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MEJORANDO LA CLASIFICACIÓN DE SERIES DE TIEMPO ASTRONÓMICAS
MEDIANTE REDES GENERATIVAS ADVERSARIAS

Debido a los últimos avances de la tecnología, telescopios que cubren amplias zonas del
cielo producirán millones de alertas astronómicas por noche que deberán ser clasificadas de
forma rápida y automática. Actualmente, la clasificación consiste en algoritmos supervisados
de aprendizaje automático cuyo rendimiento está limitado por la cantidad de anotaciones
existentes de objetos astronómicos y sus distribuciones de clases altamente desequilibradas.
En esta tesis, proponemos una metodología de aumento de datos basada en Redes Generativas
Adversarias (GAN, por sus siglas en inglés) para generar una variedad de curvas de luz
sintéticas a partir de estrellas variables. Nuestras novedosas contribuciones, que consisten en
una técnica de remuestreo y una métrica de evaluación, nos permiten evaluar la calidad de los
modelos generativos en conjuntos de datos desequilibrados e identificar casos de sobreajuste
de GAN que la distancia de Fréchet no revela. El modelo propuesto es evaluado en dos
conjuntos de datos tomados de los surveys de Catalina y Zwicky Transient Facility. Las
métricas de accuracy de clasificación de estrellas variables mejoran significativamente cuando
los clasificadores se entrenan con datos sintéticos y reales con respecto al caso de usar solo
datos reales.
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IMPROVING ASTRONOMICAL TIME-SERIES CLASSIFICATION VIA DATA
AUGMENTATION WITH GENERATIVE ADVERSARIAL NETWORKS

Due to the latest advances in technology, telescopes with significant sky coverage will produce
millions of astronomical alerts per night that must be classified both rapidly and automat-
ically. Currently, classification consists of supervised machine learning algorithms whose
performance is limited by the number of existing annotations of astronomical objects and
their highly imbalanced class distributions. In this thesis, we propose a data augmentation
methodology based on Generative Adversarial Networks (GANs) to generate a variety of syn-
thetic light curves from variable stars. Our novel contributions, consisting of a resampling
technique and an evaluation metric, allow us to assess the quality of generative models in
unbalanced datasets and identify GAN-overfitting cases that the Fréchet Inception Distance
does not reveal. We evaluate our proposed model using two datasets taken from the Catalina
and Zwicky Transient Facility surveys. The classification accuracy of variable stars is im-
proved significantly when adding synthetic data to our training sets with respect to the case
of using only real data.
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Chapter 1

Introduction

1.1 Motivation
Deep learning models have become state-of-the-art in an extensive range of tasks, such as
image recognition, video analysis, and natural language processing, demonstrating their im-
mense ability to solve complex problems and outperform existing algorithms. Based on this
fact, applying deep learning models to the classification of astronomical time-series arises as
an interesting approach.

Models have progressively increased their number of parameters to achieve such results,
from thousands to millions. Unfortunately, architectures with such a large number of pa-
rameters are vulnerable to overfitting. Overfitting occurs when models memorize the data
available in the training set rather than learning meaningful characteristics that allow the
model to generalize and perform well when testing on new and unseen data. To avoid overfit-
ting, models that achieve state-of-the-art results in different tasks are trained with annotated
datasets that have been extensively processed and filtered, and that consist of a large number
of samples for each class.

However, real-world problems present different scenarios in regard to data. For example,
not only there is a small number of annotations in astronomical time-series datasets, but
the annotations have also highly imbalanced class distributions. While small datasets al-
ready hinder learning by making algorithms fail at generalizing characteristics of the data,
imbalanced distributions only accentuate this issue ([1]; [2]). These two characteristics, in
addition to the irregularly time-spaced nature of astronomical observations, are a consider-
able difficulty for machine learning algorithms and make the classification problem a unique
challenge.

To overcome these problems, data augmentation techniques are frequently applied to
transform small imbalanced datasets into large and balanced datasets. Most of these tech-
niques, although widely applied in the domain of images, cannot be directly applied in the
time domain due to its dissimilar properties. Consequently, augmentation techniques in the
time domain remain a challenge and deserve more attention from the community [3].
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Traditional augmentation techniques in the time domain, such as jittering, window warp-
ing, and slicing, assume that these transformations exist naturally in the data and that the
augmented samples will be valid time-series with similar properties to the existing ones.
Moreover, appropriate augmentation techniques are specific to the dataset [4] and the task
[3]. An example of a dataset-specific technique could be jittering, where additive Gaussian
noise is often used in sensor datasets. Yet this method cannot model the heteroscedastic
nature of astronomical data. On the task-specific side, we could mention slicing or warping
transformations that heavily discard or modify the context of the time-series, potentially
altering the original class information of the samples.

A generative model for data augmentation permits avoiding assumptions about existing
transformations in the data. Since we will use the generated samples for classification, the
generative model should learn the class conditional distribution of the data. In this way, the
model could learn how to generate new realistic samples directly from the data and preserve
the class information simultaneously.

Because of their ability to model complex real-world data and the wide success they have
achieved across a variety of domains [5], Generative Adversarial Networks (GANs; [6]) are
the generative models of our choice.

While previous works have explored GAN-based data augmentation methods for classi-
fication, most have focused on the image domain ([7]; [8]; [9]; [10]) and only a few in the
time domain ([11]; [12]). Furthermore, [11] is the only work that addresses astronomical
time-series generation.

To the best of our knowledge, none of the existing approaches is suitable for our
use-case: dealing with irregularly-spaced data, allowing for both multi-class and physical
parameter conditional generation, and focusing on the downstream task of classification.
In addition, the literature lacks a GAN evaluation metric to select appropriate models for
classification tasks.

In this thesis, we propose a GAN-based data augmentation methodology for time-series
to improve the classification accuracy on two astronomical datasets taken from the Catalina
and Zwicky Transient Facility surveys. The main contributions are the following:

• Proposing a GAN model capable of performing conditional generation based on class
and physical parameters, suitable for irregularly-spaced time-series.

• Revealing the incapability of the standard GAN evaluation metric (FID) to assess
overfitting and proposing a novel evaluation metric that overcomes this issue to select
an adequate generative model.

• Proposing a resampling technique to delay the occurrence of overfitting in GAN train-
ing.

• Designing two new data augmentation techniques for time-series that produce plausible
time-series preserving the properties of the original ones.

2



1.2 Hypotheses
The hypotheses of this thesis are:

H1 It is possible to use GAN models to learn the data distribution of periodic light curves
and generate realistic synthetic light curves that preserve basic properties of the original
ones, such as class and amplitude.

H2 We hypothesize that using the generated synthetic light curves to train a classifier
would improve the classification accuracy of variable stars.

1.3 General Objective
The general objective of this thesis is to propose and validate a GAN-based data augmentation
methodology for irregularly-sampled time series that allows both multi-class and physical
parameter conditional generation, which can be used to improve the classification accuracy
of periodic light curves in astronomy.

1.4 Specific Objectives
The specific objectives of this thesis are:

O1 Design and implement a GAN model capable of dealing with irregularly-spaced time
series and performing both class and parameter conditional generation.

O2 Propose a criterion for evaluating generative models that permits their use in a down-
stream task such as classification.

O3 Design and implement a light curve classifier based on neural networks that will be
used as the baseline for the experiments.

O4 Compare the performance of the classifiers trained on generated synthetic and real
data.

O5 Evaluate the proposed model for data augmentation and compare it with other classic
techniques using the data from two astronomical surveys.

1.5 Structure of the document
The structure of this thesis is as follows: Chapter 2 presents a theoretical background that
explains the foundations of the work. Section 2.1 describes the astronomy-related relevant
concepts, and Section 2.2 the machine learning core concepts. In Chapter 3, Sections 3.1 and
3.2 describe the utilized datasets and their pre-processing procedure. Section 3.3 extensively
explains the proposed methodology. In Chapter 4, Section 4.1 presents the obtained results,
which are discussed in Section 4.2, stating its strengths and weaknesses. Finally, Chapter 5
presents the main conclusions of this work and future steps.
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Chapter 2

Background

This chapter provides a theoretical background covering the fundamental concepts for un-
derstanding this thesis. First, an astronomy-related background is provided, including the
current big data era of astronomy, a general astronomical glossary, a description of the as-
tronomical objects of interest for this work, and the importance of accurate classification of
astronomical objects. After that, a machine learning background is provided, emphasizing
Generative Adversarial Networks, the core idea of this thesis.

2.1 Astronomical Background
Astronomy is a science motivated by the curiosity of the human to understand what is above
us. This curiosity can be traced back the ancient civilizations. For example, Babylonians
maintained a detailed record of the movement of the sun and moon. They are also believed
to have documented the Halley’s comet for the first time in 164 B.C. and for being the first
ones in dividing the sky into different zones.

However, the scenario has drastically changed since then. Nowadays, far from analyzing
the universe with their naked eyes, astronomers employ modern telescopes to capture electro-
magnetic radiation from the surrounding universe. These telescopes are generally placed in
high-altitude zones with stable atmospheric conditions for observation to overcome the effect
of atmospheric turbulence. Furthermore, there are also space telescopes that can observe the
universe free from the obstruction of atmosphere, such as the launched James Webb Space
Telescope [13]. Independent of the telescope’s location, the study, and analysis of data cap-
tured allows astronomers to understand better the behavior of the celestial objects present
in the universe.

With the latest advances in technology, computation, software, and optics fabrication,
telescopes with extensive sky coverage will produce millions of astronomical alerts per night.
These types of telescopes perform astronomical surveys and have given rise to the big data
era of astronomy.
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2.1.1 The Big Data Era

An astronomical survey aims to generate a general map of broad sky regions without focusing
on specific observational targets. This mapping is done following a pre-defined observation
plan that specifies which parts of the sky and spectrum frequencies will be observed at
certain times. After performing multiple scans, the maps can be compared to find significant
changes in luminosity between images of the same region, originating an alert. Examples of
astronomical surveys are HiTS [14], Catalina [15], MACHO [16], ASASN [17] and ATLAS
[18].

Two essential surveys that unequivocally link astronomy to big data are the Zwicky Tran-
sient Facility (ZTF; [19]) and its successor, the Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST; [20]). These two surveys were designed to capture large portions of
the sky with relatively low periods between observations (high cadence), generating massive
amounts of data.

On the one hand, ZTF has been operating since 2019, observing the entire northern sky
across three frequency bands and producing approximately one million alerts per night. On
the other hand, LSST is expected to start operating in 2024, observing the entire visible sky
from the southern hemisphere across six different frequency bands and generating around ten
million alerts per night.

The large amounts of alerts provided by these telescopes are supported by the volume of
the universe that the telescopes can observe in a single exposure. This volume is measured by
the etendue of the telescope, computed as the product between the area of the sky observed by
the telescope in a single exposure (field of view) and the telescope’s diameter (light-collecting
area). Figure 2.1 shows the etendue of different telescopes as the area of the corresponding
circles in the field of view/light-collecting area plane, where the large volume of the universe
that the LSST covers clearly stands out compared to other telescopes.

To enable further analysis in follow-up telescopes, the alerts are aggregated, annotated,
and classified into different types by astronomical alert brokers that are designed to provide
a rapid and self-consistent classification, extracting and reporting relevant information about
the alerts. Examples of astronomical brokers are the Automatic Learning for the Rapid Clas-
sification of Events(ALeRCE; [21]), The Arizona-NOAO Temporal Analysis and Response to
Events System (ANTARES; [22]), and LASAIR [23].

The processing done by the astronomical brokers needs to be rapid, considering the large
number of alerts emitted every night. It also needs to be accurate since observation time is
limited and performing follow-up observations on objects that are not of scientific interest is
undesirable. Commonly, the classification consists of supervised machine learning algorithms
whose performance is limited by the number of existing annotations of astronomical objects.
These annotations are usually obtained either using the knowledge of experts or by cross-
matching the observed objects with previously annotated catalogs that have observed the
same regions of the sky.

Despite dealing with vast amounts of data coming from the telescopes, the labeled data
available to be used as training sets for the classifiers are not abundant. On top of that, the
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Figure 2.1: Field of view (FOV) in [deg2] vs light collecting area in [m2] for different telescopes. The product
of these two quantities (displayed as the area of the circles) is known as etendue, which measures the volume
observed in a single exposure by a telescope. The figure was obtained from [21].

distribution of the annotated astronomical datasets usually is very distant from being uniform
and presents a big imbalance, placing an extra difficulty when trying to learn inductive rules
with standard machine learning algorithms. The urge for accurate classification that demands
large and diverse annotated datasets motivates our data augmentation framework to mitigate
the problem of data imbalance and data scarcity.

2.1.2 Astronomical Glossary

This section provides definitions for the core concepts related to the astronomical background
of this thesis.

Astronomical object

Often used interchangeably with astronomical body, an astronomical object is a natural
phenomenon or physical body that occurs or exists in the universe, emits its own light or
reflects that of other objects, and can potentially be observed with ’telescopes with enough
resolution and light gathering. Examples of astronomical objects are galaxies, stars, asteroids,
and planets.

Irregular sampling

Unlike most phenomena that can be represented as time-series, astronomical time-series (light
curves) are irregularly sampled, i.e., the time intervals between two consecutive observations
are not constant, producing variable time gaps between observations that can be in the

6



order of seconds or the order of months. These irregularities happen because telescopes
cannot observe the same source at constant time intervals due to the survey’s general science
objectives or changes in atmospheric conditions.

