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ESTUDIO EXPERIMENTAL DE LA GENERACIÓN, PROPAGACIÓN Y
INTERACCIÓN DE UN MACAREO ONDULAR CON UN CILINDRO

CUADRADO VERTICAL Y SEMISUMERGIDO

Los macareos pueden describirse como una transición rápida entre dos profundidades
de flujo y suelen estar causados por las fuerzas de las mareas, pero también pueden ser
consecuencia de terremotos, deslizamientos de tierra o roturas de represas y diques. Un tipo
especial de macareo es el macareo ondular, que muestra una ola inicial seguida de un tren
de ondas infinito de amplitudes más pequeñas que convergen a un nivel de agua constante y
que se consideran una buena descripción de las olas de los tsunamis.

En este trabajo, se estudia la respuesta dinámica de un generador tipo pistón en un
tanque de olas numérico. Las ecuaciones bidimensionales de Navier-Stokes se resuelven en
una configuración de flujo bifásico. La respuesta a un escalón de velocidad son ondas similares
a las de un macareo ondular que se propagan a lo largo del tanque. Se implementa una
estrategia de absorción activa basada en un controlador retroalimentado que acciona un
pistón secundario y se logra con éxito la absorción de ondas tanto en ondas regulares como
irregulares.

Luego, se llevan a cabo cinco pruebas experimentales y una simulación numérica com-
pleta en 3D para estudiar el desprendimiento de vórtices inducido por las olas alrededor de un
cilindro cuadrado vertical para el caso particular del macareo ondular. El macareo ondular
interactúa con el cilindro cuadrado, se forman estructuras coherentes en sus cuatro bordes
que son gatilladas por el movimiento de las olas. En cuanto a los vórtices que se sitúan en
la cara posterior del cilindro, son principalmente verticales, atraviesan toda la columna de
agua desde la superficie libre hasta el fondo marino, y se observa el emparejamiento de los
dos vórtices. Finalmente, se observa la inestabilidad de esos vórtices y se interpreta como la
inestabilidad de Crow.

Palabras clave: formación de olas, absorción de olas, macareo ondular, interacción ola-
estructura, desprendimiento de vórtices, emparejamiento de vórtices.
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EXPERIMENTAL AND NUMERICAL STUDY OF UNDULAR BORE
GENERATION, PROPAGATION, AND INTERACTION WITH A

SEMI-SUBMERGED VERTICAL SQUARE CYLINDER

Bores can be described as a quick transition between two flow depths and are usually
caused by tidal forces but can also be the consequence of earthquakes, landslides, or dam
and dike breaks. A special type of bore is the undular bore, which shows an initial wave
followed by an infinite wave train of smaller waves converging to a constant water level and
are now considered to be a good description of tsunami waves.

In this work, undular bore generation is carried out through the kinematic and dynamic
characterization of an impulsive piston wavemaker. Then, the undular bore propagation
along a wave tank and interaction with a vertical square cylinder is studied to identify,
describe, and quantify the vortex generation and further self organization of vorticity at its
edges.

We first study the dynamical response of a piston-type wavemaker in a numerical wave
tank. Two-dimensional unsteady Navier-Stokes equations are solved on a two phase flow
configuration using the volume of fluid method to capture the free surface dynamics. The
wavemaker is a moving wall driven by an arbitrary signal waveform. The step response of the
wavemaker generates pulse-like waves similar to an undular bore propagating along the tank.
An active absorption strategy based upon a feedback controller driving a secondary piston
is implemented and wave absorption is successfully achieved on regular as well as irregular
waves.

Then, five experimental test cases and a full 3D numerical simulation are carried out to
study the wave-induced vortex shedding around a vertical square cylinder for the particular
case of the undular bore. As the undular bore interacts with the square cylinder, coherent
structures form at its four edges and are triggered by the wave motion. As for the vortices
which are situated at the rear face of the cylinder, they are mainly vertical, cross the entire
water column from the free-surface to the seabed, and the pairing of the two vortices is ob-
served. We are also able to show that the rear vortices become unstable in a similar way as
the instability of Crow, leading to strong deformations. The circulation of the vortex pair is
computed through the use of two methods, and it is shown that using a Lamb-Oseen vortex
pair velocity fit gives a precise estimation. The dimensionless circulation is expressed as a
function of the Froude number and the numerical simulation is validated. Finally, the seabed
shear forces are measured which allows to describe the eventual scouring happening in the
wake of the pile.

Keywords: wavemaking, wave absorption, undular bore, wave-structure interaction, vortex
shedding, vortex pairing
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Chapter 1

Introduction

1.1. Motivations
In the world, one billion inhabitants live in low-lying coastal regions. Developing more

resilient coastal communities is essential and implies to generate the knowledge about wave in-
teraction with structures. These interactions, which can result from tides, storms or tsunami
events, will induce forces that might be disastrous for the communities, with possibly the
destruction or displacement of buildings, vessels in ports, scouring, etc. Many offshore and
near-shore infrastructures are made of slender bodies, cylinders, such as offshore wind tur-
bines, or bridge piles. These structures and substructures are often mono-piles or designs
combining various cylinders (i.e. jackets). However, if circular piles are the most common
design, others such as square based design also exist, as shown in figure 1.1, and it is impor-
tant to also consider them, as the physics might be quite different from the common circular
cylindrical column.

While numerous studies can be found for current structure interaction with vertical circu-
lar cylinders (Nishioka & Sato, 1978; Sarpkaya, 1986; Provansal et al., 1987; Longoria et al.,
1991; Cheng et al., 2007), for impulsively started cylinder (Koumoutsakos & Leonard, 1995),
for wave structure interaction with circular cylinder (Reid, 1957; Ishida & Iwagaki, 1978; Bihs
et al., 2017) or the wave generation from impulsively moved horizontal cylinders (Tyvand &
Miloh, 1995), it is not the case for wave structure interaction with square cylinder. At the
authors’ knowledge, only few studies were published about this topic and could be found:
Arabi et al. (2019) experimentally and numerically studied the interaction between solitary
waves and a square based impervious structure, showing the generation of vertical vortices
at the four edges of the cylinder which extended from the free-surface to the seabed, Bremm
et al. (2015) experimentally studied the interaction between depression led long waves and a
square cylinder on a sloping beach, basing their geometrical configuration on a real tsunami
event and measuring both the flow field and the forces on the square cylinder and Shafiei et

2



al. (2016) experimentally studied the interaction between a square prism and a bore under
different incident angles, for bores propagating on a dry bed, and in a tank equipped with an
automatic gate for the bore generation. Finally, P. Lin & Li (2003) simulated the interaction
between a vertical cylinder and a combination of wave and current. They showed that the
strength of the vortices is significantly reduced by the presence of the waves and the shedding
frequency is correlated to the free-surface elevation.

(a) (b)

Figure 1.1: Examples of vertical square cylinder. (a) View from the shore of the
western end of the main span of the Courtney Campbell Causeway, Florida. (b) Na
Kika offshore platform in the Gulf of Mexico.

Numerous studies also focused on the interaction with harmonic or solitary waves, but
few tried to make the wave more realistic to real hazardous natural events (tsunamis) and
thus bores and N-waves are still to be extensively studied. Bores can be described as a quick
transition between two flow depths and are usually caused by tidal forces (Hatland & Kalisch,
2019). Bores can also be the consequence of earthquakes, landslides, dam and dike breaks.
They can either be undular or non-undular: the first one can be described as an initial wave
followed by a wave train of smaller waves, and the second one consists in a first breaking
front followed by a flat interface. Undular bores are not only found in gravity waves, but can
also be observed in other scientific fields such as plasma physics (Moiseev & Sagdeev, 1963)
and fibre optics (Nuño et al., 2019). The understanding of the wave-structure interaction is
necessary to assure more resilient design of marine, coastal and fluvial infrastructures. In
particular, the study of the fluid-structure interaction with undular bore has gained interest
in the scientific community since some clues indicate that tsunami waves are most likely un-
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dular bores rather than solitary waves (P. A. Madsen et al., 2008), which leads to numerous
changes in the wave description, as for example a much steeper wave front in the case of the
undular bore. Undular bores were first experimentally studied by Favre (1935), who con-
cluded that if a long wave travels in shallow still water, it will become more steep and form a
bore, and if the surface elevation change is less than 0.28 of the water depth, it will become
an undular bore. If the depth ratio, also called bore strength (Bjørnestad et al., 2021) and
defined as a/h where a is the bore height and h the still water depth, is greater than 0.28 and
less than 0.75 there is still undulation but the front wave is breaking and if this ratio is more
than 0.75 then we observe a so-called turbulent bore. Numerous studies on turbulent and
undular bores can be found, in particular the transition initial formation (Lemoine, 1948;
Frazao & Zech, 2002; El et al., 2005), theory (Peregrine, 1966), experimental characteriza-
tions (Binnie et al., 1955; Yeh et al., 1989; Treske, 1994; Chanson, 2010; C. Lin et al., 2019;
Shi et al., 2020), wave breaking (Gavrilyuk et al., 2016; Hatland & Kalisch, 2019), energy
analysis (Sturtevant, 1965; Ali & Kalisch, 2010), turbulence (P. A. Madsen & Svendsen,
1983) or on-field measurements (Martins et al., 2017) were investigated. Examples of natural
undular bore events can be found in figure 1.2, where both a river bore generated by the tide
and the 2004 tsunami in the Indian ocean generated by an earthquake can be observed.
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1.1. MOTIVATIONS 5

(a)

(b)

Figure 1.2: Examples of natural un-
dular bore events. (a) The Suma-
tra 2004 tsunami reaching the is-
land Koh Jum off the coast of Thai-
land (Grawin, 2006). (b) Undular
bore, generated by tide, in the Turna-
gain Arm, Alaska (Dickerson, n.d.).



1.2. Objectives

Main objective
This work aims at studying the undular bore generation, propagation and interaction

with a semi-submerged square cylindrical column, by means of numerical simulations and
experimental trials in the LEAF-NL wave tank.

Specific objectives
This thesis seeks the following specific objectives:

O1 : Define a suitable strategy for the undular bore generation by means of a piston
wavemaker at laboratory scale.

O2 : Characterize the incident undular bore waves during propagation along the wave tank.

O3 : Study the formation and evolution of vortical structures past the square cylinder.

1.3. Thesis outline
This thesis is a numerical and experimental investigation of the generation, the propa-

gation and the interaction of undular bores over a vertical column-like square cylinder. A
description of the problem can be found in figure 1.3. A wave tank and its corresponding
piston wavemaker have been designed and implemented to allow the generation of undular
bores. In this work, the wavemaker itself, as the centerpiece of wave generation process, is
a complete part of the study. The wavemaker response to velocity step input is numerically
investigated and results in the generation of undular bores. A wave absorption strategy is
deduced from the step response and is tested for a set of regular and irregular waves. The nec-
essary experimental tools (piston wavemaker control, wave gauge, particle image velocimetry
post-processing) have been designed and built. A square cylinder is then installed inside
the wave tank and interacts with the undular bore. A full 3D mirror Computational Fluid
Dynamics (CFD) model, solving the incompressible two phase Navier-Stokes equations, has
been set up and allows to model the physical experiment. The numerical wave tank alongside
with a set of experiments are used afterward to study the fluid structure interaction between
the square cylinder and undular bore wave.

6



Figure 1.3: Undular bore interaction with a vertical square cylinder.
The piston wavemaker 2©, through the motion at velocity UG, gen-
erates an undular bore 3© in the wave tank 1© of length L, height d
and width W . The undular bore, after propagating along the tank,
interacts with a vertical square cylinder 4© situated at a position x0.
The mean water level is h, while the bore height is given by a and the
first wave height by H.

This thesis, in order to complete the previous objectives, presents a methodology based
on experimental and numerical trials as shown in figure 1.4. This thesis first reviews in
chapter 2 the state-of-the-art concerning undular bores, wavemaking, numerical techniques
and the wave-structure interaction problem. Chapter 3 then focuses on the CFD model:
the geometry, the governing equations, the boundary conditions, the numerical methods,
and post-processing are alternately set-up and reviewed. Space and time discretization is
also studied in order to achieve independence. The experimental set-up consisting of a wave
tank, a piston wavemaker, a wave gauge as well as a Particle Image Velocimetry (PIV) and
image post-processing tool are designed and built, and the details are available in chapter 4.
The experiments, apart from giving quantitative and qualitative data useful for the problem
study, serve to validate the numerical simulation and assure credibility to the numerical re-
sults. Finally, results are presented in chapter 5 and 6 where detailed experimental data and
numerical ones are compared and interpreted. In particular, the piston wavemaker is char-
acterized by studying its kinematic and dynamic response to step input functions, a suitable
strategy is validated for the generation of undular bores based on the numerical and exper-
imental piston wavemaking techniques, the incident undular bore waves are characterized
during their propagation along the wave tank, and the formation and evolution of coherent
structures past the square cylinder is studied.
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1.3. THESIS OUTLINE 8

Figure 1.4: Methodology used in this thesis.



Chapter 2

Background and state-of-the-art

In this chapter, it is chosen to focus the review on the case of undular bores in section 2.1, even
if a complete description of gravity waves can be found in appendix A. Wavemaking is then
reviewed, and the case of the piston wavemaker is largely revised in section 2.2. Numerical
techniques are then developed in section 2.3 and finally, wave structure interaction is reviewed
in section 2.4 with a focus on the particular case of the square cylinder.

2.1. Bores

(a) (b)

Figure 2.1: Bore types from Tsuji et al. (1991). (a) Strong bore. (b)
Undular bore.

According to the Cambridge dictionary a bore is "a very large wave that runs from the
sea up a narrow river at particular times of year1". It is well known by scientists for the
phenomena of tidal bore, that is to say that the transformation of the tidal surge into a
wave, but it can also be found in tsunami related literature. Bores (wave propagating over
a wet bed) and surges (wave propagating over a dry bed) can be generated by multiple
reasons, like tidal forces (Bonneton et al., 2011), earthquakes, landslide (Ren et al., 2019),
dam and dikes break. The consequential wave characteristics are difficult to understand due

1 https://dictionary.cambridge.org/
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to the great diversity of the causes. Tsuji et al. (1991) reported the observation of both
undular and non-undular (flat) bores in Japanese rivers after the 1983 tsunami. The first
one can be described as an initial wave followed by a wave train of smaller waves and the
second one consists in a first breaking front followed by a flat interface as shown in figure 2.1.
Undular bores were experimentally and theoretically studied by Favre (1935) and Peregrine
(1966), respectively. Undular bores are of particular importance as they appear to more
likely represent real tsunami wave instead of solitary wave (P. A. Madsen et al., 2008), such
as the 2004 tsunami in the Indian Ocean shown in figure 1.2a which clearly showed an initial
wave followed by a train of smaller waves. A complete study on the undular bore tsunami
propagation in the Strait of Malacca after the 2004 event was carried out by Grue et al. (2008).
If a long wave travels in shallow water, it will become more steep and form a bore (a shock
Boussinesq wave), after some time (process is not instantaneous), and if the surface elevation
change is less than 0.28 of the water depth, it will become an undular bore according to the
observations of Favre (1935). If the depth ratio is greater than 0.28 and less than 0.75 there
is still undulation but the front wave is breaking (Binnie et al., 1955). If the depth ratio is
greater than this limit, no undulation is found. Favre (1935), in its series of experiments, also
found well matching results with the shallow water De St Venant equations (De St Venant,
1871). To form a weak bore, one can send a stream of water into an area of still water,
where the moving water is deeper than the still water (Peregrine, 1966). In the same study,
finite-difference approximation is used to solve the equations of motion (KdV (Korteweg &
de Vries, 1895)) for the generation of undular bore problem. By comparing the theoretical
wave propagation velocity cp with the experimental data of Favre (1935), G. H. Keulegan
(1940) suggests that the undular bore undulations are similar to cnoidal waves and that the
bore velocity of propagation can be corrected to take into account these oscillations above
the mean water level:

cp =
√
gh

(
1 + 3

4
h′

h

)(
1− h′

h+ h′

)
(2.1)

where g is the gravity constant, h the mean water level of undisturbed water and h′ is the
mean level of the undular bore above h. Chester (1966) mathematically studied the two depth
flow problem based on a viscosity dominated solution for the main bore, for which a limit of
Fr < 1.58 was found in order to allow for the transition from the mean water level to the bore
height with the hypothesis of a Poiseuille flow, and superimposing an inviscid perturbation
on it, he found that an exponential decay in front of the bore and oscillations behind it can
describe the free surface. Kamchatnov et al. (2012) made a full analytical description of the
step problem for the Gardner equation (Gardner et al., 1974), finding different solutions with
one of them being an undular bore. Most of the analytical studies were however carried out
using the KdV equation, such as in Bjørkavåg & Kalisch (2011) and Brun & Kalisch (2018),
where the Boussinesq scaling is used and considers that both parameters α = a/h (the bore
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strength) and β = h2/λ2 are small. a is the bore height, h the mean water level and λ the
typical wave length. The KdV equation is:

ηt + ηx + 3
2ηηx + 1

6ηxxx = 0. (2.2)

The differences between bores and hydraulic jumps have been studied by P. A. Madsen &
Svendsen (1983), using k-ε turbulence closure model. Treske (1994) carried out experiments
in a similar configuration, and undular bores were obtained by removing a reservoir gate
upstream. The gate generation technique seems the most used as it appears in many stud-
ies (Yeh et al., 1989; Chanson, 2010; Shi et al., 2020; C. Lin et al., 2020). It is however possible
to generate an undular bore with an impulsive piston wavemaker (Stoker, 1957). More re-
cently, Martins et al. (2017) made on-field measurements using LIDAR sensor and C. Lin et
al. (2019) and C. Lin et al. (2020) experimentally studied the propagation of bores over hor-
izontal and sloping bottom with the use of the Particle Image Velocimetry (PIV) technique.

2.2. Wavemaking
To generate waves, one should perturb the water. A way of doing so is to displace a certain

amount of water by means of a wavemaker. Wavemakers are of different types: piston, hinged
paddle, double articulated paddle, plunger, duck, etc., which are animated with a prescribed
motion. The most natural one is a flexible panel, whose top edge would move at higher
amplitudes than the lower parts, as the wave water particle velocity is greater at the free
surface and smaller at seabed. An illustration of basic wavemakers is shown in figure 2.2.
The design of wavemakers should take into account the following features (Biesel & Suquet,
1951):

− Inertia: It is of importance to reduce the inertia of the wavemaker to the minimum
while keeping the stiffness and solidity of the elements. Indeed, forces imposed to
the mechanism might be huge which implies to have stiff and heavy elements but the
design should able the user to displace the elements easily to respect the wave generation
functions and at an appropriate power consumption.

− Reflections: Wave reflections on the model or any element placed in the flume will come
back against the wavemaker. The generation process should then take into account this
additional wave by an active mechanism (filter).

− Wet back vs dry back: Two alternatives are available for the design of the wavemaker.
A system with no water behind the wavemaker (waterproof) allows for more displaced
water so higher waves but waterproof systems induce power losses due to friction and
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a higher complexity.

− Cost: It is one of the driving feature which often leads to the simplification of the
wavemaker. Most of the one used nowadays are piston or hinged paddle.

− Maintenance: The design should prevent any mechanical wear by notably minimizing
contact with water.

The arrangement of wavemakers is listed in Guillouzouic (2014). It can either be (i)
frontal: it is the most common configuration. The wavemakers, composed of several elements,
are arranged on one side of the tank. The other side can be walls, artificial beaches or active
absorption systems. (ii) corner and square: this configuration implies to have wavemakers
on at least two consecutive sides of the tank. It allows the generation of oblique waves
exempting the user any rearrangement of the model set up (re-orientation, mooring shifting).
(iii) curved and circular: the wavemakers are arranged on a curved edge or complete circle
allowing to generate waves from a a range of directions, as for the corner arrangement. The
wave direction is controlled by applying the Huygens principle (Huygens, 1690): every point
on a wave front can be considered as new source of spherical wavelets. The sum of these
wavelets determines the form of the wave at any later time. Mixed seas in 3D wave tanks
are obtained by the superposition of wave fronts.

(a) Piston wavemaker (b) Hinged paddle wavemaker

(c) Plunger wavemaker (d) Flexible panel wavemaker

Figure 2.2: The different categories of basic wavemakers.

Theory of wavemakers
First order wavemakers theory has first been studied by Havelock (1929). Wave generation

alternatives have been theoretically studied in the 50s (Biesel & Suquet, 1951) including
piston, hinged paddle, or double articulated paddle. In this section, a special focus on piston
generation wavemaker theory is done, as it will be used later on.
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Figure 2.3: Piston wavemaker problem definition.

Harmonic waves The problem is quite simple and is represented in figure 2.3. If the
piston stroke is XG, then the area of displaced water XGh might equal the area of the semi
wave length wave leading to:

XGh =
∫ λ/2

0
H sin(kx)dx = H

k
(2.1)

with k the wave number defined as k = 2π/λ. Biesel & Suquet (1951), by using potential
theory and taking the particular boundary condition of the particle velocity at the wavemaker
equals the one of the wavemaker, also gives a better estimation of the wavemaker transfer
function which is the relation between wave height H and the piston stroke XG for x > 3h
that is to say fully developed waves in the far field:

H

XG

= 2 (cosh(2kh)− 1)
sinh(2kh) + 2kh (2.2)

O. S. Madsen (1971) developed a theory of wavemaker generation for pistons and gave
the expression of wave elevation at any position in a wave flume, including the near field
solution. For the case of the piston which runs from 0 to t′, its motion is defined as:

UG =


0 if t < 0
XG
2 ω sin(ωt+ δ) if 0 < t < t′

0 if t > t′

(2.3)

Using a similar strategy as Biesel & Suquet (1951) but widening the solution to infinite
wave numbers, O. S. Madsen (1971) showed that the wave elevation is given by the following
integral:

η(x, t) = 2
π

U

ω

∫ ∞
0

tanh(kh)
k

ω2

ω2 − σ2 cos(kx)[
[cos(σt)− cos(ωt)] cos(δ) +

[
sin(ωt)− σ

ω
sin(σt)

]
sin(δ)

]
dk (2.4)
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where σ is defined by
σ2 = gk tanh(kh) (2.5)

Ursell et al. (1960) experimentally verified the wavemaker theory for piston type wave-
makers.

Solitary waves: Goring (1979) studied solitary wave generation with a piston type wave-
maker, basing its solution on Boussinesq (1872) theory. He found that one can generate
solitary waves by applying a velocity pseudo-step to the piston thanks to the hyperbolic tan-
gent function. This procedure is also described in Anbarsooz et al. (2013) and Katell (2002)
and the piston position XG results in:

XG(t) = S tanh
[
7.6

(
t

τ
− 1

2

)]
(2.6)

where S the piston stroke, τ the duration of the motion and k the wave number are defined
according to:

S = 2H
kh

=
√

16H
3h h, τ = 2

kc

(
3.80 + H

h

)
, k =

√
3
4
H

h3 (2.7)

From which the piston velocity can be derived:

UG(t) = 7.6S
τ

sech2
[
7.6

(
t

τ
− 1

2

)]
(2.8)

This procedure allows the generation of a soliton whose shape is based on the hyperbolic
secant function:

η(x, t) = Hsech2

√3
4
H

h3 (x− ct)
 (2.9)

In a more general case, if we consider the horizontal particle orbital velocities for waves
of permanent form, the use of the continuity equation leads to the average of the horizontal
velocity over depth (Svendsen, 1974):

∫ η

−h
u(x, z, t)dz = c · η +Qs + Uc · h (2.10)

where u is the water particle velocity just in front of the wavemaker, Qs is the non-linear
mass flux averaged over a period and Uc is the averaged velocity of current below the wave
trough. For an infinitely long wave the right-hand side reduces to c · η and as the particle
velocity at the piston wavemaker is constant over the depth we get:

ū = 1
h+ η

∫ η

−h
u(x, z, t)dz = cη(x, t)

h+ η(x, t) (2.11)
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Goring (1979), by equalizing the horizontal particle velocity averaged over the depth ū(XG, t)
to the piston velocity defined a generation method:

UG(XG, t) = ū(XG, t)

UG(XG, t) = cη(XG, t)
h+ η(XG, t)

(2.12)

This strategy however supposes to know the celerity of the wave as well as its shape in order
to be able to compute the piston velocity.

Active wave generation: During the generation process, one should take into account
any reflection that might occur at the boundaries and disturbs the domain. For example, if
the fluid structure interaction of an object placed in the flume with waves is carried out, the
generation process shall take into account the wave reflected onto the object that comes back
in direction of the wavemaker to suppress it (see figure 2.4). The control algorithm then can
be similar to the so called active wave absorption presented in section 2.2. Such a method
of filtering is presented in Frigaard & Andersen (2010).

Wave Generation Wave re ection

 

Filter

 

+

Figure 2.4: The active wave generation problem: here, the feedback
system is composed of wave gauges in front the wavemaker.

Issues with wave generation
Evanescent Waves Evanescent waves are created when the vertical velocity of the wave-
makers does not match the vertical velocity profile of the wave (Keaney et al., 2014). It is
a mode whose amplitude decreases exponentially with the distance from the source. As a
result, wave energy is concentrated close to the source. A bad handling of evanescent waves
implies the need of bigger wave tank (to let time to these modes to vanish) and a lost in the
wave generation power. The study of wave generation should take them into account.

Free Waves Free waves also result from a mismatch of the wavemaker geometry and the
velocity profile. As the wavemaker does not succeed in describing the harmonic content in
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the generation process, it leads to the creation of spurious waves or unwanted free waves.
These one can be subharmonics or superharmonics (waves of lower or higher frequencies).
If not controlled, they contaminate the testing area. Recent research showed that they can
be avoided using a generation algorithm based on the force onto the wavemaker and not its
position (force controlled vs position controlled, Aknin & Spinneken (2017)).

Trailing wave in solitary wave generation When generating solitary waves, it is per-
fectly known that without precaution the process generates a trailing wave (or secondary
wave) which can be of real importance, more than 10% of the main pulse. In his work, Gor-
ing (1979) found that by taking duration larger than the theoretical one in the generation
process can decrease the trailing wave amplitude, but with larger amplitude damping (more
than the theoretical one). Using a procedure based on Rayleigh’s solution allows to generate
solitary waves more quickly and with trailing waves as small as with Goring’s procedure
according to Guizien & Barthélemy (2002).

Wave absorption
The wave, arriving at the end of the flume or tank, will eventually be reflected and

thus contaminate the waves in the zone of study. Preventing this reflection allows for fully
controlled environment, repeatability and longer test duration.

Passive Absorption: The historical way of absorbing waves at the end of a flume/tank
is to used passive systems. For example, an artificial beach makes the wave break, while
a porous media (or absorption mesh) artificially creates dissipation by turbulence. A few
examples are shown in figure 2.5.

(a) (b)

Figure 2.5: A few example of passive absorbers. (a) Artificial beach
(parabolic design) at École Centrale de Nantes. (b) Artificial beach
(porous slope) at Tel Aviv University.
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Active wave absorption: Active wave absorption is not of recent interest since H. Bau-
mann seems to be the first one to have studied such mechanical systems, in 1954, proposing a
hinged wavemaker linked to springs and a magnetic damper (Baumann, 1954). Active wave
absorption systems, opposed to passive wave absorption systems (artificial beach, porous
medium, etc), are capable of adapting and moving boundaries to avoid any reflection from it.
The available control systems are numerous, according to the theories and feedback systems.
Schäffer gives some clues to understand wave absorption principle (Schäffer & Klopman,
2000):

− Considering time as reversible, one can see that a wave can be absorbed with the
wavemaker, playing the movie band backwards. However, by reversing time you also
change the causal relation. In wave absorption, the motion of the paddle is not the
cause of the waves.

− The superposition principle for linear systems allows to add a wave of same amplitude
but in opposite phase with the incoming wave, resulting in the vanishing of the incoming
wave.

− Consider the absorption wavemaker as a transparent boundary between the wave flume
and the "outside sea". The generation mechanism generates waves to both sides of the
wavemaker while the absorption mechanism lets pass the waves through the outside.
The difference between the generation is illustrated in figure 2.6. The generated waves
are in opposite phase while for the absorption system they have a continuity through
the paddle.

Feedback systems are based on two different categories: (i) kinematic absorption, which
relies on the wave elevation as an entry for the feedback control system. The sensor(s) can
be implemented before the paddle (which gives time to the wavemaker to react but needs to
calculate the wave propagation velocity to know when the wave will hit the paddle and thus
commit some error) or at the paddle (which implies to have quick reactions)(Milgram, 1965;
Schäffer & Klopman, 2000). (ii) Dynamic absorption, which bases its control algorithm on
the measurement of the force on the paddle (Salter, 1981; Spinneken & Swan, 2009).

(a) Wave generation mechanism (b) Wave absorption mechanism

Figure 2.6: Illustration of the third clue given by Schäffer & Klopman
(2000).

17



A focus is made on kinematic wave absorption systems as it is the one chosen later on to
be implemented in the numerical wave tank. As seen in the previous section, the kinematic
active algorithm is based on the measurement of the wave height in the flume, or at paddle.
Schäffer & Klopman (2000) developed a rather simple technique: the water level at paddle
is measured, and the transfer function linking water height and velocity is:

H = UA
ηabs

= −
√
g

h
(2.13)

This transfer function is called an Infinite Impulse Response filter (or IIR filter). For a quite
complete review of active absorption, the reader can have a look at Andersen et al. (2016).

Wave tanks with active absorption system were constructed during the last decades. The
most remarkable are the circular 28 m diameter wide FloWave in Edinburgh based on a
hinged paddle force feedback algorithm (Gyongy et al., 2014)(see figure 2.7a), the circular
16 m diameter wide Deep-Sea basin at the National Maritime Research Institute in Tokyo
which uses wave elevation at paddle for the absorption algorithm (Maeda et al., 2004) and
the 14 m wide squared Hydrodynamic Calibrator at the University of São Paulo which is also
based on wave elevation at paddle (de Mello et al., 2010)(see figure 2.7b).

(a) (b)

Figure 2.7: Wave tanks of interest. (a) FloWave (Edinburgh). (b) Hy-
drodynamic Calibrator (São Paulo).

2.3. Numerical Wave Tank (NWT)
In this section, we detail numerical methods employed for the application of wave genera-

tion and wave-structure interaction problems. A review of quality assurance criteria is carried
out in appendix C, with a particular focus on the Convergence Grid Index (GCI) (I. B. Celik
et al., 2008) which is employed further on in chapter 3.
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Numerical Models
Wave modeling can be quite straightforward or really complicated and computationally

costly according to the chosen model. We can make a distinction between two main categories:
the depth-integrated models and depth-resolved models. In function of the phenomena of
interest, one can elect the most suitable model, as for example in the case of breaking waves,
really dependent on the water depth variations, a depth-resolved has to be taken. We can
refer to Xie (2010) for more details about the different numerical models.

Depth integrated models are used to simplify the problem to a 1D or 2D wave prop-
agation one. Few examples of such models are the KdV equation (Korteweg & de Vries,
1895), the regularized long wave (RLW) equation (Benjamin et al., 1972) for 1D cases, or the
Kadomtsev-Petviashvili (KP) equation (Kadomtsev & Petviashvili, 1970) and the non-linear
Shrödinger equation (Dingemans & Otta, 2001) for 2D. Also enter in this category the mild
slope equation (Berkhoff, 1972) for refraction-diffraction problems, the shallow water equa-
tions (De St Venant, 1871; Titov & Synolakis, 1995) when vertical dimension is way smaller
than wavelength, Boussinesq equations (Boussinesq, 1872) and all its inherited similar mod-
els (P. A. Madsen & Schäffer, 1999). These equations are relatively simple, can be solved
through numerical finite difference schemes at low cost and are mainly used to study wave
propagation, diffraction and refraction but fails to realistically model other phenomenon such
as wave breaking and viscous effects.

Depth-resolved models can be sorted into two main categories: potential flow models,
solving the Laplace’s equation, and the Navier-Stokes models. The first one makes the
assumption of inviscid and irrotational flow, while the other one solves the full Navier-Stokes
equations, and thus is much more complicated. Potential flows are useful to simulate non-
viscous phenomenon and are even able to reproduce breaking wave, but not after the wave
touches down (Longuet-Higgins & Cokelet, 1976; Grilli et al., 2001). The modeling of vorticity
and turbulence might also be complicated with potential flows. Their main advantages
however is still the low computational cost compared to full Navier-Stokes resolution. This
last one is used in Computational Fluid Dynamics (CFD) and use an interface tracking
strategy to solve the full Navier-Stokes equations. A full review of CFD numerical wave tank
is done in the following section. It can also be noticed some simplified models as the quasi-3D
model which replaces the pressure by its hydrostatic value and allows to decouple it from the
velocity computation (Casulli & Cheng, 1992).

Numerical Wave Tank
While experimental wave tanks are physical mean of implementing such systems, it of-

ten reveals to be expensive or not suitable for scale motivations, whereas numerical studies,
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once performed exclusively with potential codes (irrotational, incompressible and non viscous
flows) are now more and more carried out through viscous studies (Computational Fluid Dy-
namics), which nevertheless require more computational resources. As it evolves, it becomes
more and more accessible and suitable to use CFD, which solves Navier-Stokes equations,
especially in cases when the offshore platform scale is smaller than for the typical oil and
gas cases and the potential codes are not able to reproduce the reality (for example extreme
loads on wave energy converters devices) (Wolgamot & Fitzgerald, 2015). CFD numerical
wave tank are divided into two main categories for wave generation and absorption: mov-
ing boundaries (which involve a dynamic mesh) and mathematical implementation (in the
domain or the boundaries). It is chosen in this work to use the first alternative as it will
represent what really happens in a laboratory and thus be a numerical mirror of the physical
experiment. A numerical mirror is useful when it comes to validate a model and generate
a database which involves to overpass experimental restriction (for example probing at any
location without disturbing the flow (Higuera et al., 2015). Numerous numerical wave tank
models were created, but the method most widely used is the VOF (Volume of Fluid) (Hirt
& Nichols, 1981) as in Clauss et al. (2005) which used three commercial codes for extreme
wave generation. New methods such as SPH (Smoothed-Particle Hydrodynamics) has been
developed (Altomare et al., 2017). CFD simulations of wave tanks equipped with active
absorption system were carried out: A. Maguire & Ingram (2009) developed a CFX model
to test novel shaped wavemakers and concluded that the results did not match the expected
theoretical value. In a later publication A. Maguire & Ingram (2010) concluded on the suit-
ability of the code for wave generation problems while observing wave height attenuation
during propagation along the canal. This was also observed by Bhinder et al. (2009), who
also developed models on STAR-CCM+2 and FLOW3D3. Higuera et al. (2015), after several
development (Higuera et al., 2013), successfully created a 3D wave tank with active wave ab-
sorption in OpenFOAM using the theory developed by Schäffer & Klopman (2000), obtaining
reflection coefficients smaller than 10%. When designing a NWT, one should consider the
following features: (i) computing time, computational costs, (ii) implementation complexity
(notably with mesh motions), (iii) preprocessing and postprocessing requirements, (iv) ac-
curacy of the computations, calibration to experimental data and (v) range of waves (from
harmonic to solitary waves).

2 https://mdx.plm.automation.siemens.com/star-ccm-plus
3 https://www.flow3d.com/
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Numerical wave generation
All wave generation processes are described in Schmitt & Elsaesser (2015). An illustration

of these methods is shown in figure 2.8 and are sorted according the following categories:

− Boundary method: the wave is created by applying boundary conditions to the domain
boundaries. A simple of doing so is to describe water height and velocity profile at
the boundary. The computational cost is the best of the present reviewed method but
stability issues seems to appear.

− Moving Boundary: the closest alternative to real wavemaker. The moving bound-
ary will reproduce the wavemaker motion of an experimental tank. A control strategy
should then be applied to boundary motion. Computational cost is high due to remesh-
ing and the implementation can be rather complicated.

− Relaxation method: waves theory is used to relax the results of the simulation inside
the computational domain. At every time step, the variable values given by the theory
are implemented in an upstream zone of the testing area. As the upstream values are
updated at every time step no special attention has to be taken when reflected waves
enter the relaxation zone. However, this method has a high computational cost. The
pressure does not need to be set as it is generally computed from the velocity field
(saving computational time).

− Mass source function: the wave is created by adding a source term to the continuity
equation (see J. Larsen & Dancy (1983)). For example, an inlet velocity boundary
condition can be applied on a cell face. The source mass function generates waves in all
directions which implies to implement numerical in all directions to avoid contamination
by reflected waves. The wavemaker does not interact with waves crossing it. The
numerical cost is really low as it is implemented at one cell. However the simulations
fails if the water surface reach the mass source. Creating high amplitude waves seems
to be complicated if ever possible. An example can be found in P. Lin & Liu (1999).

− Impulse source function: The wave is created by adding an impulse term to the conser-
vation of momentum equations. It is very similar to the mass source function method
but the issue with high amplitude waves does not seem to be an issue. It allows also
to define a direction of propagation to the generated waves. The computational cost is
higher than for the mass source function as the impulse function is defined over a huge
amount of cells (see figure 2.8).
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Figure 2.8: The different methods for the generation of waves in a
numerical wave tank, inspired by Schmitt & Elsaesser (2015).

Numerical wave absorption
The different methods which are used for wave absorption in numerical wave tanks are

presented in the following list:

− Moving Boundary: it is a numerical mirror of what would happen in an experimen-
tal wave tank. A control algorithm reacts in front of the incoming wave to move
the boundary. As for the generation, this is quite costly to implement. Higuera et
al. (2015) implemented a full 3D wave tank using this principle. Using such moving
boundaries allows to reproduce the exact conditions of the experiment and legitimates
the comparison with the experimental data.

− Boundary Velocity component: Higuera et al. (2013) used a simple velocity boundary
condition to reproduce the velocity that would have an experimental moving boundary.
This might be the simpler way and less costly way of implementing wave absorption
while presenting in the general case reflection coefficient lower than 10%.

− Dissipative term - Sponge Layer: it was first proposed by Israeli & Orszag (1981). A
sponge layer zone, generally of the size of 2 or 3 wavelengths, is created and variables
are progressively set to reference values. A short description can be found in Mayer
et al. (1998). For example, a velocity component u will be set at every time step to
u = (1−γ)u+γuref . γ is the relaxation parameter and depends on the x coordinate. It
progressively increases from 0 to 1 as going deeper in the relaxation zone. This method
prevents reflection when the waves enters the zones.
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2.4. Wave-Structure interaction with semi-sub-
merged bodies

Coastal communities as well as marine industries need the development of the under-
standing of fluid-structure interaction in order to design more resilient infrastructures as well
as to protect them. Indeed, flow past semi-submerged bodies can generate turbulence, in-
ducing higher loads, but also the generation of vortices. These interaction can be of different
types, such as current-structure, wave structure or both wave and current. Degrees of com-
plexity can be added, by considering highly turbulent flows, or breaking waves. The most
common body which has been studied is the circular based cylinder and the famous Von Kár-
mán street (Von Kármán, 1911). Other shapes are gaining interest as more representative
of the variety of bodies which are or can be in interaction with such flows, such as square
piles, or breakwaters. The reader is advised to refer to Sumer et al. (2006) for more details
about flows around cylinders. In this part, we first review the vortex theory in section 2.4.1,
then current-structure interaction and wave-structure interaction are revised in section 2.4.2
and 2.4.3 respectively, and finally the particular case of the wave-structure interaction with
a vertical square cylinder is considered in section 2.4.3.

2.4.1. Vortex theory
Vortices and more generally vortical flows are present almost everywhere and many ex-

amples of such fluid motion can be cited: the whirlpool in a sink, smoke rings, or even the
trailing vortices of air plane wings. A vortex is a region in a flow which revolves around a
center line, the filament, and results in circular or nearly circular streamlines (Kundu et al.,
2012). Vortex are important in fluid dynamics since they play a key role in turbulence but
also for body force or energy considerations (Lu Ting, 1991). After defining vorticity and
some vortex theoretical models, we shall take a look at the interaction between two parallel
vortices which is called vortex pairing as a second step.

Vortex modelling

Vorticity represents the local rotation and is defined as the curl of the velocity field as:

ω = ∇× u (2.1)

where u is the velocity field. According to Kundu et al. (2012), a vortex is a concentration of
codirectional or nearly codirectional vorticity. It is possible to retrieve the velocity field from
the vorticity field by applying the Biot and Savart relation, or by its regularized version, called
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the local induction approximation (Da Rios, 1906; Hasimoto, 1972; Ricca, 1994; Saffman,
1993) according to:

u(r) = 1
4π

∫
V ′

ω(r)× (r− r′)
|r− r′|3

d3r′ (2.2)

where r is the position vector where the velocity is to be deduced, r′ is the location of the
vortex, and the volume V ′ contains a segment of the vortex. For more details about the
application of the Biot and Savart relation, the reader can refer to Kundu et al. (2012). The
most simple models of vortex are (i) the solid body motion, defined in cylindrical coordinate
system (r, θ, z) as:

uθ = ωr

2 (2.3)

which leads to a uniform distribution of vorticity in the normal plane direction (ω = ω~ez)
while (ii) the perfect distribution of vorticity at r = 0 such as:

uθ = Γ
2πr (2.4)

with Γ the circulation. These two models are steady and show circular closed streamlines
but the second is an irrotational flow (∇ × u = 0), that is to say that a vortex does not
necessarily involves fluid particle in rotation. Another useful model is (iii) the Lamb-Oseen
vortex, which describes a Gaussian distribution of the vorticity according to:

ω(r) = Γ
πr2

c

e−(r/rc)2
~ez (2.5)

where rc is the vortex core radius which depends on time according to rc(t) =
√

4νt+ rc(0)2.
In this last experession, ν is the kinematic viscosity, which shows that the Lamb-Oseen vortex
decays in time due to viscosity. This leads to the following angular velocity:

uθ = Γ
2πr

(
1− e−(r/rc)2)

(2.6)

The circulation, which is defined as the integral of the velocity over a closed line, is linked to
the vorticity by the Stokes theorem:

Γ =
∮
C

u · dl =
x

S

ω · dS (2.7)

where C is the perimeter of the surface S, so that the circulation, as an integral scalar
quantity, is a macroscopic measurement of the rotation in a fluid. A simple comparison
between these three vortex models (solid body motion, irrotational and Lamb-Oseen) is
carried out in figure 2.9, for Γ = 10, rc = 0.25 and ω = Γ/(πr2

c ). The solid body motion is
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a linear function of r while the irrotational one exhibits a singularity in r = 0. The Lamb-
Oseen vortex, which presents local maximum/minimum at r = ±rc, is a trade between both
last models: it shows a decrease in the velocity inversely proportional to r at the vortex
edges while it has a linear behaviour at the vortex center. Note that the Rankine vortex is
a simpler model than the Lamb-Oseen one which behaves exactly as a solid body motion for
r ≤ rc and as an irrotational vortex outside (r > rc):

uθ(r) =


Γr

2πr2
c
, r ≤ rc,

Γ
2πr , r > rc

(2.8)

Vortex filaments have a self-induced motion which may change in function of the filament
shape, as in the example of the effect of torsion on the motion of helical filaments (Ricca,
1994).
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Figure 2.9: Comparison between three vortex models.

Some useful theorems are now listed. The first one, Kelvin’s circulation theorem, states
that for a barotropic ideal fluid, the circulation around a closed curve moving with the fluid
remains constant with time (Kundu et al., 2012) so that:

DΓ
Dt

= 0 (2.9)

A corollary to this theorem states that vortex tubes move with the fluid and is called the
Helmholtz’s theorem.

Vortex in free-surface flows

Many example of free-surface deformation can be found, the most common one being the
plughole vortex in bathtub. Let’s study the example of a solid body motion vortex, such
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as equation 2.3, placed in a tank and presenting a free-surface. It can be shown that the
Newtonian viscous tensor reduces to σij = −pδij (or Sij = 0). Euler equations are then valid
and are written as:

ρ

(
∂u
∂t

+ (u ·∇) u
)

= −∇p+ ρg (2.10)

∇ · u = 0 (2.11)

For a steady flow and replacing u = uθ(r)~eθ, then equation 2.10 becomes:

ρ
u2
θ

r
= ∂p

∂r
(2.12)

∂p

∂z
= −ρg (2.13)

These last equations consider the z-direction pointing upward and the origin of the coordinate
system at the centre of the vortex and at the seabed as shown in figure 2.10. By integrating
equations 2.12 and 2.13 we obtain, respectively:

p(r, z) = ρω2r2

8 + f(z) (2.14)

p(r, z) = −ρgz + g(r) (2.15)

Note that the functions f and g contain constants. In order to fulfill equations 2.14 and 2.15,
f(z) = g(r) = p0. So finally, we solve for z these equation and find:

z = ω2r2

8g −
p(r, z)− p0

ρg
(2.16)

So that surfaces of constant pressure are paraboloids of revolution, as shown in figure 2.10.
If we consider now an irrotational vortex such as in equation 2.4, a similar argumentation
leads to hyperboloids of revolution which are also shown in figure 2.10 such as:

z = − Γ2

8π2r2g
− p(r, z)− p0

ρg
(2.17)

In case of considering a Lamb-Oseen vortex and keeping the perfect fluid hypothesis results
in the following constant pressure curves:

z = − Γ2

4π2r3
cg

2r∗2Ei
(
−2r∗2

)
− 2r∗2Ei

(
−r∗2

)
+ e−2r∗2 (

er
∗2 − 1

)2

2r∗2 − p(r, z)− p0

ρg
(2.18)
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where r∗ = r/rc and Ei is the exponential integral defined as Ei(x) = −
∫∞
−x e

−t/t dt. We can
observe the free-surface deformation p(r, z = h+ η) = patm in figure 2.10.
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Figure 2.10: Comparison between three vortex model free-surface de-
formation. The parameters used are ω = 5.1 s−1, rc = 0.7 m, h = 0.05
m for the solid body motion vortex, Γ = 1 m2s−1 and rc = 0.25 m for
the irrotational and Lamb-Oseen vortices.

Vortex stretching

According to Helmholtz’s theorem, vortex tubes move with the fluid. Since the fluid is
incompressible, the tube volume is constant so that any stretching comes with a shrinking
of its cross-section. However, according to Kelvin’s theorem, its circulation or strength
is constant with time so if the cross-section area decreases then the vorticity magnitude
increases. According to Taylor (1938), stretching of vortex and the subsequent amplification
of rotation is one of most important mechanism that acts in fluid dynamics. It can be shown
by taking the curl of the Navier-Stokes equations that the vorticity equation is Tennekes et
al. (1972):

Dω

Dt
= (ω ·∇) u + ν∆ω (2.19)

Let analyze the equation above. First, if we make the assumption of inviscid fluid, the last
term of the above equation disappears. The Dω/Dt is the material derivative of the vorticity
ω, which depends on non steady vorticity term ∂ω/∂t and on the convective term u ·∇ω.
The right hand term (ω ·∇) u is the so-called vorticity stretching term. Now if the veloc-
ity field is in the direction of the vorticity, (ω ·∇) u is positive and amplifies the vorticity.
Generally speaking, stretching of a vortex leads to its amplification and confinement (Petit-
jeans, Philippe, 2003). Vortex stretching is the mechanism which transfers turbulent energy
to smaller scales (Taylor, 1938), so Bradshaw & Woods (1971) defines turbulence according
to: "Turbulence is a three-dimensional time-dependent motion in which vortex stretching
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causes velocity fluctuations to spread to all wavelengths between a minimum determined by
viscous forces and a maximum determined by the boundary conditions of the flow. It is the
usual state of fluid motion except at low Reynolds numbers". In 2D flows, the stretching
term is zero, so that the 2D models lack this mechanism. As on average vortices are more
lengthened than compressed, vortex cores are reduced. The axial stretching rate γ can also
be mathematically defined as the vertical variation of the axial velocity along the vortex core
filament according to:

γ = ∂uz
∂z

(2.20)

in the case of a vertical vortex.
One of the well known model of stretched vortex are the equations of Burgers (1940),

which is an exact solution of the Navier-Stokes equations. Burgers (1940)’s equations con-
sider a constant stretching γ (in both space and time) and corresponds to the meridional
direction (Abid et al., 2002; P. G. Drazin, 2006):

vr = −1
2γr, vz = γz (2.21)

The resulting angular velocity vθ is a trade between stretching and viscous diffusion and in
the stationary regime leads to:

vθ = Γ
2πr

(
1− exp

(
− r

2

R2

))
(2.22)

where R =
√

4ν/γ is the vortex core radius which depends on viscosity and stretching and
2πΓ is the velocity circulation.

Vortex pairing

In some cases, the generation and the pairing of counter-rotating parallel vortices can be
observed. The pairing of vortices was first studied as it is an undesired effect in the wake of
plane, notably at take off (Spreiter & Sacks, 1951). A visualization of a vortex pair can be
found in figure 2.11a. In particular, the description of a sinusoidal instability which leads to
the merging of the vortex pair into a series of vortex rings was carried out (Smith & Beesmer,
1959) and stability theories were elaborated (Crow, 1970). This mechanism can be seen in
figure 2.12a. In particular, Leweke & Williamson (1998) generated a pair of counter-rotating
vortices, which are well represented by two Lamb-Oseen vortices as shown in figure 2.11b. The
vortex pair center lines are straight and uniform at the beginning of the pairing phenomena,
before two instabilities start to deform the pair of vortices. The first one is characterized by
its long wavelength, similar to the one observed by Crow (1970)(see figure 2.12a) while the
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second one is a short wavelength instability which deforms the cross-section of the vortices
and are shown in figure 2.12b. They demonstrated this is an elliptic instability and they also
highlighted that the symmetry, with respect to the plane separating the two vortices, is lost.

(a) (b)

Figure 2.11: (a) Fluorescent visualization of a counter-rotating vortex
pair, from Leweke & Williamson (1998). (b) Velocity profile along a
line passing by the vortex centers of figure (a) (Leweke & Williamson,
1998).

Ortega et al. (2003) experimentally studied by means of flow dye visualization and PIV
the instability of wing trail vortices of unequal strength, where they describe the rapid trans-
formation of the wake into a highly three-dimensional flow. The transient formation of a
counter-rotating pair of vortices in a jet flow by the folding of a vortex ring was studied
in Cortelezzi & Karagozian (2001). Vortex pairing was also observed in the shear-layer in
the mixing layer of two streams of water brought together (Winant & Browand, 1974), and
where neighboring pairs of vortices can be seen to roll around each other before collapsing
into a unique and larger vortex, the free-shear layers (Moon & Weidman, 1988) and a double
helical pairing can also be found in the work of Estevadeordal & Kleis (1999).
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(a) (b)

Figure 2.12: Vortex pair instabilities. (a) Vortex trail from a B-47, pho-
tographed from upward. Image from the work of Crow (1970). Growth
of the Crow’s long-wavelength instability and formation of the vortex
rings. (b) Short-wavelength instability from Leweke & Williamson
(1998).

Marshall (1992) studied the vortex pair stability under axial stretching, finding that the
stretching mechanism exerts a stabilizing influence on the vortex pair. He also found that
the stability of the pair depends on four dimension parameters from which two characterize
the stretching. Marcus & Berger (1989) numerically studied the interaction between a pair
of horizontal counter-rotating vortices with a free-surface, in particular they solved the free-
surface deformation and wave generation. Similar studies (Willmarth et al., 1989; Hirsa &
Willmarth, 1994) experimentally generated the counter-rotating vortex pair by using flaps
below the free-surface, and described the motion of the vortices when they reach the free-
surface, notably how they move apart from each other.

2.4.2. Current structure interaction
The Von Kármán street might be the most famous phenomena studied until now in the

domains of hydro and aerodynamics. If Von Kármán (1911) gave the name to the instability,
Mallock (1907) and Bénard (1908) had observed and studied it earlier on. Numerous ex-
perimental (Provansal et al., 1987) and numerical (Koumoutsakos & Leonard, 1995) studies
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can be found in the literature. Other interesting studies includes: the interaction of cur-
rent with conical island in shallow water (Lloyd & Stansby, 1997), tidal flow past various
types of barrier islands Nicolau del Roure et al. (2009) or tsunami induced currents with
breakwater Borrero et al. (2015).

Vortex shedding

Vortex generation is the consequence of the boundary layer detachment (or flow separation) at
the sides of the body. The resulting downstream flow depends then on the regime in which is
forced the cylinder, characterized by the Reynolds number (Lienhard, 1966) which is defined
as Re = ρDU/µ with ρ the fluid density (in kg/m3), D a characteristic length (here the
diameter, in m), U the flow speed (in m s−1) and µ the dynamic viscosity (in kg m−1 s−1). In
figure 2.13, from the same author, the different regimes of the wake of the flow past a circular
cylinder are presented. For really low Reynolds number (Re < 5) the flow does not separate
and follows the body contour. For Reynolds number between 5 ≤ Re ≤ 45 a symmetric pair
of steady vortices appears behind the cylinder in the near wake and are called recirculation
region. Their longitudinal size linearly increases with Reynolds number according to Nishioka
& Sato (1978). For Reynolds number between 40 ≤ Re ≤ 150 the wake is no longer steady,
and an instability appears: the Van Kármán street, with the periodic creation of vortices
of opposite signs as illustrated in figure 2.14a. For Reynolds number 150 ≤ Re ≤ 300,
transition to turbulence takes place: the vortices become turbulent as they travel in the
wake but boundary layer (till separation) at the cylinder keeps being laminar Roshko (1954).
If Reynolds number is higher than 300, then the flow can be classified into three regimes:
the subcritical regime (300 ≤ Re ≤ 1.5 × 105), the transitional regime (1.5 × 105 ≤ Re ≤
3.5 × 106) and the supercritical one (Re > 3.5 × 106) (Blevins, 1977). The subcritical flow
is characterized by a boundary layer separation around 80° (considering 0° at the stagnation
point), and a strong and periodic shedding, while in the transitional regime the boundary
layer at the cylinder becomes turbulent and separation happens further away at 140° while
drag coefficient highly decreases to reach 0.3. Flow is non longer 2D and 3 dimensional effects
are to be taken into consideration and the wake is disorganized. Finally, in the supercritical
regime vortex shedding reappears. The Strouhal number is another important number as
it is proportionality constant which links the shedding frequency to the ratio between the
free flow velocity and the cylinder diameter as: fs = SU/D (fs is the shedding frequency
in Hz, and S is the Strouhal number). This number is a function of the Reynolds number
for the cylinder case and subsonic flow as showed in figure 2.14b, and in the transitional
regime depends on the roughness of the body. Regarding the forces in the subcritical regime,
the lift force (perpendicular to flow direction) oscillates at the same frequency as the vortex
shedding frequency while it happens at twice this frequency for the drag force. Roshko
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(1961) experimentally showed that the Strouhal number is inversally proportional to the drag
coefficient (or an increase in drag leads to a decrease of the shedding frequency). According
to Newman (2017), the Strouhal number can be defined as S ≈ 0.23/CD for Reynolds number
between 102 ≤ Re ≤ 107 and outside of the transition range (Re ≈ 106). The oscillation
of the lift and drag forces are at the origin of the hydro-elastic phenomena called Vortex
Induced Vibration (VIV) which are either problematic (strumming of mooring lines, risers,
etc) or can be harnessed to produce energy (Bernitsas et al., 2008). An elliptic shaped splitter
plate enrolling along the slender body is often used to destroy the vortex shedding and thus
the oscillating forces. Non-circular based cylinders, including square ones, also form vortex
wakes with very similar characteristics as the circular cylinder case (Blevins, 1977). Luo et
al. (2003) numerically studied the hysteresis phenomenon in the galloping (lateral oscillation)
of a square cylinder.

Figure 2.13: Vortex shedding regimes according to Lienhard (1966).

(a) (b)

Figure 2.14: (a) Von Kármán street according to experiment of Perry et
al. (1982). The red ink marks negative vortices while the blue positive
ones and Reynolds number is Re = 80. (b) Strouhal number (S =
Dfs/U) in function of the Reynolds number (Re = UD/ν) (Blevins,
1977).
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Oscillating flows

Oscillating flows are unsteady flows whose direction periodically changes. It is often used
to model wave loading as particle orbital velocity can be considered as an oscillatory flow,
especially in shallow water. It is also very well documented as studied for a long time with
experimental (Honji, 1981; Bearman et al., 1985; Williamson, 1985; Sarpkaya, 1986) or numer-
ical (Lu et al., 1997; C.-C. Chen et al., 2009; Suthon & Dalton, 2012) procedures. An impor-
tant non-dimensional number, apart from the Reynolds number, is the Keulegan-Carpenter
number (G. H. Keulegan & Carpenter, 1958) (or period number) defined as KC = UmT/D,
where Um is the maximum flow velocity, T the oscillation period and D a characteristic length
equal to the diameter in the case of a cylinder. The Keulegan-Carpenter number determines
the contribution of inertia and drag forces (KC = drag/inertia = ρDU2

m/(ρD2Um/T )). A
third practical number is the ratio between these last two numbers: β = Re/KC. These
forces were theoretically predicted by G. Stokes (1851) and later on by C.-Y. Wang (1968).
Williamson (1985) carried out a series of experiment, first with an oscillating cylinder in a
water tank and then with a pair of cylinders. He qualitatively describes the wake characteris-
tics in function of the KC number. Results, from his photographs, can be found in figure 2.15.
Finally, observations are made about the forces and he is able to identify for each flow regime
the lift force frequency as a multiple of the shedding frequency. Honji (1981) demonstrates
that the 2D coherent structure that are created at low KC number, become 3D structures
as KC increases, due to an instability of the flow. The instability is a steady mushroom-like
structure appearing at the side of the cylinder and perpendicular to the direction of the flow.
Particles situated close to the boundary, detache and reach positions outside of the boundary
layer: the motion of the particles describe a mushroom-like pattern which appears and disap-
pears during a period of the forcing flow (Grue, 2011). Such pattern is shown in figure 2.16a.
Stability and instability regime are drawn in figure 2.16b. For example, if β = 1035, 3D
wakes (Honji’s instability) appear at KC = 1.1, transition to turbulence at KC = 1.5 and
separation at KC = 1.9 (Sarpkaya, 1986). Suthon & Dalton (2012) state that the instability
originates from other reasons than the Taylor, Dean and Görtler instabilities. The horizontal
forces, according to Morison et al. (1950) are defined as the sum of the quasi-static inertia
and the drag forces, which depends on the Keulegan-Carpenter number KC, the Reynolds
number Re, the roughness and interaction parameters:

F = Fd + Fm = 1
2ρDCdU |U |+

1
4πρD

2Cm
dU

dt
(2.23)

in which ρ is the fluid density, D the cylinder diameter, U = Um cos (2πt/T ) the free flow
velocity, T the oscillation period, t the time, Cd and Cm are the drag coefficient and inertia
coefficient respectively. According to Sarpkaya (1986), this equation is an estimation (not a
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perfect solution of a complex problem), its origin is pragmatic and is experimentally validated.
Morison’s equation range validity (rule of thumb) is for KC > 6 (Chakrabarti, 2005). These
coefficient can be approximated, in the case of large β by (Sarpkaya, 1986):

Cd = 3π3

2KC
[
(πβ)−1/2 + (πβ)−1 +O (πβ)−3/2

]
(2.24)

Cm = 2 + 4 (πβ)−1/2 +O (πβ)−3/2 (2.25)

These solution can be expanded to order O (πβ)−3/2 and in the case of KC � 1, Re·KC � 1
and β � 1 give (C.-Y. Wang, 1968):

Cd = 3π3

2KC

[
(πβ)−1/2 + (πβ)−1 − 1

4 (πβ)−3/2
]

(2.26)

Cm = 2 + 4 (πβ)−1/2 + (πβ)−3/2 (2.27)

Sarpkaya (1986) demonstrates that the Keulegan-Carpenter number KC at which the drag
coefficient CD deviates from the prediction of Stokes and Wang nearly corresponds to the
critical KC at which the vortical instability occurs. In the case of a square cross-section,
Okajima et al. (1998) made one of the first comparisons between circular and square cylinder
by executing experiments in a U-tube and measuring in-line and perpendicular forces. KC
number range was between 1 and 90, and they found good agreement with Morison’s equation,
and differences between the two shapes are observed: a phase shift appears in the in-line
force while the flow pattern in the case of the square cylinder, in particular the dominant
frequency, does not correlate well with the transverse force results contrary to the circular
case. In a latter publication (Okajima et al., 2000), they studied the aspect ratio influence on
shedding and forces. Nomura et al. (2003) carried out experiments in a wind tunnel with an
oscillatory flow with non-zero mean (equivalent of the case current more wave) and conclude
on the suitability of the Morison’s formula to predict the forces.
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(a) Flow regimes

(b) Attached pair of vortices

(c) Single pair

(d) Three pairs

(e) Transverse street

(f) Double pair

(g) Four pairs

Figure 2.15: Regimes flows according to Williamson (1985).
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(a) (b)

Figure 2.16: (a) Experimental observation of the Honji instabil-
ity (Honji, 1981). (b) Limits of stability and transition to turbulence
and separation (from Suthon & Dalton (2012)). Red line was proposed
by Sarpkaya (2002) and blue line is a linearized form from Hall (1984).

Influence of the seabed

We have seen that if the interaction of current and/or waves with vertical cylinders generates
vortices at the cylinder sides, the influence of a wall at one extremity (the seabed) is important
and has various consequences. For example, the separation of the boundary layer on the
seabed due to the influence of the adverse pressure gradient produced by the pile forms an
horizontal vortex which takes the appearance of a horseshoe. The first visualization of the
phenomena was observed by Schwind (1962) thanks to smoke techniques in a wind tunnel
while visualization using hydrogen bubbles was made in Dargahi (1989) (the full details of
such mechanisms can be found in (Baker, 1979; Sumer et al., 1997)). These effects can cause
strong shear over the seabed and thus displace sediments which can lead to scour and the
failure of the piles. Baker (1979) visualized different horse-shoe vortex systems depending
on the Reynold’s number which are: (i) steady systems with 2,4 or 6 vortices (the number
of vortices increasing with the Reynold’s number), (ii) systems which exhibits oscillatory
motion and (iii) systems which exhibit irregular unsteady motion. Baker (1979) defines the
horseshoe position (in the case of the steady case) as the location of pressure minima on the
seabed. It has also been shown that the bed shear stress can be amplified by a factor of 7-11
with respect to its undisturbed value, highlighting the importance of the phenomena. In the
case of the wave-structure interaction, the formation of the horseshoe vortex is controlled
by the Keulegan-Carpenter number, so that no horseshoe vortex exist if KC < 6 for a
circular pile or KC < 4 for a square pile and it increases in both size and lifespan as KC
increases (Sumer et al., 1997). In the same study, they found that superposing a current to
the waves significantly increases both size and lifespan.
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Figure 2.17: Horseshoe vortex schematics from Sumer et al. (1997).

