
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

DEVELOPMENT AND SIMULATION FOR A WALL IDENTIFICATION ALGORITHM
BASED ON VELOCITY MEASUREMENTS

TESIS PARA OPTAR AL GRADO DE MAGISTER EN
CIENCIAS DE LA INGENIERÍA, MENCIÓN MATEMÁTICAS APLICADAS

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL MATEMÁTICO

FELIPE IGNACIO OLIVARES FERNÁNDEZ

PROFESOR GUÍA:
AXEL OSSES ALVARADO

PROFESOR CO-GUÍA :
JOAQUÍN MURA MARDONES

MIEMBROS DE LA COMISIÓN:
HANNE VAN DEN BOSCH
EDUARDO CERPA JERIA

Este trabajo ha sido parcialmente financiado por Proyecto Fondecyt 1191903 y CMM ANID
BASAL FB210005

SANTIAGO DE CHILE
2022

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE
LA INGENIERÍA, MENCIÓN MATEMÁTICAS APLICADAS,
MEMORIA PARA OPTAR AL TÍTULO DE INGENIERIO CIVIL MATEMÁTICO
POR: FELIPE IGNACIO OLIVARES FERNÁNDEZ
FECHA: 2022
PROF. GUÍA: AXEL OSSES ALVARADO
PROF. CO-GUÍA: JOAQUÍN MURA MARDONES

DESARROLLO Y SIMULACIÓN DE UN ALGORITMO PARA IDENTIFICACIÓN DE UNA
PARED MÓVIL BASADA EN MEDICIONES DE VELOCIDAD

En el contexto de imágenes médicas, la recuperación no invasiva de la geometría de vasos
sanguíneos a partir de mediciones de velocidad por MRI, es muy importante para el desarrollo de
nuevas herramientas de análisis no invasivo para enfermedades cardíacas. Se trata de un problema
inverso geométrico: recuperar parte de la frontera de un dominio móvil a partir de mediciones
solamente de la velocidad del flujo y no de la presión.

Existen resultados parciales de la implementación práctica de este problema inverso en el caso
de paredes estáticas y a partir solo de mediciones de flujo de salida por un borde. Sin embargo, falta
desarrollar un algoritmo eficiente que utilice información parcial al interior del dominio y extienda
los resultados al caso de una pared móvil. De este modo, el objetivo principal del presente trabajo
es proponer e implementar un algoritmo para recuperar la forma de una pared arterial móvil que
contiene a un fluido, a partir de mediciones de velocidad en un subdominio arbitrario.

En una primera parte, se propone una extensión del algoritmo existente de recuperación de una
pared estática usando mediciones de borde al caso de mediciones de velocidad sobre cualquier
subdominio distribuido espacialmente. Para ello es necesario resolver las ecuaciones de Navier-
Stokes estacionario utilizando conceptos de derivación con respecto del dominio.

Enseguida, se propone un algoritmo para la recuperación de una pared móvil en el caso más
complejo no-estacionario, lo que requiere una implementación de las ecuaciones de Navier-Stokes
en interacción con estructuras en el formalismo Arbitrary Lagrangian-Euler (ALE). Para resolver el
problema inverso, se plantea un problema de minimización del error de ajuste de la forma respecto
a una velocidad de referencia. En la minimización, se utiliza la derivada de forma para la expresión
del gradiente del funcional. El problema no estacionario se modela de hecho como un sistema
quasi-estacionario en un algoritmo iterativo en el tiempo que permite resolver el caso de identificar
una pared móvil.

Las simulaciones numéricas se realizan mediante la librería Fenics para la formulación de los
problemas de Navier-Stokes, la cuál se realiza en dos dimensiones. En la minimización, se utiliza
el algoritmo Broyden-Fletcher-Goldfarb-Shanno y se desarrolla en el lenguaje Python.

El análisis de esta tesis se puede extender a otros problemas de identificación de paredes móviles
más complejos como por ejemplo el caso tridimensional o considerando una pared elástica. Este
primer estudio más simple ha permitido contribuir al estudio de la estimación no invasiva de la
deformación de vasos sanguíneos.

i

DEVELOPMENT AND SIMULATION FOR A WALL IDENTIFICATION ALGORITHM
BASED ON VELOCITY MEASUREMENTS

In the context of medical imaging, the non-invasive recovery of the blood vessels geometry
from velocity measurments by MRI is of the utmost importance for the development of new tools
to non-invasively analize cardiovascular diseases. It’s about a geometric inverse problem: the
reconstruction of a mobile domain boundary based only on the flow velocity and not the pressure.

There are existing results that partially implement this inverse problem for the case of static
walls and only with flow measurments at the outlet boundary. However, there is still a need to
develop an efficient algorithm that could use partial information at the domain interior and could
extend the results to the case of a mobile wall. Thus, the main objective of this work is to present
and implement an algorithm to reconstruct the shape of a mobile wall containing a fluid, based on
velocity measurments in an arbitrary subdomain.

Firstly, an extension is proposed for the existing reconstruction algorithm for static walls using
boundary measurments to the case of velocity measurments over any subdomain. For this purpose,
it is necessary to solve the stationary Navier-Stokes equations, applying shape derivative concepts.

Secondly, an algorithm is proposed to reconstruct a mobile wall for the more complex non-
stationary case, which requires a Navier-Stokes implementation coupled with a structure in the
Arbitrary Lagrangian Euler (ALE) formalism. To solve the inverse problem, a minimization problem
is considered for the error adjustment with respect to a reference velocity. In the minimization, the
shape derivative is used to express the functional gradient. The non-stationary problem is modeled
in fact as a quasi-stationary system in an iterative algorithm over time, which allows to solve the
identification problem for a mobile wall.

Numerical simulations are made using the Fenics library for the Navier-Stokes formulation of the
problem, which is made in two dimensions. In the minimization, the Broyden-Fletcher-Goldfarb-
Shanno algorithm is used and is implemented in the Python language.

The analysis of this thesis can be extended to more complex identification problems for mobile
walls like the three-dimensional case or considering coupling with an elastic wall. This first simpler
study has allowed to contribute to the study of non-invasive deformation estimation of blood vessels.

ii

A quién haya hecho de este viaje uno más ameno.

iii

Acknowledgement

The first whom I have to thank are my parents, who have given everything for me and are the ones
without whom I wouldn’t be here today. Thanks to my aunt Aldy, who has always supported me
inconditionally. To my brothers, for the good times in family. To Paula, who has been there when
I’ve needed it.

I have to thank the friends I’ve met since school, Patricio Rivera, Alejandro Silva, Felipe Aedo,
Sebastián Melo, Matías Frick. Thanks for all the parties and for your companionship.

From my time at the Department of Mathematics, the 435 office has been an amazing place full of
amazing people. I have to thank everyone who made it so enjoyable, Diego Marchant, Felipe Matus,
Kevin Contreras, Manuel Suil, Vicente Ocqueteau, Pablo Arratia, Francisco Sanhueza, Obed Ulloa,
Tabita Catalán, Monserrat Morales, Tomás Ahumada, Camila Zárate and many more who made the
place a home. Thanks for all the memes and UNO games.

Thanks to all the friends I made during my time in the Univerity, Diego Corvalán, Miguel Piña,
Andy Area, Daniela Pollarolo, Camilo Campos, Ignacio Reyes, Jorge Vidal, Beatriz Latorre, Alex
Millán, Carlos Meneses, Matías Moreno. Thank you for all the good times we’ve had and all the
ones that will come.

Last but not least, thanks to my advisers Axel Osses and Joaquín Mura, their help has been
invaluable. Thanks for all the patience throughout this process and for all the comments given and
all the experiences shared.

iv

Contents

Introduction and bibliographical discussion 1

1 A shape reconstruction algorithm 4
1.1 Fluid model . 4

1.1.1 Stationary case . 5
1.1.2 Dynamic case . 6

1.2 Summary for the stationary identification algorithm 6

2 Extension to subdomain measures 10
2.1 Shape derivative . 11
2.2 Determination of the domain deformation field 13
2.3 Testing on symmetric domain . 16

3 Extension to a mobile wall 18
3.1 Direct method . 18
3.2 Quasi-stationary method . 23

4 Numerical Results 25
4.1 Extension to subdomain measurements . 26
4.2 Extension to a mobile wall . 27

Conclusion and discussion 32

Bibliography 34

v

List of Figures

1 Percentage of deaths by cardiovascular disease compared to total deaths per year. . 1
2 Diagram of methods used for shape optimization. 2

1.1 Domain mesh used and boundaries defined. 4

2.1 Domain mesh with subdomain D. 10
2.2 Reference mesh used for Ω0. 14

4.1 Reference mesh. 25
4.2 Deformation given by Algorithm 2 on iterations t=0 y t=38, initial and final states

respectivly on the example proposed in [27]. 26
4.3 Deformation given by Algorithm 2 on iterations t=0 y t=38, initial and final states

respectivly on the example proposed in [27]. 27
4.4 Stationary case, symmetrical example. 27
4.5 Reference mesh . 28
4.6 Peak displacement over time, quadratic and linear regime. 28
4.7 Reference for mobile domain. 29
4.8 Peak displacement and velocity with dynamic parameters, indicating key times

iter=54, iter=60, iter=77, iter=82 (corresponding to times 2, 8, 25, 30). 30
4.9 Comparison between the results and the reference at key times. 30
4.10 Peak displacement and velocity with fixed parameters, indicating key times iter=54,

iter=60, iter=77, iter=82 (corresponding to times 2, 8, 25, 30). 31

vi

Introduction and bibliographical discussion

In the context of medical images, there exist unanswered questions that give rise to the use of
mathematical modeling and numerical simulations as a tool for social benefit. These questions range
from hemodynamic behavior, methods and technique development that allows higher resolution on
magnetic resonance images, to biomarker identification based on magnetic resonance images for
improving cardiac disease diagnosis. The last question is of particular interest for this work,
magnetic resonance images are a non-invasive source of information inside blood vessels, so it is
imperative to develop methods that make use of this information. One type of blood vessel, the
arteries, deliver blood away from the heart to one or more parts of the body as part of the circulatory
system and are made up of different layers, mostly collagen and elastic tissue. The elasticity of
arteries play a fundamental role on diseases like artherosclerosis, which is the cause of almost 18
million deaths a year worldwide in 2016 (> 30% of total deaths) and near 28,400 deaths in Chile
(approx. 25%) in 2019 [9].

