” refers to the model without the convex combination, that is, the filter is simply∑K

k=0 tanh (θ(`)
k )∆k. Similarly, “no-tanh” refers to PSN without the application of the tanh

function, i.e., the filter is given by sigmoid(θ(`)
0 )I + (1− sigmoid(θ(`)

0 ))∑K
k=1 θ

(`)
k ∆k. Finally

the “no-tanh/res” is the basic filter ∑K
k=0 θ

(`)
k ∆k. For the ZINC and MOLHIV datasets, we

observe that each PSN component brings something to the table. In contrast, we do not
see significant gains on TOX21. One reason for this is that simple shallow models obtain
good performance on TOX21, even surpassing deep models. Accordingly, we have empirically
observed that our design decisions make a more significant impact when models are deeper
(see supplement for details).

We stress that we are comparing the best architecture we could find for each PSN variant.
Thus, the selected models may not have the same number of layers. For instance, we achieve
the best result for “PSN no-tanh/res” on ZINC with a 32-layer model, which is twice as
deep as the best-performing PSN. Interestingly, our simplest PSN (no-tanh/res) achieves
competitive performance compared to message-passing GNNs such as GIN [27].
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Figure 4.2: Normalized std of gradients. Using tanh leads to more
stable training as gradient values fluctuate less.

4.2.2. The impact of restricting the parameters

As shown in Lemma 1, restricting the polynomial coefficients to [−1, 1] does not affect
the expressiveness of our convolutional layer. In addition, we hypothesize that the main
gain of this design choice comes from making the learning process more stable. To test this
hypothesis, we compare the behavior of gradients during training for two models: with and
without coefficient constraints. At each epoch, we collect gradients for each parameter, such
that we get as many values as minibatches. We then compute the standard deviation of these
gradients and divide the deviation by the absolute value of the parameter at the end of the
epoch. This normalization ensures comparability across different parameter scales and epochs.
The resulting number measures the fluctuation level of the gradients. We do so independently
for each parameter and average the results. We call this metric normalized standard deviation
of gradients.

Figure 4.2 shows this metric for models trained on ZINC and MOLHIV for 20 epochs,
before convergence. Notably, the models with constrained coefficients are more stable during
training, experiencing smoother gradient variations within each epoch. We provide further
implementation details and plots for additional datasets in the Annex.

4.2.3. Spectral analysis

An interesting property of PSN is that its formulation can be interpreted as a single
polynomial filter followed by a linear layer, as can be seen from Equation 3.1. Other spectral
GNNs such as ChebNets and CayleyNets mix the filter and linear layer, which makes studying
the effect of each component more difficult. We believe that this property for PSN makes
them simpler and easier to analyze. To show this, we consider the response of the whole
network as the composition of the spectral filters in each layer, bypassing nonlinearity and
mixing operations. This does not show the exact frequency response of the whole network,
but it gives an idea of what type of filters the model learns for different datasets. Figure 4.1
demonstrates that PSN can learn different types of filters for MOLHIV, REDDIT-B, ZINC,
and Citeseer. For instance, PSN achieves a high-pass filter for ZINC, a band-stop filter for
REDDIT-B, and a band-pass filter for MOLHIV. On Citesser, PSN learns a low-pass filter,

34



meeting well-known efficient filter designs for node classification tasks [47]. The figure also
shows that the final filter is obtained by combining several simple filters at each layer. Given
that PSN uses only a few filter coefficients in each layer, we can increase model flexibility by
stacking more layers without severally increasing the model complexity in terms of parameter
count.

4.2.4. Measuring oversmoothing

Oversmoothing is a phenomenon observed in several GNNs in which representations for
different nodes become progressively more similar as the depth increases [48, 49]. This has
been acknowledged as one of the main reasons why going deeper in GNNs does not usually lead
to better performance. We assess how PSN behaves in terms of oversmoothing considering
two models: i) 5 layers with polynomial degree 4; and ii) 10 layers with degree 2. To quantify
oversmoothing, we compute the average distance between the final embeddings of all pairs of
neighbors. Table 4.5 presents the average of this metric over all graphs in each dataset. It
has been shown that residuals usually help in avoiding oversmoothing [25], thus we consider a
20-layers GCN with residual connections as a simple baseline. We report numbers for (plain)
GCN, PNA, and ChebNet acting on a 20-hop neighborhood (20 layers for GCN, and PNA
and 5 layers with polynomial degree 4 for ChebNet). We also tested GIN but all the numbers
were less than 10−5 so we do not report them in the table. PSN significantly outperforms the
baseline and yields the most consistent results throughout the datasets.

Table 4.5: Oversmoothing for different GNNs (higher is better). Entries
represent normalized mean distance between pairs of neighbors, averaged
over all graphs. Overall, PSN shows the most consistent results.

Models ZINC MOLHIV MOLPCBA

Baseline 0.140± 0.033 0.13± 0.05 0.47± 0.12

GCN 0.138± 0.033 0.09± 0.03 0.14± 0.03
PNA 0.399± 0.177 0.89± 0.16 1.45± 0.12
ChebNet 1.076± 0.156 0.25± 0.07 0.99± 0.07

PSN (5× 4) 1.062± 0.060 1.22± 0.12 1.23± 0.05
PSN (10× 2) 0.901± 0.065 0.79± 0.10 1.34± 0.05

4.2.5. Limitations

A limitation of PSN is that its convolutions are isotropic, meaning that, although node
representations depend on the features of their neighbors, the PSN representation is completely
independent of the position of each neighbor. This prevents PSNs from showing competitive
performance on graph benchmarks in which neighbors have a natural orientation in space.
Typical examples are synthetic graph datasets derived from image data, such as MNIST
and CIFAR10 [37]. In these cases, PSN performs poorly compared to the state-of-the-art:
86.87± 1.49 in MNIST and 56.67± 0.71 in CIFAR10. Nonetheless, PSN results are similar
to those from other isotropic methods such as GCN, GIN, and GraphSAGE [37]. There are
several ways of making a GNN anisotropic, such as adding identifiers in node features [50], or
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Table 4.6: Results in average precision (AP) on link prediction
for datasets with edge features. In all datasets, OGN is either the
best performing method or is closely behind it. ∗ Corresponds to the
original standard deviation 0.04 rounded to the first decimal.

