
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

GRADUAL SYSTEM F

TESIS PARA OPTAR AL GRADO DE
DOCTORA EN CIENCIAS, MENCIÓN COMPUTACIÓN

ELIZABETH LABRADA DENIZ

PROFESOR GUÍA:
ÉRIC TANTER

PROFESOR CO-GUÍA:
MATÍAS TORO IPINZA

MIEMBROS DE LA COMISIÓN:
DOMINIQUE DEVRIESE

FEDERICO OLMEDO BERON
ISMAEL FIGUEROA PALET

SANTIAGO DE CHILE
2022

Resumen

SISTEMA F GRADUAL

El polimorfismo paramétrico es un mecanismo de abstracción ampliamente utilizado en los
lenguajes de programación, que permite la definición genérica de funciones y tipos, y propor-
ciona reutilización de código e independencia de representación. Por otra parte, la tipificación
gradual permite una transición paulatina entre la comprobación de tipos estática y dinámica
basada en anotaciones de tipos controladas por el programador, integrando las ventajas de
ambos mundos. Llevar los beneficios del tipado gradual a un lenguaje con polimorfismo
paramétrico como el Sistema F, preservando al mismo tiempo la parametricidad relacional,
ha resultado ser un gran reto. La dificultad observada en trabajos anteriores se basa en una
fuerte tensión entre las dos propiedades deseables de un lenguaje paramétrico gradual, la
parametricidad, y la gradualidad, considerando que las funciones pueden intentar utilizar la
tipificación gradual para eludir la parametricidad. Los primeros intentos se formularon hace
más de una década, y se han propuesto además varios diseños con sintaxis, comportamientos
y propiedades variables. Se ha demostrado que, sin tomar precauciones, la parametricidad
podŕıa ser violada en un lenguaje gradual. Por esta razón, todos los lenguajes polimórficos
graduales propuestos han utilizado alguna forma de mecanismo de sellado/desellado. La idea
detrás del sellado/desellado es que un valor sellado con una clave sólo puede ser manipulado
por una expresión de desellado que conozca la clave; de lo contrario, se lanza un error.

Esta tesis contribuye a la adopción del polimorfismo paramétrico en un lenguaje grad-
ual, preservando la sintaxis del Sistema F y satisfaciendo la gradualidad y parametricidad
al mismo tiempo. Exploramos en profundidad la integración de estas dos caracteŕısticas
derivando dos lenguajes, GSF y Funky. GSF es un lenguaje fuente paramétrico gradual que
viola la gradualidad en algunos escenarios. No obstante, establecemos una propiedad más
débil que nos permite refutar varias afirmaciones sobre teoremas gratis graduales, aclarando el
tipo de razonamiento que admite la parametricidad gradual. Funky es un lenguaje intermedio
que va más allá, satisfaciendo plenamente la parametricidad y la gradualidad, y permitiendo
la incrustación de diferentes lenguajes fuentes paramétricos graduales. Basándonos en la
observación de que la tensión entre gradualidad y parametricidad proviene de la decisión
temprana de sellar valores basada en la información de tipo, proponemos el sellado plausible
como un nuevo mecanismo de lenguaje intermedio que permite posponer tales decisiones al
tiempo de ejecución. Funky soporta el sellado plausible en un entorno simplificado en el que
el polimorfismo se restringe a las instancias con tipos base y variables. Aunque los resultados
presentados tienen algunas limitaciones, proponen una nueva forma de reconciliar la para-
metricidad y la gradualidad en un lenguaje con la sintaxis del Sistema F. Además, algunas
de nuestras técnicas novedosas son potencialmente reutilizables en otros entornos.

i

ii

Abstract

Parametric polymorphism is an abstraction mechanism widely used in programming lan-
guages, enabling the generic definition of functions and types and providing code reusability
and representation independence. On the other hand, gradual typing supports the smooth
transition between static and dynamic type checking based on programmer-controlled type
annotations, integrating the benefits of both worlds. Bringing the advantages of gradual typ-
ing to a language with parametric polymorphism like System F while preserving relational
parametricity has proven extremely challenging. The difficulty observed in these efforts is a
strong tension between the two desirable properties of a gradual parametric language, para-
metricity, and graduality, considering that functions may attempt to use gradual typing to
bypass parametricity. First attempts were formulated more than a decade ago, and several
designs have been proposed with varying syntax, behavior, and properties. It has been shown
that without further precaution, parametricity might be violated in a gradual language. For
this reason, all gradual polymorphic languages proposed have used some form of sealing/un-
sealing mechanism. The idea behind sealing/unsealing is that a value sealed with a key
can only be manipulated by an unseal expression that knows the key; otherwise, an error is
thrown.

This thesis contributes to adopting parametric polymorphism in a gradual language, pre-
serving the syntax of System F and satisfying graduality and parametricity simultaneously.
We deeply explore the integration of these two features by deriving two languages, GSF, and
Funky, thereby developing the metatheory of gradual parametricity. GSF is a gradual para-
metric source language that violates graduality in some specific scenarios. We nevertheless
establish a weaker property than graduality that allows us to disprove several claims about
gradual free theorems, clarifying the kind of reasoning supported by gradual parametricity.
Funky is an intermediate language that goes further, fully satisfying parametricity and grad-
uality, and allowing the embedding of different gradual parametric source languages. Based
on the observation that the tension between graduality and parametricity comes from the
early commitment to seal values based on type information, we propose plausible sealing as
a new intermediate language mechanism that allows postponing such decisions to runtime.
Funky supports plausible sealing in a simplified setting where polymorphism is restricted
to instantiations with base and variable types. Although the results presented here still
have some constraints, they propose a new way of reconciling parametricity and graduality
in a language with the System F syntax. Furthermore, some of our novel techniques are
potentially reusable in other settings.

iii

Table of Content

1 Introduction 1

2 Gradual Parametricity: Background and Basics 6

2.1 Parametric Polymorphism . 6

2.2 Gradual Typing . 8

2.3 Gradual Parametricity in a Nutshell . 11

2.4 Gradual Parametricity: Challenges . 12

I Gradual Parametricity, Revisited 18

3 Gradual System F 19

3.1 GSF, Informally . 20

3.1.1 Design Principles . 20

3.1.2 Properties . 20

3.1.3 GSF in Action . 21

3.2 Preliminary: The static language SF . 22

3.3 GSF: Statics . 25

3.3.1 Syntax and Syntactic Meaning of Gradual Types 25

3.3.2 Lifting the Static Semantics . 27

3.3.3 Static Properties of GSF . 29

3.4 GSF: Evidence-Based Dynamics . 30

3.4.1 Background: Evidence-Based Semantics for Gradual Languages . . . 30

iv

3.4.2 Reduction for GSF . 31

3.4.3 Elaborating GSF to GSFε . 35

3.5 GSF: Evidence for Gradual Parametricity 36

3.5.1 Simple Evidence, and Why It Fails 36

3.5.2 Refining Evidence . 39

3.5.3 Basic Properties of GSF Evaluation 45

3.6 GSF and the Dynamic Gradual Guarantee 46

3.6.1 Violation of the Dynamic Gradual Guarantee in GSF 47

3.6.2 Towards a Weak Dynamic Gradual Guarantee for GSF 48

3.6.3 Weak Dynamic Gradual Guarantee for GSF 50

3.6.4 Syntactic Strict Precision for GSF . 54

3.7 Gradual Parametricity for GSF . 57

3.7.1 On Gradual Parametricities . 57

3.7.2 Gradual Parametricity in GSF . 63

3.7.3 Parametricity vs. the DGG in GSF 68

3.7.4 Gradual Free Theorems in GSF . 70

3.8 Related Work . 71

3.9 Conclusion . 72

4 Embedding Dynamic Sealing in GSF 73

4.1 Overview . 73

4.2 Embedding a Dynamically-Typed Language in GSF 74

4.3 The Cryptographic Lambda Calculus λseal 75

4.4 Embedding λseal in GSF . 76

4.5 Semantic Preservation of the λseal Embedding in GSF 78

4.6 Related Work . 82

4.7 Conclusion . 82

v

5 Gradual Existential Types in GSF 83

5.1 Existential Types in a Nutshell . 83

5.2 Existential Types: Primitive or Encoded? . 84

5.3 Gradual Existential Types in GSF∃ . 85

5.4 Semantics of GSF∃ . 87

5.4.1 The Static Language SF∃ . 87

5.4.2 GSF∃: Statics . 89

5.4.3 GSF∃: Dynamics . 89

5.5 Properties of GSF∃ . 92

5.5.1 Static Properties . 92

5.5.2 Dynamic Gradual Guarantees . 93

5.5.3 Parametricity . 93

5.5.4 Representation Independence . 95

5.6 Related Work . 96

5.7 Conclusion . 97

II Plausible Sealing for Gradual Parametricity 98

6 The Gradual Language for Plausible Sealing F?
ε 101

6.1 Overview of F?
ε . 101

6.1.1 Evidence for Plausible Sealing . 102

6.1.2 Comparing Plausible Sealing and Prior Approaches 103

6.2 The Evidence-Based Language F?
ε . 104

6.2.1 Syntax and static semantics . 104

6.2.2 Dynamic semantics . 106

6.3 Evidence for Plausible Sealing in F?
ε . 107

6.3.1 Proof-relevant precision . 107

6.3.2 Evidence and consistent transitivity 109

vi

6.4 F?
ε: Gradual Parametricity . 113

6.5 F?
ε: Gradual Guarantees . 116

6.5.1 Evidence Precision . 116

6.5.2 Term precision . 118

6.6 Related Work . 119

6.7 Conclusion . 120

7 The Gradual Source Language F? 121

7.1 F?: Statics . 121

7.2 F?: Elaboration to F?
ε . 124

7.3 Source-level graduality . 130

7.4 Source-level parametric reasoning . 130

7.5 Discussion and Related Work . 133

7.6 Conclusion . 134

8 Conclusion 135

Bibliography 137

ANNEXES 143

Annex A Gradual Parametricity, Revisited 144

A.1 SF: Well-formedness . 144

A.2 GSF: Statics . 145

A.2.1 Syntax and Syntactic Meaning of Gradual Types 145

A.2.2 Lifting the Static Semantics . 146

A.2.3 Well-formedness . 149

A.2.4 Static Properties . 150

A.3 GSF: Dynamics . 156

A.3.1 Evidence Type Precision . 156

vii

A.3.2 Initial Evidence . 156

A.3.3 Consistent Transitivity . 156

A.3.4 GSFε: Dynamic Semantics . 156

A.3.5 Translation from GSF to GSFε . 158

A.4 GSF: Properties . 161

A.4.1 Type Safety . 161

A.4.2 Static Terms Do Not Fail . 165

A.5 GSF and The Dynamic Gradual Guarantee 169

A.5.1 Evidence Type Precision . 169

A.5.2 Monotonicity of Evidence Transitivity and Instantiation 169

A.5.3 Weak Dynamic Gradual Guarantee for GSF 178

A.5.4 Syntactic Strict Precision for GSF . 188

A.6 GSF: Parametricity . 194

A.6.1 Auxiliary Definitions . 194

A.6.2 Fundamental Property . 194

A.6.3 Contextual Equivalence . 234

A.7 Parametricity vs. the DGG in GSF . 236

A.8 A Cheap Theorem in GSF . 237

A.9 Embedding Dynamic Sealing in GSF . 239

A.10 Gradual Existential Types in GSF . 265

A.10.1 Existential types: primitive or encoded? 265

A.10.2 Translation from GSF∃ to GSF∃ε . 266

A.10.3 Properties of GSF∃ . 266

A.10.4 GSF∃: Parametricity . 267

A.10.5 A Weak Dynamic Gradual Guarantee for GSF∃ 284

Annex B Plausible sealing 295

B.1 The Evidence-Based Language F?
ε . 295

viii

B.2 Evidence in F?
ε . 300

B.2.1 Proof Relevant Gradual Type Precision 300

B.2.2 Pullback Operator . 306

B.2.3 Associativity of consistent transitivity 315

B.2.4 Evidence operations . 323

B.3 F?
ε: Gradual Parametricity . 325

B.4 F?
ε: Gradual Guarantees . 392

B.5 The Static Language System F1 . 414

B.6 The Gradual Source Language F? . 414

B.6.1 Lifting the Static Semantics . 414

B.6.2 Typing judgement . 429

B.6.3 Elaborating F? to F?
ε . 429

B.6.4 Gradual Guarantees . 433

B.6.5 Parametricity . 462

B.6.6 Source-level parametric reasoning . 463

B.7 Examples . 469

ix

Chapter 1

Introduction

Parametric polymorphism is an abstraction mechanism widely used in programming lan-
guages, enabling the generic definition of functions and types and providing code reusability
and representation independence. System F (Reynolds, 1974; Girard, 1972) is the stan-
dard language to formalize this notion of parametric polymorphism. Relational parametric-
ity (Reynolds, 1983) is a rich semantic property of parametric polymorphism, which stipulates
that the behavior of polymorphic functions must be independent of the specific types they are
instantiated with. For instance, the behavior of a function f of type ∀X.X → X should not
depend on the type X it is instantiated with and, consequently, should treat the argument
of type X opaquely. Hence, f [Int] 42 should never return a different value than 42.

Most languages today have either static typing or dynamic typing, and both have comple-
mentary strengths. Static typing provides early error detection and efficient code generation,
but it can be cumbersome to adapt. Conversely, dynamic typing enables fast adaptation to
change requirements and flexibility, at the cost of having runtime checks and errors, mak-
ing the execution slower. There are many approaches for integrating static and dynamic
type checking (Cartwright and Fagan, 1991; Abadi et al., 1991; Matthews and Findler, 2007;
Tobin-Hochstadt and Felleisen, 2006; Bierman et al., 2010). In particular, gradual typing
supports the smooth integration of static and dynamic type checking by introducing the
notion of imprecision at the level of types, which induces a notion of consistency between
plausibly equal types (Siek and Taha, 2006). Imprecise types can range from fully-precise
static types to the fully-imprecise unknown type (hereafter written ?), with partially specified
types in between, such as Int → ?. Type Int → ? is interpreted as the type of any function
receiving an Int as an argument and returning an expression of any type, such as Int, Bool,
or another function.

A gradual type checker treats imprecision optimistically, and the runtime of the gradual
language detects when optimistic static assumptions are invalid. Such detection is usually
achieved by compiling to an internal language with explicit casts, called a cast calculus. For
instance, the source gradual term λx : ?.x + 1 would typically be elaborated to the target
term λx : ?.〈Int⇐=?〉x + 1, where the cast 〈Int⇐=?〉 ensures that the argument given at
runtime is indeed an Int value, otherwise an error is raised.

In addition to being type safe, a gradually-typed language is expected to satisfy a number

1

of properties that characterize the static-to-dynamic checking spectrum supported by the
language (Siek et al., 2015a; New and Ahmed, 2018). A particularly challenging one is
the dynamic gradual guarantee (DGG) (Siek et al., 2015a), also called graduality (New and
Ahmed, 2018). Informally, graduality is a monotonicity property of reduction with respect
to precision: introducing imprecision in a program ought not to change its behavior. For
instance, the function λx : ?. x+ 1 of type ?→ Int should be transparently usable in place of
λx : Int. x+ 1. Although the DGG and graduality have the same purpose: characterizing the
static-to-dynamic transition of a gradual language, they are formalized differently. While the
DGG by Siek et al. (2015a) is based on a syntactic notion of precision, graduality by New
and Ahmed (2018) is based on a more semantic notion. For example, graduality by New and
Ahmed (2018) requires embedding-projection pairs (going to a less precise type and back
is the identity): for any term t of type G, and given G v G′, then t :: G′ :: G should be
observationally equivalent to t (we write t :: G for type ascriptions). In this thesis, the terms
DGG and graduality are used interchangeably to refer to the same concept.

Since its early formulation in a simple functional language (Siek and Taha, 2006), gradual
typing has been explored in a number of increasingly challenging settings such as subtyp-
ing (Siek and Taha, 2007; Garcia et al., 2016), references (Herman et al., 2010; Siek et al.,
2015b), effects (Bañados Schwerter et al., 2014, 2016), ownership (Sergey and Clarke, 2012),
typestates (Wolff et al., 2011; Garcia et al., 2014), information-flow typing (Disney and Flana-
gan, 2011; Fennell and Thiemann, 2013; Toro et al., 2018), session types (Igarashi et al.,
2017b), refinements (Lehmann and Tanter, 2017), dependent types (Eremondi et al., 2019),
set-theoretic types (Castagna and Lanvin, 2017), Hoare logic (Bader et al., 2018), separation
logic (Wise et al., 2020), and, most relevant to this work, parametric polymorphism (Ahmed
et al., 2011, 2017; Ina and Igarashi, 2011; Igarashi et al., 2017a; Xie et al., 2018; New et al.,
2020).

It turns that out that integrating parametric polymorphism and gradual typing into a
language while preserving parametricity and graduality is extremely challenging (Matthews
and Ahmed, 2008; Ahmed et al., 2009b, 2017; New et al., 2020; Igarashi et al., 2017a). The
difficulty observed in these efforts is a strong tension between the two desirable properties,
considering that functions may attempt to use gradual typing to bypass parametricity. For
example, the following function of type ∀X.X → X should not be allowed to treat the value
x as an integer, even when X happens to be instantiated to Int:

(ΛX.λx X. ((x :: ?) + 1) :: X) [Int] 42

Observe that if this program reduces to 43, a violation of parametricity will occur because
of the addition to the parametric argument. To prevent this application from reducing
to ((42 :: ?) + 1) :: Int, gradual polymorphic languages have generally relied on a form
of dynamic sealing (Morris, 1973; Matthews and Ahmed, 2008). Essentially, the function
(ΛX.λx X. ((x :: ?) + 1) :: X) is not applied to type Int and value 42; instead, the language
generates at runtime a fresh seal α and applies the function to α and a sealed version of
the value 42, and unseals the result. This approach ensures that effectively-parametric code
behaves as usual, but that the above example fails (because addition fails on sealed values):

(ΛX.λx X. x) [Int] 42→∗ unsealα(sealα(42))→∗ 42

(ΛX.λx X. ((x :: ?) + 1) :: X) [Int] 42→∗ unsealα(((sealα(42) :: ?) + 1) :: α)→∗ error

2

Building upon work on dynamic enforcement of parametricity (Pierce and Sumii, 2000; Sumii
and Pierce, 2004; Guha et al., 2007; Matthews and Ahmed, 2008), a first version of a para-
metric cast calculus1 was proposed, albeit without any proof of parametricity (Ahmed et al.,
2011). Years later, a variant of this cast calculus, λB (Ahmed et al., 2017), did come with a
proof of parametricity. λB has also been used as a target language by Xie et al. (2018), who
explore the treatment of implicit polymorphism. Another recent effort is System FG, a grad-
ual source language that is compiled to a cast calculus akin to λB, called System FC (Igarashi
et al., 2017a). These efforts highlight several key challenges and tensions in the design of a
gradually parametric language (§2.4), and leave some questions unanswered, most notably
the possibility to satisfy both parametricity and graduality.

The approaches mentioned before base their design on what we call type-driven sealing.
Type-driven sealing decides whether to seal or not according to the type of the argument and
the function being applied, generally preserving the familiar syntax of System F. Inspired
by the challenges imposed by type-driven sealing, New et al. (2020) propose a term-driven
sealing approach. Term-driven sealing is a different design that forgoes the familiar syntax
of System F and instead relies on explicit terms for sealing and unsealing values. PolyGν

requires programmers to specify whether arguments should be sealed or not, and with which
type variable, by writing for example f [X= Int] (sealX(42)) and f [X= Int] 42, where f is a
polymorphic function.2 The first program explicitly seals argument 42 with the type variable
X, while the second program does not. While this strategy has produced the first parametric
gradual calculus, it is important to realize that this calculus does not solve the same problem
as the one tackled by other proposals like λB (Ahmed et al., 2017) or System FG (Igarashi
et al., 2017a). Gradual languages are intended to smoothly support the static-to-dynamic
checking spectrum, but as noted by New et al., PolyGν supports this only when the untyped
code already contains the right sealing annotations. In other words, in PolyGν f [X =
Int] (sealX(42)) and f [X= Int] 42 are unrelated by precision, and therefore graduality does
not relate their respective behavior. Although term-driving sealing allows PolyGν to satisfy
both parametricity and graduality, this comes at the cost of a different programming model
with its own limitations (§2.4).

This thesis explores the integration of parametric polymorphism and gradual typing into
a language while preserving parametricity, graduality, and the familiar syntax of System F.
Chapter 2 starts with a detailed review of the challenges and tensions that affect the design
of gradual parametric languages. As a result of the exploration, we develop GSF (Chapter 3),
a type-driven gradual parametric language that bridges between System F and an untyped
language with dynamic sealing primitives (Chapter 4). GSF is derived using AGT. The
standard AGT application derives a polymorphic gradual language that satisfies graduality

1 The difference between a gradual (source) language and a cast calculus is that a cast calculus demands
explicit use of casts in order to exploit the flexibility of runtime checking—whether a cast calculus is meant
to be used directly by programmers is in the eyes of the beholder. A gradual source language is usually
defined by a type-directed translation to a cast calculus, with its own typing and reduction rules. In the
AGT methodology reduction is instead defined directly for the gradual source language, in terms of the
reduction of enriched typing derivations (Garcia et al., 2016). Toro and Tanter (2017, 2020) prove that both
approaches are equivalent in a standard, simply-typed setting.

2 As the syntax suggests, type variables in PolyGν are introduced at instantiation time, with outward scoping;
this requires linear typing environments and a mechanism to limit their propagation to the current lambda
abstraction (New et al., 2020).

3

but breaks parametricity. Therefore, some adjustments in the runtime semantics must be
made to recover this property. Unfortunately, graduality is violated in the new language
because the implemented changes to recover parametricity are in conflict. Nevertheless,
we state a weaker property that allows us to characterize the static-to-dynamic checking
spectrum afforded by GSF. Despite its lack of full support for graduality, GSF goes further
than previous work based on the type-driven sealing approach since it has simple static
semantics and satisfies the embedding-projection pairs along with other expected properties
studied in detail in Chapter 2. We also present a detailed study on the different forms of
gradual parametricity, shedding light on the current design space. Chapter 5 extends GSF
with existential types, which are the core of data abstraction mechanisms. The extension
of GSF with existential types is also derived using AGT, and similar adjustments to those
implemented by GSF have to be done to recover parametricity, thus satisfying parametricity
and a weak dynamic gradual guarantee.

Following the study and the implementation of GSF, and inspired by the pending chal-
lenges of the type-driven and term-driven approaches to facing gradual parametricity, we pro-
pose plausible sealing, developing the language Funky (Chapter 6). Funky is a term-driven
sealing language that, in addition to allowing specifying whether an argument is sealed or not
regarding a specific type variable (like PolyGν), it enables specifying maybe-sealed values, i.e.
the function argument can be used as a sealed value at any type variable in scope, but not
necessarily. It is at runtime, depending on the context in which they are used, that it is de-
termined whether to use these maybe-sealed values sealed or not. Furthermore, Funky avoids
global dynamic sealing and, instead, proposes a novel lexically-scoped form of sealing realized
using a representation of evidence inspired by the category of spans. Consequently, Funky
satisfies a standard formulation of parametricity that does not break System F equivalences
but loses the property of embedding an untyped language with dynamic sealing primitives, as
is the case of GSF. Plausible sealing makes it possible to use Funky as the elaboration target
of different gradual source languages; we describe one such source language, Funk, with the
familiar syntax of System F. We formally develop our approach in a simplified setting where
polymorphism is restricted to instantiations with base and variable types. We prove that
Funky satisfies both parametricity and graduality.

This thesis contributes to adopting the widely used type abstraction mechanism, para-
metric polymorphism, in a gradual language. We explore the integration of these two features
in-depth by deriving two languages, GSF and Funky. We look at what properties we obtain
and the limitations of each proposal, thus developing the metatheory of gradual parametric-
ity. In addition, we study the different meanings that parametricity can have in a gradual
language. While the results presented in this thesis still have some constraints, they propose
a novel way to reconcile parametricity and graduality in a language with the System F syntax
that can be potentially reusable in other settings.

Publications. Chapter 3, “Gradual System F”, corresponds to a published work in the Pro-
ceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 17:1–17:30 (Toro
et al., 2019), in which the author of this thesis served as the second author. Chapter 3
extends this publication with a detailed analysis of the dynamic gradual guarantee viola-
tion and the development of the weaker gradual guarantee that GSF satisfies (§3.6). Also,
the presentation of gradual parametricity (3.7) includes a new comparison between the ap-

4

proaches of Ahmed et al. (2017) and New et al. (2020), shedding light on the current design
space. Together with these extended contents, Chapters 4 (“Embedding Dynamic Sealing
in GSF”) and 5 (“Gradual Existential Types in GSF”), were published (“Gradual System
F”) in the Journal of the ACM (JACM). In this work, the author of this thesis acted as the
first author. Finally, Chapter 6 and 7 (“Plausible Sealing for Gradual Parametricity”) was
published in the Proceedings of the ACM on Programming Languages 6, OOPSLA1 (April
2022), 70:1–70:28 (Labrada et al., 2022), in which the author of this thesis acted as the first
author.

5

Chapter 2

Gradual Parametricity: Background
and Basics

Type systems are a powerful mechanism to help ensure certain properties and guarantees in
programming languages. For example, the simply typed lambda-calculus satisfies type safety
(the evaluation of a well-typed program does not get stuck) and normalization (the evaluation
of a well-typed program is guaranteed to halt in a finite number of steps). Likewise, a language
with parametric polymorphism, such as System F satisfies both of the above properties and
also a rich semantics property known as relational parametricity (a polymorphic value must
behave uniformly for all possible instantiations). In this thesis, we focus on polymorphic types
in a gradual type system so that we start with an introduction to parametric polymorphism
and parametricity, as well as gradual typing. We then briefly motivate gradual parametricity
through a basic example. We conclude this chapter by identifying several design issues in
existing gradual languages.

2.1 Parametric Polymorphism

Parametric polymorphism enables the definition of terms that can operate over any type,
with the introduction of type variables and universally-quantified types. For instance, a
function of type ∀X.X → X can be used at any type, and returns a value of the same
type as its actual argument. For the sake of this work, it is important to recall two crucial
distinctions that apply to languages with parametric polymorphism, one syntactic—whether
polymorphism is explicit or implicit—and one semantic—whether polymorphic types impose
strong behavioral guarantees or not.

Explicit vs Implicit. In a language with explicit polymorphism, such as the Girard-
Reynolds polymorphic lambda calculus (a.k.a. System F) (Girard, 1972; Reynolds, 1974), the
term language includes explicit type abstraction ΛX.e and explicit type application e [T], as
illustrated next:

let f : ∀X.X → X = ΛX.λx:X.x in f [Int] 10

6

The function f has the polymorphic (or universal) type ∀X.X → X. By applying f to type
Int (we also say that f is instantiated to Int), the resulting function has type Int → Int; it is
then passed the number 10. Hence the program evaluates to 10.

In contrast to this explicit, Church-style formulation, the Curry-style presentation of
polymorphic type assignment (Curry et al., 1972) does not require type abstraction and type
application to be reflected in terms. This approach, known as implicit polymorphism, has in-
spired many languages such as ML and Haskell, which use the traditional Damas-Milner type
system (Damas and Milner, 1982). This type system can generalize the type of a term and
can give a term of polymorphic type a (partially) instantiated type. Alternatively, implicit
polymorphism can be seen as inducing a notion of subtyping relating polymorphic types to
their instantiations (Mitchell, 1988; Odersky and Läufer, 1996); e.g. ∀X.X → X <: Int→ Int.
Implicitly-polymorphic languages are often compiled into an explicitly-polymorphic language.
For instance, the use of the subtyping judgment ∀X.X → X <: Int → Int is material-
ized by introducing an explicit instantiation [Int], and vice-versa, the use of the judgment
Int→ Int <: ∀X.Int→ Int is materialized by inserting a type abstraction constructor ΛX.

Genericity vs. Parametricity. Some languages with universal type quantification also
support intensional type analysis or reflection, which allows a function to behave differently
depending on the type to which it is instantiated. For instance, in Java, a generic method
of type ∀X.X → X can use instanceof to discriminate the actual type of the argument, and
behave differently for String, say, than for Integer. Therefore these languages only support
genericity, i.e. the fact that a value of a universal type can be safely instantiated at any
type.1

Parametricity is a much stronger interpretation of universal types, which dictates that
a polymorphic value must behave uniformly for all possible instantiations (Reynolds, 1983).
This implies that one can derive interesting theorems about the behavior of a program by just
looking at its type, hence the name “free theorems” coined by Wadler (1989). For instance,
one can prove using parametricity that any polymorphic function of type ∀X.List X → List X
commutes with the polymorphic map function. Technically, parametricity is expressed in
terms of a (type-indexed) logical relation that denotes when two terms behave similarly
when viewed at a given type. All well-typed terms of System F are related to themselves in
this logical relation, meaning in particular that all polymorphic terms behave uniformly at
all instantiations (Reynolds, 1983).

Simply put, if a value f has type ∀X.X → X, then—modulo divergence if admitted in the
considered language—genericity only tells us that f [Int] 10 reduces to some integer, while
parametricity tells the much stronger result that f [Int] 10 necessarily evaluates to 10, i.e. f
has to be the identity function. In the context of gradual typing, Ina and Igarashi (2011)
have explored genericity with a gradual variant of Java. All other work has focused on the
challenge of enforcing parametricity (Ahmed et al., 2011, 2017; Igarashi et al., 2017a; Xie
et al., 2018; New et al., 2020).

1 We call this property genericity, by analogy to the name generics in use in object-oriented languages like
Java and C#.

7

2.2 Gradual Typing

Static and dynamic typechecking have dual advantages and limitations. For instance, adopt-
ing a static discipline provides early detection of errors at the expense of conservatively
rejecting some programs that would go right. On the other hand, adopting a dynamic dis-
cipline provides flexibility at the cost of extra checks (and errors!) at runtime. Gradual
typing is a specific approach to combine static and dynamic checking within the same lan-
guage, letting programmers control which checking discipline is used where, and supporting
the convenient evolution between both (Siek and Taha, 2006). Specifically, programmers can
use the unknown type ? to denote the absence of statically-known type information. Hence,
a program without any ? is a statically-typed program, and a program where all binders
and constants have type ? is a dynamically-typed program. In between, there is a whole
spectrum of flexibility according to the programmers needs.

Precision and consistency. To support the transition between static and dynamic type-
checking, gradual languages rely on an important relation between types called (im)precision,
which intuitively denotes how much is known about a given type. Of course ? is the least
precise type. In the gradually-typed lambda calculus GTLC, type precision is defined as Siek
and Taha (2006); Siek et al. (2015a):

B v B

G1 v G2 G′1 v G′2
G1 → G′1 v G2 → G′2 G v ?

Where B stands for base types such as Int and Bool, and G stands for gradual types. For
instance, Int → Bool v ? → Bool v ? → ? v ?. Observe that, unlike subtyping, precision
is covariant for both the domain and codomain of function types. Precision on terms, noted
t1 v t2, is the natural lifting of type precision to terms:

b v b x v x
G1 v G2 t1 v t2

λx : G1.t1 v λx : G2.t2

t1 v t2 t′1 v t′2
t1 t

′
1 v t2 t

′
2

For instance, λx : Int.x v λx : ?.x.

A gradual type system optimistically deals with imprecision, thereby relaxing standard
relations on types. For instance, type equality is relaxed as type consistency ∼. Two types
are consistent if they agree on their known parts. For instance Int → ? ∼ ? → Bool, but
Int 6∼ Bool. Type consistency can be formally defined as Siek and Taha (2006):

B ∼ B

G1 ∼ G2 G′1 ∼ G′2
G1 → G′1 ∼ G2 → G′2 ? ∼ G G ∼ ?

Regarding the dynamics semantics, the standard approach consists in elaborating gradual
source terms via a typed-driven translation to a cast calculus, a core language with explicit

8

runtime typechecks. The translation inserts casts at the boundaries between static and
dynamic typing, ensuring at runtime that violations of static assumptions are detected and
manifest as errors. For instance, the well-typed source gradual term (λx : ?.x+ 1) true (? is
consistent with Bool) would typically be elaborated to the target term (λx : ?.〈Int⇐=?〉x +
1) (〈?⇐=Bool〉true). In this target program, the cast 〈Int⇐=?〉 requires that the argument
given at runtime is indeed an Int value, and 〈?⇐=Bool〉 is used to match the parameter and
the function argument types. This program reduces to (〈Int⇐=?〉〈?⇐=Bool〉true) + 1, failing
in the next reduction step when it tries to combine the cast 〈?⇐=Bool〉 with 〈Int⇐=?〉 (Bool
is not consistent with Int).

Illustration. Let us consider the following three programs A, B and C.

A) let x:? = true in B) let x:? = true in C) let x:Bool = true in

(λy:?.y + 1) x (λy:Int.y + 1) x (λy:Int.y + 1) x

All three programs first bind true to x and then pass x as argument to a function that adds
one to its argument. They only differ in their precision: i.e. the type annotations range from
all statically unknown (A) to all known (C). Program A typechecks and fails at runtime when
trying to add 1 to true. Program B is a more precise variant in which the function argument
type is now declared to be Int. This program also fails at runtime, but it does so earlier than
program A: the error is detected when trying to apply the function to true. Finally, program
C is fully static, and is ill-typed. So, by augmenting the precision of a program, we may go
from failing at runtime to failing statically.

Properties of gradual languages. To characterize the static-to-dynamic checking spec-
trum afforded by gradual typing, Siek et al. (2015a) summarized and extended the expected
properties of gradual languages, recalled hereafter:

• Type safety establishes that well-typed programs cannot get stuck, although they can
produce runtime errors due to actual violations of (optimistic) assumptions made during
type checking.

• Conservative extension of a static discipline means that fully-precise terms typecheck
and evaluate exactly as they would in the static language. Of course, this criterion is
relative to which language is considered as the “static end” of the spectrum.

• Embedding of a dynamic discipline characterizes the capability of the gradual language
to accommodate (possibly through a syntactic translation) terms of a dynamically-
checked language. Like conservative extension, this criterion is relative, this time with
respect to the “dynamic end” of the spectrum.

• Gradual guarantees. The gradual guarantees capture the smoothness of the static-to-
dynamic checking spectrum, requiring both typing (SGG) and evaluation (DGG) to be
monotonic with respect to imprecision. Specifically, if a program is well typed, then a
less precise version should also be well typed; likewise, if a program runs to completion
without errors, so should a less precise version.

In addition to these key formal properties, there are other interesting aspects not explicitly
addressed by Siek et al. (2015a) that are worth considering.

9

• Harmless imprecise ascriptions. New and Ahmed (2018) give a semantic account of
the dynamic gradual guarantee, called graduality, based on the notion that imprecision
induces embedding-projection pairs. A particular consequence of their formulation is
that imprecise ascriptions are harmless: given a term t : A and A v B, then t :: B :: A
is equivalent to t. Observe that this property is weaker than the DGG, as the latter
is not restricted to outer ascriptions. Note that the harmless imprecision property is
an implication of the DGG if we assume that t is equivalent to t :: A and, therefore,
to t :: A :: A. Assuming that t is equivalent to t :: A :: A and that t :: A :: A is more
precise than t :: B :: A, by the DGG, we get that t :: A :: A is equivalent to t :: B :: A.
Therefore, by transitivity, t is equivalent to t :: B :: A.

• Expressiveness of imprecision. A gradual language soundly augments the expressiveness
of the original static type system. Let us illustrate what we mean in a simply-typed
setting (STLC refers to the simply-typed lambda calculus with base types), and how
imprecision allows bridging the gap towards System F:

1. Consider the STLC term t = λx : T.x, i.e. the identity function for values of some
type T . The term t is operationally valid at different types, but it cannot be given
a general type in STLC. Its type has to be fixed at either Int→ Int, Bool→ Bool,
etc.

2. Intuitively, a proper characterization of t requires going from simple types to
parametric polymorphism, such as System F. In System F, we could use the type
∀X.X → X to precisely specify that t can be applied with any argument type and
return the same type.

3. With a gradual variant of STLC, we can give term t the imprecise type ?→ ? to
statically capture the fact that t is definitely a function, without committing to
specific domain and codomain types.

4. This lack of precision is soundly backed by runtime enforcement, such that the
term (t 3) 1 evaluates to a runtime type error.

Abstracting Gradual Typing. The gradualization of a language presents some challeng-
ing steps. One of them is defining the notion of consistency between types, which becomes
more difficult as type systems become more complex. In addition, it is generally used a casts
calculus to mediate between statically and dynamically typed code, which is designed mostly
by intuition (Garcia et al., 2016). In order to assist language designers in crafting new grad-
ual languages, Garcia et al. (2016) proposed the Abstracting Gradual Typing methodology
(AGT, for short). The promise of AGT is that, starting from a specification of the meaning
of gradual types in terms of the set of possible static types they represent, one can systemat-
ically derive all relevant notions, including precision, consistent predicates (e.g. consistency
and consistent subtyping), consistent functions (e.g. consistent meet and join), as well as
a direct runtime semantics for gradual programs, obtained by reduction of gradual typing
derivations augmented with evidence for consistent judgments. An essential advantage of this
methodology is that a gradual language built with it achieves, by construction, the refined
criteria for gradual typing (Siek et al., 2015a).

10

The AGT methodology has so far proven effective to assist in the gradualization of a
number of disciplines, including effects (Bañados Schwerter et al., 2014, 2016), record subtyp-
ing (Garcia et al., 2016), set-theoretic types (Castagna and Lanvin, 2017), union types (Toro
and Tanter, 2017), refinement types (Lehmann and Tanter, 2017) and security types (Toro
et al., 2018). The applicability of AGT to gradual parametricity is an open question re-
peatedly raised in the literature—see for instance the discussions of AGT by Igarashi et al.
(2017a) and Xie et al. (2018). Considering the variety of successful applications of AGT, and
the complexity of designing a gradual parametric language, in this work we decide to adopt
this methodology, and report on its effectiveness.

2.3 Gradual Parametricity in a Nutshell

Gradual parametricity ought to support imprecise type information while ensuring that as-
sumptions about parametricity are enforced at runtime whenever they are not definitely
provable statically. To illustrate, consider the following program:

let g: ? = dλa.λb.if b then a else a + 1e in

let f: ∀X.X→X = ΛX.λx:X.g x v in

f [Int] 10

Function f is given the polymorphic type ∀X.X → X, and is therefore expected to behave
parametrically. It is then instantiated at type Int, and applied to the value 10. Note that f

is implemented using a function g of unknown type, which is the result of embedding (d·e)
untyped code into the gradual language. We write v to stand for the value true or false.

While this program is gradually well-typed, the compliance of f with respect to its declared
parametric behavior is unknown statically. By parametricity, f should behave as the identity
function (§2.1). But g itself behaves as an identity function only if its second argument v is
true. Conversely, if v is false, a runtime error is raised to report the parametricity violation.

This example highlights two key characteristics of gradual parametricity. First, to enforce
parametricity gradually requires more than tracking type safety. If we let the program
reduce to 11 when v is false, then type safety is not endangered; only type soundness
(i.e. parametricity) is. Second, the statement of free theorems must account for the possible
effects of the gradual language: gradual programs can produce runtime errors—and usually
can also diverge even if the corresponding static language is strongly normalizing (Siek and
Taha, 2006).

Also, gradualizing a language with parametric polymorphism requires extending the no-
tion of precision to account for both type variables and polymorphic types. The natural
definition of precision simply proceeds congruently:

X v X

G1 v G2

∀X.G1 v ∀X.G2

and likewise for terms:

t v t′

ΛX.t v ΛX.t′
t v t′ G v G′

t [G] v t′ [G′]

11

As we will see, this natural extension of precision to System F is not the only one that has
been (and will be) considered, as it exposes a deep tension between parametricity and the
gradual guarantees.

2.4 Gradual Parametricity: Challenges

While the basics of gradual parametricity illustrated in Section 2.3 are uncontroversial, the
devil is in the details. There are fundamental tensions in the design of gradual parametricity
that arise from the desirable metatheoretical properties—both of parametricity and of gradual
typing—which do not seem to be simultaneously satisfiable. We now explain how existing
languages in the gradual parametricity design space differ, covering each desirable property
described in the previous sections, plus a few properties previously not covered.

Parametricity. Establishing that a gradual parametric language enforces parametricity
has been a long-standing open issue: early work on the polymorphic blame calculus did
not prove parametricity (Matthews and Ahmed, 2008; Ahmed et al., 2009b, 2011), and the
first parametricity result was established several years later for a variant of that calculus,
λB (Ahmed et al., 2017). In fact, λB is a cast calculus, not a gradual source language,
meaning that explicit casts should be sprinkled in the program above to achieve the same
result. Igarashi et al. (2017a) develop a gradual source language, System FG, whose semantics
are given by translation to a cast calculus, System FC , which is a close cousin of λB. Igarashi
et al. do not prove parametricity, but conjecture that due to the similarity between System FC
and λB, parametricity should hold. Xie et al. (2018) develop a language (here referred
to as CSA) with implicit polymorphism, which compiles to λB and therefore inherits its
parametricity result. More recently, New et al. (2020) explore a radically different point in
the design space with PolyGν , a language that requires explicit sealing and unsealing terms.
This choice sidesteps some tensions and yields a notion of gradual parametricity that is
stronger and more faithful to the original presentation of Reynolds than that of prior work.
We come back to the discussion of different notions of gradual parametricity, which gets fairly
technical, in §3.7.

Conservative Extension of System F. Most work on gradual parametricity—λB,2 Sys-
tem FG, CSA, as well as the present work—consider System F as the starting point, meaning
that System F programs should be valid programs in these languages, and behave as they
would in System F. System FG is a conservative extension of System F, and CSA of an
implicitly-polymorphic variant of System F (Damas and Milner, 1982). λB is a cast calculus
whose syntax of fully-precise cast-free terms also coincides with System F. For such terms,
λB is also a conservative extension of System F. However, its compatibility relation for types
is not a conservative extension of type equality in System F. For instance, the polymor-
phic type ∀X.X → X is not only compatible with Int → Int—a defining feature of implicit
polymorphism—it is also compatible with Int → Bool. PolyGν departs from the syntax of

2 Although λB is a polymorphic cast calculus, we include it in the discussion of gradual languages in this
work since all other gradual languages like System FG and CSA translate to λB to establish their dynamic
semantics and properties.

12

System F and so is not a conservative extension of it. For instance, the following System F
program defines a function f, which is the identity function, and instantiates it at type Int,
applies it to 1, and then adds 1 to the result, yielding 2.

let f : ∀X.X → X = ΛX.λx:X.x in (f [Int] 1) + 1

This program is rejected statically in PolyGν , because the sealing and unsealing that im-
plicitly underlies polymorphic behavior in System F must happen explicitly in the syntax of
terms, resulting in the more verbose program:

let f : ∀X.X → X = ΛX.λx:X.x in unsealX(f [X=Int] (sealX 1)) + 1

PolyGν forces an outward scoping of type variables, i.e. [X=Int] above puts X in scope for
subsequent use by sealX and unsealX. While not addressed by the authors, it seems reasonable
to conjecture that PolyGν is a conservative extension of such an unusual static source language
with explicit sealing.

Embedding of a Dynamic Language. Because a polymorphic language includes a simply-
typed core, one naturally expects an untyped lambda calculus to be embeddable in a gradual
polymorphic language (Ahmed et al., 2011). As we will see in Chapter 4, and previously ex-
plored by Siek and Wadler (2016), the dynamic end of the spectrum for a gradual parametric
language can be even more interesting, accommodating dynamic sealing primitives (Sumii
and Pierce, 2004).

Gradual Guarantees. A major tension faced by gradual parametric languages in the past
decade has been to attempt to reconcile the gradual guarantees with parametricity. While
this thesis will dive into this question repeatedly and at a quite technical level, let us present
here what happens on the surface, for a programmer. Consider this program, which is the
same as above, except that the return type of the function f is now unknown:

let f : ∀X.X → ? = ΛX.λx:X.x in (f [Int] 1) + 1

Following the motto that imprecision is harmless, a programmer might expect this program
to both typecheck and run without errors, yielding 2. However, in λB and System FC , the
(elaboration with casts of the) above program fails with a runtime error, because the result
of f [Int] 1 is sealed, and therefore unusable directly.

This failure is a violation of the dynamic gradual guarantee (DGG). But in fact, techni-
cally, this behavior only is a violation if we consider the program above to actually be a more
imprecise variant of the System F program where the return type of f is X instead of ?. Faced
with this tension between the gradual guarantees and parametricity, Igarashi et al. (2017a)
introduce a stricter notion of precision in System FG, which does not allow losses of precision
in parametric positions of a polymorphic type. For instance, in System FG, ∀X.X → Int is
considered more precise than ∀X.X → ?, but ∀X.X → X is not. Igarashi et al. (2017a)
prove the static gradual guarantee for System FG based on this more restrictive notion of
precision, but leave the corresponding dynamic gradual guarantee as a conjecture.

PolyGν addresses this tension between parametricity and the dynamic gradual guarantee
by uncoupling sealing and precision, using a syntax with explicit sealing and unsealing. If
we start with the following fully-static program:

13

let f : ∀X.X → X = ΛX.λx:X.x in unsealX(f [X=Int] (sealX 1)) + 1

Then making the return type of f unknown yields a program that still typechecks and runs
successfully. This is clear because the sealing behavior that was causing problem is now
explicit in the terms, and therefore not affected by a loss of precision in types. However, this
choice of syntax is not innocuous. Consider the following imprecise program, where the body
of f has been elided:

let f : ∀X.X → ? = body in unsealX(f [X=Int] (sealX 1)) + 1

If body is ΛX.λx:X.x, then the program evaluates to 2 as expected. However, if f is a

constant function, e.g. body is ΛX.λx:X.1, then this PolyGν program fails because the call-
site unsealing of the value returned by f is now invalid. If one removes unsealX around the
application of f, the program evaluates to 2, i.e. f behaves as a constant function. But now,
the case where body is the polymorphic identity function fails, when trying to add 1 to a
sealed value. This means that in PolyGν , the decision to use unsealing or not at a call site
cannot be taken modularly: one needs to know the implementation of f to decide.

Faithful Type Instantiations. What should type instantiations on terms of unknown type
mean? Below, the polymorphic identity function ends up instantiated to Int and passed a
Bool value:

let g : ? = ΛX.λx:X.x in g [Int] true

This program in System FG, and a possible adaptation to λB (following the translation
proposed by Igarashi et al. (2017a)), both return true despite the explicit instantiation to
Int. Internally, this happens because g is first consistently considered to be of type ∀X.? in
order to accommodate the type instantiation, but then the instantiation yields a substitution
of Int for X in ?, which in both languages is just ?. There is no tracking of the decision to
instantiate the underlying value to Int.

In contrast, if we try to write a similar program in PolyGν :

let g : ? = ΛX.λx:X.x in g [X=Int] (sealX true)

Then this program does not even typecheck, because sealing true with X requires the types
to coincide. If we ascribe true to the unknown type before sealing it, then the program
typechecks but fails at runtime, thereby respecting the type instantiation to Int.

Expressiveness of Imprecision. We can unfold the exact same line of reasoning presented
in §2.2, but this time starting from System F and bridging the gap towards System Fω:

1. Consider the System F term t = λx : ∀X.T.(x [Int]), which behaves as an instantiation
function to Int, for some polymorphic type ∀X.T . The term t is operationally valid at
different types, but cannot be given a general type in System F. Its type has to be fixed
at either (∀X.X→X)→(Int→ Int) (where ∀X.T = ∀X.X→X), (∀XY.X→Y →X)→
(∀Y.Int→Y → Int) (where ∀X.T = ∀XY.X→Y →X), etc.

14

2. Intuitively, a proper characterization of t requires going from System F to higher-order
polymorphism, such as System Fω. In System Fω, we could use the type ∀P.(∀X.P X)→
(P Int) to precisely specify that t instantiates any polymorphic argument to Int. Term
t can be expressed in System Fω as tω = ΛP.λx : (∀X.P X).x [Int].

3. With a gradual variant of System F, we ought to be able to give term t the imprecise
type (∀X.?) → ? to statically capture the fact that t is definitely a function that
operates on a polymorphic argument, without committing to a specific domain scheme
and codomain type.

4. This lack of precision ought to be soundly backed by runtime enforcement, such that,
given id : ∀X.X → X, the term (t id) true should evaluate to a runtime type error.
(Observe that in System Fω, (tω [∀X.X → X] id) true is ill-typed.)

The fact that λB and System FC do not respect type instantiations on imprecise types
mean that in these systems, the term (t id) true does not raise any error.3 Therefore, while
these higher-order polymorphic patterns can be expressed, they are unsound.

Now consider the same example adapted to PolyGν :

let t : (∀X.?)→ ? = λx:(∀X.?). x [X=Int] in (t id) (sealX true)

This program does not typecheck in PolyGν because the type variable X used explicitly
in the body of the function is no longer in scope at the use site to seal the value true.
Recall that [X=Int] puts X in scope for the rest of the lexical scope of the instantiation, but
it does not cross function boundaries. So, in addition to the modularity issues presented
in the previous section, the explicit (un)sealing mechanism of PolyGν cannot accommodate
higher-order patterns like the above, which requires abstracting over type applications.

Polymorphic Interoperability. λB, System FG, and PolyGν are languages with explicit
polymorphism, i.e. with explicit type abstraction and type application terms. Despite this,
λB and System FG accommodate some form of implicit polymorphism, with different fla-
vors. The underlying motivation is to support interoperability between typed and untyped
code, considering that type abstraction and application are meaningless terms in an untyped
language. The archetypal example is the System F polymorphic identity function, which one
would like to be able to use in untyped code as standard function, or vice versa, using the
untyped identity function as a polymorphic one.

λB features two type compatibility rules to support this kind of implicit polymorphism:

(Comp-AllR)
Σ; ∆, X ` T1 <: T2 X 6∈ T1

Σ; ∆ ` T1 <: ∀X.T2
(Comp-AllL)

Σ; ∆ ` T1[?/X] <: T2

Σ; ∆ ` ∀X.T1 <: T2

These rules permit ∀X.X → X to be compatible with ? → ?, but as first identified by Xie
et al. (2018) and recalled above, these rules also imply that the type ∀X.X → X is compatible
with both ∀X.Int → Bool and Int → Bool. System FG does not relate ∀X.X → X with any

3 In System FC , (t id) true fails because ∀X.? is not deemed consistent with ∀X.X → X. Consequently, t
must be declared to take an argument of type ? instead of ∀X.?. The result is the same as in λB however:
no runtime error is raised.

15

Polym SF TS Param CE ED SGG DGG HIA FTI EI PI
λB mixed 3 3 3 3 3σ - 7 7 7 7 3

System FG mixed 3 3 c 3 3 w c (w) - 7 7 3

CSA implicit 7 3 c 3s - 3 7 - - - 3

PolyGν explicit 7 3 3 na - - 3 3 3 7 7

GSF explicit 3 3 3 3 3σ 3 w 3 3 3 7

F?
ε explicit 7 3 3 na 3 3 3 3 3 3 7

Table 2.1: Comparison of approaches to gradual parametricity.
Polym: form of polymorphism. SF: System F syntax. TS: type safety. Param: parametricity. CE: con-
servative extension. ED: embedding of dynamic language. SGG: static gradual guarantee. DGG: dynamic
gradual guarantee. HIA: harmless imprecise ascriptions. FTI: faithful type instantiations. EI: expressiveness
of imprecision. PI: polymorphic interoperability. 3: the property has been proven. 7: the property is not
satisfied. -: the property is not studied. na: the property does not apply. 3s: proved only for the static
semantics. 3σ: can embed untyped lambda calculus with dynamic sealing. c: the property is explicitly
conjectured but not proven. w: guarantees stated wrt a restricted precision.

of its static instantiations. However, it does relate that type with ? → ?, considered to
be quasi-polymorphic, on the basis that using the unknown type should bring some of the
flexibility of implicit polymorphism.

Xie et al. (2018) argue that it is preferable to clearly separate the subtyping relation
induced by implicit polymorphism from the consistency relation induced by gradual types. As
a result, CSA features intuitive and straightforward definitions of precision and consistency,
while accommodating the flexibility of implicit polymorphism in full.

Summary. Table 2.1 summarizes the different approaches we reviewed. The last two lines
correspond to our proposals, GSF and F?

ε, which are formally developed in the following
chapters. A check denotes a property that is proven. A cross denotes a property that is not
satisfied. A question mark is used for results that are explicitly conjectured, while a dash is
used for results that are not studied. For the conservative extension result (CE) for CSA,
the “s” signals that the result is only established with respect to typing, not reduction. For
the embedding of a dynamic language (ED), we annotate with a “σ” when the language has
been shown to embed an untyped lambda calculus with sealing primitives (Siek and Wadler
(2016) for λB, and §4.4 for GSF). We use “w” (weak) to denote gradual guarantees stated
with respect to a stricter notion of precision than the natural one.

Note that languages CSA, PolyGν , and F?
ε are not based on System F syntax (SF). CSA

is a language with only implicit polymorphisms, so it does not use the syntax of System F.
PolyGν is a language with sealing/unsealing primitives, and F?

ε is a evidence-based language.
The use of these features in both languages is necessary to obtain programs equivalent to
the ones in System F. All languages prove the type safety (TS) property. The parametricity
(Param) property is left as a conjecture for System FG and CSA. The conservative extension
(CE) does not apply for PolyGν and F?

ε since they are not based on the System F syntax.
Related to the embedding of a dynamic language (ED), System FG and F?

ε embed the untyped
lambda calculus, and λB and F?

ε an untyped lambda calculus with sealing primitives. For
the other languages, the property is not studied. The static gradual guarantee (SGG) is not

16

studied for λB and PolyGν , is weaker in System FG since it is based on a restricted notion
of type precision and is satisfied for the other proposals. The dynamic gradual guarantee is
only satisfied by PolyGν and F?

ε based on the natural notion of precision, is proved for GSF
and left as a conjecture in System FG but based on a restricted precision. Harmless imprecise
ascription (HIA) and faithful type instantiation (FTI) are satisfied for PolyGν , GSF, and F?

ε.
Expensiveness of imprecision (EI) is satisfied by GSF and F?. It is worth pointing out that
EI is not a formal property; it is studied based on the example given earlier in this section.
PolyGν , GSF, and F?

ε do not support interoperability between typed and untyped code.

Given the several design issues in existing gradual languages identified in this section,
the next chapter proposes GSF, a gradual parametric language in the style of System F by
applying AGT.

17

Part I

Gradual Parametricity, Revisited

18

Chapter 3

Gradual System F

This chapter explores the integration of parametric polymorphism and gradual typing into
a language following the type-driven sealing approach. It proposes a gradual parametric
language in the style of System F by applying the Abstracting Gradual Typing methodology
(AGT) (Garcia et al., 2016). The resulting language, called GSF (for Gradual System F),
embodies a number of important design choices. The first is in its name: it is an extension of
System F, and therefore sticks to the traditional syntax of the polymorphic lambda calculus,
where terms need not bother with sealing explicitly as in PolyGν . Two major characteristics
differentiate GSF from other gradual parametric languages based on System F. First, GSF
ensures that type instantiations on imprecise types are faithfully supported, thereby soundly
supporting higher-order polymorphic programming patterns. Second, System F polymorphic
values in GSF can flow into imprecise code while preserving their original behavior, because
imprecise ascriptions are harmless.

We present a quick tour of GSF, including its design principles and main properties
(§3.1). We then explain how we derive GSF from a variant of System F called SF (§3.2),
by following AGT. While mostly standard, SF is peculiar in that its dynamic semantics
rely on runtime type generation. This choice comes in anticipation of the gradualization of
SF, informed by prior work that has used runtime type generation to enforce parametricity
dynamically (Matthews and Ahmed, 2008; Ahmed et al., 2011, 2017). The statics of GSF
then follow naturally from those of SF using the AGT methodology (§3.3), but the dynamics
are more challenging (§3.4/§3.5). In particular, satisfying parametricity forces us to sacrifice
the dynamic gradual guarantee in certain scenarios. We study this tension in detail and
expose a weaker form of the dynamic gradual guarantee that GSF does satisfy (§3.6). While
weaker than the dynamic gradual guarantee as originally intended, this guarantee is stronger
than what other gradual parametric languages based on System F achieve; in particular,
it implies that imprecise ascriptions are harmless. We then review the notions of gradual
parametricity from the literature and present the gradual parametricity that GSF satisfies,
along with gradual free theorems (Wadler, 1989)(§3.7). We show that although the notion
of parametricity enjoyed by GSF is based on and similar to that of λB, some polymorphic
programs behave differently, due to differences in the dynamic semantics of each language.

Supplementary material. Auxiliary definitions and proofs of the main results can be found

19

in the appendix. Additionally, an interactive prototype of GSF is available, which exhibits
both typing derivations and reduction traces, and comes with all the examples mentioned in
this work, among others (https://pleiad.cl/gsf).

3.1 GSF, Informally

This section presents the design, semantics and metatheory of GSF, a gradual counterpart
of System F. Here, we briefly introduce the principles we follow to design GSF, and briefly
review its properties (summarized in Table 2.1) and examples of use.

3.1.1 Design Principles

Considering the many concerns involved in developing a gradual language with parametric
polymorphism, we should be very clear about the principles, goals and non-goals of a specific
design. In designing GSF, we respect the following design principles:

System F syntax: GSF is meant to be a gradual version of System F, and as such, adopts
its syntax of both terms and types. Types are only augmented with the unknown type ? to
introduce the imprecision that is at the core of gradual typing. The design of GSF follows
a type-driven approach, precluding the use of unconventional syntactic constructs like the
explicit (un)sealing terms of PolyGν .

Explicit polymorphism: GSF is a gradual counterpart to System F, and as such, is a fully
explicitly polymorphic language: type abstraction and type application are part of the term
language, reflected in types. GSF gradualizes type information, not term structure.

Simple statics: GSF embodies the complexity of dynamically enforcing parametricity solely
in its dynamic semantics; its static semantics is as straightforward as possible.

Natural precision: Precision is intended to capture the level of static typing information
of a gradual type, with ? as the most imprecise, and static types as the most precise (Siek
et al., 2015a). GSF preserves this simple intuition.

3.1.2 Properties

Regarding the challenges and properties discussed previously, here is where GSF stands
(Table 2.1):

Type safety: GSF is type safe, meaning all programs either evaluate to a value, halt with
a runtime error, or diverge. Well-typed GSF terms do not get stuck.

Parametricity: GSF enforces a notion of gradual parametricity (§3.7), directly inspired by
λB (Ahmed et al., 2017).

20

https://pleiad.cl/gsf

Conservative extension: GSF is a conservative extension of System F: both languages
coincide in their static and dynamic semantics for fully static programs.

Static gradual guarantee: By virtue of the simple statics principle stated above, GSF
satisfies the static gradual guarantee, i.e. typeability is monotonic with respect to the natural
notion of precision.

Dynamic gradual guarantee: GSF does not satisfy the dynamic gradual guarantee (DGG)
for the natural notion of precision, but it does satisfy a weaker DGG (§3.6).

Harmless imprecise ascriptions: The weak DGG satisfied by GSF, in particular, implies
that imprecise ascriptions are harmless.

Faithful type instantiations: GSF enforces type instantiations of imprecise types.

Expressive imprecision: GSF soundly supports imprecise higher-order polymorphic pat-
terns, bridging the gap towards System Fω.

Polymorphic interoperability: GSF, like System F and PolyGν , only supports explicit
polymorphism. This means that certain desirable interoperability scenarios are not sup-
ported.

As will be clear by the end of this chapter, the conflict between the DGG and parametricity
in a setting that respects the type-driven approach to sealing seems extremely challenging
to address, if at all possible. Doing so would require significant changes to the semantics of
GSF. In contrast, we believe that the limitation regarding polymorphic interoperability is
minor—see illustration and discussion below.

3.1.3 GSF in Action

We now briefly illustrate GSF in action with a number of examples that correspond to the
main properties of the language. Other illustrative examples are available with the online
interactive prototype. The different sections of the rest of this chapter also come back to
such representative examples as needed.

First, System F programs are GSF programs, and behave as expected:

let f : ∀X.X → X = ΛX.λx:X.x in (f [Int] 1) + 1 ----> 2

GSF enforces gradual parametricity. Recall the example from §2.3:

let g: ? = λa:?.λb:?.if b then a else a + 1 in

let f: ∀X.X→X = ΛX.λx:X.g x v in

f [Int] 10

As expected, if v is true, the program reduces to 10, and if v is false, the program fails
with a runtime error when the body of the function g attempts to perform an addition, since
this type-specific operation is a violation of parametricity.

21

In GSF, the natural notion of precision is used for typing, meaning that the following
program is a less precise version than the System F program given at the beginning of this
section. Also, imprecise ascriptions on values are harmless:

let f : ∀X.X → ? = ΛX.λx:X.x in (f [Int] 1) + 1 ----> 2

However, as pointed out in the introduction, GSF does not satisfy the dynamic gradual
guarantee relative to the natural notion of precision. Consider the following programs:

(ΛX.λx:X.x :: X) [Int] 1 ----> 1

(ΛX.λx:?.x :: X) [Int] 1 ----> error

Using the natural notion of term precision, the former is more precise than the latter. There-
fore, the dynamic gradual guarantee mandates that less precise term should also reduce to
a value, instead of failing. Section 3.6.1 explains the reason for this behavior, after having
presented the dynamic semantics of GSF in detail.

GSF enforces type instantiations even when applied to an imprecisely-typed value:

let g : ? = ΛX.λx:X.x in g [Int] true ----> error

GSF soundly augments the expressiveness of System F to higher-order polymorphic code:

let t : (∀X.?)→ ? = λx:(∀X.?).x [Int] in (t id) 1 ----> 1

let t : (∀X.?)→ ? = λx:(∀X.?).x [Int] in (t id) true ----> error

Regarding the limitation of GSF with respect to polymorphic interoperability, the follow-
ing program fails at runtime:

let g : ? = λx:(∀.X.X → X).x [Int] 1

let h : ? = λx:?.x
g h

The runtime error is raised when g is applied to h, because ? → ? (the “underlying type”
of h) is not consistent with the polymorphic function type ∀X.X → X. In certain simple
scenarios, it is possible to address this limitation by manually introducing type abstractions
or applications, however a more systematic and generally applicable mechanism is definitely
desirable. We are studying an extension of GSF with a dynamic adaptation mechanism that
addresses polymorphic interoperability. In essence, in the scenario above, the runtime system
automatically wraps a type abstraction around h instead of failing at the application. A dual
adaptation occurs for missing type applications. We conjecture that this mechanism would
enable GSF to smoothly support interaction with untyped code, but the full development of
this technique is left for future work.

3.2 Preliminary: The static language SF

We systematically derive GSF by applying AGT to a largely standard polymorphic language
similar to System F, called SF (Figure 3.1). In addition to the standard System F types and
terms, SF includes base types B inhabited by constants b, typed using the auxiliary function

22

X ∈ TypeVar, α ∈ TypeName Σ ∈ TypeName
fin
⇀ Type,∆ ⊂ TypeVar,Γ ∈ Var

fin
⇀ Type

T ::= B | T → T | ∀X.T | T × T | X | α (types)
t ::= b | λx : T.t | ΛX.t | 〈t, t〉 | x | t :: T | op(t) | t t | t [T] | πi(t) (terms)
v ::= b | λx : T.t | ΛX.t | 〈v, v〉 (values)

Σ; ∆; Γ ` t : T Well-typed terms

(Tb)
ty(b) = B Σ; ∆ ` Γ

Σ; ∆; Γ ` b : B
(Tλ)

Σ; ∆; Γ, x : T ` t : T ′

Σ; ∆; Γ ` λx : T.t : T → T ′

(TΛ)
Σ; ∆, X; Γ ` t : T Σ; ∆ ` Γ

Σ; ∆; Γ ` ΛX.t : ∀X.T (Tpair)
Σ; ∆; Γ ` t1 : T1 Σ; ∆; Γ ` t2 : T2

Σ; ∆; Γ ` 〈t1, t2〉 : T1 × T2

(Tx)
x : T ∈ Γ Σ; ∆ ` Γ

Σ; ∆; Γ ` x : T
(Tasc)

Σ; ∆; Γ ` t : T Σ; ∆ ` T = T ′

Σ; ∆; Γ ` t :: T ′ : T ′

(Top)

Σ; ∆; Γ ` t : T1 ty(op) = T2 → T
Σ; ∆ ` T1 = T2

Σ; ∆; Γ ` op(t) : T
(Tapp)

Σ; ∆; Γ ` t1 : T1 Σ; ∆; Γ ` t2 : T2

Σ; ∆ ` dom(T1) = T2

Σ; ∆; Γ ` t1 t2 : cod(T1)

(TappT)
Σ; ∆; Γ ` t : T Σ; ∆ ` T ′

Σ; ∆; Γ ` t [T ′] : inst(T, T ′)
(Tpairi)

Σ; ∆; Γ ` t : T

Σ; ∆; Γ ` πi(t) : proj i(T)

dom : Type⇀ Type
dom(T1 → T2) = T1

dom(T) undefined o/w

cod : Type⇀ Type
cod(T1 → T2) = T2

cod(T) undefined o/w

inst : Type2 ⇀ Type
inst(∀X.T, T ′) = T [T ′/X]
inst(T, T ′) undefined o/w

proj i : Type⇀ Type
proj i(T1 × T2) = Ti
proj i(T) undefined o/w

Σ . t −→ Σ . t Notion of reduction

Σ . v :: T −→ Σ . v Σ . op(v) −→ Σ . δ(op, v) Σ . (λx : T.t) v −→ Σ . t[v/x]

Σ . (ΛX.t) [T] −→ Σ, α := T . t[α/X] where α 6∈ dom(Σ) Σ . πi(〈v1, v2〉) −→ Σ . vi

Σ . t 7−→ Σ . t Evaluation frames and reduction

f ::= � :: T | op(v,�, t) | � t | v � | � [T] | 〈�, t〉 | 〈v,�〉 | πi(�) (term frames)

Σ . t −→ Σ′ . t′

Σ . t 7−→ Σ′ . t′
Σ . t 7−→ Σ′ . t′

Σ . f [t] 7−→ Σ′ . f [t′]

Figure 3.1: SF: Static Polymorphic Language with Runtime Type Generation

23

ty , and primitive n-ary operations op that operate on base types and are given meaning by
the function δ. SF also includes pairs 〈t1, t2〉, and the associated projection operations πi(t),

1

as well as type ascriptions t :: T .

The statics are standard. The typing judgment is defined over three contexts: a type
name store Σ (explained below), a type variable set ∆ that keeps track of type variables
in scope, and a standard type environment Γ that associates term variables to types. We
adopt the convention of using partial type functions to denote computed types in the rules:
dom and cod for domain and codomain types, inst for the resulting type of an instantiation,
and proj i for projected types. These partial functions are undefined if the argument is
not of the appropriate shape. We also make the use of type equality explicit as a premise
whenever necessary. These conventions are helpful for lifting the static semantics to the
gradual setting (Garcia et al., 2016). For closed terms, we write ·; ·; · ` t : T , or simply
` t : T .

The dynamics are standard call-by-value semantics, specified using reduction frames.
The only peculiarity is that they rely on runtime type generation. The decision of using type
names instead of the traditional substitution semantics is in anticipation of gradualization,
and based on prior work that has shown that runtime type generation is key in order to
be able to dynamically distinguish between different type variables instantiated with the
same type (Matthews and Ahmed, 2008; Ahmed et al., 2011, 2017). We follow the approach
already in SF because we want the dynamics and type soundness argument of the static
language to help us with GSF, as afforded by AGT (Garcia et al., 2016). Specifically, upon
type application, a fresh type name α is generated and bound to the instantiation type T in
a global type name store Σ. A type name store Σ maps type names to types; source terms
before reduction are typechecked with an empty name store. The notion of reduction and
reduction rules all carry along the type name store. While type names only occur at runtime,
and not in source programs, reasoning about SF terms as they reduce requires accounting
for programs with type names in them. This is why the typing rules are defined relative to a
type name store as well. Similarly, type equality (Figure 3.2) is relative to a type name store:
a type name α is considered equal to its associated type in the store. The recursive definition
of equality modulo type names is necessary to derive equalities (Igarashi et al., 2017a). For
instance, in the reduction of the well-typed program (id [Int→ Int]) (id [Int]), where id is the
polymorphic identity function, the equality α := Int → Int, β := Int; ∆ ` α = β → β should
be derivable.

Rules in Figure 3.1 appeal to auxiliary well-formedness judgments, omitted for brevity.
A type T is well-formed (Σ; ∆ ` T) if it only contains type variables in the type variable
environment ∆, and type names bound in a well-formed type name store. A type name
store is well-formed (` Σ) if all type names are distinct, and associated to types that are
well-formed with respect to Σ and the empty type variable environment. A type environment
Γ binds term variables to types, and is well-formed (Σ; ∆ ` Γ) if all types are well-formed.

Unsurprisingly, SF is type safe, and all well-typed terms are parametric. These results
also follow from the properties of GSF, and the strong relation between both languages.

1 We omit the constraint i ∈ { 1, 2 } when operating on pairs throughout this chapter.

24

Σ; ∆ ` T = T Type equality

` Σ

Σ; ∆ ` B = B

` Σ X ∈ ∆

Σ; ∆ ` X = X

Σ; ∆ ` T1 = T ′1 Σ; ∆ ` T2 = T ′2
Σ; ∆ ` T1 → T2 = T ′1 → T ′2

Σ; ∆, X ` T1 = T2

Σ; ∆ ` ∀X.T1 = ∀X.T2

Σ; ∆ ` T1 = T ′1 Σ; ∆ ` T2 = T ′2
Σ; ∆ ` T1 × T2 = T ′1 × T ′2

` Σ α ∈ dom(Σ)

Σ; ∆ ` α = α

Σ; ∆ ` Σ(α) = T

Σ; ∆ ` α = T

Σ; ∆ ` T = Σ(α)

Σ; ∆ ` T = α

Figure 3.2: SF: Type equality

C : GType→ P∗(Type)

C (B) = {B }
C (G1 → G2) = {T1 → T2 | T1 ∈ C (G1), T2 ∈ C (G2)}
C (G1 ×G2) = {T1 × T2 | T1 ∈ C (G1), T2 ∈ C (G2)}

C (X) = {X }
C (α) = {α }

C (∀X.G) = {∀X.T | T ∈ C (G)}
C (?) = Type

A : P∗(Type)→ GType

A({B }) = B

A({Ti1 → Ti2 }) = A({Ti1 })→ A({Ti2 })
A({Ti1 × Ti2 }) = A({Ti1 })×A({Ti2 })

A({X }) = X

A({α }) = α

A({ ∀X.Ti }) = ∀X.A({Ti })
A({Ti }) = ? otherwise

Figure 3.3: Type concretization (C) and abstraction (A)

3.3 GSF: Statics

The first step of the Abstracting Gradual Typing methodology (AGT) is to define the syntax
of gradual types and give them meaning through a concretization function to the set of static
types they denote. Then, by finding the corresponding abstraction function to establish a
Galois connection, the static semantics of the static language can be lifted to the gradual
setting.

3.3.1 Syntax and Syntactic Meaning of Gradual Types

We introduce the syntactic category of gradual types G ∈ GType, by admitting the unknown
type in any position, namely:

G ::= B | G→ G | ∀X.G | G×G | X | α | ?

Observe that static types T are syntactically included in gradual types G.

The syntactic meaning of gradual types is straightforward: the unknown type represents
any type, and a precise type (constructor) represents the equivalent static type (constructor).
For example, Int→ ? denotes the set of all function types from Int to any static type. Perhaps
surprisingly, we can simply extend this syntactic approach to deal with universal types, type

25

variables, and type names; the concretization function C is defined in Figure B.5. Note that
the definition is purely syntactic and does not even consider well-formedness (? stands for any
static type); notions built above concretization, such as consistency, will naturally embed the
necessary restrictions (§3.3.2). Crucially, choosing to let ? stand for any static type means
that ? can in particular stand for a type variable X (because X ∈ C(?)). Therefore, the
gradual type ∀X.?→ X includes in its denotation the static types ∀X.X → X (the identity
function), ∀X.Int → X (a function that always fails when applied), ∀X.(X ∗ X) → X (a
function that given a pair returns the first or second projection), etc.

Following the abstract interpretation framework, the notion of precision is not subject
to tailoring: precision coincides with set inclusion of the denoted static types (Garcia et al.,
2016).

Definition 3.1 (Type Precision) G1 v G2 if and only if C(G1) ⊆ C(G2).

Proposition 3.2 (Precision, inductively) The inductive definition of type precision given in
Figure 3.4 is equivalent to Definition 3.1.

Observe that both ∀X.X → ? and ∀X.?→ X are more precise than ∀X.?→ ?, and less
precise than ∀X.X → X, thereby reflecting the original intuition about precision (Siek and
Taha, 2006; Siek et al., 2015a). Also, ∀X.?→ ? and ?→ ? are unrelated by precision, since
they correspond to different constructors (and GSF is a language with explicit polymorphism);
they are both more precise than ?, of course.

Dual to concretization is abstraction, which produces a gradual type from a non-empty
set of static types.2 The abstraction function A is direct (Figure B.5): it preserves type con-
structors and falls back on the unknown type whenever a heterogeneous set is abstracted. A
is both sound and optimal: it produces the most precise gradual type that over-approximates
a given set of static types.

Proposition 3.3 (Galois connection) 〈C,A〉 is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types S = {T }, we have S ⊆ C(A(S))
b) (Optimality) for any gradual type G, we have A(C(G)) v G.

The notion of precision induces a notion of precision meet between gradual types, which
coincides with the abstraction of the intersection of both concretizations (Garcia et al., 2016).

Definition 3.4 (Precision Meet) G1 uG2 , A(C(G1) ∩ C(G2)).

Proposition 3.5 (Meet, inductively) The inductive definition of meet below is equivalent to
Definition 3.4.

2 There is no gradual type that denotes an empty set of static types; rather, the empty set corresponds to an
error (Garcia et al., 2016).

26

B uB = B X uX = X

G1 uG′1 = G′′1 G2 uG′2 = G′′2
(G1 → G2) u (G′1 → G′2) = G′′1 → G′′2

G1 uG′1 = G′′1
(∀X.G1) u (∀X.G′1) = ∀X.G′′1

G1 uG′1 = G′′1 G2 uG′2 = G′′2
(G1 ×G2) u (G′1 ×G′2) = G′′1 ×G′′2

α u α = α G u ? = G ? uG = G

3.3.2 Lifting the Static Semantics

The key point of AGT is that once the meaning of gradual types is agreed upon, there is no
space for ad hoc design in the static semantics of the language. The abstract interpretation
framework provides us with the definitions of type predicates and functions over gradual
types, for which we can then find equivalent inductive or algorithmic characterizations.

In particular, a predicate on static types induces a counterpart on gradual types through
existential lifting. Our only predicate in SF is type equality, whose existential lifting is type
consistency:

Definition 3.6 (Consistency) Ξ; ∆ ` G1 ∼ G2 if and only if Σ; ∆ ` T1 = T2 for some
Σ ∈ C(Ξ), Ti ∈ C(Gi).

For closed types we write G1 ∼ G2. This definition uses a gradual type name store Ξ,
which binds type names to gradual types. Its concretization is the pointwise concretization:

C(·) = ∅ C(Ξ, α := G) = {Σ, α := T | Σ ∈ C(Ξ), T ∈ C(G) }

Note that because consistency is the consistent lifting of static type equality, which does
impose well-formedness, consistency is only defined on well-formed types (i.e. ·; · ` X ∼ X
does not hold).

Proposition 3.7 (Consistency, inductively) The inductive definition of type consistency
given in Figure 3.4 is equivalent to Definition B.96.

Again, observe that the resulting definition of consistency relates any two types that
only differ in unknown type components, without any restriction. Also, because of explicit
polymorphism, top-level constructors must match, so ?→ ? is not consistent with ∀X.?→ ?.
However, in line with gradual typing, both are consistent with ?, as expected. Therefore
GSF does not treat ?→ ? as a special “quasi-polymorphic” type, unlike System FG (Igarashi
et al., 2017a). Rather, consistency in GSF coincides with that of CSA (Xie et al., 2018).

Lifting type functions such as dom requires abstraction: a lifted function is the abstraction
of the results of applying the static function to all the denoted static types (Garcia et al.,
2016):

27

α ∈ TypeName Ξ ∈ TypeName
fin
⇀ GType,∆ ⊂ TypeVar,Γ ∈ Var

fin
⇀ GType

G ::= B | G→ G | ∀X.G | G×G | X | α | ? (gradual types)
t ::= b | λx : G.t | ΛX.t | 〈t, t〉 | x | t :: G | op(t) | t t | t [G] | πi(t) (gradual terms)

Ξ; ∆; Γ ` t : G Well-typed terms

(Gb)
ty(b) = B Ξ; ∆ ` Γ

Ξ; ∆; Γ ` b : B
(Gλ)

Ξ; ∆; Γ, x : G ` t : G′

Ξ; ∆; Γ ` λx : G.t : G→ G′

(GΛ)
Ξ; ∆, X; Γ ` t : G Ξ; ∆ ` Γ

Ξ; ∆; Γ ` ΛX.t : ∀X.G (Gpair)
Ξ; ∆; Γ ` t1 : G1 Ξ; ∆; Γ ` t2 : G2

Ξ; ∆; Γ ` 〈t1, t2〉 : G1 ×G2

(Gx)
x : G ∈ Γ Ξ; ∆ ` Γ

Ξ; ∆; Γ ` x : G
(Gasc)

Ξ; ∆; Γ ` t : G Ξ; ∆ ` G ∼ G′

Ξ; ∆; Γ ` t :: G′ : G′

(Gop)

Ξ; ∆; Γ ` t : G1 ty(op) = G2 → G
Ξ; ∆ ` G1 ∼ G2

Ξ; ∆; Γ ` op(t) : G
(Gapp)

Ξ; ∆; Γ ` t1 : G1 Ξ; ∆; Γ ` t2 : G2

Ξ; ∆ ` dom](G1) ∼ G2

Ξ; ∆; Γ ` t1 t2 : cod](G1)

(GappG)
Ξ; ∆; Γ ` t : G Ξ; ∆ ` G′

Ξ; ∆; Γ ` t [G′] : inst](G,G′)
(Gpairi)

Ξ; ∆; Γ ` t : G

Ξ; ∆; Γ ` πi(t) : proj]i(G)

dom] : GType⇀ GType

dom](G1 → G2) = G1

dom](?) = ?

dom](G) undefined o/w

cod] : GType⇀ GType

cod](G1 → G2) = G2

cod](?) = ?

cod](G) undefined o/w

inst] : GType2 ⇀ GType

inst](∀X.G,G′) = G[G′/X]

inst](?, G′) = ?
inst](G,G′) undefined o/w

proj]i : GType⇀ GType

proj]i(G1 ×G2) = Gi
proj]i(?) = ?

proj]i(G) undefined o/w

Ξ; ∆ ` G ∼ G Type consistency

` Ξ

Ξ; ∆ ` B ∼ B
` Ξ X ∈ ∆

Ξ; ∆ ` X ∼ X
Ξ; ∆ ` G1 ∼ G′1 Ξ; ∆ ` G2 ∼ G′2

Ξ; ∆ ` G1 → G2 ∼ G′1 → G′2

Ξ; ∆, X ` G1 ∼ G2

Ξ; ∆ ` ∀X.G1 ∼ ∀X.G2

Ξ; ∆ ` G1 ∼ G′1 Ξ; ∆ ` G2 ∼ G′2
Ξ; ∆ ` G1 ×G2 ∼ G′1 ×G′2

` Ξ α ∈ dom(Ξ)

Ξ; ∆ ` α ∼ α

Ξ; ∆ ` Ξ(α) ∼ G
Ξ; ∆ ` α ∼ G

Ξ; ∆ ` G ∼ Ξ(α)

Ξ; ∆ ` G ∼ α
Ξ; ∆ ` G

Ξ; ∆ ` G ∼ ?

Ξ; ∆ ` G
Ξ; ∆ ` ? ∼ G

G v G Type precision

B v B X v X

G1 v G′1 G2 v G′2
G1 → G2 v G′1 → G′2

G1 v G2

∀X.G1 v ∀X.G2

G1 v G′1 G2 v G′2
G1 ×G2 v G′1 ×G′2 α v α G v ?

Figure 3.4: GSF: Syntax and Static Semantics

28

Definition 3.8 (Consistent lifting of functions) Let Fn be a function of type Typen →
Type. Its consistent lifting F]

n, of type GTypen → GType, is defined as: F]
n(G) =

A({Fn(T) | T ∈ C(G) }).

The abstract interpretation framework allows us to prove the following proposition:

Proposition 3.9 (Consistent type functions) The definitions of dom], cod], inst], and proj]i
given in Fig. 3.4 are consistent liftings, as per Def. B.97, of the corresponding functions from
Fig. 3.1.

The gradual typing rules of GSF (Figure 3.4) are obtained by replacing type predicates
and functions with their corresponding liftings. Note that in (Gapp), the premise Ξ; ∆ `
dom](G1) ∼ G2 is a compositional lifting of the corresponding premise in (Tapp), as justified
by Garcia et al. (2016). Of particular interest here is the fact that a term of unknown type
can be optimistically treated as a polymorphic term and hence instantiated, yielding ? as
the result type of the type application (inst](?, G′) = ?). In contrast, a term of function
type, even imprecise, cannot be instantiated because the known top-level constructor does
not match (e.g. inst](?→ ?, G′) is undefined).

3.3.3 Static Properties of GSF

As established by Siek and Taha (2006) in the context of simple types, we can prove that
the GSF type system is equivalent to the SF type system on fully-static terms. We say that
a gradual type is static if the unknown type does not occur in it, and a term is static if it is
fully annotated with static types. Let `S denote the typing judgment of SF.3

Proposition 3.10 (Static equivalence for static terms) Let t be a static term and G a static
type (G = T). We have `S t : T if and only if ` t : T .

The second important property of the static semantics of a gradual language is the static
gradual guarantee, which states that typeability is monotonic with respect to precision (Siek
et al., 2015a). Type precision (Def. 3.1) extends to term precision. A term t is more precise
than a term t′ if they both have the same structure and t is more precisely annotated than
t′. This means that term precision is essentially syntactic, instead of semantic as considered
by New et al. (2020). For example, t 6v t :: ? syntactically, because the two terms do not
have the same syntactic structure, but t :: G v t :: ?, where ` t : G. It is worth pointing
out that a semantic precision, such as that established by New et al. (2020), allows easily
proving certain desired equivalents between terms in a language that satisfies the DGG. For
example, it is desired that the terms t and t :: ? have similar behaviors because a cast or
ascription to a less precise type should not affect the behavior of the term t. As we will see
in Section 3.6.4, it is possible to prove the equivalence between these terms, t and t :: ?,
(more generally, between t and t :: G′, where ` t :: G and G v G′), but using some specific
properties of the dynamic semantics. It would be interesting to study a definition of semantic

3 As usual, the main propositions are stated over closed terms, but are proven as corollaries of statements
over open terms. All statements over open terms can be found in the Appendix.

29

precision in GSF as future work.

The static gradual guarantee ensures that removing type annotations does not introduce
type errors (or dually, that gradual type errors cannot be fixed by making types more precise).

Proposition 3.11 (Static gradual guarantee) Let t and t′ be closed GSF terms such that
t v t′ and ` t : G. Then ` t′ : G′ and G v G′.

3.4 GSF: Evidence-Based Dynamics

We now turn to the dynamic semantics of GSF. As anticipated, this is where the complexity
of gradual parametricity manifests. Still, in addition to streamlining the design of the static
semantics, AGT provides effective (though incomplete) guidance for the dynamics. In this
section, we first briefly recall the main ingredients of the AGT approach to dynamic semantics,
namely evidence for consistent judgments and consistent transitivity. We then describe the
reduction rules of GSF by treating evidence as an abstract datatype. This allows us to clarify
a number of key operational aspects before turning in §3.5 to the details of the representation
and operations of evidence that enable GSF to satisfy parametricity while adequately tracking
type instantiations.

3.4.1 Background: Evidence-Based Semantics for Gradual Lan-
guages

For obtaining the dynamic semantics of a gradual language, AGT augments a consistent
judgment (such as consistency or consistent subtyping) with the evidence of why such a
judgment holds. Then, reduction mimics proof reduction of the type preservation argument of
the static language, combining evidences through steps of consistent transitivity, which either
yield a more precise evidence, or fail if the evidences to combine are incompatible.4 A failure
of consistent transitivity corresponds to a cast error in a traditional cast calculus (Garcia
et al., 2016).

Consider the gradual typing derivation of (λx : ?.x+1) false. In the inner typing derivation
of the function, the consistent judgment ? ∼ Int supports the addition expression, and at the
top-level, the judgment Bool ∼ ? supports the application of the function to false. When two
types are involved in a consistent judgment, we learn something about each of these types,
namely the justification of why the judgment holds. This justification can be captured by a
pair of gradual types, ε = 〈G1, G2〉, which are at least as precise as the types involved in the
judgment (Garcia et al., 2016). (Throughout this chapter, we use the blue color for evidence
ε to enhance readability of the structure of terms.)

4 In this work, we refer to the evidence of a consistent judgment as a countable entity. Therefore, we use the
plural evidences, following the accepted use in academic English (Oxford, 2021), instead of writing pieces
of evidence or evidence objects.

30

ε G1 ∼ G2 ⇐⇒ ε v A2({〈T1, T2〉 | T1 ∈ C (G1), T2 ∈ C (G2), T1 = T2})
where A2({〈Ti1, Ti2〉}) = 〈A({Ti1}), A({Ti2})〉

i.e. if evidence 〈G′1, G′2〉 justifies the consistency judgment G1 ∼ G2, then G′1 v G1 and
G′2 v G2. For instance, by knowing that ? ∼ Int holds, we learn that the first type can
only possibly be Int, while we do not learn anything new about the right-hand side, which
is already fully static. Therefore the evidence of that judgment is ε1 = 〈Int, Int〉. Similarly,
the evidence for the second judgment is ε2 = 〈Bool,Bool〉. Types in evidence can be gradual,
e.g. 〈?→ ?, ?→ ?〉 justifies that (?→ ?) ∼ ?. Note that with the lifting of simple static type
equality, both components of the evidence always coincide, so evidence can be represented
as a single gradual type. However, when working with subtyping both components are not
necessarily the same, e.g. suppose A <: B, then 〈A,B〉 justifies that A is consistent subtype
of B. Similarly, type equality in SF is more subtle (§3.2), so the general presentation of
evidence as pairs is also required. But for an asymmetric relation such as subtyping, both
components are not the same Garcia et al. (2016); e.g. suppose A <: B, then 〈A,B〉 justifies
that A is consistent subtype of B. Similarly, type equality in SF is more subtle because it is
relative to a type name store (§3.2), so the general presentation of evidence as pairs is also
required. As an informal example, 〈Int, α〉 justifies that Int ∼ α relative to a store in which
α is instantiated to Int; this will be explained in detail in §3.5.1.

At runtime, reduction rules need to combine evidences in order to either justify or refute
a use of transitivity in the type preservation argument. In our example, we need to combine
ε1 and ε2 in order to (try to) obtain a justification for the transitive judgment, namely that
Bool ∼ Int. The combination operation, called consistent transitivity #, determines whether
two evidences support the transitivity: here, ε2 # ε1 = 〈Bool,Bool〉 # 〈Int, Int〉 is undefined, so
a runtime error is raised.

The evidence approach is very general and scales to disciplines where consistent judgments
are not symmetric, involve more complex reasoning, and even other evidence combination
operations (Garcia et al., 2016; Lehmann and Tanter, 2017). All the definitions involved are
justified by the abstract interpretation framework. Also, both type safety and the dynamic
gradual guarantee become straightforward to prove. In particular, the dynamic gradual
guarantee follows directly from the monotonicity (in precision) of consistent transitivity.
In fact, the generality of the approach even admits evidence to range over other abstract
domains; for instance, for gradual security typing with references, evidence is defined with
label intervals, not gradual labels (Toro et al., 2018).