Charged-coupled Device

One of the critical components of a telescope, charge-coupled devices (CCDs) are a widely
used technology for light detection in scientific and non-scientific applications. It is a highly
sensitive detector composed of multiple light-sensitive sensors. Photons that have traveled
through the atmosphere, lens, filters, and mirror hit the detectors and are translated to
electronic charges proportional to the intensity of the light received. These charges are then
converted into a digital image (matrix of integer numbers) in Analog to Digital Units (ADUs)
or counts that resemble the sky’s observed regions. An extensive description of these processes
can be found in [24].

Flux

After the CCD acquires the digital images, the counts associated with the detection are aggre-
gated. Considering additional information such as time of exposure, gain of the instruments,
and observing conditions, the total counts can be transformed into flux, which accounts for
the energy of a detected object per time unit, divided by the light-collecting area.

Magnitude

Once the flux has been obtained, it is possible to measure the perceived brightness of the
object registered by a detector placed on earth by computing the object’s magnitude m
according to:

m = −2.5 log10

(
Fs
Fref

)
(2.1)

where Fs is the previously explained flux of the object, and Fref corresponds to a reference
stellar object’s flux with a known magnitude measured by a different instrument, used to
calibrate the observations and take into account absorption and color diffraction phenomena
produced by the atmosphere.

It is worth mentioning that equation 2.1 implies that magnitudes have a reverse logarithmic
scale, i.e., lower magnitudes imply brighter objects. According to this, plots that include
magnitudes in the y-axis are often displayed inverted y-axis. Another interesting consequence
of this scale is that differences of 1.0 in magnitude should imply a factor of ∼ 2.5 in brightness
or flux.

In general and unless stated otherwise, the word magnitude refers to apparent magni-
tude, which is how the intrinsic luminosity of the stellar objects is perceived from the earth.
Distance from the telescope to the object, interactions of the object’s radiation with the
atmosphere, and possible absorption and scattering of its radiation by stellar dust can affect
the apparent magnitude’s value. Its counterpart, the absolute magnitude, is not affected by
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these phenomena. It plays an important role when estimating distances to different stellar
objects whose absolute magnitude can be derived from other properties such as their periodic
behavior.

Variable star

A variable star is a star whose magnitude fluctuates over time. The causes for its variation
can be intrinsic if the star suffers changes in its physical properties that alter its luminosity or
extrinsic if the start is obstructed by others, limiting the amount of light that the telescopes
can perceive.

Light curves

A light curve is a common way of characterizing astronomical objects. It is an irregularly-
sampled time-series that displays the evolution of an astronomical object’s brightness with
respect to time. The magnitude represents the brightness of a stellar object. The observation
times are commonly represented by their Modified Julian Date (MJD), i.e., the number of
days since a reference start date that corresponds to midnight of November 17, 1858, Universal
Time (UT). Astronomical surveys can provide observations in multiple frequency bands, in
which case a single stellar object can be associated with more than one light curve.

2.1.3 Astronomical Objects of Interest

In this section, we describe the astronomical objects relevant to this work. The wide variety of
existing astronomical objects has been grouped by ALeRCE [21] into a hierarchical taxonomy
that can be seen in Figure 2.2. This taxonomy is organized in a hierarchical structure
following the light curve variability and their different physical properties. This taxonomy
intends to unify the existing works that perform the classification of astronomical light curves,
and it also allows for the addition of new subgroups as the quality of the data grows [25].

Considering that each additional class that we include in our experiments increases the
complexity of the problem, the scope of this thesis is limited to periodic variable stars.
Working with periodic stars is also convenient because they usually present recognizable
patterns when mapped to their phase space, a process that is detailed in Section 2.1.3.

Periodic objects

An astronomical object is called periodic if its brightness over time presents a repeated
pattern. In this thesis, we consider a subset of periodic variable stars that is composed by:

• Eclipsing Binaries: extrinsic variable stars composed by a pair of stars that orbit
around each other. The magnitude captured with the telescopes suffers fluctuations
when the orbit plane and the line of sight are aligned, reducing the object’s magnitude
when one of the stars obstructs the line of sight of its binary companion.

• RR Lyrae: intrinsic variable stars characterized by their short periods ranging from a
couple of hours to a day and magnitudes ranging from 0.3 to 2. They appear in very old
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Figure 2.2: Alerce Taxonomy. The figure was obtained from [21].

stellar populations in the galactic halos and thick disks of the galaxy and have typical
ages of around 10 billion years.

• Long Period Variables: intrinsic variable stars that are distinguishable for their
extended periods ranging from weeks to several years.

• Cepheids: intrinsic variable stars that can be found further than RR Lyraes due to
their larger brightness. Their typical periods can range from 1 day to over 200 days,
and they live in the thin disk of the galaxy along with the young stellar population.

• Delta Scuti: intrinsic variable stars, fainter than Cepheids and with shorter pulsation
periods, but they follow the same period-luminosity relation, and the boundary period
to distinguish both classes is a matter of convention.

Period folding

Since the desired characteristic shapes of periodic light curves are only visible in the phase
space, we map the observation times into this bounded space using the period information,
an operation known as folding. Denoting the light curve period as T and the observation
time as t, the folding procedure is performed by converting t into φt according to:

φT ≡ t (mod T ) (2.2)

φt =
φT
T

(2.3)

where the congruence symbol≡ in Equation 2.2 refers to the extension of the modulo operator
with modulus T to real numbers. An illustration of this process for a RR Lyrae observed by
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ZTF is shown in Figure 2.3.

Figure 2.3: (a) Original RR Lyrae visualized in time space. (b) Period-folded RR Lyrae visualized in phase
space.

2.1.4 Importance of the Classification of Astronomical Objects

Quickly and accurately classifying astronomical alerts provides an immense scientific value.
For example, the orbit of Eclipsing Binary systems can be used to estimate their mass, density,
luminosity, and distance. The period-luminosity relation of RR Lyrae permits using them
as standard candles to measure distances to old stellar systems living in the halo and thick
disk and acquire knowledge about the earliest history of our galaxy. Finally, Cepheids can
also be used as distance indicators to nearby galaxies such as the Magellanic Clouds and the
Andromeda Galaxy. All of this reinforces that accurate classification of these astronomical
objects could help better understand the structure and formation of our galaxy and its
neighbors.
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2.2 Machine Learning Background
Broadly speaking, a machine learning algorithm is an algorithm that is able to learn from
data. An algorithm is said to learn from data if its performance at the desired task improves
as the algorithm is exposed to more data [26].

2.2.1 Datasets

In general, the data available for the algorithms to learn is organized in a group called dataset,
which should be understood as a collection of examples used for training. Finally, a training
example is a collection of features that we want the machine learning algorithm to process.
Even though the term feature is usually understood as the result of complex operations
applied to the raw data, the data itself could be the feature of interest. Examples of this
are pixel values of an image, voltage measured in medical signals at a specific time, or stock
price in a given day for a time-series.

In this work, we use the terms sample and example interchangeably, understanding that
training examples are realizations of a sampling process coming from an underlying data
distribution, and embracing their stochastic nature.

Usually, datasets used for studying and bench-marking machine learning algorithms are
designed with desirable properties that facilitate working with them. Apart from significant
pre-processing and filtering steps, these datasets are collected (or generated) to have an
approximately uniform class distribution. However, this is not the case when we analyze
datasets in the real world, and this brings up one of the main motivations of this thesis:
imbalanced datasets.

Imbalanced datasets

Let D = {xi, yi}ni=1 be a dataset where xi is a real example and yi ∈ Y = {1, 2, ..., c} a class
label associated to xi. D is said to be imbalanced if the distribution of Y differs significantly
from the discrete uniform distribution U{1, c}. Therefore, imbalanced datasets are composed
of one or more classes (majority classes) that severely outrepresent other existing classes
(minority classes) [2].

Given an imbalanced dataset D, we can apply sampling techniques to transform its class
distribution into a uniform. The result of this transformation is a modified version of the
original dataset, its balanced counterpart Du.

2.2.2 Classification

Classification corresponds to one of the most popular tasks in machine learning. When doing
classification, algorithms are asked to predict which of the n existing categories or classes a
particular input belongs to. To perform this prediction, the model can output directly the
expected class 1, ..., n, or a bijective mapping of it, such as a one-hot encoded version of the
class. Another possible form of the output is a probability distribution over the classes.

In classification problems, the performance of an algorithm can be measured with different
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evaluation metrics depending on the context. In this work, we employ one of the most popular
metrics in multi-class classification: the accuracy classification score.

Classification accuracy

This metric calculates how often the model’s predictions match the correct class or label.
Given a set of n predicted integer classes ŷ1, ..., ŷn and their corresponding labels y1, ..., yn,
the accuracy classification score for the set of samples is computed as:

acc =
1

n

n∑
i=1

1{yi}(ŷi) (2.4)

where 1A(x) is the indicator function defined as:

1A(x) =

{
1 if x ∈ A ,

0 if x /∈ A .
(2.5)

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of the critical components of the most sig-
nificant advances in machine learning in the last years. They are particular types of neural
networks that were designed inspired by the structure of the animal visual cortex, where
each neuron in the cerebral cortex responds to stimuli in specific regions of the entire visual
field, called receptive fields [27, 28]. CNN architectures are not new in the field of pattern
recognition; they were already used in the nineties to solve pattern recognition tasks [29].
However, their use has become widely popular since they were utilized in deep architectures
in the ImageNet image classification challenge in 2012 [30].

Due to the convolution operation’s nature, which shares the weight of the kernels applied
to the input features, the output of a convolution (often called feature maps) is considered
to have translation-equivariant properties. Consequently, performing convolution operations
along a particular dimension is intended to identify specific patterns that could be present
in any location along this dimension. In the case of spatially correlated data such as im-
ages, these dimensions usually correspond to the image’s height and width. In the case of
temporally correlated data, these dimensions could correspond to the temporal dimension.

In the following section, and without intending to describe convolution operations com-
pletely, we provide a glimpse of how convolutions and deconvolutions work in a simplified
two-dimensional case.

Convolutions

The convolution operation consists of sliding a filter or kernel w over an input x in order to
produce an output y. An example of this is illustrated in Figure 2.4. At each position of
the kernel, an individual output yi,j (green matrix) is computed by performing the sum of
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the products between the single components of the kernel w (shaded matrix) and the input
x (blue matrix) according to:

yi,j =
∑
m,n

xi+m,j+n · wm,n (2.6)

Figure 2.4: Diagram of a convolution operation. The 4x4 blue matrix represents the input. The 3x3 shaded
matrix represents the kernel. The 2x2 green matrix represents the output. This figure was obtained from
[31]

It is worth mentioning that Equation 2.6 does not precisely describe the convolution
operation. Instead, it illustrates the cross-correlation, which is usually implemented as a
substitute for the convolution operation in deep learning frameworks. These two terms are
often used interchangeably since their difference is subtle, and it consists of whether the
kernel is flipped to perform the multiplication or not.

To illustrate how a convolution operation works in this simplified case, a concrete example
is analyzed. If the input and kernel in Figure 2.4 had values corresponding to:

x =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ;w =

a b c
d e f
g h i



The result of computing the convolution between them according to Equation 2.6 gives
the output:
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y =

[
a+ c+ e + g + i b+ d + f + h
b+ d + f + h a+ c+ e + g + i

]
.

Considering that convolutions are usually performed in modern hardware such as graphics
processing units (GPUs) and that these devices can benefit considerably from performing
matrix operations, it is helpful to count with an equivalent of the convolution in matrix
form. To do so, it is necessary to transform w into its sparse version :

W =


a b c 0 d e f 0 g h i 0 0 0 0 0
0 a b c 0 d e f 0 g h i 0 0 0 0
0 0 0 0 a b c 0 d e f 0 g h i 0
0 0 0 0 0 a b c 0 d e f 0 g h i


.

With the sparse matrix W and two additional reshaping operations, it is possible to replace
the convolution operation of Equation 2.6 with a simple multiplication. Let the superscript
f denote the flattened version of a given matrix. These two additional reshaping operations
correspond to a flattening operation of the input x before computing the product and a
resizing operation of the result yf after calculating the product. In summary, the sparse
kernel W can be multiplied with a flattened version of the input (xf ) to obtain a flattened
version of the output yf , from which we can recover the original output y.

An important observation of this product is that it performs a mapping xf ∈ R16 7→
yf ∈ R4. Furthermore, if performing an inverse mapping was needed (from output space to
input space), the same operation replacing W by its transpose would suffice, which motivates
calling such operation as transposed convolutions.

While the regular product is used in the forward pass to perform the standard convolution,
its transposed version is necessary to propagate the gradients in the backward pass during
training.

Deconvolution

The use of transposed convolutions to perform the "inverse mapping" of a standard con-
volution has motivated the use of the term deconvolution when referring to these layers.
Though this term is widely used and is also employed in this work to talk about transposed
convolutions, its use should be careful since it can quickly lead to confusion. A transposed
convolution does not correspond to a deconvolution’s mathematical definition; i.e., it is not
the inverse operation of convolution.