Model Reddit Wikipedia MOOC Twitter

Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive
GAT 97.33±0.2 95.37±0.3 94.73±0.2 91.27±0.4 - - - -
GraphSAGE 97.65±0.2 96.27±0.2 93.56±0.3 91.09±0.3 - - - -

Jodie 97.84±0.3 93.97±1.3 95.70±0.2 93.61±0.2 81.16±1.0 78.77±1.6 98.23±0.1 96.06±0.1

DyRep 98.00±0.1 95.18±0.2 94.66±0.1 91.91±0.2 79.57±1.5 79.37±0.7 98.48±0.1 96.33±0.2

TGAT 98.12±0.2 96.62±0.3 95.34±0.1 93.99±0.3 64.36±3.3 61.74±3.2 98.70±0.1 96.33±0.1

TGN 98.70±0.1 97.55±0.1 98.46±0.1 97.81±0.1 82.10±0.4 77.70±0.3 98.00±0.1 95.76±0.1

CAW 98.39±0.1 97.81±0.1 98.63±0.1 98.52±0.1 89.76±0.4 89.72±0.4 98.72±0.1 98.54±0.3

OGN (ours) 99.09±0.0∗ 98.66±0.1 97.16±0.2 98.41±0.2 88.71±1.3 85.65±1.5 99.01±0.0∗ 98.46±0.1

using anisotropic aggregation schemes in message passing, e.g. attention-based aggregation [28].
However, these choices would deviate us from our initial motivation of sticking to a simple
spectral definition. We leave anisotropic formulations of PSN for future work.

4.3. Online Graph Nets (OGN)

4.3.1. Temporal link prediction

Datasets. We assess the performance of OGN on four commonly used link prediction
benchmarks: Reddit, Wikipedia, MOOC and Twitter. These datasets are attributed, i.e.,
they contain feature vectors for their events. The Twitter dataset is not publicly available,
but we follow instructions from [34] to create a version of the dataset. Node features are
absent in all datasets, thus we follow previous work [33, 34] and set them to zero. We provide
datasets statistics in Section B.2. Additionally, we report results for non-attributed datasets
in Section B.5.

Baselines. We compare OGN against five state-of-the-art temporal models: Jodie [31],
DyRep [32], TGAT [33], TGN [34], and CAW [35]. We also show results for two static graph
methods, GAT [28] and GraphSage [51], which do not use temporal information. Most of
the results for these baselines are available in previous works [33, 34]. However, we re-run
experiments for Jodie and DyRep due to conflicting numbers in different papers. We noticed
an incorrect implementation of attention in the released code of CAW, thus we modify it
and report the corrected numbers. We provide a complete description of this change in
Section B.1.

Experimental setup. The goal in the link prediction task is to classify whether an
interaction between two nodes happens at a given time. Since our datasets only contain
positive observations, we follow previous works [33, 34] and create negative links artificially.
For every edge event, we create a false event at the same time by re-assigning one of the edge
endpoints to a random node. Following [33, 34], we consider a 70%-15%-15% (train-val-test)
split. We evaluate all models in both transductive and inductive settings in this experiment.
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Figure 4.3: Time/epoch vs average precision. We normalize the
execution time per epoch of all models with respect to the execution
time of OGN. In all cases, OGN nearly matches or surpasses the SOTA.
Also, OGN is the fastest method overall. For instance, OGN is more
than two orders of magnitude faster than CAW and at least one order
of magnitude faster than TGAT.

In the transductive setting, we predict interactions involving nodes seen during training. In
the inductive setting, we evaluate the models on nodes never observed before. We use average
precision (AP) as performance metric and repeat each experiment for ten independent runs.

Results. Table 4.6 present the results in the link prediction task for the transductive and
inductive settings in attributed datasets. The results show that OGN achieves comparable
performance to state-of-the-art methods. Notably, it obtains the best results in the Reddit
dataset for both the transductive and inductive settings and in the Twitter dataset for the
transductive setting.

Figure 4.3 shows the performance and time per epoch for different T-GNN models. We can
see that OGN is competitive with state-of-the-art methods, while being orders of magnitude
faster than some of the methods. In particular, OGN is always two orders of magnitude faster
than CAW, which is the best performing method in Wikipedia and MOOC. Further, OGN is
the fastest considered method.

4.3.2. Node classification

Datasets. We evaluate OGN on two node classification benchmarks: Reddit andWikipedia.
Reddit contains labeled links that indicate whether a user will be banned from a subreddit.
Only 366 out of 672, 447 interactions result in a ban. Wikipedia contains labeled events that
represents whether a user will be kept from editing a Wikipedia page. Again, only a small
fraction (217 out of 157, 474) of edits lead to bans on Wikipedia [31].

Baselines. We compare OGN against four temporal models: Jodie, DyRep, TGAT and
TGN. We also evaluate two static methods: GAT and GraphSage. Most of the results for our
baselines are available in the literature [33, 34].

Experimental setup. Due to the imbalance between positive and negative examples
in the dataset, we measure performance in terms of AUC. We report average and standard
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Table 4.7: Results for node classification (AUC). OGN is the best
performing model on Wikipedia and obtains the second best AUC on
Reddit.

Model Reddit Wikipedia

GAT 64.52±0.5 82.34±0.8

GraphSage 61.24±0.6 82.42±0.7

Jodie 61.83±2.7 84.84±1.2

DyRep 62.91±2.4 84.59±2.2

TGAT 65.56±0.7 83.69±0.7

TGN 67.06±0.9 87.81±0.3

OGN 65.59±1.0 88.36±0.4

deviation for ten repetitions of the experiments.

Results. Table 4.7 presents the results for the node classification task. For Wikipedia,
OGN presents the best performance. For Reddit, OGN is the second best method in average
AUC.