3.4.2 Reduction for GSF

In order to denote reduction of (evidence-augmented) gradual typing derivations, Garcia et al.
(2016) use intrinsic terms as a notational device; while appropriate, the resulting description
is fairly hard to comprehend and unusual, and it does implicitly involve a (presentational)
transformation from source terms to their intrinsic representation. In this work, we simplify
the exposition by avoiding the use of intrinsic terms; instead, we rely on a type-directed,

31

t ::= v | 〈t, t〉 | x | εt :: G | op(t) | t t | t [G] | πi(t) (terms)
v ::= εu :: G (values)
u ::= b | λx : G.t | ΛX.t | 〈u, u〉 (raw values)

Ξ; ∆; Γ ` s : G Well-typed terms (for conciseness, s ranges over both t and u)

(Eb)
ty(b) = B Ξ; ∆ ` Γ

Ξ; ∆; Γ ` b : B
(Eλ)

Ξ; ∆; Γ, x : G ` t : G′

Ξ; ∆; Γ ` λx : G.t : G→ G′

(EΛ)
Ξ; ∆, X; Γ ` t : G Ξ; ∆ ` Γ

Ξ; ∆; Γ ` ΛX.t : ∀X.G (Epair)
Ξ; ∆; Γ ` s1 : G1 Ξ; ∆; Γ ` s2 : G2

Ξ; ∆; Γ ` 〈s1, s2〉 : G1 ×G2

(Ex)
x : G ∈ Γ Ξ; ∆ ` Γ

Ξ; ∆; Γ ` x : G
(Easc)

Ξ; ∆; Γ ` s : G ε Ξ; ∆ ` G ∼ G′

Ξ; ∆; Γ ` εs :: G′ : G′

(Eop)
Ξ; ∆; Γ ` t : G ty(op) = G→ G′

Ξ; ∆; Γ ` op(t) : G′
(Eapp)

Ξ; ∆; Γ ` t1 : G→ G′ Ξ; ∆; Γ ` t2 : G

Ξ; ∆; Γ ` t1 t2 : G′

(EappG)
Ξ; ∆; Γ ` t : ∀X.G Ξ; ∆ ` G′

Ξ; ∆; Γ ` t [G′] : G[G′/X]
(Epairi)

Ξ; ∆; Γ ` t : G1 ×G2

Ξ; ∆; Γ ` πi(t) : Gi

Ξ . t −−→ Ξ . t or error Notion of reduction

(Rasc) Ξ . ε2(ε1u :: G1) :: G2 −−→

{
Ξ . (ε1 # ε2)u :: G2

error if not defined

(Rop) Ξ . op(εu :: G) −−→ Ξ . εB δ(op, u) :: B where B , cod(ty(op))
(Rapp)

Ξ . (ε1(λx : G11.t) :: G1 → G2) (ε2u :: G1) −−→

{
Ξ . cod(ε1)(t[(ε2 # dom(ε1))u :: G11)/x]) :: G2

error if not defined

(Rpair) Ξ . 〈ε1u1 :: G1, ε2u2 :: G2〉 −−→ Ξ . (ε1 × ε2)〈u1, u2〉 :: G1 ×G2

(Rproji) Ξ . πi(ε〈u1, u2〉 :: G1 ×G2) −−→ Ξ . pi(ε)ui :: Gi
(RappG) Ξ . (εΛX.t :: ∀X.G) [G′] −−→ Ξ′ . εout(ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X]

where Ξ′ , Ξ, α := G′ for some α /∈ dom(Ξ)
and α̂ = liftΞ′(α)

Ξ . t 7−→ Ξ . t or error Evaluation frames and reduction

f ::= ε� :: G | op(v,�, t) | � t | v � | � [G] | 〈�, t〉 | 〈v,�〉 | πi(�)

(R −→)
Ξ . t −−→ Ξ′ . t′

Ξ . t 7−→ Ξ′ . t′
(Rf)

Ξ . t 7−→ Ξ′ . t′

Ξ . f [t] 7−→ Ξ′ . f [t′]

(Rerr)
Ξ . t −−→ error

Ξ . t 7−→ error
(Rferr)

Ξ . t 7−→ error

Ξ . f [t] 7−→ error

Figure 3.5: GSFε: Syntax, Static and Dynamic Semantics

32

straightforward translation to GSFε, a simple variant of GSF in which all values are ascribed,
and ascriptions carry evidence. The translation, described formally below (§3.4.3), inserts
explicit ascriptions everywhere consistency is used—very much in the spirit of the coercion-
based semantics of subtyping (Pierce, 2002).

For instance, the small program of §3.4.1 above, (λx : ?.x+ 1) false, is translated to:

(ε?→Int(λx : ?.(ε1x :: Int) + (εInt1 :: Int)) :: ?→ Int) (ε2(εBoolfalse :: Bool) :: ?)

where εG is the evidence of the reflexive judgment G ∼ G (e.g. εInt supports Int ∼ Int).
Evidences ε1 = 〈Int, Int〉 and ε2 = 〈Bool,Bool〉 are the ones from §3.4.1. Recall that ε1

is evidence of the consistency judgment ? ∼ Int, where ? is the type of x, and Int comes
from the ascription; likewise ε2 is evidence of the consistency judgment Bool ∼ ?. Such
initial evidences are computed by means of an interior function I, given by the abstract
interpretation framework (Garcia et al., 2016): in this setting, the interior coincides with the
precision meet (§3.3.1), i.e. I(G1, G2) = 〈G1 uG2, G1 uG2〉.

This translation preserves the essence of the AGT dynamics approach in which evidence
and consistent transitivity drive the runtime monitoring aspect of gradual typing. Further-
more, by making the translation explicitly ascribe all base values to their base type, GSFε
can feature a uniform syntax and greatly simplified reduction rules, compared to the original
AGT exposition. This presentation also streamlines the proofs by reducing the number of
cases to consider.

Figure 3.5 presents the syntax and semantics of GSFε, a simple variant of GSF in which
all values are ascribed, and ascriptions carry evidence. Key changes with respect to Figure 3.4
are highlighted in gray. Here, we treat evidence as a pair of elements of an abstract datatype;
we define its actual representation (and operations) in the next section.

As we will see in Section 3.4.3, the translation from GSF to GSFε introduces explicit
ascriptions everywhere consistency is used, leaving rule (Easc) as the only remaining use
of consistency in the typing rules. The evidence of the term itself supports the consistency
judgment in the premise. All other rules require types to match exactly; the translation
inserts ascriptions to ensure that top-level constructors match in every elimination form.

The notion of reduction for GSFε terms deals with evidence propagation and composition
with consistent transitivity. Rule (Rasc) specifies how an ascription around an ascribed value
reduces to a single value if consistent transitivity holds: ε1 justifies that Gu ∼ G1, where Gu is
the type of the underlying simple value u, and ε2 is evidence that G1 ∼ G2. The composition
via consistent transitivity # justifies that Gu ∼ G2; if the composition is undefined, reduction
steps to error. Rule (Rop) simply strips the underlying simple values, applies the primitive
operation, and then wraps the result in an ascription, using a canonical base evidence εB
(which trivially justifies that B ∼ B). Rule (Rapp) combines the evidence from the argument
value ε2 with the domain evidence of the function value dom(ε1) in an attempt to transitively
justify that Gu ∼ G11. Failure to justify that judgment, as in our example in §3.4.1, produces
error. The return value is ascribed to the expected return type, using the codomain evidence
of the function cod(ε1). Rule (Rpair) produces a pair value when the subterms of a pair have
been reduced to values themselves, using the product operator on evidences ε1 × ε2. This rule
is necessary to enforce a uniform presentation of all values as ascribed values, which simplifies

33

technicalities. Dually, Rule (Rproji) extracts a component of a pair and ascribes it to the
projected type, using the corresponding evidence obtained with pi(ε) (not to be confused
with πi(ε), which refers to the first or second projection of evidence, itself a metalanguage
pair).

Apart from the presentational details, the above rules are standard for an evidence-
based reduction semantics. Rule (RappG) is the rule that specifically deals with parametric
polymorphism, reducing a type application.

Ξ . (εΛX.t :: ∀X.G) [G′] −−→ Ξ′ . εout(ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X]

where Ξ′ , Ξ, α := G′ for some α /∈ dom(Ξ)and α̂ = liftΞ′(α)

This is where most of the complexity of gradual parametricity concentrates. Observe that
there are two ascriptions in the produced term:

• The inner ascription (to G[α/X]) is for the body of the polymorphic term, asserting
that substituting a fresh type name α for the type variable X preserves typing. The
associated evidence ε[α̂] is the result of instantiating ε (which justifies that the actual
type of ΛX.t is consistent with ∀X.G) with the fresh type name, hence justifying
that the body after substitution is consistent with G[α/X]. The operator liftΞ′(α),
and substitution operations t[α̂/X] and ε[α̂] are left abstract for now (as evidence is
abstract) and defined later in §3.5.2.

• The outer ascription asserts that G[α/X] is consistent with G[G′/X], witnessed by
evidence εout . We define εout in §3.5.2 below, once the representation of evidence is
introduced.

Instead of using these two evidences, we could have used directly their composition,
ε[α̂] #εout . But the approach used here makes the definition of the logical relation clearer and
the proofs easier.

The use of α̂ is a technicality: because so far we treat evidence as an abstract datatype
from an as-yet-unspecified domain, say pairs of EType, we cannot directly use gradual
types (GType) inside evidences. The connection between GType and EType is specified
by lifting operators, liftΞ : GType → EType and unlift : EType → GType.5 We define
these operators later (Figure 3.7), after the structure of evidences has been explained in
detail. Because type names have meaning related to a store, the lifting is parameterized by
the store Ξ. Type substitution in terms is mostly standard: it uses unlift to recover α, and
is extended to substitute recursively in evidences. Substitution in evidence, also triggered
by evidence instantiation, is simply component-wise substitution on evidence types. Both
substitution operators are formally defined later (Figure 3.8).

Finally, the evaluation frames and associated reduction rules in Figure 3.5 are straight-
forward; in particular (Rerr) and (Rf err) propagate error to the top-level.

34

∆; Γ ` v v u : G Value translation

(Gb)
ty(b) = B ∆ ` Γ

∆; Γ ` b v b : B
(Gpairu)

∆; Γ ` v1 u1 : G1 ∆; Γ ` v2 u2 : G2

∆; Γ ` 〈v1, v2〉 v 〈u1, u2〉 : G1 ×G2

(Gλ)
∆; Γ, x : G ` t t′ : G′

∆; Γ ` (λx : G.t) v (λx : G.t′) : G→ G′
(GΛ)

∆, X; Γ ` t t′ : G ∆ ` Γ

∆; Γ ` (ΛX.t) v (ΛX.t′) : ∀X.G

∆; Γ ` t t : G Term translation

(Gu)
∆; Γ ` v v u : G ε = I(G,G)

∆; Γ ` v εu :: G : G
(Gascu)

∆; Γ ` v v u : G ε = I(G,G′)

∆; Γ ` v :: G′ εu :: G′ : G′

(Gx)
x : G ∈ Γ ∆ ` Γ
∆; Γ ` x x : G

(Gasct)
t 6= v ∆; Γ ` t t′ : G ε = I(G,G′)

∆; Γ ` t :: G′ εt′ :: G′ : G′

(Gpairt)
(t1 6= v1 ∨ t2 6= v2) ∆; Γ ` t1 t′1 : G1 ∆; Γ ` t2 t′2 : G2

∆; Γ ` 〈t1, t2〉 〈t′1, t′2〉 : G1 ×G2

(Gop)
∆; Γ ` t t′ : G1 ty(op) = G2 → G ε = I(G1, G2)

∆; Γ ` op(t) op(εt′ :: G2) : G

(Gapp)

∆; Γ ` t1 t′1 : G1 G1 _ G′1 → G′2 ε1 = I(G1, G
′
1 → G′1)

∆; Γ ` t2 t′2 : G2 ε2 = I(G2, G
′
1)

∆; Γ ` t1 t2 (ε1t1 :: G′1 → G′2) (ε2t
′
2 :: G′1) : G′2

(GappG)
∆; Γ ` t t′ : G G _ ∀X.G′′ ∆ ` G′ ε = I(G,∀X.G′′)

∆; Γ ` t [G′] (εt′ :: ∀X.G′′) [G′] : G′′[G′/X]

(Gpairi)
∆; Γ ` t t′ : G G _ G1 ×G2 ε = I(G,G1 ×G2)

∆; Γ ` πi(t) πi(εt
′ :: Gi) : Gi

G _ G Type matching

G1 → G2 _ G1 → G2 ∀X.G _ ∀X.G G1 ×G2 _ G1 ×G2 ? _ ?→ ? ? _ ∀X.?

? _ ?× ?

Figure 3.6: Translation from GSF to GSFε

3.4.3 Elaborating GSF to GSFε

Figure 3.6 defines the type-preserving translation from GSF to GSFε by using two mutually-
defined translations: translates GSF terms to GSFε terms, and v translates GSF values
to GSFε raw values. Raw values are treated separately as they are not values (and thus not
terms) and must be ascribed upon translation. The translation follows naturally from the
typing rules of GSF. We use metavariable v in GSF to range over constants, functions, type

5 In standard AGT (Garcia et al., 2016) the lifting is simply the identity, i.e. EType = GType.

35

abstractions and pairs of v, and use v to translate them to raw values u. Rule (Gu) and
(Gascu) translate a value v and an ascribed value in GSF, respectively, to a GSFε value, using
 v , producing a new ascribed raw value, i.e. a value. Note that we could have translated
GSF values v to GSFε values directly but it would have generated redundant ascriptions
such as b :: Bool εBool(εBoolb :: Bool) :: Bool. Note that these rules use the interior I

to calculate the initial evidence. The rule (Gasct) is similar to (Gascu), but it uses to
translate GSF terms that are not values. Rules (Gapp), (GappG) and (Gpairi) use type
matching _ (Cimini and Siek, 2016) to ascribe subterms of type ? in elimination positions to
the corresponding top-level type constructor, e.g. ∀X.? for a type application, and ?→ ? for
a function application. For subterms of a more precise type, type matching is the identity.
Note that in (Gapp), the argument is also ascribed to the type of the domain G′1 obtained
during type matching.

We can show straightforwardly by induction on typing judgments that the translation
preserves typing (Lemma 3.12).

Lemma 3.12 (Translation Preserves Typing) Let t be a GSF term. If ∆; Γ ` t : G then
∆; Γ ` t tε : G and ∆; Γ ` tε : G.

3.5 GSF: Evidence for Gradual Parametricity

As highlighted in Section 3.4, AGT provides effective (though incomplete) guidance for the
dynamics. The dynamic semantics obtained by applying AGT ensure type safety, but un-
fortunately not parametricity. Ensuring parametricity requires a refined representation of
evidence and definition of consistent transitivity. This can be considered as a shortcoming of
the AGT methodology, already observed in the context of security typing (Toro et al., 2018):
some properties of the static language may not be preserved by gradualization. We first
explain in §3.5.1 why the standard representation of evidence as pair of gradual types is in-
sufficient for gradual parametricity. We then introduce the refined representation of evidence
to enforce parametricity (§3.5.2), and basic properties of the language. Richer properties of
GSF are discussed in §3.6 and §3.7.

3.5.1 Simple Evidence, and Why It Fails

In standard AGT (Garcia et al., 2016), evidence is simply represented as a pair of gradual
types: an evidence ε is of the form 〈G1, G2〉. The two constituents of an evidence are
not necessarily the same, e.g. when considering non-symmetric judgments such as subtyping.
Consistent transitivity is defined through the abstract interpretation framework. Write ε J
to denote that ε justifies the consistent judgment J . The definition of consistent transitivity
for simple types is as follows:

Definition 3.13 (Consistent transitivity for simple type equality (Garcia et al., 2016)) Sup-
pose εab Ga ∼ Gb and εbc Gb ∼ Gc. Evidence for consistent transitivity is deduced as

36

(εab # εbc) Ga ∼ Gc, where:

〈G1, G21〉 #〈G22, G3〉 = A2({〈T1, T3〉 ∈ C (G1)×C (G3) | ∃T2 ∈ C (G21)∩C (G22), T1 = T2∧T2 = T3})

In words, if defined, the evidence that supports the transitive judgment is obtained by
abstracting over the pairs of static types denoted by the outer evidence types (G1 and G3)
such that they are connected through a static type common to both middle evidence types
(G21 and G22). Note that for consistent transitivity to be defined, C(G21) ∩ C(G22) must
not be empty. This definition can be proven to be equivalent to an inductive definition that
proceeds in a syntax-directed manner on the structure of types (Garcia et al., 2016).

Consistent transitivity satisfies some important properties. First, it is associative. Second,
the resulting evidence is more precise than the outer evidence types, reflecting that during
evaluation, typing justification only gets more precise (or fails). Violating this property
breaks type safety. Third, it is monotonic; this property is key for establishing the dynamic
gradual guarantee (Garcia et al., 2016). Here, an evidence ε is more precise that ε′, written
ε v ε′, if π1(ε) v π1(ε′) and π2(ε) v π2(ε′).

Lemma 3.14 (Properties of consistent transitivity).
(a) Associativity. (ε1 # ε2) # ε3 = ε1 # (ε2 # ε3), or both are undefined.
(b) Optimality. If ε = ε1 # ε2 is defined, then π1(ε) v π1(ε1) and π2(ε) v π2(ε2).
(c) Monotonicity. If ε1 v ε′1 and ε2 v ε′2 and ε1 # ε2 is defined, then ε′1 # ε′2 is defined and
ε1 # ε2 v ε′1 # ε′2.

Unfortunately, systematically following the AGT methodology and simply extending the
consistent transitivity definition to deal with GSF types and consistency judgments yields
a gradual language that breaks parametricity.6 Let us first adapt the simple definition of
consistent transitivity (Def. 3.13) to the GSF consistency judgment, which is stated relative
to type names and type variables environments:

Definition 3.15 (Consistent transitivity for GSF—simple attempt) Suppose εab Ξ; ∆ `
Ga ∼ Gb and εbc Ξ; ∆ ` Gb ∼ Gc. Evidence for consistent transitivity is deduced as
(εab # εbc) Ξ; ∆ ` Ga ∼ Gc, where:

〈G1, G21〉 # 〈G22, G3〉 = A2({〈T1, T3〉 ∈ C(G1)× C(G3) |
∃T2 ∈ C(G21) ∩ C(G22) ∧ Σ ∈ C(Ξ) ∧
Σ; ∆ ` T1 = T2 ∧ Σ; ∆ ` T2 = T3})

where Σ is the static counterpart of Ξ, i.e. a mapping from type names to static types
(§3.3.2).

As previously mentioned, type equality in SF (Figure 3.2) is more subtle than the simple
static type equality. The general representation of evidence as pairs is required (as opposition
to use evidence as a single type) because each type in the evidence corresponds to each type
in the judgment, which can be different. For example, suppose that α is equal to Int in the

6 The obtained language is type safe, and satisfies the dynamic gradual guarantee. This novel design could
make sense to gradualize impure polymorphic languages, which do not enforce parametricity.

37

store (Ξ = α := Int). Then 〈Int, α〉 is evidence that Int is consistent with α, given Ξ, i.e.

〈Int, α〉 Ξ; · ` Int ∼ α

Evidence as a pair of types is crucial in the representation of the outer evidence εout
during reduction. Remember that if a type abstraction with type ∀X.G is applied to G′, the
resulting εout justifies that G[α/X] is consistent with G[G′/X], where α is the generated fresh
type name. Informally, if εout Ξ, α := G′ ` G[α/X] ∼ G[G′/X], then εout is computed
as 〈G[α/X], G[G′/X]〉. Thus, if a type abstraction with type ∀X.X → X is applied to Int,
εout is computed as 〈α→ α, Int→ Int〉, where εout justifies that (X → X)[α/X] = α→ α is
consistent with (X → X)[Int/X] = Int → Int. An evidence such as 〈Int, α〉 can be obtained
from the domain information of εout , namely dom(εout). Taking this definition of εout into
account, we can now illustrate the problem of the consistent transitivity definition derived
by the AGT methodology. Consider the following simple program:

1 (ΛX.(λx:X.(x :: ? :: ?) + 1)) [Int] 1

The function above is not parametric because it ends up adding 1 to its argument—although
it does so after two intermediate ascriptions to the type ?. Without further precaution,
the parametricity violation of this program would not be detected at runtime. Note that
two ascriptions are needed in order to elaborate the evidence 〈?, ?〉, used below to illustrate
the problem. The following reduction trace illustrates all the important aspects of reduction
(assuming that the type application in the program below generates the fresh name α, bound
to Int in the store):

· . (ε∀X.X→Int(ΛX.λx : X.(ε?(εXx :: ?) :: ?) + εInt1 :: Int) :: ∀X.X → Int) [Int] (εInt1 :: Int)
7−→∗ α := Int . εout(εα→α(λx : α.(ε?(εαx :: ?) :: ?) + εInt1 :: Int) :: α→ α) :: Int→ Int (εInt1 :: Int)
7−→∗ α := Int . εout(λx : α.(ε?(εαx :: ?) :: ?) + εInt1 :: Int) :: Int→ Int (εInt1 :: Int)
7−→∗ α := Int . cod(εout)((ε?(εα((εInt # dom(εout))1 :: α) :: ?) :: ?) + εInt1 :: Int) :: Int
But dom(εout) = 〈Int, α〉 and cod(εout) = 〈Int, Int〉

= α := Int . 〈Int, Int〉((ε?(εα(〈Int, α〉1 :: α) :: ?) :: ?) + εInt1 :: Int) :: Int
7−→∗ α := Int . 〈Int, Int〉((ε?(〈Int, α〉1 :: ?) :: ?) + εInt1 :: Int) :: Int
7−→∗ α := Int . 〈Int, Int〉(〈Int, ?〉1 :: ? + εInt1 :: Int) :: Int
7−→∗ α := Int . 〈Int, Int〉(〈Int, Int〉2 :: Int) :: Int
7−→∗ α := Int . 〈Int, Int〉2 :: Int

The summary below illustrates the main evidences that arise in the above reduction,
showing the judgment they justify in each case:

ε∀X.X→Int = 〈∀X.X → Int,∀X.X → Int〉 ·; · ` ∀X.X → Int ∼ ∀X.X → Int
εInt = 〈Int, Int〉 ·; · ` Int ∼ Int

ε? = 〈?, ?〉 ·;X ` ? ∼ ?
εX = 〈X,X〉 ·;X ` X ∼ ?

εout = 〈α→ Int, Int→ Int〉 α := Int; · ` α→ Int ∼ Int→ Int
εα→α = 〈α→ α, α→ α〉 α := Int; · ` α→ α ∼ α→ α

εα = 〈α, α〉 α := Int; · ` α ∼ ?
〈Int, α〉 α := Int; · ` Int ∼ α
〈Int, ?〉 α := Int; · ` Int ∼ ?

38

Initially, the first ascription to variable x, namely εXx :: ?, is deemed well-typed thanks
to the following consistent judgment:

εX = 〈X,X〉 ·;X ` X ∼ ?

Then, after type application, εout = 〈α→ Int, Int→ Int〉 justifies that (X → Int)[α/X] =
α→ Int is consistent with (X → Int)[Int/X] = Int→ Int, i.e.

〈α→ Int, Int→ Int〉 α := Int; · ` α→ Int ∼ Int→ Int

Upon application, the argument εInt1 :: Int is ascribed to the expected type of the function
α by combining εInt (εInt .; . ` Int ∼ ?) with the domain information of εout (dom(εout)
.; . ` Int ∼ α). Using the definition of consistent transitivity (Def. 3.15), 〈Int, Int〉 # 〈Int, α〉 =
〈Int, α〉 α := Int; · ` Int ∼ α.7 This operation corresponds to a sealing of the value. The
sealed value is then substituted for x inside the body of the function.

For justifying that the value bound to x can be ascribed to ?, we need evidence for Int ∼ ?
by composing the two judgments below using consistent transitivity:

〈Int, α〉 α := Int; · ` Int ∼ α 〈α, α〉 α := Int; · ` α ∼ ?

Note that the second judgment is obtained by substituting α for X in εX .

Using the definition of consistent transitivity (Def. 3.15), 〈Int, α〉 # 〈α, α〉 = 〈Int, α〉. Sim-
ilarly, for justifying the second ascription to ?, 〈Int, α〉 must be combined with the evidence
of the judgment for the second ascription:

〈?, ?〉 α := Int; · ` ? ∼ ?

By Def. 3.15, 〈Int, α〉 # 〈?, ?〉 = A2({ 〈Int, Int〉, 〈Int, α〉 }) = 〈Int, ?〉. This evidence can
subsequently be used to produce evidence to justify that the addition is well-typed, since
〈Int, ?〉#〈Int, Int〉 = 〈Int, Int〉. Therefore the program produces 2, without errors: parametricity
is violated.

3.5.2 Refining Evidence

For gradual parametricity, evidence must do more than just ensure type safety. It needs to
safeguard the sealing that type variables are meant to represent, also taking care of unsealing
as necessary. First of all, we need to define evidence to adequately represent consistency
judgments of GSF.

7 Following Def. 3.15: Let Ξ = α := Int, 〈Int, Int〉 # 〈Int, α〉 = A2({〈T1, T2〉 ∈ C (Int) × C (α) | ∃T2 ∈
C (Int) ∩ C (Int) ∧ Σ ∈ C (Ξ) ∧ Σ; ∆ ` T1 = T2 ∧ Σ; ∆ ` T2 = T3}), but C (Int) = {Int} C (α) = {α}, and
C (Ξ) = α := Int. Then 〈Int, Int〉 # 〈Int, α〉 = A2({〈Int, α〉 | Σ ∈ C (Ξ) ∧ Σ; ∆ ` Int = Int ∧ Σ; ∆ ` Int =
α}) = A2({〈Int, α〉}) = 〈Int, α〉.

39

liftΞ(G) =

B G = B

X G = X

? G = ?

liftΞ(G1)→ liftΞ(G2) G = G1 → G2

∀X.liftΞ(G1) G = ∀X.G1

liftΞ(G1)× liftΞ(G2) G = G1 ×G2

αliftΞ (Ξ(α)) G = α

unlift(E) =

B E = B

X E = X

? E = ?

unlift(E1)→ unlift(E2) E = E1 → E2

∀X.unlift(E1) E = ∀X.E1

unlift(E1)× unlift(E2) E = E1 × E2

α E = αE1

Figure 3.7: Lifting Operations

Evidence Types. Instead of using gradual types in the representation of evidence, we
introduce evidence types E ∈ EType with the following syntax:

E ::= B | E → E | ∀X.E | E × E | αE | X | ?

Then, we define an evidence ε as a pair of evidence types 〈E1, E2〉. The only difference
between gradual types and evidence types is in type names (highlighted in gray above).
SF equality judgments, and hence GSF consistency judgments, are relative to a store. It is
therefore not enough to use type names in evidence: we need to keep track of their associated
types in the store. An evidence type name αE captures the type associated to the type name
α through the store. For instance, evidence that a variable has a polymorphic type X is
initially 〈X,X〉. When X is instantiated, say to Int, and a fresh type name α is introduced,
the evidence becomes 〈αInt, αInt〉. An evidence type name does not only record the end type
to which it is bound, but the whole path. For instance, αβ

Int
is a valid evidence type name

that embeds the fact that α is bound to β, which is itself bound to Int.

Note that as a program reduces, evidence can not only become more precise than statically-
used types, but also than the global store. For instance, it can be the case that α := ? in the
global store Ξ, but that locally, the evidence for α has gotten more precise, such as αInt. We
use the definition liftΞ(G) to enrich a type G with the type information in Ξ (Figure 3.7),
returning an evidence type E. For instance, a type name is enriched recursively with the type
that is instantiated in the store, liftΞ(α) = αliftΞ (Ξ(α)). Dually, unlifting (unlift(E)) forgets
the additional information related to type instantiations, receiving an evidence type E and
returning a gradual type G. For example, unlift(αE) = α. In all other cases, both operations
recur structurally (Figure 3.7).

It is crucial to understand the intuition behind the position of type names in a given
evidence. The position of αE in an evidence can correspond to a sealing, an unsealing, or

40

s[αE/X] =

b s = b

λx : G1[α/X].t[αE/X] s = λx : G1.t

ΛY.t[αE/X] s = ΛY.t

〈s1[αE/X], s2[αE/X]〉 s = 〈s1, s2〉
x s = x

ε[αE/X]t[αE/X] :: G[α/X] s = εt :: G

op(t[αE/X]) s = op(t)

t1[αE/X] t2[αE/X] s = t1 t2

πi(t[α
E/X]) s = πi(t)

t[αE/X] [G[α/X]] s = t [G]

ε[αE/X] = 〈π1(ε)[αE/X], π2(ε)[αE/X]〉

π1(〈E1, E2〉) = E1 π2(〈E1, E2〉) = E2

E[αE
′
/X] =

B E = B

E1[αE
′
/X]→ E2[αE

′
/X] E = E1 → E2

∀Y.E1[αE
′
/X] E = ∀Y.E1

E1[αE
′
/X]× E2[αE

′
/X] E = E1 × E2

αE1[αE
′
/X] E = αE1

αE
′

E = X

Y E = Y ∧X 6= Y

? E = ?

Figure 3.8: Term and Evidence Type Substitution

neither. If αE is only on the right side, e.g. 〈Int, αInt〉, then the evidence is a sealing (here, of
Int with α). Dually, if αE is only on the left side, e.g. 〈αInt, Int〉, the evidence is an unsealing
(here, of Int from α). Sealing and unsealing evidences arise through reduction, as will be
illustrated later in this section.

Armed with the precise definition of evidence, Figure 3.8 defines the term, evidence and
evidence type substitution operations, used in the runtime semantics (Figure 3.5). Type
substitution over a term is defined inductively over its sub-terms, and by consequence over
their evidences. Observe that type substitution on the annotated types of a term must
transform evidence types into gradual types by using the unlift operator (unlift(αE) = α).
This occurs in the type substitution on function, ascription, and type application terms.
Type substitution in evidence is defined as the type substitution in each of its components,
and evidence type substitution is defined inductively in the expected way.

Figure 3.9 defines evidence inversion functions. For instance, if ε justifies that G11 →
G12 ∼ G21 → G22, then dom(ε) computes new evidence that justifies that G21 ∼ G11, and
cod(ε) computes new evidence that justifies that G12 ∼ G22. Similarly, if ε justifies that
G11 × G12 ∼ G21 × G22, then pi(ε) justifies that G1i ∼ G2i. Finally, if εi justifies that
G1i ∼ G2i, then ε1 × ε2 justifies that G11 ×G12 ∼ G21 ×G22.

41

dom(〈E11 → E12, E21 → E22〉) = 〈E21, E11〉
dom(ε) undefined o/w

cod(〈E11 → E12, E21 → E22〉) = 〈E12, E22〉
cod(ε) undefined o/w

pi(〈E11 × E12, E21 × E22〉) = 〈E1i, E2i〉
pi(ε) undefined o/w

〈E11, E21〉 × 〈E12, E22〉 = 〈E11 × E12, E21 × E22〉

Figure 3.9: Auxiliary Functions for Evidence

ε # ε = ε Consistent transitivity

(base)
〈B,B〉 # 〈B,B〉 = 〈B,B〉

(typeVar)
〈X,X〉 # 〈X,X〉 = 〈X,X〉

(idL)
〈E1, E2〉 # 〈?, ?〉 = 〈E1, E2〉

(idR)
〈?, ?〉 # 〈E1, E2〉 = 〈E1, E2〉

(sealL)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈E1, E2〉 # 〈E3, α

E4〉 = 〈E′1, αE
′
2〉

(sealR)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈αE1 , E2〉 # 〈E3, E4〉 = 〈αE′1 , E′2〉

(unsl)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈E1, α

E2〉 # 〈αE3 , E4〉 = 〈E′1, E′2〉

(func)
〈E41, E31〉 # 〈E21, E11〉 = 〈E3, E1〉 〈E12, E22〉 # 〈E32, E42〉 = 〈E2, E4〉

〈E11 → E12, E21 → E22〉 # 〈E31 → E32, E41 → E42〉 = 〈E1 → E2, E3 → E4〉

(abst)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉

〈∀X.E1,∀X.E2〉 # 〈∀X.E3, ∀X.E4〉 = 〈∀X.E′1, ∀X.E′2〉

(pair)
〈E11, E21〉 # 〈E31, E41〉 = 〈E1, E3〉 〈E12, E22〉 # 〈E32, E42〉 = 〈E2, E4〉
〈E11 × E12, E21 × E22〉 # 〈E31 × E32, E41 × E42〉 = 〈E1 × E2, E3 × E4〉

ε v ε Evidence precision

E1 v E3 E2 v E4

〈E1, E2〉 v 〈E3, E4〉

E v E Evidence type precision

B v B X v X
E1 v E2

αE1 v αE2 B v ? ? v ?

E1 → E2 v ?→ ?

E1 → E2 v ?

E1 v E3 E2 v E4

E1 → E2 v E3 → E4

E1 × E2 v ?× ?

E1 × E2 v ?

E1 v E3 E2 v E4

E1 × E2 v E3 × E4

E1 v E2

∀X.E1 v ∀X.E2

∀X.E v ∀X.?
∀X.E v ? X v ? αE v ?

Figure 3.10: Consistent Transitivity and Evidence Precision

Consistent Transitivity. With the syntactic enrichment of evidence types, consistent
transitivity can be strengthened to account for sealing and unsealing, ensuring parametricity.

42

Consistent transitivity is defined inductively in Figure 3.10. Save for rules (idL) and (idR),
these inductive rules are equivalent to the formal definition of consistent transitivity given
by AGT (Def. 3.15). We describe the interesting rules next.

Rule (unsl) specifies that when a sealing and an unsealing of the same type name meet
in the middle positions of a consistent transitivity step, the type name can be eliminated in
order to calculate the resulting evidence. For instance, 〈Int, αInt〉 # 〈α?, ?〉 = 〈Int, Int〉 # 〈?, ?〉 =
〈Int, Int〉.

As shown in §3.5.1, it is important for consistent transitivity to not lose precision when
combining an evidence with an unknown evidence. To this end, and contrary to the formal
definition given by AGT shown at the end of §3.5.1, rule (idL) in Fig. 3.10 preserves the left
evidence. Going back to the example of §3.5.1, we now have 〈Int, αInt〉 # 〈?, ?〉 = 〈Int, αInt〉,
instead of 〈Int, ?〉. Because 〈Int, αInt〉 # 〈Int, Int〉 is undefined, reduction steps to error as
desired.

Rule (sealL) shows that when an evidence is combined with a sealing, the resulting evi-
dence is also a sealing. This sealing can be more precise, e.g. 〈Int, Int〉 # 〈?, α?〉 = 〈Int, αInt〉.

There is one rule per type constructor. For example, rule (func) corresponds to the
function case, where consistent transitivity is computed recursively with the domain and
codomain evidences. Also, there are symmetric variants for some rules—such as (idR) and
(sealR)—in which the left and right components of each evidence are swapped.

Evidence precision. Precision for evidence and evidence types is defined in Figure 3.10.
The definition of evidence type precision is defined analogous to the definition of type pre-
cision, accounting as well for evidence type names αE. We say that a type name is more
precise than another if their bounded types are related by precision.

Properties. Importantly, this refined definition of consistent transitivity preserves associa-
tivity and optimality. It does however break monotonicity, and consequently, the dynamic
gradual guarantee (we come back to this in §3.6).

Instantiation and Outer Evidence. The reduction rule of a type application (RappG)
produces two evidences. The first one is the instantiation evidence ε[α̂] that justifies that the
type of t[α̂/X] (G′′[α/X]) is consistent with G[α/X]. The second one is the outer evidence
εout that justifies that G[α/X] is consistent with G[G′/X]:

Ξ . (εΛX.t :: ∀X.G) [G′] −−→ Ξ′ . εout (ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X] where

Ξ′ , Ξ, α := G′ for some α /∈ dom(Ξ) and α̂ = liftΞ′(α)

Evidence ε[α̂] is defined as: 〈E1, E2〉[αE] = 〈E1[αE], E2[αE]〉, where the evidence types Ei[α
E]

are obtained by the type application of Ei to αE. The precise definition of εout is more delicate,
addressing a subtle tension between ensuring the precision required for justifying unsealing
when possible and not introducing new runtime errors when combined.

εout , 〈E∗[αE], E∗[E
′]〉 where E∗= liftΞ(unlift(π2(ε))), αE = liftΞ′(α), E ′= liftΞ(G′)

43

In this definition, ε, α, G′, Ξ, and Ξ′ come from rule (RappG). The evidence types E∗[α
E]

and E∗[E
′] are obtained by the type application of E∗ to αE and E ′, respectively. Observe

that E∗ is obtained using the second component of evidence ε, and not using the informa-
tion of the first component. This is because ε justifies that ∀X.G′′ is consistent with ∀X.G,
where G′′ is the type of the body of the type abstraction, and ∀X.G is the ascribed type.
Therefore, evidence ε[α̂] justifies that G′′[α/X] is consistent with G[α/X], where the right
(resp. left) component of ε[α̂] corresponds to the most precise information about G[α/X]
(resp. G′′[α/X]). As εout must justify that G[α/X] is consistent with G[G′/X], we only
use the information of the second component of ε (which corresponds to the most pre-
cise information about G). To illustrate this, consider ε = 〈∀X.X → Bool,∀X.X → βBool〉
and ε[α̂] = 〈αInt → Bool, αInt → βBool〉, then εout = 〈αInt → βBool, Int→ βBool〉, and ε[α̂] #
εout = εout . If εout would have been constructed using the first component, then εout =
〈αInt → Bool, Int→ βBool〉, but ε[α̂] # εout is not defined.

Determining E∗ is the key challenge. The roundtrip unlift/lift “resets” the information
of evidence type names to that contained in the store. As previously mentioned, the local
information of evidence can be more precise than in the global store. Therefore, it is not
necessarily true that liftΞ(unlift(π2(ε))) = π2(ε). For example, if we take ε = 〈Int, αInt〉
and Ξ(α) = ?, then π2(ε) = αInt, unlift(π2(ε)) = α and liftΞ(unlift(π2(ε))) = α?. This
technicality is crucial for proving parametricity (specifically, the compositionality lemma—
see §3.7). It is important to note that although the first component of evidence εout can
lose precision with respect the second component of ε, this local loss does not affect the
precision of the entire program since evidence ε[α̂] maintains the precision achieved so far.
Furthermore, ε[α̂]#εout never fails: the role of the outer evidence εout is just to seal arguments
supplied to the function, and unseal values returned by the function, and not to introduce
new runtime errors; the possible runtime errors must come from the inner evidence ε[α̂]. For
instance, evidence εout = 〈αInt → αInt, Int→ Int〉 seals arguments when they are combined
with dom(〈αInt → αInt, Int→ Int〉) = 〈Int, αInt〉, and unseals returned values when combined
with cod(〈αInt → αInt, Int→ Int〉) = 〈αInt, Int〉. Note that εout will never cause a runtime error
when combined with the resulting evidence of the parametric term result because both are
necessarily related by precision. Indeed, by (RappG):

Ξ . (εΛX.t :: ∀X.G) [G′] −−→ Ξ′ . εout(ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X]

and by (Rf):

Ξ′ . ε[α̂]t[α̂/X] :: G[α/X] 7−→∗ Ξ′′ . ε′u :: G[α/X]

Ξ′ . εout(ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X] 7−→∗ Ξ′ . εout(ε
′u :: G[α/X]) :: G[G′/X]

Since π2(ε′) v π2(ε[α̂]) v π1(εout), the combination (ε′ # εout) through transitivity never
fails.

Illustration. The following reduction trace illustrates all the important aspects of reduction.
Recall that we use εG to denote the evidence that justifies the reflexive judgment G ∼ G.
For example, εα→α justifies the reflexive judgment α → α ∼ α → α under environment
Ξ = α := Int.

εα→α Ξ; · ` α→α ∼ α→α

where εα→α = 〈liftΞ(α→α), liftΞ(α→α)〉 = 〈αInt→αInt, αInt→αInt〉

44

(ε∀X.X→X(ΛX.λx : X.x) :: ∀X.X→?) [Int] (εInt1 :: Int)
initial evidence

(RappG) 7−→ (〈αInt→αInt, Int→ Int〉(εα→α(λx : α.x) :: α→?) :: Int→?) (εInt1 :: Int)
εout and ε[α̂] are computed

(Rasc) 7−→ (〈αInt→αInt, Int→ Int〉(λx : α.x) :: Int→?) (εInt1 :: Int)
consistent transitivity

(Rapp) 7−→ 〈αInt, Int〉(〈Int, αInt〉1 :: α) :: ?
argument is sealed

(Rasc) 7−→ 〈Int, Int〉1 :: ?
unsealing eliminates α

Crucially, the initial evidence of the identity function is fully precise, even though it is
ascribed an imprecise type. Consequently, in the first reduction step above, εout is calculated
as:

εout , 〈E∗[αE], E∗[E
′]〉 = 〈(∀X.X→X)[αInt], (∀X.X→X)[Int]〉 = 〈αInt→αInt, Int→ Int〉

The application step (Rapp) then gives rise to sealing and unsealing evidences after
deconstructing εout : the inner evidence 〈Int, αInt〉 seals the number 1 at type α, while the outer
evidence 〈αInt, Int〉 allows the subsequent unsealing in the ascription step (Rasc). As a result,
the ascribed identity function yields usable values, because the outer evidence subsequently
takes care of unsealing. This addresses the violation of the dynamic gradual guarantee
reported with λB and System FC in §2.4. Note that if the function explicitly introduced
imprecision, e.g. ΛX.λx : X.(x :: ?), then initial evidence would likewise be imprecise, and
deconstructing εout would not justify unsealing the result anymore.

The following reduction trace illustrates all the important aspects of reduction.

(ε∀X.X→?(ΛX.λx : X.(εXx :: ?)) :: ∀X.X→?) [Int] (εInt1 :: Int) initial evidence

(RappG)7−→ (〈αInt→?, Int→ ?〉(εα→?(λx : α.(εαx :: ?)) :: α→?) :: Int→?) (εInt1 :: Int) type application

(Rasc) 7−→ (〈αInt → ?, Int→?〉(λx : α.(εαx :: ?)) :: Int→?) (εInt1 :: Int) consistent transitivity

(Rapp) 7−→ ε?(εα(〈Int, αInt〉1 :: α) :: ?) :: ? argument is sealed

(Rasc) 7−→ ε?(〈Int, αInt〉1 :: ?) :: ? consistent transitivity

(Rasc) 7−→ 〈Int, αInt〉1 :: ? unsealing does not occur

We will return to a similar example in Section 3.6, which studies the dynamic gradual
guarantee and why GSF does not fully satisfy it.

3.5.3 Basic Properties of GSF Evaluation

The runtime semantics of a GSF term are given by first translating the term to GSFε (noted
` t tε : G) and then reducing the GSFε term. We write t ⇓ Ξ . v (resp. t ⇓ error) if

45

` t tε : G and · . tε 7−→∗ Ξ . v (resp. · . tε 7−→∗ error) for some resulting store Ξ. We write
Ξ . v : G for Ξ; ·; · ` v : G. We write t ⇑ if the translation of t diverges, and t ⇓ v when the
store is irrelevant.

The properties of GSF follow from the same properties of GSFε, expressed using the
small-step reduction relation, due to the fact that the translation preserves typing. In
particular, GSF terms do not get stuck, although they might produce error or diverge:

Proposition 3.16 (Type Safety) If ` t : G then either t ⇓ Ξ . v with Ξ . v : G, t ⇓ error,
or t ⇑.

Proposition 3.10 established that GSF typing coincides with SF typing on static terms.
A similar result holds considering the dynamic semantics. In particular, static GSF terms
never produce error:

Proposition 3.17 (Static terms do not fail) Let t be a static term. If ` t : T then
¬(t ⇓ error).

This result follows from the fact that all evidences in a static program are static, hence
never gain precision; the initial type checking ensures that combination through transitivity
never fails. This result can be found in the Appendix.

3.6 GSF and the Dynamic Gradual Guarantee

The previous section clarified several aspects of the semantics of GSF programs, by estab-
lishing type safety, and by showing that static terms do not fail. This section studies the
dynamic gradual guarantee (DGG) (Siek et al., 2015a), also known as graduality (New and
Ahmed, 2018; New et al., 2020). In a big-step setting, this guarantee essentially says that
if ` t : G and t ⇓ v, then for any t′ such that t v t′, we have t′ ⇓ v′ for some v′ such that
v v v′. Intuitively: losing precision is harmless, or, reducibility is monotonic with respect to
precision.

Unfortunately, in order to enforce parametricity (§3.7), and as already alluded to earlier
(§3.5.2), GSF does not satisfy the DGG. First, we exhibit a counterexample, and identify
the non-monotonicity of consistent transitivity as the root cause for this behavior. Then, in
order to better understand the behavior of GSF programs when losing precision, we study
a weaker variant of the DGG—weaker in the sense that it is valid for a stricter notion of
precision—first in GSFε (§3.6.3) and then in GSF. The idea of devising a stricter notion of
precision for which a variant of the DGG can be satisfied was first explored by Igarashi et al.
(2017a), even though they leave the proof of such a result for System FG as a conjecture; here,
we formally prove that GSF satisfies the DGG with respect to the strict notion of precision.

46

3.6.1 Violation of the Dynamic Gradual Guarantee in GSF

To show that GSF does not satisfy the dynamic gradual guarantee (DGG), it is sufficient
to exhibit two terms in GSF, related by precision, whose behavior contradicts the DGG.
Consider the polymorphic identity function idX , ΛX.λx : X.x :: X, and an imprecise
variant id? , ΛX.λx : ?.x :: X. Then idX [Int] 1 ⇓ 1, but id? [Int] 1 ⇓ error, despite the fact
that idX [Int] 1 v id? [Int] 1.

Conceptually, it is interesting to shed light on what causes such a violation. Recall that
Garcia et al. (2016) prove the DGG for their language using (mostly) the monotonicity of
consistent transitivity (Prop 3.14 (c)) with respect to imprecision. In fact, while not sufficient,
we can prove that monotonicity of consistent transitivity (CT) is a necessary condition for
the DGG to hold. Intuitively, since two successive ascriptions are collapsed via consistent
transitivity, a violation of monotonicity for consistent transitivity immediately implies a
violation of monotonicity for reduction, and hence a violation of the DGG. For instance, if
t = ε2(ε1u :: G1) :: G2, t′ = ε′2(ε′1u

′ :: G′1) :: G′2, t v t′ and t 7−→ (ε1 # ε2)u :: G2, then by the
DGG, t′ 7−→ (ε′1 # ε′2)u :: G′2, and thus ε′1 # ε′2 should be defined.

Proposition 3.18 (¬ monotonicity of CT ⇒ ¬ DGG) Let ε1 v ε′1, ε2 v ε′2, ε1 G1 ∼ G2,
ε2 G2 ∼ G3, ε′1 G

′
1 ∼ G′2, ε′2 G

′
2 ∼ G′3, where Gi v G′i.

If ε1 # ε2 6v ε′1 # ε′2, then ∃t v t′, such that t 7−→ v, t′ 7−→ v′ such that v 6v v′.

Proof. Let t , ε2(ε1u :: G2) :: G3, and t′ , ε′2(ε′1u
′ :: G′2) :: G′3, for some u v u′. We know

t v t′. Let ε1 # ε2 = ε12 and ε′1 # ε′2 = ε′12, then t 7−→ ε12u :: G3 and t′ 7−→ ε′12u :: G′3, but as
ε12 6v ε′12 then ε12u :: G3 6v ε′12u

′ :: G′3 and the result holds.

Garcia et al. (2016) study a language without universal types. But in GSF, because of
universal types, there is an additional monotonicity condition that is necessary for the DGG
to hold: monotonicity of evidence instantiation (EI). Monotonicity of EI states that given
two type abstractions related by precision, the new evidences created after type application
remain related. Intuitively, since type application uses evidence instantiation, a violation of
monotonicity for the latter implies a violation of monotonicity for the former, and hence a
violation of the DGG. Formally:

Proposition 3.19 (¬ monotonicity of EI ⇒ ¬ DGG) Let ε1 v ε2, G1 v G2, Ξ1 v Ξ2,
α := G1 ∈ Ξ1, α := G2 ∈ Ξ2, α̂1 = liftΞ1

(α), α̂2 = liftΞ2
(α), and ε1[α̂1] is defined.

If ε1[α̂1] 6v ε2[α̂2], or ε1out 6v ε2out , then ∃t v t′, such that t 7−→ v, t′ 7−→ v′ such that v 6v v′.

Proof. Let t , (ε1(ΛX.t1) :: ∀X.G′1) [G1], and t′ , (ε2(ΛX.t2) :: ∀X.G′2) [G2], for some
t1 v t2 and ∀X.G′1 v ∀X.G′2. We know t v t′. Also, we know that Ξ1 . t 7−→ Ξ1, α :=
G1 . ε1out(ε1[α̂1]t′1 :: G′1[α/X]) : G′1[G1/X] and Ξ2 . t

′ 7−→ Ξ2, α := G2 . ε2out(ε2[α̂2]t′2 ::
G′2[α/X]) : G′2[G2/X], but as either ε1out 6v ε2out or ε1[α̂1] 6v ε2[α̂2], then ε1out(ε1[α̂1]t′1 ::
G′1[α/X]) : G′1[G1/X] 6v ε2out(ε2[α̂2]t′2 :: G′2[α/X]) : G′2[G2/X], and the result holds.

As mentioned in §3.5.2, monotonicity of consistent transitivity is broken by the strength-
ening we impose to enforce parametricity. For instance, consider 〈Int, αInt〉 v 〈Int, αInt〉 and

47

〈αInt, Int〉 v 〈?, ?〉. By consistent transitivity, 〈Int, αInt〉 # 〈αInt, Int〉 = 〈Int, Int〉 (rule unsl), and
〈Int, αInt〉 # 〈?, ?〉 = 〈Int, αInt〉 (rule idL), but 〈Int, Int〉 6v 〈Int, αInt〉. Therefore the DGG cannot
be satisfied as such. We later on discuss a tension between our notion of parametricity and
the DGG (§3.7), but first, we look at how to characterize the set of terms for which loss of
precision is indeed harmless in GSF.

3.6.2 Towards a Weak Dynamic Gradual Guarantee for GSF

One way to accommodate the dynamic gradual guarantee in languages like λB, GSF, and
System FG, would be to change the definition of type (and term) precision. This is the
approach taken by Igarashi et al. (2017a), although they do not prove that the DGG holds
with this adjusted precision, and leave it as a conjecture. Dually, if one sticks to the natural
notion of precision, as adopted by both GSF and CSA, and justified by the AGT interpre-
tation. Reconciliation might come from considering other forms of parametricity, or perhaps
less flexible gradual language designs (Devriese et al., 2018) (we will explore this other path
in Part II). Here, inspired by the approach of Igarashi et al. (2017a), we devise an alternative
notion of precision for which the DGG does hold. We call this relation strict precision as it
relates fewer terms than the natural notion of precision. Conversely to Igarashi et al. (2017a),
however, we do not intend strict precision to be the one used to typecheck programs, but
only to serve as a technical device to characterize harmless losses of precision in GSF.

External vs internal losses of precision. First of all, it is important to observe that the
violation of the DGG from the previous section is due to the interaction between polymorphic
types and imprecision, which affects runtime sealing with type names. A first consequence of
this observation is that the simply-typed subset of GSF should enjoy the DGG with respect
to the standard notion of precision. Said differently, strict precision ought to coincide with
natural precision on simply-typed terms. A second consequence is that excluding any loss of
precision related to type variables would be a sound approximation to characterize when the
DGG holds; this corresponds exactly to the precision relation of System FG (Igarashi et al.,
2017a). However, while this approach would work for GSF as well, it appears too strict, in
that it excludes losses of precision on polymorphic types which are harmless in GSF.

Intuitively, we observe that in GSF, losing precision internally (i.e. by modifying the
types of binders) has a different impact on reducibility, compared to losing precision externally
(i.e. through imprecise type ascriptions). Specifically, external loss of precision is harmless
in GSF when the ascribed term is closed with respect to type variables. Therefore any fully-
static polymorphic function that is imprecisely ascribed and used adequately (type-wise) in a
gradual context will behave as expected. In practice, this means that in GSF, the fully precise
polymorphic identity function idX , ΛX.λx : X.x :: X and an imprecisely-ascribed variant
such as idX ? , idX :: ∀X.?→ X have the same behavior—in particular, one can apply idX ?

to any given type and argument of that type and successfully obtain back that argument as
result. In contrast, as we have seen, the internally-imprecise function id? , ΛX.λx : ?.x :: X
fails when applied, because the argument value is not sealed on entry, and hence the unsealing
on exit is invalid.

Admittedly, this difference in behavior between internal and external losses of precision

48

might come as a surprise to programmers, but it is the result of type-driven sealing. When
applying one of the functions above, the operational semantics must decide whether or not
the value bound to x ought to be sealed. If the type of x is known to be X, as in idX and
idX ?, it is clear that the value should be sealed (with the runtime type name corresponding
to X). However, for id?, the type of x is ?, so there are two options: not sealing because ?
might stand for other types that X, or sealing because ? might stand for X. Always sealing
presents two issues. First, if the function was ΛX.λx : ?.x+1, then the addition would fail at
runtime, and we would have another counterexample of the DGG (because it is less precise
than ΛX.λx : Int.x+1). More importantly, we could not know with respect to which variable
one ought to seal. Indeed, consider a slightly more complex function: ΛX.ΛY.λz : ?.t. Here,
always sealing would require deciding whether to seal with (the runtime names of) X or Y .

This conundrum arises because runtime sealing is type driven, and types can be imprecise.
When faced with an imprecise term binder under a type binder, either options of sealing or
not sealing would expose a failure of the DGG. Optimistically not sealing has the advantage
of avoiding the ambiguity of which type names to seal with, while still supporting harmless
losses of precision externally for polymorphic values. Note that a language design such as
PolyGν in which sealing and unsealing are independent of the precision of type information
can sidestep the problem, by leaving the task of sealing with explicit terms to programmers
(§2.4).

Characterizing strict term precision for GSF. Strict term precision should coincide
with natural precision on simply-typed terms, but how should it behave on the polymorphic
fragment of GSF? We now provide some intuitive characterization of strict term precision,
denoted 6, based on the analysis above with the three terms idX , idX ?, and id?.

(A) idX 66 id?

id? presents an internal loss of precision compared to idX , because the term binder
changes from type X to type ?, and fails at runtime when applied.

(B) idX :: ∀X.X → X 6 idX ?

idX ? presents an external loss of precision compared to idX :: ∀X.X → X, and does
not fail when applied.

(C) idX :: ∀X.X → X 6 id? :: ∀X.X → X
Although id? presents an internal loss of precision compared to idX , the ascription to
∀X.X → X on id? imposes this parametricity contract, and hence the resulting term
does behave like a proper (static) identity function.

The rest of this section builds upon this informal analysis in order to fully define strict pre-
cision and establish the corresponding dynamic gradual guarantee. Of course, because strict
precision 6 is more restrictive than standard precision v, the dynamic gradual guarantee
that one may establish with respect to it is weaker; hereafter, we denote it DGG6. The
dynamic gradual guarantee appeals to term reduction, so in §3.6.3 we start by defining strict
precision for GSFε, prove DGG6 for GSFε, and conclude by establishing DGG6 for GSF.
Finally, in §3.6.4 we provide a characterization of 6 directly on GSF syntax, i.e. without
appealing to elaboration, for which DGG6 holds.

49

G 6 G Strict type precision

B 6 B X 6 X α 6 α B 6 ?

G1 → G2 6 ?→ ?

G1 → G2 6 ? ? 6 ?

G1 6 G3 G2 6 G4

G1 → G2 6 G3 → G4

G1 6 G3 G2 6 G4

G1 ×G2 6 G3 ×G4

G1 6 G2

∀X.G1 6 ∀X.G2

ε 6 ε Strict evidence precision

E1 6 E3 E2 6 E4

〈E1, E2〉 6 〈E3, E4〉

E 6 E Strict evidence type precision

B 6 B X 6 X
E1 6 E2

αE1 6 αE2 B 6 ?

E1 → E2 6 ?→ ?

E1 → E2 6 ?

? 6 ?

E1 6 E3 E2 6 E4

E1 → E2 6 E3 → E4

E1 6 E3 E2 6 E4

E1 × E2 6 E3 × E4

E1 6 E2

∀X.E1 6 ∀X.E2

Figure 3.11: GSF: Strict Precision

3.6.3 Weak Dynamic Gradual Guarantee for GSF

Armed with the intuition presented above, we define a strict notion of precision for GSFε,
which closely characterizes GSFε terms for which monotonicity of consistent transitivity
holds. While not sufficient, monotonicity of consistent transitivity is necessary for the DGG
to hold, as established in Prop. 3.18.

Strict precision for gradual types. Strict precision for types (Figure 3.11) avoids any
interference between runtime sealing and loss of precision. As expected, 6 coincides with v
except for universal types, type variables and type names: these are not more precise than
the unknown type anymore. For instance, ∀X.X → X 66 ∀X.X → ? 66 ?. We say G1 is
“more strictly precise” than G2 when G1 6 G2.

Strict precision for evidence. Strict type precision can be naturally lifted to define strict
precision for evidence and evidence types (Figure 3.11). A type name is more strictly precise
than another if it is bound to a more strictly precise evidence type. Crucially, monotonicity
of consistent transitivity holds with respect to 6.

Proposition 3.20 (6-Monotonicity of Consistent Transitivity) If ε1 6 ε2, ε3 6 ε4, and
ε1 # ε3 is defined, then ε1 # ε3 6 ε2 # ε4.

For illustration purposes, let us recall the counterexample to monotonicity presented in
§3.6.1. Consider 〈Int, αInt〉 v 〈Int, αInt〉 and 〈αInt, Int〉 v 〈?, ?〉. By consistent transitivity,
〈Int, αInt〉 # 〈αInt, Int〉 = 〈Int, Int〉 (rule unsl), and 〈Int, αInt〉 # 〈?, ?〉 = 〈Int, αInt〉 (rule idL), but
〈Int, Int〉 6v 〈Int, αInt〉. This argument is no longer valid with strict precision, as αInt 66 ? and

50

therefore 〈αInt, Int〉 66 〈?, ?〉.

Ω ` Ξ . s : G 6 Ξ . s : G Strict term precision (for conciseness, s ranges over both t and u)

(6bε)
ty(b) = B Ξ1 6 Ξ2

Ω ` Ξ1 . b : B 6 Ξ2 . b : B

(6λε)
Ω, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2 G1 v G2

Ω ` Ξ1 . λx : G1.t1 : G1 → G′1 6 Ξ2 . λx : G2.t2 : G2 → G′2

(6×ε)
Ω ` Ξ1 . s1 : G1 6 Ξ2 . s2 : G2 Ω ` Ξ1 . s

′
1 : G′1 6 Ξ2 . s

′
2 : G′2

Ω ` Ξ1 . 〈s1, s
′
1〉 : G1 ×G′1 6 Ξ2 . 〈s2, s

′
2〉 : G2 ×G′2

(6Λε)
Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2

Ω ` Ξ1 . ΛX.t1 : ∀X.G1 6 Ξ2 . ΛX.t2 : ∀X.G2
(6xε)

x : G1 v G2 ∈ Ω Ξ1 6 Ξ2

Ω ` Ξ1 . x : G1 6 Ξ2 . x : G2

(6opε)
Ω ` Ξ1 . t1 : G 6 Ξ2 . t2 : G ty(op) = G→ G′

Ω ` Ξ1 . op(t1) : G′ 6 Ξ2 . op(t2) : G′

(6appε)
Ω ` Ξ1 . t1 : G′1 → G1 6 Ξ2 . t2 : G′2 → G2 Ω ` Ξ1 . t

′
1 : G′1 6 Ξ2 . t

′
2 : G′2

Ω ` Ξ1 . t1 t
′
1 : G1 6 Ξ2 . t2 t

′
2 : G2

(6appGε)
Ω ` Ξ1 . t1 : ∀X.G1 6 Ξ2 . t2 : ∀X.G2 G′1 6 G

′
2

Ω ` Ξ1 . t1 [G′1] : G1[G′1/X] 6 Ξ2 . t2 [G′2] : G2[G′2/X]

(6pairiε)
Ω ` Ξ1 . t1 : G1 ×G2 6 Ξ2 . t2 : G′1 ×G′2

Ω ` Ξ1 . πi(t1) : Gi 6 Ξ2 . πi(t2) : G′i

(6ascε)
ε1 6 ε2 Ω ` Ξ1 . s1 : G′1 6 Ξ2 . s2 : G′2 G1 v G2

Ω ` Ξ1 . ε1s1 :: G1 : G1 6 Ξ2 . ε2s2 :: G2 : G2

(6Mascε)

ε1 v ε2 Ω ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2 G1 v G2

ε1 = IΞ1
(G1, G1) ε2 = IΞ2

(G2, G2) G′1 _ G1 G′2 _ G2

Ω ` Ξ1 . ε1t1 :: G1 : G1 6 Ξ2 . ε2t2 :: G2 : G2

Ξ ` t 6 Ξ ` t Configuration precision

Ξ1 6 Ξ2 · ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2 Ξ1 ` t1 : G1 Ξ2 ` t2 : G2

Ξ1 . t1 6 Ξ2 . t2

∀α ∈ dom(Ξ1). Ξ1(α) 6 Ξ2(α)

Ξ1 6 Ξ2

Figure 3.12: GSFε: Strict Precision

Strict precision for GSFε terms. Strict precision for GSFε terms relates two possibly-
open terms and their respective types (Figure 3.12). It is worth noting that types can

51

be related by 6 or v depending on the rule. We use v to relate every type annotation
(save for type instantiations), and 6 for (almost) every other relation. Note that we could
have obtained a simpler definition by using 6 everywhere, but the relation would be overly
conservative, for instance rejecting example (C) among many others. Our goal is to design a
term precision relation as permissive as possible (close to the natural term precision relation)
such that the DGG is satisfied. The precision judgment Ω ` Ξ1 . s1 : G1 6 Ξ2 . s2 : G2

denotes that term s1 of type G1 is more strictly precise than s2 of type G2, under store Ξ1

strictly more precise than Ξ2, and precision relation environment Ω. It is important to clarify
that the judgment Ω ` Ξ1.s1 : G1 6 Ξ2.s2 : G2 does not necessarily imply that G1 6 G2. In
fact, the types G1 and G2 are related by the more general relation v. Nevertheless, evidences
are the ones that play a crucial role in the term precision relation, which are related in almost
every case by 6. Ω binds a term variable to a pair of types related by precision v. The
intuition about why we use v and not 6 in Ω is that as long as evidence are related by 6, we
can relax this relation on type annotations. Furthermore, using 6 on Ω makes the precision
relation on terms overly conservative rejecting example (C) above. Rule (6xε) establishes
Ω ` Ξ1 . x : G1 6 Ξ2 . x : G2 if x : G1 v G2 ∈ Ω, and Rule (6λε) extends Ω with the
annotated types of the functions to relate.

Strict term precision is the natural lifting of strict type precision 6 to terms, except for
types that do not influence evidence in the runtime semantics, namely function argument
types and ascription types: for these, we can use the more liberal type precision relation
v. Note that these types are used to elaborate evidence, but at runtime once evidence
is elaborated, they are no longer relevant, unlike instantiation types which propagate to
evidence upon application. For example, Rule (6ascε) has the premise G1 v G2. If we
imposed a strict precision relation between ascribed types, then example (B) would not be
satisfied as ∀X.X → X 66 ∀X.? → X. By (6ascε) we know that for the elaborated terms
ε∀X.X→X idX :: ∀X.X → X 6 ε∀X.X→X idX :: ∀X.?→ X because evidences are the same (and
thus related by 6), whereas the type annotations are related by v. Furthermore, example
(A) is satisfied as the elaborated terms are not related by strict precision because ε∀X.X→X
is not related to ε∀X.?→X .

Rule (6appGε) states that types involved in a type application must be related by strict
precision because they do influence evidence during reduction: after elimination of type
abstractions, new evidences are created using these types, and such evidences need to be
related as well. Note that this restriction is sufficient to satisfy monotonicity of evidence
instantiation, which is needed for the dynamic gradual guarantee (Prop 3.19).

Finally, we need to strengthen the relation with an additional rule (6Mascε) to account
for GSFε terms that are the result of the elaboration from GSF. This will be important to
scale the DGG6 from GSFε to GSF below. Recall that the translation from GSF to GSFε
introduces evidences to ensure that GSFε terms are well-typed (Figure 3.6). In particular,
the translation uses type matching _ to ascribe subterms of type ? in elimination positions
to the corresponding top-level type constructor. When an actual matching expansion occurs,
the corresponding evidence is generated such as ε∀X.? = IΞ(∀X.?,∀X.?), or ε?→? = IΞ(? →
?, ? → ?). Such evidences are related by v, but not necessarily by 6. Rule (6Mascε)
accounts for the case where they are not. Note that evidences ε1 and ε2 do not contribute to
any increase in precision: when combined with some arbitrary evidence ε during reduction,
the combination ε # εi either fails or results in ε. Rule (6Mascε) is key to satisfy example

52

(B). To see why, consider terms (idX :: ∀X.X → X) [Int] and (idX :: ∀X.? → X) [Int] and
their elaborations:

(GappG)

(Gascu)
idX idX

′ ε1 = I(∀X.X → X,∀X.X → X)

idX :: ∀X.X → X ε1idX :: ∀X.X → X ε2 = I(∀X.X → X,∀X.X → X)

(idX :: ∀X.X → X) [Int] ε2(ε1idX
′ :: ∀X.X → X) :: ∀X.X → X [Int]

(GappG)

(Gascu)
idX idX

′ ε′1 = I(∀X.X → X,∀X.?→ X)

idX :: ∀X.?→ X ε′1idX :: ∀X.?→ X ε′2 = I(∀X.?→ X,∀X.?→ X)

(idX :: ∀X.?→ X) [Int] ε′2(ε′1idX
′ :: ∀X.?→ X) :: ∀X.?→ X [Int]

Note that ε1 = ε2 = ε′1 = ε∀X.X→X = 〈∀X.X → X,∀X.X → X〉, ε′2 = 〈∀X.?→ X,∀X.?→ X〉,
and ε2 v ε′2 but ε2 66 ε′2. After one step of execution, both pairs of evidences are combined (ε1 # ε2

and ε′1 # ε′2), resulting in both cases in ε∀X.X→X . Therefore, these two programs behave identically
and are thus related.

Strict precision for configurations. Figure 3.12 also defines strict type precision for GSFε stores
and configurations. A store is more strictly precise than another if it binds each type name to a
more strictly precise type. Finally, a configuration is more strictly precise than another if the store
and term components are more strictly precise, and the terms are well-typed with their respective
stores.

DGG6 for GSFε. Armed with strict precision for GSFε, and the fact that consistent transitivity
is monotone with respect to it (Proposition 3.20), we can prove the weak dynamic gradual guarantee
DGG6 for GSFε. Given two configurations related by strict precision, small-step reduction (7−→)
of the most precise one implies that of the less precise one. Alternatively, if the first configuration
is already a value, then so is the second.

Proposition 3.21 (Small-step DGG6 for GSFε) Suppose Ξ1 . t1 6 Ξ2 . t2.

a. If Ξ1 . t1 7−→ Ξ′1 . t
′
1, then Ξ2 . t2 7−→ Ξ′2 . t

′
2, for some Ξ′2 and t′2 such that Ξ′1 . t

′
1 6 Ξ′2 . t

′
2.

b. If t1 = v1, then t2 = v2.

DGG6 for GSF. Using Proposition 3.21 we can establish DGG6 for GSF, considering that two
GSF terms are related by strict precision iff their elaboration to GSFε are.

Theorem 3.22 (DGG6) Suppose t1 6 t2, ` t1 : G1, and ` t2 : G2.

a. If t1 ⇓ Ξ1 . v1, then t2 ⇓ Ξ2 . v2, · ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2 and Ξ1 6 Ξ2, for some v2 and
Ξ2.
If t1 ⇑ then t2 ⇑.

b. If t2 ⇓ Ξ2 . v2, then t1 ⇓ Ξ1 . v1, · ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2 and Ξ1 6 Ξ2, for some v1 and
Ξ1, or t1 ⇓ error.
If t2 ⇑, then t1 ⇑ or t1 ⇓ error.

53

Harmless imprecise ascriptions. Finally, we can use the DGG6 to establish that, given a term t
of type G, ascribing to a less precise type G′ and then back to type G, results in a term semantically
equivalent to t:

Lemma 3.23 Let ` t : G, G v G′, and t′ = t :: G′ :: G, then

• t ⇓ Ξ . v ⇐⇒ t′ ⇓ Ξ . v.

• t ⇓ error ⇐⇒ t′ ⇓ error.

Note in particular that if t produces a value, then t′ produces the exact same value. The dynamic
semantics of GSFε ensure that t and t :: A have equivalent behavior; both reduce to the same value,
diverge or raise an error. Therefore, by transitivity, t and t :: A :: A also have equivalent behavior.
With this result and the DGG6, we can prove that t and t :: B :: A have equivalent behaviors
(Lemma 3.23).

While the above result characterizes an ascription roundtrip through imprecision and back, we
can also establish harmlessness results for imprecise ascriptions. Given a term t that reduces to
some value, ascribing it to a less precise type also results in a (less strictly precise) value.

Lemma 3.24 Let ` t : G such that t ⇓ Ξ . v, and G v G′. Then t :: G′ ⇓ Ξ . v′ such that
` Ξ . v : G 6 Ξ . v′ : G′, for some v′.

Likewise, we can characterize ascribing the subterms of elimination forms, such as function
application and type application:

Lemma 3.25 Let ` t1 : G1 and ` t2 : G2 such that ` t1 t2 : G and t1 t2 ⇓ Ξ . v. Let G1 v G′1,
G2 v G′2, and G v G′, such that ` (t1 :: G′1) (t2 :: G′2) : G′. Then (t1 :: G′1) (t2 :: G′2) ⇓ Ξ . v′ such
that ` Ξ . v : G 6 Ξ . v′ : G′, for some v′.

Lemma 3.26 Let ` t : G1 such that ` t [G2] : G and t [G2] ⇓ Ξ . v. Let G1 v G′1, G2 6 G′2, and
G v G′, such that ` (t :: G′1) [G′2] : G′. Then (t :: G′1) [G′2] ⇓ Ξ′.v′ such that ` Ξ.v : G 6 Ξ′.v′ : G′

and Ξ 6 Ξ′, for some v′ and Ξ′.

Similar lemmas can be defined for other eliminations forms, such as projections and n-ary
operations.

These results, which embody the motto that external imprecision is harmless in GSF, constitute
a valuable compositionality guarantee when embedding fully-static (System F) terms in a gradual
world, as will be further illustrated in §3.7.4.

3.6.4 Syntactic Strict Precision for GSF

For now, strict precision for GSF terms has been defined by appealing to their elaboration to GSFε
terms. Unfortunately, with this definition it would be hard for programmers to get an intuition about
when two terms are related by strict precision, as it would require understanding the elaborations
to GSFε. Here we design a strict precision relation 6 for GSF terms syntactically, as a sound
approximation of the elaboration-based definition. To define a syntactic strict precision relation for

54

Ω ` v : G 6v v : G Syntactic strict value precision

(6b)
ty(b) = B

Ω ` b : B 6v b : B
(6λ)

Ω, x : G1 v G2 ` t1 : G′1 6 t2 : G′2 G1 v G2

Ω ` (λx : G1.t1) : G1 → G′1 6v (λx : G2.t2) : G2 → G′2

(6λ)
Ω, x : G1 v G2 ` t1 : G′1 6 t2 : G′2 G1 v G2

Ω ` (λx : G1.t1) : G1 → G′1 6v (λx : G2.t2) : G2 → G′2

(6×)
Ω ` v1 : G1 6 v2 : G2 Ω ` v′1 : G′1 6 v

′
2 : G′2

Ω ` 〈v1, v
′
1〉 : G1 ×G′1 6v 〈v2, v

′
2〉 : G2 ×G′2

(6Λ)
Ω ` t1 : G1 6 t2 : G2

Ω ` (ΛX.t1) : ∀X.G1 6v (ΛX.t2) : ∀X.G2

Ω ` t : G 6 t : G Syntactic strict term precision

(6x)
x : G1 v G2 ∈ Ω

Ω ` x : G1 6 x : G2
(6v)

Ω ` v1 : G1 6v v2 : G2 G1 6 G2

Ω ` v1 : G1 6 v2 : G2

(6ascv)
Ω ` v1 : G′1 6v v2 : G′2 G′1 uG1 6 G′2 uG2 G1 v G2

Ω ` v1 :: G1 : G1 6 v2 :: G2 : G2

(6asct)
Ω ` t1 : G′1 6 t2 : G′2 G′1 uG1 6 G′2 uG2 G1 v G2 t1, t2 6= v

Ω ` t1 :: G1 : G1 6 t2 :: G2 : G2

(6op)
Ω ` t1 : G1 6 t2 : G2 ty(op) = G→ G′ G uG1 6 G uG2

Ω ` op(t1) : G′1 6 op(t2) : G′2

(6app)

Ω ` t1 : G1 6 t2 : G2 Ω ` t′1 : G′1 6 t
′
2 : G′2

G1 _ G11 → G12 G2 _ G21 → G22 G′1 uG11 6 G′2 uG21

Ω ` t1 t′1 : G12 6 t2 t′2 : G22

(6pairt)
(t1 6= v1 ∨ t2 6= v2) Ω ` t1 : G1 6 t2 : G2 Ω ` t′1 : G′1 6 t

′
2 : G′2

Ω ` 〈t1, t′1〉 : G1 ×G′1 6 〈t2, t′2〉 : G2 ×G′2

(6appG)
Ω ` t1 : G1 6 t2 : G2 G1 _ ∀X.G′′1 G2 _ ∀X.G′′2 G′1 6 G

′
2

Ω ` t1 [G′1] : G′′1[G′1/X] 6 t2 [G′2] : G′′2[G′2/X]

(6pairi)
Ω ` t1 : G1 6 t2 : G2 G1 _ G11 ×G21 G2 _ G12 ×G22

Ω ` πi(t1) : Gi1 6 πi(t2) : Gi2

Ω ` Γ v Γ Well-formedness Ω

· ` · v ·
Ω ` Γ1 v Γ2 G1 v G2

Ω, x : G1 v G2 ` Γ1, x : G1 v Γ2, x : G2

Figure 3.13: GSF: Syntactic Strict Term Precision

55

GSF, we start from the GSF to GSFε translation rules, and analyze when two terms yield related
elaborations. Let us first look at two crucial cases: ascriptions and type applications.

Ascriptions. For a couple of ascriptions t1 :: G′1 and t2 :: G′2 we know that:

(Gasct)

t1 6= v
∆; Γ1 ` t1 t′1 : G′1 ε1 = I(G′1, G1)

∆; Γ1 ` t1 :: G1 ε1t
′
1 :: G1 : G1

(Gasct)

t2 6= v
∆; Γ2 ` t2 t′2 : G′2 ε2 = I(G′2, G2)

∆; Γ2 ` t2 :: G2 ε2t
′
2 :: G2 : G2

If Ω ` · . ε1t
′
1 :: G1 : G1 6 · . ε2t

′
2 :: G2 : G2, then by (6ascε), it must be the case that ε1 6 ε2,

Ω ` · . t′1 : G′1 6 · . t′2 : G′2 and G1 v G2, where Ω is well-formed with respect to Γ1 and Γ2, i.e. Ω `
Γ1 v Γ2 (Figure 3.13). As I(G′1, G1) = 〈G′1 uG1, G

′
1 uG1〉 and I(G′2, G2) = 〈G′2 uG2, G

′
2 uG2〉,

then we require that G′1 u G1 6 G′2 u G2, which leads to the following strict precision rule for
ascriptions on GSF:

Ω ` t1 : G′1 6 t2 : G′2 G′1 uG1 6 G′2 uG2 G1 v G2 t1, t2 6= v

Ω ` t1 :: G1 : G1 6 t2 :: G2 : G2

Type applications. For a couple of type applications t1[G′1] and t2[G′2], we know from the elabo-
ration rules that:

(GappG)

∆; Γ1 ` t1 t′1 : G1 ∆ ` G′1
G1 _ ∀X.G′′1 ε1 = I(G1,∀X.G′′1)

∆; Γ1 ` t1 [G′1] (ε1t
′
1 :: ∀X.G′′1) [G′1] : G′′1[G′1/X]

(GappG)

∆; Γ2 ` t2 t′2 : G2 ∆ ` G′2
G2 _ ∀X.G′′2 ε2 = I(G2,∀X.G′′2)

∆; Γ2 ` t2 [G′2] (ε2t
′
2 :: ∀X.G′′2) [G′2] : G′′2[G′2/X]

Let us suppose that Ω ` ·.(ε1t
′
1 :: ∀X.G′′1) [G′1] : G′′1[G′1/X] 6 ·.(ε2t

′
2 :: ∀X.G′′2) [G′2] : G′′2[G′2/X],

where Ω ` Γ1 v Γ2. Then by (6appGε), we know that Ω ` · . (ε1t
′
1 :: ∀X.G′′1) : ∀X.G′′1 6 · . (ε2t

′
2 ::

∀X.G′′2) : ∀X.G′′2 and G′1 6 G′2. Note that I(Gi,∀X.G′′i) = I(∀X.G′′i ,∀X.G′′i) = 〈∀X.G′′i ,∀X.G′′i 〉,
for i ∈ {1, 2}. By (6Mascε), it must be the case that ∀X.G′′1 v ∀X.G′′2 and Ω ` ·.t′1 : G1 6 ·.t′2 : G2.
Finally, the strongest requirements yield the following strict precision rule for type applications:

Ω ` t1 : G1 6 t2 : G2 G1 _ ∀X.G′′1 G2 _ ∀X.G′′2 G′1 6 G
′
2

Ω ` t1 [G′1] : G′′1[G′1/X] 6 t2 [G′2] : G′′2[G′2/X]

Syntactic strict precision. Figure 3.13 defines syntactic strict precision for GSF terms, which
soundly reflects strict precision for GSFε and can account for the translation of GSF terms to
GSFε. Judgment Ω ` t1 : G1 6 t2 : G2 denotes that term t1 of type G1 is more strictly precise
to t2 of type G2, under precision relation environment Ω. Note that contrary to GSFε, we do not
require type stores because source terms only exist prior to evaluation, and hence do not contain type
names. Most of the rules are straightforward and derived following the reasoning explained above for

56

ascriptions and type applications. We use metavariable v in GSF to range over constants, functions
and type abstractions, and use 6v to relate them. We make such distinction between precision on
values and terms, because pair of values such as ΛX.λx : X.x :: X and ΛX.λx : ?.x :: X should not
be related (6v), but their ascriptions to ∀X.X → X should (6ascv).

Rule (6v) demands that the internal types of the values be related in 6 because we do not
know in which context the value is going to be used. In contrast, rule (6ascv) is more permissive,
establishing that the internal types can be in v—but only if the values have ascriptions such that
their meet (i.e. initial evidences) are in 6 (as explained on how we derive (6asct)). This allows
capturing some internal losses of precision, whenever the surrounding type information ensures that
the associated evidence will be related by 6. For instance, (ΛX.λx : X.x :: X) :: ∀X.X → X 6
(ΛX.λx : ?.x :: X) :: ∀X.X → X at the corresponding type.

Rule (6asct) uses the same technique to be as permissive as possible: it only requires G1 v G2,
but requires the meets of the types involved in the ascriptions to be related by 6 as explained
before. Likewise, Rule (6app) requires the meets of the function argument types and the actual
argument types to be related by 6. Note that during translation from GSF to GSFε, the argu-
ments t′1 and t′2 will be ascribed to dom](G1) and dom](G2) respectively. To account for strict
precision over the evidence of the ascriptions I(G′1, dom](G1)) = 〈G′1 u dom](G1), G′1 u dom](G1)〉
and I(G′2, dom](G2)) = 〈G′2 u dom](G2), G′2 u dom](G2)〉, we require that G′1 u dom](G1) 6 G′2 u
dom](G2). Rule (6appG) follows the GSFε precision rule for type instantiation and uses 6 to relate
the instantiation types.

Soundness of syntactic strict precision. Finally, syntactic strict term precision for GSF is
sound with respect to strict term precision of the translated terms in GSFε:

Proposition 3.27 Suppose t1 and t2 GSF terms such that · ` t1 : G1 6 t2 : G2, and their
elaborations · ` t1 tε1 : G1 and · ` t2 tε2 : G2. Then · ` · . tε1 : G1 6 · . tε2 : G2.

3.7 Gradual Parametricity for GSF

In this section, we first discuss two different notions of parametricity for gradual languages that have
been developed in the literature (§3.7.1), in order to situate the notion of gradual parametricity
for GSF (§3.7.2). Then, we show in §3.7.3 that this notion of gradual parametricity for GSF is
incompatible with the DGG. This tension is solely driven by the definition of parametricity, and
not by monotonicity of consistent transitivity (§3.6.1). This suggests that the incompatibility is
shared by other languages with essentially the same notion of gradual parametricity, for which the
dynamic gradual guarantee has so far been left as an open question. Finally, we explore gradual free
theorems in GSF based on examples discussed in the literature, using both gradual parametricity
and the DGG6 in order to establish such results (§3.7.4).

3.7.1 On Gradual Parametricities

We first review the standard technique to state and prove parametricity. The notion of parametricity
established by Reynolds (1983) is usually defined by interpreting types as binary logical relations.
The fundamental property of such a relation, also known as the abstraction theorem, states that

57

a well-typed term is related to itself at its type. Consequently, polymorphic terms must behave
uniformly at all possible type instantiations.

Preliminaries. The definition of parametricity for the statically-typed polymorphic lambda calcu-
lus is standard and uncontroversial. Notationally, we follow Ahmed et al. (2017) in all the technical
development hereafter. The chosen notations scale smoothly to describe gradual parametricity, both
in other work and ours. The relational interpretation of types is presented using atoms of the form
(t1, t2) ∈ Atom[T1, T2], denoting that the closed terms t1 and t2 have types T1 and T2, respectively.
Formally:

Atom[T1, T2] = {(t1, t2) | · ` t1 : T1 ∧ · ` t2 : T2}

The logical relation is defined using two mutually-defined interpretations: one for values and one
for computations. For simplicity and uniformity, throughout this section we use notation (v1, v2) ∈
VρJT K when v1 and v2 are related values at type T under environment ρ, and notation (t1, t2) ∈ TρJT K
when terms t1 and t2 are related computations at type T under environment ρ. An environment
ρ, which maps a type variable to two types and a relation, is used to relate values at abstract
types as explained below. For convenience, we introduce the following notation for projections
in ρ: if ρ = {X 7→ (T11, T12, R1), Y 7→ (T21, T22, R2), ...}, then ρ1 = {X 7→ T11, Y 7→ T21, ...},
ρ2 = {X 7→ T12, Y 7→ T22, ...}, and ρR = {X 7→ R1, Y 7→ R2, ...}.

Let us briefly go through the definitions. Two base values (of type B) are related if they are
the same:

VρJBK = {(v, v) ∈ Atomρ[B]}

where Atomρ[T] = {(t1, t2) | (t1, t2) ∈ Atom[ρ1(T), ρ2(T)]}. Two functions are related if given two
related argument the application yield related computations:

VρJT1 → T2K = {(v1, v2) ∈ Atomρ[T1 → T2] | ∀(v′1, v′2) ∈ VρJT1K.(v1 v
′
1, v2 v

′
2) ∈ TρJT2K}

Two type abstractions are related if their instantiations to two arbitrary types yield related com-
putations for any given relation between the instantiated types:

VρJ∀X.T K = {(v1, v2) ∈ Atomρ[∀X.T] |
∀T1, T2,∀R ∈ Rel[T1, T2].(v1 [T1], v2 [T2]) ∈ Tρ,X 7→(T1,T2,R)JT K}

where R relates values of types T1 and T2, formally Rel[T1, T2] = {R ⊆ Atom[T1, T2]}. This relation
allows us to relate values at abstract types: two values are related at an abstract type X, if they
are in the relation for X:

VρJXK = ρR(X)

Finally, two computations are related if they reduce to two related values (t 7−→∗ v specifies that
term t reduces in zero or more steps to the value v).

TρJT K = {(t1, t2) ∈ Atomρ[T] | t1 7−→∗ v1 ⇒ (t2 7−→∗ v2 ∧ (v1, v2) ∈ VρJT K)}

With the above definitions, we can establish the definition of the logical relation between two
open terms. Two open terms are related if both are well-typed with the same type, and if we
close them with any ρ and γ in the interpretation of ∆ and Γ, respectively, we obtain related
computations.

∆; Γ ` t1 � t2 : T , ∆; Γ ` t1 : T∧∆; Γ ` t2 : T∧∀ρ, γ.ρ ∈ DJ∆K∧γ ∈ GρJΓK⇒ (ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJGK

58

The fundamental property of this relation establishes that a well-typed program is related with
itself: if ∆; Γ ` t : T then ∆; Γ ` t � t : T . The proof of this property uses compatibility lemmas
for each term constructor. For instance, the compatibility lemma for type instantiation states: if
∆; Γ ` t1 � t2 : ∀X.T and ∆ ` T ′, then ∆; Γ ` t1 [T ′] � t2 [T ′] : T [T ′/X]. An important property
that is used to demonstrate parametricity (specifically the above compatibility lemma) (Ahmed,
2006; Ahmed et al., 2017) is the following (hereafter called compositionality):

If ∆ ` T ′, ρ ∈ DJ∆K and R = VρJT ′K, then Vρ,X 7→(ρ1(T ′),ρ2(T ′),R)JT K = VρJT [T ′/X]K

Observe that for compositionality to be satisfied, the relation R can not be any relation; it must
be VρJT ′K. For example, if T = X and T ′ = Int, then:

Vρ,X 7→(ρ1(T ′),ρ2(T ′),R)JT K = Vρ,X 7→(ρ1(Int),ρ2(Int),R)JXK = ρR(X) = R

and
VρJT [T ′/X]K = VρJX[Int/X]K = VρJIntK

Therefore, R = VρJT ′K = VρJIntK.

Parametricity for gradual languages—or gradual parametricity—is a novel concept around which
different efforts have been developed, yielding different notions. The subtle differences in interpreta-
tion come from the specificities of gradual typing, namely the potential for runtime errors due to type
imprecision. Much of it is linked to the mechanism used to enforce type abstraction. Apart from
GSF, gradual parametricity has only been proven for λB (Ahmed et al., 2017) and PolyGν (New
et al., 2020), under two fairly different interpretations. Technically, both are defined using logi-
cal relations that are fairly standard, except for three important cases: polymorphic types, type
variables, and of course, the unknown type. We now briefly review and compare both approaches.

Gradual parametricity in λB. We now present the notion of gradual parametricity for λB,
illustrating the main differences with the original notion of parametricity of Reynolds (1983). As
we will see later, GSF follows similar ideas and techniques. Building on prior work by Matthews
and Ahmed (2008), λB uses runtime type generation to reduce type applications, and a form of
automatic (un)sealing is introduced via conversions and type names during reduction. A conversion

T1
φ⇒ T2 is used to make explicit the conversion between a type name and the type it is bound to

in the store. The label φ stands for a type name α accompanied by a sign (− or +), where −α
represents a sealing and +α an unsealing. For instance, 1 : Int

−α⇒ α is a conversion, representing an

integer sealed value with type α. The term (1 : Int
−α⇒ α) : α

+α⇒ Int is composed of two conversions,
reducing to the plain value 1 after unsealing. Conversions are introduced upon type applications,
similar to the εout evidence in GSF. They are also closely related to sealing and unsealing terms in
PolyGν .

Since gradual types introduce divergence, λB uses a step-indexed logical relation to ensure well-
foundedness. Technically, this means that atoms in λB are of the form (W, t1, t2), where world W
describes the set of assumptions under which the pair of expressions t1 and t2 are related. Because
reduction occurs relative to a type name store, and type names have indefinite dynamic extent,
worlds are of the form (j,Σ1,Σ2, κ): j corresponds to the step index, Σ1, and Σ2 correspond to
the type name stores under which the terms are being typechecked and evaluated, and κ is a map
from type names to relations R. As worlds carry type instantiation information and relations,
environment ρ now maps type variables to type names. For instance, ρ(X) = (T1, T2, R) may
correspond to ρ(X) = α, in a world W such that W = (j, {α := T1}, {α := T2}, {α 7→ R}). For
simplicity, we use a dot notation to access different components of a world: W.j,W.Σ1,W.Σ2, and

59

W.κ are used to access the step-index, both type name stores, and the relation store, respectively.
Note that the index W.j specifies the number of available future reduction steps, i.e. a single
reduction step reduces the index by one.

Two values are related at a type name α if both values are conversions to α and belong to the
relation associated with α:

VρJαK = {(W, v1 : T1
−α⇒ α, v2 : T2

−α⇒ α) ∈ Atom∅[α] | (↓W, v1, v2) ∈W.κ(α)}

Above, ↓W lowers the step-index of the world and the intepretations κ in the world by one; formally
↓W = (j,W.Σ1,W.Σ2, bW.κcj) and j = W.j − 1, where bκcj = {α 7→ bRcj | κ(α) = R}, and

bRcj = {(W, t1, t2) ∈ R | W.j < j}. For instance, (W, 1 : Int
−α⇒ α, 2 : Int

−α⇒ α) ∈ VρJαK = VρJXK,
when ρ(X) = α, W.Σ1(α) = Int, W.Σ2(α) = Int, and (↓W, 1, 2) ∈W.κ(α).