Figure 1: Percentage of deaths by cardiovascular disease compared to total deaths per year.

There are a variety of shape optimization techniques and all of them rely on the optimization of
a given function which depends on the geometry or shape. The difference is how these shapes are
parametrized, i.e, how its geometry and its variation can be described. The ways in which these
shapes and variations can be parametrized are, for example, the vertices of a mesh representation
and the vector map associated with the deformation [27], topologically through the insertion of
holes in the domain and how this affect the function being optimized [24], using the contour of
a level set given by a certain function [22], or by adding a permeability parameter to identify the
shape based on penalization [3, 1, 2, 5]. Further details on optimization techniques applied to fluid
dynamics can be found in [19, 20].

1

Figure 2: Diagram of methods used for shape optimization.

The implementation of these methods, i.e, the computations on the sensibility problem over
changes in the domain, can be done through automatic differentiation, which requires understanding
of the methods involved as a whole and expertise on the numerical resolution of the flow problem.
On the other hand, the calculations can be done solving the minimization problem analytically,
which involves mathematical tools to express the derivative of the optimized criterion (involving the
adjoint problem) and then discretizing it for the numerical implementation, gaining the advantage
of making more independent the process of differentiation and the numerical resolution.

Through the 4D Flow sequence [26], a technique in which phase contrast is used on a magnetic
resonance exam three-dimensionally in space, is possible to obtain the time evolution of blood flow
inside blood vessels. This technique can be used in a variety of applications, including pressure
detection [21, 8, 7], obstacle identification via penalization method [3, 1, 2, 5] and displacement
computations as in elastography exams [16]. Although magnetic resonance images allow one to
visualize blood vessels such as arteries, there’s excessive noise around the contour, therefore, they are
unsuitable by themselves to estimate biomarkers such as elasticity. There have been advancements
in the development of tools that allow us to identify the shape of the arterial walls based on velocity
measurements [27], but these measurements are restricted to the domain border and only consider
static walls.

This work has two main objectives. The first one, is to extend the mathematical modeling made
in [27] to being able to use velocity data measured not only on the domain border but inside of
it, and allow the identification of the evolution of a mobile wall making it possible to describe the
deformation of an arterial wall through time. The second objective consists in the development of
an algorithm that efficiently, and via FEniCS library, allows the reconstruction of a mobile wall
shape based on velocity data measured inside a domain.

From the modeling and numerical simulations point of view, it is worth mentioning that assump-
tions have to be made in order to reach satisfactory results in reasonable time, and for this reason
there are compromises in the implemented model compared with an ideal one. For example, the

2

domain walls are considered as an imposed deformation which one wishes to recover, even though
the ideal model would consider describing the arterial wall as an elastic border solving the coupled
problem between flow and structure. Blood is modeled as an incompressible laminar fluid instead
of a turbulent one for the simplicity it provides in comparison, and the problem is defined in two
dimensions for the same reason. In reality, blood is composed of blood cells, mainly red blood
cells, white blood cells and platelets suspended in plasma, but it is necessary to make assumptions
nonetheless, taking into account the fidelity of the solution. Assuming a two-dimensional domain
is reasonable (at least as a beginning) based on the axial symmetry [10] of an arterial section,
and therefore if one can reconstruct the deformation in two dimensions, a next step and possible
extension to what this work propose would be to reconstruct the deformation in three dimensions.

This thesis is organized as follows: Chapter 1 describes the existing algorithm to reconstruct
deformation and leads the way to understand the models used to describe the behavior of blood as
a fluid. Chapter 2 presents the first objective of this work, which extends the existing results to
velocity data measured in a subdomain. Chapter 3 describes the second of the main objectives, the
extension to the mobile wall case. Lastly, Chapter 4 presents results of the numerical simulations
performed for each of the formerly described cases.

3

Chapter 1

A shape reconstruction algorithm

In this chapter, we will discuss the fluid model used in both the stationary and dynamic case,
providing details on the boundary conditions used and the numerical implementation. Later, the
algorithm in [27] will be summarized, as it is the basis on which this work was made. This algorithm
consists of the reconstruction of a static wall shape based on a given velocity over a region of the
boundary through iterations that minimize our function of interest:

𝐽 (Ω) = 1

2

∫
Γ𝑜𝑢𝑡

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑠.

The descent direction is then obtained through the shape derivative in a process based on Newton
iterations that will be described in this chapter.

1.1 Fluid model
Let us consider a bounded domain Ω ⊂ R𝑁 containing a Newtonian fluid with kinematic viscosity
` > 0. The boundary 𝜕Ω is made of three disjoint regions: 𝜕Ω = Γi𝑛 ∪ Γ𝑜𝑢𝑡 ∪ Γ. A velocity
profile 𝑢i𝑛 is imposed over Γi𝑛 (inlet), Γ𝑜𝑢𝑡 is free from surface forces, and Γ is imposed with no slip
boundary conditions. For this model, the incompressible Navier-Stokes equations are considered.

Figure 1.1: Domain mesh used and boundaries defined.

4

1.1.1 Stationary case
For the stationary Navier Stokes model, we describe the fluid as a pair (𝑢, 𝑝) where 𝑢 : Ω → R𝑁 is
the velocity field and 𝑝 : Ω → R the pressure. This pair solves the following equation:

−`Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 0 en Ω

div(𝑢) = 0 en Ω

𝑢 = 𝑢i𝑛 en Γi𝑛
𝑢 = 0 en Γ

𝜎(𝑢, 𝑝)𝑛 = 0 en Γ𝑜𝑢𝑡 .

(1.1)

In this equation, 𝑛 is the exterior normal vector and 𝜎(𝑢, 𝑝) is the stress tensor defined as

𝜎(𝑢, 𝑝) = 2`e(𝑢) − 𝑝𝐼, where e(𝑢) = 1

2
(∇𝑢𝑇 + ∇𝑢).

The conditions imposed in this problem are common in fluid models involving this type of
domain geometry. Zero velocity on Γ often called "no-slip condition" represents the friction against
the wall. The inlet is imposed with a Dirichlet condition 𝑢i𝑛 usually chosen as a parabolic function,
which ensures continuity at the corners. Lastly, the Neumann condition at Γ𝑜𝑢𝑡 is known as free
surface force condition, which is useful for modelling flow where the outlet can lead to different
shapes.

Regarding the type of flow, in the adimensional problem (1.1) the Reynolds number 𝑅e is
proportional to 1/` and can be used as an indicator for the type of flow. In this work, we consider a
sufficiently low Reynolds number (under 2000) so the convective term is less prevalent and therefore
the flow is laminar instead of turbulent.

Though it is well known that a general solution can not be guarantied for the Navier-Stokes
equations, in this case the problem (1.1) is well-posed for sufficiently large values of viscosity `

[27, 25, 13, 14] (keeping the Reynolds number on laminar flow). For this system, we will consider
the domain to be bounded with a Lipschitz-continuous boundary, and 𝑢i𝑛 can be extended to a
function 𝑢i𝑛 in 𝐻1/2(𝜕Ω)𝑁 to ensure this problem has a weak solution (𝑢, 𝑝) ∈ 𝐻1(Ω)𝑁 × 𝐿2

0(Ω),
with 𝐿2

0(Ω) := {𝑝 ∈ 𝐿2(Ω),
∫
Ω
𝑝d𝑥 = 0} and 𝑁 ≤ 3 [27, 25, 13, 14]. Therefore, in the next pages

we will consider this problem well-posed.

The numerical implementation of system (1.1) with finite element method is complicated firstly
due to the nonlinearity of the convective term (𝑢 · ∇)𝑢 and secondly because it is a saddle point
problem. The first problem can be solved using a linearization method such as Newton’s method,
in this case it was used MUMPS (Multifrontal Massively Parallel sparse direct Solver), which is a
linear solver dedicated to large sparse systems taking advantage of parallel computing. The second
problem is solved by choosing appropriate finite element spaces for the velocity 𝑢 and pressure
𝑝. P2 − P1 Lagrangian elements (Taylor-Hood elements) are used for the velocity and pressure
respectively ensuring the so-called Brezzi inequality holds, and therefore the system is invertible
[27, 12, 11].