Figure 2.5 illustrates an example analogous to the direct case analyzed in Figure 2.4 to
understand how deconvolution works. An effortless way to understand the dimensions of
deconvolution operations is by remembering the idea of inverse mapping. The dimensions of
the deconvolution’s input (blue matrix in Figure 2.5) match the output of the corresponding
direct convolution (green matrix in 2.4). In this sense, Figures 2.4 and 2.5 are almost upside-
down versions of each other.
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Figure 2.5: Diagram of a deconvolution operation. The 2x2 blue matrix represents the input. The 3x3 shaded
matrix represents the kernel. The 4x4 green matrix represents the output. The dashed squares represent
zero-padded portion of the input. This figure was obtained from [31]

Furthermore, going into the details of transposing the sparse matrix W, it can be seen
that multiplying the input of the deconvolution by WT is equivalent to zero-padding the
input followed by a direct convolution, as Figure 2.5 shows. This zero-padding step followed
by a convolution used to compute the deconvolution also obeys the connectivity patterns
of its corresponding direct convolution. In the direct convolution of Figure 2.4, any pixel
in the corners of the input only contributes to the corresponding corner pixel of the output
without contributing to any other pixel, similarly to when zero padding is applied to the
deconvolution, as shown in Figure 2.5.

2.2.4 Generative Modeling

The field of generative modeling studies how to approximate data distributions. These ap-
proximations are usually parametric models that can summarize the information present in
a given dataset. Given a parametric family of model distributions P , the goal is to learn
optimal parameters θ of the model that can minimize some notion of distance between the
original data distribution Pr and the model distribution Pθ.

Types of Generative Models

Generative models can be classified into two large groups depending on how the model
attempts to approximate the desired data distribution.

On the one hand, explicit density models aim to construct a closed-form density pθ(x)
that can be used directly to represent the likelihood and learn their parameters θ by maxi-
mizing the likelihood. These models can be further divided into models whose formulations
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Figure 2.6: Illustration of the generative modeling scenario. The real and generated distributions are signaled
with the points Pr and Pθ. The yellow shape on the right symbolizes the family of model distributions P.

lead to tractable densities, such as Fully Visible Belief Networks (NADE [32], PixelRNN
[33], PixelCNN [34]), or models that involve intractable densities and require approximation
techniques. These approximations could be variational such as Variational Auto Encoders
(VAE; [35]), or Markov Chain approximations, such as Deep Boltzmann Machines (DBM;
[36]).

On the other hand, implicit density models do not intend to explicitly construct a closed-
form density over the space where the data lies. These models, instead, interact with the
probability distributions less directly by drawing samples from them. This sampling process
can consist of multiple steps in the case of Markov Chain-based models such as Deep Gener-
ative Stochastic Networks (GSN; [37]), or it can consist of a single step as in the algorithm
of our interest: GANs.

It is important to note that the provided classification of generative models is valid to
describe the essence of the original algorithms presented in it. However, some interesting
mixes between implicit and explicit algorithms could happen. Implicit models such as GANs
could be used to define explicit densities, which does not contradict the fact that the train-
ing algorithm of the GAN itself uniquely uses the model’s ability to draw samples from a
distribution.

Likelihood-free Learning

As the name suggests, the term likelihood-free learning refers to models that do not attempt
to maximize a likelihood function, being able to learn without directly depending on such a
procedure. In generative modeling, multiple reasons could support the choice of a likelihood-
free model. Probably the most substantial one is the evidence of the likelihood of being
generally uninformative about the quality of generated samples and vice versa [38]. Moreover,
using such an approach inevitably leads to the density estimation problem, which assumes
that the original data distribution admits a density function in the first place.

In addition, tractable techniques for this estimation could become extremely complex when
the data lies in highly-dimensional spaces. Finally, in the presence of intractable density
estimation, variational approximations attempt to maximize a lower bound of the model’s
likelihood without necessarily maximizing the original likelihood, and the intractability of the
densities does not permit providing a confident measure of how close the provided solution
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is to the optimal one. All these reasons motivate using an implicit model that is not directly
dependent on a likelihood function.

Manifold Learning

In machine learning, it is common to find ideas based on the concept of manifolds. Without
intending to provide a formal mathematical definition of the concept, we will understand the
term manifold as a connected set of points that can be approximated well by considering only
a small number of dimensions embedded in a higher-dimensional space [26]. For example, a
sphere (the surface of a three-dimensional ball) is a two-dimensional manifold embedded in
a three-dimensional space.

Manifolds often appear in machine learning algorithms that rely on the manifold as-
sumption. This assumption is based on the idea that data probability distributions in Rn

are highly concentrated in some regions. At the same time, most of the remaining areas corre-
spond to areas with invalid inputs. Consequently, a machine learning algorithm only needs to
look for variations across a collection of manifolds containing small subsets of points instead
of considering the entire Rn space. The manifold assumption will be particularly relevant for
understanding one of this work’s core concepts: Generative Adversarial Networks.

2.2.5 Generative Adversarial Networks

As a side note, in the previous sections the model distribution has correctly been denoted
by Pθ because it is a model distribution parameterized by θ. For clarifying purposes, we will
assume that model distributions are parameterized by some parameters θ and simply refer
to the model distribution as Pg, where the sub-index g stands for generated distribution, in
contrast with the real distribution Pr.

A Two-Sample Test Perspective

With the concepts introduced in Section 2.2.4, it is possible to formulate the Generative
Adversarial Networks framework following a classical two-sample test formulation. Because
of the undesirable properties of explicit density estimation mentioned in Section 2.2.4, we
narrow the scope to implicitly modeling the original data distribution Pr.

Assuming that we have access to the samples from the real distribution Pr and a generative
model that defines a generated distribution Pg from which we can sample efficiently, we now
have two different sets of samples: Sr = {xr ∼ Pr} and Sg = {xg ∼ Pg}. To assess the
quality of the generated samples, it is necessary to decide whether these two sets of samples
could come from the same distribution or not, considering the null and alternative hypotheses
H0 : Pr = Pg and H1 : Pr 6= Pg respectively.

To complete the two-sample test, we need a test statistic T that can compute some sort
of difference between the set of samples Sr and Sg. From the generative model’s perspective,
we would like the samples in Sg to be similar to those in Sr. Thus the goal of the generative
model is to minimize the two-sample test statistic T so H0 cannot be rejected.

In a low-dimensional case where our distributions are real-valued Gaussians, T could
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simply be the difference between the sample means or sample variances between Sr and Sg.
However, finding a suitable test statistic for high-dimensional data is challenging. Therefore,
we could benefit significantly from learning it instead of exhaustively looking for appropriate
candidates. To do this, we will use a model called discriminator.

It is worth mentioning that performing this two-sample test is inherently likelihood-free
since it only computes T based on the samples xr and xg and not their corresponding densities.
With the notion of a two-sample test in a generative modeling environment, it is now possible
to provide a clear explanation of the GAN framework.

The Discriminator

The discriminator is any model with learnable parameters that provides a notion of distance
between the samples from Sr and Sg. Let V denote this distance.

The distance V is analogous to the test statistic T . It is computed by considering the
output of D (denoted as ŷ in Figure 2.7) when evaluating the samples xr and xg individually.
The goal of D is to maximize V in support of the alternative hypothesis Pr 6= Pg, which
justifies using the letter V to denote this notion of distance: it is the value function that D
will maximize to push the distributions apart as far as possible.

Figure 2.7: Diagram of the input and output of the discriminator. xg and xr correspond to real and generated
samples, respectively, and ŷ is the output of the discriminator computed both inputs independently.

So far, we have mentioned the existence of a generative model that permits efficient
sampling, but no additional details have been provided. The responsible for allowing the
sampling from our generated data distribution will be the generator.

The Generator

The generator is a model that performs a mapping between a latent space (denoted by z
in Figure 2.8) and the real sample space, intending to generate realistic samples xg that
resemble those in the distribution Pr. The goal of G, in opposition to D, is to minimize the
value function V in support of the null hypothesis Pr = Pg, bringing Pg as close to Pr as
possible.

The generated samples xg correspond to the samples drawn from our generated distribu-
tion Pg. In that sense, G itself performs the action of sampling from the distribution. For G
to mimic the action of sampling from a probability distribution, some source of stochasticity
is needed. This stochasticity required for the sampling process is obtained from the latent
variable z, sampled from a multivariate Gaussian distribution.
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The manifold assumption previously described in Section 2.2.4 is an unstated assumption
under generating samples from this random latent space. We assume that G makes it possible
to recover the high dimensional distribution in which the data lies, requiring only a low
dimensional Gaussian space as a starting point.

Figure 2.8: Diagram of the input and output of the generator. The input latent variable is denoted by z,
and xg corresponds to the generated sample.

The Two Player Game

The GAN framework consists of a game between two networks. Given an input dataset
of real samples Sr = {xr ∼ Pr}, the generator network (G) aims to generate fake samples
Sg = {xg ∼ Pg}. In contrast, the discriminator network (D) tries to distinguish between real
and fake samples generated by G.

During the training process, the two networks compete against each other without having
control of the opponent’s parameters. On the one hand, G is trained to generate realistic
samples, while on the other hand D is trained to predict whether a given sample comes from
the input dataset or was generated by G. At the end of the training, G will generate samples
similar to those in the input dataset, and the D will be unable to tell apart generated from
real samples.

The objective of the two players can be written together in the form of a min-max game,
a well-known problem in the field of game theory, according to:

min
θG

max
θD

V (θG, θD) (2.7)

The formulation presented in Equation 2.7 is also known as a zero-sum game, which comes
from both players attempting to maximize objective functions (V for D, and −V for G) that
sum up to zero.

To migrate from the game theory formulation presented in 2.7 to a machine learning-like
formulation, our models must have objective functions that they aim to minimize. These
functions, typically called loss or cost functions, correspond to:

LD = −V (θG, θG) (2.8)
LG = V (θG, θG) (2.9)

In the original GAN formulation [6], these losses were defined by assigning the real/fake
classification task to D, which naturally converts LD into a binary cross-entropy loss function

19



given by:

LD = − E
xr∼Pr

[logD(xr)]− E
xg∼Pg

[log (1−D(xg))] (2.10)

LG = E
xr∼Pr

[logD(xr)] + E
xg∼Pg

[log (1−D(xg))] (2.11)

The single training steps for each network are explained in detail in the following sections.

Training the Discriminator

Figure 2.9 details the entire process for updating D’s parameters. After evaluating individu-
ally real and fake samples generated by G, it is possible to compute D’s loss function LD. The
computation of this loss involves comparing D’s output ŷ and a target y which indicates the
actual distribution each sample came from, either real or generated. Once the loss has been
computed, the gradient descent step can be performed to modify uniquely D’s parameters
θD.

Figure 2.9: Details of updating D’s parameters θD. xg and xr correspond to real and generated samples,
respectively, and ŷ is the output of the discriminator computed on both inputs independently. LD is the loss
described in Equation 2.8

Training the Generator

Figure 2.10 provides details for updating G’s parameters. Once G produces the fake samples,
they are evaluated by D. The comparison between D’s output and the previously mentioned
target y permits the computation of the loss function LG, which is necessary to perform the
gradient descent step and update G’s parameters θG. It is worth noting that even though
the loss in Equation 2.11 includes the term Exr∼Pr [logD(xr)] according to the min-max
formulation, this term vanishes when computing the gradients with respect to θG. Therefore,
the only feedback that G needs from D comes from the evaluation of the fake samples.

2.2.6 Conditional Generation

Following the formulation described in Section 2.2.5, a generative model that successfully
approximates the real data distribution would be able to arbitrarily generate samples xg
that look indistinguishable from the real samples xr. However, if we were interested in a
specific attribute of the generated samples, it would be necessary to generate a large number
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Figure 2.10: Details of updating G’s parameters θG. xg correspond to the generated samples and ŷ is the
output of the discriminator computed on the generated samples. LG is the loss described in Equation 2.9

of samples to apply then some filtering step to gather the samples that capture the desired
attribute.

Though possible, this filtering step can be quite challenging if the desired attribute cannot
be obtained straightforwardly from the data, requiring a lot of visual inspection for large
datasets or additional hours of computation if the filtering requires additional models. The
conditional generation formulation comes to solve this problem, allowing for the generation
of samples that belong to desired conditional distribution

Conditional GANs

In the context of GANs, the first conditional model corresponded to the Conditional Gener-
ative Adversarial Nets (C-GANs; [39]), which enabled the conditional generation of samples
by introducing a subtle modification to the original GAN framework. To condition on the
desired attribute, it is enough to add it to the inputs of G and D, forming a new joint
representation.

Let z̄ denote the desired attributes of interest. Figure 2.11 shows how z̄ is combined
with the original latent space z to produce z′, the new input of G. Analogously, Figure 2.12
shows how z̄ is combined with real and generated samples to produce the inputs of D. We
intentionally denote D’s conditional attributes by the same letter z̄ to emphasize that its
representations should contain the same attributes used to generate xg. These attributes are
shared between real and generated samples, suggesting that we should first pick an attribute
z̄ from the real data set during training, and then generate samples conditioned on this
attribute. Finally, real and generated samples can be processed by D.

Figure 2.11: Diagram of the modified input for the C-GAN’s generator. The input latent variable is denoted
by z, the conditional attributes by z̄, and the generated samples by xg.
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Figure 2.12: Diagram of the modified input for the C-GAN’s discriminator. The conditional attributes are
denoted by z̄, xg and xr correspond to real and generated samples respectively, and ŷ is the output of the
discriminator computed on both inputs independently.

We show a concatenation operation denoted by ⊕ to create the joint representation in both
cases, but this is just an option among different approaches to combine these representations.
Regarding z̄ and what it includes, a widely used conditional attribute is the class or category
of the samples, which allows the model to perform class-conditional generation. However,
this framework is quite flexible in the sense that the attribute z̄ of interest does not need to
be the class, and it could include one or many other features of interest.