4.4. Ablation Studies
In the following section we present ablation studies to understand the effect of different

components for T-GNNs and OGN.

4.4.1. Temporal GNNs

The importance of fine-grained time information. We design simple experiments
to challenge the need for fine-grained time information (timestamps), and use TGAT, TGN
and CAW as running examples. Intuitively, this feature is essential to capture the dynamics of
real-world applications (e.g., social networks), in which events naturally occur in continuous
time. To challenge this intuition, we artificially discretize the time information and re-evaluate
these methods. We do so by setting the gap between successive events to a fixed value ∆ = 0.1
in training and testing. We refer to this approach as U -time.

Figure 4.4.a reports the performance of TGN and TGAT with and without the discretization
approach. Surprisingly, we find that continuous-time information generally does not improve
and sometimes even hurts the performance of T-GNNs. For instance, U-time leads to an
increase of ≈ 3% and 14% in AP for TGN and TGAT on the MOOC dataset, respectively.
For all other datasets and methods, we only observe small fluctuations in performance, except
for CAW on the MOOC dataset.

A possible explanation for this phenomenon is that T-GNNs are insensitive to the specific
values of the timestamp, leveraging the ordering instead. To test this hypothesis, we take
TGN (with full-fledged timestamps) and evaluate their predictions when each timestamp of
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the test set is shifted by a relative lag to approach the timestamp of the subsequent event.
For example, with a relative lag of 0.5, we shift an event with timestamp 20000 to 15000 if the
previous event happened at timestamp 10000. Note that this procedure preserves the original
ordering of events. Figure 4.4.b compares the logits of TGN with relative lags {0.5, 0.99} on
Wikipedia. Notably, TGN produces virtually the same predictions regardless of the amount
of lag we apply.
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Figure 4.4: (a) Effect of using regularly spaced timestamps (U-
time) on TGAT, TGN and CAW. In general, using U-time (4
markers) does not harm performance. In fact, TGN and TGAT benefit
from time discretization. Also, the models show smaller standard devi-
ations overall. (b) Predictions of TGN with shifted timestamps
on test data for Wikipedia. Even after applying a 0.99 relative lag,
the logits remain rather similar to those from the original no-shifted
timestamps (red line).

The importance of attention. State-of-the-art T-GNN models, such as TGN and
TGAT, use attention as their aggregation layers. We look to evaluate the importance of this
component in the performance of T-GNNs. For this purpose, we replace the attention module
for an element-wise mean or max followed by a linear layer.

In Table 4.8 we compare the performance of the attention module to the best performance
between the mean and max layers. Interestingly, we do not see a significant gain by using
attention over a mean or max layer in most datasets. In fact, the largest gap in performance
of 7.53 for TGAT in the MOOC dataset is actually in favor of using the mean/max layer.
Using attention only outperforms using mean/max in Wikipedia for both models.

4.4.2. OGN

Time information. To evaluate the effect of discretizing timestamps, we consider two
alternatives: (i) using the original timestamps, and (ii) removing the vector representation of
the time. Results in Table 4.9 show that using discretized time information generally leads to
higher AP values. The exception is Reddit, in which using the original timestamps yields
slightly better results. Similarly, using the discretized time also outperforms OGN with no
time embeddings at all. These results highlight that the only information needed from the
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Table 4.8: Results for TGN and TGAT with different attention
modules in the transductive setting. Using attention either brings
marginal gains or winds up hurting performance (TGAT on MOOC).
Superscripts ∗ and ∗∗ denote a standard deviation of 0.04 and 0.03
rounded to the first decimal, respectively.

Model Module Reddit Wikipedia MOOC

TGN Original 98.1±0.0∗ 97.6±0.1 82.1±0.4

Mean/Max 98.1±0.0∗∗ 97.3±0.1 82.0±0.2

TGAT Original 98.51±0.1 95.85±0.1 66.09±3.4

Mean/Max 98.47±0.0∗ 94.96±0.2 74.34±0.5

Table 4.9: Ablation study for OGN. Neighborhood state and edge
information play a crucial role on the model’s performance. Discretized
timestamps generally lead to better performance.

Model Reddit Wikipedia MOOC
Original timestamps 99.13±0.02 96.45±0.97 81.06±2.82

No time embedding 98.96±0.03 95.63±0.29 86.33±3.12

No edge features 96.11±1.02 96.57±0.16 69.87±6.74

No neighborhood states 97.00±0.10 89.33±0.87 83.40±0.29

OGN 99.09±0.04 97.16±0.21 88.71±1.34

timestamps is the sequence of events.

Edge information. Since most datasets do not have node features, the edge features are
the only source of information besides timestamps. To study their importance to our method,
we remove them from the dataset by setting their values to zero. Results in Table 4.9 show
that the performance deteriorates across all datasets when we remove the edge features, which
demonstrates their importance for accurate predictions. The drop in performance without
edge features is especially noticeable for the MOOC dataset, where the performance drop
amounts to 18% when we remove edge features.

Neighborhood information. One of the key insights of our method consists of using a
state vector ru to summarize the neighborhood information for the nodes in the dataset. To
study the impact of this component, we remove ru from our model and only consider the node
state and the random Fourier time embedding to update the node embedding. The results in
Table 4.9 show a significant decrease in performance when the neighborhood state is removed.
These results indicate that neighborhood states are crucial components of our method.

Limitations. As noted previously, edge features play an important role in the node state
updating after each event. Since node features are absent in the datasets, the performance
of OGN mainly relies on edge information. Therefore, its performance drops when learning
on non-attributed temporal graphs, which suggests that OGN does not fully exploit the
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structural information of the graph, given its simplicity. We report results on benchmarks
with non-attributed events in Section B.5.
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Chapter 5

Conclusions

In this thesis we have introduced polynomial subspace net (PSN) and online graph nets
(OGN), simple GNN models that pursue a simple design over flexibility of the models. We
empirically show that these simple methods outperform state-of-the-art models in several
benchmarks, while running asymptotically faster than other methods. Additionally, we present
a comprehensive suite of experiments that validate the design choices for both models.