5

1.1.2 Dynamic case
In the non-stationary model, in addition to the domain Ω we consider a time interval 𝐼 = [0, 𝑇] and
the velocity 𝑢 : Ω × 𝐼 → R𝑁 and pressure 𝑝 : Ω × 𝐼 → R which solves the system

𝜕𝑢

𝜕𝑡
− `Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 0 in Ω\ × 𝐼

div(𝑢) = 0 in Ω\ × 𝐼

𝑢 = 𝑢i𝑛 on Γi𝑛
\
× 𝐼

𝑢 = 0 on Γ\ × 𝐼

𝜎(𝑢, 𝑝)𝑛 = 0 on Γ𝑜𝑢𝑡
\

× 𝐼

𝑢(𝑥, 0) = 𝑢0 on Ω0.

(1.2)

In addition to the boundary conditions described in the stationary case, we imposed an initial
condition 𝑢0, which for the purpose of the simulations required will be considered the zero function
in 𝐿2(Ω0). The domain Ω × 𝐼 is still bounded and with Lipschitz-continuous boundary and for the
inlet, 𝑢i𝑛 can be extended to a function 𝑢i𝑛 ∈ 𝐻1/2(𝜕Ω) × 𝐼, thus ensuring there exists a unique
solution 𝑢 ∈ 𝐿2(𝐼;𝐻1(Ω\)) ∩ 𝐻1(𝐼; (𝐻1(Ω\))

′) at least for dimension 𝑁 = 2 [25, 17].

It is worth noticing that, added to the non-stationary quality of the solution, the domain also
depends on time. For notation convenience, we define it as Ω\ looking ahead for the optimization
problem where the deformation is a function of time \ (𝑡).

This system can be solved using the same finite element spaces (P2−P1) and there are numerous
methods to solve system (1.2), like Stationary iterative methods, LU solver or Krylov subspace
methods better described in [11, 13, 14]. In this case, Newton-Krylov method was used, which is
typically used for this system since it can be used in more general systems of linear equations. Inside
the category of Krylov subspace methods there are different specific methods like Lanzos iteration,
MinRes, GMRES, BiCG method and BiCGSTAB method among which we chose the Generalized
minimal residual method (GMRES) solver by comparing them on this specific problem.

1.2 Summary for the stationary identification algorithm
This algorithm relies strongly on the concept of shape optimization, which consists of solving a
minimization problem where the function is dependent on the shape of the domain. In a general
case, the problem can be written as the minimization of a function 𝐽 over a set of admissible domains
O𝑎d,

minimize
Ω∈O𝑎d

𝐽 (Ω)

subject to 𝐸 (Ω) = 0.

The main function of our interest is the quadratic difference between a reference velocity and a
velocity obtained solving the Navier Stokes equations over the domain being evaluated.

6

𝐽 (Ω) = 1

2

∫
Γ𝑜𝑢𝑡

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑠.

However, one first needs to establish the way this function will be minimized. There are
various methods available, like "Gradient Method", "Level-set Method" and methods based on a
permeability parameter.

Gradient method, which is the one used in this work, consists in obtaining the derivative of the
function 𝐽 with respect to the shape of the domain Ω and apply a minimization algorithm such
as steepest-descent or quasi-Newton methods. Either method require computation of the objective
function’s derivative. In general (just assuming Ω ⊂ R𝑁), this is difficult to compute, as there is no
canonical space on which to apply the minimization algorithm. Therefore, in [15] the derivative is
defined as the Fréchet derivative.

A convenient way to calculate the Fréchet derivative is to consider \ : R𝑁 → R𝑁 as a vector
field with norm close to zero and Ω\ defined based on Hadamard method [15] as Ω\ = (𝐼 + \)Ω.

𝐽 (Ω\) = 𝐽 (Ω) + 𝐽′(Ω) (\) + 𝑜(\).

This allows us to define the derivative as 𝐽′(Ω) (\). Then, it is natural to define the following
sets:

Definición 1.1 Deformation space

Θ = {\ ∈ 𝑊1,∞(R𝑁) | \ = 0 on Γi𝑛 ∪ Γ𝑜𝑢𝑡}.

Definición 1.2 Admissible domains

O𝑎d = {Φ(Ω) ⊂ R𝑁 | Φ = (𝐼 + \), \ ∈ Θ}.

Regarding functionals and their shape derivatives, an interesting first result proven to be useful
is the volume and perimeter of a determined shape Ω as proven in [27, 15, 4].

Theorem 1.3 Let Ω be a piecewise 𝐶2 shape. Then,

1. Vol(Ω) is shape differentiable and its derivative is:

∀\ ∈ Θ, 𝑉𝑜𝑙′(Ω) (\) =
∫
𝜕Ω

\ · 𝑛 d𝑠.

2. Per(Ω) is shape differentiable and its derivative is:

∀\ ∈ Θ, 𝑃e𝑟′(Ω) (\) =
∫
𝜕Ω

^\ · 𝑛 d𝑠,

where ^ : 𝜕Ω → R is the mean curvature of 𝜕Ω.

7

For the functional 𝐽 (Ω) we are interested in, defined over the same domain from Chapter 1,

𝐽 (Ω) =
∫
Γ𝑜𝑢𝑡

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑠, (1.3)

where 𝑢𝑟e 𝑓 ∈ 𝐿2(Γ𝑜𝑢𝑡) is a reference velocity and 𝑢 is the solution for system (1.1). The following
result proven in [27] holds,

Theorem 1.4 Let Ω ∈ O𝑎d, ` sufficiently large kinematic viscosity and 𝑢 solution of system (1.1).
Then,

𝐽′(Ω) (\) =
∫
Γ

2`e(𝑢) : e(𝑣) \ · 𝑛d𝑠, (1.4)

where (𝑣, 𝑞) is solution of the following adjoint problem:

−`Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) 𝑢 + ∇𝑞 = 0 in Ω

div(𝑣) = 0 in Ω

𝑣 = 0 on Γ ∪ Γi𝑛

𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 𝑢 − 𝑢𝑟e 𝑓 on Γ𝑜𝑢𝑡 .

(1.5)

We are in position to describe the algorithm applied to system (1.1) to minimize 𝐽 in (1.3).

Algorithm 1 Deformation identification
1: initialization:
2: Fix Navier-Stokes and minimization parameters
3: Open velocity reference file
4: Initialize mesh for Ω0

5: while | |\ | | > Y do
6: Calculate solution (𝑢, 𝑝) to the Navier-Stokes system (1.1)
7: Calculate solution (𝑣, 𝑞) to the Adjoint system (1.5)
8: Compute shape gradient of 𝐽
9: Infer a descent direction \ by solving (1.8)

10: Find a descent step
11: Update mesh to (𝐼 + \)Ω
12: Re-mesh if necessary
13: end while

It is worth mentioning that as explained in [27], the shape derivative of a general functional
𝐹 (Ω) has the form:

𝐹′(Ω) =
∫
Γ

𝜙 \ · 𝑛d𝑠 =: (𝜙, \ · 𝑛)𝐿2 (Γ) ,

where the scalar function 𝜙 : Γ → R is the shape gradient of F; see [27, 15]. In particular, 𝐹′(Ω)
only depends on the normal component \ · 𝑛 on the free boundary Γ.

8

To obtain \, in [27] a variational problem gives as a result a descent direction for 𝐹 (Ω). This
idea consists on defining an inner product (·, ·)𝑉 over a Hilbert space 𝑉 and finding \ ∈ 𝑉 such that

∀𝜓 ∈ 𝑉, (\, 𝜓)𝑉 = 𝐹′(Ω) (𝜓) =
∫
Γ

𝜙 𝜓 · 𝑛 d𝑠. (1.6)

This ensures that \ is a descent direction,

𝐹′(Ω) (−\) = −(\, \)𝑉 < 0.

Choosing in particular the following space and inner product,

𝑉 = {𝑣 ∈ 𝐻1(Ω)𝑁 , 𝑣 |Γi𝑛∪Γ𝑜𝑢𝑡 = 0},

(\, 𝜓)𝑉 =

∫
Ω

𝐴e(\) : e(𝜓) d𝑥, 𝐴e = 2`e + _𝑡𝑟 (e). (1.7)

The solution \ solves the following system, which is common in fluid structure problems [23]
to extend a deformation defined on a boundary into the interior, ensuring a certain elaticity is
preserved.

−div(𝐴e(\)) = 0 in Ω

\ = 0 on Γi𝑛 ∪ Γ𝑜𝑢𝑡
𝜎𝑛 = 𝜙𝑛 on Γ.

(1.8)

It is worth mentioning that the algorithm can be applied to a general functional 𝐹 (Ω), provided
there is an expression for the shape gradient, which can be computed similarly to Theorem 1.4.

9

Chapter 2

Extension to subdomain measures

The algorithm previously described, even though it allows reconstructing the shape based on
measurements on Γ𝑜𝑢𝑡 , one would like to be able to work with more complex shapes, and eventually
extend it to the temporal problem. For this purpose, it is necessary to be able to use information
at the domain interior, so one can avoid convergence problems. Through MRI, and in particular
through 4D Flow techniques, it is possible to obtain velocity data at the interior of vessels, therefore,
the first goal in this work is to extend the existing results to measures of velocity at the domain
interior over any subset 𝐷 of Ω.

Figure 2.1: Domain mesh with subdomain D.