Auxiliary Classifier GANs

An alternative to C-GANs specifically proposed for class-conditional generation is the Aux-
iliary Classifier GANs (AC-GANs; [40]). This approach tackles the conditional generation
problem with a classification task. Instead of providing the conditional attribute to both
networks, it modifies D to contain an auxiliary decoder network that outputs the class label
of its input samples. This situation is described in Figure 2.13, where D now outputs two
different values simultaneously. The original output, previously denoted as ŷ in Figures 2.7,
2.9, and 2.12, is now denoted by Drg for clarity purposes, indicating that it attempts to
distinguish real from generated samples. The additional output that attempts to predict the
different classes of both generated and real samples is denoted by Dy.

Figure 2.13: Diagram of the AC-GAN’s discriminator, where xg and xr correspond to real and generated
samples, respectively, Drg corresponds to the original output, and Dy corresponds to the class prediction.
Both of the outputs are computed simultaneously for each input.

These two outputs can be used in two different cross-entropy losses. First, Drg is used in
the original binary cross-entropy to separate real from generated (LD in Equation 2.10), and a
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multi-class cross-entropy (denoted by Hr and Hg for real and generated samples respectively)
to separate the different classes presented in the data set. These two losses can be linearly
combined to provide the new loss functions L̃D and L̃G according to:

L̃D = − E
xr∼Pr

[logDrg(xr)]− E
xg∼Pg

[log (1−Drg(xg))]

+ ξ( E
xr∼Pr

[Hr] + E
xg∼Pg

[Hg]) (2.12)

L̃G = E
xg∼Pg

[log (1−Drg(xg))] + ξ E
xg∼Pg

[Hg] (2.13)

An interesting fact about the additional terms added in Equations 2.12 and 2.13 is that
their presence inevitably breaks the zero-sum formulation since both networks do not play
adversarial roles anymore; both of them attempt to help solve the multi-class classification
problem. Specifically, these additional terms guide D to perform the multi-class classification
itself, and G to generate samples that can be correctly classified by its corresponding D at
any given moment of the training. It should also be noted that the first term of Equation
2.11 was omitted in Equation 2.13 for its previously mentioned irrelevance.

2.2.7 State of the art in GANs

Since the creation of GANs, they have revolutionized the field of generative modeling, showing
novel results especially in the domain of images. As a broad overview of the evolution process,
we could mention conditional-generation models ([39]; [40]; [41]), models that stabilize the
erratic behavior of the original GANs ([42]; [43]; [44]), and models that generate samples with
an impressively high quality and resolution ([45]; [46]; [47]; [48]) among many other models
and applications. An extensive description of GAN models in computer vision is provided in
[49].

GANs have also been applied to the time-series domain, with significant improvements in
recent years. The first model capable of generating continuous sequential data was the C-
RNN-GAN ([50]), which proposed adding recurrent neural networks to the GAN’s generator
and discriminator to handle the temporal evolution of the time-series. This work was followed
by the RC-GAN ([51]) which added label-conditional generation and a focus the downstream
medical task.

More recently, [52] introduced a jointly trained embedding network that combines the
unsupervised GAN framework with a supervised auto-regressive model to capture the condi-
tional temporal dynamics of the time-series.

Lately, [53] proposed a GAN framework to deal with long time-series data based on an
approximation of the Wasserstein distance using the signature feature space, avoiding the
usage of costly discriminators and claiming to achieve state-of-the-art results in measures of
similarity and predictive ability.

Despite new complex models with elaborated architectures or more extravagant formula-
tions of the losses that we may consider using, they all miss one key aspect: dealing with
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irregularly-spaced data. This missing key component makes them unsuitable for our problem.

We intend to focus on this work in going further than just generation, planning to provide
helpful metrics to leverage the use of generative models for the classification of astronomical
light curves. Hence, while we could continually update the generative model up to the
last model claiming to be the state-of-the-art in generation, our interest is also to provide
orthogonal techniques to the incremental improvements that newer models could add.

Considering this, we build our generative model based on the only existing GAN model
- to our knowledge- designed to deal with astronomical time-series: the Time-Conditional
Generative Adversarial Network.

Time-Conditional Generative Adversarial Network

This work, also known as T-CGAN ([11]), proposes a method to generate irregularly spaced
time series. It extends the C-GAN framework explained in Section 2.2.6 by using the time-
series timestamps as an attribute to perform conditional generation. This attempts to under-
stand the time-series temporal behavior and generate time-series values that are consequent
with the provided timestamps.

The architectures used forD andG are convolutional and deconvolutional neural networks,
respectively. These architectures are adequate because all the datasets used were subsampled
to a fixed length. In addition, the networks are trained based on the original GAN framework
described in Section 2.2.5, and no stopping criterion is defined for the training of GAN.

Even though we preserve the use of convolutional networks and fixed-length time series,
there are many aspects that we intend to improve. Firstly, this work does not use real
astronomical data and only considers binary toy datasets. Secondly, it does not include
conditional generation with physical parameters of interest, nor does it performs conditional
multi-class generation. Finally, and similarly to the previously described models, it does not
tackle the problem of model selection for a downstream task.

The following section describes one of the essential modifications our methodology includes
to the TC-GAN: The Wasserstein GAN.

Wasserstein GAN

Although the GAN framework could be cataloged as intuitive and straightforward, training
a GAN in practice can be difficult. Some of these difficulties are described in Section 2.2.8.
The Wasserstein-GAN (WGAN, [42]) can overcome some of these training difficulties, being
a widely used GAN model known for its training stability. This GAN proposes replacing the
notion of distance from the original framework with the Wasserstein-1 distance W (Pr, Pg),
also known as the Earth Mover distance. Informally, this distance measures the minimum
cost of transporting all the mass in the distribution A to the distribution B; which can be
formally stated as :

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(xr,xg)∼γ[‖xr − xg‖] (2.14)
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where γ(xr, xg) denotes any joint distribution whose marginals are Pr and Pg, respectively,
and Π(Pr, Pg) represents the set of these joint distributions.

Since the mathematical formulation in Equation 2.14 can be a little rough at first sight,
we attempt to provide a friendly interpretation. Given any transport plan or mapping that
one can use to transform Pr and Pg, the expectation computes the total cost of performing
such action. The W distance corresponds then to infimum, i.e., the greatest lower bound
among all these transport plans.

The W distance has desirable properties that make it suitable to be a loss function. This
distance is continuous everywhere and differentiable almost everywhere, a property that the
original losses are said to be lacking [42]. However, it also has some drawbacks; it is highly
intractable due to the infimum across all the possible transport plans. For this reason, the
W distance is approximated using the Kantorovich-Rubinstein duality ([54]) according to:

W (Pr, Pg) = sup
‖f‖≤1

Exr∼Pr [f(xr)]− Exg∼Pg [f(xg)] (2.15)

where the supremum is searched over the space of all 1-Lipschitz functions. Now, if we have
a parameterized family of functions {DθD} that satisfy the Lipschitz condition, we could
consider solving the alternative problem:

max
θD

Exr∼Pr [D(xr)]− Exg∼Pg [D(xg)] (2.16)

Computing the value in Equation 2.16 would be equivalent to computing W (Pr, Pg) up to
a multiplicative constant under the assumption that the supremum of Equation 2.15 can be
reached for some value θD. This expression can then be used to measure the dissimilarity or
distance between the two distributions. The Lipschitz condition on D is enforced rustically
by performing a weight clipping step on θD after each gradient update. Finally, the losses
can be stated as follows:

LD = E
xg∼Pg

[D(xg)])− E
xr∼Pr

[D(xr)] (2.17)

LG = − E
xg∼Pg

[D(xg)] (2.18)

Wasserstein GAN with Gradient Penalty

An upgraded version of the WGAN is the WGAN with Gradient Penalty (WGAN-GP, [43]).
This model adds a regularization term to the original WGAN loss to satisfy the Lipschitz
condition on D instead of weight-clipping. The WGAN-GP objective that is minimized by
D during the training process is:

LD = E
xg∼Pg

[D(xg)])− E
xr∼Pr

[D(xr)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2] (2.19)
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where LG is not specified since it remains the same as Equation 2.18, Px̂ is the distribu-
tion implicitly defined by sampling uniformly along linear paths between points sampled
from Pr and Pg, and λ is the penalty coefficient that controls the strength of the gradient
regularization.

2.2.8 Training difficulties: A not so fun game

Unfortunately, GAN training can be a challenging task, and it is known to be highly unstable
and many times does not reach convergence [55]. These difficulties arise because the adver-
sarial game between the two networks results in a non-convex optimization problem. To be
more specific, each player tries to reduce their cost, but none of them has total control since
it can still be affected by the other player. In this way, each player can indefinitely make
infinitesimal small gradient steps to reduce their own cost at the expense of the other player,
going into circular orbits rather than arriving at a common equilibrium point.

Mode Collapse

One of the most famous GAN problems is when G learns to produce extremely good samples
with minimal diversity. These samples, repeatedly produced by G, can eventually trick D
and trap into a local minimum, inducing the failure of the training. This phenomenon is
known as mode collapse since G learns to collapse the entire probability distribution into
minimal portions.

Overfitting in GANs

As described in [56], overfitting in GANs occurs when training on small datasets. The less
data there is, the earlier the discriminator becomes too confident in separating real from
generated samples, which impedes the progress of G and eventually deteriorates the quality
of the generated samples.

Even though [56] proposed Adaptive Discriminator Augmentation (ADA) as a technique
to deal with overfitting in GANs, this technique requires the application of differentiable
transformations to augment the training data. Since our goal is to provide a GAN-based
data augmentation method motivated by the limited augmentation methods for time-series,
we intentionally do not include any augmentation method (apart from oversampling) in the
GAN-training process, hence we do not consider using ADA.

2.2.9 Evaluation of GANs

The losses described in Equations 2.18, 2.17 successfully describe the adversarial problem
and quantify the distance between Pr and Pg. However, their high variance makes them
unsuitable for using them as a stopping criterion. Even if they did not suffer from this issue,
metrics based on D are specific to their corresponding G, and cannot generalize properties
about the generated dataset. Consequently, the framework requires additional evaluation
metrics to assess the quality of the generated samples and select the definitive generator for
the downstream task.

Evaluation of generative models requires a notion of the distance between Pr and Pg.
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Defining such a measure for high dimensional distributions is a challenging task and remains
an open problem [57].

An intuitive way of comparing these distributions is as follows: if a generative model can
successfully capture Pr with Pg, the performance on any downstream task should be similar
when our data comes from any of the two distributions. Setting the downstream task to
classification leads to using classification metrics for evaluation.

Classification metrics

Considering that the ultimate purpose of this work is to improve the classification of real
astronomical objects, we naturally adopt the classification accuracy metric first proposed in
[58] and later used in [51], [59], [60] and [61]. For clarity, we choose to preserve the names
in [51]: Train on Synthetic Test on Real (TSTR) and Train on Real Test on Real (TRTR).
These two scores are computed by training a classifier on synthetic (generated) data or real
data and then evaluating its classification accuracy on real data.

Feature-based metrics

Based on the difficulty of finding meaningful metrics in the input space, quantifying the
distance between the distributions Pr and Pg often involves mapping samples x ∈ {xr, xg} into
a feature space with a transformation x 7→ φ(x), where φ is an intermediate representation of
a pre-trained classifier ([62]; [63]; [64]; [65]; [57]). The classifier is generally a convolutional
neural network (CNN) such as the Inception-v3 [66], a widely used architecture in computer
vision.

Since the dimensionality of φ is often lower than that of x, the distributions of the feature
space are often calledmanifolds. As mentioned in Section 2.2.4, we will informally understand
these manifolds as connected regions with a relatively simple structure embedded in a more
complex space.

When evaluating generative models, two desired characteristics are fidelity and diversity.
The former describes how real the generated samples look in comparison to the real ones,
while the latter measures how much of Pr the model can cover with Pg.

The Fréchet Inception Distance (FID) This metric proposed by [63] consists of a
Wasserstein-2 distance between Φr and Φg, the distributions of φr and φg respectively.

Under the assumption that both distributions are multivariate Gaussians, their mean µ
and covariance Σ are estimated to obtain a closed-form of the distance:

FID = ||µr − µg||︸ ︷︷ ︸
(a)

2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2︸ ︷︷ ︸

(b)

) (2.20)

While (a) can be interpreted as a measure of fidelity that indicates the average distance
between the two distributions, (b) can be interpreted as a measure of diversity that compares
the variability of the two distributions.
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A particularly relevant limitation of FID in the presence of highly imbalanced distribu-
tions is that computing the last term in (b) requires full-rank Σ matrices, which makes the
calculation of a per-class FID unfeasible if the minority classes contain fewer samples than the
dimensionality of Φ. Furthermore, even if we had enough samples to compute it, a per-class
score would be unreliable for the minority classes since FID is known to suffer from high bias
for small sample sizes [67].

Precision and Recall This work proposed separating fidelity and diversity into two
relative-density-based metrics: precision and recall [64]. These two metrics improve upon
FID by identifying cases of mode dropping or mode inventing in the generated distribution, in
the pathological case where different models achieve similar FID values by privileging either
one of the two terms in Equation 2.20.