2.4.3. Wave structure interaction

General case

Loads on an offshore structure can come from multiple sources and are often categorized as
static and dynamic loads (Chakrabarti, 2005). Static loads are considered to be constant
in time such as gravity, hydrostatics or constant current loads. Dynamic loads are the ones
varying in times, for instance waves or non-constant wind loads. Steady currents, as seen
before, can also generate non steady loads in the transverse direction of the structure. Waves
also generate a steady load known as Stokes drift. When it comes to the computation of the
loads on a body, the distinction between slender and large body is made as different methods
apply. Morison’s equation is used for the first ones while diffraction/radiation theories are
used for the second one. The diffraction parameter, defined as πD/λ, is used to determine
in which category is a structure. It is considered that diffraction/radiation theories are valid
for πD/λ ≥ 0.5, which corresponds to cases where the incident wave field is significantly
modified by the presence of the body (Chakrabarti, 2005). Other important parameters are
the Reynolds number, and Keulegan-Carpenter number as seen above. To get an idea why
these parameter are important one can apply the Buckingham-π theorem (Buckingham, 1914)
to determine the parameters the forces depend on. Let’s express the force F in function of all
parameters it can depend on, considering a non-flexible and perfectly smooth (no-roughness)
body (see also Chakrabarti (2005) and Newman (2017) for similar analysis):

f (F, ρ, g, ν,H, λ, h,D, t, T, U) = 0 (2.28)
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These are 11 variables and three independent units so according to the Buckingham-π theo-
rem, the equation can be reduced to a non-dimensional form dependent on 8 variables:

f(F/1
2ρDU

2

−−
→

Force coeffi-
cient

, U/
√
gh

−−
−→

Froude Num-
ber

, H/λ

−−
−−
−→

Steepness

, h/λ

−−
−−
−−
→

Deep/Shallow
water

, UT/D

−−
−−
−−
−−
→

Keulegan-
Carpenter
Number

, UD/ν

−−
−−
−−
→

Reynolds
Number

, πD/λ

−−
−−
→

Diffraction
parameter

, ωt

−→

Non-
dimensional
time

) = 0 (2.29)

The above analysis allows us to show the importance of non-dimensional number such as
the Froude, Reynolds, steepness, deep/shallow water limit, Keulegan-Carpenter, and the
diffraction parameter. The different theory range of applicability are shown in figure 2.18.
In this section, we shall focus on the forces exerted by waves on slender and larger bodies.
We will review how to apply the Morison’s equation as well as the diffraction theory. As the
body of reference is fixed in the wave tank, radiation does not play any role and won’t be
detailed.

Figure 2.18: Limits of application for large/slender structure
from Chakrabarti (2005). X-axis is the diffraction parameter πD/λ
while the y-axis corresponds to the Keulegan-Carpenter number in
deep-water (KC = UmT/D = πH/D).
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Slender bodies The forces exerted by (non-breaking) waves on a pile are generally com-
puted with the integration over the water height of semi-empirical Morison equation (Morison
et al., 1950) described in equation 2.23:

F = FD + FM = 1
2

∫ η

−h
ρwCDDu|u| dz +

∫ η

−h
ρwCMAu̇ dz (2.30)

This equation corresponds to a case where the reference frame origin is situated at the mean
water level. FD is the drag force, FM is the inertia force, CD is the drag coefficient, CM
is the inertia coefficient, ρw is the water mass density, D is the cylinder diameter, A is the
cross-section area, u is the water particle orbital velocity and u̇ = ∂u

∂t
is the water particle

acceleration. The inertia force can be divided into two terms: the first one is the Froude-
Krylov force which is due to the unsteady pressure field (FFK = −

∫ ∫
S pdS = ρAu̇, see also

section 2.4.3) and the added mass term (or hydrodynamic mass force, Fm = ρCmAu̇). The
resulting coefficient CM is then given by CM = 1 + Cm. For a cylinder in an oscillatory flow
and low KC numbers, CM tends to 2 as the flow corresponds to the potential flow Sumer et
al. (2006). The Morison equation however can only be applied if the pile diameter is way
smaller than the wave length (D/λ < 0.2 according to Chella et al. (2012)). Another effect
to take into account is the orbital motion of particles, especially in deep water condition,
since orbitals tend to be horizontal in shallow water. Morison also alerts on the differences
between non-breaking and breaking waves forces on piles, as the second ones are impulsive
and reach a value much greater. The main challenge is to determine the value of the drag and
mass coefficient. This can be done by experimentally testing a scaled model of the structure
of interest. This last one is fixed at a reasonable distance from the wavemaker and periodic
waves are generated. The water level close to the object is measured, as well as the water
particles velocities. Acceleration is obtained from differentiation of the velocities. Once done,
and knowing the inline loads, we are able to compute the coefficients from equation 2.30.
It is necessary however to take into account the Keulegan-Carpenter and Reynolds numbers
dependency of these coefficients as shown by experiments by Sarpkaya et al. (1976). The
preceding procedure shows the importance of the execution of experimental investigation,
notably to calibrate theoretical or numerical model. In the case of computing forces in
irregular waves, it is necessary to compute the new velocities and acceleration due to sum
of all wave component, as explained in Ishida & Iwagaki (1978). This can be done applying
linear filters based on small amplitude wave theory (Reid, 1957). It seems however than
particle velocities are underestimated with such method, especially when the wave steepness
of the wave becomes high and the non linearities cannot be ignored. Another way of dealing
with irregular way is to experimentally determine the inertia and drag coefficient under
irregular oscillating forcing as in Longoria et al. (1991), where KC and Re numbers are
defined based on statistical treatment of the irregular waves.
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Froude-Krylov theory Froude Krylov forces are computed considering the following hy-
pothesis: potential theory is used, fluid is inviscid (no drag forces are considered), incompress-
ible, and the flow is irrotational. The potential flow can then be divided into three terms: the
undisturbed incident flow, the diffracted flow and radiated flow such as Φ = ΦI + ΦD + ΦR.
For each potential flow, we can then compute the forces acting on the semi-submerged body
by computing the pressure p. The undisturbed flow can then be separated into two com-
ponents, the static and dynamic ones. Then the static Froude-Krylov force is obtained by
integrating the static pressure pstat = −ρgz over the wet area of the body and adding the
gravity contribution Fg̃: FFKstat = Fg̃ −

∫ ∫
S pstat n dS. For the dynamic component of the

force, the use of Bernouilli’s relation for non-steady flow is used such as pdyn = −ρ∂ΦI
∂t
−ρ |∇ΦI |2

2

and FFKdyn = −
∫ ∫

S pdyn n dS. If we assume that the body is small enough so that it has
no influence on the incident flow, then diffraction terms can be ignored. This is the Froude-
Krylov hypothesis. For example, a small enough body in a wave field whose flow around it
is kept attached is suitable for the use of this theory (Chakrabarti, 2005). Linearization of
Bernouilli’s equation lead to p = −ρ∂Φ

∂t
. In the case of a linear system (free-surface elevation

and body motion are assumed to be low), it is convenient to define the static Froude-Krylov
force as a mass spring system such as FFKstat = KHx for a one dimension system, where KH

is the hydrostatic stiffness matrix while the dynamic Froude Krylov force and the diffrac-
tion ones are computed with the following relation: FFKdyn + FDif = −

∫+∞
−∞ h(t− τ)η(τ)dτ .

For a linear system, the output force (FFKdyn + FDif ) is the convolution of the excitation
impulse-response function h with the input excitation, the wave height η (Penalba et al.,
2017).

Diffraction theory If the semi-submerged body is large enough, it will affect the sur-
rounding wave field. In this case, the flow in most cases will remain attached to the body
and the flow can be well described by potential theory (Chakrabarti, 2005). The wave diffrac-
tion component of the forcing on a structure is a function of the diffraction potential as seen
above, which is solution of a boundary value problem (BVP). Let’s consider a fixed structure
which wet surface is called SB. At this location, from free-slip condition, the wave diffraction
problem is retrieved from −∂Φ

∂n = −∂ΦI+ΦD
∂n = V(t) · n, with n the normal to the outward

unit normal vector to the surface and V(t) the velocity of the body. So that ∂ΦD
∂n = −∂ΦI

∂n on
SB for a fixed body. This problem can be solved thanks to the boundary element method
(BEM) which divides the body into small panels, and is widely use in commercial (WAMIT,
AQWA) or open-source solvers (Nemoh) (Babarit & Delhommeau, 2015)).

Note on radiation theory: As the body moves into water, it will generate a radiated
wave field whose potential is ΦR, and thus forces associated with this wave field. Forces in
phase with the velocity of the body are called damping forces while forces in phase with the
acceleration acts as inertia and is called added mass. A method to compute damping force
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was given by Cummins (1962), known as the Cummins equation which links the damping
forces to the convolution of the impulse response function and the velocity of the body.

Wave structure interaction with a square cylinder

A very few studies concentrated their effort on square or even rectangular cross-section cylin-
ders. We can however underline the work of Arabi et al. (2019), who experimentally and
numerically studied the generation and evolution of coherent structures induced by the in-
teraction between a vertical square cylinder and solitary waves. The experimental data were
used to understand the phenomenon and validate a CFD model based on VOF (Volume of
fluid) for the interface determination and LES formulation for turbulence modeling. The
conclusion of their work shows the formation of vortices behind the cylinder that can mi-
grate far away from it during the motion of the solitary wave, with strong velocity gradient
at the trailing edge of the square cylinder, sustaining the formation of the vortical structures.
They show that such structures are formed, after flow separation, from the free-surface to
the bottom of the tank. They observe also that the number of vortices correspond to the
number of sharp corner (4), and vortex core of the primary vortices are highly deformed
along the vertical direction. They also report the trajectory of the primary vortices along
the tank and finally they got interested in the production of turbulent kinetic energy and
the different scales associated with it. Another experimental similar study, by Bremm et al.
(2015), focuses on the interaction between depression led long waves and a square cylinder
on a sloping beach, basing their geometrical configuration on a real tsunami event and ac-
cording to the author it is the first study of its kind. They record velocity profiles thanks to
a PIV set-up, as well as both inertia and drag forces on the structure, the first one being an
order of magnitude lower than the last one (and thus are neglected) and reach the following
conclusions. As the Reynolds number is not steady when the waves passes by the square
cylinder, the use of the time-history drag coefficient is of much importance for the analytical
calculation of the force. They were able to accurately predict the drag forces, however with-
out reaching to establish a link with vortex shedding. They observe bow wave separation
upstream, the hydraulic jump condition, a turbulent wake and vortex shedding. Shafiei et
al. (2016) experimentally studied the interaction between a square prism and a bore under
different incident angles, in a tank equipped with a an automatic gate for the bore gener-
ation. The bore heights and velocities, as well as the forces and pressure on the structure
were measured. They deduced a relation between the bore velocity and the bore heights at
about ub = 1.7

√
ghb with hb the bore height, g the gravitational constant and the 1.7 value

is an empirical coefficient based on the experimental data. They also give some procedure to
easily evaluate the forces over the structure. A final article of interest is from Foster et al.
(2017), who experimentally validated a set of equation capable of predicting the force of very
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long tsunami like waves over rectangular structure, without the need of expensive calculus.
They also observe that the pressure over the building is hydrostatic.
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Part II

Methodology
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Chapter 3

Numerical Wave Tank

As solution of the Navier-Stokes equation are unavailable most of the cases, we rely on
numerical simulation to capture and approximate the physics of the phenomenon. This
section describes how the CFD model will be implemented. As a first try, Fluent 6.3 was
used to simulate the 2D wave tank. However, as the number of computational node is
limited, the simulations will be run with OpenFOAM 5 (for the piston wavemaker study)
and OpenFOAM-v19.06 for the remaining studies of this thesis.

3.1. Numerical Model Review
In this section, all the relevant numerical set-up and assumptions are presented. The

geometry is shown and the problem is settled in section 3.1.1. Turbulence models are pre-
sented in section 3.1.2 and laminar or Reynolds Averaged Navier Stokes (RANS) equations
might either be used and are detailed in section 3.1.2 and 3.1.2 respectively. The dynamic
mesh handling is outlined in section 3.1.3, while the boundary conditions are described in
section 3.1.4. The numerical methods used to the resolution of the governing equations are
introduced in section 3.1.5 and in section 3.1.6 the computer infrastructure is described as
well other technical details.

3.1.1. Problem definition
The problem is described in the schematics of figure 3.1. We consider a 2D wave tank of

length L and height d, equipped with a moving piston wavemaker placed at the left wall and
the opposite wall of the tank is situated on the right. The mean still water level is noted h
and can be varied at will. The origin of the coordinate system is located at the left bottom
of the wave tank and all different measurement stations along the wave tank are referred
to this coordinate system. The pistons occupy the overall height of the canal so that they
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do not allow for the fluid to access the part behind it, to the contrary of the experimental
facility which is composed of a wet-back paddle. Wave gauges can be set up at paddles and
along the canal. The set-up with the square cylinder is presented in figure 3.2. Refinement
zone comprises the wavemaker zone (in yellow), the wave propagation zone (in red) and the
near cylinder regions. For each zone, a specific grid size is chosen either from grid refinement
studies (at the wavemaker and for the wave propagation) or theoretical assumptions (size of
the boundary layer).

 

Figure 3.1: Schematics of the problem. Lateral view. The numerical do-
main is composed of (1) the piston wavemaker, (2) the tank end boundary,
(3) the atmosphere and (4) the seabed. The generated waves (5) at the
free-water surface are measured with respect to the mean still water level
(6) h.

Figure 3.2: Schematics of the problem. Top view. The numerical domain
is composed of (1) the piston wavemaker of width W , (2) the tank end
boundary, (3) the left wall of length L, (4) the right wall and (5) the square
cylinder placed at x0 from the origin and of diameter D. The refined zone
are: the wavemaker zone (in yellow), the wave propagation zone (in red)
and the square cylinder zone (in blue).

3.1.2. Governing equations
The numerical simulation solves the 2D two-phase laminar Reynolds Averaged Navier-

Stokes equations (RANS) with two incompressible fluids (water and air phases). DNS sim-
ulations were considered to be numerically too expensive to carry out. The momentum
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equation (equation 3.11) and the continuity equation (equation 3.10) allows to describe fluid
motion, linking pressure to fluid velocity components. The momentum equation for the “In-
terFoam” solver is presented in G.-H. Kim & Park (2017). The solver uses the continuum
surface force (CSF) model (Brackbill et al., 1992) to model surface tension. The VOF model
is traduced by the scalar α which represents the volume fraction of water (1 if the cell is full
of water, 0 if full of air, and in-between values are for cells belonging to the interface). α
follows classical advection equation (it is a Lagrangian invariant, see Hirt & Nichols (1981)).
The mass conservation equation is also solved in primitive variables incorporating the VOF
model to deal with each fluid phase (Hirt & Nichols, 1981).

Choice of turbulence models

Turbulence is "characterized by the superposition of a highly irregular and oscillatory veloc-
ity pattern upon an otherwise "smooth" flow" according to Newman (2017). If Navier-Stokes
equations remain valid for turbulent flows, it is essential to include these variations to the
main flow resolution, as they might have an great importance on the flow development and
the efforts associated with it. The difficulty then relies in the choice of the turbulence model,
and the different scales associated to them. Observations led also to classify flows in func-
tion of their turbulent properties, which can be laminar (no turbulence levels), transitional
(apparition of fluctuations) or turbulent (high fluctuation levels), and these regimes are char-
acterized by the Reynolds number (low Reynolds numbers characterize laminar flows while
high Reynolds numbers characterize turbulent flow). The most known example, the flow in a
pipe, is considered laminar for Reynolds number lower than 2300 and fully turbulent for one
higher than 4000. Turbulence is an energy transfer mechanism where energy of large eddies
(of scale L) is transferred to lower scale eddies until the smallest scale l. It then dissipated
by the form of heat through viscosity (Kolmogorov, 1941). The smallest scale, called Kol-
mogorov scale and written ηk, as well as time and velocity, can be estimated by the following
expressions:

ηk =
(
ν3

ε

) 1
4

, τk =
(
ν

ε

) 1
2
, uk = (νε)

1
4 (3.1)

where ν is the kinematic viscosity in m2/s and ε is the turbulent kinetic energy dissipation
rate in m2/s3. The Reynolds number associated to this scale is equal to ηkuk/ν = 1 showing
the prevalence of viscous forces over inertial forces. This scale is also accessible through the
use of the Reynolds number as (Tennekes et al., 1972):

ηk = L ·Re−
3
4 (3.2)
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Wavemaking problem We define the following Reynolds number for the wavemaking
problem. The length of reference is the mean water level h (from 0.05 m to 0.15 m) and the
velocity of reference is the one of the wavemaker UG, which ranges from 0.05 m s−1 to 0.4
m s−1, for the step velocity which is going to be run further on. The associated Reynolds
number is then comprised between 250 to 60000, that is to say that for the highest Reynolds
number, it is necessary to use a turbulence model, as illustrated by figure 3.3, where tests
have been run for a velocity step of 0.4 m/s and a still water level of 0.150 m, corresponding
to a Reynolds number of 60000. It is possible to observe the differences between the laminar
test case results with the ones including a turbulence model, whether it is a k − ε model or
the buoyancy modified k−ω SST models. The main discrepancy is situated at the overshoot
value which is around 5% lower with turbulence. No differences seems to appear for the
steady state value however. This shows that for higher Reynolds number cases, a turbulence
model should be included in the simulation set-up.
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Figure 3.3: Comparison of wave height at wall for a step velocity of
m/s between laminar and turbulent models.

Wave-structure problem The most faithful strategy, called Direct Numerical Simula-
tion (DNS), consists in simulating all scales of the turbulence cascade, forcing the spacial
discretization to reach the Kolmogorov scale. An estimation with the geometry we deal with
can be carried out. If the mean water level h is 0.05 m, the cylinder width D is 4 cm and we
consider a solitary wave of height H = 0.02 m, then the particle horizontal velocity is given
by McCowan (1891) and is equal to:

u = cpmH

tan (m(h+H)/2)
1 + cos(mz) cosh(mx)
(cos(mz) + cosh(mx))2 (3.3)
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where cp is the phase celerity of the wave, m is McCowan (1891) constant coefficient, and
x, z are the horizontal and vertical coordinates, respectively. The maximum is found for
x = 0, z = H and leads to a value of umax = 0.31 m s−1. The associated Reynolds is
Re = umaxD/ν = 1253 and the Kolmogorov scale is ηk = 3× 10−5 m. This corresponds
to a very small cell size and would certainly lead to grid size of various tens of millions.
Large Eddy Simulation (LES) (Smagorinsky, 1963; Lilly, 1966; Deardorff, 1970) is another
technique that explicitly solves large eddies and take into account the small ones with sub-grid
models. In order to solve only large eddies, the Navier-Stokes equation are filtered (low-pass)
both in space and time, which leads to cut-off frequencies. LES results to be very accurate
in free-flow regions or highly separated flows but fails in near-wall regions(Pope, 2004). The
LES is becoming more popular but is still very computationally expensive and thus time
consuming.

Reynolds-Averaged Navier Stokes equations (RANS) are the most used and studied family
of turbulence models as it is the oldest one. As the turbulence problem is an open one
(more unknown variables than equations), a variety of models try to close it by using a
turbulent viscosity term. RANS models might not be able to accurately simulate a flow
when this last one shows strong anisotropy or when turbulent transport by large structures
is predominant (Rodi, 2017). I. Celik (2003) reviewed a certain amount of studies comparing
LES/RANS models and states that in general, LES is in better agreement with experimental
data than RANS, but at the price of a sufficiently refined mesh. Regarding the determination
of this grid refinement, it is however complicated to define it before any knowledge of the flow
characteristics, even if an attempt is made in Pope (2004). In this work, RANS equations
will be solved in the general case even for some sections laminar equations will be used, and
will be explicitly specified. The choice of RANS models over LES or DNS is mainly due to
its simplicity and is computationally the cheapest, while it seems that the gain of using LES
in boundary layer is not clear, and worst could have an adverse effect if the grid scale is not
correct (Pope, 2004). Moreover, experimental validation is carried out and we will be able
to trust or not the model.

Laminar equations

These equations can be written in vector form:

∇ ·U = 0 (3.4)

∂(ρU)
∂t

+∇ · (ρU U)−∇ · (µ∇U)−∇U · ∇µ = −∇p∗ − g · x∇ρ+ σκ∇α (3.5)
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∂α

∂t
+ (∇ ·U)α = 0 (3.6)

Where U is the velocity vector, p∗ the pseudo-dynamic pressure (p∗ = p− ρg · x), ρ the
density, µ the dynamic viscosity, g the gravity acceleration, x the position vector, σ the fluid
surface tension coefficient. The volume fraction α is introduced to deal with the two-phase
formulation within the volume of fluid (VOF) framework. κ is defined as followed:

κ = −∇ · ∇α
|∇α|

(3.7)

In the two-phase formulation, density and viscosity on each domain cell are computed as
a weighted mean of the form (Berberović et al., 2009; Rusche, 2002):

ρ = αρwater + (1− α)ρair (3.8)

µ = αµwater + (1− α)µair (3.9)

with α the fraction function which is equal to 1 when the cell is fully filled with water and 0
when it is filled with air.

Reynolds Averaged Navier Stokes (RANS) equations

The RANS equations are solved and a turbulence closure model is chosen: the buoyancy
modified k − ω SST (shear stress transport) model, developed by Devolder et al. (2018)
for wave applications. The main advantage of this model is to avoid the over-estimation of
turbulent kinetic energy that are often problematic in free-surface flow simulation, leading
to over-damped waves during propagation along the wave tank or change in the beaking
location in the example of breaking wave studies. The RANS equations for two immiscible
fluids as solved by OpenFOAM can be written in vector form as:

∇ ·U = 0 (3.10)

∂(ρU)
∂t

+∇ · (ρU U)−∇ · (µeff∇U)−∇U · ∇µeff = −∇p∗ − g · x∇ρ+ σκ∇α (3.11)

∂α

∂t
+ (∇ ·U)α = 0 (3.12)

where U is the velocity vector, p∗ the pseudo-dynamic pressure (p∗ = p − ρg · x), ρ the
density, µ the dynamic viscosity, g the gravity acceleration, x the position vector, σ the fluid
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surface tension coefficient. The volume fraction α is introduced to deal with the two-phase
formulation within the volume of fluid (VOF) framework. κ is defined as followed:

κ = −∇ · ∇α
|∇α|

(3.13)

In the two-phase formulation, density and viscosity on each domain cell are computed as
a weighted mean of the form (Berberović et al., 2009; Rusche, 2002):

ρ = αρwater + (1− α)ρair (3.14)

µeff = αµwater + (1− α)µair + ρνt (3.15)

Note the additional term νt which is the turbulent kinematic viscosity defined as:

νt = a1
k

max (a1ω, SF2) (3.16)

where k is the kinetic turbulent energy, ω is the turbulence specific dissipation rate, a1 = 0.31
is a constant coefficient, S is the mean rate of strain of the flow and F2 is the second blending
function. The two transported variable k and ω determines the energy in the turbulence
process and the scale of the turbulence respectively. The buoyancy-modified SST (shear-
stress transport) k − ω model (Devolder et al., 2018) has various advantages, such as the
possibility to use it through the whole boundary layer (through the viscous sub-layer until
the wall), the switch to the k−ε model in the free-stream and this version also allows to avoid
non-physical extra-turbulence at the interface, leading to damping of the wave (Devolder et
al., 2018). The main differencences are the explicit inclusion of the density ρ in the equations
and the addition of a buoyancy term Gb in the turbulent kinetic energy equations which is
defined further on. The blending functions are defined as (see Menter, Kuntz, & Langtry
(2003)):

F1 = tanh
{min

[
max

( √
k

β∗ωy
,

500ν
y2ω

)
,

4ρσω2k

CDkωy2

]}4 (3.17)

F2 = tanh
[max

(
2
√
k

β∗ωy
,
500ν
y2ω

)]2 (3.18)

with CDkω = max
(
2ρσω2

1
ω
∇k · ∇ω, 10−10

)
and y is the distance to the nearest wall. Ac-

cording to Menter, Kuntz, & Langtry (2003), F1 is equal to 0 far from the wall (leading to
the behaviour of a k− ε model) and progressively changes to 1 as the cells are situated inside
the boundary layer thus behaving as a k−ω model. The closure equations for both k and ω
are:
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∂(ρk)
∂t

+ U · ∇(ρk)−∇ · (ρ (ν + σkνt)∇k) = ρPk +Gb − ρβ∗ωk (3.19)

∂(ρω)
∂t

+ U ·∇(ρω)−∇ · (ρ (ν + σωνt)∇ω) = γ

νt
ρG− ρβω2 + 2 (1− F1) ρσω2

ω
∇k ·∇ω (3.20)

Pk = min (G, 10β∗kω) (3.21)

G = 2νtS : S = νt
∂ui
∂xj

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.22)

where S is the strain tensor defined as S = 1/2 (∇U +∇Uᵀ). The added buoyancy term Gb,
active only close to the interface, is defined as follows:

Gb = −νt
σt

g · ∇ρ (3.23)

and all parameter σk, σω, β and γ follow the following equation:

φ = F1φ1 + (1− F1)φ2 (3.24)

with φ1,2 defined as in table 3.1.

φ σk σω β γ

φ1 0.85034 0.5 0.075 0.5532
φ2 1.0 0.85616 0.0828 0.4403

Table 3.1: Default value for φ1 and φ2 used in equation 3.24.

3.1.3. Mesh handling
Moving boundaries are not so popular yet because of the complexity of its numerical im-

plementation and because the method runs usually slower than a simpler boundary condition
implementation method, as it involves a dynamic mesh in the model. It may however reveal
to be closer to the physical phenomena. In this work, a regular 2D grid is generated. Then,
a mesh layer addition/removal strategy was adopted: when the boundary moves, cell size
decreases on one side of the paddle while it increases on the other side. When the size is
critical (the user can arbitrary chose what value should be implemented), the cells merge with
the following layer on one side while a new layer of cells is created on the other side. This
strategy is presented in figure 3.4. The cells on top of the piston and at the bottom follows
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the piston motion so that the interface where the layer addition/removal is performed stays
constant. An advantage of the cell layer addition/removal compared to unstructured grid
remeshing or grid contraction/expansion techniques is that the mesh transformation only
concerns a few cells (the first layer on both sides of the piston) which should decrease the
time spent for dynamic mesh execution. However, the use of this technique revealed to be
complicated because of the "aleatory"-like motion of the absorption paddle which caused the
creation of negative volume cells; it also created problems for stability of explicit schemes as
the creation of really small layer cells which made exponentially increased the Courant num-
ber. For all these reasons, a simpler but slower model using mesh contraction is used in this
work. The mesh uniformly contracts and expands when the flume ends move, conserving the
global mesh cell volumes as this motions are relatively smalls compared to the flume length.
Such strategy is also shown in figure 3.4.

Motion of the boundary Reduction of the cell width Fusion of the �rst two cell layers

Motion of the boundary Mesh contraction Mesh contraction

Cell layer addition/removal

 

strategy

 

 

Mesh expansion/contraction 

strategy

 

Figure 3.4: Cell layer addition/removal and mesh expansion/contrac-
tion strategies can be employed for dynamic mesh motions.

3.1.4. Boundary conditions
Boundary conditions employed in this work are summarized in equation 3.25. On the

piston wavemaker wall we impose no-slip condition for all velocity components. The initial
still water level h is always established before any wavemaker motion by initializing α. The
volume fraction α is bounded and may adopt any value between 0 ≤ α ≤ 1 in any place of the
physical domain and Neumann boundary conditions, set to 0, are applied at all boundaries for
the α variable as well so that the volume of fluid is the same at the boundary as at the first cell.
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In particular, at the wavemaker, such condition forces the contact angle of the interface to
be perpendicular to the wavemaker wall which agrees with the experimental results of Uddin
& Needham (2015) and S. Yang & Chwang (1992) for the case of a continuously accelerated
wavemaker. In this work, the piston wavemaker moves according to an input velocity signal.
At the piston wavemaker wall the velocity matches the velocity of the moving boundary in
the x direction only. A no-slip condition is used at the seabed wall and the right end wall.
The pressure is set to a pressure of reference (in this case 0) at the atmosphere boundary and
0-Neumann conditions are used at the other locations. A zero-gradient condition is applied
at the atmosphere for outflow and a velocity uφ is assigned for inflow based on the flux in the
patch-normal direction. The boundary conditions for the velocity, pressure and α variables
can be summarized as:
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x = XG(t) → ux = UG(t), uy = 0, uz = 0, ∂p∗

∂x = 0, ∂α
∂x = 0

x = L → ux = 0, uy = 0, uz = 0, ∂p∗

∂x = 0, ∂α
∂x = 0

z = 0 → ux = 0, uy = 0, uz = 0, ∂p∗

∂z = 0, ∂α
∂z = 0

z = d →
inflow:ux = 0, uy = 0, uz = uφ,

outflow: ∂ux

∂z = 0, ∂uy

∂z = 0, ∂uz

∂z = 0,
p∗ + 1

2 |u|
2 = 0, ∂α

∂z = 0

(3.25)

Cylinder
{

ux = 0, uy = 0, uz = 0, (∇p∗) · n = 0, (∇α) · n = 0 (3.26)

where n is the normal unitary vector of the boundary. As for the turbulent model variables
k and ω, as the mesh is not refined enough to resolve the flow at the wavemaker and side
walls of the tank, wall functions are used for both variables. At the atmosphere, inlet/outlet
boundary condition is set up where the values for outlet flow (velocity field at atmosphere
pointing outside of the domain) is a zero gradient condition (0-Neumann boundary condition)
while for the inlet flow (velocity field at atmosphere pointing inside of the domain) we set
k = 10−4 m2 s−2 and ω = 2 s−1. At the square cylinder, the boundary conditions that
are applied depends on the grid resolution at the wall. Indeed, in the general case and for
turbulence modeling, low Reynolds turbulence number model use the first point in the viscous
sublayer (y+ ≈ 1) while high Reynolds number use the first grid point in the buffer layer
(5 ≤ y+ ≤ 30) (Moukalled et al., 2016). In our case, section 3.1.2 showed that the problem
is characterized by a relatively low Reynolds number so that we chose to fully resolve the
boundary layer (that is to say that we make sure that the first grid points corresponds to
y+ < 1). The turbulent kinetic energy boundary condition is a zero Neumann condition
at all walls (kqRWallFunction in OpenFOAM ) and its initial condition is set to 0 m2/s2 (in
practice it is set to a really low non zero value k = 10−8 m2/s2) and the turbulence specific
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dissipation rate ω is set to (Menter, Ferreira, et al., 2003):

ωw = 6ν
β1y2 (3.27)

where β1 = 0.075 and y is the distance from wall to the first point. In practice, the omegaWall-
Function boundary condition is used in OpenFOAM which sets the first grid point ω value
in function of the y+ value, that is to say depending on the position of the first grid point
whether it is inside the viscous sublayer or it is inside the log-law sublayer.

3.1.5. Numerical Methods
The governing equations were solved with the open source software OpenFOAM version

5 or OpenFOAM version 19.06 (Weller et al., 1998). OpenFOAM is an object oriented C++
toolbox for solving continuum mechanics problems with the finite volume method. It can be
used in applications such as turbulence modeling, fluid flows, chemical reactions, multiphase
flows, electromagnetics, compressible flow among others. Pre-processing tools are included
such as meshing tools (blockMesh, SnappyHexMesh), mesh conversion tools, field initializa-
tion, boundary definition, gauge definition. . . OpenFOAM presents many advantages: as
released under the GNU General Public license it is free and open-source (no licensing fees,
unlimited number of jobs, users and cores). It is also largely used in the scientific community
and thus has been validated for many applications. Numerous ready to use cases are available
which allow for quick set up and a large user community is ready to help making it more
accessible. It is designed to support parallel computations and its text file structure allows
for an easy automation in case of parametric studies. We use interDyMFoam/interIsoFoam,
solvers of the Navier Stokes equations for two incompressible isothermal immiscible phases
using the volume of fluid (VOF) method. It increases the capabilities of previous solvers al-
lowing to handle dynamic mesh motion. OpenFOAM solves a single equation of momentum
for the two-phase mixture by introducing a volume fraction advection equation of the VOF
method used to capture the interface between the phases. Hirt & Nichols (1981) presented
this method as an efficient and simple way of treating the free surface in numerical simula-
tions, as it stores a minimum of information. This method should be carefully used when
the surface tension becomes important.

interFoam/interDyMFoam Some numerical solvers like interFoam/interDyMFoam, which
uses MULES algorithm, impose some restrictions in order to keep a sharp interface between
both fluid phases. An additional term called artificial compression is introduced here (Rusche,
2002):

∂α

∂t
+∇ · (αU) +∇ · (Ucα(1− α)) = 0 (3.28)
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Uc = min(Cα |U| ,max(|U|)) (3.29)

Cα is a user defined coefficient whose default value is 1. The additional term is only active
close to the interface because of the product α(1−α) and does not impact the solution outside
the interface region. Its role is to compress the interface and maintain α between 0 and 1
if used with discretization techniques. In the post-processing stage, the value of α = 0.5 is
chosen to detect the free-surface, which is carried out thanks to linear interpolation.

interIsoFoam If interDyMFoam showed accurate results in the simplest configuration of
the NWT, it showed to prove unstable in the case of unstructured meshes or hybrid meshes.
Smearing of the free-surface was appearing for example. The overall idea of the isoAdvector
algorithm (Roenby et al., 2016) is to improve the sharpness of the interface by more accurately
computing the face fluxes. The general steps of the algorithm is: (i) reconstruction of the
interface, (ii) advection of the interface. At every time step, the first stage allows to retrieve
the interface position and orientation in every cells (the isoface, much more accurate than
the 0.5-isosurface used in interFoam). It is followed by the motion of the interface in function
of the velocity field during the time interval [t, t+ ∆t]. Roenby et al. (2016) implemented
and tested the algorithm and found very satisfactory results, in terms of interface sharp-
ness, shape preservation, volume conservation, boundedness and efficiency. They compared
their results with other VOF-based algorithm, notably MULES. According to them, MULES
behaves well for interface Courant number below 0.1 while this value can be increased to
0.5 for the isoAdvector algorithm. Since then, the method has been used with success to
model coastal engineering flows (Vukcević et al., 2018; Elsafti et al., 2019; B. E. Larsen et
al., 2019), sloshing (Li et al., 2019), annular flows (Fan et al., 2019), and even avalanches
flows (Pétursson et al., 2019).

interDyMFoam and interIsoFoam solvers use the PIMPLE algorithm which combines both
SIMPLE (Semi-Implicit Method for Pressure Linked Equations) (Patankar, 1980) and PISO
(Pressure Implicit Split Operator) (Issa, 1986) algorithms and allows for bigger time steps.
Simulations were performed on a CPU Xeon E5-2660 v2/Intel Xeon Gold 6152 cluster running
on Simple Linux Utility for Resource Management (Slurm) and based on MPI libraries. The
CPU run time for a one second transient simulation and a typical wave was about 2.4 hours
for a 400000 element mesh and ∆t = 5 · 10−4 s time step. The geometry of the wave tank
required a fine spatial discretization, particularly in zones like the water-air interface and
zones of high velocity gradients such as the wavemaker walls. Explicit schemes are used so
that special care is taken when choosing the time step regarding the mesh size and CFL
condition below 1. As a result of the rapid input velocity signals during the wave formation
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and subsequent progression along the wave tank, the temporal discretization requires time
steps smaller than 10−3 s.

3.1.6. Miscellaneous
Surface tension effects The importance of the surface tension compared to gravitational
forces are characterized by the Bond number:

Bo = ∆ρg
σk2 = ∆ρg

σ
l2 (3.30)

with ∆ρ the difference of density between the two phases, g the gravitational acceleration, σ
the surface tension, k the wave number and l is the characteristic length. If Bo >> 1 then
the surface tension does not play any major role in the wave physics. This is the case in the
simulation we carry out, as the wave length is quite long. For more information and detail on
the influence of the surface tension on wave the reader can refer to Dias & Kharif (1999). We
decide however to keep the surface tension as it might be important for lower scale phenomena
(small vortices, blockage at cylinder, meniscus at walls), and the computational overcost is
low. In OpenFOAM, miscalculations of the surface tension forces is source of spurious currents
(high velocities) in the air interface and is a well-identified problem without solution for now
for really low scale problems such as in drops or microfluidics studies.

Water/Air interface detection It is chosen, for its simplicity of implementation, to
detect the interface water/air at a given x position by calculating the VOF variable α = 0.5
through linear interpolation in the vertical direction.

Cluster use and scaling test The National Laboratory for High Performance Comput-
ing1 (NLHPC) of the faculty of engineering at Universidad de Chile is doted with a cluster
whose main characteristics are presented in table 3.2. The total capacity of Leftraru is 266
TFlops. The cluster is accessible for any research related tasks. It is hosted at CMM (Cen-
ter of Mathematical Modeling). The workload is handled with the well known open-source
SLURM2. Each researcher/student may use until 40 processors with a testing account.

1 /www.nlhpc.cl
2 https://slurm.schedmd.com/
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Partition Number of
Nodes

Number of
Processors
per nodes

Total
number of
processors

Available
RAM per
node (GB)

general 48 2x22 2112 192
slims 128 2x10 2640 48

largemem 9 2x22 396 768

Table 3.2: Main characteristics of the cluster Leftraru at CMM.

The aim of this paragraph is to study the scaling of OpenFOAM when using an increasing
number of processors. To do so, we chose a base case which is presented in table 3.3. It is
executed with different number of processors. Results are shown in figure 3.5. The speed up
is defined as:

Speed Up = Reference Time
Improvement Time (3.31)

In the same figure is plotted the efficiency which allows to better read the speed-up results,
as an efficiency close to 1 is very good and an efficiency close to 0 shows no improvement by
scaling the computation. The efficiency is computed according to the following formula:

efficiency = Speed Up× Reference Processor Number
Number Of Processors (3.32)

A program which is scaling well has a linear speed-up. It means that the time to execute a
program is half the necessary time when using twice the number of processors. It is accepted
that an efficiency superior to 0.5 means that the time gain worths it. For OpenFOAM and a
typical 3D case, which characteristics are shown in table 3.3, the results of the scaling tests
are presented in figure 3.5. The program behaves very well with an nearly linear speed-up
until 200 cores and efficiency superior to 0.5 for all tested cases.

Number
of Cells

Time
Step (s)

Simulation
duration

(s)

Mesh
Motion

UG

[m s−1]
solver

4213293 0.00005 0.005 yes 0.1832 interIsoFoam

Table 3.3: Main characteristics of the OpenFOAM test case.
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Number of Processors 20 40 80 100 200 300 400

Time Of execution (s) 928 482 230 175 95 72 62
SpeedUp 1.0 1.93 4.034 5.30 9.768 12.89 14.97
Efficiency 1.0 0.96 1.01 1.06 0.98 0.86 0.75

Table 3.4: Results of the speed up test.
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Figure 3.5: Speed up of the NWT CFD simulation with OpenFOAM.
The dashed blue line corresponds to a linear speed-up.

3.2. Space and Time discretization
In this section, series of mesh tests are performed to look for mesh independent results.

Two solvers are considered: the interDyMFoam solver which is used in the wave generation
problem of section 5.1 and interIsoFoam solver in the wave structure interaction problem of
section 5.2. The choice of using interIsoFoam solver in the latter problem is motivated by
more precision in the free-surface detection and motion as well as more stability, avoiding
smearing of the interface as well as damping.

3.2.1. interDyMFoam solver
We consider two test cases in order to achieve mesh convergence: (i) the study of the

response to an input velocity step characterized by the overshoot and the steady-state water
height, and the rising, peak and settling times, as found on the time response of linear
dynamical systems, and (ii) the wave propagation of linear waves along the 2D wave tank
(wave height, wave length). In the first case, a set of uniform rectangular cell mesh are
generated to look for mesh independence. Most sophisticated meshes, with an uniform zone
at water-air interface which includes the minimum and maximum water height during the
whole simulation, are also set up. They include refinement at the wavemakers and are
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denominated "non-uniform". They allow to decrease the computation time as the mesh
size is kept in reasonable limits. The mesh, generated thanks to the blockMesh program,
is built from three characteristic elements: the cell width at the piston wall ∆xw, the cell
width in the wave propagation zone (far from the walls) ∆x and the cell height in the wave
propagation zone ∆z. ∆xw will be determined from the uniform mesh study in (i). From
the wavemaker, the longitudinal element size ∆xi is being computed with the following
geometric law, ∆xi = ∆xwr(i−1) ∀ i < nj, where r is the geometric growth rate. After
nj cells the elements reach a constant size ∆x in the wave propagation zone. A similar
calculation allows to define the vertical element size from outside the interface zone. Both
∆x and ∆z are set up considering the number of cells per wave length and cells per wave
height respectively. These parameters will be set in (ii). Figure 3.6 shows the mesh in the x-z
plane, while a one cell size is set up in the y-direction. Mesh type and properties are displayed
in table 3.10. These preliminary tests with different meshes allow an appropriate choice of
the mesh size without compromising accuracy and CPU time (see figure 3.6). The dynamic
mesh is modeled using a mesh expansion/contraction strategy. The mesh uniformly contracts
and expands, conserving the global mesh cell volumes as these motions are relatively small
compared to the tank length.
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∆xw [m] ∆x [m] ∆z [m] a [m2] Number of cells ηo [m] ηss [m] tr [s] tp [s] ts [s]

U
ni
fo
rm

M1
U 0.0100 0.0100 0.0050 5 · 10−5 10000 0.0356 0.0257 0.0536 0.1253 0.2819

M2
U 0.0050 0.0050 0.0025 1.25 · 10−5 40000 0.0342 0.0257 0.0481 0.1116 0.2979

M3
U 0.0025 0.0025 0.0010 2.5 · 10−6 200000 0.0340 0.0259 0.0479 0.1298 0.2905

M4
U 0.0015 0.0015 0.00075 1.125 · 10−6 443889 0.0340 0.0258 0.0491 0.1237 0.2939

M5
U 0.0013 0.0013 0.0005 6.5 · 10−7 769000 0.0341 0.0259 0.0493 0.1246 0.2927

M6
U 0.0011 0.0011 0.00026 2.9 · 10−7 1748916 0.0341 0.0259 0.0494 0.1247 0.2909

N
on

-
U
ni
fo
rm M7

NU 0.0010 0.0363 0.0010 - 17115 0.0340 0.0258 0.0491 0.1264 0.2976
M8
NU 0.0010 0.0181 0.0010 - 20055 0.0340 0.0258 0.0492 0.1262 0.2965

M9
NU 0.0010 0.0091 0.00057 - 47025 0.0341 0.0258 0.0488 0.1250 0.2954

Table 3.5: Mesh properties to study the wavemaker response to a velocity step. ∆xw is the cell size in the x-direction
at the piston wavemaker, ∆x is the cell size in the x-direction in the wave propagation zone, ∆z is the cell size in the
z-direction at the water-air interface, ηo is the overshoot water height at the piston wavemaker, ηss is its steady state
value and tr, tp, ts are the rising time, the peak time and the settling time, respectively. The area a is used as an entry
for the GCI study (I. B. Celik et al., 2008).
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Figure 3.6: Non-uniform mesh overview and zoom at wavemaker and water-
air interface. In this case, the wave tank dimensions are 2 x 0.25 m and
water depth is 0.15 m.
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Figure 3.7: (a) Normalized input signal for the step response test as a func-
tion of non-dimensional time. The piston velocity UG(t) is normalized by
its maximum value U0. We also display the piston position XG normalized
by the water depth of the wave tank. (b) Characteristic amplitude and time
scales in the step response of a second order system. ηo, ηss the overshoot
and steady state values respectively and tr, tp, ts , the rising, peak and set-
tling times respectively. The steady state height is ηss > h as the piston
wavemaker moves constantly at UG.

Step response

In order to fully test the capacity of the code to represent sudden and rapid water surface
elevation we choose to perform a step response of the numerical wave tank. The input signal
is a velocity step as shown in figure 3.7a and given by UG(t) = U0Θ(t) where Θ(t) is the
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Heaviside function. The step value is 0 for negative times and UG = U0 for positive times,
resulting in a linear displacement XG(t) of the piston wavemaker. In this part of the study,
we set the tank length to L = 4 m, the tank height to 0.25 m and the mean still water level
to h = 0.15 m. Mesh M1

U is the coarsest and M6
U the finest. M7

NU to M9
NU are non-uniform

mesh as previously described. They use cell size at wall defined later on in the conclusion of
the uniform mesh study and geometric growth rate r = 1.05 in the x-direction and r = 1.2
in the z-direction. For the finest mesh in the z direction (mesh M6

U), it is necessary to reduce
the time step to keep the Courant number below 1. This is why the time step is set for
all meshes to ∆t = 10−4 s. The measured quantity is the water elevation at wavemaker
ηw. The variables of interest are described in figure 3.7b and are the following: ηo, ηss the
overshoot and steady state values respectively and tr, tp, ts , the rising, peak and settling times
respectively. Results are reported in table 3.10 and shown in figure 3.8. Figure 3.8a shows the
time series of the water elevation at the piston wavemaker, ηw(t), for each mesh. The results
of the 4 finest meshes are similar. A Grid Convergence Index (GCI) study (I. B. Celik et al.,
2008) is carried out with the meshes 4, 5 and 6. The local order of accuracy p ranges from
0.18 to 17.57 with a global average of 4.98. This apparent average order is used to assess the
GCI error at every point as suggested in I. B. Celik et al. (2008). The error made in the last
mesh is really low (the maximum GCI error is 0.3 %) which allows to say that the results do
not depend on the mesh. Figure 3.8b shows the error for every point, and a zoom around
the overshoot is displayed in the inset where errors increase. The mean error is an order of
magnitude lower (0.03%). The errors on the overshoot and the steady state values are very
low. Figures 3.8c and 3.8d show the convergence of the different parameters composing the
typical response to the step (overshoot and steady states water elevation, rising, peak and
settling times). They show that for these parameter, the limit of convergence is mesh M3

U .
It is chosen, for obvious practical reasons, to work with mesh M3

U at the wavemaker, which
allows to decrease computational times while assuring convergence. A non-uniform mesh
shows good agreement with the uniform ones for all variables. In the rest of the work, we
make sure that the first cell at the piston wavemaker wall is kept below ∆xw = 0.0025 m in
the x direction and ∆z = 0.001 m in the z-direction in order to keep the results independent
from the mesh. The number of cells per wave length and height in the wave propagation
zone is analysed in the following paragraph.
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Figure 3.8: Step response. (a) Water height at the piston wavemaker for
different meshes. Convergence is achieved from mesh M3

U . (b) Error made
due to mesh discretization calculated with the GCI method (I. B. Celik et
al., 2008). A zoom in the overshoot region is also displayed. (c) Overshoot
and steady state water height (ηo and ηss respectively) in function of the
mesh. These variables seem to have converged at mesh M3

U . (d) Character-
istic times (rising time tr, peak time tp and settling time ts) as a function
of the mesh type. Converged values are found from mesh M3

U .

Wave propagation

In order to properly study wave propagation properties as a function of the mesh type and
quality, we use an extended numerical wave tank with L = 8 m. The mesh is finer at the water
air interface and is kept uniform in the zone where the wave propagates. At the wavemaker
we set ∆xw = 0.001 m and a transition is made with a 1.05 cell to cell ratio. The piston stroke
is set to X0 = 0.004 m, the wavemaker frequency f = 1.25 Hz and the piston wavemaker
velocity to UG(t) = X0(ω/2) sin (ωt+ δ) with δ = −π/2. The corresponding wavelength
can be estimated from the dispersion relation ω2 = gk tanh (kh) where k is wave number,
and gives in this case λ = 0.82 m. A common discretization is given by 20-25 elements per
wave height and 60-70 elements per wave length in recent works (Didier et al., 2016). We
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conduct our test based on three meshes whose properties are shown in table 3.6 where M7
NU

is the coarsest mesh and M9
NU the finest one. The number of cells per wave height ranges

from 15 to 60 while the number of cells per wave length from 60 to 240. The time step is
set to ∆t = 0.001 s and the theoretical Courant–Friedrichs–Lewy number (CFL number) is
reported. Even if it shows to have value below 1, the time step for the finest mesh M9

NU had
to be decreased to ∆t = 0.0005 s to avoid divergence due to the use of explicit schemes. The
simulation end time is 10 s and two probes are set at x = 2 m and x = 4 m from the origin
of the coordinate system (see figure 3.1).

M7
NU M8

NU M9
NU

cells/H 15 30 60
cells/λ 60 120 240
∆xw [m] 0.00100 0.00100 0.00100
∆x [m] 0.01360 0.00680 0.00340
∆z [m] 0.00030 0.00015 0.00007
Total number of cells 40734 107184 303232
CFL number 0.15 0.29 0.59

Table 3.6: Mesh characteristics and their theoretical CFL number for the
wave propagation problem.

∆RMS (x = 2m) [m] ∆RMS (x = 4m) [m]

M7
NU 7.2 · 10−5 1.10 · 10−4

M8
NU 4.3 · 10−5 0.80 · 10−4

M9
NU 4.4 · 10−5 0.83 · 10−4

Table 3.7: RMS deviation relative to the theory of O. S. Madsen (1971) over
the 10 s simulation for both wave gauges at x = 2 m and x = 4 m. The RMS

deviation is calculated according to: ∆RMS =
√∑N

j=1

(
ηj − ηtheoj

)2
/N .

∆xw [m] cells/λ cells/H rx rz

0.001 120 30 1.05 1.20

Table 3.8: Characteristics of the final mesh.

Figure 3.9a shows the water level at wavemaker wall ηw(t). No differences between the
meshes are observed as expected, since the refinement in x direction and in the z direction
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is finer than the necessary one studied in (i). Figure 3.9b shows the differences between the
meshes that are used at x = 4 m. A zoom over the highest value and for three wave periods
are shown in figure 3.9c. The coarse mesh M7

NU effectively produces minor differences with
the two others, specially at the maxima and minima. The results for probe at x = 2 m are
compared with the theory of O. S. Madsen (1971) and shown in figure 3.9d. The error of
wave crests and trough with the wavemaker theory are shown in table 3.7. The results are
quite accurate for the three meshes (almost all cases with RMS deviation below 0.1 mm)
although the coarse mesh lacks of accuracy at the maxima and minima. It is chosen to work
with the medium mesh M8

NU in the rest of this work as it allows accurate wave height data
and reduces the computational time compared to the fine mesh.
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Figure 3.9: Continuous wave propagation. (a) Water height at the piston
wavemaker ηw as a function of time. (b) Water height at x = 4 m as a
function of time. (c) Water height at x = 4 m as a function of time, zoom
over times between 6 and 9 s. (d) Comparison between the medium mesh
and the wavemaker theory (O. S. Madsen, 1971) at x = 2 m. The medium
mesh well represents the wavemaker theory. It allows us to validate the
wave generation process with the medium mesh for small waves.
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3.2.2. interIsoFoam solver
In this part, the NWT dimensions are L = 2 m, d = 0.10 m, and h = 0.05 m, which

correspond to the dimensions of the experimental facility at the Leaf-nl laboratory. They are
summarized in table 3.9. The test case consists of the generation of a short undular bore by
applying a square velocity signal to the generating wavemaker such as:

UG(t) = U0 (Θ(t)−Θ(t−∆tG)) (3.1)

where U0 is equal to 0.192 m s−1 and ∆tG = 0.65 s. This test case can be considered as
extreme at the scale of the experiment and thus obtaining convergence for it will allow us
to assume that all other cases will not depend on the grid. The space discretization will be
reviewed as a first step and the time discretization will then be studied.

L [m] d [m] h [m] UG [m/s] ∆tG [s]

2.000 0.100 0.050 0.192 0.650

Table 3.9: Wave tank main dimensions for the spacial and temporal
grid study. L is the length of the wave tank, d is its height, h is the
MSWL, UG is the piston wavemaker step velocity and ∆tG is the step
duration.

Space discretization

In order to execute simulation independant of the grid size, a study is carried out where four
meshes (M1 toM4) are tested. The mesh at the wavemaker is kept equal to the characteristics
of section 3.2.1, that is to say with a first cell of 0.001 m width at the wavemaker wall
and a smooth transition cell-to-cell ratio of 1.05 in the x-direction, and the hypothesis of
convergence is made for the step response at wavemaker for the interIsoFoam solver. The
number of cells per wave length and wave height is varied in order to check mesh independence
and these characteristics are reported in table 3.10. M1 is the coarsest mesh with 83 cells
per wave length and 25 cells per wave height and M4 the finest one with 691 and 149 cells
respectively. Note that the wave length and height reference are taken from the main wave.
The results, consisting in the measurement of wave height at every location of the wave tank
for the time t = 2 s, are presented thereafter for laminar, k − ε and buoyancy modified
k−ω SST turbulence models, and the time discretization is adaptive where upper boundary
such as the maximum Courant number in the mesh domain is either 0.1 or 0.45. They are
analyzed both qualitatively and in terms of Grid Convergence Index (GCI) according to the
work of I. B. Celik et al. (2008). The variable of interest are the maximum wave height H
at t = 2 s and the x-position of this maximum xwave.
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∆xw [m] ∆x [m] ∆y [m] a [m2] N/λ N/H Cells

M1 0.001 0.00912 0.00100 9.12 · 10−6 83 25 16302
M2 0.001 0.00457 0.00067 3.04 · 10−6 166 37 42676
M3 0.001 0.00227 0.00033 7.57 · 10−7 335 74 152048
M4 0.001 0.00110 0.00017 1.83 · 10−7 691 149 568944

Table 3.10: Grid properties to study the wavemaker response to a ve-
locity step. The area a is used as an entry for the GCI study I. B. Celik
et al. (2008).

Laminar case The simulation are run for laminar Navier-Stokes equations for the different
meshes and results are presented in figure 3.10. If the maximum allowed Courant number
is 0.45, it seems that the meshes have converged for meshes M3 and M4, while convergence
is achieved for all meshes in the case of using a maximum Courant number of 0.1. These
observations are also valid for the secondary waves or trailing waves. These results are
confirmed by the GCI study reported in table 3.11, where the maximum error GCI is 6.5%
for the maximum wave height H for meshM3 and using Co = 0.45. It implies that the results
are independent of the grid for all meshes if the Courant number is kept low (Co = 0.1) or
in case of using a larger one by at least applying M3 characteristics. The use of low Courant
number is time consuming but shall be privileged as it allows not to depend on the grid size
and thus optimization of this last one can lead to serious time gain.
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Figure 3.10: Grid independence study for laminar flow simulation. (a)
Global case. (b) Zoom over the main wave.
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Co = 0.1 Co = 0.45
H [m] GCI [%] xwave [m] GCI [%] H [m] GCI [%] xwave [m] GCI [%]

M1 0.02396 − 1.5479 − 0.02296 − 1.5571 −
M2 0.02445 − 1.5459 − 0.02374 − 1.5508 −
M3 0.02473 0.924 1.5448 0.051 0.02441 6.593 1.5461 0.472
M4 0.02475 0.009 1.5408 0.125 0.02465 0.642 1.5427 0.757

Table 3.11: Results of the grid study for the laminar case.

Turbulent case The study is now carried out by solving the RANS equations with either a
k−ε or a buoyancy modified k−ω SST model and results are presented in the same way than
in the laminar case. The whole wave is shown in figure 3.11 for both turbulence models while
a zoom on the main wave is presented in figure 3.12. We observe a similar behaviour as for
the laminar case, that is to say that the convergence seems achieved for meshes M3 and M4

in the case of Co = 0.45 and for all meshes in the case of low Courant number Co = 0.1, and
this for both turbulence models. It is confirmed by the GCI analysis, shown in tables 3.12
and 3.13, which gives the highest error to be 3.95% for H and the k − ε model, while it is
6.63% for the k−ω models. Such low values shows that convergence appear for both models
and both Courant number from M3 mesh. To conclude and as for the laminar case, the use
of low Courant number or at least the M3 mesh is sufficient to assure convergence.
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Figure 3.11: Grid independence study for two turbulence models. (a)
k−ε model. (b) Buoyancy-modified k−ω SST model developed by De-
volder et al. (2018).
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Figure 3.12: Grid independence study for two turbulence models.
Zoom at the overshoot wave (main wave) (a) k − ε model. (b)
Buoyancy-modified k − ω SST model developed by Devolder et al.
(2018).

k − ε
Co = 0.1 Co = 0.45

H [m] GCI [%] xwave [m] GCI [%] H [m] GCI [%] xwave [m] GCI [%]

M1 0.02391 − 1.5475 − 0.02279 − 1.5549 −
M2 0.02444 − 1.5460 − 0.02370 − 1.5544 −
M3 0.02468 0.561 1.5450 0.066 0.02437 3.953 1.5463 0.082
M4 0.02476 0.211 1.5430 0.154 0.02468 1.290 1.5438 0.087

Table 3.12: Results of the grid study for the k − ε turbulence model.
Buoyancy-modified k − ω

Co = 0.1 Co = 0.45
H [m] GCI [%] xwave [m] GCI [%] H [m] GCI [%] xwave [m] GCI [%]

M1 0.02396 − 1.5479 − 0.02296 − 1.5564 −
M2 0.02445 − 1.5459 − 0.02372 − 1.5543 −
M3 0.02473 0.892 1.5448 0.050 0.02439 6.632 1.5463 0.394
M4 0.02474 0.001 1.5430 0.217 0.02464 0.746 1.5426 0.230

Table 3.13: Results of the grid study for the buoyancy-modified k− ω
turbulence model (Devolder et al., 2018).

Summary In order to summarized the previous results, the main wave height H and the
position of the main wave is plotted in figure 3.13 in function of the mesh, as well as the
maximum allowed Courant number. The dimensionless form is also shown and H0, x0 are
the reference values taken as the M4 results for the laminar case. Regarding the wave height
of the main wave, it is clear that convergence is achieved for Co = 0.1 and from M3, but
if we rely on the GCI study it seems that we can consider converged for all meshes for low
Courant number as even for the coarsest mesh the error will be lower than 4%, as seen in the
non dimension form of the graph (see figure 3.13c). In the case of larger Courant number
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much care has to be taken and at leastM3 shall be used. These results are true whatever the
turbulence model is used. Regarding the wave position variable, the results from curves 3.13b
does not strictly show convergence, this is mainly due to the low error that differentiates all
tested meshes and we shall not take as relevant these results in order to decide the mesh
size. This can be perfectly observed if the variables is plotted in dimensionless form as in
figure 3.13d, where effectively the maximum error between all meshes is around 1% and thus
we can consider that all results are converged.

(a) (b)

(c) (d)

Figure 3.13: Summary of the mesh convergence studies. (a) Wave
height as a function of the grid refinement. (b) X-position of the wave
crest as a function of the grid refinement. (c) Dimensionless wave
height as a function of the grid refinement. H0 is the value of H for
M4 case and the laminar model. (d) Dimensionless wave position as
a function of the grid refinement. x0 is the value of xwave for M4 case
and the laminar model.

To summarize, if the maximum Courant number is 0.1, then mesh size can be as low asM1

that is to say 83 cells per wave length and 25 cells per wave height. In the case of considering
a maximum Courant number of 0.45, then mesh M3 shall be used with 335 cells per wave
length and 74 cells per wave height. If we compare these results with the interDyMFoam
results then we can see that lowering the time step allows to use coarser meshes while in the
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contrary higher time step are used then the mesh will be much more significant.

Time discretization

M3 is used to study the influence of the time step (through variations of the Courant number
from 0.9 to 0.1). A laminar turbulence model is set up (we have seen that the global behaviour
is similar between laminar, k− ε or k−ω models). Results are shown in figure 3.14. We can
observe that for all maximum Courant numbers, the results are really close, confirming that
the use of M3 allows to avoid influence of the time step. However, M3 has a mesh size of
around 152000 cells, which is really large, since the future will be carried out in 3D. Thus, we
should favour a low Courant number approach in order to decrease the computational coast.
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Figure 3.14: Grid independence study for laminar flow simulation. (a)
Global case. (b) Zoom over the main wave.

3.2.3. 3D grid and square cylinder case
The creation of the coherent structures such as the vortices strongly depends on the

resolution of the flow close to the boundaries, in the case of this study close to the square
cylinder. The no slip boundary condition at the wall implies large velocity gradient as well
as for the kinematic turbulent energy k. There are different strategies for the resolution of
such flow, from wall treatment strategy to the full resolution of the boundary layer.

The Reynold’s number is defined as follows, as seen in part 3.1.2:

Re = Dumax
ν

(3.2)

where D is the cylinder diameter, ν is the kinematic viscosity and umax is the maximum
orbital velocity of the wave. The Reynolds number order of magnitude is 1000, yet the
boundary layer will have different size in function of the flow regime. In especial the turbulent
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boundary layer is greater than the laminar one (Newman, 2017). Thus if we are able to solve
the boundary layer for the laminar case, it will also be the case for the turbulent one. The
laminar boundary layer theory will allow us to estimate its size, and thus the size of the grid
at the cylinder. Blasius (1907) solution for a steady laminar flow and u(y = δ)/U = 0.99 is:

δ = 4.9x
Re

1/2
x

= 4.9
√

νx

umax
if 103 ≤ Rex ≤ 106 (3.3)

where U is the particle velocity far away from the boundary, ν is the kinematic viscosity of
the fluid, x is the distance from the leading edge. In the case of the unsteady motion of a flat
plate, corresponding to a sinusoidal motion, the boundary layer thickness depends on time
according to (Newman, 2017):

δ = 3.64
√
νt (3.4)

For small times, this estimation can then be really small. In the case of turbulent boundary
condition, the flow profile can be subdivided into three regions which are the viscous sublayer
(0 < y+ < 5), the buffer sublayer (5 < y+ < 30) and the inertial sublayer (30 < y+ < 200)
where y+ is the normalized distance to the wall defined as:

y+ = uτy

ν
with uτ =

√
τ0/ρ (3.5)

where τ0 is the shear stress at wall. It is however essential to know the shear stress at wall.
An estimation of the boundary layer thickness is given by Prandtl (1925) for turbulent flows:

δ = 0.16x
Re

1/7
x

= 0.16x6/7
(

ν

umax

)1/7
if 106 ≤ Rex (3.6)

The turbulent boundary layer thickness increases as x6/7, more rapidly than for the laminar
case which increases as x1/2.

