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Abstract 

 

Soils are heterogeneous and complex environments, and bacterial competition, 

cooperation, and communication dynamics there are mediated through the 

secretion of natural products (NPs) synthesized in specialized pathways 

allowing diverse survival strategies to arise in oligotrophic conditions. Due to 

the vast array of thriving mechanisms, classification of compound classes and 

comparative approaches turn out necessary means to assess specialized 

metabolism (SM) in evolutionary and ecological contexts. Complementing 

current advances in the field of genome mining with transcriptional data 

enables better understanding of how often these metabolites are produced in 

natural settings and what stimuli set their production off.  Here, a dataset of 

190 biosynthetic gene clusters (BGCs) of mainly unknown functions was 

obtained from six metagenomic samples of the Atacama Desert revealing site- 

and/or phylum-specific behaviours. Acidobacteria was found to be the most 

abundant and the most SM-enriched taxa in these soils. A complete hybrid 

region of ~130 kb was fully predicted making it one of the largest to be directly 

recovered from an environmental sample. This is the first report of NP-encoding 

bacteria from Lenthisphaerae and Spirochaetes taxas. Examination of 

functional annotation of essential and accessory specialized genes showed 

association between biosynthetic classes of compounds and categories of 

orthologs such as NRPS/T1PKS with transposases and binding protein-

dependant transport systems, and terpenes with the arsenic regulator ArsR and 

the iron transporter TonB. Manual curation of protein family domains of 

reference BGCs from gene cluster families (GCFs) suggest that shared biological 

functions of the Talabre-Lejía transect are mainly advocated to antibiotic 

biosynthesis, nitrogen metabolism, oxidative stress, and metal resistance.  

This study provides insights on functional co-occurrence patterns of NP-

encoding repertories obtained from genomic analyses of 53 metagenome-

assembled drafts (MAGs) recovered from a rare natural 

environment throughout a scalable pipeline constructed upon considerations 

for researchers with no bioinformatic background.   
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Introduction 

 

 

Soils are highly heterogeneous and complex environments, and bacteria that 

inhabit them play multiple intra- and inter-specific ecological roles accounting for 

competition, cooperation, and communication dynamics through the secretion of 

specialized metabolites, of which most remain uncharacterized[1,2]. Known biological 

functions performed by these highly optimized molecules[3] include induction of motility 

and/or biofilm production[4,5], tolerance to various forms of abiotic stress through, for 

example, pigments and ectoines[6-8], cycling of nutrients by capturing them or making 

them bioavailable[9,10], and inhibition of growth via antibiotics and antifungals[11,12], 

among others. The latter are main actors in predator and prey dynamics in the microbial 

jungle[1] providing an advantage to producer strains when competing against 

susceptible ones for the same pool of resources[13]. Notwithstanding, it is also known 

that antimicrobial compounds might act as signalling molecules[14] and stimulators of 

sporulation[15] at subinhibitory concentrations. Put this way, characterizing these 

natural products (NPs) as “secondary” seems inaccurate as pointed out many times 

[16,17], even though it is mainstream slang.  

  Hence, specialized metabolite-mediated interactions can influence evolutionary 

fitness landscapes by closely referring to adaptative strategies. Congruently, pathways 

involved in natural product biosynthesis show more restricted taxonomic distributions 

and admit a greater metabolic diversity compared to those involved in autonomous 

growth[18]. Such diversity is, at least in part, product of enzymatic promiscuity which 

offers proteins more flexibility in responding to different and evolving environments 

through the acceptance of more than one substrate[19]. This idea is clearer when 

considering that the ability to accept more ligands requires fewer mutations for 

substrate specificities or stability of protein configurations to be altered and, thus, for 

new functions to be coined[20]. From a genomic lens, structural modularity of genes 
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encoding the enzymes involved in specialized metabolism somehow favours the 

maintenance of such mutations by consisting of several adjacent genes accounting for 

essential steps in biosynthesis and many times for regulation, transport, tailoring and 

other accessory functions as well[21]. Thus, even if subtle, modifications that these 

biosynthetic gene clusters (BGCs) might undergo and their cascading effects on possibly 

co-regulated[22] enzymatic mechanisms can change the final compound. Moreover, the 

combinatorial nature of tailoring steps, in which intermediate products can influence 

the molecular characteristics of the biosynthetic pathway itself[23,24], extends 

promiscuity above described for enzymes to the reactions they catalyse. Good example 

of this is the case of ribosomally synthesized and post-translationally modified peptides 

(RiPPs), in which the final number of synthesized molecules varies depending on the 

original substrate(s) indistinctly from the enzymes of the pathway itself[25,26]. Other 

classes of enzymes such as nonribosomal peptide synthases (NRPSs) and polyketide 

synthases (PKSs) exploit modular architecture with multiple repeats of domains and 

exhibit genetic mechanisms of duplications, natural hybridizations, insertions, and 

deletions of these gene modules[21,27]. Striking structural similarities between NRPSs 

and PKSs allow the formation of clusters containing genes encoding enzymes of both 

classes[28]. These hybrids regions can sometimes extend over 100,000 bp in length 

(“superclusters”) and translate into thousands of amino acids (“megaenzymes”)[29] as is 

the case of rapamycin from Streptomyces hygroscopicus  isolated from Rapa Nui Island 

in 1995 by a British group[30] before any legal regulation regarding origins of biological 

resources was considered in Chile. 

Precisely due to the diverse array of thriving mechanisms, classification of 

compound classes and comparative approaches turn out necessary means to assess 

specialized metabolism in evolutionary and ecological contexts[16,31]. Main classes of 

specialized metabolites are assigned according to few clearly defined types of core 

enzymes[2], encoded by genomic building blocks with distinguishable features, making 

it data of highly predictive quality. Thereby, genome mining of BGCs has been organically 

established as key step[32] in pretty much every current pipeline advocated to natural 

product research. Fast accumulation of high-throughput genomic and metagenomic 
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data led to the emergence of several BGC-specific databases[33-35]. The former allowed 

a structured and standardized platform for sharing data with the scientific community 

and for the development of custom bioinformatic pipelines upon functional annotation 

of specialized genes for study-specific downstream analyses, theme of major relevance 

when dealing with environmental samples —as the ones processed in this study— given 

the lack of dedicated tools[29]. Namely, obstacles arise from immensely larger datasets 

than those obtained from organisms isolated in laboratory conditions, where each 

sequencing delivers information of one genome, as environmental datasets such as 

those that would be obtained from a handful of dirt or a cup of sea water harbour 

information of hundreds, if not thousands. This way, even though genomic analyses 

from cultivated bacteria enable functional validation of in silico predictions, the study of 

whole metagenomes and draft genomes assembled from metagenomes (MAGs) enable 

more accurate description of a community’s functionality[36] while having higher 

computing requirements. Besides, little is known about how often specialized 

metabolites are produced or how the environment regulates their production[31] turning 

metatranscriptomic data into critical biological input to understand transcriptional 

behaviours of BGCs in natural settings. Lastly, a new era of antibiotic discovery begun 

when teixobactin was isolated in 2015 by being the first antimicrobial obtained from 

uncultivated bacteria[37] stepping ahead of culture-based techniques that still have to 

overcome tight regulation of BGC expression and difficulties related to mimicking 

natural stimuli. 

To this extend, the Talabre-Lejía transect where MAGs examined in this project 

were recovered from constitutes an ideal natural laboratory in the middle of the 

Atacama Desert (see Background 1.1) to explore functional diversity of specialized 

metabolites synthesized by non-model bacteria. The aim of this study is to track whether 

co-occurrence patterns in natural product genomic repertories of draft organisms 

assembled from rare and taxonomically unique environments can reveal ecological 

and/or evolutionary dynamics through a scalable pipeline constructed upon 

considerations for researchers with no bioinformatic background such as broad-use and 

up-to-date databases, open source tools with visualization interfaces when possible, 

clear manuals and available discussion and tutorials on the internet. 
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Hypothesis 

 

“Co-occurrence patterns in natural product genomic repertories of draft 

organisms assembled from rare and taxonomically unique environments can reveal 

ecological and/or evolutionary dynamics of soil bacterial communities through the 

recovery of functional information and comparative approaches.” 

 

Objectives 

 

General 

 

Assessment of functional co-occurrence and co-expression patterns of NP-encoding 

BGCs upon available biological information obtained from previous DNA and RNA 

sequencing efforts of the LBEG research group through the construction of a 

bioinformatic pipeline customized for data originated from environmental samples in 

the pursuit of giving insight into ecological and/or evolutionary dynamics of soil bacterial 

communities of the Talabre Lejía transect. 