Improved Precision and Recall Motivated by the failure at identifying models with
poor variability, this work proposed improved precision and recall metrics (P&R; [65]).
These metrics are computed by estimating the manifolds Φ ∈ {Φr,Φg} according to:

Φ̂ =
⋃
φ∈Φ

B(φ,NNDk(φ)) (2.21)

where Φ ∈ {Φr,Φg} is a collection of feature samples φ ∈ {φr, φg}, the ball B(x, r) is the
solid sphere around x with radius r, and NNDk(φ) is the distance from φ to its k-th nearest
neighbor within the corresponding manifold. In the presence of outliers, the KNN approach
results in an over-estimation of the manifolds due to the large distances between samples.

Let Φ̂r and Φ̂g be the approximations of the real and generated manifolds described in
Equation 2.21, the P&R metrics can be computed according to:

P(Φr,Φg) =
1

|Φg|
∑
φg∈Φg

1Φ̂r
(φg) (2.22)

R(Φr,Φg) =
1

|Φr|
∑
φr∈Φr

1Φ̂g
(φr) (2.23)

To completely understand how to compute these metrics, Figure 2.15 shows a two-dimensional
example with the estimated manifolds for K = 2. Due to the symmetry of Equations 2.22
and 2.23, we will only show how to compute P. For every generated feature sample φg, we
need to check if it belongs to at least one of the red balls B(φr, NND2(φr)). Since all φg
satisfy this condition, we obtain P = 1

4
(1 + 1 + 1 + 1) = 1.

Density and Coverage This work proposed density and coverage (D&C; [57]) moti-
vated by the vulnerability of P&R to outliers. While P measures fidelity depending on the
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Figure 2.14

Figure 2.15: Two-dimensional scenario of the real and generated manifold approximates. The dashed lines
show the regions B2

r : circles around the real feature samples φr, with radii equal to the distance to their
second nearest neighbors. The generated feature samples φg are shown in blue.

binary decision of whether a feature sample φg belongs to the real manifold Φr, D consid-
ers the amount of balls B(φr, NNDk(φr)) within each φg is contained, adding robustness to
real distributions with outliers. On the other hand, C measures diversity based on the real
manifold estimate instead of the generated one, in contrast to R.

Let Bk
r be the abbreviation of B(φr, NNDk(φr)), and Φ̂g the approximation of the gener-

ated manifold described in Equation 2.21, we compute the D metric according to:

D(Φr,Φg) =
1

k|Φg|
∑
φg∈Φg

∑
φr∈Φr

1Bk
r
(φg) (2.24)

where 1A(x) is the same indicator function defined in Equation 2.5. Returning to the example
of Figure 2.15, we compute D by counting the number of red balls B(φr, NNDk(φr)) that
enclose each φg, resulting in D = 1

2·4(2 + 1 + 1 + 1) = 5
8

= 0.625. This represents clearly the
improvements of D upon P, assigning a lower value to a region with a low concentration of
real samples, which in the case of P resulted in an overestimated value due to the presence
of one outlier sample.

We found that P and C saturate quickly in our practical case, not providing meaningful
information. Since these metrics directly depend on the real manifold estimates, we hypoth-
esize that this behavior can be caused by the sparsity of Φr in the minority classes, leading
to the same over-estimation issue as outliers. Consequently, we decide to use D and R as
our fidelity and diversity metrics (and disregard showing how to compute C).

29



2.2.10 Additional GAN techniques

Exponential Moving Averages

Among the reasons for non-convergence in adversarial algorithms, we find cycling behav-
iors around optimal solutions ([68]; [69]) and slow outward spiraling ([70]). To tackle this
cycling behavior without intervening in the adversarial game between G and D, performing
exponential moving averages over G’s parameters during training is proposed [55]. This tech-
nique helps alleviate the cyclic behavior of the algorithm by shrinking the amplitude of the
oscillations around optimal solutions.

The averaging operation is performed as:

θ̄
(t)
G = θ̄

(t−1)
G + (1− δ)θ(t)

G (2.25)

where θ̄tG represents the exponentially averaged version of the parameter θG at iteration t,
and δ modulates the effective time windows considered into the average. As δ gets closer to
1, the effective time window considered for computing the averages is larger.

It should be clarified that the averaging operation is only computed over G, and it is not
used during training to compute any gradient. Instead, it is only used for inference.

2.2.11 Data Augmentation

Data augmentation refers to a set of techniques applied to a dataset used to create new
samples that are slightly different from the existing ones to increase the number of samples in
the dataset. It is frequently used to prevent overfitting, and it helps improve the performance
of machine learning models for various applications [3]. Classic examples of this in the field
of images are rotations, translations, crops, and flips, among others.

Time-series methods

In the time domain, data augmentation techniques are less standardized. Traditional tech-
niques in time-series correspond to non-parametric transformations such as jittering, scaling,
window-slicing, and window-warping [71]. Parametric techniques can also be applied in data
augmentation, such as the parametric model-based augmentation for transient phenomena
proposed in [72].

Between these time-series methods, we employ the window-warping transformation for
our baseline experiments. The reason for this choice is explained in Section 3.3.8.

Window-warping

Let x(t) be a continuous signal sampled at times t. The window-warping operation starts
by selecting a random time window delimited by the values [t1, t2], where all the times tw in
the window satisfy t1 ≤ tw ≤ t2. The warping operation expands or contracts the signal by
scaling the variations ∆t in tw and shifting the times t > t2 accordingly, altering the length
of the time-series.
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Chapter 3

Methodology

This chapter provides a detailed description of the proposed methodology. First, an overview
of the datasets and their pre-processing steps is provided. Then a complete description of
the framework is given, including the details of the classifier and the generative models, a
preliminary experiment that motivates the two novel contributions of the work (resampling
block and G-score), and the baselines utilized for comparison.

3.1 Datasets
Because of the recognizable shapes of their light curves when visualized in phase space, we
focus on periodic variable stars. However, the framework could be effortlessly extended to
other stars of interest if needed. We perform and validate our experiments on data captured
by two time-domain astronomical surveys.

The Catalina Surveys Data Release-1 This catalog described in [15], captured with
the 8.2 deg2 field-of-view camera mounted on the CSS 27-inch Schmidt telescope, provides
∼61,000 light curves of periodic variable objects, with their corresponding periods and classes.
To decrease the complexity of the multi-class problem induced by the large number of periodic
classes provided, we only consider a subset of the periodic objects grouped following the
mapping described in Table 3.1.

The Zwicky Transient Facility This survey, known by its acronym ZTF [19] provides
a public multi-band stream of alerts captured by a 47 deg2 field-of-view camera mounted
on the Palomar 48-inch Schmidt telescope, is capable of scanning the entire northern sky
every three nights and the plane of the Milky Way every night. To enable further analysis in
follow-up telescopes, the alerts are processed by alert brokers that are designed to provide a
rapid and self-consistent classification. We use the subset of periodic variable stars present
in the ZTF training set created by the ALeRCE broker [21], along with their taxonomy. This
training set was constructed considering sources observed by ZTF whose labels had been
cross-matched from different multiple catalogs.

Previous works ([25], [73]) have already used ZTF data processed by the ALeRCE broker
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Table 3.1: Adopted classes distribution for the Catalina Surveys Data Release-1. The original class acronyms
as described in [15] are shown in (·).

New class Original class

EBSD/D Contact eclipsing binary (EW)
Semi-detached eclipsing binary (β Lyrae)

RRL

Fundamental mode RR Lyrae (RRab)
First over-tone mode RR Lyrae (RRc)
Multi-mode RR Lyrae (RRd)
Long-term modulation (Blazkho)

EBC Detached eclipsing binary (EA)
LPV Long period variables (LPV)

DSCT High amplitude δ Scuti (HADS)
Low amplitude δ Scuti (LADS)

CEP Anomalous Cepheids (ACEP)
type-II Cepheids (Cep-II)

to train different machine learning algorithms. More details about the data processing can
be found in [21].

After pre-processing both datasets following the steps detailed in Section 3.2, we obtain the
definitive versions of the datasets that will be used in our experiments, from now on referred
to as the "Catalina" and the "ZTF" datasets. The class distributions of the pre-processed
datasets are shown in Table 3.2.

Table 3.2: Class distributions of the pre-processed datasets.

Catalina ZTF
Class No

¯ samples Class No
¯ samples

EBSD/D 28980 EB 31477
RRL 7533 RRL 18729
EBC 4500 LPV 5245
LPV 483 DSCT 507
DSCT 241 CEP 471
CEP 182

3.2 Data pre-processing
To use the data described in Section 3.1, some pre-processing steps need to be applied. The
pre-processing consists of four main steps: period folding, outlier filtering, time sampling,
and median centering.

Period folding

The first step of the pre-processing consists of mapping the observation times to phase space,
operation that was described in Section 2.1.3.
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With this operation, we transform times with a variable range of values to phases with
values bounded between 0 and 1. This transformation is convenient because multiple neu-
ral networks will process the phases, and having inputs with a similar range is a desirable
property when training such algorithms.

Outlier filtering

Considering that some of the light curves in the datasets can include a significant amount
of noise, we filter out anomalous observations within each curve of both datasets. These
anomalous observations are in general isolated observations with a magnitude that does not
follow the general behavior of the magnitudes in the light curve, and including them could be
detrimental to the performance of our algorithms. For the Catalina dataset, the anomalous
behavior is quite particular to each light curve, and a general threshold filtering cannot be
applied; therefore, a different approach is needed.

The Catalina light curves are filtered by comparing each magnitude with the local statistics
of the surrounding observations. This comparison is performed using the z-score1 of the
magnitudes within a window that considers only a portion of the light curve. The process
is performed by sliding the window through the entire light curve with a window size ws =
20, removing the outlier observations that satisfy zscore > 3, and repeating two times per
light curve since consecutive outlier observations can significantly alter the moving window’s
statistics and not be detected in a single pass. The results of this filtering step are shown
in Figure 3.1b. After this step, we perform a second filtering stage by discarding the light
curves that contain more than 90% of their magnitudes out of the range delimited by the
class medians and class standard deviations.

On the other hand, anomalous observations in the ZTF data have been already marked
with a magnitude of 100. Hence, these observations can be filtered out by a simple threshold.
Following the filtering steps used by [25], we use magthr = 30.

Time sub-sampling

To bring the problem to a more straightforward domain, we set the length of the light curves
to a predefined value for each dataset. With this simplification, we can work with convolu-
tional architectures rather than recurrent architectures that could hinder the GAN’s training
stability by violating the Lipschitz constraint, adding extra complexity to the problem.

Given a light curve with an arbitrary number of m observations, we obtain the fixed-
length light curves by randomly choosing n from the m available observations. Considering
that we choose our points with no particular bias, this approach should give a reasonable
approximation of the original light curve if n is not too small compared to m.

Since both of our real datasets contain irregularly sampled light curves, and we perform
the sub-sampling step after the period folding step, choosing an observation implies selecting
a magnitude with its corresponding observation phase. Both magnitudes and phases are part

1The z-score is the distance of an observed value x to the population mean µ, measured in terms of the
population standard deviation σ. It is computed by z = x−µ

σ
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of the input of our models, as will be detailed in Section 3.3. Figure 3.1b shows an example
of the time sub-sampling step.

The light curve length is set to 100 observations for the Catalina dataset, whereas that of
the ZTF dataset is 40 observations, consistent with the fact that ZTF is a relatively new sky
survey with a lower number of observations per object compared to the Catalina Survey.

After discarding the light curves that do not have the minimum length to perform this
step, we end up with approximately 41k and 56k samples in the Catalina and ZTF datasets,
respectively, whose class distribution is shown in Table 3.2.

Figure 3.1: (a) Original cepheid from the Catalina dataset. (b) Filtered and sub-sampled versions of the
original cepheid.

Median centering

The last step to get the data ready for data generation is centering it around 0 so all the
magnitudes have a consistent range that can be learned from the generator. This is done
for each light curve by subtracting the center (median) of the magnitudes. We compute the
median instead of the mean because of its robustness to outlier magnitudes.

This step is necessary because G is a neural network that outputs a tanh activation, and
it can only generate values in a symmetrical range around zero. It is worth mentioning that
we could center the data around any other offset, which would require to also include that
offset to the output of the generator; the importance of performing this step is not the value
of the offset itself, but rather the unification of all the magnitudes around a single value so
our generator can model them.

3.3 The Proposed Framework

3.3.1 General Description

We propose a conditional generation approach that extends the T-CGAN [11], adding the
class and amplitude of the light curves to the conditional parameters, which include the
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observation phases according to the original model. The details of how the conditional
parameters are included into the model will be explained in Section 3.3.2.

A summary of the proposed methodology, that details the partitions of datasets for the
models and metrics is provided in Figure 3.2.

We start by partitioning the pre-processed dataset D into Dtrain, Dval and Dtest, the train,
validation, and test sets. Each class in Dval and Dtest contains 20% of the total number of
samples of the smallest class in D. To train the GAN and the classifier we use and Du

train, a
uniformly balanced version of the original Dtrain obtained through the resampling block that
will be explained in Section 3.3.6.

After training the GAN, we use G to create a synthetic uniformly balanced dataset Dugen.
Since G performs conditional generation, to generate a uniformly balanced dataset we sample
the conditional vectors z̄ from Dutrain. It is essential to mention that the generated dataset
will follow the distribution of the dataset from which we sample the conditional vectors. For
example, sampling them from Dtrain would imply generating a heavily unbalanced dataset.
To obtain the TSTR score, we train a classifier on Dugen and evaluate its accuracy on a real
dataset.