PSN has the added benefit of being a spectral GNN with few parameters that can easily
be interpreted as a filter in the spectral domain. We present theoretical findings that prove
that PSN can represent any polynomial filter. Alongside this result, we show experiments
that: i) shows evidence that our constrained parameterization leads to more stable training;
ii) demonstrates that, despite its simplicity, PSN can learn different expressive filters; and iii)
illustrates that PSN is robust to oversmoothing compared to other popular GNNs.

An attractive feature is that OGN is an online streaming method, i.e.: i) updating the
model does not require access to previous events; ii) the computational cost of OGN does not
increase with history length. Since OGN does not use neighborhood sampling, its predictions
are extremely scalable and suitable for use on edge devices.

By proposing PSN and OGN, simple GNN models with state-of-the-art performance, we
have validated the hypothesis that was presented in Section 1. We also present a detailed
study on the success of the models along with its limitations, fulfilling the general objectives
presented at the beginning of the work.

The specific objectives that were stated in Section 1 are also fulfilled.

• PSN has lower computational complexity and number of parameters than other spectral
GNNs, while outperforming state-of-the-art methods in graph classification tasks and
staying competitive in node classification tasks.

• OGN has lower computational complexity and memory usage than other T-GNNs. It
also presents significant speedup over such methods, while obtaining state-of-the-art
performance in attributed datasets and competitive performance in unattributed datasets.
OGN is a fully online streaming method, which enables its use in real-life data.
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• We present detailed experiments for both methods that study its components to under-
stand how they obtain competitive performance while staying simple.

• Through the experiments we identify the limitations for both methods when compared
to more complex alternatives, and explain the reasons behind them.

The limitations of both methods (Section 4.2.5 and Section 4.4.2) present an interesting
pathway for further investigation. For PSN, extending the method to make it anisotropic might
result in significant gain in several benchmarks where nodes have a natural position in space.
For OGN, adding more detailed structural information that does not incur in significant
computational complexity could be the key to increase its performance in unattributed
datasets. We leave the exploration of these problems as future work.
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Annex A

PSN

A.1. Implementation details

A.1.1. Datasets

Table A.1 and Table A.2 report statistics of the datasets for graph and node classification,
respectively. Notably, we use three large-scale datasets from the OGB suite: MOLHIV (≈ 41k
graphs), MOLPCBA (≈ 437k graphs), and Arxiv (≈ 169k nodes). We also employ ZINC, a
regression dataset that has been recently introduced as a benchmark for graph-level prediction
tasks [37]. The remaining datasets are part of TUDatasets [41]. Table A.1 and Table A.2
also report split ratios (train/validation/test) for each dataset. For most datasets, there are
standardized split schemes which ensure comparability with prior results. As for the TOX21,
D&D and REDDIT-B datasets, we apply a random split scheme (80%/10%/10%) similarly
to [38] and [52].

Table A.1: Summary of graph classification and regression datasets.

Dataset #Graphs #Nodes #Edges #Tasks Metric Split scheme Split ratio

ZINC 12,000 9-37 - 1 MAE Fixed 83.3/8.3/8.3
MOLHIV 41,127 25.5 27.5 1 ROC-AUC Scaffold 80/10/10
MOLPCBA 437,929 26 28.1 128 AP Scaffold 80/10/10
TOX21 7,831 18.6 - 12 ROC-AUC Random 80/10/10
D&D 1,178 284.3 715.7 1 accuracy Random 80/10/10
REDDIT-B 2,000 429.63 497,754 1 accuracy Random 80/10/10
PROTEINS 1,113 43,471 72,82 1 accuracy Random 80/10/10
ENZYMES 600 19,580 62,14 1 accuracy Random 80/10/10

Table A.2: Summary of node classification datasets.

Dataset #Nodes #Edges #Classes Split scheme Split ratio

Arxiv 169,343 1,166,243 40 Time 54/18/28
Cora 2,708 5,429 7 Fixed 45/18/37
Citeseer 3,327 9,228 6 Fixed 55/15/30
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A.1.2. Evaluation setup

Table A.3 and Table A.4 show the best hyperparameter choice for each method and dataset.
For all models, we set the embedding size to 128 and use batch-normalization before each layer.
We also apply global mean pooling to obtain graph-level embeddings for graph classification
tasks. On top these graph-level representation, we use a linear layer followed by a ReLU
activation. We train all models with Adam using weight decay and/or dropout. We do not
incorporate edge features in our implementation of PSN. We provide configuration files along
with our code to guarantee reproducibility.

A.1.3. Hardware

We run experiments using a set of machines comprising heterogeneous GPU resources
including Nvidia Tesla P100, Tesla V100, GTX 1080Ti, and TITAN RTX cards.
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Table A.3: Models used for graph classification datasets. For the cases
marked as * the result that we presented in the Experiments section
was obtained by a search over 2,3,4, and 5 layers by [46].

Dataset Model Layers Degree (K)

ZINC LapGCN 8 2
PSN 16 2

MOLHIV LapGCN 5 3
PSN 8 2

MOLPCBA
LapGCN 5 3
PSN 16 2
PNA 3 N/A

TOX21

GCN 1 N/A
GIN 4 N/A
ChebNet 2 3
PSN 4 2

D&D

GCN 3 N/A
GIN 9 N/A
ChebNet 8 2
PSN 4 3

REDDIT-B

GCN * N/A
GIN * N/A
ChebNet 8 2
PSN 8 2

PROTEINS

GCN 3 N/A
GIN 5 N/A
ChebNet 8 2
PSN 16 2

ENZYMES

GCN 3 N/A
GIN 4 N/A
ChebNet 8 2
PSN 16 2
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Table A.4: Models used for node classification datasets.