 

Specifics 

 

a. Prediction and annotation of BGCs. 

b.  Genome-resolved comparative analyses on functional information of core 

biosynthetic specialized capabilities with regards of taxonomy and geographic origins. 

c.  Description of biosynthetic classes of specialized pathways according to the 

occurrence of accessory modules with regards of gene functionality. 

d.  Identification of functional redundancy of BGCs or fragments of them and 

construction of networks of genomes harbouring similar predicted compounds.  

e.  Ranking of genomes, BGCs and specialized genes according to their 

transcriptional activity related to NP biosynthesis.  

f.  Assessment of co-expression patterns between types of core enzymes. 

g.  Visualization of networks accounting for in situ active regulation of BGCs. 
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Background of the input data 

 

 

 

This section was included aiming to clearly distinguish the efforts of 

previous works of the Bioinformatics and Gene Expression Laboratory 

research group from the methodology proposed and executed 

throughout this thesis project. Figures and tables obtained from 

biological-derived data and/or constructed upon this input after 

quality filters are duly declared (see Supplementary information). 

 

 

1. Obtention of metagenome-assembled genomes  

 

1.1. Sites and sample collection 

Bulk soil (BS, plant-free soil) was sampled during April of 2014 after the rainy 

season at six sites along the Talabre-Lejía transect (23°50′S 67°69′W) exhibiting 

contrasting features of precipitations, temperature, and vegetation belts 

(Supplementary Figure S1 and Table S1). BS samples (100 g) were collected in triplicate 

at 10 cm depth from the ground and stored in dry ice for metagenomic sequencings until 

their arrival to the laboratory[79]. Soil physicochemical and nutritional analytical 

protocols have been reported previously[38]. Mean annual precipitation (MAP) and 

mean annual temperature (MAT) data were obtained from Díaz et al.[39]. Briefly, Site 1 

represents the lower elevation (S1; 2,870 masl) and, consistently with the rainfall 

gradient that increases with altitude, exhibited the lowest MAP and the highest MAT 

values. Soil samples from here were rich in K and Na while achieving low measurements 

for NH4, NO3, P and Fe. The medium elevation site (S2; 3,870 masl) showed 

intermediate values of MAP and MAT, and soil samples were rich in nitrogen and 

reported the highest content in organic matter. The rest of sites (S3-S6) are located 

above 4,300 masl, in an area nested at the summit of Lascar volcano, the most active 
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volcano of the northern Chilean Andes[40], and were exposed to lower temperatures and 

higher precipitations than sites from lower and medium elevations. S6 soil sample was 

collected from the Lejía lagoon’s very shore and, consistently, exhibited 15 to 40-folds 

salt concentration than the other three sites located at the same altitude[41]. 

 

1.2. Metagenomic shotgun sequencing 

DNA extraction was carried out with NucleoSpin Food kit (Macherey-Nagel) as 

previously described by Mandakovic et al.[41]. DNA obtained from triplicate soil samples 

was pooled to obtain one representative DNA sample per site. Sequencing was carried 

out by MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a Miseq platform 

(Illumina, San Diego, CA) in an overlapping 2 x 150 bp configuration. A total of 832 x 106 

good quality reads were obtained after filtering (91,9%; 117 Gb). A summary of 

sequencing information is available in Supplementary Table S3. Annotation of the six 

metagenomes with Prodigal 2.6.2[42] yielded, after discarding redundancy (14%), 

6,232,633 genes mainly assigned to bacteria (99,05%) according to the NCBI database. 

Representation of archaeal taxa was low (0,92%) while of viruses and eukaryotes was 

almost inexistant (Supplementary Table S4).  

 

1.3. Binning  

Metagenomes were assembled with IDBA-UD 1.1.1[43] after quality checking and 

adaptor trimming on raw reads. All samples were assembled separately or as pair of 

samples when they were spatially close (S3+S4 and S4+S5) with the purpose of 

increasing the chance of assembling larger scaffolds. Hybrid assemblies were performed 

following Albertsen et al.’s protocol[44] with modifications according to Alneberg et 

al.[45]. Scaffolds were binned by CONCOCT[44] according to GC-content, k-mers 

frequency (tetramers), and reads abundances across samples into 226 bins that 

recruited approximately 17% of total assembled scaffolds[79]. Bin completeness and 

contamination were evaluated by checking for single-copy genes sets by CheckM 
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1.0.13[46]. Accepted bins were re-assembled into 114 MAGs using Velvet 1.2.10[47]. This 

collection contained 328.282 non-redundant genes, out of which 88,9% had a match 

with metagenomic reads (identity 95%; BLASTn e-value ≤ 1e-100). A summary of 

assembly information is available in Supplementary Table S5. Taxonomic assignment of 

MAGs was performed with PhyloPhlAn 1.0[48] and its standard database of marker 

genes. Raw abundances of MAGs were determined as the mapping coverage of the 

reads obtained from the six metagenomes sequenced. Mapping was carried out by 

Bowtie2 2.3.4.3[49] and coverage were calculated with BEDTools 2.17.0[50]. A summary 

of MAGs genomic information is available in Supplementary Table S2. 

 

 

2. Obtention of RNA reads from soil samples 

 

2.1. Sample collection 

Detailed methodology regarding sample collection is described in González et al. 

(in preparation)[79]. Briefly, bulk soil (BS, plant-free soil) was sampled during April of 

2017 after the rainy season from two of the six sites just described (S1 and S5; 

Supplementary Figure S1) to recover regulatory information. Three biological replicates 

of BS (50 g) were collected at 10 cm depth from the ground and stored in dry ice until 

their arrival to the laboratory for metatranscriptomic sequencings. 

 

2.2. Metatranscriptomic shotgun sequencing 

RNA was extracted from samples using the RNeasy PowerSoil kit (Qiagen) 

following the manufacturer’s protocol with the following modifications: soil samples 

were of 15 g instead of 2 g and 5 mL of PowerBead solution were added instead of 15 

mL. The integrity of the RNA was evaluated by electrophoresis in denaturing agarose gel 

and quantification was checked by fluorometry with the Qubit RNA Assay kit (Life 

Technologies). DNA contamination was removed using Baseline-ZERO DNase (Epicentre) 
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following manufacturer’s instructions and then purification was conducted with RNA 

Clean & Concentrator 5-columns (Zymo Research). DNA-free RNA samples were 

amplified with the QuantiTect Whole Transcriptome (Qiagen) and the Nextera DNA 

Sample Preparation kits. Final concentration of all libraries (Supplementary Table S6) 

was measured using the Qubit dsDNA HS Assay Kit (Life Technologies), and the average 

library size was determined using the Agilent 2100 Bioanalyzer (Agilent Technologies). 

Libraries were then pooled in equimolar ratios of 2nM, and 10pM and clustered using 

the cBot for paired-end sequencing using the HiSeq 2500 system (Illumina) for 300 

cycles. 

 

2.3. Data pre-processing 

Trimming of raw reads was executed using Trimmomatic 0.38[51] with 

specifications for paired-end sequences, TruSeq3 optative method for adapter removal 

and the Phred-33 mode. Leading and trailing parameters were set to 10 bases to be cut 

off at the start and at end of every read, respectively.  
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Methods 

 

 

 

Genome-resolved comparative analyses on functional information of 

biosynthetic gene clusters  
 

MAGs with completeness above 70% and contamination under 10% were 

considered for functional analyses. Specialized metabolite-encoding  biosynthetic gene 

clusters (BGCs) prediction, annotation, and comparison against the MIBiG repository[34] 

were performed with antiSMASH 5.1.2[52] webserver in relaxed mode and 

KnownClusterBlast option on. The tool’s basic options retrieve gene classifications 

according to secondary metabolite categories of orthologs groups (sm-COGs) 

constructed upon protein families (PFAM[53]) hidden Markov models.  Biosynthetic core 

detection rules and -if applicable- their conversion into those of the latest version, MiBIG 

classification and biosynthetic classes as defined by BiG-SCAPE (Figure 2B) are available 

in Supplementary Table E2. 

‘Overview’ output tables were fused and BGCs of lengths shorter than 5,000 bp 

were filtered out (Supplementary Table E3), while genbank output files were converted 

into GFF format with the script bp_genbank2gff3.pl of Bio::DB::GFF module[54] calling --

split and --noinfer flags, and then parsed (Supplementary Table E5). For downstream 

statistical analyses, these two databases were transformed into matrixes of frequencies 

of: (i) core biosynthetic capabilities of BGCs per genome (Supplementary Table E4), and 

(ii) regulatory and transport sm-COGs in BGCs per biosynthetic classes (Supplementary 

Table E6). Distances of the scaled presence/absence matrixes were calculated with the 

Manhattan metric and then hierarchical clustering was conducted in R[55] with base 

function ‘hclust’ and linked by Ward’s minimum variance method (Figure M1). 

Natural product diversity was explored throughout BiG-SCAPE 1.1.1[56] which 

groups BGCs into gene cluster families (GCFs) with a highly similar predicted metabolite 
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chemotype. The flags --mix, --hybrids-off and --mibig were called. Default ‘auto’ mode 

accounts for comparisons between complete and fragmented BGCs by setting ‘glocal’ 

option instead of ‘global’ when at least one of the regions has one or both of its 

neighbourhoods located at a contig edge. Resulting sequence similarity networks were 

visualized with Cytoscape 3.9.1[57]. Manual inspection of GCFs of at least two members 

was conducted throughout the analysis of PFAM domains of reference BGCs delivered 

by the tool and their conversion into GO terms[58] using ‘pfam2go’ function of ragp 

package[59] in R. 