The skin friction coefficient definition, which gives the fraction of wall shear stress com-
pared to the local dynamic pressure, is:

Cf = τ0
1
2ρu

2
max

(3.7)

From the previous boundary layer theories, it is possible to estimate the wall shear stress
with the use of the following empirical formulas from the flat plate theory (White, 2010):

Cf = 0.664
Re

1/2
D

for laminar flows and according to Blasius results, (3.8)

Cf = 0.027
Re

1/7
D

for turbulent flows according to Prandtl 1/7th law (Prandtl, 1925). (3.9)
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For turbulent flows, the skin friction coefficient decreases at a lower rate (Re−1/7
D ) than for

the laminar case (Re−1/2
D ).

We choose to estimate the boundary layer size according to Blasius theory and solve the
boundary layer by having 10 grid points inside the boundary layer. We make also sure that
the first cell y+ value is around 1 from estimation with equation 3.5-3.7. In the case of a wave
height was H = 0.0102 m, the water depth h = 0.05 m and the cylinder width D = 0.04 m
and a velocity estimation made thanks to the Mc Cowan equation, the resulting Reynolds
number is 5760, so that Blasius theory may be used, leading to a boundary layer δ = 2.5×10−3

m. The cell size at the cylinder is taken as ywall = δ/10. A slightly more conservative value
is taken with ywall = 2.5 × 10−4 m. This is in agreement with the observation of Jagadeesh
& Murali (2005) who found that 5 cells in the boundary layer with y+ < 2 is sufficient to
correctly solve the boundary layer for Re ≈ 106 however. They also find that a 100 nodes
along the body length are necessary to reach grid convergence.

The numerical domain, as described in figure 3.2, is composed of (1) the piston wavemaker
of widthW , (2) the tank end boundary, (3) the left wall of length L, (4) the right wall and (5)
the square cylinder placed at x0 from the origin and of diameter D. The numerical domain is
composed of several refined zones which are: the wavemaker zone (in yellow) where the mesh
is finer at the wavemaker and the water-air interface, the wave propagation zone (in red)
where the refinement is carried out at the water-air interface and the square cylinder zone
(in blue) where the mesh is refined at the cylinder and the interface. This last refinement
zone is made of a cylinder diameter D wide space at each side of the cylinder, while a half-
cylinder diameter wide zone is refined ahead of the cylinder and a diameter and a half is
refined in the wake of the cylinder. The mesh specificities of every zones are listed in the
following paragraph.
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(a)

(b)

Figure 3.15: (a) Top view of the mesh. (b) Lateral view of the mesh.
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The global mesh can be visualized in part (1) of figure 3.6. The mesh is mainly formed of
hexahedral cells , with a uniform refined zone at the water-air interface which includes the
minimum and maximum water height during the whole simulation and which is visible in
zoomed part number (5) of figure 3.6. The other refinement zones at both the wavemaker and
the square cylinder can also be observed in part (2) and (3), respectively. The first cell size
at the wavemaker is based on the study of 3.2.1 and is 1 mm wide. A 1.05 cell-to-cell growth
ratio is used in the x-direction leading to a smooth transition from the wavemaker to the cell
propagation zone. The same ratio is used from the wave propagation zone to the cylinder
zone and another refinement is carried out, in addition, with cells cut in 2 in the x and y
direction. Outside the refined zone, a 1.2 cell-to-cell growth ratio is used in the y-directions.
In the z-direction, the cell height is kept constant and an extra-refinement in the interface
zone allows to reach the 25 cells per wave height, as shown in part (6) of figure 3.6. The wave
propagation zone has an homogeneous cell size, which is based on numerical independence
tests. These showed a great dependence over both the cell size and time step. However, the
decrease of the time step makes disappear these discrepancies and an adjustable time step
based on the maximum Courant number of 0.1 is chosen to keep both reasonable computation
time and mesh size. The final mesh is composed of a minimum of 83 cells per wave length
and 25 cells per wave height. The first cells close to the cylinder are built in order to achieve
at least 10 cells in the boundary layer, considering the Blasius solution for the flat plane
and a laminar flow of magnitude U given by McCowan (1891) theory of solitary wave which
shows to be a good approximation of the orbital particle horizontal velocity of the undular
bore main wave. Part (4) of figure 3.6 shows the first cell layers at the cylinder of width
2.4 ·10−4 m. Outside these boundary layers cells, the mesh exhibits cells of aspect ratio equal
to 1 and size twice the boundary layer cells. The domain past the cylinder (after 1.5D) is
not refined as it is not of interest for this study, but allows the wave to keep propagating
along the tank. At the seabed, exposed on part (7), vertical extra refinement is set-up with
10 cells of height 1.9 · 10−4 m which also allows to solve the boundary layer.

Even if the numerical implementation of dynamic mesh can be more complex than for
static one, and it executes more slowly than a simpler boundary condition, dynamic mesh
turns out to be closer to the physical phenomena, and thus is very useful to model the piston
wavemaker motion. In this work, the mesh uniformly contracts when the flume end moves,
conserving the global mesh cell volumes as this motion is relatively small compared to the
flume length.
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3.3. Post-processing of numerical simulation
Interface detection Interface detection is carried out by using an iso-surface such as
α = 0.5, where α is the Volume of Fluid variable. No reconstruction is done, as in the
interIsoFoam solver. The error, due to error in orientation of the interface in the cells is
however minimized by the use of a refined zone at the water-air interface.

Force computation The forces over the wavemaker or the cylinder, which can either
be pressure (perpendicular to the wall) or viscous (tangential to the wall) forces, can be
calculated from the pressure and velocity fields at the wavemaker using the stress tensor ε,
the elementary surface area dS (which is in the 2D case an elementary length) and n its
normal:

Fw =
∫
z
ε · n dS (3.1)

The stress tensor is defined as:

ε = −p
1 0

0 1

+ 2µ
 ∂ux

∂x
1
2

(
∂uz
∂x

+ ∂ux
∂z

)
1
2

(
∂uz
∂x

+ ∂ux
∂z

)
∂uz
∂z

 (3.2)

Note that the previous results are true for the laminar equations. In the case of the study
of a turbulent case, and the use of RANS equations, which can be written as (in Einstein
notation):

ρuj
∂ui
∂xj

= ρfi + ∂

∂xj

(
−pδij + 2µSij − ρu′iu′j

)
(3.3)

The total stress tensor therefore corresponds to the stress tensor for the laminar case plus
the Reynolds stress, which can be expressed as:

τ ′ij = −ρu′iu′j (3.4)

Boussinesq (1877) formulated the possibility of expressing this tensor (symmetric as all stress
tensors) as:

τ ′ij = −ρu′iu′j = 2µtSij −
2
3ρkδij (3.5)

where µt is the turbulent dynamic viscosity or eddy viscosity, Sij is the mean rate of strain
tensor, k = 1

2u
′
iu
′
i is the turbulent kinetic energy and δij is the Kronecker symbol.

Vortex representation Vorticity is a vector field which allows to measure the rotational
characteristic of a flow (its tendency to rotate). The first works on vorticity can attributed
to d’Alembert (1749) and Euler (1752), while Lagrange (1760) and Cauchy (1815) are the
first ones to use single letter to refer to vorticity according to Truesdell (1954). Vorticity can
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be defined as:
ω = ∇× u (3.6)

If the vorticity concept is well known, and is of importance in the study of turbulence,
the definition of vortex has been debated during the last decades, as expressed by Jeong
& Hussain (1995). The most common way of representing vortices is to use iso-vorticity
surface, such as in Hernández & Reyes (2017), where a percentage of the maximum vorticity
magnitude was taken (30%), in a study of multiple symmetrical collision of vortex rings. But
the presence of vorticity does not nessassarily means that a vortex is present (Chong et al.,
1990). Jeong & Hussain (1995) discuss the validity of three common and intuitive indicators
of vortices, that is to say pressure minimum, closed and spiraling streamlines and pathlines
and finally iso-vorticity surface and show they are characteristics which are not adequate to
describe vortices in general. With the purpose of properly defining a vortex, Chong et al.
(1990) proposed the following criteria: a vortex core region has complex eigenvalues of ∇u,
which is equivalent to:

∆ =
(1

3Q
)3

+
(1

2R
)2

> 0 (3.7)

with Q is defined in equation 3.8 and R = Det (∇u). Hunt et al. (1988) proposed to call
eddies any region where the quantity Q, the second invariant of ∇u, is positive. Q is defined
as the following quantity:

Q = 1
2
(
||Ω||2 − ||S||2

)
(3.8)

where ||Ω|| = [Tr (ΩΩᵀ)]
1
2 , ||S|| = [Tr (SSᵀ)]

1
2 . Ω and S are the skew-symmetric and symmet-

ric component of ∇u respectively, that is to say Ω = 1
2 (∇u−∇uᵀ) and S = 1

2 (∇u +∇uᵀ).
The quantity Q locally compares the shear strain rate and vorticity magnitude. At a wall,
this quantity is 0, meaning that shear strain and vorticity have the same importance. Jeong
& Hussain (1995) however shows that there is no connection between regions with Q > 0 and
a region of pressure minimum, which is a characteristic of vortex. They instead put forward
the following criteria: a vortex core region is characterized if S2 + Ω2 has two negative eigen-
values, or considering λ1, λ2 and λ3 the eigenvalues such as λ1 ≥ λ2 ≥ λ3, if λ2 < 0. Upon
all techniques described, we will use the Q-criterion and/or the iso-vorticity visualization as
they are more simple to implement.
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Chapter 4

Experimental Wave Tank

The experiments, which were fully designed for the purposes of this thesis, are based on
the generation of undular bores thanks to a piston wavemaker and its interaction with a
vertical square cylinder. In this chapter, we present the different elements which allowed
the data capture of the main characteristics of the undular bore and the kinematics around
the square cylinder. It consists in the full description of wave tank facility in section 4.1.1,
with emphasis to the piston wavemaker in section 4.1.2 and the vertical square cylinder in
section 4.1.1. Then the capacitive wave gauge design and tests are developed in section 4.2,
notably review of the capacitive sensing and working principles, the electronics, and the
different test cases are presented in sections D.3.2, 4.2.2, and 4.2.3, respectively. Finally, a
PIV system is described in section 4.3, where the concept is reviewed in section 4.3.1, the
free-surface detection with Radon transform is detailed in section 4.3.3, the post-processing
tool is implemented in section 4.3.1 and the extensive validation test cases are presented in
section 4.3.2.

4.1. Wave Tank

4.1.1. Facility
The wave tank consists of a rectangular flume whose dimensions are 2 m length, 60 cm

wide and 25 cm high as specified in table 4.1 and is situated at the LEAF-NL laboratory. It
was, along with the wavemaker, created and built throughout this thesis work.

L d W h D

2 m 0.25 m 0.60 m 0.05 m 0.04 m

Table 4.1: Main dimensions of the LEAF-NL wave tank.
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Schematics of the wave tank can be found in figure 4.1. At the left end, a wavemaker is
placed and a piston frontal system is chosen as it is the wavemaker system which displaces the
most important volume of water and thus is able to generate undular bores. The piston wave-
maker is also able to generate harmonic waves or solitary wave as it is computer-controlled.
The wave tank walls, seabed and piston wavemaker are made of plexiglass, an easy to work
and fully transparent material, allowing to easily observe inside the tank from any location
around. No beach is installed at the right wall since the undular bore experiment is stopped
before any wave reflections reach back the square cylinder.

Figure 4.1: Scheme of the wave tank 1© at LEAF-NL. The piston
wavemaker 2© creates an undular bore 3©, which propagate along the
tank which has a length L, a height d, a width W and the mean
water level is set at h. The tank end wall is situated at the opposite
side from the wavemaker. The vertical square cylinder 4©, whose side
measures D, is placed at a distance x0 from the original position of the
wavemaker (at the left wall).

The vertical cylinder is a 4 cm wide square based cylinder made of aluminum. It is placed
at the center of the the wave that is to say at x = 1 meter from the wavemaker and at 30
cm from the lateral walls (which corresponds to y = 0 m). The cylinder is held by a vertical
beam which anchors it from the top and so that any motion is prevented, specially when the
wave impacts it. A picture of the experimental cylinder installed in the wave tank can be
found in figure 4.2b.

A global view of the wave tank can be found in the pictures of figure 4.2a. The wave tank
is equipped with an in-house capacitive wave gauge described in section 4.2 and a Particle
Image Velocimetry (PIV) system described in section 4.3.
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(a) (b)

Figure 4.2: Wave tank set-up. (a) Photograph of the wave tank at
LEAF-NL. (b) Vertical square cylinder used in the experiments.

4.1.2. Piston wavemaker
General Configuration The wet-back piston wavemaker module is constructed with the
help of an aluminum frame and can be observed in figure 4.3. Special care is taken to avoid
too much losses due to the wet-back character of the wavemaker at the bottom and lateral
open spaces. The piston moves thanks to an endless screw put in rotation by a stepper
electric motor NEMA 34. To allow perfect straight motion and rigidity to the wavemaker,
the piston is driven with the help of two guides and ball bearings connect the piston to the
guides which are made of stainless steel tubes. The piston plate is stiffened by the addition
of vertical stiffeners which allows to decrease the thickness of the plate, and thus its weight
while keeping it stiff.
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(a) (b)

Figure 4.3: Piston wavemaker set-up. (a) Top view. (b) Rear view.

Stepper motor A stepper motor is capable of turning its shaft by a number of discrete
angular motion, that is to say an angle, corresponding to the 360 deg /Number of steps. The
stepper motor is chosen because of its price accessibility and high controllability, notably
with the common available microprocessors such as the arduino UNO. The stepper motor
is controlled by a series of electrical impulses. The Nema 34 is a bipolar stepper motor
that offers both precision (200 steps or 1.8 deg) and powerful holding torque (4.5 N.m). The
dynamic torque however decreases notably at high pulse rate. The NEMA 34 motor main
characteristics are summarized in table 4.2. Both direction and shaft revolution per minute
(RPM) are controlled throughout a DM860 driver, which converts the input pulse into the
necessary power that the motor windings need. This last one includes a H bridge to allow the
motor to rotate in reverse direction and microsteps (from 400 to 40000 steps per revolution).
It is powered by either a direct current (30 V) from EZ GP-4308D DC Power Supply or an
alternative current (till 80 V) and is controlled by an arduino UNO. The overall wavemaking
system is shown in figure 4.4. A drawback of using a stepper motor is the impossibility to
start the shaft rotation at high speed. In the case of the step motion, a ramp is needed to
get to the constant velocity. The slope of the ramp depends on the holding torque of the
motor which itself depend on the feeding voltage. A high voltage allows more important
acceleration of the motor.
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Figure 4.4: Control of the piston wavemaker. The piston wavemaker
is put in motion through the use of a power screw system which is
presented here. The piston wavemaker 1© is guided by the translation
ball bearings 2© along the rails 3©. The wavemaker is fixed to the nut
4© and put in translation through the rotating motion of the endless
screw 5©. A connection 6© allows the screw to rotate with the motor
shaft 7©. The NEMA 34 motor is controlled by an arduino UNO
microcontroller and the help of a DM860 stepper driver and a DC
power supply.

Rated Voltage Rated Current Steps Angle Holding Torque

2.2 V 5.5 A 200 1.8 ° 4.5 N m

Table 4.2: Main characteristics of the NEMA 34 stepper motor.

Open-loop control of the piston wavemaker The paddle motion is set by a function of
time, which can be sinusoidal, a step, or a custom function as represented in figure 5.18, where
a step velocity is preceded by a ramp so that the motion of the piston is progressive, which
allows the stepper motor to reach the constant step velocity without jamming. There is no
feedback loop that would allow the correction of the motion. This is the most common way
of producing waves. The module is controlled with an Arduino Uno R3 1. Arduino is an open
source electronic micro-controller whose prime objective is to make electronics available for
beginners and yet powerful and flexible enough for more complicated applications. It is widely
used to create low cost sensors, robots or any application needing system control. The control
of stepper motors is made easy with the use of the so-called "stepper library", but in our case,

1 https://www.arduino.cc
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the "accelStepper" library2 is employed which offers much more control on the stepper motor,
such as acceleration, deceleration, multiple stepper motors, or even very slow speed. It allows
us to receive and process analogical signal from sensors and control the stepper motor shaft
rotational velocity. Arduino uses its own language which is hopefully close to C and the code
used to generate the undular bore can be found in appendix D.2. The connections between
the Arduino board, the driver and the motor are detailed in appendix D.1.
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Figure 4.5: (a) Piston wavemaker velocity and displacement. (b) Ex-
perimental piston wavemaker displacement.

A check of the experimental piston velocity is carried out in the tank filled with h = 0.05 m
water and by filming the displacement of the wavemaker from the side with a CCD camera.
The frame rate is 60 Hz and to ease the detection process a black marker is stuck on the
wavemaker side. The results of the procedure is shown in figure 4.5b where it is observed
that the piston displacement is quite close to the theoretical one, with a mean error of 5%
when the velocity is constant. We can also compute the mean velocity of the piston through
a linear regression on times t > 0.1 s (when the piston velocity is set to be constant). We
obtain a value of 0.0947 m/s, that is to say a 5.3% error from the theoretical velocity, which
is acceptable. Note also that if we take times larger than 0.3 s, the error drops to 3.6%. We
can conclude that the generation process is precise enough and the velocity step is correctly
carried out.

4.2. Capacitive wave gauge
In this section, the capacitive wave height sensor is described and important features

about its working capabilities are summarized. It is important to be able to determine with
precision the free-surface dynamics in the experimental wave tank as it will be one of the

2 http://www.airspayce.com/mikem/arduino/AccelStepper/
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comparison point that will be carried out with the numerical simulations. The sensor consists
of a U-shaped PTFE wire of small diameter which constitutes the first "plate" of the capacitor
while the water is the other "plate". The dielectric of the capacitor is the plastic coating,
acting as the insulation from the water. As the water oscillates up and down, the capacitance
of the device varies, allowing to get a relation between the wet length (wave height) and the
capacitance. By measuring the capacitance, we are able to deduce the water level at the
sensor. Such measurement is done thanks to a charge amplifier circuit. Stray capacitances
are taken into account and suppressed and thus the sensitivity of the device is improved.
Finally, a full-wave rectifier with smoothing capacitance circuit allows to retrieve the output
of the charge amplifier circuit by measuring a DC signal. As a consequence, the sampling
frequency of the acquisition card does not need to be extremely high and the measurement
is done easily. The device calibration, as well as important parameters influence are shown.

4.2.1. Review of measurement techniques and choice of
the sensor

This section aims at specifying the specifications the design must respect according to the
wave gauge and wavemaker system application. A review of water level sensing techniques
can be found in appendix D.3.1.

Water level sensor specifications. For the application of the small wave tank at the
LEAF-NL laboratory, the following requirements are expected from the wave gauge. The
spacial resolution should be at least of 1 millimeter and the sampling frequency should be
at least 100 Hz. Moreover, the sensor shall not modify the fluid motion. In the case of the
sensor placed at the wavemaker, it might have a protection against possible effects of the wet
back piston: while an elevation of water is observed at the generating side of the piston, a
decrease of water height is generated at the wet back. It is important then that it does not
interact with the water level detection. If any calibration is used it should be simple and an
automated procedure is welcome. Cables for information transmission should be the shortest
possible in order to avoid picking noise and decrease stray capacitance.

Choice of the sensor. Floats sensors, hydrostatic devices and load cells are excluded from
the choice panel as they appear not to be accurate enough. Pressure sensors are limited to
stationary problems and are not suitable in our case. Ultrasonic Level Transmitters and
Laser/Radar Level Transmitters could be a solution but they are more complicated to build
and more expensive than a capacitive or resistive wave gauge which are composed of simple
geometric elements and basic electronics components. It is chosen to work with a capacitive
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wave gauge, which is widely used for this purpose, as they present advantages over resistive
gauges such as no salinity sensitivity (which however in our case is not important as we are
working with tap water), no cross talk (or at really close proximity) (Chapman & Monaldo,
1995) and less sensitive to temperature change (allowing for example to calibrate them only
one time per day). This choice implies however some drawback such as flowback error more
important than for the resistive gauge (Boudan, 1953), but according to the same author it
can be avoided by using wire of really small diameter (which order of magnitude is 0.01 mm).

4.2.2. Design of the capacitive sensor
In this section, the design of the sensor (shown in an artist view in figure 4.6) is detailed,

that is to say that the physical device is described, how the electronics signal conditioning is
designed to both maximize sensibility and get straightforward measurements and finally the
results and validation of the device are shown.

Figure 4.6: Artist view of the sensor use in the wave tank.

4.2.2.1. Capacitance and impedance of a wire immersed in a con-
ducting fluid

The device wire immersed in water (which conducts electricity) can be seen as a transmission
line, similar to a coaxial cable. Thus it is important to theoretically estimate the order of
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magnitude of its capacitance and the effects of other phenomena associated to transmission
line such as the inductance.

Capacitance derivation: The immersed wire, insulated from the conducting fluid (in this
case water), constitutes a capacitor where one plate is the inner copper wire, the second plate
is the water and the dielectric is the coating, in this case enamel (even if other material can
be use, such as teflon (PTFE) as in S.-A. Yang & Chwang (1989), or polythene Tucker
& Charnock (1954)). Let’s first calculate the electric field induced by a charged vertical
cylinder as exposed in figure 4.7. To apply Gauss’ law, we consider a cylinder surface of
radius r, length l and centered on the charged cylinder symmetry axis. The law states that
the electric field flux through a closed surface S is equal to the total charge contained in the
volume delimited by S and divided by ε:

Φ =
∮
S

~E · d~S = Q

ε
(4.1)∫

lateral

~E · d~S +
∫
top

~E · d~S +
∫
bottom

~E · d~S = Q

ε

(4.2)

As at the top and bottom of the surface the elementary surface and electric field are perpen-
dicular we get ~E · d~S = 0. We also have, according to the symmetry of the problem, that
the electric field only depends on the radial coordinate r, i.e. ~E = ~E(r). The flux expression
can then be simplified:

E
∫
lateral

dS = Q

ε

E2πrl = Q

ε

E = Q

2πεrl (4.3)
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Figure 4.7: Case of study for the application of Gauss’ law.

Let’s now consider a vertical wire of radius r1, length l and a second cylinder of radius
r2, coaxial to the first wire. The space between the first and second cylinder is filled with
the coating, in this case enamel of permittivity ε. We have then r2 > r1. We can write:

~E = −~∇V (4.4)

E = −dV
dr

as V only depends on r

dV = −Edr

∆V = −
∫ r2

r1
E dr

∆V = − Q

2πεl

∫ r2

r1

dr

r

∆V = − Q

2πεl ln
(
r2

r1

)
(4.5)

Leading to the capacitance:
C =

∣∣∣∣ Q∆V
∣∣∣∣ = 2πε

ln
(
r2
r1

) · l (4.6)

If we write r2 = r1 + e with e the thickness of the coating, considering e � r1 and the
approximation ln (1 + x) ≈ x if x� 1, we get:

C = 2πεr1

e
l (4.7)

It is important to notice that the wider is the central wire (r1 increases) or the thinner is
the coating (e decreases), the more sensitive becomes the sensor as the value of the capacitor
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C increases. Let’s consider a coating thickness of a tenth of the radius, and a coating of
polyester (εr = 3) then C = 166 · 10−12F for a 10 cm submerged cable. We will see later on
that this value is consistent with the experiment.

Impedance of a transmission line It can be shown (see appendix D.3.3) that the
impedance of a transmission line can be written according to the following equation:

Z(l) ≈ 1
jωC ′l

(4.8)

if kl � 1 and where k is the wave number of the light wave propagating in the medium
and is defined as k = ωµε = ω/c and l is the wire length. Equation D.13 shows that the
impedance of a wire immersed in a conductive fluid is mainly capacitive if ω

√
L′C ′l � 1.

According to Prunkl et al. (1958), the enamel coating are generally composed of plastics
such as polyurethane, polyvinylformale, polyesther, copolymer of vinylchloride vinylacetate,
carbamide resin or polyamide (perlon), which have relative dielectric constant3 εr = ε/ε0

(with ε0 = 8.854187 · 10−12 F/m the dielectric permittivity of vaccum) between 2.8 and 4.
We can also consider the relative magnetic permeability of such components to be of the order
of magnitude of 1 (considering the magnetic permeability of vacuum to be µ0 = 4π · 10−7

H/m). If the excitation frequency of the transmission line is 10 kHz then ω
√
L′C ′l = ωµεl ≈

10−13 � 1 for a 20 cm long sensor. We will consider hereafter that this condition is fulfilled
and that the sensor device can be considered to be a pure capacitor CS.

4.2.2.2. Physical set-up

A design is proposed in figure 4.8 and the dimensions are reported in table 4.3. The sensor
consist of a support rod vertically tensing a wire. The support rod connects the electronic
ground to the water thanks to the BNC connector and a joining plate. The wire loops around
the rod base and is fixed to the other end by a knot. This end can be vertically adjusted to
tense more or less the wire. The wire ends are connected to the BNC core by welding. As the
diameters of the wire and support rod are small they should not be intrusive. The capacitor
is then constituted between the water at ground and the inner part of the wire while the
coating is the dielectric. The author wants to underline that this configuration, made for
testing the general concept of the sensor, can be be adapted to the needs of the experiments,
especially for measuring at walls by mean of copper bands for example.

3 The dielectric constant depends on the excitation frequency and the temperature.
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dwire drod L Metal Coating

0.25 mm 5 mm 20cm Copper Enamel

Table 4.3: Dimensions of the capacitive sensor.

Figure 4.8: Sensor design. The BNC con-
nector 1© allows to connect the sensor to
the electronics, the BNC support plate 2©,
besides its role of fixing the connector to
the sensor, is used to connect the ground
plate of the BNC cable to the support rod,
the wire is attached to one end of its sup-
port thanks to a node 4©, the acrylic sup-
port 3© is used to tense the copper wire
thanks to a vertical adaptive position, the
inox steel support rod 5© connects the wa-
ter to the ground of the electronic circuit
while serving as a rigid support for the sen-
sor elements. Finally, the enameled copper
wire 6© is connected to the virtual excita-
tion potential of the electronic circuit and
is the place where the measurement takes
place.

4.2.2.3. Signal conditioning

To allow the measurement of the capacitance, a charge amplifier circuit is used in a con-
figuration where two capacitors (of which one is the sensor) are mounted in a bridge. The
circuit is fed with a sine wave Vin. The output is a harmonic signal whose amplitude pro-
vides the information of about the capacitance value. It is however relatively unpractical
to measure it directly as the excitation frequency reaches several dozens of kilo hertz and
thus a precision full-wave rectifier, with a smoothing capacitance is used to convert the AC
signal to a DC one. Finally the signal is low-pass filtered to clean it. The practical circuit
is shown in figure 4.9. For the whole circuit, TL082CP operational amplifiers are used as
they allow to work at higher frequencies than cheaper op-amp such as the LM741 and are
more compact as they integrate two op-amps in a single chip. The over-cost is really small
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(around 300 $CLP a piece). They are powered by a ±12 V signal from a dual battery set-up.
The electronic component lists and a PCB design can be found in appendix D.3.4. The data
acquisition with the sensor in this thesis was however carried out from the protoboard since
all electronic workshops at Universidad de Chile stayed closed due to the coronavirus crisis.
In the following paragraphs we review all circuit part and give the transfer function of each
of them.

Capacitor bridge: The value of the immersed wire capacitor can be relatively low, and
then can be totally covered by stray capacitances that appear in the practical circuit, such
as the capacitance from the coaxial line connecting the sensor to the rest of the circuit
(which can reach values of C ′stray = 100 pF/m), the capacitance of the wire placed in the
air (part which is not immersed) and also capacitances from the PCB conductive tracks or
the input of the operational-amplifiers in use. Therefore, a strategy consisting in artificially
subtracting a capacitance from the measured one is adopted thanks to the use of a bridge.
Other possibilities is the use of an inductor (Wilner, 1960) or the so-called resonant bridge
carrier system (Cook, 1951). We call V bridge

out the output of the first amplifier (left bottom
corner) and we have:

V bridge
out

Vin
= R2

R1
+ 1 = 2 as R2 = R1 (4.9)

Now we can write the following equation according to Kirchhoff’s nodal rule:

i = is + i0 (4.10)

= CS
d(0− vin)

dt
+ C0

d(2vin − vin)
dt

I = jω (C0 − CS)Vin (4.11)

The resulting current i depends on both CS and C0. If now we consider that CS = Cm +
∆C +Cstray and adjust C0 = Cstray, we obtain that the measured capacitance does not take
into account the stray capacitance and as we will see a better sensitivity of the sensor.

Charge amplifier: The output voltage of the charge amplifier circuit (second op-amp) is
called V CA

out . It can be shown, by equalizing the i current with the current in the feedbcak
branch, that the transfer function of such circuit (capacitor bridge + charge amplifier) is:

TF = V CA
out

Vin
= 1 + jωR3 (CS − C0)

jωR3C1 + 1 (4.12)

and thus:

Cm + ∆C =

(
V CAout

Vin
− 1

)
(jωR3C1 + 1)
jωR3

(4.13)
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If ω >> 1
R3C1

:

Cm + ∆C =
(
V CA
out

Vin
− 1

)
C1 (4.14)

By using the capacitor and the charge amplifier, we are able to measure the capacitance of
the immersed wire, without the overweight of the stray capacitances and at the condition
that ωc >> 1

R3C1
. If R3 = 8 MΩ and C1 = 30 pF, we get fc = 663 Hz, thus the excitation

frequency shall be much higher than this particular frequency fin � fc and we will consider
working at frequency always higher than 6 kHz. In practice, we will only measure V CA

out as it
is directly proportional to the water level at the probe.

Precision Full-Wave Rectifier: The charge amplifier, if it allows to measure capaci-
tances, has the drawback of necessitating high excitation frequency and implies difficulties
to measure its amplitude unless to possess high frequency acquisition cards. To remedy to
this problem, the signal is rectified thereafter with a precision full-wave rectifier which avoids
voltage drops through the diodes (Ye, 2013) and then passes through smoothing capacitor
circuit which allows to convert the AC signal to a DC signal whose level is the amplitude of
the AC signal. We use Schottky diode for the whole circuit, which has a lower drop, even if
in this part simple diode would also work as the circuit actively compensates this drop. This
circuit is tested in the following section (see section 4.2.3.1).

Smoothing capacitor: The signal from the output of the precision full-wave rectifier is
still alternative even if it passed through an absolute value converter. It needs a smoothing
capacitor to be transformed to DC signal. To that end, we use a Schottky diode and a
capacitor set up in parallel. The Schottky diode still has a voltage drop, which is compensated
thanks to an active op-amp set-up. The author tried to avoid the use of this diode, whose
drop is annoying but no satisfying solution was found.

Low-pass filter: Finally, an active low-pass filter is set-up to filter eventual high-frequency
noise that may appear. The first filter is an inverting low pass filter but as the output is
negative it is followed by an inverting amplifier. The total transfer function is the following:

TF = R10

R9

R8

R7

1
1 + jωR8C4

(4.15)

and the cut-off frequency is fc = 1/ (2πR8C4) and the numerical application gives fc = 318
Hz. The total gain of the filter is one as R10 = R9 and R8 = R7.
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4.2.3. Sensor characterization
All data is measured thanks to the DT9804 data acquisition card and QuickDAQ software

from Data translation enterprise4. The sensor signals (Vin and Vout) are recorded at a sampling
rate of 100 kHz when not specified otherwise. Post-processing consists in measuring the peak-
to-peak value of the signals over a certain number of periods in the case of measuring the
output tension from the charge amplifier, or the DC output voltage from the rectifier. The
error associated with such processes is characterized with the standard deviation method. In
the following sections, the precision rectifier and the charge amplifier will be tested and the
calibration curves will be given.

4.2.3.1. Rectifier Characterization

Ripples The main source of error when it comes to rectify a signal is the creation of ripples
as explained in figure D.7c. This error however seems not to impact the final measurement
as it applies equally on all input voltage amplitude. This is true however only if the output
voltage is important enough so that the ripple error can be neglecting compared to the overall
amplitude.

Transfer function The rectifier characterization is carried out by applying directly at its
entry an input signal from the function generator (circuit parts consisting oof the full-wave
rectifier, the smoothing capacitor and the low-pass filter). The first test case consists in
applying a Vpp = 2 V sine input signal and vary the frequency. The results are reported
in figure 4.10a as the gain which is the quotient between the output DC signal and the
amplitude of the input signal in function of the frequency. The amplitude measurement
error is superimposed on the same figure. The second test case is now keeping the frequency
constant at fin = 10 kHz and varying its amplitude. The results are presented in figure 4.10b,
and as for the first case the error is also displayed. The precision rectifier and smoothing
capacitor behaves well, i.e. GdB ≈ 0, for a frequency range between 7 kHz and 20 kHz and for
input peak-to-peak amplitude between 2 and 15 V, maintaining the error below 2% for this
range. The sensor will need to work at these frequencies and amplitude to behave as needed.
Lower frequencies and lower amplitudes gives more important errors and a gain further away
from 1 or GdB = 0. At higher frequency or higher input amplitude the error remains low but
the gain is lower than 1.

4 https://www.mccdaq.com/Data-Translation
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Figure 4.10: Transfer function of the rectifier and smoothing capacitor
circuit. The transfer function gain is expressed in decibel and the error
is defined as ε =

∣∣∣Vout−Vin
Vin

∣∣∣. (a) Gain vs input voltage frequency. Peak-
to-peak amplitude of the input signal is 2 V. (b) Gain vs input voltage
peak-to-peak amplitude. Input frequency is 10 kHz.

Dynamic test In order to study the dynamics of the rectifier, smoothing capacitor and
low-pass filter circuit, a modulated signal is given at the input of this circuit. The carrier
frequency, which corresponds to the working frequency of the sensor, is a 10 kHz wave (see
figure 4.11b) and the modulation waveform is a variable frequency sine signal of amplitude
of 2 or 8 V as shown in figures 4.11a and 4.11c. Frequency range is 10 to 200 Hz. The
modulated signal is generated thanks to the waveform generator. It is interesting to remark
that the cut-off frequency of the low-pass filter is fc = 318 Hz and therefore the filter does
not impact the measurements for the lower frequencies. We can however assume that it does
have an influence on the higher ones as the maximum tested modulation frequency is 200 Hz.
From these tests, we can compute the frequency dependent transfer function gain between
the modulation waveform (containing the information of the wave height) and the recovered
one from the electronics. Results are shown in figure 4.11d. We can observe first a gain close
to 0 for low frequencies and the 2 V input signal. For frequencies till 50 Hz the gain stays
close to 0, while decreasing for higher values. In the case of less favorable input signal, that is
to say for the 8 V case, amplitude is lower than for the 2 V case, conducting to imprecision in
the measurement. The loss, for low input signal is however low (2.5% error over the 8 V). At
200 Hz, the error is close to -1 dB and corresponds to a 20% error, which is quite important,
but is due to the signal filtering. However, high variations at such short time is not likely
to happen in the wave tank. We can conclude that the rectifier, smoothing capacitor and
low-pass filter circuit behaves well and is able to follow huge voltage variations at relatively
high frequencies (higher than the physical phenomena that is measured). In practice, the
voltage variation is for a 1 cm wave height will only be of the order of magnitude of 1, thus
we can consider that the error generated by the rectifier will be low (< 2%).
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Figure 4.11: Dynamic tests of the rectifier. (a) Voltage in function
of time for the theoretical input signal (in blue) and the measured
output from the rectifier. The input modulated signal is a sine function
of amplitude 2 V, and the carrier frequency is 10 kHz. (b) Zoom
over a short time showing the carrier frequency. (c) Case of a 8 V
modulation waveform amplitude. (d) Gain of the transfer function
between the input signal (modulation waveform) and the recovered
signal from rectifier.

4.2.3.2. Charge Amplifier Characterization

In this section, we aim at studying the influence of the excitation frequency on the measure-
ment of the capacitance which is done by the first part of the electronics, that is to say the
bridge capacitance and charge amplifier circuits. In order to disconnect these tests from the
physical sensor, a 47 pF nominal capacitor replaces the sensor, even if it is still connected to
the circuit with the coaxial circuit. The experimental (squared) gain of the charge amplifier
circuit is shown in figure 4.12a. Input frequency varies between 100 Hz and 30 kHz. To be
able to study the circuit, we need to precisely measure the different capacitors which compose
the bridge and the charge amplifier. We also need to measure the stray capacitance from
the coaxial cable. Results of the measurements (done with a Mastec Ultra Precision MY-65
multimeter) are shown in table 4.4. The error, according to the constructor, is 0.3% +2×
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least significant digits for the resistance measurement and 4% +10× least significant digits
for the capacitance ones.

The results show convergence at high frequencies (fin > 3 kHz) according to the theory
(see section 4.2.2.3) even if for the highest frequencies (fin > 8 kHz) the error associated
with the gain measurement strongly increases due to the inability to precisely measure the
AC amplitude from the acquisition card whose maximum sampling frequency is 100 kHz.
Influence of the input signal amplitude is low, even if some discrepancies can be observed
at low frequency. Finally the results appear coherent with the theoretical gain while the
error associated with the multimeter capacitance measurements leads to high uncertainties
(transparent grey). The general behavior is nevertheless really similar between the measured
gain and the theoretical one. In the case of calculating the equivalent capacitance, a good
estimate is obtained at high frequencies, but the error associated to the process is still huge
(±10 pF). We could gain accuracy by lowering the uncertainty on every capacitance mea-
surements. The estimate is however good, showing the capabilities of the charge amplifier to
measure capacitance, concomitantly with the bridge capacitance circuit.

(a) (b)

Figure 4.12: (a) Transfer function of the charge amplifier circuit in
function of the excitation frequency. The blue curve corresponds to an
input peak-to-peak voltage of 1 V while the red one to a 4 V input. The
continuous black line shows the transfer function theoretical results and
the black dashed line corresponds to the predicted value from circuit
theory at high frequency. Error for the theoretical value is represented
in transparent grey color. (b) Equivalent capacitance in function of
the input frequency. The measured value of the capacitance from the
multimeter is shown in black and its associated error in transparent
grey.

96



C0 C1 R3 Cstray C47pF

Value 147.2 pF 33.4 pF 10.210 MΩ 131.2 pF 49.3 pF
Error 6.9 pF 2.3 pF 32.630 kΩ 7.4 pF 3.0 pF

Table 4.4: Capacitor measurements from multimeter and their associ-
ated error.

4.2.3.3. Calibration

Calibration is carried out by placing the sensor vertical and linked to a graduated ruler with
a precision of 1/10 mm. A series of measurements is done for different water levels. Results
are shown in figure 4.13. The output of the circuit Vout is plotted in function of the water
depth (the immersed distance) of the sensor. Two cases are investigated: first the sensor
is sank in the water (blue curve), then once it has reached its deepest position it is risen
(red curve). A linear fit is carried out (dashed dark straight line) based on the blue curve
and three deepest points (40, 60 and 80 mm). Finally, we study the effect of letting the
whole sensor out of water during a long time (typically a night, see figure 4.13a) and letting
immersed overnight before calibrating it (see figure 4.13b). The first observation we can make
is that the sensor output voltage is linear with the water depth even if some discrepancies
appears when the sensor is fully outside of the water (only its base is touching the water
(0 mm)). The influence of the wetting effects can be seen as the sinking and rising curves
display differences, even if the global behavior and the line slope are very similar. From this
translation we can define an error due to wetting whose amplitude is 1 mm approximately.
Letting the sensor immersed during a long time seems to decrease this error. In comparison,
the maximum error from calibration curves obtained by Akamina AWP24 20 cm high wave
gauge is 0.28% of its total height that is to say 0.55 mm (Laurich, 2009).
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Figure 4.13: Calibration of the water level sensor. The red curve
corresponds to the sinking method of the sensor calibration process
while the the blue curve corresponds to rising one. (a) Dry sensor. (b)
Sensor left during the night in water.
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Figure 4.14: Calibration around working depth. Vrising = 0.0724η +
5.4302, R2

rising = 0.9975, Vsinking = 0.0759η+ 5.3722, R2
sinking = 0.9995

4.2.3.4. Limitations due to the probe head

Non-uniformity of the insulation Non-uniformity of the dielectric coating may cause an
error in the measurements. However, new wire production techniques nowadays offer more
guaranty than 60 years ago when the first capacitive wave gauge appeared (Boudan, 1953;
Millard, 1969). It is moreover complicated to evaluate the influence of such parameter in the
present work.

Flowback Flowback, also called rundown, is the change of measured capacitance due to the
presence of a film at the wire when water is flowing down or receding, as described in Wilner
(1960), and illustrated in figure 4.15a. The effects are the flattening of the maximum wave
height (maximum immersion) and the sharpening of the trough (minimum wave height) while
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a phase shift and a lowering of the peak-to-peak amplitude are also observed. Wilner (1960)
proposes however some design rule, which are the following: (i) use small cross section
wire to limit effect of surface tension, (ii) keep conduction path short in order to be able
to distinguish main level and flow back and finally (iii) choose a frequency just below the
relaxation frequency (f = 1/2πRC) of the RC system composed of the sensor capacity and
the resistance of the water conduction path. In order to avoid any influence of the film
on the measurement, one way is to increase the water resistance (in series with the wire
capacitance) such that it is tremendously higher than the capacitance impedance then it will
not be measured. Tucker & Charnock (1954) shows that the ratio of the conduction path
resistance to the capacitance impedance of the immersed wire system can be estimated as:

R

ZC
= 10−12ρεrf

[
log

(2S
D2

)
/1.8 log

(
D2

D1

)]
(4.16)

with ρ the water resistivity (in Ω cm), εr the relative dielectric constant, f the frequency, S
the distance from the wire to the earth connection (in our case the vertical rod), D2 and D1

the outer and inner diameter of the wire. An estimation of f such as R/ZC = 0.1 (upper
limit according to Tucker & Charnock (1954)) gives 1 MHz (with ρ = 1000 Ω cm, εr = 4,
S = 2 cm, D2 = 0.25 mm and D2 = 0.20 mm), a value which is really higher than the 10
kHz in use. To get closer the excitation frequency to the upper limit given before, we can
increase the ratio R/ZC on the one hand, by using distilled water thus drastically increasing
water resistivity ρ, connecting the earth further away (increasing S) but this strategy has
some limitation (wave tank dimension for example) or using a wire which coating is really
small thus giving D2 ≈ D1. In the other hand, we could improve the electronics in order to
be able to use a higher excitation frequency. In any case, the use of really thin wires appears
to greatly help and even make this phenomena disappear as observed by Tucker & Charnock
(1954).
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(a) (b)

Figure 4.15: (a) Flowback effect on the capacitive sensor (from Wilner
(1960)). (b) Electric equivalent circuit of the wave height probe with
the presence of the meniscus.

We now make an estimate of the flowback impedance for the meniscus part of the complete
system represented in figure 4.15b. Let’s simplify the problem by considering that the shape
of the flowback meniscus is rectangular. We can then model this phenomena by an equivalent
electric circuit, where R′ and C ′ are constant5. This problem is from all point of view similar
to the problem of the transmission line described in section D.3.3. It comes that:

Z(l + dl) = Z + dZ = R′dl + Z(l)
jωC ′dlZ(l) + 1 (4.17)

Leading to the non-linear first order equation:

dZ

dl
+ jωC ′Z2 = R′ (4.18)

whose solution has the form: Z(l) = A tan (Bl + C), with Z(0) = ±∞. It leads to the
following system:  A = −B

jωC′

AB = R′
(4.19)

5 If the meniscus shape was not considered as rectangular (or of the same width), R′ and C ′ would depend
on the l coordinate and not be constant anymore: R′(l) and C ′(l). This would considerably complicate
the resolution of the differential equation that is derivated.
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which gives: 
A =

√
R′

2ωC′ (1 + j)
B =

√
ωR′C′

2 (1− j)
C = −π

2

(4.20)

and finally:

Z(l) =
√

R′

2ωC ′ (1 + j) tan
√ωR′C ′

2 (1− j) l − π

2

 (4.21)

By considering that if a complex number z = x+ jy and the following identity:

tan(z) = sin(2x) + j sinh(2y)
cos(2x) + cosh(2y) (4.22)

Z(l) =
√

R′

2ωC ′ (1 + j)
− sin

(
2l
√

ωR′C′

2

)
+ j sinh

(
−2l

√
ωR′C′

2

)
− cos

(
2l
√

ωR′C′

2

)
+ cosh

(
−2l

√
ωR′C′

2

) (4.23)

=
√

R′

2ωC ′ (1 + j)
− sin

(√
2ωR′C ′l2

)
+ j sinh

(
−
√

2ωR′C ′l2
)

− cos
(√

2ωR′C ′l2
)

+ cosh
(
−
√

2ωR′C ′l2
) (4.24)

Let’s simplify the above equation in function of two cases: R/ZC � 1 and R/ZC ≈ 16. In
the first case, we can develop cos(x) as a Taylor series:

Z(l) =
√

R′

2ωC ′ (1 + j) −
√

2ωR′C ′l2 + j × 0

−
(

1−
(√

2ωR′C ′l2
)2
/2
)

+ cosh(0)
(4.25)

So if R/ZC � 1 then |Z(l)| = 2/ωC ′l, that is to say that the meniscus impedance has a
capacitive effect. This is not a surprise at all since if the resistance is low then remains only
the effect of the capacitors. In order to get rid of this effect, a choice could be to increase the
frequency which is impossible while maintaining the ratio R/ZC = ωRC really small. Now
if R/ZC ≈ 1 or ωR′C ′l2 ≈ 1 then:

Z(l) =
√

R′

2ωC ′ (1 + j)
− sin

(√
2
)

+ j sinh
(
−
√

2
)

− cos
(√

2
)

+ cosh
(
−
√

2
) (4.26)

and

|Z(l)| ≈
√
R′

ωC ′
≈ 1
ωC ′l

(4.27)

By increasing the input frequency we get |Z(l)| → 0 which is achievable for the hypothesis

6 R/ZC = ωR′C ′l2
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R ≈ 1/ωC for high frequencies. We demonstrated that by using large enough frequencies,
we can get rid of the measurement of the meniscus capacitance. This is however a delicate
operation as one could also make disappear the capacitive effect of the immersed part of the
wire if the frequency is too high (Wilner, 1960).

Spacial/frequency limiting effects Long & Huang (1976), comparing data from capac-
itive probes and optical (laser) techniques, shows that any device recording real-time wave
amplitude is wavelength or frequency limited and that this limit is estimated to correspond
to wavelength approaching ten times the spot size (in case of the laser techniques) or wire
diameter (in the case of the capacitance probe). A similar study was previously carried out
by Sturm & Sorrell (1973), concluding that "the attached meniscus increases the effective
diameter of the probe by a factor on the order of 20 in clean water".

Wetting Effects - drift The enamel coating of the sensor has a main drawback which is
to slowly absorb water when plunged into the wave tank, changing the dielectric constant
of the cable. This was highlighted by Tucker & Charnock (1954), who also used enamel
wire to design a capacitive wave height sensor. They however suggest to maintain the sensor
dry before any measurements (or at the contrary fully immersed) and to regularly execute
calibration in order to overcome this problem, especially when working at small scale when
greater precision is needed. They finally suggest to use polythene coated wire in order to
avoid any absorption. This type of wire was not found in Chile. As explain above, they
can be observed by measuring the the output voltage in function of time. Let’s place the
sensor at 30 mm depth and plunge it at 40 mm. The time response is shown in figure 4.16a
while replacing it afterward at 30 mm leads to the results of figure 4.16b. A moving window
average filter function is apply to the data in order to smooth the results. For the first one,
the output voltage slowly derives from 4.355 V to a higher value stabilizing to a constant
value of 4.487 V, that is to say a difference of ∆V = 0.132 V. According to the calibration
curve it corresponds to an error of 1.77 mm. As for the second case, the output voltage slowly
derives from 3.860 V to a smaller value stabilizing to a constant value of 3.694 V, that is to
say a difference of ∆V = 0.166 V or 2.23 mm. To overcome the wetting effect, it is suggested
to use PTFE (teflon) wire (Millard, 1969). This kind of wire is however complicated to obtain
in Chile.
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Figure 4.16: Normalized output voltage of the sensor in function of
time when plunging or rising it to a new level. (a) Plunging sensor.
(b) Rising sensor.

4.2.3.5. Improvements by using PTFE wire

We were able to procure a 34 AWG teflon (PTFE) coated wire from a well-known interna-
tional Chinese trade company. The external diameter is 0.16 mm. Results of calibration and
drift are shown in figure 4.17. The calibration is done by lowering the sensor and rising it
afterwards as explicated above. We observe a real effect of the use of PTFE on the calibra-
tion curve as no hysteresis is observed. The calibration curve from figure 4.17a shows high
linearity with a correlation coefficient of R2 = 0.99985 really close to 1. Regarding the drift
effect, we observe also a real improvement as no drift is observed, for both lowering and rising
positions, as demonstrated in figures 4.17b and 4.17c. As for the flowback effect, as the wire
has a really small diameter, it is expected that it will not have any significant influence on
the measurements. These results give us great confidence on the precision of the device.
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Figure 4.17: (a) Calibration curve re-
sults. Dashed line corresponds to a fit
of a linear function: Vout = 0.03166 ·
η + 2.16490 with η in millimeter. The
corresponding correlation coefficient (for
both rising and sinking data sets) is R2 =
0.99985. (b) Normalized output voltage
of the sensor in function of time when
plunging or rising it to a new level for
plunging sensor and (c) for rising sensor.
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4.2.3.6. Sensor use alongside stepper motors

After the sensor was independently tested from the wave tank and the wavemaker, it was
placed in the canal at 54.5 cm from the wavemaker in order to measure the generated wave
profile. However, the recorded signal from the sensor has shown a huge amount of noise when
the stepper motor is working, and at rest particularly, that is to say energized and providing
full torque. These results in a noisy signal as displayed in figure 4.18 (in blue), which can
be used as such, but needs post-processing by low-pass filtering. We choose to reduce this
noise and to do so, an active shield is installed by wrapping an aluminum sheet around the
stepper motor and setting it to the ground potential so that the electromagnetic field from
the motor coils do not bypass this "barrier", similarly to the description of section D.3.2.3.
The results are presented in figure 4.18 where we compare the signals with (in black) and
without (in blue) active shielding. Results are interesting since there is a clear reduction of
noise in the black signal even if we identify isolated higher peaks which are however easily
removed by filtering. In the future experiments involving the wavemaker and the capacitive
sensor, we will make sure to active the motor shielding.
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Figure 4.18: Sensor output voltage when the stepper motor shielding
is active (in black) and when the shielding is inactive (in blue).

4.2.3.7. Validation

A validation is carried out with an image processing measurement as reference in order to
check the suitability of the wave sensor to its application: the undular bore height quan-
tification. An image post-processing experiment is set-up and is similar in all points as the
one described further on in section 6.1.1: an undular bore is generated on one side of the
wave tank through the action of the piston wavemaker. A laser vertical light plane is gen-
erated so that it parts the wavemaker in half and PIV particles are poured into the water.
The water-air interface is then visible and can be followed thanks to the Radon transform
technique explained in section 4.3.3 so that we are able to automatically follow the interface
displacement by filming from the side. The test case corresponds to the E2 case that is to
say a piston step velocity of 7 cm/s with a ramp of 0.1 s. The reader is invited to look for
further details in the sections of interest of this work. The capacitive wave gauge is placed
at the side of the laser plane and at the center of the camera field of view, and we make
the hypothesis that the wave front is perfectly perpendicular to the tank walls. We compare
both signals in order to quantify the error between both measurement techniques which is
showed in figure 4.19. We can also express the error according to:

ε =
∣∣∣∣∣ηWG − ηimage

ηimage

∣∣∣∣∣ (4.28)

where ηWG is the wave gauge signal and ηimage is the one from the image post-processing.
We can observe the undular bore composed of the main wave followed by wiggles which
oscillate around the bore mean height. The wave gauge signal is much noisier than the one
from the image post-processing and can be explained by various reasons as the electronics set-
up on protoboard and not a PCB, the sensor head wire which might lengthen during the wave
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passage or the stepper motor which has an impact on the signal quality. However, the two
signals are really close from one another and great precision is obtained by both techniques,
even if the image post-processing one is much neater. In particular, the sensor seems to
have trouble in catching the wiggles variations which are small such as in the troughs. The
maximum error peaks at the sudden rise and decrease of the bore but this is mainly due to
an error in the signal synchronization and thus should not be considered in the analysis.
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Figure 4.19: Comparison between signals obtained by the wave gauge
ηWG in black and the image post-processing technique ηimage in blue
in function of time.

Regarding the root-mean-square error, it is defined as:

RMSE =

√√√√∑N
i=1

(
ηiWG − ηiimage

)
N

(4.29)

and normalized by:
NRMSE = RMSE/η̄image (4.30)

with η̄image the mean of the image post-processing signal. A summary of the different charac-
teristics of the error that are measured is reported in table 4.5. The error was computed over
two times series to take into account or not the great errors found at the rise and decrease
of the bore. It corresponds to times between 2 ≤ t ≤ 4.4 s and 2.4 ≤ t ≤ 4 s for the whole
bore and only the points between the first and last wave crest, respectively. The mean error
is 12.9 % if considering the whole bore but drops to 8.5 % which is quite correct considering
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the scale at which is conducted the experiment with a bore height inferior to 5 mm. The
maximum errors are quite high for both time series and are mainly attributed to synchro-
nization for the first one and to the low resolution of the wiggle trough for the second one.
The root-mean square error however reveals to be quite low, with around 10 % error for both
which is accpetable, considering it corresponds to a 0.33 mm error which is low and down
to the primary objective of this design which was a resolution lower than 1 mm. Finally,
and that might be the most important feature of these results due to its high impact on the
interpretation of the future results, the main wave height measurement error showed only 2.8
% error or 0.15 mm which is really low. Note also that the sensor is capable of measuring
quick changes in the water level since the main wave height increase happens in around 0.5
s and many points describe this quick change. We can conclude that the sensor design is
validated and that it is suitable for the measurements of undular bores of small size.

Time interval [s] Error type [%] [mm]

2 ≤ t ≤ 4.4 Mean error 12.9 0.27
2 ≤ t ≤ 4.4 Maximum error 99.7 0.8
2 ≤ t ≤ 4.4 Root-mean-square error 10.9 0.33

2.4 ≤ t ≤ 4 Mean error 8.5 0.27
2.4 ≤ t ≤ 4 Maximum error 26.7 0.8
2.4 ≤ t ≤ 4 Root-mean-square error 9.6 0.33

2.4 ≤ t ≤ 4 Main wave error 2.8 0.15

Table 4.5: Summary of the errors measured to in the test case E2
comparing the wave height measured with the capacitive wave gauge
and the image post-processing technique.

4.2.4. Conclusion
The wave gauge design is simple and can be implemented in any laboratory. It is composed

of standard, cheap and widely available parts. One of its great advantage is stability over
time, even if the probe head construction requires precaution. The sensor is validated against
experimental data measured with another method and showed a low mean-root-square error
( for this test case) of 0.33 mm, or other said a third of millimeter. Finally, the capacitive
sensor is suitable for the measurement of undular bore.

The electronic circuit, designed from a charge amplifier and capacitance bridge basis,
allows to accurately measure any kind of capacitance and increase the sensitivity of the
procedure by getting rid of stray capacitances. The input frequency excitation shall be
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between 6 and 20 kHz (with nominal design frequency of 10 kHz) while the input peak-to-
peak amplitude depends on the sensitivity of the circuit (notably the feedback capacitor of
the charge amplifier and bridge capacitor). It is however advised to work at higher peak-to-
peak tension. The dynamics of the circuit respond well at relatively high frequencies, the
limitation source being the last low-pass filter, which can however be tuned. The ripple error,
due to the precision rectifier circuit, is low, and applies equally to all amplitude, thus it is
important to work at higher amplitude to be able to neglect it.

The design of the wave probe is critical, as it can be source of many errors. The first error
can come from the non-uniformity of the coating. We will however trust the manufacturer
capabilities to deliver a quite uniform coating. The second source of error is the flowback of
water when the wave is receding. There are various ways of diminishing this phenomena, from
increasing overall water resistance or increasing the excitation frequency. In our case, the
small cross-section of the wire allows us to neglect the effect of flowback on the measurement.
It has also for consequences to increase the spacial resolution measurement capabilities of the
probe. Finally, the main source of error is the wetting effect of water on the probe, which
conducts to a slow drift of the capacitance as the coating dries out or gets wet. This was
observed for the enamel coated wire. This effect however can be minimized by letting the
probe fully immersed when not in use, or by using a different coating material such as PTFE
or polythene (but generally at the cost of having to use larger cross-section wire). This last
solution is chosen in order to minimize the effect of drift. Another important trouble we
bumped into was the way the sensor wire was tensed. This aspect should be improved in
order to obtained both a constant high tension during time (to avoid motion due to the wave
interaction), and avoid any decrease in the wire diameter due too much tension.

If the sensor has shown positive results, it would be interesting to test its limits, specifically
by measuring its frequency response. A validation could also be carried out with commercially
available sensors.

4.3. Particle Image Velocimetry (PIV)
In this PhD work, an essential tool is PIV (Particle Image Velocimetry), whose post-

processing tool was not available at the lab while all experimental elements (laser, seeds and
camera) were accessible. An approach for a PIV tool had been developed in 2013 for steady
flows (Hernández et al., 2015). This approach however was based on fixed interrogation
windows and no sub-pixel detection nor outlier detection were available. It is of real interest
to determine flow fields in the canal and PIV is a relatively cheap (numerical post-processing
and experimental setting) way to achieve it. PIV is an optical technique, thus non-intrusive,
which allows both qualitative and quantitative measurements of a 2D velocity field. First
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developed by means of complex opto-mechanical set-up, it has been made easier with the
appearance of computer science and digital cross-correlation techniques. The first insight for
digital PIV was given by Adrian (1991) and numerous works have been developed since then.

4.3.1. General overview

Working Principle

A typical set-up for PIV measurements involves a laser sheet, a flow seeded with reflecting
particles and a camera as showed in figure 4.20. The particles, illuminated by a laser sheet, are
recorded by a camera a two different times: t0 and t0 + ∆t. Determining the displacement of
the particles leads to the velocity field (two components) of the image. For some applications,
the laser pulses and recording have to be synchronized in order to achieve small time steps and
displacement between the images. Then, pre-processing and post-processing of the images
are carried through a computer program. The pre-processing step consists of transforming
the image with different filters (histogram equalization, high-pass, intensity capping...) in
order to enhance post-processing. The post-processing is done according to the following
steps: both images are cut into interrogation windows, then the cross-correlation of each
interrogation window of image A and its corresponding in B is done. The maximum of the
cross-correlation map gives the mean displacement of the particle in the window (Raffel et
al., 2018). PIV technique is very interesting because it is not intrusive compared to other
techniques using probes (pressure tubes, hot wires) (Raffel et al., 2018) and it is a whole field
technique: a large portion of the flow field can be recorded at once. New techniques now
allow for 3D PIV: the stereoscopic PIV, which uses two cameras. This last one is not part of
this work scope.
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Figure 4.20: Experimental overview of PIV and general working prin-
ciple.

Experimental set-up

Lasers are a good way of illuminating the domain of interest (Adrian, 1991), because of
their ability to generate monochromatic light with high density energy (Raffel et al., 2018).
It is quite easy to transform the light beam into a light sheet with the use of a cylinder.
According to Raffel et al. (2018), the duration of the illumination light pulse must be short
in order to "freeze the motion of the particles". Large pulse could lead to the blurring of
the images. The quality of the cross-correlation peak and the loss of correlation can be
directly linked to the laser sheet light profile (Raffel et al., 2018). In this work we illuminate
the particles with a 58GCS Melles Griot Nd:YAG (doubled) laser (High Performance Diode
Pumped Solid State Laser) whose wavelength is 532 nm. It can be operated in pulsed mode
or in constant wave mode. This last one leads to an easier experimental set up (with no
need of synchronization between the laser and the camera) but can also generate blurring.
C. Willert (1996) found that spatial resolution can be increased if the experimental set-up
contains various illumination pulses.

As we add particles to the fluid, it is important to be sure that these will accurately follow
the flow. Indeed, with PIV, we are not measuring the fluid velocity but the particle velocity.
In a continuously accelerating fluid, Stokes drag law (Raffel et al., 2018) allows to estimate
the lag between flow velocity and the particle velocity:

Us = Up −U = d2
p

(
ρp − ρ
18µ a

)
(4.1)
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with Us the velocity lag, Up the particle velocity, U the fluid velocity, dp the particle diam-
eter, ρp the particle density, ρ the fluid density, µ the dynamic viscosity of the fluid and a
the acceleration. According to equation 4.1, small particles will more likely follow the flow
as well as particles which have the same density than the flow. In liquid flow, larger particle
can be accepted (Raffel et al., 2018). The step response leads of Up follows an exponential
law:

Up = U
[
1− exp

(
− t

τs

)]
(4.2)

with
τs = d2

p

(
ρp − ρ
18µ

)
(4.3)

τs represent the necessary time for the particles to reach the velocity of the fluid. In this
work, the fluid is seeded with glass micro-balls Sphericel®110P8 whose density is 1100± 50
kg/m3 and the mean size is 9− 13 µm. This leads to:

τs = 6.9 · 10−7s (4.4)

In this case, τs is way smaller than the time between frames of the camera (until 60 frames/s
or 0.0167 s between frames), which means that any variation of the velocity field will be well
represented by the particle velocity.