Dataset Model Layers Degree (K)

Citeseer PSN 6 2

Cora PSN 10 2

Arxiv
ChebNet 4 2
PSN 4 2
ARMA 1 5

A.2. Additional experiments

A.2.1. Complexity

Table A.5 shows time and parameter complexity for PSN, ChebNet and GCN trained over
MOLHIV and ZINC. The time per epoch is obtained as the average of running 10 epochs.
The machines we used for the comparison were equipped similarly with Intel Xeon E5-2630
v4 CPUs, 32Gb RAM and Nvidia GTX 1080 Ti GPUs. We used the same machines to obtain
the numbers in Table 3.1 in the body of the paper.

Table A.5: Complexity analysis and parameter count for the ZINC
dataset with 16 layers, K = 4 and d = 128. We empirically measure
the number of parameters and the seconds per epoch both in CPU and
GPU.

16 layers, K = 4, d = 128 over ZINC

Models params. cpu sec./epoch gpu sec./epoch

K-GCN 3.17M 704,4 27.3
ChebNet 1.61M 154,8 9.1

PSN 289K 106,8 9.0

A.2.2. Ablation study

Table A.6 presents a more detailed account of the ablation study in Section 4.2.1, with
results for different number of layers. The results show that our design choices (inner-layer
residual connections and restricted coefficients) are specially useful for deeper models, e.g.,
with 16 or 32 layers. Notably, full-fledged PSNs are the best performing models.
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Table A.6: Ablation study for a varying number of layers. For
each dataset, boldface indicates the best average result for each PSN
variant. An additional underline highlights the best overall model.

Dataset Model Layers
1 2 4 8 16 32

ZINC

PSN no-tanh/res 0.56± 0.01 0.52± 0.01 0.43± 0.02 0.33± 0.01 0.33± 0.01 0.31± 0.01
PSN no-tanh 0.58± 0.01 0.53± 0.01 0.45± 0.01 0.36± 0.01 0.28± 0.01 0.28± 0.01
PSN no-res 0.57± 0.01 0.54± 0.02 0.42± 0.01 0.33± 0.01 0.32± 0.01 0.34± 0.01
PSN 0.58± 0.01 0.52± 0.01 0.46± 0.01 0.38± 0.02 0.26± 0.01 0.28± 0.01

MOLHIV

PSN no-tanh/res 73.5± 1.7 75.3± 1.1 75.3± 1.1 75.3± 3.0 73.9± 1.3 68.9± 1.6
PSN no-tanh 74.4± 1.7 76.0± 0.7 74.8± 1.4 76.3± 1.8 76.5± 1.3 71.4± 2.3
PSN no-res 73.7± 2.1 76.3± 0.2 74.8± 1.4 75.5± 0.6 75.0± 0.5 68.4± 3.6
PSN 74.5± 1.1 75.8± 1.0 76.6± 1.5 78.8± 1.7 78.1± 0.7 72.8± 1.3

TOX21

PSN no-tanh/res 81.6± 1.5 80.4± 1.5 78.8± 0.7 76.8± 0.9 75.7± 0.5 77.0± 1.5
PSN no-tanh 82.8± 0.4 82.6± 0.5 82.4± 0.2 81.0± 0.4 79.9± 1.0 78.7± 0.8
PSN no-res 81.3± 1.0 80.4± 1.0 78.7± 1.5 77.4± 1.1 75.7± 0.7 75.9± 1.1
PSN 83.1± 0.4 82.8± 0.6 82.7± 0.7 81.5± 0.3 81.4± 0.8 80.5± 0.5

A.2.3. Measuring oversmoothing

Figure A.1 shows tolerance to oversmoothing as a function of depth for ChebNet, GCN,
GIN, and PSN on the ZINC and MOLHIV datasets. Similar to the Measuring oversmoothing
section, we again use the mean average distance metric to measure oversmoothing. Results
reflect the average of 5 runs. For PSN and ChebNet, we use polynomials of degree 2 in each
layer. To ensure the same reachable neighborhood size, we compare L-layer PSN/ChebNets
to 2L-layer GCN/GINs. As expected, GCNs and GINs become increasingly similar as the
number of layers grows. PSN obtains the largest mean avg. distance for deep models (8, 16
and 32 layers).

Additionally, Figure A.2 shows performance as a function of depth. Notably, PSN performs
better as depth increases. Arguably, this is only possible due to the robustness of PSN to
oversmoothing. On the contrary, ChebNet, GCN, and GIN’s performances tend to drop with
deeper architectures.
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Figure A.1: Measuring oversmoothing: mean average distance
for a varying number of layers. Among all methods, PSN is the
least affected by oversmoothing when depth increases. Higher is better.
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Figure A.2: Performance as a function of network depth. Over-
all, deep PSNs (32 layers) outperform the competing methods.
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A.2.4. Gradients
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Figure A.3: Normalized std of gradients per epoch for the
TOX21, REDDIT-B, and DD datasets. Overall, using tanh re-
sults in smaller gradient fluctuations during training.

To further support our analysis of the gradients (see Section 4.2.2), we report normalized
standard deviation of the gradients during training for three additional datasets: TOX21,
REDDIT-B, and D&D. Figure A.3 shows that using restricted coefficients (i.e., applying
tanh) to gradients with smaller deviation, allowing for more stable training. This effect is
particularly evident in TOX21 as the number of epochs increases.

A.3. Proof of Proposition 1
Proof. Let P (x) be an arbitrary polynomial of degree K

P (x) = a0 + a1x+ a2x
2 + · · ·+ aKx

K

and M be the maximum absolute value of the coefficients of P (x), i.e., M = max0≤k≤K |ak|.
Furthermore, we define:

m =2M sign(a0),

b =a0

m
,

ck = ak
(1− b)m ∀k = 1 . . . K.

Consider the polynomial R(x) defined as

b+ (1− b)c1x+ (1− b)c2x
2 + · · ·+ (1− b)cKxK .

Note that P (x) = mR(x) by construction. To complete the proof of Proposition 1, we only
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need to show that b ∈ [0, 1] and that ck ∈ [−1, 1]. For the case of b we have that

b = a0

m

= a0

2M sign(a0)

= |a0|
2M

and since M ≥ |a0|, b lies in [0, 1/2].