Figure M1. A specialized pipeline 
advocated to genome mining of 
natural products with a 
comparative scope. Hierarchical 
clustering of (a) genomes and (b) 
sm-COGs assigned to accessory 
genes. (c) Construction of GCFs. 

b 

c 
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Qualities of draft genomes were assigned according to Table M1. Relative 

abundances correspond to individual raw abundances over the sum of genomes kept 

after quality filter per site (Supplementary Table S2). 

 

completeness contamination < 5% contamination < 10% 

70% - 80% medium low 

80% - 90% medium-high medium 

90% - 100% high medium-high 

Table M1. Draft genomes quality classification criteria. 

 

 

Natural product-oriented pipeline for handling transcriptional data 

from environmental samples 
 

Indexation of the genomic references and mapping of RNA reads were 

performed via STAR 2.7.10[60] with --alignIntronMax and --genomeSAIndexNbases 

parameters fixed for bacterial specifications. ‘CDS’ was defined to be considered as the 

exon feature. Two strategies were approached to deal with defining transcriptional 

activity from BGCs retrieved from the previous chapter (Figure M2).  

The first consisted in indexing as the reference for alignment all specialized 

metabolite-encoding regions concatenated. To do so, merged fasta files and GFFs 

(Supplementary Table E5) retrieved with the --split option flagged for 

bp_genbank2gff3.pl script were delivered as input. RNA reads were uncompressed 

during execution with the --readFilesCommand zcat command. Gene counts obtained 

from the mapping step were normalized with DESeq2[61] considering only genes that 

had in average at least 5 counts in each sample, and were then ranked with GSEA 

4.3.0[62] selecting as contrasting conditions samples from S1 and S5. One thousand 

permutations were requested and, considering that the number of samples hereby 

studied did not satisfy the minimum for using ‘phenotype label’ mode (at least seven 

per condition), gene sets were chosen instead for permuting while FDR thresholds were 
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tightened from 15% to 5%, as recommended for these cases at the tool’s website. Gene 

Set Enrichment Analysis was executed twice for taxonomical and functional 

classifications by dividing the data into lists of genes according to the phylum of 

genomes and the biosynthetic core function of BGCs harbouring each gene, respectively. 

Sets of genes were constructed following the considerations for minimum and maximum 

default sizes (15 and 500 genes, respectively) and for avoiding repeating genes between 

lists. 

The second strategy considered comparing the expression of genes annotated to 

encode functions involved in natural product biosynthesis with the expression of 

housekeeping genes by including in this methodology the recently launched 

transcriptomic pipeline specific for secondary metabolites, Sema-Trap[63]. This software 

accepts both SRA accessions to download transcriptomic information from the NCBI 

database and BAM files that can be directly uploaded from local machines to the 

webserver. Main advantage of Sema-Trap relies on giving consensus about how to 

manage scoring of clustered genes so their unitary nature is preserved in the ranked 

results. Such consensus consists in weighting each gene’s score with the BGC’s average 

by simply multiplying them. Since RNA data from BioProject PRJNA291433 is not publicly 

available yet, with the aim of trying this new tool, full genomes were annotated with 

Prokka 1.13[64] and resulting GFFs together with the concatenated fasta files were used 

as input in the indexation step (again with STAR 2.7.10). Same concatenated nucleotide 

sequences of genomes and the BAM files (sorted by coordinate) that resulted from the 

mappings were then delivered as input for Sema-Trap.  

Corroboration of input biological-derived data qualities was reassessed with 

FastQC 0.11.9[65] after trimming was conducted with Cutadapt 2.8[66] (both tools 

wrapped in Trim Galore!) detailing options for paired-end reads from Illumina 

technologies over the already-trimmed sequences (see section 2 of Background). A 

minimum read length of 70 bp was set and a phred quality value of 30 was requested, 

meaning that the probability of getting a wrong base is 1 in 1000 (precision of 99.9%).  
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Flexibilizations of STAR parameters --outFilterScoreMinOverLread (henceforth: 

Score) and –outFilterMatchNminOverLread (henceforth: Match) were evaluated from 

default values 0.66 down to 0.20 in two samples for 22 combinations of cut-offs and in 

all samples for the reduced critical four cut-offs. 

  

Figure M2. A specialized 
pipeline advocated to natural 
product regulation.  
(a) Expression profiles with a 
genome-centred scope.   
(b) Ranking of differentially 
expressed genes according to 
taxa and functional criteria. Red 

arrows: transcriptomic data.  
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Results 

 

 

Natural product genomic repertoires demonstrate taxonomical and 

geographic specificities in soil bacteria 
 

Out of all 114 MAGs binned out from BioProject PRJNA291433[79], 53 (46.5%) 

passed the quality thresholds for completeness and contamination, and were 

considered for functional exploration. In average, kept genomes yielded 3,409,889 bp in 

length, completeness and contamination indexes of 85.6% and 3.7%, respectively, and 

a N50 of 31,270 (Supplementary Table S2). Of these,  32 (56.1%) were classified as high 

or medium-high quality draft genomes according to criteria defined in Table M1, and 47 

(88.7%) threw at least one predicted region of 5,000 bp or longer related to specialized 

metabolite biosynthesis. Those six that had no antiSMASH results belonged to 

Actinobacteria, Bacteroidetes, Euryarchaeota or unclassified taxas (Figure 1A), 

compressed high, medium, and low draft-qualities (Figure 1C) and constituted relatively 

small genomes (Figure 1B). The three most dominant phyla across sampling sites were 

Acidobacteria, Proteobacteria and Actinobacteria which recruited ~85% of overall 

relative abundance (Supplementary Figure S2 A). A closer observation of the data 

disaggregated by sites shows that rather than unabundant, Euryarchaeota appears to 

be restricted to S2, while Chloroflexi is to S3 and S4, and Bacteroidetes, Spirochaetes and 

Lenthisphaerae are to S6. Soils of S3 were deprived of Proteobacteria while soils of S6 

were so of Acidobacteria and Actinobacteria (Supplementary Figure S2 B).  

The dataset resulted in 190 NP-encoding regions (henceforth: the TLT dataset) 

out of which ~15% were complete —meaning that they were fully allocated in the 

contigs and not truncated on their edges achieving an uninterrupted prediction— with 

an average length of 26,852 bp. More than half of BGCs had no homologue genes when 

searched against the MIBiG repository (Figure 2B and Supplementary Table E3) and 

about 90% were identified as single candidate clusters as only 22 conformed hybrids, 15 

of them nominated as ‘intervealed’ or ‘chemical hybrid’[52]. Four genomes —all drafts 
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of high qualities belonging to Acidobacteria— accounted for ~30% of the BGC collection: 

MAG007, MAG008, MAG009 and MAG052 with genome sizes ranging from 4.0 to 6.3 

Mb (Figure 1). Highest BGCs counts were found in MAG009 with 23 regions of 26,530 bp 

average in length, 5-folding the average frequency of regions per genome with results 

(4.0). The longest BGC of the dataset corresponded to a complete hybrid region of 

131,091 bp found in MAG008 with ~10% of its genes matching half of those of the 

nostopeptolide A2-producing gene cluster (BGC0001028, Supplementary Table E3).  

 

Figure 1. (a) Taxonomic distribution of MAGs with completeness ≥ 70% and contamination ≤ 10% 
(n=53), and incidence of genome (b) completeness and (c) length over frequency of detected 
BGCs (n=190). aS: antiSMASH 

 

Among the 59 core biosynthetic types available at the fifth version of antiSMASH 

(Supplementary Table E2), 23 were detected among the TLT dataset. Predominant 

biosynthetic classes were NRPS, RiPPs and terpenes (Figure 2B) and were mainly 

contributed by Acidobacteria and Proteobacteria. Bacteroidetes and Chloroflexi become 

relevant for terpene and type I polyketide synthase (T1PKS) biosynthetic types, 

respectively. Lenthisphaerae contributed only one BGC to the collection (NRPS-like) 

while Spirochaetes and unclassified taxas threw no regions related to NRPS, T1PKS or 
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hybrids of these mechanisms (Figure 2C). A total of 2,857 coding sequences were 

predicted averaging 15 genes per BGC, out of which 331 (11.6%) were annotated as core 

for NP biosynthesis, 484 (16.9%) were termed as ‘biosynthetic additional’ and 1788 

(62.6%) had no functional information whatsoever. Remaining fraction of genes (8.9%) 

were assigned to ‘transport’ (80), ‘regulatory’ (100) and ‘other’ (75) sm-COGs. All seven 

resistance genes found corresponded to an ABC transport-related protein 

(SMCOG1288). Beside core genes, 237 genes had a predicted molecule (Supplementary 

Table E5). Of these, relevant specialized metabolite domains most frequently found 

(~30%) were Radical SAM (PF04055), Peptidases (S8, S9, S41, M16, M42, M50 and C39), 

a SnoaL-like polyketide cyclase (PF07366), the DegT/DnrJ/EryC/StrS aminotransferase 

family (PF01041) and a nitroreductase (PF00881). 