Let 𝐷 ⊂ Ω be a subdomain, 𝑢𝑟e 𝑓 : 𝐷 → R2 a reference velocity and the functional

𝐽 (Ω) = 1

2

∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥. (2.1)

In reality, the observation window is not necessarily a subset of the vessel domain, but for the
purpose of this analysis we require it to be fully contained in the shape Ω in which we evaluate

the functional. For this reason, we consider the open set (
˚N O

𝐷𝑟e𝑎𝑙 ∩Ω) =: 𝐷, where 𝐷𝑟e𝑎𝑙 is the
real observation window one could get from 4D Flow measures. Therefore, we are still writing the
functional as dependent on Ω.

10

2.1 Shape derivative
Following [27], one needs to obtain a derivate of the form 𝐽′(Ω) (\) using the adjoint problem
associated to the functional 𝐽 (Ω). This problem is calculated writing the Lagrangian related to
𝐽 (Ω) and applying the variational principle to the system. In this case, the Lagrangian is written as
follows:

L(𝑢, 𝑝, \, 𝑣, 𝑞) = 1

2

∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥 −
∫
Ω\

(2`e(𝑢) : e(𝑣) + (∇𝑢𝑢 · 𝑣) − 𝑝di𝑣(𝑣) − 𝑞di𝑣(𝑢)) d𝑥,

𝐷𝑢L(𝑢, 𝑝, \, 𝑣, 𝑞)ℎ =

∫
𝐷

(𝑢−𝑢𝑟e 𝑓)ℎd𝑥−
∫
Ω\

2`e(ℎ) : e(𝑣)−𝑞di𝑣(ℎ) + (∇𝑢)𝑇 𝑣ℎ+ (∇ℎ𝑢) 𝑣 d𝑥 = 0,

𝐷 𝑝L(𝑢, 𝑝, \, 𝑣, 𝑞)𝑘 = −
∫
Ω\

𝑘di𝑣(𝑣)d𝑥 = 0.

After some simple computations, the following adjoint problem arises:

−`Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) 𝑢 + ∇𝑞 = (𝑢 − 𝑢𝑟e 𝑓)1𝐷 in Ω

div(𝑣) = 0 in Ω

𝑣 = 0 on Γ ∪ Γi𝑛

𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 0 on Γ𝑜𝑢𝑡 .

(2.2)

This system is in almost all of its terms identical to the one obtained for measurements over
Γ𝑜𝑢𝑡 except for (𝑢 − 𝑢𝑟e 𝑓)1𝐷 , which now plays a role in the first equation rather than a boundary
condition.

The shape derivative of 𝐽 (Ω) by chain rule can be written as

𝐽′(Ω) (\) =
∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓) · 𝑢′d𝑥. (2.3)

This expression is unsuitable to work with because of 𝑢′, which is the solution for the sensibility
problem (2.4). It is difficult to compute without knowing the solution for the deformation, as is
appears in the boundary condition on Γ. Thus, one would rather make use of the adjoint problem
to rewrite the functional in a way that is easier to compute.

Theorem 2.1 (Sensibility problem) The derivative of the stationary Navier-Stokes equations (1.1)

11

with respect to changes in the domain is the solution to

−`Δ𝑢′ + (∇𝑢) 𝑢′ + (∇𝑢′) 𝑢 + ∇𝑝′ = 0 in Ω

div(𝑢′) = 0 in Ω

𝜎(𝑢′, 𝑝′)𝑛 = 0 on Γ𝑜𝑢𝑡
𝑢′ = 0 on Γi𝑛

𝑢′ = −
(
𝜕𝑢
𝜕𝑛

)
(\ · 𝑛) on Γ.

(2.4)

Proof. See [15, Theorem 5.33] □

The main result regarding the extension to measurements on the subdomain 𝐷 comes from
Theorem 2.2, which rewrites the functional derivative in terms of the adjoint problem rather than
the sensibility problem.

Theorem 2.2 (Shape derivative) Let (𝑢, 𝑝) and (𝑣, 𝑞) be solutions of (1.1) and (2.2) respectively,

then the shape derivative of 𝐽 (Ω) =
∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥 can be written as:

𝐽′(Ω) (\) =
∫
Γ

2`e(𝑢) : e(𝑣)\ · 𝑛d𝑠.

Proof. Multiplying the first equation of (2.2) by 𝑢′ and integrating, we obtain

𝐽′(Ω) (\) =

∫
Ω

[−`Δ𝑣 + (∇𝑢)𝑇𝑣 − (∇𝑣)𝑢 + ∇𝑞]𝑢′d𝑥

=

∫
Ω

[2`e(𝑣) : e(𝑢′) + (∇𝑢)𝑢′ · 𝑣 − (∇𝑣)𝑢 · 𝑢′]d𝑥 −
∫
𝜕Ω

𝜎(𝑣, 𝑞)𝑛 · 𝑢′d𝑠.

Multiplying the first equation of (2.4) by 𝑣 and then integrating, the following equation arises:

∫
Ω

[−`Δ𝑢′ + (∇𝑢)𝑢′ + (∇𝑢′)𝑢 + ∇𝑝′]𝑣d𝑥 = 0.

Thus integrating by parts,

∫
Ω

[2`e(𝑢′) : e(𝑣) + (∇𝑢)𝑢′ · 𝑣 + (∇𝑢′)𝑢 · 𝑣]d𝑥 −
∫
𝜕Ω

𝜎(𝑢′, 𝑝′)𝑛 · 𝑣d𝑠 = 0.

Then, we can rewrite the functional derivative as follows:

𝐽′(Ω) (\) =
∫
Ω

−(∇𝑣)𝑢 · 𝑢′d𝑥 −
∫
𝜕Ω

𝜎(𝑣, 𝑞)𝑛 · 𝑢′d𝑠 −
∫
Ω

(∇𝑢′)𝑢 · 𝑣d𝑥 +
∫
𝜕Ω

𝜎(𝑢′, 𝑝′)𝑛 · 𝑣d𝑠.

12

Integrating by parts one more time, this identity holds:

∫
Ω

−(∇𝑣)𝑢 · 𝑢′d𝑥 −
∫
Ω

(∇𝑢′)𝑢 · 𝑣d𝑥 = −
∫
𝜕Ω

(𝑣 · 𝑢′) (𝑢 · 𝑛)d𝑠.

Therefore,

𝐽′(Ω) (\) = −
∫
𝜕Ω

(𝑣 · 𝑢′) (𝑢 · 𝑛)d𝑠 −
∫
𝜕Ω

𝜎(𝑣, 𝑞)𝑛 · 𝑢′d𝑠 +
∫
𝜕Ω

𝜎(𝑢′, 𝑝′)𝑛 · 𝑣d𝑠.

By applying the boundary conditions 𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 0 on Γ𝑜𝑢𝑡 , 𝜎(𝑢′, 𝑝′)𝑛 = 0 on Γ𝑜𝑢𝑡
and 𝑣 = 0 on Γ ∪ Γi𝑛,

𝐽′(Ω) (\) =
∫
Γ

𝜕𝑢

𝜕𝑛
𝜎(𝑣, 𝑞)𝑛 · (\ · 𝑛)d𝑠 =

∫
Γ

2`e(𝑢) : e(𝑣)\ · 𝑛d𝑠.

Thus, the shape derivative in the case of subdomain measurements matches the expression one
can obtain for the case of measurements only on the outlet border. □

2.2 Determination of the domain deformation field
In order to determine the domain deformation that represents the optimal shape, we make use of
Theorem 2.2 to construct the gradient ∇𝐽 (Ω). Once constructed, it is possible to minimize the
functional with any method based on gradient available, and for this work it was decided to change
the method used in [27] for a quasi-Newton method. The minimization algorithm used was BFGS
or Broyden–Fletcher–Goldfarb–Shanno algorithm, which consists of a method that approximates
the functional Hessian using the gradient and thus makes a better guess on which direction is a local
minimum. After determining a descent direction, one needs to apply a linear search to find the
appropriate step so the functional decreases significantly. To ensure this, the algorithm verifies two
conditions named Wolfe conditions, which ensures significant decrease. We will see that this is a
double edge sword, in the sense that in some cases no appropriate step can be found. For this reason,
the Wolfe conditions were relaxed, sacrificing computation time for a more reliable algorithm.

The algorithm used consists in an adaptation of the method described in [27] to our case of
interest, taking into account the extension to velocity measurements over a subdomain 𝐷. This
algorithm can be summarized as shown in Algorithm 2.

13

Algorithm 2 Deformation identification based on subdomain velocity measurements
1: Initialization:
2: Fix Navier-Stokes and minimization parameters
3: Open velocity reference file
4: Initialize mesh for Ω0

5: How to compute 𝑱(𝜽) :
6: Move mesh from Ω0 to Ω\

7: Solve Navier-Stokes
8: Compute 𝐽 (Ω\) based on equation (2.1)
9: Move mesh from Ω\ to Ω0

10: Return value of 𝐽 (Ω\)
11: How to compute ∇𝑱(𝛀)(𝜽) :
12: Move mesh from Ω0 to Ω\

13: Solve Navier-Stokes
14: Solve Adjoint problem
15: Compute shape gradient as in Theorem (2.2)
16: Evaluate ∇𝐽′(Ω) (\)
17: Move mesh from Ω\ to Ω0

18: Return ∇𝐽′(Ω) (\)
19: Execute BFGS routine

In order to lessen the computational cost of evaluating the functional 𝐽 and its gradient, one
needs to represent the domain or shape Ω in a way that is easily codable. For this purpose, we
introduce the following definitions:

Definición 2.3 Let Ω0 be a mesh for the rectangle [0, 1.5] × [0, 1].