The characteristic sedimentation time t can also be computed from the Stokes formula
according to

t = h

vs
(4.5)

where h is the water height and vs the sedimentation velocity which is computed according
to

vs = 2
9

(
ρp − ρ
µ

)
g

(
dp
2

)2

(4.6)

It leads to a value of ts ≈ 7600 s so that we can assure that no particle settling is observed
during frame recording. We observed however that some particles tended to cluster and
create bigger particles which decreases this sedimentation times at various minutes, so that
it was not an issue for the experiment operation.

A homogeneous distribution of the particle is desired in order to get the maximum pre-
cision during post-processing. The particle density is associated with different techniques
as shown in figure 4.21 and according to Raffel et al. (2018). Particle Tracking Velocimetry
(PTV) is used for low density, where all particles can be detected, Particle Image Velocimetry
(PIV) where all particles still can be distinguished but can’t be identified between the image
pairs. Medium density is required to assure the statistical treatment of the PIV technique.
The last case, with high particle density does not allow to determine individual images of the
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particles, as they overlap. This technique is called Laser Speckle Velocimetry (for more infor-
mation, especially about the speckle limit in terms of dimensionless source density definition,
the reader can refer to Adrian (1984)).

Figure 4.21: Three particles densities lead to different techniques: (a)
low (PTV), (b) medium (PIV) and (c) high (LSV) (source: Raffel et
al. (2018))

The time delay between the frame recording must be long enough to able to determine
the displacement of the particles and short enough so that the particle won’t leave the laser
plane sheet due to motion in the third direction (Raffel et al., 2018). For relatively slow
motions, a standard 25 Hz camera can resolve the flow (Raffel et al., 2018). Resolution is
an important feature since it allows to obtain more or less vectors: for a 1024× 1280 pixels
image, considering interrogation windows of 32 × 32 leads to 32 × 40 vectors, while using a
camera with more resolution can increase the number of vectors. C. Willert (1996) found,
via Monte-Carlo statistical process, that the number of gray levels in the image only plays
a minor role in the final measurement uncertainty. For this work, we use a camera COHU
progressive scan 6600 Model 3000 and a NIKON AF micro nikkor 60 mm 1:2.8 D lens.

Algorithm overview

The algorithm, implemented in a matlab7 script, is briefly presented in this section, and a
complete review can be found in appendix D.4. The first step, before applying the cross-
correlation subroutine, is an image enhancement step which can be judicious to allow bet-
ter detection of the particles. During the development of PIV, many image preprocessing
techniques were proposed, in particular, histogram equalization, Contrast Limited Adaptive
Histogram Equalization (CLAHE) (Pizer et al., 1987), intensity capping (Shavit et al., 2007)
and high-pass (Sciacchitano & Scarano, 2014) preprocessing techniques were implemented,
and are further tested in section 4.3.2.3.

For the calculation of the mean particle displacement, two algorithms were implemented,
the Integer Window Shifting (IWS) algorithm (Adrian, 1991) and the Window Deformation

7 https://www.mathworks.com/products/matlab.html
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(WD) one based on the work of H. T. Huang et al. (1993). The first one is less costly while the
second one shows more accuracy and less outliers. For both algorithm, the cross-correlation
can either be directly computed or using the Fourier transform based cross-correlation which
is numerically more efficient. Both of them are then normalized (Gonzalez, 1987).

The IWS algorithm is a process where the images are sliced into interrogation windows
and cross-correlation is applied on each of them and between the consecutive snapshots. In
the next stage, windows are refined (their size is decreased to gain resolution) and they are
shifted according to the first estimation of the particle displacement. Cross-correlation is
newly applied. The process is repeated until reaching the minimum size that the user has
defined. In between every cross-correlation, sub-pixel detection (Nobach & Honkanen, 2005),
outlier filtering (Westerweel & Scarano, 2005), interpolation to replace the missing vectors
and smoothing (B. J. Kim & Sung, 2006) are carried out in order to improve the displacement
calculation.

The WD algorithm is an iterative process which implies the computation of predictor and
corrector displacement fields. It starts with a first pass using the IWS algorithm. From the
resulting displacement field, a predictor is built for every pixel by interpolation and the image
couple are deformed according to this predictor. A cross-correlation is newly applied on the
interrogation windows and sub-pixel detection is carried out. The predictor is updated from
the computed displacement field which is called the corrector. Outlier vectors are detected,
interpolation is done to replace missing vectors and the displacement field is smoothed. A
new iteration is started to compute a new corrector and so on. The process stops when
convergence is achieved (residuals in both x and y directions are relatively constant) or the
maximum iteration defined by the user is reached.

4.3.2. Test cases and validation
Our tool needs to be tested and validated in order to know the uncertainty of the mea-

surements. Uncertainties are affected by a bunch of parameters such as particle image size,
intensity and density, turbulent fluctuations, velocity gradients, noise level and interrogation
window size (Raffel et al., 2018). To evaluate their impacts, one can focus its effort on looking
only at the correlation signal which is a concentrate of all these parameters or one can study
the impact of every single one of these parameters (supposedly known) (Raffel et al., 2018).

We propose to follow the process described in (Raffel et al., 2018) to evaluate the mea-
surement uncertainty of PIV, based on Monte Carlo simulation. First, realistic PIV images
have to be generated. Then, statistical studies will allow us to measure the sensitivity of our
tool to the parameters described before.
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4.3.2.1. Synthetic particle generation

The generation of the synthetic images is done following instructions of Raffel et al. (2018)
and Lecordier & Westerweel (2004). The particle images are generated from known charac-
teristics: diameter, shape, spatial density, image depth... The particle images are described
by a Gaussian intensity profile as long as the particles are in focus according to Raffel et al.
(2018) :

I(x, y) = I0 exp
[
−(x− x0)2 + (y − y0)2

(1/8)d2
τ

]
(4.7)

where the center of the particle is described by its coordinates (x0, y0), the particle diameter
is dτ and the peak intensity I0 is defined as:

I0(z) = q exp
[
− 1√

2π

∣∣∣∣∣ 2z2

∆z2
0

∣∣∣∣∣
s]

(4.8)

z is the coordinate in the direction perpendicular to the laser plane, q is the efficiency with
which the particles reflect the incident light, ∆z0 is the thickness of the light sheet at which
the intensity drops to 0.67 of the maximum intensity and s is the shape factor (s = 2:
Gaussian, s = 104: top-hat). Then we proceed according to the following steps:

1. A random generator specifies the positions (x1, y1, and z1 coordinates) of the number
of particles N . This last one determines the concentration of seeds in the fluid.

2. The peak intensity I0(z1) is calculated for every particles according to equation 4.8 and
replaced in equation 4.7.

3. The particle image is calculated for every pixels integrating equation 4.7:

I(i, j) = I0(z1)
∫ i+0.5

i−0.5
exp

−
x− x1

dτ
2
√

2

2
 dx×

∫ j+0.5

j−0.5
exp

−
y − y1

dτ
2
√

2

2
 dy (4.9)

which can also be easily written with the help of the error function:

I(i, j) = I0(z1) π32d
2
τ

erf
i+ 0.5− x1

dτ
2
√

2

− erf
i− 0.5− x1

dτ
2
√

2

×
erf

j + 0.5− y1
dτ

2
√

2

− erf
j − 0.5− y1

dτ
2
√

2

 (4.10)

4. All the particles images are summed up to construct the image. Note that if two
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particle images superimpose, their intensities are summed. This is true only if the
scattered light is incoherent but most pulsed laser light is coherent. It is important
then to respect the speckle limit (i.e. source density below 30%) to avoid interference
effects (Lecordier & Westerweel, 2004). If the sum of the intensities reach the value of
a particle image centered at a full pixel, all values are cropped to this limit.

5. New coordinates x2, y2 and z2 for particle image centers of image 2 are calculated from
a given displacement field. Particle images are generated according to the previous
point and image 2 is created.

6. Background noise may eventually be added to both images.

7. Both images are quantized to the desired image depth (bits per pixels, generally 8 bits,
from 0 to 255). The maximum value (255 for a 8 bits image) is chosen for a particle
image centered at a full pixel location.

To test our PIV program, we generate for each case 512 x 512 pixels image pairs with an
aleatory displacement between 0 and 1 pixel. We take the perfect case where particle reflect
all light (q = 100%), the thickness at which the light sheet intensity drops to 67% equals the
sheet thickness (∆z0 = ∆z) and a top hat profile (s = 104). If not specified otherwise, no
noise is added. Statistics will be based on 100 pairs in order to have significant results.

4.3.2.2. Error sources and quantification

According to H. Huang et al. (1997), there are three sources of errors: the outliers, the mean-
bias errors and the the root-mean-square (RMS) errors. The outliers are easily detected as
they correspond to vectors which are very different from their neighbors. By nature they
randomly appear both in direction and amplitude (H. Huang et al., 1997). They correspond
to low correlation peaks (meaning correlation cannot be trusted). Outlier errors are large (> 1
pixel) and the main causes to outliers generation are low density of particle, strong gradient
or three dimensional flows (H. Huang et al., 1997). In this work, outlier error reduction is
performed by the multiplication of neighbor cross-correlation tables (see figure D.17) and
outlier removal by the detection described in section D.4.6. The mean-bias errors is defined
considering a uniform displacement d applied to all particles and N displacement di for
i = 1, 2, ...N have been calculated from the PIV algorithm, if

d̄ = 1
N

N∑
i=1

di (4.11)
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is the mean displacement, then the mean-bias error is defined as:

εbias = d̄− d (4.12)

and the RMS error is defined as:

εRMS =

√√√√ 1
N

N∑
i=1

(
di − d̄

)2
(4.13)

The mean-bias error εbias appears because of peak-locking (J. Chen & Katz, 2005; H. Huang
et al., 1997) due to the mismatch between the smooth fitted curve and the discrete cross-
correlation value table. The RMS error εRMS is due to a large number of phenomena: particle
density, strong velocity gradients, three-dimensional motion, camera’s noise, non-linear and
non-uniform response of the camera, bad illumination (non-uniformity, non-uniform reflection
of the particles), cable noise and digitization (H. Huang et al., 1997). As illustrated in
figure 4.22 from Raffel et al. (2018), a measurement can be precise (low random error) and
inaccurate (large bias error) at the same time.

Figure 4.22: Illustration of the notions of accuracy and precision,
from Raffel et al. (2018). δx and δy are the measurement error re-
spectively in the x and y directions. The scatter of the measurement
points is due to random errors while the bias error is responsible for
the mean offset to the true value.

116



4.3.2.3. Test cases

In order to qualify and validate our PIV tool, it is important to test it against different
conditions as homogeneous displacement, sheared flows, vertices and determine the influence
of important parameters such as the particle image size, particle density or noise. From the
following studies, we are able to determine the perfect image profile in order to obtain the
best behaviour of our PIV tool.

Particle image size In this section, the influence of the particle image size is studied.
A density of 1/64 (=0.0156) particle per pixel per pixel is taken to generate the synthetic
images. Image examples can be found in figure 4.23. Results are shown in figure 4.24. The
bias error is displayed in figure 4.24a. For the integer window shift technique, the bigger
is the window the lower is the bias error. This is not the case for the window deformation
technique where the bias error is of the same magnitude for the three studied window sizes
for particle image diameters superior to 2 px. The window deformation bias error is at least
10 times smaller than for the integer window shifting one. For both techniques the error
drastically increases for small particle image diameters except for the 642 wide window. This
can be explained by the "peak locking" phenomena as explained in Raffel et al. (2018). In
the case of the random error or RMS error, displayed in figure 4.24b, for both techniques the
smaller is the interrogation window the more important is the error. It can be explained by
the lower number of particles in the windows on which the statistics are based. The error
also drastically increases for small particle images (below 3 pixels) and for all interrogation
window sizes. The window deformation techniques allows to decrease the random error from
one order of magnitude for the smallest window size and less for the other window sizes. The
consequences of this study for the experimental case are as follows: the importance of the
particle image when recording the images is relative for the window deformation technique
if the particle image diameter is at least 3 pixels. In the case of the simpler integer window
shifting technique a minimum error can be achieved when the particle image is 3 pixels wide.
A compromise might be found between the bias and the random errors. These conclusions
give a real advantage to the window deformation although it is computationally more costly.
As stated in Raffel et al. (2018), it is important to be aware that the low uncertainty achieved
with the synthetic images can never be reached in the real experiment.
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(a) (b) (c)

Figure 4.23: Synthetic images generated for a density of 1/64 ppp and
different particle diameters: (a) 0.5 px. (b) 5 px. (c) 10 px.
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Figure 4.24: Errors in function of the particle image diameter for the
integer window shift and window deformation techniques. Three win-
dow sizes are studied (162, 322 and 642 px2). (a) Bias error. (b) RMS
error.

Particle density T study the particle density, the particle image diameter is set to 5
px in the synthetic images, which corresponds to a case where the particle image diameter
uncertainty is low (see section 4.3.2.3). Examples of synthetic images for three different
densities are displayed in figure 4.25. Results are shown in figure 4.26. This study does not
take into account the in-plane loss of image pairs which strongly contributes to an increase
of the uncertainty. It is for example the case for 3D flows or extremely turbulent flows. The
bias error is displayed in figure 4.26a. In the case of the integer window shifting technique
the error drops with the increase of the interrogation window size while the error is quite the
same for the window deformation algorithm even if the bias error rapidly increases for low
densities (for the 162 interrogation windows, the minimum is found for 0.01 particle per pixel
per pixel while this minimum is lower for 322 around 0.004 particle per pixel per pixel). In
the case of the RMS error, a minimum exists for the window deformation algorithm around
0.03 particles per pixel per pixel and this for the three window sizes. For both errors the
window deformation technique gives better results than the integer window shifting one.
For both techniques minimum bias and random errors exist which shows the importance of
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reproducing images with an adequate particle density. A compromise should be taken, a
good value being a density between 0.03 and 0.1 particle per pixel per pixel.

(a) (b) (c)

Figure 4.25: Synthetic images generated for a particle image diameter
of 5 px and different particle densities (unit: particles per pixel per
pixel or ppp). (a) 0.002 ppp. (b) 0.05 ppp. (c) 0.1 ppp.
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Figure 4.26: Errors in function of the particle density for the interger
window shift and window deformation techniques. Three window sizes
are studied (162, 322 and 642 px2). (a) Absolute value of the bias error.
(b) RMS error.

Particle Displacement The influence of the particle displacement is studied here. Homo-
geneous displacement is applied to particle images in the range from 1 to 20 px. Synthetic
images are generated with a particle density of 0.05 ppp and a particle diameter of 5 px which
corresponds to ideal density and particle diameter to minimize uncertainties for the window
deformation technique (see sections 4.3.2.3 and 4.3.2.3). Results are shown in figure 4.27.
Huge differences appears between the two algorithms still giving a real advantage to the
window deformation technique which always keeps the uncertainties below the one from the
integer window shifting. For the bias error (see figure 4.27a) and for displacement lower than
10 pixels, the interrogation window size does not influence the order of magnitude of the bias
error. For displacement larger than 10 pixels, the smallest interrogation window bias error
increases to an order of magnitude higher than for the two others sizes. Local variations
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can be explained by peak locking as explained further on. The random error (figure 4.27b)
is kept relatively constant for the window deformation technique except for displacement
higher than 10 pixels and the 162 px2 interrogation window. If this last window size is used
we should take care that the maximum displacement will not exceed 10 pixels as this implies
a significant increase of the uncertainties. A zoom over displacements between 0 and 2 px
can be found in figure 4.28. Some periodic patterns appear in the errors with minimums at
round displacement. It is most probably due to the peak locking phenomena . A 100 factor
however appears between the integer window shifting and the window deformation errors
showing how much improvement there is with the window deformation technique. Moreover,
for displacements between 0 and 1 px there is no difference between the interrogation win-
dow sizes for the window deformation algorithm. To the contrary the integer window shifting
algorithm is very sensitive to the window sizes. The case of the RMS error, relatively small
for the window deformation (inferior to 5 ·10−3 px), shows unacceptable levels for the integer
window shifting technique especially for displacements higher than 1 px. In deed, the RMS
error jumps to an order of magnitude higher for the biggest interrogation window size.
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Figure 4.27: Errors in function of the particle displacement (from 0 to
20 px) for the integer window shift and window deformation techniques.
Three window sizes are studied (162, 322 and 642 px2). (a) Bias error.
(b) RMS error.
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Figure 4.28: Errors in function of the particle displacement (from 0 to
2 px) for the integer window shift and window deformation techniques.
Density is 0.05 ppp and particle diameter is set to 5 px. Three window
sizes are studied (162, 322 and 642 px2). (a) Bias error. Note the
difference of scale between the left and the right y axes. (b) RMS
error.

Noise level We propose to study in this section the influence of the addition of white
Gaussian noise to the synthetic images. The synthetic image generation process is described
in Scharnowski & Kähler (2016a). The errors are plotted in function of the Signal-To-Noise
Ratio (SNR) which is defined as follows:

SNR = I0

σn
(4.14)

where I0 is the maximum intensity of the image and σn is the standard deviation of the
Gaussian white noise which is added to the image after adding all particle images. A mean
value or background intensity of 5σn is used in the generation of the images as referenced
in Scharnowski & Kähler (2016b). The study has only been conducted for the window
deformation algorithm since we will use this one to carry out the PIV post-processing from
now on, as it reveals to be much more accurate than the integer window shifting algorithm.
Figure 4.30 shows the influence of noise in the PIV post-processing. We can observe that
SNR levels as low as 30 already has an influence on the random error. For example, a SNR
of 10 implies a RMS error ten times higher. This is not true for the bias error which is less
sensitive to noise, except for really low SNR values below 10. Special care should be taken
when designing the experiment and during the data acquisition to avoid such levels of noise.
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(a) (b) (c) (d)

Figure 4.29: Synthetic image parts (100 px × 100 px) generated for a
particle image diameter of 5 px and a particle density of 0.05 ppp. (a)
No added noise. (b) SNR = 100. (c) SNR = 10. (d) SNR = 3.3.

0 10 20 30 40 50 60 70 80 90 100

10
-3

10
-2

10
-1

10
0

10
1

(a)

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

10
1

(b)

Figure 4.30: Errors in function of the Signal to Noise Ratio (SNR) for
the window deformation technique. Three window sizes are studied
(162, 322 and 642 px2). (a) Bias error. (b) RMS error.

Effect of 3D motions (out of plane motion) The effect of 3D motions can be studied by
varying the particle pair losses. An example of 50% particle pair loss is shown in figure 4.31.
In this case, half of the particles from an image to another disapear because they leave the
laser plane. We consider that no particle enter the plane (which is unreallistic) but alows to
study the particle loss phenomena importance in PIV measurements. Uncertainties related
to the particle pair loss are displayed in figure 4.32. The bias error (figure 4.32a) is kept quite
low for 642 and 322 px2 interrogation windows increasing hugely for high pair loss ratio while
for the 162 px2 windows the increase starts at particle loss pair ratio as low as 10%. For the
random error case (figure 4.32b), the increase is felt for any particle loss ratio, even if this
increase is less important for value between 5% and 90% for 642 and 322 px2 interrogation
windows and 5% and 65% for the smallest window size.
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(a) (b)

Figure 4.31: Synthetic images with and without pair loss. (a) Original
image. (b) 50% pair loss.
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Figure 4.32: Errors in function of the particle pair loss ratio for the
window deformation technique. Three window sizes are studied (162,
322 and 642 px2). (a) Bias error. (b) RMS error.

Vortex case Images pair, representing a Lamb-Oseen vortex (Lamb, 1993; Oseen, 1912),
are produced according the following equation (Devenport et al., 1996):

Vθ(r) = Vθmax

(
1 + 1

2α

)
rmax
r

[
1− exp

(
−α r2

r2
max

)]
(4.15)

where r is the radius, rc(t) =
√

4νt+ rc(0)2 is the core radius of the vortex, rmax =
√
αrc(t)

is the radius at which velocity reaches its maximum value, and α = 1.25643. We set rc = 100
pixels and Vθmax ranges from π/1000 to π/3 pixel · rad. No particle motion is set in the z
direction. The displacement profile along the line uniting both vortex centers is shown in
figure 4.33.

123



50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.33: Displacement magnitude profile along the line uniting
both vortex centers in the case Vθmax = π/10 px · rad.

The uncertainties are shown in figure 4.34 and an example of the vortex velocity field
and its error is shown in figure 4.35. The bias error, shown in figure 4.34a, rapidly increases
with the angular displacement and eventually reaches a plateau but at high values (between
6 · 10−2 and 2 · 10−1 pixel). It also increases when interrogation windows are smaller. The
random error (see figure 4.34b) has a similar behaviour although the increase of uncertainty is
higher with bigger interrogation windows. The influence of the window size is underscored in
figure 4.35 where the case of Vθmax = π/10 px · rad is shown. The 64 px2 interrogation windows
PIV velocity field is shown in figure 4.35b and the associated bias error in figure 4.35c.
The results are quite similar to the theoretical velocity field, the maximum error locally
reaching around 10−1 px and corresponds to the maximum displacement magnitude which
is underestimated. In the case of 16 px2 interrogation windows (figures 4.35d and 4.35e)
the maximum error reaches 3.5 · 10−1 px which correspond to around 50% of the maximum
displacement magnitude. The choice of the interrogation window size is once more really
important in order to minimize the uncertainties. Moreover, to detect the correct velocity
field, it is necessary to maintain the maximum displacement small.
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Figure 4.34: Errors in function of the angular displacement Vθmax for
the window deformation technique. Three window sizes are studied
(162, 322 and 642 px2). (a) Bias error. (b) RMS error.

125



65 257 449

65

142

219

295

372

449

0.1

0.2

0.3

0.4

0.5

0.6

(a)

65 257 449

65

142

219

295

372

449

0.1

0.2

0.3

0.4

0.5

0.6

(b)

65 257 449

65

142

219

295

372

449

0.1

0.2

0.3

0.4

0.5

0.6

(c)

65 257 449

65

142

219

295

372

449

0.1

0.2

0.3

0.4

0.5

0.6

(d)

65 257 449

65

142

219

295

372

449

0.1

0.2

0.3

0.4

0.5

0.6

(e)

Figure 4.35: Application of the PIV window deformation algorithm
over a pair of counter-rotating vortices. Arrows represent the displace-
ment field while background color is the magnitude. The 642 px2 and
162 px2 windows are drawn in red. (a) Theoretical displacement field
used to generate the image pair on which the PIV is applied. This
case corresponds to Vθmax = π/10 px · rad. (b) PIV results with 642

px2 interrogation windows. (c) Error with the theoretical data for 642

px2 interrogation windows. (d) PIV results with 162 px2 interrogation
windows. (e) Error with the theoretical data for 162 px2 interrogation
windows.

Shear case A series of images representing sheared flows are generated. The flows cor-
respond to a triangle function as shown in figure 4.36. Two variables can be changed: the
number of shear layers in the vertical direction, ranging from 2 to 20 and the maximum
amplitude of the Ux motion ranging from 1 to 10 px. In this example, 2 and 10 layers shear
flows are represented for a maximum displacement of 5 px. The results of the application
of the window deformation algorithm can be found in figures 4.38 and 4.39. The first one
shows the case of the 2 layers field while the second one the 10 layers field. It is important
to underline the importance of the interrogation window size: in the first case, small win-
dows (162 px2) leads to an underestimation of the maximum displacement and vector not
fully colinear with the x-direction while the 642 px2 windows give a good estimation of the

126



maximum displacement amplitude and direction. In the contrary, for the case with more
layers, the small windows allows to detect such layers even if the maximum amplitude is not
well detected while the bigger windows leads to completely incorrect vector field with both
direction and amplitude far from the true field: as the flow structure are smaller than the
interrogation windows, these last one cannot detect the variation inside. It will be really
important to keep the window size smaller than the studied flow in the experiments in order
to be able to detect small flow structures. A compromise might be done between increasing
the window size which leads to both better amplitude and direction estimates and decreasing
it to be able to detect small flow structures. The uncertainties linked to shear rates are
shown in figure 4.37 and reflects what we already commented about the importance of the
interrogation window size, notably reflected by the bias error inversion of the order of the
curves (in the case of 10 layers the smallest error is given by 162 px2 windows while for the
2 layers it is the 642 px2 windows which give the best results).
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Figure 4.36: Examples of the shear flows: the number of layers is
changed while the maximum horizontal displacement is kept constant.
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Figure 4.37: Errors in function of the maximum horizontal velocity for
cases with strong shear for the window deformation technique. Three
window sizes are studied (162, 322 and 642 px2). (a) Bias error. (b)
RMS error.
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Figure 4.38: Application of the PIV window deformation algorithm
over a sheared flow. The numbered of shear layers is 2 and the maxi-
mum horizontal displacement to 0.8 px. Arrows represents the velocity
field while background color is the magnitude. The 642 px2 and 162

px2 windows are drawn in red. (a) Theoretical velocity field used to
generate the image pair on which the PIV is applied. (b) PIV results
with 642 px2 interrogation windows. (c) Error with the theoretical
data for 642 px2 interrogation windows. (d) PIV results with 162 px2

interrogation windows. (e) Error with the theoretical data for 162 px2

interrogation windows.
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Figure 4.39: Sheared flow analysis. This case corresponds to NLayers =
10 and Uxmax = 0.8 px. Arrows represents the velocity field while
background color is the magnitude. The 642 px2 and 162 px2 windows
are drawn in red. (a) Theoretical velocity field used to generate the
image pair on which the PIV is applied. (b) PIV results with 642

px2 interrogation windows. (c) Error with the theoretical data for 642

px2 interrogation windows. (d) PIV results with 162 px2 interrogation
windows. (e) Error with the theoretical data for 162 px2 interrogation
windows.

Image preprocessing In this section, the effect of image preprocessing and enhancement
is studied. To do so, four preprocessing techniques (intensity capping, CLAHE, histogram
equalization and high-pass) are independently applied to the images before analyzing them
with the PIV window deformation algorithm. An aleatory homogeneous particle displace-
ment from 0 to 1 px is applied to the image particles. The intensity capping coefficient is set
to 0.5 and the high-pass filter width to 10 px. Examples of the application of such techniques
over the synthetic images can be found in figure 4.40. The comparison between the image
enhancement techniques is shown in figure 4.45. The points to the left corresponds to the
comparison basis, that is to say images which are not treated with any image enhancement
techniques. From the different studied techniques, the histogram equalization ones (named
here CLAHE and histogram equalization) seem to decrease substantially the bias error, es-
pecially for bigger interrogation size while the increase in the RMS error is contained. The
intensity capping does not have the wanted effects on the analysis since both errors increase.
This does not correspond to the observation made in section D.4.1. Finally, the high pass
filter does not help since it tends to make disappear some of the particle pairs. These obser-
vations may however be taken with precaution since the test has only be partial. It seems
however that CLAHE enhancement might help getting more precise results and might be
consider as the best option to enhance experimental images.
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Figure 4.40: Pre-processing of the images.
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Figure 4.41: Errors in function of the preprocessing image enhance-
ment techniques. Three window sizes are studied (162, 322 and 642

px2). (a) Bias error. (b) RMS error.

Program speed The processing speed of the algorithms is investigated in this section. We
useMatlab and a 3.1 GHz quad core AMDA8-7600 Radeon and 15 GB RAMmachine. Images
to be analyzed are 512 x 512 pixels and a 50% overlap is set up. We first measure time of
the first pass for different window sizes which is a common stage between the algorithms and
then the total time of execution of the integer shift and the window deformation algorithms
for 2 sets of multipass window sizes ([1282 642 322] and [642 322 162] px2). Results are shown
in figure 4.42 and table 4.6. The processing time dramatically increases with the decrease
of the window size from 32 px wide windows. A minimum is reached for 642 px2 windows.
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Local minimums can be found and correspond to power of 2 which makes the FFT faster.
The difference of processing time between the algorithms is tremendous: it is needed around
17 times more time to execute the window deformation algorithm than the integer window
shift one. This is mainly due to the numerous iterations and interpolations taking place in
the window deformation algorithm. It is however not an issue in this work since it is possible
to run the algorithm in Leftraru, the university cluster, and thus time resolved PIV can be
treated in parallel.
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Figure 4.42: Processing time of the first pass stage in function of the
interrogation window size.

Multi-pass Window Sizes [px2] 1282 - 642 - 322 642 - 322 - 162

Processing Time [s] Integer Window Shifting 8.176 8.023
Window Deformation 143.279 136.443

Table 4.6: Processing times for the integer window shifting and win-
dow deformation algorithms. Two multi-pass strategies are considered:
[1282 642 322] and [642 322 162] px2.

4.3.2.4. Experimental images: stirring in a glass

Experimental Set-up. A first attempt in order to assess the global behavior of the PIV
set up and post-processing consists of a simple experiment: the stirring in a glass. A close
enough cylindrical glass is filled up with water and seeded with the Sphericel®110P8 particles.
The laser plane is generated thanks to a cylindrical lens resulting in a horizontal plane at
around 2 thirds of the water level. A mirror is placed at the other side of the glass in order to
reorientate the light that crossed a first time the liquid and thus obtain more homogeneous
lighting conditions. The camera is looking downward and takes 662 x 476 pixels picture of
the full glass diameter at a rate of 60 fps. Two pictures are taken with the presence of a ruler
at the plane water level and allow to convert pixels to distance in both x and y directions.
The fluid is energetically stirred by a magnetic stirrer for a few seconds, the video starts
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when the flow is stabilizing. This set up is shown in figure 4.43a. A mask, represented by the
white lines in figure 4.44b is applied to all images in order to discard any calculation in zones
where no particles are present. The window deformation PIV algorithm is applied to 16 x
16 pixel2 interrogation windows and 50% overlapping and CLAHE image enhancement. In
a first step the instantaneous velociy field is retrieved between image 1 and 2. A comparison
of the velocity profile is then carried out with the mean of the velocity profile over 10 images
according to the folllowing equation:

~v
x,y = 1

10

10∑
i=1

−→vi x,y (4.16)

with −→vi x,y is the velocity vector of image i at position (x, y).

(a) (b)

Figure 4.43: Stirring in a cup experiment. (a) Experimental set-up.
(b) Image from camera

Results. An example of a picture can be found in figure 4.43b. From this last one, we can
observe an inhomogeneous lighting with parts at the left and right of the glass plunged into
the shadow. We can also observe the different sizes of the particles, with some conglomerates
(biggest white dots), which shows the inhomogeneous seeding process which needs to be
improved. The flow field is shown in figures 4.44a and 4.44b. in the first one the background
indicates the magnitude of the field while the arrow length is kept constant. In the second
one, the length of the arrows indicate the magnitude of the flow. It is interesting to note
that the PIV algorithm is capable of detecting the vortex flow and that this one is relatively
symmetrical around the center of the vortex. We are also able to keep a low size of the
interrogation window since difference with bigger one does not significantly impact the results
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(not shown in here). During this test, we were made conscious of the importance of the
generation of a correct mask to avoid zones where no particles are present and impact greatly
the results. The vertical velocity profile is shown in figure 4.45a. The instantaneous flow
between images 1 and 2 is displayed in blue and a linear fit based on the three consecutive
points at the center is plotted in red. We can verify the motion follows a solid body rotation at
the center (linear behavior of the velocity). The velocity reaches a maximum before decreasing
when getting closer to the boundary. The boundary layer is not fully resolved. Figure 4.45b
compares the instantaneous profile with the mean over 10 images. The main effect of the mean
is correcting the value of the maximum velocity, reestablishing the symmetry between the
top and low parts of the profile. The difference at the center of the vortex is less important.
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Figure 4.44: Stirring in a cup experiment results: instantaneous ve-
locity field between image 1 and 2. (a) Arrows shows direction and
background amplitude. (b) Arrows indicate both direction and ampli-
tude.

0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Mean over 10 images

Images 1 and 2

(b)

Figure 4.45: Vertical velocity profile. (a) Instantaneous flow between
images 1 and 2. (b) Mean flow over 10 images according to equa-
tion 4.16.
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4.3.3. Free-surface detection and image masking
Free surface detection is an essential feature of the code, since to obtain the velocity

vector field, one has to apply a mask on the air phase of the images taken with a vertical laser
plane. A Radon transform-based technique, presented by Sanchis & Jensen (2011), allows
the automatic detection of the air-water interface in a stream of particle images acquired
from a single camera. Ideal images consist of bright spots over a dark background. It is
most of the time not the case, especially for flow with free surface, to obtain such images.
Before applying the post-processing tool, areas outside of the flow (the air or the semi-
submerged objects in our case), which could reflect light and appear really bright, should be
removed (Roth & Katz, 2001). If not, it could affect the results as they would be detected
as a self-correlation (Thielicke, 2014). To do so, a binary filter can be used to get rid of the
atmosphere and other objects that can appear on the images by padding with zeros these
zones.

Air/water surface detection In this work, it is chosen to detect the air/water interface by
using the Radon transform (Radon, 2005) as proposed in Sanchis & Jensen (2011). The radon
transform has various advantages compared with other interface detection based algorithm
(essentially based on vertical intensity gradient across the interface). It can detect various
lines in an image and thus an election can be made based on a suitable criteria. But the most
important feature of the radon transform is to offer, along with the interface coordinates, the
orientation of the interface at such points (that is to say the slope). The Radon transform,
first described by J. Radon in 1917, is defined as:

R (θ, ρ) =
∫ ∫

f(x, y)δ(ρ− x cos(θ)− y sin(θ)) dx dy (4.17)

with f(x, y) the image intensity function and δ the Dirac function (or impulse function).
The second term passed as input of the Dirac function is the line defined by the following
equation:

ρ− x cos(θ)− y sin(θ) = 0 (4.18)

As shown in figure 4.46, ρ is the offset relative to projection of the origin on the line and θ
is the orientation of the line. The radon transform therefore consists in the computation of
the intensity function along lines. The detection of the maximum of the Radon transform
in the ρ/θ plane allows to locate the interface and its orientation. Moreover it is well suited
for the detection of lines in noisy images since the integration tends to cancel noise (Sanchis
& Jensen, 2011). The radon transform is easy to use in octave/matlab since it is a built-in
function (radon.m). It is however important to normalize the Radon transform to take into
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account the aspect ratio of rectangle images (Sanchis & Jensen, 2011). It is done by dividing
the input image radon transform by the radon transform of an image of same dimension as
the input one filled with ones. We also propose to use the enhancement as exposed in Xing
et al. (2012): the radon transform is not applied to f(x, y) but to f(x, y) − f̄ where f̄ is
the 2D mean of the image. An example of these different steps can be found in figure 4.47.
The procedure described before is applied to the original image 4.47a, from one of our PIV
experiments. We can observe the useful normalization which allows to limit artificial peaks
to rectangular images (figure 4.47c). The use of the enhancement also allows to limit peaks
which are not of interest (figure 4.47d). The general algorithm for the interface detection is
as follow:

1. Image preprocessing and enhancement consisting in the elimination of reflections, in-
tensity capping and filtering (blurring).

2. The image is parted into N vertical bands and the radon transform is applied on each
of them. A first approximation of the water interface is found. In the case of breaking
waves, various points can be detected along the vertical.

3. Outlier points are detected. This is carried out thanks to a standard deviation and
moving window based filter.

4. A second pass is done with a square window centered on the first estimation. Outlier
filter is then applied.

5. A cubic hermite spline is then used to determine interface position at every pixel.

The cubic hermite spline is defined as follows. If x is the x-coordinate of points between
the kth and k + 1th points detected at the interface, y the corresponding y-coordinate to be
determined, xr and yr the points found with the radon transform then we can define:

h = xr(k + 1)− xr(k) (4.19)

s = x− xr(k) (4.20)

t = s/h (4.21)

Then,

y =(2t3 − 3t2 + 1)yr(k) + (t3 − 2t2 + t)y′r(k)h

+ (−2t3 + 3t2)yr(k + 1) + (t3 − t2)y′r(k + 1)h (4.22)

Results of the water/air interface detection are shown in figure 4.48. The first image is
from our experiments and we can observe the effectiveness of the method.
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Figure 4.46: Radon transform definition.
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Figure 4.47: Steps of the interface detection by Radon transform. (a)
Original image to which the radon transform is applied. Results are
presented through the red circle and the blue line is constructed with
θ angle. (b) Results of the raw radon transform of image (without en-
hancement and normalization) of image (a) in the θ/ρ plane. (c) Radon
transform of image (b) without enhancement but with normalization.
(d) Radon transform of image (b) with enhancement and normaliza-
tion. It is now way easier to detect the maximum corresponding to the
interface. The maximum gives ρ = 117 pixels and θ = −84 degrees.
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Figure 4.48: (a) Original PIV image. The magenta line represents the
detected interface. (b) Image (a) after preprocessing and enhancement.
(c) Masked image ready for PIV post-processing analysis.
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4.3.4. Conclusion
A PIV experimental set-up and post-processing tool were elaborated in order to measure

both qualitatively and quantitatively flow fields in the wave tank. If the experimental set-
up is relatively simple once the experimentalist has access to the correct laser and camera
configuration, the post-processing tool accuracy depends highly on the image quality. Several
parameters associated to the image quality (particle image diameter, particle density, particle
displacement, noise level, pair loss, pre-processing) were tested, and the errors associated with
theses parameters were measured thanks to the generation of the synthetic particles. We were
able to determine rules to respect in order to achieve accuracy in the flow field measurement
as summarized in table 4.7 and they should be followed whenever possible in any future
measurement with this tool. Post-processing of synthetic shear flows and counter-rotating
vortices revealed that the tool is not able to retrieve the flow field magnitude when the shear
rate or vortex angular displacement are too high, even if the qualitative analysis showed good
results in all cases. A first example of the PIV was put in practice with an experiment of
stirring in a glass, and the solid body motion at the center of the glass was retrieved. The
limitations and possible improvements are presented in the following sections.

Parameter Best practice

Particle image diameter d > 2 pixels
Particle density 0.03 < ρ < 0.1 particles per pixel per pixel
Particle displacement ∆X < 10 pixels
Noise level SNR > 30
Pair loss loss < 10%
Pre-processing CLAHE or no pre-processing

Table 4.7: PIV image pair parameter best practice.

As the first pass on the window deformation algorithm is based on the window shifting al-
gorithm, it is essential that this last one return a rather correct velocity field. Our experience
using the algorithm has shown that bad quality images, including but not only poor lighting,
blurring, resolution, out of plane motions, particle size and density, etc.. lead to erroneous
first estimation and thus the window deformation algorithm does not help to improve the
post-processing. In the case of poor images, pre-processing can be useful but should be used
with care as it can have both improving and deteriorating effects. This is why the use of fast
cameras (which can be synchronized with the laser) is recommended in order to avoid error
in the post-processing.

Shear and vortex flow post-processing quality is highly dependent on the shear intensity
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(shear rate and layers), vortex intensity and core size, as well as the size of the interrogation
windows. Special care is to be taken when measuring quantitative data from PIV on these
types of flows. The window deformation algorithm is quite time consuming so that the
number of image pairs to be post-processed is also an important featuring, specially when
cameras cannot be set-up to take images pair at a certain rate. In some cases, multiple
peaks can appear in the correlation plane, with the highest representing an outlier. It is then
important to be able to detect the other ones in order to calculate the true displacement.
During the programming of the PIV post-processing tool, the sensitivity to the interpolation
schemes (bilinear, bicubic or spline) have been observed, notably the management of the
image sides vectors in particular revealed to be tricky when using other option thanMATLAB
"spline" option. The implementation of higher order schemes (Lagrange or sinc for example)
could also be a way of improvement as shown in B. J. Kim & Sung (2006).
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Part III

Results
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Chapter 5

Numerical Results

In this chapter, the main numerical results and findings of this research work are presented.
First, we characterize through numerical simulations the piston wavemaker system by ap-
plying velocity steps in section 5.1. From these results, we identify the generated waves as
undular bores and we are able to compute the necessary power delivery. Then, an active
absorption strategy is deduced from the recording of the water height at the piston wave-
maker and the absorption is tested under a set of different wave types. In a second part, in
section 5.2, we study the interaction between an undular bore and a square vertical cylinder
which is mounted at the center of the wave tank. We present then the physics taking place
in the wave tank and the vortices which are generated around the cylinder, and we identify
a phenomena of vortex pairing taking place at the rear of the cylinder.

5.1. Characterization of the piston wavemaker
Note: most of the content exposed in this section was summarized in the article repro-

duced in appendix E from the journal AIP Advances and whose title is Dynamic and
kinematic characterization of the impulsive wavemaker system in a numerical
wave tank. However, we extend the study to negative velocity steps in this thesis. Step
velocities are applied to the piston wavemaker in the NWT in order to carry out a dimen-
sionless analysis of the very first instant of the wave generation as well as the undular bore
creation, and compute the forces involved in the process. From these results, an active wave
absorption strategy is defined and tested on a set of harmonic and irregular waves.
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5.1.1. Kinematic and dynamic characterization of the
piston wavemaker

One of the objectives in this work is to characterize the piston wavemaker system by
applying a series of velocity steps. First, a qualitative approach is taken and observations
are made about the wave generation at small times and the generated wave pulse is studied
at longer times and far away from the wavemaker. Then, we compare the characteristic
variables with the theory developed in Joo et al. (1990) and explore higher Froude number
regimes. The forces exerted on the wavemaker and the power involved in the wave generation
process is finally studied. The step velocity tests are carried out at four mean still water
levels: h = 0.050 m, 0.075 m, 0.100 m, 0.150 m and for velocities ranging from UG = 0.005
to UG = 0.4 m/s. In this problem the fundamental velocity, length, and time scales are
√
gh, h and

√
h/g respectively. The problem can be written as f (ηw, ρ, g, h, t, UG) = 0,

but according to the Buckingham π theorem (Buckingham, 1914), it can be reduced to
f (η∗w, t∗, F r) = 0 where η∗w and t∗ are the dimensionless water height at piston wavemaker
and time respectively. In the next sections, as a consequence of this analysis, we will express
the results in a dimensionless way using the relevant variables η∗w, t∗ and Fr.

5.1.1.1. First instants - The overshoot-wave

After the wave leaves the wavemaker, the water height at the wavemaker remains constant.
The wave pulse profile for times t = 0.05, 0.13, 0.20, 0.31 s, which correspond to the first
instants of the pulse formation, are displayed in figure 5.1. On the same figures, the wave
steepness, defined as |dη/dx|, is superimposed. We observe that the wave steepest shape
occurs at the very first instants of its formation, i.e, at t = 0.05 s, where the maximum
steepness is higher than 3. When the pulse starts leaving the piston wavemaker, its steepness
decreases to values under 1. Such high steepness is associated to the non-linear properties
of the overshoot-wave. Another important parameter useful to evaluate when it comes to
apply linear theory is the wave height to mean still water level ratio η/h. It is relatively
important (values around 0.5 in this example), therefore Airy theory of linear waves cannot
be applied here. The profile of the generated pulse at longer times is shown in figure 5.2, as
well as its steepness in function of the x coordinate. We can notice the generation of wiggles
after the main pulse propagating downstream as already described. The wiggles are trailing
waves whose height decrease in the vicinity of the piston wavemaker while the front wave
height increases as it travels. These wave structures are described in the work of Joo et al.
(1990), and are a consequence of wave dispersion. The piston motion creates a wave packet
in which each wave travels at different velocities due to dispersion effects. We identify the
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created wave to be an undular bore which is experimentally and theoretically studied by Favre
(1935) and Peregrine (1966), respectively, while Stoker (1957) predicted that an impulsive
wavemaker would generate an undular bore. Undular bore are of particular importance as
they appear to more likely represent real tsunami wave instead of solitary wave (P. A. Madsen
et al., 2008). Important values of the wave steepness are observed during the pulse formation,
which decrease rapidly as the pulse propagates. In the time snapshots of figure 5.1 and 5.2
we observe the vector velocity field of the numerical solution of the Navier Stokes equations.
The vector field becomes intense precisely near the steepness peaks as the overshoot-wave
propagates along the tank. The higher the wave height the higher the intensity of the vector
field which is associated to particle velocity.
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Figure 5.1: Time snapshots of the wave pulse generated (from left to right)
by a velocity step applied to the wavemaker motion. The wave pulse is
called here the overshoot-wave as it is created by the overshoot of the water
elevation at the piston wall. Wave profile (wave height as a function of x) is
plotted in blue and the wave steepness as a function of x in red. The velocity
step is 0.3 m/s and the mean still water level h is 0.15 m. The shown times
are t = 0.05 s ≈ tr, t = 0.13 s ≈ tp, t = 0.20 s, and t = 0.31 s ≈ ts.

Figure 5.2: Snapshots at times t = 1.00 s and t = 1.99 s of the wave pulse
generated (from left to right) by a velocity step applied to the wavemaker
motion. Wave profile (wave height as a function of x) is plotted in blue and
the wave steepness as a function of x in red. The velocity step is 0.3 m/s
and the mean still water level h is 0.15 m. Note the change in scale in the
x abscissa compared to figure 5.1.
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The starting overshoot-wave displays a phase celerity Cp as a function of time t which
may be compared with two characteristic properties, the shallow water wave speed Cp =√
g(h+H) and with the piston velocity UG as shown in figure 5.3. The overshoot-wave

celerity may be estimated from the mean celerity as Cp = δx/δt between consecutive wave
crests or looking for maximum steepness at different time steps during the propagation as
shown in figure 5.1. As the phase celerity of the overshoot-wave is found to be higher than
the piston velocity from the first instants of motion, the overshoot-wave travels fast enough
to leave the piston wavemaker. As the wave propagates along the tank, its phase celerity
increases with time, approaching the shallow water phase speed given by Cp →

√
g(h+H).

This behaviour agrees with potential theory and therefore allows to validate the capabilities
of the numerical wave tank for wave propagation.

In the case of a negative step, the wave which is generated does not take the form, as seen
before, of an undular bore. A leading trough wave will be generated and propagate in the
inverse direction of the the piston wavemaker motion. This trough will evolve rapidly and
deform with the increase of the wave crest that immediately follows the trough. The wave
generated by a negative step was not studied in further details in this work.
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Figure 5.3: Instantaneous overshoot-wave phase celerity Cp(t) (in blue) as a
function of time for the case h = 0.15 m and UG = 0.3 m/s. For times lower
than 0.2 s, the maximum of the steepness is used to determine the location
of the overshoot-wave. For later times, the maximum of the wave profile is
taken as the location of the wave. The wave celerity can be compared to the
piston step velocity UG and to the phase velocity of shallow water waves.

5.1.1.2. Response to a velocity step

A positive velocity step (UG > 0) creates a water pulse which leaves the wavemaker wall as
it propagates along the tank. The step response is recorded as the water height or water
elevation at the wavemaker wall ηw(t) and is presented in figure 5.4a.
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Figure 5.4: (a) Water height at wavemaker as a function of time for positive
step velocities. (b) Non dimensional water height as a function of non
dimensional time for positive step velocities. A comparison between the
CFD simulation and the theoretical study carried out in Joo et al. (1990)
is shown. (c) Water height at wavemaker as a function of time for negative
step velocities. (d) Non dimensional water height as a function of non
dimensional time for negative step velocities.

The water height first increases, reaching a maximum or overshoot ηo at peak time tp,
before approaching a lower steady state value ηss. It is of particular interest to note the
similarity of this dynamic response with step response of second order system (cf. figures 3.7
and 5.4). The time response of second order linear systems depends on the type of input
signal. For a step input the system exhibits a charateristic response defined by the rising time
tr, the maximum overshoot ηo, and the steady state value ηss obtained at a given settling
time ts (Nise, 2011). All these parameters are shown in figure 3.7b. In figure 5.4b we present
the normalized time response using the Froude number as in the theory proposed by Joo
et al. (1990). We can observe that after reaching its maximum value, the overshoot, the
water height slightly oscillates and decreases to its steady state value ηss = hFr. The step
response for small Froude numbers found in this work are in agreement with the theoretical
work of Joo et al. (1990). Nevertheless, some differences with the theory are observed in the
overshoot behaviour for higher Froude numbers. The overshoot starts to increase beyond the
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theoretical prediction and the steady state value approaches a slightly higher value than the
expected one from theory, ηss = hFr as we will discuss in the next section.

UG h = 0.05 [m] h = 0.075 [m] h = 0.10 [m] h = 0.15 [m]
[m/s] ∆o [%] ∆ss [%] ∆o [%] ∆ss [%] ∆o [%] ∆ss [%] ∆o [%] ∆ss [%]
0.005 5.97 1.86 2.42 0.09 3.64 3.96 1.77 0.61
0.010 3.33 1.19 2.14 0.16 1.15 0.34 0.98 0.39
0.030 3.69 1.35 3.26 0.80 2.79 0.85 2.00 0.82

Fr 0.050 5.98 2.40 5.09 1.48 4.54 1.60 3.54 1.26
0.100 11.96 4.11 10.60 3.42 9.33 2.81 7.20 2.37
0.200 25.73 7.00 23.02 5.97 20.77 5.35 17.64 4.52
0.300 43.67 10.48 40.42 8.75 37.72 7.72 31.67 6.39

Fr

Table 5.1: Relative deviation from model of Joo et al. (1990) at different
water depth and step velocity (0.005 < UG < 0.3 m/s). The relative de-
viation is defined as: ∆o =

∣∣∣ηo − ηrefo

∣∣∣ /ηrefo , ∆ss =
∣∣∣ηss − ηrefss

∣∣∣ /ηrefss . The
subscript ref refers to the study of Joo et al. (1990). The arrows indicate
how the Froude number varies with the step velocity and the mean still
water level.

The relative deviation from theory (Joo et al., 1990) is presented in table 5.1 for the four
mean still water levels and the velocity range from 0.005 m/s to 0.3 m/s. The relative devi-
ations are defined as: ∆o =

∣∣∣ηo − ηrefo

∣∣∣ /ηrefo and ∆ss =
∣∣∣ηss − ηrefss

∣∣∣ /ηrefss , where the subscript
ref refers to the study of Joo et al. (1990). The arrows indicates how the Froude number
changes while varying the step velocity or the mean still water level. It is interesting to note
that the relative deviation stays low for the steady state value (< 10.5 % for all velocities and
mean still water levels). For both overshoot and steady state values the deviation decreases
with the increase of the water level (which actually corresponds, for a given step velocity, to
lower Froude numbers). Finally, the deviation for the overshoot value can reach high values
(> 40 %) for the highest Froude numbers (high velocity, low mean still water level). In the
case of a negative step velocities, shown in figures 5.4c and 5.4d for the dimensional and
dimensionless cases respectively, the steady state values are also equal to ηss −→ h × Fr, so
that this behavior is similar to the one for positive step velocities. However we can observe
that for the overshoot value, if the velocity step is faster then the overshoot is lower than for
slower cases, as shows figure 5.4d. This is the opposite behavior compared to positive steps
and this difference will be observed in figure 5.5b where the curve does not show symmetry
with respect to the origin of the plot.
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Figure 5.5: (a) Overshoot ηo of the water elevation at the piston wall
as a function of the piston step velocity UG. Two still water levels are
considered: 0.05 m and 0.15 m. (b) Dimensionless overshoot at the piston
wall η∗o = ηo/h versus Froude number. A linear fit for low Froude number
Fr < 0.1 is drawn in dashed black line for comparison and is given by
η∗o = 1.267 · Fr − 0.0015 and R2 = 0.9994. (c) Steady state water elevation
ηss as a function of the piston step velocity UG. Two still water levels are
considered: 0.05 m and 0.15 m. (d) Dimensionless water height steady state
at the piston wall η∗ss = ηss/h vs Froude number. A linear fit for low Froude
number Fr < 0.1 is drawn in dashed black line for comparison and is given
by η∗ss = 1.046 ·Fr−0.0005 and R2 = 0.9997. The different still water levels
are represented with symbols.

The dominant controlling parameter in this work is the Froude number Fr defined as
the ratio between inertia (ρh2U2

G) and gravitational (ρgh3) forces thus Fr = UG/
√
gh. The

similarity of the system response with the typical 2nd order response under a step velocity can
be analysed through the characteristic time scales and maximum overshoot of the response.
Time scales as well as the amplitude of the water height response must be plotted as a
function of the step velocity UG. As in many feedback control systems, the time response of
a 2nd order system will be completely determined when one knows the maximum overshoot
ηo, the steady state amplitude ηss and the rising, peak and settling times tr, tp, ts respectively.
If the time response is correctly described by the the 2nd order response, we should find a
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scaling law for the characteristic time scales at different water depth h and step velocity UG
otherwise said the Froude number.

The overshoot ηo as a function of the step velocity UG is plotted in figure 5.5a and the
steady state ηss is plotted in figure 5.5c, both for two mean still water levels h = 0.05 m and
h = 0.15 m. The steady state values evolve linearly with the generation step piston velocity as
they correspond to the water height of the displaced volume which increases linearly in time
as the step velocity UG is constant for t > 0. However, the overshoot dependence on UG is not
linear as the overshoot-wave originates during a rapid transient process. The curve collapse
under the proposed scaling is relatively good in the range of mean still water levels shown
0.05 ≤ h ≤ 0.15. The scaling for the overshoot fails when Fr > 0.2 as the overshoot-wave
height increases over the linear limit and start to move faster with higher UG.
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Figure 5.6: (a) Characteristic time scales as a function of the wavemaker
step velocity UG. (b) Dimensionless characteristic time scales t∗ = t/

√
h/g

as a function of the Froude number.

The evolution of the characteristic time scales of the response to a velocity step are shown
in figure 5.6. As it was indicated in figure 3.7, these time scales are associated to a 2nd order
dynamical response, where the water height at the piston wall ηw is measured and compared
to the steady state height ηss. The rise time tr and the peak time tp are associated to the very
first instants of the wave motion, when the overshoot-wave is created. Both time constants
appear to be independent of the step velocity and provide an interesting scaling independent
of the Froude number where the dimensionless time scale is written as:

t∗ = t√
h/g

(5.1)

As shown in figure 5.4, after the main wave leaves the piston zone, the water height on the
piston wall scales perfectly with the Froude number as ηw/(hFr) = 1 because the displaced
volume in the steady state regime is entirely determined by the steady state water elevation
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ηss. The associated settling time ts is computed within a 10% band and slightly grows
with Froude number for positive steps while a jump in the curve is observed for the lowest
negative velocities and is explained by the failure of the detection method of such time. In
figure 5.6b the time scaling indicated in equation 5.1 produces a very tight collapse of each
characteristic time as a function of Froude number, except for the lowest negative steps which
show differences for the peak time.

The scaling seems to confirm the similarity of the water elevation response with a 2nd
order response. As the wave pulse is created by the excess or overshoot of the water ele-
vation at the piston wall we called it the overshoot-wave. The piston motion produces the
displacement of a water volume (per unit depth) given by the V (t) = UGt h which displays
an initial transient peak, the overshoot, superimposed into a water slug rising over the mean
still water level h. The overshoot-wave has its own dynamics, moving at shallow water speed,
running over the water slug and therefore leaving the displaced volume faster than the linear
waves. Let’s calculate the change of volume of the water slug between two times t1 and t2.
We consider that Cp(t1) =

√
g(h+ ηss) =

√
g(h+ hFr) =

√
gh(1 + Fr) ≈

√
gh.

Vslug = lηss

= Cp(t2 − t1)hFr

=
√
gh(t2 − t1)hFr

= UG
Fr

(t2 − t1)hFr

= UG(t2 − t1)h

Vslug = Vpiston (5.2)

This shows that the volume displaced by the piston wavemaker is found under the water slug
at steady state times in the limit of low Froude number. These relations can be useful to
estimate the loss of slug height in experimental wave tank where the piston wavemaker in
most of the current facilities leaves a space between the seabed and itself. This loose can
have a great impact on the slug height in particular in small tanks.

5.1.1.3. Forces involved in the step response

In this section, we present new findings such as the force decomposition and the maximum
power in function of the Froude number. The objective of this section is to determine the
forces originated on the piston wavemaker during the step response. As the problem is 2D
there are only two components of the forces projected on the piston wall in the x and z-
direction, which are inertial, pressure and viscous forces. These forces can be calculated
from the pressure and velocity fields at the wavemaker using the stress tensor as presented
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in section 3.3. In figure 5.7 we display the resulting normal and tangential force profiles
(respectively fx(z) and fz(z)) as a function of the vertical coordinate starting from the
bottom of the tank and across both fluids phases. As the mean still water level is h = 0.15
m we note a marked change at the air-water interface z = 0.15 on both type of forces.
However, as expected, there is approximately a five orders of magnitude difference between
both components. The normal force profile fx(z) is mainly hydrostatic and insensitive to
time and the viscous or tangential force profile fz(z) is dependent on time at low UG values.
Wall shear is created during the formation of the overshoot-wave which indicates the positive
increase in the resulting vertical force Fz(z) of figure 5.9b. When the overshoot-wave leaves
the piston, and the progressing volume pushed by the piston reach a steady state motion,
the shear forces become very small. When the step velocity is increased to UG = 0.3 m/s
the normal force profile fx(z) displays notorious changes in time but finally evolving into an
almost hydrostatic vertical profile as shown in figure 5.8b.

0 0.05 0.1 0.15 0.2 0.25

-1.5

-1

-0.5

0

10
3

-0.5

0

0.5

1

1.5

2

2.5

10
-2

(a)

0 0.05 0.1 0.15 0.2 0.25

-2

-1.5

-1

-0.5

0

10
3

-10

0

10

20

30

40

10
-2

(b)

Figure 5.7: Normal and tangential force profiles (along z axis, respectively
fx and fz) per unit area at the wavemaker for times 0.05, 0.13, 0.20, 0.31
and 0.60 s and h = 0.15 m. Notice the difference of power of ten between
the two plot vertical axis. (a) UG = 0.03 m/s. (b) UG = 0.30 m/s.
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Figure 5.8: Pressure forces (hydrostatic ρg(h+η) and p−ρg(h+η)) (along
z axis) at the wavemaker for times 0.05, 0.13, 0.20, 0.31 and 0.60 s and
h = 0.15 m. (a) UG = 0.03 m/s. (b) UG = 0.30 m/s.

In order to verify the effects of the initial fluid motion on the pressure field during the
step response, we recorded the pressure profiles at both step velocities UG = 0.03 m/s and
UG = 0.3 m/s. The sudden increase of water elevation at the piston wall is more important
at higher UG, which is explained by the higher volume displaced during the initial times.
Shear forces change in sign during the formation of the overshoot-wave as shown in figure 5.7
at both step velocity values. The first water elevation motion produces a positive shear
on the piston wall and therefore a positive shear force which start to decrease, becoming
negative as the overshoot-wave leaves the piston wall and the force points downwards before
vanishing in the steady state regime. The pressure profile is dominated by hydrostatics as
shown in figure 5.7. However, when we subtract hydrostatic pressure due to the initial wave
elevation along the z axis, i.e., we plot p(z) − ρg(h + η), we observe traces of the creation
of the overshoot-wave on the remanent pressure. As time progresses and the overshoot-wave
leaves the piston wavemaker, this remanent dynamic pressure contribution approach very
low values with respect to hydrostatics.

In order to compute the power delivery involved in the process we must get a good estimate
of the resulting forces on the piston. In figure 5.9 we present the normal and tangential forces
on the piston wall as a function of time, uncovering the initial transient associated to the
overshoot-wave formation and during the steady state regime. The normal and tangential
force profiles are obtained integrating the force profiles of figure 5.7 along the piston wall
during each time step, providing an accurate estimation of the net forces shown in figure
5.9. The resulting normal forces Fx(t) are negative as they oppose to the piston motion. If
we plot the absolute values we find a time evolution very similar to that of water elevation
ηw(t) in figure 5.4. The first rising part is associated to the force excess resulting from the
creation of the overshoot-wave followed by a steady state force associated to the progressive
motion of the mass of the water slug moving at constant velocity UG. On the other side, the
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tangential averaged forces Fz(t) shown in figure 5.9 display a change of sense (sign) indicating
how the fluid is moving on a boundary layer created on the piston wall. At first the fluid
moves upward then stops and then moves downward reaching a local (downward) maximum
precisely when the overshoot wave leaves the piston. The critical time when the resultant
shear force is zero t ∼ 0.2 s does not correspond to the peak time as water is still rising
at the bottom of the wavemaker as shown in figure 5.1. X-Force characteristic times (rise
and peak time) are much larger than for the kinematic observations. The minimum shear
force time corresponds to the maximum force in the x direction, showing the correlation
between both phenomenon. We can imagine that a feedback controlled piston wavemaker
might also be designed by measuring the vertical force instead of the one in the direction of
the piston motion. If the overshoot wave is going away leading to a fluid flow downward at
the interface, the global motion is more complicated, with a flow still going upward at the
base of the piston.
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Figure 5.9: Resulting net forces per unit length as a function of time. (a)
Normal net force Fx(t) and (b) tangential net force Fz(t). Mean still water
level is h = 0.15 m and the step velocity ranges from 0.01 ≤ UG ≤ 0.3 m/s.

During the design of a piston wavemaker it is important to evaluate the power input
during the step response associated to the wave generation process, as it can be particularly
useful in determining the scaling. For example, the Flowave facility power demand can creep
close to 300 kW when it creates a sea state moving the 168 paddles (Ingram et al., 2014).
Dimensioning the necessary power supply is then of crucial importance. This section is
devoted to the evaluation of the energy input required to create a wave pulse resulting from
a piston velocity step. The power involved in the step motion of the piston wavemaker is
calculated according to the following equation,

P (t) = Fw ·Uw (5.3)
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In this case, the piston wall velocity is Uw = UGx̂ which is the Heaviside step function.
Maximum power delivery as a function of the step velocity is shown in figure 5.10a. The
maximum power corresponds to the maximum water elevation at the piston wall. An expected
power increase is found when the step velocity increases, but more impressive is the radical
change of the power delivery when the mean still water level is increased. If we look for a
scaling of the power delivery, we may use a characteristic force per unit length and velocity to
perform the normalization. The normalized maximum instantaneous power can be written
as:

P ∗ = P

ρgh h
√
gh

= P

ρg3/2h5/2

where P is the power per unit length. The involved force is the hydrostatic pressure force and
the velocity is the corresponding shallow wave celerity

√
gh. In figure 5.10b, the normalized

maximum power P ∗ versus Froude number collapse for different mean still water levels,
confirms that the scaling has been properly defined and it follows accurately a quadratic fit
(obtained by least square fitting). This law can be used as a entry design tool to define the
maximum power that is necessary to generate waves.
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Figure 5.10: Power delivery during wave generation. (a) Maximum power
per unit length Pmax versus step velocity UG at h = 0.05 m and h = 0.15
m. (b) Dimensionless maximum power per unit length P ∗max as a function
of Froude number Fr at different mean still water level. A quadratic fit is
carried out and gives P ∗ = 2.0079Fr2 +0.2740Fr+0.0087 (with correlation
coefficient R2 = 0.99906).