 

phylum average n° 
of bgcs 

total n° 
of bgcs 

contribution 
(%) 

relative abundance 
(%) 

ranking 

Acidobacteria 6.27 94 49.47 36.38 + 13.09 

Spirochaetes 4.00 4 2.11 0.54 + 1.57 

Proteobacteria 3.57 50 26.32 25.03 + 1.29 

Lentisphaerae 1.00 1 0.53 0.45 + 0.08 

Bacteroidetes 1.50 6 3.16 3.32 - 0.16 

Chloroflexi 2.50 5 2.63 2.87 - 0.24 

unclassified 1.83 11 5.79 6.40 - 0.61 

Euryarchaeota 0.00 0 0.00 1.55 - 1.55 

Actinobacteria 2.11 19 10.00 23.45 - 13.45 
 

Table 1. Summary of gene cluster predictions reviewed by taxonomic group: average number of 
BGCs was calculated upon the whole genomes collection, including those with no results (n=53); 
ranking is the difference between phyla percentual contributions of BGCs calculated upon the 
overall sum (n=190) and their relative abundance. 

 

Hierarchal clustering with regards of present NP-encoding capacities in genomes 

allowed to divide the data in four groups (Figure 3). The first and most distinct group is 

composed of only Acidobacteria with mainly wide distributions (S1-S5) and is 

characterized for being the only group containing both NRPS and NRPS-like-encoding 

BGCs. Bacteriocins, microviridins and/or lanthipeptides are present in all five genomes 

of this group (Figure 3A). Group B consists of one unclassified and two Proteobacteria 

genomes from S6 and have arylpolyene and heterocyst glycolipid synthase-like PKS 

(hglE-KS) biosynthetic types as markers (Figure 3B). Groups C corresponds to diverse 
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taxa from both restricted and generalist geographic distributions. Members from the 

upper branch share metabolic capacities for encoding betalactones and type III 

polyketide synthases (T3PKS); while the lower branch is dominated by NRPS-like and 

distinguishes MAG055 (Chloroflexi) for being the only genome in the collection holding 

a type II polyketide synthase (T2PKS) gene cluster (Figure 3C). Group D is mainly defined 

by the presence of terpenoid pathways. The upper branch of this group refers to 

Proteobacteria from S6 that possess regions related to ectoine biosynthesis, while the 

middle branch (including MAG012) refers to genomes with NRPS, T1PKS and/or 

lassopeptide-encoding BGCs. Lastly the lower branch hosts genomes with unique 

capacities among the dataset such as siderophore (MAG106), linear azol(in)e-containing 

peptide (LAP, MAG046), N-acetyl-glutaminyl-glutamine amide (NAGGN, MAG057) and 

other non-classified metabolite (MAG057) production (Figure 3D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Frequencies of BGCs (n=190) by (a) similarity ranges of closest match as delivered by 
KnownClusterBlast, and (b) biosynthetic classes disaggregated by biosynthetic types. (c) 
Taxonomic contribution of predicted BGCs per genome by biosynthetic class. 

0

20

40

60

80

100

120

140

[0
%

 -
 1

5
%

[

[1
5

%
 -

 5
0

%
[

[5
0

%
 -

 8
5

%
[

[8
5

%
 -

 1
0

0
%

]

Fr
eq

u
en

cy
 o

f 
B

G
C

s

gene_similarity

b a c 

T1
 

 



 

 

26 
Andreani-Gerard, CM. Spring 2022. 
 

Figure 3. Hierarchical clustering of genomes with antiSMASH results (n=47) based on presence or 
absence of functional capacities (n=23) over 144 observations. Sites are coloured if relative 
abundance was above 0.1%. 

Sampling sites: 

Phylum: 

Biosynthetic class: 
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Figure 4. Hierarchical clustering of transport and regulatory sm-COGs (n=45) assigned to 
accessory genes based on their presence or absence in BGCs according to their biosynthetic 
classes (n=6)) over 92 observations. Distances were calculated with manhattan method and 
linked by ward.D2 distance. Functional labels were assigned manually. CRP: catabolite repressor 
protein; binding.prot: binding protein-dependant transport systems; NA-H.pump: 
sodium/hydroxygen exchanger; sensor.hist.k: sensor histidine kinase; response.reg: unspecified 
response regulator; RND: resistance, nodulation, and cell division superfamily of transporters; 
OPX: outer membrane polysaccharide export; H.peroxide: hydroxygen-peroxide sensitive 
repressor; Acr: arsenic resistance transporter; SARP: Streptomyces antibiotic regulatory protein. 
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Parallelly, hierarchical clustering of sm-COGs assigned to accessory genes with 

regards of the biosynthetic core capacity of the BGCs they belonged to revealed 

functional organization (Figure 4). Namely, transposases and binding protein-dependant 

transporter domains were found associated to T1PKS/NRPS hybrids (Figure 4A). Group 

B harbours sensing-related functions related to several NP-pathways (Figure 4B). 

Regulators of lactose, lysine and gluconate metabolisms and ABC transporters have as 

common factor terpene biosynthetic capacities (Figure 4C). All antibiotic and/or metal 

resistance-related transporters and regulators, excepting ArsR and one of the two TetR 

sm-COGs included, are clustered together in group D, which is mainly constituted and 

subdivided by NRPS, RiPPs, other PKSs (non-T1PKS), and Others classes (Figure 4D). 

Exploration of biosynthetic diversity assessed with BiG-SCAPE revealed that 88% 

of BGCs from the transect were singletons, this is, had no structurally similar NP 

associated within the genomes hereby studied (Table 2). Gene cluster families that were 

built show shared NRPS-derived metabolites within Acidobacteria, while three 

Actinobacteria house the same (or nearly the same) T3PKS (Figure 5). Family 2089 is the 

only one that disrupts taxonomic specificity at phylum level —within the TLT dataset— 

by being detected in the genomic contexts of MAG055 (Chloroflexi) and of MAG014 

(Actinobacteria). Families 1921, 1922 and 1945 link genomes that were exclusive to S3  

and Family 2013 is harboured by genomes that were so to S6 (Figures 3 and 5). Only one 

detected region matched an experimentally verified ectoine-encoding BGC from the 

MiBIG repository (BGC0000860) which was found in MAG005 (Proteobacteria).  

 

biosynthetic class GCFs BGCs in GCFs singletons 

NRPS 5 10 49 

other PKS 1 3 11 

hybrid NRPS-PKS 1 2 15 

RiPPs 1 2 35 

terpenes 2 4 30 

T1PKS 0 0 2 

Others 1 2 25 

saccharides 0 0 0 

total 11 23 167 

Table 2. BiG-SCAPE output 
summary of biosynthetic 
gene cluster families.  
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Figure 5. Sequence similarity networks of GCFs with at least two members as delivered by BiG-
SCAPE. Edges are the BGCs, and grey nodes are the GCFs they were grouped in. Border of 
coloured nodes: MAGs’ preferred site; filling of coloured nodes: phylum; font of grey nodes: 
biosynthetic class of shared predicted natural product; Edge of continuous line: complete BGC. 
Dotted circles: same functional group in Figure 3.  

Sampling sites: Phylum: Biosynthetic class: 

C 

A 

C 
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GCF biosynthetic type possible function 

FAM_2067 Ladderane possible antibiotic 

FAM_1921 NRPS DNA-repair sub-module 

FAM_1922 NRPS possible siderophore 

FAM_1994 NRPS-like possible antitoxin 

FAM_2042 NRPS-like unknown metal-related  

FAM_2059 NRPS-like possible cocaine-hydrolase 

FAM_2089 hybrid NRPS-PKS possible antibiotic 

FAM_2046 T3PKS oxidative stress resistance 

FAM_1945 Terpene oxidative stress resistance 

FAM_2013 Terpene unknown metal-related 

FAM_1980 TfuA-related possible antibiotic 
 

Table 3. GCFs summary and possible functions. 
 

 

Input biological data showed high sensitivity to adjudgments of 

quality-filtering parameters for matched RNA reads 
 

Concatenation of BGCs resulted in a GFF file containing 2,857 coding sequences 

(CDS) after the conversion of antiSMASH output genes originally retrieved in genbank 

format (Figure M2 and Supplementary Table E5). When the mapping step was executed 

with STAR’s default values for filtering parameters with regards of the minimal number 

of matched bases and the minimal mapping scores —both normalized over read length 

(66%)— proper indexation of genes was observed but no counts were retrieved 

appearing ‘0’ for every gene in every sample. After some research in forums, deep study 

of customizable commands listed in the tool’s manual and consulting with experienced 

RNA-seq data analysts, a flexibilization of these parameters appeared to be the only 

chance of changing the no-result result.  

To do so, a broad first immersion was conducted by trying equal thresholds for 

Match and Score parameters in two random samples, one representing each site. 