As sealing and unsealing are introduced automatically at runtime, to reason parametrically
about type abstractions, λB does not directly relate type applications as computations. For in-
stance, consider term ΛX.λx : X.x, which is related with itself (W,ΛX.λx : X.x,ΛX.λx : X.x) ∈
V∅J∀X.X → XK. If we instantiate these values with Int, choosing relation {(1, 2)}, as W.Σi.(ΛX.λx :

X.x) [Int] 7−→ W.Σi, α := Int . (λx : α.x) : α → α
+α⇒ Int → Int, then according to the standard

definition of parametricity, the two instantiations have to be related at type X → X. Following the
dynamic semantics of λB, the following must hold:

(W ′, (λx : α.x) : α→ α
+α⇒ Int→ Int, (λx : α.x) : α→ α

+α⇒ Int→ Int) ∈ VρJX → XK

for a future world W ′ such that (W ′′, 1, 2) ∈ W ′.κ(α), for some W ′′. A future world intuitively
captures how the world changes upon reduction: while the step-index decreases by one at each
step of reduction, the store is extended after each type instantiation. Formally, we say that W ′ is
a future world of W , notation W ′ � W , if the step index is lower (W ′.j < W.j), the type name
stores are super sets of the originals (W ′.Σ1 ⊇W.Σ1 and W ′.Σ1 ⊇W.Σ1), and the W ′.κ is a future
relation store (W ′.κ � bW.κcW ′.j). We say that κ′ is a future relation store of κ, notation κ′ � κ, if
∀α ∈ dom(κ) then κ′(α) = κ(α). According to the definition of related functions at type X → X,
the application of these functions to related values at type X should yield related computations at

type X. In particular using (W ′, 1 : Int
−α⇒ α, 2 : Int

−α⇒ α) ∈ VρJXK, then

(W ′, ((λx : α.x) : α→ α
+α⇒ Int→ Int) (1 : Int

−α⇒ α),

((λx : α.x) : α→ α
+α⇒ Int→ Int) (2 : Int

−α⇒ α)) ∈ TρJXK

But these application expressions do not type check! Therefore, instead of relating the two type
application expressions as computations, λB relates only the bodies of the type abstractions after
the type applications have been performed (highlighted in gray):

VρJ∀X.T K = {(W, v1, v2) ∈ Atomρ[∀X.T] | ∀T1, T2,∀R ∈ Rel[T1, T2].∀W ′ �W.∀α.∀t1, t2.

W ′.Σ1 . v1 [T1] 7−→W ′.Σ1, α := T1 . (t1 : ρ(T)[α/X]
α−⇒ ρ(T)[T1/X]) ∧

W ′.Σ2 . v2 [T2] 7−→W ′.Σ2, α := T2 . (t2 : ρ(T)[α/X]
α−⇒ ρ(T)[T2/X])) ∧

(W ′ � (α, T1, T2, R), t1, t2) ∈ Tρ[X 7→α]JT K}

After both type applications take a step, only the inner terms t1 and t2 are related in a world
extended with α, the two instantiated types T1 and T2, and the chosen relation R. World extension
� is formally defined as W � (α, T1, T2, R) = (W.j, (W.Σ1, α := T1), (W.Σ2, α := T2),W.κ[α 7→ R]).

60

Observe how this definition strips out the outermost conversions in charge of sealing and unsealing
(this conversion is similar to evidence εout in GSF). This technique makes it possible to reason about
a pair of related functions applied to a pair of already-sealed related values. In the previous example,

we know that if W.Σi . (ΛX.λx : X.x) [Int] 7−→W.Σi, α := Int . (λx : α.x) : α→ α
+α⇒ Int→ Int then

(W ′, λx : α.x, λx : α.x) ∈ VρJX → XK, where W ′ is the extended future world. Therefore we can

deduce that (W ′, (λx : α.x) (1 : Int
−α⇒ α), (λx : α.x) (2 : Int

−α⇒ α)) ∈ Tρ[X 7→α]JXK.

The problem with this definition is that it does not support directly reasoning about type
applications. For instance, in the previous example, from the logical relation we cannot directly
deduce that:

(W ′, (λx : α.x) : α→ α
+α⇒ Int→ Int, (λx : α.x) : α→ α

+α⇒ Int→ Int) ∈ VρJInt→ IntK

To reason about related type applications as computations (and not by considering the inner terms
only), one needs to use a conversion lemma. This lemma relates two values after the unsealing
of some type name α. Essentially, such a lemma says that if (W, v1, v2) ∈ VρJT K, T and T ′ are
convertible under +α, W.Σ1(α) = W.Σ2(α) = T ′′ and W.κ(α) = VρJT ′′K, then

(W, v1 : ρ(T)
+α⇒ ρ(T ′), v2 : ρ(T)

+α⇒ ρ(T)) ∈ TρJT ′K

Observe that to apply this lemma, α must be bound to the same type in both stores (W.Σ1(α) =
W.Σ2(α) = T ′) and to the value relation of that type (W.κ(α) = VρJT ′K). When this situation
happens, we say that α is synchronized in W . A similar requirement is established for the proof
of parametricity for System F, specifically the compositionality lemma described before. The syn-
chronization requirement is needed in gradual parametricity, among other reasons, to prevent the

unsealing of unrelated values such as (W ′, 1 : Int
−α⇒ α, 2 : Int

−α⇒ α) ∈ VρJαK. Otherwise, after
unsealing, we would have (W ′′, 1, 2) ∈ VρJIntK, which is false.

Gradual parametricity in PolyGν. New et al. (2020) recently developed another approach to
gradual parametricity, which has the benefit of avoiding the convoluted treatment of type applica-
tions described above. In doing so, the notion of gradual parametricity they present is more similar
to Reynolds’s original presentation. Note however that this comes at a cost: the syntax of PolyGν

departs importantly from System F, by requiring all sealing and unsealing to happen explicitly in
the term syntax, with outward scoping of type variables:

System F ((ΛX.λx : X.x) [Int] 1) + 1 PolyGν unsealX((ΛX.λx : X.x) [X = Int] (sealX1)) + 1

Technically, gradual parametricity for PolyGν is established by first translating PolyGν to
an intermediate language PolyCν and finally to CBPVOSum, a variant of Levy’s Call-by-Push-
Value (Levy, 1999) with open sums to encode the unknown type. The logical relation of para-
metricity is defined for CBPVOSum, and differs importantly from that of λB. In particular, even
though it still uses type names to relate type abstractions, the definition requires type applications
(and not some inner terms) to be related as computations, as expected in the standard treatment
of parametricity. Crucially, this is possible only because type applications never incur automatic
insertion of conversions to seal/unseal values, as would happen in λB, because in this approach,
sealing and unsealing are explicit in the syntax of terms.

Comparing parametricities. The notion of gradual parametricity of PolyGν is stronger than
that of λB, as it directly embodies the kind of parametric reasoning that one is used to in static
languages. While λB ensures a form of gradual parametricity, this notion is weaker, because given

61

two related type abstractions and two arbitrary (possibly different) types, we cannot directly reason
about both corresponding type applications directly: we can only directly reason about the body
of the type abstractions after the type applications have reduced.

While the notion of gradual parametricity of PolyGν is superior, as already mentioned, it is
enabled by sacrificing the syntax of System F. In this work, we are interested in gradualizing
System F, and studying the properties we can get, rather than in designing a different static source
language in order to accommodate the desired reasoning principles. This led us to embrace runtime
sealing through type names, as in λB, and consequently, to aspire to a weaker notion of gradual
parametricity than that of PolyGν . We do believe that both approaches are fully valuable and
necessary to understand the many ways in which gradual typing can embrace such an advanced
typing discipline.

In particular, as illustrated by New et al. (2020), the weaker notion of parametricity adopted
in GSF can lead to behavior that breaks the (strong notion of) parametricity enjoyed by PolyGν .
Note that this can however only occur when manipulating values of imprecise polymorphic types;
for values of static types, the reasoning principles of standard parametricity do apply. They argue
that GSF exhibits non-parametric behavior by considering the following example. Consider the
below value:

v , (ΛX.λx : X.true) :: ∀X.?→ Bool

Although v is related to itself at type ∀X.? → Bool, two different instantiations (to Int and Bool,
respectively) are not related computations, i.e. (W, v [Int], v [Bool]) 6∈ TρJ? → BoolK. Given two
related arguments at type ? such as εInt3 :: ? twice, v [Int] (εInt3 :: ?) reduces to true, whereas
v [Bool] (εInt3 :: ?) reduces to an error. As we saw earlier, this happens because GSF does not
directly relate type applications as computations. The logical relation only tells us that after
instantiation, the internal terms (without the outermost evidences) εαInt→Bool(λx : α.true) :: ? →
Bool and εαBool→Bool(λx : α.true) :: ? → Bool are indeed related at type ? → Bool. In this case,
if we try to apply both functions to εInt3 :: ?, both programs fail. The only arguments that
can be passed such that both applications succeed are related sealed values at type ?, such as
(W, 〈Int, αInt〉3 :: ?, 〈Int, αBool〉true :: ?) ∈ VρJ?K (assuming an appropriate relation for α).

Finally, note that the fact that v [Bool] (1 :: ?) reduces to an error in GSF points to a wider
point in the design space of gradually-typed languages: how eagerly should type constraints be
checked? Indeed, v [Bool] is λx : Bool.true, whose application to an underlying Int value is ill-typed
and can legitimately be expected to fail. In that respect, GSF follows GTLC (Siek and Taha, 2006;
Siek et al., 2015a), in which (λx : Bool.true) (1 :: ?) also fails with a runtime cast error. This eager
form of runtime type checking likewise follows from the Abstracting Gradual Typing methodology
as formulated by Garcia et al. (2016). An interesting perspective would be to study a lazy variant
of AGT (where casts or evidence are accumulated in a value and are only reduced when the value
is used), and whether it recovers properties of alternative approaches (New and Ahmed, 2018).

It is interesting to observe that no runtime error is raised in λB for this example, despite the
fact that the parametricity logical relation is essentially the same as that of GSF. The difference
comes from the runtime semantics of λB: as we have illustrated in §2.4, λB does not track the
type instantiations that occur on imprecise types. This means that the underlying typing violation
observed by GSF, which manifests as a runtime error, is not noticed in λB. Therefore, this example
highlights yet another point of tension in the design space of System F-based gradual languages.

62

3.7.2 Gradual Parametricity in GSF

We now turn to the technical details of gradual parametricity in GSF. As explained above, we
follow λB (Ahmed et al., 2017) for the formal development of gradual parametricity, due to the
use of runtime type name generation for sealing, and the System F syntax that requires automatic
insertion of (un)sealing evidences at runtime. We highlight the main differences in the logical
relations of GSF with respect to λB, mainly in the value logical relations for types ? and α.

We establish parametricity for GSF by proving parametricity for GSFε. Specifically, we define
a step-indexed logical relation for GSFε terms, closely following the relation for λB. The relation is
defined on atoms (W, t1, t2) that denote two related terms t1, t2 in a world W . A world is composed
of a step index j, two stores Ξ1 and Ξ2 used to typecheck and evaluate the related terms, and a
mapping κ, which maps type names to relations R, used to relate sealed values. The components
of a world are accessed through a dot notation, e.g. W.j for the step index. The interpretations of
values, terms, stores, name environments, and type environments are mutually defined, using the
auxiliary definitions of Figure 3.14. As usual, the value and term interpretations are indexed by a
type and a type substitution ρ.

Auxiliary definitions. We write Atomρ[G] (Figure 3.14) to denote a set of terms of the same
type after substitution. The Atom=

ρ [G] is similar to Atomρ[G] but restricts the set to values that
have, after substitution, equally precise evidences (the equality is after unlifting because two sealed
values may be related under different instantiations). Remember that the unlifting operator, given
an evidence type E, returns a gradual type G, forgetting to which types the type names were
instantiated. For instance,

(W, 〈Int, αInt〉1 :: α, 〈Bool, αBool〉true :: α) ∈ Atom=
ρ [X]

if ρ(X) = α, as (W, 〈Int, αInt〉1 :: α, 〈Bool, αBool〉true :: α) ∈ Atomρ[X] (assuming an adequate
world) and unlift(π2(〈Int, αInt〉)) = unlift(π2(〈Bool, αBool〉)) = α. However,

(W, 〈Int, Int〉1 :: ?, 〈Bool,Bool〉true :: ?) 6∈ Atom=
ρ [?]

since unlift(π2(〈Int, Int〉)) = Int 6= Bool = unlift(π2(〈Bool,Bool〉)). We explain this in detail below,
when presenting the logical relations for values.

Reln[G1, G2] defines the set of relations of values of type G1 and G2. Note that if R ∈
Reln[G1, G2], we also require that for all atoms in R, all future versions of that atom should
also be present in R. Intuitively, this is because values in a relation R should still be related af-
ter lowering the number of steps (reduction). We use bRcn and bκcn to restrict the step index
of the worlds to less than n. Finally, κ′ � κ specifies that κ′ is a future relation mapping of κ
(an extension8), and similarly W ′ � W expresses that W ′ is a future world of W . Intuitively, a
future relation mapping represents the same relations as the original plus some extra ones that may
have been added during reduction. Similarly, a future world represents a world after some steps of
reduction, i.e. a world with a smaller (or equal) step index and a future mapping relation.

Logical relation for terms. Following λB, the logical interpretation of terms (Figure 3.15) of
a given type enforces an “error-sensitive” view of parametricity: if the first term yields a value,
the second must produce a related value at that type; if the first term fails, so must the second.

8 Note the relation is antisymmetric as we quantify over all α ∈ dom(κ), and this could be false for some
α ∈ dom(κ′).

63

Atomn[G1, G2] ={(W, t1, t2) |W.j < n ∧W ∈Worldn ∧W.Ξ1, ·, · ` t1 : G1 ∧W.Ξ2, ·, · ` t2 : G2}
Atomval

n [G1, G2] ={(W, v1, v2) ∈ Atomn[G1, G2]} Atomρ[G] = ∪n≥0{(W, t1, t2) ∈ Atomn[ρ(G), ρ(G)]}
Atom=

ρ [G] ={(W, v1, v2) ∈ Atomρ[G] | unlift(π2(ev(v1))) = unlift(π2(ev(v2)))}
World = ∪n≥0 Worldn

Worldn ={(j,Ξ1,Ξ2, κ) ∈ Nat× Store× Store× (TypeName→ Relj) |
j < n ∧ ` Ξ1 ∧ ` Ξ2 ∧ ∀α ∈ dom(κ).κ(α) ∈ Relj [Ξ1(α),Ξ2(α)]}

Reln[G1, G2] ={R ∈ Atomval
n [G1, G2] | ∀(W, v1, v2) ∈ R.∀W ′ �W.(W ′, v1, v2) ∈ R}

bRcn = { (W, t1, t2) ∈ R |W.j < n } bκcn = {α 7→ bRcn | κ(α) = R }
κ′ � κ ,∀α ∈ dom(κ).κ′(α) = κ(α)

W ′ �W ,W ′.j ≤W.j ∧W ′.Ξ1 ⊇W.Ξ1 ∧W ′.Ξ2 ⊇W.Ξ2 ∧W ′.κ � bW.κcW ′.j ∧W ′,W ∈World

↓W =(j,W.Ξ1,W.Ξ2, bW.κcj) where j = W.j − 1

W � (α,G1, G2, R) =(W.j, (W.Ξ1, α := G1), (W.Ξ2, α := G2),W.κ[α 7→ R])

Figure 3.14: Logical Relation: Auxiliary Definitions

The reason behind this is to ensure parametric behavior in the presence of runtime errors. Given
a parametric term, if after two different instantiations one of the resulting terms fails and the
other terminates to a value, then both instantiations did not behave similarly.9 Observe that one
reduction takes i steps in the definition of the interpretation of terms while the other one takes
any arbitrary number of steps. This is because only one index is needed for this definition to be
well-founded, and it would be challenging to establish the number of steps for the second reduction.

Logical relations for values. The logical interpretation of values (Figure 3.15) uses Atom=
ρ [G],

which requires the second component of the evidence of each value to have the same precision to
enforce such sensitivity. Indeed, if one is allowed to be more precise than the other, then when later
combined in the same context, the more precise value may induce failure while the other does not.
For instance, if we have evidences 〈Int→ Int, αInt→Int〉 and 〈Int→ Int, Int→ Int〉 and combine them
through consistent transitivity with the evidence 〈Int→ Int, Int→ Int〉, the first combination fails
while the second one succeeds, resulting in 〈Int→ Int, Int→ Int〉. For this reason, related values are
required to have evidence such that their second components are equal using the unlifting operator
(unlift(π2(〈Int→ Int, αInt→Int〉) = α 6= Int→ Int = unlift(π2(〈Int→ Int, Int→ Int〉))).

Two base values are related if they are equal. Two functions are related if their application to
related values yields related results. Note that, unlike λB, the arguments are related at one step
down (↓W).10 Otherwise (in combination with the definition of related values at type ?, which also
presents some differences), the logical relation would not be well-founded, as we explain below. Two
pairs are related if their components are pointwise related. Two type abstractions are related if
given any two types and any relation between them, the instantiated terms (without their unsealing
evidence) are also related in a world extended (�) with α, the two instantiation types G1 and G2

and the chosen relation R between sealed values (Figure 3.14). Note that the step index of this
extended world is decreased by one, because we take a reduction step.

Two sealed values are related at a type name α if first, after unsealing, the resulting values are

9 Considering a logical relation where the first term may fail and the other terminates leads to a weaker
version of parametricity (in terms of different notions of gradual parametricity).

10 The operator ↓W has the same definition as IW in λB.

64

VρJBK = {(W, v, v) ∈ Atom=
ρ [B]}

VρJG1 → G2K = {(W, v1, v2) ∈ Atom=
ρ [G1 → G2] | ∀W ′ �W.∀v′1, v′2.

(↓W ′, v′1, v′2) ∈ VρJG1K⇒ (W ′, v1 v
′
1, v2 v

′
2) ∈ TρJG2K}

VρJG1 ×G2K = {(W, v1, v2) ∈ Atom=
ρ [G1 ×G2] |

(W,π1(v1), π1(v2)) ∈ TρJG1K ∧ (W,π2(v1), π2(v2)) ∈ TρJG2K}
VρJ∀X.GK = {(W, v1, v2) ∈ Atom=

ρ [∀X.G] | ∀W ′ �W.∀t1, t2, G1, G2, α, ε1, ε2.

∀R ∈ RelW ′.j [G1, G2].
(W ′.Ξ1 ` G1 ∧W ′.Ξ2 ` G2∧
W ′.Ξ1 . v1[G1] 7−→W ′.Ξ1, α := G1 . ε1t1 :: ρ(G)[G1/X] ∧
W ′.Ξ2 . v2[G2] 7−→W ′.Ξ2, α := G2 . ε2t2 :: ρ(G)[G2/X])⇒

(↓W ′ � (α,G1, G2, R), t1, t2) ∈ Tρ[X 7→α]JGK}
VρJXK = VρJρ(X)K
VρJαK = {(W, 〈E11, α

E12〉u1 :: α, 〈E21, α
E22〉u2 :: α) ∈ Atom=

∅ [α] |
(↓W, 〈E11, E12〉u1 :: W.Ξ1(α), 〈E21, E22〉u2 :: W.Ξ2(α)) ∈W.κ(α)∧
(∀Ξ, ε, G.(W ∈ SJΞK ∧ ε Ξ ` α ∼ G)⇒
(W, ε(〈E11, α

E12〉u1 :: α) :: G, ε(〈E21, α
E22〉u2 :: α) :: G) ∈ TρJGK)}

VρJ?K = {(W, ε1u1 :: ?, ε2u2 :: ?) ∈ Atom=
∅ [?] | const(π2(εi)) = G ∧

(W, ε1u1 :: G, ε2u2 :: G) ∈ VρJGK}

TρJGK = {(W, t1, t2) ∈ Atomρ[G] | ∀i < W.j, (∀Ξ1, v1. W.Ξ1 . t1 7−→i Ξ1 . v1 ⇒
∃W ′ �W, v2. W.Ξ2 . t2 7−→∗ W ′.Ξ2 . v2 ∧W ′.j + i = W.j ∧
W ′.Ξ1 = Ξ1 ∧ (W ′, v1, v2) ∈ VρJGK) ∧
(∀Ξ1.W.Ξ1 . t1 7−→i error⇒ ∃Ξ2.W.Ξ2 . t2 7−→∗ error)}

SJ·K = World
SJΞ, α := GK = SJΞK ∩ {W ∈World |W.Ξ1(α) = G ∧W.Ξ2(α) = G ∧

`W.Ξ1∧ `W.Ξ2 ∧W.κ(α) = bV∅JGKcW.j}

DJ·K = { (W, ∅) |W ∈World }
DJ∆, XK = { (W,ρ[X 7→ α]) | (W,ρ) ∈ DJ∆K ∧ α ∈ dom(W.κ) }

GρJ·K = { (W, ∅) |W ∈World }
GρJΓ, x : GK = { (W,γ[x 7→ (v1, v2)]) | (W,γ) ∈ GρJΓK ∧ (W, v1, v2) ∈ VρJGK }

Ξ; ∆; Γ ` t1 � t2 : G , Ξ; ∆; Γ ` t1 : G ∧ Ξ; ∆; Γ ` t2 : G ∧ ∀W ∈ SJΞK, ρ, γ.
((W,ρ) ∈ DJ∆K ∧ (W,γ) ∈ GρJΓK)⇒ (W,ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJGK

Ξ; ∆; Γ ` t1 ≈ t2 : G , Ξ; ∆; Γ ` t1 � t2 : G ∧ Ξ; ∆; Γ ` t2 � t1 : G

const(B) = B const(αG) = α const(E1 → E2) = ?→ ? const(∀X.E) = ∀X.?

const(E1 × E2) = ?× ?

Figure 3.15: Gradual Logical Relation

in the relation corresponding to α (W.κ(α)) in a one step lower current world. The first part of
the definition is faithful to λB, while the second part is new. We additionally require that for any
evidence ε that justifies the judgment between α and any type G, in any store such that W belongs to
its interpretation, the values ascribed to the type G and evidence ε remain related. This technical
extension is sufficient to prove Lemma 3.32 (formalized at the end of this section), which states
that the ascription of two related values yields related terms; this lemma is essential for the proof of
parametricity. The necessity of this extension comes from differences between the dynamic semantics

65

of GSF and λB. The dynamic semantics of GSF combine evidence (eager), whereas λB accumulates

cast (lazy). For instance, the conversion (1 : Int
−α⇒ α) : α

−β⇒ β from λB needs two reduction steps
to obtain 1, i.e. the step-index is reduced by two. In GSF, this information is compressed in a
single evidence 〈Int, βαInt〉, and needs only one reduction step to obtain the similar value, i.e. the
step-index is reduced by one. Observe that if ε exists such that ε Ξ ` α ∼ G, since W ∈ SJΞK,
α must be synchronized (i.e. W.Σ1(α) = W.Σ2(α) = G′ and W.κ(α) = VρJG′K). Intuitively, if α
is synchronized, then after multiple possible unsealings the resulting values are kept related. For
instance, if (W, 〈Int, αβInt〉1 :: α, 〈Int, αβInt〉1 :: α) ∈ VρJαK where α is synchronized, then it must
be the case that (W ′, 〈Int, βInt〉1 :: β, 〈Int, βInt〉1 :: β) ∈ W.κ(β), and also that (W ′′, 〈Int, Int〉1 ::

Int, 〈Int, Int〉1 :: Int) ∈ VρJIntK; but if (W, 〈Int, αβInt〉1 :: α, 〈Bool, αβBool〉true :: α) ∈ VρJαK, then it
must be the case that (W ′, 〈Int, βInt〉1 :: Int, 〈Bool, βBool〉true :: Bool) ∈W.κ(β).

Finally, two values are related at type ? if they are related at the least-precise type with the same
top-level constructor as the second component of the evidence, const(π2(εi)). The function const
extracts the top-level constructor of an evidence type (Figure 3.15). The intuition is that to be able
to relate these unknown values we must take a step towards relating their actual content; evidence
necessarily captures at least the top-level constructor (e.g. if a value is a function, the second
evidence type is no less precise than ? → ?, i.e. const(E1 → E2)). Also, we consider the second
component as in 〈E1, E2〉 Ξ; ∆ ` G ∼ G′, E1 and E2 correspond to the most precise information
about G and G′ respectively. Here E2 corresponds to the most precise information about ?, and E1

could be a totally unrelated type as in (W, 〈Int, αInt〉1 :: ?, 〈Bool, αBool〉true :: ?) ∈ VρJ?K. Observe
that, unlike λB, the definition does not decrease the index of the world W by 1. However, in λB
this is done on a case-by-case basis where needed (i.e., function, type name, etc.). We made this
technical change to facilitate the parametricity proof.

Well-foundedness. The logical relation is well-founded for three reasons: (i) in the ? case,
const(π2(εi)) cannot itself be ?, as just explained; (ii) in each other recursive cases, the step index
is lowered: for functions and pairs, the relation is between reducible expressions (applications, pro-
jections) that either take a step or fail; for type abstractions, the relation is with respect to a world
whose index is lowered; (iii) we require in the definition of related functions that arguments must be
related at (at least) one step down. For instance, if (W, 〈?→ ?, ?→ ?〉u1 :: ?, 〈?→ ?, ?→ ?〉u2 :: ?) ∈
VρJ?K, then (W, 〈?→ ?, ?→ ?〉u1 :: ? → ?, 〈?→ ?, ?→ ?〉u2 :: ? → ?) ∈ VρJ? → ?K, but function ar-
guments related at VρJ?K would contain the original (W, 〈?→ ?, ?→ ?〉u1 :: ?, 〈?→ ?, ?→ ?〉u2 :: ?)
atom.

Logical relations for stores and environments. The unary relation SJΞK specifies all the worlds
that satisfy Ξ: every α in dom(Ξ) must be synchronized. The interpretation of DJ∆K specifies all
pairs of worlds W and type substitutions ρ, such that all type variables in ∆ are mapped to some
α in ρ, and α is associated to some relation in W . The relation GρJΓK specifies that the value
environment γ satisfies the type environment Γ under world W if, for every variable x ∈ dom(Γ),
the mapped values are related in VρJΓ(x)K in world W .

For convenience, we introduce the following notation for projections in γ: if γ = {x 7→
(v11, v12), y 7→ (v21, v22), ...}, then γ1 = {x 7→ v11, y 7→ v21, ...} and γ2 = {x 7→ v12, y 7→ v22, ...}.
Type variable substitution ρi(s) is defined as syntactic sugar for ρ(W.Ξi, s), in a context where W
is defined, lifting each substituted type name in the process and defined as

(ρ,X 7→ α)(Ξ, s) = ρ(Ξ, s[liftΞ(α)/X])

·(Ξ, s) = s

66

Parametricity. The logical relation approximation Ξ; ∆; Γ ` t1 � t2 : G says that given a world W
that satisfies Ξ, a type substitution ρ and value environment γ that satisfies ∆ and Γ respectively
under world W , then the pair of substituted terms ρ1(γ1(t1)), ρ2(γ2(t2)) are related computations
in TρJGK. Logical equivalence Ξ; ∆; Γ ` t1 ≈ t2 : G is defined as the symmetric extension of logical
approximation. Finally, the fundamental property says that any well-typed GSFε term is related
to itself at its type:

Theorem 3.28 (Fundamental Property) If Ξ; ∆; Γ ` t : G then Ξ; ∆; Γ ` t � t : G.

As standard, the proof of the fundamental property uses compatibility lemmas for each term
constructor and the compositionality lemma. The compatibility lemmas related to type abstractions
are the following:

Lemma 3.29 (Compatibility-EΛ) If Ξ; ∆, X ` t1 � t2 : G, ε ` Ξ; ∆ ` ∀X.G ∼ G′ and Ξ; ∆ ` Γ
then Ξ; ∆; Γ ` ε(ΛX.t1) :: G′ � ε(ΛX.t2) :: G′ : G′.

Lemma 3.30 (Compatibility-EappG) If Ξ; ∆; Γ ` t1 � t2 : ∀X.G and Ξ; ∆ ` G′, then
Ξ; ∆; Γ ` t1 [G′] � t2 [G′] : G[G′/X].

The compatibility lemma for type abstractions (Lemma 3.29) says that if two terms are related,
then the type abstractions (whose bodies are those terms) ascribed to any type G′ are also related
at G′. The compatibility lemma for type instantiations (Lemma 3.30) says that if two terms are
related to some polymorphic type ∀X.G, then the instantiations to some type G′ are related at
G[G′/X]. The remaining compatibility lemmas are defined analogously and can be found in the
Appendix.

In order to prove Lemma 3.30 (Compatibility-EappG), we establish another important lemma
to relate terms after a type substitution.

Lemma 3.31 (Compositionality) If

• W.Ξi(α) = ρ(G′) and W.κ(α) = VρJG′K,

• E′i = liftW.Ξi(ρ(G′)),

• Ei = liftW.Ξi(Gp) for some Gp v ρ(G),

• ρ′ = ρ[X 7→ α],

• εi = 〈Ei[αE
′
i/X], Ei[E

′
i/X]〉, such that εi `W.Ξi ` ρ(G[α/X]) ∼ ρ(G[G′/X]), and

• εi
−1 = 〈Ei[E′i/X], Ei[α

E′i/X]〉, such that εi
−1 `W.Ξi ` ρ(G[G′/X]) ∼ ρ(G[α/X]), then

1. (W, v1, v2) ∈ Vρ′JGK⇒ (W, ε1v1 :: ρ(G[G′/X]), ε2v2 :: ρ(G[G′/X])) ∈ TρJG[G′/X]K

2. (W, v1, v2) ∈ VρJG[G′/X]K⇒ (W, ε1
−1v1 :: ρ′(G), ε2

−1v2 :: ρ′(G)) ∈ Tρ′JGK

Observe that Lemma 3.31 is informally the combination of the compositionality and conversion
lemma from Ahmed et al. (2017). This lemma says that if α is synchronized in W , and X is bound
to α, then (1) given two related values at type G, removing variable X by substitution (unsealing)

67

yields related computations at type G[G′/X]; and (2) given two related values at type G[G′/X] then
substituting G′ for X (sealing) yields related computations at type G. Note that the un(sealing)
of type names is done via ascriptions, where evidences are constructed as in the reduction rule for
type instantiations.

Almost all compatibility lemmas and the compositionality lemma rely on the fact that the
ascription of two related values yields related terms.

Lemma 3.32 (Ascriptions Preserve Relations) If (W, v1, v2) ∈ VρJGK, ε Ξ; ∆ ` G ∼ G′, W ∈
SJΞK, and (W,ρ) ∈ DJ∆K, then (W,ρ1(ε)v1 :: ρ(G′), ρ2(ε)v2 :: ρ(G′)) ∈ TρJG′K.

3.7.3 Parametricity vs. the DGG in GSF

We now give a different perspective from that presented in §3.6.1, regarding the violation of the
general dynamic gradual guarantee (DGG, stated with respect to v). More precisely, we show that
the definition of parametricity for GSF (§3.7) is incompatible with the DGG. To do so, we again
prove that there exists two terms in GSF, related by precision, whose behavior violates the DGG,
but this time we do so with a proof of the intermediate results that is fully-driven by the definition
of parametricity, and not by monotonicity of consistent transitivity. We present the proof sketch
of the intermediate results in order to highlight the key properties that imply this incompatibility.
This is particularly relevant because these properties also manifest in λB, for which the DGG has
not been formally explored yet.

Recall from §3.6.1 that the term that helps us establish the violation of the DGG is id?, a variant
of the polymorphic identity function idX whose term variable x is given the unknown type. This
term always fails when fully applied.

Lemma 3.33 For any ` v : ? and ` G, we have (ΛX.λx : ?.x :: X) [G] v ⇓ error.

Let us consider id? , ΛX.λx : ?.x :: X, whose elaboration is va = 〈∀X.?→ X,∀X.?→ X〉(ΛX.λx :
?.〈X,X〉x :: X) :: ∀X.?→ X, and two different types Int and Bool, such that:

· .va [Int] 7−→
α := Int . 〈?→ αInt, ?→ Int〉

(
〈?→ αInt, ?→ αInt〉(λx : ?.〈αInt, αInt〉x :: α) :: ?→ α

)
:: ?→ Int

and

· .va [Bool] 7−→
α := Bool.〈?→ αBool, ?→ Bool〉

(
〈?→ αBool, ?→ αBool〉(λx : ?.〈αBool, αBool〉x :: α) :: ?→ α

)
:: ?→ Bool

If we consider the domain of the external evidences:

dom(〈?→ αInt, ?→ Int〉) = dom(〈?→ αBool, ?→ Bool〉) = 〈?, ?〉

and any pair of related values at type ?, then their ascription to ? using evidence 〈?, ?〉 yields
related values at type ?. In particular for vb = 〈Int, Int〉1 :: ?, (W, vb, vb) ∈ VJ?K, as 〈Int, Int〉 # 〈?, ?〉 =
〈Int, Int〉 (〈?, ?〉vb :: ? 7−→ vb), we obtain that : (↓W � (α, Int,Bool, R), vb, vb) ∈ VX 7→αJ?K for any
R ∈ RelW.j [Int,Bool]. This fact is central to the proof of Lemma 3.33, and to prove it, it is used

68

a (rather technical) intermediate lemma, which crisply captures this idea in a more general setting
using the term (ΛX.λx : ?.t), where t can be any term. Intuitively, consider one step of execution
of the application of (ΛX.λx : ?.t) to two different arbitrary types, and the resulting outermost
evidences ε1 and ε2. The ascription of any value v to ? using the domain of ε1 and ε2 yields two
related computations. The intermediate lemma is formalized as follows:

Lemma 3.34 Let ` (ΛX.λx : ?.t) va : ∀X.? → X and ` v vb : ?. Let G1 and G2, such that
const(G1) 6= const(G2). If · . va [Gi] 7−→ α := Gi . εivi :: ? → Gi and εi ? → α ∼ ? → Gi, then
∀W ∈ SJ·K, ∀R ∈ RelW.j [G1, G2], (W � (α,G1, G2, R), dom(ε1)vb :: ?, dom(ε2)vb :: ?) ∈ TX 7→αJ?K.

We now show that instantiating id? to any arbitrary type such as Int, and applying it to any
value of type ? such as vb = 〈Int, Int〉1 :: ? necessarily leads to a runtime error (Lemma 3.33). For
simplicity, we omit worlds in the development below. Consider the configuration · . va [Int] vb,
which steps to:

α := Int . (〈?→ αInt, ?→ Int〉
(
〈?→ αInt, ?→ αInt〉(λx : ?.〈αInt, αInt〉x :: α) :: ?→ α

)
:: ?→ Int) vb

By the fundamental property (Th. 3.28) on id? and 1, we know that:

1. va is related to itself at type ∀X.? → X, and then choosing G1 = Int, G2 = Bool, R =
{(〈Int, Int〉1 :: Int, 〈Bool,Bool〉true :: Bool} we know that

(v1, v2) ∈ VX 7→αJ?→ αK

where v1 = 〈?→ αInt, ?→ αInt〉(λx : ?.〈αInt, αInt〉x :: α) :: ?→ α, and
v2 = 〈?→ αBool, ?→ αBool〉(λx : ?.〈αBool, αBool〉x :: α) :: ?→ α.

2. 〈Int, Int〉1 :: ? is related to itself at type ?.

Then we notice that, by associativity of consistent transitivity, the pending redex is equivalent to:

α := Int . 〈αInt, Int〉
(
v1(〈?, ?〉vb :: ?)

)
:: Int

By (2) and Lemma 3.34, 〈?, ?〉vb :: ? 7−→ vb and (vb, vb) ∈ VX 7→αJ?K. We instantiate the result in (1)
(v1, v2) ∈ VX 7→αJ?→ αK with arguments (vb, vb) ∈ VX 7→αJ?K. But notice that v2 vb always fails (as α
is instantiated to Bool not Int), therefore v1 vb must also fail and the result holds, otherwise v1 and
v2 would not be related. Furthermore, let us assume (falsely) that v2 vb reduces to some value. Then
α := Int.v1 vb 7−→∗ Ξ.〈Int, αInt〉1 :: α, and α := Int.v2 vb 7−→∗ Ξ.〈Int, αInt〉1 :: α, then we would have
to prove that (〈Int, αInt〉1 :: α, 〈Int, αInt〉1 :: α) ∈ VX 7→αJαK, i.e. (〈Int, Int〉1 :: Int, 〈Int, Int〉1 :: Int) ∈ R
which is false as R = {(〈Int, Int〉1 :: Int, 〈Bool,Bool〉true :: Bool)}. Therefore v1 vb ought to fail.

As a consequence of Lemma 3.33, the dynamic gradual guarantee is violated in GSF.

Corollary 3.35 There exist ` t1 : G and t2, such that t1 v t2, t1 ⇓ v and t2 ⇓ error.

Proof. Let idX , ΛX.λx : X.x :: X, and id? , ΛX.λx : ?.x :: X. By definition of precision, we have
idX v id?. Let ` v : G and ` v′ : ?, such that v v v′. Pose t1 , idX [G] v and t2 , id? [G] v′. By
definition of precision, we have t1 v t2. By evaluation, t1 ⇓ v. But by Lemma 3.33, t2 ⇓ error.

69

Interestingly, Lemma 3.33 holds irrespective of the actual choices for representing evidence in
GSFε. The key reason is the logical interpretation of ∀X.G. Therefore, we conjecture that the
incompatibility described here does not only apply to GSF but to other gradual languages that use
similar logical relations, such as λB.

3.7.4 Gradual Free Theorems in GSF

The parametricity logical relation (§3.7) allows us to define notions of logical approximation (�)
and equivalence (≈) that are sound with respect to contextual approximation (�ctx) and equiva-
lence (≈ctx), and hence can be used to derive free theorems about well-typed GSF terms (Wadler,
1989; Ahmed et al., 2017). The definitions of contextual approximation and equivalence, and the
soundness of the logical relation, are fairly standard. As shown by Ahmed et al. (2017), in a gradual
setting, the free theorems that hold for System F are weaker, as they have to be understood “modulo
errors and divergence”. Ahmed et al. (2017) prove two such free theorems in λB. However, these
free theorems only concern fully static type signatures. This leaves unanswered the question of what
imprecise free theorems are enabled by gradual parametricity. To the best of our knowledge, this
topic has not been formally developed in the literature so far, despite several claims about expected
theorems, exposed hereafter.

Igarashi et al. (2017a) report that the System F polymorphic identity function, if allowed to be
cast to ∀X.? → X, would always trigger a runtime error when applied, suggesting that functions
of type ∀X.? → X are always failing. Consequently, System FG rejects such a cast by adjusting
the precision relation (§2.4). But the corresponding free theorem—i.e. that applying any function
of type ∀X.? → X either diverges or fails—is not proven. Also, Ahmed et al. (2011) declare that
parametricity dictates that any value of type ∀X.X → ? is either constant or always failing or
diverging (p.7). This gradual free theorem is not proven either. In fact, in both an older system
(Ahmed et al., 2009b) and its newest version (Ahmed et al., 2017), as well as in System FG, casting
the identity function to ∀X.X → ? yields a function that returns without errors, though the returned
value is still sealed, and as such is unusable (§2.4). The parametricity relation in GSF does not
impose such behavior: it only imposes uniformity of behavior, including failure, of polymorphic
terms, which leaves some freedom regarding when to fail. As we saw earlier, the unknown type can
stand for any type, including any type variable. Consequently, in GSF, a function of type ∀X.?→ X
could behave like the identity function with type ∀X.X → X, or as a function of type ∀X.Int→ X
that always fails when applied, or a function that given a pair returns its first or second component
with type ∀X.(X ×X)→ X, etc. In particular, we show next that ascribing the System F identity
function to ∀X.? → X yields a function that behaves exactly as the identity function (and hence
never fails).

The DGG6-related Lemmas 3.21 and 3.24 help us prove that in GSF types ∀X.? → X and
∀X.X → ? are inhabited by non-constant, non-failing, parametricity-preserving terms. Observe
that this result is a consequence of the fact that imprecise ascriptions are harmless in GSF.

In particular, both types admit the ascribed System F identity function, among many others
(for instance, the polymorphic term ΛX.λx : X.λf : X→X.f x of type ∀X.X→ (X→X)→X can
also be ascribed to ∀X.X→?).

We formalize this using the following corollary:

Corollary 3.36 Let t and v be static terms such that ` t : ∀X.T , ` v : T ′, and t [T ′] v ⇓ v′.

70

1. If ∀X.T v ∀X.X → ? then (t :: ∀X.X → ?) [T ′] v ⇓ v′′, and v′ 6 v′′.

2. If ∀X.T v ∀X.?→ X then (t :: ∀X.?→ X) [T ′] v ⇓ v′′, and v′ 6 v′′.

Cheap Theorems. The intuition of ∀X.? → X denoting always-failing functions is not entirely
misguided: in GSF, this result does hold for a subset of the terms of that type. This leads us to
observe that we can derive “cheap theorems” with gradual parametricity: obtained not by looking
only at the type, but by also considering the head constructors of a term. For instance:

Theorem 3.37 Let v , ΛX.λx : ?.t for some t, such that ` v : ∀X.?→ X. Then for any ` v′ : G,
we either have v [G] v′ ⇓ error or v [G] v′ ⇑.

This result is proven by exploiting the gradual parametricity result (Theorem 3.28). Note that
what makes it a “free” theorem is that it holds independently of the body t, therefore without
having to analyze the whole term. Not as good as a free theorem, but cheap. It is worth noting
that although the external loss of precision is harmless, the internal loss of precision may change
the expected behavior of a term. For example, the function ΛX.λx :?.t from Theorem 3.37 might
be the imprecise identity function ΛX.λx :?.x :: X. Therefore, we could expect that applied to a
type and a value of the same type, it returns the same value; however, by Theorem 3.37, it always
fails or diverges.

3.8 Related Work

We have already discussed at length related work on gradual parametricity, especially the most
recent developments (Ahmed et al., 2017; Igarashi et al., 2017a; Xie et al., 2018; New et al., 2020),
highlighting the different design choices, properties and limitations of each. Hopefully our discus-
sions adequately reflect the many subtleties involved in designing a gradual parametric language.

The relation between parametric polymorphism in general and dynamic typing much predates
the work on gradual typing. Abadi et al. (1991) first note that without further precaution, type
abstraction might be violated. Subsequent work explored different approaches to protect para-
metricity, especially runtime-type generation (RTG) (Leroy and Mauny, 1991; Abadi et al., 1995;
Rossberg, 2003). Sumii and Pierce (2004) and Guha et al. (2007) use dynamic sealing, originally
proposed by Morris (1973), in order to dynamically enforce type abstraction. Matthews and Ahmed
(2008) also use RTG in order to protect polymorphic functions in an integration of Scheme and ML.
This line of work eventually led to the polymorphic blame calculus (Ahmed et al., 2011) and its
most recent version with the proof of parametricity by Ahmed et al. (2017). We adapt their logical
relation to the evidence-based semantics of GSF.

Hou et al. (2016) prove the correctness of compiling polymorphism to dynamic typing with em-
beddings and partial projections; the compilation setting however differs significantly from gradual
typing. New and Ahmed (2018) use embedding-projection pairs to formulate a semantic account
of the dynamic gradual guarantee, coined graduality, in a language with explicit casts. Inspired by
the work of Neis et al. (2009) on parametricity in a non-parametric language, they extended their
approach to gradual parametricity, yielding the PolyGν language design with explicit sealing (New
et al., 2020), discussed at length in this chapter.

This work is generally related to gradualization of advanced typing disciplines, in particular

71

to gradual information-flow security typing (Disney and Flanagan, 2011; Fennell and Thiemann,
2013, 2016; Garcia and Tanter, 2015; Toro et al., 2018). In these systems, one aims at preserving
noninterference, i.e. that private values do not affect public outputs. Both parametricity and
noninterference are 2-safety properties, expressed as a relation of two program executions. While
Garcia and Tanter (2015) show that one can derive a pure security language with AGT that satisfies
both noninterference and the dynamic gradual guarantee, Toro et al. (2018) find that in the presence
of mutable references, one can have either the dynamic gradual guarantee, or noninterference, but
not both. Also similarly to this work, AGT for security typing Toro et al. (2018) needs a more precise
abstraction for evidence types (based on security label intervals) in order to enforce noninterference.
Together, these results suggest that type-based approaches to gradual typing are in tension with
semantically-rich typing disciplines. Solutions might come from restricting the considered syntax,
as in PolyGν in the context of parametricity, or the range of graduality, as recently established by
Azevedo de Amorim et al. (2020) in the context of noninterference, where the dynamic end of the
spectrum is not fully untyped security-wise.

3.9 Conclusion

GSF is a type-driven gradual parametric language, occurring sealing generation and resolution in its
runtime semantics. This appears necessary in order to respect the syntax of System F, but implies
that GSF violates the dynamic gradual guarantee in certain cases. We precisely characterize the
weaker continuity that GSF supports, along with all its other properties. The design of GSF is
largely driven by the Abstracting Gradual Typing (AGT) methodology. We find that AGT greatly
streamlines the static semantics of GSF, but does not yield a language that respects parametricity
by default; non-trivial exploration was necessary to uncover how to strengthen the structure and
treatment of runtime evidence in order to recover a notion of gradual parametricity. In turn, this
strengthening breaks the dynamic gradual guarantee when loss of precision interferes with type-
driven sealing.

There are two main trends in the design of gradual parametric languages: those based on type-
driven sealing, such as System F, like λB, CSA, System FG, and GSF, and those that depart from
that syntax, being based on term-driven sealing, like PolyGν . We believe that GSF goes beyond
prior work based on the type-driven sealing approach, despite its lack of full support for the dynamic
gradual guarantee. While PolyGν enjoys a stronger metatheory than languages from the other trend,
several limitations regarding modularity and abstraction caused by explicit sealing/unsealing are
not benign. Therefore, the question remains whether there is a third way to embrace both System F
and a fully satisfying metatheory.

The following two chapters explore embedding an untyped lambda calculus with sealing/unseal-
ing primitives into GSF (Chapter 4) and the extension of GSF with existential types (Chapter 5),
which are the core of data abstraction mechanisms.

72

Chapter 4

Embedding Dynamic Sealing in GSF

A gradual language is expected to cover a spectrum between two typing disciplines, such as simple
static typing and dynamic typing. The static end of the spectrum is characterized by the conser-
vative extension results (Siek et al., 2015a), which we have established for GSF with respect to
System F (Proposition 3.10 and Proposition 3.17). The dynamic end of the spectrum is typically
characterized by an embedding from the considered dynamic language to the gradual language (Siek
et al., 2015a). For instance, in the case of GTLC (Siek and Taha, 2006), the dynamic language is
an untyped lambda calculus with primitives.

In this chapter, we study the “dynamic end” of GSF. Unsurprisingly, GSF can embed an untyped
lambda calculus with primitives, called λdyn (§4.2). More interestingly, we highlight the expressive
power of the underlying type name generation mechanism of GSF by proving that it can faithfully
embed an untyped lambda calculus with dynamic sealing, λseal. This language, also known as the
cryptographic lambda calculus, was first studied in a typed version by Pierce and Sumii (2000),
and then untyped (Sumii and Pierce, 2004). One of their objectives was to study whether dynamic
sealing could be used in order to dynamically impose parametricity via a compiler from System F to
λseal. Recently, Devriese et al. (2018) prove that such a compiler is not fully abstract, i.e. compiled
System F equivalent terms are not contextually equivalent in λseal. Nevertheless, the dynamic
sealing mechanism of λseal to protect abstract data, and its relation to gradual parametricity, is an
interesting question. We define an embedding of λseal terms into GSF (§4.4), and prove that this
embedding is semantics preserving (§4.5).

4.1 Overview

In GSF, we can define a pair of functions of type ∀X.(X → ?) × (? → X) to emulate the runtime
sealing primitives of the cryptographic lambda calculus. The first component of the pair is a function
of type X → ?, which intuitively justifies sealing the argument (of type X) at runtime, but not
unsealing the returned value (of type ?). Dually, the type of the second component is ?→ X, which
only justifies unsealing the returned value. The underlying mechanism ensures that the unsealing
function only succeeds if its argument was sealed by the first function:

let p: ∀X.(X → ?)× (?→ X) = ΛX.〈λx:X.x::?, λx:?.x::X〉 in

let su = p [?] in

let seal = (fst su) in

73

let unseal = (snd su) in

(unseal (seal 1)) + 1 ----> 2

On the second line, p [?] creates a fresh pair of functions with an underlying type name that
acts as the runtime sealing key: therefore, seal seals the value 1, and unseal unseals it; the whole
program reduces to 2. Unsealing the sealed value with any other generated unsealing function, or
attempting to add directly to the sealed value, yields a runtime error.

4.2 Embedding a Dynamically-Typed Language in GSF

The essence of embedding a dynamically-typed language in a gradual language is to ascribe every
introduction form with the unknown type (Siek and Taha, 2006; Siek et al., 2015a). For instance the
expression (1 2) from a dynamically-typed language can be embedded as (1 :: ?) (2 :: ?). Observe
that not adding the ascriptions would yield an ill-typed term, as per the conservative extension
result with respect to the static typing discipline. Let us call λdyn the dynamically-typed lambda
calculus with pairs and primitives. We aim at an embedding of λdyn that preserves termination,
divergence, and failure. We will establish this result formally as a corollary of a stronger result for
the extended language with dynamic sealing (see Corollary 4.8).

The embedding of λdyn terms into GSF is defined as:

dbe = b :: ?

dλx.te = (λx : ?.dte) :: ?

d〈t1, t2〉e = 〈dt1e, dt2e〉 :: ?

dop(t)e = let x : ? = dte in op(x) :: ?

dxe = x

dt1 t2e = let x : ? = dt1e in let y : ? = dt2e in x y
dπ1(t)e = π1(dte)
dπ2(t)e = π2(dte)

The only novelty here with respect to prior work is that the embedding produces application
terms in A-normal form in order to ensure that embedded terms behave as expected. For example,
the term (1 Ω), with Ω = (λx.x x) (λx.x x), diverges in the dynamically-typed language. But if
we would embed an application dt1 t2e simply as dt1e dt2e, evidence combination would detect the
underlying type error before reducing the application. Note that this precaution is unnecessary for
pairs, because there are no typing constraints between both components. To better understand the
need to use the A-normal form, we present both translations (with and without A-normal form)
of program (1 Ω) to GSF and then their translations to GSFε. For simplicity, let us suppose that
dΩe = Ω and, 1ε and Ωε are GSFε terms, where ` Ω Ωε : ?, ` (1 :: ?) 1ε : ? and 1ε = εInt1 :: ?.

dt1 t2e = let x : ? = dt1e in let y : ? = dt2e in x y
GSF let x : ? = 1 :: ? in let y : ? = Ω in x y
GSFε let x : ? = 1ε in let y : ? = Ωε in (ε?→?x :: ?→ ?) y
7−→ ·. let y : ? = Ωε in (ε?→?1ε :: ?→ ?) y

diverges reducing Ωε

dt1 t2e = dt1e dt2e
GSF (1 :: ?) Ω
GSFε (ε?→?1ε :: ?→ ?) Ωε

7−→ ·. error
(εInt # ε?→?) fails

74

x ∈ Var, σ ∈ Seal, µ ⊂ Seal
t ::= b | λx.t | 〈t, t〉 | x | t t | πi(t) | op(t) | νx.t | {t}t | let {x}t = t in t | σ (terms)
v ::= b | λx.t | 〈v, v〉 | {v}σ | σ (values)

error ::= type error | seal type error | unseal error (errors)

t ‖ µ −→ t ‖ µ or error Notion of reduction

(λx.t) v ‖ µ −→ t[v/x] ‖ µ πi(〈v1, v2〉) ‖ µ −→ vi ‖ µ op(v) ‖ µ −→ δ(op, v) ‖ µ

νx.t ‖ µ −→ t[σ/x] ‖ µ, σ where σ 6∈ µ {v}v′ ‖ µ −−→ seal type error where 6 ∃σ. v′ ≡ σ

let {x}σ = {v}σ′ in t ‖ µ −−→

{
t[v/x] ‖ µ σ ≡ σ′

unseal error σ 6≡ σ′

let {x}σ = v in t ‖ µ −−→ seal type error where 6 ∃σ′, v′. v ≡ {v′}σ′

let {x}v = v′ in t ‖ µ −−→ seal type error where 6 ∃σ. v ≡ σ

t ‖ µ 7−→ t ‖ µ or error Evaluation frames and reduction

f ::= � t | v � | 〈�, t〉 | 〈v,�〉 | πi(�) | {�}t | {v}� | op(v,�, t) (term frames)
| let {x}� = t in t | let {x}v = � in t

t ‖ µ −−→ t′ ‖ µ′

t ‖ µ 7−→ t′ ‖ µ′
t ‖ µ 7−→ t′ ‖ µ′

f [t] ‖ µ 7−→ f [t′] ‖ µ′

t ‖ µ −−→ error

t ‖ µ 7−→ error

t ‖ µ 7−→ error

f [t] ‖ µ 7−→ error

Figure 4.1: λseal: Untyped Lambda Calculus with Sealing

4.3 The Cryptographic Lambda Calculus λseal

The cryptographic lambda calculus λseal is an extension of λdyn with primitives for protecting
abstract data by sealing (Sumii and Pierce, 2004). Figure 4.1 presents the syntax and dynamic
semantics of the λseal language we consider here, which is a simplified variant of that of Sumii
and Pierce (2004). In addition to standard terms, which correspond to λdyn, the λseal language
introduces four new syntactic constructs dedicated to sealing. First, the term νx.t generates a fresh
key to seal and unseal values, bound to x in the body t. Seals, denoted by the metavariable σ, are
values tracked in the set of allocated seals µ. The sealing construct {t1}t2 evaluates t1 to a value v
and t2 to a seal σ, and seals v with σ. Term let {x}t1 = t2 in t is for unsealing. At runtime, t1 should
evaluate to a seal σ and t2 to a sealed value {v}σ′ . If σ = σ′, unsealing succeeds and t is evaluated
with x bound to v. Otherwise, unsealing fails, producing a runtime sealing error unseal error.1

1 The original term for unsealing in λseal has the syntax let {x}t1 = t2 in t else t3; if the unsealing fails, re-
duction recovers from error evaluating t3. To be able to encode such a construct, we would need to extend
GSF with error handling.

75

To illustrate, consider the following term:

νx.νy.λb.let {n}x = {1}(if b then x else y) in n+ 1

This term first generates two fresh seals x and y, and then defines a function that receives a
boolean b and attempts to unseal a sealed value. The value 1 is sealed using either x or y, depending
on b, and unsealed with x. If the function is applied to true, unsealing succeeds because the seals
coincide, and the function returns 2. Otherwise, unsealing fails, and an unseal error is raised.

Overall, we can distinguish three kinds of runtime errors, grouped in error, in λseal (Section 4.5
explain why we introduce this distinction). In addition to unsealing errors, unseal error, there are
two kinds of runtime type errors, hereafter called type error and seal type error. The former,
omitted in Figure 4.1 for simplicity, corresponds to standard runtime type errors such as applying a
non-function, and can happen in λdyn. The latter is specific to λseal and corresponds to expressions
that do not produce seals when expected or misuse seals, such as {1}2. We omit for simplicity the
errors related to the incorrect use of the seals, for example, the application of a seal in function
position, such as (σ 42). It is important to note that the correctness of the type system of the typed
version of λseal with respect to the semantics guarantees that a well-typed program can not incur
either a type error or a seal type error, just an unseal error.

4.4 Embedding λseal in GSF

We now present a semantic-preserving embedding of λseal terms into GSF. The embedding relies
on a general seal/unseal generator, expressed as a GSF term. This term, called su hereafter, is a
polymorphic pair of two functions, of type ∀X.(X → ?) × (? → X), instantiated at the unknown
type, and ascribed to the unknown type:

su ≡ (ΛX.〈(λx : X.x :: ?), (λx : ?.x :: X)〉) [?] :: ?

When evaluated, the type application generates a fresh type name, simulating the seal generation
of λseal’s term νx.t. Then the first component of the pair represents a sealing function, while the
second component represents an unsealing function, which can only successfully be applied to values
sealed with the first component. We write suσ to denote a particular value resulting from the
evaluation of the term su, where the type name σ is generated and stored in Ξ. Crucially, a value
that passed through π1(suσ) is sealed, and can only be observed after passing through the unsealing
function π2(suσ). Trying to unseal it with a different function results in a runtime error.

Embedding Translation. Figure 4.2 defines the embedding from λseal to GSF. The cases unre-
lated to sealing are as presented in §4.2. The crux of the embedding is in the use of the term su. A
seal generation term νx.t is embedded into GSF by let-binding the variable x to the term su, whose
value suσ will be substituted in the translation of t. Recall that the first component of the pair
suσ is used for sealing, and the second one for unsealing. Therefore, the sealing operation {t1}t2
is embedded by let-binding the translations of t1 and t2 to fresh variables x and y, and applying
the first component of y (the sealing function) to x (the value to be sealed). Likewise, an unsealing
let {z}t1 = t2 in t3 is embedded by binding the translation of t1 and t2 to fresh variables x and y,
then unsealing y using the second component of x (the unsealing function), and binding the result
to z, for use in the translation of the term t3. The use of A-normal forms in the embedding of

76

dbe = b :: ?

dλx.te = (λx : ?.dte) :: ?

d〈t1, t2〉e = 〈dt1e, dt2e〉 :: ?

dop(t)e = let x : ? = dte in op(x) :: ?

dxe = x

dt1 t2e = let x : ? = dt1e in let y : ? = dt2e in x y
dπ1(t)e = π1(dte)
dπ2(t)e = π2(dte)

dνx.te = let x : ? = su in dte
d{t1}t2e = let x : ? = dt1e in let y : ? = dt2e in π1(y) x

dlet {z}t1 = t2 in t3e = let x : ? = dt1e in let y : ? = dt2e in let z : ? = π2(x) y in dt3e

where su ≡ ((ΛX.〈(λx : X.x :: ?), (λx : ?.x :: X)〉) [?]) :: ?

Figure 4.2: Embedding λseal in GSF

sealing and unsealing is required because both are eventually interpreted as function applications,
so the precaution discussed in §4.2 applies. Finally, note that because seals σ cannot appear in the
source language, the translation need not consider them.

Illustration. As example, the embedding of the λseal term νx.νy.let {n}x = {1}x in n+ 1 is the
following GSF term:

let x : ? = su in
let y : ? = su in
let u : ? = x in
let z : ? = (let n1 : ? = 1 in let s : ? = x in π1(s) n1) in
let n : ? = π2(u) z in n+ 1

The following reduction trace shows the most critical steps of the program above. We define
suε as the translation of su to GSFε, and suσε is the reduced value from suε , where a fresh seal σ
is generated. Note that we omit some trivial evidences and type annotations for readability. This
program generates two fresh type names (σ and σ′), reducing the first su to suσε and the second

one to suσ
′
ε . Then, after a few substitution steps, the first component of suσε is applied to 1, sealing

the value, and then applies the second component of suσε , unsealing the sealed value. The whole
program reduces to 2.

· . let x = suε in let y = suε in · · · initial program

7−→∗ σ := ?, σ′ := ? . let u = suσε in · · · let s = suσε in · · · σ and σ′ are generated

7−→∗ σ := ?, σ′ := ? . let z = π1(suσε)(εInt1 :: ?) in · · · substitution steps

7−→∗ σ := ?, σ′ := ? . let n = π2(suσε)(〈Int, σInt〉1 :: ?) in n+ 1 argument is sealed by σ

7−→∗ σ := ?, σ′ := ? . let n = εInt1 :: ? in n+ 1 unsealing eliminates σ

7−→∗ σ := ?, σ′ := ? . εInt2 :: ?

If we slightly modify the previous λseal program by νx.νy.let {n}y = {1}x in n+ 1, then unsealing
fails with unseal error because it uses a different seal to unseal than the one used to seal. The

77

embedding of this λseal term in GSF is very similar to the previous one; the only difference is that,
now, u is bound to y. The following reduction trace illustrates where the embedding of the λseal term
fails. Note that the resulting value of π2(suσ

′
ε) is 〈?→ σ′?, ?→ ?〉(λx : ?.〈σ′?, σ′?〉x :: σ′) :: ? → ?,

where σ′ is a type name and σ′? is an evidence type. Then, the sealed value 〈Int, σInt〉1 :: ? is
substituted in the body of the function, failing in the consistent transitivity 〈Int, σInt〉 # 〈σ′?, σ′?〉.

· . let x = suε in let y = suε in · · · initial program

7−→∗ σ := ?, σ′ := ? . let u = suσ
′
ε in · · · let s = suσε in · · · σ and σ′ are generated

7−→∗ σ := ?, σ′ := ? . let z = π1(suσε)(εInt1 :: ?) in · · · substitution steps

7−→∗ σ := ?, σ′ := ? . let n = π2(suσ
′
ε)(〈Int, σInt〉1 :: ?) in n+ 1 argument is sealed by σ

7−→∗ error error unsealing by σ′

4.5 Semantic Preservation of the λseal Embedding in

GSF

We now prove that the embedding of λseal into GSF is correct, namely that a λseal term and its
translation to GSF behave similarly: either they both terminate to a value, both diverge, or both
yield an error. It is worth pointing out that the semantic preservation theorem below only accounts
for what we call valid λseal terms, i.e. terms that do not produce runtime type errors related to
sealing, i.e. seal type error. We come back to this point at the end of this section. We write
t ⇓ or t ⇓ v ‖ µ if t ‖ · 7−→∗ v ‖ µ, for some v and µ. We write t ⇑ if t diverges, and t ⇓ error if
t ‖ · 7−→∗ error, where error , type error or unseal error. As before, we write t ⇓ if ` t tε : ?
and · . tε 7−→∗ Ξ . v, for some v and Ξ.

Theorem 4.1 (Embedding of λseal) Let t be a valid closed λseal term.

a. ` dte : ?

b. t ⇓ implies dte ⇓

c. t ⇑ implies dte ⇑

d. t ⇓ error implies dte ⇓ error

To prove Theorem 4.1, we use a simulation relation ≈ between λseal and GSFε, defined in
Figure 4.3. The simulation relation µ; Ξ; Γ ` t ≈ tε : ? uses a set of allocated seals µ by the
reduction of the λseal term t. The GSFε term tε typechecks in the typing environment Γ where
all variables have type unknown, and it typechecks and it is evaluated in the store Ξ with all its
type names instantiated, also, to the unknown type. In all the rules of the simulation, we implicitly
assume that µ and Ξ are synchronized, i.e. if σ ∈ µ then σ := ? ∈ Ξ. Rules whose names begin
with (TR) relate a λseal term and its translation in GSFε, i.e. embedding first the λseal term into
GSF, and then translating the resulting GSF term to a GSFε term. For instances, Rule (TRb)
relates the λseal value 1 with the GSFε value εInt1 :: ?. Note that Rule (TRp) uses metavariable
D to denote the possible types of GSFε raw values (u), obtained by the embedding: either a base
type B, an unknown function type ? → ?, or a pair of raw values D × D. Rule (TRsG) relates

78

(TRx)
x : ? ∈ Γ

µ; Ξ; Γ ` x ≈ x : ?
(TRb)

ty(b) = B

µ; Ξ; Γ ` b ≈ εBb :: ? : ?
(TRs)

σ ∈ µ σ := ? ∈ Ξ

µ; Ξ; Γ ` σ ≈ suσε : ?

(TRp)
µ; Ξ; Γ ` v1 ≈ εD1u1 :: ? : ? µ; Ξ; Γ ` v2 ≈ εD2u2 :: ? : ?

µ; Ξ; Γ ` 〈v1, v2〉 ≈ εD1×D2〈u1, u2〉 :: ? : ?

(TRλ)
µ; Ξ; Γ, x : ? ` t1 ≈ t2 : ?

µ; Ξ; Γ ` (λx.t1) ≈ ε?→?(λx.t2) :: ? : ?
(TRpt)

µ; Ξ; Γ ` t1 ≈ t′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` 〈t1, t2〉 ≈ ε?×?〈t′1, t′2〉 :: ? : ?

(R?)
µ; Ξ; Γ ` t ≈ t′ : ?

µ; Ξ; Γ ` t ≈ ε?t′ :: ? : ?
(Rapp)

µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` v2 ≈ v′2 : ?

µ; Ξ; Γ ` v1 v2 ≈ (ε?→?v
′
1 :: ?→ ?) v′2 : ?

(TRappL)
µ; Ξ; Γ ` t1 ≈ t′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` t1 t2 ≈ let x = t′1 in let y = t′2 in (ε?→?x :: ?→ ?) y : ?

(RappR)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` v1 t2 ≈ let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y : ?

(TRpi)
µ; Ξ; Γ ` t ≈ t′ : ?

µ; Ξ; Γ ` πi(t) ≈ πi(ε?×?t′ :: ?× ?) : ?
(TRsG)

µ; Ξ; Γ, x : ? ` t ≈ t′ : ?

µ; Ξ; Γ ` νx.t ≈ let x = suε in t
′ : ?

(Rsed1)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` v2 ≈ v′2 : ?

µ; Ξ; Γ ` {v1}v2 ≈ (ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ?) v′1 : ?

(TRsed1L)
µ; Ξ; Γ ` t1 ≈ t′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` {t1}t2 ≈ let x = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

(Rsed1R)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` {v1}t2 ≈ let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1 : ?

(Rsed2)
µ; Ξ; Γ ` v ≈ 〈E1, E2〉u :: ? : ? σ ∈ µ σ := ? ∈ Ξ

µ; Ξ; Γ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?

(Runs)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` v2 ≈ v′2 : ? µ; Ξ; Γ, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ ` let {z}v1 = v2 in t3 ≈ let z = (ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ?) v′2 in t′3 : ?

(TRunsL)
µ; Ξ; Γ ` t1 ≈ t′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ? µ; Ξ; Γ, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ ` let {z}t1 = t2 in t3 ≈ let x = t′1 in let y = t′2 in
let z = (ε?→?π2(ε?×?x :: ?× ?) :: ?→ ?) y in t′3 : ?

(RunsR)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ? µ; Ξ; Γ, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ ` let {z}v1 = t2 in t3 ≈ let y = t′2 in let z = (ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ?) y in t′3 : ?

Figure 4.3: Simulation Relation Between λseal and GSFε terms

79

the seal generation term νx.t with the GSFε term that let-binds the variable x to the term suε to
be substituted in t′; it requires that the bodies of the seal generation and let-binding be related.
The remaining rules, whose names begin with (R), help us keep terms related as they reduce. One
of the most important rules is (Rsed2), which relates a λseal sealed value with a GSFε value that
has sealing evidence, where σ is a type name and σE2 is an evidence type. Rule (Rsed1) relates a
sealed value {v1}v2 with a GSFε term that takes the first component of v′2 (expected to be a suσε
value related to the seal v2), and applies it to v′1 related to v1. Dually, Rule (Runs) relates a term
for unsealing with a GSFε term that takes the second component of v′1 (expected to be a suσε value
related to the seal v1), and applies it to v′2 related to v2 (expected to be a sealed value). Also, the
rule requires the bodies t3 and t3 to be related.

We first establish a number of useful lemmas. First, all GSFε terms that are in the relation
have type unknown, simulating the fact that they are related to untyped λseal terms.

Lemma 4.2 If µ; Ξ; Γ ` t ≈ tε : ? then Ξ; Γ ` tε : ?.

Also, the relation ≈ guarantees that if we have a λseal value related to a GSFε term, then the
latter reduces to a related value.

Lemma 4.3 If µ; Ξ ` v ≈ tε : ?, then there exists vε s.t. Ξ . tε 7−→∗ Ξ . vε, and µ; Ξ ` v ≈ vε : ?.

For example, we know by Rule (Rsed1L) that (µ = {σ} and Ξ = {σ := ?})

µ; Ξ ` {1}σ ≈ let x = εInt1 :: ? in let y = suσε in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

Thus, we know that the GSFε term reduces to a value related to {1}σ, in this case, 〈Int, σInt〉1 :: ?.

Lemma 4.4 establishes substituting related values in related terms yields related terms.

Lemma 4.4 If µ; Ξ; Γ, x : ? ` t ≈ tε : ? and µ; Ξ; Γ ` v ≈ vε : ?, then µ; Ξ; Γ ` t[v/x] ≈ tε[vε/x] : ?.

Lemma 4.5 shows that the relation ≈ simulates both the notions of reduction −−→ and −−→ ,
and the reduction relations 7−→ and 7−→, including error cases. Note that a single step of reduction
in λseal can be simulated by several reduction steps in GSFε, hence the use of 7−→∗ in the conclusions
of the lemma cases. For example, we have µ; Ξ ` π1(〈1, 2〉) ≈ π1(ε?×?(εInt×Int〈1, 2〉 :: ?) :: ?× ?) : ?,
and the GSFε term needs to reduce inside the frame π1(�) before eliminating the projection like
the λseal term.

Lemma 4.5 Suppose that t is a term of λseal, tε is a term from GSFε and µ; Ξ ` t ≈ tε : ?.

a. If t ‖ µ −−→ t′ ‖ µ′, then there exists t′ε s.t. Ξ . tε 7−→∗ Ξ′ . t′ε and µ′; Ξ′ ` t′ ≈ t′ε : ?

b. If t ‖ µ −−→ error, then Ξ . tε 7−→∗ error

c. If t ‖ µ 7−→ t′ ‖ µ′, then there exists t′ε s.t. Ξ . tε 7−→∗ Ξ′ . t′ε and µ′; Ξ′ ` t′ ≈ t′ε : ?

d. If t ‖ µ 7−→ error, then Ξ . tε 7−→∗ error

Proof. The proof is by induction on µ; Ξ ` t ≈ tε : ? and by analysis of the different cases.

Case (a.). Most of the cases use Lemma 4.3, Lemma 4.4 and the consistent transitivity relation.

Case (b.). Most of the cases use Lemma 4.3 and the consistent transitivity relation.

80

Case (c.). The proof follows by cases analysis on t ‖ µ 7−→ t′ ‖ µ′ and from Case (a.).

Case (d.). The proof follows by cases analysis on t ‖ µ 7−→ error and from Case (b.).

The main property of the relation ≈ is that related terms behave similarly:

Lemma 4.6 If ` t ≈ tε : ? then

• t ⇓ v ‖ µ implies · . tε 7−→∗ Ξ . vε, where µ; Ξ ` v ≈ vε : ?.

• t ⇑ implies tε diverges.

• t ⇓ error implies · . tε 7−→∗ error.

Proof. The proof is by case analysis on the reduction of t.

• Suppose t ⇓ v ‖ µ. Then · . tε 7−→∗ Ξ . vε and µ; Ξ ` v ≈ vε : ? by Lemmas 4.3 and 4.5(c.).

• Suppose t ⇑. Then tε diverges by Lemma 4.5(c.).

• Suppose t ⇓ error, then · . tε 7−→∗ error by Lemma 4.5(c. and d.).

Finally, a λseal term and its embedding into GSFε are related.

Lemma 4.7 If ` dte tε : ?, then ` t ≈ tε : ?.

Semantics preservation (Theorem 4.1) follows from Lemma 4.6 and Lemma 4.7.

Leaking the Encoding. As mentioned earlier, the semantic preservation result does not account
for λseal terms that can raise runtime seal type errors, seal type error. The reason is that, without
further caution, the encoding of seals as pairs of functions could be abused. For instance, the term
let {y}〈λx.x,λx.x〉 = 1 in y raises a seal type error in λseal, because the expression that is supposed
to produce a seal produces a pair of functions. Nevertheless, the embedding of this term in GSF
reduces to 1. To properly deal with such cases—and therefore obtain a semantic preservation
statement with equivalences instead of implications—would require introducing a primitive way in
GSF of distinguishing “proper seals” produced by the translation from standard pairs of functions.
A direct solution would be to exploit the data abstraction capabilities of System F, and hence
GSF. Of course, in a statically-typed version of λseal (Pierce and Sumii, 2000), this problem is
sidestepped because a seal type error can never occur at runtime. It would be desirable to have
made a complete embedding of λseal, but we focus more on studying the dynamic sealing mechanism
of λseal to protect abstract data and its relation to gradual parametricity.

Embedding of the Dynamically-Typed Language. Finally, a direct consequence of the se-
mantics preservation theorem is that the embedding of λdyn is also correct; in fact the embedding
result holds as stated by Siek et al. (2015a)(Theorem 2), with equivalences instead of implications:

81

Corollary 4.8 (Embedding of λdyn) Let t be a closed λdyn term.

a. ` dte : ?

b. t ⇓ if and only if dte ⇓

c. t ⇑ if and only if dte ⇑

This result follows from Theorem 4.1 combined with the fact that a seal type error simply
cannot occur in λdyn, which has no sealing-related terms.

4.6 Related Work

The embedding of a cryptographic lambda calculus in GSF directly relates to unpublished work by
Siek and Wadler (2016), which studies the connection between a polymorphic cast calculus (Ahmed
et al., 2011) and a cryptographic lambda calculus based on that of Pierce and Sumii (2000). Their
approach is similar to our own, though the technicalities differ: their translation targets a cast
calculus, more akin to GSFε, while we define the embedding directly at the level of GSF. Therefore
our result is the first to relate the dynamic end of a gradual parametric source language and dynamic
sealing. Also, our embedding is inspired by the type Univ = ∃Y.∀X.(X → Y)× (Y → X) put forth
by Devriese et al. (2018) in their analysis of full abstraction mentioned above. The type Univ can
be interpreted as stating the existence of a universal type Y , i.e. a type that all other types can
be embedded into and extracted from. As they show by a parametricity argument, Univ cannot
be inhabited in System F. In GSF, however, the unknown type ? plays this role of a universal
type. Interestingly, Siek and Wadler (2016) discuss an alternative embedding that resembles ours,
although they discard it as it does not align well with their treatment of blame.

4.7 Conclusion

This Chapter studied the dynamic end of the gradual typing spectrum supported by GSF, and
showed that beyond a standard dynamically-typed language, GSF can faithfully embed a language
with dynamic sealing primitives. The embedding is built using a general seal/unseal generator,
which is expressed as a GSF term. The proposed term is a polymorphic pair of functions, of type
∀X.(X → ?) × (? → X). The first component of the pair serves a sealing function, producing an
opaque value as a result, and the second component serves as the corresponding unsealing function,
returning the original unsealed value. As we saw, the fact that a seal α is global once created, being
able to continue existing when the type variable X for which it was created goes out of scope is what
enables GSF to embed the cryptographic lambda calculus. However, at the same time, global seals
have been shown to break equivalences that hold in System F (Devriese et al., 2018). In Chapter 6,
we will return to this topic, proposing a new approach for gradual parametricity that avoids the
global type name store, but contrary to GSF, it is not able to embed an untyped language with
dynamic sealing primitives.

The next chapter presents the extension of GSF with existential types, which are the foundation
of data abstraction and information hiding.

82

Chapter 5

Gradual Existential Types in GSF

Existential types are the foundation of data abstraction and information hiding: concrete represen-
tations of abstract data types are elements of existential types (Mitchell and Plotkin, 1988; Pierce,
2002). It is well known that existential types can be encoded in terms of universal types (Pierce,
2002). However, several polymorphic languages (Ahmed, 2006; Ahmed et al., 2009a; Neis et al.,
2009) include both universal and existential types primitively, instead of relying on the encoding.
The reason is that proving certain properties, such as representation independence results, is much
simpler with direct support for existential types.

Although some efforts have already been developed to protect data abstraction in a dynamically-
typed language (Morris, 1973; Abadi et al., 1995; Rossberg, 2003; Sumii and Pierce, 2004; Wadler,
2017), prior work on gradual parametric polymorphism leaves the treatment of existential types as
future work (Ahmed et al., 2017). In this chapter, we present an extension of GSF with existential
types, dubbed GSF∃. We first briefly review existential types (§5.1) and why a direct treatment is
preferable to an encoding (§5.2). We then informally introduce gradual existential types in action
(§5.3) before formally developing GSF∃ (§5.4). Finally, we discuss the metatheory of GSF∃ (§5.5).

5.1 Existential Types in a Nutshell

An abstract data type (ADT for short) guarantees that a client can neither guess nor depend on
its implementation (Reynolds, 1983; Mitchell and Plotkin, 1988). Formally, an ADT consists of a
type name A, a concrete representation type T , implementations of some operations for creating,
querying and manipulating values of type T , and an abstraction boundary enclosing the represen-
tation and operations (Pierce, 2002). Thus, an ADT provides a public name to a type but hides
its representation. The representation independence property for an ADT establishes that we can
change its representation without affecting clients. This property is a particularly useful applica-
tion of relational parametricity (Reynolds, 1983); we can show that two different implementations
of an ADT are contextually equivalent so long as there exists a relation between their concrete type
representations that is preserved by their operations.

Data abstraction is formalized by extending System F with existential types, of the form ∃X.T .
Elements of an existential type are usually called packages, written pack〈T ′, t〉 as ∃X.T , where T ′ is
the hidden representation type and the term component t has type T [T ′/X]. The existential elimi-

83

nation construct unpack〈X,x〉 = t1 in t2 allows the components of the package to be accessed by a
client, keeping the actual representation type hidden. Packages with different hidden representation
types can inhabit the same existential type. Thus, we can implement an ADT in different ways,
creating different existential packages.

For instance, consider a semaphore ADT with three operations: bit to create a semaphore, flip
to produce a semaphore in the inverted state, and read to consult the state of the semaphore, as a
Bool. We can encode such an ADT as an existential type with a triple:

Sem ≡ ∃X.X × (X → X)× (X → Bool)

Alternatively, for readability, we can use a hypothetical record syntax:

Sem ≡ ∃X.{bit : X,flip : X → X, read : X → Bool}

Below are two equivalent implementations of this Sem ADT:

s1 ≡ pack〈Bool, v1〉 as Sem where v1 ≡ {bit = true, flip = (λx : Bool.¬ x), read = (λx : Bool.x)}
s2 ≡ pack〈Int, v2〉 as Sem where v2 ≡ {bit = 1, flip = (λx : Int.1− x), read = (λx : Int.0 < x)}

In the first implementation, the concrete representation type is Bool, and in the second it is Int.
The representation and operations of the Sem ADT are abstract to a client, in the sense that the
representation of bit is hidden, and it can only be manipulated and queried by the operations flip and
read . For instance, if we have the expression unpack〈X,x〉 = s in t, where s is an implementation of
Sem, we can do (x.read (x.flip x.bit)) in the expression t, but (x.read (x.flip true)) or x.bit == true
are invalid programs that do not typecheck. Note that untyped versions of these programs would
run normally with s1, but they would crash with s2.

5.2 Existential Types: Primitive or Encoded?

Existential types are closely connected with universal types, and in fact they can simply be encoded
in terms of universal types, using the following encoding (Harper, 2012):

∃X.T ≡ ∀Y.(∀X.T → Y)→ Y
pack〈T ′, t〉 as ∃X.T ≡ ΛY.λf : (∀X.T → Y).f [T ′] t

unpack〈X,x〉 = t1 in t2 ≡ t1 [T2] (ΛX.λx : T.t2) where ∆; Γ ` t1 : ∃X.T and ∆, X; Γ, x : T ` t2 : T2

The intuition behind this encoding is that an existential type is viewed as a universal type taking
the overall result type Y , followed by a polymorphic function representing the client with result
type Y , and yielding a value of type Y as result. A package is a polymorphic function taking the
client as argument, and unpacking corresponds to applying this polymorphic function.

Therefore, to study gradual existential types in GSF, one could simply adopt this encoding.
However, if we want to reason about interesting properties such as representation independence and
free theorems, it is preferable to give meaning to existential types directly.

84

The benefit of a direct treatment of existential types can already be appreciated in the fully-static
setting, with the simple examples of packages s1 and s2 above. Suppose we want to show that s1

and s2 are contextually equivalent, i.e. indistinguishable by any context. To prove this equivalence,
it is sufficient to show that the packages are related according to a parametricity logical relation that
is sound with respect to contextual equivalence (Reynolds, 1983). Using the direct interpretation of
existential types, such a proof is considerably easier and more intuitive than using their universal
encodings.1

The additional complexity of reasoning about existential types via their universal encoding
hardly scales to more involved examples. For instance, Ahmed et al. (2009a) prove challenging
cases of equivalences in the presence of abstract data types and mutable references, where the
encoding would have been a liability; hence their choice of supporting existential types directly.
Considering that the GSF logical relation also involves a number of technicalities (evidence, worlds,
etc.), providing direct support for existentials is all the more appealing.

5.3 Gradual Existential Types in GSF∃

In this section, we show some illustrative examples of gradual existential types in action, high-
lighting their benefits and expected properties when type imprecision is involved. In particular, we
want to dynamically preserve the information hiding property presumed for abstract data types.
This property is conserved thanks to the dynamic sealing generation mechanism, similar to the
parametricity preservation in gradual universal types.

Typed-Untyped Interoperability. Gradual existential types allow programmers to embed an
untyped implementation of a library as a static ADT, by picking the unknown type as the hidden
representation type. For instance, if v3 is an untyped record, then s3 below is a gradually well-
typed implementation of the Sem ADT. The translation d·e embeds untyped terms in the gradual
language, basically by introducing ? on all binders and constants (Siek and Taha, 2006).

let v3 = {bit = 1,flip = (λx.1− x), read = (λx.0 < x)} in
let s3 = pack〈?, dv3e〉 as Sem in C[s3]
where C ≡ unpack〈X,x〉 = � in (x.read (x.flip x.bit))

The package s3 is essentially a version of the package s2 where types have been erased (replaced
with the unknown type). As illustrated later (§5.5.4), one can prove in GSF∃ that s3 is contextually
equivalent to s2 (and hence to s1 as well), using a direct interpretation of gradual existential types.
The static client or context C, given a package implementation of the Sem ADT, changes the state
of the semaphore and then reads the state. The whole example runs without error, producing false
as the final result.

Of course, we could have associated a package implementation that does not respect the ADT
signature. For instance, we define v′3 as a variant of v3, where flip has type ?→ Bool. We obtain the
package s′3, which is still gradually well-typed. However, using the package with client C results in
a runtime type error. The runtime error happens when the ¬ operator is applied to x.bit , because
¬ expects a Bool argument, but dynamically bit is an Int.

1 In the appendix, we provide sketches of these two proof techniques in System F.

85

let v′3 = {bit = 1,flip = (λx.¬ x), read = (λx.0 < x)} in
let s′3 = pack〈?, dv′3e〉 as Sem in C[s′3]

The dual case of typed/untyped interoperability is that of a static package being used in dynamic
code. The following example defines the untyped function g, which take as arguments the function
f and an expression x to be applied to f . The function g is applied to the typed components of the
package s2, reducing the whole program without error to true.

let g = (λf.λx.f x) in unpack〈X,x〉 = s2 in ((g x.read) x.bit)

Taking the same example, but changing x.bit to the expression (1 :: ?) yields a runtime error,
because the function x.read is expecting a sealed value, but instead it receives an unsealed Int.

let g = (λf.λx.f x) in unpack〈X,x〉 = s2 in ((g x.read) (1 :: ?))

Optimistic Type Checking. The following example shows how the optimistic gradual type
checker accepts programs that run without errors, which would be rejected with a static type
checker.

unpack〈X,x〉 = s2 in
let f = λz.if(z) then (x.flip :: ?) else ((λx : Int.1− x) :: ?) in
let v′2 = {bit = x.bit , flip = f true, read = x.read} in
let s′2 = pack〈X, v′2〉 as Sem in
unpack〈Y, y〉 = s′2 in (y.read (y.flip y.bit))

The package s′2 is essentially the same as s2—in fact they are equivalent. The function f
receives a Bool argument to decide whether to return the (hidden) flip function from package s2,
or a literal (not hidden) function. This program is gradually well-typed because of the ascriptions
to the unknown type in the branches of the conditional. In contrast, a static type system would
reject this program (without the ? ascriptions in the conditional branches) because the then branch
would have type X → X, while the else branch would have type Int → Int. The gradual program
runs properly, yielding false as a result. Note that if the definition of flip in v′2 would be f false,
then a runtime error would be raised. The error would be produced during the evaluation of the
definition of s′2 because v′2 ought to have type X × (X → X) × (X → Bool), but instead it would
have type X × (Int→ Int)× (X → Bool).

Internal vs. External Imprecision. Another point to take into account is the nature of the
imprecision of a term of existential type. As discussed previously regarding universal types (§3.6.2),
the imprecision for existential types can be either internal or external, and this has an impact on

86

runtime behavior. The following program is fully static except for the imprecise ascription of s2 to
the type Sem1 ≡ ∃X.X × (X → ?)× (X → Bool). Observe that Sem v Sem1.

unpack〈X,x〉 = s2 :: Sem1 in (x.read (x.flip (x.flip x.bit)))

Here we are in the presence of an ascribed imprecision (i.e. external), preserving the GSF
property that if we ascribe a static closed term to a less precise type, its behavior is preserved: this
program runs without error, and evaluates to true. Indeed, we will later show that GSF∃ satisfies
the weak dynamic gradual guarantee DGG6 (§5.5).

Conversely, in the following example, the imprecision is now internal, due to the imprecise
signature Sem1 of the package.

unpack〈X,x〉 = pack〈Int, v2〉 as Sem1 in (x.flip (x.flip x.bit)) + 10

This program is accepted statically, but fails at runtime because according to type-driven sealing,
it would otherwise reveal hidden information, namely, the fact that the supposedly-hidden represen-
tation type is Int. The function x.flip has type X → ?, which specifies that it has to be applied to
a sealed value and could return another sealed value, or in this case, an Int value. The application
(x.flip x.bit) has type ?, and it is used as the argument of x.flip again, optimistically treated as an
abstract type. Then, the result of the second application of x.flip is added to 10, being optimistic
again with the result of the function x.flip, but this time at type Int. The program fails at runtime
because of the attempt to use x.flip with both types X → X and X → Int. Note that if we allow
both behaviors of the function x.flip, returning 11, then we would be revealing that the hidden
representation type is Int. Thus, we admit at runtime the first application of x.flip, accepted only
with the type X → Int, but it fails in the second application because it receives an Int instead of a
sealed value.

5.4 Semantics of GSF∃

In this section, we formally present the design and semantics of GSF∃, an extension of GSF with
existential types that exhibits the behaviors illustrated above. First, we introduce the static lan-
guage SF∃, which is the starting point to apply AGT. Actually, we only apply AGT to the new
features in SF∃ since the others have already been gradualized. Then, we focus on GSF∃, the static
and dynamic semantics derived by AGT.

5.4.1 The Static Language SF∃

We derive GSF∃ by applying AGT to SF extended with existential types, called SF∃ (Figure 5.1).
We extend SF statics with the rules (Tpack) and (Tunpack) for a package and its elimination form,
which are standard. We augment the definition of type equality to deal with existential types, and
use the schme function to extract the schema of an existential type.

87

α ∈ TypeName Σ ∈ TypeName
fin
⇀ Type,∆ ⊂ TypeVar,Γ ∈ Var

fin
⇀ Type

T ::= · · · | ∃X.T (types)
t ::= · · · | pack〈T, t〉 as ∃X.T | unpack〈X,x〉 = t in t (terms)
v ::= · · · | pack〈T, v〉 as ∃X.T (values)

Σ; ∆; Γ ` t : T Well-typed terms

(Tpack)
Σ; ∆; Γ ` t : T1 Σ; ∆ ` T1 = T [T ′/X] Σ; ∆ ` T ′

Σ; ∆; Γ ` pack〈T ′, t〉 as ∃X.T : ∃X.T

(Tunpack)
Σ; ∆; Γ ` t1 : T1 Σ; ∆, X; Γ, x : schme(T1) ` t2 : T2 Σ; ∆ ` T2

Σ; ∆; Γ ` unpack〈X,x〉 = t1 in t2 : T2

schme : Type⇀ Type
schme(∃X.T) = T
schme(T) undefined o/w

Σ; ∆ ` T = T Type equality

Σ; ∆, X ` T1 = T2

Σ; ∆ ` ∃X.T1 = ∃X.T2

Σ . t −→ Σ . t Notion of reduction

Σ . (unpack〈X,x〉 = pack〈T ′, v〉 as ∃X.T in t) −→ Σ, α := T ′ . t[α/X][v/x] where α 6∈ dom(Σ)

Σ . t 7−→ Σ . t Evaluation frames and reduction

f ::= · · · | pack〈T,�〉 as ∃X.T | unpack〈X,x〉 = � in t (term frames)

Figure 5.1: SF∃: Syntax, Static and Dynamic Semantics (extends Figure 3.1)

The dynamic semantics of the unpack constructor is very similar to the type application; also
a fresh type name α is generated and bound to the representation type T ′ in the global type name
store Σ. Then, we substitute α (instead of the representation type) and the term component, for
the variables X and x in the body of the unpack. Like SF, SF∃ is also type safe, and all well-
typed terms are parametric. As usual, in SF∃, two packages are related if their term components
are related under some relations between their concrete type representations. We can define the
interpretation of existential types in SF∃ using the same auxiliary definitions for the logical relation
of GSF. Some definitions, such as Atom=

ρ [∃X.G], become simpler because they do not need to deal
with the evidence.

VρJ∃X.GK = {(W, pack〈T1, v1〉 as ∃X.ρ(G), pack〈G2, v2〉 as ∃X.ρ(G)) ∈ Atom=
ρ [∃X.G] |

∀W ′ �W,α.∃R ∈ RelW ′.j [G1, G2].(W ′ � (α,G1, G2, R), v1, v2) ∈ Vρ[X 7→α]JGK}

88

5.4.2 GSF∃: Statics

We derive the statics of GSF∃ following AGT. As in Section 3.2, we first define the syntax of gradual
typing, and we give them meaning through the concretization function. Then, we lift the static
semantics of the static language to gradual settings using the corresponding abstraction function,
which forms a Galois connection. Being consistent with the above, we extend the syntactic category
of gradual types G ∈ GType with existential types:

G ::= B | G→ G | ∀X.G | G×G | X | α | ? | ∃X.G

As usual, the unknown type represents any type, including existential types. We naturally
extend the concretization function C and abstraction function A to existential types, preserving the
Galois connection established earlier (Proposition 3.3):

C (∃X.G) = {∃X.T | T ∈ C (G)} A({ ∃X.Ti }) = ∃X.A({Ti })

We define in Figure 5.2 the inductive definition of type precision, which is equivalent to Defini-
tion 3.1 (Proposition 5.1). As a result, ∃X.? denotes any existential type, being more precise than
the unknown type and less precise than ∃X.X → X.