Figure 2.2: Reference mesh used for Ω0.

14

From now on, an arbitrary domain Ω will be represented based on the reference domain Ω0 as

Ω = Ω\ := (𝐼 + \)Ω0.

Given 𝑢𝑟e 𝑓 defined over a subdomain 𝐷, the goal is to find \ that minimizes the functional

𝐽 (Ω\) =
1

2

∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥.

Through Theorem 2.2, the shape derivative can be expressed as an integral over the free
boundary,

𝐽′(Ω) (\) =
∫
Γ

2`e(𝑢) : e(𝑣) (\ · 𝑛)d𝑠,

where 𝑢 is solution of the Navier-Stokes problem (1.1) in Ω and 𝑣 is solution for the adjoint problem

−`Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) 𝑢 + ∇𝑞 = (𝑢 − 𝑢𝑟e 𝑓)1𝐷 in Ω

div(𝑣) = 0 in Ω

𝑣 = 0 on Γ ∪ Γi𝑛

𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 0 on Γ𝑜𝑢𝑡 .

From the shape derivative 𝐽′(Ω) (\), the gradient can be obtained evaluating in the standard
basis of R𝑁∗𝑉 , where 𝑉 is the number of mesh vertices and 𝑁 = 2, this way we obtain each gradient
component. Computationally, the cost of evaluating the shape derivative is very similar to that of
the functional, but the gradient requires computing the shape derivative for each component, i.e., 2𝑉
computations, thus encoding the deformation over the mesh. For the particular implementation of
this method, we coded the domainΩ\ as a vector containing only the deformation over mesh vertices
on the free boundary Γ, this allows to solve the minimization problem in a space of a much smaller
dimension, improving the efficiency of the algorithm. Another practical implementation used in
this particular case was modifying the BFGS algorithm, in particular the linear search section, so
the previous step can be used when the Wolfe conditions are not satisfied. Without this modification
the algorithm tends to halt, and no step is good enough to meet the Wolfe conditions, to allow the
algorithm to use the previous step is a way of escaping from local minimums and potentially finding
a better solution at the cost of time.

Once performed the minimization and obtained the deformation over the vertices on Γ, the next
step is to extend this deformation into the interior. This extension in [27] is done implicitly through
solving the pseudo-elastic problem:

−div(𝐴e(\)) = 0 in Ω

\ = 0 on Γi𝑛 ∪ Γ𝑜𝑢𝑡
𝜎𝑛 = 𝜙𝑛 on Γ,

15

where 𝐴e = 2`e + _𝑡𝑟 (e), but in this case, we decided to extend the deformation using a Harmonic
problem. This ensures that the final deformation is of class 𝐶2 if the deformation on Γ is 𝐶2. Both
methods are equally valid and both are used in ALE formulations for Fluid Structure problems [23].
Whichever method is used to extend the deformation into the interior, is important to ensure that
the final deformation is regular enough to preserve the quality of the mesh. For this reason, all the
systems are in the Eulerian framework, which simplifies the formulation.

2.3 Testing on symmetric domain
The method previously described was applied not only on the example given in [27], it is necessary
to test it on a deformation that could easily extend to the next step, which is to consider time
dependency. The domain to be reconstructed is a symmetric one, where the upcoming movement
will easily represent a pulse through the vessel. This change in the domain resulted in the algorithm
being unable to escape from a local minimum, far away from what can be called an "acceptable
domain". For this reason, we incorporated two new terms to the functional to control its volume
and perimeter, thus preventing the final shape to be unreasonable. The new terms correspond to the
difference in 𝐿2 norm with volume and perimeter of the reference domain, respectively.

𝐽 (Ω) = 𝐽𝑚𝑎i𝑛 (Ω) + 𝐽𝑣𝑜𝑙 (Ω) + 𝐽𝑝e𝑟 (Ω),

𝐽𝑚𝑎i𝑛 (Ω) =
∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥,

𝐽𝑣𝑜𝑙 (Ω) =
𝑏

2

(∫
Ω

d𝑥 −
∫
Ω0

d𝑥

)2
,

𝐽𝑝e𝑟 (Ω) =
𝑐

2

(∫
Γ

d𝑠 −
∫
Γ0

d𝑥

)2
.

These terms, although they fulfill their goal of controlling the shape volume and perimeter,
they raise the problem of adjusting two new parameters. Incorporating this modification into the
algorithm previously described only requires the computation of the shape derivatives for each of
these terms and adding them to the shape derivative obtained in Theorem 2.2, making use of
lemmas 2.4 and 2.5.

Lemma 2.4 (Volume shape derivative)

𝐽′𝑣𝑜𝑙 (Ω) (\) = 𝑏

(∫
Ω

d𝑥 −
∫
Ω0

d𝑥

) ∫
Γ

(\ · 𝑛)d𝑠.

Lemma 2.5 (Perimeter shape derivative)

𝐽′𝑝e𝑟 (Ω) (\) = 𝑐

(∫
Γ

d𝑠 −
∫
Γ0

d𝑠

) ∫
Γ

^(\ · 𝑛)d𝑠.

16

Then, coding the domain as previously done, i.e., a vector containing the deformation over the
vertices on the free boundary, the problem can be solved numerically making use of the method
described in this chapter.

17

Chapter 3

Extension to a mobile wall

The final goal is to identify the deformation of a mobile wall through a time interval. The natural and
naive way of doing it is to apply the same method just described to the time-dependent Navier-Stokes
equations, minimizing the functional

𝐽 (Ω) = 1

2

∫ 𝑇

0

∫
𝐷

|𝑢(𝑥, 𝑡) − 𝑢𝑟e 𝑓 (𝑥, 𝑡) |2d𝑥d𝑡. (3.1)

The difference in this case is that this method would try to solve globally in time, and this could
sacrifice precision at some time steps. Besides, the nature of solving the problem globally implies
that it is not possible to obtain partial results mid-computation. For this reason, we developed an
alternative iterative method that optimize each time step individually and produces results as they
are being calculated.

3.1 Direct method
The direct way to solve for the non-stationary case is to follow the algorithm previously described
considering the functional integrated over the time interval and solve the Navier-Stokes equations
in the dynamic formulation. The equations in the Eulearian framework are:

𝜕𝑢

𝜕𝑡
− `Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 0 in Ω\ × 𝐼

div(𝑢) = 0 in Ω\ × 𝐼

𝑢 = 𝑢i𝑛 on Γi𝑛
\
× 𝐼

𝑢 = 0 on Γ\ × 𝐼

𝜎(𝑢, 𝑝)𝑛 = 0 on Γ𝑜𝑢𝑡
\

× 𝐼

𝑢(𝑥, 0) = 𝑢0 in Ω.

(3.2)

Let us consider the functional (3.1), then in the spirit of Theorem 2.2 proven for the extension
to subdomain measurements, one can prove a similar result.

18

Theorem 3.1 The shape derivative for the functional (3.1) can be described in terms of the adjoint
problem as

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
Γ

2`e(𝑢) : e(𝑣) (\ · 𝑛)d𝑠d𝑡,

where (𝑣, 𝑞) is solution of the following system:.

−𝜕𝑣

𝜕𝑡
− `Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) (𝑢 − 𝑤) + ∇𝑞 = (𝑢 − 𝑢𝑟e 𝑓)1𝐷 in Ω\ × 𝐼

div(𝑣) = 0 in Ω\ × 𝐼

𝑣 = 0 on (Γ\ ∪ Γi𝑛
\
) × 𝐼

𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 0 on Γ𝑜𝑢𝑡
\

× 𝐼

𝑣(𝑥, 𝑇) = 0 in Ω\ .

(3.3)

Observation Notice that the adjoint problem has a final condition instead of an initial one, i.e.,
reverse in time. Further details can be found in [23].

Proof. To express 𝐽′(Ω) (\) in terms of the adjoint problem, one needs to write the Lagrangian as
was done in the stationary case. For this, we use the space-time variational formulation for the
Navier-Stokes equations,

L(𝑢, 𝑝, \, 𝑣, 𝑞) =1
2

∫ 𝑇

0

∫
𝐷

|𝑢(𝑥, 𝑡) − 𝑢𝑟e 𝑓 (𝑥, 𝑡) |2d𝑥d𝑡

−
∫ 𝑇

0

∫
Ω\

(
𝜕𝑢

𝜕𝑡
𝑣 + 2`e(𝑢) : e(𝑣) + (∇𝑢𝑢 · 𝑣) − 𝑝di𝑣(𝑣) − 𝑞di𝑣(𝑢)

)
d𝑥d𝑡

−
∫
Ω\

𝑢(𝑥, 0)𝑣(𝑥, 0)d𝑥,

𝐷𝑢L(𝑢, 𝑝, \, 𝑣, 𝑞)ℎ =

∫ 𝑇

0

∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓)ℎd𝑥d𝑡

−
∫ 𝑇

0

∫
Ω\

𝜕ℎ

𝜕𝑡
𝑣 + 2`e(ℎ) : e(𝑣) − 𝑞di𝑣(ℎ) + (∇𝑢)𝑇 𝑣ℎ + (∇ℎ𝑢) 𝑣 d𝑥d𝑡 = 0

−
∫
Ω\

ℎ(𝑥, 0)𝑣(𝑥, 0)d𝑥,

𝐷 𝑝L(𝑢, 𝑝, \, 𝑣, 𝑞)𝑘 = −
∫ 𝑇

0

∫
Ω\

𝑘di𝑣(𝑣)d𝑥d𝑡 = 0.