Additional to the default requirement for considering a mapped read such if it has at 

least two thirds of its length matching the reference, seven other cut-offs ranging from 

20% to 50% were overviewed to define where the mapping statistics critically 

decreased. The immediate cut-off before the one in which counts became zero would 
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be chosen for downstream analyses in the aim of optimizing the highest possible values 

for the parameters above described. Mapping statistics were created upon the 

Log.final.out files delivered in STAR’s output for each sample; of them, the following 

were informative: number of total mapped reads, number of genes with five or more 

mapped reads, average number of mapped reads for genes with five or more reads, 

maximum counts of reads and average mapped length (Figure 6). 

Figure 6. RNA reads mapping behaviour for eight cut-off trials evaluating Match x Score (%) over 
read minimum length for two samples before Trim Galore processing. Cyan dots: ID#4; pink dots: 
ID#9). 

 

Main observation retrieved from these indicators was the steep drop of total 

mapped genes and of the numbers of genes with five or more counts from over 250,000 

and 2,500, respectively, to practically none at 50%. An abnormal peak in the average 

counts of reads mapping to genes was observed for sample #9 at the 50% requirement; 

however, when this issue was inspected, it was an artefact due to the very few genes 

with considered counts. Next, the 45% requirement was evaluated, and it was noted 

that the average mapped lengths appeared to achieve values closer to 100 bp implying 
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a theoretical resemblance to the default quality threshold by covering about  2/3 of the 

150 bp-long reads. The latter made the 45% cut-offs the highest further considered and, 

therefore, the optimal. Lastly, when Match and Score parameters were set to 30%, a fall 

of disruptively high maximum counts in sample #4 was observed which made this 

threshold the lowest further considered. A deeper exploration trying twenty-two 

combinations of different values between the two parameters hereby analysed was 

conducted revealing a tendency with an almost identical dropping-behaviour to the one 

just described (Supplementary Figure E1). This way, in a narrowing effort, requirements 

between 30% and 45% were applied to all samples of the study corroborating the 

defined critical interval and bringing higher resolution to the dramatic sensibility of the 

data (Figure 7A). A particular mapping statistic (‘Unmapped: too short’, Supplementary 

Table E1 subtable (i)) incepted the first clue regarding poor sequencing qualities and 

allowed justified review of previous steps. The only one manageable from a 

bioinformatic scope was the checking of input RNA reads, ends for which Trim Galore! 

was included in the pipeline aiming to discard technical impossibility for downstream 

analyses.  

Figure 7.  RNA reads mapping behaviour for four cut-off trials evaluating Match x Score (%) over read 
minimum length for six samples (a) before and (b) after Trim Galore! Processing.  

a b 
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FastQC reported all samples to pass quality thresholds for ‘per base sequence 

quality’, ‘per tile sequence quality’ and ‘per sequence quality score’ statistics, while all 

were rejected by means of ‘per base sequence content’ and ‘sequence duplication 

levels’ and received a warning for ‘sequence length distribution’ (Supplementary Figure 

E2). Only two statistics varied between samples: ‘per sequence GC content’ (Figures 8 

and 9) and ‘overrepresented sequences’. It’s worth noting that if metatranscriptomic 

samples were deduplicated, in average, only 28.9% of reads would remain (Table 5). Also 

in average, 27.4% of reads still had adapters while 9.5% were low quality before the 

second trimming was applied (Table 4). When mapping statistics of Trim Galore-

reprocessed reads were compared to those of Trimmomatic-processed sequences 

(Figure 7B) a demurer slope in the number of total reads was observed while the number 

of genes with mapped reads dropped considerably. At the same time, disruptive 

maximum high counts previously obtained were now softened. At the lowest threshold, 

average mapped lengths of Trim Galore-derived reads resemble the values retrieved at 

the highest threshold of the untrimmed experiment. Average number of mapped reads 

in genes with considered counts increased, metric probably achieved by the withdraw 

of short sequences. A shrinkage of uniquely mapped reads from 0.47% to 0.04% was 

observed at the 30% cut-off while at 45% the decrease was thinner (from 0.02% to 

0.01%; all averages). Mapped lengths statistics also reflect the quality-filtering of the 

data by increasing from 15.2% to 37.3% and from 39.1% to 54.3% at the minimum and 

maximum critical thresholds, respectively. Furthermore, sample #7 —before Trim 

Galore! processing— threw the following message when ran with the STAR aligner set 

to 45%: “FATAL ERROR in reads input: quality string length is not equal to sequence 

length (…). SOLUTION: fix your fastq file.” Finally, values ranging up to 0.21% for the 

multimapping index in the reads trimmed once were crushed down to zero when 

double-trimmed (Supplementary Table E1, subtables (i) and (ii)). All taken together 

provided the context for defining Trim Galore-resulting trimmed RNA sequences as best 

available input for downstream analyses. However, comparison of cut-offs at differential 

expression stages wasn’t possible as the only threshold that retrieved a result in DESeq 

analyses (Match and Score of 30%) threw 23 up-regulated genes in S1 that were not 

sufficient for GSEA to process, also retrieving errors in every case. 
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Even though results gathered so far settled an ominous portent for the second 

strategy, considering that Sema-Trap uses other tool for mapping, it was executed 

looking for new outcomes. Unfortunately, all jobs failed due to very few reads mapping 

to the reference, as informed by the tool’s support team via email after asking for 

assistance. 

 

 

stats 4_S1_i 5_S1_ii 6_S1_iii 7_S5_i 8_S5_ii 9_S5_iii 

total reads processed 14,011,630 13,293,545 17,777,500 12,916,790 13,331,868 14,142,688 

% reads with 
adapters (R1-R2) 

26.6 – 24.5 28.5 – 26.6 28.1 – 25.7  25.6 – 23.8  33.6 – 31.9  27.6 – 25.8 

% quality-trimmed 
(R1-R2) 

7.2 – 11.4 6.4 – 9.3 6.9 – 11.2 8.9 – 12.8 8.9 – 14.4 7.0 – 10.0 

Table 4. Trim Galore! reports summary for six paired RNA samples. R1: pair 1; R2: pair 2. 

 

Stats 4_S1_i 5_S1_ii 6_S1_iii 7_S5_i 8_S5_ii 9_S5_iii 

total sequences 11,760,578 11,440,094 14,883,642 10,545,073 10,726,661 12,085,268 

poor quality seq 0 0 0 0 0 0 

% GC content 61 59 59 59 48 58 

% remaining seq if 
deduplicated (R1-R2) 

41.8 - 43.1 27.1 – 28.3 14.2 – 15.0 29.9 – 31.0 9.6 – 10.5 47.4 – 48.7 

overrepresented seq 
      

Table 5. FastQC reports summary for six paired RNA samples after Trim Galore! processing.   
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Figure 8. Trim Galore! report from the GC content module for samples from S1. R1: read pair 1; 

R2: read pair 2.  

4_R1 4_R2 

5_R1
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6_R1 6_R2 
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Figure 9. Trim Galore! report from the GC content module for samples from S5. R1: read pair 1; 

R2: read pair 2. 
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Discussion 

 

 

Natural product biosynthetic capabilities serve as marks for 

enlightening ecological and evolutionary patterns in uncultivated soil 

bacteria 
 

The taxonomic composition of MAGs changed among the six sampling sites 

highlighting S6 as notably distinct (Supplementary Figure S2 B). Observed overall most 

abundant phyla (Supplementary Figure S2 A) agree with previously described for 

bacterial communities from the Atacama Desert[67,68] but —within the collection— 

Actinobacteria rather than dominant was underrepresented and, instead, Acidobacteria 

prevailed delivering good representation of this underexplored phylum[69], ubiquitous 

and diverse in soils[70]. Examination of presence of genomes across the transect (defined 

as a relative abundance of at least 0.1%) evidenced that ~30% presented a generalist 

geographic distribution covering lower, middle, and high elevations (S1-S5) while ~55% 

of MAGs were found to be exclusive to a unique site (Figure 3) which supports the 

conceiving of spatial gradients as dominant drivers of microbial diversity in salars[71] and 

boulders[72] of the Atacama Desert. S6 appears to be a mutually exclusive character with 

regards of all other sites which could be explained by the extreme salt conditions its soils 

are exposed to[41]. This is consistent with extremely high sample-specificity among 115 

MAGs from salt crusts of the Atacama Desert described by Finstad et al.[73] and 

halobacteria in general[74]. Notably, except for MAG100, all Proteobacteria behave in a 

site-specific manner. 

With the aim of exploring whether functional repertoires of MAGs respond at 

some level to environmental heterogeneity, genomic analyses were carried out. 

Contributions of taxonomic groups regarding specialized metabolite-encoding 

capabilities compared to their relative abundance revealed Acidobacteria as superiorly 

enriched (Table 1), comment that was made for the first time a few years ago by Crits-
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Christoph et al. in MAGs reconstructed from grassland soils[75], and has been made again 

by the same group in soils of a vernal pool[76] and of a forested hillslope[77], all in 

northern California, USA. Both MAGs with unusually high counts, this is, with 15 or more 

BGCs as defined in the last quoted studies (MAG009 and MAG052), and the one 

containing the longest BGC in the dataset (MAG008) belonged to Acidobacteria and 

were clustered together in the most distinct group of genomes (Figure 3A) when natural 

product co-occurrence patterns were assessed. It should be noted that region 2 from 

MAG008 is full-length and longer than the longest BGC retrieved from a long-read 

sequencing-based effort published last year[78] making it one of the longest complete 

BGCs identified directly from a soil metagenome. As of the submission to evaluation of 

this thesis, no reports of natural product encoding Lentisphaerae or Spirochaetes were 

found in literature.  