With the meaning of gradual types, the GSF∃ static semantics follow as usual with AGT. In
this case, we need to define the gradual counterpart of the type equality predicate, whose lifting
is type consistency. Following Definition B.96, we can find in Figure 5.2 an equivalent inductive
characterization of type consistency (Proposition 5.2). Then, we lift functions using abstraction,
concretization and Definition B.97. Our only new function in SF∃ is schme, whose lifting schm]

e is
defined in Figure 5.2 as expected.

The gradual typing rules of GSF∃ (Figure 5.2) extend those of GSF. The new rules are obtained
by replacing type predicates and functions with their corresponding consistent liftings in the static
typing rules. Observe that Rule (Gpack) uses type consistency instead of type equality so that the
implementation term can be of a type that is distinct from, but consistent with the package type
(after substituting for the representation type). For example:

pack〈Bool, v1〉 as Sem3 where Sem3 ≡ ∃X.X × (X → X)× (X → ?)

Here, the type of v1 is Bool × (Bool → Bool) × (Bool → Bool), which is more precise than
Sem3 [Bool] ≡ Bool× (Bool→ Bool)× (Bool→ ?).

Rule (Gunpack) uses the consistent existential schema function schm]
e, which allows a term of

unknown type to be optimistically treated as a package, and therefore unpacked.

5.4.3 GSF∃: Dynamics

We now turn to the dynamic semantics of GSF∃. As we did before, we give the dynamic semantics
of GSF∃ in terms of a more informative variant called GSF∃ε . In GSF∃ε , all values are ascribed, and
ascriptions carry evidence.

89

α ∈ TypeName Ξ ∈ TypeName
fin
⇀ GType,∆ ⊂ TypeVar,Γ ∈ Var

fin
⇀ GType

G ::= · · · | ∃X.G (gradual types)
t ::= · · · | pack〈G, t〉 as ∃X.G | unpack〈X,x〉 = t in t (gradual terms)

Ξ; ∆; Γ ` t : G Well-typed terms

(Gpack)
Ξ; ∆; Γ ` t : G1 Ξ; ∆ ` G1 ∼ G[G′/X] Ξ; ∆ ` G′

Ξ; ∆; Γ ` pack〈G′, t〉 as ∃X.G : ∃X.G

(Gunpack)
Ξ; ∆; Γ ` t1 : G1 Ξ; ∆, X; Γ, x : schm]

e(G1) ` t2 : G2 Ξ; ∆ ` G2

Ξ; ∆; Γ ` unpack〈X,x〉 = t1 in t2 : G2

schm]
e : GType⇀ GType

schm]
e(∃X.G) = G

schm]
e(?) = ?

schm]
e(G) undefined o/w

Ξ; ∆ ` G ∼ G Type consistency

Ξ; ∆, X ` G1 ∼ G2

Ξ; ∆ ` ∃X.G1 ∼ ∃X.G2

G v G Type precision

G1 v G2

∃X.G1 v ∃X.G2

Figure 5.2: GSF∃: Syntax and Static Semantics (extends Figure 3.4)

Figure 5.3 presents the syntax, static and dynamics semantics of GSF∃ε ; essentially those of
GSFε naturally extended with existential types. It is worth noting that we introduce the syntactic
form packu〈G′, v〉 as ∃X.G for raw existential values. The reduction rule (Rpack) reduces the
term pack〈G′, v〉 as ∃X.G to the value ε∃X.Gpacku〈G′, v〉 as ∃X.G :: ∃X.G, inserting the evidence
ε∃X.G (evidence of the reflexive judgment ∃X.G ∼ ∃X.G), the ascription to ∃X.G and changing
the syntax of the package by packu. The reduction rule (Runpack) specifies the reduction of an
unpack expression: we substitute a fresh type name α for X in the body of the unpack, as well as
a (carefully ascribed) package implementation for x. In particular, this rule combines the evidence
from the actual implementation term ε1u :: G1 with the evidence of the package, substituting the
representation type on the left G′ and the fresh type name α on the right for the type variable
X. Note that the evidence ε justifies that the static type of the package declared by the keyword
“as” is consistent with ∃X.G. Thus ε[Ĝ′, α̂] justifies that the static type after the substitution by
G′ is consistent with G[α/X]. Formally, ε[Ĝ′, α̂] = 〈p1(ε) [Ĝ′], p2(ε) [α̂]〉, where Ĝ′ = liftΞ′(G

′)

and α̂ = liftΞ′(α). Consequently, the resulting evidence of ε1 # ε[Ĝ′, α̂] justifies that the type of
the implementation term is consistent with G[α/X]. Failure to justify this judgment produces an
error, specifying that the implementation term is not appropriate. This evidence plays a key role
in making the implementation term abstract, i.e. ensuring information hiding.

90

t ::= · · · | pack〈G, t〉 as ∃X.G | unpack〈X,x〉 = t in t (terms)
u ::= · · · | packu〈G′, v〉 as ∃X.G (raw values)

Ξ; ∆; Γ ` s : G Well-typed terms

(Epacku)
Ξ; ∆; Γ ` v : G[G′/X] Ξ; ∆ ` G′

Ξ; ∆; Γ ` packu〈G′, v〉 as ∃X.G : ∃X.G
(Epack)

Ξ; ∆; Γ ` t : G[G′/X] Ξ; ∆ ` G′

Ξ; ∆; Γ ` pack〈G′, t〉 as ∃X.G : ∃X.G

(Eunpack)
Ξ; ∆; Γ ` t1 : ∃X.G1 Ξ; ∆, X; Γ, x : G1 ` t2 : G2 Ξ; ∆ ` G2

Ξ; ∆; Γ ` unpack〈X,x〉 = t1 in t2 : G2

Ξ . t −−→ Ξ . t or error Notion of reduction

(Rpack) Ξ . pack〈G′, v〉 as ∃X.G −−→ Ξ . ε∃X.Gpacku〈G′, v〉 as ∃X.G :: ∃X.G

(Runpack)
Ξ . unpack〈X,x〉 = εpacku〈G′, ε1u :: G1〉 :: ∃X.G in t −−→

Ξ′ . t[α̂/X][((ε1 # ε[Ĝ′, α̂])u :: G[α/X])/x]

where Ξ′ , Ξ, α := G′ for some α /∈ dom(Ξ)

Ĝ′ = liftΞ′(G′) and α̂ = liftΞ′(α)

error if not defined

Ξ . t 7−→ Ξ . t or error Evaluation frames and reduction

f ::= · · · | pack〈G,�〉 | unpack〈X,x〉 = � in t

Figure 5.3: GSF∃ε : Syntax, Static and Dynamic Semantics (extends Figure 3.5)

To support the dynamic semantics for existential types, we need to extend the representation
of evidence types E in GSF∃ε , adding ∃X.E for existential evidence types. Additionally, we extend
the definitions of consistent transitivity naturally: consistent transitivity between evidences with
existential types simply relies on the underlying schemes:

(ex)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉

〈∃X.E1,∃X.E2〉 # 〈∃X.E3,∃X.E4〉 = 〈∃X.E′1,∃X.E′2〉

Illustration. We now return to the gradual semaphore implementation s∗3, which is the translation
of the term s3 from GSF∃ to GSF∃ε . Remember that all base values in GSF∃ε are ascribed to
their base types, but for simplicity below, we omit trivial evidences. The following reduction trace
illustrates all the important aspects of reduction in GSF∃ε :

91

Initial evidence

unpack〈X,x〉 = εSempacku〈?, v∗3〉 :: Sem in (x.read (x.flip x.bit))
Consistent transitivity

(Runpack, Rproji) 7−→∗ (〈?→Bool, α?→Bool〉(λx.0 < x) :: α→Bool)
((〈?→ Int, α?→αInt〉(λx.1− x) :: α→α) (〈Int, αInt〉1 :: α))
Unsealing eliminates α

(Rapp) 7−→ (〈?→Bool, α?→Bool〉(λx.0 < x) :: α→Bool) (〈Int, αInt〉(1− 1) :: α)
The return is sealed

(Rop,Rasc) 7−→∗ (〈?→Bool, α?→Bool〉(λx.0 < x) :: α→Bool) (〈Int, αInt〉0 :: α)
Unsealing eliminates α

(Rapp) 7−→ εBool(0 < 0) :: Bool
(Rop,Rasc) 7−→∗ εBoolfalse :: Bool

In this example, the initial evidence of the package is fully static. We omit some steps in the
reduction, but is crucially to show in the rule (Runpack) how the evidence εSem [?, α?] is calculated:

εSem [?, α?] ≡ 〈?× (?→ ?)× (?→ Bool), α? × (α? → α?)× (α? → Bool)〉

After some application of the rule (Rproji), the term component is protected by the type
name α. The application step (Rapp) then gives rise to unsealing evidence to interact with the
implementation and sealing evidence to protect the implementation.

5.5 Properties of GSF∃

In this section, we summarize the main properties, statics and dynamics, concerning GSF∃. We
cover the refined criteria for gradual typing and parametricity.

5.5.1 Static Properties

We can show that the GSF∃ meet the same static properties as GSF.

Proposition 5.1 (GSF∃: Precision, inductively) The inductive definition of type precision given
in Figure 5.2 is equivalent to Definition 3.1.

Proposition 5.2 (GSF∃: Consistency, inductively) The inductive definition of type consistency
given in Figure 5.2 is equivalent to Definition B.96.

The type system of GSF∃ is equivalent to the SF∃ type system on fully-static terms (Proposi-
tion 5.3), where `S denote the typing judgment of SF∃.

Proposition 5.3 (GSF∃: Static equivalence for static terms) Let t be a static term and G a static
type (G = T). We have `S t : T if and only if ` t : T .

92

The static semantics of GSF∃ satisfy the static gradual guarantee (Proposition 5.4), where type
precision (Def. 3.1) extends naturally to term precision.

Proposition 5.4 (GSF∃: Static gradual guarantee) Let t and t′ be closed GSF∃ terms such that
t v t′ and ` t : G. Then ` t′ : G′ and G v G′.

5.5.2 Dynamic Gradual Guarantees

Not surprisingly, GSF∃ does not satisfy the dynamic gradual guarantee (§3.6) with respect to
precision v for existential types. Let us return to the semaphore implementation s1. Note that
s1 v s4, where s4 = pack〈Bool, v1〉 as ∃X.X × (X → X)× (?→ Bool). If we use these terms in the
same context as follows, we will obtain that

unpack〈X,x〉 = s1 in (x.read (x.flip x.bit)) v unpack〈X,x〉 = s4 in (x.read (x.flip x.bit))

However, the term on the left reduces to 2, while the (less precise) term on the right produces a
runtime error because of the attempt to apply the function read (in this case of type ?→ Bool) to
a sealed value. On the other hand, with a simple extension of strict precision to existential types,
GSF∃ does satisfy the weaker dynamic gradual guarantee DGG6 (Theorem 3.22). Figure 5.4 defines
the strict type and term precision for both GSF∃ε and GSF∃.

5.5.3 Parametricity

We establish parametricity for GSF∃ by proving parametricity for GSF∃ε . We extend the step-
indexed logical relation for GSFε (Figure 3.15), adding the interpretation of existential types. Usu-
ally, two packages are related if their term components are related under some conditions (Ahmed,
2006; Neis et al., 2009). But in gradual settings, the definition of VρJ∃X.GK is more complex. We
start with the classical interpretation of the existential types adapted to our previous logical relation
(which is not adequate for the interpretation of gradual existential types):

VρJ∃X.GK = {(W, ε1packu〈G1, v1〉 :: ∃X.ρ(G), ε2packu〈G2, v2〉 :: ∃X.ρ(G)) ∈ Atom=
ρ [∃X.G] |

∀W ′ �W,α.∃R ∈ RelW ′.j [G1, G2].(W ′ � (α,G1, G2, R), v1, v2) ∈ Vρ[X 7→α]JGK}

Let us focus on some simple and not very interesting programs but useful to explain why
this existential type interpretation is not suitable. For example, if we want to relate these two
package, ε∃X.Xpacku〈Int, εInt1 :: Int〉 :: ∃X.X and ε∃X.Xpacku〈Bool, εBooltrue :: Bool〉 :: ∃X.X, under
the above definition, then we would have to prove that their component terms, εInt1 :: Int and
εBooltrue :: Bool, are related in Vρ[X→α]JXK, which is not true. Keep in mind that for two terms
to be related in our logical relation they must have the same type, and they are related in a type
variable if they are related in the type variable substituted by its associated type name.

Taking the above into account, we change the logical interpretation of existential types slightly.
It is worth pointing out that this definition is not enough to interpret existential types.

93

G 6 G Strict type precision

G1 6 G2

∃X.G1 6 ∃X.G2

Ω ` Ξ1 . s : G 6 Ξ2 . s : G Strict term precision (for conciseness, s ranges over both t and u)

(6packuε)
G′1 6 G

′
2 Ω ` Ξ1 . v1 : G1[G′1/X] 6 Ξ2 . v2 : G2[G′2/X] ∃X.G1 v ∃X.G2

Ω ` Ξ1 . packu〈G′1, v1〉 as ∃X.G1 : ∃X.G1 6 Ξ2 . packu〈G′2, v2〉 as ∃X.G2 : ∃X.G2

(6packε)
G′1 6 G

′
2 Ω ` Ξ1 . t1 : G1[G′1/X] 6 Ξ2 . t2 : G2[G′2/X] ∃X.G1 6 ∃X.G2

Ω ` Ξ1 . pack〈G′1, t1〉 as ∃X.G1 : ∃X.G1 6 Ξ2 . pack〈G′2, t2〉 as ∃X.G2 : ∃X.G2

(6unpackε)
Ω ` Ξ1 . t1 : ∃X.G1 6 Ξ2 . t2 : ∃X.G2 Ω, x : G1 v G2 ` Ξ1 . t

′
1 : G′1 6 Ξ2 . t

′
2 : G′2

Ω ` Ξ1 . unpack〈X,x〉 = t1 in t′1 : G′1 6 Ξ2 . unpack〈X,x〉 = t2 in t′2 : G′2

G _ G Type matching

∃X.G _ ∃X.G ? _ ∃X.?

Ω ` v : G 6v v : G Strict value precision

(6packu)
G′1 6 G

′
2 Ω ` v1 : G′′1 6v v2 : G′′2 ∃X.G1 v ∃X.G2 G′′1 uG1[G′1/X] 6 G′′2 uG2[G′2/X]

Ω ` pack〈G′1, v1〉 as ∃X.G1 : ∃X.G1 6v pack〈G′2, v2〉 as ∃X.G2 : ∃X.G2

Ω ` Ξ1 . t : G 6 Ξ2 . t : G Strict term precision

(6pack)
G′1 6 G

′
2 Ω ` t1 : G′′1 6 t2 : G′′2 ∃X.G1 6 ∃X.G2 G′′1 uG1[G′1/X] 6 G′′2 uG2[G′2/X]

Ω ` pack〈G′1, t1〉 as ∃X.G1 : ∃X.G1 6 pack〈G′2, t2〉 as ∃X.G2 : ∃X.G2

(6unpack)
Ω ` t1 : G1 6 t2 : G2 G1 _ ∃X.G′′1 G2 _ ∃X.G′′2 Ω, x : G′′1 v G′′2 ` t′1 : G′1 6 t

′
2 : G′2

Ω ` unpack〈X,x〉 = t1 in t′1 : G′1 6 unpack〈X,x〉 = t2 in t′2 : G′2

Figure 5.4: GSF∃ε and GSF∃: Extensions for Strict Precision

VρJ∃X.GK = {(W, ε1packu〈G1, v1〉 :: ∃X.ρ(G), ε2packu〈G2, v2〉 :: ∃X.ρ(G)) ∈ Atom=
ρ [∃X.G] |

∀W ′ �W,α.∃R ∈ RelW ′.j [G1, G2].(W ′ � (α,G1, G2, R),

ε1[Ĝ1, α̂] v1 :: ρ(G)[α/X] , ε2[Ĝ2, α̂] v2 :: ρ(G)[α/X]) ∈ Tρ[X 7→α]JGK }

First, we establish that two packages are related if their term components ascribed to the
existential type body, substituting the fresh type name α by X, are related. Second, since we
ascribed term components to other types, we need evidence justifying this. More specifically, we need
two evidences that justify ρ(G)[G1/X] is consistent with ρ(G)[α/X] and ρ(G)[G2/X] is consistent
with ρ(G)[α/X], respectively. In this sense, we use evidences ε1[Ĝ1, α̂] and ε2[Ĝ2, α̂]; they are just
ε1 and ε2, substituting representation types in the left and the fresh type name α in the right, by
X. Note that the combination of these evidences with the internal evidences of the package (term

94

component evidences) through transitivity can fail.

This interpretation of existential types is pretty complete but is not enough. Now, suppose that
we have the packages ε∃X.?packu〈Int, εInt1 :: Int〉 :: ∃X.? and ε∃X.?packu〈Bool, εInt1 :: Int〉 :: ∃X.?.
These two packages are very similar; the only difference is in their representation type. They
are related under the above interpretation of existential types, due the fact that we can relate
ε?(εInt1 :: Int) and ε?(εInt1 :: Int) under the unknown type. But we do not want to relate these
packages. Note that we could use the packages in the same context (e.g. if we ascribe them by the
type ∃X.X) with different behaviors, losing the property that says if two packages are related, then
they are contextually equivalent. Therefore, we need to be more strict in the definition of when two
packages are related. Finally, we define the interpretation of existential types as follows:

VρJ∃X.GK = {(W, ε1packu〈G1, v1〉 :: ∃X.ρ(G), ε2packu〈G2, v2〉 :: ∃X.ρ(G)) ∈ Atom=
ρ [∃X.G] |

∀W ′ �W,α.∃R ∈ RelW ′.j [G1, G2]. ∀Ξ, ε Ξ; dom(ρ) ` ∃X.G ∼ ∃X.G,W ′ ∈ SJΞK.
((ε1 # ρ1(ε)) ∧ (ε2 # ρ2(ε)))⇒ (W ′ � (α,G1, G2, R),

(ε1 #ρ1(ε))[Ĝ1, α̂]v1 :: ρ(G)[α/X], (ε2 #ρ2(ε))[Ĝ2, α̂]v2 :: ρ(G)[α/X]) ∈ Tρ[X 7→α]JGK}

The representation type of a package in gradual settings act as a pending substitution, which
has to make sense for all possible (more precise) existential types. In a static world, we do not have
to deal with this problem, because evidence never gains precision, and the initial type checking
ensures that the program never fails. For this reason, we extend the interpretation of existential
types by quantifying over all evidences that justify that ∃X.G ∼ ∃X.G. Doing so ensures that the
representation type behaves correctly for any existential type that is more precise than ∃X.G. Note
that studying the encoding of existential into universal types leads us to justify the same definition.

5.5.4 Representation Independence

We prove the soundness of the logical relation extended with existential types with respect to
contextual equivalence.

Proposition 5.5 If Ξ; ∆; Γ ` t1 ≈ t2 : G, then Ξ; ∆; Γ ` t1 ≈ctx t2 : G.

With this result, we can return to the semaphore example and show the representation indepen-
dence for the two different implementations s1 and s3. Let us recall the definition of these packages,
where the former uses Bool as representation type, while the latter uses the unknown type:

s1 ≡ pack〈Bool, v1〉 as Sem where v1 ≡ {bit = true, flip = (λx : Bool.¬ x), read = (λx : Bool.x)}
s3 ≡ pack〈?, dv3e〉 as Sem where v3 ≡ {bit = 1,flip = (λx.1− x), read = (λx.0 < x)}

To prove that these two packages are contextually equivalent (Proposition 5.6), it suffices by
Proposition 5.5 to show that each logically approximates the other. (Note that to proceed with the
proof below, we deal with the tuple-based representation of Sem, since GSF has no records.) We
prove only one direction, namely s1 � s3 : Sem; the other is proven analogously. Therefore, we are

95

required to show that s∗1 � s∗3 : Sem, where s∗1 and s∗3 are the translation of s1 and s3 from GSF∃

to GSF∃ε , respectively.

Proposition 5.6 s1 ≈ctx s3 : Sem

To prove s∗1 � s∗3 : Sem, we are required to show that for all W , (W, s∗1, s
∗
3) ∈ T∅JSemK. Therefore,

we have to prove that ` s∗i : Sem (but this is already proven) and (W, s∗1, s
∗
3) ∈ V∅JSemK (since s∗i

are already values). Expanding the definition of V∅JSemK, we need to show that ∀W ′ � W and α,
∃R ∈ RelW ′.j [Bool, ?], such that ∀ε ·; · ` Sem ∼ Sem:

(W ′′, (εSem #ε)[Bool, α̂]v∗1 :: G[α/X], (εSem #ε)[?, α̂]v∗3 :: G[α/X]) ∈ T[X 7→α]JGK

where W ′′ = W ′ � (α,Bool, ?, R), G = schm]
e(Sem) = X × (X → X) × (X → Bool), s∗1 =

εSempacku〈Bool, v∗1〉 :: Sem and s∗2 = εSempacku〈?, v∗2〉 :: Sem. Since εSem is an static evidence, it
can not gain precision and so (εSem #ε) = εSem . Therefore, now we are required to show

(↓W ′′, v′1, v′3) ∈ V[X 7→α]JGK

where

v′1 = 〈Bool× (Bool→ Bool)× (Bool→ Bool), αBool × (αBool → αBool)× (αBool → Bool)〉
〈true, 〈(λx : Bool.¬ x), (λx : Bool.x)〉〉 :: α× (α→ α)× (α→ Bool)

v′3 = 〈Int× (?→ Int)× (?→ Bool), αInt × (α? → αInt)× (α? → Bool)〉
〈1, 〈(λx.1− x), (λx.0 < x)〉〉 :: α× (α→ α)× (α→ Bool)

Taking R = {(W ∗, εBooltrue :: Bool, εInt1 :: ?), (W ∗, εBoolfalse :: Bool, εInt0 :: ?) | W ∗ � W ′}, it is
easy to show that

− (↓2W ′′, 〈Bool, αBool〉true :: α, 〈Int, αInt〉1 :: α) ∈ V[X 7→α]JXK
− (↓2W ′′, 〈Bool→ Bool, αBool → αBool〉(λx : Bool.¬ x) :: α→ α,

〈?→ Int, α? → αInt〉(λx.1− x) :: α→ α) ∈ V[X 7→α]JX → XK
− (↓2W ′′, 〈Bool→ Bool, αBool → Bool〉(λx : Bool.x) :: α→ Bool,

〈?→ Bool, α? → Bool〉(λx.0 < x) :: α→ Bool) ∈ V[X 7→α]JX → BoolK

Note that ↓2W ′′ �W ′. Thus, the result follows immediately.

5.6 Related Work

New et al. (2020) are the first to formalize and give a logical relation for existential types in a gradual
language. In PolyGν , programs with both universal and existential types need to be annotated with
explicit sealing/unsealing terms in order to typecheck and obtain the desired behavior at runtime.
For example, the package s1 with the existential type Sem ≡ ∃X.X × (X → X)× (X → Bool) from
above can be written in PolyGν as follows:

96

pack〈X=Bool, v1〉 where v1 ≡ 〈sealX(true), 〈λx : X.sealX(¬ unsealX(x)), λx : X.unsealX(x)〉〉

Note that a package in PolyGν does not need to be annotated with an existential type since the
package operations already have a polymorphic type. For example, the function’s implementation
to flip the state of the semaphore has type X → X, while in our s1 implementation, it has type
Bool → Bool. It is worth mentioning that the existential types of PolyGν will have the same
downsides discussed in Section 2.4 for its universal types.

5.7 Conclusion

This chapter extends GSF with support for existential types for gradual data abstraction. The
extension of GSF with existential types is also derived using AGT, and similar adjustments to those
implemented by GSF have to be done to recover parametricity, thus satisfying parametricity and a
weak dynamic gradual guarantee.

The next part proposes plausible sealing as a new intermediate language mechanism that satisfies
both parametricity and graduality.

97

Part II

Plausible Sealing for Gradual
Parametricity

98

Introduction

As we saw in Chapter 3, deriving a gradual version of System F that complies with parametricity
and graduality has been and continues to be a challenging problem. On the one hand, we have the
languages that base their design on type-driven sealing like λB, System FG, and GSF that preserve
the familiar syntax of System F but violate graduality to a greater or lesser extent. On the other
hand, we have PolyGν , a term-driving sealing language that fulfills parametricity and graduality
but at the cost of forgetting the familiar syntax of System F and with its own limitations (Section
2.4).

The difficulty observed in the type-driven proposals is a strong tension between the two desirable
properties. Unfortunately, when applying a polymorphic function with an imprecise type, the
decision of whether arguments should be sealed or not is not so clear-cut. Consider, for example,
the functions f1 = ΛX.λx : ?. x :: X and f2 = ΛX.λx : ?. x :: Int. By graduality, the two functions
should behave like their more precisely-typed versions ΛX.λx :X.x :: X and ΛX.λx : Int. x :: Int,
respectively. However, this means that applying both functions to type Int and value 42 should treat
their arguments differently even though they have the same parameter type. Applying f1 [Int] 42
should seal the argument 42, while f2 [Int] 42 should not. The type-driven sealing approach decides
whether to seal or not based on the types of the applied function and the argument. However, there
is no way to make this choice a priori and modularly, without breaking graduality. For example,
GSF does not seal the argument here, breaking graduality for f1.

In this part, we revisit the original problem: gradual parametricity with the familiar syntax
of System F. Consider again the applications f1 [Int] 42 and f2 [Int] 42. Instead of making an
arbitrary choice between sealing or not sealing, we propose to keep both options open, so the
decision can be made when the value 42 is actually used. This novel technique, called plausible
sealing, essentially allows our calculus to treat the applications as fi [Int] (maybeSealX(42)). The
maybe-sealed value 42 embeds the fact that it may be both sealed at X and unsealed, which makes
the two applications successfully reduce to 42. To study plausible sealing, we propose in Chapter 6
an intermediate gradual parametric language, Funky (F?

ε), which can be used as the elaboration
target of different gradual source languages. We describe in Chapter 7 one such source language,
Funk (F?), with the familiar syntax of System F.2 It is worth pointing out that for simplicity, we
formalize the approach in a setting where polymorphism is limited to instantiations with base and
variable types.

The key novelty of the intermediate language F?
ε is that it introduces maybe-sealing forms, which

are interpreted thanks to an innovative runtime tracking technique. Additionally, F?
ε avoids the use

of dynamically-generated global seals. In previous calculi, a seal α can continue to exist when the
type variable X for which it was created goes out of scope: (ΛX.λx :X.x :: ?) [Int] 42→∗ sealα(42).
In fact, seals in these calculi behave as a form of symbolic cryptography, which makes it possible to
embed languages with runtime sealing (Pierce and Sumii, 2000; Sumii and Pierce, 2004) (Chapter 4).
But at the same time, global seals have been shown to break equivalences that hold in System F
(Devriese et al., 2018). This global nature of seals is also the reason that parametricity theorems
for gradual calculi so far have used formulations based on Kripke worlds containing semantic types
for dynamically-allocated seals (Jacobs et al., 2021). F?

ε features lexically-scoped sealing, and it is
the first to support a stronger formulation of parametricity where semantic types are tracked in a
lexical environment, similar to traditional formulations of parametricity (Reynolds, 1983). As such,
F?
ε could perhaps satisfy the ambitious criterion for gradual languages recently proposed by Jacobs

2 Funk is for F-unknown (F?), and Funky is for Funk with evidence (F?
ε).

99

et al. (2021): fully abstract embedding of the statically-typed language into the gradually-typed
language. This has been disproved by Devriese et al. (2018) for λB, but their counterexample,
which essentially relies on the global nature of seals in λB and GSF, does not apply to F?

ε. Finally,
we prove both graduality and parametricity for the intermediate language F?

ε.

The elaboration of a source language like F? to F?
ε must be in charge of introducing maybe-sealing

forms when imprecise types occur in type applications. For F?, we establish graduality, currently
subject to a restriction on type applications which will be explained in detail in Chapter 7. In
addition to graduality, we explain the source-level parametric reasoning that F? offers.

It is worth noting that parametric reasoning at the source level of a gradual language is subtle
because of another point of tension between parametricity and gradual typing that was pointed out
by New et al. (2020). Consider the two applications: (ΛX.λx : ?. x :: X) [Int] 42 and (ΛX.λx : ?. x ::
X) [Bool] 42. Since the behavior of the polymorphic function ΛX.λx : ?.x :: X should not depend
on the type it is applied to, a strict interpretation of parametricity dictates that both applications
should behave the same. At the same time, by graduality, the first application should behave
equivalently to the following more precisely typed version, which reduces to 42:

(ΛX.λx :X.x :: X) [Int] 42→∗ 42

However, the second application is of type Bool and there is no reasonable way to come up with
a boolean value to return. Even worse, because parametricity implies preservation of relatedness
of values, successfully returning a boolean in the second application would imply a contradiction,
because that boolean would have to be related to 42 in an arbitrary, caller-chosen relation, even
when that relation is empty. In other words, this strict interpretation of source-level parametricity
is incompatible with graduality. However, that is not the end of the story.

In F?, the second application fails at runtime: the value 42 does not have the right type to be
sealed at type X, so it is not maybe-sealed, and we simply report an error when it is treated as a
value of type X. This means that some polymorphic F? terms may behave differently depending on
the type they are applied to, as we have (ΛX.λx :?.x :: X) [Int] 42 7−→ ∗42 and (ΛX.λx :?.x :: X)
[Bool] 42 7−→ ∗error. It would however be incorrect to conclude that F? is not parametrically
polymorphic. First, uniformity of behavior is satisfied for polymorphic functions of fully precise
types,3 even if they internally use type applications that do (!). In these cases, the definition of
parametricity coincides with the standard definition for System F—except that related terms may
also simultaneously fail with a runtime type error. In other words, the differences in behavior can
only occur for imprecise types (and can therefore be avoided using ascriptions to precise types).
Intuitively, these differences are a consequence of F? applying plausible sealing in an attempt to infer
whether the programmer intended to treat arguments (or results) as values of the quantified type
X, in a maximally permissive way. However, the behavior of plausible sealing is entirely predictable
based on type information available statically at the call site, and does not depend on runtime type
information. When one takes this behavior into account, gradual parametricity in F? still implies
useful free theorems. For example, for any f : ∀X.?→X, f [Bool] true may diverge, fail or return
the value true, but it can never return false.

3 Later on, we introduce a mechanism to annotate occurrences of the unknown type with the subset of type
variables in scope that it might denote, and explain the impact of this feature on parametric reasoning for
imprecise types.

100

Chapter 6

The Gradual Language for Plausible
Sealing F?

ε

In this chapter, we present the target language F?
ε. We develop a novel approach to gradual para-

metricity based on plausible sealing. Technically, we use lexically-scoped rather than global sealing,
and a novel runtime tracking mechanism based on proof-relevant precision to account for postpon-
ing sealing decisions. This is achieved using a representation of evidence inspired by the category
of spans. Focusing on the new ideas, we formally develop our approach in a simplified setting
where polymorphism is restricted to instantiations with base and variable types. We prove that the
proposed intermediate language F?

ε satisfies both parametricity and graduality, and mechanize the
two key lemmas in Agda needed to prove these properties. We illustrate the practicality of F?

ε by
providing a translation from the source gradual language F? (Chapter 7).

Overview. In Section 6.1, we illustrate the behavior of F?
ε programs by starting from their F?

source counterparts, and compare to other approaches. We then formalize the core calculus F?
ε (Sec-

tion 6.2), describe its novel form of runtime tracking mechanism for plausible sealing (Section 6.3),
and prove parametricity (Section 6.4) and the gradual guarantees (Section 6.5). Section 6.6 discusses
related work and Section 6.7 concludes. Full definitions and proofs of the main results can be found
in the Appendix. Also, we develop mechanized proofs of two key technical results in Agda (Lem-
mas 6.7 and 6.12, marked with X). The implementation (https://doi.org/10.5281/zenodo.6341550)
exhibits typing derivations, the translation from F? to F?

ε, and reduction traces, including all the
examples mentioned in this work and of the related literature.

6.1 Overview of F?
ε

This section outlines the behavior of F?
ε with specific source program examples in F? from the

current state of the art of gradual parametricity, informally shedding light on how plausible sealing
is realized and compares to other approaches. We use the blue color and sans serif fonts for source
languages and the red color and bold fonts for target languages.

101

https://doi.org/10.5281/zenodo.6341550

6.1.1 Evidence for Plausible Sealing

The concept of evidence is very general and applies to a variety of typing disciplines. Garcia et al.
(2016) observe that for a language with only type consistency, evidence coincides with the middle

type of threesomes (Siek and Wadler, 2010). A threesome is a three-place cast, 〈G2
G⇐= G1〉,

representing a downcast from the source type G1 to the middle type G, followed by an upcast
from the middle type to the target type G2. This representation allows for space efficiency of
cast calculi: when combining two threesomes, it is sufficient to retain the outermost types and
keep the meet u (according to the precision partial order) of the middle types. If such a meet is
not defined, the combination of threesomes fails with a cast error. For instance, the combination

〈Int
Int⇐= ?〉〈? Bool⇐= Bool〉 fails because Int uBool is undefined.

In this work, we adopt AGT for deriving the static semantics of F? and F?
ε, and define the dy-

namic semantics of F? by elaboration to the evidence-based target language F?
ε. As Chapter 3 shows,

using AGT blindly for gradual parametricity only ensures type safety for the obtained semantics,
but not parametricity. Ensuring parametricity requires a refined representation of evidence and
consistent transitivity. In GSF, evidence is represented not as a single type, but as a pair of types
(extended with type names tracked globally), in order to capture the directionality of consistent
judgments, which can intuitively denote either sealing or unsealing. Consistent transitivity is refined
to forbid unsound unsealing and hence enforce parametricity. In order to address the limitations
discussed in the introduction, we design a novel representation of evidence in F?

ε, to realize plausible
sealing. The rest of this section informally describes this novel representation of evidence and the
achieved behavior.

Let us focus on the two terms (1) f1 [Int] 42 and (2) f2 [Int] 42 used in the introduction. As
explained, these are key illustrations of the challenge of type-driven sealing: any early decision
to either seal or not seal the argument would make one of these examples fail, thereby breaking
graduality. Our approach consists of capturing the different possibilities regarding sealing, and
postponing the choice to seal or not to seal until a value is used; as a consequence, both programs
successfully reduce to 42. This is achieved by the evidence, which accommodates the different
valid usages of an argument of unknown type whenever the unknown type has in its scope some
type variable. For this reason, the first step consists of decorating the unknown type with the
type variables that are in scope. So the type of both elaborated polymorphic functions in F?

ε

are ∀X.?X→X and ∀X.?X→Int, respectively, since X is the only type variable in the scope of
the unknown type. The argument 42 is of type Int, so upon elaboration an ascription to ?· is
introduced—there are no type variables in scope at that point. Hence, the elaboration of both
examples (where G stands for either X (1) or Int (2)) is:

(ε1 ((ΛX.λx : ?X . ε x :: G) [Int]) :: ?·→Int) (ε2 42 :: ?·) (6.1)

When these polymorphic functions are instantiated at type Int, the decorations of unknown
types are enriched with the instantiation information, so the lambda-abstractions both take an
argument of type ?X:Int. To proceed with the beta reduction, the argument ε242 :: ?· is ascribed
to the expected argument type of the lambda, yielding the value v = ε′42 :: ?X:Int. This value is
the maybeSealX(42) used in the introduction. Observe that there are two ways in which the type
of 42, Int, is consistent with ?X:Int: either because ?X:Int stands for Int, or because it stands
for X (which happens to be instantiated with Int). So it is plausible that the value be sealed at
type X, though not mandatory. In order to account for this multiplicity of possibilities, we let ε′

102

Table 6.1: Comparisons of gradual parametricity approaches.

Source term in F? F?
ε λB System FG GSF PolyGν

1 (ΛX.λx : ?.x :: X) [Int] 42 42 error error error error / 42
2 (ΛX.λx : ?.x :: Int) [Int] 42 42 42 42 42 42 / error
3 (ΛX.λx : ?.x :: X) [Bool] 42 error error error error error
4 ((ΛX.λx :X.x :: ?) [Int] 42) + 1 43 error error error error / 43
5 (ΛX.λx :X.(x :: ?) + 1) [Int] 3 error error error error error
6 (ΛX.ΛY.λx : ?.〈x, x〉 :: X×Y) [Int] [Int] 42 〈42, 42〉 error error error error / error

be a set of justifications, rather than a single justification as is standard in AGT (and in GSF).
Both justifications support the same consistency judgment Int ∼ ?X:Int, so using just the meet is
insufficient. Instead, we represent a justification of a consistent judgment between types G1 and
G2 as a triple (G, c1, c2), where G is the meet, and c1 (resp. c2) is a proof term that characterizes
how G is more precise than G1 (resp. G2). Hence, precision in F?

ε is a proof-relevant notion, and
evidences carry these proofs. In the example, the precision judgments are injX : Int v ?X:Int and
injInt : Int v ?X:Int, where the proof terms injX and injInt denote the two possible injections of
imprecision. We write reflInt for the proof term of Int v Int. So we have:

ε′ = {(Int, reflInt, injX), (Int, reflInt, injInt)}

When v is substituted in the body, reduction proceeds by combining ε′ with ε, the evidence
inserted by the elaboration of the ascription in the body (Equation 6.1), using consistent transitivity.
Importantly, in Example (1), ε justifies that the unknown type is consistent with X via injX , and
when Int is substituted for X, the proof term injX in ε does not change (although it now justifies
the judgment Int v ?X:Int rather than X v ?X). Then reduction proceeds by checking that there
is at least one justification in ε′ that is compatible with ε; otherwise an error is raised. Because
such a justification exists in both examples, they both successfully reduce to 42.

In essence, we treat type precision v in F?
ε not simply as a preorder, but as a category, and

we construct evidence as a variant of the category of spans. Spans are the triples (G, c1, c2), and
evidences are sets of spans. Composition of evidence through consistent transitivity can then be
defined in terms of a category-theoretic pullback operation, again generalizing the order-theoretic
meet that is used in regular threesomes and AGT.

6.1.2 Comparing Plausible Sealing and Prior Approaches

We now outline the behavior of F?
ε, informally shedding light on how plausible sealing is realized

and compares to other approaches. For the sake of simplicity and understanding, we use source F?

programs for the comparison. Note that, in order to be well typed, source terms in F? need to be
augmented with evidence in F?

ε, casts in λB, and seal/unseal terms in PolyGν (possibly yielding two
possible well-typed variants), in addition to superficial syntactic differences. Table 6.1 compares
F?
ε with prior approaches using a number of key examples from the literature—except Example

(6)—either adapted or verbatim. Additional examples are provided in the Appendix.

Examples (1) and (2) are the key examples discussed in Section 6.1.1. In GSF, λB and Sys-
tem FG, Example (1) fails with an error, and Example (2) yields 42, because these systems eagerly

103

choose not to seal the argument when it has the unknown type. In PolyGν , programmers have to
use explicit sealing to decide to seal or not, but this cannot be done modularly; one can obtain
different behaviors accordingly. Example (3) raises a runtime error at the ascription to X, as the
type variable is instantiated to Bool but a value of type Int is provided. Note that other approaches
also raise an error in this example because the argument is not sealed, which implies that Exam-
ple (1) fails as well. Example (4) illustrates that, contrary to other approaches that use global type
names as a runtime sealing mechanism, sealing in F?

ε is lexically scoped: seals cannot outlive the
lexical boundary of a type abstraction. In the example, when 42 is returned by the function, it
is automatically unsealed and usable as a regular integer. In PolyGν , an explicit unseal is needed
to avoid failure. Example (5) illustrates the prevention of a violation of parametricity at runtime.
Example (6) illustrates yet another flexibility of plausible sealing that makes it more expressive
than prior approaches: evidence as sets of spans can support multiple sealing behaviors. In this
example, the argument of the function, 42, is treated as plausibly sealed to both X and Y at the
same time. This example fails in GSF. In PolyGν , programmers have to pick in advance whether
to seal with X or Y, and the example fails in both cases. Observe that this program does not have
a fully statically-typed counterpart, and therefore showcases an expressiveness gain of the gradual
language, which compromises neither graduality nor parametricity.

These examples illustrate the flexibility afforded by plausible sealing, as a novel point in the
design space of gradual parametricity.

6.2 The Evidence-Based Language F?
ε

Now that we have informally explained our representation of evidence and the obtained behavior,
we turn to the formalization of F?

ε and its properties: parametricity and graduality. This section
centers on presenting the language without entering into the details of evidence: evidence and its
operators are treated abstractly. We provide the full details of evidence for F?

ε in Section 6.3.
Sections 6.4 and 6.5 establish parametricity and graduality of F?

ε, respectively.

6.2.1 Syntax and static semantics

Figure 6.1 presents the syntax and semantics of F?
ε. A type G can be either a base type, a type

variable, a function type, a pair type, a polymorphic type, or the unknown type. Observe that
static types from System F are syntactically included in gradual types G. In F?

ε, polymorphic
types can only be instantiated with base types and type variables, called instantiation types, and
denoted by metavariable F. As mentioned in the introduction, this restriction on polymorphism
simplifies the already-dense technical development while still manifesting all the subtleties of gradual
parametricity identified in prior work. Another distinctive feature of F?

ε is that it avoids the use of
a global typename store as used in all prior work on gradual parametricity thanks to the fact that
the unknown type is indexed by an environment δ. This instantiation environment keeps track of
the static and dynamic information related to type variables in scope: ?X:Int expresses that type
variable X is in scope and instantiated to Int. Uninstantiated type variables are associated with
themselves X : X, which for brevity we simply write as X. It is worth noting that in the type
?X:X , the two occurrences of X play a different role: the first is merely a label, while the second is
an actual occurrence of the type variable X.

A term t can be a value v, a variable, a term application, a pair, a projection, a type application

104

X ∈ TypeVar, G ∈ GType, ε ∈ Evidence, t ∈ Term, ∆ ⊂ TypeVar, Γ ∈ Var
fin
⇀ GType

F ::= B | X G ::= B | X | G→G | G×G | ∀X.G | ?δ δ ::= δ,X : F | ∅

u ::= b | λx : G.t | 〈u,u〉 | ΛX.t

v ::= ε u :: G t ::= v | x | t t | 〈t, t〉 | πi(t) | t [F] | ε t :: G s ::= u | t

∆; Γ ` s : G Term typing

Gb
θ(b) = B ∆ ` Γ

∆; Γ ` b : B
Gλ

∆; Γ,x : G1 ` t : G2

∆; Γ ` λx : G1.t : G1→G2

G×
∆; Γ ` s1 : G1 ∆; Γ ` s2 : G2

∆; Γ ` 〈s1, s2〉 : G1×G2
GΛ

∆,X; Γ ` t : G ∆ ` Γ

∆; Γ ` ΛX.t : ∀X.G

Gx
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G
Gasc

∆; Γ ` s : G′ ∆ ` G ε : G′ ∼ G

∆; Γ ` ε s :: G : G

Gapp
∆; Γ ` t1 : G1→G2 ∆; Γ ` t2 : G1

∆; Γ ` t1 t2 : G2
Gpairi

∆; Γ ` t : G1×G2

∆; Γ ` πi(t) : Gi

GappG
∆; Γ ` t : ∀X.G ∆ ` F

∆; Γ ` t [F] : G[F/X]

t −−→ t or error Notion of reduction

(Rasc) ε2 (ε1 u :: G1) :: G2 −−→

{
ε u :: G2 if ε = ε1 # ε2
error otherwise

(Rapp)
(ε1 (λx : G11.t) :: G1→G2)

(ε2 u :: G1)
−−→

{
cod(ε1) (t[(ε u :: G11)/x]) :: G2 if ε = ε2 # dom(ε1)

error otherwise

(Rpair) 〈ε1 u1 :: G1, ε2 u2 :: G2〉 −−→ (ε1× ε2) 〈u1,u2〉 :: G1×G2

(Rproji) πi(ε 〈u1,u2〉 :: G1×G2) −−→ pi(ε) ui :: Gi

(RappG) (ε (ΛX.t) :: ∀X.G) [F] −−→ (schm(ε) t :: G)[F/X]

t 7−→ t or error Evaluation frames and reduction

f ::= ε� :: G | � t | v � | 〈�, t〉 | 〈v,�〉 | πi(�) | � [F]

R→
t −−→ t′

t 7−→ t′
Rf

t 7−→ t′

f [t] 7−→ f [t′]
Rerr

t −−→ error

t 7−→ error
Rferr

t 7−→ error

f [t] 7−→ error

Figure 6.1: F?
ε: Syntax, Static and Dynamic Semantics.

105

(to an instantiation type), or an ascription. Note the presence of an evidence ε in an ascription, to
justify the fact that the underlying term is of a type consistent with the ascribed type. Values v
are ascribed raw values εu :: G, where ε justifies that the type of u is consistent with G. A raw
value u can be a base value b, a function, a pair of raw values, or a type abstraction. To avoid
duplication of typing rules, we use metavariable s to denote both raw values u and terms t.

The typing judgment ∆; Γ ` s : G establishes that s has type G, under type variable envi-
ronment ∆, and type environment Γ. ∆ is used to track type variables in scope, and Γ to map
variables to their types. Most of the type rules are standard, closely following System F. Note that
rule (Gasc) is the only rule that uses the consistency relation; all other elimination rules require types
to match exactly. Elaboration from the source language F? is in charge of introducing the necessary
ascriptions to safely support the flexibility of gradual typing. Rule (GappG) is almost standard,
save for the fact that it restricts instantiations to instantiation types F. The type substitution
operator G[F/X] is standard, except for occurrences of unknown types, for which type substitu-
tion is applied to their instantiation environments δ: (δ,X : F′)[F/X] = δ[F/X],X : F′[F/X].
For instance, ?Y:X,X:X [Int/X] = ?Y:Int,X:Int. Notice that type substitution on an instantiation
environment δ only affects type variable occurrences, not labels.

6.2.2 Dynamic semantics

The dynamic semantics of F?
ε are usual for an evidence-based reduction semantics (Garcia et al.,

2016), using reduction frames and notions of reduction.1 Reduction uses the consistent transitivity
operator # to combine evidence and justify transitive judgments. If ε1 # ε2 is defined then it yields
a more precise evidence, otherwise an error is raised. For example, rule (Rasc) reduces nested
ascriptions, such as value ε1 u::G1 ascribed to G2 using evidence ε2. Recall that ε1 justifies that Gu,
the type of u, is consistent with G1, noted ε1 : Gu ∼ G1, and likewise, ε2 : G1 ∼ G2. Therefore, if
ε1#ε2 is defined, then the resulting evidence justifies the transitive judgment between Gu and G2, i.e.
ε1 #ε2 : Gu ∼ G2. Rule (Rapp) reduces a term application substituting the argument in the body of
the function. It first ascribes the argument to G11, the type of x. To justify the transitive judgment
of the beta reduction, it combines ε2, with dom(ε1). Evidence dom(ε1) and cod(ε1) can be extracted
from ε1 by reasoning about inversion on consistency (ε1 : G11→G12 ∼ G1→G2). Evidence ε1
justifies that G11→G12, the underlying type of the function, is consistent with G1→G2. Thus,
evidence dom(ε1) justifies that G1 is consistent with G11, and therefore ε # dom(ε1), if defined,
justifies that the type of the raw value u is consistent with G11. The output of the function is
ascribed to the expected return type G2 using the co-domain evidence cod(ε1). Rules related to
pairs are defined analogously. Rule (RappG) reduces type application by substituting type F in
the schema evidence schm(ε), in the body of the type abstraction t and in the scheme type G. By
inversion on consistency, if ε : ∀X.G′ ∼ ∀X.G, then schm(ε) : G′ ∼ G. Substitution on evidence
ε[F/X] is defined using substitution on types, for all type information that appears in the evidence
(Section 6.3). Substitution on terms t[F/X] is recursively defined over subterms, evidences, and
types.

It is worth noting that rule (RappG) is remarkably standard unlike other gradual polymorphic
calculi where dynamic type generation happens in this rule, being stored in a global store. This
is made possible thanks to the use of the annotated unknown type ?δ . Another point that has
relevance in the reduction of type applications is that the type of the redex can contain instantiated

1 The dynamic semantics of F?
ε are very similar to GSFε, except for the transitivity operator definition and

the reduction rule for type applications.

106

type variables in scope. For example, term (ε2 (ΛX.λx : ?X .ε1 x :: X) :: ∀X.?X→X) [Int] has type
?X:Int→Int with X in the instantiation environment of the unknown type. To obtain a term that
can be applied to an argument of type ?∅, an external evidence to the application is necessary to
justify that ?X:Int→Int is consistent with ?∅→Int. As we saw in Section 6.1 and will explain in
detail in Chapter 7, this evidence is inserted by the elaboration from F? to F?

ε.

Properties. As expected from any language, F?
ε is type safe (i.e. well-typed F?

ε terms do not
get stuck). Thus, a well-typed program either evaluates to a value, a runtime error, or diverges.
In order to prove type safety, it is necessary to have some properties about the evidence, such as
the resulting evidence from consistent transitivity supports the transitive consistency judgment and
type substitution over the evidence supports the substitution over the judgment (Section 6.3).

Lemma 6.1 (Type Safety) If ` t : G then either t
∗7−→ v with ` v : G, t

∗7−→ error, or t
diverges.

Of course, the most interesting properties of F?
ε are parametricity and graduality. We dive into

the details of these properties in Section 6.4 and Section 6.5 respectively, after giving a detailed
account of evidence, including its representation, operations, and properties thereof, in particular
associativity and monotonicity of consistent transitivity.

6.3 Evidence for Plausible Sealing in F?
ε

We now turn to the key technical innovation that makes F?
ε (and by extension, F?) able to address

the dilemma presented at the beginning of this Chapter: plausible sealing, implemented via a novel
representation of evidence based on a proof-relevant notion of gradual type precision. As explained
in Section 6.1, for a consistency judgment G1 ∼ G2, instead of having evidence only track a common
more precise type G, evidence is a set of spans, where each span includes a common more precise
type G and two proof terms that describe how G v G1 and G v G2 hold, respectively.

6.3.1 Proof-relevant precision

As mentioned in Section 6.1.1, there can be multiple ways of satisfying a precision relation G v G′.
To differentiate them, we extend the precision relation between types with a proof term c that
expresses how G is more precise than G′.

Proof-relevant precision is presented in Figure 6.2. The proof relevant judgment c : G v G′

denotes that proof term c justifies that G is more precise than G′. A reflexive proof term reflB

justifies that B is more precise than B. Similarly, reflX justifies that X is more precise than X.
A function proof term c→c′ witnesses that a function type is more precise than another function
type if their domains and codomains are related; likewise for pair (c× c) and polymorphic proof
terms (∀X.c). Proof term injX represents an injection from X into ?δ , and witnesses that if X is
associated to F in δ and F is well-formed with respect to δ, then F is more precise than ?δ . We say
that a type F is well-formed with respect to δ (δ ` F) if F is a base type B or is a type variable X
and X : X ∈ δ. For example, if X is not yet instantiated and X : X ∈ δ, then injX : X v ?X:X .
If X : Int ∈ δ, then injX : Int v ?X:Int. Injection injB witnesses that a base type B is more
precise than any unknown type. Proof term sequence inj→(c) justifies that function types are more

107

c ::= reflB | reflX | c→c | c× c | ∀X.c | injB | injX | inj→(c) | inj×(c) | inj∀(c) | inj?

c : G v G Proof-relevant precision

reflB : B v B reflX : X v X

δ ⊆ δ′

inj? : ?δ v ?δ′

c : G1 v G2 c′ : G′1 v G′2
c→c′ : G1→G′1 v G2→G′2

c : G1 v G2 c′ : G′1 v G′2
c× c′ : G1×G′1 v G2×G′2

c : G1 v G2

∀X.c : ∀X.G1 v ∀X.G2

X : F ∈ δ δ ` F

injX : F v ?δ

injB : B v ?δ

c : G v ?δ→?δ

inj→(c) : G v ?δ

c : G v ?δ × ?δ

inj×(c) : G v ?δ

c : G v ∀X.?δ,X
inj∀(c) : G v ?δ

c;c = c Composition of precision proof terms

reflB ;reflB = reflB reflX ;reflX = reflX (c1→c2);(c′1→c′2) = (c1;c′1)→(c2;c′2)

(c1× c2);(c′1× c′2) = (c1;c′1)×(c2;c′2) (∀X.c);(∀X.c′) = ∀X.(c;c′) reflB ;injB = injB

reflF ;injX = injX c1;inj (c2) = inj (c1;c2) c;inj? = c

G1 G G2c1 c2

c1;c2 = c

Int Int ?X:Int
reflInt injInt

injInt

Int ?X:Int ?X:Int,Y:Int
injX inj?

injX

Figure 6.2: Proof-relevant type precision, composition, and examples.

precise than unknown: if c witnesses that a type G is more precise than ?δ→?δ , then inj→(c)
justifies that G is more precise than ?δ . Similarly, inj×(c), and inj∀(c) witnesses that pair types
and polymorphic types are more precise than unknown respectively. inj? justifies that an unknown
type is more precise than another if the environment of the former is contained in the environment
of the latter.

To support transitive judgments of precision, we define the composition of proof terms in Fig-
ure 6.2. A reflexive proof term combined with itself yields the same proof term. The combi-
nations of function, pair, and abstraction proof terms are defined inductively. The combination
of a reflexive base type proof term with an injection from that type yields the latter. Similarly,
the combination of a reflexive reflX proof term with an injection from X, yields just the injec-
tion from X. Finally, the combination of an inj? from the right can always be dropped. Fig-
ure 6.2 illustrates graphically the composition function along some examples. If c1 : G1 v G,
and c : G v G2, then c1;c2 : G1 v G2. If reflInt : Int v Int, and injInt : Int v ?X:Int,
then as reflInt;injInt = injInt, then injInt : Int v ?X:Int. Finally, if injX : Int v ?X:Int, and
inj? : ?X:Int v ?X:Int,Y:Int, then injX : Int v ?X:Int,Y:Int. With these reflexivity and composition
operators, gradual types and type precision proof terms can be seen as the objects and morphisms
of a category, which will be useful in Section 6.3.2.

108

6.3.2 Evidence and consistent transitivity

As mentioned before, evidence is defined as a set of justifications, accounting for the multiple
possibilities in which two types can be consistent. Using proof-relevant type precision, evidence ε
is defined as a non-empty set of spans {S, ... }, where a span S is a tuple (G, c1, c2) such that if
ε : G1 ∼ G2, then G is a common more precise type than G1 and G2, and c1 and c2 justify
“how”, respectively.

Definition 6.2 ε : G1 ∼ G2 iff ∀(G, c1, c2) ∈ ε, c1 : G v G1 ∧ c2 : G v G2.

For example, ε = {(Int, reflInt, injInt), (Int, reflInt, injX)} justifies that Int ∼ ?X:Int, be-
cause reflInt : Int v Int, injInt : Int v ?X:Int, and injX : Int v ?X:Int. Therefore, as explained
in Section 6.1, the term ε42 ::?X:Int corresponds exactly to the maybe-sealed value maybeSealX(42)
from the introduction: the evidence holds both possible justifications.

The type substitution definition on evidence, and more precisely on proof terms, is fundamental
for the plausible sealing mechanism to preserve parametricity. Type substitution for evidence is
defined as the type substitution for each of its spans. Type substitution for a span is defined as the
type substitution of its components. For example, (X, reflX , reflX)[F/X] = (F, reflF , reflF)
and (X, injX , reflX)[F/X] = (F, injX , reflF). Note that injX [F/X] = injX is essential to
preserve sealed values; otherwise, we would forget the sealing if we apply the substitution.

Evidence in GSFε and F?
ε have similarities and differences. As we saw earlier (Section 3.5.2),

GSFε defines an evidence ε as a pair of evidence types 〈E1, E2〉, where the consistency judgment
is relative to a store (ε Ξ ` G1 ∼ G2) and the evidence types satisfy that unlift(E1) v G1

and unlift(E2) v G2. On the other hand, a F?
ε evidence is a set of spans, where the consistent

judgment does not need a store because all the information is stored locally in the unknown types
(ε : G1 ∼ G2), and each span (G, c1, c2) justifies the same judgment. A GSFε evidence is more
comparable to a F?

ε span. For example, evidence 〈Int, αInt〉 and the span (Int, reflInt, injX) are
both to seal values, and 〈αInt, Int〉 and (Int, injX , reflInt) for unsealing. Thus evidence types
E and proof terms c have similar functions, but evidence types are gradual types where type
names store type instantiation information, while proof terms precisely describe how one type is
more precise than another. For instance, evidence 〈Int, αInt〉 can justify several judgment such as
Int ∼ α, Int ∼ ?, ? ∼ α and ? ∼ ?. However, the span (Int, injX , reflInt) has to belong to an
evidence justifying that Int ∼ ?δ,X:Int, for some δ.

To define consistent transitivity for this representation of evidence, we first define the pullback
operator between proof terms.

Lemma 6.3 (Pullback operator and its universal property) There
exists a partial pullback operator such that if c1 : G1 v G and
c2 : G2 v G, and pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5),
then c3 : G3 v G1, c4 : G3 v G2, c3;c1 = c5 and c4;c2 = c5.
The pullback operator is universal in the following sense. If there ex-
ists G′3, c′3, c′4 and c′5 such that c′3;c1 = c′5 and c′4;c2 = c′5, then
pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) and there exists a
unique c : G′3 v G3 such that c;c3 = c′3, c;c4 = c′4 and c;c5 = c′5.

G

G1 G2

G3

G′3

c1 c2

c3 c4

c′3 c′4

c5

c

Our pullback operator and its universal property are a mild adaptation of the standard def-

109

G

G1 G2

G3

c1 c2

c3 c4

c5

?X:Int

Int Int

Int

injX injX

reflInt
reflInt

injX

?X:Int

Int Int

Int

6	

injX injInt

reflInt reflInt

Figure 6.3: Pullback and examples.

inition in category theory (nLab contributors, 2021a) since the pullback operator is partial, i.e.,
it is not always defined. Figure 6.3 illustrates our pullback operator, along with two examples.
The first example (second diagram) calculates pullback(?X:Int, (Int, injX), (Int, injX)), returning
(Int, reflInt, reflInt, injX). Note that the diamond diagram commutes, obtaining injX both on
the left and on the right. The second example (third diagram) tries to calculate pullback(?X:Int,
(Int, injX), (Int, injInt)), but it is undefined since there is no gradual type and proof terms such
that the diagram commutes. The definition of the pullback operator is algorithmic, proceeding in
most cases congruently and can be found in Appendix.

The universal property in Lemma 6.3 establishes that if G′3 (with proof terms c′3 and c′4) makes
the pullback diagram commute, then the pullback is defined, resulting in type G3 (with proof
terms c3 and c4), the less precise type that makes the diagram commute. Additionally, there exists
a proof term c such that c : G3 v G′3 and all sub-diagrams commute. For example, suppose
c1 = c2 = inj? and G = G1 = G2 = ?X:Int. Since G′3 = Int, with c′3 = c′4 = injX , makes the
diagram commute, we know that the pullback exists. In this case, we know that pullback(?X:Int,
(?X:Int, inj?), (?X:Int, inj?)) = (?X:Int, inj?, inj?, inj?). Observe that there exist two proof terms
c such that c : G3 v G′3, c = injInt and c = injX . However, only c = injX satisfies c;c3 = c′3,
c;c4 = c′4 and c;c5 = c′5. Consistent transitivity between spans is then defined as follows:

Definition 6.4 (Consistent transitivity for spans) Let c1 : G1 v G, c′1 : G1 v G′1, c2 : G2 v G
and c′2 : G2 v G′2. We pose (G1, c

′
1, c1) # (G2, c2, c

′
2) = {(G3, c6, c7) | pullback(G, (G1, c1),

(G2, c2)) = (G3, c3, c4, c5) ∧ c3;c′1 = c6 ∧ c4;c′2 = c7}.

The definition is very close to the standard definition of composition of spans (nLab contributors,
2021b), except that we are dealing with a partial pullback and a set of spans rather than a single
span. Figure 6.4 graphically supports the definition of consistent transitivity, along with an example.
First the pullback of c1 and c2 is computed. If the pullback is defined, then the new evidence type
is computed using the common gradual type from the pullback G3, and new proofs that G3 is
more precise than G′1 and G′2 using the proof-relevant composition operator. Note that the result
of consistent transitivity for spans is either a singleton set or the empty set. In the example, we
have that (Int, reflInt, injX) : Int ∼ ?X:Int (representing a seal at type X), and (Int, injX ,
injY) : ?X:Int ∼ ?Y:Int (an unseal at type X, followed by a seal at type Y). Consistent transitivity
(Int, reflInt, injX)#(Int, injX , injY) is computed by first computing pullback(?X:Int, (Int, injX),
(Int, injX)) = (Int, reflInt, reflInt, injX). As reflInt;reflInt = reflInt, and reflInt;injY =
injY, the result is (Int, reflInt, injY).

Finally, consistent transitivity between evidences is just defined as the natural lifting of consis-
tent transitivity of spans to sets of spans.

110

G′1 G

G1

G′2

G2

G3

c′1
c1 c2 c′2

c3 c4

c5
c6 c7

Int ?X:Int

Int

?Y:Int

Int

Int

reflInt injX injX
injY

injX

reflInt reflInt

reflInt injY

Figure 6.4: Consistent transitivity for spans and example.

Definition 6.5 (Consistent transitivity for evidence) Let ε1 : G1 ∼ G, and ε2 : G ∼ G2.

ε1 # ε2 ::=

{
ε if ε = {S | S ∈ S1 # S2,S1 ∈ ε1,S2 ∈ ε2} 6= ∅
error otherwise

Note that if the resulting set is empty, then consistent transitivity is undefined, representing a
runtime type error because plausibility of well-typedness has been refuted. Otherwise, if consistent
transitivity is defined, then the obtained evidence justifies the transitive judgment.

Lemma 6.6 Let ε1 : G1 ∼ G, and ε2 : G ∼ G2. If ε1 # ε2 is defined, then ε1 # ε2 : G1 ∼ G2.

Associativity of consistent transitivity. Associativity of consistent transitivity is a key
property in evidence-based semantics, used to establish type soundness as well as space efficiency
optimizations (Toro and Tanter, 2020; Bañados Schwerter et al., 2021). In particular, in this work
the associativity lemma is used extensively in the proof of parametricity of F?

ε (Section 6.4).

Lemma 6.7 (X Associativity of Evidence Composition) (ε1 # ε2) # ε3 = ε1 # (ε2 # ε3).

The proof of the associativity lemma relies on the universal property of the pullback (Lemma 6.3).

Examples of reduction. Armed with the dynamic semantics of F?
ε and the concrete representation

of evidence, we first illustrate the reduction of Example (1) from Section 6.1.2: (ΛX.λx : ?.x :: X) [Int] 42,
which reduces to 42. Its elaboration (omitting some trivial evidence for conciseness) and reduction
proceed as follows:

111

(ε2 (ΛX.λx : ?X .ε1 x :: X [Int]) :: ?→Int) (ε3 42 :: ?) where
ε1 = {(X, injX , reflX)} and
ε2 = {(Int→Int, injX→reflInt, injInt→reflInt),

(?→Int, inj?→reflInt, inj?→reflInt)} and
ε3 = {(Int, reflInt, injInt)}

(RappG) 7−→ (ε2 (λx : ?X:Int.ε
′
1 x :: Int) :: ?→Int) (ε3 42 :: ?) where

ε′1 = {(Int, injX , reflInt)}
(Rapp) 7−→ cod(ε2) (ε′1 (ε′3 42 :: ?) :: Int) :: Int where

ε′3 = ε3 # dom(ε2) = {(Int, reflInt, injX), (Int, reflInt, injInt)}
(Rasc) 7−→ cod(ε2) (ε4 42 :: Int) :: Int where

ε4 = ε′3 # ε′1 = {(Int, reflInt, reflInt)}
(Rasc) 7−→ ε5 42 :: Int where

ε5 = ε4 # cod(ε2) = {(Int, reflInt, reflInt)}

We now illustrate the reduction of Example (3) from Section 6.1.2: (ΛX.λx : ?.x :: X) [Bool] 42.
The elaboration and reduction are as follows:

(ε2 (ΛX.λx : ?X .ε1 x :: X [Bool]) :: ?→Bool) (ε3 42 :: ?) where
ε1 = {(X, injX , reflX)} and
ε2 = {(Bool→Bool, injX→reflBool, injBool→reflBool),

(?→Bool, inj?→reflBool, inj?→reflBool)} and
ε3 = {(Int, reflInt, injInt)}

(RappG) 7−→ (ε2 (λx : ?X:Bool.ε
′
1 x :: Bool) :: ?→Bool) (ε3 42 :: ?) where

ε′1 = {(Bool, injX , reflBool)}
(Rapp) 7−→ cod(ε2) (ε′1 (ε′3 42 :: ?) :: Bool) :: Bool where

ε′3 = ε3 # dom(ε2) = {(Int, reflInt, injInt)}
(Rasc) 7−→ error because

{(Int, reflInt, injInt)} # {(Bool, injX , reflBool)} is undefined

Finally, we show the reduction of Example (5) from Section 6.1.2, which illustrates the prevention
of a violation of parametricity at runtime: (ΛX.λx :X.(x :: ?) + 1) [Int] 3. The elaboration and
reduction are as follows:

(ε3 ((ΛX.λx : X.(ε2 (ε1 x :: ?X) :: Int) + (εInt 1 :: Int)) [Int]) :: Int→Int) (εInt 3 :: Int)
ε1 = {(X, reflX , injX)} and
ε2 = {(Int, injInt, reflInt)} and
εInt = {(Int, reflInt, reflInt)} and
ε3 = {(Int→Int, reflInt→reflInt, reflInt→reflInt)}

(RappG)7−→ (ε3 (λx : Int.(ε2 (ε′1 x :: ?X:Int) :: Int) + (εInt 1 :: Int)) :: Int→Int) (εInt 3 :: Int)
where ε′1 = {(Int, reflInt, injX)}

(Rapp) 7−→ cod(ε3) ((ε2 (ε′1 (εInt 3 :: Int) :: ?X:Int) :: Int) + (εInt 1 :: Int)) :: Int
where εInt # dom(ε3) = εInt

(Rasc) 7−→ cod(ε3) ((ε2 (ε′1 3 :: ?X:Int) :: Int) + (εInt 1 :: Int)) :: Int
where εInt # ε′1 = ε′1

(Rasc) 7−→ error
because ε′1 # ε2 = {(Int, reflInt, injX)} # {(Int, injInt, reflInt)} is undefined

112

6.4 F?
ε: Gradual Parametricity

In this section, we present parametricity for F?
ε. We use a standard technique for establishing this

result: step-indexed logical relations (Appel and McAllester, 2001; Ahmed, 2006). Step indexing en-
sures the well-foundedness of the logical relation. We start by defining the logical relation for values
and terms, and then we establish the fundamental property or parametricity. Our proposal is the
first gradual polymorphic language to support a formulation of parametricity where semantic types
are tracked in a lexical environment, similar to traditional formulations of parametricity (Reynolds,
1983).

Logical relations. Figure 6.5 presents the logical relation for parametricity along with some aux-
iliary definitions. The relational interpretation is presented using atoms of the form (n, t1, t2) ∈
Atom[G1,G2], where n denotes the step index, and t1 and t2 denote closed well-typed terms
at types G1 and G2, respectively. The logical relation is defined using two mutually-defined in-
terpretations: one for values VρJGK and one for computations TρJGK. Both interpretations are
indexed by a type G, and an environment ρ, which maps type variables to two types G1 and
G2 and a relation R ∈ Rel[G1,G2]. Rel[G1,G2] defines the set of all admissible relations
R such that R ⊆ Atomval[G1,G2] (the subset of atoms where terms are values). For conve-
nience, if ρ = {Xi 7→ (Gi1,Gi2, Ri)}, then ρ.1, ρ.2, and ρ.R are abbreviations for {Xi 7→ Gi1} and
{Xi 7→ Gi2}, and {Xi 7→ Ri} respectively. Thus ρ.j(G) is an abbreviation for multiple substitutions
G[Xi 7→ Gij]. Finally, Atomρ[G] denotes the set of atoms Atom[ρ.1(G), ρ.2(G)]}.

Logical relation for values. The definition of related values is standard except for the unknown
type. Two base values of type B are related if they are the same. Two functions are related at type
G1→G2, if given two related arguments at type G1 (and a strictly smaller index), the application
yields related computations at type G2. We use notation Bi (n,v1,v2) ∈ VρJGK as an abbreviation
for (n − i,v1,v2) ∈ VρJGK, and B (n,v1,v2) ∈ VρJGK for B1 (n,v1,v2) ∈ VρJGK. Two pairs
are related at type G1×G2 if the first and second projections are related at types G1 and G2

respectively. Two type abstractions are related if their instantiations to two arbitrary base types
yields related computations for any given relation between the instantiated types. Two values are
related at an abstract type X, if they are contained in the relation for X.

Two values are related at the unknown type ?δ , if given any evidence ε that justifies that any
GR is ground with respect to δ, notation ` ε : δ _ GR, then both values ascribed to ρ.1(GR) and
ρ.2(GR), using ρ.1(ε) and ρ.2(ε) respectively, are related computations at type GR. This definition
captures the fact that if two values are related at ?δ , they are also related at some more precise
ground type, either X, B, ?δ × ?δ , ?δ→?δ , or ∀X.?δ,X , after removing the respective injections to
the unknown type with the evidences ρ.1(ε) and ρ.2(ε). Both λB and GSF use similar approaches
for defining the logical relation for values of type unknown but are formalized differently, according
to the syntax of the considered languages. Relation ` ε : δ _ GR is defined such that GR is a
ground type restricted to δ, and ε : ?δ ∼ GR:

` {(B, injB, reflB)} : δ _ B ` {(?δ→?δ , inj→, inj?→inj?)} : δ _ ?δ→?δ

X : F ∈ δ δ ` F

` {(F, injX , reflF)} : δ _ F ` {(?δ × ?δ , inj×, inj?× inj?)} : δ _ ?δ × ?δ

` {(∀X.?δ,X , inj∀, ∀X.inj?)} : δ _ ∀X.?δ,X

113

VρJBK = {(n,v,v) ∈ Atomρ[B]}
VρJG1→G2K = {(n,v1,v2) ∈ Atomρ[G1→G2] | ∀n′ ≤ n,v′1,v′2.

B (n′,v′1,v
′
2) ∈ VρJG1K⇒ (n′,v1 v′1,v2 v′2) ∈ TρJG2K}

VρJG1×G2K = {(n,v1,v2) ∈ Atomρ[G1×G2] | (n, π1(v1), π1(v2)) ∈ TρJG1K ∧
(n, π2(v1), π2(v2)) ∈ TρJG2K}

VρJ∀X.GK = {(n,v1,v2) ∈ Atomρ[∀X.G] | ∀ ` B1,` B2, R ∈ Rel[B1,B2].
(n,v1 [B1],v2 [B2]) ∈ Tρ;X 7→(B1,B2,R)JGK}

VρJXK = ρ.R(X)
VρJ?δK = {(n,v1,v2) ∈ Atomρ[?δ] | ∀GR, ε,` ε : δ _ GR.

(n, ρ1(ε) v1 :: ρ1(GR), ρ2(ε) v2 :: ρ2(GR)) ∈ TρJGRK}

TρJGK = {(n, t1, t2) ∈ Atomρ[G] | ∀i < n.

(∀v1. t1 7−→ iv1 ⇒ ∃v2. t2
∗7−→ v2∧ Bi (n,v1,v2) ∈ VρJGK)∧

(t1 7−→ ierror⇒ t2
∗7−→ error)}

DJ·K = {(n, ∅)}
DJ∆,XK = {(n, ρ[X 7→ (B1,B2, R)]) | (n, ρ) ∈ DJ∆K ∧R ∈ Rel[B1,B2]}
GρJ·K = {(n, ∅)}
GρJΓ,x : GK = {(n, γ[x 7→ (v1,v2)]) | (n, γ) ∈ GρJΓK ∧ (n,v1,v2) ∈ VρJGK}

∆; Γ ` t1 � t2 : G ,∆; Γ ` t1 : G ∧∆; Γ ` t2 : G ∧ ∀n, ρ, γ. ((n, ρ) ∈ DJ∆K ∧ (n, γ) ∈ GρJΓK)⇒
(n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ TρJGK

∆; Γ ` t1 ≈ t2 : G ,∆; Γ ` t1 � t2 : G ∧∆; Γ ` t2 � t1 : G

Atomρ[G] = {(n, t1, t2) ∈ Atom[ρ.1(G), ρ.2(G)]}
Atom[G1,G2] = {(n, t1, t2) | ` t1 : G1 ∧ ` t2 : G2}

Atomval[G1,G2] = {(n,v1,v2) ∈ Atom[G1,G2]}
Rel[G1,G2] = {R ⊆ Atomval[G1,G2] | ∀n′ ≤ n,v1,v2. (n,v1,v2) ∈ R⇒ (n′,v1,v2) ∈ R}

Figure 6.5: Gradual logical relation and auxiliary definitions.

114

Let us illustrate the interpretation of the unknown type with examples. Consider the evidences:

εInt? = {(Int, reflInt, injInt)}, εInt = {(Int, reflInt, reflInt)} and εX? = {(Int, reflInt, injX)}

where δ = X : X and δ′ = X : Int

• (n, εInt?42 ::?δ′ , εInt?42 ::?δ′) ∈ VρJ?δK because for ε = {(Int, injInt, reflInt)} and ` ε : δ _
Int, as εInt? # ρ.i(ε) = εInt, then B (n, εInt42 :: Int, εInt42 :: Int) ∈ VρJIntK (and for every
other evidence ε and GR, such that ` ε : δ _ GR, consistent transitivity is not defined).

• (n, εInt?42 :: ?δ′ , εInt?43 :: ?δ′) 6∈ VρJ?δK because for ` {(Int, injInt, reflInt)} : δ _ Int, as
B (n, εInt42 :: Int, εInt43 :: Int) 6∈ VρJIntK.

• Suppose B (n, εInt42 :: Int, εInt43 :: Int) ∈ ρ.R(X). Then (n, εX?42 :: ?δ′ , εX?43 :: ?δ′) ∈
VρJ?δK because for ε = {(X, injX , reflX)} and ` ε : δ _ X, as εX? # ρ.i(ε) = εInt, then
B (n, εInt42 :: Int, εInt43 :: Int) ∈ VρJXK = ρ.R(X) (and for every other evidence ε and GR,
such that ` ε : δ _ GR, consistent transitivity is not defined).

• But (n, εX?42 :: ?δ′ , εX?43 :: ?δ′) 6∈ VρJ?δ′K because for ε = {(Int, injX , reflInt)} and ` ε :

δ′ _ Int, as εX # ρ.i(ε) = εInt, but B (n, εInt42 :: Int, εInt43 :: Int) 6∈ VρJIntK.

• Suppose ρ.R(X) = VρJIntK, and εm = εInt? ∪ εX?. Then (n, εm42 :: ?δ′ , εm42 :: ?δ′) ∈
VρJ?δK because (1) for ε = {(X, injX , reflX)} and ` ε : δ _ X, as εm # ρ.i(ε) = εX? #
ρ.i(ε) = εInt, then B (n, εInt42 :: Int, εInt42 :: Int) ∈ VρJXK = ρ.R(X) = VρJIntK; and (2)
for ε = {(Int, injInt, reflInt)}, ` ε : δ _ Int, as εm # ρ.i(ε) = εInt? # ρ.i(ε) = εInt, then
B (n, εInt42 :: Int, εInt42 :: Int) ∈ VρJIntK.

Note that for the case of functions, pairs, type applications, and the unknown type, although
the same step index is used in every recursive reasoning, the relations are well-formed as in each
case a single step of reduction is always taken, lowering the index by one.

Logical relation for terms. Two computations are related at n steps if the first term yields a
value in i < n reduction steps, then the second must produce a value related at that type at n− i
steps; and if the first term fails, then the second also fails.

Logical relation for environments. The interpretation of environment ∆, specifies all type
substitutions ρ, such that all type variables in ∆ are mapped to a pair of base types and a relation
at those types. The interpretation of environment Γ, specifies all value substitution γ, such that
every variable of type G is mapped to a pair of related values at that type.

Parametricity. The logical approximation ∆; Γ ` t1 � t2 : G states that given any step index,
any environments ρ and γ that satisfy ∆ and Γ respectively, the substituted terms are related
computations. Similarly to ρ, for convenience if γ = {x 7→ (vi1,vi2)}, then γj = {x 7→ vij}. Finally,
the fundamental property states that any well-typed term logically approximates itself.

Theorem 6.8 (Fundamental Property) If ∆; Γ ` t : G then ∆; Γ ` t � t : G.

115

As standard (Ahmed, 2004), the proofs of the fundamental property depends on numerous
compatibility lemmas for each term constructor and the compositionality lemma, which in this
work resembles compositionality for System F.

Lemma 6.9 (Compositionality) Let ∆ ` F, ∆,X ` G, (n, ρ) ∈ DJ∆K, and R = VρJFK, then
VρJG[F/X]K = Vρ,X 7→(ρ1(F),ρ2(F),R)JGK.

The most important lemma, used by almost all compatibility lemmas and compositionality is the
ascription lemma, which says that the ascription of two related values yields related computations.

Lemma 6.10 (Ascription Lemma) If (n,v1,v2) ∈ VρJGK, (n, ρ) ∈ DJ∆K, ∆ ` G′ and ε : G ∼ G′,
then (n, ρ1(ε)v1 :: ρ1(G′), ρ2(ε)v2 :: ρ2(G′)) ∈ TρJG′K.

We finalize this section by emphasizing that most of the logical relations and main lemmas are
standard and defined just as in System F. In particular, and contrary to other gradual parametricity
formulations, the definition of related values at polymorphic types is defined just as in System F,
without the need for special notations and cases. The only unusual case is the definition of related
values at the unknown type, but that is expected for any gradual language.

6.5 F?
ε: Gradual Guarantees

This section presents graduality for F?
ε. We start by presenting the definition of evidence and term

precision. Similar to type precision, these definitions are also proof-relevant. Then, we show two of
the main challenges of proving graduality: monotonicity of consistent transitivity and monotonicity
of type substitution over evidence. We end this section by establishing graduality, more specifically,
the static and dynamic gradual guarantees (Siek et al., 2015a).

6.5.1 Evidence Precision

To define precision between evidence we start by stating two intuitive requirements. Suppose
ε1 : G1 ∼ G′1 and ε2 : G2 ∼ G′2. We say that ε1 is more precise than ε2, if first, the types involved
in the judgments are related by precision, i.e. c : G1 v G2 and c′ : G′1 v G′2 for some c and c′;
and second, we require that for all S1 ∈ ε1 there exists some S2 ∈ ε2, such that S1 is more precise
than S2. Note that there may be some S ∈ ε2 not in precision with any element of ε1. This is
intuitively expected by graduality, as it may cause ε2 to “fail less” than ε1 when combined with
other evidence. Precision between spans (Gt1, c1, c

′
1) v (Gt2, c2, c

′
2) could be naively defined if

there exists some proof term ct that justifies that Gt1 is more precise than Gt2, i.e. ct : Gt1 v Gt2.

However, the above requirements are not sufficient to define precision among evidences. Suppose
that we have ε1 = {(Int, reflInt, injX)} and ε2 = {(Int, reflInt, injInt)}, where εi : Int ∼ ?X:Int

(Figure 6.6 supports this example). These two evidences meet all the above requirements: there
exist c = reflInt, c′ = inj?, and ct = reflInt such that c : Int v Int, c′ : ?X:Int v ?X:Int and
ct : Int v Int. We may be tempted to say that ε1 v ε2 (or vice versa), but then graduality would
not hold. In particular, monotonicity of consistent transitivity (MCT), a key lemma used to prove
graduality, would be broken. MCT states that given two pairs of evidence related by precision
ε1 v ε2 and ε′1 v ε′2, if ε1 # ε′1 is defined, then ε1 # ε′1 v ε2 # ε′2. In the example, if we take evidence

116

Int ?X:Int

Int

Int

Int
reflInt

injInt

injInt
reflInt

Int ?X:Int

Int

Int

Int

reflInt injX injInt
reflInt

reflInt

reflInt

inj? reflInt

reflInt

Figure 6.6: Evidence precision auxiliary example.

ε′1 = ε′2 = {(Int, injInt, reflInt)} that justifies ?X:Int ∼ Int (and ε′1 v ε′2), then ε1 # ε′1 = {(Int,
reflInt, reflInt)} is defined but ε2 # ε′2 is not. We can use an analogous reasoning when assuming
ε2 v ε1, using ε′1 = ε′2 = {(Int, injX , reflInt)}. These two evidences should not be related by
precision; we miss a connection between ct and both c′ and c as described next.

Definition 6.11 (Evidence Precision) If ε1 : G1 ∼ G′1, ε2 : G2 ∼
G′2, c : G1 v G2 and c′ : G′1 v G′2, then we say that [c]ε1 v ε2[c′]
iff for all (Gt1, c1, c

′
1) ∈ ε1 there exists a (Gt2, c2, c

′
2) ∈ ε2, c′′1, c′′2

and ct such that ct : Gt1 v Gt2, ct;c2 = c′′1, c1;c = c′′1, ct;c
′
2 = c′′2

and c′1;c′ = c′′2.

G2 G′2

Gt2

c2 c′2

G1 G′1

Gt1

c1 c′1

c c′

ct
c′′1 c′′2

In addition to the requirements described above, evidence precision also requires that the com-
bination of ct and c2 must commute with the combination of c1 and c; similarly, the combination
of ct and c′2 must commute with the combination of c′1 and c′. Going back to the example, ε1
and ε2 are not related by precision as the diagram does not commute: reflInt;injInt = injInt

(ct;c
′
2 = c′′2) and injX ;inj? = injX (c′1;c′ = c′′2), but injInt 6= injX . On the other hand, evi-

dence {(Int, reflInt, reflInt)} is more precise than {(Int, reflInt, injX)}, because we can choose
c = ct = reflInt, and c′ = injX , such that the diagram commutes: reflInt;injX = injX

(ct;c
′
2 = c′′2), and reflInt;injX = injX (c′1;c′ = c′′2).

Note that the evidence precision judgment [c]ε1 v ε2[c′] explicitly tracks proof terms c and c′

(we will refer to them as boundary proofs). The reason is that monotonicity of consistent transitivity
only holds when adjacent boundary proofs match up.

Lemma 6.12 (XMonotonicity of Consistent Transitivity) If [c]ε1 v ε2[c′], [c′]ε′1 v ε′2[c′′] and
(ε1 # ε′1) is defined, then [c](ε1 # ε′1) v (ε2 # ε′2)[c′′].

Let us consider the following example to understand why the “middle” boundary proof terms
must match. We have that:

[reflInt]{(Int, reflInt, reflInt)} v {(Int, reflInt, injX)}[injX]

and
[injInt]{(Int, reflInt, reflInt)} v {(Int, injInt, reflInt)}[reflInt]

The precision proofs do not match (injX 6= injInt), and even though {(Int, reflInt, reflInt)} #
{(Int, reflInt, reflInt)} is defined, {(Int, reflInt, injX)} # {(Int, injInt, reflInt)} is not.

Similar to consistent transitivity, type substitution over evidence is also monotonous concerning
evidence precision (two evidences related by precision remain related after type substitution).

117

Ω ` c : s v s Term precision

vb
Ω ` reflB : b v b

vx

Ω(x) = c : G1 v G2

Ω ` c : x v x

vλ
Ω,x 7→ c : G′1 v G′2 ` c′ : t1 v t2

Ω ` c→c′ : λx : G′1.t1 v λx : G′2.t2
vΛ

Ω ` c : t1 v t2

Ω ` ∀X.c : ΛX.t1 v ΛX.t2

v×
Ω ` c : s1 v s2 Ω ` c′ : s′1 v s′2

Ω ` c× c′ : 〈s1, s
′
1〉 v 〈s2, s

′
2〉

vpairi
Ω ` c1× c2 : t1 v t2

Ω ` ci : πi(t1) v πi(t2)

vapp
Ω ` c′→c : t1 v t2 Ω ` c′ : t′1 v t′2

Ω ` c : t1 t′1 v t2 t′2
vappG

Ω ` ∀X.c : t1 v t2

Ω ` c[F/X] : t1 [F] v t2 [F]

vasc
Ω ` c′ : s1 v s2 c : G1 v G2 [c′]ε1 v ε2[c]

Ω ` c : ε1s1 :: G1 v ε2s2 :: G2

Figure 6.7: F?
ε: Term Precision.

Lemma 6.13 (Monotonicity of Type Substitution) If [∀X.c′]ε1 v ε2[∀X.c], then [c′](schm(ε1)) v
(schm(ε2))[c] and [c′[F/X]](schm(ε1)[F/X]) v (schm(ε2)[F/X])[c[F/X]].

6.5.2 Term precision

Term precision is the natural lifting of type and evidence precision to terms, and is presented in
Figure 6.7. Judgment Ω ` c : s1 v s2 denotes that term s1 is more precise than s2 justified by proof
term c, under precision relation environment Ω. Boundary proof terms c are propagated for types,
contexts, evidence, and subterms, justifying that the type of the less precise term is less precise
than the type of the more precise term. Ω binds a term variable x to a type precision judgment
c : G1 v G2. Rule (vx) establishes that a term variable is related to itself along boundary proof
term c if x : (c : G1 v G2) ∈ Ω, and Rule (vλ) extends Ω with the judgment that justifies that
the argument types are in precision. Analogous to MCT, rule (vapp) requires that the domain
proof term of the function matches with the proof term of the arguments. Rule (vasc) establishes
that two ascriptions are related if the sub-terms, s1 and s2, are in precision with proof term c′, the
ascribed types, G1 and G2, are in precision with the proof c, and evidences are in precision with
the boundary proof terms c′ and c.

Gradual guarantees. Armed with the definition of term precision, we now establish the graduality
of F?

ε with the gradual guarantees (Siek et al., 2015a).

Theorem 6.14 Suppose ` t1 : G1 and ` c : t1 v t2. Then,

• ` t2 : G2 and c : G1 v G2.

• t1
∗7−→ v1 implies t2

∗7−→ v2 and ` c : v1 v v2.

• t1 diverges implies t2 diverges.

118

The only peculiarity of this result compared to others in the literature is that the type and term
precision judgments are proof-relevant. The static part of graduality (the static gradual guarantee)
ensures that if t1 with type G1 is more precise than t2, justified by proof c, then t2 has a less precise
type G2 justified by c. The dynamic part of graduality (the dynamic gradual guarantee) establishes
that if the more precise term reduces to a value, then the less precise term also does, resulting in
values in precision with the same type proof term c. The key lemmas to prove graduality, are
MCT (Lemma 6.12), and monotonicity of type substitution (evidence precision is monotonous with
respect to type substitution) (Lemma 6.13).

6.6 Related Work

We have already discussed in detail related work to gradual parametricity approaches. Thus, this
chapter discusses related work to some technical features of F?

ε, such as evidence representation and
proof terms for type precision.

Sealing for Parametricity. Dynamic sealing, originally proposed by Morris (1973) to dynamically
enforce type abstraction, has been widely used to guarantee parametricity in gradual languages.
The notion of dynamic sealing combined with global runtime type name generation has driven the
dynamic semantics of polymorphic gradual languages such as λB (Ahmed et al., 2017), CSA (Xie
et al., 2018), GSF (Toro et al., 2019) and PolyGν (New et al., 2020). Type names are dynamically
generated in each type application and are kept in a global store, making the dynamic semantics
and the definitions and proof of parametricity less standard and more complex. F?

ε avoids using
type names generation and, therefore, a global store thanks to the fact that the unknown type is
decorated by an environment and the sealing/unsealing mechanism is generated statically. It is
worth noting that, unlike other developed gradual polymorphic languages, PolyGν also includes
explicit seal and unseal terms in its syntax. In this sense, we can say that F?

ε also includes in its
syntax explicit forms of sealing and unsealing, since for a program with an imprecise type to behave
in a parametric way, it is necessary to introduce the evidence of sealing and unsealing statically.
The key novelty of F?

ε is to support evidence with multiple sealing justifications, which makes it
possible to avoid to eagerly choose a sealing strategy when interacting with the unknown type.

Proof Terms for Type Precision. PolyGν , inspired by previous work (New and Ahmed, 2018),
adds a proof term to the type precision relation as a technical intermediate representation for the
translation from PolyGν to PolyCν , a cast calculus that gives meaning to PolyGν programs. It is
important to note that proof terms in the type precision relation are canonical, i.e. there is at most
one proof term that proves any given type precision judgment. Likewise, F?

ε language indexes the
type precision relation with proof terms, but contrary to PolyGν , proof terms are relevant, i.e. there
can be multiple proof terms for the same precision judgment. Also, as a difference with PolyGν ,
term precision in F?

ε is indexed by a relevant proof term.