Integrating by parts the second equation we get

19

𝐷𝑢L(𝑢, 𝑝, \, 𝑣, 𝑞)ℎ =

∫ 𝑇

0

∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓)ℎd𝑥d𝑡

−
∫ 𝑇

0

∫
Ω\

−𝜕𝑣

𝜕𝑡
ℎ − `Δ𝑣ℎ + ∇𝑞ℎ + (∇𝑢)𝑇 𝑣ℎ − (∇𝑣𝑢) ℎ d𝑥d𝑡

−
∫ 𝑇

0

∫
𝜕Ω\

[𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣]ℎ

−
[∫

Ω\

𝑣(𝑥, 𝑇)ℎ(𝑥, 𝑇)d𝑥 −
∫
Ω\

𝑣(𝑥, 0)ℎ(𝑥, 0)d𝑥
]
−
∫
Ω\

ℎ(𝑥, 0)𝑣(𝑥, 0)d𝑥 = 0.

Then, the adjoint problem derived from this equation is the following:

−𝜕𝑣

𝜕𝑡
− `Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) (𝑢 − 𝑤) + ∇𝑞 = (𝑢 − 𝑢𝑟e 𝑓)1𝐷 en Ω\ × 𝐼

div(𝑣) = 0 en Ω\ × 𝐼

𝑣 = 0 en (Γ\ ∪ Γi𝑛
\
) × 𝐼

𝜎(𝑣, 𝑞)𝑛 + (𝑢 · 𝑛)𝑣 = 0 en Γ𝑜𝑢𝑡
\

× 𝐼

𝑣(𝑥, 𝑇) = 0 en Ω\ .

Now we can write the formulation as finite elements in space and finite differences in time. A
monolithic scheme will be used as in [6], and will be solved in the ALE formalism over a reference
domain. The formulation is as follows:

∫
Ω0

[
𝐽
𝜕𝑣

𝜕𝑡
ℎ + 𝐽2`e(𝑣) : e(ℎ) − 𝑞di𝑣(𝐽𝐻ℎ) + 𝑘di𝑣(𝐽𝐻𝑣) + 𝐽 (∇𝑢𝐻)𝑇𝑣ℎ + 𝐽 (∇ℎ𝐻) (𝑢 − 𝑤)𝑣

]
d𝑥

−
∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓)ℎd𝑥 = 0.

Having solved the adjoint problem, we can differentiate the functional 𝐽 (Ω) with respect to shape
and replace the term 𝑢′,

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
𝐷

(𝑢(𝑥, 𝑡) − 𝑢𝑟e 𝑓 (𝑥, 𝑡))𝑢′(𝑥, 𝑡)d𝑥d𝑡,

where 𝑢′ is the solution of the Navier-Stokes equations derived with respect to shape or sensibility
problem, i.e.,

20

d𝑢′

d𝑡
− `Δ𝑢′ + (∇𝑢) 𝑢′ + (∇𝑢′) 𝑢 + ∇𝑝′ = 0 in Ω

div(𝑢′) = 0 in Ω

𝜎(𝑢′, 𝑝′)𝑛 = 0 on Γ𝑜𝑢𝑡

𝑢′ = 0 on Γi𝑛

𝑢′ = −
(
𝜕𝑢
𝜕𝑛

)
(𝑤 · 𝑛) on Γ.

(3.4)

Before going further, notice that at this point we can change the Navier-Stokes model by adding
the kinematic condition 𝑢 = 𝑤 on Γ, where 𝑤 is the wall velocity. This, in the Lagrangian frame-
work, means that the fluid velocity on the free boundary matches the wall velocity or deformation
velocity. However, because the simulations are made following the Eulerian framework, there is
no deformation velocity in the equations. Instead, that information is contained in the domain
as we deform it along with the iterations. Therefore, when writing the equations in the Eulerian
framework, 𝑤 = 0.

𝜕𝑢

𝜕𝑡
− `Δ𝑢 + ((𝑢 − 𝑤) · ∇) 𝑢 + ∇𝑝 = 0 in Ω

div(𝑢) = 0 in Ω

𝑢 = 𝑢i𝑛 on Γi𝑛

𝑢 = 𝑤 on Γ

𝜎(𝑢, 𝑝)𝑛 = 0 on Γ𝑜𝑢𝑡

𝑢(𝑥, 0) = 𝑢0 in Ω.

(3.5)

This new system gives the same adjoint problem (3.3) we got in Theorem 3.1 so there is no
need to recalculate. And for the solution (𝑢′, 𝑝′), the sensibility problem is the same as (3.4) except
for the kinematic condition, which can be calculated independently. Let Φ(𝑥, 𝑡) be a function that
returns the new position of a point in the reference mesh at a certain time. This function is defined
as

Φ(𝑥, 𝑡) = 𝑥 + \ (𝑥, 𝑡) = 𝑥 + 𝑡𝑤(𝑥).

Then we do some computations similar to what is done for the Laplace equation in [15],

𝑢𝑡 (Φ(𝑥, 𝑡)) = dΦ(𝑥, 𝑡)
d𝑡

=
d\ (𝑥, 𝑡)

d𝑡
= 𝑤(𝑥), ∀𝑥 ∈ Γ𝑟e 𝑓 ,

𝑢′ + ∇𝑢 · dΦ(𝑥, 0)
d𝑡

= 0, ∀𝑥 ∈ Γ𝑟e 𝑓 ,

i.e.,

𝑢′ + ∇𝑢 · 𝑤 = 0, ∀𝑥 ∈ Γ𝑟e 𝑓 .

21

Now that we got both the adjoint problem and the sensibility problem for the new system
considering the kinematic condition, we calculate the shape derivative replacing 𝑢′ with the adjoint
solution in the same way done for the stationary case.

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓)𝑢′d𝑥,

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
Ω

[
−𝜕𝑣

𝜕𝑡
− `Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) 𝑢 + ∇𝑞

]
𝑢′d𝑥d𝑡.

The first equation in system (3.4) says that

∫
Ω

𝜕𝑢′

𝜕𝑡
− `Δ𝑢′ + (∇𝑢)𝑢′ + (∇𝑢′)𝑢 + ∇𝑝′d𝑥 = 0,

i.e., multiplying by ` and integrating by parts we obtain

∫ 𝑇

0

∫
Ω

𝜕𝑢′

𝜕𝑡
𝑣 + 2`e(𝑢′) : e(𝑣) + (∇𝑢)𝑢′𝑣 + (∇𝑢′)𝑢𝑣 − 𝑝′di𝑣(𝑣)d𝑥d𝑡

−
∫ 𝑇

0

∫
𝜕Ω

𝜎(𝑢′, 𝑝′)𝑛 · 𝑣d𝑠d𝑡 = 0.

(3.6)

Then, integrating by parts and subtracting the variational formulation (3.6) we get

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
Ω

[
−𝜕𝑣

𝜕𝑡
− `Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) 𝑢 + ∇𝑞

]
𝑢′d𝑥d𝑡

=

∫ 𝑇

0

∫
Ω

−𝜕𝑣

𝜕𝑡
𝑢′ + 2`e(𝑣) : e(𝑢′) + (∇𝑢)𝑇 𝑣𝑢′ − (∇𝑣) 𝑢𝑢′d𝑥d𝑡 −

∫ 𝑇

0

∫
Ω

𝜎(𝑣, 𝑞)𝑛 · 𝑢′d𝑠d𝑡

=

∫ 𝑇

0

∫
Ω

[
−(∇𝑣)𝑢𝑢′ − (∇𝑢′)𝑢𝑣d𝑥 −

∫
𝜕Ω

𝜎(𝑣, 𝑞)𝑛𝑢′d𝑠 +
∫
𝜕Ω

𝜎(𝑢′, 𝑝′)𝑛 · 𝑣d𝑠
]
d𝑡

+
∫
Ω

𝑣(𝑥, 𝑇)𝑢′(𝑥, 𝑇)d𝑥 −
∫
Ω

𝑣(𝑥, 0)𝑢′(𝑥, 0)d𝑥.

Using the initial and final conditions 𝑣(𝑥, 𝑇) = 0, 𝑢′(𝑥, 0) = 0 and the boundary conditions, we
get the following expression for 𝐽′:

𝐽′(Ω) (\) =
∫ 𝑇

0

∫
Γ

2`e(𝑢) : e(𝑣) (\ · 𝑛)d𝑠d𝑡.

□

22

Although this method is the direct translation of the algorithm in Chapter 2, one can only see
the solution at the end, as all time steps are being solved simultaneously. Moreover, this method
does not guarantee a good approximation in each time step individually, as it solves the integral
over the time interval. For these reasons, we propose an alternative method that pretends to solve
these problems.

3.2 Quasi-stationary method
This method consists of solving a stationary problem on each time step, adding to the equations an
inertial force product of the fluid’s movement. This way of solving iteratively in time allows one to
see partial results as they are being generated, and to minimize the error on each individual time
step instead of the aggregate.