5.1.2. Definition of an active absorption strategy
In this section, an active proportional controller is defined based on the previous results

on the step response of section 5.1.1. The controller is tested on different waves types and
the reflection coefficient is computed from two strategies which are detailed.
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5.1.2.1. Proportional controller

 

Figure 5.11: Schematics of the wave absorption problem. The numerical
domain is composed of (1) the piston wavemaker, (2) the piston wave ab-
sorber on which the error ε is measured, (3) the atmosphere and (4) the
seabed. The generated waves (5) at the free-water surface are measured
with respect to the mean still water level (6) h. A second frame of refer-
ence, proper to the wave absorber, is denoted (x′, z′).

An active wall driven by a feedback controller may be useful not only to cancel wave reflections
but also to attenuate wave impacts associated to extreme waves on a vertical wall and reduce
their consequences (McHugh & Watt, 1998). We have here implemented an active wave
absorption strategy using our results from the response of the wavemaker to velocity steps
discussed in section 5.1.1. First, consider a wave created at the wavemaker, propagating from
left to right, whose shape is a leading trough as shown in figure 5.11. To absorb this wave at
the right active wall, a wave crest of nearly opposite phase has to be superimposed, which is
generated by the motion of a wave-absorber, a wavemaker situated at the right side of the
tank, according to the following strategy.

Consider a wave-absorber consisting of an active flat wall with a sensor which measures
the water level at the wall ηw. On the frame of reference (x′, z′) associated to this wave-
absorber the positive motion is from rigtht to left (note that x′ direction is the opposite
of x). The wall water level ηw can be compared to a reference value ηref = 0 in order
to attenuate reflections. The error ε = ηref − ηw is permanently computed and fed into a
proportional controller of gain K, which provides the absorption velocity UA = K ε. The
corresponding block diagram of the feedback control strategy using a proportional controller,
is shown in figure 5.12a. The efficiency of the control strategy relies on the choice of K where
we propose to use the kinematic results of the step response rather than typical methods
(Nise, 2011). In section 5.1.1.2 we have shown that the wall water level at the wavemaker
reaches an overshoot value after a short time (as seen in figure 5.4) corresponding to the
standard peak time of the system (see figure 5.6). The overshoot η0, the maximum water
level at the wavemaker during the step, was related to the piston velocity UG by a linear
relationship at lower part (Fr < 0.2) of figure 5.5b. If we want to absorb a wave of given
amplitude at the wave-absorber wall, then we are more efficient if the change in amplitude,
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ηw −→ η0(UG), takes into account the corresponding step velocity UG.
The slope of the linear scaling of figure 5.5b (the lower part of the plot) will determine

the proportional controller gain K. The absorption velocity is then computed as UA = Kε =
−Kηw where K = 1/1.267

√
g/h, represents the inverse of the linear fit slope of figure 5.5b.

The dimensionless controller gain K∗ = K
√
h/g is reproduced on figure 5.12b at different

water levels, for a better understanding of the gain selection.
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Figure 5.12: (a) Absorption block system. A proportional controller com-
pares the value of the water level at the wave-absorber wavemaker ηw with a
reference value ηref . It multiplies then the error with a constant coefficient
K which gives the absorption velocity UA. Error ε and absorption velocity
in function of time. (b) Dimensionless overshoot wave height at paddle in
function of the Froude number, zoom on figure 5.5b. The dimensionless
proportional coefficient K∗ is represented on the curve as the inverse of the
slope (in red). K∗ = 1/1.267 so that K = 1/1.267

√
g/h.

5.1.2.2. Reflection coefficient evaluation

Method of Goda & Suzuki (1976) It is essential to accurately determine the reflection
coefficient of irregular wave trains in order to characterize the efficiency of the absorption
mechanism. In order to do so, the separation of the incident and reflected waves is necessary.
The first work, based on two probes data, originates from Goda & Suzuki (1976) and allows
the separation of both wave fields for regular and irregular waves. It consits of considering,
in the case of reflection of a regular wave, that the wave heights records (noted η1 and η2)
are constituted of the sum of the incident and the reflected components such as:

η1(t) = ηI(x = x1, t) + ηR(x = x1, t)

= aI cos(kx1 + εI − ωt) + aR cos(kx1 + εR + ωt) (5.4)

η2(t) = ηI(x = x2, t) + ηR(x = x2, t)

= aI cos(kx2 + εI − ωt) + aR cos(kx2 + εR + ωt) (5.5)
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Considering the trigonometric identities, we can develop the cos and write the following
equations:

η1(t) = [aI cos(kx1 + εI) + aR cos(kx1 + εR)] cos(ωt) + [aI sin(kx1 + εI)− aR sin(kx1 + εR)] sin(ωt)

= A1 cos(ωt) +B1 sin(ωt) (5.6)

η2(t) = [aI cos(kx2 + εI) + aR cos(kx2 + εR)] cos(ωt) + [aI sin(kx2 + εI)− aR sin(kx2 + εR)] sin(ωt)

= A2 cos(ωt) +B2 sin(ωt) (5.7)

A1,2 and B1,2 are the Fourier series coefficients for the wave number k. These coefficients can be
obtained by applying the discrete Fourier Transform to η1,2 signals and if c1,2 is the FFT result
then: A1,2 = 2 Re(c1,2) and B1,2 = −2 Im{c1,2} These results lead to the determination of aI and
aR:

aI = 1
2| sin(k∆x)|

√
(A2 −A1 cos(k∆x)−B1 sin(k∆x))2 + (B2 +A1 sin(k∆x)−B1 cos(k∆x))2

(5.8)

aR = 1
2| sin(k∆x)|

√
(A2 −A1 cos(k∆x) +B1 sin(k∆x))2 + (B2 −A1 sin(k∆x)−B1 cos(k∆x))2

(5.9)

where ∆x is the distance between the two probes and where k is solution of the linear dispersion
relation ω2 = gk tanh(kh). The reflection coefficient is calculated according to:

CR = aR
aI

(5.10)

In the case of incident irregular waves, by the mean of the hypothesis that they are constituted by
the infinite sum of sine waves, we are able to calculate the previous coefficient for any wave number
k and thus obtain aI,R in function of the frequency. The energy of the spectrum is then computed
by;

EI,R =
∫ fmax

fmin

|aI,R|2 df (5.11)

and finally,
CR =

√
ER/EI (5.12)

fmin and fmax are the lower and upper limits chosen in order to avoid divergence at wave number
k∆x = nπ. Goda & Suzuki (1976) advise to take as lower and higher limits the frequencies
corresponding to ∆x/λmax = 0.05 and ∆x/λmin = 0.45 respectively. This method is a good
starting point in the evaluation of the reflection coefficients, but its application requires the waves
to be linear. Newer methods have been designed to take care of it such as by C.-Y. Lin & Huang
(2004) or Andersen et al. (2017).

Method by energy considerations It is known that the energy density per unit area of the
mean free surface is equal to the sum of the kinetic energy and the potential energy such as Newman
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(2017):

E = Ec + Ep = ρ

∫ h+η

0

[1
2
(
u2
x + u2

z

)
+ gz

]
dz (5.13)

where ux and uz are the horizontal and vertical fluid velocities respectively. For plane progressive
and linear waves, this results yields to the following results:

E = ρω2A2

4k e2kη + 1
2ρgη

2 (5.14)

and if we consider small amplitude (such as kη � 1) then the total energy is proportional to the
wave amplitude A. It allows to define a reflection coefficient based on the energy such as:

C2
R = ER

EI
(5.15)

where ER is the total energy of the reflected waves and EI is the total energy of the incident waves.
In the case of the wave tank, we will compute its energy for the water phase according to:

Ec = 1
2ρ
∫ XA

XG

∫ h+η

0

(
u2
x + u2

z

)
dxdz, Ep = ρg

∫ XA

XG

∫ h+η

0
zdxdz (5.16)

where ux and uz are the horizontal and vertical fluid velocities respectively. Note that during the
computation of the potential energy, a terms appears corresponding to the energy of the water at
rest such as:

E0 = Ep(t = 0) = 1
2ρLgh

2 (5.17)

This term is of no interest and shall be omitted in the reported results. As the tank length is not
constant in time since both generating and absorbing wavemakers moves at positions XG(t) and
XA(t), a reference energy, which corresponds to the potential energy of the tank for a still water
level retrieved by volume conservation considering these new positions, is defined as:

Eref (t) = 1
2ρg

(
L2h2

XA(t)−XG(t)

)
(5.18)

Finally, the reflection coefficient is given according to:

CR =
√
|Ep(tf ) + Ec(tf )− Eref (tf )|
max(|Ep(t) + Ec(t)− Eref (t)|) (5.19)

where EI and ER are the incident and reflected wave energies, and tf is the time when the error
reaches and stays inside the 5% of the error band such as |ε(t ≥ tf )| ≤ max(|ε(t)|)×5/100 is verified.
We make sure that at this time, no re-reflection on the absorbing wavemaker has occurred. Perfect
wave absorption would lead to Etot = Eref (tf ), but as some reflection happens this energy level is
not reached. It is important to take into account the reference energy as the length of the wave
tank is not constant thus impacting the general level of potential energy.
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5.1.2.3. Preliminary results

In order to determine the efficiency and limits of the feedback strategy, an irregular wave train, an
undular bore and regular waves cases were tested. The first example of the implementation of such
absorption strategy for irregular waves is shown in figure 5.13. A wave train is generated by the
wavemaker on the left with the help of a smooth velocity pulse function defined as:

UG(t) = −S
τ

sech2
(
t− t0
τ

)
(5.20)

with S = 0.077 m, t0 = 1.30 s and τ = 0.342 s. This function can be visualized in figure 3.7a. The
wave train is moving in direction of the wave-absorber at the right end part of the wave tank, and
is formed of a leading trough followed by wiggles (see time t = 3.5 s). The waves are then absorbed
according to the feedback control strategy with an update of the absorption velocity at every time-
step, and where the error at the wave-absorber wavemaker is plotted in figure 5.14a. The error
alternates between positive and negative values causing the absorption velocity UA, which is also
shown in the same graph, to behave similarly. The error decreases to zero while the wave-absorber
perform the cancelling action. The maximum error corresponds to 21% of the mean water level,
that is to say at the limit of the non-linear portion of the plot of figure 5.5b. It results in an
almost fully absorbed wave state at times t = 7 and 8 s, where the water surface is calm at every
location of the wave tank. Note that a reflected wave will take a time greater than t > 8 s to arrive
into the wave-absorber re-reflected at the left wavemaker. That means the error ε(t) falls to zero
rapidly. In figure 5.13, in the last snapshot at t = 8 s, the black dashed curve was obtained with the
controller off, thus the wave-absorber was at rest, allowing to qualitatively compare the efficiency
of the absorption strategy.
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Figure 5.13: Wave profile η in function of the x-coordinate and for times
from 2.50 to 8.00 s. For times t = 2.20 and 3.50 s, a blue arrow indicates the
direction of the incident wave train. The active feedback absorber velocity
and direction (in the frame of reference (x′, z′)) are shown with the red
arrows. For the last time (t = 8 s), the wave state for the case without
absorption is superimposed in the dashed black line.
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Figure 5.14: Case of the absorption of an irregular wave train generated by
equation 5.20 for a still water level h = 0.075 m. (a) Proportional controller
error ε in function of time. The corresponding velocity of the wave-absorber
(in the frame of reference (x′, z′)) is indicated in the second y axis on the
right. The 5% error band are indicated in the black dashed curve and the
corresponding final time tf = 7.00 s is indicated. (b) Energy in function of
time. Kinetic, potential and total energy are shown with reference to the
initial energy in the tank E0.

It is possible to compute the energy of the wave tank in order to evaluate (and propose) the
absorption efficiency of our method. The computation of the reflection coefficient with the energy
method leads to CR = 16%. Another analysis is carried out thanks to the separation of incident
and reflected wave fields by means of the Fourier transform of two wave gauge data recordings at
different tank locations (Goda & Suzuki, 1976). It leads to the value of CR = 15 %, which is similar
to the previous one and shows the attenuation in the wave absorption process. The waterfall plot
of figure 5.15a helps to visualize the motion of the wavemakers as illustrated by the extension of
the wave tank at the left during the wave generation, and the oscillations of the wave-absorber
wavemaker as the incident waves make contact with the wall sensor. Finally, the efficiency of the
process can be observed as the reflected waves are small compared to the initial waves. A comparison
with the case without absorption is also plotted in figure 5.15b and shows that the wave height at
the (still, controller off) wave-absorber wavemaker fully fluctuates between low ηw < −0.025 m, and
high values ηw > 0.03 m. When the controller is turned on those fluctuations disappear and ηw → 0
as a result of the absorption mechanism.

The second test case consists in an undular bore which is generated with a velocity square
function defined as:

UG(t) = U0 (Θ(t)−Θ(t− t0)) (5.21)

with U0 = 0.2 m/s, t0 = 2.5 s and Θ is the Heaviside function, for a 4 m long wave tank and
a still water level of h = 0.075 m. The undular bore, shown in figure 5.16, is generated on the
left, propagates toward the wave-absorber wavemaker on the right and is absorbed according to
the proportional strategy. In this case, the error is almost always negative at the wave-absorber
wall, with variations due to the incoming bore wiggles, as shown in figure 5.17a. The starting error
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is important due to the high amplitude incoming undular bore, but rapidly the controller action
decrease it and make the stationary error converge to zero. In figure 5.17b the energy analysis is
shown and a similar behaviour is observed as in the previous case, with an increase in the total
energy during the wave generation and a constant level during the propagation stage (0 ≤ t ≤ 2.5 s
for the first one and 2.5 ≤ t ≤ 4 s for the second one).

(a) (b)

Figure 5.15: Waterfall plot of the wave train propagating in the wave tank
for a still water level of h = 0.075 m. The generating wavemaker follows the
velocity defined by equation 5.20. (a) with active absorption, (b) without
active absorption.

The total energy then decreases as long as the wave-absorber actuates and converges to the
final energy which corresponds to the final still position of both wavemakers. An estimation of the
reflection coefficient can be made with the energy analysis and conducts to CR = 10%. The analysis
of the reflection coefficient by Goda & Suzuki (1976) leads to CR = 16%. The difference can be
explained by the method of Goda & Suzuki (1976) which is not well suited for high amplitude
non-linear waves as can be the undular bore. This analysis shows that the strategy is interesting
and can effectively absorb non-regular waves even steep waves.
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Figure 5.16: Wave profile η in function of the x-coordinate and for times
from 0 to 8.00 s for the undular bore absorption. For times t = 0 and 3 s,
a blue arrow indicates the direction of the incident wave train. The active
feedback absorber velocity and direction (in the frame of reference (x′, z′))
are shown with the red arrows. For the last time (t = 8 s), the wave state
for the case without absorption is superimposed in the dashed black line.
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Figure 5.17: Case of the absorption of an undular bore generated by
equation 5.21 for a still water level h = 0.075 m. (a) Proportional
controller error ε in function of time. The corresponding velocity of
the wave-absorber (in the frame of reference (x′, z′)) is indicated in
the second y axis on the right. The 5% error band are indicated in
the black dashed curve and the corresponding final time tf = 9.49 s is
indicated. (b) Energy in function of time. Kinetic, potential and total
energy are shown with reference to the initial energy in the tank E0.

Finally, tests are carried out on harmonic cases, consisting of the absorption of regular waves
generated as for the wave propagation mesh study of section 3.2.1. The excitation functions and
general set-ups are reported in table 5.2. The reflection coefficient is calculated according to Goda
& Suzuki (1976) and leads to reflection coefficient lower than 10% for both cases, showing the
efficiency of the proposed strategy in order to absorb waves. A summary of all test cases is reported
in table 5.2 and the reflection coefficients are given.

When we considered the steady state value of the step response, ηss it was shown that the water
level at wavemaker reached a constant value after a short time, ts, at which ηw/h = Fr, as shown
in figure 5.4b. The absorption velocity and constant coefficient K may be alternatively defined
according to: UA = Kε(t) with K =

√
g/h. This coefficient was already given by Schäffer &

Jakobsen (2003) and was deduced from a mathematical study of the problem which is laid out in
appendix B. The choice of the first strategy based on the overshoot (K = 1/1.267

√
g/h) rather than

this last one is justified by the peak time tp associated to the overshoot which is shorter than the
settling time ts associated to the steady-state as shown in figure 5.6, or better said the wavemaker
moving at constant speed generates a transient wave which is used to cancel the incident wave.

The active wall driven by a feedback controller has proven to be useful not only to cancel wave
reflections but also seems to attenuate high amplitude irregular wave impacts as in the undular
bore example. In a future work we will push further the absorption strategy to effectively reduce
the consequences of extreme high amplitude waves using controllers for non-linear waves.
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Wave type Piston velocity function UG(t) Parameters
Reflection coefficient CR

Goda & Suzuki
(1976) method

Energy method

Irregular
Wave
Train

−S
τ

sech2
(
t−t0
τ

) h = 0.075 m, S = 0.077 m, τ =
0.342 s, t0 = 1.30 s, L = 2 m

15% 16%

Undular
Bore

U0 (Θ(t)−Θ(t− t0))
h = 0.075 m, U0 = 0.2 m/s, t0 =
2.5 s, L = 4 m

16% 10%

Harmonic X0πf sin(2πft+ δ)
h = 0.15 m, X0 = 0.004 m, f =
1.25 Hz, δ = −π/2, L = 8 m

5% -

Harmonic X0πf sin(2πft+ δ)
h = 0.05 m, X0 = 0.04 m, f = 0.5
Hz, δ = −π/2, L = 8 m

9% -

Table 5.2: Test cases for the absorption controller and reflection coefficients.

5.1.3. Conclusion
In this work we performed numerical simulations of a two dimensional wave tank in order to

study the piston-type wavemaker initial-value problem and wave generation using the free and
open-source code OpenFOAM. The numerical model reproduced the motion of a solid body piston-
type wavemaker by moving a solid boundary driven by an external arbitrary signal waveform.
We considered a full viscous model solving the unsteady Navier-Stokes equations on the basis of
a two phase flow strategy and the volume of fluid method to capture the free surface dynamics.
Velocity steps signals (Heaviside functions) were applied to the piston-type wavemaker, generating
a pulse-like wave which propagated along the tank followed by smaller waves or wiggles, which
was identified as an undular bore. Recording of wave elevation time series at the moving wall and
in different tank locations were compared with theoretical data, providing a very good agreement
and proving the capabilities of OpenFOAM solver interDyMFoam to simulate two phase flows with
wave propagation involving both free surfaces and moving boundaries. Wave elevation at the piston
wall was found to be in close similarity with the time response of second order system found in
feedback theory. In particular, the overshoot, rise time, peak, and settling time scales performed
very closely with the theory. The scaling found for water elevation at the piston wall at different
step velocities and mean still water levels was in close agreement with the theory for low Froude
numbers (Joo et al., 1990). At higher Froude numbers the scaling differs considerably from the
theory, being unable to take into account the main wave dynamics. The resulting main wave pulse
is generated and detaches from the piston wall at the same time as the overshoot takes place in the
wall elevation signal, thus we call this wave the overshoot-wave. Results along the tank downstream
agree with potential theory. The overshoot-wave propagates faster than piston velocity increasing
its velocity and reaching asymptotically the shallow water celerity downstream the tank. As we
solved full viscous equations, we were able to quantitatively determine the power input during the
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step response associated to the wave generation process using the entire stress tensor at the piston
wall. Net piston forces were obtained integrating pressure and shear stresses on the piston wall. A
power scaling was found for different mean still water levels and step velocities as a function of the
Froude number.

Finally, in this work we proposed a feedback proportional controller driving a secondary piston
for wave absorption, where the controller gain was determined from the wavemaker step response.
The feedback controlled piston method proved to be very efficient on both regular and irregular
wave absorption. This novel approach provided the basis from which more complex active wave
generation/absorption strategies can be further implemented on numerical as well as experimental
wave tanks to improve efficiency under the influence of different parameters such as the water depth,
the wave steepness and negative velocity steps.
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5.2. Undular bore structure interaction with
a vertical square cylinder

The previous study allowed to characterize the wavemaker in a 2D numerical wave tank without
any cylinder placed inside. In this section we study the wave-induced vortex generation and shedding
from a vertical square cylinder interacting with an upcoming undular bore wave train. A numerical
simulation, solving the full turbulent viscous 3D Navier-Stokes equations is carried out in order to
study and characterize both the undular bore wave properties and the vortex dynamics during the
interaction. No base flow is set-up and the undular bore is generated by the impulsive translational
motion of a piston wavemaker performed on a laboratory scale numerical wave tank. The piston
motion leads to the formation of a neat propagating wave train which was fully characterized.
While the undular bore interacts with a downstream rigid square cylinder, coherent structures
form at the four cylinder’s edges which are triggered by the wave motion, leading to a vortex
shedding frequency which matches the wave instantaneous frequency. Filamentary vertical vortices
are observed extending along the entire water column from the free-surface to the seabed. At the
rear downstream face of the cylinder, the pairing of two vortices is observed in close similarity with
the Oseen vortex pair. These vortices are present during the whole simulation and are submitted
to the mechanical forcing and downstream advection by the undular bore induced flow.

5.2.1. Undular bore generation
In order to generate undular bores, the most common technique is a water discharge from

a reservoir by opening a gate (Yeh et al., 1989; Treske, 1994; Chanson, 2010; Shi et al., 2020).
This method repeatability is however not fully satisfying. We propose to generate the undular
bores thanks to a velocity step which is applied to the piston wavemaker, as studied previously in
section 5.1. This strategy was first suggested by Stoker (1957). In practice, the step is not perfect
since wavemakers in real facilities cannot instantaneously reach the step velocity, and that is why
this one is ramped during the very first instants of the wavemaker motion. The ramp also avoids
the eventual formation of breaking waves at the first instants of the piston motion. The velocity
step is applied during the whole simulation leading to an undular bore without end, that is to say
that the water level at the wavemaker is constant during the whole simulation, with the exception
of the very first instants (see section 5.1). The piston velocity as a function of time is plotted in
figure 5.18 as well as its position. Its mathematical definition is:

UG(t) =


t

∆t U0, t ≤ ∆t

U0, t > ∆t.
(5.1)

where ∆t is the ramp duration equal to 0.1 s and U0 is the final constant velocity UG(t > ∆t) = 0.1
m/s. The tank end wall is kept still, although the simulation stops before any reflection reaches
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back the square cylinder.
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Figure 5.18: Piston wavemaker velocity UG(t) and displacement XG(t) as
a function of time.

5.2.2. Incident wave characteristics
The numerical simulation, as shown in figure 5.19, can be described as follows: (i) the water

level, set at h = 0.05 m, is at rest at t = 0.00 s, (ii) at t > 0 s, the piston wavemaker is put in motion
according to equation 5.1 and a deformation of the free-surface takes place, (iii) the undular bore
is formed and propagates along the wave tank for times t < 1.00 s, (iv) the undular bore interacts
with the vertical square cylinder for later times, (v) the undular bore free surface is modified after
being perturbed by the cylinder.

It is chosen, for its simplicity of implementation, to detect the water/air interface at a given
x position by finding the VOF variable α = 0.5 position through linear interpolation. It allows to
retrieve the free-surface position, as shown in figure 5.20a. In this figure, besides the free-surface,
the velocity field below the undular bore is represented, as well as the local wave steepness defined
as dη/dx. The undular bore is composed of a main bore (or water slug) of height a = 0.0074 m on
which are superimposed wiggles. This leads to a bore height to mean water level a/h = 0.148, value
lower than the experimental result of a/h = 0.28 from Favre (1935) marking the limit between
non-breaking and breaking undular bore. The main wave is η = 0.0102 m high with reference
to the main water level, and so the wave height to mean water level ratio H/h = 0.20 and the
steepness of the wave is relatively high, specially at the transition between the wave crest and
troughs, reaching value as high as 0.06, so that linear wave theory cannot be used. The maximum
velocity is Ux = 0.151 m/s and corresponds to the particles at the top of the main wave (1). A full
summary of these parameters can be found in table 5.3. The wave field is horizontal close to the
seabed and the Z-component of the velocity vector field gains amplitude as it is closer to the free-
surface. This is typical of the shallow water condition. Finally, close to the wavemaker, the velocity

167



5.2. UNDULAR BORE-CYLINDER INTERACTION 168

Figure 5.19: Undular bore generation, propagation and interaction with
a square vertical cylinder. The wave tank is cropped at y = ±0.12 m,
and x = 1.4 m. The different stages of the experiment can be described
as: (i) the water level, set at h = 0.05 m, is at rest at t = 0.00 s, (ii) at
t > 0 s, the piston wavemaker is put in motion according to equation 5.1
and a deformation of the free-surface takes place, (iii) the undular bore
is formed and propagates along the wave tank for times t < 1.00 s, (iv)
the undular bore interacts with the vertical square cylinder for later times,
(v) the undular bore free surface is modified after being perturbed by the
cylinder.



field is horizontal, except close to the seabed where a vertical motion is detected. The velocity
profile is quite constant along the vertical showing the shallow to intermediate water conditions of
the experiment (around 20% of difference between the top and lower part of the profile). As the
wiggles are closer to the forcing wavemaker, the velocity profile tends to become straighter and
eventually straight for the closest wave, except for the upper part of the profile which shows and
sudden increase in the velocity. The wave particle horizontal velocities below the crests and outside
of the seabed boundary layer are greater than the wavemaker step velocity but they converge to
this former as the crests are closer to the wavemaker. The influence of the seabed boundary layer,
which is fully resolved in the simulation in the vicinity of the square cylinder, can be seen at small
z as the velocity rapidly drops to 0.

H

[m]
a

[m]
λ

[m]
a/h h/λ cp

[m/s]
Fr H/h Ux,max

[m/s]
(dη/dx)max

0.0102 0.0074 0.255 0.148 0.20 0.769 1.10 0.20 0.151 0.064

Table 5.3: Incident wave characteristics.

The phase celerity of the bore can be computed by looking at the position of the main wave.
The results are shown in figure 5.21 where the instantaneous phase celerity is plotted as well as the
theoretical shallow water wave celerity defined as Cp =

√
g(h+H). A least square fit is carried out

and is based on the following function, typical of first order systems:

Cp = Cp0

(
1− e−

t
τ

)
(5.2)

It leads to a time constant τ = 0.22 s and Cp0 = 0.745 m/s. This last phase velocity shows a 3.2%
error with the theoretical shallow water wave celerity. It can be observed that the bore wave phase
celerity is transient during the first instant of the bore generation before it reaches a constant value
which is the theoretical wave phase celerity for shallow water. This results allows us to be confident
in the mechanism for both wave generation and propagation during the numerical simulation. From
these results, we are able to determine the incident wave Froude number, often used to characterize
the bore, as: Fr = cp/

√
gh = 1.10. This value is characteristic of smooth non-breaking undular

bore in a rectangular channel as observed in the experiments of Treske (1994).
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Figure 5.20: (a) Undular bore profile η(x) for t = 1.04 s and y = 0 m. On
the same graph, the velocity field is superimposed (black arrows) as well as
the local wave steepness ∂η/∂x. The points (1), (2), (3) and (4) are located
at the crests of the wiggles and used in the characterization of the vertical
profile of the horizontal velocity of figure 5.20b. (b) Horizontal velocity
profile Ux(z) at vertical (1), (2), (3) and (4) corresponding to the crests of
the undular bore.
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Figure 5.21: Phase celerity cp(t) of the undular bore (computed from the
main wave x-position) as a function of time. The wave shallow water theo-
retical phase celerity Cp =

√
g(h+H) is also shown in red.

Both vertical and horizontal velocity at three vertically aligned points (z = 0.01, 0.025, 0.05
m) for x = 0.80 m and y = 0.00 m are presented in figure 6.10 and 5.23 in their dimensionless
version. The horizontal velocity can be interpreted as a step of velocity with wiggles at the top,
as the change from rest to maximum value is sudden. The wiggle periods follow the ones of the
wave height shape, with an increase in the frequency as the bore passes by the probe location.
The horizontal velocity amplitude decreases as the measurement point is closer to the seabed, in
agreement with figure 5.20b. This characteristic is very close to the wave and current superposition.
The vertical wave orbital motion is created by the oscillations of particles from high amplitude to
low amplitude as the bore passes by, leading to a final configuration of quasi-1D flow (or current).
As the water depth increases, orbital motion becomes flatter with vertical velocities close to 0.
Closer to the free-surface, the vertical motion becomes quite important, reaching around one third
of the horizontal velocity amplitude.

5.2.3. Vortex generation
When the undular bore reaches the square cylinder, vortices are generated at its four edges and

the horseshoe vortex can be observed at the cylinder front. In order to visualize the creation of the
vortices, the Q-criterion (Hunt et al., 1988) isosurface (with Q = 100 s−1) is shown in figure 5.24,
for times between t = 1.52 to t = 3.44 s. The Q-criterion is defined as:

Q = 1
2
(
||Ω||2 − ||S||2

)
(5.3)

where ||Ω|| =
[
Tr
(
ΩΩT

)] 1
2 , ||S|| =

[
Tr
(
SST

)] 1
2 . Ω and S are the skew-symmetric and symmetric

component of ∇U respectively.
Q-criterion is useful as it compares the local vorticity and the shear rate. This figure allows

to show that the CFD model is able to both capture the free-surface evolution and the formation
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Figure 5.22: Velocities in function of time at three vertically aligned points
corresponding to z = 0.01, 0.025, 0.05 m, x = 0.80 m and y = 0.00 m. (a)
Horizontal velocity Ux(t). (b) Vertical velocity Uz(t).
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Figure 5.23: Dimensionless velocities in function of time at three vertically
aligned points corresponding to z = 0.01, 0.025, 0.05 m, x = 0.80 m and
y = 0.00 m. (a) Dimensionless horizontal velocity Ux(t). (b) Dimensionless
vertical velocity Uz(t).



of coherent structure for the wave-structure interaction. We are able to witness the formation of
the vortices at the edges of the square cylinder, for times t = 1.52 s and t = 1.68 s as well as
the plugholes vortices especially at times 1.68 s and 1.84 s. We can observe the generation of the
vortices at the edges as for every wave passing by the cylinder the rotation of water particle initiates
at the edges for example at times t = 1.52, 2 and 2.92 s. As for the vortices downstream of the
cylinder, the Q-isosurface is fairly vertical in the whole water depth while the Q isosurface rapidly
deforms for the vortices generated at the side of the cylinder.

With the purpose of visualizing the vortices which are created at the side and downstream of
the vertical square cylinder, the instantaneous streamlines are plotted below the free-surface in
figure 5.25 for time t = 1.84 s. In particular, it allows to visualize the 3D characteristic of the
flow: if the streamlines are really close one another close to the seabed, demonstrating the quasi 2D
feature of the flow, closer to the interface the flow has an important third component. The vortex
tube streamlines show also zones close to the interface where the water particle descend from the
interface to the seabed while the particles in lower zones are rising at upper zones.

Figure 5.25: Instantaneous streamlines for t = 1.84 s. The wave height is
superimposed and the scale is given by the color bar at the right. The black
arrow indicates the wave propagation direction.

In order to confirm the extension of the vortices from the free-surface to the seabed, we plot in
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Figure 5.24: Q-criterion (Hunt et al., 1988) isosurface (Q = 100 [s−1]) in red
and free-surface for times t = 1.52, 1.68, 1.84, 2.00, 2.32, 2.64, 2.92, 3.12, 3.44
s. The grey arrow indicates the wave propagation direction.



figure 5.26 and 5.27 the z-component of the vorticity field in the x − y plane close to the square
cylinder and for three different vertical levels: at the first grid point from the seabed (z = 0.195
mm), at half the mean water level (z = h/2) and at the free surface (z = h + η). The color scale
stops at ±100 s−1 but the vorticity value at the first grid point from the square cylinder can reach
values as high as 1300 s−1, showing that the vortical structure are generated at the walls. On the
same figures the isolines Q = 100 s−1 are superimposed which allow a clearer identification of the
vortical structure. We are able to confirm the formation of vortices through the whole water column
even if they tend to disappear or become less strong at zones close to the interface. The vorticity
sign differs from the positive y half-plane and the negative one, so that the vortices direction of
rotation is opposite, with vortices rotating clockwise in the positive y half-plane and anticlockwise
in the negative y half-plane. The concentration of the vertical vorticity differs also, due to the 3D
motion of the wave, as it is much more localized at the seabed, where the flow is much closer to a 2D
flow, than close to the interface where the flow is fully 3D as the waves pass by. The vorticity at the
interface is then not necessarily concentrated at the vortex center, and a look at the velocity field is
necessary to determine the vortex position. If the vortices generated at the rear edges downstream
of the cylinder remains close to the cylinder during the whole simulation (as seen at the seabed)
and constitute a pair of counter-rotating vortices, numerous vortices are generated at the sides of
the cylinder and are advected by the flow, before they eventually disappear. Downstream of the
cylinder, secondary vortices appear far from it at times superior to 2.64 s which is visible essentially
close to the seabed, which corresponds to vortices generated at the rear edges which have escaped
the influence zone of the first vortices.

In order to get an idea of the location of the forming vortex centres, the velocity field can be
superimposed to the vertical vorticity field in figure 5.28, for z = h/2. At the first instants of the
interaction between the undular bore and the square cylinder, recirculation zones appear at both
the side of the cylinder generated at the front edges, while others take place at the back due to the
presence of the rear (trailing) edges. These recirculation spots eventually detach from the cylinder
walls and form vortices which are advected by the flow for the ones at the cylinder sides while the
ones at the cylinder rear face stay relatively stationary. The side vortices are then advected and
finally disappear at the level of the rear edges while the rear vortices are present during the whole
interaction with the wave. After the generation of the first vortices, shedding appears at both front
edges but the vortices at the side rapidly disappear whereas the ones at the rear edges are advected
in the wake of the cylinder, and are not immediately identifiable as they pass by the influence zone
of the main rear vortices. We observe the pairing of counter-rotating vortices in the cylinder wake
as they appear to interact with each other and evolve together with symmetrical trajectories. The
phenomenon is studied in depth in section 5.2.6.

5.2.4. Free surface at cylinder and pressure forces
In this section, the undular bore free-surface deformation due to the vertical square cylinder

interaction is presented as well as the pressure forces which apply to the cylinder. The generation
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Figure 5.26: Z-component of the vorticity field in the x-y plane close to the
square cylinder and for three different z-levels: at the first grid point from
the seabed (z = 0.195 [mm]), at half the mean water level (z = h/2) and at
the free surface (z = h+ η). The displayed times ranges from 1.68 s to 2.48
s. Later times are shown in figure 5.27. The undular bore propagates in the
increasing x-direction. The black contours represent the isolines Q = 100
s−1.
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Figure 5.27: Z-component of the vorticity field in the x-y plane close to
the square cylinder and for three different z-levels: at the first grid point
from the seabed (z = 0.195 [mm]), at half the mean water level (z = h/2)
and at the free surface (z = h+ η). Time ranges from 2.64 s to 3.44 s. The
undular bore propagates in the increasing x-direction. The black contours
represent the isolines Q = 100 s−1.



of plughole deformation is presented and the pressure forces are computed on the cylinder resulting
in a net horizontal transient force in the undular bore propagation direction. Results are then
compared with available empirical data from previous studies.

The free-surface elevation in the x− y plane is presented in figure 5.29, for times ranging from
1.44 to 3.44 s. We observe the undular bore approaching the square cylinder from the left to the
right and the interaction with this last one leads to a deformation of the bore due to diffraction, as
the wave crests and trough are no longer aligned with the y-direction. The interaction between the
undular bore and the vertical square cylinder starts around t = 1.50 s when the blockage effect of
the centered vertical cylinder increases the water level at the front face (run-up) of the cylinder to
higher levels than the maximum wave height. The main wave generates vortices originating from
its four vertical edges and which are traduced by concentric change in water elevation at both sides
of the cylinder as well as its back.

These vortices are similar to plughole vortices which are typical of water sink (Ahmed & Lim,
2017). The plugholes disappear quite rapidly for the vortices generated at the front edges (they
are present until t = 1.76 s), while the ones generated at the rear of the cylinder can be observed
almost the whole simulation, only disappearing at t = 2.80 s. At the front edges, new plughole
vortices can be seen at latter times (t > 1.92 s) but with higher water levels (or lower intensity).
The free-surface flow exhibits a symmetrical behaviour in general, even if some asymmetries can be
viewed especially at time t = 1.76 s where the right plughole vortex generated at the front edges is
almost nonexistent whereas the one at the opposite side can be easily identified.

The run-up, or maximum water height at the front face, as well as the unbalance between the
water levels between the front and rear faces lead to the creation of a force in the x-direction. The
maximum run-up is observed at t = 1.48 s which also corresponds to the maximum pressure force
applying on the square cylinder, whose value is estimated at 0.12 N, as displayed by figure 5.30a.
As the bore continues its path, we observe oscillations of the water level at the front and back faces,
conducing to positive and negative forces, with however stronger positive forces. The undular bore
can be seen as a transient phenomena where the main wave oscillating forcing at the first instant
of the interaction with the square cylinder switches to a constant current forcing as shown in the
x-velocity recording of figure 5.23.
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Figure 5.28: Velocity field and vorticity in the z = h/2 plane. The
black arrow indicates the wave propagation direction.
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Figure 5.29: Free-surface elevation in the x-y plane close to the square
cylinder. The black arrow indicates the wave propagation direction.
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Figure 5.30: (a) Pressure force on the cylinder in the x-direction as a
function of time. The red dashed line represents the empirical force calcula-
tions explained in Qi et al. (2014). (b) Decomposition of the pressure force
between the hydrostatic component F hp and the dynamic one F dp .

It is interesting to estimate the drag force applied on the square cylinder in the latter case and
we chose the methodology of Qi et al. (2014) who studied the drag force on a surface piercing square
cylinder placed in a current channel (for the subcritical case), and takes into account the blockage
effect by the vertical structure onto the total force according to the drag coefficient:

CD = CD0

(
1 + CD0D

2W

)2
(5.4)

where W is the wave tank width, D the square cylinder diameter and CD0 is the drag coefficient for
an unbounded flow. This last value depends on the ambient turbulence, and drops from CD0 = 2.1
to CD0 = 1.9 for a 5% turbulence intensity (Tamura & Miyagi, 1999). P. Lin & Li (2003) found a
similar drag coefficient for a configuration of wave and current experiment. To estimate the total
force from the drag coefficient we use the following standard definition:

FD = 1
2CDρU

2(h+ a)D (5.5)

where U = 0.1 m/s is the permanent bore particle velocity (and in our situation which corresponds
to the wavemaker velocity as shown in figure 5.20b) and h+a is the bore height from the seabed. It
leads to an estimated value of FD = 0.025 N. We observe that the pressure force converges to this
empirical value, so that the drag force switches from a transient wavy excitation to a steady current
forcing. This result is consistent with the numerical simulation since the pressure force converges
to the empirical results from Qi et al. (2014), showing that the pressure field is correctly estimated.

The maximum peak corresponds to a nearly 400% increase in the drag value compared with the
steady state value. The transient forcing of the cylinder is predominant and can reach high values:
this observation can be of particular interest for civil engineers when designing high-rise buildings
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in coastal areas with high tsunami risks.
In figure 5.30b, the hydrostatic pressure force F hp is computed from the water levels records on

the front and rear face and substracted from the total pressure force in order to obtain the dynamic
pressure force component F dp according to F dp = Fp − F hp . This last one is in opposition of phase
with the hydrostatic one, partly compensating the efforts on the cylinder and allowing for lower
drag forces. The instantaneous frequency of this signal could inform us on the shedding frequency
as well, but this particular point will be reviewed in details in section 5.2.5.

5.2.5. Vortex shedding
The vorticity and velocity field are jointly presented with the free-surface elevation in figure 5.31

and 5.32, for the positive y-half-plane only. As the in-plane velocity field is superimposed, it allows
for a better visualization of the vortical structures, as they might not fully correspond to the vorticity
distribution. The free-surface at the same times is shown in the right column and shows that every
time a crest passes through the front (leading) edges, a vortex is generated, so that we are able to
say that the vortex generation is triggered by the wave frequency.

The vortex formation and further shedding might be divided in the following stages: a vortex
is generated simultaneously in both leading and trailing edges of the square cylinder by the local
increase of flow velocity resulting from the elevation difference ∆h between front and rear of the
cylinder produced by the transit of the main undular bore wave.

Then the vortex influence grows (vorticity in the core increases) and it may be forced by further
oscillations of ∆h(t) resulting from the successive transit of secondary undular bore waves. Finally
the vortex detaches from the cylinder similarly as it happens in the von Kármán instability in
circular and square cylinders. The wave elevation is in phase opposition compared to the dynamic
pressure recorded simultaneously at the leading and trailing edges and displayed in figure 5.33.
That means a local wave maxima corresponds to a minimum dynamic pressure and the creation of
a vortex. After the two first vortices are detached from the respective edge we can detect two new
born vortices on each edge which are associated to the transit of the secondary undular bore waves
as it can be clearly observed in figure 5.31 at time t = 2.12 s.
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Figure 5.31: Z-component of the vorticity field in the x-y plane at z = h/2
close to the square cylinder for times t = 1.56, 1.72, 1.96, 2.12, 2.32, 2.44 [s]
on the left and wave height η in the x-y plane for the same times on the right.
These times corresponds to the local maxima and minima of the dynamic
pressure of figure 5.33a. The black arrow indicates the wave propagation
direction.
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Figure 5.32: Continuation of figure 5.31 for times t =
2.60, 2.72, 2.88.3.00, 3.12, 3.20 [s].
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(a) Front edge (x, y, z) = (0.98, 0.02, h/2) m.
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(b) Rear edge (x, y, z) = (1.02, 0.02, h/2) m.

Figure 5.33: Pressure p and dynamic pressure pd (defined as the pressure
minus the hydrostatic pressure: pd = p− ρg(h+ η− h/2)) at the front edge
(x, y, z) = (0.98, 0.02, h/2) m and the rear edge (x, y, z) = (1.02, 0.02, h/2)
m.

To be able to quantify the vortex shedding frequency at the sharp edges of the cylinder, it is
decided to look at the pressure at theses edges and for z = h/2. The pressure for the edges in
the positive y half-plane are presented in figure 5.33, where both the pressure and the dynamic
pressure are plotted, so that the contribution due to the vortex formation can be isolated. We
can observe that the total pressure is mainly hydrostatic, following the undular wave bore shape,
while the dynamic pressure happens to be way lower, with values oscillating around zero. This is
true for both edges, even if the oscillations on the rear edge are more irregular. The opposition of
phase between the two types of pressures can be observed, and the wave crests passing by the edges
correspond to a local minimum in the dynamic pressure record. The instantaneous frequency of
each edge recorded pressure signal show an increase with time, as indicated in figure 5.34.
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Figure 5.34: Instantaneous frequency of the dynamic pressure signal (in
blue) and the water elevation (in black) for both the front and rear edges.

In order to confirm that the vortex shedding frequency is indeed associated with the wave
frequency, the instantaneous frequency of both dynamic pressure and wave height at the front
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and rear edges are computed. The Hilbert transform can be used to determine the instantaneous
frequency, as

fs(t) = 1
2π

dφ

dt
(5.6)

where φ is the phase of the Hilbert transform of the time dependent signal. A low pass frequency
filter with a cut-off frequency of 2 Hz is applied before plotting the final results. The first obser-
vations that can be made from figure 5.34 is that the Hilbert transform method gives important
variations at the signal boundaries and this is a common issue known as "end effects" when using
this method (N. E. Huang et al., 1998) so that the results before t ≤ 1.50 s and after t ≥ 3.00 s
are not considered during the analysis of the figure. We observe the similar behavior between the
instantaneous wave frequency and the dynamic pressure one, directly linking the process of shedding
frequency to the wave frequency, as already observed in P. Lin & Li (2003) in a wave-current study.
This analysis confirms that vortex shedding at both the front and rear frequency is triggered by the
upcoming wave.

5.2.6. Vortex pairing and subsequent instability
Once these filamentary shaped vortices are shed and drift away from the cylinder, they are

submitted to the mechanical forcing of the secondary waves of the undular bore. Their vertical
structure is perturbed and may change presenting dynamical fluctuations which should be identified.
In order to follow the vortex trajectories and determine their core shape, it is necessary to determine
the center of the vortices and the method of Graftieaux et al. (2001) is used to that end. The Γ1

scalar function is defined as:

Γ1(P ) = 1
S

∫
M∈S

(−−→
PM ∧ −→U (M)

)
· ~ez

||−−→PM || · ||−→U (M)||
dS (5.7)

The details of the definitions of points M and P, as well as vectors −−→PM and
−−−→
U(M) are shown

in figure 5.35. The Γ1 function depends on x and y and is equal to 1 when velocity vectors are
perpendicular to a line originating from P . By applying the above equation 5.7, we obtain a
two dimensional map in multiple horizontal planes of the Γ1 function and then only points where
Γ1 ≥ 0.5 are selected.
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Figure 5.35: The vortex center detection algorithm maps the velocity field
S in the x − y plane through the computation of the Γ1 function. For
all points M at which the velocity

−−−→
U(M) is computed, the cross product

between −−→PM and
−−−→
U(M) is calculated leading to the two dimensional map

Γ1(P ) for which the maximum is located.

This strategy allows us to reconstruct the vortex core of these filamentary vortices by determin-
ing its center for every horizontal plane. Results are presented in figure 5.36 and 5.37 where the
vortex core filaments for both rear vortices are presented with perspective, front and side views.
The detection fails in some planes and so some part of the filaments are missing. It however does
not impact the interpretation of the results. First, we can observe that the two vortex filaments
are symmetric for times until t = 3.00 s, where the side view shows a breaking in the symmetry,
especially close to the interface. The second observation that can be made concerns the global
shape of the filaments, which are perfectly straight and vertical for times until t = 2.00 s, except
in the closest zones at the seabed and the free-surface. During this phase, the filament motions are
unidirectional and flow-wise.

For time t > 2.00 s the filaments start to deform as the waves pass over them and create some
wavy patterns that evolve in the vertical coordinate along the whole water column. During this
phase, the vortex at the seabed returns to a relatively steady position close to the cylinder while the
upper part follows the wave motion and slowly drifts away from the cylinder. The last snapshots
show a strong deformation of the vortices. If they are still close to the cylinder at the seabed, the
vortex location at the free-surface is now further away from the cylinder as they follow the waves
which stretch and compress the vortices.

The wavy pattern appears to be similar to the Crow (1970) instability, with, however, an
irregularly shaped set of oscillations along the filament. The vortex rings which contribute to the
vortex annihilation in Crow (1970)’s work are not observed here and on the contrary it seems that
the vortices tend to move away from each other close to the free-surface, while at the seabed they
get closer from each other.

Following the previous strategy, the trajectories of the vortices in the plane z = h/2 are deter-
mined with a function threshold Γ1 ≥ 0.8. A filter based on position and times at which the detection
occurs allow to discard outliers and to assign the detected centers to the vortex trajectories.
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Figure 5.36: Vortex cores at the rear of the cylinder for times t =
1.56, 1.72, 1.88, 2.00 s. The three columns display a perspective, front and
side view respectively.
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Figure 5.37: Vortex cores at the rear of the cylinder for times t =
2.32, 2.64, 3.00, 3.32 s. The three columns display a perspective, front and
side view respectively.
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Figure 5.38: Trajectories of vortices in the plane z = h/2. The rear vortices
are identified by the labels A1,2 while the groups of vortices generated at
the sides of the cylinder by B1,2. At the rear of the cylinder, other vortices
are detected, which are noted C1,2 and D1,2. A zoom over trajectory A1 is
also shown at the top right corner.

The vortex detection very close to the cylinder walls was not possible, thus we display the
trajectories from a small spatial offset from the walls, where the vortices are fully formed. The
results of this procedure are shown in figure 5.38. We note the vortices at the rear back of the
cylinder with the letter A1,2 and the one at the side with the letter B1,2. If the B1,2 vortices are
a series of consecutively shed vortices, the A1,2 ones are the same during the whole simulation. A
focus on the vortex A1 is also shown. Its trajectory starts at the rear edge and moves away from
the cylinder before initiating a buckle motion and comes back toward the cylinder. The vortex
trajectory A2 shows a symmetrical behaviour, with some differences that appear at the end of their
trajectories. Secondary vortex C1,2 appears at the rear edges of the cylinder but rapidly disappear as
approaching to the main vortices A1,2. They might reappear in the wake as shown by the detection
of vortices D1,2. The vortices at the sides, B1,2, are numerous and share similar paths. However, if
the two first ones can be detected almost for a whole cylinder diameter, the following ones disappear
quickly and we are not able to follow them with this technique.

This non-trivial path of the vortices remind us a typical precession motion of the individual
axis of vortex rotation. The external forces exerted by the secondary bore waves are probably
responsible of an external torque driving this precession mechanism. This symmetric motion will
modulate the position of each vortex during the pairing process and notably affect the vortex pair
typical properties as we will see in the next figures.

The vortex pairing of the A1 and A2 vortices can be characterized by their transversal velocity
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profile such as in figure 5.40 for times between 1.68 ≤ t ≤ 3.44 s. A focus on times t = 1.68 s,
t = 1.84 s, t = 2.00 s and t = 2.16 s is carried out in figure 5.41, times for which the vortices are
still straight and vertical, and for which the stream-wise velocity Ux(y) profile is plotted for the four
different times. A least square method allows to fit two Lamb-Oseen vortices, which are typical of
vortex pairing (Leweke & Williamson, 1998), with the difference that an offset U0(t) is added to
take into account the free flow and vortex own motions, according to the following expression:

Ux(y) = U0 +
2∑
i=1

Γi
2π(y − yi)

(
1− exp

(
−(y − yi)2

a2
i

))
(5.8)

with Γ1,2 is the circulation, y1,2 the centers, and a1,2 is the core diameter of the fitted vortices. An
example of such function is plotted in figure 5.39 where the core diameter as well as vortex centers
parameter are shown.
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Figure 5.39: Example of a Lamb-Oseen vortex pair velocity profile. The
vortices have circulations Γ1 = 0.005 m2 · s−1 and Γ2 = −0.005 m2 · s−1,
the same core size a = a1 = a2 = 0.005 m, their centers are located at
y1 = y0 = 0.012 m and y2 = −y0 = −0.012 m and U0 is set to zero.
The dashed black lines (–) represents the individual vortices while the blue
continuous line (-) the sum of both contributions.

In the case of the numerical simulation of figure 5.40, the individual vortices are shown in dash
lines while the total fit is represented with the continuous black lines. The fit is executed with
reference to the numerical velocity profile between −0.02 ≤ y ≤ 0.02 m, that is to say the cylinder
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projection limits, which are represented in red in figure 5.41. If the velocity profile shows two local
velocity minima for times until t = 2.00 s, attesting that the vortices are still quite separated, then
the profile shows only one global minimum for t = 2.16 s, as the vortices are closer.

The velocity profiles reveal that the vortex pair structure evolves rapidly as they are advected
by the bore induced flow. Their resemblance to Lamb-Oseen vortices seems to be progressive as
the time increases, their overall velocity profile is closer to the theoretical fit, specially in the low
velocity center region. But this process takes time. After each vortex is shed from the cylinder
edge, the pairing process starts and pushes the vortex pair into the calm rear face region protecting
them for an instant from the upcoming secondary bore waves. The pairing process develops thus
and produce a Lamb-Oseen vortex pair as it is observed in more detail in figure 5.41. The fit does
not vanish far from the cylinder as usually happens with a perfect ideal Lamb-Oseen vortex pair in
a fluid at rest. Instead we have to take into account an unsteady offset velocity U0 produced by the
undular bore flow and overlapped to the own downstream motion of the vortex pair due to their
cooperative velocity field (Leweke & Williamson, 1998) This particular process allows to identify
and associate the parameters of the fit with the underlined physics of the pairing process.

1.5 2 2.5 3 3.5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a)

1.5 2 2.5 3 3.5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

(b)

1.5 2 2.5 3 3.5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(c)

1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

(d)

Figure 5.42: Parameters of the fit of figure 5.41. (a) U0 as a function of
time,(b) Γ1,2 as a function of time, (c) y1,2 as a function of time, (d) a1,2 as
a function of time. Indices 1, 2 refer to the vortice pair A1 and A2 and are
respectively shown in the dashed and continuous lines.
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Figure 5.40: Horizontal velocity as a function of y (the transversal direc-
tion) for times between t = 1.68 and t = 3.44 s. The x coordinate follows the
evolution of the A1 vortex center for all times, so that the transversal profile
always passes through the vortex center. The blue line (–) represents the
numerical results while a least square method allows to fit two Lamb-Oseen
vortices (which are axisymmetric two-dimensional vortices with Gaussian
vorticity distribution) and an offset according to the following expression:
Ux(y) = U0 +

∑2
i=1 Γi/(2π(y − yi))

(
1− exp

(
−(y − yi)2/a2

i

))
. This last

expression is shown in the black continuous line (–) while the individual
vortices are plotted in dashed line (- -). The square cylinder boundary
projection is shown in red.
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Figure 5.41: Horizontal velocity as a function of y (the transversal direc-
tion) for times t = 1.68 s, t = 1.84 s, t = 2.00 s, and t = 2.16 s. The x
coordinate follows the evolution of the A1 vortex center for all times, so that
the transversal profile always passes through the vortex center. The blue line
(–) represents the numerical result while a least square method allows to fit
two Lamb-Oseen vortices (which are axisymmetric two-dimensional vortices
with Gaussian vorticity distribution) and an offset according to the follow-
ing expression: Ux(y) = U0+

∑2
i=1 Γi/(2π(y−yi))

(
1− exp

(
−(y − yi)2/a2

i

))
.

This last expression is shown in the black continuous line (–) while the indi-
vidual vortices are plotted in dashed line (- -). The square cylinder boundary
projection is shown in red.



The fit parameters of figure 5.41 are plotted as a function of time in figure 5.42. They are also
reported in table 5.4 for the four times t = 1.68, 1.84, 2.00, 2.16 s. The fit allows to show some
properties of the vortex pair but also indirect properties of the undular bore. Both rear vortices
are anti-symmetrical as long as they are straight and vertical while symmetry is lost for the latest
times, which can be observed in the values of the vortex core size a1,2 for times t > 3.2 s. The
circulation Γ1,2 oscillates at a frequency similar to the one from the undular bore.

The anti-symmetry of the circulation accounts for the opposite sign of the angular rotation of
each vortex and shows an abrupt peaked increase which occurs precisely when the vortex core ai
becomes peaked as shown in figure 5.4 (b,d) respectively. The effect is not seen in the vortex pair
separation distance, however as this fit process was performed at middle height h/2 we did not
consider the effects of the vertical evolution of the vortex distance with height observed for later
times in figure 5.37. The fit is intended to be representative of the vortex pairing process as long as
the vortices are straight and parallel which is no longer valid for t > 2. Finally, the offset velocity
U0(t) does not remain constant as it is associated to the undular bore induced flow and the vortex
own motion. The frequency of the U0(t) fluctuations is very close to the secondary bore’s waves
frequency with, however, a non uniform amplitude.

t [s] U0 [m s−1] Γ1 [m2 s−1] Γ2 [m2 s−1] y1 [m] y2 [m] a1 [m] a2 [m]

1.68 0.059 4.4× 10−3 −4.4× 10−3 0.013 −0.015 3.4× 10−3 3.4× 10−3

1.84 0.049 5.7× 10−3 −5.7× 10−3 0.013 −0.013 4.4× 10−3 4.4× 10−3

2.00 0.079 6.5× 10−3 −6.5× 10−3 0.012 −0.012 4.9× 10−3 4.9× 10−3

2.16 0.064 6.2× 10−3 −6.2× 10−3 0.009 −0.009 4.9× 10−3 4.9× 10−3

Table 5.4: Parameters of the Lamb-Oseen vortex fit analysis.
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Figure 5.43: Vertical vorticity profile ωz(y) for times t = 1.68 s, t = 1.84
s, t = 2.00 s, and t = 2.16 s. The x coordinate follows the evolution of the
A1 vortex center for all times, so that the transversal profile always passes
through the vortex center.

Another way of detecting the vortices and characterize them is to look for the vorticity profiles,
as shown in figure 5.43. In this figure we choose to plot for the same time snapshots shown in
figure 5.41. In order to compare the amplitude of the vorticity profiles, the three components are
displayed on the same plot (ωx,ωy,ωz). The vertical vorticity component ωz is for all times the
dominant one, which confirms quantitatively that the vortices can be considered in the x− y plane.
However, for t = 2.16 s, the transversal vorticity components increase in magnitude both in x and
y directions and they are no longer negligible.

This result is in agreement with the discussion of the time snapshots of the vortex pairing
process in figures 5.36 and 5.37 where at t = 2.32 s, the vortices are not fully straight and vertical
any more. The red vertical line shows the projection of the square cylinder limits, so that we are able
to observe that the vortices occupy the full width of the cylinder. If for the first times, the central
zone between the two pairing vortices exhibit a zero vorticity (ωz = 0 s−1), this zone progressively
disappears during the vortex pairing process, so that at time t = 2.16 s, both vortices are closer and
the vorticity profile becomes what it is expected in a Lamb-Oseen vortex pair, a almost Gaussian
vorticity distribution in each vortex core. Notice the gradual spread out of vorticity amplitude of
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the vertical component in contrast to the transverse components.
Finally, an attempt is made at quantifying the vertical vorticity which is produced during the

undular bore interaction with the square vertical cylinder. We first compute the circulation around
the square cylinder for the numerical case with a contour which is rather important in size so that
the global circulation does not depend on it. The contour is a rectangle in the positive y half-plane
and at three heights: z = 0.195 mm, z = h/2 and z = h. Circulation is defined as:

Γ =
∮
C
U · dl (5.9)

The circulation is computed in the x− y plane along the red rectangular contour path C which
comprises the square cylinder, for x coordinates 0.95 ≤ x ≤ 1.20 m and for y coordinates between
0 ≤ y ≤ 0.10 m. We made sure that the closed contour is large enough so that the circulation
value does not depend on its shape and size. Close to the seabed (z = 0.195 mm), the circulation is
small, as the vorticity field close to the seabed is not vertical, and reach a constant value for larger
times. For the circulation of plane heights z = h and z = h/2, we can observe a sudden increase in
the circulation between times 1.25 ≤ t ≤ 1.64 s which correspond to the first instant of interaction
between the wave and the cylinder, and the generation of the first front and rear vortices, which are
vertical as shown in figure 5.36. The circulation then decreases as these two vortices are advected
and vorticity enclosed in the contour path is lost. A second increase is observed as the secondary
vortices are generated and then they show a weak decrease while they are advected, before a new
increase and decrease and so forth. The cycles of vortex shedding and advection corresponds to the
increase and decrease of the circulation. The local maxima of the circulation correspond to times
where the wave crest leaves the cylinder and the decrease to the passage of the bore troughs. The
oscillations are greater for z = h compared to z = h/2 since the incident velocity is greater close
to the interface and thus leading to stronger vortices and higher circulation. For times t > 3 s,
the circulation oscillations become small and its frequency higher, and the increase of circulation
is nearly linear. Note that the circulation from figure 5.44 is different from the one of figure 5.42b
since the second one is computed for the rear vortices only.

If this method is useful to compute the circulation of the whole system, it would be interesting to
compute the one associated with the rear vortices. We decide then to carry out a similar calculation
but with a different rectangular contour whose limits are 1.02 ≤ x ≤ 1.06 m and 0 ≤ y ≤ 0.02 m.
This contour represents a rectangular of half cylinder diameter width and one diameter long. The
choice of this rectangle is motivated by the vorticity which we have seen is mainly contained at
the rear between the cylinder boundary projections and its length which correspond to the typical
length of the problem. The results of this calculation is presented in figure 5.45 which shows the
circulation for the three height z = 0.195 mm, z = h/2 and z = h. The general trend for the
circulation close to the seabed is similar to the previous one since we observe low value of vorticity,
the vortices not being vertical. The circulation at the other two heights is quite similar, with an
increase at the first instants of the interaction, then a small plateau (with no decrease), a second
increase reaching the all time maximum before the behavior between the heights starts to differ
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Figure 5.44: Circulation as a function of time. Some of the instantaneous
vorticity are also shown for times t = 1.64, 1.80, 2.08, 2.44 s and z = h,
z = h/2, z = 0.195 mm.
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contour at the rear of the cylinder and at z = h, z = h/2, z = 0.195 mm.



greatly. Note that the circulation is slightly higher close to the free surface due to higher incident
velocities. The circulation maximum are around half the one found in figure 5.44, which shows that
each edge of the cylinder contributes equally to the vorticity creation. If the circulation is rather
constant, with a small decay over time for z = h/2, the circulation close to the free-surface falls
quite quickly after t = 2.5 s, showing the transformation, orientation change or disappearance of
the vortex in this zone. Comparing with the previous figure, as circulation stops growing after the
formation of the rear vortices, we can presume that the vorticity which is created at the rear edges
does not feed the rear vortices and these ones are quite stable and independent identities.

5.2.7. Seabed wall shear stress
Even if the study of scour at the cylinder rear face might appear beyond this thesis scope, it is

chosen to show some interesting preliminary results from the numerical simulation. The conditions
to observe local scour downstream of a vertical solid column (or pile) strongly depend on the
action of waves and weak induced currents combined mechanisms. The resulting scour depth below
the seabed level downstream the column may be quite intense if von Kármán vortex shedding
occurring from the column adds to the effect of currents in comparison with effect exerted only
by waves (Kawata & Tsuchiya, 1988). Downstream seabed effects on a single pile can be greatly
understood by determining the vortex induced shear at the seabed and the subsequent alternate
back and forth forcing due to the upcoming wave motion, like a bore. In what follows we are going
to briefly discuss, on the basis of the seabed shear stress tensor, the possible effects on the remotion
of typical sediment particles used on recent experiments (Du & Liang, 2019).