Evidence Representation. Evidence has been used in different scenarios, varying its representa-
tion according to the semantic properties to be preserved in the gradual language. For instance,
Lehmann and Tanter (2017) develop a gradual language with refinement types, allowing smooth
evolution and interoperability between simple types and logically refined types. In this case, the
evidence for consistent subtyping is represented by a triple, where the first component accounts for
the logical environment, and the second and third are types. Toro et al. (2018) develop a gradual
language with security types and references, indexing types with gradual security labels. Driven
by noninterference, types in evidence are indexed with intervals of security labels, representing

119

(bounded) ranges of possible static types. Likewise, F?
ε represents evidence in a novel way. First, it

enriches evidence with proof terms relevant that we call span and then generalizes the evidence to a
set of spans, building evidence with the expressiveness to ensure both graduality and parametricity.
This theory may be applicable in other complex settings as well. In addition, it would be interesting
to explore if there is a way to systematically derive proof-relevant consistency with AGT.

Performance. Gradual parametricity is a very challenging topic at the theoretical level, with
all current efforts trying to figure out how to achieve a good design backed by a strong metatheory.
This work likewise focuses on the theory of gradual parametricity, contributing a novel approach
and technique. We leave the study of the performance and efficiency of a practical implementation
as an open question to be addressed. Nevertheless, it is worth mentioning that the proposed
language design satisfies a relevant criterion for space efficiency (Herman et al., 2010), namely
associativity of evidence composition, which is known to allow for space efficiency in evidence-
based semantics (Bañados Schwerter et al., 2021; Toro and Tanter, 2020). Whether the algorithmic
definition of consistent transitivity can be efficiently implemented depends on whether evidence can
be represented in memory in a form that uses space efficiently and allows an efficient implementation
of evidence composition. All these are open research questions.

6.7 Conclusion

Previous work on gradual parametricity has had to compromise on important design goals like
graduality (Toro et al., 2019) or type-driven sealing (New et al., 2020). Rather than accepting these
compromises, this work attempts to revisit accepted wisdom like the use of globally scoped seal-
ing and contribute new ideas like plausible sealing and the set-of-spans representation of evidence
for proof-relevant precision. Although the results presented here still have some restrictions, they
open a new path towards the goal of reconciling parametricity, graduality and type-driven sealing.
Additionally, some of our novel techniques are potentially reusable in other settings. Evidence rep-
resented as a set of spans could be used to verify hyperproperties (sets of properties) (Clarkson and
Schneider, 2008) in programming languages. For instance, in security-typed languages, types stati-
cally enforce the noninterference hyperproperty. Toro et al. (2018) established noninterference for a
gradual security-typed language with references but sacrificing graduality. It would be interesting
to investigate if a gradual language with those features can benefit from our techniques in order
to recover graduality. Also, it could be explored on the gradualization of a probabilistic language,
where it is needed to track different path execution with different types.

In the next chapter, we present the source language F? and its elaboration to F?
ε, illustrating the

practicality of F?
ε as a target language for a type-driving source language. We establish graduality

for F?, and explain the source-level parametric reasoning that F? offers. Finally, we discuss lifting
the technical restrictions of this work for both F?

ε and F?.

120

Chapter 7

The Gradual Source Language F?

Having formalized the key technical innovation of this work, plausible sealing, and established both
graduality and parametricity for the intermediate language F?

ε, we now turn to the source language
F? and its properties. We formalize the source language F? and its elaboration to F?

ε. The novel
translation to F?

ε plays a crucial role since it is in charge of statically generating the maybe-sealing
evidence for type applications. We study the gradual guarantees for F? and the resulting source-level
parametric reasoning. It is worth pointing out that reasoning about graduality in F? requires users
to verify that the types of polymorphic functions being applied have the same shape; for instance,
graduality holds between functions of types ∀X.X→X and ∀X.?→?, but not between ∀X.X→X and
∀X.?. Except for this technical restriction, type and term precision is standard and graduality in
F? allows programmers to reason in much the same way as they would with the natural notion of
term precision.

Overview. This chapter presents the static semantics of F? (Section 7.1) and its translation to F?
ε

(Section 7.2). We establish graduality for F? (Section 7.3), and explain the source-level parametric
reasoning that F? offers (Section7.4). We discuss the lifting of the technical restrictions of this work
in Section 7.5 and Section 7.6 concludes.

7.1 F?: Statics

The static semantics of F? is derived systematically by applying AGT to System F1 (Figure 7.1),
which is a variation of System F where type instantiations are restricted to instantiation types F
(i.e. base types and type variables).

In order to apply AGT to obtain the static semantics (i.e. lifting functions and predicates),
we use explicit type equalities and partial type functions in the typing rules of System F1 (as in
Chapter 3). These partial functions also allow capturing elimination forms in a single rule that
accounts for both precise and imprecise type information (Garcia et al., 2016).

The syntactic category of source gradual types G admits the unknown type in any position (like
GSF), namely:

G ::= B | X | G→G | G×G | ∀X.G | ?δ (source gradual types)

121

F ::= B | X
T ::= B | X | T → T | T × T | ∀X.T
t ::= b | λx : T.t | ΛX.t | x | 〈t, t〉 | t t | πi(t) | t [T] | t :: T

∆; Γ ` t : T Term typing

(Tx)
x : T ∈ Γ ∆ ` Γ

∆; Γ ` x : T
(Tb)

θ(b) = B ∆ ` Γ

∆; Γ ` b : B
(Tλ)

∆; Γ, x : T1 ` t : T2

∆; Γ ` λx : T1. t : T1 → T2

(Tpair)
∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

∆; Γ ` 〈t1, t2〉 : T1 × T2
(TΛ)

∆, X; Γ ` t : T ∆ ` Γ

∆; Γ ` ΛX. t : ∀X.T

(Tasc)
∆; Γ ` t : T ′ T ′ = T

∆; Γ ` t :: T : T
(Tapp)

∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

dom(T1) = T2

∆; Γ ` t1 t2 : cod(T1)

(Tpairi)
∆; Γ ` t : T

∆; Γ ` πi(T) : proj i(T)
(TappG)

∆; Γ ` t : T ∆ ` F
∆; Γ ` t [F] : inst(T, F)

t −−→ t Notion of reduction

v :: T −−→ v

(λx : T. t) v −−→ t[v/x]

πi(〈v1, v2〉) −−→ vi

(ΛX. t) [F] −−→ t[F/X]

t 7−→ t or error Evaluation frames and reduction

f ::= � :: T | � t | v � | 〈�, t〉 | 〈v,�〉 | πi(�) | � [F]

(R→)
t −−→ t′

t 7−→ t′
(Rf)

t 7−→ t′

f [t] 7−→ f [t′]

(Rerr)
t −−→ error
t 7−→ error

(Rferr)
t 7−→ error
f [t] 7−→ error

Figure 7.1: System F1: Static Polymorphic Language Restricted to Instantiation Types F

Source gradual types are syntactically contained in the gradual types of F?
ε, and for simplicity

throughout this section, we write G as the F?
ε counterpart of G. Source gradual types restricts the

scope of unknown types to not-instantiated variables only. To represent this, we index unknown
types with the δ meta-variable (included in δ); and as every type variable in ?δ is not instantiated
(i.e. of the form X : X), for simplicity we just write δ as a set of type variables. One final note is
that ? (without a scope δ, as used in previous sections) is syntactic sugar for ?∆, where ∆ is the
set of all variables in scope at that point. A straightforward and simple translation can insert these

122

γ(B) = {B }
γ(X) = {X }

γ(G1→G2) = γ(G1)→ γ(G2)

γ(G1×G2) = γ(G1)× γ(G2)

γ(∀X.G1) = ∀X. γ(G1)

γ(?δ) = {T | ftv(T) ⊆ ftv(δ) }

α({B }) = B

α({X }) = X

α({T1 → T2}) = α({T1})→α({T2})
α({T1 × T2}) = α({T1})×α({T2})
α({∀X.T1}) = ∀X.α({T1})

α({T}) = ?δ where ftv(δ) = ftv({T})

Figure 7.2: Type concretization (γ) and abstraction (α)

annotations before typing.

We give meaning to gradual types G through the concretization function γ(·), presented in
Figure 7.2. The meaning of the unknown type ?δ is the set of all well-formed static types with
respect to δ (i.e. γ(?δ) = {T | δ ` T }). The concretization function helps us define precision and
consistency.

Definition 7.1 (Type Precision) G1 v G2 if and only if γ(G1) ⊆ γ(G2).

Definition 7.2 (Type Consistency) G1 ∼ G2 if and only if there exists T1 and T2 such that T1 = T2,
T1 ∈ γ(G1) and T2 ∈ γ(G2).

G ∼ G Type Consistency

B ∼ B X ∼ X

G1 ∼ G′1 G2 ∼ G′2
G1×G2 ∼ G′1×G′2

G′1 ∼ G1 G2 ∼ G′2
G1→G2 ∼ G′1→G′2

G ∼ G′

∀X.G ∼ ∀X.G′ B ∼ ?δ ?δ ∼ B

X ∈ δ
X ∼ ?δ

X ∈ δ
?δ ∼ X

G1 ∼ ?δ G2 ∼ ?δ
G1→G2 ∼ ?δ

G1 ∼ ?δ G2 ∼ ?δ
G1×G2 ∼ ?δ

G ∼ ?δ,X

∀X.G ∼ ?δ

?δ ∼ G1 ?δ ∼ G2

?δ ∼ G1→G2

?δ ∼ G1 ?δ ∼ G2

?δ ∼ G1×G2

?δ,X ∼ G

?δ ∼ ∀X.G ?δ ∼ ?δ′

G v G Type Precision

vB
B v B

vX
X v X

v→
G1 v G2 G′1 v G′2
G1→G′1 v G2→G′2

v×
G1 v G2 G′1 v G′2
G1×G′1 v G2×G′2

v∀
G1 v G2

∀X.G1 v ∀X.G2
vB?

B v ?δ
vX?

X ∈ δ
X v ?δ

v→?

G1→G2 v ?δ→?δ
G1→G2 v ?δ

v×?
G1×G2 v ?δ × ?δ

G1×G2 v ?δ
v∀?

∀X.G v ∀X.?δ,X
∀X.G ⊆ ?δ

v?

δ v δ′

?δ v ?δ′

Figure 7.3: F?: Type Precision and Consistency Inductively.

123

Precision and consistency resemble their F?
ε counterpart and can also be inductively defined

(Figure 7.3). For instance, X ∼ ?X, but X 6∼ ?Y (for X 6= Y). However, precision in F? is no longer
proof relevant: F? contains only unknown types ?δ with uninstantiated type variables, so that the
precision relation from F?

ε (which had the structure of a category) reduces to a proof-irrelevant
order relation in F?. The inductive definitions of type precision and consistency are equivalent to
the derived by AGT.

Proposition 7.3 (Type Precision, inductively) The inductive definition of type precision given in
Figure 7.3 is equivalent to Definition B.94.

Proposition 7.4 (Type Consistency, inductively) The inductive definition of type consistency given
in Figure 7.3 is equivalent to Definition 7.2.

Figure 7.4 presents the term typing rules for F?, which are obtained by replacing type predicates
and functions with their corresponding liftings. The lifting of function and predicates are straight-
forward and uses the corresponding abstraction function α(·) of γ(·) (Figure 7.2), forming a Galois
connection.

Lemma 7.5 (α is Sound) If A is not empty, then A ⊆ γ(α(A)).

Lemma 7.6 (α is Optimal) If A is not empty and A ⊆ γ(G) then α(A) v G.

For example, rule (Gasc) uses type consistency instead of type equality, and rule (GappG)
uses the lifting of the function inst , defined for polymorphic types and the unknown type (i.e.
inst](∀X.G,G′) = G[G′/X]\X, inst](?δ ,G

′) = ?δ and undefined for other cases). Note that inst] uses
the scope removal function G\X, which is removes X from the scopes of unknown types in G:
?δ1,X,δ2\X = ?δ1,δ2 . For instance, (X→?X,Y)[Int/X]\X = Int→?Y.

7.2 F?: Elaboration to F?
ε

The dynamic semantics of a F? program is given by a type-directed translation to F?
ε. Figure B.7

describes the type-preserving elaboration of F? terms to F?
ε. The elaboration rules are type-directed,

following the type rules for F?. The rules are mostly standard save for the elaboration rule for type
application. Judgment ∆; Γ ` t : G t′ expresses that term t is elaborated to t′, under type
variable environment ∆, and type environment Γ.

The elaboration rules use the function initEv(G1,G2), which stands for the initial evidence
between G1 and G2. It computes the least precise evidence that justifies consistency between the
types, and is defined as follows:

Definition 7.7 (Initial Evidence) If G1 ∼ G2 then G = G1 u G2 and
initEv(G1,G2) = {(G, initPT(G,G1), initPT(G,G2))}.

This evidence consists of a single span, where the first component is the meet (greatest lower
bound with respect to precision) G1 uG2 between G1 and G2, and the second and third components
are the initial proof terms between the meet and G1 and G2, respectively (Figure 7.6). The meet
G1 u G2 is a partial function and corresponds formally to α(γ(G1) ∩ γ(G2)). Note that from AGT,

124

δ ::= δ,X : X | ·
F ::= B | X (simple types)
G ::= B | X | G→G | G×G | ∀X.G | ?δ (source gradual types)
t ::= b | λx :G.t | ΛX.t | x | 〈t, t〉 | t t | πi(t) | t [F] | t :: G (source gradual terms)

∆; Γ ` t : G Term typing

Gx
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G
Gb

θ(b) = B ∆ ` Γ

∆; Γ ` b : B
Gλ

∆; Γ, x : G1 ` t : G2

∆; Γ ` λx :G1.t : G1→G2

G×
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2

∆; Γ ` 〈t1, t2〉 : G1×G2
GΛ

∆,X; Γ ` t : G ∆ ` Γ

∆; Γ ` ΛX.t : ∀X.G

Gasc
∆; Γ ` t : G′ ∆ ` G G′ ∼ G

∆; Γ ` t :: G : G

Gapp
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2 dom](G1) ∼ G2

∆; Γ ` t1 t2 : cod](G1)
Gpairi

∆; Γ ` t : G

∆; Γ ` πi(t) : proj]i(G)

GappG
∆; Γ ` t : G ∆ ` F

∆; Γ ` t [F] : inst](G,F)

Figure 7.4: F?: Syntax and Static Semantics.

G ∼ G′ holds if γ(G1) ∩ γ(G2) is not empty, then if G ∼ G′ then G u G′ will always be defined.

Definition 7.8 (Meet) G1 u G2 = α(γ(G1) ∩ γ(G2)).

The initial proof term between two types in precision is computed using the initPT(G,G′)
function such that initPT(G,G′) : G v G′. It is important to note that the initial proof term between
two types is unique since the type variables within the unknown type scope are not instantiated.
Its definition is unsurprising and can be derived from the type precision judgment from Figure 6.2.
The initial proof term between two base types B or two type variable X are the reflexive proof
terms B and X, respectively. The initial proof term between a base type and the unknown type
is an injection from that base type injB. The cases for type variables are defined analogous. The
initial proof term between a function, a pair, or a polymorphic function and the unknown type, is
computed by composing the initial proof term of the precise type and a ground type that matches
its constructor, and an injection to unknown. The initial proof term between two unknown types
is just inj?, and the rest of the cases are defined inductively. For example, the initial proof term
that justifies judgment Int v ?X is injInt, for X v ?X is injX , for ?X v ?X,Y is inj?, and for
Int→?X v ?X,Y is inj→(injInt→inj?).

As F?
ε requires all values to be ascribed, the elaboration rules ascribe base values, functions and

type abstractions to their own type using the reflexive evidence operator reflEv(G) , initEv(G,G)
(like the translation from GSF to GSFε). For instance, term 42 is elaborated to reflEv(Int) 42::Int,
where reflEv(Int) = {(Int, reflInt, reflInt)}. The elaboration process also inserts ascriptions to
equate types in elimination forms. In particular, the translation of a term application (Eapp)
ascribes the function term t1 to a function type that matches (Cimini and Siek, 2016) with its own

125

∆; Γ ` t : G t Elaboration rules

Eb
θ(b) = B ∆ ` Γ ε = reflEv(B)

∆; Γ ` b : B ε b :: B
Ex

x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G x

E×

∆; Γ ` t1 : G1 t′1
∆; Γ ` t2 : G2 t′2

∆; Γ ` 〈t1, t2〉 : G1×G2 〈t′1, t′2〉

Eλ
∆; Γ, x : G1 ` t : G2 t′ ε = reflEv(G1→G2)

∆; Γ ` λx :G1.t : G1→G2 ε (λx : G1.t
′) :: G1→G2

EΛ

∆,X; Γ ` t : G t′ ∆ ` Γ ε = reflEv(∀X.G)

∆; Γ ` ΛX.t : ∀X.G ε (ΛX.t′) :: ∀X.G

Easc
∆; Γ ` t : G′ t′ ∆ ` G ε = initEv(G′,G)

∆; Γ ` t :: G : G εt′ :: G

Eapp

∆; Γ ` t1 : G1 t′1 ∆; Γ ` t2 : G2 t′2 G1 _ G11→G12

ε1 = initEv(G1,G11→G12) ε2 = initEv(G2,G11)

∆; Γ ` t1 t2 : G12 (ε1t′1 :: G11→G12) (ε2t′2 :: G11)

EappG

∆; Γ ` t : G t′ ∆ ` F G _ ∀X.G′
ε1 = initEv(G,∀X.G′) ε2 = instEv(G′,X,F)

∆; Γ ` t [F] : G′[F/X]\X ε2((ε1t′ :: ∀X.G′) [F′]) :: G′[F′/X]\X

Epairi
∆; Γ ` t : G t′ G _ G1×G2 ε = initEv(G,G1×G2)

∆; Γ ` πi(t) : Gi πi(εt
′ :: G1×G2)

G _ G Type matching

G1→G2 _ G1→G2 ∀X.G _ ∀X.G G1×G2 _ G1×G2 ?δ _ ?δ→?δ ?δ _ ∀X.?δ,X

?δ _ ?δ × ?δ

Figure 7.5: Translation from F? to F?
ε

type (G1 _ G11→G12): its own type if t1 has a function type; otherwise ?δ→?δ (if the type is ?δ).
Also, the argument term t2 is ascribed to the argument type of the ascribed function. Rule (Easc)
translates ascriptions by first translating the sub-term t, and then computing the initial evidence
between the type of the sub-term (G′) and the ascription type (G).

Rule (EappG) elaborates type applications, and is responsible of inserting “maybe-seal” evi-
dence. The elaborated type application is ascribed to the instantiated scheme type G′[F/X]\X
(removing X from the environments of unknown types), using a special evidence that justifies that
G′[F/X] is consistent with G′[F/X]\X. This evidence is computed using the instantiation ev-
idence function instEv defined in Figure 7.7. Function instEv(G,X,F) : G[F/X] ∼ G[F/X]\X
is defined (inductively) almost as the reflexive evidence operator, save for the case when type
G is ?δ and X is in scope δ. Then, instEv generates an evidence consisting of two spans: one
span that “seals to X” and another one that does not. More in detail, the first span (F, injX ,

126

initPT(B,B) = B

initPT(X,X) = X

initPT(G1→G2,G
′
1→G′2) = initPT(G1,G

′
1)→ initPT(G2,G

′
2)

initPT(G1 × G2,G
′
1 × G′2) = initPT(G1,G

′
1)× initPT(G2,G

′
2)

initPT(∀X.G1, ∀X.G′1) = ∀X.initPT(G1,G
′
1)

initPT(B, ?δ) = injB

initPT(X, ?δ) = injX

initPT(G1→G2, ?δ) = inj→(initPT(G1→G2, ?δ→?δ))

initPT(G1×G2, ?δ) = inj×(initPT(G1×G2, ?δ × ?δ))

initPT(∀X.G1, ?δ) = inj∀(initPT(∀X.G1, ∀X.?δ,X))

initPT(?δ , ?δ′) = inj?

Figure 7.6: Initial proof term

instEv(B,X,F) = reflEv(B)

instEv(X,X,F) = reflEv(F)

instEv(?δ ,X,F) = reflEv(?δ) if X 6∈ δ
instEv(Y,X,F) = reflEv(Y) if X 6= Y

instEv(G1→G2,X,F) = instEv(G1,X,F)→instEv(G2,X,F)

instEv(G1×G2,X,F) = instEv(G1,X,F)× instEv(G2,X,F)

instEv(∀Y.G,X,F) = ∀Y.instEv(G,X,F)

instEv(?δ1;X;δ2 ,X,F) = {(?δ1;δ2 , inj?, inj?), (F, injX , injF)}

Figure 7.7: Instantiation evidence function.

127

injF) represents that the unknown type should behave polymorphically in X. On the contrary,
the second span (?δ1;δ2 , inj?, inj?) does not acknowledge the existence of variable X. For exam-
ple, we have that (?X→X)[Int/X] = ?X:Int→Int and (?X→X)[Int/X]\X = ?→Int. Therefore
instEv(?X→X,X, Int) : ?X:Int→Int ∼ ?→Int, being defined as follows:

{(Int→Int, injX→reflInt, injInt→reflInt), (?→Int, inj?→reflInt, inj?→reflInt)}

Note that this evidence makes it impossible that a sealed value leaks out of a polymorphic function
application. The scope of a type variable (label) is limited to the type application in which it
appears. For example, consider the type application t [Int] in F?, where ` t : ∀X.?X→?X. This term
is elaborated to instEv(?X→?X,X, Int) (t [Int]) :: ?→?, where t [Int] has type ?X:Int→?X:Int; the
generated instEv evidence is used to coerce this type to ?→?. The label X may appear in unknown
types that are used inside t [Int], but the instEv evidence casts t [Int] to a type not mentioning
the label X, effectively restricting the scope of X to inside the term t [Int]. Even when the
resulting term computes further and t [Int] is reduced and combined with values from the context
(for example, in a function application), the instEv evidence protects the scope of X, preventing
it from interfering with possible other occurrences of the same name X introduced by other type
applications. Because of this, there is no need for alpha-renaming.

It is important to clarify one limitation: the instantiation evidence instEv(G,X,F) is not general
enough when G = ?δ1,X,δ2 . With the current definition, ?δ1,X,δ2 intuitively only represents something
of type X or other well-formed static type with respect to δ1, δ2. This means that at runtime, if ?δ1,X,δ2
is used in a consistent judgment with a function such as X→X, the program could fail. For instance,
the program (ΛX.λx :X.x) :: ∀X.?X [Int] 1 generates the instantiation evidence instEv(?X,X, Int) =
{(?, inj?, inj?), (Int, injX , injInt)}, which will not seal argument 1, making this program fail at
runtime. To fix the program, and generate appropriate sealing, the type of the ascription had to be
changed as follows: (ΛX.λx :X.x) :: ∀X.?X→?X [Int] 1. The spans generated now include (Int→Int,
injX→injX , injInt→injInt) which makes the program run without errors. However, statically
there is no way to know a priori the exact shape of the evidence needed when imprecise information
is involved. Consequently, a more general mechanism for the generation of the instantiation evidence
is needed (see Section 7.5).

Finally, we prove that the elaboration preserves typing:

Theorem 7.9 (Elaboration Preserves Typing) If ∆; Γ ` t : G, then ∆; Γ ` t : G t′ and
∆; Γ ` t′ : G.

Example of elaboration. We now present the elaboration of program 3 from Table 6.1. Program
(ΛX.λx : ?.x :: X) [Bool] 42 is elaborated as follows.

1. As x : ?X, then x :: X elaborates to t1 = ε1 x :: X, where ε1 = {(X, injX , reflX)} justifies
that ?X ∼ X.

2. As all values in F?
ε are ascribed, λx : ?X.x :: X is elaborated to t2 = ε2(λx : ?X .t1) :: ?X→X,

where ε2 = {(?X→X, inj?→reflX , inj?→reflX)} justifies that ?X→X ∼ ?X→X.

3. Similarly, the type abstraction is also ascribed: ΛX.λx : ?X.x :: X elaborates to t3 = ε3 (ΛX.t2)::
∀X.?X→X, where ε3 = {(∀X.?X→X,∀X.inj?→reflX , ∀X.inj?→reflX)} justifies that
∀X.?X→X ∼ ∀X.?X→X.

4. Type application (ΛX.λx : ?X.x :: X) [Bool] elaborates to t4 = ε4 (t3 [Bool]) :: ?→Bool, where
ε4 = {(Bool→Bool, injX→reflBool, injBool→Bool),

128

G 6 G Shape-restricted type precision

6B
B 6 B

6X
X 6 X

6→
G1 6 G2 G′1 6 G′2
G1→G′1 6 G2→G′2

6×
G1 6 G2 G′1 6 G′2
G1×G′1 6 G2×G′2

6∀
G1 6 G2

∀X.G1 6 ∀X.G2
6B?

B 6 ?δ
6X?

X ∈ δ
X 6 ?δ

6?

δ ⊆ δ′

?δ 6 ?δ′

Ω ` t : G v t : G Term precision

vb
Ω ` b : B v b : B

vx
x : G1 v G2 ∈ Ω

Ω ` x : G1 v x : G2

vλ
Ω, x : G1 v G2 ` t1 : G′1 v t2 : G′2 G1 v G2

Ω ` λx :G1.t1 : G1→G′1 v λx :G2.t2 : G2→G′2

v×
Ω ` t1 : G1 v t2 : G2 Ω ` t′1 : G′1 v t′2 : G′2

Ω ` 〈t1, t′1〉 : G1×G′1 v 〈t2, t′2〉 : G2×G′2
vΛ

Ω ` t1 : G1 v t2 : G2

Ω ` ΛX.t1 : ∀X.G1 v ΛX.t2 : ∀X.G2

vasc
Ω ` t1 : G′1 v t2 : G′2 G1 v G2

Ω ` t1 :: G1 : G1 v t2 :: G2 : G2
vapp

Ω ` t1 : G1 v t2 : G2 Ω ` t′1 : G′1 v t′2 : G′2
G1 _ G11→G12 G2 _ G21→G22

Ω ` t1 t′1 : G12 v t2 t′2 : G22

vpairi

Ω ` t1 : G1 v t2 : G2

G1 _ G11×G12 G2 _ G21×G22

Ω ` πi(t1) : G1i v πi(t2) : G2i

vappG

Ω ` t1 : G1 v t2 : G2 G1 6 G2

G1 _ ∀X.G′1 G2 _ ∀X.G′2
Ω ` t1 [F] : G′1[F/X]\X v t2 [F] : G′2[F/X]\X

Figure 7.8: F?: Shape-restricted type precision and term precision.

(?→Bool, inj?→reflBool, inj?→reflBool)} justifies that ?X→Bool ∼ ?→Bool (sealing/un-
sealing evidence).

5. Number 42 is ascribed to its type and elaborated to t5 = ε5 42 :: Int, where ε5 justifies the
reflexive judgment Int ∼ Int and ε5 = {(Int, reflInt, Int)}.

6. The elaborated function argument t5 is ascribed to the domain of the function type: t6 =
ε6 t5 :: ?, where ε6 = {(Int, reflInt, injInt)} which justifies that Int ∼ ?.

7. Finally, the whole program elaborates to t4 t6:
(ε4 (ε3 (ΛX.ε2(λx : ?X .ε1 x :: X) :: ?X→X) :: ∀X.?X→X [Bool]) :: ?→Bool) (ε6(ε5 42 :: Int) :: ?).

129

7.3 Source-level graduality

Under the natural notion of type precision (Figure 7.4), some F? terms related by precision elaborate
to F?

ε terms that are not related by precision. Consider program (ΛX.λx :X.x) :: ∀X.?X→?X [Int] 1
more precise than (ΛX.λx :X.x) :: ∀X.?X [Int] 1 (note that ∀X.?X→?X v ∀X.?X). The first program
elaborates to a program that reduces correctly, but the second to a program that fails. As explained
in the previous section, this is because instEv(?X,X, Int) does not generate evidence that contains
function spans that seal the argument. This does not mean that there is no source-level graduality in
F? at all; as first explored by Igarashi et al. (2017a), the fact that the gradual guarantees are stated
relative to a notion of precision means that we may be able to characterize source-level graduality
via a restricted notion of precision.

To characterize the F? programs for which we can guarantee graduality, it is enough to restrict
term precision only for type applications, enforcing that for such expressions, type precision be
restricted to types of the same shape. Notice how rule (vappG) in Figure B.8 uses shape-restricted
type precision 6 in its premise, while other rules, such as rule (vasc), use the natural type precision
v. Shape-restricted type precision 6 is defined similarly to v, but in the case of polymorphic and
function types, the type constructors have to match. For example, ∀X.X→X 6 ∀X.?X→?X but
∀X.(X→X)→X 66 ∀X.?X→?X and ∀X.X→X 66 ∀X.?X. This means that if G1 6 G2, then all sealing
spans included in applying instEv to G1 will be included in the application of instEv to G2. The
other cases of term precision are derived just as the natural lifting of type precision to terms.

With this notion of term precision, two source terms related by precision elaborate to F?
ε terms

that are also related by precision:

Lemma 7.10 If ` t1 : G1 v t2 : G2, ` t1 : G1 t1 and ` t2 : G2 t2, then
` initPT(G1,G2) : t1 v t2.

Note that precision in F?
ε is proof-relevant, therefore we have to provide a proof term that

justifies “how” two terms are related. We do that by using the initial proof term function between
the types of the related terms.

The dynamic semantics of a F? term are given by first elaborating the term to F?
ε and then

reducing the F?
ε term. Hence, for establishing the gradual guarantees in F?, we write t ⇓ v if

` t : G t and t
∗7−→ v. Similarly, we write t ⇑ if the elaboration of t diverges. Then, using

Lemmas 7.9, 7.10 and 6.14 we can prove the gradual guarantees for F?:

Theorem 7.11 (Gradual guarantees) Suppose ` t1 : G1 v t2 : G2 and ` t1 : G1.

1. ` t2 : G2 and G1 v G2.

2. If t1 ⇓ v1, then t2 ⇓ v2 and ` initPT(G1,G2) : v1 v v2.
If t1 ⇑ then t2 ⇑.

7.4 Source-level parametric reasoning

As a first form of parametric reasoning for F?, the elaborations of well-typed F? terms produces F?
ε

terms that are also well typed (by Theorem 7.9), and hence related to themselves (by Theorem 6.8):

130

Corollary 7.12 If ∆; Γ ` t : G t then ∆; Γ ` t � t : G.

This lemma is powerful, but it is not immediately clear what it means for concrete example
terms in F?. We make this clearer as follows: a type abstraction f of type ∀X.G applied to related
types, produces related terms whenever X does not occur in the scopes of unknown types in G (a
condition written G\X = G below):

Lemma 7.13 ∀n, ρ

∆; Γ ` f : ∀X.G ∀B1,B2, R ∈ Rel[B1,B2] ((n, ρ) ∈ DJ∆K ∧ (n, γ) ∈ GρJΓK)
G\X = G ∆; Γ ` f [Bi] : G[Bi/X]\X ti

(n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ Tρ,X 7→(B1,B2,R)JGK

As a direct consequence of Lemma 7.13, every F? program ascribed to a static type behaves
parametrically, even if it internally uses the unknown type. Since the logical relation for F?

ε coincides
almost exactly with traditional formulations for System F, this means we get the same reasoning
about such applications than in System F itself, save for the possibility that two related terms both
raise a runtime error. From Lemma 7.13, we can also derive free theorems involving imprecise types.
For instance, given a function of type ∀X.?∅→X, then the application of the function either fails or
diverges.

Lemma 7.14 If ` f : ∀X.?∅→X, ` v : B and t = f [B] v, then t ⇓ error, or t ⇑.

This behavior is expected because ?∅ can only stand for a type that does not involve X. Intu-
itively, this means that this gradual polymorphic function type denotes types such as ∀X.Int→X
and ∀X.Bool→X, but not ∀X.X→X. Therefore, the function cannot create a value of type X out
of thin air, and the argument v cannot possibly be sealed as a value of type X, so the function
necessarily fails if it tries to return any value.

Lemma 7.13 does not apply to polymorphic functions whose type mentions unknown types with
the quantified variable in scope. To understand why such types require more nuance, remember the
example function f = ΛX.λx : ?.x :: X discussed in the introduction. When applied to type Int

and value 42, this function produces the value 42, but it throws a runtime type error when applied
to Bool and value 42. In such examples, F? inserts plausible sealing evidence, in an effort to guess
whether the programmer intended 42 to be treated as a value of type X or not, in a maximally
permissive way. However, this does not mean we do not get any form of parametricity for such
examples, but rather, we need to keep in mind the intuitive effect of plausible sealing. In other
words, F? supports more parametric reasoning than just what Lemma 7.13 expresses. Particularly,
when a type variable is in the scope of an unknown type within a function type, we can also derive
some free theorems using Corollary 7.12. For instance, if a function f has type ∀X.?X→X, then by
parametricity we can deduce that f behaves either as the identity function or fails or diverges:

Lemma 7.15 If ` f : ∀X.?X→X, ` v : B and t = f [B] v, then t ⇓ v with ` v : B v, or
t ⇓ error, or t ⇑.

Contrary to GSF, in F? this result holds just by looking at the type of f, without the need to
unfold its definition. Intuitively, this lemma takes into account that F? applies plausible sealing to
the argument v, so f might return it as the result of type X. The function f can also diverge or fail,

131

but parametricity for F? still implies that f cannot return any value other than v.

Finally, we establish that if a function has type ∀X.∀Y.?X,Y→X×Y, i.e. it receives one argument
but returns a pair, then if instantiated with the same type and applied with a value of the given
type, it returns a pair of the duplicated value.

Lemma 7.16 If ` f : ∀X.∀Y.?X,Y→X×Y, ` v : B and t = f [B] [B] v, then t ⇓ v and 〈v, v〉 ⇓ v,
or t ⇓ error, or t ⇑.

Otherwise, if the function is instantiated to different types, then the application should fail or
diverge, as it cannot create a value of type Y (or X).

Lemma 7.17 If ` f : ∀X.∀Y.?X,Y→X×Y, B1 6= B2, ` v : B1 and t = f [B1] [B2] v, then t ⇓ error,
or t ⇑.

Fully-abstract embedding? Jacobs et al. (2021) propose the fully-abstract embedding of a
statically-typed language into its gradually-typed counterpart as a criteria to assess gradual lan-
guages. Informally, this means that terms contextually equivalent in the static language must also
be contextually equivalent in the gradual language. Such a result has been disproved for λB via
the following counterexample (Devriese et al., 2018). Consider type Univ , ∃Y.∀X.(X→Y)× (Y→X)
and the next two terms:

ts , λx :Univ.unpack x as 〈Y, x′〉 in let x′′ : (Unit→Y)× (Y→Unit) = x′ [Unit] in π2(x
′′) (π1(x

′′) unit)

tu , λx :Univ.unpack x as 〈Y, x′〉 in let x′′ : (Unit→Y)×(Y→Unit) = x′ [Unit] in π2(x
′′) (π1(x

′′) unit);ωUnit

where ωUnit is the always-diverging term of type Unit. Intuitively, ts and tu are almost the same
function, but the ωUnit in tu makes it always diverge when invoked. Devriese et al. prove that the
invocation π2(x

′′) (π1(x
′′) unit) must diverge for all System F inhabitants of Univ, so that the terms

ts and tu are contextually equivalent.

In λB (and GSF) these two terms are no longer contextually equivalent: there is a context
in which the application of ts terminates. Essentially, the globally scoped sealing used in these
languages allows constructing an inhabitant of Univ which instantiates Y to the unknown type and
does not make the term ts diverge.

While proving fully-abstract embedding for F?
ε is future work, we can already show that the

lexically scoped sealing of F?
ε breaks this counterexample. The following lemma states that the

elaborations of ts and tu are related.

Lemma 7.18 If ` ts : Univ→Unit ts and ` tu : Univ→Unit tu, then ` ts � tu : Univ→Unit.

In the appendix we sketch a proof of this lemma encoding existential types in terms of universal
types (Harper, 2012).

132

7.5 Discussion and Related Work

Limitations. The technical development of plausible sealing in this article suffers from two techni-
cal limitations. First, we only formalize a simplified form of polymorphism restricted to instantia-
tions with base and variable types. Second, graduality for F? is restricted for type applications, since
two type applications are only related when the polymorphic types have the same shape (Section 7).

Both limitations manifest in the definition of instantiation evidence for the unknown type (Fig-
ure 7.7): instEv(?δ1;X;δ2 ,X,F) = {(?δ1;δ2 , inj?, inj?), (F, injX , injF)}. Recall that the role of this
instantiation evidence is to cast, for example, a function application of type ?X:Int → Int to type
?∅ → Int. The restricted form of polymorphism is apparent because instEv’s third argument F is re-
stricted to an instantiation type (a base type or a type variable), and we simply use injF : F v ?δ1;δ2

to inject F into type ?δ1;δ2 . Generalizing to full polymorphism would require replacing F and injF

in the above definition with an arbitrary type G and a proof term c : G v ?δ1;δ2 . This requires
to extend the syntax of δ to allow for any type. An initial exploration suggests this is largely un-
problematic and in fact, our Agda proofs of consistent transitivity associativity and monotonicity
already support such a richer syntax of δ. A problem turns up when one of the other types in δ1

or δ2 mentions ?δ′ with X : X ∈ δ′. In that case, it appears we additionally need a proof term that
expresses precision between ?δ and ?δ′ when δ is not just a subset of δ′ but some of the types in δ

are themselves strictly more precise than corresponding types in δ′.

Allowing a type abstraction to be instantiated at any type G would require saving the infor-
mation of the instantiated type in the proof term injX . This information could then be refined
through composition. Therefore, we should transform injX to the proof term sequence injX(c),
where injX(c) : G′ v ?δ , X : G ∈ δ, c : G′ v G and δ ` G′. In addition, the composition of
proof terms for this case would slightly change: c1;injX(c2) = injX(c1;c2). Note that applying
the type abstraction to any type G′ with rule RappG would not change; the instantiated type G′

would continue to be substituted in the body of the type abstraction and the evidence.

The other main limitation of F? is caused by the right-hand-side of the above definition. Prob-
lematically, it only mentions two cases: a value of type ?δ1;δ2 will be converted into type ?δ1;X;δ2

either (1) by not sealing at all and simply extending the scope of the unknown type, or (2) by
sealing, converting a value of type F into a value sealed at type X in ?δ1;X;δ2 . What is missing is a
recursive case that would treat, for example, a value of type F→ F as a value of type X→ X and
recursively seal it accordingly. In fact, this could be accommodated easily by extending the right-
hand-side with an additional case: (F → F, inj→(injX → injX), inj→(injF → injF)). Because
there are an infinite amount of such cases, we conjecture that a solution is to introduce a syntax of
recursive evidence that would allow us to define instEv(?δ1;X;δ2 ,X,F) as:
µε. inj→(ε → ε)] inj×(ε × ε)] inj∀(∀Y. ε)] {(B, injB, injB)}] {(F, injX , injF)}. In this no-
tation, we construct an evidence inj→(ε → ε) : ?δ ∼ ?δ′ from ε : ?δ ∼ ?δ′ by combining two spans
(G1, c1, c2) and (G2, c3, c4) from ε into the span:

(G1 → G2, inj→(c1 → c3), inj→(c2 → c4))

and similarly for inj× and inj∀. We leave the definition of the operational behavior of such recursive
evidence and the proofs of its properties to future work.

Related Work. Strict Precision. Igarashi et al. (2017a) first proposed using a non-standard notion
of precision in System FG to address some problems with the dynamic gradual guarantee when the
unknown type is allowed to stand for a type variable. Consequently, in System FG the unknown

133

type is not consistent with any type variable. Here, the source language F? also restricts precision,
but in a much less drastic manner: type precision is the standard precision, and only term precision
is restricted, in order to only relate type applications to types of the same shape. We explain in
the previous section how this restriction could be lifted. Finally, F?

ε has no such restriction, and
satisfies the gradual guarantees with respect to the standard notion of precision, for both types and
terms.

Family of Unknown Types. Devriese et al. (2018) proposed to decorate the unknown type with
the set of type variables in scope, as we do for plausible sealing, thus limiting the expressiveness of
the unknown type by forming different families. This proposal aims to potentially reestablish the
fully abstract embedding property of System F into λB. Devriese et al. (2018) and more recently
Jacobs et al. (2021) proposed a new criterion for gradual typing named the fully abstract embedding
(FAE) property: the embedding from the static to the gradual language should be fully abstract in
order to preserve the semantics properties of the static languages. We conjecture that this criterion
holds for the language F?, being a gradual version of System F that preserves its main semantic
property (i.e. parametricity), although we leave a proof of FAE as future work.

Implicit Polymorphism. Several polymorphic gradual languages have explored implicit polymor-
phism present in languages such as Haskell. Xie et al. (2018) developed a gradual source language
with implicit polymorphism, where the runtime semantics are given by compilation to λB. λB and
System FG, in turn, are languages with explicit polymorphism that accommodate some form of im-
plicit polymorphism. F? and F?

ε, as well as PolyGν and GSF, only support explicit polymorphism;
exploring implicit polymorphism for F? is an interesting venue for future work, in order to enhance
interoperability between typed and untyped code.

7.6 Conclusion

This chapter presents the source language F? and its elaboration to F?
ε, illustrating the practicality

of F?
ε as a target language for a type-driving source language. The elaboration form F? to F?

ε

is novel, inserting maybe-sealing forms statically. We establish graduality for F? subject to a
restriction on type applications and explain the source-level parametric reasoning that F? offers. We
conjecture, and leave as future work, that by representing the evidence of instantiation recursively
when imprecise types occur, we can lift the restriction on the term precision relation, thus correctly
running all programs that by graduality must end in a value.

134

Chapter 8

Conclusion

In this thesis, we have studied the integration of parametric polymorphism and gradual typing
into a language while preserving parametricity, graduality, and the familiar syntax of System F.
We uncover design flaws in prior work on gradual parametric languages that enforce relational
parametricity. We exploit the Abstracting Gradual Typing (AGT) methodology to design a new
gradual language with explicit parametric polymorphism, GSF. We find that AGT largely sim-
plifies the static semantics of GSF but does not produce a language that respects parametricity;
nontrivial exploration was necessary to discover how to design the evidence and the consistent
transitive operator in order to recover parametricity. GSF goes beyond prior work based on the
type-driven sealing approach, archiving a unique combination of properties like harmless imprecise
ascriptions, expressiveness of imprecision, type instantiations faithful, and the embedding of the un-
typed lambda calculus with sealing/unsealing primitives. Although GSF lacks complete support for
the dynamic gradual guarantee, we precisely characterize the static-to-dynamic checking spectrum
that it supports, allowing the programmer to reason about graduality.

As a result of the study and development of GSF, we found that the tension between the gradual
guarantees and parametricity in the type-driven approach comes from the early commitment to seal
values based on type information. Inspired by this observation, we proposed plausible sealing as a
new intermediate language mechanism that postpones such decisions to runtime. We developed F?

ε,
an intermediate language with plausible sealing that fully satisfies both parametricity and graduality
in a simplified setting. An outstanding feature of F?

ε is that it avoids dynamic global sealing, which
has been the only mechanism for gradual parametricity used so far. In this regard, we propose a
novel lexically-scoped form of sealing realized using a representation of evidence inspired by the
category of spans. Consequently, F?

ε satisfies a standard formulation of parametricity that does not
break System F equivalences. F?

ε was designed to serve as an intermediate language for a source
language without explicit sealing, i.e., a language base on System F syntax. Hence, in order to
show the practicality of plausible sealing, we describe a translation from F?, a source language, to
F?
ε, that takes care of inserting plausible sealing forms. We establish graduality for F?, subject to

a restriction on type applications, and explain the source-level parametric reasoning it supports.
Although the results presented in this work still have some restrictions, they open a new path
towards the goal of reconciling parametricity and graduality in a language with System F syntax.
Moreover, some of our novel techniques are potentially reusable in other environments, which would
be very promising to study.

The efficient implementation of gradual typing in programming languages while preserving

135

soundness guarantees is still an open research area. The few existing implementations suffer from
performance overheads due to the inserted runtime checks to preserve type soundness (Takikawa
et al., 2016). Therefore, whether the theory developed in this thesis for gradual parametricity can
be practically applied to languages remains an open question. This thesis focuses on the semantics
and metatheoretical properties of gradual parametric polymorphism without taking into account
efficiency considerations such as pay-as-you-go (Siek and Taha, 2006; Igarashi et al., 2017a), space
efficiency (Herman et al., 2010; Siek and Wadler, 2010), cast elimination (Rastogi et al., 2012), etc.
Optimizing the dynamic semantics of GSF and F?

ε is left for future work. Likewise, we leave blame
tracking as future work, which is valuable to report more informative error messages, but most im-
portantly, to identify error cases properly. We expect ongoing work by colleagues on incorporating
blame into AGT to be directly applicable to GSF and F?

ε because there do not seem to be any
parametricity-specific challenges related to blame. The use of explicit polymorphism in the design
of GSF and F?

ε hampers certain interoperability scenarios. Hence, it would be very valuable to in-
vestigate the resolution of this tension. It would also be interesting to extend gradual parametricity
with other widely used features in programming languages, such as references and recursive types,
to study the interaction and metatheory of gradual parametric polymorphism in these settings. In
addition, it would be worth studying whether F?

ε satisfies the ambitious criterion to assess gradual
languages proposed by Jacobs et al. (2021): fully abstract embedding of the statically-typed lan-
guage into the gradually-typed language. So far, this criterion has not been proven for any of the
gradual parametric languages proposed in the literature.

As extensively discussed, gradual parametricity is subtle, and there are many scenarios when
the decision of failing or not is open to debate and various considerations. This thesis contributes to
this discussion by proposing several practical principles, such as ensuring that fully-static terms can
be embedded in gradual contexts and made imprecise externally without affecting their behavior.
As we pointed out previously in Chapter 7, a strict interpretation of source-level parametricity
is incompatible with graduality. We can find a pair of source programs that, by parametricity,
both should fail, but by graduality, they should reduce to a value ((ΛX.λx :?.x :: X) [Int] 42 and
(ΛX.λx :?.x :: X) [Bool] 42). We decided to preserve graduality, admitting some non-parametric
behaviors in the design of the source language F?. However, we consider these non-parametric
behaviors acceptable, allowing us to continue reasoning about parametric types. First, uniformity
of behavior is satisfied for polymorphic functions of fully precise types, even if they internally use
imprecise types. In other words, the differences in behavior can only occur for imprecise types (and
can therefore be avoided using ascriptions to precise types). Second, the behavior of a parametric
program is entirely predictable based on type information available statically at the call site and does
not depend on runtime type information. In order to preserve graduality and the strict interpretation
of parametricity in a language, it is necessary to introduce an explicit sealing/unsealing mechanism,
as is the case with PolyG and F?

ε. The difference between F?
ε and PolyGν is that the former, besides

allowing explicitly declaring sealing/unsealing expressions, also allows maybe-sealing expressions.
These maybe-sealing expressions, or what is the same plausible sealing, allow F?

ε to become the
target language of a source gradual parametric language.

Acknowledgments

This work was partially supported by the United States Air Force Office of Scientific Research
under award number FA9550-21-1-0054, by the Flemish Research Programme Cybersecurity, and
by ANID FONDECYT projects 1190058 and 3200583, Chile.

136

Bibliography

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. 1991. Dynamic typing in a
statically typed language. ACM Transactions on Programming Languages and Systems 13, 2
(April 1991), 237–268.

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. 1995. Dynamic typing in poly-
morphic languages. Journal of Functional Programming 5, 1 (1995), 111–130.

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types.
In Proceedings of the 15th European Symposium on Programming Languages and Systems (ESOP
2006) (Lecture Notes in Computer Science), Peter Sestoft (Ed.), Vol. 3924. Springer-Verlag,
Vienna, Austria, 69–83.

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009a. State-dependent representation in-
dependence. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2009). ACM Press, Savannah, GA, USA, 340–353.

Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. 2009b. Blame for All.
In Workshop on Script to Program Evolution (STOP). Genova, Italy.

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2011). ACM Press, Austin, Texas, USA, 201–214.

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for
Free: Parametricity, with and Without Types. SeeICFP 2017 (2017), 39:1–39:28.

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foun-
dational Proof-carrying Code. ACM Transactions on Programming Languages and Systems 23,
5 (Sept. 2001), 657–683.

Arthur Azevedo de Amorim, Matt Fredrikson, and Limin Jia. 2020. Reconciling Noninterference
and Gradual Typing. In Proceedings of the 2020 Symposium on Logic in Computer Science (LICS
2020).

Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Verification. In Pro-
ceedings of the 19th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2018) (Lecture Notes in Computer Science), Işil Dillig and Jens Palsberg
(Eds.), Vol. 10747. Springer-Verlag, Los Angeles, CA, USA, 25–46.

Felipe Bañados Schwerter, Alison M. Clark, and Jafery. 2021. Abstracting Gradual Typing Moving
Forward: Precise and Space-Efficient. SeePOPL 2021 (2021), 61:1–61:28.

137

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect
Systems. In Proceedings of the 19th ACM SIGPLAN Conference on Functional Programming
(ICFP 2014). ACM Press, Gothenburg, Sweden, 283–295.

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2016. Gradual Type-and-Effect Systems.
Journal of Functional Programming 26 (Sept. 2016), 19:1–19:69.

Gavin Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic Types to C#. In Proceed-
ings of the 24th European Conference on Object-oriented Programming (ECOOP 2010) (Lecture
Notes in Computer Science), Theo D’Hondt (Ed.). Springer-Verlag, Maribor, Slovenia, 76–100.

Rastislav Bod́ık and Rupak Majumdar (Eds.). 2016. Proceedings of the 43rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2016). ACM Press, St
Petersburg, FL, USA.

Robert Cartwright and Mike Fagan. 1991. Soft typing. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementation (PLDI). Toronto,
Ontario, Canada, 278–292.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types.
SeeICFP 2017 (2017), 41:1–41:28.

Matteo Cimini and Jeremy Siek. 2016. The gradualizer: a methodology and algorithm for generating
gradual type systems, See Bod́ık and Majumdar (2016), 443–455.

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In 2008 21st IEEE Computer
Security Foundations Symposium. 51–65. https://doi.org/10.1109/CSF.2008.7

Haskell B. Curry, J. Roger Hindley, and J. P. Seldin. 1972. Combinatory Logic, Volume II. Studies
in logic and the foundations of mathematics, Vol. 65. North-Holland Pub. Co.

Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceed-
ings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 1982). ACM Press, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.

582176

Dominique Devriese, Marco Patrignani, and Frank Piessens. 2018. Parametricity versus the univer-
sal type. Proceedings of the ACM on Programming Languages 2, POPL (Jan. 2018), 38:1–38:23.

Tim Disney and Cormac Flanagan. 2011. Gradual information flow typing. In International Work-
shop on Scripts to Programs.

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate Normalization for Gradual
Dependent Types. Proceedings of the ACM on Programming Languages 3, ICFP (Aug. 2019),
88:1–88:30.

Luminous Fennell and Peter Thiemann. 2013. Gradual Security Typing with References. In Pro-
ceedings of the 26th Computer Security Foundations Symposium (CSF). 224–239.

Luminous Fennell and Peter Thiemann. 2016. LJGS: Gradual Security Types for Object-Oriented
Languages. In Proceedings of the 30th European Conference on Object-Oriented Programming
(ECOOP 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shriram Krishna-
murthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Rome, Italy, 9:1–9:26.

138

https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing, See Bod́ık
and Majumdar (2016), 429–442. See erratum: https://www.cs.ubc.ca/ rxg/agt-erratum.pdf.

Ronald Garcia and Éric Tanter. 2015. Deriving a Simple Gradual Security Language. eprint
arXiv:1511.01399.

Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of Typestate-
Oriented Programming. ACM Transactions on Programming Languages and Systems 36, 4,
Article 12 (Oct. 2014), 12:1–12:44 pages.

Jean-Yves Girard. 1972. Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique
d’Ordre Supérieur. Ph.D. Dissertation. Université de Paris VII, Paris, France.

Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi. 2007.
Relationally-parametric polymorphic contracts. In Proceedings of the ACM Dynamic Languages
Symposium (DLS 2007). ACM Press, Montreal, Canada, 29–40.

Robert Harper. 2012. Practical Foundations for Programming Languages. Cambridge University
Press.

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-
Order and Sympolic Computation 23, 2 (June 2010), 167–189.

Kuen-Bang Hou, Nick Benton, and Robert Harper. 2016. Correctness of Compiling Polymorphism
to Dynamic Typing. Journal of Functional Programming 27 (2016), 1:1–1:24.

ICFP 2017 2017.

Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. 2017b. Gradual Session
Types. SeeICFP 2017 (2017), 38:1–38:28.

Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017a. On Polymorphic Gradual Typing.
SeeICFP 2017 (2017), 40:1–40:29.

Lintaro Ina and Atsushi Igarashi. 2011. Gradual typing for generics. In Proceedings of the 26th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2011). ACM Press, Portland, Oregon, USA, 609–624.

Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully abstract from static to gradual.
SeePOPL 2021 (2021), 7:1–7:30.

Elizabeth Labrada, Mat́ıas Toro, Éric Tanter, and Dominique Devriese. 2022. Plausible Sealing for
Gradual Parametricity. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (April
2022), 70:1–70:28.

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2017). ACM
Press, Paris, France, 775–788.

Xavier Leroy and Michel Mauny. 1991. Dynamics in ML. In Proceedings of the Conference on
Functional Programming Languages and Computer Architecture (FPCA 1991) (Lecture Notes in
Computer Science), Vol. 523. Springer-Verlag, 406–426.

139

Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In 4th International Confer-
ence on Typed Lambda Calculi and Applications (TLCA’99) (Lecture Notes in Computer Science),
Jean-Yves Girard (Ed.), Vol. 1581. Springer-Verlag, 228–242.

Jacob Matthews and Amal Ahmed. 2008. Parametric Polymorphism Through Run-Time Sealing, or,
Theorems for Low, Low Prices!. In Proceedings of the 17th European Symposium on Programming
Languages and Systems (ESOP 2008) (Lecture Notes in Computer Science), Sophia Drossopoulou
(Ed.), Vol. 4960. Springer-Verlag, Budapest, Hungary, 16–31.

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-language pro-
grams. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2007). ACM Press, Nice, France, 3–10.

John C. Mitchell. 1988. Polymorphic Type Inference and Containment. Information and Compu-
tation 76, 2-3 (Feb. 1988), 211–249.

John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have Existential Type. ACM
Transactions on Programming Languages and Systems 10, 3 (July 1988), 470–502. https:

//doi.org/10.1145/44501.45065

James H. Morris. 1973. Protection in Programming Languages. Commun. ACM 16, 1 (Jan. 1973),
15–21.

Georg Neis, Derek Dryer, and Andreas Rossberg. 2009. Non-Parametric Parametricity. In Proceed-
ings of the 14th ACM SIGPLAN Conference on Functional Programming (ICFP 2009). ACM
Press, Edinburgh, Scotland, UK, 135–148.

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. , 73:1–
73:30 pages.

Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and Parametricity: Together
Again for the First Time. Proceedings of the ACM on Programming Languages 4, POPL (Jan.
2020), 46:1–46:32.

nLab contributors. 2021a. pullback. https://ncatlab.org/nlab/show/pullback

nLab contributors. 2021b. span. https://ncatlab.org/nlab/show/span

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations to Work. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
96). ACM Press, St. Petersburg Beach, Florida, USA, 54–67.

Oxford. 2021. Oxford Advanced Learner’s Dictionary (10th ed.). Oxford University Press. Evidence.

Benjamin Pierce and Eijiro Sumii. 2000. Relating Cryptography and Polymorphism. Manuscript.

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press, Cambridge, MA, USA.

POPL 2021 2021.

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The ins and outs of gradual type infer-
ence. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012). ACM Press, Philadelphia, USA, 481–494.

140

https://doi.org/10.1145/44501.45065
https://doi.org/10.1145/44501.45065
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/span

John C. Reynolds. 1974. Towards a Theory of Type Structure. In Porceedings of the Programming
Symposium (Lecture Notes in Computer Science), Vol. 19. Springer-Verlag, 408–423.

John C. Reynolds. 1983. Types, abstraction, and parametric polymorphism. In Information Pro-
cessing 83, R. E. A. Mason (Ed.). Elsevier, 513–523.

Andreas Rossberg. 2003. Generativity and dynamic opacity for abstract types. In Proceedings of the
5th ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP
2003). 241–252.

Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In Proceedings of the 21st European
Symposium on Programming Languages and Systems (ESOP 2012) (Lecture Notes in Computer
Science), Helmut Seidl (Ed.), Vol. 7211. Springer-Verlag, Tallinn, Estonia, 579–599.

Jeremy Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of
the Scheme and Functional Programming Workshop. 81–92.

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st Euro-
pean Conference on Object-oriented Programming (ECOOP 2007) (Lecture Notes in Computer
Science), Erik Ernst (Ed.). Springer-Verlag, Berlin, Germany, 2–27.

Jeremy Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of
the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2010). ACM Press, Madrid, Spain, 365–376.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined
Criteria for Gradual Typing. In 1st Summit on Advances in Programming Languages (SNAPL
2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 32. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Asilomar, California, USA, 274–293.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia.
2015b. Monotonic References for Efficient Gradual Typing. In Proceedings of the 24th European
Symposium on Programming Languages and Systems (ESOP 2015) (Lecture Notes in Computer
Science), Jan Vitek (Ed.), Vol. 9032. Springer-Verlag, London, UK, 432–456.

Jeremy G Siek and Philip Wadler. 2016. The key to blame : Gradual typing meets cryptography.
Unpublished manuscript.

Eijiro Sumii and Benjamin C. Pierce. 2004. A Bisimulation for Dynamic Sealing. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2005). ACM Press, Venice, Italy, 161–172.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen.
2016. Is sound gradual typing dead?, See Bod́ık and Majumdar (2016), 456–468.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage migration: from scripts to pro-
grams. In Proceedings of the ACM Dynamic Languages Symposium (DLS 2006). ACM Press,
Portland, Oregon, USA, 964–974.

Mat́ıas Toro, Ronald Garcia, and Éric Tanter. 2018. Type-Driven Gradual Security with References.
ACM Transactions on Programming Languages and Systems 40, 4 (Nov. 2018), 16:1–16:55.

Mat́ıas Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricity, Revisited. Pro-
ceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 17:1–17:30.

141

Mat́ıas Toro and Éric Tanter. 2017. A Gradual Interpretation of Union Types. In Proceedings of the
24th Static Analysis Symposium (SAS 2017) (Lecture Notes in Computer Science), Vol. 10422.
Springer-Verlag, New York City, NY, USA, 382–404.

Mat́ıas Toro and Éric Tanter. 2020. Abstracting Gradual References. Science of Computer Pro-
gramming 197 (Oct. 2020), 1–65.

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the Fourth International Conference
on Functional Programming Languages and Computer Architecture (FPCA ’89). ACM, London,
United Kingdom, 347–359.

Philip Wadler. 2017. Abstract Data Types without the Types. Journal of Universal Computer
Science 23, 1 (2017), 5–20.

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine.
2020. Gradual Verification of Recursive Heap Data Structures. Proceedings of the ACM on
Programming Languages 4, OOPSLA (Nov. 2020), 228:1–228:28.

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. 2011. Gradual Typestate. In
Proceedings of the 25th European Conference on Object-oriented Programming (ECOOP 2011)
(Lecture Notes in Computer Science), Mira Mezini (Ed.), Vol. 6813. Springer-Verlag, Lancaster,
UK, 459–483.

Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In
Proceedings of the 27th European Symposium on Programming Languages and Systems (ESOP
2018) (Lecture Notes in Computer Science), Amal Ahmed (Ed.), Vol. 10801. Springer-Verlag,
Thessaloniki, Greece, 3–30.

142

Annexes

143

Annex A

Gradual Parametricity, Revisited

A.1 SF: Well-formedness

In this section we present auxiliary definitions for well-formedness of type name stores, and well-
formedness of types.

Definition A.1 (Well-formedness of the type namn)

` ·
α 6∈ Σ Σ; · ` T ` Σ

` Σ, α : T

Definition A.2 (Well-formedness on)

` Σ
Σ; ∆ ` B

Σ; ∆ ` T1 Σ; ∆ ` T2

Σ; ∆ ` T1 → T2

Σ; ∆, X ` T
Σ; ∆ ` ∀X.T

Σ; ∆ ` T1 Σ; ∆ ` T2

Σ; ∆ ` T1 × T2

` Σ X ∈ ∆
Σ; ∆ ` X

` Σ α : T ∈ Σ
Σ; ∆ ` α

144

A.2 GSF: Statics

In this section we present auxiliary definitions and proofs of the statics semantics of GSF not
presented in the paper.

A.2.1 Syntax and Syntactic Meaning of Gradual Types

Proposition A.3 (Type Precision, inductively) The inductive definition of type precision given in
Figure 7.3 is equivalent to Definition B.94.

Proof. Direct by induction on the type structure of G1 and G2. We only present representative
cases to illustrate the reasoning used in the proof. We prove first that C(G1) ⊆ C(G2)⇒ G1 v G2,
where G1 v G2 stands for the inductive definition given in Figure 3.4.

Case (G1 = B,G2 = B). Then {B } ⊆ {B }, but we already know that B v B and the result
holds.

Case (G1 = G,G2 = ?). Then C(G) ⊆ C(?) = Type, but G v ? is an axiom and the result holds.

Case (G1 = ∀X.G′1, G2 = ∀X.G′2). Then we know that { ∀X.T | T ∈ C(G′1) } ⊆ {∀X.T | T ∈ C(G′1) },
then it must be the case that C(G′1) ⊆ C(G′2). Then by induction hypothesis G1 v G2, then by
inductive definition of precision for type abstractions, ∀X.G1 v ∀X.G2 and the result holds.

Then we prove the other direction, i.e. G1 v G2 ⇒ C(G1) ⊆ C(G2).

Case (G1 = B,G2 = B). Then B v B, but we already know that {B } ⊆ {B } and the result
holds.

Case (G1 = G,G2 = ?). Then G v ?, but C(G) ⊆ C(?) = Type and the result holds.

Case (G1 = ∀X.G′1, G2 = ∀X.G′2). Then we know that ∀X.G1 v ∀X.G2, then by looking at the
premise of the corresponding definition, G′1 v G′2. Then by induction hypothesis C(G′1) ⊆ C(G′2).
But we have to prove that { ∀X.T | T ∈ C(G′1) } ⊆ {∀X.T | T ∈ C(G′1) }, which is direct from
C(G′1) ⊆ C(G′2).

Proposition A.4 (Galois connection) 〈C,A〉 is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types S = {T }, we have S ⊆ C (A(S))
b) (Optimality) for any gradual type G, we have A(C (G)) v G.

Proof. We first proceed to prove a) by induction on the structure of the non-empty set S.

Case ({B }). Then A({B }) = B. But C(B) = {B } and the result holds.

Case ({Ti1 → Ti2 }). Then A({Ti1 → Ti2 }) = A({Ti1 }) → A({Ti2 }). But by definition of C,
C(A({Ti1 }) → A({Ti2 })) = {T1 → T2 | T1 ∈ C (A({Ti1 })), T2 ∈ C (A({Ti2 }))}. By induc-
tion hypotheses, {Ti1 } ⊆ C(A({Ti1 })) and {Ti2 } ⊆ C(A({Ti2 })), therefore {Ti1 → Ti2 } ⊆
{T1 → T2 | T1 ∈ {Ti1 } , T2 ∈ {Ti2 } } ⊆ {T1 → T2 | T1 ∈ C (A({Ti1 })), T2 ∈ C (A({Ti2 }))} and
the result holds.

Case ({Ti1 × Ti2 }). We proceed analogous to case {Ti1 → Ti2 }.
Case ({X }, {α }). We proceed analogous to case {B }.

145

Case ({ ∀X.Ti }). Then A({ ∀X.Ti }) = ∀X.A({Ti }). But by definition of C, C(∀X.A({Ti })) =
{∀X.T | T ∈ C (A({Ti }))}. By induction hypothesis, {Ti } ⊆ C(A({Ti })), therefore { ∀X.Ti } =
{ ∀X.T | T ∈ {Ti } } ⊆ {∀X.T | T ∈ C (A({Ti }))} and the result holds.

Case ({Ti } heterogeneous). Then A({Ti }) = ? and therefore C(A({Ti })) = Type, but {Ti } ⊆
Type and the result holds.

Now let us proceed to prove b) by induction on gradual type G.

Case (B). Trivial because C(B) = {B }, and A({B }) = B.

Case (G1 → G2). We have to prove that A(C(G1 → G2)) v G1 → G2, which is equivalent to prove

that C(A(ÛT)) ⊆ ÛT , where ÛT = C(G1 → G2) = {T1 → T2 | T1 ∈ C(G1), T2 ∈ C(G2) }. Then ÛT has
the form {Ti1 → Ti2 }, such that ∀i, Ti1 ∈ C(G1) and Ti2 ∈ C(G2). Also note that {Ti1 } = C(G1)
and {Ti2 } = C(G2). But by definition of A, A({Ti1 → Ti2 }) = A({Ti1 }) → A({Ti2 }) and
therefore C(A({Ti1 }) → A({Ti2 })) = {T1 → T2 | T1 ∈ C(A({Ti1 })), T2 ∈ C(A({Ti2 }))}. But by
induction hypotheses C(A({Ti1 })) ⊆ C(G1) and C(A({Ti2 })) ⊆ C(G2) and the result holds.

Case (G1 ×G2). We proceed analogous to case G1 → G2.

Case (X, α). We proceed analogous to case B.

Case (∀X.G). We have to prove that A(C(∀X.G)) v ∀X.G, which is equivalent to prove that

C(A(ÛT)) ⊆ ÛT , where ÛT = C(∀X.G) = { ∀X.T | T ∈ C(G) }. Then ÛT has the form { ∀X.Ti },
such that ∀i, Ti ∈ C(G). Also note that {Ti } = C(G). But by definition of A, A({ ∀X.Ti }) =
∀X.A({Ti }) and therefore C(∀X.A({Ti })) = {∀X.T | T ∈ C(A({Ti }))}. But by induction hy-
pothesis C(A({Ti })) ⊆ C(G) and the result holds.

Case (?). Then we have to prove that C(A(?)) ⊆ C(?) = Type, but this is always true and the
result holds immediately.

A.2.2 Lifting the Static Semantics

Definition A.5 (Store prn) Ξ1 v Ξ2 if and only if dom(Ξ1) = dom(Ξ2) and ∀α ∈ dom(Ξ1),Ξ1(α) v
Ξ2(α).

Lemma A.6 If Ξ1 v Ξ2, ` Ξi, G1 v G2, and Ξ1; ∆ ` G1, then Ξ2; ∆ ` G2.

Proof. Straightforward induction on relation G1 v G2. We only present interesting cases.

Case (G1 = ∀X.G′1, G2 = ∀X.G′2). By definition of precision G′1 v G′1. By definition of well-
formedness of types, Ξ1;X ` G′1 and then by induction hypothesis Ξ2; ∆, X ` G′2. Then by
definition of well-formedness of types Ξ2; ∆ ` ∀X.G′2 and the result holds.

Case (G2 = ?). This is trivial because as ` Ξ2, then Ξ2; ∆ ` ?.

Case (G1 = α,G2 = α). Trivial by definition of Ξ1 v Ξ2, α ∈ dom(Ξ2), therefore α : G′2 ∈ Ξ2 and
then Ξ2; ∆ ` α.

Lemma A.7 Let Ξ1 v Ξ2, then ` Ξ1 ⇒` Ξ2.

146

Proof. By induction on relation Ξ1 v Ξ2.

Case (· v ·). Trivial as ` ·.
Case (Ξ′1, α : G1 v Ξ′2, α : G2). By definition of store precision we know that Ξ′1 v Ξ′2 and that
G1 v G2. By definition of well-formedness, ` Ξ′1, α : G1 ⇒` Ξ′1, therefore by induction hypothesis
` Ξ′2. We only have left to prove is that Ξ′2; · ` G2, which follows directly from Lemma A.6.

Lemma A.8 If Σ ∈ C(Ξ) and ` Σ, then ` Ξ

Proof. Corollary of Lemma A.7 as Σ v Ξ.

Lemma A.9 If Σ; ∆ ` T1 = T2, then Σ; ∆ ` T1 and Σ; ∆ ` T2.

Proof. By induction on relation Σ; ∆ ` T1 = T2. Most cases are straightforward, so we present
only the interesting cases.

Case (T1 = ∀X.T ′1, T2 = ∀X.T ′2). As Σ; ∆ ` ∀X.T ′1 = ∀X.T ′2, by inspection of the derivation rule,
Σ; ∆, X ` T ′1 = T ′2. By induction hypotheses we know that Σ; ∆, X ` T ′1, and that Σ; ∆, X ` T ′2.
Therefore by well-formedness of types we know that Σ; ∆ ` ∀X.T ′1 and that Σ; ∆ ` ∀X.T ′2 and the
result holds.

Case (T1 = X,T2 = X). As Σ; ∆ ` X = X, then we know by inspection of the derivation rule that
` Σ and that X ∈ ∆. Then as ` Σ and that X ∈ ∆, Σ; ∆ ` X and the result holds.

Proposition A.10 (Type Consistency, inductively) The inductive definition of type consistency
given in Figure 7.3 is equivalent to Definition 7.2.

Proof. First we prove that Σ; ∆ ` T1 = T2 for some Σ ∈ C (Ξ), Ti ∈ C (Gi) implies that Ξ; ∆ `
G1 ∼ G2, where Ξ; ∆ ` G1 ∼ G2 stands for the inductive definition of consistency. We proceed by
straightforward induction on Gi such that the predicate holds (we only show interesting cases). By
Lemma A.8 we know that if ` Σ then ` Ξ, which will be assumed to be true whenever is needed.

Case (G1 = B,G2 = B). Then Σ; ∆ ` B = B, but we already know that Ξ ` B ∼ B and the result
holds.

Case (G1 = G,G2 = ?). We know that Σ; ∆ ` T1 = T2 for some T1 ∈ C(G) and T2 ∈ C(?). Then
by Lemma A.9, Σ; ∆ ` T1, and as Σ v Ξ and T1 v G, by Lemma A.6, Ξ; ∆ ` G. Then as Ξ; ∆ ` G,
G ∼ ? = Type and the result holds.

Case (G1 = ∀X.G′1, G2 = ∀X.G′2). Then we know that Σ; ∆ ` ∀X.T1 = ∀X.T2 where ∀X.T1 ∈
C(∀X.G′1),∀X.T2 ∈ C(∀X.G′1). Notice that T1 ∈ C(G′1), T2 ∈ C(G′2), and that Σ; ∆, X ` T1 = T2.
Then by induction hypotheses, Ξ ` G′1 ∼ G′2[∆, X], and therefore Ξ; ∆ ` ∀X.G′1 ∼ ∀X.G′2 and the
result holds.

Then we prove the other direction, i.e. G1 v G2 ⇒ C(G1) ∼ C(G2).

Case (G1 = B,G2 = B). Then B v B, but we already know that B ∈ C(B) and Σ; ∆ ` B = B,
and the result holds immediately.

Case (G1 = G,G2 = ?). Then G v ?. Let T1 ∈ C(G) and Σ ∈ C(Ξ) such that Σ; ∆ ` T1. As
C(?) = Type, we can choose T1 ∈ Type, so Σ; ∆ ` T1 = T1, and the result holds.

147

Case (G1 = ∀X.G′1, G2 = ∀X.G′2). Then we know that Ξ; ∆ ` ∀X.G′1 ∼ ∀X.G′2, then by looking
at the premise of the corresponding definition, Ξ; ∆, X ` G′1 ∼ G′2. Then by induction hypotheses
∃T1 ∈ C(G′1), T2 ∈ C(G′2),Σ ∈ C(Ξ), such that Σ; ∆, X ` T1 = T2. By definition of consistency
∀X.Ti ∈ C(Gi). Then by definition of equality, Σ; ∆ ` ∀X.T1 = ∀X.T2 and the result holds.

Definition B.97 (Consistent lifting of functions) Let Fn be a function of type Typen → Type. Its

consistent lifting F]n, of type GTypen → GType, is defined as: F]n(G) = A({Fn(T) | T ∈ C (G) }).

Lemma A.11 G = A(C(G))

Proof. Then we have to prove that G = A(C(G)). By optimality (Prop 3.3.b), we know that
A(C(G)) v G, and by soundness (Prop 3.3.a), C(G) ⊆ C(A(C(G))), i.e. G v A(C(G)). Therefore
G v A(C(G)) and A(C(G)) v G, thus G = A(C(G)) and the result holds.

Lemma A.12 G[G′/X] = A({T [T ′/X] | T ∈ C(G), T ′ ∈ C(G′) }).

Proof. We proceed by induction on G. We only present interesting cases.

Case (G = X). Then G[G′/X] = G′, and C(G) = {X }. Then we have to prove that G′ =
A({T ′ | T ′ ∈ C(G′) }). But notice that A({T ′ | T ′ ∈ C(G′) }) = A(C(G′)) and by Lemma A.11 the
result holds immediately.

Case (G = ?). Then G[G′/X] = ?, and C(G) = Type. Then we have to prove that
? = A({T [T ′/X] | T ∈ Type, T ′ ∈ C(G′) }). But notice thatA({T [T ′/X] | T ∈ Type, T ′ ∈ C(G′) }) =
A(C(Type)) and by Lemma A.11 the result holds immediately.

Case (G = ∀Y.G′′). Then G[G′/X] = ∀Y.G′′[G′/X], and C(G) = ∀Y.C(G′′). Then we have to prove
that ∀Y.G′′[G′/X] = A({ ∀Y.T ′′[T ′/X] | T ′′ ∈ C(G′′), T ′ ∈ C(G′) }). But notice that by definition of
abstractionA({ ∀Y.T ′′[T ′/X] | T ′′ ∈ C(G′′), T ′ ∈ C(G′) }) = ∀Y.A({T ′′[T ′/X] | T ′′ ∈ C(G′′), T ′ ∈ C(G′) }).
Then by induction hypothesis on G′′, G′′[G′/X] = A({T ′′[T ′/X] | T ′′ ∈ C(G′′), T ′ ∈ C(G′) }), there-
fore ∀Y.G′′[G′/X] = ∀Y.A({T ′′[T ′/X] | T ′′ ∈ C(G′′), T ′ ∈ C(G′) }) and the result holds.

Proposition A.13 (Consistent type functions) The definitions of dom], cod], inst], and proj]i
given in Fig. 3.4 are consistent liftings, as per Def. B.97, of the corresponding functions from
Fig. 3.1.

Proof. We present the proof for inst] and dom] (the other proofs are analogous).

First we prove that inst](G,G′) = A(īnst(C2(G,G′))), where inst](G,G′) correspond to the
algorithmic definitions presented in Fig. 3.4. Notice that

A(īnst(C2(G,G′)))

= A(īnst({ 〈T, T ′〉 | T ∈ C(G), T ′ ∈ C(G′) }))
= A({T [T ′/X] | ∀X.T ∈ C(G), T ′ ∈ C(G′) })

But then the result follows immediately from Lemma A.12.

148

Then we prove that dom](G) = A(d̄om(C(G))), where dom](G) correspond to the algorithmic
definitions presented in Fig. 3.4. We proceed by induction on G.

Case (G = G1 → G2). Notice that

A(d̄om(C(G)))

= A(d̄om(C(G1 → G2)))

= A(d̄om({T1 → T2 | T1 ∈ C(G1), T2 ∈ C(G2) }))
= A({T1 | T1 ∈ C(G1) })
= A(C(G1))

But dom](G1 → G2) = G1. Then we have to prove that G1 = A(C(G1)) which holds immediately
by Lemma A.11.

Case (G = ?). Notice that

A(d̄om(C(G)))

= A(d̄om(C(?)))

= A(d̄om(Type))

= A(Type)

= ?

and the result holds immediately as dom](?) = ?.

Case (G 6= ? 6= G1 → G2). If G has not the form G1 → G2, or is not ?, then dom](G) is undefined.
Then as 6 ∃, T ∈ C(G) such that T = T1 → T2 the result holds immediately as dom(T) is undefined
∀T ∈ C(G).

A.2.3 Well-formedness

In this section we present auxiliary definitions of the statics semantics of GSF.

Definition A.14 (Well-formedness of type namen)

` ·
α 6∈ Ξ Ξ; · ` G ` Ξ

` Ξ, α : G

Definition A.15 (Well-formedness on)

` Ξ

Ξ; ∆ ` B
Ξ; ∆ ` G1 Ξ; ∆ ` G2

Ξ; ∆ ` G1 → G2

Ξ; ∆, X ` G
Ξ; ∆ ` ∀X.G

Ξ; ∆ ` G1 Ξ; ∆ ` G2

Ξ; ∆ ` G1 ×G2

` Ξ X ∈ ∆

Ξ; ∆ ` X
` Ξ α : G ∈ Ξ

Ξ; ∆ ` α
` Ξ

Ξ; ∆ ` ?

149

A.2.4 Static Properties

In this section we present two static properties of GSF and the proof: the static equivalence for
static terms and the static gradual guarantee.

Static Equivalence for Static Terms

Proposition A.16 (Static equivalence for static terms) Let t be a static term and G a static type
(G = T). We have `S t : T if and only if ` t : T .

Proof. We prove this proposition for open terms instead. The proof is direct thanks to the equiv-
alence between the typing rules and the equivalence between type equality and type consistency
rules for static types. We only present one case to illustrate the reasoning.

First we prove Σ; ∆ `S t : T ⇒ Σ; ∆ ` t : T by induction on judgment Σ; ∆ `S t : T .

Case (Σ; ∆ `S t′[T ′′] : inst(∀X.T ′, T ′′)). Then Σ; ∆ `S t′ : ∀X.T ′, and by induction hypothesis
Σ; ∆ ` t′ : ∀X.T ′. Then inst](∀X.T, T ′′) = T [T ′′/X] = inst(∀X.T ′, T ′′), and as Σ; ∆ ` T ′′,
therefore Σ; ∆ ` t′[T ′′] : T [T ′′/X] and the result holds.

Then we prove Σ; ∆ ` t : T ⇒ Σ; ∆ `S t : T by induction on judgment Σ; ∆ `S t : T .

Case (Σ; ∆ ` t′[T ′′] : inst](∀X.T ′, T ′′)). Then Σ; ∆ ` t′ : ∀X.T ′, and by induction hypothesis
Σ; ∆ `S t′ : ∀X.T ′. Then inst(∀X.T, T ′′) = T [T ′′/X] = inst](∀X.T ′, T ′′), and as Σ; ∆ ` T ′′,
therefore Σ; ∆ `S t′[T ′′] : T [T ′′/X] and the result holds.

Static Gradual Guarantee

In this section we present the proof of the static gradual guarantee property. In the Definition A.17
and Definition A.18 we present term precision and type environment precision.

Definition A.17 (Term precision)

(Px)
x v x (Pb)

b v b (Pλ)
t v t′ G v G′

(λx : G.t) v (λx : G′.t′)

(PΛ)
t v t′

(ΛX.t) v (ΛX.t′)
(Ppair)

t1 v t′1 t2 v t′2
〈t1, t2〉 v 〈t′1, t′2〉

(Pasc)
t v t′ G v G′

(t :: G) v (t′ :: G′)

(Pop)
t v t′

op(t) v op(t′)
(Papp)

t1 v t′1 t2 v t′2
t1 t2 v t′1 t′2

(PappG)
t v t′ G v G′

t [G] v t′ [G′]

(Ppairi)
t v t′

πi(t) v πi(t′)

150

Definition A.18 (Type environment precision)

. v .
Γ v Γ′ G v G′

Γ, x : G v Γ′, x : G′

Lemma A.19 If Ξ; ∆; Γ ` t : G and Γ v Γ′, then Ξ; ∆; Γ′ ` t : G′ for some G v G′.

Proof. Simple induction on type derivation Ξ; ∆; Γ ` t : G (we only present interesting cases).

Case (t = x). we know that Σ; ∆; Γ ` x : G and Γ(x) = G. By definition of Γ v Γ′, Γ(x) v Γ′(x),
therefore Σ; ∆; Γ ` x : G′, where G v G′ and the result holds.

Case (t = (λx : G1.t
′)). we know that Σ; ∆; Γ ` (λx : G1.t

′) : G1 → G2, where Σ; ∆; Γ, x : G1 `
t′ : G2. As Γ v Γ′ and G1 v G1, then by definition of precision for type environments, Γ, x : G1 v
Γ′, x : G′1. Therefore by induction hypothesis on Σ; ∆; Γ, x : G1 ` t′ : G2, Σ; ∆; Γ′, x : G1 ` t′ : G′2,
where G2 v G′2. Finally, by (Gλ), Σ; ∆; Γ′ ` (λx : G1.t

′) : G1 → G′2, and as G1 → G2 v G1 → G′2,
the result holds.

Lemma A.20 If Ξ; ∆ ` G1 ∼ G2 and G1 v G′1 and G2 v G′2 then Ξ; ∆ ` G′1 ∼ G′2.

Proof. By definition of Ξ; ∆ ` · ∼ ·, there exists 〈T1, T2〉 ∈ C2(G1, G2) such that T1 = T2. G1 v G′1
and G2 v G′2 mean that C (G1) ⊆ C (G′1) and C (G2) ⊆ C (G′2), therefore 〈T1, T2〉 ∈ C2(G′1, G

′
2),

and the resul follows.

Lemma A.21 If G1 v G′1 and G2 v G′2 then G1[G2/X] v G′1[G′2/X].

Proof. By induction on the relation of G1 v G′1. We only present interesting cases.

Case (X v X). Then we have to prove that X[G2/X] v X[G′2/X], which is equivalent to G2 v G′2,
but that is part of the premise and the result holds immediately.

Case (G1 v ?). Then we have to prove that G1[G2/X] v ? which is always true.

Case (∀Y.G3 v ∀Y.G′3). Then we have to prove that ∀Y.G3[G2/X] v ∀Y.G′3[G′2/X], which is
equivalent to prove that G3[G2/X] v G′3[G′2/X], which holds by induction hypothesis on G3 v G′3.

Lemma A.22 If G1 v G′1 and G2 v G′2 then inst](G1, G2) v inst](G′1, G
′
2).

Proof. By induction on relation G1 v G′1.

Case (? v ?). The result is trivial as inst](?, G′i) = ? and ? v ?.

Case (∀X.G1 v ?,∀X.G1 v ∀X.G2). The result follows directly from Lemma A.21.

Lemma A.23 If G1 v G2 then proj]i(G1) v proj]i(G2).

Proof. The proof is direct, analogous to Lemma A.22, by induction on relation G1 v G2.

151

Proposition A.24 (Static gradual guarantee for open terms) If Ξ; ∆; Γ ` t1 : G1 and t1 v t2,
then Ξ; ∆; Γ ` t2 : G2, for some G2 such that G1 v G2.

Proof. We prove the property on opens terms instead of closed terms: If Ξ; ∆; Γ ` t1 : G1 and
t1 v t2 then Ξ; ∆; Γ ` t2 : G2 and G1 v G2.

The proof proceed by induction on the typing derivation.

Case (Gx, Gb). Trivial by definition of term precision (v) using (Px), (Pb) respectively.

Case (Gλ). Then t1 = (λx : G′1.t) and G1 = G′1 ı→ G′2. By (Gλ) we know that:

(Gλ)
Ξ; ∆; Γ, x : G′1 ` t : G′2

Ξ; ∆; Γ ` λx : G′1.t : G′1 → G′2
(A.1)

Consider t2 such that t1 v t2. By definition of term precision t2 must have the form t2 = (λx : G′′1.t
′)

and therefore

(Pλ)
t v t′ G′1 v G′′1

(λx : G′1.t) v (λx : G′′1.t
′)

(A.2)

Using induction hypotheses on the premises of (A.1) and (B.2), Ξ; ∆; Γ, x : G′1 ` t′ : G′′2 with
G′2 v G′′2. By Lemma A.19, Ξ; ∆; Γ, x : G′′1 ` t′ : G′′′2 where G′′2 v G′′′2 . Then we can use rule (Gλ)
to derive:

(Gλ)
Ξ; ∆; Γ, x : G′′1 ` t′ : G′′′2

Ξ; ∆; Γ ` (λx : G′′1.t
′) : G′′1 ı→ G′′′2

Where G2 v G′′2. Using the premise of (B.2) and the definition of type precision we can infer that

G′1 ı→ G′2 v G′′1 ı→ G′′′2

and the result holds.

Case (GΛ). Then t1 = (ΛX.t) and G1 = ∀X.G′1. By (GΛ) we know that:

(GΛ)
Ξ; ∆, X; Γ ` t : G′1

Ξ; ∆; Γ ` ΛX.t : ∀X.G′1
(A.3)

Consider t2 such that t1 v t2. By definition of term precision t2 must have the form t2 = (ΛX.t′)
and therefore

(PΛ)
t v t′

(ΛX.t) v (ΛX.t′)
(A.4)

Using induction hypotheses on the premises of (B.3) and (B.4), Ξ; ∆, X; Γ ` t′ : G′′1 with G′1 v G′′1.
Then we can use rule (GΛ) to derive:

(GΛ)
Ξ; ∆, X; Γ ` t′ : G′′1

Ξ; ∆; Γ ` (λX.t′) : ∀X.G′′1

Using the definition of type precision we can infer that

∀X.G′1 v ∀X.G′′1

and the result holds.

152

Case (Gpair). Then t1 = 〈t′1, t′2〉 and G1 = G′1 ×G′2. By (Gpair) we know that:

(Gpair)
Ξ; ∆; Γ ` t′1 : G′1 Ξ; ∆; Γ ` t′2 : G′2

Ξ; ∆; Γ ` t′1 t′2 : G′1 ×G′2
(A.5)

Consider t2 such that t1 v t2. By definition of term precision, t2 must have the form 〈t′′1, t′′2〉 and
therefore

(Ppair)
t′1 v t′′1 t′2 v t′′2
〈t′1, t′2〉 v 〈t′′1, t′′2〉

(A.6)

Using induction hypotheses on the premises of (B.5) and (B.6), Ξ; ∆; Γ ` t′′1 : G′′1 and Ξ; ∆; Γ ` t′′2 :
G′′2, where G′1 v G′′1 and G′2 v G′′2. Then we can use rule (Gpair) to derive:

(Gpair)
Ξ; ∆; Γ ` t′′1 : G′′1 Ξ; ∆; Γ ` t′′2 : G′′2

Ξ; ∆; Γ ` 〈t′′1, t′′2〉 : G′′1 ×G′′2
Finally, using the definition of type precision we can infer that

G′1 ×G′2 v G′′1 ×G′′2
and the result holds.

Case (Gasc). Then t1 = t :: G1. By (Gasc) we know that:

(Gasc)
Ξ; ∆; Γ ` t : G Ξ; ∆ ` G ∼ G1

Ξ; ∆; Γ ` t :: G1 : G1
(A.7)

Consider t2 such that t1 v t2. By definition of term precision t2 must have the form t2 = t′ :: G2

and therefore

(Pasc)
t v t′ G1 v G2

t :: G1 v t′ :: G2
(A.8)

Using induction hypotheses on the premises of (B.7) and (B.8), Ξ; ∆; Γ ` t′ : G′ where G v G′. We
can use rule (Gasc) and Lemma A.20 to derive:

(Gasc)
Ξ; ∆; Γ ` t′ : G′ Ξ; ∆ ` G′ ∼ G2

Ξ; ∆; Γ ` t′ :: G2 : G2

Where G1 v G2 and the result holds.

Case (Cop). Then t1 = op(t) and G1 = G∗. By (Gop) we know that:

(Gop)

Ξ; ∆; Γ ` t : G ty(op) = G2 → G∗

Ξ; ∆ ` G ∼ G2

Ξ; ∆; Γ ` op(t) : G∗
(A.9)

Consider t2 such that t1 v t2. By definition of term precision t2 must have the form t2 = op(t′) and
therefore

(Pop)
t v t′

op(t) v op(t′)
(A.10)

Using induction hypotheses on the premises of (A.9) and (A.10), Ξ; ∆; Γ ` t′ : G′, where G v G′.
Using the Lemma A.20 we know that Ξ; ∆ ` G′ ∼ G2. Therefore we can use rule (Gop) to derive:

(Gop)

Ξ; ∆; Γ ` t′ : G′ ty(op) = G2 → G∗

Ξ; ∆ ` G′ ∼ G2

Ξ; ∆; Γ ` op(t′) : G∗

and the result holds.

153

Case (Gapp). Then t1 = t′1 t
′
2 and G1 = cod](G′1). By (Gapp) we know that:

(Gapp)

Ξ; ∆; Γ ` t′1 : G′1 Ξ; ∆; Γ ` t′2 : G′2
Ξ; ∆ ` dom](G′1) ∼ G′2

Ξ; ∆; Γ ` t′1 t′2 : cod](G′1)
(A.11)

Consider t2 such that t1 v t2. By definition of term precision t2 must have the form t2 = t′′1 t
′′
2 and

therefore

(Papp)
t′1 v t′′1 t′2 v t′′2
t′1 t
′
2 v t′′1 t′′2

(A.12)

Using induction hypotheses on the premises of (B.9) and (B.10), Ξ; ∆; Γ ` t′′1 : G′′1 and Ξ; ∆; Γ `
t′′2 : G′′2, where G′1 v G′′1 and G′2 v G′′2. By definition type precision and the definition of dom],
dom](G′1) v dom](G′′1) and, therefore by Lemma A.20, Ξ; ∆ ` dom](G′′1) ∼ G′′2. Also, by the
previous argument cod](G′1) v cod](G′′1). Then we can use rule (Gapp) to derive:

(Gapp)

Ξ; ∆; Γ ` t′′1 : G′′1 Ξ; ∆; Γ ` t′′2 : G′′2
Ξ; ∆ ` dom](G′′1) ∼ G′′2

Ξ; ∆; Γ ` t′′1 t′′2 : cod](G′′1)

and the result holds.