Let (𝑢, 𝑝) := (𝑢𝑛, 𝑝𝑛) and Ω := Ω𝑛 be the solution of the following system:

−`Δ𝑢 + ((𝑢 − 𝑤𝑛) · ∇) 𝑢 + ∇𝑝 = −
𝑢−𝑢𝑛−1

𝑟e 𝑓

𝜏
in Ω

div(𝑢) = 0 in Ω

𝑢 = 𝑢i𝑛 on Γi𝑛

𝑢 = 𝑤𝑛 on Γ

𝜎(𝑢, 𝑝)𝑛 = 0 on Γ𝑜𝑢𝑡 .

(3.7)

The term −
𝑢−𝑢𝑛−1

𝑟e 𝑓

𝜏
is a finite difference approximation of the acceleration produced by the fluid’s

movement, and because it was considered the normalized equations (𝜌 = 1), this term represents
the inertial force of the fluid. Solving each time step individually implies the objective function
must depend on time, thus the need to solve for the minimization problem involving the functional
defined in the stationary case now dependent on a time step.

𝐽𝑛 (Ω) = 1

2

∫
𝐷

|𝑢(Ω)𝑛 − 𝑢𝑛𝑟e 𝑓 |
2d𝑥.

Then the following theorem holds:

Theorem 3.2 Given (𝑢, 𝑝) solution of (3.7) and (𝑣, 𝑞) solution of (3.8), the shape derivative of
𝐽𝑛 (Ω) can be written as

(𝐽𝑛)′(Ω) (\) =
∫
Γ

2`e(𝑢𝑛) : e(𝑣𝑛) (\ · 𝑛)d𝑠.

Proof. Since we are using the stationary Navier-Stokes equations, both the adjoint and sensibility
problems are the same we previously calculated, i.e., (𝑣, 𝑞) := (𝑣𝑛, 𝑞𝑛) and (𝑢′, 𝑝′) := (𝑢′𝑛, 𝑝′𝑛)
solutions of the following systems respectively:

23

−`Δ𝑣 + (∇𝑢)𝑇 𝑣 − (∇𝑣) (𝑢𝑛 − 𝑤𝑛) + ∇𝑞 = (𝑢𝑛 − 𝑢𝑟e 𝑓)1𝐷 in Ω

div(𝑣) = 0 in Ω

𝑣 = 0 on Γ ∪ Γi𝑛

𝜎(𝑣, 𝑞)𝑛 + (𝑢𝑛 · 𝑛)𝑣 = 0 on Γ𝑜𝑢𝑡 ,

(3.8)

−`Δ𝑢′ + (∇𝑢) 𝑢′ + (∇𝑢′) 𝑢 + ∇𝑝′ = 0 in Ω

div(𝑢′) = 0 in Ω

𝜎(𝑢′, 𝑝′)𝑛 = 0 on Γ𝑜𝑢𝑡

𝑢′ = 0 on Γi𝑛

𝑢′ = −
(
𝜕𝑢
𝜕𝑛

)
(𝑤𝑛 · 𝑛) on Γ.

(3.9)

Then, the directional derivative of the functional can be written in terms of the adjoint solution
as

(𝐽𝑛)′(Ω) (\) =
∫
𝐷

(𝑢 − 𝑢𝑟e 𝑓)𝑢′d𝑥 =

∫
Γ

2`e(𝑢𝑛) : e(𝑣𝑛) (\ · 𝑛)d𝑠.

□

24

Chapter 4

Numerical Results

This chapter will present the numerical simulations done for the two cases described in Chapter
2, where the objective function considers a subdomain 𝐷 containing information of the reference
velocity,

𝐽 (Ω) = 1

2

∫
𝐷

|𝑢 − 𝑢𝑟e 𝑓 |2d𝑥,

and the quasi-stationary simulations from the Chapter 3 method, where the functional depends on
the time iteration and the Navier-Stokes problem considers an inertial force produced by the fluid’s
movement.

𝐽𝑛 (Ω) = 1

2

∫
𝐷

|𝑢(Ω)𝑛 − 𝑢𝑛𝑟e 𝑓 |
2d𝑥.

The reference domain is modeled as a rectangular mesh, which will be modified on each iteration,
thus solving the systems in the Eulerian framework. This allows in the dynamic case to simplify the
equations because of the term of domain velocity when considering a fixed domain. On the other
hand, this means one needs to modify the mesh mid-execution, which implies re-meshing regularly
to ensure the quality of the solution.

Figure 4.1: Reference mesh.

25

4.1 Extension to subdomain measurements
The first example being implemented is the one proposed in [27] as a way to test the algorithm
considering subdomain measurements. This simulation aims to validate the method and compare
against the original, for this reason, the mesh used in this case for the reference domain and the
initial condition for the algorithm is the rectangle [0, 1.5] × [0, 1], with a mesh made of 1127 cells
by the FEniCS library. For this example, consider a parabolic inlet

𝑢i𝑛 (𝑥, 𝑦) = (𝑦(1 − 𝑦), 0), (4.1)

imposed on Γi𝑛 boundary as shown in figure 4.1. Since the algorithm from Chapter 2 requires data
inside the domain, one needs to solve the Navier-Stokes equations on the deformed domain to get
the velocity data. Thus, it was necessary to recreate the original method in [27] and solve it using
the following reference velocity in Γ𝑜𝑢𝑡 :

𝑢𝑟e 𝑓 (𝑥, 𝑦) = (2𝑦2(1 − 𝑦), 0). (4.2)

This gives as result the "optimal" deformation, and solving the direct Navier-Stokes problem
(1.1) in the deformed mesh results in the velocity inside the domain. This velocity data is the one
to be used in the algorithm proposed in Chapter 2.

Figure (4.2) shows the initial and final deformation using the method described in Chapter 2
without considering volume or perimeter penalization. It takes 38 BFGS iterations in approximately
47.8 minutes to reach a solution close enough to the optimal shape.

Figure 4.2: Deformation given by Algorithm 2 on iterations t=0 y t=38, initial and final states
respectivly on the example proposed in [27].

Figure (4.3) shows the simulation results for the same example considering penalization terms
for the volume and perimeter. This result shows a better approximation to the optimal shape, taking
38 iterations and approximately 33.8 minutes.

For the second example, considering a symmetrical shape motivated by the deformation of a
vessel at the time of a pulse. Considering both the volume and perimeter penalization terms,
Figure (4.4) shows the obtained results. For this case, it was defined an imposed deformation, the
exponential function

26

Figure 4.3: Deformation given by Algorithm 2 on iterations t=0 y t=38, initial and final states
respectivly on the example proposed in [27].

Figure 4.4: Stationary case, symmetrical example.

9(𝑦 − 1
2)

(
1
de

−(𝑥−3/4)2
2𝜎2 − 𝑚

)
, (4.3)

where d = 6
√
2𝜋, 𝜎 = 1/3 and 𝑚 = 1

de
−(3/4)2
2𝜎2 . This function over the Γ boundary was design to

represent a blood vessel expanding by the blood movement. This function also allows to easily
extend to the time dependant example by moving on the X axis by the following deformation:

Sym(𝑥, 𝑦) =

0

9(𝑦 − 1
2)

(
1
de

−(𝑥−3/4)2
2𝜎2 − 𝑚

) . (4.4)

4.2 Extension to a mobile wall
First, we need to redefine the domain and mesh to work with for this extension, as the previous one
is too small in length to allow the peak to move significantly. The new domain is the rectangle
[0, 6]× [0, 1] with a structured mesh as we want to minimize the computations and a structured mesh
can be stored in less memory and gives a more symmetrical solution (as should happen according
to the shape gradient).

For this extension, velocity data over time is needed. This means solving the non-stationary
Navier-Stokes equations over a domain dependent on time. The deformation follows the exponential

27

Figure 4.5: Reference mesh

equation

Def(𝑥, 𝑦) =

0

6(𝑦 − 1
2)

(
1
de

−(𝑥−3/2−ℓ)2
2𝜎2 − 𝑚

) , (4.5)

where ℓ is the displacement of this function. For the purpose of these simulations, let us consider
ℓ ∈ [0, 3], and the following growth to avoid discontinuities in the velocity,

ℓ(𝑡) = 1

𝑡∗
𝑉𝑚𝑎𝑥

2
𝑡2, (4.6)

with 𝑉𝑚𝑎𝑥 = 5, 𝑡∗ =
2(𝑉𝑚𝑎𝑥−3)

𝑉𝑚𝑎𝑥
. ℓ(𝑡) being a function that remains constant from a certain time 𝑡∗

onwards, initial velocity zero and quadratic acceleration before 𝑡 = 𝑡∗ as shown in figure (4.6)

Figure 4.6: Peak displacement over time, quadratic and linear regime.

For the purpose of ensuring that the velocity does not change abruptly, the Navier-Stokes
equations were solved over an interval [0.3] consisting of two segments, the first one do not move
the domain, thus reaching a steady flow. Then we apply the displacement over the time interval
[2, 3]. This interval is discretized with a step 𝜏 = 0.1 (this is why figure (4.6) was made with 100
time steps). Solving the non-stationary Navier-Stokes equations from system (1.2) gives as a result
the velocity in the domain interior through the time interval [0, 3]. Since the segment of interest is
the one in which the deformation moves, let us rename this segment as the time interval [0, 1] and
forget about the previous segment onwards.

28

Figure 4.7: Reference for mobile domain.