Figure 5.48: Horseshoe vortex at the front face of the square cylinder,
visualized with the Q criteria isosurface Q = 30 s−1 and at t = 2.72 s. The
grey arrow indicates the wave propagation direction.
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The seabed shear stress magnitude, defined as τw =
√
τ2
x + τ2

y , is shown in figure 5.46 and we
observe that local maxima of the shear correspond to the vortex positions close to the seabed, such
as at the front edges during the whole simulation, or at the back of the cylinder where the paired
vortices are situated. The maximum shear value, which is found at the front edges and for the
beginning of the interaction between the undular bore and the cylinder, is τw = 1.64 kg m−1s−2.
We can also observe a zone of high shear between the two paired vortices in the cylinder center line.
Globally, shear diminishes as the bore passes by the cylinder. One of the many applications, which
are important in the design of piles, is the possible scour that occurs at the foot of the vertical
square cylinder. It corresponds to the removal of sediments from the base of the pile, leaving it
unprotected and can lead to the failure of the pile. The motion of sediment is realized from zones
of high shear to zones of low shear, if the sediments are not carried away by the flow. We were
able to observe the horseshoe vortex upstream of the square cylinder, as shown in figure 5.48. This
horizontal vortex is found to greatly contribute to the upstream scour of the piles such as in the
works of Kawata & Tsuchiya (1988) and Sumer et al. (1992) where scour around a circular cylinder
was studied but also for square pile (Raikar & Dey, 2008). However, the contribution of this vortex
to the seabed shear stress is small compared to the one from the vertical vortices that are generated
at the edges of the square cylinder.

A first approximation of the particle transport effect at the seabed and associated to the square
cylinder can be carried out by considering the Shields (1936) relation. The dimensionless number
of Shields (1936), which compares the seabed shear stress exerted on the sediment particle to their
weight, is defined as:

τ∗ = τw
(ρs − ρ) gd50

(5.10)

where τw is the seabed shear, ρs is the sediment particle density, ρ is the water density, g the
acceleration due to gravity and d50 is the median grain size. An estimate of the shear effect at the
seabed on typical sea sand with properties like d50 = 0.65 mm, ρs = 2650 kg m−3, ρ = 997 kg m−3

and g = 9.81 m s−2 (Du & Liang, 2019) allows to compute the strength of the shed vortices on sand
particles.

The dimensionless Shields’ number is to be compared to a critical value, called τ∗crit, from which
the flow starts to displace sediment. Shields (1936) gives τ∗crit = 0.06. Regions where τ∗ ≥ τ∗crit

corresponds for all times to the front cylinder edge, where the lateral vortices are formed, and also
for the rear vortices. In figure 5.46 for times t ∼ 2.32 s, the criteria is also fulfilled for the V-shape
high stress zone between the two rear vortices. The V-shaped pattern is also typical of scouring
around circular or square piles, as observed in G.-H. Kim & Park (2017) and Xiang et al. (2020).
This analysis allows us to predict sediment displacement at the front edges, as well at the cylinder
rear face where the vortices are located.
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5.2.8. Conclusion
This work is the first description of the physics of the wave structure interaction between an

undular bore and a vertical square cylinder. An undular bore was created thanks to a preliminary
study of the piston wavemaker to which a velocity step was applied. Theoretical results which was
retrieved from a linear model at low Froude number (Joo et al., 1990) allowed us to validate the
CFD simulation of the wave generation. The study was later extended to higher Froude number
for which the response to the velocity step is no longer linear, and forces were computed on the
wavemaker leading to a quadratic power scaling which can be useful for the design of wavemakers.
The piston wavemaker study allowed finally to put forward an active wave absorber based on a
feedback proportional controller driving a secondary piston.

The CFD model was then applied to a single 3D test case in which the undular bore interacts
with a vertical square cylinder. First, the undular bore was fully characterized by its phase velocity,
main wave height, and bore height, as well as Froude number and the velocity profile below the
wave was given. Then, the vortex generation at the four edges of the cylinder was detailed, the
pressure forces were computed and converged to the empirical results from Qi et al. (2014). Then,
a closer look at the vortices allowed us to linked their formation frequency with the one from the
undular bore, so that vortex shedding at both the front and rear edges is triggered by the upcoming
wave following its instantaneous frequency. A special attention was given to the rear vortices which
showed to pair and a Crow instability was observed. The vortex transversal velocity was given and
allowed to fit a Lamb-Oseen vortex pair profile for which the vortex strength, core size and center
were retrieved. Finally, hints for the scour study were given but should be extended in a dedicated
study.

The numerical model can allow us to explore and illustrate most of the phenomena, but it is
computationally expensive. Therefore, experimental data could allow for further characterization,
in particular, it could be interesting to change the wave characteristics and/or the cylinder diameter
in order to observe their influence on the vortex generation and forces applied to the cylinder.
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Chapter 6

Experimental results

In this section, the experimental study of the undular bore interaction with a vertical square cylinder
is carried out for a set of five undular bores. First, the undular bore generation and propagation
is studied, for which the experimental set-up, test cases, wave profiles and particle velocities are
given. Then, the focus is directed to the vortex pairs that are generated at the rear of the cylinder.
Qualitative observations are made before the vortex strength is computed thanks to a PIV set-up.

6.1. Undular bore propagation
In this section, the different undular bore character-
istics, which can be listed as the bore height a, the
main wave height H, the phase celerity Cp and the wa-
ter particle horizontal and vertical velocities (Ux, Uz),
are reviewed for the experimental cases. The different
cases that are studied in this thesis are reported in ta-
ble 6.1. The test cases are characterized by the piston
wavemaker velocity, for which all cases are preceded by
a ramp of 0.1 s. In order to fully determine the parame-
ters which describe the undular bore, a PIV set-up is in-
stalled in the wave tank and described in section 6.1.1.
This last one allows to measure the wave height, pre-
sented in section 6.1.2, as well as the particle velocities
below the bore which are reported in section 6.1.3. In
the purpose of facilitating the comparison, the numer-
ical case which was previously presented in section 5.2
is also displayed in most of the figures.

Case Type UG [m/s]

E1 Experimental 0.05
E2 Experimental 0.07
E3 Experimental 0.09
E4 Experimental 0.10
E5 Experimental 0.12

N1 Numerical 0.10

Table 6.1: Studied cases in this
thesis are composed of 5 experi-
mental undular bores and one nu-
merical one.
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6.1.1. Experimental set-up
In the following sections, we first show the different undular bore profiles as a function of time,

and we report their characteristics. We then focus on the particle velocities below the bores and
comparison are made between the experimental and numerical cases. In order to do so, a PIV
experiment is set-up where a vertical laser plane slices the experimental wave tank in half according
to figure 6.1a. The undular bore (2) is generated by the piston wavemaker (1) according to a time
function which is first composed of a ramp of 0.1 s and then a constant velocity UG which depends
on the study case. The laser (3) generates a plane thanks to a cylindrical lens situated at its end.
This laser horizontal plane is deviated by a mirror (4) at a 45◦ from the horizontal plane, so that
the deviation results in a perfectly vertical plane. The CCD camera (5) is placed at the side of the
wave tank, at x = 0.80 m from the wavemaker initial position, and with a small angle compared
to the horizontal plane in order to avoid any blurring due to the wave passage on the side wall.
The water is seeded with the Sphericel 110P8 particles, for which an estimation (through image
binarization and counting of the particles) of 0.009 particles per pixel per pixel is determined which
is in the range of particle density that allows for low bias and RMS errors according to the study of
section 4.3.2.3. Images are taken at a 60 Hz frequency and are then automatically post-processed
to extract the mask with the radon transform strategy defined in section 4.3.3, as in the example
of figure 6.1b shows, and then the PIV post-processing tool of section 4.3.1 is used to compute the
velocity field. If 64 x 64 pixels2 wide window were used for the E1 and E2 cases, these window had
to be enlarged to 128 x 128 pixels2 for the E3 and E4 cases and even 256 x 256 pixels2 in the E5
case as particle motion is greater in these cases, which cause also blurring and thus measurement
at lower windows size was not possible.

6.1.2. Wave profile

6.1.2.1. Wave height

The wave profile is measured thanks to the masking tool of the PIV procedure, and we are able to
plot for all cases the wave height as a function of time. The results are shown in figure 6.2. The
measurement errors associated with the free-surface detection is considered to be half the interface
thickness on the images so that the wave height error is ε = ±0.2 mm. As expected, we observe
undular bores composed of the main wave (or the overshoot wave as seen in section 5.1), whose
height H is reported in figure 6.3b, followed by the wiggles of smaller amplitudes which converges
toward the bore mean height a which is plotted in figure 6.3a. For graphical purposes, all curves
are synchronized so that their maximum wave height happens at the maximum one from the CFD
simulation, that is to say at t = 1.32 s. It can be observed however, that the number of wiggles
is quite limited in the experimental case and for the higher piston velocities. For example, we can
count 9 waves including the main wave for the E1 case (smallest piston velocity) while only 2 waves,
or three crests are available for the E4 and E5 cases. This is due to the shorter time during which
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(a)

(b)

Figure 6.1: (a) Experimental set-up for the wave profile and velocity
field measurements. The piston wavemaker (1) generates an undular
bore (2) which propagates along the wave tank. A laser (3) generates a
plane which is deviated by a 45◦ mirror (4) and the images are shot by
a CCD camera (5) situated at the side of the wave tank. (b) Example
of the PIV images (E5 test case), after masking of the atmosphere part
with the radon transform based algorithm.



the piston wavemaker generates the bores, as its stroke is limited to around 17 cm. If the main
wave is easily identified, by looking at the maximum of the undular bore height, this is not the case
for the bore mean height a which is only easily traceable in the E1 case. This is why we decided to
fit an exponential decay function to the wave crests of the bore, according to:

f(t) = a1 + a2e
−t/τ (6.1)

where a1 and a2 are length constants, and τ is the decay time constant. We can observe on
figure 6.2 that the fit is quite precise and passes by almost all wave crests and all cases, even if it
can be argued that the precision of the fit on the last cases (E3,E4,E5) is much less important due
to the reduced number of crests. In particular, in the E4 case, the wave bore height seems to be
largely overestimated. We can compute the error basing our analysis on the non-linear fit algorithm
(nlinfit function of matlab) and take the mean of the error in the interval [1.32; 2.2]. The error guess
however fails for the E3 to E5 cases due to the too low number of wave crests that are generated.
The analysis of the different parameters such as the bore height a in the following paragraphs and
figure should then be taken with care as the error is not known. We observe however that this
method is quite precise in the first experimental case that is to say when the number of wave crests
is high enough.

The exponential decay function allows us to compute the mean bore height as this function
converges in time toward the bore height. We plot the bore mean height in function of the case
(or the piston velocity) in figure 6.3a, as well as the numerical case. A direct comparison between
the experimental cases and numerical one is not suitable as the wet-back configuration of the
experimental facility gives lower bore. We observe an increase of the mean height with the increase
of the piston velocity, and it is important to notice the small discrepancies observed for the E4 case
which results from the low number of crests used for the exponential fitting. The bore mean height
ranges from 1.5 mm for the E1 case to 7.4 mm for the numerical undular bore N1. It is interesting
to observe that this increase follows the linear behavior of the water level at wavemaker studied in
section 5.1.1.2, according to ηw ≈ h × Fr, with a constant difference ∆a which can be explained
by the water loss at the bottom of the wavemaker in the wet-back set-up of the laboratory and the
suction effect that results, leading to a smaller water level at the wall and thus a smaller bore mean
height. Finally, we can observe that the numerical value of the bore, also obtained by fitting of
the exponential decay corresponds to the value of section 5.1.1.2, showing the good accuracy of the
method to determine a.

The undular bore main wave height, which ranges from 3.3 mm for the smallest experimental
case to 1.04 cm for the numerical bore, is presented in function of the cases in figure 6.3b. It shows
a relative linear increase with the piston velocity, and as for the bore mean height, it follows the
tendency of the overshoot wave height at the wavemaker, such as ηo = 1.267 × h × Fr, with a
difference ∆H due to the ramp in the experimental velocity function, the suction effect and the
fact that the undular bore main wave increases its height during its course. Indeed, we observe an
important difference between the maximum wave height of the numerical case N1 and the overshoot
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Figure 6.2: Undular bore wave profile at x = 0.80 m from the wavemaker in
function of time for the five experimental cases (E1 to E5), measured with
image post-processing and interface detection with the radon-transform,
and the CFD case (N1). An exponential decay function f(t) = a1 +a2e

−t/τ

fit is computed on the wave crests and results are superimposed and allows
to determine the bore mean height a.



value at the wavemaker which is explained by the fact that as the undular bore travels downstream
the main wave gains height. In this example, the overshoot/main wave gained 1.4 mm during its
80 cm travel.

E1 E2 E3 E4/N1 E5

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

1

2

3

4

5

6

7

8

9
10

-3

Exp. undular bore

CFD undular bore

Wavemaker study

(a)

E1 E2 E3 E4/N1 E5

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
3

4

5

6

7

8

9

10

11
10

-3

Exp. undular bore

CFD undular bore

Wavemaker study

(b)

Figure 6.3: (a) Bore height in function of the wavemaker velocity. Error
bars are unavailable for case E3, E4 and E5 due to the too low number
of wave crests. (b) Main wave height in function of the wavemaker
velocity. The wavemaker study refers to the study of section 5.1.1.

We can also plot the decay time constant from equation 6.1 in function of the case, as it is carried
out in figure 6.4. The decay time constant informs us on the rapid amplitude decay from the wave
main wave to the following crest. We observe that as the main wave is more important, the decay
is more important (lower time constant) or otherwise said, as the undular bore Froude number
increases, the main wave is much more predominant compared to the secondary waves. Basing our
analysis on this figure, we can presume that the time constant for the E4 case is underestimated,
due to the low number of wave crests available to apply the fitting procedure.
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Figure 6.4: Exponential decay time constant τ in function of the wave-
maker velocity UG or the test cases. The time constant τ is retrieved
from the exponential decay function f(t) = a1 + a2e

−t/τ fit over the
wave crests.

6.1.2.2. Undular bore phase celerity

The phase celerity of the bore can be computed by looking at the position of the main wave. In
the case of the experimental phase celerity, it is computed by identifying the times at which the
maximum wave height enters the PIV image and the one at which it leaves the image. To do so,
a smoothing is applied on the wave height signals and allows to precisely measure these times. We
then compute the phase celerity as the mean of the wave celerity during its travel in the image.
Results are presented in figure 6.5, where the celerity ranges from 0.711 m/s to 0.772 m/s and the
associated Froude number, computed according to Fr = cp/

√
gh, from 1.01 to 1.10. These values

are characteristic of smooth non-breaking undular bore in a rectangular channel as observed in the
experiments of Treske (1994). We can compare the phase celerity with its theoretical value given
by (Treske, 1994):

cp =

√
g(h+ 1.5a+ a2

2h) (6.2)

The maximum error between the theory and the computed values from the experiment is 1.4% and
correspond to the E4 case, for which the exponential decay fit procedure was not ideal. As the
error is small for all cases, we can conclude that the experimental and numerical phase celerity are
relatively well calculated. The use of two synchronized capacitive wave gauge placed at a known
distance from each other could however be used to improve this measurement.
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Figure 6.5:

Figure 6.6: Phase celerity (in blue) in function of the test case generation
velocity UG and equivalent as Froude number (in red). The square marks
represent the value for the numerical case.

6.1.2.3. Dimensionless analysis

As the conditions between the numerical study and the experiments are slightly different, due to the
difference of undular bore generation methods (wet-back system in the experiment versus perfect
piston in the CFD simulation), it is decided to work when possible with dimensionless data. For
this analysis, the length variables will be converted to dimensionless ones by dividing them by the
reference length h (the mean water level), the velocities by

√
gh (phase velocity), and the time by

the constant
√
h/g. We then plot the dimensionless maximum wave height H/h and the mean bore

height a/h as a function of the Froude number in figure 6.7. The theoretical mean bore height is
also plotted, where the Froude number is related to the dimensionless mean bore height according
to (Treske, 1994):

Fr =

√
1 + 1.5a

h
+ a2

2h2 (6.3)

We observe a linear behavior between both quantities and the Froude number. This is due to the fact
that the mean and maximum wave height are much smaller than the mean water level. The value
of the mean bore height is however somehow overestimated by the exponential decay technique, as
we compare with the theory, even if it gives good trending results. It is also interesting to compare
the numerical case to the experimental ones and conclude that the closest experimental case is the
E5 case, with similar Froude number and wave height to water depth ratios.
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Figure 6.7: (a) Dimensionless wave height H/h in function of the
Froude number Fr = cp/

√
gh. (b) Dimensionless bore height a/h

in function of the Froude number.

6.1.3. Particle velocity below the undular bore
It is important to determine the particle velocities below the undular bore as it is this flow that

will interact with the vertical square cylinder. To do so, we will focus on the values at half mean
water level z = h/2 and a comparison with the numerical ones will be carried out.

The PIV velocity field for the cases E1 and E4 are given in figures 6.8 and 6.9 respectively,
where the velocity field is superimposed over the velocity magnitude defined as ||~U || =

√
U2
x + U2

z .
The main difference between the two cases, apart from the velocity magnitude (note the difference
of magnitude range in the colored bars between the E1 and E4 cases), is the number of velocity
vectors which is reduced for the higher bore due to an increased interrogation window size in the
PIV analysis process. If some vectors are missing it can be either due to masking of the atmosphere
phase as in figure 6.8c or due to the detection of outlier vectors which have been removed such
as in figure 6.9c. This is particularly true close to the free-surface and is explained by the fewer
particle present in the interrogation windows since part of it focuses on a huge masked region. It
also explains some of the low velocity magnitude in the E1 case and close to the atmosphere which
are not physically correct. The image acquisition focuses on a more or less 8 cm wide zone at around
x = 0.80 m from the wavemaker, and the free-surface variation can be observed as the wave passes by.
The seabed boundary layer is not resolved. Times t = 1.0033, 1.3200, 1.5033, 1.7200, 1.8867, 2.2367
s are shown and approximately correspond to the crest and troughs of the undular bore. The first
observation that can be made from these PIV results is that the flow is much more 2D close to the
seabed than the free-surface, as it is expected. This flow characteristics has been emphasized in
section 5.2.2 for the numerical test case. We also observe a quite constant velocity magnitude in
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space as the velocity is quite constant in the z-vertical and only a reduced part of the wave is filmed
in the x-direction.

From these PIV results, we are able to plot the velocity in the x and z directions, respectively
written Ux and Uz, at a water depth of z = h/2 and in function of time. These plots are available in
figure 6.10a and 6.10b. For graphical purposes, all curves are synchronized so that their maximum
velocity happens at the maximum one from the CFD simulation, that is to say at t = 1.32 s. The
x-velocity follows the bore wave heights, with a first increase due to the main wave passage followed
by wiggles. As it depends on the bore height, we observe an increase in the velocity from case E1
to E5. Finally, the E5 and N1 cases compare very well for times below t < 2 s, which validates the
numerical simulation for the wave propagation problem since for two bores of very similar Froude
numbers (1.102 and 1.099 for the E5 and N1 cases respectively) and very similar wave height to
water depth ratios (0.195 and 0.208 respectively), the maximum velocities are 0.1224 and 0.129 m/s
corresponding to a 5.7% difference.

In the case of the vertical velocity Uz, which is plotted in figure 6.10b, we observe oscillatory
variations from positive to negative values, and so forth, until the amplitude decreases to a constant
value of 0 m/s which correspond to a current flow. The maximum amplitude is, for all cases,
approximately ten times lower than the horizontal motion velocity, confirming the quasi-horizontal
flow situation. This is however not true close to the free-surface as it has been shown in section 5.2.2
where more details are given since more information is available from the numerical simulation.

6.1.4. Summary and conclusion
A summary of the different experimental and numerical cases is registered in table 6.2. We keep

the measured values of the wave height H, the bore height a, and their dimensionless counterpart,
the phase celerity, the associated Froude number and the maximum particle velocity at z = h/2 for
the experimental cases E1 to E5 and the numerical one N1.

Case H [m] a [m] Cp [m/s] Fr H/h a/h Ux,max

[m/s]

E1 0.0033 0.0015 0.711 1.015 0.066 0.303 0.044
E2 0.0048 0.0028 0.721 1.030 0.096 0.057 0.064
E3 0.0069 0.0042 0.737 1.053 0.137 0.083 0.090
E4 0.0080 0.0061 0.754 1.076 0.160 0.123 0.101
E5 0.0098 0.0069 0.772 1.102 0.195 0.138 0.122

N1 0.0102 0.0074 0.769 1.099 0.208 0.147 0.129

Table 6.2: Incident wave characteristics summary for the experimental
and numerical cases.

In this section, we were able to generate, analyze and categorize a series of experimental undular
bores. The undular bore wave profile was measured, leading to the description of the main wave
as well as the mean bore height thanks to the fitting of a exponential decay function. The phase
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Figure 6.8: PIV velocity field for case E1 - UG = 0.05 m/s at a position
x = 0.080 m from the wavemaker. Interrogation windows are 64 x 64 pixels2
wide. The free surface is plotted in blue.
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Figure 6.9: PIV velocity field for case E4 - UG = 0.10 m/s at a position
x = 0.080 m from the wavemaker. Interrogation windows are 128 x 128
pixels2 wide. The free surface is plotted in blue.



6.1. UNDULAR BORE PROPAGATION 216

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.05

0.1

0.15

0.2

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.02

-0.01

0

0.01

0.02

(b)

Figure 6.10: Velocities of cases E1 to E5 measured by PIV and case N1 in
function of time at z = h/2 = 0.025 m, x = 0.80 m and y = 0.00 m. (a)
Horizontal velocity Ux(t). (b) Vertical velocity Uz(t).



velocity was also measured by image post-processing and we were able to associate a Froude number
to every cases, showing notably that cases E5 and N1 (corresponding to the CFD simulation from
the previous section) are really similar by their Froude number, wave height to water depth ratio
and mean bore height to depth ratio. An extensive flow velocity analysis is also carried out showing
that the bore velocities are similar to a velocity step where variations appear at its top and its
trend is in all aspect similar to the bore height profile as expected. It is also interesting to observe
the convergence of the flow to a 1D flow, thus passing from a wave plus current flow to a simpler
current flow. Finally, the numerical wave propagation from the previous section is validated by the
data of the experimental data (E5 case).

The results of the following section depends greatly on the Froude number which is measured
for all bores. This was achieved thanks to the PIV images, but the method only computes it for the
time the bore enters and leaves the image. A better method could be to install two synchronized
wave gauge separated by at least 20 or 40 cm which would allow to measure a mean of the phase
celerity of the bore. This could also be achieved at the same time as the PIV measurement at the
rear back of the cylinder and thus the hypothesis of repeatability which is made in the next section
would not be necessary anymore.

6.2. Undular bore interaction with a vertical
square cylinder

6.2.1. Experimental set-up
General set-up The interaction of the undular bore with the vertical square structure is ex-
perimentally carried out thanks to a PIV set-up which is presented in figure 6.11. It consists first
in the generation of an undular bore (2) thanks to the piston wavemaker (1) (such as in the pre-
vious section). Then the undular bore propagates along the wave tank and finally interacts with
the square cylinder (3) of diameter D = 4 cm. An horizontal laser plane is projected at a height
z = h/2 = 0.025 m and lights the rear part of the cylinder. The water is seeded with the Sphericel
particles and images are taken with the CCD camera with the help of a 45◦ inclined mirror which is
placed at the vertical from the cylinder and below the wave tank. The CCD camera takes pictures
at a frame rate of 60 Hz, with a resolution of 672 × 476 pixels x pixels and the field of view is
situated at the rear of the cylinder, a zone where vortex pairing is observed as we will discuss in the
following sections. An example of such picture can be found in figure 6.12, for which the velocity
field retrieved thanks to the PIV tool is also shown. The images, before post-processing are cleaned
up by setting to 0 all pixels with a low light (generally lower than 15/255, but in some cases, it gave
better results to set to 0 pixels with values as high as 50/255). A mask is applied over the left part
of the pictures to cover the cylinder zone and calibration is carried out by measuring the width of
the cylinder on the picture. The interrogation window size varied from 32×32 pixels x pixels for the
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E1 to E3 cases and 64× 64 pixels x pixels for the E4 and E5 cases as particle displacement became
too large to allow the PIV tool to resolve the displacement field. A 50 % overlap is used alongside
the window deformation algorithm. For example, in the E5 case, 14 rows of vectors were obtained
vertically and horizontally giving 196 velocity vector in a field of view representing around 5 cm
in the x direction and 4 cm in the y direction. In the case of the smaller interrogation windows,
29 × 30 = 870 vectors are obtained. The experiment was carried out only one time by case, due
to the long post-processing. After preliminary tests, the generation and wave propagation showed
good repeatability so that the study in section 6.1 is considered valid and its output, notably the
calculation of the Froude number, will be taken as it is. The wave height was originally to be mea-
sured with the capacitive sensor but as repeatability was good, and the main parameter to compare
cases is the Froude number which was measured previously by image processing, we decided not to
install the capacitive sensor at the side of the cylinder to avoid any unnecessary interaction between
the bore and the sensor frame which would impact the flow. The water surface variation at the
cylinder edges was not measured for the experimental cases nor the pressure forces, which is left as
future tasks and analysis.

Issues during image acquisition and post-processing Some issues appeared during the
image acquisition process and the post-processing one which are important to assess. First, the
repartition of the particle tended to become heterogeneous, and in particular the particles tended
to sink at the bottom of the wave tank after some minutes, so that mixing of the water was necessary
before any measurement and a trade-off was taken between water at perfect rest before any action
of the wavemaker and a too long wait which implied the sinking of the particles. Second, the field
of view is zoomed at the rear part of the cylinder to focus on the vortices that are generated in that
zone and to obtain enough resolution of the vortices as the camera resolution is quite low. Finally,
blurring of the particles appeared for the cases of higher velocities such as the E5 case, which caused
the necessity of larger interrogation windows (and thus lower vector density) and some error in the
evaluation of the velocity magnitudes. In particular, some zones gave many outliers resulting in a
false evaluation of the rest of vectors due to the smoothing function present in algorithm. It implied
then to discard the images with too many outliers and the results presented in this thesis only show
the sorted cases.
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Figure 6.11: PIV set-up for the undular bore structure interaction study.
The wavemaker (1) generates an undular bore (2) which interacts with the
cylinder (3) of width D = 4 cm. A horizontal laser plane (4) at z = h/2
is projected at the rear of the cylinder and a camera (5) films the scene
through a 45◦ bended mirror placed below the wave tank.

Ways of improvement for future studies The experimental set-up can be improved by
taking a certain amount of measures which are listed now. These measures could not be taken in
the present work because of the lack of time (access to the laboratory was restrained during the
pandemic). First, the vertical cylinder could be painted in black to avoid reflection which generated
some trouble in the post-processing of the images close to the cylinder. A mirror could also be
placed vertically and at the opposite vertical tank wall to reflect the light inside the tank so that
lighting would be more homogeneous. Indeed, we observed that the PIV post-processing algorithm
failed many times in the zone where the light escaped the field of view (opposed to the laser side)
due to bad lighting. Finally, another camera, with more resolution (so that the whole cylinder
could be viewed), quicker shutter in order to observe less blurring and more frame per seconds to
avoid too large displacements would be very useful in gaining precision in the measurements. A
numerically controlled focus device would also be appreciated since its set-up "by hand" revealed to
be tricky. Despite of all that, the results which are presented in this thesis are coherent, reasonable
and precise enough to quantify and well represent the studied phenomena.

6.2.2. Vortex generation
An experimental visualization is carried out in the E4 case by using a high concentration of PIV

particles. The resulting images are displayed in figure 6.13 for times t = 1.6000, 1.8333, 2.3000 2.7500
s. We can observe the formation of vortices at the edge of the cylinder at time t = 1.6000 s before
these ones start to move away from the rear wall of the cylinder at time t = 1.8333 s. At this time,
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Figure 6.12: (a) Example of an image taken for PIV analysis. It corre-
sponds to the E1 case and time t = 2.8333 s. The undular bore propagates
from left to right and the cylinder walls are represented in green. (b) Veloc-
ity field retrieved from PIV analysis of the previous image at the rear part
of the cylinder which is shown in black.



the vortex wrapping can be seen, with particle moving from the far wake towards the cylinder as
well as from the side to the center. The vortices then start to get closer at time t = 2.3000 s. The
vortex size is around half the cylinder diameter so that the vortex pair occupies the whole back of
the cylinder. For all these times, there is a perfect symmetry between the vortices which is broken
at time t = 2.7500 s, where the center line of the vortex pair which is easily identified does no longer
coincide with the line y = 0 m passing by the cylinder side middle.

(a) t = 1.6000 s (b) t = 1.8333 s

(c) t = 2.3000 s (d) t = 2.7500 s

Figure 6.13: Visualization based on dense PIV particles poured in the tank
before the undular bore hits the vertical square cylinder (from left to right)
in the E4 case (UG = 0.10 m/s) for times t = 1.6000, 1.8333, 2.3000, 2.7500
s. In green, the cylinder walls are represented.

Synchronization between experiment and simulation is made by finding the first picture where
particles start to move at the cylinder edge, which corresponds to around t = 1.25 s in the numerical
simulation N1. The very first images where the rear vortices are close to the cylinder were not
possible to analyze so that only further times are shown. The vorticity, defined as ω = ∇ ∧U, is
computed for the experimental cases E1 and E5 and its vertical component is displayed alongside
the velocity vector field in figures 6.14 and 6.15, respectively. Note that the vorticity and the
velocity scales are not the same between the cases. These figures show quite clearly the presence
of two counter-rotating vortices, one with a positive vorticity in red and the other with negative
vorticity in blue. The vortices carry out a back and forth motion, that is to say that they start
by getting away from the cylinder before getting closer and find a quite stationary position at the
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rear of the cylinder. The vorticity strength is around three times higher in the E5 case, but we
suspect that the vorticity field is under evaluated in the E5 case, since we have seen that the vortex
motion is quite complicated to measure by PIV in section 4.3.2.2. This point will be further discuss
in section 6.2.3. The vector field also shows the vortex pair with a convergence zone in between
both vortices where the horizontal velocity component gains amplitude as time passes, whereas we
are able to observe a zone of really low velocity at the center line between the vortices and at their
back, which demarcates the negative x velocity due to the vortex flow from the positive one due
to the bore passage. We also observe that the maximum velocities are found at the exterior of the
vortices at the early times while later the maximum ones are located in-between the vortices.

The vortex pairing of the rear vortices can be characterized by their transversal velocity profile.
The process to obtain these profiles in the experimental cases E1 to E5 is as follows: first, the centers
of both vortices are determined according to the method of section 5.2.6 from the PIV field. In
order to give more robustness to this process, outliers are detected by comparing the detected points
with local velocity magnitude minimum in the x− y plane. Then a right line is drawn between the
vortex centers and velocity vectors are sampled along this line and projected to its perpendicular
component. This step is a consequence of the loss of symmetry in some experimental cases such
as for time t = 2.55 s of the E5 case and shown in figure 6.19. Note that this extra step is not
carried out for the numerical case N1 as symmetry is kept almost until the end. After retrieving the
velocity along the right line joining the vortex pair centers, a least square method allows to fit two
Lamb-Oseen vortices, which are typical of vortex pairing (Leweke & Williamson, 1998), with the
difference that an offset U0(t) is added to take into account the vortex pair own motions, according
to the following expression:

Ux(y) = U0 +
2∑
i=1

Γi
2π(y − yi)

(
1− exp

(
−(y − yi)2

a2
i

))
(6.1)

with Γ1,2 is the circulation, y1,2 the centres, and a1,2 is the core diameter of the fitted vortices.
The fit is executed with reference to the CFD profile between −0.02 ≤ y ≤ 0.02, that is to say the
cylinder projection limits, which are represented in red in figure 5.41. The fit is carried out after
detecting the vortex center positions through the procedure described in section 5.2.6 so that the
yi are already determined in equation 6.1.

The results of this process are plotted in the following figures: in figure 6.16, the velocity vector
field is represented over the velocity magnitude for case E1. On the same figures the vortex centers
are plotted with a red cross and the line joining them is in black. A similar plot for case E5 is shown
in figure 6.18. The velocity profile along this line is plotted in blue in figures 6.17, 6.19 and 5.41 for
cases E1, E5 and N1 respectively. Their corresponding fit is shown in black. The E1 PIV results
show a general loss of symmetry in velocity magnitude at the external side of the cylinder, especially
for early times. This is explained by different lighting in the PIV images and also the algorithm
has more trouble to solve the velocity field at the edges of the images since some particles leaves
the image and it does not have neighbor points on one side for the smoothing and outlier detection,
sometime leading to false estimate. However, the velocity magnitude ranges from 0 m/s to almost
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Figure 6.14: Vector field retrieved from PIV and vorticity (calcu-
lated as ω = ∇ × U) in the E1 test case and for times t =
2.0667, 2.5000, 2.7333, 3.0000, 3.2500, 3.5000 s. Interrogation windows are
32 x 32 pixels2 wide. The cylinder is represented in black. The undular
bore propagates from left to right.
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Figure 6.15: Vector field retrieved from PIV and vorticity (calcu-
lated as ω = ∇ × U) in the E5 test case and for times t =
2.1333, 2.2167, 2.2833, 2.3500, 2.4333, 2.5500 s. Interrogation windows are
64 x 64 pixels2 wide. The cylinder is represented in black. The undular
bore propagates from left to right.



0.05 m/s in the early times which correspond to the order of magnitude of the incident main wave
velocity measured by PIV in section 6.1.3. At later times, the end of the experimental bore due
to stroke restriction is observed as velocity at x > 1.06 m starts to decrease to 0 and even turn
to negative ones. The vortex pair is quite parallel with the side of the cylinder during the whole
interaction showing great symmetry. Velocity in the inter-vortex zone, as viewed before, is small
during the first instants of the interaction and increases progressively.

The velocity profile sampled along the inter-vortex line shows quite a poor symmetry which we
explain by the PIV post-processing too low resolution, although the vortex pair is quite far away
from each other at the early times which could also explain that an external parameter (cylinder
which is not fully perpendicular to the tank wall, or the wave front, edges sharper on one side...)
makes the vortex generation different. However, these differences tend to disappear with time as
the pairing occurs and at large times the profiles are symmetrical, such as at t = 3.25 s. The
PIV resolution is enough to allow us to distinguish two velocity minimums at the first displayed
time t = 2.07 s, corresponding to each vortex as we have seen in the numerical velocity profile of
section 5.2.6. For later times, the two velocity minimums disappear to leave a unique minimum
velocity which is also observed in the numerical simulations of figure 5.40 and is explained by the
core size increase of each vortices, now occupying the whole half-diameter of vertical cylinder. The
observations we made about the increase with time of the inter-vortex velocity is also verified. The
Lamb-Oseen vortex fit, which is represented in black is relatively well carried out and should give
us confidence over the results.

The E5 case is detailed in figures 6.18 and 6.19. Note that the case is only studied between
times t = 2.13 s and t = 2.55 s, which is due to two factors: the first one is the length of the bore
which is way shorter than the E1 case due to the limit of the piston stroke, and the second one is
the impossibility to resolve the PIV at the fist instant of formation of the vortices as they are still
situated close to the cylinder. In the case of the E5 experiment, similar observation can be made
about the global symmetry of the vortices which is lost quite quickly after their formation since at
time t = 2.22 s the vortex are no longer parallel to the cylinder wall. This loss of symmetry only
worsen in time so that the vortex in the negative y quadrant is much closer to the cylinder than
the other one. As for the velocity magnitude, this one reaches 12 cm/s for example at the exterior
of the vortices for time t = 2.13 s or at the inter vortex zone for the latest time which is shown:
t = 2.55 s. This corresponds to the maximum horizontal particle velocity at z = h/2 so that the
PIV results show great consistency with the bore particle velocity. Finally, as for the first case E1,
the inter vortex velocity gains amplitude to eventually reach its maximum at the last times before
the bore end reaches this zone. As for the vortex detection process, it seems to be quite precise
for a majority of cases even if the lower resolution can affect its results such as for time t = 2.43 s
where the negative y vortex center seems to be to the left from the real center.

The velocity profiles along the vortex center line, which can be observed in figure 6.19 show good
symmetry with reference to the line center s = 0 m for all cases (s is the curvilinear abscissa), even
if some differences are observed at the external side of the vortices (|s| > 0.015 m). The individual
vortices are not distinguishable as we have seen in the numerical case, which is either due to too

225



6.2. UNDULAR BORE INTERACTION WITH A VERTICAL SQUARE CYLINDER 226
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(c) (d)

(e) (f)

Figure 6.16: Velocity vector field and magnitude (calculated as
||~U || =

√
U2
x + U2

y ) retrieved from PIV in the E1 case for times t =
2.0667, 2.5000, 2.7333, 3.0000, 3.2500, 3.5000 s. Interrogation windows are
32 x 32 pixels2 wide. The undular bore propagates from left to right. The
cylinder is represented in black. Red crosses mark the vortex centers and
the black right line joins them. The velocity profiles from figure 6.17 are
sampled along this line.
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Figure 6.17: Velocity profile along the line joining the vortex centers (see
figure 6.16) retrieved from PIV in the E1 case and results of the fit. s
is the abscissa along the right line. The blue circles (–) represents the
E1 results while a least square method allows to fit two Lamb-Oseen vor-
tices according to the following expression: Ux(y) = U0 +

∑2
i=1 Γi/(2π(y −

yi))
(
1− exp

(
−(y − yi)2/a2

i

))
. This last expression is shown in the black

continuous line (–).



low resolution at the inter-vortex zone or more likely the observed times correspond to time where
the vortices are close enough so that the two local minimum velocities do not appear. We can also
confirm that the inter-vortex velocity decreases its value from around −6 cm/s to −12 cm/s as
assessed in the previous paragraph. Finally, the Lamb-Oseen vortex pair fit seems reasonable for
the majority of cases even if it can be argued that it does not results as well for the latest one.

6.2.3. Vortex circulation
Contour at rear edges The same method as described in section 5.2.6 for the circulation
computation is applied to the experimental cases E1 to E5 and the results are shown in figure 6.20a.
Note that due to the PIV output, some vectors were missing so that they were either replaced by
using bilinear interpolation or extrapolated with the linear approach if they were at the boundary.
If the results show, as expected, an increase of the circulation as the bore height increases, great
disparities appeared in the results of the E4 and E5 cases, with many outliers and great variations.
After removal of these outlier and smoothing, the converged circulation, which is computed as
the mean of the circulation once the maximum is reached and before the bore end is reached, is
retrieved and plotted as a dimensionless parameter in function of the Froude number in figure 6.20b.
We observe an increase of the circulation with the Froude number, however with a lower slope
for the cases E4 and E5 which we understand as an under-evaluation due to bad PIV resolving.
Moreover the value obtained for the E5 case is really lower than the one of the numerical case (35 %
difference) which would indicates bad calculation either in the numerical computation or the PIV
post-processing. These results do not let us conform with the method that is why we decide to
compute the circulation using a different one which is presented in the following paragraph.
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Figure 6.20: (a) Test cases circulation around the rectangular contour of
figure 5.45 in function of time. The black lines indicates the value to which
the circulation converges (before an eventual quick fall). (b) Dimensionless
converged circulation as a function of the Froude number. A linear regres-
sion is carried out based on the E1 to E3 test cases whose results are shown
with the dashed line.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Velocity vector field and magnitude (calculated as
||~U || =

√
U2
x + U2

y ) retrieved from PIV in the E5 case for times
t = 2.1333, 2.2167, 2.2833, 2.3500, 2.4333, 2.5500 s. Interrogation
windows are 64 x 64 pixels2 wide. The undular bore propagates from
left to right. The cylinder is represented in black. Red crosses mark
the vortex centers and the black right line joins them. The velocity
profiles from figure 6.19 are sampled along this line.
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Figure 6.19: Velocity profile along the line joining the vortex centers (see
figure 6.18) retrieved from PIV in the E5 case and results of the fit. s
is the abscissa along the right line. The blue circles (–) represents the
E5 results while a least square method allows to fit two Lamb-Oseen vor-
tices according to the following expression: Ux(y) = U0 +

∑2
i=1 Γi/(2π(y −

yi))
(
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Velocity profile method In this part, the circulation is computed as a result of the fit of the
Lamb-Oseen vortex pair as described by equation 6.1. The parameters of figure 5.41 are plotted
in function of time for the numerical case N1 in figure 5.42. The fitting allows us to show that
both rear vortices are fully symmetrical since the circulation and core parameters are equal for
both vortices (in absolute value) except for the latest times t > 3.3 s where great variations of the
circulation is observed and the core size is no longer equal between the two vortices. The core size
variations shows a global increase in time with variations that we attribute to vortex stretching: a
vortex tube when stretched becomes thinner and inversely, it becomes larger when squeezed and
this is a consequence of vorticity conservation.

The circulation behavior is quite interesting: if the numerical case showed that after an original
increase, the circulation seems to stall to a constant value with oscillations around a mean value, this
mean value is determined and reported in figure 6.21a for the experimental cases. Great variations
can be observed depending on the case, especially for the higher bores. A mean computed on
the time serie data set and its associated error was extracted and is plotted in figure 6.21b in a
dimensionless way so that the circulation is a function of the Froude number of the incident waves.
First of all, we can observe that the dimensionless circulation of the E5 case is much closer to the
numerical case N1 than for the contour method. The global behavior is an increase which does
not appear to be linear. The E2 point seems to be overestimated unless the E3 and E4 cases are
underestimated. An improved experiment could however help us in determine what is the correct
behavior of the circulation in function of the cases. Nevertheless, a comparison with the contour
method is carried out in the following paragraph.
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Figure 6.21: (a) Test cases circulation calculated from the Lamb-Oseen
vortex pair fit from equation 6.1 in function of time. (b) Dimensionless
mean circulation as a function of the Froude number. A linear regression is
carried out whose results are shown with the dashed line.

Comparison between methods A summary of the circulation computed from the contour
and velocity profile fit is reported in table 6.3. These data are plotted in a same graph so that
they can be compared in figure 6.22. If both methods seem to give similar values for the three first
cases, they diverge for the E4 and E5 test cases. However, the numerical case shows both methods
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with a really close value (2 % difference) and indicates that the E5 value might be close to these
value as computed with the velocity profile fit method. This last method seems to be more suitable
for the circulation computations, since no integral is performed and thus if the velocity field is
underestimated as it is often the case in PIV experiments with vortex it can give it an advantage.
The E5 value also suggests that the CFD simulation is correctly carried out so that it validates the
wave-structure interaction. An alternative to the other two methods could be to use the plughole
free-surface deformation to compute the strength of the vortices as described in section 2.4.1 and in
particular figure 2.10. This would require to precisely measure the free-surface deformation at the
rear of the cylinder and could be achieved with the Cobelli et al. (2009) technique of water wave
global measurement by Fourier transform profilometry.

Case Froude
number

Contour method
circulation [m2

s−1]

Fit method
circulation [m2

s−1]

Contour method
dimensionless
circulation

Fit method
dimensionless
circulation

E1 1.015 0.0015 0.0011 0.0175 0.0129

E2 1.030 0.0020 0.0027 0.0230 0.0303

E3 1.053 0.0030 0.0027 0.0338 0.0303

E4 1.076 0.0034 0.0039 0.0389 0.0446

E5 1.102 0.0040 0.0059 0.0459 0.0666

N1 1.099 0.0063 0.0061 0.0711 0.0696

Table 6.3: Circulation summary from the contour and fit methods.
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Figure 6.22: Dimensionless mean circulation in function of the Froude
number. Comparison between the contour method in black and the velocity
profile fit method in blue. The numerical case is represented by the square
marks.

233



Chapter 7

Conclusion

In this thesis, the study of undular bore generation, propagation and interaction with a
vertical square cylinder was carried out by means of numerical simulations and experimental
trials at laboratory scale. The wave-structure interaction problem was extensively studied,
but it is the first time at the author’s knowledge the interaction of an undular bore with a
vertical square cylinder is described. Undular bores are of particular interest since they have
shown to represent quite well tsunami waves, which are a hazard for coastal communities,
such as in Chile’s coasts.

To study the undular bore generation, propagation and interaction with a square cylinder,
various tools were designed and built. A wave tank at small scale was constructed alongside
its wave generation system based on a piston wavemaker, and its numerical mirror based on
the resolution of Navier-Stokes equations (CFD) was implemented. Both 2D model, used
to study the wave generation and propagation, and 3D model used for the interaction with
the square cylinder study were implemented in an open-source software, allowing its use
in the Universidad de Chile’s supercomputer. Then, a capacitive wave gauge was designed
according to the scale of the studied problem. Based on a charge amplifier, it allows to get
rid of stray capacitances, and shows high sensitiveness. The sensor is also cheap and built
from highly available parts so that it can be implemented in any laboratory. The literature
review of capacitive sensing and the sensor implementation showed that some more study are
necessary to assess the meniscus influence on the measurement when the experiment scale
is reduced. Finally, a PIV post-processing tool was implemented, comprising an automatic
tool for the free-surface detection which relies on the Radon transform. The PIV was tested
on extended sets of synthesis images which allowed us to quantify its sensitivity in function
of parameters such as the particle displacement, size, noise,..., shear flows and vortex flows.

Applying a velocity step to a piston wavemaker results in the generation of an undular
bore. The piston wavemaker was thus characterized by velocity step numerical experiments
based on the 2D Navier-Stokes equations resolution and the solid body motion of the wave-
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maker boundary. The water level at the wavemaker showed good agreement with the available
theory, and the study was extended to higher Froude number (Fr > 0.1). The dimensionless
wavemaker water level results allowed the design of an active wave absorption control strategy
based on the overshoot of the step response. This was tested on regular and irregular waves
and showed to be efficient. This work also allowed to retrieve the proportional constant of
widely used piston wave active absorber controller. The forces were computed on the piston
wavemaker and a general power input scaling law was determined. We hope this power law
can help to the design of future facilities which would comprise piston wavemaker.

Five different bores were generated in the experimental facility at the LEAF-NL labora-
tory as well as one numerical case solving the full 3D Navier-Stokes equations, which allowed
us to characterize the undular bore by measuring the main wave height, the mean bore height,
the phase celerity, and their associated Froude number, which ranged from 1.015 to 1.100.
The undular bores were also described through the measurement of the particle velocity at
a height of half mean water level and the whole velocity profile was given for the numerical
case. The generated bores showed that one experimental test case was quite similar to the
numerical test case (both in Froude number and wave height to water depth ratio), which
allowed us to validate the wave generation and propagation computations of the numerical
case.

The final stage of this thesis was the study of the undular bore interaction with the vertical
square cylinder, which was carried out by measuring the velocity field in the half mean water
level plane and at the rear of the cylinder, while the 3D numerical simulation gave more
complete information about the flow around the cylinder. First, a general description was
made about vortex shedding at the four cylinder edges notably by looking at the Q criteria
and the vorticity field. Then, the pressure force on the cylinder showed strong oscillations
around a mean force which corresponds to the one determined in the literature for current-
cylinder interaction with a free-surface. It was verified that the instantaneous vortex shedding
frequency corresponds to the instantaneous frequency of the undular bore. The vortex pairing
phenomena was identified at the rear of the cylinder consisting in the generation of two
vortices which evolve together. It is the first time, at the author knowledge, that such
quasi-stationary vortex pair are observed in the domain of wave structure interaction. Their
motion was described by looking at their core and we could identify the Crow instability.
The vortices were characterized by the measurement of their circulation by two distinctive
methods, showing that a Lamb-Oseen vortex pair velocity profile fit was a reasonable method
for such an end and with the PIV data at our disposition. The dimensionless circulation was
determined in function of the Froude number. The comparison between the experimental
and numerical case also allowed us to validate the vortex generation numerical computation.
However, the reduced resolution (in particular for the higher Froude number cases) is a
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limitation to this work and might be resolved by carrying out another set of experiments
with a more suited set-up that would allow to perform a more more precise evaluation of the
vortex pair velocity field. Finally, the determination of the seabed wall shear stress allowed
us to conclude on the eventual scouring that might appear at the cylinder, and might also
be important in the design of bridge piles but a dedicated study of the phenomena should
be planed to assess the whole complexity of the scouring problem.

In a close future, it would be advisable to keep investigating some of the themes that
emerged from this work. The following list, in the author’s opinion, are open problems and
extensions that might be worth more investigation but is not exhaustive. In the case of the
wavemaker step response, the asymmetry between "positive" and "negative" Froude raised
concerns about the implications it has on the wave absorption, especially when the error
becomes high. Moreover, the space between the wavemaker and the seabed in the wet-back
configuration of the experimental facility generates a strong vortex at the rear part of the
wavemaker and was observed during our trials. This could strongly influence the forces on the
wavemaker, and the effect of suction greatly changes the main wave and bore heights. The
evaluation of drag forces on the cylinder needs to be expanded to different Froude numbers
since it is an important feature in the assessment of structure resistance to tsunami events.
In particular, we showed that the transient force can reach a value as high as four time the
steady-state one. More experiments should be carried out at lower and higher Froude numbers
so that the evolution of the vortex pair strength can be better evaluated. The stretching and
squeezing of the vortex should also be investigated and the circulation changes during the
pairing phenomena. Longer numerical simulations or an extension of the laboratory wave
tank could also give us a hint on the eventual disappearance of the rear vortices and the
mechanisms leading to it. The influence of the cylinder diameter and orientation should also
be looked into.
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Annex A

Gravity waves

In this section, the surface wave propagation problem is described and the different categories
the waves can be sorted in are presented. All results are mainly from Bovis’ book (Bovis,
2009), unless otherwise specified. The wave tank consists of a parallelepiped rectangle whose
bottom face represents the seabed and the top face is the free water level. The origin is taken
at top left corner of the forefront lateral face, which implies that the vertical coordinate z
of the seabed to be at z = −h. The atmosphere is situated above the free surface. In this
section, theoretical aspects of linear waves, non linear waves, cnoidal waves, solitary waves,
random seas and breaking waves will be reviewed.

Figure A.1: Scheme of the wave problem

A.1. Wave equations
A scheme of the problem can be found in figure A.1. The following hypothesis are made

to describe the fluid motion in the wave generation problem: water is considered as a perfect,
incompressible, irrotational fluid which allows the definition of a velocity potential φ(x, z, t)
such as V(x, z, t) = ∇φ. The equations describing the fluid motion are the continuity equa-
tion (mass conservation) and the Navier-Stokes equations (momentum conservation). The
boundary conditions are the following:
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− Walls are impermeable. Thus the normal velocity component at seabed is zero and at
walls should be equal the wall velocity: V · n = U · n.

− The pressure at free water surface is the atmospheric pressure.

Consequently the continuity equation ∇ ·V = 0 becomes:

∆φ = 0 (A.1)

The equation of momentum conservation, whose form behind the previous hypothesis is now
the Euler equation, can be integrated in space and becomes the Bernoulli equations:

∂φ

∂t
+ gz + p

ρ
+ 1

2 |∇φ|
2 = B(t) (A.2)

where B is a constant which only depends of t. Equation A.2 allows to compute the pressure
when the velocity field is known. The function of the free water surface elevation η is defined
as z = η(x, t). Breaking waves are not allowed here. At the interface, p = p0 and the
Bernouilli constant B is B(t) = p0

ρ
, which leads to the free surface dynamic equation :

∂φ

∂t
+ gη + 1

2 |∇φ|
2 = 0 in z = η(x, t) (A.3)

Let’s now define the function f as:

f(x, z, t) = z − η(x, t) (A.4)

At the interface, f must always be 0 and thus the total derivative also:

Df(x, z, t)
Dt

= 0 ⇐⇒ [ ∂
∂t

+ V · ∇]f = 0 (A.5)

⇐⇒ [ ∂
∂t

+ V · ∇](z − η(x, t)) = 0 (A.6)

⇐⇒ ∂η

∂t
+ ∂φ

∂x

∂η

∂x
= ∂φ

∂z
at z = η (A.7)

This last equation is called the kinematic boundary condition.

A.2. Linear wave theory - Airy waves
The linear wave theory was first proposed by George Biddell Airy (1841). It is valid as

long as the wave height is small compared to the wave length (η � λ) and also the wave
height is small compared to the water depth (η � d). The equation system to solve is then
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given by the following equations. Laplace equation gives:

∂2φ

∂x2 + ∂2φ

∂z2 = 0 (A.1)

At seabed, the vertical velocity should be zero:

∂φ

∂t
+ gη = 0 in z = −h (A.2)

After linearization, the equation A.3 becomes:

∂φ

∂t
+ gη = 0 at z = η(x, t) (A.3)

Airy then proposed to write a monochromatic waves as:

η(x, t) = A cos(kx− ωt) (A.4)

The corresponding velocity potential, which satisfies equation A.1, A.2 and A.3 is given by:

φ = g

ω
A

cosh(k(z + h))
sinh(kh) sin(kx− ωt) (A.5)

The dispersion equation, which can be calculated from the free surface kinematic bound-
ary condition, is given by:

ω2 = gk tanh(kh) (A.6)

A.3. Higher order wave theory - Stokes waves
G. G. Stokes (1880) developed a full theory for higher orders of the wave problem. Re-

sults, obtained through the use of a perturbation series analysis, also known as the Stokes
expansion, lead to non linear wave motion. At these orders, wave particle trajectories are
no longer closed. This means there is particle transport with the wave propagation, the so
called Stokes drift. We define ε such as ε = kA, with then ε << 1. Stokes expansion is:

η(x, z, t) = η1(x, z, t) + εη2(x, z, t) + ε2η3(x, z, t) +O(ε3) (A.1)

φ(x, z, t) = φ1(x, z, t) + εφ2(x, z, t) + ε2φ3(x, z, t) +O(ε3) (A.2)

By solving the equations in section A.1 for each order of magnitude (1, ε and ε2), one obtains:

Order 1: The solution is the same as equations A.4 and A.5.
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Order 2:
η2 = 1

4 coth(kh)[3 coth2(kh)− 1]A2k cos[2(kx− ωt)] (A.3)

φ2 = 3
8
gkA2

ω

[coth2(kh)− 1]2
coth(kh) cosh[2k(z + h)] sin[2(kx− ωt)] (A.4)

Order 3:

η3 =− 3
8[coth(kh)4 − 3 coth(kh)2 + 3]A3k2 cos[kx− ωt]+

3
64[8 coth(kh)6 − (coth(kh)2 − 1)2]A3k2 cos[3(kx− ωt)] (A.5)

φ3 = 1
64(coth(kh)2 − 1)(coth(kh)2 + 3)(9 coth(kh)2 − 13)·

cosh[3k(z + h)]
cosh[3kh]

gk2A3

ω
sin[3(kx− ωt)] (A.6)

The non linear dispersion equation is:

ω2 = gk tanh(kh)[1 + k2A2(9
8(coth2(kh)− 1)2 + coth2(kh))] (A.7)

The differences between the orders of Stokes waves are represented in figure A.2a and the
importance of the contribution for each order is shown in figure A.2b. Second order waves
have higher troughs and higher crests compared to first order Airy waves. Third order waves
seems to limit a bit this effect on troughs while increase it on crests.
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Figure A.2: (a) Difference between Stokes waves for orders 1, 2 and
3. It corresponds to the following entries: h = 10 m, H = 7.8 m and
T = 6 s. (b) Importance of each contribution to the Stokes wave.

The 5th order Stokes theory is presented by Skjelbreia & Hendrickson (2011). A parame-
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ter, called here κ is defined (originally called λ in Skjelbreia’s paper). They propose a system
of equations:

πH

h
= 1
h/λ

[
κ+ κ3B33 + κ5(B35 +B55)

]
(A.8)

h

λ0
=
(
h

λ

)
tanh(kh)

[
1 + κ2C1 + κ4C2

]
(A.9)

where λ0 = gT 2

2π . The wave elevation is defined by:

kη = κ cos(θ)

+ (κ2B22 + κ4B24) cos(2θ)

+ (κ3B33 + κ5B35) cos(3θ)

+ κ4B44 cos(4θ)

+ κ5B55 cos(5θ) (A.10)

with θ = k(x − ct). Knowing h, H and T one can solve equations A.8 and A.9 which give
the values of the quotient h/λ and of κ. The coefficients B and C are defined in Skjelbreia’s
paper and are not shown here but they only depend on h/λ.

A.4. Summary: validity range of waves theo-
ries

Ursell (1953) allows to determine the range of validity of the linear small amplitude wave
theory applies. The Ursell number is defined as:

Ur = η

λ

(
λ

h

)3

(A.1)

It corresponds to the two first terms of the development in series of the potential φ in Stokes
derivation. Ursell shows that the common criteria η

λ
� 1 is incomplete for the validity of

the linear theory of surface waves: when the waves are long, Ur � 1 is also a limitation.
A summary of the range of validity of the different wave theories which were previously
described can be found in figure A.3. The following parameters are taken into account: the
wave period T , the mean sea water level h (called d in the figure A.3) and the wave height
H. A summary of the different theories and their hypothesis is shown in figure A.4.
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Figure A.3: Validity range of waves theories, according to Le Méhauté
(2013) and found in Demirbilek & Vincent (2002).
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Figure A.4: Hypothesis of the different wave theories after Mader
(2004).



A.5. Cnoidal waves
Cnoidal waves are propagative waves solution of the Korteweg-de Vries equation or KdV

equation (Korteweg & de Vries, 1895)). Dingemans (1997) gave the complete solutions for
periodic waves. The KdV equation is the following:

∂η

∂t
+ ∂3φ

∂x3 + 6φ∂φ
∂x

= 0 (A.1)

In dimensional form, for λ > 7h, the KdV equation resulting of the wave propagation
problem is the following:

∂η

∂t
+
√
gh
∂η

∂x
+ 3

2

√
g

h
η
∂η

∂x
+ 1

6h
2
√
gh
∂3η

∂x3 = 0 (A.2)

This equation is dispersive for both frequency and amplitude. A solution is given by:

η(x, t) = η2 +H cn2
(
x− c t

∆ m

)
(A.3)

where η2 is the through elevation, H the wave height, m the elliptic parameter, c the phase
speed, cn one of the Jacobi elliptic function. The though parameter as well as the width
parameter can be expressed as:

η2 = H

m

(
1−m− E(m)

K(m)

)
and ∆ = λ

2K(m) = h

√
4
3
mh

H
(A.4)

where K(m) is the complete elliptic integral of the first kind and E(m) the complete elliptic
integral of the second kind. The links between wave length λ, phase speed c, wave period T ,
wave height H, water depth h and elliptic factor m are:

λ = h

√
16
3
mh

H
K(m), c =

√
gh

[
1 + H

mh

(
1− 1

2 m−
3
2
E(m)
K(m)

)]
, T = λ

c
(A.5)

When λ, c, T , H and h are known one can find the elliptic parameter m and deduce the wave
form. An example can be found in figure A.5a, where it is compared to the Airy and Stokes
3rd order models. The cnoidal wave has higher troughs and crests than the other models.
The crests are thiner and the troughs larger implying steeper waves. The influence of the
parameter m is shown in figure A.5b.
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Figure A.5: (a) Comparison between cnoidal waves and Stokes wave
for the following entries: h = 10 m, H = 4 m and T = 10 s. The
elliptic parameter m is 0.94. (b) Influence of the elliptic parameter m
over the cnoidal wave shape.

A.6. Solitary waves
Solitary waves (tsunami waves) are long period waves which can travel at several hun-

dreds of km/h in deep ocean and reach heights of dozens of meters in shallow water. They
represent a tremendous danger for coastal population and can be very destructive for marine
infrastructure. Tsunami such as in Aysen in 2007 and the center coast in 2010 (waves of 5
meters in harbour) destroyed many coastal towns and caused many deaths. This is why it
is necessary to predict the wave-structure interaction and minimize their impact on offshore
and near-shore structures, such as harbour or marine renewable energy infrastructures. They
were first studied by Russel in 1838 who made series of experiments in river mouths (Russell,
1838). From its observations he found a relationship for the phase celerity of solitary waves:

c =
√
g(h+H) (A.1)

with H the solitary wave height and h the water depth. Russel also denoted some character-
istics of such waves (as summarized in Sander & Hutter (1991)):

− The reflection over a vertical wall results in the propagation in the opposite direction
of a solitary wave which shape does not change

− The collision of solitary waves does not impact their shape.

− The form of a solitary wave is a trochoid.

− The height of a solitary wave does not change during motion. When it happens it is
due to viscosity (the fluid is not perfect).
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− The wave breaks if the wave height is larger than water depth.

The first theory was thought by Boussinesq (1872). He demonstrated that one can de-
scribe the wave form with the following equation:

η(x) = Hsech2

x
h

√
3
4
H

h

 (A.2)

G. H. Keulegan (1948) calculated the gradual damping due to friction of such waves.
Damping can be really important and should be taken into account, especially when the
wave travels great distances. He showed:

η(x) = h

(η(x = 0)
h

)−1/4

+K
x

h

−4

(A.3)

with
K = 1

12

(
1 + 2h

B

)√
ν

g1/2h3/2 (A.4)

where B is the width of the canal, η0 is the initial height of wave above undisturbed water
and s is the distance that traveled the wave from initial wave height measurement.

Rayleigh (1876) also studied solitary waves founding that wave elevation can be expressed
as:

η(x) = Hsech2

x
h

√
3
4

H

h+H

 (A.5)

McCowan (1891) also made theoretical studies of the phenomenon, showing the complex-
ity of the model that can be reached. For more details on these theories a good summary is
made by Daily & Stephan Jr (1952).