Most common functions hereby predicted (Figure 2B) agree with predominant 

biosynthetic classes retrieved in other large-scale researches focusing on specialized 

metabolism[76,77,80,81]. On one hand, high counts for NRPS are probably result of 

fragmented assemblies of these large iterative enzymes from short read sequencing[82]. 

On the other, many terpenes are volatile organic compounds and, therefore, functional 

in a range of soil moistures as they can travel not only through liquid-filled but also 

through air-filled soil pores[77]. This trait may explain why they are so prevalent in these 

arid soils (Figure 3D). Furthermore, it has been shown that bacteria can use some 

terpenes as antibiotics[2] and to communicate with each other and with fungi[83]; 

however, most of their ecological functions remain poorly understood. Lastly, 

bacteriocins are known to be a common feature among bacteria[84] and have recently 

been  found to represent the vast majority of phage-encoded BGCs[85]. 

It’s worth mentioning the discrepancy between: (i) KnownClusterBlast output 

that threw at least a partial match for almost half of BGCs when searched for homologies 

against the MiBIG repository (Figure 2A and Supplementary Table E3), and (ii) the output 

of BiG-SCAPE that only linked the ectoine encoding region 255 of MAG005 (Figure 5) to 

one from the moderately halophilic methylotrophic Methylarcula marina isolated from 
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the Azov Sea, Russia[86]. This is explained by the definition of the similarity index 

delivered by antiSMASH which does not report sequence similarity but the percentual 

number of genes of the matched sequence that had a homologue in the query. Even 

though there is a warning regarding the latter at the PDF version of the tool’s manual, it 

has been mostly missed in result interpretation. On the other hand, BiG-SCAPE requests 

a higher threshold in order to link a BGC with other by including scoring indexes that 

take into account adjacency and percentage of shared types of PFAM domains and by 

separately optimizing these for each biosynthetic class[56]. Keeping up with state-of-

art[87] then, it’s not uncommon to find few matches[88] or none[76] with experimentally 

verified BGCs, at least when dealing with environmental samples. Manual revision of 

PFAM domains in region 255 evidenced that this ectoine lacked a protein family domain 

from the reference (acetyltransf_7) and contained several others. For instance, instead 

of a IclR helix-turn-motif, it had a MarR-type one (HTH_27) which has been described to 

be involved in mechanisms that respond to aromatic compounds[89]. This, summed to 

recent results showing high carotenoid diversity in halo-prokaryotes[90], support the 

close relationship observed between MAG004, MAG005 and MAG0025, all 

Proteobacteria from S6 harbouring ectoines and terpenes (Figure 3D). Also, region 255 

holds a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter 

(TrmB) characterized from a hyperthermophilic archaeon[91]. Members of the TrmB 

family have been described as repressors in distinct methanogenic pathways from 

methylotrophs[92] further linking this genome’s adaptative strategies to M. marina’s. 

Additionally, a peptidase (S8), a penicillinase repressor, and a metalloregulator of the 

DtxR/MntR family were found in the neighbourhoods of region 255 allowing to 

hypothesize that strategies to survive during osmotic up and down-shifts of this 

bacterium may interact with antibiotic and/or metal-related pathways[93,94,135]. 

Relevant molecules were defined as such that were not predicted for core genes 

and, after manual revision, did not constitute a common building feature within or 

across functions (i.e. adh_short, PP-binding, AMP-binding; Supplementary Table E5). 

Among these distinct accessory products, many of them were related to proteolytic and 

nitroreductase activities which are main actors in soil organic nitrogen recycling[95]. It 
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has been reported that extracellular peptidase profiles vary among different soils and 

that metallopeptidases contribute between 30% and 50% of the overall proteolytic 

activity in these ecosystems[96] which might be part of the explanation to the multiple 

different types of peptidases found in the TLT dataset. Other frequent relevant 

molecules were related to oxidative mechanisms and antibiotic biosynthesis[97-99]. 

Overall, co-occurrences of core functional patterns show at some level 

taxonomic (Figure 3A) and geographic specificities (Figure 3B) and unspecifities (Figure 

3C). Conspicuous evidence of the latter is clade B that groups only genomes from S6 that 

share arylpolyene and hglE-K capabilities, reported to participate in biofilm formation, 

protection from oxidative stress[100] and nitrogen fixation[101]. Another example yet to 

review of this is the grouping of Bacteroidetes at the bottom (Figure 3D) or the 

distinction of the only genomes of the collection restricted to S2 (MAG102) and S4 

(MAG012) even though no rare biosynthetic functions were seen in their repertoires 

(Supplementary Table E4) suggesting that combinations of biosynthetic features can 

also constitute or be interpreted as ecological marks. 

Examination of functional annotations of accessory genes revealed (i)  well-

known associations between transporters and regulators involved in natural product 

biosynthesis and (ii) unreported ones between these and the nature of the metabolic 

products synthetized at biosynthetic class level. For instance, transposases are enzymes 

that catalyse transposon integration into and excision from bacterial chromosomes and 

plasmids, and mediate bacterial conjugation[102] which is known to use trans-membrane 

transporters as gatekeepers[103]. More, some transposons have self-conjugative 

potential and can transfer directly to another cell without having to hitchhike on a 

plasmid[104]. All this taken together allows to suggest that the strict relation observed in 

Figure 4A of transposases with periplasmic (SMCOG1085 and SMCOG1118) and 

extracellular-solute(SMCOG1068)/-ligand(SMCOG1282) binding proteins might be 

indicative of hybrid mechanisms and perhaps RiPPs as possible shapers of bacterial 

evolution. Another remarkable case is the association of outer membrane iron 

transporters (TonB-dependant) and the arsenical resistance operon repressor (ArsR) 

since it has already been described in literature at genomic[105,106] and metagenomic[107] 
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lenses. Thus, the results obtained in this study (Figure 4C) point terpenes of the Talabre-

Lejía transect as candidate participants of the recently introduced ArsR-regulated 

arsenic stimulon[108]. Regarding sugar metabolism, hierarchical clustering of sm-COGs 

separated the arabinose regulator (AraC) from those involved in lactose (LacI) and 

gluconate (GntR) utilization which is outstanding considering evidence supporting 

arabinose as an antagonist mechanism of lactose in E. coli[109] and of gluconate in Vibrio 

cholerae[110]. Different regulation triggers among hybrids and terpenes might account 

for such antagonism. A recent study on 20 Illumina-sequenced metagenomes from 

octocoral microbiomes revealed that PFAM domains, categorical groups of orthologs 

and biosynthetic core metabolic capacities show significant differences between origins 

of samples[111] further reinforcing the notion that functional information has still great 

unveiled potential to be recovered from mainstream bioinformatic tools’ outputs for the 

elucidation of taxonomic and geographic behaviours of bacterial communities and their 

metabolic pathways.  

Comparison of architectural relationships between BGCs revealed most of the regions 

predicted to be singletons (Table 2) meaning that are rare or unique gene clusters that 

encode unknown enzymes and pathways[56]. Sequence similarity networks evidenced 

shared NP-encoding capabilities to be mostly restricted to phylogenetic boundaries 

(Figure 5) which is hard to interpret considering the relatively small size of the dataset 

and that most large-scale studies from environmental samples including gene cluster 

families approaches deliver results with no resolution for taxonomical assignment. The 

only two works found that showed this information were based in the RefSeq 

database[112] and the MiBIG repository[113] carrying a probable bias, but still a similar 

extension of this tendency could be observed in both. More importantly, reports of 

population-specific patterns in diversity of BGCs and phylum-specific transcriptional 

profiles were reported in were reported in 94 isolates of Aspergillus flavus[130] and 

almost 3000 BGCs retrieved from biocrusts[78], respectively, making this light-weight 

comment one with an encouraging context. Notably, five of nine pairs of genomes linked 

by a common gene cluster family (Figure 5) belonged to the same functional group 

(Figure 3). Three out of seven networks showed a generalist distribution (S1-S5), two 
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were found only in high elevations (S3-S5) and, of the two left, one network was 

exclusively restricted to S3 (MAG001 and MAG007) and the other was so to S6 (MAG028 

and MAG029). The T3PKS-encoding Family 2046 links genomes conjugating geographic 

and functional criteria by being found in MAG019 and MAG054 that were clustered 

together in group C and by recruiting another Actinobacteria (MAG044, Figure 3D) that 

inhabit same sites as the others suggesting that the inclusion of evolutionary inquiries 

in genomic-fuelled pipelines strengthens the contexts for paving the path towards 

better understanding bacterial ecology and natural product discovery.  