Using this velocity data as reference, the deformation identification algorithm described in
Chapter 3 was used to reconstruct the shape of the domain. In order to measure the velocity of the
reconstructed domain, the last 50 iterations of the reference velocity and deformation were used,
this gives a deformation that moves at a more easily comparable speed early in the iteration process,
and therefore allowed to make corrections to the parameters earlier.

Unfortunately, the results did not come out as expected, as the deformation obtained kept
increasing with each iteration. For this reason, to try to control the deformation, three nodes were
fixed to zero deformation close to the inlet and outlet boundaries on following examples. In reality,
there was an error in the visualization, which accumulated the deformations making it seem like an
over increment in the volume, but not knowing that at the moment, it was believed that the fact that
the penalization parameters are the same for every time step could have been the reason why the
deformation over increased, meaning that they were not appropriate for every time step and needed
adjusting between iterations, making them dynamic to the changes in the deformation. Later on,
the error was corrected for the dynamic parameters case and also for the fixed parameters case.

This dynamic parameter technique is accomplished by defining the penalization parameters to
follow the same proportion that worked for the previous case where we had the same shape but
stationary. It is designed to not overshadow the main term of the objective function, as it keeps the
same proportion for every time step. Figure (4.8) shows the peak displacement obtained compared
to the reference movement for the algorithm incorporating the dynamic parameters. The results
were able to capture the movement of the peak through the x-axis, although there are some errors
at the beginning which can be attributed to the algorithm solving the problem in each time step
independently except for the inertial force considered in the fluid motion equations.

29

Figure 4.8: Peak displacement and velocity with dynamic parameters, indicating key times iter=54,
iter=60, iter=77, iter=82 (corresponding to times 2, 8, 25, 30).

The velocity graph in figure(4.8) confirms that the solution presents oscillations at first and then
stabilizes. Although, at the end there are still some errors product of the instabilities. Figure (4.9)
shows the deformation at key times, which allows seeing that it starts on the right foot and at some
times (time=8 for example) the displacement is off because there is no visible deformation and the
peak or maximum even escapes from the range it should be. At last, times 25 and 30 shows the
peak moving ahead of the reference as can be seen in the displacement graph in figure (4.8)

Figure 4.9: Comparison between the results and the reference at key times.

Lastly, the fixed parameters case was tested again as explained before correcting the error, which
gave as result the displacement and velocity graph in figure (4.10). The displacement at the
beginning presents a similar problem to the result obtained in the dynamic parameters case, and

30

a similar stabilization at the end. One can notice that the final segment stabilizes, although the
mean velocity seems to correspond with the reference velocity, the results are shifted ahead of the
reference. This phenomenon is yet to have an answer, but a possible explanation could be the
reference velocity increasing in magnitude as the peak moves.

Figure 4.10: Peak displacement and velocity with fixed parameters, indicating key times iter=54,
iter=60, iter=77, iter=82 (corresponding to times 2, 8, 25, 30).

31

Conclusion and discussion

The main objectives of this work were partially accomplished, since it was possible to make an
analysis to give an easily computable expression to the shape gradient for a wall identification
problem based on velocity measurements for both the stationary and non-stationary cases, and an
algorithm capable of reconstructing the boundary shape for the stationary case and partially capable
of identifying the movement of a mobile wall. However, the results obtained show oscillations and
instabilities for a problem that does not consider noise in the measurements, which could be solved
imposing known or estimated information into the problem.

This work contributed in the first place to the analysis of the shape gradient for shape identification
problems based on velocity data inside the domain over any subset. This allows one to be flexible,
and work with more information when available or to restrict the subdomain to where the velocity
is known. Secondly, the algorithm implemented on Python based on the methodology proposed in
[27] applied to the subdomain measurements extension. This implementation is open source and
extensible, since the PDE solvers are modular.

In the third place, the extension to a time dependent problem considering a mobile wall with an
imposed deformation. This extension reduces the time dependent problem to the stationary case
defining a new model for the fluid considering the movement as an inertial force, which makes it
possible to obtain partial results mid-iteration.

Finally, the algorithm implementation for the non-stationary case, which makes use of a modified
version of the BFGS algorithm and a methodology of self-adjusting parameters throughout the
iteration process.

This work has contributed to the study of non-invasive deformation estimation of blood vessels,
but the analysis made can be extended to more complex identification problems for mobile walls
like the three-dimensional case or considering coupling with an elastic wall, which could be done
considering a fluid-structure formulation instead of the Navier-Stokes system. The methodology
and algorithms made in this study could also be extended or modified to be applied to other models
where the shape is the unknown and one has information on the interior of the domain.

32

Bibliography

[1] Jorge Aguayo, Cristóbal Bertoglio, and Axel Osses. A distributed resistance inverse method
for flow obstacle identification from internal velocity measurements. Inverse problems, 37(2),
January 2021.

[2] Jorge Aguayo and Hugo Carrillo. Analysis of obstacles immersed in viscous fluids using
brinkman’s law for steady stokes and navier-stokes equations. ArXiv, abs/2012.08635, 2020.

[3] Jorge Aguayo and Axel Osses. A stability result for the identification of a permeability
parameter on navier–stokes equations. Inverse Problems, 38(7):075001, may 2022.

[4] Grégoire Allaire. Conception Optimale de Structures. 01 2007.

[5] Philippe Angot, Charles-Henri Bruneau, and Pierre Fabrie. A penalization method to take into
account obstacles in viscous flows. Numerische Mathematik, 81:497–520, 02 1999.

[6] Reidmen Aróstica and Cristóbal Bertoglio. On monolithic and chorin-temam schemes for
incompressible flows in moving domains. Applied Mathematics Letters, 112:106830, 02
2021.

[7] Cristóbal Bertoglio, Rodolfo Núñez, Felipe Galarce, David Nordsletten, and Axel Osses.
Relative pressure estimation from velocity measurements in blood flows: State-of-the-art and
new approaches. International journal for numerical methods in biomedical engineering, 34,
09 2017.

[8] Hugo Carrillo Lincopi, Axel Osses, Sergio Uribe, and Cristóbal Bertoglio. Optimal dual-venc
(odv) unwrapping in phase-contrast mri. IEEE Transactions on Medical Imaging, PP:1–1, 11
2018.

[9] Instituto Nacional de Estadística de Chile (INE). Estadísticas vitales, informe anual, 2010-
2019.

[10] Simone Deparis. Numerical analysis of axisymmetric flows and methods for fluid-structure
interaction arising in blood flow simulation. 01 2004.

[11] Jean Donea and Antonio Huerta. Finite element methods for flow problems. 2003.

[12] Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements. 2004.

33

[13] Vivette Girault and P. A. Raviart. Finite element approximation of the navier-stokes equations.
1979.

[14] Vivette Girault and P. A. Raviart. Finite element methods for navier-stokes equations - theory
and algorithms. In Springer Series in Computational Mathematics, 1986.

[15] Antoine Henrot and Michel Pierre. Shape variation and optimization: A geometrical analysis.
Zürich, Switzerland: European Mathematical Society Publishing House, 2018.

[16] Helge Herthum, Hugo Carrillo, Axel Osses, Sergio Uribe, Ingolf Sack, and Cristobal Bertoglio.
Optimal multiple motion encoding in Phase-Contrast MRI. December 2020.

[17] Olga A. Ladyzhenskaya, Richard A. Silverman, Jacob T. Schwartz, and Jacques E. Romain.
The mathematical theory of viscous incompressible flow. 1972.

[18] Anders Logg. Automated solution of differential equations by the finite element method : the
FEniCS book. Springer, Berlin New York, 2012.

[19] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford University
Press, 2001.

[20] Bijan Mohammadi and Olivier Pironneau. Shape optimization in fluid mechanics. Annual
Review of Fluid Mechanics, 36(1):255–279, 2004.

[21] David Nolte, Jesús Urbina, Julio Sotelo, Leo Sok, Cristian Montalba, Israel Valverde, Axel
Osses, Sergio Uribe, and Cristóbal Bertoglio. Validation of 4d flow based relative pressure
maps in aortic flows. Medical Image Analysis, 74:102195, 08 2021.

[22] Stanley Osher and R. Fedkiw. The Level Set Methods and Dynamic Implicit Surfaces, vol-
ume 57, pages xiv+273. 05 2004.

[23] Thomas Richter. Fluid-structure Interactions. Springer Cham, 2017.

[24] Jan Sokolowski and Antoni Zochowski. On Topological Derivative in Shape Optimization.
Research Report RR-3170, INRIA, 1997.

[25] Roger Temam. Navier-stokes equations: Theory and numerical analysis. 1979.

[26] Michael Markl y Alex Frydrychowicz y Sebastian Kozerke y Mike Hope y Oliver Wieben. 4d
flow mri. JMRI, 36(5):1015–1036, octubre 2012.

[27] Dapogny C. y Frey P. y Omnès F. et al. Geometrical shape optimization in fluid mechanics
using freefem++. Struct Multidisc Optim, 58(6):2761–2788, Diciembre 2018.

34

	Introduction and bibliographical discussion
	A shape reconstruction algorithm
	Fluid model
	Stationary case
	Dynamic case

	Summary for the stationary identification algorithm

	Extension to subdomain measures
	Shape derivative
	Determination of the domain deformation field
	Testing on symmetric domain

	Extension to a mobile wall
	Direct method
	Quasi-stationary method

	Numerical Results
	Extension to subdomain measurements
	Extension to a mobile wall

	Conclusion and discussion
	Bibliography