A.7. N-Waves
The usual way of modeling tsunami wave is to consider solitary waves (Camfield & Street,

1968; Hammack & Segur, 1974; Synolakis, 1987; Liu et al., 1995). Scientists made observa-
tions on real tsunami events showing that the solitary wave representation is not adequate
and one should find other alternatives (Tadepalli & Synolakis, 1994; E. Geist & Yoshioka,
1996; Rabinovich & Thomson, 2007; P. A. Madsen et al., 2008; Chan & Liu, 2012), as shown
in figure A.6. For example, many reported the rescinding of the shore line before the arriving
of the tsunami wave, showing that a depression led wave might be more suitable to model
tsunami waves, especially when the seismic event originating the tsunami is close to the shore
and thus the wave does not have time to evolve into leading elevation wave or a series of
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solitary waves (Tadepalli & Synolakis, 1994). This was also observed for the 2010 tsunami
on the Chilean coast as reported by Fritz et al. (2011).

(a)

(b)

Figure A.6: (a) Tsunami wave of the
2011 Japan natural disaster accord-
ing to Chan & Liu (2012). (b) Com-
parison between on-field data from
"Mercator" yacht measurements of the
2004 Indian Ocean tsunami (points,
from Siffer (2005)) and a combina-
tion between sech2 functions (contin-
uous line) according to Schimmels et
al. (2016).

N-waves were first described in Whitham (1974) for gas dynamics studies. E. L. Geist
(1998) studies the relationship between the earthquake source parameters and the N-wave.
Two types of N-waves can be considered which are the leading depression N-wave (LDN)
and the leading elevation N-wave (LEN). McGovern (2016) recently pointed out the lack
of experimental data for N-waves run-up, and also the difficulty of reproducing long waves
in laboratory flumes as they still often represent hundreds of meters wave length at scale.
In many studies, the experimental generation of long waves is done thanks to the use of
a pneumatic wave generator based on volume exchange between the flume and the gener-
ator (G. Keulegan, 1966; Rossetto et al., 2011; Charvet et al., 2013; Goseberg et al., 2013;
McGovern, 2016), although due to the compression of the air and water phases, disturbances
can appear at the free-surface. Schimmels et al. (2016) shows however that the generation of
long waves (N waves or solitary waves) are perfectly possible by a piston wavemaker, despite
a maximum scale limitation. The full procedure for N-wave generation with a piston wave-
maker is given in Lima et al. (2019), following a similar procedure as proposed by Goring
(1979)(see also section 2.2). The N-wave profile according to Tadepalli & Synolakis (1994)
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is described by:
η(x, t) = ε(θ − κδ) ·H · sech2θ (A.1)

where

− the argument θ is given by θ = κ(x− ct− x1),

− κ =
√

3
4
H
h3 is the generalized wave number according to Peregrine (1967),

− ε is a scale factor to define the wave height in function of H,

− δ = x2 − x1 is an eccentricity parameter between the inflection point position x2 at
t = 0 s and the location of the equivalent solitary wave of height H postion x1 and at
t = 0 s (see figure A.7).

One main consequence of considering a depression led N-wave is the run-up much higher
than for the solitary wave, showing that considering solitary wave may not be accurate to
predict the run-up of tsunami waves (Tadepalli & Synolakis, 1994).

Figure A.7: N-wave profile parameters according to Tadepalli & Syno-
lakis (1994). H is the wave height of the solitary wave model, λ is the
wave length, δ is an eccentricity parameter, a+ and a− are the positive
and negative contribution to the wave height respectively.

A.8. Random sea - Spectrum
As wind is not constant as well as the area it blows on, waves are not monochromatic and

unidirectional (see section A.8). Most of the time, wave elevation appears to be chaotic and
a random function of time (see figure A.8a). The description of these sea states can be done
using statistics. The combination of solutions from the equation A.4, with the introduction
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of random phases, frequency and amplitudes, constitutes a solution of the problem described
in A.1:

η(x, t) =
∞∑
i=0

Ai cos(kix− ωit) (A.1)

A typical representation of these characteristics is the spectrum. One can calculate the
Fourier transform F of the signal wave height vs time (called f(t)) which is defined as:

F (ω) = 1√
2π

∫ +∞

−∞
f(t)e−iωt dt (A.2)

The power spectrum is then computed by the product of the Fourier transform and its
conjugate:

S(ω) = |F (ω)|2 = F (ω)F (ω)∗ (A.3)

The typical mathematical models to represent these spectra are the following:

− Pierson-Moskowitz (1964): it is the simplest spectrum. It is defined as:

S(ω) = αg2

ω5 exp
[
−β

(
g

V ω

)4
]

(A.4)

with α and β two parameters which have to be experimentally adjusted, and V is the
wind velocity at 19.5 m height from sea water level.

− JONSWAP (1973 - Joint North Sea Wave Project): it was initially used for the rep-
resentation of the North Sea wave spectrum for the oil and gas industry. It is written
as:

S(ω) = αg2

ω5 exp
[
−5

4

(
ωp
ω

)4
]
γr (A.5)

with α = 0.076( V 2

Feg
)0.22; ωp = 22( g2

FeV
)1/3; γ = 3.3; r = exp

[
(ω−ωp)2

2σ2ω2
p

]
and σ =0.07, if ω ≤ ωp

0.09, if ω > ωp
. Fe is the characteristic length (called fetch) where the wave are

formed from wind forcing.

− Bretscheider (1978): it was adopted by the NATO has representative of the North
Atlantic ocean. It is defined as :

S(ω) =
AH2

1/3 ω
4
p

ω5 exp
[
−
Bω4

p

ω4

]
(A.6)

with A = 0.3125 and B = 1.25. ωp, the modal pulsation is linked to the significant wave
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height H1/3 by: ωp = 0.4
√

g
H1/3

. ωp corresponds to the pulsation giving the maximum
peak of the spectrum energy.

JONSWAP spectrum energy is higher than the two others that are quite similar as shown
in figure A.8b. The wave power spectra are more complicated than the one presented here
in the general case: it can be composed for example of a local sea state (due to local sea
conditions) as well as swells that are traveling from further away.
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Figure A.8: (a) Aleatory elevation of waves (artificially created by
the author): here wave shapes does not have anything to do with
the previous Airy sinusoidal wave. (b) Comparison between power
spectrum for cases where all spectra have the same ωp and bandwidth.

When wind changes of direction and generate new waves, these one will eventually en-
counter other waves that were already formed, leading to a superposition of waves from
different directions. This constitutes the general case at sea. To take into account real sea
state characteristics, the directionality (also called spreading) of the waves should be taken
into account. In deed, most structures, which do not accept symmetry axis, will respond
in different ways depending on the directionality of the hitting wave. It implies that the
monochromatic unidirectional model cannot be sufficient. Directionality also explains that
most sea states are short crested since wave energy propagates in a certain number of di-
rections. It is generally taken into account by adding a spreading function G to the wave
spectrum:

S(ω, θ) = S(ω)G(θ) (A.7)

281



Annex B

Kinematic wave absorption

x

z

Figure B.1: Scheme of the wave tank on which the calculation of the
absorption transfer function is based

We propose to explain the result of Schäffer & Jakobsen (2003) for the kinematic wave absorp-
tion strategy which is used in many wave tanks. We choose to keep notations from Schäffer
& Jakobsen (2003) and Andersen et al. (2016). A scheme of the problem can be found in
figure B.1. First we need to consider the nearfield wave elevation at x and after a time of t
which can be expressed as:

η(x, t) = e0 (C0 cos(ωt− kx) +D(x) sin(ωt)) (B.1)

where

− e0 is the half wave height (e0 = H
2 ),

− Cj are the Biésel transfer function coefficients such as Cj = 4 sinh2(kjh)
2kjh+sinh(2kjh) ,

− ω is defined as ω2 = kjg tanh(kjh),
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− D(x) represents the sum of evanescent modes such as

D(x) =
∞∑
j=1

Cje
−kjx

.

For a wave gauge situated at x = dWG this relation becomes:

η(x = dWG, t) = e0 [C0 (cos(ωt) cos(kdWG) + sin(ωt) sin(kdWG)) +D(dWG) sin(ωt)]

= e0

[
C0

(
sin
(
ωt+ π

2

)
cos(kdWG) + sin(ωt) sin(kdWG)

)
+D(dWG) sin(ωt)

]
(B.2)

Let’s calculate the Fourier transform of sin
(
ωt+ π

2

)
:

F
[
sin

(
ωt+ π

2

)]
=
∫ +∞

−∞
sin
(
ωt+ π

2

)
e−iωt dt

by changing variables acoording to ωt′ = ωt+ π

2
=
∫ +∞

−∞
sin(ωt′)e−iωt′+iπ2 dt

= ei
π
2 F [sin(ωt)] (B.3)

Let’s call AWG the Fourier transform of η andXgen the Fourier transform ofX(t) = e0 sin(ωt).
Then the following relation can be found:

AWG =
[
C0
(
ei
π
2 cos(kdWG) + sin(kdWG)

)
+D(dWG)

]
Xgen

=
[
C0

((
cos

(
π

2

)
+ i sin

(
π

2

))
cos(kdWG) + sin(kdWG)

)
+D(dWG)

]
Xgen

= [C0 (i cos(kdWG) + sin(kdWG)) +D(dWG)]Xgen

= [iC0 (cos(−kdWG) + i sin(−kdWG)) +D(dWG)]Xgen

AWG =
[
iC0e

−ikdWG +D(dWG)
]
Xgen (B.4)

Let’s now include the active absorption motion, the reflections and re-reflections (ηR and
ηRR) at tank ends:

AWG =
[
iC0e

−ikdWG +D(dWG)
]

(Xgen +Xabs) + ARe
ikdWG + ARRe

−ikdWG

=
[
iC0e

−ikdWG +D(dWG)
]

(Xgen +Xabs) + 2AR cos(kdWG) (B.5)

considering full reflection AR = ARR
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Let’s condider now the far-field incident waves (which are constituted of the waves from the
generation paddle and the re-reflected waves):

AIe
−ikx = iC0e

−ikx (Xgen +Xabs) + ARe
−ikx (B.6)

which allows to isolate the reflection term:

AR = AI − iC0 (Xgen +Xabs) (B.7)

By changing AR in equation B.5:

AWG =
[
iC0e

−ikdWG +D(dWG)
]

(Xgen +Xabs) + 2 (AI − iC0 (Xgen +Xabs)) cos(kdWG)
(B.8)

then,

Xgen +Xabs = 2AI cos(kdWG)− AWG

iC0 [2 cos(kdWG)− e−ikdWG ]−D(dWG) (B.9)

The transfer functionH for active absorption is defined as the ratio of the paddle displacement
(the output) and the wave height at the wave gauge (the input):

H = Xgen +Xabs

2AI cos(kdWG)− AWG

= 1
iC0 [2 cos(kdWG)− e−ikdWG ]−D(dWG) (B.10)

For a wave gauge fixed on the paddle (dWG = 0):

H = 1
iC0 −D(0) (B.11)

This is called the single mode transfer function. In dual-mode use (obtained by eliminating
all terms due to wave generation that is to say AI and Xgen), it becomes:

Xabs = −(AWG − AWG,Ref )H(ω) (B.12)

In the case of long wave and shallow water (h � λ) and no evanescent mode exists, the
transfer function becomes:

HlongWave = 1
ikh

(B.13)

=
√
g

h

1
iω

(B.14)

Please note that this transfer function does not take into account the transfer function in-
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troduced by mechanical parts of the piston wavemaker.

285



Annex C

Quality assurance in CFD

In this section, we describe how the numerical simulation results will be verificated through
the analysis of the mesh, and the different parameters that compose the solver. Indeed, the
quantification of the errors is of most importance in order to verify if a simulation is accurate
and represent the physical phenomena. The errors sources, as stated by A. E. Maguire (2011),
can be:

− Model error and uncertainty: they can be due to solving the wrong equations, making
wrong assumptions, not realistic boundary conditions, etc.

− Discretization error: the continuous equation being solved by the use of discrete nu-
merical approximation results in errors which can be expressed as the difference of the
exact solution and a solution obtained on a mesh of defined grid spacing. The greater
is the number of points the lower should be the solution. The rate at which the dis-
cretization error tends to 0 as the number of grid points increases is determined by the
order of the numerical method used.

− Iteration or convergence error: this error appears because, for practical issues (time
constraint), the number of iterations leading to a fully converged solution cannot be
set to infinity. A balance between time consumption and solution accuracy has to be
found.

− Round-off error: as computers have a limit on number of digits ("float", "double" etc
which represent the number of bytes available for the number description), round off
error appears when this limit is reached.

− User errors: they can appear at any stage of the model and solver implementation.
They are expected to decrease with the user experience.

− Code errors: it refers to unintentional programming errors or bugs. Thay can be difficult
to track and therefore extensive verification and validation of the code should be done.
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Verification studies, in the contrary of validation studies whose objectives are to show
how accurate to the physical problem a model is, aim at determining if the model is well
implemented according to the code developer concepts and solutions. Or as summarized
in Blottner (1990):

− Validation: solving right governing equations,

− Verification: solving governing equations right.

Courant-Friedrichs-Lewy (CFL) condition
This condition is an essential tool for the determination of the minimum time step used

in the numerical simulation (see Courant et al. (1928)). It assures stability of the explicit
schemes used for time integration. For the 2D case, the CFL condition is described as:

C = ux∆t
∆x + uy∆t

∆y ≤ Cmax (C.1)

where

− C is the Courant Number,

− Cmax is the maximum admissible Courant number which depends on the numerical
schemes used. It is usually taken equal to 1 for explicit schemes. Implicit schemes are
less sensible to this parameter and thus more important number can be accepted,

− ux the velocity component in x-direction,

− uy the velocity component in y-direction,

− ∆x and ∆x the spacial discretization interval length in respectively x and y direction,

− ∆t the time interval length.

One consequence of this criteria is to find a compromise between grid refinement and time-
step value: one would find it tempting to decrease the spacial discretization lengths to have
more accuracy but this leads to an increase of Courant number. One would decrease the
time step but this gives more important simulation time.

The relevant choice of ux and uy is, in order to have a conservative approach, to take
their maximum values. The particle velocities, according to Airy theory are:

ux = ∂φ

∂x
= g

ω
Ak

cosh (k(z + h))
sinh (kh) cos(kx− ωt) (C.2)
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uz = ∂φ

∂z
= g

ω
Ak

sinh (k(z + h))
sinh (kh) sin(kx− ωt) (C.3)

A. E. Maguire (2011) advises to take the phase speed of the wave as the ux velocity which
is greater than the particle velocity. The phase velocity is defined as:

Cp =
√
g

k
tanh(kh) (C.4)

It is also possible to chose an adaptive time step, based on the maximum value of the
Courant number. This solution has the advantage to be fully automated and solo requires
the definition of a maximum allowed Courant number. OpenFOAM computes at every time-
step the maximum Courant number allowing an easy verification of the criteria.

Uncertainty due to discretization in CFD applications
In this section, a summary of the procedure described by I. B. Celik et al. (2008), from

the Fluids Engineering Division of the American Society of Mechanical Engineering, is done.
The verification, error detection and control of numerical uncertainty will be done according
to this guide during the thesis work. It is advised:

− Code references: it is recommended to use a code fully referenced, that is to say that
verification studies have been carried out and should be described and cited.

− Convergence: it must be shown that iterative convergence is achieved with preferably
4 orders of magnitude of decrease of the normalized residuals for every equations that
is solved, and thus for every time step.

− Discretization error: the discretization error might be evaluated through the use of
Richardson extrapolation error (Richardson, 1911; Richardson & Gaunt, 1927). This
is done by using the GCI (Grid Convergence Index) method, which has been used and
proved to be reliable in hundreds of CFD simulations. The method is described in the
following section.

− GCI (Grid Convergence Index): the CGI method is based on Richardson extrapola-
tion Richardson (1911), but allows for mesh refinement factor r which are not multiple
of two. It was proposed in Roache (1998). In this section we explicit the different steps
of I. B. Celik et al. (2008) method.

We explain here the different step of the GCI method:
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− Step 1: a representative cell size h (average) must be defined for 3D and 2D problems
such as:

h =
[

1
N

N∑
i=1

∆Vi
]1/3

(C.5)

h =
[

1
N

N∑
i=1

∆Ai
]1/2

(C.6)

where

– ∆Vi is the volume of the ith cell,

– ∆Ai is the volume of the ith cell,

– N is the total number of cells.

− Step 2: three significantly different grid size are chosen. Simulations are run with these
grids to determine key variables (representative of the objectives of the simulation or
critical for the conclusions). The grid refinement factor, which might be greater than
1.3 (arbitrary value from experience), is defined as:

r = hcoarse
hfine

(C.7)

− Step 3: if "1" stands for the finer grid and "3" for the coarser (h1 < h2 < h3), and
r21 = h2

h1
, r32 = h3

h2
, the apparent order of the method is defined as:

p = 1
ln (r21)

∣∣∣∣ln ∣∣∣∣ε32

ε21

∣∣∣∣+ q(p)
∣∣∣∣ (C.8)

q(p) = ln

(
rp21 − s
rp32 − s

)
(C.9)

s = 1 · sgn
(
ε32

ε21

)
(C.10)

where

– φk is the variable solution for the kth grid,

– ε32 = φ3 − φ2,

– ε21 = φ2 − φ1.

ε32
ε21

< 0 means that convergence is oscillatory and the percentage of occurrence of
oscillatory convergence should be reported. If εij are really close to zero then the
procedure does not work. Additional grid refinement might be executed.
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− Step 4: calculate the extrapolated values of the variable:

φ21
ext = rp21φ1 − φ2

rp21 − 1 (C.11)

φ32
ext = rp32φ2 − φ3

rp32 − 1 (C.12)

− Step 5: error estimate calculation are to be reported. The approximative relative error
is calculated according to:

e21
a =

∣∣∣∣∣φ1 − φ2

φ1

∣∣∣∣∣ (C.13)

The extrapolated relative error is:

e21
ext =

∣∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣∣ (C.14)

The fine grid convergence index is defined as:

GCI21
fine = 1.25e21

a

rp21 − 1 (C.15)

The value of 1.25 is arbitrary, should be given between 1 and 3 and can be considered
as a safety coefficient. For example Roache Roache (1998) recommends the use of 3 if
the studies are only performed on two grid sizes, but for studies based on three grid
sizes 1.25 should be sufficient (that is to say conservative). Error bars (given by the
GCI) might appear on the plots of the presented variables. The value of p = paverage

should be considered. In future studies, the ASME method will be used to verify our
simulations, especially because it gives an estimated error of the computations that are
carried out.

290



Annex D

Experimental methods

D.1. Wavemaker wire connection

Figure D.1: Wavemaker electronic connection layout (from Fritzing) .
Connection schematics.
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Figure D.2: Wavemaker electronic connection schematics.

D.2. Arduino code

1 /* ---------------------------------------------------------------------------

2 stepVelocity .ino

3 This function carries out a velocity step preceded by a ramp in order to

4 generate the undular bore in the wave tank of the leaf -nl laboratory.

5 The stepper motor is driven thanks to the accelStepper library .

6 Input velocity signal is stored in an array as a function of time. During

7 the run, the stepper velocity is updated in function of the table values .

8 CBA - 30 octobre 2020 - charlie .barraud@gmail.com

9 - record start position

10 - execute ramp and step velocity

11 - stop when reaching end

12 - wait

13 - return slowly to start position

14 ---------------------------------------------------------------------------- */

15 #include <AccelStepper.h>

16 // Define a stepper and the pins it will use

17 AccelStepper stepper (1,3,2) ;; // Defaults to AccelStepper::FULL4WIRE (4 pins) on 2, 3,

↪→ 4, 5

18

19 #define PI 3.1415926535897932384626433832795
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20 #define TOTSTEP0 400.00 // number of step/revolution (use for microstepping)

21 int backward = -1; // set to -1 to go forward, 1 to go backward

22 float tf = 1.5; // final time of the step

23 float tr = 0.1; // ramp final time

24 float UG = float(backward)*0.10; // m/s - Step velocity

25 float UGSteps = UG*TOTSTEP0/0.008; // stroke in steps/s

26

27 const int sensorHandTriggerPin = 11; // pin of the trigger swtich to start step

28 int valueTrigger = 0;

29 int i = 0;

30 const int numElementTimeTablePermanent = 10;

31 const int numElementTimeTableTransient = 20;

32 long deltaTPermanent = long((tf-tr)/numElementTimeTablePermanent*1000); //

↪→ discretization of time in milli seconds

33 long deltaTTransient = long(tr/numElementTimeTableTransient*1000); // discretization of

↪→ time in milli seconds

34 const int totalElements = numElementTimeTablePermanent+

↪→ numElementTimeTableTransient+2;

35 long timeTable[totalElements];

36 float currentSpeed[totalElements]; // useful for plot

37 long correspondingTime[totalElements]; //useful for plot

38 float velocityTable [totalElements];

39 long currentTime;

40 int time0;

41 int counter=0;

42 int currentPosition0;

43

44 void setup()

45 {

46 Serial .begin(9600); // Initiate serie port

47 timeTable[0] = 0;

48 velocityTable [0] = 0;

49 for ( int k = 0; k< numElementTimeTableTransient+1; k++) // construct input velocity

↪→ and time table

50 {

51 timeTable[k+1] = (k+1)*deltaTTransient;

52 velocityTable [k+1] = UGSteps*float(timeTable[k+1])/1000.0/tr; // careful time not in

↪→ ms

53 counter++;

54 }

293



55 int countInt = counter;

56 for ( int k = 0; k< numElementTimeTablePermanent+1; k++)

57 {

58 timeTable[countInt+k] = timeTable[countInt+k-1]+deltaTPermanent;

59 velocityTable [countInt+k] = UGSteps;

60 }

61 for ( int k = 0; k< numElementTimeTablePermanent+numElementTimeTableTransient+1;

↪→ k++)

62 {

63 // print velocity and time table

64 Serial . print(timeTable[k]);

65 Serial . print("\t") ;

66 Serial . println(velocityTable [k]) ;

67 }

68 stepper.setMaxSpeed(15000); // max speed of stepper (steps /s)

69 stepper. setAcceleration(150000);// max acceleration of stepper (steps /s/s)

70 stepper.setSpeed(velocityTable [0]) ;

71 currentPosition0 = stepper.currentPosition() ; // record start position

72 currentSpeed[0] = velocityTable [0]; // initiate velocity

73 pinMode(sensorHandTriggerPin , INPUT); //definir pin como entrada

74 Serial . println("Waiting to make some waves ?");

75 valueTrigger = digitalRead(sensorHandTriggerPin);

76 while(valueTrigger != LOW){// check value of switch, if UP start velocity step

77 valueTrigger = digitalRead(sensorHandTriggerPin);

78 }

79 delay(10000); // wait 10 seconds to let you time to start sensors and cameras

80 time0 = millis() ; // arduino start time

81 }

82

83 void loop()

84 {

85 stepper.runSpeed(); // run stepper at input velocity

86 currentTime = millis()-time0; // compute real time

87 if (currentTime >= timeTable[i+1]) // update velocity

88 {

89 i++;

90 currentSpeed[i] = velocityTable[ i ]; // update velocity

91 correspondingTime[i] = currentTime; // record time of velocity update

92 stepper.setSpeed(velocityTable[ i ]) ; // set new velocity

93 }
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94 if (currentTime > int(tf*1000)) // print velocity table at the end of the step

95 {

96 Serial . print("idx") ;

97 Serial . print("\t") ;

98 Serial . print("Tth");

99 Serial . print("\t") ;

100 Serial . print("Vth");

101 Serial . print("\t") ;

102 Serial . print("t") ;

103 Serial . print("\t") ;

104 Serial . print("V");

105 Serial . println () ;

106 for ( int k = 0; k<numElementTimeTablePermanent+numElementTimeTableTransient;

↪→ k++)

107 {

108 Serial . print(k);

109 Serial . print("\t") ;

110 Serial . print(timeTable[k]);

111 Serial . print("\t") ;

112 Serial . print(velocityTable [k]) ;

113 Serial . print("\t") ;

114 Serial . print(correspondingTime[k]);

115 Serial . print("\t") ;

116 Serial . print(currentSpeed[k]);

117 Serial . println () ;

118 }

119 delay(5000);

120 stepper.setSpeed(800);

121 stepper.moveTo(currentPosition0);

122 Serial . print("Start Position") ;

123 Serial . print("\t") ;

124 Serial . print("End Position");

125 Serial . print("\t") ;

126 Serial . print("Total Steps");

127 Serial . println () ;

128 Serial . print(currentPosition0) ;

129 Serial . print("\t") ;

130 Serial . print(stepper.currentPosition()) ;

131 Serial . print("\t") ;

132 Serial . print(stepper.currentPosition() -currentPosition0) ;
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133 Serial . println () ;

134 while (1)

135 {

136 stepper.runSpeedToPosition(); // maintain position at start position

137 }

138 }

139 }

D.3. Capacitive wave gauge

D.3.1. Review of water level sensing
The first technique that can be employed is by using floats, buoyant objects placed at the

free surface. When the level changes, the floats follows it. However it does not give a direct
measurement of the water level. A system of mechanical components (pulleys, cables and
gears) can be used to make the information available for the human eye. Another technique
is using hydrostatic devices. A displacer is placed vertically. When the water level increases,
the Archimedes’ force is stronger and pushes the displacer upward. A force gauge is placed
at the top of the displacer and transmit the water displacement. Pressure sensors can also
be used and measure the pressure at the bottom of the tank, from which it is possible to
deduce the water level in the tank. However, this technique is limited to stationary problem
limiting the fluid motion in the tank. This problem is also present for load cells that are
placed below the tank which increase when the water level increases and the tank weight
also. The most common type of wave gauge are most certainly resistive wave gauge: by
measuring the resistance between two wires plunged into the water, one can measure the
variation of the water level. Resistive gauges are however very sensitive to the environment
(temperature, conductivity) requiring to often calibrate them. Another type of electronic
sensors are capacitance wave gauges. A capacitor, whose capacitance value changes with the
level of water, is placed in the tank. The sensor generally consists of an immersed insulated
wire and the capacitance between the water set to ground and the wire is measured. It
provides a continuous level measurement and are generally more stable than resistive gauges.
One can also use ultrasonic level transmitters which calculates the travel time of an ultrasonic
pulse from the emitter to the water level and back. This technique might need wave guides
in order to help containing the pulse. Finally, laser/radar level transmitters are an option.
They work as the ultrasonic one but use the speed of light instead of the speed of sound.
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D.3.2. Review of capacitive sensing

D.3.2.1. Working principle

Capacitive sensors are widely used to measure humidity, water levels, proximity, or position.
A capacitive sensor is made of a capacitance which changes with the variations of its envi-
ronment, in this case the level of water. General review of capacitance sensing can be found
in Aezinia (2014), Terzic et al. (2012) and Nguyen (2016). Kumar et al. (2014) focuses on
capacitive sensing for water level applications. Alam (2014) uses capacitive sensor (circular
interdigitated topology with charge amplifier) to measure moisture and a urine meter (Otero
et al., 2012) are other example of the use of capacitance sensors. Capacitance water level sen-
sors can be found in Ross (1983), S.-A. Yang & Chwang (1989), Bera et al. (2014), and Loizou
et al. (2015). In the case of wave height gauge, the pioneers are Boudan (1953) and Tucker
& Charnock (1954), with the use of enameled coil wire and they are now widely use (Wilner,
1960; Millard, 1969; Timpy & Ludwick, 1985). The principal provider for laboratory wave
tank application is Akamina1.

A typical capacitor is composed of two plates, the "ground" and the "sensor" (see fig-
ure D.3). The capacitance can be expressed as the geometric elements of the sensor and the
physical characteristics of the environment:

C = εrε0A

d
(D.1)

with:

− A is the area of the plates

− εr is the dielectric constant of the material between the plates

− ε0 is the permittivity of free space (8.85× 10−12F m−1)

− d is the distance between the plates

As one these parameter changes, the value of the capacitance also changes.

1 http://www.akamina.com
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Figure D.3: Parallel plate capacitor (according to D. Wang (2014)).
As the central spacing medium changes, the dielectric constant does
so and the capacitance changes.

D.3.2.2. Review of capacitance measurement techniques

Direct measurement of a capacitance cannot be done. Signal conditioning is needed to trans-
form the capacitance changes to a voltage, a frequency, a pulse-width, or a current. These
techniques can be classified according to the different categories: capacitance to voltage con-
verters (C2V), capacitance to frequency converters (C2F), capacitance to pulse width con-
verter (C2PW), capacitance to digital converter (C2D), or capacitance to current converters
(C2C) among others. We present some of these techniques in the following section.

Capacitance to voltage converters (C2V)

RC circuit A RC circuit response is shown in figure D.4. Chetpattananondh et al.
(2014) used a RC circuit to measure capacitance with a interdigital sensor (an interdigitated
topology rotated of 90 deg). When the capacitance discharges, the theoretical output voltage
is:

VO = Vcc e
−t
RC (D.2)

When time equals the time constant of the circuit, t = RC = τ :

VO = 0.625Vcc (D.3)

The same principle can be used to measure the time constant when the capacitor is charging.
A comparator can be set up to measure these time constants.
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Figure D.4: RC circuit response and principle of measurement of the
capacitance.

De Sauty and Schering Bridge A De Sauty bridge is a modified Wheatstone bridge
where two elements are capacitors instead of resistors. It measures the value of the sensor
capacitance by comparing it with the second one present in the bridge. When balanced, a
small change of capacitance conducts to a change of the output voltage. A De Sauty bridge
provides a simple and low cost method to measure capacitance but are complex to balance
if capacitors are not free from dielectric losses (appearance of a resistance and heat losses).
A Schering bridge (or modified Grover bridge) aims at remedying to it. An example can be
found in figure D.5 and an application for water level measurement can be reviewed in Bera
et al. (2014).
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Figure D.5: Modified De Sauty Bridge or Schering bridge for capaci-
tance measurement.

Charge Amplifier An ideal charge amplifier is shown in figure D.6a. Loizou et al.
(2015) use a charge amplifier in combination with a full-wave rectifier (transforming AC
wave in DC waves) and a low-pass filter. The output is a DC voltage proportional to the
capacitance. Otero et al. (2012) also use a charge amplifier (using the figure D.6a circuit)
for the use of a capacitive urine meter, in combination of a synchronous demodulator (which
acts as double wave rectifier). The role of the charge amplifier is to amplify the charge of a
dipole. In deed, for circuit of figure D.6a:

ix = if as i− = 0∫ t

0
ix dt = −

∫ t

0
Cf
dVO
dt

dt

Q = −CfVO

VO = − 1
Cf
Q

(D.4)
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(a) (b)

Figure D.6: Alternatives for charge amplifiers. (a) Theoretical charge
amplifier. (b) Alternative charge amplifier according to Loizou et al.
(2015).

AC to DC - Use of rectifiers and synchronous demodulation By transforming
alternating current to direct current, one is able to measure at a higher rate the output
signal, and make the post-processing easier as no peak-to-peak voltage has to be computed.
If knowing the phase does not matter, one can obtain a DC from the RMS value (defined as
veff =

[
1
T

∫ T
0 v2(t) dt

]1/2
), the peak value or the absolute value (mean value after rectification)

Payas Areny (2004). Rectifier allows to do such operations and can be sorted into two
categories: half-wave rectifier or full-wave one. The first one only keeps positive tension
setting to zero the negative one (see figure D.7a) while a full-wave one gives the absolute
value of the input signal. An example of full-wave rectifier is a diode bridge rectifier or Graetz
bridge shown in figure D.7c. One can install a capacitor at the output (as shown in figure D.7c
in dashed lines) and thus obtain a quasi-perfect constant DC voltage (figure D.7b). Haider et
al. (2008), whose work is based on Lotters et al. (1999), uses two charge amplifiers in parallel
in combination with a rectifier and an instrumentation amplifier to measure capacitance
with low voltage (3 V) for biomedical applications. They achieve a 1 mV DC output for a
1 fF capacitance change. It is however only tested with numerical simulation. Synchronous
demodulation is the process used in radio and is widely used in signal conditioning. The
purpose of such device is to be able to recover a signal from a high noise environment. It is
generally composed of the following steps: a first amplification is carried out before using a
mixer which multiplies the received signal with a reference one (the modulation frequency).
The following step is to use a band-pass filter to filter the signal at the wanted frequency and
finally demodulate the signal using rectifiers as viewed before.
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(a) (b)

(c)

Figure D.7: Examples of wave rectifiers.
(a) Half-wave rectifier. (b) Full-wave rec-
tifier (Graetz bridge). (c) Effect of a ca-
pacitor at the output of the full-wave rec-
tifier.

Capacitance to frequency converter A C-F converter is based on a reliable voltage to
frequency converter Ross (1983). A voltage to frequency converter provides an output pulse
train whose frequency is proportional to the input voltage. Its advantages are to be low cost,
to operate on a wide range of frequencies, and have an ensured linearity while consuming
less power than capacitance to voltage circuit. A way of doing it is to use an oscillator which
transforms a DC input into a periodic signal, which often is a sine wave or a square wave. It
can be of two types: composed of an amplifier and a feedback circuit or a negative resitance
and a resonant cuircuit (not described in this section). One can use a Colpitts oscillator (as
shown in figure D.8a) and replace one of the feedback circuit capacitor by the sensor resulting
in:

fout ∝
1√

L C1C2
C1+C2

(D.5)
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(a) (b)

Figure D.8: Examples of oscillators. (a) Colpitts oscillator. (b) A
comparator-based oscillator.

Other example are the Hartley and Clapp oscillator also based on LC circuits or the
comparator-based relaxation oscillator based on op-amp. For this last-one, the output is a
square wave whose frequency depends on the capacitor value according to:

fout = 1
2 ln(3)RC (D.6)

A like oscillator devices are multivibrators, based on electronic switches and used in Falcon et
al. (2007) for wave gauge applications. Pal et al. (1973) also uses a multivibrator to measure
capacitance, converting it to a pulse-rate signal. We do not enter into details for this kind of
electronic devices.

Capacitance to pulse width converter (C2PW) and capacitance to digital con-
verter (C2D) This device produces a pulse width signal whose pulse duration is linearly
proportional to the capacitance. It greats advantages is that it is not required to add an
analog to digital converter which allows the signal to be easily read by a microcontroller.
Moreover hardware cost are low. It generally consists of a . An example of such method can
be found in Bruschi et al. (2004) for capacitance measurement of the sub-pF range, as well
in Bruschi et al. (2007) where the operating wide range of temperature is highlighted.

Capacitance to digital converters directly transforms the capacitance to a digital signal.
An example of circuit used for this purpose are sigma-delta converters, whose resolution
and accuracy are high. They present however the disadvantage to have long measurement
times (Aezinia, 2014).

303



D.3.2.3. Shielding

According to Payas Areny (2004), an electric shield consists in a conductive surface which
surrounds the sensor and is connected to a specific tension. The objective is to keep the
capacitance constant whatever happens close to it (for example the presence of a human
hand). The shield can either be simple or can be doubled (see figure D.10). The connection
to the shield can be multiple. The simple shield is ideal when it is possible to connect one
of the sensor terminal to the ground. If not, a double shield is best suited. To reduce noise,
it is essential to connect the shield to a potential close to the ones constituting the sensor.
This technique is called active shielding. Payas Areny (2004) suggests to connect the shield
to the output of the sensor (see figure D.11b), while D. Wang (2015) proposes to connect it
directly to the excitation input tension.

Figure D.9: The installation of a shield allows to give a direction to
the sensor, as with a shield, electric lines are only present at one side
of the sensor (figure from D. Wang (2015)).

(a) (b)

Figure D.10: Shields according to Payas Areny (2004). (a) Simple
shield. (b) Double shield.
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(a) (b)

(c)

Figure D.11: Active and electrostatic
shields. (a) Electrostatic shield according
to Payas Areny (2004). (b) Active shield
according to Payas Areny (2004). (c) Ac-
tive shield according to D. Wang (2015).

D.3.3. Impedance of a transmission line

Figure D.12: Transmission line impedance equivalent circuit.

Impedance derivation: The impedance calculation that follows is partly based on the
work of Gordillo Zavaleta (2012), and was first described by Pierce (1943) as a follow up
of the telegrapher’s equation in terms of impedance. By applying the Ampere’s law, the
inductance per unit of length L′ of the system described above can be written as:

L′ = 1
2πµ ln

(
r2

r1

)
(D.7)

where µ is the magnetic permeability of the coating. Let’s write C ′ the capacitance per unit
of length of the system, such that C ′ = 2πε/ ln

(
r2
r1

)
. The sensor can be assimilated to a

transmission line and its equivalent circuit is shown in figure D.12. The line is modeled by
a infinite number of segments dl in which a capacitor C ′dl is connected in parallel with the
rest of the line and an inductance L′dl is connected in series. Let’s calculate the impedance
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of the line at a distance l + dl:

Z(l + dl) = jωL′dl + 1
jωC ′dl + 1

Z(l)

= jωL′dl + Z(l)
jωC ′dlZ(l) + 1 (D.8)

On the other we can write Z(l + dl) = Z(l) + dZ leading to the following equation:

jωL′dl + Z(l)
jωC ′dlZ(l) + 1 = Z(l) + dZ (D.9)

and finally:
dZ

dl
= jωL′ − jωC ′Z2 − jωC ′ZdZ − ω2C ′L′Zdl (D.10)

By keeping only the first order terms, we obtain the differential equation that governs the
impedance of the wire system:

dZ

dl
= jωL′ − jωC ′Z2 (D.11)

whose solution is given in Gordillo Zavaleta (2012):

Z(l) = j

√
L′

C ′
tan

(
ω
√
L′C ′l − π

2

)
(D.12)

The factor ω
√
L′C ′ is equal to ωµε = ω/c = k, that is to say the wave number of the light

wave propagating in the medium. Let’s notice that tan (x− π/2) = − cos(x)/sin(x) and if
x << 1, tan(x− π/2) ≈ −1/x. If kl� 1, then we can approximate the impedance by:

Z(l) ≈ 1
jωC ′l

(D.13)

D.3.4. Electronic components
In the proposed design, many operational amplifiers are used. It is chosen to work with

the TL082CP, available in common electronic shops in Chile, as it is very inexpensive and
still offers good characteristics such as a wide unit bandwidth (4 MHz), low input noise
voltage (16 nV/

√
Hz), high slew-rate (13 V/µs) and really high input impedance (1012 Ω).

The diode are Schottky 1N5819 diodes which, even if it is not certain that more ordinary
diodes would not give the desired results, offer low voltage drop. Capacitors are ordinary
ceramic disks. The sensor, once tested and validated, will be transposed to a PCB plate.
The design is created thanks to Autodesk EAGLE software which allows to design the PCB
from electronic schematics. PCB consists of a two sided layers and the design is presented in
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figure D.13. Traces and pads are designed to allow easier soldering of the components. The
data acquisition with the sensor in this thesis was however carried out from the protoboard
since all electronic workshops at Universidad de Chile stayed closed due to the coronavirus
crisis.

Figure D.13: PCB design from Autodesk EAGLE.

D.4. PIV algorithm
The algorithm, as implemented in a matlab2 script, is presented in this section. The image

enhancement, algorithm overview, cross-correlation implementation, sub-pixel correction, the
elimination of spurious vectors, smoothing and replacement and finally the calculation of field
related quantities are detailed below.

D.4.1. Image enhancement
To avoid, or at least reduce the amount of erroneous velocity estimates, a common way

is to enhance the images before post-processing takes place by applying filters to the im-

2 https://www.mathworks.com/products/matlab.html
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ages (Raffel et al., 2018; Thielicke, 2014). Typical pre-processing techniques are the Modified
Histogram Equalization (MHE) (Roth & Katz, 2001), the min/max technique (Westerweel,
1993), or the Contrast Limited Adaptive Histogram Equalization (CLAHE) (Pizer et al.,
1987). Some techniques are presented in the following section, including histogram equal-
ization, intensity capping and high-pass filtering and their effects are shown in figure D.14.
Other techniques were also developed as spacial filtering, temporal filtering and binary image
conversion (which actually increase measurement uncertainties (Raffel et al., 2018)), but are
not described further on because they did not appear to improve the PIV measurements.

Histogram equalization. Histogram equalization goal is to enhance contrasts by adjust-
ing image intensities. To do so, the most common intensities are spread out to the full range
of data (from 0 to 255 for 8 bits images) (Thielicke, 2014). Histogram equalization is imple-
mented in the PIV tool at LEAF-NL. An alternative but similar technique is called CLAHE,
which applies histogram equalization but over tiles of the images, is widely used in PIV tools
and has shown to improve the probability of detecting valid vectors by almost 5% (Thielicke,
2014). CLAHE is not available in Octave. An example of histogram equalization can be
found in figure D.14b and D.14c, which shows the advantages of the CLAHE technique over
the simplest histogram equalization since the reflection at the top does not appear.

Intensity capping. Intensity capping technique, proposed by Shavit et al. (2007), sets
the brightest spots of the image to a less important intensity. Bright particles have more
weight in the cross-correlation computation than other particles. A threshold of the greyscale
intensities is set and all pixels which have a higher value is set to this value. Intensity capping,
by only acting on bright spots, does not amplify the background noise and improves the
probability of finding valid vectors by around 5 % (Shavit et al., 2007). Intensity capping
also has a relatively low computational cost. In this work, we apply the following threshold:
upperLimit = I50 + nIC · σI where I50 is the median of the image, σI the standard deviation
of the image and nIC a coefficient usually between 0.5 and 3. An improvement, proposed
by Shavit et al. (2007), consists in applying intensity capping locally over tiles of the image
instead of doing over the whole image. This function is implemented globally in the PIV
tool. An example of intensity capping can be found in figure D.14d.

High-pass filter. According to Raffel et al. (2018), a high-pass filter removes all low-
frequency background variations, leaving the particle images unaffected. Thus it can deal
with light reflections (Sciacchitano & Scarano, 2014). It is implemented by subtracting a
low-pass filtered image to the original image. The filter width should be larger than the
diameter of the particles images. An example of histogram equalization can be found in
figure D.14e.
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equalization
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(c) CLAHE equal-
ization (from Mat-
lab).
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(e) High-pass

Figure D.14: Pre-processing of the images. Original image is from the
PIV challengea.

a see http://www.pivchallenge.org/

D.4.2. Algorithm overview
The first statistical PIV procedure was described in Adrian (1991). Our tool is composed

of two algorithm that can be chosen: the integer window shifting (IWS) and the Window
Deformation (WD). The first one is less costly while the second one shows more accuracy.
For both algorithm, the window slicing process is done considering the size of the windows
(always taken as squared) and the overlap between neighboring windows.

Integer window shifting algorithm (IWS) An overview of this algorithm, named in-
teger window shifting (IWS), can be seen in figure D.15a. The different steps are described
in the following paragraph:

1. Interrogation windows of image A and image B are the same for the first pass.

2. The cross-correlation is calculated for every windows, and the displacement is deter-
mined.

3. A correction is applied to achieve sub-pixel precision.

4. Outlier vectors are detected and eliminated.

5. Missing vectors are replaced through interpolation.

6. Data is smoothed (low-pass filter).

7. At the end of these steps, the displacement (∆x,∆y) calculated for every windows is
used as predictors for the shifting of the windows used in the next iteration. Windows
size can be decreased. The shifting is done according to a central scheme; let’s consider
(xAi,j0 , yA

i,j
0 ) the original position of the left down corner of window (i, j) of image A

309

http://www.pivchallenge.org/


and (xBi,j
0 , yBi,j

0 ) the original position of the left down corner of window (i, j) of image
B . Then the new position of the windows will be:

(
xAi,j1 , yA

i,j
1

)
= round

(
xAi,j0 −

∆x
2 , yAi,j0 −

∆y
2

)
(D.1)

(
xBi,j

1 , yBi,j
1

)
= round

(
xBi,j

0 + ∆x
2 , yBi,j

0 + ∆y
2

)
(D.2)

8. New iteration starts at point 2.

Window deformation algorithm (WD) An overview of this algorithm, named window
deformation (WD), can be seen in figure D.15b. The window deformation technique as
presented in H. T. Huang et al. (1993) is used here:

1. A first (or various) pass is done with the IWS algorithm as a first estimation of the
displacement field with subpixel precision. This gives the predictor at iteration 0:
(∆x0,∆y0).

2. Predictor is extrapolated to every pixels of the images. Bilinear extrapolation is usually
used. In Matlab/Octave, this operation can lead to unrealistic values at the boundary.
More complex algorithm such as "2D spline" can be a convenient solution since values
at the boundary are best predicted.

3. Images A and B are deformed according to:

An (i, j) = A (xp, yp) = A

(
i− ∆xn(i, j)

2 , j − ∆yn(i, j)
2

)
(D.3)

Bn (i, j) = B (xp, yp) = B

(
i+ ∆xn(i, j)

2 , j + ∆yn(i, j)
2

)
(D.4)

As this process implies taking values at intermediate position (not integer pixels),
an interpolation is necesary (re-sampling of the pixels values at intermediate loca-
tions (Scarano, 2001)).

4. The cross-correlation is calculated for every windows on the deformed images, and the
displacement is determined.

5. A correction is applied to achieve sub-pixel precision.

6. Update predictor with corrector (Cx, Cy) computed on deformed images:

(∆xn+1,∆yn+1) = (∆xn,∆yn) + (Cx, Cy) (D.5)
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7. Outlier vectors are detected and eliminated.

8. Missing vectors are replaced through interpolation.

9. Data is smoothed (low-pass filter).

10. New iteration starts at point 2 with the updated predictor if convergence is not achieved.

(a) IWS (b) WD

Figure D.15: PIV algorithms used at LEAF-NL lab. (a) Integer win-
dow shifting algorithm. (b) Window deformation algorithm.
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D.4.3. Cross-correlation
Cross-correlation can either be carried out by Direct Cross-Correlation or using a Fourier

transform based technique.

Direct cross-correlation and derived techniques The base, and thus the most impor-
tant part of any PIV post-processing tool, is the cross-correlation. Squared interrogation
windows, generally from 8 to 64 pixels, are compared between image A and B using cross-
correlation. The result is the most probable displacement of the particles in the interrogation
area (Thielicke, 2014). The 2D discrete cross-correlation function is given by H. Huang et al.
(1997):

cc(m,n) =
N∑
i=1

N∑
j=1

A(i, j)B(i−m, j − n) (D.6)

A high cross-correlation value, close to 1, mean that many particle images match up with
their corresponding spatially shifted partners (C. E. Willert & Gharib, 1991). DCC computes
the correlation matrix in the spatial domain as shown in figure D.16. The cost of DCC is
O (N4) (Raffel et al., 2018), which is relatively important. DCC used as in equation D.6 is
sensitive to intensity changes and thus one can use the following normalized cross correlation
function (Gonzalez, 1987):

cc(m,n) =

N∑
i=1

N∑
j=1

[
A(i, j)− A

] [
B(i−m, j − n)−B

]
√

N∑
i=1

N∑
j=1

[
A(i, j)− A

]2 N∑
i=1

N∑
j=1

[
B(i, j)−B

]2 (D.7)

H. Huang et al. (1997) used this technique in the PIPM (Particle Image Pattern Matching).
Errors are about an order of magnitude smaller than with the cross-correlation function of
equation D.6.
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Figure D.16: Calculation of the correlation matrix between a 4×4 pix-
els interrogation window from image A and a 8×8 pixels interrogation
window from image B. The resulting correlation matrix is 9× 9 pixels
(from Thielicke (2014), adapted from Raffel et al. (2018)).

Fourier transform based cross-correlation Another way of computing the cross-correlation
of the image is to use Fourier transform. The following calculation shows the link between
cross-correlation and Fourier transform for the 1D case:

F [f ? g(τ)] =
∫ +∞

−∞

∫ +∞

−∞
f(t)g(t+ τ)e−iωτdtdτ

=
∫ +∞

−∞
f(t)

[∫ +∞

−∞
g(t+ τ)e−iωτdτ

]
dt

=
∫ +∞

−∞
f(t)

[∫ +∞

−∞
g(t+ τ)e−iω(t+τ)dτ

]
eiωtdt

=
∫ +∞

−∞
f(t)eiωtdt

∫ +∞

−∞
g(t′)e−iωt′dt′

=
∫ +∞

−∞
f(t) e−iωtdt

∫ +∞

−∞
g(t′)e−iωt′dt′

= F [f ] ·F [g]

which leads to:
f ? g = F−1

[
F [f ] ·F [g]

]
(D.8)

A similar result can be obtained for 2D functions. The cost for Fourier transform based cross-
correlation is O (N2 log2(N)), which gives it a clear advantage compared to DCC. A further
increase in computational efficiency can be achieved when using Fast Fourier Transform
(FFT, with N a power of 2) (Raffel et al., 2018). As the FFT technique is periodic, if the
displacement is larger than N/2, the correlation peak will be folded back into the matrix
and will appear on the opposite side (Raffel et al., 2018). Displacement range is then limited
to N/2. A solution to this problem is to increase the interrogation window size or decrease
the time delay between frames. A drawback of FFT based cross-correlation, as interrogation
window A and B have to be the same size, is that the error on cross-correlation location
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increases when the particle displacement increases as the number of particle leaving window
B increases (H. T. Huang et al., 1993). The problem can be overcome by using the shifting
technique (Westerweel et al., 1997) or respecting a minimum size for window B as shown
in H. T. Huang et al. (1993).

Normalization of the Fourier transform based cross-correlation. We have seen that
the normalization of the cross-correlation map can leads to more accurate detection of the
displacement peak. In this work, the normalization is carried out according to the following
equation:

cc =
F−1

[
F [A] ·F [B]

]
√

N∑
i=1

N∑
j=1

[A(i, j)]2
N∑
i=1

N∑
j=1

[B(i, j)]2
(D.9)

Elimination of correlation errors Before the detection of the maximum of the cross-
correlation coefficient matrix, one can eliminate correlation errors according to the process
proposed by Hart (2000). It consists of the direct element-by-element multiplication of the
correlation coefficient matrices from adjacent regions. The principle is illustrated in fig-
ure D.17a. It is the "correlation of the correlations". According to Hart (2000), this method
improves sub-pixel accuracy and eliminates spurious vectors resulting from unmatched par-
ticle pairs, out-of-boundary motion, particle overlap, inter-particle correlations and noise
(optical and electronic). In our case we multiply the main matrix with the ones situated at
the top, bottom, left and right as shown in figure D.17b.

(a) Error elimination according to Hart (2000).
(b) Multiplication of the
cross-correlation matrices.

Figure D.17: Elimination of correlation errors by multiplying the cor-
relation coefficient matrices from adjacent regions, from Hart (2000).
In this work, we multiply the correlation coefficient matrix of the win-
dows of interest (in red) with the ones of windows at the top, bottom,
left and right (in blue) allowing to reduce the correlation error and
enabling an easier detection of the peak. In this example, the window
overlap is set to 40 %.
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D.4.4. Reducing the bias error and random error
Digital mask based bias error reduction. During the development of PIV algorithms,
it was well known that velocities calculated from the algorithm were generally lower than the
true ones. A weighting function, based on a digital mask, is used to reach a better accuracy
of the cross-correlation and thus decrease the bias error. This function can be either based
on a housetop-like function (Raffel et al., 2018) or a Gaussian function (Gui et al., 2000).
We use a function based on the work of Nogueira et al. (1999) and, if ξ and η denotes the
coordinates from the center of the window and N the size of the window, the weighting
function is defined as:

W (ξ, η) =

√√√√√9
4

∣∣∣∣∣ ξN
∣∣∣∣∣
2

− 4
∣∣∣∣∣ ξN

∣∣∣∣∣+ 1
(4

∣∣∣∣ ηN
∣∣∣∣2 − 4

∣∣∣∣ ηN
∣∣∣∣+ 1

)
(D.10)

An example is found in figure D.18. The use of a weighting window main interest is, as
previously written, to reduce the bias error (see 4.3.2.2 for error definitions). This is however
true only for small particle displacement (Gui et al., 2000) unless a discrete offset of the
interrogation window or window deformation techniques are applied. The random error
or RMS error treatment can become tricky: we observed that for the smallest interrogation
window (16 and 32 pixels wide) the application of such weighting window causes an increase of
the random error. This is also observed by Gui et al. (2000). We chose to apply the weighting
window only for window sizes superior to 32 pixels (this last one not being included).

0

40

0.2

0.4

20 40

0.6

20

0.8

0

1

0
-20

-20

-40 -40

Figure D.18: Weighting window applied to the interrogation windows.

Zero padding of small window sizes. For small window sizes (typically lower or equal
to 32 pixels) resolutions problem appear when calculating the cross-correlation of the inter-
rogations images: in deed, as the resolution depends on the total number of points and small
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interrogation windows having few points the resulting resolution will be bad. We choose to
zero-pad these small windows in order to increase the total number of points and improve
the resolution of the cross-correlation map. We increase the window size to twice its size by
padding zero in both directions. This is however extremely costly when applying the 2D FFT
as the window size increased. Alternatives are proposed in Lourenco & Krothapalli (1995) as
the Whittaker’s reconstruction. Besides the gain in the random error treatment, it showed
to allow the iterative process to converge rapidly.

D.4.5. Sub-pixel correction
The next step is the peak finding, which is quite important. The raw detection, which

consists in finding the maximum of the correlation coefficient matrix, gives an integer result.
This result can be further refined with sub-pixel precision using a range of methods, usually
by fitting a function to the peak such as a centroid, a parabolic or a gaussian (Raffel et al.,
2018). It is common to able to represent particle images by a gaussian intensity distribution.
Then, 2 · 3 point fit (2 times 3 point fit) or 9 point fit for Gaussian functions are common
methods which have shown accuracy, speed and universality (Thielicke, 2014). In our tool,
the 2 · 3 point fit and the 9 point fit are available. The 2 · 3 point fit corresponds to the
following equations (Nobach & Honkanen, 2005):

∆x = ln (zχ−1)− ln (zχ+1)
2 (ln (zχ−1)− 2ln (zχ) + ln (zχ+1)) (D.11)

where zχ is the value of the peak, zχ−1 and zχ+1 are the two neighbors. It is independently
applied vertically and horizontally. This method has become the standard in PIV (Nobach &
Honkanen, 2005), but has been developed for Gaussian-shaped particle images. The method
works best for narrow correlation peaks and for particle images larger than 1.5 pixels (Raffel
et al., 2018). Error can appear if the particle images or the peak have an elliptic shape
(also known as pixel locking), and can be overcome with the fitting of a two-dimensional
Gaussian (Nobach & Honkanen, 2005). The 2D or 9 points fit is given by the following
equations:

∆x = c11c01 − 2c10c02

4c20c02 − c2
11

(D.12)

∆y = c11c10 − 2c01c20

4c20c02 − c2
11

(D.13)
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with

c10 = 1
6

1∑
i,j=−1

i ln (ZX+i;Y+j) (D.14)

c01 = 1
6

1∑
i,j=−1

j ln (ZX+i;Y+j) (D.15)

c11 = 1
4

1∑
i,j=−1

ij ln (ZX+i;Y+j) (D.16)

c20 = 1
6

1∑
i,j=−1

(
3i2 − 2

)
ln (ZX+i;Y+j) (D.17)

c02 = 1
6

1∑
i,j=−1

(
3j2 − 2

)
ln (ZX+i;Y+j) (D.18)

c00 = 1
9

1∑
i,j=−1

(
5− 3i2 − 3j2

)
ln (ZX+i;Y+j) (D.19)

This 2D fitting can perform well for non-deforming window algorithm (DCC, or single pass
Fourier transform based correlation) while added value is less pronounced in deforming win-
dow implementation (Thielicke, 2014).

(a) 2 · 3 point fit (b) 9 point fit

Figure D.19: 2 · 3 and 9 point fits according to Nobach & Honkanen
(2005). x and y axis are evaluated independently in the first case while
in the second case the fit is 2D.

D.4.6. Elimination of spurious vectors, smoothing and
replacement

Outlier detection Detection of velocities can lead to erroneous vectors as the experiment
cannot be perfect: light reflection or particles leaving the laser plane or appearing in it.
These vectors deviate in magnitude and direction from their neighbours, and are mainly
due to insufficient particle image pairs (Westerweel, 1994). It then necessary to remove
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these unphysical vectors and replace them. Thielicke (2014) uses velocity threshold on each
component based on the mean and the standard deviation. Other techniques are the global
histogram operator, the vector difference test, the dynamic mean value operator, minimum
correlation filter, peak height ratio filter or the signal-to-noise filter (Raffel et al., 2018). The
median test (Westerweel, 1994) is also a popular filter. In our work, the following "universal"
(which does not depend on the experiment) modified median test (Westerweel & Scarano,
2005) is used. First, let’s consider the displacement vector U0 at position (i, j). Let’s also
consider its 3 × 3 neighbors whose displacement vectors are {U1, U2...U8} and Um is the
median of this set. U0 is excluded from this set. Residuals are defined as: ri = |Ui − Um|.
The median of the residuals rm is taken from the set {r1, r2...r8}. The normalized residual
for U0 is taken as:

r∗0 = |U0 − Um|
rm + ε

(D.20)

where ε represent the acceptable fluctuation level due to cross-correlation. A threshold is
applied to this criteria: if r∗0 > threshold then the displacement vector at position (i, j) is
discarded. The interest of this method is the relatively "universal" method, which leads to
values for the threshold and ε of 2 and 0.1 respectively (Westerweel & Scarano, 2005). A
threshold value more or less important conducts to a more or less restricting filter. According
to Raffel et al. (2018), high-quality PIV should not give more than 5% of outlier vectors under
challenging experimental situations.

Interpolation After removal of outlier displacement vectors, it is necessary to replace
them by interpolated data as they serve as a predictor for the next iteration and also be-
cause missing vectors can be problematic when computing other fields based on the deriva-
tives (Thielicke, 2014). Techniques to replace missing data can be 3 · 3 neighbor mean or a
two dimensional interpolation. Spline is a better solution for 2D interpolation but is more
costly than linear (Thielicke, 2014). According to Thielicke (2014), a boundary value method
is the most accurate (even if he finds that for missing data inferior to 15 %, the error is less
than 0.6% pixel). In this work, both 2D linear and spline interpolation are available.

Smoothing It is chosen to smooth data by meaning the values of displacement vectors of
the 3 · 3 neighbors. According to Raffel et al. (2018), median filtering is another effective
mean to reduce noise. It has been proven that smoothing allows to get rid of unstabilities
that might appear during the iterative process (B. J. Kim & Sung, 2006).
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Iterative process The iterative process convergence is evaluated through the computation
of residuals. Residuals are defined as follow:

rk = 1
N2

√√√√√ N∑
i=1

N∑
j=1

δ
(i,j)
k

2
(D.21)

where δk are the correctors coordinate in the x and y direction of the displacement field in
the window deformation algorithm (see section D.4.2) and i, j represents the velocity vectors
indices in the x and y directions. The iterative process is considered to have converged when
the residuals in both x and y directions fulfill the following equations:∣∣∣∣rk − rk−1

rk

∣∣∣∣ ≤ l (D.22)∣∣∣∣rk − rk−2

rk

∣∣∣∣ ≤ l (D.23)∣∣∣∣rk − rk−5

rk

∣∣∣∣ ≤ l (D.24)

where l = 1× 10−2.

D.4.7. Calculation of field related quantities
To recover all terms of Navier-Stokes equations, one should know the pressure, the density

and the velocity fields. Obtaining all this quantities are a remaining challenge (Raffel et al.,
2018). The PIV results, displacement and velocity fields, allow however to obtain derivative
and integral related quantities such as the vorticity field (equation D.25), in plane shear
stress (equation D.26), extensional strains (equation D.27), stream function or circulation.
The definition of some of these quantities are given below:

ωz = ∂v

∂x
− ∂u

∂y
(D.25)

εxy = ∂u

∂y
+ ∂v

∂x
(D.26)

η = εxx + εyy = ∂u

∂x
− ∂v

∂y
(D.27)

To compute these quantities, one can use different numerical schemes (forward, backward,
central difference etc...). Raffel et al. (2018) privileges the least squares difference approach
(see equation D.28), since it minimizes the effects of random errors (εU), even if it tends to
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smooth the derivatives. (
df

dx

)
i

= 2fi+2 + fi+ 1− fi− 1− 2fi+2

10∆X (D.28)

However, this formula is defined for a 1D function while PIV data are 2D. An alternative
must be given. Raffel et al. (2018) suggests to use the theorem of Strokes linking vorticity
to the circulation according to:

Γ =
∮

U · dl =
∫

(∇×U) · dS =
∫
ω · dS (D.29)

which gives, by considering the eight points surrounding the point of interest (see figure D.20):

Figure D.20: Contour for the circulation calculation used in the esti-
mation of the vorticity at point (i, j) (from Raffel et al. (2018)).

(ωz)i,j = Γi,j
4∆X∆Y (D.30)

with

Γi,j = 1
2∆X (Ui−1,j−1 + 2Ui,j−1 + Ui+1,j−1)

+ 1
2∆Y (Vi+1,j−1 + 2Vi+1,j + Vi+1,j+1)

− 1
2∆X (Ui+1,j+1 + 2Ui,j+1 + Ui−1,j+1)

− 1
2∆Y (Vi−1,j+1 + 2Vi−1,j + Vi−1,j−1) (D.31)

According to Raffel et al. (2018), this estimate performs better than least squares or Richard-
son methods. The uncertainty in the vorticity estimate is now εω ≈ 0.61εU/∆X compared
with εω ≈ εU/∆X for the central difference scheme. Similarly, one can obtain the strain and
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shear according to:

(εxy)i,j =− Ui−1,j−1 + 2Ui,j−1 + Ui+1,j−1

8∆Y
+ Ui+1,j+1 + 2Ui,j+1 + Ui−1,j+1

8∆Y
− Vi−1,j+1 + 2Vi−1,j + Vi−1,j−1

8∆X
+ Vi+1,j−1 + 2Vi+1,j + Vi+1,j+1

8∆X (D.32)

− (εzz)i,j =Vi−1,j−1 + 2Vi,j−1 + Vi+1,j−1

8∆Y
− Vi+1,j+1 + 2Vi,j+1 + Vi−1,j+1

8∆Y
+ Ui+1,j−1 + 2Ui+1,j + Ui+1,j+1

8∆X
− Ui−1,j+1 + 2Ui−1,j + Ui−1,j−1

8∆X (D.33)
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ABSTRACT

We study the dynamical response of a piston-type wavemaker in a numerical wave tank. The two-dimensional, fully viscous unsteady
Navier–Stokes equations are solved on a two-phase flow configuration using the volume of fluid method to capture the free surface dynamics.
The wavemaker is a moving wall driven by an arbitrary signal waveform. The step response of the wavemaker may generate pulse-like waves
similar to an undular bore propagating along the tank. Wave elevation at the piston wall has close similarity to the time response of second
order systems found in feedback theory. The scaling found for water elevation at the piston wall for different step velocities and mean still
water levels is in agreement with that in the available theory at low Froude numbers. The results along the tank for continuous waves agree
with those of potential theory. The power input during the step response was determined during the whole wave generation process showing
that net piston forces are predominantly hydrostatic. A power scaling for different mean still water levels and step velocities as a function of the
Froude number was obtained. An active absorption strategy based upon a feedback controller driving a secondary piston was implemented.
Wave absorption was successfully achieved on regular and irregular waves.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0017376

I. INTRODUCTION

Wave tanks are centerpieces when it comes to studying hydro-
dynamics and wave structure interaction in offshore and marine
engineering. Experimental or numerical, they can reproduce the off-
shore environmental conditions (waves, currents, winds for some of
them) in order to evaluate the dynamic response to these harsh con-
ditions of vessels, offshore platforms, and marine renewable energy
structures such as fixed/floating offshore windmills or wave energy
converters. For a long time, these phenomena could only be exper-
imentally studied. The wave tank scaling should be done, according
to the similarity principle of dimensional analysis, by matching rel-
evant numbers as the Froude and the Reynolds numbers. This is
often complicated especially at small scale as explained in Ref. 1. One
approach is to test the model through increasing model scales.2 The
most simple configuration for a wave tank is a 2D tank, which is a
long tank where waves are generated on one side and absorbed or
broken up on the opposite side.