Case (GappG). Then t1 = t [G]. By (GappG) we know that:

(GappG)
Ξ; ∆; Γ ` t : G′1 Ξ; ∆ ` G
Ξ; ∆; Γ ` t [G] : inst](G′1, G)

(A.13)

where G1 = inst](G′1, G). Consider t2 such that t1 v t2. By definition of term precision t2 must
have the form t2 = t′ [G′] and therefore

(PappG)
t v t′ G v G′

t [G] v t′ [G′]
(A.14)

Using induction hypotheses on the premises of (B.11) and (B.12), Ξ; ∆; Γ ` t′ : G′2 where G′1 v G′2.
We can use rule (GappG) and Lemma A.6 to derive:

(Gasc)
Ξ; ∆; Γ ` t′ : G′2 Ξ; ∆ ` G′

Ξ; ∆; Γ ` t′ [G′] : inst](G′2, G
′)

Finally, by the Lemma A.22 we know that inst](G′1, G) v inst](G′2, G
′) and the result holds.

Case (Gpairi). Then t1 = πi(t) and G1 = proj]i(G). By (Gpair) we know that:

(Gpairi)
Ξ; ∆; Γ ` t : G

Ξ; ∆; Γ ` πi(t) : proj]i(G)
(A.15)

Consider t2 such that t1 v t2. By definition of term precision, t2 must have the form πi(t
′) and

therefore

(Ppairi)
t v t′

πi(t) v πi(t′)
(A.16)

Using induction hypotheses on the premises of (B.13) and (B.14), Ξ; ∆; Γ ` t′ : G′ where G v G′.
Then we can use rule (Gpairi) to derive:

(Gpairi)
Ξ; ∆; Γ ` t′ : G′

Ξ; ∆; Γ ` πi(t′) : proj]i(G
′)

Finally, by the Lemma A.23 we can infer that proj]i(G) v proj]i(G
′) and the result holds.

154

Proposition A.25 (Static gradual guarantee) Let t and t′ be closed GSF terms such that t v t′

and ` t : G. Then ` t′ : G′ and G v G′.

Proof. Direct corollary of Prop. A.24.

155

A.3 GSF: Dynamics

In this section, we expose auxiliary definitions of the dynamic semantics of GSF. First, we present
type precision, interior and consistent transitivity definitions for evidence types. Then we show some
important definitions, used in the dynamic semantics of GSFε. Finally, we present the translation
semantics from GSF to GSFε.

A.3.1 Evidence Type Precision

Figure A.1 presents the definition of the evidence type precision.

E v E Type precision

B v B X v X

E1 v E′1 E2 v E′2
E1 → E2 v E′1 → E′2

E1 v E2

∀X.E1 v ∀X.E2

E1 v E′1 E2 v E′2
E1 × E2 v E′1 × E′2

E1 v E2

αE1 v αE2 E v ?

Figure A.1: Evidence Type Precision

A.3.2 Initial Evidence

In Figure A.2 we present the interior function, used to compute the initial evidence.

A.3.3 Consistent Transitivity

In Figure A.3, we present the definition of consistent transitivity for evidence types.

A.3.4 GSFε: Dynamic Semantics

In this section, we show the function definitions used in the dynamic semantics of GSFε, specifically
in the type application rule (RappG).

Definition A.26

εout , 〈E∗[αE], E∗[E
′]〉 where E∗ = liftΞ(unlift(π2(ε))), αE = liftΞ′(α), E′ = liftΞ(G′)

Definition A.27 〈E1, E2〉[E3] = 〈E1[E3], E2[E3]〉

156

I(, :)EType×EType⇀ Evidence

E ∈ BaseType ∪TypeVar ∪ {?}
I(, ()E,E) = I(, ()?, E) = I(, ()E, ?) = 〈E,E〉

I(, ()E1, E2) = 〈E′1, E′2〉
I(, ()αE1 , E2) = 〈αE′1 , E′2〉

I(, ()E1, E2) = 〈E′1, E′2〉
I(, ()E1, α

E2) = 〈E′1, αE
′
2〉

I(, ()E11 → E12, ?→ ?) = 〈E′1, E′2〉
I(, ()E11 → E12, ?) = 〈E′1, E′2〉

I(, ()?→ ?, E11 → E12) = 〈E′1, E′2〉
I(, ()?, E11 → E12) = 〈E′1, E′2〉

I(, ()∀X.E,∀X.?) = 〈E′1, E′2〉
I(, ()∀X.E, ?) = 〈E′1, E′2〉

I(, ()∀X.?,∀X.E) = 〈E′1, E′2〉
I(, ()?, ∀X.E) = 〈E′1, E′2〉

I(, ()E11 × E12, ?× ?) = 〈E′11 × E′12, E
′
21 × E′22〉

I(, ()E11 × E12, ?) = 〈E′11 × E′12, E
′
21 × E′22〉

I(, ()?× ?, E11 × E12) = 〈E′11 × E′12, E
′
21 × E′22〉

I(, ()?, E11 × E12) = 〈E′11 × E′12, E
′
21 × E′22〉

I(, ()E21, E11) = 〈E′21, E
′
11〉 I(, ()E12, E22) = 〈E′12, E

′
22〉

I(, ()E11 → E12, E21 → E22) = 〈E′11 → E′12, E
′
21 → E′22〉

I(, ()E11, E21) = 〈E′11, E
′
21〉 I(, ()E12, E22) = 〈E′12, E

′
22〉

I(, ()E11 × E12, E21 × E22) = 〈E′11 × E′12, E
′
21 × E′22〉

I(, ()E1, E2) = 〈E′1, E′2〉
I(, ()∀X.E1,∀X.E2) = 〈∀X.E′1,∀X.E′2〉

Figure A.2: GSF: Computing Initial Evidence

Definition A.28

s[αE/X] =

b s = b

λx : G1[α/X].t[αE/X] s = λx : G1.t

ΛY.t[αE/X] s = ΛY.t

〈s1[αE/X], s2[αE/X]〉 s = 〈s1, s2〉
x s = x

ε[αE/X]t[αE/X] :: G[α/X] s = εt :: G

op(t[αE/X]) s = op(t)

t1[αE/X] t2[αE/X] s = t1 t2

πi(t[α
E/X]) s = πi(t)

t[αE/X] [G[α/X]] s = t [G]

157

(base)
〈B,B〉 # 〈B,B〉 = 〈B,B〉

(typeVar)
〈X,X〉 # 〈X,X〉 = 〈X,X〉

(idL)
〈E1, E2〉 # 〈?, ?〉 = 〈E1, E2〉

(idR)
〈?, ?〉 # 〈E1, E2〉 = 〈E1, E2〉

(sealL)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈E1, E2〉 # 〈E3, α

E4〉 = 〈E′1, αE
′
2〉

(sealR)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈αE1 , E2〉 # 〈E3, E4〉 = 〈αE′1 , E′2〉

(unsl)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉
〈E1, α

E2〉 # 〈αE3 , E4〉 = 〈E′1, E′2〉

(func)
〈E41, E31〉 # 〈E21, E11〉 = 〈E3, E1〉 〈E12, E22〉 # 〈E32, E42〉 = 〈E2, E4〉

〈E11 → E12, E21 → E22〉 # 〈E31 → E32, E41 → E42〉 = 〈E1 → E2, E3 → E4〉

(abst)
〈E1, E2〉 # 〈E3, E4〉 = 〈E′1, E′2〉

〈∀X.E1,∀X.E2〉 # 〈∀X.E3, ∀X.E4〉 = 〈∀X.E′1, ∀X.E′2〉

(pair)
〈E11, E21〉 # 〈E31, E41〉 = 〈E1, E3〉 〈E12, E22〉 # 〈E32, E42〉 = 〈E2, E4〉
〈E11 × E12, E21 × E22〉 # 〈E31 × E32, E41 × E42〉 = 〈E1 × E2, E3 × E4〉

Figure A.3: GSF: Consistent Transitivity

Definition A.29

liftΞ(G) =

liftΞ(G1)→ liftΞ(G2) G = G1 → G2

∀X.liftΞ(G1) G = ∀X.G1

liftΞ(G1)× liftΞ(G2) G = G1 ×G2

αliftΞ (Ξ(α)) G = α

G otherwise

Definition A.30

unlift(E) =

B E = B

unlift(E1)→ unlift(E2) E = E1 → E2

∀X.unlift(E1) E = ∀X.E1

unlift(E1)× unlift(E2) E = E1 × E2

α E = αE1

X E = X

? E = ?

A.3.5 Translation from GSF to GSFε

In this section we present the translation from GSF to GSFε (Figure B.7), which inserts ascrip-
tions to ensure that top-level constructors match in every elimination form. We use the following
normalization metafunction:

norm(t, G1, G2) = εt :: G2, where ε = I(Ξ, ()G1, G2)

158

I(Ξ, ()G1, G2) = I(, ()liftΞ(G1), liftΞ(G2))

Theorem A.31 (Elaboration Preserves Typing) If ∆; Γ ` t : G, then ∆; Γ ` t : G t′ and tεt
′G.

Proof. The proof follows by induction on the typing derivation of ∆; Γ ` t : G.

159

∆; Γ ` v v u : G Value translation

(Gb)
ty(b) = B ∆ ` Γ

∆; Γ ` b v b : B
(Gpairu)

∆; Γ ` v1 u1 : G1 ∆; Γ ` v2 u2 : G2

∆; Γ ` 〈v1, v2〉 v 〈u1, u2〉 : G1 ×G2

(Gλ)
∆; Γ, x : G ` t t′ : G′

∆; Γ ` (λx : G.t) v (λx : G.t′) : G→ G′
(GΛ)

∆, X; Γ ` t t′ : G ∆ ` Γ

∆; Γ ` (ΛX.t) v (ΛX.t′) : ∀X.G

∆; Γ ` t t : G Term translation

(Gu)
∆; Γ ` v v u : G ε = I(, ()G,G)

∆; Γ ` v εu :: G : G
(Gascu)

∆; Γ ` v v u : G ε = I(, ()G,G′)

∆; Γ ` v :: G′ εu :: G′ : G′

(Gx)
x : G ∈ Γ ∆ ` Γ
∆; Γ ` x x : G

(Gasct)
t 6= v ∆; Γ ` t t′ : G ε = I(, ()G,G′)

∆; Γ ` t :: G′ εt′ :: G′ : G′

(Gpairt)
(t1 6= v1 ∨ t2 6= v2) ∆; Γ ` t1 t′1 : G1 ∆; Γ ` t2 t′2 : G2

∆; Γ ` 〈t1, t2〉 〈t′1, t′2〉 : G1 ×G2

(Gop)
∆; Γ ` t t′ : G1 ty(op) = G2 → G t′′ = norm(t′, G1, G2)

∆; Γ ` op(t) op(t′′) : G

(Gapp)

∆; Γ ` t1 t′1 : G1 t′′1 = norm(t′1, G1, dom](G1)→ cod](G1))

∆; Γ ` t2 t′2 : G2 t′′2 = norm(t′2, G2, dom](G1))

∆; Γ ` t1 t2 t′′1 t
′′
2 : cod](G2)

(GappG)
∆; Γ ` t t′ : G ∆ ` G′ t′′ = norm(t′, G,∀var](G).schm]

u(G))

∆; Γ ` t [G′] t′′ [G′] : inst](G,G′)

(Gpairi)
∆; Γ ` t t′ : G t′′ = norm(t′, G, proj]1(G)× proj]2(G))

∆; Γ ` πi(t) πi(t
′′) : proj]i(G)

var] : GType⇀ GType
var](∀X.G) = X
var](?) = X fresh
var](G) undefined o/w

schm]
u : GType⇀ GType

schm]
u(∀X.G) = G

schm]
u(?) = ?

schm]
u(G) undefined o/w

norm(t, G1, G2) = εt :: G2, where ε = I(, ()G1, G2)

Figure A.4: GSF to GSFε translation.

160

A.4 GSF: Properties

In this section we present some properties of GSF. Section A.4.1, presents Type Safety and its
proof. Section A.4.2, shows the property and proof about static terms do not fail.

A.4.1 Type Safety

In this section we present the proof of type safety for GSFε.

We define what it means for a store to be well typed with respect to a term. Informally, all free
locations of a term and of the contents of the store must be defined in the domain of that store.
Also, the store must preserve types between intrinsic locations and underlying values.

Lemma A.32 (Canonical forms) Consider a value Ξ; ·; · ` v : G. Then v = εu :: G, with Ξ; ·; · `
u : G′ and ε Ξ ` G′ ∼ G. Furthermore:

1. If G = B, then v = εBb :: B, with Ξ; ·; · ` b : B and εB Ξ ` B ∼ B.

2. If G = G1 → G2, then v = ε(λx : G′1.t) :: G1 → G2, with Ξ; ·;x : G′1 ` t : G′2 and
ε Ξ ` G′1 → G′2 ∼ G1 → G2.

3. If G = ∀X.G1, then v = ε(ΛX.t) :: ∀X.G1, with Ξ; ∆, X; · ` t : G′1 and ε Ξ ` ∀X.G′1 ∼
∀X.G1.

4. If G = G1 × G2, then v = ε〈u1, u2〉 :: G1 × G2, with Ξ; ·; · ` u1 : G′1, Ξ; ·; · ` u2 : G′2 and
ε Ξ ` G′1 ×G′2 ∼ G1 ×G2.

Proof. By direct inspection of the formation rules of evidence augmented terms.

Lemma A.33 (Substitution) If Ξ; ∆; Γ, x : G1 ` t : G, and Ξ; ·; · ` v : G1, then Ξ; ∆; Γ ` t[v/x] :
G.

Proof. By induction on the derivation of Ξ; ∆; Γ, x : G1 ` t : G.

Lemma A.34 If ε Ξ; ∆, X ` G1 ∼ G2, Ξ; · ` G′, α 6∈ dom(Ξ), and E = liftΞ(G′), then

ε[αE
′
/X] Ξ, α := G′; ∆ ` G1[α/X] ∼ G2[α/X].

Proof. By induction on the judgment ε Ξ; ∆, X ` G1 ∼ G2 and the definition of evidences.

Lemma A.35 (Type Substitution) If Ξ; ∆, X; Γ ` t : G, Ξ; · ` G′, α 6∈ dom(Ξ), and E = liftΞ(G′),
then Ξ, α := G′; ∆; Γ ` tαE/X : G[α/X].

Proof. By induction on the derivation of Ξ; ∆, X; Γ ` t : G and Lemma A.34.

161

Lemma A.36 If ε1 Ξ; ∆ ` G′1 ∼ G1, and ε2 Ξ; ∆ ` G′2 ∼ G2, then ε1×ε2 Ξ; ∆ ` G′1×G′2 ∼
G1 ×G2.

Proof. By definition of the judgment ε Ξ; ∆, X ` G′1 × G′2 ∼ G1 × G2 and the definition of
evidences.

Lemma A.37 If ε Ξ; ∆ ` G′ ∼ G then pi(ε) Ξ; ∆ ` proj]i(G
′) ∼ proj]i(G).

Proof. By definition of judgment ε Ξ; ∆, X ` proj]i(G
′) ∼ proj]i(G) and the definition of evi-

dences.

Proposition A.38 (−−→ is well defined) If Ξ; ·; · ` t : G, then either

• Ξ . t −−→ Ξ′ . t′, Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′ : G; or

• Ξ . t −−→ error

Proof. By induction on the structure of a derivation of Ξ . t −−→ r, considering the last rule used
in the derivation.

Case (Rapp). Then t = (ε1(λx : G11.t1) :: G1 → G2) (ε2u :: G1). Then

(Eapp)

(Easc)

Ξ; ·;x : G11 ` t1 : G12

Ξ; ·; · ` (λx : G11.t1) : G11 → G12

ε1 Ξ; · ` G11 → G12 ∼ G1 → G2

Ξ; ·; · ` (ε1(λx : G11.t1) :: G1 → G2) : G
(Easc)

Ξ; ·; · ` u : G′2
ε2 Ξ; · ` G′2 ∼ G1

Ξ; ·; · ` (ε2u :: G1) : G1

Ξ; ·; · ` (ε1(λx : G11.t1) :: G) (ε2u :: G1) : G2

If ε′ = (ε2 #dom(ε1)) is not defined, then Ξ .t −−→ error, and then the result hold immediately.
Suppose that consistent transitivity does hold, then

Ξ . (ε1(λx : G11.t1) :: G1 → G2) (ε2u :: G1) −−→ Ξ . cod(ε1)(t1[ε′u :: G11)/x]) :: G2

As ε2 ` G′2 ∼ G1 and by inversion lemma dom(ε1) ` G1 ∼ G11, then ε′ ` G′2 ∼ G11. Therefore
Ξ; ·; · ` ε′u :: G11 : G11, and by Lemma A.33, Ξ; ·; · ` t[(ε′u :: G11)/x] : G12.

Let us call t′′ = t[(ε′u :: G11)/x]. Then

(Easc)
Ξ; ·; · ` t1[ε′u :: G11)/x] : G12 cod(ε1) Ξ; · ` G12 ∼ G2

Ξ; ·; · ` cod(ε1)(t1[ε′u :: G11)/x]) :: G2 : G2

and the result holds.

162

Case (RappG). Then t = (εΛX.t1 :: ∀X.Gx) [G′]. Consider Gx = schm]
u(G), then

(EappG)

(Easc)
Ξ;X; · ` t1 : G1 ε Ξ;X; · ` G1 ∼ ∀X.Gx

Ξ; ·; · ` (εΛX.t1 :: ∀X.Gx) : ∀X.Gx Ξ; · ` G′

Ξ; ·; · ` (εΛX.t1 :: ∀X.Gx) [G′] : Gx[G′/X]

Then

Ξ . (εΛX.t1 :: G) [G′] −−→ Ξ′ . ε
E′/αE

′

G (ε[αE
′
]t1α

E′/X :: Gx[α/X]) :: Gx[G′/X]

where Ξ′ , Ξ, α := G′, α /∈ dom(Ξ), and E′ , liftΞ(G′), and

ε
E′/αE

′

∀X.Gx = 〈liftΞ(Gx)[αE
′
/X], liftΞ(Gx[G′/X])〉. Notice that 〈liftΞ(Gx[α/X]), liftΞ(Gx[G′/X])〉 =

I(, ()Gx[α/X], Gx[G′/X]), and by definition of the special substitution, liftΞ(Gx)[αE
′
/X] v liftΞ(Gx[α/X])

(because liftΞ(α) = αE
′
, and the substitution on evidences just extend unknowns with α). There-

fore ε
E′/αE

′

∀X.Gx v I(, ()Gx[α/X], Gx[G′/X]), and ε
E′/αE

′

∀X.Gx Ξ; · ` Gx[α/X] ∼ Gx[G′/X]. Also by

Lemma A.34 ε[αE
′
] Ξ; · ` G1[α/X] ∼ Gx[α/X], and by Lemma A.35, Ξ; ·; · ` t1αE

′
/X : G1[α/X].

Then, as Ξ ⊆ Ξ′,

(Easc)

(Easc)

Ξ; ·; · ` t1αE
′
/X : G1[α/X]

ε[αE
′
] Ξ; · ` G1[α/X] ∼ Gx[α/X]

Ξ; ·; · ` (ε[αE
′
]t1α

E′/X :: Gx[α/X]) : Gx[α/X] ε
E′/αE

′

G Ξ; · ` Gx[α/X] ∼ Gx[G′/X]

Ξ; ·; · ` εE
′/αE

′

G (ε[αE
′
]t1α

E′/X :: Gx[α/X]) :: Gx[G′/X] : Gx[G′/X]

and the result holds.

Case (Rasc). Then t = ε1(ε2u :: G2) :: G. Then

(Easc)

(Easc)
Ξ; ·; · ` u : Gu ε2 Ξ; · ` Gu ∼ G2

Ξ; ·; · ` ε2u :: G2 : G2 ε1 Ξ; · ` G2 ∼ G
Ξ; ·; · ` ε1(ε2u :: G2) :: G : G

If (ε2 # ε1) is not defined, then Ξ . t −−→ error, and then the result hold immediately. Suppose
that consistent transitivity does hold, then

Ξ . ε1(ε2u :: G2) :: G −−→ Ξ . (ε2 # ε1)u :: G

where (ε2 # ε1) Ξ; · ` Gu ∼ G. Then

(Easc)
Ξ; ·; · ` u : Gu (ε2 # ε1) Ξ; · ` Gu ∼ G

Ξ; ·; · ` (ε2 # ε1)u :: G : G

and the result follows.

Case (Rop). Then t = op(εu :: B′). Then

(Eop)

(Easc)
Ξ; ·; · ` u : Gu ε Ξ; · ` Gu ∼ B′

Ξ; ∆; Γ ` εu :: B′ : B′ ty(op) = B′ → B

Ξ; ·; · ` op(εu :: B′) : B

163

Let us assume that ty(op) : B′ → B.

Ξ . op(εu :: B′) −−→ Ξ . εB δ(op, u) :: B

But as εB ` Ξ; · ` B ∼ B, then

(Easc)
Ξ; ·; · ` δ(op, u) : B εB Ξ; · ` B ∼ B

Ξ; ·; · ` εB δ(op, u) :: B : B

and the result follows.

Case (Rpair). Then t = 〈ε1u1 :: G1, ε2u2 :: G2〉. Then

(Epair)

(Easc)

Ξ; ·; · ` u1 : G′1
ε1 Ξ; · ` G′1 ∼ G1

Ξ; ·; · ` ε1u1 :: G1
(Easc)

Ξ; ·; · ` u2 : G′2
ε2 Ξ; · ` G′2 ∼ G2

Ξ; ·; · ` ε2u2 :: G2

Ξ; ·; · ` 〈ε1u1 :: G1, ε2u2 :: G2〉 : G1 ×G2

Then
Ξ . 〈ε1u1 :: G1, ε2u2 :: G2〉 −−→ Ξ . (ε1 × ε2)〈u1, u2〉 :: G1 ×G2

By Lemma B.6, ε1 × ε2 Ξ; · ` G′1 ×G′2 ∼ G1 ×G2. Then

(Easc)

(Epair)
Ξ; ·; · ` u1 : G′1 Ξ; ·; · ` u2 : G′2

Ξ; ·; · ` 〈u1, u2〉 : G′1 ×G′2 ε1 × ε2 Ξ; · ` G′1 ×G′2 ∼ G1 ×G2

Ξ; ·; · ` (ε1 × ε2)〈u1, u2〉 :: G1 ×G2 : G1 ×G2

and the result holds.

Case (Rproji). Then t = πi(ε〈u1, u2〉 :: G). Then

(Epairi)

(Easc)

Ξ; ·; · ` ui : G′i
Ξ; ·; · ` 〈u1, u2〉 : G′1 ×G′2 ε Ξ; · ` G′1 ×G′2 ∼ G

ε〈u1, u2〉 :: G

Ξ; ·; · ` πi(ε〈u1, u2〉 :: G) : proj]i(G)

Then
Ξ . πi(ε〈u1, u2〉 :: G) −−→ Ξ . pi(ε)ui :: proj]i(G)

By Lemma B.7, pi(ε) Ξ; · ` proj]i(G
′
1 ×G′2) ∼ proj]i(G). Then

(Easc)
Ξ; ·; · ` ui : G′i pi(ε) Ξ; · ` proj]i(G

′
1 ×G′2) ∼ proj]i(G)

Ξ; ·; · ` pi(ε)ui :: proj]i(G) : proj]i(G)

and the result holds.

164

Proposition A.39 (7−→ is well defined) If Ξ; ·; · ` t : G, then either

• Ξ . t 7−→ Ξ′ . t′, Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′ : G; or

• Ξ . t 7−→ error

Proof. By induction on the structure of t.

• If t has some of this form: ε2(ε1u :: G1) :: G2, op(εu :: G), (λx : G11.t) :: G1 → G2) (ε2u ::
G1), 〈ε1u1 :: G1, ε2u2 :: G2〉, πi(ε〈u1, u2〉 :: G1 ×G2) or (εΛX.t :: ∀X.G) [G′], then by well-
definedness of −−→ (Prop A.38), Ξ . t −−→ Ξ′ . t′ and Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′ : G or
Ξ . t −−→ error, .

If Ξ . t −−→ Ξ′ . t′, Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′ : G, then by the rule R−→ the result holds.

If Ξ . t −−→ error, then by the rule Rerr Ξ . t 7−→ error and the result holds immediately.

• If t = f [t1], we know that Ξ; ·; · ` f [t1] : G and Ξ; ·; · ` t1 : G′, where f : G′ → G. Then, by
the induction hypothesis Ξ . t1 7−→ Ξ′ . t′1, Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′1 : G or Ξ . t1 7−→ Ξ′ . error.

If Ξ . t1 7−→ Ξ′ . t′1, by the Rf rule the result holds.

If Ξ . t1 7−→ Ξ′ . error, by the Rferr rule the result holds. .

Proposition A.40 (7−→ is well defined) If Ξ; ·; · ` t : G, t tε, then tε is a value v; or Ξ . tε 7−→
Ξ′ . t′ε, Ξ ⊆ Ξ′ and Ξ′; ·; · ` t′ε : G; or Ξ . tε 7−→ error.

Proof. By induction on the structure of t, using Lemma A.39 and Canonical Forms (Lemma B.5).

Now we can establish type safety of GSF: programs of GSF do not get stuck, though they may
terminate with cast errors. Also the store of a program is well typed.

Proposition A.41 (Type Safety) If ` t : G then either t ⇓ Ξ . v with Ξ . v : G, t ⇓ error, or t ⇑.

Proof. Direct by A.40.

A.4.2 Static Terms Do Not Fail

Lemma A.42 (Properties of consistent transitivity).
(a) Associativity. (ε1 # ε2) # ε3 = ε1 # (ε2 # ε3), or both are undefined.
(b) Optimality. If ε = ε1 # ε2 is defined, then π1(ε) v π1(ε1) and π2(ε) v π2(ε2).
(c) Monotonicity. If ε1 v ε′1 and ε2 v ε′2 and ε1#ε2 is defined, then ε′1#ε

′
2 is defined and ε1#ε2 v ε′1#ε′2.

Proof. A direct result of the application of the AGT framework.

165

Lemma A.43 If ε1 and ε2 two static evidences, such that ε1 Ξ; ∆ ` T1 ∼ T2 and ε2 Ξ; ∆ `
T2 ∼ T3, then ε1 # ε2 = 〈p1(ε1), p2(ε2)〉.

Proof. Straightforward induction on types T1, T2, T3 (Ξ; ∆ ` T2 ∼ T3 coincides with Ξ; ∆ ` T2 =
T3), and optimality of evidences (Lemma 3.14), because the resulting evidence cannot gain precision
as each component of the evidences are static (note that precision · v · between static types coincide
with equality of static types Ξ; ∆ ` · = ·).

Lemma A.44 Let T1 and T2 two static types, and Ξ a static store, such that Ξ; ∆ ` T1 ∼ T2. Then
I(, ()T1, T2) = I(, ()liftΞ(T1), liftΞ(T2)) = 〈liftΞ(T1), liftΞ(T2)〉.

Proof. Straightforward induction on types T1, T2, and noticing that we cannot gain precision from
the types.

Proposition A.45 (Static terms progress and Preservation) Let t be a static term, Ξ a static store
(Ξ = Σ), and G a static type (G = T). If Σ; ·; · ` t : T , then either Σ.t 7−→ Σ′.t′ and Σ′; ·; · ` t′ : T
, for some Σ′ and t′ static; or t is a value v.

Proof. By induction on the structure of a derivation of Σ; ·; · ` t : T .

Note that Ξ; ∆ ` T1 ∼ T2 coincides with Ξ; ∆ ` T1 = T2, so we use the latter notation
throughout the proof.

Case (t = εu :: G). The result is trivial as t is a value.

Case (t = (ε1(λx : T11.t1) :: T1 → T2) (ε2u :: T1)). Then

(Eapp)

(Easc)

Ξ; ·;x : T11 ` t1 : T12

Ξ; ·; · ` (λx : T11.t1) : T11 → T12

ε1 Σ; ∆ ` T11 → T12 = T1 → T2

Ξ; ·; · ` (ε1(λx : T11.t1) :: T1 → T2) : T1 → T2
(Easc)

Ξ; ·; · ` u : T ′2
ε2 Σ; ∆ ` T ′2 = T1

Ξ; ·; · ` (ε2u :: T1) : T1

Ξ; ·; · ` (ε1(λx : T11.t1) :: T1 → T2) (ε2u :: T1) : T2

By Lemma A.43, ε′ = (ε2 # dom(ε1)) is defined and by Lemma A.44, the new evidence is also
static. Then

Ξ . (ε1(λx : T11.t1) :: T) (ε2u :: T1) −−→ Ξ . cod(ε1)(t1[ε′u :: T11)/x]) :: T2

And the result holds immediately by the Lemma A.33 and the typing rule (Easc).

Case (t = (εΛX.t1 :: ∀X.Tx) [T ′]). Then

(EappT)

(Easc)
Ξ;X; · ` t1 : T1 ε Σ; ∆ ` [= Ξ;X; ·]T1∀X.Tx

Ξ; ·; · ` (εΛX.t1 :: ∀X.Tx) : T Ξ; · ` T ′

Ξ; ·; · ` (εΛX.t1 :: ∀X.Tx) [T ′] : Tx[T ′/X]

166

Then

(εΛX.t1 :: ∀X.Tx) [T ′] −−→ Ξ′ . ε
E′/αE

′

∀X.Tx (ε[αE
′
]t1α

E′/X :: Tx[α/X]) :: Tx[T ′/X]

where Ξ′ , Ξ, α := T ′, α /∈ dom(Ξ), and E′ , liftΞ(T ′), and

ε
E′/αE

′

∀X.Tx = 〈liftΞ(Tx)[αE
′
/X], liftΞ(Tx[T ′/X])〉. Then, Ξ ⊆ Ξ′, and Ξ′ is extended with a type

name that maps to a static type. Finally, the result holds immediately by the Lemma A.35 and
Lemma A.34, and the typing rule (Easc).

Case (t = Ξ . ε1(ε2u :: T2) :: T). Then

(Easc)

(Easc)
Ξ; ·; · ` u : Tu ε2 Σ; ∆ ` Tu = T2

Ξ; ·; · ` ε2u :: T2 : T2 ε1 Σ; ∆ ` T2 = T

Ξ; ·; · ` ε1(ε2u :: T2) :: T : T

By Lemma A.43, ε2 # ε1 is defined and by Lemma A.44, the new evidence is also static. Then

Ξ . ε1(ε2u :: T2) :: T −−→ Ξ . (ε2 # ε1)u :: T

and the result holds by the typing rule (Easc).

Case (t = op(εu :: B′)). Then

(Easc)

(Easc)
Ξ; ·; · ` u : Tu ε Σ; ∆ ` Tu = B′

Ξ; ∆; Γ ` εu :: B′ : B′ ty(op) = B′ → B

Ξ; ·; · ` op(εu :: B′) : B

Let us assume that ty(op) : B′ → B. Then

Ξ . op(εu :: B′) −−→ Ξ . εB δ(op, u) :: B

And the result holds by the typing rule (Easc).

Case (t = 〈ε1u1 :: T1, ε2u2 :: T2〉). Then

(Epair)

(Easc)

Ξ; ·; · ` u1 : T ′1
ε1 Σ; ∆ ` T ′1 = T1

Ξ; ·; · ` ε1u1 :: T1
(Easc)

Ξ; ·; · ` u2 : T ′2
ε2 Σ; ∆ ` T ′2 = T2

Ξ; ·; · ` ε2u2 :: T2

Ξ; ·; · ` 〈ε1u1 :: T1, ε2u2 :: T2〉 : T1 × T2

Then
Ξ . 〈ε1u1 :: T1, ε2u2 :: T2〉 −−→ Ξ . (ε1 × ε2)〈u1, u2〉 :: T1 × T2

and the result holds by the Lemma B.6.

Case (t = πi(ε〈u1, u2〉 :: T)). Then

(Epair)

(Easc)

Ξ; ·; · ` ui : T ′i
Ξ; ·; · ` 〈u1, u2〉 : T ′1 × T ′2 ε Σ; ∆ ` T ′1 × T ′2 = T

ε〈u1, u2〉 :: T

Ξ; ·; · ` πi(ε〈u1, u2〉 :: T) : proj]i(T)

167

Then
Ξ . πi(ε〈u1, u2〉 :: T) −−→ Ξ . pi(ε)ui :: proj]i(T)

And the result holds by Lemma B.7.

Case (t = t1 t2). Then by induction hypothesis Ξ . t1 7−→ Ξ . t′1, and t′1 is static, and so t′1 t2.

Case (t = v t2). Then by induction hypothesis Ξ . t2 7−→ Ξ . t′2, and t′2 is static, and so v t′2.

Case (t = t1[T], t = 〈t1, t2〉, t = op(t1), t = πi(t1)). Similar inductive reasoning to application cases.

Proposition A.46 (Static terms do not fail) Let t be a static term. If ` t : T then ¬(t ⇓ error).

Proof. Direct by Lemma A.45.

168

A.5 GSF and The Dynamic Gradual Guarantee

In this section, we prove the weaker variant of the DGG in GSFε and then in GSF. We also present
auxiliary definitions and Propositions.

A.5.1 Evidence Type Precision

This section show the definition of evidence type precision.

B 6 B X 6 X α 6 α B 6 ?

E1 → E2 6 ?→ ?

E1 → E2 6 ? ? 6 ?

E1 6 E3 E2 6 E4

E1 → E2 6 E3 → E4

E1 6 E2

∀X.E1 6 ∀X.E2

E1 6 E2

αE1 6 αE2

E1 6 E3 E2 6 E4

〈E1, E2〉 6 〈E3, E4〉

A.5.2 Monotonicity of Evidence Transitivity and Instantiation

This section presents the proofs of the monotonicity of evidence transitivity and instantiation propo-
sition.

Proposition A.47 (6-Monotonicity of Consistent Transitivity) If ε1 6 ε2, ε3 6 ε4, and ε1 # ε3 is
defined, then ε1 # ε3 6 ε2 # ε4.

Proof. By definition of consistent transitivity for = and the definition of precision.

Case (εi = 〈B,B〉). The results follows immediately, due

〈B,B〉 = (〈B,B〉 # 〈B,B〉) 6 (〈B,B〉 # 〈B,B〉 = 〈B,B〉)

Case ([X]- εi = 〈X,X〉). The results follows immediately, due

〈X,X〉 = (〈X,X〉 # 〈X,X〉) 6 (〈X,X〉 # 〈X,X〉 = 〈X,X〉)

Case ([α1]- ε1 = 〈αE1 , E′1〉, ε2 = 〈αE2 , E′2〉, ε3 = 〈E3, E
′
3〉, ε4 = 〈E4, E

′
4〉). By the definition of 6,

we know that 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉. By the definition of transitivity we

know that 〈αE1 , E′1〉 # 〈E3, E
′
3〉 = 〈αE5 , E′5〉 and 〈αE2 , E′2〉 # 〈E4, E

′
4〉 = 〈αE6 , E′6〉, where 〈E5, E

′
5〉 =

〈E1, E
′
1〉 # 〈E3, E

′
3〉 and 〈E6, E

′
6〉 = 〈E2, E

′
2〉 # 〈E4, E

′
4〉. Therefore, we are required to prove that

〈αE5 , E′5〉 6 〈αE6 , E′6〉, or what is the same 〈E5, E
′
5〉 6 〈E6, E

′
6〉. But the result follows immediately

by the induction hypothesis on 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉.

Case ([α2]- ε1 = 〈E1, α
E′1〉, ε2 = 〈E2, α

E′2〉, ε3 = 〈αE3 , E′3〉, ε4 = 〈αE4 , E′4〉). By the definition of 6,
we know that 〈E1, E

′
1〉 6 〈E2, E

′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉. By the definition of transitivity we

know that 〈E1, α
E′1〉 # 〈αE3 , E′3〉 = 〈E5, E

′
5〉 and 〈E2, α

E′2〉 # 〈αE4 , E′4〉 = 〈E6, E
′
6〉, where 〈E5, E

′
5〉 =

〈E1, E
′
1〉 # 〈E3, E

′
3〉 and 〈E6, E

′
6〉 = 〈E2, E

′
2〉 # 〈E4, E

′
4〉. Therefore, we are required to prove that

〈E5, E
′
5〉 6 〈E6, E

′
6〉. But the result follows immediately by the induction hypothesis on 〈E1, E

′
1〉 6

〈E2, E
′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉.

169

Case ([α3]- ε1 = 〈E1, E
′
1〉, ε2 = 〈E2, E

′
2〉, ε3 = 〈E3, α

E′3〉, ε4 = 〈E4, α
E′4〉). By the definition of 6,

we know that 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉. By the definition of transitivity we

know that 〈E1, E
′
1〉 # 〈E3, α

E′3〉 = 〈E5, α
E′5〉 and 〈E2, E

′
2〉 # 〈E4, α

E′4〉 = 〈E6, α
E′6〉, where 〈E5, E

′
5〉 =

〈E1, E
′
1〉 # 〈E3, E

′
3〉 and 〈E6, E

′
6〉 = 〈E2, E

′
2〉 # 〈E4, E

′
4〉. Therefore, we are required to prove that

〈E5, α
E′5〉 6 〈E6, α

E′6〉, or what is the same 〈E5, E
′
5〉 6 〈E6, E

′
6〉. But the result follows immediately

by the induction hypothesis on 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and 〈E3, E

′
3〉 6 〈E4, E

′
4〉.

Case ([∀]- εi = 〈∀X.Ei, ∀X.E′i〉). By the definition of 6, we know that 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and

〈E3, E
′
3〉 6 〈E4, E

′
4〉. By the definition of transitivity we know that 〈∀X.E1, ∀X.E′1〉#〈∀X.E3, ∀X.E′3〉 =

〈∀X.E5, ∀X.E′5〉 and 〈∀X.E2,∀X.E′2〉#〈∀X.E4,∀X.E′4〉 = 〈∀X.E6,∀X.E′6〉, where 〈E5, E
′
5〉 = 〈E1, E

′
1〉#

〈E3, E
′
3〉 and 〈E6, E

′
6〉 = 〈E2, E

′
2〉 # 〈E4, E

′
4〉. Therefore, we are required to prove that 〈E5, E

′
5〉 6

〈E6, E
′
6〉. But the result follows immediately by the induction hypothesis on 〈E1, E

′
1〉 6 〈E2, E

′
2〉

and 〈E3, E
′
3〉 6 〈E4, E

′
4〉.

Case ([→]- εi = 〈E1i → E2i, E
′
1i → E′2i〉). By the definition of 6, we know that 〈E11, E

′
11〉 6

〈E12, E
′
12〉, 〈E13, E

′
13〉 6 〈E14, E

′
14〉, 〈E21, E

′
21〉 6 〈E22, E

′
22〉 and 〈E23, E

′
23〉 6 〈E24, E

′
24〉. By

the definition of transitivity we know that 〈E11 → E21, E
′
11 → E′21〉 # 〈E13 → E23, E

′
13 → E′23〉 =

〈E15 → E25, E
′
15 → E′25〉 and 〈E12 → E22, E

′
12 → E′22〉#〈E14 → E24, E

′
14 → E′24〉 = 〈E16 → E26, E

′
16 → E′26〉,

where 〈E′15, E15〉 = 〈E′13, E13〉#〈E′11, E11〉, 〈E25, E
′
25〉 = 〈E21, E

′
21〉#〈E24, E

′
24〉, 〈E16, E

′
16〉 = 〈E′41, E41〉#

〈E′12, E12〉 and 〈E26, E
′
26〉 = 〈E22, E

′
22〉 # 〈E24, E

′
24〉.

Therefore, we are required to prove that

〈E15 → E25, E
′
15 → E′25〉 6 〈E16 → E26, E

′
16 → E′26〉

or what is the same

〈E′13, E13〉 # 〈E′11, E11〉 = 〈E′15, E15〉 6 〈E′16, E16〉 = 〈E′41, E41〉 # 〈E′12, E12〉

and
〈E21, E

′
21〉 # 〈E23, E

′
23〉 = 〈E25, E

′
25〉 6 〈E26, E

′
26〉 = 〈E22, E

′
22〉 # 〈E24, E

′
24〉

But the result follows immediately by the induction hypothesis on〈E11, E
′
11〉 6 〈E12, E

′
12〉 and

〈E13, E
′
13〉 6 〈E14, E

′
14〉, 〈E21, E

′
21〉 6 〈E22, E

′
22〉 and 〈E23, E

′
23〉 6 〈E24, E

′
24〉.

Case ([×]- εi = 〈E1i × E2i, E
′
1i × E′2i〉). Similar to Case [→].

Case ([?1]- ε1 = 〈?, ?〉). Since ε1 6 ε2, we know that ε2 = 〈?, ?〉. Therefore, by the transitivity rules,
we know that ε1 # ε3 = ε3 and ε2 # ε4 = ε4. Thus, we are required to prove that ε3 6 ε4, but the
result follows immediately by premise.

Case ([?2]- ε2 = 〈?, ?〉). The proof follows from some of the previous cases.

• (ε1 = 〈?, ?〉). The results follows immediately, since it was discussed in Case [?1].

• (ε3 = 〈?, ?〉). The results follows immediately, since it was discussed in Case [?3].

• (ε4 = 〈?, ?〉). The results follows immediately, since ε1 # ε3 6 〈?, ?〉 # 〈?, ?〉 = 〈?, ?〉.

• (εi = 〈B,B〉). The results follows immediately, since 〈B,B〉 # 〈B,B〉 6 〈?, ?〉 # 〈B,B〉.

• (εi = 〈X,X〉). This case is not possible, since 〈X,X〉 66 〈?, ?〉.

• Case [α1] (ε1 = 〈E1, α
E′1〉, ε2 = 〈?, ?〉, ε3 = 〈αE3 , E′3〉, ε4 = 〈αE4 , E′4〉). This case is not possible,

since 〈αE1 , E′1〉 66 〈?, ?〉.

• Case [α2] (ε1 = 〈E1, α
E′1〉, ε2 = 〈?, ?〉, ε3 = 〈αE3 , E′3〉, ε4 = 〈αE4 , E′4〉). This case is not possible,

since 〈E1, α
E′1〉 66 〈?, ?〉.

170

• Case [α3] (ε1 = 〈E1, E
′
1〉, ε2 = 〈?, ?〉, ε3 = 〈E3, α

E′3〉, ε4 = 〈E4, α
E′4〉). This case was discussed

in Case [α3] above.

• (ε1 = 〈∀X.E1,∀X.E′1〉). This case is not possible, since 〈∀X.E1, ∀X.E′1〉 66 〈?, ?〉.

• (εi = 〈E1i → E2i, E
′
1i → E′2i〉). We have to prove that

〈E11 → E21, E
′
11 → E′21〉 # 〈E13 → E23, E

′
13 → E′23〉 6 〈?, ?〉 # 〈E14 → E24, E

′
14 → E′24〉

or what is the same

〈E11 → E21, E
′
11 → E′21〉 # 〈E13 → E23, E

′
13 → E′23〉 6 〈?→ ?, ?→ ?〉 # 〈E14 → E24, E

′
14 → E′24〉

But, this case was discussed in Case [→] above.

• (εi = 〈E1i × E2i, E
′
1i × E′2i〉). We have to prove that

〈E11 × E21, E
′
11 × E′21〉 # 〈E13 × E23, E

′
13 × E′23〉 6 〈?, ?〉 # 〈E14 × E24, E

′
14 × E′24〉

or what is the same:

〈E11 × E21, E
′
11 × E′21〉 # 〈E13 × E23, E

′
13 × E′23〉 6 〈?× ?, ?× ?〉 # 〈E14 × E24, E

′
14 × E′24〉

This case was discussed in Case [×].

Case ([?3]- ε3 = 〈?, ?〉). Since ε3 6 ε4, we know that ε4 = 〈?, ?〉. Therefore, by the transitivity rules,
we know that ε1 # ε3 = ε1 and ε2 # ε4 = ε2. Thus, we are required to prove that ε1 6 ε2, but the
result follows immediately by premise.

Case ([?4]- ε4 = 〈?, ?〉). The proof follows from some of the previous cases.

• (ε1 = 〈?, ?〉). The results follows immediately, since it was discussed in Case [?1].

• (ε2 = 〈?, ?〉). The results follows immediately, since ε1 # ε3 6 〈?, ?〉 # 〈?, ?〉 = 〈?, ?〉.

• (ε3 = 〈?, ?〉). The results follows immediately, since it was discussed in Case [?3].

• (εi = 〈B,B〉). The results follows immediately, since 〈B,B〉 # 〈B,B〉 6 〈B,B〉 # 〈?, ?〉.

• (εi = 〈X,X〉). This case is not possible, since 〈X,X〉 66 〈?, ?〉.

• Case [α1] (ε1 = 〈αE1 , E′1〉, ε2 = 〈αE2 , E′2〉, ε3 = 〈E3, E
′
3〉, ε4 = 〈?, ?〉). This case was discussed

in Case [α1] above.

• Case [α2] (ε1 = 〈E1, α
E′1〉, ε2 = 〈E2, α

E′2〉, ε3 = 〈αE3 , E′3〉, ε4 = 〈?, ?〉). This case is not
possible, since 〈E3, α

E′3〉 66 〈?, ?〉.

• Case [α3] (ε1 = 〈E1, E
′
1〉, ε2 = 〈E2, E

′
2〉, ε3 = 〈E3, α

E′3〉, ε4 = 〈?, ?〉). This case is not possible,
since 〈E3, α

E′3〉 66 〈?, ?〉.

• (ε1 = 〈∀X.E1,∀X.E′1〉). This case is not possible, since 〈∀X.E1,∀X.E′1〉 66 〈?, ?〉.

• (εi = 〈E1i → E2i, E
′
1i → E′2i〉). We have to prove that

〈E11 → E21, E
′
11 → E′21〉 # 〈E13 → E23, E

′
13 → E′23〉 6 〈E14 → E24, E

′
14 → E′24〉 # 〈?, ?〉

or what is the same

〈E11 → E21, E
′
11 → E′21〉 # 〈E13 → E23, E

′
13 → E′23〉 6 〈E14 → E24, E

′
14 → E′24〉 # 〈?→ ?, ?→ ?〉

But, this case was discussed in Case [→] above.

171

• (εi = 〈E1i × E2i, E
′
1i × E′2i〉). We have to prove that

〈E11 × E21, E
′
11 × E′21〉 # 〈E13 × E23, E

′
13 × E′23〉 6 〈E14 × E24, E

′
14 × E′24〉 # 〈?, ?〉

or what is the same:

〈E11 × E21, E
′
11 × E′21〉 # 〈E13 × E23, E

′
13 × E′23〉 6 〈E14 × E24, E

′
14 × E′24〉 # 〈?× ?, ?× ?〉

This case was discussed in Case [×].

Definition A.48 (Store Precision) Ξ1 6 Ξ2 ⇐⇒ Ξ1 = Ξ′1, α := G1, Ξ2 = Ξ′2, α := G2, G1 6 G2

and Ξ′1 6 Ξ′2, or Ξ1 = Ξ2 = ·.

Definition A.49 (Typing Environment Precision) Γ1 v Γ2 ⇐⇒ Γ1 = Γ′1, x : G1, Γ2 = Γ′2, x : G2,
G1 6 G2 and Γ′1 v Γ′2, or Γ1 = Γ2 = ·.

Proposition A.50 (Lift Environment Precision) If G1 6 G2 and Ξ1 6 Ξ2, then Ĝ1 6 Ĝ2, where
Ĝ1 = liftΞ1

(G1) and Ĝ2 = liftΞ2
(G2).

Proof. Remember that

liftΞ(G) =

liftΞ(G1)→ liftΞ(G2) G = G1 → G2

∀X.liftΞ(G1) G = ∀X.G1

liftΞ(G1)× liftΞ(G2) G = G1 ×G2

αliftΞ (Ξ(α)) G = α

G otherwise

The prove follows by the definition of Ĝ1 = liftΞ1
(G1) and induction on the structure of the

type.

Case (Gi = B). The result follows immediately due to B̂ = B 6 B = B̂.

Case (Gi = X). The result follows immediately due to X̂ = X 6 X = X̂.

Case (Gi = α). We are required to prove that αliftΞ1
(Ξ1(α)) 6 αliftΞ2

(Ξ2(α)), or what is the same
liftΞ1

(Ξ1(α)) 6 liftΞ2
(Ξ2(α)). Note that Ξ1(α) 6 Ξ2(α) due to Ξ1 6 Ξ2. The result follows

immediately by the induction hypothesis on Ξ1(α) 6 Ξ2(α) and Ξ1 6 Ξ2.

Case (Gi = ∀X.G′i). We know that G′1 6 G′2. We are required to prove that ∀X.liftΞ1
(G′1) 6

∀X.liftΞ2
(G′2), or what is the same liftΞ1

(G′1) 6 liftΞ2
(G′2). By the induction hypothesis on G′1 6 G

′
2

and Ξ1 6 Ξ2 the result follows immediately.

Case (Gi = G′i → G′′i). We know that G′1 6 G′2 and G′′1 6 G′′2. We are required to prove that
liftΞ1

(G′1) → liftΞ1
(G′′1) 6 liftΞ2

(G′2) → liftΞ2
(G′′2), or what is the same liftΞ1

(G′1) 6 liftΞ2
(G′2) and

liftΞ1
(G′′1) 6 liftΞ2

(G′′2). By the induction hypothesis on G′1 6 G′2 and G′′1 6 G′′2 with Ξ1 6 Ξ2 the
result follows immediately.

Case (Gi = G′i ×G′′i). This case is similar to the function case above.

Case (G1 = ?). Then G2 = ?. The result follows immediately due to ?̂ = ? 6 ? = ?̂.

Case (G2 = ?). Note that Ĝ2 = ?̂ = ?. Therefore, we are required to prove that Ĝ1 6 ?.

172

• Case (G1 = B). The result follows immediately, B̂ = B 6 ?.

• Case (G1 = X). This case is not possible due to X 66 ?.

• Case (G1 = α). This case is not possible due to α 66 ?.

• Case (G1 = ∀X.G′1). This case is not possible due to ∀X.G′1 66 ?.

• Case (G1 = G′1 → G′2). We are required to prove that liftΞ1
(G′1)→ liftΞ2

(G′2) 6 ?, or what is
the same liftΞ1

(G′1)→ liftΞ2
(G′2) 6 ?→ ?, which follows similar to the function case above.

• Case (G1 = G′1 × G′2). We are required to prove that liftΞ1
(G′1) × liftΞ2

(G′2) 6 ?, or what is
the same liftΞ1

(G′1)× liftΞ2
(G′2) 6 ?× ?, which follows similar to the pair case above.

Proposition A.51 (Unlift Evidence Types Preserves Precision) If E1 6 E2 then unlift(E1) 6
unlift(E2).

Proof. Remember that

unlift(E) =

B E = B

unlift(E1)→ unlift(E2) E = E1 → E2

∀X.unlift(E1) E = ∀X.E1

unlift(E1)× unlift(E2) E = E1 × E2

α E = αE1

X E = X

? E = ?

The prove follows by the definition of unlift(E1) and induction on the structure of the type.

Case (Gi = B). The result follows immediately due to unlift(B) = B 6 B = unlift(B).

Case (Gi = X). The result follows immediately due to unlift(X) = X 6 X = unlift(X).

Case (Gi = αE
′
i). The result follows immediately due to unlift(αE

′
1) = α 6 α = unlift(αE

′
2).

Case (Ei = ∀X.E′i). We know that E′1 6 E′2. We are required to prove that ∀X.unlift(E′1) 6
∀X.unlift(E′2), or what is the same unlift(E′1) 6 unlift(E′2). By the induction hypothesis on E′1 6 E

′
2

the result follows immediately.

Case (Ei = E′i → E′′i). We know that E′1 6 E′2 and E′′1 6 E′′2 . We are required to prove that
unlift(E′1)→ unlift(E′′1) 6 unlift(E′2)→ unlift(E′′2), or what is the same unlift(E′1) 6 unlift(E′2) and
unlift(E′′1) 6 unlift(E′′2). By the induction hypothesis on E′1 6 E′2 and E′′1 6 E′′2 the result follows
immediately.

Case (Ei = E′i × E′′i). This case is similar to the function case above.

Case (E1 = ?). Then E2 = ?. The result follows immediately due to unlift(?) = ? 6 ? = unlift(?).

Case (E2 = ?). Note that unlift(E2) = unlift(?) = ?. Therefore, we are required to prove that
unlift(E1) 6 ?.

• Case (E1 = B). The result follows immediately, unlift(B) = B 6 ?.

173

• Case (E1 = X). This case is not possible due to X 66 ?.

• Case (E1 = α). This case is not possible due to α 66 ?.

• Case (E1 = ∀X.E′1). This case is not possible due to ∀X.E′1 66 ?.

• Case (E1 = E′1 → E′2). We are required to prove that unlift(E′1)→ unlift(E′2) 6 ?, or what is
the same unlift(E′1)→ unlift(E′2) 6 ?→ ?, which follows similar to the function case above.

• Case (E1 = E′1 × E′2). We are required to prove that unlift(E′1) × unlift(E′2) 6 ?, or what is
the same unlift(E′1)× unlift(E′2) 6 ?× ?, which follows similar to the pair case above.

Proposition A.52 If ε1 6 ε2, G1 6 G2, Ξ1 6 Ξ2, α := G1 ∈ Ξ1, α := G2 ∈ Ξ2 and ε1[α̂1/X] is
defined, then

• ε1[α̂1/X] 6 ε2[α̂2/X].

• 〈E∗1 [α̂1/X], E∗1 [Ĝ1/X]〉 6 〈E∗2 [α̂2/X], E∗2 [Ĝ2/X]〉.

where E∗1 = liftΞ1
(unlift(π2(ε1))), E∗2 = liftΞ2

(unlift(π2(ε2))), α̂1 = liftΞ1
(α1), α̂2 = liftΞ2

(α2),

Ĝ1 = liftΞ1
(G1) and Ĝ2 = liftΞ2

(G2).

Proof. Note that α̂1 6 α̂2 and Ĝ1 6 Ĝ2 by Proposition A.50. Suppose that ε1 = 〈E,E′〉 and
ε2 = 〈E′′, E′′′〉. We are required to prove that

ε1[α̂1/X] = 〈E[α̂1/X], E′[α̂1/X]〉 6 〈E′′[α̂2/X], E′′′[α̂2/X]〉 = ε2[α̂2/X]

ε1
∗ = 〈E∗1 [α̂1/X], E∗1 [Ĝ1/X]〉 6 〈E∗2 [α̂2/X], E∗2 [Ĝ2/X]〉 = ε2

∗

We follow by case analysis on the evidence type, the definition of consistent transitivity for =
and the definition of precision.

Case (εi = 〈B,B〉). The results follows immediately because ε1[α̂1/X] = ε2[α̂2/X] = ε1
∗ = ε2

∗ =
〈B,B〉.
Case (εi = 〈X,X〉). We are required to prove that ε1[α̂1/X] = 〈α̂1, α̂1〉 6 〈α̂2, α̂2〉 = ε2[α̂2/X],
which follows immediately due to α̂1 6 α̂2. Also, we are required to prove that ε1

∗ = 〈α̂1, Ĝ1〉 6
〈α̂2, Ĝ2〉 = ε2

∗, which follows immediately due to α̂1 6 α̂2 and Ĝ1 6 Ĝ2.

Case (εi = 〈Y, Y 〉). The results follows immediately because ε1[α̂1/X] = ε2[α̂2/X] = ε1
∗ = ε2

∗ =
〈Y, Y 〉.
Case (εi = 〈βEi , E′i〉). The results follows immediately because ε1[α̂1/X] = 〈βE1 , E′1〉 6 〈βE2 , E′2〉 =
ε2[α̂2/X] by premise (note that X can not be free in 〈βEi , E′i〉). Also, we are required to prove that
ε1
∗ 6 ε2

∗, but the result follows immediately by Preposition A.51 and Proposition A.50.

Case (εi = 〈Ei, βE
′
i〉). Similar to the previous case.

174

Case (εi = 〈∀Y.Ei, ∀Y.E′i〉). By the definition of 6, we know that 〈E1, E
′
1〉 6 〈E2, E

′
2〉. We are

required to prove that

ε1[α̂1/X] = 〈∀Y.E1[α̂1/X],∀Y.E′1[α̂1/X]〉 6 〈∀Y.E2[α̂2/X],∀Y.E′2[α̂2/X]〉 = ε2[α̂2/X]

or what is the same

〈E1, E
′
1〉[α̂1/X] = 〈E1[α̂1/X], E′1[α̂1/X]〉 6 〈E2[α̂2/X], E′2[α̂2/X]〉 = 〈E2, E

′
2〉[α̂2/X]

By the induction hypothesis on 〈E1, E
′
1〉 6 〈E2, E

′
2〉 the result follows immediately.

Also we are required to prove

ε1
∗ = 〈E∗1 [α̂1/X], E∗1 [Ĝ1/X]〉 6 〈E∗2 [α̂2/X], E∗2 [Ĝ2/X]〉 = ε2

∗

Note that E∗1 = liftΞ1
(unlift(∀Y.E′1)) = ∀Y.liftΞ1

(unlift(E′1)) = ∀Y.E∗11 and E∗2 = liftΞ2
(unlift(∀Y.E′2)) =

∀Y.liftΞ2
(unlift(E′2)) = ∀Y.E∗22. Therefore, we are required to prove

〈E∗11[α̂1/X], E∗11[Ĝ1/X]〉 6 〈E∗22[α̂2/X], E∗22[Ĝ2/X]〉

By the induction hypothesis on 〈E1, E
′
1〉 6 〈E2, E

′
2〉 the result follows immediately.

Case (εi = 〈E1i → E2i, E
′
1i → E′2i〉). By the definition of 6, we know that 〈E11, E

′
11〉 6 〈E12, E

′
12〉

and 〈E21, E
′
21〉 6 〈E22, E

′
22〉. We are required to prove that

ε1[α̂1/X] = 〈E11[α̂1/X]→ E12[α̂1/X], E′11[α̂1/X]→ E′12[α̂1/X]〉 6

〈E12[α̂2/X]→ E21[α̂2/X], E′12[α̂2/X]→ E′22[α̂2/X]〉 = ε2[α̂2/X]

or what is the same

〈E11[α̂1/X], E′11[α̂1/X]〉 6 〈E12[α̂2/X], E′12[α̂2/X]〉

and
〈E12[α̂1/X], E′12[α̂1/X]〉 6 〈E21[α̂2/X], E′22[α̂2/X]〉

By the induction hypothesis on 〈E11, E
′
11〉 6 〈E12, E

′
12〉 and 〈E21, E

′
21〉 6 〈E22, E

′
22〉 the result

follows immediately.

Also we are required to prove

ε1
∗ = 〈E∗1 [α̂1/X], E∗1 [Ĝ1/X]〉 6 〈E∗2 [α̂2/X], E∗2 [Ĝ2/X]〉 = ε2

∗

Note that E∗1 = liftΞ1
(unlift(E′11 → E′12)) = liftΞ2

(unlift(E′11)) → liftΞ2
(unlift(E′12)) = E∗11 →

E∗12 and E∗2 = liftΞ2
(unlift(E′21 → E′22)) = liftΞ2

(unlift(E′21)) → liftΞ2
(unlift(E′22)) = E∗21 → E∗22.

Therefore, we are required to prove

〈E∗11[α̂1/X], E∗11[Ĝ1/X]〉 6 〈E∗21[α̂2/X], E∗21[Ĝ2/X]〉

and
〈E∗12[α̂1/X], E∗12[Ĝ1/X]〉 6 〈E∗22[α̂2/X], E∗22[Ĝ2/X]〉

By the induction hypothesis on 〈E11, E
′
11〉 6 〈E12, E

′
12〉 and 〈E21, E

′
21〉 6 〈E22, E

′
22〉 the result

follows immediately.

175

Case (εi = 〈E1i × E2i, E
′
1i × E′2i〉). Similar to the function case.

Case (ε1 = 〈?, ?〉). Note that if ε1 = 〈?, ?〉 then ε2 = 〈?, ?〉. Therefore, the result follows immediately
because ε1[α̂1] = ε2[α̂2] = ε1

∗ = ε2
∗ = 〈?, ?〉. This case is trivial,

Case (ε2 = 〈?, ?〉). Note that ε2[α̂2] = ε2
∗ = 〈?, ?〉. Therefore, we are required to prove that

ε1[α̂1] 6 〈?, ?〉 and ε1
∗ 6 〈?, ?〉.

• Case (ε1 = 〈B,B〉). The result follows immediately, ε1[α̂1/X] = ε1
∗ = 〈B,B〉 6 〈?, ?〉.

• Case (ε1 = 〈X,X〉). This case is not possible due to 〈X,X〉 66 〈?, ?〉.

• Case (ε1 = 〈αE1 , E′1〉). This case is not possible due to 〈αE1 , E′1〉 66 〈?, ?〉.

• Case (ε1 = 〈E1, α
E′1〉). This case is not possible due to 〈E1, α

E′1〉 66 〈?, ?〉.

• Case (ε1 = 〈∀Y.E1,∀Y.E′1〉). This case is not possible due to 〈∀Y.E1, ∀Y.E′1〉 66 〈?, ?〉.

• Case (ε1 = 〈E11 → E12, E
′
11 → E′12〉). We are required to prove that ε1[α̂1] 6 〈?, ?〉 and

ε1
∗ 6 〈?, ?〉, or what is the same ε1[α̂1] 6 〈?→ ?, ?→ ?〉 and ε1

∗ 6 〈?→ ?, ?→ ?〉, which
follows similar to the function case above.

• Case (ε1 = 〈E11 × E12, E
′
11 × E′12〉). We are required to prove that ε1[α̂1] 6 〈?, ?〉 and ε1

∗ 6
〈?, ?〉, or what is the same ε1[α̂1] 6 〈?× ?, ?× ?〉 and ε1

∗ 6 〈?× ?, ?× ?〉, which follows similar
to the pair case above.

Proposition A.53 If ε1 v ε2, G1 6 G2, Ξ1 6 Ξ2, α := G1 ∈ Ξ1, α := G2 ∈ Ξ2 and ε1[α̂1/X] is
defined, then ε1[α̂1/X] v ε2[α̂2/X], where α̂1 = liftΞ1

(α) and α̂2 = liftΞ2
(α).

Proof. Similar to Proposition A.52.

Proposition A.54 (Monotonicity of Evidence Instantiation) If ε1 6 ε2, G1 6 G2, Ξ1 6 Ξ2,
α := G1 ∈ Ξ1, α := G2 ∈ Ξ2 and ε1[α̂1] is defined, then

• α̂1 6 α̂2.

• ε1[α̂1] 6 ε2[α̂2].

• ε1out 6 ε2out .

where α̂1 = liftΞ1
(α) and α̂2 = liftΞ2

(α).

Proof. This result α̂1 6 α̂2 follows immediately by the Proposition A.50.

Remember that

εout , 〈E∗[αE], E∗[E
′]〉 where E∗= liftΞ(unlift(π2(ε))), αE = liftΞ′(α), E′= liftΞ(G′)

176

Note that ε1[α̂1] only succeed if ε1 = 〈∀X.E,∀X.E′〉. Since ε1 6 ε2 and ε1 = 〈∀X.E,∀X.E′〉,
then ε2 = 〈∀X.E′′,∀X.E′′′〉. Let suppose that ε′1 = 〈E,E′〉 and ε′2 = 〈E′′, E′′′〉. Then we are
required to prove that

ε1[α̂1] = ε′1[α̂1/X] = 〈E[α̂1/X], E′[α̂1/X]〉 6 〈E′′[α̂2/X], E′′′[α̂2/X]〉 = ε′2[α̂2/X] = ε2[α̂2]

ε1out = 〈E∗1 [α̂1/X], E∗1 [Ĝ1/X]〉 6 〈E∗2 [α̂2/X], E∗2 [Ĝ2/X]〉 = ε2out

where E∗1 = liftΞ1
(unlift(E′)), E∗2 = liftΞ2

(unlift(E′′′)), Ĝ1 = liftΞ1
(G1) and Ĝ2 = liftΞ2

(G2).

By the Proposition A.52 the result follows immediately.

Proposition A.55 If G∗1 v G∗2 and G′1 v G′2 then G∗1[G′1/X] v G∗2[G′2/X].

Proof. Follow by induction on G∗1 v G∗2.

Case (B v B). The results follows immediately due to B[G′1/X] = B v B = B[G′2/X].

Case (Y v Y). If Y = X, the results follows immediately due to X[G′1/X] = G′1 v G′2 = X[G′2/X]
and G′1 v G′2 by premise. If Y 6 X, the results, also, follows immediately due to Y [G′1/X] = Y v
Y = Y [G′2/X].

Case (α v α). The results follows immediately due to α[G′1/X] = α v α = α[G′2/X].

Case (G v ?). The results follows immediately due to G[G′1/X] v ? = ?[G′2/X].

Case (∀X.G1 v ∀X.G2). We know that

G1 v G2

∀X.G1 v ∀X.G2

By the definition of v, we know that G1 v G2. We are required to prove that

(∀X.G1)[G′1/X] = (∀X.G1[G′1/X]) v (∀X.G2[G′2/X]) = (∀X.G2)[G′2/X]

Or what is the same that (G1[G′1/X]) v (G2[G′2/X]). But the result follows immediately by the
induction hypothesis on G1 v G2.

Case (G1 → G2 v G3 → G4). We know that

G1 v G3 G2 v G4

G1 → G2 v G3 → G4

By the definition of v, we know that G1 v G3 and G2 v G4. We are required to prove that

(G1 → G2)[G′1/X] = (G1[G′1/X]→ G2[G′1/X]) v (G3[G′2/X]→ G4[G′2/X]) = (G3 → G4)[G′2/X]

Or what is the same that G1[G′1/X] v G3[G′2/X] and G2[G′1/X] v G4[G′2/X]. But the result
follows immediately by the induction hypothesis on G1 v G3 and G2 v G4.

Case (G1 ×G2 v G3 ×G4). We know that

G1 v G3 G2 v G4

G1 ×G2 v G3 ×G4

By the definition of v, we know that G1 v G3 and G2 v G4. We are required to prove that

(G1 ×G2)[G′1/X] = (G1[G′1/X]×G2[G′1/X]) v (G3[G′2/X]×G4[G′2/X]) = (G3 ×G4)[G′2/X]

Or what is the same that G1[G′1/X] v G3[G′2/X] and G2[G′1/X] v G4[G′2/X]. But the result
follows immediately by the induction hypothesis on G1 v G3 and G2 v G4.

177

Proposition A.56 If G1 v G2 and G′1 6 G
′
2 then G1[G′1/X] v G2[G′2/X].

Proof. By Proposition A.61 and Proposition A.55 the results follows immediately.

Proposition A.57 If G1 6 G2 and G′1 6 G
′
2 then G1[G′1/X] 6 G2[G′2/X].

Proof. Straightforward induction on G1 6 G2. Very similar to Proposition A.55.

Proposition A.58 If G1 _ G2 then G1[α/X] _ G2[α/X].

Proof. By induction on the definition of G1 _ G2.

A.5.3 Weak Dynamic Gradual Guarantee for GSF

In this section, we present the proof of the weak dynamic gradual guarantee for GSFε previously
presented and the auxiliary Propositions an Definitions.

Proposition A.59 (Monotonicity of Evidence Substitution) If Ω ` Ξ1 . s
∗
1 : G∗1 6 Ξ2 . s

∗
2 : G∗2 and

Ξ1 6 Ξ2, then Ω[α/X] ` Ξ1 .s
∗
1[α̂1/X] : G∗1[α/X] 6 Ξ2 .s

∗
2[α̂2/X] : G∗2[α/X], where α := G∗∗1 ∈ Ξ1,

α := G∗∗2 ∈ Ξ2, α̂1 = liftΞ1
(α) and α̂2 = liftΞ2

(α).

Proof. We follow by induction on Ω ` Ξ1 . s
∗
1 : G∗1 6 Ξ2 . s

∗
2 : G∗2. We avoid the notation

Ω ` Ξ1 . s
∗
1 : G∗1[α/X] 6 Ξ2 . s

∗
2 : G∗2[α/X], and use s∗1 6 s

∗
2 instead, for simplicity, when the typing

environments are not relevant.

Case (b 6 b). The results follows immediately due to b[α̂1/X] = b 6 b = b[α̂2/X].

Case (x 6 x). The results follows immediately due to x[α̂1/X] = x 6 x = x[α̂2/X].

Case ((λx : G1.t1) 6 (λx : G2.t2)). We know that

Ω ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2 G1 v G2

(λx : G1.t1) 6 (λx : G2.t2)

We are required to show

(λx : G1.t1)[α̂1/X] = (λx : G1[α/X].t1[α̂1/X]) 6 (λx : G2[α/X].t2[α̂2/X]) = (λx : G2.t2)[α̂2/X]

Note that G1[α/X] v G2[α/X], by Proposition A.56.
Therefore, we are required to prove

Ω, x : G1[α/X] v G2[α/X] ` Ξ1 . (t1[α̂1/X]) : G′1[α/X] 6 Ξ2 . (t2[α̂2/X]) : G′2[α/X]

But the results follows immediately by the induction hypothesis on

Ω, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2

178

Case ((ΛY.t1) 6 (ΛY.t2)). We know that

t1 6 t2
(ΛY.t1) 6 (ΛY.t2)

We are required to show

(ΛY.t1)[α̂1/X] = (ΛY.t1[α̂1/X]) 6 (ΛY.t2[α̂2/X]) = (ΛY.t2)[α̂2/X]

Therefore, we are required to prove (t1[α̂1/X]) 6 (t2[α̂2/X]). But the results follows immediately
by the induction hypothesis on t1 6 t2.

Case (t1 t2 6 t1 t′2). We know that

t1 6 t′1 t2 6 t′2
t1 t2 6 t1 t′2

We are required to show

(t1 t2)[α̂1/X] = t1[α̂1/X] t2[α̂1/X]) 6 (t′1[α̂2/X] t′2[α̂2/X]) = (t′1 t
′
2)[α̂2/X]

Therefore, we are required to prove t1[α̂1/X] 6 t′1[α̂2/X] and t2[α̂1/X] 6 t′2[α̂2/X]. But the results
follows immediately by the induction hypothesis on t1 6 t′1 and t2 6 t′2.

Case (t1 [G1] 6 t2 [G2]). We know that

t1 6 t2 G1 6 G2

t1 [G1] 6 t2 [G2]

We are required to show

(t1 [G1])[α̂1/X] = (t1[α̂1/X] [G1[α/X]]) 6 (t2[α̂2/X] [G2[α/X]]) = (t2 [G2])[α̂2/X]

Note that G1[α/X] 6 G2[α/X] by Proposition A.57 and G1 6 G2.
Therefore, we are required to prove (t1[α̂1/X]) 6 (t2[α̂2/X]). But the results follows immediately
by the induction hypothesis on t1 6 t2.

Case (ε1s1 :: G1 6 ε2s2 :: G2).

ε1 6 ε2 s1 6 s2 G1 v G2

ε1s1 :: G1 6 ε2s2 :: G2

We are required to show

(ε1s1 :: G1)[α̂1/X] = (ε1[α̂1/X]s1[α̂1/X] :: G1[α/X]) 6 (ε2[α̂2/X]s2[α̂2/X] :: G2[α/X]) = (ε2s2 :: G2)[α̂2/X]

Note that by Proposition A.52 and ε1 6 ε2, we know that ε1[α̂1/X] 6 ε2[α̂2/X]. Also, by
Proposition A.56 and G1 v G2, we know that G1[α/X] v G2[α/X].
Therefore, we are required to prove (s1[α̂1/X]) 6 (s2[α̂2/X]). But the results follows immediately
by the induction hypothesis on s1 6 s2.

Case (εG1t
′
1 :: G1 6 εG2t

′
2 :: G2).

Ω ` Ξ1 . t
′
1 : G′1 6 Ξ2 . t

′
2 : G′2 G1 v G2 G′1 _ G1 G′2 _ G2

Ω ` Ξ1 . εG1(t′1 :: G1 : G1 6 Ξ2 . εG2t
′
2 :: G2 : G2

We are required to show

(εG1t
′
1 :: G1)[α̂1/X] = (εG1 [α̂1/X]t′1[α̂1/X] :: G1[α/X]) 6

179

(εG2 [α̂2/X]t′2[α̂2/X] :: G2[α/X]) = (εG2t
′
2 :: G2)[α̂2/X]

Note that since G1 v G2 and Proposition A.78, we know that εG1 v εG2 . Note that by Proposi-
tion A.53 and εG1 v εG2 , we know that εG1 [α̂1/X] v εG2 [α̂2/X]. Also, by Proposition A.56 and
G1 v G2, we know that G1[α/X] v G2[α/X]. By Proposition A.58, we know that G′1[α/X] _
G1[α/X] and G′2[α/X] _ G2[α/X]. Therefore, we are required to prove (t1[α̂1/X]) 6 (t2[α̂2/X]).
But the results follows immediately by the induction hypothesis on t1 6 t2.

Proposition A.60 (Substitution Preserves Precision) If Ω′, x : G1 v G2 ` Ξ1 . s1 : G′1 6 Ξ2 . s2 :
G′2 and Ω′ ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2, then Ω′ ` Ξ1 . s1[v1/x] : G′1 6 Ξ2 . s2[v2/x] : G′2.

Proof. We follow by induction on Ω′, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2. We avoid the
notation Ω′, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2, and use t1 6 t2 instead, for simplicity, when
the typing environments are not relevant. Let suppose that Ω = Ω′, x : G1 v G2.

Case (b 6 b). The result follows immediately.

Case (x 6 x). We know that

(6xε)
x : G1 v G2 ∈ Ω

Ω ` Ξ1 . x : G1 6 Ξ2 . x : G2

The result follows immediately due to Ω ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2 and

t1[v1/x] = x[v1/x] = v1 6 v2 = x[v2/x] = t2[v2/x]

Case ((λy : G′′1.t
′
1) 6 (λy : G′′2.t

′
2)). We know that

Ω, y : G′′1 v G′′2 ` Ξ1 . t
′
1 : G′′′1 6 Ξ2 . t

′
2 : G′′′2 G′′1 v G′′2

Ω ` Ξ1 . (λy : G′′1.t
′
1) : G′′1 → G′′′1 6 Ξ2 . (λy : G′′2.t

′
2) : G′′2 → G′′′2

Note that we are required to prove that Ω ` Ξ1 . (λy : G′′1.t
′
1) : G′′1 → G′′′1 6 Ξ2 . (λy : G′′2.t

′
2) : G′′2 →

G′′′2 .
(λy : G′′1.t

′
1)[v1/x] = (λy : G′′1.t

′
1[v1/x]) 6 (λy : G′′2.t

′
2[v2/x]) = (λy : G′′2.t

′
2)[v2/x]

or what is the same Ω, y : G′′1 v G′′2 ` Ξ1 . t
′
1[v1/x] : G′′′1 6 Ξ2 . t

′
2[v2/x] : G′′′2 . But the result follows

immediately by the induction hypothesis on Ω, y : G′′1 v G′′2 ` Ξ1 . t
′
1 : G′′′1 6 Ξ2 . t

′
2 : G′′′2 .

Case ((ΛX.t′1) 6 (ΛX.t′2)). We know that

Ω ` Ξ1 . t
′
1 : G′′1 6 Ξ2 . t

′
2 : G′′2

Ω ` Ξ1 . (ΛX.t′1) : ∀X.G′′1 6 Ξ2 . (ΛX.t′2) : ∀X.G′′2

Note that we are required to prove that Ω ` Ξ1 . (ΛX.t′1) : ∀X.G′′1 6 Ξ2 . (ΛX.t′2) : ∀X.G′′2.

(ΛX.t′1)[v1/x] = (ΛX.t′1[v1/x]) 6 (ΛX.t′2[v2/x]) = (ΛX.t′2)[v2/x]

or what is the same Ω ` Ξ1 . t
′
1[v1/x] : G′′1 6 Ξ2 . t

′
2[v2/x] : G′′2. But the result follows immediately

by the induction hypothesis on Ω ` Ξ1 . t
′
1 : G′′1 6 Ξ2 . t

′
2 : G′′2.

180

Case (t′1 t
′
2 6 t

′′
1 t
′′
2). We know that

Ω ` Ξ1 . t
′
1 : G′′1 → G′′′1 6 Ξ2 . t

′
2 : G′′2 → G′′′2 Ω ` Ξ1 . t

′′
1 : G′′1 6 Ξ2 . t

′′
2 : G′′2

Ω ` Ξ1 . t
′
1 t
′′
1 : G′′′1 6 Ξ2 . t

′
2 t
′′
2 : G′′′2

Note that we are required to prove that Ω ` Ξ1 . t
′
1 t
′′
1 : G′′′1 6 Ξ2 . t

′
2 t
′′
2 : G′′′2 .

(t′1 t
′′
1)[v1/x] = t′1[v1/x] t′′1[v1/x] 6 t′2[v2/x] t′′2[v2/x] = (t′2 t

′′
2)[v2/x]

or what is the same Ω ` Ξ1 . t
′
1[v1/x] : G′′1 → G′′′1 6 Ξ2 . t

′
2[v2/x] : G′′2 → G′′′2 and Ω ` Ξ1 . t

′′
1[v1/x] :

G′′′1 6 Ξ2 . t
′′
2[v2/x] : G′′′2 . But the result follows immediately by the induction hypothesis on

Ω ` Ξ1 . t
′
1 : G′′1 → G′′′1 6 Ξ2 . t

′
2 : G′′2 → G′′′2 and Ω ` Ξ1 . t

′′
1 : G′′1 6 Ξ2 . t

′′
2 : G′′2.

Case (t′1 [G′′1] 6 t′2 [G′′2]).

Ω ` Ξ1 . t
′
1 : ∀X.G′′′1 6 Ξ2 . t

′
2 : ∀X.G′′′2 G′′1 6 G

′′
2

Ω ` Ξ1 . t
′
1 [G′′1] : G′′′1 [G′′1/X] 6 Ξ2 . t

′
2 [G′′2] : G′′′2 [G′′2/X]

Note that we are required to prove that Ω ` Ξ1 . t
′
1 [G′′1] : G′′′1 [G′′1/X] 6 Ξ2 . t

′
2 [G′′2] : G′′′2 [G′′2/X].

(t′1 [G′′1])[v1/x] = (t′1[v1/x] [G′′1]) 6 (t′2[v2/x] [G′′2]) = (t′2 [G′′2])[v2/x]

or what is the same Ω ` Ξ1 . t
′
1[v1/x] : G′′′1 [G′′1/X] 6 Ξ2 . t

′
2[v2/x] : G′′′2 [G′′2/X]. But the result

follows immediately by the induction hypothesis on Ω ` Ξ1 . t
′
1 : G′′′1 [G′′1/X] 6 Ξ2 . t

′
2 : G′′′2 [G′′2/X].

Case (ε1s
′
1 :: G′′1 6 ε1s

′
1 :: G′′1).

ε1 6 ε2 Ω ` Ξ1 . s
′
1 : G′′′1 6 Ξ2 . s

′
2 : G′′′2 G′′1 v G′′2

Ω ` Ξ1 . ε1s
′
1 :: G′′1 : G′′1 6 Ξ2 . ε2s

′
2 :: G′′2 : G′′2

Note that we are required to prove that Ω ` Ξ1 . ε1s
′
1 :: G′′1 : G′′1 6 Ξ2 . ε2s

′
2 :: G′′2 : G′′2.

(ε1s
′
1 :: G′′1)[v1/x] = (ε1s

′
1[v1/x] :: G′′1) 6 (ε2s

′
2[v2/x] :: G′′2) = (ε2s

′
2 :: G′′2)[v2/x]

or what is the same Ω ` Ξ1 . s
′
1[v1/x] : G′′′1 6 Ξ2 . s

′
2[v2/x] : G′′′2 . But the result follows immediately

by the induction hypothesis on Ω ` Ξ1 . s
′
1 : G′′′1 6 Ξ2 . s

′
2 : G′′′2 .

Case (εG′1t
′
1 :: G1 6 εG′2t

′
2 :: G′2). We know that

εG1 66 εG2 Ω ` Ξ1 . t
′
1 : G′′′1 6 Ξ2 . t

′
2 : G′′′2 G′1 v G′2 G′′1 _ G′1 G′′2 _ G′2

Ω ` Ξ1 . εG′1t
′
1 :: G′1 : G′1 6 Ξ2 . εG′2t

′
2 :: G′2 : G′2

Note that we are required to prove that

(εG′1t
′
1 :: G′1)[v1/x] = (εG′′1 t

′
1[v1/x] :: G′1) 6

(εG′2t
′
2[v2/x] :: G′′2) = (εG′2t

′
2 :: G′2)[v2/x]

or what is the same Ω ` Ξ1 . t
′
1[v1/x] : G′′′1 6 Ξ2 . t

′
2[v2/x] : G′′′2 . But the result follows immediately

by the induction hypothesis on Ω ` Ξ1 . t
′
1 : G′′′1 6 Ξ2 . t

′
2 : G′′′2 .

Proposition A.61 If G∗1 6 G
∗
2 then G∗1 v G∗2.

Proof. Examining 6 rules.

181

Case (B 6 B). The results follows immediately by the rule G v G.

Case (X 6 X). The results follows immediately by the rule G v G.

Case (α 6 α). The results follows immediately by the rule G v G.

Case (B 6 ?). The results follows immediately by the rule G v ?.

Case (G1 → G2 6 ?). The results follows immediately by the rule G v ?.

Case (G1 ×G2 6 ?). The results follows immediately by the rule G v ?.

Case (? 6 ?). The results follows immediately by the rule G v ?.

Case (∀X.G1 6 ∀X.G2). We know that

G1 6 G2

∀X.G1 6 ∀X.G2

By the induction hypothesis on G1 6 G2, we know that G1 v G2. We are required to prove that
∀X.G1 v ∀X.G2, which follows immediately by the rule

G1 v G2

∀X.G1 v ∀X.G2

Case (G1 → G2 6 G3 → G4). We know that

G1 6 G3 G2 6 G4

G1 → G2 6 G3 → G4

By the induction hypothesis on G1 6 G3 and G2 6 G4, we know that G1 v G3 and G2 v G4. We
are required to prove that G1 → G2 v G3 → G4, which follows immediately by the rule

G1 v G3 G2 v G4

G1 → G2 v G3 → G4

Case (G1 ×G2 6 G3 ×G4). We know that

G1 6 G3 G2 6 G4

G1 ×G2 6 G3 ×G4

By the induction hypothesis on G1 6 G3 and G2 6 G4, we know that G1 v G3 and G2 v G4. We
are required to prove that G1 ×G2 v G3 ×G4, which follows immediately by the rule

G1 v G3 G2 v G4

G1 ×G2 v G3 ×G4

Proposition A.62 If v1 6 t2 then t2 = v2.

Proof. Exploring 6 rules.

Proposition A.63 If ε1 6 ε2 then

• dom(ε1) 6 dom(ε2)

• cod(ε1) 6 cod(ε2)

182

• pi(ε1) 6 pi(ε2)

• schmu(ε1) 6 schmu(ε2)

Proof. By inspecting the evidence shape and the definition of ε1 6 ε2.

Proposition A.64 If ε Ξ; ∆ ` G′′ ∼ G′ and G′ _ G, then ε # εG = ε, where εG = I(Ξ, ()G,G).

Proof. By Lemma A.115 and definition of G′ _ G and ε # εG = ε.

Proposition A.65 If Ξ1 ` t1 6 Ξ2 ` t2 and Ξ1 . t1 −−→ Ξ′1 . t
′
1, then Ξ2 . t2 −−→ Ξ′2 . t

′
2 and

Ξ′1 ` t′1 6 Ξ′2 ` t′2.

Proof. If Ξ1 ` t1 6 Ξ2 ` t2, we know that ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, Ξ1 6 Ξ2, Ξ1 ` t1 : G1 and
Ξ2 ` t2 : G2, for some G1 and G2. We follow by induction on ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2. We
avoid the notation ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, and use t1 6 t2 instead, for simplicity, when the
typing environments are not relevant.

Case (6bε). This case does not applies because b is not a term t, therefore it can not reduce.

Case (6xε). This case does not applies because x can not reduce.

Case (6λε). This case does not applies because λx : G∗1.t
∗
1 is not a term t, therefore it can not

reduce.

Case (6Λε). This case does not applies because ΛX.t∗1 is not a term t, therefore it can not reduce.

Case ((6appε) t
∗
11 t
∗
12 6 t

∗
21 t
∗
22). We know that

t∗11 6 t
∗
21 t∗12 6 t

∗
22

t∗11 t
∗
12 6 t

∗
21 t
∗
22

Also, since Ξ1 . t1 −−→ Ξ′1 . t
′
1, we know that t∗11 = ε11λx : G∗1.t11 :: G12 → G11 and t∗12 =

v12 = ε12u12 : G12. By Proposition A.62, we know that t∗21 = ε21λx : G∗2.t21 :: G22 → G21 and
t∗22 = v22 = ε22u22 : G22. By the reduction rules, we know that

Ξ1.(ε11λx : G∗1.t11 :: G12 → G11) (ε12u12 : G12) −−→ Ξ1.cod(ε11)(t11[((ε12 # dom(ε11))u11 :: G∗1)/x]) :: G11

By Proposition A.63, we know that dom(ε11) 6 dom(ε21) and cod(ε11) 6 cod(ε21). Therefore,
by Proposition 3.20 and ε12 6 ε22, we know that (ε12 # dom(ε11)) 6 (ε22 # dom(ε21)).

Therefore, we know that

Ξ2.(ε21λx : G∗2.t21 :: G22 → G21) (ε22u22 : G22) −−→ Ξ2.cod(ε21)(t21[((ε22 # dom(ε21))u21 :: G∗2)/x]) :: G21

Thus, by the 6 rules, u11 6 u21 and G∗1 v G∗2, we know that

((ε12 # dom(ε11))u11 :: G∗1) 6 ((ε22 # dom(ε21))u21 :: G∗2)

183

By Proposition A.60, we know that

(t11[((ε12 # dom(ε11))u11 :: G∗1)/x]) 6 (t21[((ε22 # dom(ε21))u21 :: G∗2)/x])

Finally, since cod(ε11) 6 cod(ε21) and G11 v G21 and the 6 rules the result holds.

Ξ1 ` cod(ε11)(t11[((ε12 # dom(ε11))u11 :: G∗1)/x]) :: G11 6 Ξ2 ` cod(ε21)(t21[((ε22 # dom(ε21))u21 :: G∗2)/x]) :: G21

Case ((6appGε) t
∗
1 [G∗1] 6 t∗2 [G∗2]). We know that

t∗1 6 t
∗
2 G∗1 6 G

∗
2

t∗1 [G∗1] 6 t∗2 [G∗2]

Also, since Ξ1 . t1 −−→ Ξ′1 . t
′
1, we know that t∗1 = ε11ΛX.t11 :: ∀X.G11. By Proposition A.62, we

know that t∗2 = ε22ΛX.t22 :: ∀X.G22. By the reduction rules, we know that

Ξ1 . (ε11ΛX.t11 :: ∀X.G11)[G∗1] −−→ Ξ′1 . ε11out(ε11[α̂1]t11[α̂1/X] :: G11[α/X]) :: G11[G∗1/X]

where Ξ′1 = Ξ1, α := G∗1 and α̂1 = liftΞ′1(α).

By Proposition A.54, we know that ε11out 6 ε22out and ε11[α̂1] 6 ε22[α̂2].

Therefore, we know that

Ξ2 . (ε22ΛX.t22 :: ∀X.G22)[G∗2] −−→ Ξ′2 . ε22out(ε22[α̂2]t22[α̂2/X] :: G22[α/X]) :: G22[G∗2/X]

where Ξ′2 = Ξ2, α := G∗2 and α̂2 = liftΞ′2(α).

By Proposition A.59 we know that t11[α̂1/X] 6 t22[α̂2/X]. By Proposition A.55 and Proposi-
tion A.56, we know that G11[α/X] 6 G22[α/X] and G11[G∗1/X] 6 G22[G∗2/X], respectively.

Finally, by the 6 rules the result holds.

Ξ′1.ε1out(ε1[α̂1]t1[α̂1/X] :: G1[α/X]) :: G1[G∗1/X] 6 Ξ′2.ε22out(ε22[α̂2]t22[α̂2/X] :: G22[α/X]) :: G22[G∗2/X]

Case ((6ascε) ε1s1 :: G∗1 6 ε2s2 :: G∗2). We know that

ε1 6 ε2 s1 6 s2 G∗1 v G∗2
ε1s1 :: G∗1 6 ε2s2 :: G∗2

Also, since Ξ1 . t1 −−→ Ξ′1 . t
′
1, we know that s1 = (ε11u11 :: G11). By Proposition A.62, we

know that s2 = (ε2u2 :: G2). By the reduction rules, we know that

Ξ1 . ε1(ε11u11 :: G11) :: G∗1 −−→ Ξ1 . (ε11 # ε1)u11 :: G∗1

184

By the 6 rules, we know that ε11 6 ε22 and ε1 6 ε2. Therefore, by Proposition 3.20, we know
that (ε11 # ε1) 6 (ε22 # ε2).