We compare the TSTR score to multiple TRTR scores, computed in a similar manner
but using Dutrain(or slightly modified versions of it) instead of Dugen. This comparison is
reasonable because the datasets used for evaluation (Dval and Dtest) are fixed and balanced
by construction: their sampling process from D is designed to have the same amount of
samples per class.

Figure 3.2: Diagram of the methodology
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3.3.2 Data structure details

Let φt, a, and c denote the observation phases, amplitudes and classes of the light curves
respectively, our GAN’s generator requires a sample z̄ = [φt, a, c] from the real dataset Dtrain
and a sample z ∈ R` ∼ N (0, I). The latent space dimensionality ` is set to 16 and 8 for the
Catalina and ZTF datasets, respectively, obeying roughly the proportion between the light
curve lengths of the datasets. Following a C-GAN-like approach [39], the concatenation of z
and z̄ is passed as an input to G to generate synthetic samples.

The conditional parameters are also inputs of D similarly concatenated with real or gen-
erated magnitudes. We create a tensor version of the conditional parameters for this con-
catenation to be viable. Let a and c be tensor versions of a and c, and L and N denote
the light curve length and number of classes of a dataset; we define a ∈ RL as a vector with
value a in all its components, and c ∈ RL×N as a one-hot encoding of c, composed by 0’s
and 1’s vectors, where {0,1} ∈ RL. The tensor version of z̄ is z̄ = [φt, a, c] ∈ RL×2+N . The
concatenation of z̄ and real or generated magnitudes will be the input of D, with dimensions
L× 3 +N .

3.3.3 Classifier details

To reduce the variance of the experiments, the classifier consists of an ensemble of 5 identical
base-classifiers trained independently. The base-classifier is a CNN that receives the concate-
nation of the magnitudes x and phases φt following the classification scheme in [11]. The
input is forwarded through a set of convolution blocks that halve the temporal dimension,
followed by dense layers. The network is trained with a batch size of 256 and using Adam
optimizer [74] with α = 0.0001, β1 = 0.9, β2 = 0.999. Table 3.3 shows the detailed archi-
tecture of the base classifier. To compute all the feature-based metrics explained in Section
2.2.9, we use the output of the last convolution block of this base classifier, trained on each
of the datasets separately.

To save computation time and avoid overfitting, we employ an early stopping criterion
that stops training after seeing no improvements in the validation losses 5 times in a row.
Validation is done every 100 iterations. In addition, after seeing no improvements in the
validation losses 3 times in a row, it restores the previous best model so far and halves the
learning rate.

3.3.4 GAN details

In addition to the original WGAN-GP formulation explained in Section 2.2.7, we include
additional regularization terms to Equation 2.18 and 2.19. Following the AC-GAN-like ap-
proach described in Section 2.2.6, the output of D has two components: Drg ∈ R and
Dy ∈ RN . Therefore, a multi-class cross-entropy regularization of real and generated samples
is added to the discriminator loss. Also, to prevent the GAN equilibrium from happening
in any arbitrary offset, we add a regularization term to prevent Drg(xr) from drifting too
far away from zero, as proposed in [45]. To the generator loss, we only add the multi-class
cross-entropy regularization of generated samples. Consequently, the losses minimized in the
proposed framework are:
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Table 3.3: Classifier architecture. L, and N correspond to the light curve length and number of classes
respectively and they vary depending on the selected dataset as mentioned in Section 3.1. The fixed block
parameters ps and ks stand for pool size and kernel size. Since the convolution blocks always halve the
temporal dimension, we only specify their channel dimensions cin and cout.

Input x ∈ RL

φt ∈ RL

Conv. Block 2→ 32
Conv. Block 32→ 64
Conv. Block 64→ 128
Conv. Block 128→ 64
Conv. Block 64→ 64
Dense dL/32e × 64→ 100
BN, ReLU, Dropout 100→ 100
Dense, Softmax 100→ N

Convolution Block (ps = 2, ks = 3, cin, cout)
Block Input li × cin
1-D Convolution, BN li × cin → li × cout
Max-pooling, ReLU li × cout → dli/2e × cout

L̃D = LD + ξ( E
xr∼Pr

[Hr] + E
xg∼Pg

[Hg]) + ε E
xr∼Pr

[Drg(xr)
2] (3.1)

L̃G = LG + ξ E
xg∼Pg

[Hg] (3.2)

where Hr = H(yr, Dy(xr)) and Hg = H(yg, Dy(xg)) correspond to the cross-entropy between
the real labels and the discriminator predictions, yg are the real labels used to generate xg,
and ξ = 0.001 and ε = 1 control the strength of each regularization term.

We perform ndisc = 5 discriminator iterations per generator iteration, and train for 400K
generator iterations using Adam optimizer with α = 0.0001, β1 = 0.5, β2 = 0.9. At training
time, we compute the Exponential Moving Average (EMA) with decay δ = 0.999 for the
generator weights, to be used when generating samples for evaluation. A full description of
the GAN architecture is shown in Table 3.4.

On the one hand, G receives the concatenation of the noise source z and the conditional
variables z̄ as an input, and it forwards it through a dense layer followed by a set of strided
deconvolutions that duplicate the temporal dimension of every block and simultaneously
halving the number of channels (except for the last block). On the other hand, D receives
the concatenation of the magnitudes x and the conditional tensor z̄, and it forwards it through
a set of strided convolutions that halve the temporal dimension of every block and duplicate
the number of channels, followed by a dense layer.
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Table 3.4: GAN architecture. `, L, and N correspond to the latent space dimensionality, light curve length
and number of classes respectively, which depend on the selected dataset as mentioned in Sections 3.1 and
3.3. The fixed block parameters s and ks stand for stride and kernel size respectively, and li represents the
input length of the blocks. Since the convolution/deconvolution blocks always adjust the temporal dimension
by a factor of 2, we only specify their channel dimensions cin and cout.

(a) Generator

Input z ∈ R`
z̄ ∈ RL+1+N

Dense, ReLU `+ (L+ 1 +N)→ 4× 1024
Deconv. Block 1024→ 512
Deconv. Block 512→ 256
Deconv. Block 256→ 128
Deconv. Block 128→ 64
Deconv. Block 64→ 1
Tanh ·s L× 1

Deconvolution Block (s = 2, ks = 5, cin, cout)
Block Input li × cin
1-D Deconvolution li × cin → 2li × cout
ReLU 2li × cout

(b) Discriminator

Input x ∈ RL×1

z̄ ∈ RL×(2+N)

Conv. Block 1 + (2 +N)→ 64
Conv. Block 64→ 128
Conv. Block 128→ 256
Conv. Block 256→ 512
Conv. Block 512→ 1024
Dense dL/32e × 1024→ N + 1

Convolution Block (s = 2, ks = 5, cin, cout)
Block Input li × cin
1-D Convolution li × cin → dli/2e × cout
LeakyReLU dli/2e × cout

(a) Catalina (b) ZTF

Figure 3.3: Evolution of the validation TSTR accuracy and FID over the course of GAN training for the
different datasets. Both scores were computed every 10k iterations of a single GAN model. The computation
of the FID was done with 50k generated samples divided into 10 batches and the entire real dataset, as
suggested in [63].
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3.3.5 Preliminary experiment: The u-GAN

With all details and parameters provided in the above sections, we perform a preliminary
experiment using Dutrain – the uniformly balanced version of Dtrain – as the GAN training
set, to then generate Dugen and obtain the TSTR accuracy scores. This GAN setup will be
referred to as the "u-GAN".

It is worth mentioning that this setup is the standard approach when training machine
learning algorithms, where Dutrain is usually preferred over Dtrain because it reduces the biases
towards the most populated classes, induced by the highly imbalanced class distribution of
Dtrain.

The first finding of performing this preliminary experiment is that the TSTR accuracy
score can vary significantly depending on how long we train the GAN. For this reason, we
analyze the behavior of different GAN models throughout the training process to find an
adequate criterion for model selection. Figure 3.3 shows the evolution of the validation
TSTR accuracies and FID scores every 10k iterations. Since computing TSTR accuracies
involves training multiple classifiers, evaluating this score more frequently is unfeasible.

The preliminary experiment shown in Figure 3.3 raises two major concerns that will be
addressed in the following sections:

a) The TSTR accuracy reaches an optimal value early in the GAN training and then
decreases consistently, coinciding with the GAN overfitting phenomenon explained in
Section 2.2.8.

b) The FID – the standard metric for evaluating GANs – cannot always measure the drop
in sample quality reflected in the TSTR accuracy curve, as shown in Figure 3.3a.

The behavior detailed in a) can be understood as follows: in a balanced dataset such as
Dutrain, overfitting is not only strongly influenced by the limited amount of training samples,
but it also is exacerbated by the amount of imbalance of the original class distribution
of Dtrain. As the imbalance grows, samples in the minority classes need to be excessively
repeated in order to equate the number of samples in the majority classes, resulting in quick
GAN overfitting caused by D learning fast how samples of the minority classes look. The
rapid decay in validation TSTR accuracy is problematic considering that we need to compute
this metric every 10k iterations. Hence, the best model selected by this metric could be sub-
optimal if the decay occurs suddenly, which motivates the proposed resampling block
explained in Section 3.3.6.

The discrepancy described in b), although undesirable, is not surprising; it was also re-
ported in [61], and it is completely plausible considering the limitations of FID related to
mode dropping and mode inventing mentioned in Section 2.2.9. These two phenomena can
drastically affect how Pg relates to Pr and thus affect the TSTR accuracy without being
reflected in the FID, which suggests that FID is not always reliable in the presence of highly
unbalanced datasets, and motivates the proposed G -score for model selection explained in
Section 3.3.7.
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3.3.6 Resampling block

Motivated by the rapid GAN overfitting shown in Figure 3.3, we propose a resampling opera-
tion that can successfully delay the occurrence of this behavior. A updated version of Figure
3.2 that includes the use of the resampling block is presented in Figure 3.4.

Figure 3.4: Diagram of the methodology including the γ-resampling block

The resampling operation consists of continuously drawing samples from the N classes of
a dataset D, to modify its class distribution. Let S be the number of samples of D. We
start by splitting D into N sub-datasets {Di}Ni=1 of size {Si}Ni=1, where each dataset Di only
contains samples from the i-th class. From each sub-dataset, we draw without replacement
until there are no samples left, then Di is shuffled and the sampling process continues.

The goal of this operation is to modify the class distribution of D by controlling the prob-
ability pi of drawing a sample from each Di. The resampling block serves as a generalization
of the uniform balancing operation by extending the target class distribution to non-uniform
distributions. To illustrate this clearly, we describe two edge cases. On the one hand, we
could leave the original class distribution unbalanced by setting pi = Si/S, in which case
the resampling block does not affect the class distribution, and it would be equivalent to a
"shuffle and repeat" operation. On the other hand, we could obtain the balanced version of
D by simply setting pi = 1/N , which is how we get Dutrain from Dtrain.

Apart from these two scenarios, we could also generate any dataset Dγ whose class dis-
tribution lies "in between" that of D and Du, created by linearly interpolating between the
aforementioned probabilities:

pi = γ

(
1

N

)
+ (1− γ)

Si
S
, where 0 < γ < 1 (3.3)
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where the two edge cases can be recovered with γ = 0 for the imbalanced D, and γ = 1 for
the balanced Du. By using the proposed γ-resampling we are able to control the overfitting
speed of the model, as shown in Figure 3.5. Training a GAN with Du(γ = 1) implies that
all the samples from the minority classes are rapidly shown to the model, leading to fast
overfitting. On the other hand, using D(γ = 0) implies that training batches rarely contain
a sample from the minority classes (1 every 230 samples will be cepheids of the Catalina
dataset, roughly 1 cepheid every 4 batches), avoiding fast overfitting but inducing slow and
unstable training. Training with Dγ(0 < γ < 1) allows a reasonable learning pace without
overfitting rapidly, as shown in Figure 3.5 for γ = 0.25. A model trained with Dγ will be
referred to as the "γ-GAN".

(a) Catalina (b) ZTF

Figure 3.5: Evolution of the validation TSTR accuracy over the course of GAN training for different values
of γ. The figure shows mean ± 1 standard deviation over 15 independent runs of the classifier and a single
GAN model. The computation of both metrics was done every 10k GAN iterations

3.3.7 Model selection: The G-score
As mentioned in Section 3.3.5, the behavior of TSTR accuracies shown in Figure 3.3 evidences
the need for a criterion to choose an adequate G. While using the validation TSTR accuracy
for model selection might look appropriate, doing so involves training new classifiers for every
candidate of G, an operation that becomes computationally expensive. The problem then lies
in finding a fast-to-compute metric that correlates with the TSTR accuracy (and implicitly
with the quality of the generated samples).

The natural option for this metric would be FID, but as also shown in Figure 3.3a, it fails
to measure the decrease in quality of the generated samples reflected in the TSTR accuracy
curve. Additionally, since FID is only a measure of the distance between Pg and Pr, it cannot
differentiate between the fidelity and diversity of the generated samples [57], and it provides
an arbitrarily weighted average between them.

As an alternative, we propose a metric that leverages equally two measures of fidelity and
diversity: density(D) and recall(R). Figure 3.6 shows the results of computing the per-class
density and recall metric for the Catalina dataset.
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Figure 3.6: Class density(D) and recall(R) metrics of the Catalina dataset. Each curve shows mean ± 1
standard deviation over 5 computations of the metrics, for a single GAN model.