For all k = 1 . . . K it follows that

|ck| =
∣∣∣∣∣ ai
(1− b) · 2M sign(ak)

∣∣∣∣∣
=

∣∣∣∣∣ ai
2(1− b)M

∣∣∣∣∣
≤

∣∣∣∣∣ 1
2(1− b)

∣∣∣∣∣
The last equation stems from the fact that M ≥ |ak|. Since b ∈ [0, 1/2], we have that
1/2 ≤ (1 − b) ≤ 1. As a consequence, |ck| ∈ [1/2, 1] and therefore ck ∈ [−1, 1] for all
k = 1 . . . K.

A.4. Proof of Proposition 2
Proof. [53] show that the frequency profile for the k-th support of ChebNet is given by

Φk(λ) =


1 k = 1

2λ
λmax
− 1 k = 2

2Φ2(λ)Φk−1(λ)−Φk−2(λ) k > 2.

Therefore, the k-th support of ChebNet has a frequency response that is a polynomial
of order k with respect to λ. Consequently, ChebNet filters of size K are combinations of
polynomials up to degree K.

Note that the k-th support of PSN is C(k) = ∆k and that ∆k = UΛkUT , by definition.
Following closely the derivations by [53], we can characterize the frequency profile for the k-th
support of PSN as:

Φk(λ) = diag−1(UTC(k)U)
= diag−1(UTUΛkUTU)
= diag−1(Λk)
= λk.
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As a consequence, a PSN filter of size K can learn any polynomial filter up to degree
K, similarly to ChebNet filters. Therefore, the filter in PSN is as expressive as the one in
ChebNet.

A.5. Proof of Proposition 3
Proof. Let us consider two layers F (H) = ∑K

k=0(θk∆kH)W and G(H) = ∑K
k=0(θ′k∆kH)W ′.

We say that F and G are equivalent if F (H) = G(H) for any possible H ∈ Rn×d and
∆ ∈ Rn×n. This simply means that for any input graph both layers output the same value.
The equality can be written in the following way.

K∑
k=0

θk(∆kH)W =
K∑
k=0

θ′k(∆kH)W ′.

The previous expression can be rewritten as

K∑
k=0

∆kH(θkW − θ′kW ′) = 0.

This expression can hold for every possible ∆ ∈ Rn×n and every H ∈ Rn×d only if the
following equality holds,

(θkW − θ′kW ′) = 0, ∀k.

With this, W and W ′ follow the relation

W = θ′k
θk
W ′ = µW ′, ∀k.

Note that the previous equation implies that θ′k/θk must be a constant for all values of k. Let
us call y the output for the layers (since the layers are equivalent, the output is the same) and
L any continuous loss function. The standard deviation for the gradients satisfy the following
equality.

σ

(
∂L
∂W

)
= σ

(
∂L
∂y

∂y

∂W

)

= σ

(
∂L
∂y

K∑
k=0

θk(∆kH)
)

= σ

(
∂L
∂y

K∑
k=0

θ′k
µ

(∆kH)
)

= σ

(
1
µ

∂L
∂y

∂y

∂W ′

)

= 1
µ
σ

(
∂L
∂W ′

)

We can use the previous equality in conjunction with the relation between the layer weights
to compute the relation between the normalized standard deviations as follows.
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σ
(
∂L
∂W

)
W

= 1
µ

σ
(
∂L
∂W ′

)
W

= 1
µ2

σ
(
∂L
∂W ′

)
W ′

Which is the equality that we wanted to prove.

A.6. Proof of Proposition 4
Definition 1 (Rank-one tensor) A tensor X ∈ RD1×...×Dn is rank one we can write it as the
outer product of n vectors, i.e.,

X = a(1) ⊗ · · · ⊗ a(n),

where a(i) ∈ RDi for all i = 1 . . . n. Equivalently, the entries in X are given by

xd1...dn = a
(1)
d1
. . . a

(n)
dn
.

Definition 2 (Rank of a tensor) The rank of a tensor X, denoted by rank(X), is the minimum
number of rank-one tensors whose sum equals X.

Proof. Let r denote the rank of W (`) ∈ Rd`−1×d`. By definition, we have that W (`) can be
written as

W (`) = a1 ⊗ b1 + . . .+ ar ⊗ br,

where a1, . . . ,ar ∈ Rd`−1 and b1, . . . , br ∈ Rd` .
Let c = [c0, . . . , cK ]> such that

ck =
σ(θ(`)

0 ) if k = 0,(
1− σ(θ(`)

0 )
)

tanh
(
θ

(`)
k

)
otherwise.

We can write T(`) as a sum of r rank-one tensors

T(`) = W (`) ⊗ c,
= a1 ⊗ b1 ⊗ c+ . . .+ ar ⊗ br ⊗ c,

and therefore the rank of T is not greater than r.
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Annex B

OGN

B.1. Causal Anonymous Walk (CAW)

[35] propose Causal Anonymous Walk-Networks (CAW-N), which computes the node
embeddings using sets of temporal random walks Su and Sv, starting respectively from the
endpoints u and v of an edge to be predicted at time t. The random walk is time-aware in the
sense that the log-probability of sampling w as the next node in a walk from u, is inversely
proportional to the difference between the current time and the time of the last interaction
between w and u. The random-walk size is governed by an hyperparameter L.

Once Su and Sv are computed, CAW-N anonymizes each walk by replacing every node
w with a footprint vector ICAW(w) ∈ RL+1 such that ICAW(w)` stores how many times w
was the `-th node in a walk of Su ∪ Sv. Let Ŝu and Ŝv denote the anonymous versions of
Su and Sv. CAW-N then treat every anonymous walk Ŵ ∈ Ŝu ∪ Ŝv as a sequence of pairs
(ICAW(wi), ti), with i = 0, . . . , L, and produces an embedding emb(Ŵ ) by first transforming
each pair into a vector [f1(ICAW(wi)) ‖ f2(ti−1 − ti)], and then running a recurrent network
over that sequence of vectors. In [35], function f1(·) is a combination of MLPs, and f2(·)
is a random Fourier feature expansion. Finally, CAW-N combines all the anonymous walk
embeddings using either mean-pooling or self-attention.