In order to generate waves at a laboratory scale, one should
displace a certain amount of water by means of a wavemaker of
choice: piston, hinged paddle, double articulated paddle, plunger,
duck. First order wavemaker theory has first been studied in Ref. 3.
Wave generation alternatives have been theoretically studied in the
1950s4 including piston, hinged paddle, or double articulated pad-
dle. In this work, we choose to use a piston wavemaker where the pis-
ton stroke along the tank is the physical mechanism to create waves.
The resulting waves from a piston wavemaker were investigated
in Ref. 4 determining a transfer function or relationship between
the piston stroke and the wave height. A validation of the piston
wavemaker theory was provided by some experiments.5 Similarly,
Madsen6 developed a theory of wavemaker generation for pistons
providing a detailed expression for wave elevation at any position in
a wave tank, and Schäffer7 developed the second-order wavemaker
theory for irregular waves. Goring8 studied solitary wave generation
with a piston wavemaker, basing his solution on the theory of Ref.
9. The impulsive wavemaker was experimentally and numerically
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studied in Ref. 10, notably showing wave profiles from the experi-
ment as well as forces on the wavemaker.

Most of the research on wavemaker theory has been con-
ducted on the basis of potential theory avoiding the determination
of viscous effects. At the same time, the necessity for local solu-
tions at the piston wavemaker was considered important in order
to understand the physics of the first instants in the wave gen-
eration. Local solutions near the piston wall are provided by Joo
et al.11 using the Laplace equation and expansion series for small
Froude numbers and basing their work on Ref. 12. They investi-
gated the contact line motion at initial times of the piston wave-
maker for ramp, step, exponential, and harmonic velocities. They
later on extended their studies to stratified fluid.13 A study of the
steady motion of a ship bow at high Froude number, which is sim-
ilar to the piston wavemaker problem, was carried out in Ref. 14.
Experimental realization of the velocity step case becomes compli-
cated because imposing a prescribed step-like wavemaker motion
involves high piston accelerations and therefore peak power inputs.
The practical case is to perform a ramp motion as indicated in
Ref. 15.

While experimental wave tanks provide a physical platform
to implement such systems, testing may be expensive or not suit-
able to comply with similarity restrictions, whereas numerical stud-
ies once performed exclusively with potential codes (irrotational,
incompressible, and nonviscous flows) are now commonly carried
out taking into account viscous effects that, nevertheless, require
more computational resources.

At present, the use of efficient codes solving viscous
Navier–Stokes equations has been reported to be useful in order
to model extreme wave conditions where the wave breaking pro-
cess16 can be captured and identified as the dominant mechanism
(instabilities) involved in extreme loading on marine structures and
wave energy converter devices.17 Numerical wave tanks may recreate
realistic waves using moving boundaries (which involves a dynamic
mesh) or static boundaries with mathematical implementation (in
the domain or at the boundaries). In this work, we use the first
option that mimics a viscous piston motion in a physical exper-
iment.18,19 Most of the numerical wave tank models include the
volume of fluid (VOF) to simulate two-phase flows20 as well as the
wave generation and propagation problem.21–24 Wave tank model-
ing with active wave absorption was developed in OpenFOAM,18,25

and recent methods such as Smoothed-Particle Hydrodynamics
(SPH) have also been developed to represent two-phase flows.26,27

In this work, we present a numerical study of a piston wave-
maker at a laboratory scale to investigate the wave generation pro-
cess and characterize the piston wavemaker dynamics, extending
Froude number regimes far beyond the ones that were studied
before. We perform fully non-linear and viscous numerical sim-
ulations of the wave tank where surface waves are produced by

the prescribed motion of a piston wavemaker. The moving bound-
aries allow reproducing the physics of a real facility. A complete
mesh independence study is carried out, and validation is performed
with theoretical data. To be able to generate waves of high qual-
ity, it is necessary to characterize the wavemaker system. It is cho-
sen here to do so by basing the study on the initial-value problem,
theoretically studied in Ref. 11. The numerical simulation allows
us to study regimes that do not appear in the theoretical study
based on potential flow. We measure the water height at the wave-
maker and in the tank for a set of prescribed wavemaker motions,
allowing one to characterize the near and far field generated waves
and determine the power input needs according to the wavemaker
dynamics.

The structure of this article is as follows: the initial-value prob-
lem and the required equations are presented in Sec. II, the numer-
ical method, mesh independence tests, and validation are presented
in Sec. II C, and finally the resulting characterization of the piston
wavemaker and the power input analysis are presented in Sec. III.

II. PROBLEM FORMULATION

The problem is described in the schematics in Fig. 1. We con-
sider a 2D wave tank of length L and height d, equipped with a
moving piston wavemaker placed at the left wall, and the opposite
wall of the tank is situated on the right. The mean still water level
is denoted h and can be varied at will. The origin of the coordinate
system is located at the left bottom of the wave tank, and all differ-
ent measurement stations along the wave tank are referred to this
coordinate system. In order to characterize the piston wavemaker
and the wave tank behavior, a series of tests will be performed to
provide the system response to input velocity signals driving the
motion of the piston wavemaker. The overall wave tank response
will be obtained from Heaviside Θ(t) input signals representing a
step response test.28 We consider the system composed by the wave-
maker, whose input signal is its velocity UG and the response is the
water level at the piston wavemaker ηw, as shown in Fig. 1. We can
define a transfer function associated with the wavemaker system,
hereafter called G where the fundamental output/input relationship
(transfer function) can be expressed as G = ηw/UG, which is crucial
when implementing feedback controlled wave-absorbers.29

A. Governing equations
The numerical simulation solves the 2D two-phase laminar

Navier–Stokes equations with two incompressible fluids (water and
air phases). The mass conservation equation is also solved in prim-
itive variables incorporating the VOF model to deal with each fluid
phase.20 These equations can be written in the vector form as

∇ ⋅U = 0, (1)

FIG. 1. Schematics of the problem. The numerical domain
is composed of (1) the piston wavemaker, (2) the tank end
boundary, (3) the atmosphere, and (4) the seabed. The gen-
erated waves (5) at the free-water surface are measured
with respect to the mean still water level (6) h.
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∂(ρU)
∂t

+∇ ⋅ (ρU U) −∇ ⋅ (μ∇U) −∇U ⋅∇μ

= −∇p∗ − g ⋅ x∇ρ + σκ∇α, (2)

∂α
∂t
+ (∇ ⋅U)α = 0, (3)

where U is the velocity vector, p∗ is the pseudo-dynamic pressure
(p∗ = p − ρg ⋅ x), ρ is the density, μ is the dynamic viscosity, g is the
gravity acceleration, x is the position vector, and σ is the fluid sur-
face tension coefficient. The volume fraction α is introduced to deal
with the two-phase formulation within the volume of fluid (VOF)
framework. κ is defined as follows:

κ = −∇ ⋅ ∇α∣∇α∣ . (4)

In the two-phase formulation, density and viscosity on each domain
cell are computed as a weighted mean of the form30,31

ρ = αρwater + (1 − α)ρair , (5)

μ = αμwater + (1 − α)μair . (6)

The relevant dimensionless number in this work is the Froude
number Fr = UG/√gh controlling the wave propagation dynam-
ics. Viscous effects become important during the interaction of
the starting wave with the piston wavemaker taking place at

the beginning of the wave generation as we will discuss in
Sec. III C.

B. Boundary conditions
Boundary conditions employed in this work are summarized in

Eq. (7). On the piston wavemaker wall, we impose no-slip condition
for all velocity components. The initial still water level h is always
established before any wavemaker motion by initializing α. The vol-
ume fraction α is bounded and may adopt any value within 0 ≤ α ≤ 1
in any place of the physical domain, and Neumann boundary condi-
tions, set to 0, are applied at all boundaries for the α variable as well.
In particular, at the wavemaker, such a condition forces the contact
angle of the interface to be perpendicular to the wavemaker wall,
which agrees with the experimental results of Refs. 15 and 32 for
the case of a continuously accelerated wavemaker. In this work, the
piston wavemaker moves according to an input velocity signal dis-
played in Fig. 3(a). A velocity step UG drives the piston resulting in
linear dependency on time displacement XG(t). At the piston wave-
maker wall, the velocity matches the velocity of the moving bound-
ary in the x-direction only. A no-slip condition is used at the seabed
wall and the right end wall. The pressure is set to a reference pres-
sure (in this case 0) at the atmosphere boundary, and 0-Neumann
conditions are used at the other locations. A zero-gradient condi-
tion is applied at the atmosphere for outflow, and a velocity uϕ is
assigned for inflow based on the flux in the patch-normal direction.
The boundary conditions for the velocity, pressure, and α variables
can be summarized as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = XG(t) → ux = UG(t), uz = 0,
∂p∗
∂x
= 0,

∂α
∂x
= 0,

x = L → ux = 0, uz = 0,
∂p∗
∂x
= 0,

∂α
∂x
= 0,

z = 0 → ux = 0, uz = 0,
∂p∗
∂z
= 0,

∂α
∂z
= 0,

z = d → inflow: ux = 0,

outflow:
∂ux

∂z
= 0,

uz = uϕ,
∂uz

∂z
= 0,

p∗ + 1
2
∣u∣2 = 0,

∂α
∂z
= 0.

(7)

C. Numerical method
The governing equations were solved with the open-source

software OpenFOAM version 5.33 OpenFOAM is an object oriented
C++ toolbox for solving continuum mechanics problems with the
finite volume method. OpenFOAM presents many advantages: as
released under the GNU General Public License, it is free and
open-source (no licensing fees, unlimited number of jobs, users,
and cores). It is also largely used in the scientific community and
thus has been validated for many applications. We use interDyM-
Foam, a solver of the Navier–Stokes equations for two incompress-
ible isothermal immiscible phases using the volume of fluid (VOF)
method. It increases the capabilities of previous solvers allowing one
to handle dynamic mesh motion. OpenFOAM solves a single equa-
tion of momentum for the two-phase mixture by introducing a vol-
ume fraction advection equation of the VOF method used to capture
the interface between the phases. Hirt and Nichols20 presented this

method as an efficient and simple way of treating the free surface in
numerical simulations, as it stores a minimum amount of informa-
tion. This method should be carefully used when the surface tension
becomes important. Some numerical solvers such as interDyMFoam
impose some restrictions in order to keep a sharp interface between
both fluid phases. An additional term called artificial compression is
introduced here,31

∂α
∂t
+∇ ⋅ (αU) +∇ ⋅ (Ucα(1 − α)) = 0, (8)

Uc = min(Cα∣U∣, max(∣U∣)). (9)

Cα is a user defined coefficient whose default value is 1. The addi-
tional term is only active close to the interface because of the prod-
uct α(1 − α) and does not impact the solution outside the interface
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region. Its role is to compress the interface and maintain α between
0 and 1 if used with discretization techniques. In the post-processing
stage, the value of α = 0.5 is chosen to detect the free surface, which
is carried out thanks to linear interpolation. The interDyMFoam
solver uses the PIMPLE algorithm, which combines both SIMPLE
(Semi-Implicit Method for Pressure Linked Equations)34 and PISO
(Pressure Implicit Split Operator)35 algorithms and allows for bigger
time steps. Simulations were performed on a CPU Xeon E5-2660 v2
cluster running on Simple Linux Utility for Resource Management
(Slurm) and based on MPI libraries. The CPU run time for a one
second transient simulation and a typical wave was about 2.4 h for a
400 000 element mesh and Δt = 5 × 10−4 s time step. The geometry
of the wave tank required a fine spatial discretization, particularly in
zones such as the water–air interface and zones of high velocity gra-
dients such as the wavemaker walls. Explicit schemes are used so that
special care is taken when choosing the time step regarding the mesh
size and CFL condition below 1. As a result of the rapid input veloc-
ity signals during the wave formation and subsequent progression
along the wave tank, the temporal discretization requires time steps
smaller than 10−3 s; thus, we choose a time step size Δt = 5 × 10−4 s
for all the simulations.

D. Mesh independence tests
A series of mesh tests are performed to look for mesh indepen-

dent results. We consider two test cases in order to achieve mesh
convergence: (i) the study of the response to an input velocity step
characterized by the overshoot and the steady state water height, and
the rising, peak, and settling times, as found on the time response
of linear dynamical systems, and (ii) the wave propagation of lin-
ear waves along the 2D wave tank (wave height, wavelength). In
the first case, a set of uniform rectangular cell meshes are generated
to look for mesh independence. Most sophisticated meshes, with a
uniform zone at the water–air interface, which includes the mini-
mum and the maximum water height during the whole simulation,
are also set up. They include refinement at the wavemakers and are
denominated “non-uniform.” They allow decreasing the computa-
tion time as the mesh size is kept in reasonable limits. The mesh,
generated thanks to the blockMesh program, is built from three char-
acteristic elements: the cell width at the piston wall Δxw, the cell

FIG. 2. Non-uniform mesh overview and zoom at the wavemaker and water–air
interface. In this case, the wave tank dimensions are 2 m × 0.25 m and water
depth is 0.15 m.

width in the wave propagation zone (far from the walls) Δx, and
the cell height in the wave propagation zone Δz. Δxw will be deter-
mined from the uniform mesh study in (i). From the wavemaker,
the longitudinal element size Δxi is being computed with the fol-
lowing geometric law: Δxi = Δxwr(i−1)∀i < nj, where r is the geomet-
ric growth rate. After nj cells, the elements reach a constant size
Δx in the wave propagation zone. A similar calculation allows us
to define the vertical element size from outside the interface zone.
Both Δx and Δz are set up considering the number of cells per
wavelength and cells per wave height, respectively. These parame-
ters will be set in (ii). Figure 2 shows the mesh in the x–z plane,
while one cell size is set up in the y-direction. Mesh type and prop-
erties are displayed in Table I. These preliminary tests with different
meshes allow an appropriate choice of the mesh size without com-
promising accuracy and CPU time (cf. Fig. 2). The dynamic mesh
is modeled using a mesh expansion/contraction strategy. The mesh
uniformly contracts and expands, conserving the global mesh cell
volumes as these motions are relatively small compared to the tank
length.

1. Step response
In order to fully test the capacity of the code to represent sud-

den and rapid water surface elevation, we choose to perform a step
response of the water tank. The input signal is a velocity step, as

TABLE I. Mesh properties to study the wavemaker response to a velocity step. Δxw is the cell size in the x-direction at the piston wavemaker, Δx is the cell size in the x-direction
in the wave propagation zone, Δz is the cell size in the z-direction at the water–air interface, ηo is the overshoot water height at the piston wavemaker, ηss is its steady state
value, and tr , tp, ts are the rising time, the peak time, and the settling time, respectively. The area a is used as an entry for the GCI study.36

Δxw (m) Δx (m) Δz (m) a (m2) Number of cells ηo (m) ηss (m) tr (s) tp (s) ts (s)

Uniform

M1
U 0.0100 0.0100 0.005 0 5 × 10−5 10 000 0.0356 0.0257 0.0536 0.1253 0.2819

M2
U 0.0050 0.0050 0.002 5 1.25 × 10−5 40 000 0.0342 0.0257 0.0481 0.1116 0.2979

M3
U 0.0025 0.0025 0.001 0 2.5 × 10−6 200 000 0.0340 0.0259 0.0479 0.1298 0.2905

M4
U 0.0015 0.0015 0.000 75 1.125 × 10−6 443 889 0.0340 0.0258 0.0491 0.1237 0.2939

M5
U 0.0013 0.0013 0.000 5 6.5 × 10−7 769 000 0.0341 0.0259 0.0493 0.1246 0.2927

M6
U 0.0011 0.0011 0.000 26 2.9 × 10−7 1 748 916 0.0341 0.0259 0.0494 0.1247 0.2909

Non-uniform
M7

NU 0.0010 0.0363 0.001 0 . . . 17 115 0.0340 0.0258 0.0491 0.1264 0.2976
M8

NU 0.0010 0.0181 0.001 0 . . . 20 055 0.0340 0.0258 0.0492 0.1262 0.2965
M9

NU 0.0010 0.0091 0.000 57 . . . 47 025 0.0341 0.0258 0.0488 0.1250 0.2954
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FIG. 3. (a) Normalized input signal for the step response test as a function of non-dimensional time (continuous blue line). The piston velocity UG(t) is normalized by its
maximum value U0. We also display the piston position XG normalized by the water depth of the wave tank (continuous black line). The smooth function for the wave train
generation in Sec. III D is also shown (by the dashed blue line). (b) Characteristic amplitude and timescales in the step response of a second order system. ηo, ηss are the
overshoot and steady state values, respectively, and tr , tp, ts are the rising, peak, and settling times, respectively. The steady state height is ηss > h as the piston wavemaker
moves constantly at UG.

shown in Fig. 3(a), and given by

UG(t) = U0Θ(t), (10)

where Θ(t) is the Heaviside function. The step value is 0 for negative
times and UG = U0 for positive times, resulting in a linear displace-
ment XG(t) of the piston wavemaker. In this part of the study, we
set the tank length to L = 4 m, the tank height to 0.25 m, and the
mean still water level to h = 0.15 m. Mesh M1

U is the coarsest and
M6

U the finest. M7
NU to M9

NU are non-uniform meshes as previously
described. They use a cell size at the wall defined later on in the
conclusion of the uniform mesh study and geometric growth rate
r = 1.05 in the x-direction and r = 1.2 in the z-direction. For the
finest mesh in the z-direction (mesh M6

U ), it is necessary to reduce
the time step to keep the Courant number below 1. This is why the
time step is set for all meshes to Δt = 10−4 s. The measured quantity
is the water elevation at the wavemaker ηw. The variables of interest
are described in Fig. 3(b) and are the following: ηo, ηss, the overshoot
and steady state values, respectively, and tr , tp, ts, the rising, peak,
and settling times, respectively. Results are reported in Table I and
shown in Fig. 4. Figure 4(a) shows the time series of the water ele-
vation at the piston wavemaker, ηw(t), for each mesh. The results of
the four finest meshes are similar. A Grid Convergence Index (GCI)
study36 is carried out with meshes 4, 5, and 6. The local order of
accuracy p ranges from 0.18 to 17.57 with a global average of 4.98.
This apparent average order is used to assess the GCI error at every
point as suggested in Ref. 36. The error made in the last mesh is
really low (the maximum GCI error is 0.3%), which allows us to
say that the results do not depend on the mesh. Figure 4(b) shows
the error for every point, and a zoom around the overshoot is dis-
played in the inset where errors increase. The mean error is an order
of magnitude lower (0.03%). The errors on the overshoot and the
steady state values are very low. Figures 4(c) and 4(d) show the con-
vergence of the different parameters composing the typical response

to the step (overshoot and steady state water elevation, rising, peak,
and settling times). They show that for these parameters, the limit
of convergence is mesh M3

U . It is chosen, for obvious practical rea-
sons, to work with mesh M3

U at the wavemaker, which allows us
to decrease computational times while assuring convergence. Non-
uniform mesh shows good agreement with the uniform ones for all
variables. In the rest of this work, we make sure that the first cell
at the piston wavemaker wall is kept below Δxw = 0.0025 m in the
x-direction and Δz = 0.001 m in the z-direction in order to keep the
results independent of the mesh. The number of cells per wavelength
and height in the wave propagation zone is analyzed in the following
paragraph.

2. Wave propagation
In order to properly study the wave propagation properties

as a function of the mesh type and quality, we use an extended
wave tank with L = 8 m. The mesh is finer at the water–air inter-
face and is kept uniform in the zone where the wave propagates.
At the wavemaker, we set Δxw = 0.001 m, and a transition is made
with a 1.05 cell to cell ratio. The piston stroke is set to X0 = 0.004
m, the wavemaker frequency to f = 1.25 Hz, and the piston wave-
maker velocity to UG(t) = X0ω/2 sin(ωt + δ) with δ = −π/2. The
corresponding wavelength can be estimated from the dispersion
relation ω2 = gk tanh(kh), where k is the wave number, and in this
case, λ = 0.82 m. A common discretization is given by 20–25 ele-
ments per wave height and 60–70 elements per wavelength in recent
works.37 We conduct our test based on three meshes whose prop-
erties are shown in Table II, where M7

NU is the coarsest mesh and
M9

NU the finest one. The number of cells per wave height ranges
from 15 to 60, while the number of cells per wavelength ranges
from 60 to 240. The time step is set to Δt = 0.001 s, and the the-
oretical CFL number is reported. Even if it shows to have a value
below 1, the time step for the finest mesh M9

NU had to be decreased
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FIG. 4. Step response. (a) Water height at the piston wavemaker for different meshes. Convergence is achieved from mesh M3
U . (b) Error made due to mesh discretization

calculated with the GCI method.36 A zoom in the overshoot region is also displayed. (c) Overshoot and steady state water height (ηo and ηss, respectively) as a function of
the mesh. These variables seem to have converged at mesh M3

U . (d) Characteristic times (rising time tr , peak time tp, and settling time ts) as a function of the mesh type.
Converged values are found from mesh M3

U .

to Δt = 0.0005 s to avoid divergence due to the use of explicit
schemes. The simulation end time is 10 s, and two probes are set
at x = 2 m and x = 4 m from the origin of the coordinate system
(cf. Fig. 1).

TABLE II. Mesh characteristics and their theoretical CFL number for the wave
propagation problem.

M7
NU M8

NU M9
NU

Cells/H 15 30 60
Cells/λ 60 120 240
Δxw (m) 0.001 00 0.001 00 0.001 00
Δx (m) 0.013 60 0.006 80 0.003 40
Δz (m) 0.000 30 0.000 15 0.000 07
Total number of cells 40 734 107 184 303 232
CFL number 0.15 0.29 0.59

Figure 5(a) shows the water level at the wavemaker wall ηw(t).
No differences between the meshes are observed as expected, since
the refinement in the x-direction and in the z-direction is finer
than the necessary one studied in (i). Figure 5(b) shows the dif-
ferences between the meshes that are used at x = 4 m. A zoom
over the highest value and for three wave periods is shown in
Fig. 5(c). The coarse mesh M7

NU effectively produces minor differ-
ences from the other two, specially at the maxima and minima.
The results for the probe at x = 2 m are compared with the the-
ory in Ref. 6 and shown in Fig. 5(d). The errors of wave crests
and troughs with the wavemaker theory are shown in Table III.
The results are quite accurate for the three meshes (almost all cases
with a rms deviation below 0.1 mm) although the coarse mesh lacks
accuracy at the maxima and minima. It is chosen to work with
the medium mesh M8

NU in the rest of this work as it allows accu-
rate wave height data and reduces the computational time com-
pared to the fine mesh. The final mesh characteristics are given in
Table IV.
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FIG. 5. Continuous wave propagation. (a) Water height at the piston wavemaker ηw as a function of time. (b) Water height at x = 4 m as a function of time. (c) Water height at
x = 4 m as a function of time, with a zoom over times between 6 s and 9 s. (d) Comparison between the medium mesh and the wavemaker theory6 at x = 2 m. The medium
mesh well represents the wavemaker theory. It allows us to validate the wave generation process with the medium mesh for small waves.

TABLE III. rms deviation relative to the theory in Ref. 6 over the 10 s simulation for
both wave gauges at x = 2 m and x = 4 m. The rms deviation is calculated according

to ΔRMS =
√∑N

j=1 (ηj − ηtheo
j )2/N.

ΔRMS(x = 2m) (m) ΔRMS(x = 4m) (m)

M7
NU 7.2 × 10−5 1.10 × 10−4

M8
NU 4.3 × 10−5 0.80 × 10−4

M9
NU 4.4 × 10−5 0.83 × 10−4

TABLE IV. Characteristics of the final mesh.

Δxw (m) Cells/λ Cells/H rx rz

0.001 120 30 1.05 1.20

III. RESULTS

One of the objectives in this work is to characterize the pis-
ton wavemaker system by applying a series of velocity steps. First,
a qualitative approach is taken and observations are made about
the wave generation at small times and the generated wave pulse
is studied at longer times and far away from the wavemaker. Then,
we compare the characteristic variables with the theory developed
in Ref. 11 and explore higher Froude number regimes. The forces
exerted on the wavemaker and the power involved in the wave gen-
eration process are studied, and an active wave absorption strategy
is finally designed. The step velocity tests are carried out at four
mean still water levels: h = 0.050 m, 0.075 m, 0.100 m, 0.150 m,
and for velocities ranging from UG = 0.005 m/s to UG = 0.4 m/s.
In this problem, the fundamental velocity, length, and timescales
are
√

gh, h, and
√

h/g, respectively. The problem can be writ-
ten as f (ηw, ρ, g, h, t, UG) = 0, but according to the Buckingham
π theorem,38 it can be reduced to f (η∗w, t∗, Fr) = 0, where η∗w and
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FIG. 6. Time snapshots of the wave pulse generated (from left to right) by a velocity step applied to the wavemaker motion. The wave pulse is called here the overshoot-wave
as it is created by the overshoot of the water elevation at the piston wall. The wave profile (wave height as a function of x) is plotted in blue and the wave steepness as a
function of x in red. The velocity step is 0.3 m/s, and the mean still water level h is 0.15 m. The shown times are t = 0.05 s ≈ tr , t = 0.13 s ≈ tp, t = 0.20 s, and t = 0.31 s ≈ ts.

t∗ are the dimensionless water height at the piston wavemaker and
time, respectively. In the next sections, as a consequence of this anal-
ysis, we will express the results in a dimensionless way using the
relevant variables η∗w, t∗, and Fr.

A. First instants—The overshoot-wave
While applying a velocity step to the wavemaker, one observes

the formation of a surface water pulse propagating along the tank
as it is shown in Figs. 6 and 7. The wavemaker displaces a given

volume of water, and as the fluid is incompressible, this volume is
found under the wave profile. The water height at the wavemaker
ηw(t) first rises along the wall reaching a maximum value, the over-
shoot. Then, the wave pulse comes off the wall and self-propagates
in the positive x-direction, as the phase velocity of the wave becomes
higher than the wavemaker velocity Cp > UG. In the time snapshots
in Fig. 6, the wave pulse generated by the velocity step is called
the overshoot-wave as it is created by the overshoot of the water
elevation at the piston wall.

FIG. 7. Snapshots at times t = 1.00 s and t = 1.99 s of the wave pulse generated (from left to right) by a velocity step applied to the wavemaker motion. The wave profile
(wave height as a function of x) is plotted in blue and the wave steepness as a function of x in red. The velocity step is 0.3 m/s, and the mean still water level h is 0.15 m.
Note the change in scale in the x abscissa compared to Fig. 6.
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After leaving the wavemaker, the water height at the wave-
maker remains constant, as indicated in Fig. 9. The wave pulse
profile for times t = 0.05 s, 0.13 s, 0.20 s, 0.31 s, which correspond
to the first instants of the pulse formation, is displayed in Fig. 6.
In Fig. 6, the wave steepness, defined as ∣dη/dx∣, is superimposed.
We observe that the wave steepest shape occurs at the very first
instants of its formation, i.e., at t = 0.05 s, where the maximum
steepness is higher than 3. When the pulse starts leaving the pis-
ton wavemaker, its steepness decreases to values under 1. Such
high steepness is associated with the non-linear properties of the
overshoot-wave. Another important parameter useful to evaluate
when it comes to apply linear theory is the wave height to mean
still water level ratio η/h. It is relatively important (values around
0.5 in this example); therefore, Airy theory of linear waves can-
not be applied here. The profile of the generated pulse at longer
times is shown in Fig. 7, as well as its steepness as a function of
the x-coordinate. We can notice the generation of wiggles after the
main pulse propagating downstream as already described. The wig-
gles are trailing waves whose height decreases in the vicinity of the
piston wavemaker, while the front wave height increases as it trav-
els. These wave structures are described in the work of Ref. 11 and
are a consequence of wave dispersion. The piston motion creates a
wave packet in which each wave travels at different velocities due
to dispersion effects. We identify the created wave to be an undu-
lar bore, which was experimentally and theoretically studied in Refs.
39 and 40, respectively, while Stoker41 predicted that an impulsive
wavemaker would generate an undular bore as in the present case.
Recently, similar bore structures were obtained from a different
approach where a moving weir at the bottom of a channel may pro-
duce the volumetric water displacements necessary to develop such a
wave.42

Undular bores are of particular importance as they appear
to more likely represent a real tsunami wave instead of a solitary
wave.43 Important values of the wave steepness are observed dur-
ing the pulse formation, which decrease rapidly as the pulse prop-
agates without evidence of wave breaking. If the bore strength is
important, undular bores may display a wave breaking process.42 In
the time snapshots in Figs. 6 and 7, we observe the vector velocity
field of the numerical solution of the Navier–Stokes equations. The
vector field becomes intense precisely near the steepness peaks as
the overshoot-wave propagates along the tank. The higher the wave
height, the higher the intensity of the vector field, which is associated
with particle velocity.

The starting overshoot-wave displays a phase celerity Cp as a
function of time t, which may be compared with two characteristic
properties, the shallow water wave speed Cp =√g(h +H) and the
piston velocity UG, as shown in Fig. 8. The overshoot-wave celerity
may be estimated from the mean celerity as Cp = δx/δt between con-
secutive wave crests or looking for maximum steepness at different
time steps during the propagation, as shown in Fig. 6. As the phase
celerity of the overshoot-wave is found to be higher than the piston
velocity from the first instants of motion, the overshoot-wave travels
fast enough to leave the piston wavemaker. As the wave propagates
along the tank, its phase celerity increases with time, approach-
ing the shallow water phase speed given by Cp →√g(h +H). This
behavior agrees with that in potential theory and therefore allows
us to validate the capabilities of the numerical wave tank for wave
propagation.

FIG. 8. Instantaneous overshoot-wave phase celerity Cp(t) (in blue) as a function
of time for the case h = 0.15 m and UG = 0.3 m/s. For times lower than 0.2 s,
the maximum of the steepness is used to determine the location of the overshoot-
wave. For later times, the maximum of the wave profile is taken as the location of
the wave. The wave celerity can be compared to the piston step velocity UG and
to the phase velocity of shallow water waves.

B. Response to a velocity step
A positive velocity step (UG > 0) creates a water pulse, which

leaves the wavemaker wall as it propagates along the tank. The step
response is recorded as the water height or water elevation at the
wavemaker wall ηw(t) and is presented in Fig. 9(a).

The water height first increases, reaching a maximum or over-
shoot ηo at peak time tp, before approaching a lower steady state
value ηss. It is of particular interest to note the similarity of this
dynamic response to a step response of the second order system [cf.
Figs. 9(a) and 3(b)]. The time response of second order linear sys-
tems depends on the type of the input signal. For a step input, the
system exhibits a characteristic response defined by the rising time
tr , the maximum overshoot ηo, and the steady state value ηss obtained
at a given settling time ts.28 In Fig. 9(b), we present the normalized
time response using the Froude number as in the theory proposed
in Ref. 11. We can observe that after reaching its maximum value,
the overshoot, the water height slightly oscillates and decreases to
its steady state value ηss = hFr. The step response for small Froude
numbers found in this work is in agreement with that in the theoret-
ical work of Ref. 11. Nevertheless, some differences with the theory
are observed in the overshoot behavior for higher Froude num-
bers. The overshoot starts to increase beyond the theoretical predic-
tion, and the steady state value approaches a slightly higher value
than the expected one from theory, ηss = hFr, as we will discuss in
Sec. III B.

The relative deviation from theory11 is presented in Table V
for the four mean still water levels and the velocity range from
0.005 m/s to 0.3 m/s. The relative deviations are defined as Δo= ∣ηo − ηre f

o ∣/ηre f
o and Δss = ∣ηss − ηre f

ss ∣/ηre f
ss , where the superscript

ref refers to the study of Ref. 11. The arrows indicate how the Froude
number changes while varying the step velocity or the mean still
water level. It is interesting to note that the relative deviation stays
low for the steady state value (< 10.5% for all velocities and mean
still water levels). For both overshoot and steady state values, the
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FIG. 9. (a) Water height at the wavemaker as a function of time. (b) Non-dimensional water height as a function of non-dimensional time. A comparison between the CFD
simulation and the theoretical study carried out in Ref. 11 is shown.

deviation decreases with the increase in the water level (which actu-
ally corresponds, for a given step velocity, to lower Froude numbers).
Finally, the deviation for the overshoot value can reach high values
(> 40%) for the highest Froude numbers (high velocity, low mean
still water level).

The dominant controlling parameter in this work is the Froude
number Fr defined as the ratio between inertial (ρh2U2

G) and
gravitational (ρgh3) forces, and thus, Fr = UG/√gh. The similar-
ity of the system response to the typical second order response
under a step velocity can be analyzed through the characteristic
timescales and maximum overshoot of the response. Timescales
as well as the amplitude of the water height response must be
plotted as a function of the step velocity UG. As in many feed-
back control systems, the time response of a second order sys-
tem will be completely determined when one knows the maxi-
mum overshoot ηo, the steady state amplitude ηss, and the rising,
peak, and settling times tr , tp, ts, respectively. If the time response

is correctly described by the second order response, we should
find a scaling law for the characteristic timescales at different
water depths h and step velocities UG otherwise said the Froude
number.

The overshoot ηo as a function of the step velocity UG is plotted
in Fig. 10(a) and the steady state ηss is plotted in Fig. 10(c), both for
two mean still water levels h = 0.05 m and h = 0.15 m. The steady
state values evolve linearly with the generation step piston veloc-
ity as they correspond to the water height of the displaced volume,
which increases linearly in time as the step velocity UG is constant
for t > 0. However, the overshoot dependence on UG is not linear
as the overshoot-wave originates during a rapid transient process.
The curve collapse under the proposed scaling is relatively good in
the range of mean still water levels shown as 0.05 ≤ h ≤ 0.15 m. The
scaling for the overshoot fails when Fr > 0.2 as the overshoot-wave
height increases over the linear limit and starts to move faster with
higher UG.

TABLE V. Relative deviation from the model of Ref. 11 at different water depths and step velocities (0.005 < UG < 0.3 m/s).
The relative deviation is defined as Δo = ∣ηo − ηref

o ∣/ηref
o , Δss = ∣ηss − ηref

ss ∣/ηref
ss . The superscript ref refers to the study of

Ref. 11. The arrows indicate how the Froude number varies with the step velocity and the mean still water level.
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FIG. 10. (a) Overshoot ηo of the water elevation at the piston wall as a function of the piston step velocity UG. Two still water levels are considered: 0.05 m and 0.15 m. (b)
Dimensionless overshoot at the piston wall η∗o = ηo/h vs Froude number. A linear fit for low Froude number Fr < 0.1 is drawn as a dashed black line for comparison and is
given by η∗o = 1.267 ⋅ Fr − 0.0015 and R2 = 0.9994. (c) Steady state water elevation ηss as a function of the piston step velocity UG. Two still water levels are considered:
0.05 m and 0.15 m. (d) Dimensionless water height steady state at the piston wall η∗ss = ηss/h vs Froude number. A linear fit for low Froude number Fr < 0.1 is drawn as a
dashed black line for comparison and is given by η∗ss = 1.046 ⋅ Fr − 0.0005 and R2 = 0.9997. The different still water levels are represented with symbols.

The evolution of the characteristic timescales of the response to
a velocity step is shown in Fig. 11. As it is indicated in Fig. 3, these
timescales are associated with a second order dynamical response,
where the water height at the piston wall ηw is measured and com-
pared to the steady state height ηss. The rise time tr and the peak
time tp are associated with the very first instants of the wave motion,
when the overshoot-wave is created. Both time constants appear to
be independent of the step velocity and provide an interesting scal-
ing independent of the Froude number where the dimensionless
timescale is written as

t∗ = t√
h/g . (11)

As shown in Fig. 9, after the main wave leaves the piston zone,
the water height on the piston wall scales perfectly with the Froude
number as ηw/(hFr) = 1 because the displaced volume in the steady

state regime is entirely determined by the steady state water eleva-
tion ηss. The associated settling time ts is computed within a 10%
band and slightly grows with the Froude number. In Fig. 11(b),
the time scaling indicated in Eq. (11) produces a very tight col-
lapse of each characteristic time as a function of the Froude
number.

The scaling seems to confirm the similarity of the water ele-
vation response with a second order response. As the wave pulse
is created by the excess or overshoot of the water elevation at the
piston wall, we called it the overshoot-wave. The piston motion
produces the displacement of a water volume (per unit depth)
given by V(t) = UGth, which displays an initial transient peak,
the overshoot, superimposed into a water slug rising over the
mean still water level h. The overshoot-wave has its own dynam-
ics, moving at shallow water speed, running over the water slug,
and therefore leaving the displaced volume faster than the linear
waves.
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FIG. 11. (a) Characteristic timescales as a function of the wavemaker step velocity UG. (b) Dimensionless characteristic timescales t∗ = t√
h/g as a function of the Froude

number.

C. Forces involved in the step response
In this section, we present new findings such as the force

decomposition and the maximum power as a function of the Froude
number. The objective of this section is to determine the forces orig-
inated on the piston wavemaker during the step response. As the
problem is 2D, there are only two components of the forces pro-
jected on the piston wall in the x-direction and z-direction, which
are inertial, pressure, and viscous forces. These forces can be calcu-
lated from the pressure and velocity fields at the wavemaker using
the stress tensor ε , the elementary surface area dS (which is in the
2D case an elementary length), and its normal n,

Fw = ∫
z

ε ⋅ n dS. (12)

The stress tensor is defined as

ε = −p[1 0
0 1] + 2μ

⎡⎢⎢⎢⎢⎢⎢⎣
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1
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(∂uz
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⎤⎥⎥⎥⎥⎥⎥⎦
. (13)

In Fig. 12, we display the resulting normal and tangential force pro-
files [ f x(z) and f z(z), respectively] as a function of the vertical
coordinate starting from the bottom of the tank and across both fluid
phases. As the mean still water level is h = 0.15 m, we note a marked
change at the air–water interface z = 0.15 m on both types of forces.
However, as expected, there is approximately a five orders of magni-
tude difference between both components. The normal force profile
f x(z) is mainly hydrostatic and insensitive to time, and the viscous
or tangential force profile f z(z) is dependent on time at low UG
values. Wall shear is created during the formation of the overshoot-
wave, which indicates the positive increase in the resulting vertical

FIG. 12. Normal and tangential force profiles (along the z axis, f x and f z , respectively) per unit area at the wavemaker for times 0.05 s, 0.13 s, 0.20 s, 0.31 s, and 0.60 s and
h = 0.15 m. Notice the difference of power of ten between the two plot vertical axes. (a) UG = 0.03 m/s. (b) UG = 0.30 m/s.
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FIG. 13. Pressure forces [hydrostatic ρg(h + η) and p − ρg(h + η)] (along the z axis) at the wavemaker for times 0.05 s, 0.13 s, 0.20 s, 0.31 s, and 0.60 s and h = 0.15 m.
(a) UG = 0.03 m/s. (b) UG = 0.30 m/s.

force Fz(z) in Fig. 14(b). When the overshoot-wave leaves the pis-
ton, and the progressing volume pushed by the piston reaches a
steady state motion, the shear forces become very small. When the
step velocity is increased to UG = 0.3 m/s, the normal force profile
f x(z) displays notorious changes in time but finally evolves into an
almost hydrostatic vertical profile, as shown in Fig. 13(b).

In order to verify the effects of the initial fluid motion on the
pressure field during the step response, we recorded the pressure
profiles at both step velocities UG = 0.03 m/s and UG = 0.3 m/s.
The sudden increase in water elevation at the piston wall is more
important at higher UG, which is explained by the higher volume
displaced during the initial times. Shear forces change in sign dur-
ing the formation of the overshoot-wave, as shown in Fig. 12 at both
step velocity values. The first water elevation motion produces a pos-
itive shear on the piston wall and therefore a positive shear force,
which start to decrease, becoming negative as the overshoot-wave

leaves the piston wall and the force points downward before van-
ishing in the steady state regime. The pressure profile is dominated
by hydrostatics, as shown in Fig. 12. However, when we subtract
hydrostatic pressure due to the initial wave elevation along the z axis,
i.e., we plot p(z) − ρg(h + η), we observe traces of the creation of
the overshoot-wave on the remanent pressure. As time progresses
and the overshoot-wave leaves the piston wavemaker, this rema-
nent dynamic pressure contribution approaches very low values with
respect to hydrostatics.

In order to compute the power delivery involved in the pro-
cess, we must get a good estimate of the resulting forces on the
piston. In Fig. 14, we present the normal and tangential forces on
the piston wall as a function of time, uncovering the initial tran-
sient associated with the overshoot-wave formation and during the
steady state regime. The normal and tangential force profiles are
obtained integrating the force profiles in Fig. 12 along the piston

FIG. 14. Resulting net forces per unit length as a function of time. (a) Normal net force Fx(t) and (b) tangential net force Fz(t). The mean still water level is h = 0.15 m, and
the step velocity range is 0.01 m/s ≤ UG ≤ 0.3 m/s.
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FIG. 15. Power delivery during wave generation. (a) Maximum power per unit length Pmax vs step velocity UG at h = 0.05 m and h = 0.15 m. (b) Dimensionless maximum
power per unit length P∗max as a function of the Froude number Fr at different mean still water levels. A quadratic fit is carried out and gives P∗ = 2.0079Fr2 + 0.2740Fr+ 0.0087 (with the correlation coefficient R2 = 0.999 06).

wall during each time step, providing an accurate estimation of the
net forces shown in Fig. 14. The resulting normal forces Fx(t) are
negative as they oppose the piston motion. If we plot the absolute
values, we find a time evolution very similar to that of water ele-
vation ηw(t) in Fig. 9. The first rising part is associated with the
force excess resulting from the creation of the overshoot-wave fol-
lowed by a steady state force associated with the progressive motion
of the mass of the water slug moving at constant velocity UG. On
the other side, the tangential averaged forces Fz(t) shown in Fig. 14
display a change in sense (sign), indicating how the fluid is mov-
ing on a boundary layer created on the piston wall. At first, the
fluid moves upward, then stops, and then moves downward reaching
a local (downward) maximum precisely when the overshoot-wave
leaves the piston. The critical time when the resultant shear force
is zero t ∼ 0.2 s does not correspond to the peak time as water is
still rising at the bottom of the wavemaker, as shown in Fig. 6.
X-force characteristic times (rise and peak times) are much larger
than those for the kinematic observations. The minimum shear force
time corresponds to the maximum force in the x-direction, show-
ing the correlation between both phenomena. We can imagine that
a feedback controlled piston wavemaker might also be designed
by measuring the vertical force instead of the one in the direction
of the piston motion. If the overshoot-wave is going away lead-
ing to a fluid flow downward at the interface, the global motion is
more complicated, with a flow still going upward at the base of the
piston.

During the design of a piston wavemaker, it is important to
evaluate the power input during the step response associated with
the wave generation process, as it can be particularly useful in deter-
mining the scaling. For example, the Flowave facility power demand
can creep close to 300 kW when it creates a sea state moving the
168 paddles.44 Dimensioning the necessary power supply is then of
crucial importance. This section is devoted to the evaluation of the
energy input required to create a wave pulse resulting from a piston
velocity step. The power involved in the step motion of the piston
wavemaker is calculated according to the following equation:

P(t) = Fw ⋅Uw. (14)

In this case, the piston wall velocity is Uw = UGx̂, which is the Heavi-
side step function. Maximum power delivery as a function of the step
velocity is shown in Fig. 15(a). The maximum power corresponds to
the maximum water elevation at the piston wall. An expected power
increase is found when the step velocity increases, but more impres-
sive is the radical change in the power delivery when the mean still
water level is increased. If we look for a scaling of the power delivery,
we may use a characteristic force per unit length and velocity to per-
form the normalization. The normalized maximum instantaneous
power can be written as

P∗ = P
ρgh h

√
gh
= P

ρg3/2h5/2 ,

where P is the power per unit length. The involved force is the hydro-
static pressure force, and the velocity is the corresponding shallow
wave celerity

√
gh. In Fig. 15(b), the normalized maximum power

P∗ vs Froude number collapse for different mean still water levels
confirms that the scaling has been properly defined and it follows
accurately a quadratic fit (obtained by least square fitting). This law
can be used as an entry design tool to define the maximum power
that is necessary to generate waves.

D. Active wave absorption
An active wall driven by a feedback controller may be useful not

only to cancel wave reflections but also to attenuate wave impacts
associated with extreme waves on a vertical wall and reduce their
consequences.45 We have here implemented an active wave absorp-
tion strategy using our results from the response of the wavemaker to
velocity steps discussed in Sec. III B. First, consider a wave created
at the wavemaker, propagating from left to right, whose shape is a
leading trough, as shown in Fig. 16. To absorb this wave at the right
active wall, a wave crest of nearly opposite phase has to be super-
imposed, which is generated by the motion of a wave-absorber, a
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FIG. 16. Schematics of the wave absorption problem. The numerical domain is composed of (1) the piston wavemaker, (2) the piston wave-absorber on which the water
level ηw is measured, (3) the atmosphere, and (4) the seabed. The generated waves (5) at the free-water surface are referenced to the mean still water level (6) h. A second
frame of reference, on the wave-absorber, is indicated as (x′, z′).

wavemaker situated at the right side of the tank, according to the
following strategy.

Consider a wave-absorber consisting of an active flat wall with
a sensor that measures the water level at the wall ηw. On the frame
of reference (x′, z′) associated with this wave-absorber, the positive
motion is from right to left (note that x′-direction is the opposite
of x). The wall water level ηw can be compared to a reference value
ηref = 0 in order to attenuate reflections. The error ε = ηref − ηw is
permanently computed and fed into a proportional controller of
gain K, which provides the absorption velocity UA = Kε. The cor-
responding block diagram of the feedback control strategy using
a proportional controller is shown in Fig. 17(a). The efficiency of
the control strategy relies on the choice of K where we propose
to use the kinematic results of the step response rather than typ-
ical methods.28 In Sec. III B, we have shown that the wall water
level at the wavemaker reaches an overshoot value after a short
time (as seen in Fig. 9) corresponding to the standard peak time
of the system (see Fig. 11). The overshoot η0, the maximum water
level at the wavemaker during the step, was related to the piston
velocity UG by a linear relationship at the lower part (Fr < 0.2) of
Fig. 10(b). If we want to absorb a wave of given amplitude at the
wave-absorber wall, then we are more efficient if the change in
amplitude, ηw → η0(UG), takes into account the corresponding step
velocity UG.

The slope of the linear scaling in Fig. 10(b) (the lower part
of the plot) will determine the proportional controller gain K. The
absorption velocity is then computed as UA = Kε = −Kηw, where
K = 1/1.267

√
g/h represents the inverse of the linear fit slope in

Fig. 10(b).
The dimensionless controller gain K∗ = K

√
h/g is reproduced

in Fig. 17(b) at different water levels, for a better understanding of
the gain selection.

In order to determine the efficiency and limits of the feedback
strategy, an irregular wave train, an undular bore, and regular wave
cases were tested. The first example of the implementation of such an
absorption strategy for irregular waves is shown in Fig. 18. A wave
train is generated by the wavemaker on the left with the help of a
smooth velocity pulse function defined as

UG(t) = −S
τ

sech2( t − t0

τ
), (15)

with S = 0.077 m, t0 = 1.30 s, and τ = 0.342 s. This function can be
visualized in Fig. 3(a). The wave train is moving in the direction
of the wave-absorber at the right end part of the wave tank and
is formed of a leading trough followed by wiggles (see time t = 3.5
s). The waves are then absorbed according to the feedback con-
trol strategy with an update of the absorption velocity at every time
step, where the error at the wave-absorber wavemaker is plotted in

FIG. 17. (a) Absorption block system. A proportional controller compares the value of the water level at the wave-absorber wavemaker ηw with a reference value ηref .
It multiplies then the error with a constant coefficient K, which gives the absorption velocity UA. Error ε and absorption velocity as a function of time. (b) Dimensionless
overshoot-wave height at the paddle as a function of the Froude number, zoomed-in view of Fig. 10(b). The dimensionless proportional coefficient K∗ is represented on the
curve as the inverse of the slope (in red). K∗ = 1/1.267 so that K = 1/1.267

√
g/h.

AIP Advances 10, 115306 (2020); doi: 10.1063/5.0017376 10, 115306-15

© Author(s) 2020



AIP Advances ARTICLE scitation.org/journal/adv

FIG. 18. Wave profile η as a function of the x-coordinate and for times from 2.50 s to 8.00 s. For times t = 2.20 s and 3.50 s, a blue arrow indicates the direction of the incident
wave train. The active feedback absorber velocity and direction [in the frame of reference (x′, z′)] are shown with red arrows. For the last time (t = 8 s), the wave state for
the case without absorption is superimposed in the dashed black line.

Fig. 19(a). The error alternates between positive and negative values
causing the absorption velocity UA, which is also shown in the same
graph, to behave similarly. The error decreases to zero while the
wave-absorber performs the canceling action. The maximum error
corresponds to 21% of the mean water level, that is to say, at the limit
of the non-linear portion of the plot in Fig. 10(b). It results in an
almost fully absorbed wave state at times t = 7 s and 8 s, where the
water surface is calm at every location of the wave tank. Note that
a reflected wave will take a time greater than t > 8 s to arrive into
the wave-absorber after reflection at the left wavemaker. That means
the error ε(t) falls to zero rapidly. In Fig. 18, in the last snapshot
at t = 8 s, the black dashed curve is obtained with the controller off,
and thus, the wave-absorber is at rest, allowing one to qualitatively
compare the efficiency of the absorption strategy. It is possible to
compute the energy of the wave tank in order to evaluate (and pro-
pose) the absorption efficiency of our method. The kinetic energy
and potential energy per unit width (in J/m) for the water phase are
defined as

Ec = 1
2

ρ∫ XA

XG
∫ h+η

0
(u2

x + u2
z) dxdz,

Ep = ρg∫ XA

XG
∫ h+η

0
zdxdz,

(16)

where ux and uz are the horizontal and vertical fluid velocities,
respectively. The initial energy (at t = 0 s) is equal to the poten-
tial energy of the still water level, that is to say, E0 = ρgLh2/2. As
the tank length is not constant in time since both generating and
absorbing wavemakers move at positions XG(t) and XA(t), a refer-
ence energy, which corresponds to the potential energy of the tank
for a still water level retrieved by volume conservation considering
these new positions, is defined as

Ere f (t) = 1
2

ρg( L2h2

XA(t) − XG(t)). (17)

Results of the energy computations are shown in Fig. 19(b), and they
are shown with the initial energy state E0 as a basis. We observe
the decrease in the energy in the system during the generation pro-
cess (t < 2 s), then a plateau corresponding to the wave propagation
stage (2 s ≤ t ≤ 3 s), and finally an increase in the energy (until t = 8
s), which is due to the wave absorption of the incident waves and
its convergence until a final energy value. We can compare these
results with the case without absorption where we observe a nearly
constant value of the total energy once the generating wavemaker
stops. It is interesting to note the permanent trade between kinetic
and potential energies as the waves reflect on the still wavemakers.
The slight decrease in total energy is due to wave attenuation during
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FIG. 19. Case of the absorption of an irregular wave train generated by Eq. (15) for a still water level h = 0.075 m. (a) Proportional controller error ε as a function of time.
The corresponding velocity of the wave-absorber [in the frame of reference (x′, z′)] is indicated in the second y axis on the right. The 5% error band is indicated by the black
dashed curve, and the corresponding final time t f = 7.00 s is indicated. (b) Energy as a function of time. Kinetic, potential, and total energies are shown with reference to the
initial energy in the tank E0.

propagation and reflection against the still walls. An estimation of
the reflection coefficient can be made by computing the energy ratio
between incident and reflected waves (adapted from Ref. 46),

CR =
√

ER

EI
=
¿ÁÁÀ ∣Ep(t f ) + Ec(t f ) − Ere f (t f )∣

max(∣Ep(t) + Ec(t) − Ere f (t)∣) , (18)

where EI and ER are the incident and reflected wave energies and t f is
the time when the error reaches and stays inside 5% of the error band
such that ∣ε(t ≥ t f )∣ ≤ max(∣ε(t)∣) × 5/100 is verified. The time t f
as well as the 5% error band is indicated in Fig. 19(a). We make
sure that at this time, no re-reflection on the absorbing wavemaker
has occurred. Perfect wave absorption would lead to Etot = Eref (t f ),
but as some reflection happens, this energy level is not reached. It

is important to take into account the reference energy as the length
of the wave tank is not constant, thus impacting the general level
of potential energy. The computation of the reflection coefficient
with this method leads to CR = 16%. Another analysis is carried out
thanks to the separation of incident and reflected wave fields by
means of the Fourier transform of two wave gauge data recordings
at different tank locations.46 It leads to the value of CR = 15%, which
is similar to the previous one and shows the attenuation in the wave
absorption process.

The waterfall plot in Fig. 20(a) helps to visualize the motion of
the wavemakers as illustrated by the extension of the wave tank at
the left during the wave generation and the oscillations of the wave-
absorber wavemaker as the incident waves make contact with the
wall sensor. Finally, the efficiency of the process can be observed as

FIG. 20. Waterfall plot of the wave train propagating in the wave tank for a still water level of h = 0.075 m. The generating wavemaker follows the velocity defined by Eq. (15).
(a) With active absorption. (b) Without active absorption.
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the reflected waves are small compared to the initial waves. A com-
parison with the case without absorption is also plotted in Fig. 20(b)
and shows that the wave height at the (still, controller off) wave-
absorber wavemaker fully fluctuates between low (ηw < −0.025 m)
and high (ηw > 0.03 m) values. When the controller is turned on,
those fluctuations disappear and ηw → 0 as a result of the absorption
mechanism.

The second test case consists in an undular bore, which is
generated with a velocity square function defined as

UG(t) = U0(Θ(t) −Θ(t − t0)), (19)

where U0 = 0.2 m/s, t0 = 2.5 s, and Θ is the Heaviside function, for a
4 m long wave tank and a still water level of h = 0.075 m. The undu-
lar bore, shown in Fig. 21, is generated on the left, propagates toward
the wave-absorber wavemaker on the right, and is absorbed accord-
ing to the proportional strategy. In this case, the error is almost
always negative at the wave-absorber wall, with variations due to the
incoming bore wiggles, as shown in Fig. 22(a). The starting error is
important due to the high amplitude incoming undular bore, but
rapidly the controller action decreases it and makes the stationary
error converge to zero. In Fig. 22(b), the energy analysis is shown
and a similar behavior is observed as in the previous case, with
an increase in the total energy during the wave generation and a

constant level during the propagation stage (0 s ≤ t ≤ 2.5 s for the
first one and 2.5 s ≤ t ≤ 4 s for the second one).

The total energy then decreases as long as the wave-absorber
actuates and converges to the final energy, which corresponds to the
final still position of both wavemakers. An estimation of the reflec-
tion coefficient can be made with the energy analysis and conducts
to CR = 10%. The analysis of the reflection coefficient in Ref. 46 leads
to CR = 16%. The difference can be explained by the method in Ref.
46, which is not well suited for high amplitude non-linear waves
as can be the undular bore. This analysis shows that the strategy is
interesting and can effectively absorb non-regular waves, even steep
waves.

Finally, tests are carried out on harmonic cases, consisting of
the absorption of regular waves generated as for the wave propaga-
tion mesh study in Sec. II D 2. The excitation functions and general
setups are reported in Table VI. The reflection coefficient is calcu-
lated according to Ref. 46 and leads to a value lower than 10% for
both cases, showing the efficiency of the proposed strategy in order
to absorb waves. A summary of all test cases is reported in Table VI,
and the reflection coefficients are given.

When we considered the steady state value of the step response,
ηss, it was shown that the water level at the wavemaker reached a
constant value after a short time, ts, at which ηw/h = Fr, as shown in
Fig. 9(b). The absorption velocity and constant coefficient K may be

FIG. 21. Wave profile η as a function of the x-coordinate and for times from 0 s to 8.00 s for the undular bore absorption. For times t = 0 s and 3 s, a blue arrow indicates the
direction of the incident wave train. The active feedback absorber velocity and direction [in the frame of reference (x′, z′)] are shown with red arrows. For the last time (t = 8 s),
the wave state for the case without absorption is superimposed in the dashed black line.
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FIG. 22. Case of the absorption of an undular bore generated by Eq. (19) for a still water level h = 0.075 m. (a) Proportional controller error ε as a function of time. The
corresponding velocity of the wave-absorber [in the frame of reference (x′, z′)] is indicated in the second y axis on the right. The 5% error band is indicated by the black
dashed curve, and the corresponding final time t f = 9.49 s is indicated. (b) Energy as a function of time. Kinetic, potential, and total energies are shown with reference to the
initial energy in the tank E0.

TABLE VI. Test cases for the absorption controller and reflection coefficients.

Reflection coefficient CR

Wave type Piston velocity function UG(t) Parameters Method in Ref. 46 (%) Energy method (%)

Irregular − S
τ sech2( t−t0

τ ) h = 0.075 m, S = 0.077 m, τ = 0.342 s, 15 16
wave train t0 = 1.30 s, L = 2 m
Undular U0(Θ(t) −Θ(t − t0)) h = 0.075 m, U0 = 0.2 m/s, t0 = 2.5 s, 16 10
bore L = 4 m
Harmonic X0πf sin(2πft + δ) h = 0.15 m, X0 = 0.004 m, f = 1.25 Hz, 5 . . .

δ = −π/2, L = 8 m
Harmonic X0πf sin(2πft + δ) h = 0.05 m, X0 = 0.04 m, f = 0.5 Hz, 9 . . .

δ = −π/2, L = 8 m

alternatively defined according to UA = Kε(t) with K =√g/h.
This coefficient was already given in Ref. 47 and was deduced from
a mathematical study of the problem. The choice of the first strategy
based on the overshoot (K = 1/1.267

√
g/h) rather than this last one

is justified by the peak time tp associated with the overshoot, which
is shorter than the settling time ts associated with the steady state, as
shown in Fig. 11, or better said, the wavemaker moving at constant
speed generates a transient wave that is used to cancel the incident
wave.

The active wall driven by a feedback controller has proven to
be useful not only to cancel wave reflections but also to attenuate
high amplitude irregular wave impacts as in the undular bore exam-
ple. In the future work, we will push further the absorption strategy
to effectively reduce the consequences of extreme high amplitude
waves using controllers for non-linear waves.

IV. CONCLUSION

In this work, we performed numerical simulations of a two-
dimensional wave tank in order to study the piston-type wavemaker

initial-value problem and wave generation using the free and open-
source code OpenFOAM. The numerical model reproduced the
motion of a solid body piston-type wavemaker by moving a solid
boundary driven by an external arbitrary signal waveform. We con-
sidered a fully viscous model solving the unsteady Navier–Stokes
equations on the basis of a two-phase flow strategy and the vol-
ume of fluid method to capture the free surface dynamics. Velocity
step signals (Heaviside functions) were applied to the piston-type
wavemaker, generating a pulse-like wave that propagated along the
tank followed by smaller waves or wiggles, which was identified as
an undular bore. Recording of the wave elevation time series at the
moving wall and in different tank locations was compared with theo-
retical data, providing a very good agreement and proving the capa-
bilities of the OpenFOAM solver interDyMFoam to simulate two-
phase flows with wave propagation involving both free surfaces and
moving boundaries. Wave elevation at the piston wall was found to
have close similarity to the time response of the second order system
found in feedback theory. In particular, the overshoot and rise, peak,
and settling timescales were very close to those in the theory. The
scaling found for water elevation at the piston wall at different step
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velocities and mean still water levels was in close agreement with that
in the theory for low Froude numbers.11 At higher Froude numbers,
the scaling differs considerably from that in the theory, being unable
to take into account the main wave dynamics. The resulting main
wave pulse is generated and detaches from the piston wall at the
same time as the overshoot takes place in the wall elevation signal;
thus, we call this wave the overshoot-wave. Results along the tank
downstream agree with those of potential theory. The overshoot-
wave propagates faster than piston velocity increasing its velocity
and reaching asymptotically the shallow water celerity downstream
the tank. As we solved fully viscous equations, we were able to quan-
titatively determine the power input during the step response associ-
ated with the wave generation process using the entire stress tensor
at the piston wall. Net piston forces were obtained integrating pres-
sure and shear stresses on the piston wall. A power scaling was found
for different mean still water levels and step velocities as a function
of the Froude number.

Finally, in this work, we proposed a feedback proportional con-
troller driving a secondary piston for wave absorption, where the
controller gain was determined from the wavemaker step response.
The feedback controlled piston method proved to be very efficient
on both regular and irregular wave absorption. This novel approach
provided the basis from which more complex active wave genera-
tion/absorption strategies can be further implemented on numer-
ical and experimental wave tanks to improve efficiency under the
influence of different parameters such as the water depth, the wave
steepness, and negative velocity steps.
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