Manual inspection of PFAM domains of the reference BGC from each gene 

cluster family retrieved, their converted term into GO nomenclature and subsequent 

key word extraction from original databases (Supplementary Table E8) were conducted 

with the aim of naifly describing possible functions of these shared metabolites. 

Congruently with all previous results, most protein family domains found were related 

to antibiotic biosynthesis, oxidative stress and/or (heavy-)metal resistance (Table 3 and 

Supplementary Table E9). The NRPS-like encoding Family 2059 is particularly interesting 

as it contains a X-Pro dipeptidyl-peptidase C-terminal non-catalytic domain and a X-Pro 

dipeptidyl-peptidase domain from the S15 family. Both domains can be found at the 

configuration of cocaine esterase (CocE) which grants bacteria the ability to use cocaine 

as sole source of carbon and nitrogen[114]. This is an unexpected curiosity since 

cultivation areas of Erythroxylum coca during late Inca times reported in Chile (Tacna, 

Pisagua and Azapa Valley[115, 116]) are over 600 km north  from the Talabre-Lejía transect 

and in coastal areas. New chemical evidence of cocaine use in a 1000-year-old ritual 

bundle was reported in the Sora River valley in south-western Bolivia and, even though 

it’s also a couple of hundreds of kilometres north, the sampling location —also called 

“La Cueva del Chileno”— refers to the Lípez highlands (3,890 masl) near the Uyuni 

salar[117] which might be a better reference for this study (Supplementary Figure E3).  

Summing up, even though analysing the unassembled metagenomic data would 

overcome size-derived interpretative restrictions resulting from dealing with few 

biological samples, genome-resolved functional explorations allow to intuit ecological 
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and evolutionary patterns of draft organisms —that would be missed at metagenomic 

scale— with customizable level of detail. 

 

 

A bioinformatically viable metatranscriptomic pipeline for assessing 

natural product metabolism 
    

Considering that bins from which MAGs of BioProject PRJNA291433 were 

assembled from recruited less than a fifth of all metagenomic scaffolds (~17%)[79], that 

the collection of accepted drafts consisted of about half of those bins and that genomes 

hereby studied constitute half of that collection (see Background section 1), unmapped 

reads were expected at higher rates than those reported for complete indexes[118]. 

Nevertheless, it was surprising to find at relatively loose mapping parameters that this 

index was above 99% (from 99.1% to 99.9%, averages per cut-off) and mostly due to 

short read lengths (Supplementary Table E1 subtable (i)). The first speculation of why 

such tearing output was retrieved had to do with the artificial concatenation of 

nucleotide sequences of BGCs, perhaps constituting an invisible object to study at the 

massive scale of metatranscriptomic data. This was addressed by evaluating same 

statistics but for the concatenation of whole genomes and the double-trimmed RNA 

reads. Despite it was shown that the unmapped fraction was lowered to 96.6% in 

average when filtering thresholds of 30% were applied, the rates caught up with prior 

trials with the tightening of the parameters up to 45%  (99.2%, Supplementary Table E1 

subtable (iii)). Biologically, most answers found in literature refer to poor qualities of 

sequences[119]. Bioinformatically, this could be explained if reads had been soft-clipped 

beyond the threshold, this is: when the aligner disregards the ends of reads —if too 

many gaps—, the mapped length of the middle part is shorter than the requested[60]. 

The issue is concerning as this is precisely the context where results were obtained from: 

a flexibilization of matching and scoring minimum values with regards of read length. 

However, distributions of sequence lengths show that most of reads concentrate at full 

or nearly full lengths (Supplementary Figure E2) suggesting that extremely low mappings 

are more probable to be result of a very complex community composition that required 
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deeper sequencing coverages summed to the three years-apart samplings for 

metagenomic and metatranscriptomic inquiries rather than of the degradation of RNA 

sequences between samplings and sequencings. Nevertheless, at designing stages of 

every RNA-based experiment, considerations related to the preservation of samples, 

such as solutions for field stabilization and storage[120,121], should be given special 

attention to. 

Notably, the 22-combinations trial showed that the sensibility of the data to 

Match and Score adjustments was mostly invariant for differential settings 

demonstrating close relationship among these parameters (Supplementary Figure E1). 

Possible useful applications not overviewed here can have place in more advanced 

pipelines or in experiments with better mapping statistics translating into a more 

visually sensible input data. 

Regarding quality control, reports mainly classify the data as ‘normal’ or 

‘abnormal’, where a sample is considered normal if it is random and diverse, as 

described at FastQC’s project website. Thus, rather than fixing expected results, 

modules should serve as spotters for biases[65]. For instance, among results that were 

common between samples, ‘per base sequence content’ is reported as abnormal but 

wild calling of bases was only observed for the first twenty positions of reads and was 

then stabilized parallelly (Supplementary Figure E2), consistent with GC contents close 

to 60% (Table 5). In particular, ‘per sequence GC content’ was the most evident module 

to analyse highlighting samples #6 (Figure 8), #7 and #8 (Figure 9) as notably below 

sufficient, same samples pointed out by ‘overrepresented sequences’ with a warning 

(Table 5). Overrepresentation of sequences is frequent for highly duplicated libraries[121] 

as is the case of the studied ones in which redundancy accounts in average for more 

than a 70% of total reads (Table 4). Overall, assessments over the qualities of the input 

data suggest that results obtained from these biological samples might lack accuracy 

and can mean very difficult interpretation[119]. If transferred background methodology 

as described in section 2 of Background is complete, further considerations accounting 

for the high diversity and complexity of the objects of study could improve mapping 

results, for example, taxonomical and functional classification of reads[134]. It’s worth 
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noting that when the pipeline’s branch of concatenated BGCs was fully tried using data 

originated from overly loose mapping parameters (Match and Score of 15%, 

Supplementary Figure E1), processable gene counts and statistically significant results 

were retrieved from mappings and enriched gene sets, respectively, making it 

bioinformatically viable. 

Despite not retrieving results for Sema-Trap, this tool deserves to be discussed 

as it comes to fulfil a very much needed space in already solid networks of 

databases[33,34,35,122] and pipelines[52,56,123,124] advocated to natural product discovery 

from a genomic scope. Natural product research, besides of huge interest for industrial 

purposes[125-128], is a sound way to unveiling niche ecologies by setting specialized 

metabolites as footprints[129] of microbial interactions and adaptative strategies. For 

these matters, complementing genome mining with transcriptional data is more and 

more often in the field[31,75,78,131-133]. However, until now, approaches taken for 

defining expression of clusters of genes —even though properly justified— lacked a 

reference. The latter allowed several different methodologies to arise ranging from 

simple ones that, for example, used average values of expression of “key” biosynthetic 

genes[31] to others with refined statistics but that falter when setting “100 random 

genes” as the base of comparisons for permutation-based analyses[75]. Against this 

backdrop, Sema-Trap’s scoring metric considers housekeeping genes for ranking the 

transcription levels of BGCs, allowing other options as well such as the mean of all genes 

and customization for taxonomical groups if known[63]. Hence, since the first strategy 

here proposed only served the purpose of ranking individual genes, getting by without 

a fixed notion of what basal expression was, Sema-Trap was added to the pipeline 

originally proposed. 

Other advantage of this new tool is its output window with interactive 

customizable significance threshold options that don’t have to be set a priori which 

allows deeper understanding of the (in)sensibility of expression to adjustments of these 

in a single run. However, the fact that this manner of visualization is also fixed for local 

executions is a major impasse for large-scale data management requirements regarding 

systematization as is the case of metagenomic-based analyses. Related to this, loading 
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of the input data and running Sema-Trap was pretty slow for the TLT dataset (several 

hours for loose mapping parameters) which further evidences that computing resources 

must be first optimized and considerations regarding trackable IDs among runs should 

be taken if handling transcriptional information originated from environmental samples 

is considered in future developments of the tool. If we are already talking about 

potential bugs, one was specially upsetting as, on one hand, Sema-Trap allows two 

modes for analysis accounting for expression (single condition) and differential 

expression (two conditions) and, on the other, single condition experimental option is 

only available for SRA-based submissions, being restricted —for now— to public data. 

Plus, error messages are undetailed. Also, it can be foreseen that the unmodifiable 

structure of the pipeline may dissuade usage for large datasets if antiSMASH has been 

previously run considering that it’s easier to replicate the scoring metric than dealing 

with new nomenclature. 

Technical utilities for the output of the transcriptomic scoped pipeline are 

expected to allow (i) ranking of genomes according to their transcriptional activity of 

NP-encoding BGCs, (ii) ranking of expressed BGCs, (iii) ranking of differentially expressed 

genes from enriched gene sets constructed upon taxonomical and functional criteria, 

(iv) unveiling of co-expression patterns between types of core enzymes, and (v) the 

construction of networks accounting for in situ active regulation of specialized 

metabolites biosynthesis. 