B.1.1. The Bug: Attention over the batch instead of the walks

In the official code by [35], we note that the self-attention used for aggregating the sampled
random walks is computed over the incorrect dimension. Specifically, given the tensor that
contains representations of the sampled walks h ∈ RB,N,D, where B is the batch size, N the
number of walks and D the embedding size, the self-attention should be computed over N ,
but in the official release it is instead computed over B.1 Consequently, when predicting a
link at time ti, this implementation allows the model to get information from the other events

1 The specific line of code that generates the problem can be found in the official released code
(Line 51) https://github.com/snap-stanford/CAW/blob/master/transformer.py#L51 when using the
multi-head attention implemented by the PyTorch library. That implementation expects a ten-
sor arranged as (sequence_length, batch, embedding_size), but [35] provide a tensor arranged as
(batch, sequence_length, embedding_size).
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in the batch, in particular, to events at times tj with j > i. This effectively allows CAW to
“look to the future”.

To illustrate the problem, we replicated the results of [35] in the transductive setting, and
use the same training setup to evaluate the test set using batches of size 1 (we emphasize that
we only change the batch size during testing). The prediction algorithm of CAW does not
depend on the batch size, but the results suggest that the test performance drops noticeably
using batch size 1. We further fixed the implementation error so that the self-attention
is now computed over the dimension of the walks, N , and retrained CAW with the same
hyperparameters. Again, there is an evident drop in performance compared to the results
reported by the authors.

In addition, we note that in the officially released code of CAW, the pooling method that
aggregates walks is always set as attention, even when using the flag of mean pooling2. Thus,
we modified it to be a mean aggregation, and the performance drops w.r.t the numbers provided
in [35] with mean aggregation. Table B.1 summarizes the results for the aforementioned
modifications.

Table B.1: Results of CAW in transductive setting (average precision).

Model Reddit Wikipedia MOOC UCI
Original (bug in the attention) 99.75±0.12 100.0±0.0 97.55±0.45 93.56±1.33

Test batch size 1 85.29±1.08 92.94±0.52 75.57±2.52 77.10±1.31

Corrected attention 97.08±0.06 98.20±0.07 73.40±0.48 81.66±0.59

Mean 96.53±0.12 97.83±0.13 72.15±0.51 77.96±1.67

Because of the aforementioned bug we use the “corrected attention” version
of CAW for the experiments in the paper.

B.2. Datasets

For temporal link prediction, we use six popular benchmarks:

• Reddit3 is a dataset of posts made by users on subreddits over a month. Nodes correspond
to either users or subreddits, and links denote posting requests from users to subreddits,
annotated with timestamps.

• Wikipedia4 is a network where links correspond to timestamped updates that users
(nodes) make to wiki pages (nodes). The dataset only comprises the 1000 most edited
pages, and users with at least 5 edits within a month.

2 In the official implementation of CAW (Lines 120-124) https://github.com/snap-stanford/CAW/blob/
be07783b59824fbc5ed666b3e885d4a6abc8d1a3/main.py#L120 the walk_pool argument is not fed into CAW,
thus it always takes the default value, which is the attention aggregation.

3 http://snap.stanford.edu/jodie/reddit.csv
4 http://snap.stanford.edu/jodie/wikipedia.csv
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• MOOC5 is a dataset of students’ actions on a massive open online course. Its nodes
represent either students or course content units, and its temporal links represent student’s
access to course units.

• UCI6 is a dataset of posts to the University of California Irvine forum. Its nodes
denote either users or forums, and the links represent timestamped non-attibuted forum
messages.

• Enron7 is a dataset of email communications in Enron. Its nodes represent core employees
of Enron and links represent emails between them.

• LastFM8 records one month of who-listens-to-which song information. Its nodes corre-
spond to either users or songs.

We also create a Twitter dataset following the work of [34]. We describe the details of the
Twitter dataset in Section B.2.1 of the Annex. Table B.2 reports summary statistics for each
dataset.

Table B.2: Summary statistics for temporal link prediction datasets. ∗
Corresponds to edge features filled with zero values.

Dataset #Nodes #Edges #Edge feat.

Reddit 10,985 672,447 172
Wikipedia 9,227 157,474 172
MOOC 7,145 411,749 4
Twitter 8,925 406,564 768
UCI 1,899 59,835 100∗
Enron 184 125,235 32∗
LastFM 1,980 1,293,104 2∗

B.2.1. Twitter dataset

We base our Twitter dataset in the description given in the TGN paper [34]. To generate
the dataset we begin with the data from the 2021 Twitter RecSys Challenge. Then we take
the 10,000 nodes with the highest number of interactions in the dataset — and respectively
their edge events. Note that not all of the 10,000 nodes will be left in the dataset, since some
might no have interactions with other nodes in the dataset. To compute the edge features, we
use Multilingual BERT on the provided text tokens.

B.3. Implementation details

5 http://snap.stanford.edu/jodie/mooc.csv
6 http://konect.cc/networks/opsahl-ucforum/
7 https://www.cs.cmu.edu/~./enron/
8 http://snap.stanford.edu/jodie/lastfm.csv
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B.3.1. Evaluation setup and hyperparameters

Real-world temporal networks only comprise true edge events, i.e., positive links (class 1).
To generate negative links (class 0), we follow standard methodology [33, 34, 35]: for each
positive link eu,v, we create a negative link eu,v′ with v′ 6= v uniformly sampled from a set of
candidate nodes, using the same feature vector and timestamp as eu,v.

We train the models using both positive and negative links, and the binary cross-entropy
loss. We use Adam with learning rate 10−4 during 50 epochs, with early stopping if there is
no improvement greater than 10−5 in validation average precision for 5 epochs.