Therefore, we know that

Ξ2 . ε2(ε22u22 :: G22) :: G∗2 −−→ Ξ2 . (ε22 # ε2)u22 :: G∗2

Thus, by the 6 rules, u11 6 u22 and G∗1 v G∗2, the result holds.

Ξ1 ` (ε11 # ε1)u11 :: G∗1 6 Ξ2 ` (ε22 # ε2)u22 :: G∗2

Case ((6Mascε) εG∗1t
∗
1 :: G∗1 6 εG∗2t

∗
2 :: G∗2). Since Ξ1.t1 −−→ Ξ′1.t

′
1, we know that t1 = εG∗1(ε11u11 ::

G∗∗1) :: G∗1, where t∗1 = (ε11u11 :: G∗∗1). By Proposition A.62, we know that t2 = εG∗2(ε22u22 :: G∗∗2) ::
G∗2, where t∗2 = (ε22u22 :: G∗∗2). We know by rules 6ascε and 6Mascε that

εG∗1 v εG∗2 εG∗1 = I(Ξ1, ()G
∗
1, G

∗
1) εG∗2 = I(Ξ2, ()G

∗
2, G

∗
2) G∗∗1 _ G∗1 G∗∗2 _ G∗2

ε11 6 ε22 Ω ` Ξ1 . u11 : G∗∗1 6 Ξ2 . u22 : G∗∗2 G∗1 v G∗2 G∗∗1 v G∗∗2
Ω ` Ξ1 . εG∗1(ε11u11 :: G∗∗1) :: G∗1 : G∗1 6 Ξ2 . εG∗2(ε22u22 :: G∗∗2) :: G∗2 : G∗2

By the reduction rules, we know that

Ξ1 . εG∗1(ε11u11 :: G∗∗1) :: G∗1 −−→ Ξ1 . (ε11 # εG∗1)u11 :: G∗1

We know by the definition of ` Ξ1 . εG∗1(ε11u11 :: G∗∗1) :: G∗1 : G∗1 6 Ξ2 . εG∗2(ε22u22 :: G∗∗2) ::
G∗2 : G∗2 that Ξ1 ` (ε11u11 :: G∗∗1) : G∗∗1 and Ξ2 ` (ε22u22 :: G∗∗2) : G∗∗2 , and therefore, ε11 Ξ1 `
G∗∗∗1 ∼ G∗∗1 and ε22 Ξ2 ` G∗∗∗2 ∼ G∗∗2 . We know that ε11 6 ε22 and εG∗1 v εG∗2 . Therefore, by
Lemma A.64 and G∗∗1 _ G∗1 and G∗∗2 _ G∗2, we know that (ε11 # εG∗1) = ε11 and (ε22 # εG∗2) = ε22.

Therefore, we know that

Ξ2 . εG∗2(ε22u22 :: G∗∗2) :: G∗2 −−→ Ξ2 . (ε22 # εG∗2)u22 :: G∗2

Then, by the 6 rules, u11 6 u22 and G∗1 v G∗2, the result holds.

Ξ1 ` (ε11 # ε1)u11 :: G∗1 6 Ξ2 ` (ε22 # ε2)u22 :: G∗2

Proposition A.66 If Ξ1 ` t1 6 Ξ2 ` t2 and Ξ1 . t1 7−→ Ξ′1 . t
′
1, then Ξ2 . t2 7−→ Ξ′2 . t

′
2 and

Ξ′1 ` t′1 6 Ξ′2 ` t′2.

Proof. If Ξ1 ` t1 6 Ξ2 ` t2, we know that ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, Ξ1 6 Ξ2, Ξ1 ` t1 : G1

and Ξ2 ` t2 : G2. We avoid the notation ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, and use t1 6 t2 instead, for
simplicity, when the typing environments are not relevant.

By induction on reduction Ξ1 . t1 7−→ Ξ′1 . t
′
1.

Case (Ξ1 . t1 −−→ Ξ′1 . t
′
1). By Proposition A.65, we know that Ξ2 . t2 −−→ Ξ′2 . t

′
2, Ξ′1 ` t′1 6

Ξ′2 ` t′2; and the result holds immediately.

185

Case (Ξ1 . ε11t11 :: G11 7−→ Ξ′1 . ε11t
′
11 :: G11). By inspection of 6, t2 = ε22t22 :: G22, where ε11 6

ε22 or ε11 v ε22, t11 6 t22 and G11 v G22. By induction hypothesis on Ξ1 . t11 7−→ Ξ′1 . t
′
11, then

Ξ2 . t22 7−→ Ξ′2 . t
′
22, where Ξ′1 ` t′11 6 Ξ′2 ` t′22. Then, by 6, we know that Ξ′1 ` ε11t

′
11 :: G11 6

Ξ′2 ` ε22t
′
22 :: G22 and the result holds.

Case (Ξ1 . t11 t12 7−→ Ξ′1 . t
′
11 t12). By inspection of 6, t2 = t21 t22, where t11 6 t21 and t12 6 t22.

By induction hypothesis on Ξ1 . t11 7−→ Ξ′1 . t
′
11, we know that Ξ2 . t21 7−→ Ξ′2 . t

′
21, where Ξ′1 `

t′11 6 Ξ′2 ` t′21. Then, by 6, we know that Ξ′1 ` t′11 t12 6 Ξ′2 ` t′21 t22 and the result holds.

Case (Ξ1 . v11 t12 7−→ Ξ′1 . v11 t
′
12). By inspection of 6 and Proposition A.62, t2 = v21 t22, where

v11 6 v21 and t12 6 t22. By induction hypothesis on Ξ1 . t12 7−→ Ξ′1 . t
′
12, then Ξ2 . t22 7−→ Ξ′2 . t

′
22,

where Ξ′1 ` t′12 6 Ξ′2 ` t′22. Then, by 6, we know that Ξ′1 ` v11 t
′
12 6 Ξ′2 ` v21 t

′
22 and the result

holds.

Case (Ξ1 . t11 [G11] 7−→ Ξ′1 . t
′
11 [G11]). By inspection of 6, t2 = t22 [G22], where t11 6 t22 and

G11 6 G22. By induction hypothesis on Ξ1 . t11 7−→ Ξ′1 . t
′
11, we know that Ξ2 . t22 7−→ Ξ′2 . t

′
22,

where Ξ′1 ` t′11 6 Ξ′2 ` t′22. Then, by 6, we know that Ξ′1 ` t′11 [G11] 6 Ξ′2 ` t′22 [G22] and the result
holds.

Proposition A.67 (Small-step DGG6 for GSFε) Suppose Ξ1 . t1 6 Ξ2 . t2.

a. If Ξ1 . t1 7−→ Ξ′1 . t
′
1, then Ξ2 . t2 7−→ Ξ′2 . t

′
2, for some Ξ′2 and t′2 such that Ξ′1 . t

′
1 6 Ξ′2 . t

′
2.

b. If t1 = v1, then t2 = v2.

Proof. Direct by Lemma A.66 and A.62.

Proposition A.68 Let suppose Ξ1 ` t1 6 Ξ2 ` t2.

• Ξ1 . t1 7−→∗ Ξ′1 . v1 implies Ξ2 . t2 7−→∗ Ξ′2 . v2, Ξ′1 ` v1 6 Ξ′2 ` v2.

• t1 diverges implies t2 diverges.

• Ξ2 . t2 7−→∗ Ξ′2 . v2 implies Ξ1 . t1 7−→∗ Ξ′1 . v1 and Ξ′1 ` v1 6 Ξ′2 ` v2, or Ξ1 . t1 7−→∗ error.

• t2 diverges implies t1 diverges, or Ξ1 . t1 7−→∗ error.

Proof. The proof is by case analysis on the reduction of t1 or t2.

• Suppose that Ξ1 . t1 7−→∗ Ξ′1 . v1. Then Ξ2 . t2 7−→∗ Ξ′2 . v2, Ξ′1 ` v1 6 Ξ′2 ` v2 by
Proposition A.66 and Proposition A.62.

• Suppose that t1 diverges. Then t2 diverges by Proposition A.66.

• Suppose that Ξ2 . t2 7−→∗ Ξ′2 . v2. Then, the only possibilities given the two previous results
are Ξ1 . t1 7−→∗ Ξ′1 . v1 and Ξ′1 ` v1 6 Ξ′2 ` v2, or Ξ1 . t1 7−→∗ error, and the result holds.

• Suppose that t2 diverges. Then, the only possibilities given the two previous results are t1
diverges, or Ξ1 . t1 7−→∗ error, and the result holds.

186

Theorem A.69 (DGG6) Suppose t1 6 t2, ` t1 : G1, and ` t2 : G2.

a. If t1 ⇓ Ξ1 . v1, then t2 ⇓ Ξ2 . v2, · ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2 and Ξ1 6 Ξ2, for some v2 and
Ξ2.
If t1 ⇑ then t2 ⇑.

b. If t2 ⇓ Ξ2 . v2, then t1 ⇓ Ξ1 . v1, · ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2 and Ξ1 6 Ξ2, for some v1 and
Ξ1, or t1 ⇓ error.
If t2 ⇑, then t1 ⇑ or t1 ⇓ error.

Proof. Direct by Lemma A.80 and A.68.

Lemma A.70 Let ` t : G, G v G′, and t′ = t :: G′ :: G, then

• t ⇓ Ξ . v ⇐⇒ t′ ⇓ Ξ . v.

• t ⇓ error ⇐⇒ t′ ⇓ error.

Proof. Direct consequence of the weak dynamic gradual guarantee (Theorem 3.22).

Lemma A.71 Let ` t1 : G1 and ` t2 : G2 such that ` t1 t2 : G and t1 t2 ⇓ Ξ . v. Let G1 v G′1,
G2 v G′2, and G v G′, such that ` (t1 :: G′1) (t2 :: G′2) : G′. Then (t1 :: G′1) (t2 :: G′2) ⇓ Ξ . v′ such
that ` Ξ . v : G 6 Ξ . v′ : G′, for some v′.

Proof. From ` (t1 :: G′1) (t2 :: G′2) : G, we know that ` G1 ∼ G′1 and ` G2 ∼ G′2, where
` t1 : G1 ad ` t2 : G2. As G1 v G′1, and G2 v G′2, then G1pullbackG1 v G1pullbackG′1 and
G2pullbackG2 v G2pullbackG′2. Notice that if t1 t2 ⇓ v, then (t1 :: G1) (t2 :: G2) ⇓ v (trivial
ascriptions). Therefore, by (6ascv) or (6asct), ` (t1 :: G1) (t2 :: G2) : T 6 (t1 :: G′1) (t2 :: G′2) : G,
then the result holds by DGG6 (Th.3.22).

Lemma A.72 Let ` t : G such that t ⇓ Ξ . v, and G v G′. Then t :: G′ ⇓ Ξ . v′ such that
` Ξ . v : G 6 Ξ . v′ : G′, for some v′.

Direct by Th.3.22. Similar to Lemma 3.25.

Lemma A.73 Let ` t : G1 such that ` t [G2] : G and t [G2] ⇓ Ξ . v. Let G1 v G′1, G2 6 G′2, and
G v G′, such that ` (t :: G′1) [G′2] : G′. Then (t :: G′1) [G′2] ⇓ Ξ′.v′ such that ` Ξ.v : G 6 Ξ′.v′ : G′

and Ξ 6 Ξ′, for some v′ and Ξ′.

Proof. Direct by Th.3.22. Similar to Lemma 3.25.

Proposition A.74 Suppose t1 and t2 GSF terms such that · ` t1 : G1 6 t2 : G2, and their
elaborations · ` t1 tε1 : G1 and · ` t2 tε2 : G2. Then · ` · . tε1 : G1 6 · . tε2 : G2.

Proof. Direct by Prop. A.80.

187

A.5.4 Syntactic Strict Precision for GSF

Now, we present the proof of the weak dynamic gradual guarantee for GSF previously presented
and the auxiliary Propositions an Definitions.

Proposition A.75 I(Ξ, ()G1pullbackG2, G1pullbackG2) = I(Ξ, ()G1, G2)

Proof. By the definition of pullback and I(Ξ, ()G1, G2).

Proposition A.76 Ω ` Ξ1 . s1 : G1 6 Ξ2 . s2 : G2 then G1 v G2.

Proof. By the definition of pullback and I(Ξ, ()G1, G2).

Proposition A.77 If G1pullbackG2 6 G′1pullbackG′2, then

I(Ξ, ()G1, G2) = I(Ξ, ()G1pullbackG2, G1pullbackG2) 6 I(Ξ, ()G′1pullbackG′2, G
′
1pullbackG′2) = I(Ξ, ()G′1, G

′
2)

Proof. By Proposition A.75 and the definition of 6 in evidence.

Proposition A.78 If G1 6 G2, then

I(Ξ, ()G1, G1) v I(Ξ, ()G2, G2)

Proof. By the definition of I(Ξ,) and the v in evidence.

Definition A.79 Ω ≡ Γ1 v Γ2 ⇐⇒ (Ω = Ω′, x : G1 v G2, Γ1 = Γ′1, x : G1, Γ2 = Γ′2, x : G2,
G1 v G2 and Ω′ ≡ Γ′1 v Γ′2) ∨(Ω = Γ1 = Γ2 = ·).

Proposition A.80 If Ω ` Ξ1 . t
∗
1 : G∗1 6 Ξ2 . t

∗
2 : G∗2, Ω ≡ Γ1 v Γ2, Ξ1 6 Ξ2 and Ξi; ∆; Γi ` t∗i

t∗∗i : G∗i , then Ω ` Ξ1 . t
∗∗
1 : G∗1 6 Ξ2 . t

∗∗
2 : G∗2.

Proof. We follow by induction on Ω ` Ξ1 . t
∗
1 : G∗1 6 Ξ2 . t

∗
2 : G∗2. We avoid the notation

Ω ` Ξ1 . t
∗
1 : G∗1 6 Ξ2 . t

∗
2 : G∗2, and use t∗1 6 t

∗
2 instead, for simplicity, when the typing environments

are not relevant. We use metavariable v or u in GSF to range over constants, functions and type
abstractions.

Remember that

norm(t, G1, G2) = εt :: G2, where ε = I(Ξ, ()G1, G2)

By Proposition A.75 we know that

I(Ξ, ()G1, G2) = I(Ξ, ()G1pullbackG2, G1pullbackG2) = I(, ()liftΞ(G1), liftΞ(G2))

188

Case (Ω ` Ξ1 . u1 : G∗1 6 Ξ2 . u2 : G∗2). We know that

(6v)
Ω ` u1 : G∗1 6v u2 : G∗2 G∗1 6 G

∗
2

Ω ` Ξ1 . u1 : G∗1 6 Ξ2 . u2 : G∗2

(Gu)
Ξ1; ∆; Γ1 ` u1 u′1 : G∗1 εG∗1 = I(Ξ, ()G∗1, G

∗
1)

Ξ1; ∆; Γ1 ` u1 εG∗1u
′
1 :: G∗1 : G∗1

(Gu)
Ξ2; ∆; Γ2 ` u2 u′2 : G∗2 εG∗2 = I(Ξ, ()G∗2, G

∗
2)

Ξ2; ∆; Γ2 ` u2 εG∗2u
′
2 :: G∗2 : G∗2

We have to prove that Ω ` Ξ1 .εG∗1u
′
1 :: G∗1 : G∗1 6 Ξ2 .εG∗2u

′
2 :: G∗2 : G∗2. By the rule (6ascε), we

are required to prove that εG∗1 6 εG∗2 , Ω ` Ξ1 . u
′
1 : G∗1 6 Ξ2 . u

′
2 : G∗2 and G∗1 v G∗2. Since G∗1 6 G

∗
2,

Ξ1 6 Ξ2 and Proposition A.50, we know that εG∗1 6 εG∗2 . Also, by Proposition A.61 and G∗1 6 G
∗
2 we

now that G∗1 v G∗2. Therefore, we only have required to prove that Ω ` Ξ1 . u
′
1 : G∗1 6 Ξ2 . u

′
2 : G∗2.

We follow by case analysis on Ω ` u1 : G∗1 6v u2 : G∗2.

• Case (Ω ` b : B 6v b : B). We know that

(6b)
ty(b) = B

Ω ` b : B 6v b : B

(Gb)
ty(b) = B

Ξi; ∆; Γi ` b b : B

We have to prove that Ω ` Ξ1 . b : B 6 Ξ2 . b : B. Then, by (6 bε) rule, we know that
Ω ` Ξ1 . b : B 6 Ξ2 . b : B and the result holds.

• Case (Ω ` (λx : G1.t1) : G1 → G2 6v (λx : G′1.t2) : G′1 → G′2). We know that

(6λ)
Ω, x : G1 v G′1 ` Ξ1 . t1 : G2 6 Ξ2 . t2 : G′2 G1 v G′1
Ω ` (λx : G1.t1) : G1 → G2 6v (λx : G′1.t2) : G′1 → G′2

(Gλ)
Ξ1; ∆; Γ1, x : G1 ` t1 t′1 : G2

Ξ1; ∆; Γ1 ` (λx : G1.t1) (λx : G1.t
′
1) : G1 → G2

(Gλ)
Ξ2; ∆; Γ2, x : G′1 ` t2 t′2 : G′2

Ξ2; ∆; Γ2 ` (λx : G′1.t2) (λx : G′1.t
′
2) : G′1 → G′2

Therefore, we are required to prove that Ω ` Ξ1 . (λx : G1.t
′
1) : G1 → G2 6 Ξ2 . (λx : G′1.t

′
2) :

G′1 → G′2, or what is the same by the (6λε) that Ω, x : G1 v G′1 ` Ξ1 . t
′
1 : G2 6 Ξ2 . t

′
2 : G′2,

but the result follows immediately by the induction hypothesis on Ω, x : G1 v G′1 ` Ξ1 . t1 :
G2 6 Ξ2 . t2 : G′2, with the translations t′1 and t′2(Ω, x : G1 v G′1 ≡ Γ1, x : G1 v Γ2, x : G′1).

• Case (Ω ` (ΛX.t1) : ∀X.G1 6v (ΛX.t2) : ∀X.G2). We know that

(6Λ)
Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2

Ω ` (ΛX.t1) : ∀X.G1 6v (ΛX.t2) : ∀X.G2

(Gλ)
Ξ1; ∆, X; Γ1 ` t1 t′1 : G1

Ξ1; ∆; Γ1 ` (ΛX.t1) (ΛX.t′1) : ∀X.G1

189

(Gλ)
Ξ2; ∆, X; Γ2 ` t2 t′2 : G2

Ξ2; ∆; Γ2 ` (ΛX.t2) (ΛX.t′2) : ∀X.G2

Therefore, we are required to prove that Ω ` Ξ1 . (ΛX.t′1) : ∀X.G1 6 Ξ2 . (ΛX.t′2) : ∀X.G2,
or what is the same by the rule (6Λε) that Ω ` Ξ1 . t

′
1 : G1 6 Ξ2 . t

′
2 : G2, but the result

follows immediately by the induction hypothesis on Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, with the
translations t′1 and t′2.

Case (Ω ` Ξ1 . x : G∗1 6 Ξ2 . x : G∗2). We know that

(6x)
x : G∗1 v G∗2 ∈ Ω

Ω ` Ξ1 . x : G∗1 6 Ξ2 . x : G∗2

(Gx)
x : G∗1 ∈ Γ1

Ξ1; ∆; Γ1 ` x x : G∗1

(Gx)
x : G∗2 ∈ Γ2

Ξ2; ∆; Γ2 ` x x : G∗2

We have to prove that Ω ` Ξ1 . x : G∗1 6 Ξ2 . x : G∗2. Then, by the rule (6xε), we know that
Ω ` Ξ1 . x : G∗1 6 Ξ2 . x : G∗2 and the result holds.

Case ((6ascv)). We know that

(6ascv)
Ω ` u1 : G∗∗1 6v u2 : G∗∗2 G∗∗1 pullbackG∗1 6 G

∗∗
2 pullbackG∗2 G∗1 v G∗2

Ω ` Ξ1 . u1 :: G∗1 : G∗1 6 Ξ2 . u2 :: G∗2 : G∗2

(Gascu)
Ξ1; ∆; Γ1 ` u1 u′1 : G∗∗1 ε1 = I(Ξ, ()G∗∗1 , G

∗
1)

Ξ1; ∆; Γ1 ` u1 :: G∗1 ε1u
′
1 :: G∗1 : G∗1

(Gascu)
Ξ2; ∆; Γ2 ` u2 u′2 : G∗∗2 ε2 = I(Ξ, ()G∗∗2 , G

∗
2)

Ξ2; ∆; Γ2 ` u2 :: G∗2 ε2u
′
2 :: G∗2 : G∗2

We have to prove that Ω ` Ξ1 .ε1u
′
1 :: G∗1 : G∗1 6 Ξ2 .ε2u

′
2 :: G∗2 : G∗2, or what is the same by the

rule (6ascε), we have to prove that ε1 6 ε2, Ω ` Ξ1.u
′
1 : G∗∗1 6 Ξ2.u

′
2 : G∗∗2 andG∗1 v G∗2. By Propo-

sition A.75, we know that ε1 = I(Ξ, ()G∗∗1 , G
∗
1) = I(Ξ, ()G∗∗1 pullbackG∗1, G

∗∗
1 pullbackG∗1) and ε2 =

I(Ξ, ()G∗∗2 , G
∗
2) = I(Ξ, ()G∗∗2 pullbackG∗2, G

∗∗
2 pullbackG∗2). Since G∗∗1 pullbackG∗1 6 G∗∗2 pullbackG∗2,

then ε1 = I(Ξ, ()G∗∗1 , G
∗
1) = I(Ξ, ()G∗∗1 pullbackG∗1, G

∗∗
1 pullbackG∗1) 6 I(Ξ, ()G∗∗2 pullbackG∗2, G

∗∗
2 pullbackG∗2) =

I(Ξ, ()G∗∗2 , G
∗
2) = ε2, by Proposition A.77. Thus, we only have to prove that Ω ` Ξ1 . u

′
1 : G∗∗1 6

Ξ2 . u
′
2 : G∗∗2 , and we know that Ω ` u′1 : G∗∗1 6v u′2 : G∗∗2 . We follow by case analysis on

Ω ` u1 : G∗∗1 6v u2 : G∗∗2 .

• Case (Ω ` b : B 6v b : B). We know that

(6b)
ty(b) = B

Ω ` b : B 6v b : B

190

(Gb)
ty(b) = B

Ξi; ∆; Γi ` b b : B

We have to prove that Ω ` Ξ1 . b : B 6 Ξ2 . b : B. Then, by (6 bε) rule, we know that
Ω ` Ξ1 . b : B 6 Ξ2 . b : B and the result holds.

• Case (Ω ` (λx : G1.t1) : G1 → G2 6v (λx : G′1.t2) : G′1 → G′2). We know that

(6λ)
Ω, x : G1 v G′1 ` Ξ1 . t1 : G2 6 Ξ2 . t2 : G′2 G1 v G′1
Ω ` (λx : G1.t1) : G1 → G2 6v (λx : G′1.t2) : G′1 → G′2

(Gλ)
Ξ1; ∆; Γ1, x : G1 ` t1 t′1 : G2

Ξ1; ∆; Γ1 ` (λx : G1.t1) (λx : G1.t
′
1) : G1 → G2

(Gλ)
Ξ2; ∆; Γ2, x : G′1 ` t2 t′2 : G′2

Ξ2; ∆; Γ2 ` (λx : G′1.t2) (λx : G′1.t
′
2) : G′1 → G′2

Therefore, we are required to prove that Ω ` Ξ1 . (λx : G1.t
′
1) : G1 → G2 6 Ξ2 . (λx : G′1.t

′
2) :

G′1 → G′2, or what is the same by the (6λε) that Ω, x : G1 v G′1 ` Ξ1 . t
′
1 : G2 6 Ξ2 . t

′
2 : G′2,

but the result follows immediately by the induction hypothesis on Ω, x : G1 v G′1 ` Ξ1 . t1 :
G2 6 Ξ2 . t2 : G′2, with the translations t′1 and t′2(Ω, x : G1 v G′1 ≡ Γ1, x : G1 v Γ2, x : G′1).

• Case (Ω ` (ΛX.t1) : ∀X.G1 6v (ΛX.t2) : ∀X.G2). We know that

(6Λ)
Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2

Ω ` (ΛX.t1) : ∀X.G1 6v (ΛX.t2) : ∀X.G2

(Gλ)
Ξ1; ∆, X; Γ1 ` t1 t′1 : G1

Ξ1; ∆; Γ1 ` (ΛX.t1) (ΛX.t′1) : ∀X.G1

(Gλ)
Ξ2; ∆, X; Γ2 ` t2 t′2 : G2

Ξ2; ∆; Γ2 ` (ΛX.t2) (ΛX.t′2) : ∀X.G2

Therefore, we are required to prove that Ω ` Ξ1 . (ΛX.t′1) : ∀X.G1 6 Ξ2 . (ΛX.t′2) : ∀X.G2,
or what is the same by the rule (6Λε) that Ω ` Ξ1 . t

′
1 : G1 6 Ξ2 . t

′
2 : G2, but the result

follows immediately by the induction hypothesis on Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, with the
translations t′1 and t′2.

Case (Ω ` Ξ1 . t1 :: G∗1 : G∗1 6 Ξ2 . t2 :: G∗2 : G∗2).

(6asct)
Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2 G1pullbackG∗1 6 G2pullbackG∗2 G∗1 v G∗2

Ω ` Ξ1 . t1 :: G∗1 : G∗1 6 Ξ2 . t2 :: G∗2 : G∗2

(Gasct)
Ξ1; ∆; Γ1 ` t1 t′1 : G1 ε1 = I(Ξ, ()G1, G

∗
1)

Ξ1; ∆; Γ1 ` t1 :: G∗1 ε1t
′
1 :: G∗1 : G∗1

(Gasct)
Ξ2; ∆; Γ2 ` t2 t′2 : G2 ε2 = I(Ξ, ()G2, G

∗
2)

Ξ2; ∆; Γ2 ` t2 :: G∗2 ε2t
′
2 :: G∗2 : G∗2

191

We have to prove that Ω ` Ξ1 . ε1t
′
1 :: G∗1 : G∗1 6 Ξ2 . ε2t

′
2 :: G∗2 : G∗2, or what is the same by the

rule (6ascε), we have to prove that ε1 6 ε2, Ω ` Ξ1 .t
′
1 : G1 6 Ξ2 .t

′
2 : G2 and G∗1 v G∗2. By Propo-

sition A.75, we know that ε1 = I(Ξ, ()G1, G
∗
1) = I(Ξ, ()G1pullbackG∗1, G1pullbackG∗1) and ε2 =

I(Ξ, ()G2, G
∗
2) = I(Ξ, ()G2pullbackG∗2, G2pullbackG∗2). Since G1pullbackG∗1 6 G2pullbackG∗2, then

ε1 = I(Ξ, ()G1, G
∗
1) = I(Ξ, ()G1pullbackG∗1, G1pullbackG∗1) 6 I(Ξ, ()G2pullbackG∗2, G2pullbackG∗2) =

I(Ξ, ()G2, G
∗
2) = ε2, by Proposition A.77. Thus, we only have to prove that Ω ` Ξ1 . t

′
1 : G1 6

Ξ2 . t
′
2 : G2, and we know that Ω ` t′1 : G1 6v t′2 : G2, then by the induction hypothesis the result

holds.

Case (Ω ` Ξ1 . t1 t
′
1 : cod](G1) 6 Ξ2 . t2 t

′
2 : cod](G2)).

(6app)

Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2 Ω ` Ξ1 . t
′
1 : G′1 6 Ξ2 . t

′
2 : G′2

G′1pullbackdom](G1) 6 G′2pullbackdom](G2)

Ω ` Ξ1 . t1 t
′
1 : cod](G1) 6 Ξ2 . t2 t

′
2 : cod](G2)

(Gapp)

Ξ1; ∆; Γ1 ` t1 t11 : G1 t′11 = norm(t11, G1, dom](G1)→ cod](G1))

Ξ1; ∆; Γ1 ` t′1 t12 : G′1 t′12 = norm(t12, G
′
1, dom](G1))

Ξ1; ∆; Γ1 ` t1 t′1 t′11 t
′
12 : cod](G1)

(Gapp)

Ξ2; ∆; Γ2 ` t2 t21 : G2 t′21 = norm(t21, G2, dom](G2)→ cod](G2))

Ξ2; ∆; Γ2 ` t′2 t22 : G′2 t′22 = norm(t22, G
′
2, dom](G2))

Ξ2; ∆; Γ2 ` t2 t′2 t′21 t
′
22 : cod](G2)

We have to prove that Ω ` Ξ1 . t
′
11 t

′
12 : cod](G1) 6 Ξ2 . t

′
21 t

′
22 : cod](G2), or what is the

same by the rule (6appε), we have to prove that Ω ` Ξ1 . t
′
11 : dom](G1) → cod](G1) 6 Ξ2 . t

′
21 :

dom](G2)→ cod](G2) and Ω ` Ξ1 . t
′
12 : dom](G1) 6 Ξ2 . t

′
22 : dom](G2). We know that

t′11 = norm(t11, G1, dom](G1)→ cod](G1)) = ε11t11 :: dom](G1)→ cod](G1)

where ε11 = I(Ξ1, ()G1, dom](G1)→ cod](G1)) = I(Ξ1, ()dom](G1)→ cod](G1), dom](G1)→ cod](G1)) =

εdom](G1)→cod](G1)

t′21 = norm(t21, G2, dom](G2)→ cod](G2)) = ε21t21 :: dom](G2)→ cod](G2)

where ε21 = I(Ξ2, ()G2, dom](G2)→ cod](G2)) = I(Ξ2, ()dom](G2)→ cod](G2), dom](G2)→ cod](G2)) =

εdom](G2)→cod](G2)

By induction hypothesis on Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, we know that Ω ` Ξ1 . t11 : G1 6
Ξ2 . t21 : G2, and by Proposition A.76, we know that G1 v G2, thus dom](G1) → cod](G1) v
dom](G2)→ cod](G2). Therefore, we only have to prove by rule (6Mascε) that ε11 v ε21. But, by
Proposition A.78 and dom](G1)→ cod](G1) v dom](G2)→ cod](G2) the results holds.

Also, we know that

t′12 = norm(t12, G
′
1, dom](G1)) = ε12t12 :: dom](G1) where ε12 = I(Ξ1, ()G

′
1, dom](G1))

t′22 = norm(t22, G
′
2, dom](G2)) = ε22t22 :: dom](G2) where ε22 = I(Ξ2, ()G

′
2, dom](G2))

192

By induction hypothesis on Ω ` Ξ1 . t
′
1 : G′1 6 Ξ2 . t

′
2 : G′2, we know that Ω ` Ξ1 . t12 :

G′1 6 Ξ2 . t22 : G′2. and and by Proposition A.76, we know that dom](G1) v dom](G2). By
Proposition A.77 and G′1pullbackdom](G1) 6 G′2pullbackdom](G2), we know that

ε12 = I(Ξ1, ()G
′
1, dom](G1)) = I(Ξ1, ()G

′
1pullbackdom](G1), G′1pullbackdom](G1)) 6

I(Ξ2, ()G
′
2pullbackdom](G2), G′2pullbackdom](G2)) = I(Ξ2, ()G

′
2, dom](G2)) = ε22

Therefore, the results holds.

Case (Ω ` Ξ1 . t1 [G′1] : inst](G1, G
′
1) 6 Ξ2 . t2 [G′2] : inst](G2, G

′
2)).

(6appG)
Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2 G′1 6 G

′
2

Ω ` Ξ1 . t1 [G′1] : inst](G1, G
′
1) 6 Ξ2 . t2 [G′2] : inst](G2, G

′
2)

(GappG)
Ξ1; ∆; Γ1 ` t1 t′1 : G1 t′′1 = norm(t′1, G1,∀var](G1).schm]

u(G1))

Ξ1; ∆; Γ1 ` t1 [G′1] t′′1 [G′1] : inst](G1, G
′
1)

(GappG)
Ξ2; ∆; Γ2 ` t2 t′2 : G2 t′′2 = norm(t′2, G2,∀var](G2).schm]

u(G2))

Ξ2; ∆; Γ2 ` t2 [G′2] t′′2 [G′2] : inst](G2, G
′
2)

We have to prove that Ω ` Ξ1 . t
′′
1 [G′1] : G∗1 6 Ξ2 . t

′′
2 [G′2] : G∗2, or what is the same by the rule

(6appGε), we have to prove that t′′1 6 t
′′
2 and G′1 6 G

′
2. G′1 6 G

′
2 follows by premise. We know that

t′′1 = norm(t′1, G1, ∀var](G1).schm]
u(G1)) = ε1t

′
1 :: ∀var](G1).schm]

u(G1)

where ε1 = I(Ξ1, ()G1, ∀var](G1).schm]
u(G1)) = I(Ξ1, ()∀var](G1).schm]

u(G1), ∀var](G1).schm]
u(G1)) =

ε∀var](G1).schm]
u(G1)

t′′2 = norm(t′2, G2,∀var](G2).schm]
u(G2)) = ε2t

′
2 :: ∀var](G2).schm]

u(G2)

where ε2 = I(Ξ2, ()G2, ∀var](G2).schm]
u(G2)) = I(Ξ2, ()∀var](G2).schm]

u(G2), ∀var](G2).schm]
u(G2)) =

ε∀var](G2).schm]
u(G2)

By induction hypothesis on Ω ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, we know that Ω ` Ξ1 . t
′
1 :

G1 6 Ξ2 . t
′
2 : G2, and by Proposition A.76, we know that G1 v G2, thus ∀var](G1).schm]

u(G1) v
∀var](G2).schm]

u(G2). Therefore, we only have to prove by rule (6Mascε) that ε1 v ε2. But, by
Proposition A.78 and ∀var](G1).schm]

u(G1) v ∀var](G2).schm]
u(G2) the results holds.

193

A.6 GSF: Parametricity

In this section we present the logical relation for parametricity of GSF, the proof of the fundamental
property, and the soundness of the logical relation wrt contextual approximation.

A.6.1 Auxiliary Definitions

In this section we show function definitions used in the logical relation of GSF (Figure 3.15).

Definition A.81 ev(εu :: G) = ε

Definition A.82

const(E) =

B E = B

?→ ? E = E1 → E2

∀X.? E = ∀X.E1

?× ? E = E1 × E2

α E = αE1

X E = X

? E = ?

A.6.2 Fundamental Property

Theorem A.83 (Fundamental Property) If Ξ; ∆; Γ ` t : G then Ξ; ∆; Γ ` t � t : G.

Proof. By induction on the type derivation of t.

Case (Easc). Then t = εs :: G, and therefore:

(Easc)
Ξ; ∆; Γ ` s : G′ ε Ξ; ∆ ` G′ ∼ G

Ξ; ∆; Γ ` εs :: G : G

We follow by induction on the structure of s.

• If s = b then:

(Eb)
ty(b) = B Ξ; ∆ ` Γ

Ξ; ∆; Γ ` b : B

Then we have to prove that Ξ; ∆; Γ ` εb :: G � εb :: G : G, but the result follows directly by
Prop A.84 (Compatibility of Constant).

• If s = λx : G1.t
′ then:

(Eλ)
Ξ; ∆; Γ, x : G1 ` t′ : G2

Ξ; ∆; Γ ` λx : G1.t
′ : G1 → G2

Then we have to prove that:

Ξ; ∆; Γ ` ε(λx : G1.t
′) :: G � ε(λx : G1.t

′) :: G : G

194

By induction hypotheses we already know that Ξ; ∆; Γ, x : G1 ` t′ � t′ : G2. But the result
follows directly by Prop A.85 (Compatibility of term abstraction).

• If s = ΛX.t′ then:

(EΛ)
Ξ; ∆, X; Γ ` t′ : G∗ Ξ; ∆ ` Γ

Ξ; ∆; Γ ` ΛX.t′ : ∀X.G∗

Then we have to prove that:

Ξ; ∆; Γ ` ε(ΛX.t′) :: G � ε(ΛX.t′) :: G : G

By induction hypotheses we already know that Ξ; ∆, X; Γ ` t′ � t′ : G∗. But the result
follows directly by Prop 3.29 (Compatibility of type abstraction).

• If s = 〈u1, u2〉 then:

(Epair)
Ξ; ∆; Γ ` u1 : G1 Ξ; ∆; Γ ` u2 : G2

Ξ; ∆; Γ ` 〈u1, u2〉 : G1 ×G2

Then we have to prove that:

Ξ; ∆; Γ ` ε〈u1, u2〉 :: G � ε〈u1, u2〉 :: G : G

We know by premise that Ξ; ∆; Γ ` π1(ε)u1 :: G1 : G1 and Ξ; ∆; Γ ` π2(ε)u2 :: G2 : G2. Then
by induction hypotheses we already know that: Ξ; ∆; Γ ` π1(ε)u1 :: G1 � π1(ε)u1 :: G1 : G1

and Ξ; ∆; Γ ` π2(ε)u2 :: G2 � π2(ε)u2 :: G2 : G2. But the result follows directly by Prop A.87
(Compatibility of pairs).

• If s = t′, and therefore:

(Easc)
Ξ; ∆; Γ ` t′ : G′ ε ` Ξ; ∆ ` G′ ∼ G

Ξ; ∆; Γ ` εt′ :: G : G

By induction hypotheses we already know that Ξ; ∆; Γ ` t′ � t′ : G′, then the result follows
directly by Prop A.90 (Compatibility of ascriptions).

Case (Epair). Then t = 〈t1, t2〉, and therefore:

(Epair)
Ξ; ∆; Γ ` t1 : G1 Ξ; ∆; Γ ` t2 : G2

Ξ; ∆; Γ ` 〈t1, t2〉 : G1 ×G2

where G = G1 ×G2 Then we have to prove that:

Ξ; ∆; Γ ` 〈t1, t2〉 � 〈t1, t2〉 : G1 ×G2

By induction hypotheses we already know that: Ξ; ∆; Γ ` t1 � t1 : G1 and Ξ; ∆; Γ ` t2 � t2 : G2.
But the result follows directly by Prop A.88 (Compatibility of pairs).

Case (Ex). Then t = x, and therefore:

(Ex)
x : G ∈ Γ Ξ; ∆ ` Γ

Ξ; ∆; Γ ` x : G

Then we have to prove that Ξ; ∆; Γ ` x � x : G. But the result follows directly by Prop A.89
(Compatibility of variables).

195

Case (Eop). Then t = op(t′), and therefore:

(Eop)
Ξ; ∆; Γ ` t′ : G′ ty(op) = G′ → G

Ξ; ∆; Γ ` op(t′) : G

Then we have to prove that: Ξ; ∆; Γ ` op(t′) � op(t′) : G. By the induction hypothesis we obtain
that: Ξ; ∆; Γ ` t′ � t′ : G . Then the result follows directly by Prop A.91 (Compatibility of app
operator).

Case (Eapp). Then t = t1 t2, and therefore:

(Eapp)
Ξ; ∆; Γ ` t1 : G11 → G12 Ξ; ∆; Γ ` t2 : G11

Ξ; ∆; Γ ` t1 t2 : G12

where G = G12. Then we have to prove that:

Ξ; ∆; Γ ` t1 t2 � t1 t2 : G12

By the induction hypothesis we obtain that: Ξ; ∆; Γ ` t1 � t1 : G11 → G12 and Ξ; ∆; Γ ` t2 �
t2 : G11. Then the result follows directly by Prop A.92 (Compatibility of term application).

Case (EappG). Then t = t′ [G2], and therefore:

(EappG)
Ξ; ∆; Γ ` t′ : ∀X.G1 Ξ; ∆ ` G2

Ξ; ∆; Γ ` t′ [G2] : G1[G2/X]

where G = G1[G2/X]. Then we have to prove that:

Ξ; ∆; Γ ` t′ [G2] � t′ [G2] : G1[G2/X]

By induction hypotheses we know that:

Ξ; ∆; Γ ` t′ � t′ : ∀X.G1

Then the result follows directly by Prop 3.30 (Compatibility of type application).

Case (Epair1). Then t = π1(t′), and therefore:

(Epair1)
Ξ; ∆; Γ ` t′ : G1 ×G2

Ξ; ∆; Γ ` π1(t′) : G1

where G = G1. Then we have to prove that: Ξ; ∆; Γ ` π1(t′) � π1(t′) : G1. By the induction
hypothesis we obtain that: Ξ; ∆; Γ ` t′ � t′ : G1 × G2 . Then the result follows directly by
Prop A.94 (Compatibility of access to the first component of the pair).

Case (Epair2). Then t = π2(t′), and therefore:

(Epair2)
Ξ; ∆; Γ ` t′ : G1 ×G2

Ξ; ∆; Γ ` π2(t′) : G2

where G = G2. Then we have to prove that: Ξ; ∆; Γ ` π2(t′) � π2(t′) : G2. By the induction
hypothesis we obtain that: Ξ; ∆; Γ ` t′ � t′ : G1 × G2 . Then the result follows directly by
Prop A.95 (Compatibility of access to the second component of the pair).

196

In order to prove parametricity, we add an index to the evidence and we are more detailed
in the reduction rules. A brief explanation is given below. The index of an evidence is an integer
greater than zero. To know the index of an evidence ε, we use the following operator ε.n = k, which
specifies that the index of the evidence ε is the integer k > 0. The reduction rules always took a
step. Here we redefine them and they can take one or more steps. This will depend on whether or
not a transitivity of evidence is applied. If it does, the rule will take as many steps as the evidence
index on the right. Below we define the steps in the rules

Ξ . t −−→ Ξ . t or error Notion of reduction

(Rasc) Ξ . ε2(ε1u :: G1) :: G2
k−−→

{
Ξ . (ε1 # ε2)u :: G2 if ε2.n = k

error if not defined

(Rop) Ξ . op(εu :: G)
1−−→ Ξ . εB δ(op, u) :: B where B , cod(ty(op))

(Rapp)Ξ . (ε1(λx : G11.t) :: G1 → G2) (ε2u :: G1)
k+1−−−→

Ξ . cod(ε1)(t[(ε2 # dom(ε1))u :: G11)/x]) :: G2

if dom(ε1) = k

error if not defined

(Rpair) Ξ . 〈ε1u1 :: G1, ε2u2 :: G2〉
1−−→ Ξ . (ε1 × ε2)〈u1, u2〉 :: G1 ×G2

(Rproji) Ξ . πi(ε〈u1, u2〉 :: G1 ×G2)
1−−→ Ξ . pi(ε)ui :: Gi

(RappG) Ξ . (εΛX.t :: ∀X.G) [G′]
1−−→ Ξ′ . εout(ε[α̂]t[α̂/X] :: G[α/X]) :: G[G′/X]

where Ξ′ , Ξ, α := G′ for some α /∈ dom(Ξ)
and α̂ = liftΞ′(α)

Proposition A.84 (Compatibility-Eb) If b ∈ B, ε ` Ξ; ∆ ` B ∼ G and Ξ; ∆ ` Γ then:

Ξ; ∆; Γ ` εb :: G � εb :: G : G

Proof. As b is constant then it does not have free variables or type variables, then b = ρ(γi(b)).
Then we have to prove that for all W ∈ SJΞK it is true that:

(W,ρ1(ε)b :: ρ(G), ρ2(ε)b :: ρ(G) ∈ TρJGK

As ρi(ε)b :: G are values, then we have to prove that:

(W,ρ1(ε)b :: ρ(G), ρ2(ε)b :: ρ(G)) ∈ VρJGK

1. G = B, we know that 〈B,B〉 = ε ` Ξ; ∆ ` B ∼ B, then ρi(ε) = ε and the result follows
immediately by the definition of VρJBK.

2. If G ∈ TypeName then ε = 〈H3, α
E4〉. Notice that as αE4 cannot have free type variables

therefore H3 neither. Then ε = ρi(ε). As α is sync, then let us call G′′ = W.Ξi(α). We have
to prove that:

(W, 〈H3, α
E4〉b :: α, 〈H3, α

E4〉b :: α) ∈ VρJαK

which, by definition of VρJαK, is equivalent to prove that:

(↓W, 〈H3, E4〉b :: G′′, 〈E3, E4〉b :: G′′) ∈ VρJG′′K

Then we proceed by case analysis on ε:

197

• (Case ε = 〈H3, α
βE4 〉). We know that 〈H3, α

βE4 〉 ` Ξ; ∆ ` B ∼ α, then by Lemma A.114,
〈H3, β

E4〉 ` Ξ; ∆ ` B ∼ G′′. As βE4 v G′′, then G′′ can either be ? or β.

If G′′ = ?, then by definition of VρJ?K, we have to prove that the resulting values belong to
VρJβK. Also as 〈H3, β

E4〉 ` Ξ; ∆ ` B ∼ ?, by Lemma A.112, 〈H3, β
E4〉 ` Ξ; ∆ ` B ∼ β,

and then we proceed just like this case once again (this is process is finite as there are
no circular references by construction and it ends up in something different to a type
name). If G′′ = β we use an analogous argument as for G′′ = ?.

• (Case ε = 〈H3, α
H4〉). We have to prove that

(↓W, 〈H3, H4〉b :: G′′, 〈H3, H4〉b :: G′′) ∈ VρJG′′K

By Lemma A.114, 〈H3, H4〉 ` Ξ; ∆ ` B ∼ G′′. Then if G′′ = ?, we proceed as the case
G = ?, with the evidence ε = 〈H3, H4〉. If G′′ ∈ HeadType, we proceed as the previous
case where G = B, and the evidence ε = 〈H3, H4〉.
Also, we have to prove that (∀Ξ′, ε′, G∗1, such that ε′.n = k, ε′ = 〈αE∗∗1 , E∗∗2 〉 (↓W ∈
SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗1), we get that

(↓1W, ε′(〈H3, α
H4〉u1 :: α) :: G∗1, ε

′(〈H4, α
E22〉u2 :: α) :: G∗1) ∈ TρJG∗1K)

or what is the same ((〈H3, α
H4〉 # ε′) fails the result follows immediately)

(↓1+kW, (〈H3, α
H4〉 # ε′)u1 :: G∗1, (〈H2, α

H4〉 # ε′)u2 :: G∗1) ∈ VρJG∗1K)

By definition of transitivity and Lemma A.115, we know that

〈H3, α
H4〉 # 〈αE∗∗1 , E∗∗2 〉 = 〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉

We know that 〈E∗∗1 , E∗∗2 〉 ` Ξ′ ` G′′ ∼ G∗1. Since 〈E∗∗1 , E∗∗2 〉 ` Ξ ` G′′ ∼ G∗1, ↓1W ∈
SJΞ′K, (↓1W, 〈H3, H4〉u1 :: G′′, 〈H1, H4〉u2 :: G′′) ∈ VρJG′′K, by Lemma A.101, we know
that (since (〈H3, α

H4〉 # ε′) does not fail then (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉) also does not fail
by the transitivity rules)

(↓1+kW, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u1 :: G∗1, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u2 :: G∗1) ∈ VρJG∗1K)

The result follows immediately.

3. If G = ? we have the following cases:

• (G = ?, ε = 〈H3, H4〉). By the definition of VρJ?K in this case we have to prove that:

(W,ρ1(ε)b :: const(H4), ρ2(ε)b :: const(H4)) ∈ VρJconst(H4)K

but as const(H4) = B (note that H3 = B then since H4 ∈ HeadType has to be B).
The the result follows immediately since is part of the premise.

• (G = ?, ε = 〈H3, α
E4〉). Notice that as αE4 cannot have free type variables therefore E3

neither. Then ε = ρi(ε). By the definition of VρJ?K we have to prove that

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

Note that by Lemma A.112 we know that ε ` Ξ; ∆ ` B ∼ α. Then we proceed just like
the case G ∈ TypeName.

198

Proposition A.85 (Compatibility-Eλ) If Ξ; ∆; Γ, x : G1 ` t � t′ : G2, ε ` Ξ; ∆ ` G1 → G2 ∼ G
then:

Ξ; ∆; Γ ` ε(λx : G1.t) :: G � ε(λx : G1.t
′) :: G : G

Proof. First, we are required to show that Ξ; ∆; Γ ` ε(λx : G1.t) :: G : G and Ξ; ∆; Γ ` ε(λx :
G1.t

′) :: G : G, which follow from ε ` Ξ; ∆ ` G1 → G2 ∼ G and Ξ; ∆; Γ ` λx : G1.t : G1 → G2 and
Ξ; ∆; Γ ` λx : G1.t

′ : G1 → G2 respectively, which follow (respectively) from Ξ; ∆; Γ, x : G1 ` t : G2

and Ξ; ∆; Γ, x : G1 ` t′ : G2, which follow from Ξ; ∆; Γ, x : G1 ` t � t′ : G2.

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that:

(W,ρ(γ1(ε(λx : G1.t) :: G)), ρ(γ2(ε(λx : G1.t) :: G))) ∈ TρJGK

Consider arbitrary i, v1 and Ξ1 such that i < W.j and:

W.Ξ1 . ρ(γ1(ε(λx : G1.t) :: G)) −→i Ξ1 . v1

Since ρ(γ1(ε(λx : G1.t) :: G)) = ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G) and ερ2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G)
is already a value, where ερi = ρi(ε), we have i = 0 and v1 = ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G) and
Ξ1 = W.Ξ1. Since ερ2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G) is already a value, we are required to show that
∃W ′, such that W ′.j + i = W.j, W ′ �W , W ′.Ξ1 = Ξ1, W ′.Ξ2 = Ξ2 and:

(W ′, ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G), ερ2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G)) ∈ VρJGK

Let W ′ = W , then we have to show that:

(W, ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G), ερ2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G)) ∈ VρJGK

Let’s suppose that ερ1.n = k.

First we have to prove that:

W.Ξ1; ∆; Γ ` ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G) : ρ(G)

As we know that Ξ; ∆; Γ ` ε(λx : G1.t) :: G : G, by Lemma A.110 the result follows immediately.
The case W.Ξ2; ∆; Γ ` ερ2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G) : ρ(G) is similar.

The type G can be G′1 → G′2, for some G′1 and G′2, or ? or a TypeName.

1. G = G′1 → G′2, we are required to show that ∀W ′′, v′1 = ε′1u
′
1 :: ρ(G′1), v′2 = ε′2u

′
2 :: ρ(G′1), such

that W ′′ �W and (↓W ′′, v′1, v′2) ∈ VρJG′1K, it is true that:

(W ′′, ερ1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G′1 → G′2) v′1, ε
ρ
2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G′1 → G′2) v′2) ∈ TρJG′2K

If (ε′1 #dom(ερ1)) fails, then by Lemma A.111 (ε′2 #dom(ερ2)) and the result follows immediately.

Else, if (ε′i # dom(ερi)) follows, where dom(ερ1).n = k, we know that

199

W ′′.Ξ1 . ε
ρ
1(λx : ρ(G1).ρ(γ1(t))) :: ρ(G′1 → G′2) v′1 −→k+1

W ′′.Ξ1 . cod(ερ1)(ρ(γ1(t))[(ε′1 # dom(ερ1)u′1 :: ρ(G1))/x]) :: ρ(G′2) v′1 −→k∗

Ξ1 . cod(ερ1)v1f :: ρ(G′2) −→ k

Ξ1 . v
∗
1

Thus, we have to prove that there exists W ∗, such that:

W ′′.Ξ2 . ε
ρ
2(λx : ρ(G1).ρ(γ2(t′))) :: ρ(G′1 → G′2) v′2 −→∗ Ξ2 . v

∗
2

and (W ∗, v∗1, v
∗
2) ∈ VρJG′2K, W

∗.j + 1 + 2k + k∗ = W ′′.j, W ∗.Ξ1 = Ξ1 and W ∗.Ξ2 = Ξ2.

Note that dom(ερi) ` W ′′.Ξi ` ρ(G′1) ∼ ρ(G1). By the Lemma A.101 (with the type G1 and
the evidences dom(ερi) `W ′′.Ξi ` ρ(G′1) ∼ ρ(G1)) it is true that:

(↓1W ′′, dom(ερ1)v′1 :: G1, dom(ερ2)v′2 :: G1) ∈ TρJG1K

Since (ε′i # dom(ερi)) does not fail, it is true that:

((↓k+1W
′′), (ε′1 # dom(ερ1))u′1 :: G1, (ε

′
2 # dom(ερ2))u′2 :: G1) ∈ VρJG1K

We instantiate the hypothesis Ξ; ∆; Γ ` t � t′ : G2, with (↓k+1W
′′), ρ and γ[x : ρ(G1) 7→

(v′′1 , v
′′
2)], where v′′i = (ε′i # dom(ερi))u

′
i :: ρ(G1). Note that SJΞK 3 (↓k+1W

′′) � W by the
definition of SJΞK, ((↓k+1W

′′), ρ) ∈ DJ∆K by the definition of DJ∆K and ((↓k+1W
′′), γ[x 7→

(v′′1 , v
′′
2)]) ∈ GρJΓ, x : ρ(G1)K, which follow from: ((↓k+1W

′′), γ) ∈ GρJΓK and ((↓k+1W
′′), v′′1 , v

′′
2) ∈

VρJG1K which follows from above. Then, we have that:

((↓k+1W
′′), ρ(γ1(t))[v′′1/x], ρ(γ2(t′))[v′′2/x]) ∈ TρJG2K

If the following term reduces to error, then the result follows immediately.

W ′′.Ξ1 . ρ(γ1(t))[v′′1/x]

If the above is not true, then the following terms reduce to values (vif) and ∃W ′′′ � (↓k+1W
′′)

such that (W ′′′, v1f , v2f) ∈ VρJG2K and W ′′′.j + k∗ = (↓k+1 W
′′).j, or what is the same

W ′′′.j + k∗ + k + 1 = (W ′′).j.

W ′′.Ξ1 . ρ(γ1(t))[v′′1/x] −→k∗ W ′′′.Ξ1 . v1f

W ′′.Ξ2 . ρ(γ2(t′))[v′′2/x] −→∗ W ′′′.Ξ2 . v2f

We instantiate the induction hypothesis in the previous result ((W ′′′, v1f , v2f)) with the type
G′2 and the evidence cod(ερi) `W ′.Ξi ` G′′2 ∼ G′2, then we obtain that:

(W ′′′, cod(ερ1)v1f :: ρ(G′2), cod(ερ2)v2f :: ρ(G′2)) ∈ TρJG′2K

Therefore, we get (↓kW ′′′, v∗1, v∗2) ∈ VρJG′2K. Taking W ∗ = (↓kW ′′′), the result follows
immediately. Note that W ′′′.j+k+k∗+1 = W ′′.j and therefore (↓kW ′′′).j+1+2k+k∗ = W ′′.j.

For the other cases ofG, let’s considerer that u1 = λx : ρ(G1).ρ(γ1(t)), u2 = λx : ρ(ρ(G1).ρ(γ2(t′))
and G∗ = G1 → G2, we have to prove that:

(W,ρ1(ε)u1 :: ρ(G), ρ2(ε)u2 :: ρ(G)) ∈ VρJGK

200

2. If G ∈ TypeName then ε = 〈H3, α
E4〉. Notice that as αE4 cannot have free type variables

therefore H3 neither. Then ε = ρi(ε). As α is sync, then let us call G′′ = W.Ξi(α). We have
to prove that:

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

which, by definition of VρJαK, is equivalent to prove that:

(↓W, 〈H3, E4〉u1 :: G′′, 〈E3, E4〉u2 :: G′′) ∈ VρJG′′K

Then we proceed by case analysis on ε:

• (Case ε = 〈H3, α
βE4 〉). We know that 〈H3, α

βE4 〉 ` Ξ; ∆ ` G∗ ∼ α, then by Lemma A.114,
〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ G′′. As βE4 v G′′, then G′′ can either be ? or β.

If G′′ = ?, then by definition of VρJ?K, we have to prove that the resulting values belong to
VρJβK. Also as 〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ ?, by Lemma A.112, 〈H3, β
E4〉 ` Ξ; ∆ ` G∗ ∼ β,

and then we proceed just like this case once again (this is process is finite as there are
no circular references by construction and it ends up in something different to a type
name). If G′′ = β we use an analogous argument as for G′′ = ?.

• (Case ε = 〈H3, α
H4〉). We have to prove that

(↓W, 〈H3, H4〉u1 :: G′′, 〈H3, H4〉u2 :: G′′) ∈ VρJG′′K

By Lemma A.114, 〈H3, H4〉 ` Ξ; ∆ ` G∗ ∼ G′′. Then if G′′ = ?, we proceed as the case
G = ?, with the evidence ε = 〈H3, H4〉. If G′′ ∈ HeadType, we proceed as the previous
case where G = G′1 → G′2, and the evidence ε = 〈H3, H4〉.
Also, we have to prove that (∀Ξ′, ε′, G∗1, such that ε′.n = k, ε′ = 〈αE∗∗1 , E∗∗2 〉 (↓W ∈
SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗1), we get that

(↓1W, ε′(〈H3, α
H4〉u1 :: α) :: G∗1, ε

′(〈H4, α
E22〉u2 :: α) :: G∗1) ∈ TρJG∗1K)

or what is the same ((〈H3, α
H4〉 # ε′) fails the result follows immediately)

(↓1+kW, (〈H3, α
H4〉 # ε′)u1 :: G∗1, (〈H2, α

H4〉 # ε′)u2 :: G∗1) ∈ VρJG∗1K)

By definition of transitivity and Lemma A.115, we know that

〈H3, α
H4〉 # 〈αE∗∗1 , E∗∗2 〉 = 〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉

We know that 〈E∗∗1 , E∗∗2 〉 ` Ξ′ ` G′′ ∼ G∗1. Since 〈E∗∗1 , E∗∗2 〉 ` Ξ ` G′′ ∼ G∗1, ↓1W ∈
SJΞ′K, (↓1W, 〈H3, H4〉u1 :: G′′, 〈H1, H4〉u2 :: G′′) ∈ VρJG′′K, by Lemma A.101, we know
that (since (〈H3, α

H4〉 # ε′) does not fail then (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉) also does not fail
by the transitivity rules)

(↓1+kW, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u1 :: G∗1, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u2 :: G∗1) ∈ VρJG∗1K)

The result follows immediately.

3. If G = ? we have the following cases:

• (G = ?, ε = 〈H3, H4〉). By the definition of VρJ?K in this case we have to prove that:

(W,ρ1(ε)u1 :: ρ(G), ρ2(ε)u2 :: ρ(G)) ∈ VρJconst(H4)K

but as const(H4) = ? → ?, we proceed just like this case where G = G′1 → G2, where
G′1 = ? and G′2 = ?.

201

• (G = ?, ε = 〈H3, α
E4〉). Notice that as αE4 cannot have free type variables therefore E3

neither. Then ε = ρi(ε). By the definition of VρJ?K we have to prove that

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

Note that by Lemma A.112 we know that ε ` Ξ; ∆ ` G∗ ∼ α. Then we proceed just
like the case G ∈ TypeName.

Lemma A.86 (Compatibility-EΛ) If Ξ; ∆, X ` t1 � t2 : G, ε ` Ξ; ∆ ` ∀X.G ∼ G′ and Ξ; ∆ ` Γ
then Ξ; ∆; Γ ` ε(ΛX.t1) :: G′ � ε(ΛX.t2) :: G′ : G′.

Proof. First, we are required to prove that Ξ; ∆; Γ ` ε(ΛX.ti) :: G′ : G′, but by unfolding the
premises we know that Ξ; ∆, X ` ti : G, therefore:

Ξ; ∆, X; Γ ` ti : G Ξ; ∆ ` Γ

Ξ; ∆; Γ ` ΛX.ti ∈ ∀X.G
Then we can conclude that:

Ξ; ∆; Γ ` ΛX.ti ∈ ∀X.G ε ` Ξ; ∆ ` ∀X.G ∼ G′

Ξ; ∆; Γ ` ε(ΛX.ti) :: G′ : G′

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that:

(W,ρ(γ1(ε(ΛX.t1) :: G′)), ρ(γ2(ε(ΛX.t2) :: G′))) ∈ TρJG′K

First we have to prove that:

W.Ξi ` ρ(γi(ε(ΛX.ti) :: G′)) : ρ(G′)

As we know that Ξ; ∆; Γ ` ε(ΛX.ti) :: G′ : G′, by Lemma A.110 the result follows immediately.

By definition of substitutions ρ(γi(ε(ΛX.t1) :: G′)) = ερi (ΛX.ρ(γi(ti)))) :: ρ(G′), where ερi =
ρi(ε), therefore we have to prove that:

(W, ερ1(ΛX.ρ(γ1(t1)))) :: ρ(G′), ερ2(ΛX.ρ(γ2(t2)))) :: ρ(G′)) ∈ TρJG′K

We already know that both terms are values and therefore we only have to prove that:

(W, ερ1(ΛX.ρ(γ1(t1)))) :: ρ(G′), ερ2(ΛX.ρ(γ2(t2)))) :: ρ(G′)) ∈ VρJG′K

Let’s suppose that ερ1.n = k.

The type G′ can be ∀X.G′1, for some G′1, ? or a TypeName. Let u1 = ΛX.ρ(γ1(t1)), u2 =
ΛX.ρ(γ2(t2)) and G∗ = ∀X.G, we have to prove that:

(W,ρ1(ε)u1 :: ρ(G), ρ2(ε)u2 :: ρ(G)) ∈ VρJG′K

202

1. If G′ = ∀X.G′1, then consider W ′ � W , and G1, G2, R and α, such that W ′.Ξi ` Gi, and
R ∈ RelW ′.j [G1, G2].

W ′.Ξi . ε
ρ
i (ΛX.ρ(γi(ti)))) :: ∀X.ρ(G′1) [Gi] −→

W ′.Ξi, α := Gi . ε
Ei/α

Ei

∀X.ρ(G′1)
(ερi [α

Ei]ρ(γi(ti))[α
Ei/X] :: ρ(G′1)[α/X]) :: ρ(G′1)[Gi/X]

where E′i = lift(W ′.Ξi)(Gi).

Note that ε ` Ξ; ∆ ` ∀X.G ∼ ∀X.G′1, then ε = 〈∀X.E1,∀X.E2〉, for some E1, E2, K
and L. By the Lemma A.109 we know that ερi ` W.Ξi; ∆ ` ∀X.ρ(G) ∼ ∀X.ρ(G′1), then
ερi = 〈∀X.Ei1,∀X.Ei2〉, where ∀X.Ei1 = ρi(E1) and Ei2 = ρi(E2).

Then we have to prove that:

(W ′′, (ερ1[αE1])ρ(γ1(t1))[αE1/X] :: ρ(G′1)[α/X],

(ερ2[αE2])ρ(γ2(t2))[αE2/X] :: ρ(G′1)[α/X]) ∈ Tρ[X 7→α]JG′1K

where W ′′ =↓(W ′ � (α,G1, G2, R)).

Note that
W ′′.Ξ1 . (ερ1 JαE1K)ρ(γ1(t1)) :: ρ(G′1)[α/X] 7−→k∗

Ξ1 . (ερ1 JαE1K)v1f 7−→k

Ξ1 . v
∗
1

Let ρ′ = ρ[X 7→ α]. We instantiate the premise Ξ; ∆; Γ ` t1 � t2 : G with W ′′, ρ′ and γ, such
that W ′′ ∈ SJΞK , as α ∈ dom(W ′.κ[α 7→ R]) then (W ′′, ρ′) ∈ DJ∆, XK. Also note that as X
is fresh, then ∀(v∗1, v∗2) ∈ cod(γ), such that Ξ; ∆; Γ ` v∗i : G∗, X 6∈ FV (G∗), then it is easy to
see that (W ′′, γ) ∈ Gρ[X 7→α]JΓK. Then we know that:

(W ′′, ρ′(γ1(t1)), ρ′(γ2(t2))) ∈ Tρ′JGK

But note that:
ρ′(γi(ti)) = ρ[α/X](γi(ti)) = ρ(γi(ti))[α

Ei/X]

Then we have that:

(W ′′, ρ(γ1(t1))[αE1/X], ρ(γ2(t2))[αE2/X]) ∈ Tρ[α/X]JGK

If the following term reduces to error, then the result follows immediately.

W ′′.Ξ1 . ρ(γ1(t1))[αE1/X]

If the above is not true, then the following terms reduce to values (vif = εifuif :: ρ′(G)) and
∃W ′′′ �W ′′ such that (W ′′′, v1f , v2f) ∈ Vρ[α 7→X]JGK and W ′′′.j + k∗ = W ′′.j.

W ′′.Ξi . ρ(γi(ti))[α
Ei/X] −→∗ W ′′′.Ξi . vif

We instantiate the Lemma A.101 with the typeG′1 and the evidence 〈E1, E2〉 ` Ξ; ∆, X ` G ∼
G′1 (remember that ε = 〈∀X.E1, ∀X.E2〉). Note that ερi JαEiK = ρ[X 7→ α]W ′′′.Ξi(〈E1, E2〉),

203

ρ[X 7→ α](G′1) = ρ(G′1)[α/X], W ′′′ ∈ SJΞK and (W ′′′, ρ[X 7→ α]) ∈ DJ∆, XK. Then we obtain
that:

(W ′′′, (ερ1 JαE1K)v1f :: ρ(G′1)[α/X], (ερ2 JαE2K)v2f :: ρ(G′1)[α/X]) ∈ Tρ′JG′1K

and

(↓kW ′′′, v∗1, v∗2) ∈ TρJG′1K

where (↓kW ′′′).j+k+k∗ = W ′′.j and v∗i = (εif # (ερ1 JαE1K))uif :: ρ(G′1)[α/X], and the result
follows immediately.

2. If G′ ∈ TypeName then ε = 〈H3, α
E4〉. Notice that as αE4 cannot have free type variables

therefore H3 neither. Then ε = ρi(ε). As α is sync, then let us call G′′ = W.Ξi(α). We have
to prove that:

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

which, by definition of VρJαK, is equivalent to prove that:

(↓W, 〈H3, E4〉u1 :: G′′, 〈E3, E4〉u2 :: G′′) ∈ VρJG′′K

Then we proceed by case analysis on ε:

• (Case ε = 〈H3, α
βE4 〉). We know that 〈H3, α

βE4 〉 ` Ξ; ∆ ` G∗ ∼ α, then by Lemma A.114,
〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ G′′. As βE4 v G′′, then G′′ can either be ? or β.

If G′′ = ?, then by definition of VρJ?K, we have to prove that the resulting values belong to
VρJβK. Also as 〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ ?, by Lemma A.112, 〈H3, β
E4〉 ` Ξ; ∆ ` G∗ ∼ β,

and then we proceed just like this case once again (this is process is finite as there are
no circular references by construction and it ends up in something different to a type
name). If G′′ = β we use an analogous argument as for G′′ = ?.

• (Case ε = 〈H3, α
H4〉). We have to prove that

(↓W, 〈H3, H4〉u1 :: G′′, 〈H3, H4〉u2 :: G′′) ∈ VρJG′′K

By Lemma A.114, 〈H3, H4〉 ` Ξ; ∆ ` G∗ ∼ G′′. Then if G′′ = ?, we proceed as the
case G′ = ?, with the evidence ε = 〈H3, H4〉. If G′′ ∈ HeadType, we proceed as the
previous case where G′ = ∀X.G, and the evidence ε = 〈H3, H4〉.
Also, we have to prove that (∀Ξ′, ε′, G∗1, such that ε′.n = k, ε′ = 〈αE∗∗1 , E∗∗2 〉 (↓W ∈
SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗1), we get that

(↓1W, ε′(〈H3, α
H4〉u1 :: α) :: G∗1, ε

′(〈H4, α
E22〉u2 :: α) :: G∗1) ∈ TρJG∗1K)

or what is the same ((〈H3, α
H4〉 # ε′) fails the result follows immediately)

(↓1+kW, (〈H3, α
H4〉 # ε′)u1 :: G∗1, (〈H2, α

H4〉 # ε′)u2 :: G∗1) ∈ VρJG∗1K)

By definition of transitivity and Lemma A.115, we know that

〈H3, α
H4〉 # 〈αE∗∗1 , E∗∗2 〉 = 〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉

We know that 〈E∗∗1 , E∗∗2 〉 ` Ξ′ ` G′′ ∼ G∗1. Since 〈E∗∗1 , E∗∗2 〉 ` Ξ ` G′′ ∼ G∗1, ↓1W ∈
SJΞ′K, (↓1W, 〈H3, H4〉u1 :: G′′, 〈H1, H4〉u2 :: G′′) ∈ VρJG′′K, by Lemma A.101, we know

204

that (since (〈H3, α
H4〉 # ε′) does not fail then (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉) also does not fail

by the transitivity rules)

(↓1+kW, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u1 :: G∗1, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u2 :: G∗1) ∈ VρJG∗1K)

The result follows immediately.

3. If G′ = ? we have the following cases:

• (G′ = ?, ε = 〈H3, H4〉). By the definition of VρJ?K in this case we have to prove that:

(W,ρ1(ε)u1 :: ρ(G), ρ2(ε)u2 :: ρ(G)) ∈ VρJconst(H4)K

but as const(H4) = ∀X.?, we proceed just like the case where G′ = ∀X.G′1, where
G′1 = ?.

• (G′ = ?, ε = 〈H3, α
E4〉). Notice that as αE4 cannot have free type variables therefore

E3 neither. Then ε = ρi(ε). By the definition of VρJ?K we have to prove that

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

Note that by Lemma A.112 we know that ε ` Ξ; ∆ ` G∗ ∼ α. Then we proceed just
like the case G′ ∈ TypeName.

Proposition A.87 (Compatibility-EpairU) If Ξ; ∆; Γ ` π1(ε)u1 :: G1 � π1(ε)u′1 :: G1 : G1,
Ξ; ∆; Γ ` π2(ε)u′2 :: G2 � π2(ε)u′2 :: G2 : G2, and ε Ξ; ∆ ` G1 ×G2 ∼ G then:

Ξ; ∆; Γ ` ε〈u1, u2〉 :: G � ε〈u′1, u′2〉 :: G : G

Proof. Straightforward as the definition of related pairs depends on a weaker property of the
premise: Ξ; ∆; Γ ` π1(ε)u1 :: G1 � π1(ε)u′1 :: G1 : G1 and Ξ; ∆; Γ ` π2(ε)u′2 :: G2 � π2(ε)u′2 :: G2 :
G2.

Proposition A.88 (Compatibility-Epair) If Ξ; ∆; Γ ` t1 � t′1 : G1 and Ξ; ∆; Γ ` t2 � t′2 : G2,
then Ξ; ∆; Γ ` 〈t1, t2〉 � 〈t′1, t′2〉 : G1 ×G2.

Proof. We proceed by induction on subterms ti, analogous to the function application case, but
using Prop A.87 instead.

Proposition A.89 (Compatibility-Ex) If x : G ∈ Γ and Ξ; ∆ ` Γ then Ξ; ∆; Γ ` x � x : G.

Proof. First, we are required to show Ξ; ∆; Γ ` x : G, which is immediate. Consider arbitrary
W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are required to show that:

(W,ρ(γ1(x)), ρ(γ2(x))) ∈ TρJGK

205

Consider arbitrary i, v1 and Ξ1 such that i < W.j and W.Ξ1 . ρ(γ1(x)) −→i Ξ1 . v1. Since
ρ(γ1(x))) = γ1(x) and γ1(x) is already a value, we have i = 0 and γ1(x) = v1. We are required to
show that exists Ξ2, v2 such thatW.Ξ2.γ2(x) −→∗ Ξ2.v2 which is immediate (since ρ(γ2(x)) = γ2(x)
is a value and Ξ2 = W.Ξ2). Also, we are required to show that ∃W ′, such that W ′.j + i =
W.j ∧ W ′ � W ∧ W ′.Ξ1 = Ξ1 ∧ W ′.Ξ2 = Ξ2 ∧ (W ′, γ1(x), γ2(x)) ∈ VρJGK. Let W ′ = W , then
(W,γ1(x), γ2(x)) ∈ VρJGK because of the definition of (W,γ) ∈ GρJΓK.

Proposition A.90 (Compatibility-Easc) If Ξ; ∆; Γ ` t1 � t2 : G and ε ` Ξ; ∆ ` G ∼ G′ then
Ξ; ∆; Γ ` εt1 :: G′ � εt2 :: G′ : G′.

Proof. First we are required to prove that Ξ; ∆; Γ ` εti :: G′ : G′, but by Ξ; ∆; Γ ` t1 � t2 : G we
already know that Ξ; ∆; Γ ` ti : G, therefore:

(Easc)
Ξ; ∆; Γ ` ti : G ε ` Ξ; ∆ ` G ∼ G′

Ξ; ∆; Γ ` εti :: G′ : G′

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that:

(W,ρ(γ1(εt1 :: G′)), ρ(γ2(εt2 :: G′))) ∈ TρJG′K

Let’s suppose that ερ1.n = k. By definition of substitutions ρ(γi(εti :: G′)) = ρ(ε)ρ(γi(ti)) :: ρ(G′),
therefore we have to prove that:

(W,ρ(ε)ρ(γ1(t1)) :: ρ(G′), ρ(ε)ρ(γ2(t2)) :: ρ(G′)) ∈ TρJG′K

First we have to prove that:

W.Ξi ` ρ(ε)ρ(γi(ti)) :: ρ(G′) : G′

As we know that Ξ; ∆; Γ ` εti :: G′ : G′, by Lemma A.110 the result follows immediately.

Second, consider arbitrary i < W.j,Ξ1. Either there exist v1 such that:

W.Ξ1 . ρ(ε)ρ(γ1(t1)) :: ρ(G′) 7−→i Ξ1 . v1

or
W.Ξ1 . ρ(ε)ρ(γ1(t1)) :: ρ(G′) 7−→i error

Let us suppose that W.Ξ1.ρ(γ1(t1)) :: ρ(G′) 7−→i Ξ1.v1. Hence, by inspection of the operational
semantics, it follows that there exist i1 + 1 < i, Ξ11 and v11 such that:

W.Ξ1 . ρ(ε)ρ(γ1(t1)) :: ρ(G′) 7−→i1 Ξ11 . ρ(ε)v11 :: ρ(G′) 7−→k Ξ11 . v1

We instantiate the hypothesis Ξ; ∆; Γ ` t1 � t2 : G with W , ρ and γ to obtain that:

(W,ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJGK

206

We instantiate TρJGK with i1, Ξ11 and v11 (note that i1 < i < W.j), hence there exists v12 and
W1, such that W1 � W , W1.j + i1 = W.j, W.Ξ2 . ρ(γ2(t2)) 7−→∗ W1.Ξ2 . v12, W1.Ξ1 = Ξ11, v12 and
(W1, v11, v12) ∈ VρJGK.

Since we have that (W1, v11, v12) ∈ VρJGK, then it is true that (W1, ρ(ε)v11 :: G′, ρ(ε)v12 :: G′) ∈
TρJG′K by the Lemma A.101.

By the inspection of the operational semantics:

W.Ξ1 . ρ(ε)ρ(γ1(t1)) :: ρ(G′) 7−→i1W1.Ξ1 . ρ(ε)v11 :: ρ(G′) 7−→k Ξ1 . v1

We instantiate (W1, ρ(ε)v11 :: G′, ρ(ε)v12 :: G′) ∈ TρJG′K with k, v1 and Ξ1. Therefore there
must exist v2 and W ′ such that W ′ �W1 (note that W ′ �W), W ′.j + i1 + k = W ′.j + i = W.j.

W1.Ξ2 . ρ(ε)v12 :: ρ(G′) 7−→∗ Ξ2 . v2

and (W ′, v1, v2) ∈ VρJG′K then the result follows.

Proposition A.91 (Compatibility-Eop) If Ξ; ∆; Γ ` t � t′ : G and ty(op) = G → G then
Ξ; ∆; Γ ` op(t) � op(t′) : G.

Proof. Similar to the term application.

Proposition A.92 (Compatibility-Eapp) If Ξ; ∆; Γ ` t1 � t′1 : G11 → G12 and Ξ; ∆; Γ ` t2 �
t′2 : G11 then Ξ; ∆; Γ ` t1 t2 � t′1 t′2 : G12.

Proof. First, we are required to show that:

Ξ; ∆; Γ ` t1 t2 : G12

which follows directly from (Eapp) as Ξ; ∆; Γ ` t1 : G1, and Ξ; ∆; Γ ` t2 : G2. Also, we are required
to prove that:

Ξ; ∆; Γ ` t′1 t′2 : G12

which follows analogously.

Second, consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We
are required to show that:

(W,ρ(γ1(t1 t2)), ρ(γ2(t′1 t
′
2)) ∈ TρJG12K

Consider arbitrary i, v1 and Ξ1 such that i < W.j and:

W.Ξ1 . ρ(γ1(t1 t2)) −→i Ξ1 . v1 ∨W.Ξ1 . ρ(γ1(t1 t2)) −→i error

207

Hence, by inspection of the operational semantics, it follows that there exist i1 < i, Ξ11 and v11

such that:
W.Ξ1 . ρ(γ1(t1)) −→i1 Ξ11 . v11 ∨W.Ξ1 . ρ(γ1(t1)) −→i1 error

If W.Ξ1 . ρ(γ1(t1)) −→i1 error then W.Ξ1 . ρ(γ2(t′1)) −→∗ error and the result holds immedi-
ately. Let us assume that the reduction does not fail. We instantiate the hypothesis Ξ; ∆; Γ ` t1 �
t′1 : G11 → G12 with W , ρ and γ we obtain that:

(W,ρ(γ1(t1))), ρ(γ2(t′1))) ∈ TρJG11 → G12K

We instantiate this with i1, Ξ11 and v11 (note that i1 < i < W.j), hence there exists v′11 and W1,
such that W1 � W , W1.j + i1 = W.j, or what is the same W1.j + i1 = W.j, W.Ξ2 . ρ(γ2(t′1)) −→∗
W1.Ξ2 . v

′
11, W1.Ξ1 = Ξ11 and (W1, v11, v

′
11) ∈ VρJG11 → G12K.

Note that:
W.Ξ1 . ρ(γ1(t1 t2)) −→i1 Ξ11 . v11(ρ(γ1(t2))) −→i−i1 Ξ1 . v1

or
W.Ξ1 . ρ(γ1(t1 t2)) −→i1 Ξ11 . v11(ρ(γ1(t2))) −→i−i1 error

Hence, by inspection of the operational semantics, it follows that there exist i2 < i− i1, Ξ22 and
v22 such that:

Ξ11 . ρ(γ1(t2)) −→i2 Ξ22 . v22 ∨ Ξ11 . ρ(γ1(t2)) −→i2 error

We instantiate the hypothesis Ξ; ∆; Γ ` t2 � t′2 : G11 with (W1), ρ and γ, then we obtain that:

(W1, ρ(γ1(t2)), ρ(γ2(t′2))) ∈ TρJG11K

If Ξ11 . ρ(γ1(t2)) −→i2 error then we instantiate with Ξ22 and Ξ22 . ρ(γ2(t′2)) −→∗ error and
the result holds immediately. Let us assume that the reduction does not fail. We instantiate this
with i2 (note that i2 < i− i1 < W1.j = W.j − i1), Ξ22 and v22, hence there exists v′22 and W2, such
that W2.Ξ1 = Ξ22, W2 �W1, or what is the same, W2 �W1, W2.j = W1.j−i2 (W2.j+i2+i1 = W.j)
and

W1.Ξ2 . ρ(γ2(t′2)) −→∗ W2.Ξ2 . v
′
22

and (W2, v22, v
′
22) ∈ VρJG11K.

Note that:

W.Ξ1 . ρ(γ1(t1 t2)) −→i1 Ξ11 . v11 (ρ(γ1(t2))) −→i2 Ξ22 . v11 v22 −→i−i1−i2 Ξ1 . v1

Since (W1, v11, v
′
11) ∈ VρJG11 → G12K, we instantiate this with W2, ρ(G11 → G12), v22 and v′22

(note that (W2, v22, v
′
22) ∈ VρJG11K, (↓1W2, v22, v

′
22) ∈ VρJG11K andW2 �W1). Then (W2, v11 v22, v

′
11 v

′
22) ∈

TρJG2K.

208

Since (W2, v11 v22, v
′
11 v

′
22) ∈ TρJG2K, we instantiate this with i− i1 − i2 (note that i− i1 − i2 <

W2.j = W.j − i1 − i2 since i < W.j), v1 and Ξ1.

If W2.Ξ1 . v11 v22 −→i−i1−i2 error then W2.Ξ2 . v
′
11 v

′
22 −→∗ error and the result holds. Let us

assume that the reduction does not fail. Hence there exists v2 and W ′, such that W ′ � W2 (note
that W ′ �W), W ′.j = W2.j − (i− i1 − i2) = W.j − i, W2.Ξ2 . v

′
11 v

′
22 −→∗ W ′.Ξ2 . v2, W ′.Ξ1 = Ξ1

and (W ′, v1, v2) ∈ VρJG12K, then the proof is complete.

Lemma A.93 (Compatibility-EappG) If Ξ; ∆; Γ ` t1 � t2 : ∀X.G and Ξ; ∆ ` G′, then
Ξ; ∆; Γ ` t1 [G′] � t2 [G′] : G[G′/X].

Proof. First we are required to prove that Ξ; ∆; Γ ` ti[G′] : G[G′/X], but by Ξ; ∆; Γ ` t1 � t2 :
∀X.G we already know that Ξ; ∆; Γ ` ti : ∀X.G, therefore:

(EappG)
Ξ; ∆; Γ ` ti : ∀X.G Ξ; ∆ ` G′

Ξ; ∆; Γ ` ti[G′] : G[G′/X]

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that:

(W,ρ(γ1(t1[G′])), ρ(γ2(t2[G′]))) ∈ TρJG[G′/X]K

But by definition of substitutions ρ(γi(ti[G
′])) = ρ(γi(ti))[ρ(G′)], therefore we have to prove that:

(W,ρ(γ1(t1))[ρ(G′)], ρ(γ2(t2))[ρ(G′)]) ∈ TρJG[G′/X]K

First we have to prove that:

W.Ξi ` ρ(γi(ti))[ρ(G′)] : ρ(G)[ρ(G′)/X]

As we know that Ξ; ∆; Γ ` ti[G′] : G[G′/X], by Lemma A.110 the result follows immediately. Sec-
ond, consider arbitrary i < W.j and Ξ1. Either there exist v1 such that W.Ξ1 . ρ(γ1(t1))[ρ(G′)] 7−→i

Ξ1 . v1 or W.Ξ1 . ρ(γ1(t1))[ρ(G′)] 7−→i Ξ1 . error. First, let us suppose that:

W.Ξ1 . ρ(γ1(t1))[ρ(G′)] 7−→i Ξ1 . v1

Hence, by inspection of the operational semantics, it follows that there exist i1 < i, and v11 such
that

W.Ξ1 . ρ(γ1(t1))[ρ(G′)] 7−→i1 Ξ11 . v11[ρ(G′)]

We instantiate the premise Ξ; ∆; Γ ` t1 � t2 : ∀X.G with W , ρ and γ to obtain that:

(W,ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJ∀X.GK

We instantiate TρJ∀X.GK with i1, Ξ11 and v11 (note that i1 < i < W.j), hence there exists v12

and W1, such that W1 � W , W1.j = W.j − i1, W.Ξ2 . ρ(γ2(t2)) 7−→∗ W1.Ξ2 . v12, W1.Ξ1 = Ξ11, v12

and:
(W1, v11, v12) ∈ VρJ∀X.GK

209

Then by inspection of the operational semantics:

W.Ξi . ρ(γi(ti))[ρ(G′)] 7−→∗W1.Ξi . v1i[ρ(G′)]

7−→W1.Ξi, α := ρ(G′) . εi(ε
′
it
′
i :: ρ(G)[α/X]) :: ρ(G)[ρ(G′)/X]

for some ε1, ε2, ε′1, ε′2, t′i and α 6∈ dom(W1.Ξi). Let us call t′′i = (ε′it
′
i :: ρ(G)[α/X]). We instantiate

VρJ∀X.GK with α, t′′i , ρ(G′), R = VρJG′K, ε1, ε2 and W1.

Then (W ′1, t
′′
1, t
′′
2) ∈ Tρ[X 7→α]JGK, where W ′1 = (↓W1)� (α, ρ(G′), ρ(G′),VρJG′K).

We instantiate Tρ[X 7→α]JGK with i2, Ξ1, v′1, such that

W1.Ξ1 . (ε′1t
′
1 :: ρ(G)[α/X]) 7−→i2 Ξ1 . v

′
1

Note that i2 < W ′1.j = W.j− i1−1, since i < W.j. Therefore there must exist v′2, and W ′ such that

W ′ �W ′1 (note that W ′ �W), W ′.j + i1 + 1 + i2 = W.j − i,

W1.Ξ2 . (ε′2t
′
2 :: ρ(G)[α/X]) 7−→∗ W ′.Ξ2 . (ε′2v

′′
2 :: ρ(G)[α/X]) 7−→W ′.Ξ2 . v

′
2

W ′.Ξ1 = Ξ1 and (W ′, v′1, v
′
2) ∈ Vρ[X 7→α]JGK.

Notice that ti reduce to a type abstraction of the form v1i = 〈∀X.Ei1,∀X.Ei2〉ΛX.t′′′i :: ∀X.ρ(G).
Let us call v′i = ε′′′i u

′′′
i :: ρ(G)[α/X]), as π2(ε′′′1) ≡ π2(ε′′′2), then Gp = unlift(π2(ε′′′i)), then Ei =

liftW2.Ξi
(Gp), and E′i = liftW1.Ξi

(ρ(G′)), and εi = 〈Ei[αE
′
i/X], Ei[E

′
i/X]〉. Then as (W ′, v′1, v

′
2) ∈

Vρ[X 7→α]JGK by Lemma A.98,

(↓kW ′, (ε′′′1 # ε1)u′′′1 :: ρ(G)[ρ(G′)/X], (ε′′′2 # ε2)u′′′2 :: ρ(G)[ρ(G′)/X]) ∈ VρJG[G′/X]K

where ε1.n = k. Let us call vi = (ε′′′i # εi)u′′′1 :: ρ(G)[ρ(G′)/X]. Where the lemma holds by
instantiating TρJG[G′/X]K with Ξ1, v1, i = k and therefore W ′.Ξ1 . ε1v

′
1 :: ρ(G)[ρ(G′)/X] 7−→k

W ′.Ξ1 .v1. Then there must exists some v2 such that W ′.Ξ2 . ε2v
′
2 :: ρ(G)[ρ(G′)/X] 7−→W ′.Ξ2 .v2,

and the result follows.

Proposition A.94 (Compatibility-Epair1) If Ξ; ∆; Γ ` t1 � t2 : G1×G2 then Ξ; ∆; Γ ` π1(t1) �
π1(t2) : G1.

Proof. Similar to the function application case, using the definition of related pairs instead.

Proposition A.95 (Compatibility-Epair2) If Ξ; ∆; Γ ` t1 � t2 : G1×G2 then Ξ; ∆; Γ ` π2(t1) �
π2(t2) : G2.

Proof. Similar to the function application case, using the definition of related pairs instead.

Lemma A.96 Let Ei = liftΞi(Gp) for some Gp v G, 〈Ei1, Ei2〉 Ξi ` Gu ∼ G, and E12 ≡ E22,
then
〈E11, E12〉 # 〈E1, E1〉 ⇐⇒ 〈E21, E22〉 # 〈E2, E2〉.

210

Proof. Note that by definition E1 ≡ E2. Also, ∀αE ∈ FTN(Ei), E = liftΞi(Ξi(α)). Then we prove
the ⇒ direction (the other is analogous), by induction on the structure of the evidences 〈Ei1, Ei2〉.
We skip cases where Ei = ? or Ei1 = ?, as the result is trivial (combination never fails).

Case (〈E11, E12〉 = 〈E11, α
E′12〉). Then 〈E21, E22〉 = 〈E21, α

E′22〉 , and Ei = 〈αE′i , αE′i〉, where E′i =
liftΞi(Ξi(α)), and therefore E′i2 v E′i. And then by Lemma A.115, the result holds immediately as
both combinations are defined.

Case (〈E11, E12〉 = 〈E11, B〉). Then 〈E21, E22〉 = 〈E12, B〉, and 〈Ei, Ei〉 = 〈B,B〉, and the result
trivially holds.

Case (〈E11, E12〉 = 〈αE′11 , E12〉). The result holds by de inspection of consistent transitivity rule
(sealR) and induction on evidence 〈E′i1, Ei2〉.
Case (〈E11, E12〉 = 〈E111 → E112, E121 → E122〉). Then 〈E11, E12〉 = 〈E111 → E112, E121 → E122〉,
and 〈Ei, Ei〉 = 〈E′i1 → E′i2, E

′
i1 → E′i2〉. As consistent transitivity is a symmetric relation, then

the result holds by induction hypothesis on combinations of evidence 〈Ei11 → Ei12〉 # 〈E′i1, E′i1〉 and
〈Ei21 → Ei22〉 # 〈E′i2, E′i2〉.