Finally, transcriptomic-based analyses downstream of the genomic approaches 

evidenced that first steps in every pipeline account for great part of reproducibility 

capacities. For instance, if annotation files were delivered as input for antiSMASH, 

names of genes would be trackable. However, arbitrary renaming of scaffolds when 

summiting jobs to the tool’s webserver restricts insertion of results in whole genome-

based pipelines with a functional lens, unless manual labelling (column 

‘original_scaffold’ in Supplementary Table E5). Other critical consideration is the 

checking of description lines of the input fasta files as these constitute the only entrance 

for identifying BGCs later, so if datasets containing several genomes are processed, 

unique IDs for contigs are required, within and across files. 
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Conclusions 

 

 

Main observations derived from the results retrieved in this project relate to the 

overlooked potential of functional annotations retrieved through basic options in 

mainstream genomic pipelines. Particularly, in natural product research this information 

can be translated into co-occurrence patterns that, if sufficient objects to study, may 

serve as enlightening spotters of both spread and unique metabolic capabilities to be 

fixed as targets when exploring ecological and evolutionary dynamics of microbial 

communities. Genome-resolved logics demonstrated to be useful for the description of 

functional repertoires as it allows to break the data down in a categorical manner and, 

thus, to ask the same question many times for more specific features than when 

characterizing whole communities, which sets a clearer context for interpretation.   

Regarding the Talabre-Lejía transect, composition of MAGs changed at high 

taxonomic ranks among the six sampling sites leaning towards a sample-specific 

behaviour. Acidobacteria prevailed by means of relative abundance and compared 

frequency of BGCs and gathers most distinct genomes in the dataset. Results here 

obtained supports previous evidence of NRPS, terpenes and bacteriocins as 

predominant biosynthetic classes predicted in soil microbiomes and environmental 

samples in general. Most common biological functions of specialized metabolites 

examined here are mainly advocated to antibiotic biosynthesis, nitrogen metabolism, 

oxidative stress, and metal resistance. Functional exploration allowed to visualize 

previously unreported associations between transporters and regulators involved in 

natural product biosynthesis and the nature of the metabolic products synthetized at 

biosynthetic class level.  

Overall, the studied samples evidenced highly complex bacterial communities 

that required higher depth of sequencing coverage to be properly assessed. Genomic 

repertoires of specialized metabolites —or fragments of them— can constitute 

distinctive features and be interpreted as consistent biological footprints to track niche 

adaptative strategies. Inspections of regulatory dynamics are expected to sharpen these 
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ecological marks observed at genomic level and, thus, to contribute paving the path 

towards better understanding of in situ competitive and cooperative interactions of 

microorganisms.  

Finally, regarding analyses of transcriptomic data from environmental samples, 

even though subject of major interest nowadays in the NP field and recent advances in 

pipelines specifically dedicated to dealing with BGCs, it’s still early times for mainstream 

and automatized processing, while quality preservation of biological samples and 

experimental designing are key for successful informative data management. 
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Extended data 

 

 

 

Supplementary Figure E1.  STAR cut-off trials (n=22) for –outFilterMatchNminOverLread and(x) -

-outFilterScoreMinOverLread parameters in two RNA-seq samples. Cyan dots: ID #4; pink dots: 

ID #9. 
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Supplementary Table E1. STAR cut-off statistics for concatenated (i) BGCs before trimming and 
for (ii) BGCs and (iii) genomes after trimming of samples from (a) S1 and (b) S5. TG: Trim Galore. 

 

(a) 

 

(b)  
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Supplementary Figure E2. Trim Galore! module reports common for all samples. 
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Supplementary Figure E3. Screenshot of Google Maps for political regions XV, I and II of Chile. 
Red circles show reported locations for cultivation areas of E. coca. Triangles show sampling 
locations above 4000 masl. Green: Talabre-Lejía transect. Purple: “Cueva del Chileno” at the 
Lípez highlands, Bolivia.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following extended material is available upon request via email to 

cm.andreani.g@gmail.com: 

 
Supplementary Table E2. antiSMASH versions 5 and 6, MiBIG repository and BiG-SCAPE 

nomenclature conversion: definitions of biosynthetic core types and classes. 

Supplementary Table E3. Biosynthetic gene clusters database (n=190). 

Supplementary Table E4. Frequencies of core biosynthetic types (n=23) detected per genome. 

Supplementary Table E5. Specialized metabolite genes database (n=2857). 

Supplementary Table E6. Frequencies of transport and regulatory sm-COGs (n=45) assigned to 

genes according to their belonging to BGCs per biosynthetic class. 

Supplementary Table E7. Gene cluster families database (n=178). 

Supplementary Table E8. Conversion of PFAM domains (n=149) detected in BGCs belonging to a 

GCF of at least two members into GO terms. 

Supplementary Table E9. PFAM domains found in reference BGC of each GCF database. 
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Supplementary information 

 

 

Supplementary Figure S1. Talabre-Lejía transect geographical information (adapted from 

González, M. et al.; unpublished). 

 

 

 

Supplementary Table S1. Talabre-Lejía transect soil physicochemical information (González, M. et 

al.; unpublished). 

 S1 S2 S3 S4 S5 S6 

altitude (masl) 2,870 3,870 4,480 4,480 4,480 4,314 
TLT sites (Díaz et al., 2016) TLT18 TLT08 TLT01 TLT01 TLT01 Lejía Lagoon 
vegetation belt pre-puna puna estepa estepa estepa estepa 

physicochemical data             

MAT (°C) 11.8 6.9 4.2 4.2 4.2 8.5 
MAP (mm/año) 15.0 75.1 161.9 161.9 161.9 161.9 
pH 8.1 ± 0.3 6.1 ± 0.15 5.82 ± 0.09 7.54 ± 0.12 8.485 ± 0.005 8.52 ± 0.02 
electric conductivity (mS/cm) 0.06 ± 0.01 0.1 ± 0.02 0.05 ± 0.005 0.06 ± 0 0.13 ± 0 1.94 ± 0.15 
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Supplementary Table S2 (adapted from González, M. et al.; unpublished) is available upon request 
via email to cm.andreani.g@gmail.com. 

 

Supplementary Figure S2. Overall sum of (a) average and (b) site-specific relative abundances (%) 
of studied genomes (n=53) by phylum. Constructed upon total raw reads per genome as informed 
at Supplementary Table S2. 

(a)                 (b) 

  

Supplementary Table S3. Metagenomic sequencing information (González, M. et al.; 
unpublished). 

sample filtered reads data (Gb) average length (bp) 

S1               162,035,390  23.2 143.4 

S2               166,329,234  24.0 144.2 

S3               153,290,713  21.0 137.0 

S4               141,107,489  19.5 138.2 

S5               127,793,777  17.7 138.3 

S6                 81,854,686  11.9 145.7 

summary               832,411,289  117.3 141.1 

 

Supplementary Table S4. Percentages of annotated genes from each metagenome assigned to 
domains of life (González, M. et al.; unpublished). 

sample bacteria archaea eukaryota viruses 

S1 98.6 1.4 0 0 

S2 97.8 2.2 0 0 

S3 99.3 0.7 0 0 

S4 99.7 0.3 0 0 

S5 99.2 0.8 0 0 

S6 99.7 0.1 0.1 0.1 

summary 99.05 0.92 0.02 0.02 

25.0

36.4

23.5

2.9 6.4

1.6 3.3

Proteobacteria Acidobacteria
Actinobacteria Chloroflexi
unclassified Euryarchaeota
Bacteroidetes Spirochaetes
Lentisphaerae
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Supplementary Table S5. Metagenomes assembly information (González, M. et al.; unpublished).  

metagenomes S1 S2 S3 S4 S5 S3 + S4 S4 + S5 S6 

total length (Mb) 460 655 823 830 678 1,542 1,685 592 

number of scaffolds 578,420 727,989 893,733 892,653 714,882 1,656,500 1,832,894 640,971 

average length (pb) 795 900 920 929 948 931 919 924 

max length (pb) 231,815 174,227 306,936 459,495 1,145,089 1,145,083 567,355 368,304 

N50 (pb) 851 988 1,283 1,334 1,384 1,343 1,290 1,426 

N50 (%)* 75% 80% 87% 88% 90% 89% 87% 1 

L50 436,427 579,801 776,204 788,942 640,269 ND ND 573,308 

% of used reads 17.8% 21.0% 38.3% 33.2% 32.2% 34.5% 36.6% 48.3% 

% GC 67.0% 65.4% 67.3% 66.6% 64.7% 65.7% 66.9% 53.8% 

 

Supplementary Table S6. Total RNA sequencing information (González, M. et al.; unpublished). 

site triplicate sample 
ID 

soil 
samples 
(ng/uL) 

RNA 
Qubit 

(ng/uL) 

dscDNA 
Qubit 

(ng/uL) 

final 
library 
(ng/µL) 

library 
size (bp) 

S1 i 4 9.02 4.2 608.0 3.40 1011 

S1 ii 5 6.94 too low 784.0 6.00 1035 

S1 iii 6 6.86 too low 1448.0 2.46 650 

S5 i 7 24.8 19.6 416.0 4.98 984 

S5 ii 8 7.62 5.9 388.0 4.14 1096 

S5 iii 9 27.2 22.4 700.0 4.14 1010 

 