For CAW, we perform a grid search over the time decay α ∈ {0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0}×
10−6, number of walks M ∈ {1, 2, 3, 4, 5} and walk length L ∈ {32, 64, 128}. We present the
best combination of hyperparameters in Table B.3. For TGN, we follow [34] and sample
twenty temporal neighbors. For TGAT, we sample twenty immediate neighbors and twenty
2-hop temporal neighbors following the guidelines in the original work [33].

Table B.3: Hyperparameters for CAW.

Dataset Time decay α #Walks Walk length

Reddit 10−8 32 3
Wikipedia 4× 10−6 64 4
MOOC 10−4 64 3
UCI 10−5 64 2
Enron 10−6 64 5

B.4. Further Ablation Study
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Figure B.1: Removing timestamps can
hurt the performance of T-GNNs. Both
TGN (no-time) and TGAT (no-time) ex-
perience a significant performance drop on
the UCI dataset.

The importance of time information. We
now take a step further and evaluate the perfor-
mance of T-GNNs when no time information is
available and only the ordering of the events is pre-
served. In particular, we first create the sequence
of events ordered by time and then set the actual
value of timestamps to zero before feeding them
to TGAT and TGN. We refer to this approach as
no-time.

Figure B.1 shows the performance of repre-
sentative T-GNNs with and without timestamps.
Notably, the performance of TGN significantly
decreases (≈ 23% in AP) on the UCI dataset.
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However, these results show that there are cases in which leveraging the ordering of events
alone is not enough to learn meaningful temporal node representations. We note that the
U -time and no-time approaches are fundamentally different. Unlike no-time, U -time still
allows T-GNNs to count the total number of events between two interactions involving the
same node.

B.4.1. Hardware

We run experiments using a set of machines comprising heterogeneous GPU resources
including Nvidia Tesla P100, Tesla V100, GTX 1080Ti, and TITAN RTX cards. To ensure
fairness in time comparison (Figure 3.2 and Figure 4.3), we also run all methods on the
machine equipped with a consumer-grade GPU (Nvidia GTX 1080Ti).

B.5. More experiments

In this section we present results in the link prediction task for four more datasets, UCI,
Enron and LastFM. All of these datasets are unattributed, which means that they do not
contain edge or node features. OGN does not perform as well in these datasets. We discuss
why this may be the case in Section 4.4.2 of the paper.

Table B.4: Results in average precision (AP) on link prediction for
datasets that do not contain edge features.

Model UCI Enron LastFM

Transductive Inductive Transductive Inductive Transductive Inductive
Jodie 86.73±1.0 75.26±1.7 77.31±4.2 76.48±3.5 69.32±1.0 80.32±1.4

DyRep 54.60±3.1 50.96±1.9 77.68±1.6 66.97±3.8 69.24±1.4 82.03±0.6

TGAT 77.51±0.7 70.54±0.5 68.02±0.1 63.70±0.2 54.77±0.4 56.76±0.9

TGN 80.40±1.4 74.70±0.9 79.91±1.3 78.96±0.5 80.69±0.2 84.66±0.1

CAW 92.16±0.1 92.56±0.1 92.09±0.7 91.74±1.7 81.29±0.1 85.67±0.5

OGN (ours) 90.94±0.3 81.60±0.4 81.69±3.2 77.71±5.5 71.02±0.99 83.41±1.3

B.6. Further intuition behind the weighted average

We show that the neighborhood state r(n)
u in, Equation 3.4, can be seen as an expected

value taken over the the neighbors N (n)
u of node u. For this purpose, we define the probability

mass function p : N (n)
u → [0, 1] given by

p(i) = e−α∆mi∑
j e
−α∆mj

∀i ∈ N (n)
u , (B.1)
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where ∆mi = n−mi Then, it follows by definition that:

r(n)
u = Ei∼p[s(mi)

i ] =
∑

i∈N (n)
u

p(i)s(mi)
i (B.2)

Note also that s(mi)
i also encapsulates information from the neighborhood of node i (see

Equation 3.7 and Equation 3.8). Therefore, r(n)
u captures multi-hop information.

B.7. Proof: tractable aggregation

We now show that the ratio between a(n)
u and b(n)

u equals r(n)
u . Recall that r(n)

u is given by:

r(n)
u =

∑
i∈N (n)

u
e−α∆mis

(mi)
i∑

j∈N (n)
u
e−α∆mj

. (B.3)

More specifically, we prove by induction on the number of events n that a(n)
u and b(n)

u equal
the numerator and denominator of Equation B.3, respectively. Both proofs are straightforward
and follow the same structure.

Proposition 3 For all n ∈ N+ ∪ {0}, it holds that

a(n)
u =

∑
i∈N (n)

u

e−α∆mis
(mi)
i .

Proof. For n = 0, a(0)
u = 0 by definition and the identity holds. Assume the above identity

holds for an arbitrary n− 1 ≥ 0, i.e.,

a(n−1)
u =

∑
i∈N (n−1)

u

e−α∆mis
(mi)
i =

∑
i∈N (n−1)

u

e−α(k−mi)s
(mi)
i ,

where k is the latest event for node u within the n− 1 first events. Applying the update to
a(n−1)
u (Equation 3.5), we get

a(n)
u = e−α(n−n)s(n)

v + e−α(n−k) ∑
i∈N (n−1)

u

e−α(k−mi)s
(mi)
i =

∑
i∈N (n)

u

e−α(n−mi)s
(mi)
i

Proposition 4 For all n ∈ N+ ∪ {0}, it holds that

b(n)
u =

∑
j∈N (n)

u

e−α∆mj .

Proof. For n = 0, b(0)
u = 0 by definition and the identity holds. Assume the above identity
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holds for an arbitrary n− 1 ≥ 0, i.e.,

b(n−1)
u =

∑
j∈N (n−1)

u

e−α∆mj =
∑

j∈N (n−1)
u

e−α(k−mi)

where k is the latest event for node u within the n− 1 first events. Applying the update to
b(n−1)
u (Equation 3.6), we get

b(n)
u = e−α(n−n) + e−α(n−k) ∑

j∈N (n−1)
u

e−α(k−mi) =
∑

j∈N (n)
u

e−α(n−mj)
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