The fact that D values are not bounded by one is consistent with the formula presented
in Equation 2.24 and can happen if points in the generated manifold in average belong to
more than K balls of the real manifold, which is probably caused by the over-estimation of
the real manifold mentioned in Section 2.2.9, due to sparse feature spaces. An illustration
of this situation is shown in Figure 3.7, where the sparsity in the real distribution causes
that the generated samples in average belong to more than K = 2 balls, leading to D =
1
4
(2

2
+ 3

2
+ 4

2
+ 3

2
) = 1.5. Additionally, if we reduce the sparsity of the real distribution by

removing the furthest sample (bottom left), we get D = 1
4
(1

2
+ 2

2
+ 3

2
+ 2

2
) = 1.

Figure 3.7: Two-dimensional scenario that illustrates a case in which D is not bounded by 1. The dashed
lines show the regions B2

r : circles around the real feature samples φr, with radii equal to the distance to their
second nearest neighbors. The numbers inside each sample φg denote the number of circles that enclose the
sample.

Since R is bounded between 0 and 1 by definition, the unbounded behavior of D is
undesirable because it privileges D over R in any mean we compute between them. In
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addition, we find that D also presents a clear bias towards the less populated classes. To
overcome these problems, we perform a per-class min-max normalization to D and R as
follows:

D′i =
Di −Dmin

i

Dmax
i −Dmin

i

(3.4)

R′i =
Ri −Rmin

i

Rmax
i −Rmin

i

(3.5)

where the subscript (·)i denotes score of the i-th class, and the superscripts (·)min,max denote
the minimum and maximum score of the class respectively.

After the class scores are normalized, we combine them in an equally weighted F -score
described in Equation 3.6. Finally, considering that we are equally interested in the different
classes, the G-score is obtained by computing the balanced F -score (macro F -score), as shown
in Equation 3.7.

Fi =
2D′iR

′
i

D′i + R′i
(3.6)

G-score =
1

N

∑
i

Fi (3.7)

We prefer the balanced F -score over the F -score of the class means intending to weight
equally majority and minority classes, as suggested by [75].

The results of computing the G-score for multiple GANs trained with different values of
γ are shown in Figure 3.8. As it can be seen, the G-score curves and validation accuracy
curves from Figure 3.5 seem to have a high correlation, which becomes more evident when
analyzing the γ = 0 curve for the Catalina dataset.

The importance of performing the normalization step to compute the G-score can be
evidenced in Figure 3.9, where this step has been omitted. Not performing this normalization
could lead to unfortunate results, which becomes evident when analyzing γ = 0.25 and γ = 1
curves for the Catalina dataset. These curves suggest that sample quality improves if we
continue training when in fact, Figure 3.5(a) shows that the classification accuracies at the
last iterations are far from optimal.

3.3.8 Baselines

To evaluate our generated datasets in the classification task, we compare the TSTR clas-
sification accuracies to multiple baselines. These baselines consist of TRTR classification
accuracy scores when training in augmented real datasets. It is worth mentioning that the
training sets used to compute the scores are all balanced datasets, either GAN-generated
(TSTR) or real-augmented (TRTR).
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(a) Catalina (b) ZTF

Figure 3.8: Evolution of the G-score for different γ values over the course of GAN training for the different
datasets. Each curve shows mean ± 1 standard deviation over 5 computations of the metrics, for a single
GAN model.

(a) Catalina (b) ZTF

Figure 3.9: Evolution of the unnormalized G-score for different γ values over the course of GAN training for
the different datasets. Each curve shows mean ± 1 standard deviation over 5 computations of the metrics,
for a single GAN model.
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Acknowledging the heteroscedastic behavior of astronomical data, we do not consider
jittering as a suitable operation for the problem. Additionally, we discard utilizing window-
slicing techniques since our convolutional architectures work on pre-processed time-series
with a fixed number of observations. Consequently, our augmentation methods consist of
oversampling and different window-warping-based operations.

Oversampling

The oversampling augmentation corresponds to generating the balanced dataset Dutrain by
repeating samples from the original dataset Dtrain, using the resampling block described in
Section 3.3.6.

Window-warping

Since we work with folded light curves in phase space, window-warping expansion could be
incongruous with the fact that the phase space has an upper bound of 1. Consequently, we
derive a new transformation to avoid such incongruence: soft window-warping.

Soft window-warping

We preserve the core idea of window-warping by designing expansions and contractions that
do not increase the length of the time-series. Given a random window, we formulate the
problem as finding a mapping tw 7→ f(tw) such that the length of the transformed window
is at most that of the original, this is f(t1) ≥ t1, f(t2) ≤ t2. We believe that expansions
and contractions should be naturally performed with respect to the center of the window,
expanding from the center to the limits and contracting from the limits to the center.

A mapping that meets these requirements is:

f(tw) = a+ b · tanh (k(tw − c)) (3.8)
a = c = (t1 + t2)/2

b = (t2 − t1)/2

where the values of a, b and c are determined by the desired behavior with respect to the cen-
ter of the window. The constant k modulates the strength of the expansions or contractions
by modifying the saturation degree of the tanh (·), producing expansions when saturated
and contractions otherwise. Since we do not intend to benefit expansions over contractions
or vice-versa, and considering the exponential nature of the tanh (·), k is sampled from a
log-uniform distribution.

An example of performing such sampling is shown in Figure 3.10 where k was chosen from
a log-spaced array in the interval

[
1
4b
, 4
b

]
, with t1 = 5 and t2 = 10. As it can be seen, the

values of k produce that the number of tangents producing contractions is comparable to the
ones producing expansions.

Even though the proposed transformation is designed to be applied across the time axis,
it can be easily extended to the signal axis by noting that since the time intervals are
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Figure 3.10: Behavior of f(t) = a+ b · tanh (k(t− c)) with multiple k chosen form a log-spaced array in the
interval [t1, t2] = [5, 10]. The values of a, b and c where determined according to Equation 3.9

.

monotonous, t1, t2 are the minimum and maximum values in the window respectively. Hence,
the natural extension to the signal axis is:

f(xw) = a+ b · tanh (k(xw − c)) (3.9)
m1 = min

t∈tw
x(t)

m2 = max
t∈tw

x(t)

a = c = (m1 +m2)/2

b = (m2 −m1)/2

When applying these transformations to our astronomical light curves, we consider the
signal axis as the magnitude axis, and the time axis as the phase axis. These two transfor-
mations referred to as soft time-warping and soft magnitude-warping, are illustrated in
Figure 3.11. The result of simultaneously applying these two transformations will be referred
to as soft mixed-warping.

3.3.9 Data Augmentation experiment: mixing generated and real
data

Apart from evaluating the proposed generative models by generating purely synthetic datasets
to be used as training sets for the classifiers (TSTR score), it is interesting how this score
would behave if we somehow combine the generated data of the best model with real data.
This experiment, whose results are shown in Section 4.1, considers the following approach:
we add a resampling block to the methodology Figure 3.4, which will now sample from Dutrain
with a probability of preal, and from Dugen with 1− preal.
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Figure 3.11: Examples of the soft window-warping transformations for an eclipsing binary of the ZTF dataset.
(a) Soft time-warping contraction. (b) Soft time-warping expansion. (c) Soft magnitude-warping contraction.
(d) Soft magnitude-warping expansion.

3.3.10 Details for performing multiple experiments

When reporting experiments that require statistically significant differences, such as Table
4.1, it is necessary to run multiple experiments.

Considering that our framework involves many sources of variability when running multiple
experiments, it is necessary to reduce unnecessary variability sources that could violate the
Ceteris Paribus principle and contaminate the results.

We first fix the partition of D into Dtrain, Dval, and Dtest of Figures 3.2 and 3.4 to
accomplish this. Secondly, though very stable due to the good-natured properties of the
WGAN mentioned in Section 2.2.7, we also remove the stochasticity of training multiple
trials of the same GAN model to evaluate the classification results.

Apart from these two processes, everything in Figures 3.2 and 3.4 is performed indepen-
dently for every trial; this includes using a GAN model to generate different training sets
for every trial, which remains a source of variability. Additionally, there is also variability
in how the datasets are resampled according to the probabilistic approach to select samples
from different classes and the shuffle operations involved within each class dataset.

As a side note, training multiple GANs trials would significantly increase computation time
because training the GANs is computationally expensive, and because multiple classifiers
would need to be trained for every single GAN trial.

47



Chapter 4

Results and Discussion

This chapter provides the results of this work and their corresponding analysis. First, the
results obtained by using our methodology are exposed in Section 4.1, including a visualiza-
tion of the generated light curves for the ZTF dataset and a comparison of the classification
performance of the different models and baselines described in Chapter 3. In addition, a
detailed analysis of the results and interpretation of them is provided in Section 4.2.

4.1 Results

4.1.1 Generated Samples

This section explores the generated samples by visual inspection, a mandatory step when
training generative models. Even though we only show this inspection for the best performing
model trained on the ZTF dataset, it is highly recommendable to extensively visualize the
generated samples to get a real insight into the sample quality of the models. Figure 4.1
shows some GAN-generated light curves for the ZTF dataset. The conditional vector z̄ used
to generate these samples considers phases, amplitude, and class of the real data shown in
the first two columns. The curves in these two columns were intentionally selected to have
similar amplitudes close the median amplitude of their corresponding class.

According to the conditional parameters, and as it can be seen, most of the generated
samples preserve the desired class and amplitude. It is worth mentioning that although some
generated samples present normal fluctuations in phase and magnitude with respect to the
real ones, there are also samples that do not look plausible (see Figure 4.6), which could be
attributed to the lack of truncation techniques or any type of filtering to improve the fidelity
of the generated samples, which we address in Section 4.2.1.

To further illustrate the abilities of our model to condition on different amplitudes, Figure
4.2 shows a variation of this conditional parameter. The curves in the first two columns were
selected to have amplitudes close to the low and high ends of the amplitude distribution of
the corresponding class. The generated samples are conditioned on progressively increasing
amplitudes, moving from the left to the rightmost column (see some of the amplitudes ex-
plicitly shown in the top row). As we can see, the generated samples follow the increasing
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Figure 4.1: Real and generated light curves of the ZTF dataset. Each row represent a different class. The
synthetic curves in green were conditioned on the attributes (phases, class and amplitude) of the corresponding
real curves in blue.

amplitude pattern they were conditioned on, allowing for generating datasets with diverse
amplitude distributions.

Figure 4.2: Real and generated light curves of the ZTF dataset with different amplitudes specified for the top
row as A. Each row represents a different class. The real curves in blue were selected to have amplitudes in
the low and high end of the class. The synthetic curves in green were conditioned on the phases and class of
the corresponding real curves in blue, and on amplitudes that cover the entire range of the class amplitudes.

4.1.2 Classification

The test classification accuracies obtained by using different training sets are shown in Table
4.1. The first four rows (rows A-D) show TRTR classification results when training on real
data that has been augmented with the random transformations described in Section 3.3.8.
The soft-warping transformations (rows B-D) are applied to the dataset previously balanced
by oversampling. The following four rows (rows E-H) show TSTR classification results when
training purely on GAN-generated data, comparing the proposed γ-resampling for GAN
training (γ-GAN) against uniform resampling (u-GAN), and the proposed G-score for model
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selection against the validation accuracy criterion. In addition, row I shows the classification
accuracy obtained by mixing synthetic data from the models in row H with real data, as
explained in Section 3.3.9.

As Table 4.1 shows, none of the soft-warping transformations achieves statistically signif-
icant differences with respect to the oversampling baseline (row A).

On the other hand, the benefits of using generative models are clear. Both GAN models
(u or γ-GAN) achieve significant improvements with respect to the oversampling baseline,
either using the validation accuracy criterion or the G-score criterion for model selection.

We can also notice that using the γ-resampling can be beneficial in comparison to using the
uniform approach. For both datasets, the minimum TSTR classification accuracy corresponds
to the u-GAN (E for Catalina and F for ZTF), while the maximum corresponds to the γ-
GAN (H for both datasets). Furthermore, for each dataset, the best TSTR accuracy is always
significantly better than the worst.

Regarding the model selection criteria, the G-score shows to be an effective criterion,
achieving accuracies that are at least statistically equivalent to the ones obtained by the
computationally expensive validation accuracy criterion. Furthermore, it can sometimes
obtain significantly better results, as shown in the ZTF dataset by the γ-GAN model.

Interestingly, the combination of the proposed γ-GAN + G-score obtains the best classifi-
cation accuracies among models that use only synthetic data, statistically outperforming
all existing methods for ZTF dataset, and all but one (γ-GAN + val. accuracy in row G) for
the case of the Catalina dataset.

Finally, before understanding the results shown in row I, it is necessary to introduce
Figure 4.3, which shows the validation classification accuracies for different combinations of
real and synthetic. The model in row I, includes synthetic data from the previous best model
(γ-GAN + G-score in row H) and real data, mixed with the probability preal that gave the
maximum validation accuracy in Figure 4.3. Although classification accuracies of this model
numerically outperform all previous existing models, the p-values with respect to row H show
that the improvement is not significantly better than using only synthetic data

For completeness and to compare the predictions between the models, the confusion matri-
ces of the oversampling baseline (row A) and the best performing model (row I) are provided
in Figures 4.4 and 4.5. Interestingly, if we compare the two models, the percentage of correct
predictions always improves, except for the RR Lyrae class in both datasets.
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Table 4.1: Classification accuracy of the different augmentation methods on test datasets. For each method,
we report the mean and standard deviation calculated over 15 independent runs. We also report the p-value
of the two-sided Welch’s tests between each method (rows) and the baselines shown with capital letters in
the columns. All the models were trained on a single GPU (NVIDIA GeForce GTX 1080 Ti), requiring
approximately 17.3 hours for a GAN model and 3.5 minutes for an ensemble of classifiers.

Method
Catalina ZTF

Accuracy p value Accuracy p value
[%] A [%] A

T
R
T
R

A Oversampling 73.44±1.22 72.61±0.69
B Soft time-warping 74.06±1.04 .145 72.69±0.99 .786
C Soft mag-warping 73.64±1.79 .723 72.45±0.70 .533
D Soft mixed-warping 73.82±1.50 .452 72.53±0.69 .753

u-GAN A E F G A E F G

T
ST

R

E Val Acc 75.97±0.94 <.001 74.17±0.62 <.001
F G-score 76.28±0.74 <.001 .324 73.79±0.50 <.001 .075

γ-GAN
G Val Acc 76.86±1.09 <.001 .024 .102 74.37±0.51 <.001 .342 .003
H G-score 76.97± 0.79 <.001 .004 .041 .752 74.94± 0.44 <.001 <.001 <.001 .002

γ-GAN + Real A E F H A E F H
I G-score 77.06± 0.75 <.001 .001 .008 .754 75.31± 0.57 <.001 <.001 <.001 .056

(a) Catalina (b) ZTF

Figure 4.3: Validation classification accuracy for the data augmentation experiment described in Section
3.3.9. The figure shows mean ± 1 standard deviation over 15 independent runs of the classifier and a single
GAN model, for different values of preal.
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(a) Real data only (b) Real and synthetic data

Figure 4.4: Test classification results for the Catalina dataset. (a) Classifier of row A in Table 4.1. (b)
Classifier of row I in Table 4.1. We report the mean and standard deviation calculated over 15 independent
runs

(a) Real data only (b) Real and synthetic data

Figure 4.5: Test classification results for the ZTF dataset. (a) Classifier of row A in Table 4.1. (b) Classifier
of row I in Table 4.1. We report the mean and standard deviation calculated over 15 independent runs
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4.2 Discussion

4.2.1 Quality of generated samples

An example of individual samples that may not satisfy desired properties could be the top
right light curve in Figure 4.2. This eclipsing binary, supposed to have an amplitude of 0.56,
clearly has a lower amplitude than the real eclipsing binary in the second column of the
same figure, which has an amplitude of 0.51. This indicates that even though performing
decently for most of the amplitudes, the model fails at conditionally generating samples with
amplitudes close to the distribution’s limits. This could be explained by the lack of samples
belonging to these distribution regions or the lack of penalization of the models for such
cases. In fact, we did try adding an explicit amplitude error regularization, but it caused the
models to perform terribly, obtaining classification accuracies close to 40%.

Regarding the samples of Figure 4.1, although the generated samples look realistic in gen-
eral, there can be samples that present noisy artifacts, making them not the best candidates
for the classes they intend to represent. While these artifact samples could be easily avoided
by applying truncation techniques on the latent space of G, it would not be informative about
the quality of the individual samples, impeding us from learning what makes a sample look
realistic.

A metric that could help us measure individual sample quality is the realism score [65],
computed over the manifold representation used for the D and R metrics. Given a generated
feature sample φg and a set of real samples Φr = {φr}, the similarity between φg and the
real manifold Φr is calculated as:

R(φg,Φr) = max
φr∈Φr

{
‖NNDk(φr)‖2

‖φr − φg‖2

}
(4.1)

where NNDk(φ) is the distance from φ to its k-th nearest neighbor within the corresponding
manifold. Equation 4.1 compares the radii of the KNN induced hyperspheres with center in
φr to the distance between φr and the sample φg. Naturally, if φg does not belong to any of
the hyperspheres, R will be low, and its value will increase the closer φg is to any φr.

The effect of ranking the generated samples of the ZTF dataset by realism score is shown
in Figure 4.6.

Because it can successfully identify artifacts that could be filtered out of the dataset, we
would in principle expect that using a realism score filtering would improve our results even
further. However, this is not the case. Empirically, we found that applying this filtering
to our generated datasets only deteriorates the results as it can be seen in Figure 4.7. We
hypothesize that these artifacts, although undesirable, are not crucial when defining the
decision boundaries of the problem, but they could act as regularizers. Moreover, strongly
filtered datasets cause a drop in the classification accuracy, probably caused by their over-
constrained diversity the resulting datasets.

53



Figure 4.6: Realism score ranking of the ZTF generated light curves. To rank the samples, we first generated
a replication of the Du

train, computed their realism score, and then selected the best and worst samples from
the sorted realism scores.

(a) Catalina (b) ZTF

Figure 4.7: Validation classification accuracy for the realism score-filtering. The classifiers were trained on
real data augmented with synthetic data previously filtered based on different realism score thresholds. The
figure shows mean ± 1 standard deviation over 15 independent runs of the classifier and a single GAN model.
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4.2.2 Classification results

Soft-warping transformations Regarding the effects of the proposed soft-warping aug-
mentations for classification, we can see that despite the fact that they create plausible light
curves, they do not show improvements in the classification task. We hypothesize that the
diversity added to the dataset by these transformations is not substantial enough for the
classifiers to benefit from it.

γ-resampling The results suggest that the proposed resampling offers a clear improvement
upon uniform resampling for GAN training. We believe that this improvement comes from
the delay in the GAN overfitting, providing more potentially good models to choose from
before the GAN completely overfits. With respect to the no-resampling model, Figure 3.5
shows that models trained γ = 0 and γ = 0.25 reach comparable accuracies, consistently with
the fact that the resampling block does not add any extra information. Using the resampling
block can offer a more stable training that reaches similar performance in a shorter training
time. This can be particularly relevant if the defined iteration horizon is not long enough to
capture the peak accuracy as in figure 3.5b. For this reason, we do not think that γ should
be tuned thoroughly, and we set it to γ = 0.25, placing the G-score peak within the extent
of training iterations, earlier than the peak of γ = 0 but later than that of γ = 1.

G-score For the model selection criterion, the correlation between the metrics and the
classification results validate the G-score as a metric to evaluate the quality of the generated
samples. Using this metric instead of the validation accuracy, it is interesting because of the
subtle improvements in TSTR. It also offers faster computation times: computing G-score is
approximately six times faster than computing the validation TSTR accuracy.

We hypothesize that these subtle improvements come from the robustness of the G-score
against overfitting. While G-score compares Dugen to the entire training set Dtrain, the vali-
dation accuracy score is computed on the small dataset Dval for evident reasons. Hence, it is
more susceptible to overfitting. A fact that reinforces this hypothesis is the consistently lower
variance of the models selected with the G-score criterion compared to validation accuracy.
On the other hand, computing the G-score also has some drawbacks related to the normal-
ization step restrictions. Since the normalization requires the minimum and maximum value
of the D and R metrics, we cannot compute the G-score during the training time, and we
must first completely train the models. In addition to this, it only allows for comparison
between different candidates of the same run, not permitting comparisons between different
runs that likely have different normalization parameters.

Data augmentation The results in Figure 4.3 are quite illustrative of the fact that using
synthetic data can be beneficial for the training of the classifiers. Moreover, there is a shared
pattern in both datasets: the performance of the models increases to a point and then drops as
we add more and more real data at the expense of synthetic data. The trade-off between real
and synthetic data is interesting, and it could be understood if our generative models provide
a good -but not perfect- approximation of the real data distribution. Hence, combining the
data generated by these models with the original data they try to recreate could still provide
incremental benefits for classification.
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Confusion matrices The results of the confusion matrices shown in Figures 4.4 and 4.5
can help us understand where our generated data is beneficial. First, it is interesting to see
how adding synthetic data to the most populated class in both datasets adds only a marginal
benefit. Second, classes that benefit from synthetic data are coincidentally the three less
populated classes of each dataset. These two facts could suggest that the great advantage
that our models add is the diversity of the generated samples, which is beneficial for classes
with limited diversity and irrelevant for diverse classes.

4.2.3 Alternative to G-score
Evaluating generative models by fidelity and diversity can be posed as a multi-objective
problem. Thus, we provide an alternative to the G-score that considers both objectives
(D&R) simultaneously, according to the problem’s nature.

As an alternative to evaluate all candidates with TSTR validation accuracy, we propose
evaluating only candidates that lie on the Pareto frontier 1 of the raw macro-density and
macro-recall. For example, in the case of the Catalina dataset, doing so would imply evalu-
ating approximately 1/4 of total candidates.

The disposition of the optima for the Catalina dataset is shown in Figure 4.8. Interestingly,
the model selected with the validation accuracy criterion is in the sub-optimal region which
supports the idea of overfitting explained in Section 4.2.2. On the other hand, the model
selected with G-score belongs to the Pareto frontier, which is not necessarily guaranteed
considering the extra normalization step included in the computation of the G-score.

Using this alternative offers an attractive advantage. Not performing the normalization
step of the G-score allows for comparing different GAN setups in the DR plane, which could
also be used to perform hyperparameter optimization of the models. In this scenario, we first
need to identify the models that lie in the Pareto frontier considering all the D&R scores and
then evaluate these candidates based on the validation TSTR score to choose an operating
point.

1In multi-objective optimization, the Pareto frontier is the set of all the Pareto optimal solutions. A
Pareto optimal solution is defined as a solution that cannot be improved in any individual objective without
worsening others.
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Figure 4.8: Macro density and recall metrics for the Catalina dataset. Each point corresponds to the average
of 5 independent computation of density and recall for a single GAN model.
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Chapter 5

Conclusions

In this thesis, we have presented a GAN-based data augmentation methodology for astronom-
ical time-series, to improve the classification accuracy of periodic variable stars by mitigating
the problems of small and imbalanced astronomical datasets. The designed generative model,
consisting of a conditional WGAN, is able to deal with irregularly sampled time-series and
perform conditional generating on other features of interest, such as the class and amplitude
of the time-series.

Motivated by the rapid overfitting of our generative model in the presence of imbalanced
datasets, we proposed a resampling technique (γ-resampling) to mitigate this behavior. Also,
inspired by the incapability of the standard metric (FID) to measure this overfitting, we pro-
posed a novel evaluation metric (G-score) that correlates with TSTR classification accuracy;
hence it helps select a generative model among the possible candidates saved during training,
with less computation time than the original TSTR classification accuracy.

To robustly assess the quality of the generated samples and their impact on the classifi-
cation task, we designed a light curve classifier based on ensembles of neural networks that
can provide statistical consistency when being trained multiple times.

In order to compare our model with other classic data augmentation techniques for time-
series such as window-warping, we proposed a modification of this technique that is more
suitable for our scenario (soft window-warping).

Using the proposed methodology, we can generate diverse synthetic datasets of irregularly
sampled time-series that capture the properties of the original training sets and leverage their
diversity to outperform classifiers trained uniquely on real data. Our experiments explored
training the classifiers with only generated synthetic datasets, only real datasets, and a
combination of both datasets to use our generative models as data augmentation methods.

The proposed model could be extended to work with classifiers that are currently oper-
ating in real-time such as the ALeRCE light curve classifier [25], boosting its performance
on the ZTF stream and eventually on the future LSST, contributing to understanding the
tridimensional structure and formation of our galaxy and its neighbors.
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As an additional note, the work presented in this thesis has been summarized in a paper
[76] that was accepted and published in The Astrophysical Journal (ApJ).

5.1 Future Work
Although effective in this simplified setup, the proposed methodology could be improved
in many aspects. For example, the concatenation operation used to add the conditional
parameters toD is sub-optimal since it repeats unnecessary information, as detailed in Section
3.3.2. It may also not scale well if there were more conditional parameters of interest. A more
thoughtful way of doing this would be using embedding layers to project these parameters into
an intermediate representation, which could be still added to the input of the discriminator
in a C-GAN-like approach or at later stages in a Projection Discriminator-like approach [41].

Another exciting improvement to the model could be upgrading it to a scenario where
the input data has a variable length. This upgrade should involve recent GAN models that
include recurrent neural networks in their architectures, such as [52] or [53].

Regarding the values used for conditional generation, we used the class-conditional param-
eter to generate datasets with uniform class distributions. Although our model permits other
conditional parameters such as amplitude, in all experiments, we replicated the distribution
of their real counterparts. An interesting extension of the work could include analyzing how
the results vary depending on the conditional distribution of these parameters, and other
physical parameters that may be relevant to include.

Similarly, related to sampling methods for generation, all our synthetic datasets were gen-
erated by sampling the latent vector z from a multivariate Gaussian distribution. Evaluating
different sampling methods, such as those presented in [65], and inspecting how they affect
the qualitative and quantitative results, could be an exciting path to follow.

From an astronomical perspective, we can mention two interesting improvements. First,
extending this generation framework to non-periodic sources would be an exciting next step
that should be accomplished almost effortlessly. Second, modifying the model to deal with
multi-band light curves could be tackled by adding the desired band to the conditional
parameters of interest, and it would be essential in applying this framework to data from the
new-generation telescopes.

Finally, a piece of advice that we would like to transmit to anyone interested in using
generative models for a downstream task is to learn as much as possible about the downstream
task itself. Specifically, if the desired downstream task is classification, and the classifiers
that want to be improved are well-known feature-based algorithms, attempting to generate
time-series, is probably not the best idea. Instead, the generative models should intend to
be as specific to the downstream task as possible, which for this case would mean learning
the distribution of the features that will be used then for the classification problem instead
of tackling it indirectly by generating time-series.
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