For the other cases we proceed analogous to the function case.

Proposition A.97 If (W, v1, v2) ∈ VρJGK and W ′ �W then (W, v1, v2) ∈ VρJGK.

Proposition A.98 (Compositionality) If

• W.Ξi(α) = ρ(G′) and W.κ(α) = VρJG′K,

• E′i = liftW.Ξi(ρ(G′)),

• Ei = liftW.Ξi(Gp) for some Gp v ρ(G),

• ρ′ = ρ[X 7→ α],

• εi = 〈Ei[αE
′
i/X], Ei[E

′
i/X]〉, such that εi `W.Ξi ` ρ(G[α/X]) ∼ ρ(G[G′/X]), and

• εi
−1 = 〈Ei[E′i/X], Ei[α

E′i/X]〉, such that εi
−1 `W.Ξi ` ρ(G[G′/X]) ∼ ρ(G[α/X]), then

1.

(W, ε′1u1 :: ρ′(G), ε′2u2 :: ρ′(G)) ∈ Vρ′JGK⇒
(W, ε1(ε′1u1 :: ρ(G)) :: ρ(G [G′/X]), ε2(ε′2u2 :: ρ(G)) :: ρ(G [G′/X])) ∈ TρJG [G′/X]K

2.

(W, ε′1u1 :: ρ(G [G′/X]), ε′2u2 :: ρ(G [G′/X])) ∈ VρJG [G′/X]K⇒
(W, ε1

−1(ε′1u1 :: ρ(G [G′/X])) :: ρ′(G), ε2
−1(ε′2u2 :: ρ(G [G′/X])) :: ρ′(G)) ∈ Tρ′JGK

Proof. We proceed by induction on G. Let suppose that ε1.n = k, ε−1
1 .n = l and ε′1.n = m. Let

vi = ε′iui :: ρ′(G). We prove (1) first.

211

Case (Type Variable X: G = X). Let vi = 〈Hi1, α
Ei2〉ui :: α. Then we know that

(W, 〈H11, α
E12〉u1 :: α, 〈H21, α

E22〉u2 :: α) ∈ Vρ[X 7→α]JXK

which is equivalent to

(W, 〈H11, α
E12〉u1 :: α, 〈H21, α

E22〉u2 :: α) ∈ Vρ[X 7→α]JαK

As W.Ξi(α) = ρ(G′) and W.κ(α) = VρJG′K, we know that:

(↓1W, 〈H11, E12〉u1 :: ρ(G′), 〈H21, E22〉u2 :: ρ(G′)) ∈ VρJG′K

Then εi `W.Ξi ` α ∼ ρ(G′), and εi has to have the form εi = 〈αE′i , E′i〉. As E′i = liftW.Ξi(ρ(G′))

(initial evidence for α), then Ei2 v E′i, and therefore by Lemma A.115: 〈Hi1, α
Ei2〉 # 〈αE′i , E′i〉 =

〈Hi1, Ei2〉, and then we have to prove that

(↓kW, 〈H11, E12〉u1 :: ρ(G′), 〈H21, E22〉u2 :: ρ(G′)) ∈ VρJG′K

which follow by Lemma A.97 and the fact that k > 0.

Case (Type Variable Y: G = Y). Let vi = 〈Hi1, β
Ei2〉ui :: β, where ρ′(Y) = β. Then we know

that
(W, 〈H11, β

E12〉u1 :: β, 〈H21, β
E22〉u2 :: β) ∈ Vρ[X 7→α]JY K

which is equivalent to

(W, 〈H11, β
E12〉u1 :: β, 〈H21, β

E22〉u2 :: β) ∈ Vρ[X 7→α]JβK

Then εi ` W.Ξi ` β ∼ β, and εi has to have the form εi = 〈βE′i , βE′i〉, and βE
′
i = liftW.Ξi(β). By

Lemma A.96, we assume that both combinations of evidence are defined (otherwise the result holds
immediately). Therefore, by Lemma A.115, we know that

〈Hi1, β
Ei2〉 # 〈βE′i , βE′i〉 = 〈Hi1, β

Ei2〉

Then we have to prove that

(↓kW, 〈H11, β
E12〉u1 :: β, 〈H21, β

E22〉u2 :: β) ∈ VρJβK

which follows Lemma A.97.

Case (Unknown Type: G = ?). Let vi = 〈Hi1, Ei2〉ui :: ?. Then by definition of VρJ?K, let
G′′ = const(Ei2) (where G′′ 6= ?). Then we know

(W, 〈H11, E12〉u1 :: G′′, 〈H21, E22〉u2 :: G′′) ∈ VρJG′′K

We are required to prove that:

(W, ε1(〈H11, E12〉u1 :: ?) :: ?, ε2(〈H21, E22〉u2 :: ?) :: ?) ∈ TρJ?K

If εi = 〈?, ?〉, then, 〈Hi1, Ei2〉#〈?, ?〉 = 〈Hi1, Ei2〉, by Lemma A.115, the result holds immediately.

If εi 6= 〈?, ?〉. Then we proceed similar to the other cases where G 6= ?. Note that we know that

(W, 〈H11, E12〉u1 :: G′′, 〈H21, E22〉u2 :: G′′) ∈ VρJG′′K

where G′′ 6= ? and we are required to prove that

(W, ε1(〈H11, E12〉u1 :: G′′) :: G′′, ε2(〈H21, E22〉u2 :: G′′)) ∈ VρJG′′K

212

Case (Function Type: G = G1 → G2). We know that

(W, v1, v2) ∈ Vρ′JG1 → G2K

Then we have to prove that

(↓kW, (ε′1 # ε1)(λx : G′1.t1) :: ρ(G1[G′/X])→ ρ(G2[G′/X]),

(ε′2 # ε2)(λx : G′2.t2) :: ρ(G1[G′/X])→ ρ(G2[G′/X])) ∈ VρJG1[G′/X]→ G2[G′/X]K

Let us call v′′i = (ε′i # εi)(λx : G′i.ti) :: ρ′(G1)→ ρ′(G2). By unfolding, we have to prove that

∀W ′ � (↓kW).∀v′1, v′2.(↓1W ′, v′1, v′2) ∈ VρJG1[G′/X]K⇒ (W ′, v′′1 v
′
1, v
′′
2 v
′
2) ∈ TρJG2[G′/X]K

Suppose that v′i = ε′′i u
′
i :: ρ(G1[G′/X]), by inspection of the reduction rules, we know that

W ′.Ξi . v
′′
i v
′
i 7−→∗ W ′.Ξi . (cod(ε′i) # cod(εi))ti[(ε

′′
i # (dom(εi) # dom(ε′i)))u

′
i :: G′i)/x] :: ρ(G2[G′/X]))

This is equivalent by Lemma A.103,

W ′.Ξi . v
′′
i v
′
i 7−→∗ W ′.Ξi . (cod(ε′i) # cod(εi))ti[((ε

′′
i # dom(εi)) # dom(ε′i))u

′
i :: G′i)/x] :: ρ(G2[G′/X]))

Therefore, we know that

W ′.Ξ1 . v
′′
1 v
′
1 7−→m+k+1

W ′.Ξ1 . (cod(ε′1) # cod(ε1))t1[(ε′′1 # (dom(ε1) # dom(ε′i)))u
′
1 :: G′i)/x] :: ρ(G2[G′/X])) 7−→k∗

Ξ1 . (cod(ε′1) # cod(ε1))v1f :: ρ(G2[G′/X])) 7−→m+k

Ξ1 . v
∗
1

where v1f = ε1fu1f :: ρ′(G2) and v∗1 = ε1f # (cod(ε′1) # cod(ε1))u1f :: ρ(G2[G′/X]).

Notice that dom(εi) ` W.Ξi ` ρ(G1[G′/X]) ∼ ρ(G1[α/X]), by Lemma A.96, we assume that
both combinations of evidence are defined (otherwise the result holds immediately) , then let us
assume that (ε′′i # dom(εi)) is defined. We can use induction hypothesis on v′i, with evidences dom(εi).
Then we know that (↓k+1W

′, (ε′′1 # dom(ε1))u′1 :: ρ′(G1), (ε′′2 # dom(ε2))u′2 :: ρ′(G1)) ∈ Vρ′JG1K. Let
us call v′′′i = (ε′′i # dom(εi))u

′
i :: ρ′(G1).

Now we instantiate
(W, v1, v2) ∈ Vρ′JG1 → G2K

with ↓kW ′ and v′′′i and

(↓k+1W
′, (ε′′1 # dom(ε1))u′1 :: ρ′(G1), (ε′′2 # dom(ε2))u′2 :: ρ′(G1)) ∈ Vρ′JG1K

to obtain that either both executions reduce to an error (then the result holds immediately), or
∃W ′′ �↓kW ′ such that W ′′.j + 2m+ 1 + k∗ + k = W ′.j and (W ′′, v′f1, v

′
f2) ∈ Vρ′JG2K

W ′.Ξi . vi v
′′′
i 7−→∗W ′.Ξi . cod(ε′i)t[((ε

′′
i # dom(εi)) # dom(ε′i))u

′
i :: G′i)/x] :: ρ′(G2))

7−→∗W ′′.Ξi . v
′
fi

213

Suppose that v′fi = ε′fiufi :: ρ′(G2).

Also, we know that
W ′.Ξ1 . v1 v

′′′
1 7−→m+1

W ′.Ξ1 . cod(ε′1)t1[(ε′′1 # (dom(ε1) # dom(ε′i)))u
′
1 :: G′i)/x] :: ρ′(G2) 7−→k∗

Ξ1 . cod(ε′1)v1f :: ρ′(G2) 7−→m

Ξ1 . v
′
1f

Then we use induction hypothesis once again using evidences cod(εi) over v′if (noticing that by
Lemma A.96, the combination of evidence either both fail or both are defined), to obtain that,

(↓kW ′′, (εf1 # cod(ε′1) # cod(ε1))uf1 :: ρ(G2[G′/X]),

(εf2 # cod(ε′2) # cod(ε2))uf2 :: ρ(G2[G′/X])) ∈ VρJG2[G′/X]K

and the result holds. Note that (↓kW ′′).j + 1 + 2m+ 2k + k∗ = W ′.j

Case (Universal Type: ∀Y.G1). We know that

(W, v1, v2) ∈ Vρ′J∀Y.G1K

Then we have to prove that

(↓kW, (ε′1 # ε1)(ΛY.t1) :: ∀Y.ρ(G1[G′/X]),

(ε′2 # ε2)(ΛY.t2) :: ∀Y.ρ(G1[G′/X])) ∈ VρJ∀Y.G1[G′/X]K

Let ε′i = 〈∀Y.Ei1,∀Y.Ei2〉 and εi = 〈∀Y.E′i1, ∀Y.E′i2〉 = 〈∀Y.E′′i [αE
′
i/X],∀Y.E′′i [E′i/X]〉, where Ei =

∀Y.E′′i . Let us call v′′i = (ε′i # εi)(ΛY.ti) :: ∀Y.ρ(G1[G′/X]). By unfolding, we have to prove that

∀W ′ � (↓kW).∀t′′1, t′′2, G′1, G′2, β, ε′′1, ε′′2.∀R ∈ RelW ′.j [G
′
1, G

′
2].

(W ′.Ξ1 ` G′1 ∧W ′.Ξ2 ` G′2∧
W ′.Ξ1 . v

′′
1 [G′1] 7−→W ′.Ξ1, β := G′1 . ε

′′
1t
′′
1 :: ρ(G1)[G′/X][G′1/Y]∧

W ′.Ξ2 . v
′′
2 [G′2] 7−→W ′.Ξ2, β := G′2 . ε

′′
2t
′′
2 :: ρ(G1)[G′/X][G2/Y])⇒

(W ∗, t′′1, t
′′
2) ∈ Tρ[Y 7→β]JG1[G′/X]K

where E∗i = liftW ′.Ξi(G
′
i) and W ∗ =↓(W ′ � (β,G′1, G

′
2, R)

By inspection of the reduction rules we know that

t′′i = (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉 # 〈E′′i [αE

′
i/X][βE

∗
i /Y], E′′i [E′i/X][βE

∗
i /Y]〉)ti[βE

∗
i /Y] :: ρ(G1[G′/X][β/Y])

Note that (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉 # 〈E′′i [αE

′
i/X][βE

∗
i /Y], E′′i [E′i/X][βE

∗
i /Y]〉).n = m+k. There-

fore, we know that
W ∗.Ξ1 . t

′′
1 7−→k∗

Ξ1 . (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉 # 〈E′′i [αE

′
i/X][βE

∗
i /Y], E′′i [E′i/X][βE

∗
i /Y]〉)

vm1 :: ρ(G1[G′/X][β/Y]) 7−→k+m Ξ1 . v
∗
1

By the reduction rule of the type application we know that:

W ′.Ξi . vi[G
′
i] 7−→W ′.Ξi, β := G′i . 〈E

#
i [βE

∗
i /Y], E#

i [E∗i /Y]〉t′i :: ρ(G1[G′/X][G′i/Y])

214

where t′i = (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉ti[βE

∗
i /Y] :: ρ(G1[G′/X][β/Y])). Now we instantiate

(W, v1, v2) ∈ Vρ′J∀Y.G1K

with W ′, G′1, G′2, R, t′1, t′2, β, and evidences 〈Ei1[βE
∗
i /Y], Ei2[E∗i /Y]〉, to obtain that

(W ∗, t′1, t
′
2) ∈ Tρ′[Y 7→β]JG1K

then either both executions reduce to an error (then the result holds immediately), or ∃W ′′ �
W ∗, vfi, such that (W ′′, vf1, vf2) ∈ Vρ′[Y 7→β]JG1K and

W ∗.Ξi . (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉ti[βE

∗
i /Y] :: ρ′(G1[β/Y]))

7−→∗W ′′.Ξi . (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉vmi :: ρ′(G1[β/Y]))

7−→W ′′.Ξi . vfi

W ∗.Ξ1 . (〈E11[βE
∗
1/Y], Ei2[βE

∗
1/Y]〉t1[βE

∗
1/Y] :: ρ′(G1[β/Y]))

7−→k∗W ′′.Ξ1 . (〈E11[βE
∗
1/Y], Ei2[βE

∗
1/Y]〉vm1 :: ρ′(G1[β/Y]))

7−→mW ′′.Ξ1 . vf1

Suppose that vfi = (εfi # 〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉)ufi :: ρ′(G1[β/Y]). As E12[βE

∗
1/Y] ≡

E22[βE
∗
2/Y], then unlift(E12[βE

∗
1/Y]) = unlift(E22[βE

∗
2/Y]). Then we use induction hypothesis us-

ing ρ′[Y 7→ β], evidences 〈E′′i [E∗i /Y], E′′i [E∗i /Y]〉, where E′′i [E∗i /Y] = liftW ′′.Ξi(unlift(Ei2[βE
∗
i /Y]))

as Ei = ∀Y.E′′i ,

I(, ()liftW ′′.Ξi(G1[β/Y]), liftW ′′.Ξi(G1[β/Y])) = 〈E′′i [E∗i /Y], E′′i [E∗i /Y]〉

also we know that:

〈E′′i [E∗i /Y][αE
′
i/X], E′′i [E∗i /Y][E′i/X]〉 = 〈E′′i [αE

′
i/X][E∗i /Y], E′′i [E′i/X][E∗i /Y]〉

Note that ρ(G1[β/Y]) = ρ[Y 7→ β](G1). Then we know that

(↓kW ′′,((εf1 # 〈E11[βE
∗
1/Y], E12[βE

∗
1/Y]〉) # 〈E′′1 [αE

′
1/X][E∗1/Y], E′′1 [E′1/X][E∗1/Y]〉)uf1 :: ρ[Y 7→ β](G1[G′/X]),

((εf2 # 〈E21[βE
∗
2/Y], E22[βE

∗
2/Y]〉) # 〈E′′2 [αE

′
2/X][E∗2/Y], E′′2 [E′2/X][E∗2/Y]〉)uf2 :: ρ[Y 7→ β](G1[G′/X]))

∈ Vρ[Y 7→β]JG1[G′/X]K

then by inspection of the reduction rules:

W ∗.Ξi . t
′′
i

7−→∗W ′′.Ξi . ((〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉 # 〈E′′i [αE

′
i/X][βE

∗
i /Y], E′′i [E′i/X][βE

∗
i /Y]〉)vmi :: ρ′(G1[β/Y]))

7−→W ′′.Ξi . (εfi # (〈Ei1[βE
∗
i /Y], Ei2[βE

∗
i /Y]〉 # 〈E′′i [αE

′
i/X][E∗i /Y], E′′i [E′i/X][E∗i /Y]〉))ufi :: ρ[Y 7→ β](Gi[G

′/X])

and by Lemma A.103, we know that those two values belong to the interpretation of Vρ[Y 7→β]JG1[G′/X]K,
and the result holds. Note that ↓kW ′′.k +m+ k∗ = W ∗.

Case (Pair Type: G1 ×G2). Analogous to the function case.

Case (Base Type: B). Trivial.

215

Then we prove as (2):

Case (Type Variable X: G = X). Let vi = 〈Hi1, Ei2〉ui :: X[G′/X] = 〈Hi1, Ei2〉ui :: G′. Then we
know that

(W, 〈H11, E12〉u1 :: G′, 〈H21, E22〉u2 :: G′) ∈ VρJG′K

and εi
−1 = 〈E′i, αE

′
i〉. Then we have to prove that

(↓lW, (〈H11, E12〉 # 〈E′1, αE
′
1〉)u1 :: α, (〈H21, E22〉 # 〈E′2, αE

′
2〉)u2 :: α) ∈ Vρ[X 7→α]JαK

By Lemma A.96, we assume that both combinations of evidence are defined (otherwise the result
holds immediately). Then by definition of transitivity and Lemma A.115, we know that (〈Hi1, Ei2〉 #
〈E′i, αE

′
i〉) = 〈Hi1, α

Ei2〉. Then we have to prove that

(↓lW, 〈H11, α
E12〉u1 :: α, 〈H21, α

E22〉u2 :: α) ∈ Vρ[X 7→α]JαK

but as α is sync, then that is equivalent to

(↓l−1W, 〈H11, E12〉u1 :: G′, 〈H21, E22〉u2 :: G′) ∈ VρJG′K

which follows by the premise and Lemma A.97.

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓l−1W ∈ SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗), we get
that

(↓l−1W, ε
′(〈H11, α

E12〉u1 :: α) :: G∗, ε′(〈H21, α
E22〉u2 :: α) :: G∗) ∈ TρJG∗K)

or what is the same ((〈H11, α
E12〉 # ε′) fails the result follows immediately)

(↓l−1−k′W, (〈H11, α
E12〉 # ε′)u1 :: G∗, (〈H21, α

E22〉 # ε′)u2 :: G∗) ∈ VρJG∗K)

where ε′ = 〈αE∗1 , E∗2〉 and ε′.n = k′. By definition of transitivity and Lemma A.115, we know
that

〈Hi1, α
Ei2〉 # 〈αE∗1 , E∗2〉 = 〈Hi1, Ei2〉 # 〈E∗1 , E∗2〉

We know that 〈E∗1 , E∗2〉 ` Ξ′ ` G′ ∼ G∗. Since 〈E∗1 , E∗2〉 ` Ξ ` G′ ∼ G∗, ↓l−1W ∈ SJΞ′K,
(↓l−1W, 〈H11, E12〉u1 :: G′, 〈H21, E22〉u2 :: G′) ∈ VρJG′K, by Lemma A.101, we know that (since
(〈H11, α

E12〉 # ε′) does not fail then (〈H11, E12〉 # 〈E∗1 , E∗2〉) also does not fail by the transitivity
rules)

(↓l−1−k′W, (〈H11, E12〉 # 〈E∗1 , E∗2〉)u1 :: G∗, (〈H21, E22〉 # 〈E∗1 , E∗2〉)u2 :: G∗) ∈ VρJG∗K)

The result follows immediately.

Case (Type Variable Y: G = Y). Let vi = 〈Hi1, β
Ei2〉ui :: ρ(Y [G′/X]) = 〈Hi1, β

Ei2〉ui :: β
(where ρ(Y) = β). Then we know that

(W, 〈H11, β
E12〉u1 :: β, 〈H21, β

E22〉u2 :: β) ∈ VρJβK

We know that εi
−1 ` W.Ξi ` β ∼ β, therefore εi

−1 has to have the form εi
−1 = 〈βE′i , βE′i〉 =

I(, ()liftW.Ξi(β), liftW.Ξi(β)). As εi
−1 is the initial evidence for β, then Ei2 v E′i, and therefore by

definition of the transitivity and Lemma A.115:

〈Hi1, β
Ei2〉 # 〈βE′i , βE′i〉 = 〈Hi1, β

Ei2〉

216

Then we have to prove that:

(↓lW, (〈H11, β
E12〉 # 〈βE′1 , βE′1〉)u1 :: β, (〈H21, β

E22〉 # 〈E′2, βE
′
2〉)u2 :: β) ∈ Vρ[X 7→α]JβK

or what is the same

(↓lW, 〈H11, β
E12〉u1 :: β, 〈H21, β

E22〉u2 :: β) ∈ VρJβK

which follows by the premise and Lemma A.97.

Case (Unknown Type: G = ?). Let vi = 〈Hi1, Ei2〉ui :: ?. Then by definition of VρJ?K, let
G′′ = const(Ei2) (where G′′ 6= ?). Then we know

(W, 〈H11, E12〉u1 :: G′′, 〈H21, E22〉u2 :: G′′) ∈ VρJG′′K

If εi
−1 = 〈?, ?〉, then, 〈Hi1, Ei2〉 # 〈?, ?〉 = 〈Hi1, Ei2〉, by Lemma A.115, the result holds immedi-

ately.

If εi
−1 6= 〈?, ?〉. Then we proceed similar to the other cases where G 6= ?. Note that we know

that
(W, 〈H11, E12〉u1 :: G′′, 〈H21, E22〉u2 :: G′′) ∈ VρJG′′K

where G′′ 6= ? and we are required to prove that

(W, ε1(〈H11, E12〉u1 :: G′′) :: G′′, ε2(〈H21, E22〉u2 :: G′′)) ∈ VρJG′′K

Case (Function Type: G = G1 → G2). Let vi = ε′i(λx : G′i.ti) :: ρ(G[G′/X]) We know that

(W, v1, v2) ∈ VρJG1[G′/X]→ G2[G′/X]K

Then we have to prove that

(↓lW, (ε′1 # ε1
−1)(λx : G′1.t1) :: ρ′(G1)→ ρ′(G2),

(ε′2 # ε2
−1)(λx : G′2.t2) :: ρ′(G1)→ ρ′(G2)) ∈ Vρ′JG1 → G2K

Let us call v′′i = (ε′i # εi
−1)(λx : G′i.ti) :: ρ′(G1)→ ρ′(G2). By unfolding, we have to prove that

∀W ′ � (↓lW).∀v′1, v′2.(↓1W ′, v′1, v′2) ∈ Vρ′JG1K⇒ (W ′, v′′1 v
′
1, v
′′
2 v
′
2) ∈ Tρ′JG2K

Suppose that v′i = ε′′i u
′
i :: ρ′(G1), by inspection of the reduction rules, we know that

W ′.Ξi . v
′′
i v
′
i 7−→∗ W ′.Ξi . (cod(ε′i) # cod(εi

−1))ti[(ε
′′
i # (dom(εi

−1) # dom(ε′i)))u
′
i :: G′i)/x] :: ρ′(G2))

This is equivalent by Lemma A.103,

W ′.Ξi . v
′′
i v
′
i 7−→∗ W ′.Ξi . (cod(ε′i) # cod(εi

−1))ti[((ε
′′
i # dom(εi

−1)) # dom(ε′i))u
′
i :: G′i)/x] :: ρ′(G2))

Also, we know that
W ′.Ξ1 . v

′′
1 v
′
1 7−→l+m+1

W ′.Ξ1 . (cod(ε′1) # cod(ε1
−1))t1[((ε′′1 # dom(ε1

−1)) # dom(ε′1))u′1 :: G′1)/x] :: ρ′(G2)) 7−→k∗

Ξ1 . (cod(ε′1) # cod(ε1
−1))v1f :: ρ′(G2)) 7−→l+m

217

Ξ1 . v
∗
1

where v1f = ε1fu1f :: ρ(G2[G′/X]) and v∗1 = (ε1f # cod(ε′1) # cod(ε1
−1))u1f :: ρ′(G2).

Notice that dom(εi
−1) ` W.Ξi ` ρ(G1[α/X]) ∼ ρ(G1[G′/X]), and as dom(εi

−1) is constructed
using the interior (and thus π2(ε′′i) v π1(dom(εi

−1))), then by definition of evidence (ε′′i # dom(εi
−1))

is always defined. We can use induction hypothesis on v′i, with evidences dom(εi
−1).

Then we know that

(↓l+1W
′, (ε′′1 # dom(ε1

−1))u′1 :: ρ(G1[G′/X]), (ε′′2 # dom(ε2
−1))u′2 :: ρ(G1[G′/X])) ∈ VρJG1[G′/X]K

Let us call v′′′i = (ε′′i # dom(εi
−1))u′i :: ρ(G1[G′/X]).

Now we instantiate
(W, v1, v2) ∈ VρJG1[G′/X]→ G2[G′/X]K

with (↓lW ′) and v′′′i , to obtain that either both executions reduce to an error (then the result holds
immediately), or ∃W ′′ � (↓lW ′) such that (W ′′, v′f1, v

′
f2) ∈ VρJG2[G′/X]K, W ′′.j + 2m + k∗ = (↓l

W ′).j (W ′′.j + 1 + l + 2m+ k∗ = W ′.j) and

W ′.Ξi . vi v
′′′
i 7−→W ′.Ξi . cod(ε′i)ti[((ε

′′
i # dom(εi

−1)) # dom(ε′i))u
′
i :: G′i)/x] :: ρ(G2[G′/X]))

7−→∗W ′′.Ξi . v
′
fi

Therefore, we know that
W ′.Ξ1 . v1 v

′′′
1 7−→m+1

W ′.Ξ1 . cod(ε′1)t1[((ε′′1 # dom(ε1
−1)) # dom(ε′1))u′1 :: G′1)/x] :: ρ(G2[G′/X])) 7−→k∗

Ξ1 . cod(ε′1)vf1 :: ρ(G2[G′/X])) 7−→m

W ′′.Ξ1 . v
′
f1

Suppose that v′fi = ε′fiufi :: ρ(G2[G′/X]) and ε′f1 = εf1 # cod(ε′1). Then we use induction

hypothesis once again using evidences cod(εi
−1) and (W ′′, v′f1, v

′
f2) ∈ VρJG2[G′/X]K, (noticing

that the combination of evidence does not fail as the evidence is obtained via the interior function
i.e. the less precise evidence possible), to obtain that,

(↓lW ′′, (εf1 # cod(ε′1) # cod(ε1
−1))uf1 :: ρ′(G2), (εf2 # cod(ε′2) # cod(ε2

−1))uf2 :: ρ′(G2)) ∈ Vρ′JG2K

Note that (↓lW ′′).j + 1 + 2l + 2m+ k∗ = W ′.j, and the result holds.

The remaining cases are similar.

Lemma A.99 (Compositionality) If

• W.Ξi(α) = ρ(G′) and W.κ(α) = VρJG′K,

• E′i = liftW.Ξi(ρ(G′)),

218

• Ei = liftW.Ξi(Gp) for some Gp v ρ(G),

• ρ′ = ρ[X 7→ α],

• εi = 〈Ei[αE
′
i/X], Ei[E

′
i/X]〉, such that εi `W.Ξi ` ρ(G[α/X]) ∼ ρ(G[G′/X]), and

• εi
−1 = 〈Ei[E′i/X], Ei[α

E′i/X]〉, such that εi
−1 `W.Ξi ` ρ(G[G′/X]) ∼ ρ(G[α/X]), then

1. (W, v1, v2) ∈ Vρ′JGK⇒ (W, ε1v1 :: ρ(G[G′/X]), ε2v2 :: ρ(G[G′/X])) ∈ TρJG[G′/X]K

2. (W, v1, v2) ∈ VρJG[G′/X]K⇒ (W, ε1
−1v1 :: ρ′(G), ε2

−1v2 :: ρ′(G)) ∈ Tρ′JGK

Proof. Direct by Prop. 3.31.

Definition A.100 ρ ` ε1 ≡ ε2 if unlift(π2(ε1)) = unlift(π2(ε2))

Proposition A.101 If

− (W, v1, v2) ∈ VρJGK

− ε Ξ; ∆ ` G ∼ G′

− W ∈ SJΞK and (W,ρ) ∈ DJ∆K

− ∀α ∈ dom(Ξ).sync(α,W)

then:
(W,ρ1(ε)v1 :: ρ(G′), ρ2(ε)v2 :: ρ(G′)) ∈ TρJG′K

where sync(α,W) ⇐⇒ W.Ξ1(α) = W.Ξ2(α) ∧W.κ(α) = bV∅JW.Ξi(α)KcW.j.

Proof. We proceed by induction on G and W.j. We know that ui ∈ Gi for some Gi, notice that
Gi ∈ HeadType ∪ TypeVar. In every case we apply Lemma A.111 to show that (ε1 # ερ1) ⇐⇒
(ε2 # ερ2), so in all cases we assume that the transitivity does not fail (otherwise the proof holds
immediately). Let us call ερ1 = ρ1(ε) and ερ2 = ρ2(ε). Let’s suppose that ερ1.n = k and ε1.n = l.

Case (Base type: G = B and G′ = B). We know that vi has the form 〈B,B〉u :: B, and we know
that (W, 〈B,B〉u :: B, 〈B,B〉u :: B) ∈ VρJBK. Also as ε ` Ξ; ∆ ` B ∼ B, then ε = 〈B,B〉, then as
ρi(B) = B, εi # ρi(ε) = εi, and we have to prove that (↓kW, 〈B,B〉u :: B, 〈B,B〉u :: B) ∈ VρJBK,
which follows immediately because the premise and Lemma A.97.

Case (Function type: G = G′′1 → G′′2, and G′ = G′1 → G′2). We know that:

(W, v1, v2) ∈ VρJG′′1 → G′′2K

Where vi = εi(λx : G1i.ti) :: ρ(G′′1 → G′′2) and εi `W.Ξi ` Gi ∼ ρ(G′′1 → G′′2).

We have to prove that:

(W, ερ1v1 :: ρ(G′1 → G′2), ερ2v2 :: ρ(G′1 → G′2)) ∈ TρJG′1 → G′2K

Or what is the same:

(↓lW, (ε1 # ερ1)(λx : G11.t1) :: ρ(G′1 → G′2), (ε2 # ερ2)(λx : G12.t2) :: ρ(G′1 → G′2)) ∈ TρJG′1 → G′2K

219

First we suppose that (εi # ε
ρ
i) does not fail and (εi # ε

ρ
i).n = k + l, then we have to prove that:

∀W ′ �↓lW.∀v′1, v′2.(↓1W ′, v′1, v′2) ∈ VρJG′1K⇒

(W ′, [(ε1 # ερ1)(λx : G11.t1) :: ρ(G′1 → G′2)] v′1, [(ε2 # ερ2)(λx : G12.t2) :: ρ(G′1 → G′2]) v′2) ∈ TρJG′2K

where v′i = ε′iu
′
i :: ρ(G′1). Note that by the reduction rule of application terms, we obtain that:

W ′.Ξi . ((εi # ε
ρ
i)(λx : G1i.ti) :: ρ(G′1 → G′2) (ε′iu

′
i :: ρ(G′1) −→∗

W ′.Ξi . cod(εi # ε
ρ
i)([(ε

′
i # dom(εi # ε

ρ
i))u

′
i :: G1i)/x]ti) :: ρ(G′2)

We know by the Proposition A.105 that dom(εi # ερi) = dom(ερi) # dom(εi) . Then by the
Proposition A.103 we know that:

ε′i # (dom(εi # ε
ρ
i)) = ε′i # (dom(ερi) # dom(εi)) = (ε′i # dom(ερi)) # dom(εi)

Also, by the Proposition A.106 it is follows that: cod(εi # ε
ρ
i) = cod(εi) # cod(ερi).

Then the following result is true:

W ′.Ξi . cod(εi # ε
ρ
i)([(ε

′
i # dom(εi # ε

ρ
i))u

′
i :: G1i)/x]ti) :: ρ(G′2) =

W ′.Ξi . cod((εi) # cod(ερi))([((ε
′
i # dom(ερi)) # dom(εi))u

′
i :: G1i)/x]ti) :: ρ(G′2)

So, we know that:

W ′.Ξ1 . ((ε1 # ερi)(λx : G11.t1) :: ρ(G′1 → G′2) (ε′1u
′
1 :: ρ(G′1) −→l+k+1

W ′.Ξ1 . cod(ε1 # ερi)([(ε
′
1 # dom(ε1 # ερi))u

′
1 :: G11)/x]t1) :: ρ(G′2) =

W ′.Ξ1 . cod((ε1) # cod(ερi))([((ε
′
1 # dom(ερi)) # dom(ε1))u′1 :: G11)/x]t1) :: ρ(G′2) −→k∗

Ξ1 . (cod(ε1) # cod(ερi))v
∗
1 :: ρ(G′2) −→l+k

Ξ1 . (ε′′1 # (cod(ε1) # cod(ερi)))u1f :: ρ(G′2)

where v∗1 = ε′′1u1f :: ρ(G′′2) and v1f = (ε′′1 # (cod(ε1) # cod(ερi)))u1f :: ρ(G′2).

We instantiate the induction hypothesis in (↓1W ′, v′1, v′2) ∈ VρJG′1K with the type G′′1 and the
evidences dom(ε) ` Ξ; ∆ ` G′1 ∼ G′′1, where dom(ε).n = l. We obtain that:

(↓1W ′, dom(ερ1)v′1 :: G′′1, dom(ερ2)v′2 :: G′′1) ∈ TρJG′′1K

In particular we focus on a pair of values such that (ε′i #dom(ερi)) does not fail (otherwise the result
follows immediately). Then it is true that:

(↓l+1W
′, (ε′1 # dom(ερ1))u′1 :: G′′1, (ε

′
2 # dom(ερ2))u′2 :: G′′1) ∈ VρJG′′1K

By the definition of VρJG′′1 → G′′2K we know that:

∀W ′′ �W.∀v′′1 , v′′2 .(↓1W ′′, v′′1 , v′′2) ∈ VρJG′′1K⇒ (W ′′, v1 v
′′
1 , v2 v

′′
2) ∈ TρJG′′2K

220

We instantiate v′′i = (ε′i # dom(ερi))u
′
i :: ρ(G′′1) and W ′′ =↓lW ′. Then we obtain that:

(↓lW ′, ((ε1(λx : G11.t1) :: ρ(G′′1 → G′′2)) ((ε′1 # dom(ερi))u
′
i :: ρ(G′′1)),

(ε2(λx : G12.t2) :: ρ(G′′1 → G′′2)) ((ε′2 # dom(ερi))u
′
i :: ρ(G′′1))) ∈ TρJG′′2K

Then by Lemma A.103, as (ε′1 #dom(ερ1))#dom(ε1) = ε′1 #(dom(ερ1))#dom(ε1)), then if (dom(ερ1))#
dom(ε1)) is not defined and (dom(ερ2)) # dom(ε2)) is defined, we get a contradiction as both must
behave uniformly as the terms belong to TρJG′′2K. Then if both combination of evidence fail, then
the result follows immediately. Let us suppose that the combination does not fail, then

W ′.Ξi . (εi(λx : G1i.ti) :: ρ(G′′1 → G′′2)) ((ε′i # dom(ερi))u
′
i :: ρ(G′′1)) −→∗

W ′.Ξi . cod(εi)([((ε
′
i # dom(ερi)) # dom(εi))u

′
i :: G1i)/x]ti) :: ρ(G′′2)

So, we know that:

W ′.Ξ1 . ((ε1(λx : G11.t1) :: ρ(G′′1 → G′′2)) ((ε′1 # dom(ερi))u
′
i :: ρ(G′′1)) −→k+1

W ′.Ξ1 . cod(ε1)([(ε′1 # dom(ερi) # dom(ε1))u′1 :: G11)/x]t1) :: ρ(G′2) −→k∗

Ξ1 . cod(ε1)v∗1 :: ρ(G′2) −→k

Ξ1 . (ε′′1 # cod(ε1))u1f :: ρ(G′2)

where v′∗1 = (ε′′1 # cod(ε1))u1f :: ρ(G′2).

Thus, we know that ∃W ′′′ �↓lW ′ such that (W ′′′, v′∗1, v
′∗
2) ∈ VρJG′′2K, W

′′′.Ξ1 = Ξ1 and W ′′′.j +
1 + 2k + k∗ = (↓lW ′).j, or what is the same W ′′′.j + 1 + 2k + k∗ + l = W ′.j. Then, we know that

W ′.Ξi . cod(εi)([((ε
′
i # dom(ερi)) # dom(εi))u

′
i :: G1i)/x]ti) :: ρ(G′′2) −→∗ W ′′′.Ξi . v

′∗
i

We instantiate the induction hypothesis in the previous result ((W ′′′, v′∗1, v
′∗
2) ∈ VρJG′′2K) with

the type G′2 and the evidence cod(ε) ` Ξ; ∆ ` G′′2 ∼ G′2, where cod(ερ1).n = l, then we obtain that:

(W ′′′, cod(ερ1)v′
∗
1 :: ρ(G′2), cod(ερ2)v′

∗
2 :: ρ(G′2))′ ∈ TρJG′2K

Then v′∗i has to have the form: v′∗i = (ε′′i # cod(εi))uif :: ρ(G′′2) form some ε′′i , uif . Then as
(ε′′1 #cod(ε1))#cod(ερ1) = ε′′1 #(cod(ε1)#cod(ερ1)), then (cod(ε1)#cod(ερ1)) must behave uniformly (either
the two of them fail, or the two of them does not fail). Thus, we get that (↓lW ′′′, v1f , v2f) ∈ VρJG′2K
where vif = (ε′′i # (cod(εi) # cod(ερi)))uif :: ρ(G′2) and W ′′′.j+ 1 + 2k+ 2l+ k = W ′.j. Therefore, the
result immediately.

Case (Universal Type: G = ∀X.G′′1 and G′ = ∀X.G′1). We know that:

(W, v1, v2) ∈ VρJ∀X.G′′1K

Where vi = εi(ΛX.ti) :: ∀X.ρ(G′′1) and εi `W.Ξi ` Gi ∼ ∀X.ρ(G′′1).

221

We have to prove that:

(W, ερ1v1 :: ∀X.ρ(G′1), ερ2v2 :: ∀X.ρ(G′1)) ∈ TρJ∀X.G′1K

As (εi # ε
ρ
i) does not fail, then by the definition of TρJ∀X.G′1K we have to prove that:

(↓kW, (ε1 # ερ1)(ΛX.t1) :: ∀X.ρ(G′1), (ε2 # ερ2)(ΛX.t2) :: ∀X.ρ(G′1)) ∈ VρJ∀X.G′1K

or what is the same:

∀W ′′ � (↓kW).∀t′1, t′2, G∗1, G∗2, α, ε11, ε21.∀R ∈ RelW ′′.j [G
∗
1, G

∗
2].

(W ′′.Ξ1 ` G∗1 ∧W ′′.Ξ2 ` G∗2∧
W ′′.Ξ1 . ((ε1 # ερ1)u1 :: ∀X.G′1)[G∗1] −→W ′′.Ξ1, α := G∗1 . ε11t

′
1 :: G′1[G∗1/X]∧

W ′′.Ξ2 . ((ε2 # ερ2)u2 :: ∀X.G′1)[G∗2] −→W ′′.Ξ2, α := G∗2 . ε21t
′
2 :: G′1[G∗2/X])⇒

(W ′′′, t′1, t
′
2) ∈ Tρ[X 7→α]JG′1K

where W ′′′ =↓(W ′′�(α,G∗1, G
∗
2, R)). Note that by the reduction rule of type application, we obtain

that:

W ′′.Ξi . ((εi # ε
ρ
i)ΛX.ti :: ∀X.ρ(G′1)) [G∗i] −→

W ′′.Ξi, α := G∗i . ε
Ei/α

Ei

∀X.ρ(G′1)
((εi # ε

ρ
i)[α

Ei]ti[α
Ei/X] :: ρ(G′1)[α/X]) :: ρ(G′1)[G∗i /X]

where Ei = lift(W ′′.Ξi)(G
∗
i). The resulting evidences εi # ε

ρ
i have the form: 〈∀X.Ei1, ∀X.Ei2〉, then:

ε
Ei/α

Ei

∀X.ρ(G′1)
((εi # ε

ρ
i)[α

Ei]ti[α
Ei/X] :: ρ(G′1)[α/X]) :: ρ(G′1)[G∗i /X] =

εEi/α
Ei

ε∀X.ρ(G′1)
(〈Ei1[αEi/X], Ei2[αEi/X]〉ti[αEi/X] :: ρ(G′1)[α/X])

Then we have to prove that:

(W ′′′, (〈E11[αE1/X], E12[αE1/X]〉t1[αE1/X] :: ρ(G′1)[α/X]), (〈E21[αE2/X], E22[αE2/X]〉t2[αE2/X] :: ρ(G′1)[α/X]))

∈ Tρ[X 7→α]JG′1K

Also by the Proposition A.107 we know that:

(εi # ε
ρ
i)[α

Ei] = (εi[α
Ei]) # (ερi [α

Ei])

Note that:

(εi # ε
ρ
i)[α

Ei] = 〈Ei1[αEi/X], Ei2[αEi/X]〉 = (εi[α
Ei]) # (ερi [α

Ei])

Then we have to prove that:

(W ′′′, (ε1[αE1] # ερ1[αE1])t1[αE1/X] :: G′1[α/X]), (ε2[αE2] # ερ2[αE2])t2[αE2/X] :: ρ(G′1)[α/X]))

222

∈ Tρ[X 7→α]JG′1K

We know that

W ′′′.Ξ1 . (ε1[αE1] # ερ1[αE1])t1 :: G′1[α/X]) 7−→k∗

Ξ1 . (ε1[αE1] # ερ1[αE1])v1f :: G′1[α/X]) 7−→k+l

Ξ1 . v
∗
1

Note that by the reduction rule of type application, we obtain that:

W ′′.Ξi . (εiΛX.ti :: ∀X.ρ(G′′1)) [G∗i] −→

W ′′.Ξi, α := G∗i . ε
Ei/α

Ei

∀X.ρ(G′′1)
(εi[α

Ei]ti[α
Ei/X] :: ρ(G′′1)[α/X]) :: ρ(G′′1)[G∗i /X]

Note that the evidence εi has the form: 〈∀X.E′′i1,∀X.E′′i2〉, then:

ε
Ei/α

Ei

∀X.ρ(G′′1)
(εi[α

Ei]ti[α
Ei/X] :: ρ(G′′1)[α/X]) :: ρ(G′′1)[G∗i /X] =

εEi/α
Ei

ε∀X.ρ(G′′1)
(〈E′′i1[αEi/X], E′′i2[αEi/X]〉ti[αEi/X] :: ρ(G′′1)[α/X])

As we know that (W, v1, v2) ∈ VρJ∀X.G′′1K, then we can instantiate with ∀W ′′ � W , G∗1, G∗2, R,

ε1[αE1]t1[αE1/X] :: ρ(G′′1)[α/X] , ε2[αE2]t2[αE2/X] :: ρ(G′′1)[α/X], ε
E1/αE1

ε∀X.ρ(G′′1)
and ε

E2/αE2

ε∀X.ρ(G′′1)
.

Then we know that:

(W ′′′, ε1[αE1]t1[αE1/X] :: ρ(G′′1)[α/X]), ε2[αE2]t2[αE2/X] :: ρ(G′′1)[α/X])) ∈ Tρ[X 7→α]JG′′1K

If the following term reduces to error, then the result follows immediately.

W ′′′.Ξ1 . ε1[αE1]t1[αE1/X] :: ρ(G′′1)[α/X])

If the above is not true, then the following terms reduce to values (v′if) and ∃W ′′′′ �W ′′′ such
that (W ′′′′, v′1f , v

′
2f) ∈ V ρ[X 7→α]JG′′1K and W ′′′′.j + k∗ +m = W ′′′.j.

W ′′′.Ξi . εi[α
Ei]ti[α

Ei/X] :: ρ(G′′1)[α/X]) −→∗ W ′′′′.Ξi . v
′
if

Note that
W ′′′.Ξ1 . ε1[αE1]t1[αE1/X] :: ρ(G′′1)[α/X]) −→k∗

W ′′′′.Ξ1 . ε1[αE1]v1f :: ρ(G′′1)[α/X]) −→m

223

W ′′′′.Ξi . v
′
1f

By definition of consistency and the evidence we know that ε[X] ` W ′′′′.Ξ; ∆, X ` G′′1 ∼ G′1.
Then we instantiate the induction hypothesis in the previous result with G = G′1 and ε = ε[X].
Calling ρ′ = ρ[X 7→ α], then we obtain that:

(W ′′′′, ρ′1(ε[X])v1f :: ρ′(G′1), ρ′2(ε[X])v2f :: ρ′(G′1)) ∈ Tρ′JG′1K

but as ρ′1(ε[X]) = ερi [α
Ei] which is equivalent to

(W ′′′′, (ερ1[αE1])v1f :: ρ(G′1)[α/X], (ερ2[αE2])v2f :: ρ(G′1)[α/X]) ∈ Tρ′JG′1K

Therefore,
(↓kW ′′′′, v∗1, v∗2) ∈ Tρ′JG′1K

where (↓kW ′′′′).j + k∗ + k +m = W ′′′.j, and the result follows immediately.

Case (Pairs: G = G1 ×G2). Similar to function case.

Case (A)(Type Names: G = α). This means that α ∈ dom(Ξ). We know that (W, ε1u1 ::
α, ε2u2 :: α) ∈ VρJαK and εi ` W.Ξi ` Gi ∼ α, then εi = 〈Ei, αE

′
i〉. Also we know that ε ` Ξ; ∆ `

α ∼ G′, therefore ε = 〈αE∗1 , E∗2〉, and ερi = 〈αE∗1 , E∗2〉 = ε, because ε can not have free type variable,
so ε ` Ξ ` α ∼ G′. Since (W, v1, v2) ∈ VρJαK, we instantiate its definition with ε ` Ξ ` α ∼ G′,
Ξ, such that W ∈ SJΞK and G′. Therefore, we know that (W, εv1 :: G′, εv2 :: G′), and the results
follows immediately.

Case (B)(Type Variables: G = X). Suppose that ρ(X) = α. We know that α 6∈ Ξ, i.e. α may not
be in sync, that (W, ε1u1 :: α, ε2u2 :: α) ∈ VρJXK and that εi `W.Ξi ` Gi ∼ α, then εi = 〈Ei, αE

′
i〉.

Then by construction of evidences, ε must be either 〈X,X〉 or 〈?, ?〉 (any other case will fail
when the meet is computed).

• (ε = 〈X,X〉). Then ερi = 〈ρi(X), ρi(X)〉. But ρi(X) is the type that contains the initial
precision for α. Therefore αE

′
i v ρi(X), and by Lemma A.115, εi # ερi = εi and the result

holds immediately by Lemma A.97 (notice that if G′ = ? then we have to show that they are
related to α which is part of the premise).

• (ε = 〈?, ?〉). By Lemma A.115 (ερi = 〈?, ?〉), εi # 〈?, ?〉 = εi and the result holds immediately
by Lemma A.97.

Case (C)(Unknown: G = ?). We know that (W, ε1u1 :: ?, ε2u2 :: ?) ∈ VρJ?K and εi `W.Ξi ` Gi ∼
?. We are going to proceed by case analysis on εi:

(C.i) (εi = 〈Ei, αE
′
i〉). Then this means we know that

(W, ε1u1 :: α, ε2u2 :: α) ∈ VρJαK

and εi `W.Ξi ` Gi ∼ α, then εi = 〈Ei, αE
′
i〉.

(a) (Case ε = 〈αE3 , E4〉). Then as 〈Ei, αE
′
i〉 Ξ; ∆ ` Gi ∼ ?, then by Lemma A.112

〈Ei, αE
′
i〉 Ξ; ∆ ` Gi ∼ α. Also we know that ? v G, then G = ?, and α v G. Finally,

we reduce this case to the Case A if α ∈ Ξ or Case B if α 6∈ Ξ.

224

(b) (ε = 〈?, ?〉). Then G′ = ?, and does εi # ε = εi. Then we have to prove that (↓k
W, ε1u1 :: ?, ε2u2 :: ?) ∈ VρJ?K, and as const(αE

′
i) = α that is equivalent to prove that

(↓kW, ε1u1 :: α, ε2u2 :: α) ∈ VρJαK which follows by the premise and Lemma A.97.

(c) (ε = 〈?, ββ′
...?

〉). Where β cannot transitively point to some unsync variable. Then by

definition of the transitivity operator, εi # ε = 〈E′′i , βE
′′′
i 〉 (where 〈Ei, αE

′
i〉 # 〈?, β′...

?

〉 =
〈E′′i , E′′′i 〉). Then we have to prove that

(↓kW, 〈E′′1 , βE
′′′
1 〉u1 :: G′, 〈E′′2 , βE

′′′
2 〉u2 :: G′) ∈ VρJG′K

where G′ is either ? or β. In any case this is equivalent to prove that

(↓kW, 〈E′′1 , βE
′′′
1 〉u1 :: β, 〈E′′2 , βE

′′′
2 〉u2 :: β) ∈ VρJβK

Therefore, we have to prove

(↓k−1W, 〈E′′1 , E′′′1 〉u1 :: G′′, 〈E′′2 , E′′′2 〉u2 :: G′′) ∈ VρJG′′K

where G′′ = W.Ξ1(β) = W.Ξ2(β) (note that β is sync). As 〈Ei, αE
′
i〉 # 〈?, β′...

?

〉 =
〈E′′i , E′′′i 〉, then we can reduce the demonstration to prove that:

(↓k−1W, (〈E1, α
E′1〉 # 〈?, β′...

?

〉)u1 :: G′′, (〈E2, α
E′2〉 # 〈?, β′...

?

〉)u2 :: G′′) ∈ VρJG′′K

Thus, we reduce this case to this same case (note that we have base case because the
sequence ends in ?).

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓k−1W ∈ SJΞ′K ∧ ε′ ` Ξ′ ` β ∼ G∗),
we get that

(↓k−1W, ε
′(〈E′′1 , βE

′′′
1 〉u1 :: β) :: G∗, ε′(〈E′′2 , βE

′′′
2 〉u2 :: β) :: G∗) ∈ TρJG∗K)

or what is the same ((〈E′′1 , βE
′′′
1 〉 # ε′) fails the result follows immediately)

(↓k−1−k′W, (〈E′′1 , βE
′′′
1 〉 # ε′)u1 :: G∗, (〈E′′2 , βE

′′′
2 〉 # ε′)u2 :: G∗) ∈ VρJG∗K)

where ε′ = 〈βE∗1 , E∗2〉, ε′.n = k′ and G′′ = W ′.Ξ1(β) = W ′.Ξ2(β). By definition of
transitivity and Lemma A.115, we know that

〈E′′i , βE
′′′
i 〉 # 〈βE∗1 , E∗2〉 = 〈E′′i , E′′′i 〉 # 〈E∗1 , E∗2〉

〈Ei, αE
′
i〉 # 〈?, β′...

?

〉 = 〈E∗1i, β′
E∗2i〉 = 〈E′′i , E′′′i 〉

ThusG′′ = β′ orG′′ = ?, in any case we know that (↓k−1W, 〈E′′1 , E′′′1 〉u1 :: β′, 〈E′′2 , E′′′2 〉u2 ::
β′) ∈ VρJβ′K.
We know that 〈E∗1 , E∗2〉 ` Ξ′ ` G′′ ∼ G∗. Since 〈E∗1 , E∗2〉 ` Ξ ` G′′ ∼ G∗, ↓k−1W ∈
SJΞ′K, (↓k−1W, 〈E′′1 , E′′′1 〉u1 :: β′, 〈E′′2 , E′′′2 〉u2 :: β′) ∈ VρJβ′K, by the definition of VρJβ′K,
we know that (since (〈E′′1 , E′′′1 〉 # ε′) does not fail then (〈E′′1 , E′′′1 〉 # 〈E∗1 , E∗2〉) also does
not fail by the transitivity rules and 〈E∗1 , E∗2〉 ` Ξ′ ` β′ ∼ G∗)

(↓k−1−k′W, (〈E′′1 , E′′′1 〉 # 〈E∗1 , E∗2〉)u1 :: G∗, (〈E′′2 , E′′′2 〉 # 〈E∗1 , E∗2〉)u2 :: G∗) ∈ VρJG∗K)

The result follows immediately.

225

(d) (ε = 〈?, β?〉). Then by definition of the transitivity operator, εi # ε = 〈Ei, βα
E′i 〉. Then

we have to prove that

(↓kW, 〈E1, β
αE
′
1 〉u1 :: G′, 〈E2, β

αE
′
2 〉u2 :: G′) ∈ VρJG′K

where G′ is either ? or β. In any case this is equivalent to prove that

(↓kW, 〈E1, β
αE
′
1 〉u1 :: β, 〈E2, β

αE
′
2 〉u2 :: β) ∈ VρJβK

Therefore, we have to prove that

(↓k−1 W, 〈E1, α
E′1〉u1 :: G′′, 〈E2, α

E′2〉u2 :: G′′) ∈ VρJG′′K where G′′ = W.Ξ1(β) =
W.Ξ2(β) = ? (note that β is sync). Therefore, we have to prove that (↓k−1W, 〈E1, α

E′1〉u1 ::
α, 〈E2, α

E′2〉u2 :: α) ∈ VρJαK which follows immediately by premise and Lemma A.97.

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓k−1W ∈ SJΞ′K ∧ ε′ ` Ξ′ ` β ∼ G∗),
we get that

(↓k−1W, ε
′(〈E1, β

αE
′
1 〉u1 :: β) :: G∗, ε′(〈E2, β

αE
′
2 〉u2 :: β) :: G∗) ∈ TρJG∗K)

or what is the same ((〈E1, β
αE
′
1 〉 # ε′) fails the result follows immediately)

(↓k−1−k′W, (〈E1, β
αE
′
1 〉 # ε′)u1 :: G∗, (〈E2, β

αE
′
2 〉 # ε′)u2 :: G∗) ∈ VρJG∗K)

where ε′ = 〈βE∗1 , E∗2〉, ε′.n = k′ and G′′ = W ′.Ξ1(β) = W ′.Ξ2(β) = ?. By definition of
transitivity and Lemma A.115, we know that

〈Ei, βα
E′i 〉 # 〈βE∗1 , E∗2〉 = 〈Ei, αE

′
i〉 # 〈E∗1 , E∗2〉

We know that 〈E∗1 , E∗2〉 ` Ξ′ ` G′′ ∼ G∗. Since 〈E∗1 , E∗2〉 ` Ξ ` G′′ ∼ G∗, ↓k−1W ∈
SJΞ′K, (↓k−1W, 〈E1, α

E′1〉u1 :: α, 〈E2, α
E′2〉u2 :: α) ∈ VρJαK, by the definition of SJΞKα,

we know that (since (〈E1, α
E′1〉 # ε′) does not fail then (〈E1, α

E′1〉 # 〈E∗1 , E∗2〉) also does
not fail by the transitivity rules and 〈E∗1 , E∗2〉 ` Ξ′ ` α ∼ G∗)

(↓k−1−k′W, (〈E1, α
E′1〉 # 〈E∗1 , E∗2〉)u1 :: G∗, (〈E2, α

E′2〉 # 〈E∗1 , E∗2〉)u2 :: G∗) ∈ VρJG∗K)

The result follows immediately.

(C.ii) (εi = 〈Hi1, Hi2〉). Let G′′ = const(Hi2), and we know that G′′ ∈ HeadType. By unfolding
of the logical relation for ?, we also know that

(W, 〈H11, H12〉u1 :: G′′, 〈H21, H22〉u2 :: G′′) ∈ VρJG′′K

and we have to prove that

(↓kW, (〈H11, H12〉 # ερ1)u1 :: G′, (〈H21, H22〉 # ερ2)u2 :: G′) ∈ VρJG′K

Note that for consistent transitivity to hold, then ε has to take the following forms:

(a) ε = 〈H3, E4〉. Then as ε Ξ; ∆ ` ? ∼ G′, by Lemma A.112, ε Ξ; ∆ ` const(H3) ∼ G′,
and we proceed just like Case D, where G ∈ HeadType (G = G′′).

(b) ε = 〈?, ?〉. Then G′ = ? and 〈Hi1, Hi2〉 # 〈?, ?〉 = 〈Hi1, Hi2〉. The result follows immedi-
ately by premise and Lemma A.97.

226

(c) ε = 〈?, α?〉. Then we know that W.Ξi(α) = ?, and by inspection of the consistent tran-
sitivity rules, 〈Hi1, Hi2〉 # 〈?, α?〉 = 〈Hi1, α

Hi2〉. Then by definition of the interpretation
of G′, which may be ? or α), in any case, we have to prove that

(↓kW, 〈H11, α
H12〉u1 :: α, 〈H21, α

H22〉u2 :: α) ∈ VρJαK
Therefore, we have to prove that (↓k−1W, 〈H11, H12〉u1 :: ?, 〈H21, H22〉u2 :: ?) ∈ VρJ?K
which follows by premise and Lemma A.97.

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓k−1W ∈ SJΞ′K ∧ ε′ ` Ξ′ ` β ∼ G∗),
we get that

(↓k−1W, ε
′(〈H11, α

H12〉u1 :: α) :: G∗, ε′(〈H21, α
H22〉u2 :: α) :: G∗) ∈ TρJG∗K)

or what is the same ((〈H11, α
H12〉 # ε′) fails the result follows immediately)

(↓k−1−k′W, (〈H11, α
H12〉 # ε′)u1 :: G∗, (〈H21, α

H22〉 # ε′)u2 :: G∗) ∈ VρJG∗K)

where ε′ = 〈αH∗1 , E∗2〉, ε′.n = k′. By definition of transitivity and Lemma A.115, we
know that

〈Hi1, α
Hi2〉 # 〈αH∗1 , E∗2〉 = 〈Hi1, Hi2〉 # 〈H∗1 , E∗2〉

Therefore, we have to prove that

(↓k−1−k′W, (〈H11, H12〉 # 〈H∗1 , E∗2〉)u1 :: G∗, (〈H21, H22〉 # 〈H∗1 , E∗2〉)u2 :: G∗) ∈ VρJG∗K)

We know that 〈E∗1 , E∗2〉 ` Ξ′ ` ? ∼ G∗. Since 〈E∗1 , E∗2〉 ` Ξ ` ? ∼ G∗, ↓k−1W ∈ SJΞ′K,
we follow by this Case(a), but with evidence 〈H∗1 , E∗2〉. The result follows immediately.

(d) ε = 〈?, αβE4 〉. Then we know that W.Ξi(α) ∈ {β, ?} (W.Ξi(α) = G123) and by inspection

of the consistent transitivity rules, 〈Hi1, Hi2〉#〈?, αβ
Ei4 〉 = 〈H ′i1, αβ

E′i4 〉, where 〈Hi1, Hi2〉#
〈?, Ei4〉 = 〈Hi1, E

′
i4〉.

Then by definition of the interpretation of α (after one or two unfolding of G′ = ?), we
have to prove that

(↓k−1W, (〈H ′11, β
E′14〉u1 :: G123), (〈H ′21, β

E′24〉u2 :: G123)) ∈ TρJG123K)
or what is the same

(↓k−1W, (〈H11, H12〉 # 〈?, βE14〉)u1 :: β,

(〈H21, H22〉 # 〈?, βE24〉)u2 :: β) ∈ VρJβK

and then we proceed to the same case one more time (notice that the recursion is finite,
until we get to the previous sub case).

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓k−1W ∈ SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗),
we get that

(↓k−1W, ε
′(〈H ′11, α

βE
′
14 〉u1 :: α) :: G∗, ε′(〈H ′21, α

βE
′
24 〉u2 :: α) :: G∗) ∈ TρJG∗K)

or what is the same ((〈H ′11, α
E′14〉 # ε′) fails the result follows immediately)

(↓k−1−k′W, (〈H ′11, α
βE
′
14 〉 # ε′)u1 :: G∗, (〈H ′21, α

βE
′
24 〉 # ε′)u2 :: G∗) ∈ VρJG∗K)

where ε′ = 〈αE∗1 , E∗2〉, ε′.n = k′. By definition of transitivity and Lemma A.115, we
know that

〈H ′i1, αβ
E′i4 〉 # 〈αE∗1 , E∗2〉 = 〈H ′i1, βE

′
i2〉 # 〈E∗1 , E∗2〉

227

Therefore, we have to prove that

(↓k−1−k′W, (〈H ′11, β
E′14〉 # 〈E∗1 , E∗2〉)u1 :: G∗, (〈H21, β

E24〉 # 〈E∗1 , E∗2〉)u2 :: G∗) ∈ VρJG∗K)

We know that 〈E∗1 , E∗2〉 ` Ξ′ ` G123 ∼ G∗. Since 〈E∗1 , E∗2〉 ` Ξ ` G123 ∼ G∗, ↓k−1

W ∈ SJΞ′K, and (↓k−1W, (〈H ′11, β
E′14〉u1 :: G123), (〈H ′21, β

E′24〉u2 :: G123)) ∈ TρJG123K),
by instantiating the definition of VρJβK, the result follows immediately.

Case (D) (Head Types: G ∈ HeadType). We know that (W, ε1u1 :: ρ(G), ε2u2 :: ρ(G)) ∈ VρJGK
and εi ` W.Ξi ` Gi ∼ G. Also εi = 〈Hi1, Hi2〉, for some Hi1, Hi2. We proceed by case analysis on
G′ and ε.

(D.i) (ε = 〈H3, α
E4〉). Then G′ = α, or G′ = ?. Notice that as αE4 cannot have free type variables

therefore H3 neither. Then ε = ρi(ε). As α is sync, then let us call G′′ = W.Ξi(α). In either
case G′ = α, or G′ = ?, what we have to prove boils down to

(↓kW, (ε1 # 〈H3, α
E4〉)u1 :: α, (ε2 # 〈H3, α

E4〉)u2 :: α) ∈ VρJαK

Therefore, we have to prove that

(↓k−1W, (ε1 # 〈H3, E4〉)u1 :: G′′, (ε2 # 〈H3, E4〉)u2 :: G′′) ∈ VρJG′′K

Then we proceed by case analysis on ε:

• (Case ε = 〈H3, α
βE4 〉). We know that α v G′ and that 〈H3, α

βE4 〉 Ξ; ∆ ` G ∼ G′,

then by Lemma A.112, we know that 〈H3, α
βE4 〉 ` Ξ; ∆ ` G ∼ α. Also by Lemma A.114,

〈H3, β
E4〉 ` Ξ; ∆ ` G ∼ G′′. As βE4 v G′′, then G′′ can either be ? or β.

If G′′ = ?, then by definition of VρJ?K, we have to prove that the resulting values belong to
VρJβK. Also as 〈H3, β

E4〉 ` Ξ; ∆ ` G ∼ ?, by Lemma A.112, 〈H3, β
E4〉 ` Ξ; ∆ ` G ∼ β,

and then we proceed just like this case once again (this is process is finite as there are
no circular references by construction and it ends up in something different to a type
name). If G′′ = β we use an analogous argument as for G′′ = ?.

• (Case ε = 〈H3, α
H4〉). Then we have to prove that

(↓k−1W, (ε1 # 〈H3, H4〉)u1 :: G′′, (ε2 # 〈H3, H4〉)u2 :: G′′) ∈ VρJG′′K

By Lemma A.114, 〈H3, H4〉 ` Ξ; ∆ ` G ∼ G′′. Then if G′′ = ?, we proceed as the
case G ∈ HeadType, G′ = ? with ε = 〈H3, H4〉 (Case (D.ii)). If G′′ ∈ HeadType,
we proceed as the case G ∈ HeadType, G′ ∈ HeadType with ε = 〈H3, H4〉, where
H3, H4 ∈ HeadType (Case (D.iii)).

Also, we have to prove that (∀Ξ′, ε′, G∗ such that (↓kW ∈ SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗) ∧ ε′ =
〈αE5 , E6〉 ∧ ε′.n = k′, we get that

(↓kW, ε′((ε1 # 〈H3, α
H4〉)u1 :: α) :: G∗, ε′((ε2 # 〈H3, α

H4〉)u2 :: α) :: G∗) ∈ TρJG∗K)

or what is the same (((ε1 # 〈H3, H4〉) # 〈E5, E6〉) fails the result follows immediately)

(↓k−k′W, (ε1 # (〈H3, H4〉 # 〈E5, E6〉))u1 :: G∗, (ε2 # (〈H3, H4〉 # 〈E5, E6〉))u2 :: G∗) ∈ VρJG∗K)

where (〈H3, H4〉 # 〈E5, E6〉).n = (k+k′) We know that (W, ε1u1 :: ρ(G), ε2u2 :: ρ(G)) ∈ VρJGK,
therefore (↓kW, ε1u1 :: ρ(G), ε2u2 :: ρ(G)) ∈ VρJGK, by Lemma A.97, where now ε1.n = l + k.

228

Then we apply the induction hypothesis on (↓kW, ε1u1 :: ρ(G), ε2u2 :: ρ(G)) ∈ VρJGK and the
evidence (〈H3, H4〉 # 〈G5, G6〉), but where (〈H3, H4〉 # 〈G5, G6〉).n = k′. Therefore the results
follows immediately:

(↓k−k′W, (ε1 # (〈H3, H4〉 # 〈G5, G6〉))u1 :: G∗, (ε2 # (〈H3, H4〉 # 〈G5, G6〉))u2 :: G∗) ∈ VρJG∗K)

(D.ii) (G′ = ?, ε = 〈H3, H4〉). We have to prove that

(↓kW, (ε1 # ρ1(ε))u1 :: ?, (ε2 # ρ2(ε))u2 :: ?) ∈ VρJ?K

which is equivalent to prove that

(↓kW, (ε1 # ρ1(ε))u1 :: H, (ε2 # ρ2(ε))u2 :: H) ∈ VρJHK

for H = const(Hi2) (and H ∈ HeadType). But notice that as ε ` Ξ; ∆ ` G ∼ ?, then as
H4 v H v ?, then by Lemma A.112, ε ` Ξ; ∆ ` G ∼ H, then we proceed just like the case
G ∈ HeadType and G′ ∈ HeadType (Case (D.iii)).

(D.iii) (G′ ∈ HeadType). These cases are already analyzed, by structural analysis of types (Case
G = G′′1 → G′′2 and G′ = G′1 → G′2), (Case G = ∀X.G′′1 and G′ = ∀X.G′1), (Case G = 〈G′′1, G′′2〉
and G′ = 〈G′1, G′2〉) and (Case G = B and G′ = B).

Lemma A.102 (Ascriptions Preserve Relations) If (W, v1, v2) ∈ VρJGK, ε Ξ; ∆ ` G ∼ G′,
W ∈ SJΞK, and (W,ρ) ∈ DJ∆K, then (W,ρ1(ε)v1 :: ρ(G′), ρ2(ε)v2 :: ρ(G′)) ∈ TρJG′K.

Proof. Direct by Prop. A.101.

Lemma A.103 (Associativity of the evidence)

(ε1 # ε2) # ε3 = ε1 # (ε2 # ε3)

Proof. By induction on the structure of evidences.

Case (ε1 = 〈E11, α
E12〉, ε2 = 〈αE21 , E22〉, ε3 = 〈E31, E32〉). By definition of consistent transitivity,

we know that

• (ε1 # ε2) # ε3 = (〈E11, E12〉 # 〈E21, E22〉) # 〈E31, E32〉

• ε1 # (ε2 # ε3) = 〈E11, E12〉 # (〈E21, E22〉 # 〈E31, E32〉)

Then by the induction hypothesis (〈E11, E12〉 # 〈E21, E22〉) # 〈E31, E32〉 = 〈E11, E12〉 # (〈E21, E22〉 #
〈E31, E32〉), and the result follows immediately.

Case (ε1 = 〈E11, E12〉, ε2 = 〈E21, α
E22〉, ε3 = 〈αE31 , E32〉). Similar to the previous.

Case (ε1 = 〈αE11 , E12〉, ε2 = 〈E21, E22〉, ε3 = 〈E31, E32〉). By definition of consistent transitivity, we
know that

• (ε1 # ε2) # ε3 = 〈αE1 , E2〉 # 〈E31, E32〉 = 〈αE′1 , E′2〉, where 〈E1, E2〉 = (〈E11, E12〉 # 〈E21, E22〉),
〈E′1, E′2〉 = (〈E11, E12〉 # 〈E21, E22〉) # 〈E31, E32〉.

229

• ε1 # (ε2 # ε3) = 〈αE11 , E12〉 # (〈E21, E22〉 # 〈E31, E32〉)

• Note that by the induction hypothesis 〈E′1, E′2〉 = (〈E11, E12〉 # 〈E21, E22〉) # 〈E31, E32〉 =
〈E11, E12〉 # (〈E21, E22〉 # 〈E31, E32〉)

Then, the result follows immediately because 〈αE11 , E12〉 # (〈E21, E22〉 # 〈E31, E32〉) = 〈αE′1 , E′2〉.
Case (ε1 = 〈E11, E12〉, ε2 = 〈E21, E22〉, ε3 = 〈E31, α

E32〉). Similar to the previous.

Case (ε1 = 〈?, ?〉, ε2 = 〈E21, E22〉, ε3 = 〈E31, E32〉). Trivially, by definition of consistent transitivity.

Case (ε1 = 〈E11, E12〉, ε2 = 〈?, ?〉, ε3 = 〈E31, E32〉). Trivially, by definition of consistent transitivity.

Case (ε1 = 〈E11, E12〉, ε2 = 〈E21, E22〉, ε3 = 〈?, ?〉). Trivially, by definition of consistent transitivity.

Case (ε1 = 〈E11, E12〉, ε2 = 〈E21, E22〉, ε3 = 〈?, ?〉). Trivially, by definition of consistent transitivity.

The other cases are pretty similar.

Lemma A.104 If (W, t1, t2) ∈ TρJGK, then (↓W, t1, t2) ∈ TρJGK

Proof. By definition of TρJGK.

Proposition A.105 dom(ε1 # ε2) = dom(ε2) # dom(ε1)

Proof. Direct by inspection on the inductive definition of consistent transitivity.

Proposition A.106 cod(ε1 # ε2) = cod(ε1) # cod(ε2)

Proof. Direct by inspection on the inductive definition of consistent transitivity.

Proposition A.107 (ε1 # ε2)[E] = ε1[E] # ε2[E].

Proof. Direct by inspection on the inductive definition of consistent transitivity.

Lemma A.108 (Optimality of consistent transitivity).
If ε3 = ε1 # ε2 is defined, then π1(ε3) v π1(ε1) and π2(ε3) v π2(ε2).

Proof. Direct by inspection on the inductive definition of consistent transitivity.

Lemma A.109 If ε ` Ξ; ∆ ` G1 ∼ G2, W ∈ SJΞK and (W,ρ) ∈ DJ∆K then ερi ` W.Ξi; ∆ `
ρ(G1) ∼ ρ(G2), where ερi = ρi(ε).

Proof. Direct by induction on the structure of the types G1 and G2.

230

Lemma A.110 If Ξ; ∆; Γ ` t : G, W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK then W.Ξi `
ρ(γi((t)) : ρ(G).

Proof. Direct by induction on the structure of the term.

Lemma A.111 If

− εi W.Ξi ` Gi ∼ ρ(G), ε1 ≡ ε2

− ε Ξ; ∆ ` G ∼ G′

− W ∈ SJΞK, (W,ρ) ∈ DJ∆K

− ∀α ∈ Ξ.αE
∗
i ∈ p2(εi)⇒ E∗1 ≡ E∗2

then ε1 # ρ1(ε) ⇐⇒ ε2 # ρ2(ε).

Proof. We proceed by induction on the judgment εi `W.Ξi ` Gi ∼ G.

Case (εi = 〈Bi, Bi〉). Then the result is trivial as by definition of ε1 ≡ ε2, B1 = B2, therefore
ε1 = ε2. As ε cannot have free type variables (otherwise the result holds immediately), proving
that ε1 # ε ⇐⇒ ε1 # ε is trivial.

Case (εi = 〈?, ?〉). As the combination with 〈?, ?〉 never produce runtime errors, the result follows
immediately as both operation never fail.

Case (εi = 〈E1i, α
E2i〉). We branch on two sub cases:

• Case α ∈ Ξ. Then ε has to have the form 〈αE3 , E4〉, 〈?, ?〉 or 〈?, β...?〉 (otherwise the transi-
tivity operator will always fails in both branches). Also E4 cannot be a type variable X for
instance, because X is consistent with only X or ?, and in either case the evidence gives you
X on both sides of the evidence. And α cannot point to a type variable by construction (e.g,
type αX does not exists). Then ε cannot have free type variables, therefore ρi(ε) = ε, and

therefore we have to prove: ε1 # ε ⇐⇒ ε2 # ε. For cases where ε = 〈?, ?〉 or ε = 〈?, β...?〉,
then as they never produce runtime errors, the result follows immediately as both operation
never fail.

The interesting case is ε = 〈αE3 , E4〉. By definition of transitivity 〈E1i, α
E2i〉 # 〈αE3 , E4〉 =

〈E1i, E2i〉 # 〈E3, E4〉. By Lemma A.114, 〈E1i, E2i〉 ` W.Ξi ` Gi ∼ Ξ(α) and 〈E3, E4〉 `
W.Ξi ` Ξ(α) ∼ G′. Also we know by premise that E2i ≡ E2i, then by induction hypothesis
〈E11, E21〉 # 〈E3, E4〉 ⇐⇒ 〈E12, E22〉 # 〈E3, E4〉, and the result follows immediately.

• Case α 6∈ Ξ. In this case ε has to have the form 〈X,X〉 (where ρi(ε) = 〈liftW.Ξi(α), liftW.Ξi(α)〉),
〈?, ?〉 or 〈?, β...?〉, (otherwise the transitivity always fail in both cases). For cases where

ε = 〈?, ?〉 or ε = 〈?, β...?〉, by the definition of transitivity, they never produce runtime errors,
then the result follows immediately as both operation never fail.

If ε = 〈X,X〉, by construction of evidence, αE2i v liftW.Ξi(α) v ?, then by Lemma A.115, we
know that εi # ρi(ε) = εi, and the result holds.

231

Case (εi = 〈αEi1 , Ei2〉). Then ε has the form 〈E3, E4〉, where ρi(ε) = 〈Ei3, Ei4〉. By the definition
of transitivity we know that:

〈αEi1,Ei2〉 # 〈Ei3, Ei4〉 ⇐⇒ 〈Ei1, Ei2〉 # 〈Ei3, Ei4〉

Then by the induction hypothesis with:

〈Ei1, Ei2〉 W.Ξi `W.Ξi(α) ∼ ρ(G)

ε Ξ; ∆ ` G ∼ G′

we know that:
〈E11, E22〉 # 〈E13, E14〉 ⇐⇒ 〈E21, E22〉 # 〈E23, E24〉

Then the result follows immediately.

Case (εi = 〈E11i → E12i, E21i → E22i〉). We analyze cases for ε:

• Case ε = 〈?, ?〉 or ε = 〈?, β...?〉, then transitivity never fails as explained in previous cases.

• Case ε = 〈E31 → E32, E41 → E42〉. Then ρi(ε) = 〈E31i → E32i, E41i → E42i〉. By definition
of interior and meet, the definition of transitivity for functions, can be rewritten like this:

〈E41i, E31i〉 # 〈E21i, E11i〉 = 〈Ei3, Ei1〉 〈E12i, E22i〉 # 〈E32i, E42i〉 = 〈Ei2, Ei4〉
〈E11i → E12i, E21i → E22i〉 # 〈E31i → E32i, E41i → E42i〉 = 〈Ei1 → Ei2, Ei3 → Ei4〉

Also notice as the definition of interior is symmetrical (as consistency is symmetric), 〈E41i, E31i〉#
〈E21i, E11i〉 = 〈Ei3, Ei1〉 can be computed as 〈E11i, E21i〉 # 〈E31i, E41i〉 = 〈Ei1, Ei3〉 . Also
ε1 ≡ ε2 implies that dom(ε1) ≡ dom(ε2) and cod(ε1) ≡ cod(ε2). And that dom(ε) Ξ; ∆ `
dom(G′) ∼ dom(G) is equivalent to:

〈π2(dom(ε)), π1(dom(ε))〉 Ξ; ∆ ` dom(G) ∼ dom(G′)

where cod(ε) Ξ; ∆ ` cod(G) ∼ cod(G′). The result holds by applying induction hypothesis
on:

〈E11i, E21i〉 Ξ; ∆ ` dom(Gi) ∼ dom(ρ(G))

〈π2(dom(ε)), π1(dom(ε))〉 Ξ; ∆ ` dom(G) ∼ dom(G′)

and
〈E12i, E22i〉 Ξ; ∆ ` cod(Gi) ∼ cod(ρ(G))

cod(ε) Ξ; ∆ ` cod(G) ∼ cod(G′)

• Case ε = 〈E31 → E32, α
E41→E42〉. Then ρi(ε) = 〈E31i → E32i, α

E41i→E42i〉. We use a similar
argument to the previous item noticing that

〈E41i, E31i〉 # 〈E21i, E11i〉 = 〈Ei3, Ei1〉 〈E12i, E22i〉 # 〈E32i, E42i〉 = 〈Ei2, Ei4〉
〈E11i → E12i, E21i → E22i〉 # 〈E31i → E32i, E41i → E42i〉 = 〈Ei1 → Ei2, Ei3 → Ei4〉
〈E11i → E12i, E21i → E22i〉 # 〈E31 → E32, α

E41→E42〉 = 〈Ei1 → Ei2, α
Ei3→Ei4〉

and that if G′ = α by Lemma A.114

〈E31 → E32, E41 → E42〉 ` Ξ; ∆ ` G ∼ Ξ(α)

〈E31 → E32, α
E41→E42〉 ` Ξ; ∆ ` G ∼ α

and if G′ = ? by Lemma A.114

〈E31 → E32, E41 → E42〉 ` Ξ; ∆ ` G ∼ ?

〈E31 → E32, α
E41→E42〉 ` Ξ; ∆ ` G ∼ ?

232

Case (εi = 〈∀X.E1i,∀X.E2i〉).

We proceed similar to the function case using induction hypothesis on the subtypes.

Case (εi = 〈E1i × E2i, E3i × E4i〉).

We proceed similar to the function case using induction hypothesis on the subtypes.

Lemma A.112 If 〈E1, E2〉 ` Ξ; ∆ ` G1 ∼ G2, then

1. ∀G3, unlift(E2) v G3 v G2, 〈E1, E2〉 ` Ξ; ∆ ` G1 ∼ G3, and

2. ∀G3, unlift(E1) v G3 v G1,〈E1, E2〉 ` Ξ; ∆ ` G3 ∼ G2

Proof. By definition of evidence and interior noticing that always Ei v Gi.

Lemma A.113 If 〈αE1 , E2〉 ` Ξ; ∆ ` α ∼ G, then 〈E1, E2〉 ` Ξ; ∆ ` Ξ(α) ∼ G.

Proof. Direct by definition of interior and evidence.

Lemma A.114 If 〈E1, α
E2〉 ` Ξ; ∆ ` G ∼ α, then 〈E1, E2〉 ` Ξ; ∆ ` G ∼ Ξ(α).

Proof. Direct by definition of interior and evidence.

Lemma A.115 If E2 v E3 then 〈E1, E2〉 # 〈E3, E3〉 = 〈E1, E2〉.

Proof. We proceed by induction on 〈E1, E2〉. If 〈E3, E3〉 = 〈?, ?〉 by definition of transitivity the
result holds immediately so we do not consider this case in the following.

Case (〈E1, E2〉 = 〈?, ?〉). Then we know that E3 = ?, and the result follows immediately.

Case (〈E1, E2〉 = 〈E1, α
E′2〉). Then 〈E3, E3〉 = 〈αE′3 , αE′3〉. Then 〈E1, α

E′2〉 # 〈αE′3 , αE′3〉 boils down
to 〈E1, E

′
2〉 #〈E′3, E′3〉, if E′2 = βE

′′
2 , then E′3 has to be βE

′′
3 and we repeat this process. Let us assume

that E′2 6∈ SITypeName, then by definition of meet E′3 6∈ SITypeName. By definition of precision
if αE

′
2 v αE

′
3 , then E′2 v E′3. Then by induction hypothesis 〈E1, E

′
2〉 # 〈E′3, E′3〉 = 〈E1, E

′
2〉, then

〈E1, α
E′2〉 # 〈αE′3 , αE′3〉 = 〈E1, α

E′2〉 and the result holds.

Case (〈E1, E2〉 = 〈αE′1 , E2〉). Then 〈αE′1 , E2〉 # 〈E3, E3〉 boils down to 〈E′1, E2〉 # 〈E3, E3〉. We know
that E2 v E3. Then by induction hypothesis 〈E′1, E2〉 # 〈E3, E3〉 = 〈E1, E

′
2〉, then 〈αE′1 , E2〉 #

〈E3, E3〉 = 〈αE′1 , E2〉 and the result holds.

Case (〈E1, E2〉 = 〈B,B〉). Then by definition of precision E3 is either ? (case we wont analyze) or
B. But 〈B,B〉 # 〈B,B〉 = 〈B,B〉 and the result holds.

Case (〈E1, E2〉 = 〈E11 → E12, E21 → E22〉). Then E3 has to have the form E31 → E32. By defi-
nition of precision, if E21 → E22 v E31 → E32 then E21 v E31 and E22 v E32. As 〈E31, E31〉 #
〈E21, E11〉 = (〈E11, E21〉 #〈E31, E31〉)−1. By induction hypothesis 〈E11, E21〉 #〈E31, E31〉 = 〈E11, E21〉
and 〈E12, E22〉#〈E32, E32〉 = 〈E12, E22〉. Therefore 〈E11 → E12, E21 → E22〉#〈E31 → E32, E31 → E32〉 =
〈E11 → E12, E21 → E22〉 and the result holds.

233

Case (〈E1, E2〉 = 〈∀X.E11,∀X.E21〉 or 〈E1, E2〉 = 〈E11 × E12, E21 × E22〉). Analogous to function
case.

A.6.3 Contextual Equivalence

In this section we show that the logical relation is sound with respect to contextual approximation
(and therefore contextual equivalence). Figure A.5 presents the syntax and static semantics of
contexts.

Definition A.116 (Contextual Approximation and Equivalence)

Ξ; ∆; Γ ` t1 �ctx t2 : G , Ξ; ∆; Γ ` t1 : G ∧ Ξ; ∆; Γ ` t2 : G ∧ ∀C,Ξ′, G′.
` C : (Ξ; ∆; Γ ` G) (Ξ′; ·; · ` G′)⇒

(
(Ξ′ . t1 ⇓ =⇒ Ξ′ . t2 ⇓) ∧

(∃Ξ1.Ξ
′ . C[t1] 7−→∗ Ξ1 . error⇒ ∃Ξ2.Ξ

′ . C[t2] 7−→∗ Ξ2 . error)
)

Ξ; ∆; Γ ` t1 ≈ctx t2 : G , Ξ; ∆; Γ ` t1 �ctx t2 : G ∧ Ξ; ∆; Γ ` t2 �ctx t1 : G

Theorem A.117 (Soundness w.r.t. Contextual Approximation) If Ξ; ∆; Γ ` t1 � t2 : G then
Ξ; ∆; Γ ` t1 �ctx t2 : G.

Proof. The proof follows the usual route of going through congruence and adequacy.

234

C ::= [·] | εCu :: G | 〈C, t〉 | 〈t, C〉 | C t | t C | εC :: G | op(t, C, t) | C [G] | πi(C) (GSFε Contexts)
Cu ::= λx : G.C | ΛX.C | 〈Cu, u〉 | 〈u,Cu〉
Cs ::= C | Cu

` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G′) Well-typed contexts

(Cid)
Ξ ⊆ Ξ′ ∆ ⊆ ∆′ Γ ⊆ Γ′ Ξ; ∆ ` Γ Ξ′; ∆′ ` Γ′

` [·] : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G)

(Cλ)
` C : (Ξ; ∆; Γ, x : G1 ` G) (Ξ′; ∆′; Γ′, x : G1 ` G2)

` λx : G1.C : (Ξ; ∆; Γ, x : G1 ` G) (Ξ′; ∆′; Γ′ ` G1 → G2)

(CΛ)
` C : (Ξ; ∆, X; Γ ` G) (Ξ′; ∆′, X; Γ′ ` G′) Ξ; ∆ ` Γ Ξ′; ∆′ ` Γ′

` ΛX.C : (Ξ; ∆, X; Γ ` G) (Ξ′; ∆′; Γ′ ` ∀X.G′)

(CpairL)
` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1) Ξ′; ∆′; Γ′ ` t : G2

` 〈C, t〉 : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1 ×G2)

(CpairR)
Ξ′; ∆′; Γ′ ` t : G1 ` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G2)

` 〈t, C〉 : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1 ×G2)

(Casc)
` Cs : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G′) ε Ξ; ∆ ` G′ ∼ G′′

` εCs :: G′′ : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G′′)

(Cop)

Ξ′; ∆′; Γ′ ` t1 : G1 ` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G3)
Ξ′; ∆′; Γ′ ` t2 : G2 ty(op) = (G1, G3, G2)→ G′′

` op(t1, C, t2) : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G′′)

(CappL)
` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1 → G2) Ξ′; ∆′; Γ′ ` t : G1

` C t : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G2)

(CappR)
Ξ′; ∆′; Γ′ ` t : G1 → G2 ` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1)

` t C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G2)

(CappG)
` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` ∀X.G′) Ξ′; ∆′ ` G′′

` C [G′′] : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G′[G′′/X])

(Cpairi)
` C : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` G1 ×G2)

` πi(C) : (Ξ; ∆; Γ ` G) (Ξ′; ∆′; Γ′ ` Gi)

Figure A.5: GSFε: Syntax and Static Semantics - Contexts

235

A.7 Parametricity vs. the DGG in GSF

In this section, we present the proofs of the auxiliary Lemmas need to show that the definition of
parametricity for GSF is incompatible with the DGG.

Lemma A.118 Let ` (ΛX.λx : ?.t) va : ∀X.?→ X and ` v vb : ?. Let G1 and G2, such that
const(G1) 6= const(G2). If · . va [Gi] 7−→ α := Gi . εivi :: ? → Gi and εi ? → α ∼ ? → Gi, then
∀W ∈ SJ·K, ∀R ∈ RelW.j [G1, G2], (W � (α,G1, G2, R), dom(ε1)vb :: ?, dom(ε2)vb :: ?) ∈ TX 7→αJ?K.

Proof. Notice that va has to be of the form (ε′(ΛX.ε′′(λx : ?.t′) :: ? → X) :: ∀X.? → X), where
ε′ = 〈∀X.?→ X,∀X.?→ X〉 and ε′′ = 〈?→ X, ?→ X〉. Then · . va [Gi] 7−→ 〈?→ α̂i, ?→ Ei〉t′ for
some t′, where α̂i = liftα 7→Gi(α) and Ei = lift·(Gi). We know that ·; ·; · ` vb : ? then as X 6∈ FTV (v),
·;X; · ` vb : ?, therefore by the fundamental property (Thm 3.28), ·;X; · ` vb � vb : ?, therefore
as W ∈ SJ·K, we can pick W ′ = W � (α,G1, G2, R) ∈ SJ·K, and (W ′, X 7→ α) ∈ DJXK and thus
conclude that (W ′, vb, vb) ∈ TX 7→αJ?K. Now notice that dom(εi) = 〈?, ?〉, but ε # 〈?, ?〉 = ε for
any evidence ε, therefore α := Gi . dom(εi)vb :: ? 7−→ α := Gi . vb, then we have to prove that
(↓W ′, vb, vb) ∈ TX 7→αJ?K which follows directly from the weakening lemma.

Lemma A.119 For any ` v : ? and ` G, we have (ΛX.λx : ?.x :: X) [G] v ⇓ error.

Proof. Let id? , ΛX.λx : ?.x :: X, ` id? va : ∀X.?→ X, and v s.t. ` v vb : ?.

By the fundamental property (Th. 3.28), ` va � va : ∀X.? → X so for any W0 ∈ SJ·K,
(W0, va, va) ∈ T∅J∀X.? → XK. Because va is a value, (W0, va, va) ∈ V∅J∀X.? → XK. By reduction,
· . va [Gi] 7−→∗ Ξ′i . ε

′
ivi :: ? → Gi for some ε′i, εi and εiα, where Ξ′i = {α := Gi} and vi = εi(λx :

?.(εiαx :: α)) :: ? → α. We can instantiate the definition of V∅J∀X.? → XK with W0, G1 = G and
G2 structurally different (and different from ?), some R ∈ RelW0.j

[G1, G2], v1, v2, ε′1 and ε′2, then
we have that (W1, v1, v2) ∈ TX 7→αJ? → XK, where W1 = (↓(W0 � (α,G1, G2, R)). As v1 and v2 are
values, (W1, v1, v2) ∈ VX 7→αJ?→ XK. Also, by associativity of consistent transitivity, the reduction
of Ξ′i . (ε′ivi :: ?→ Gi) v? is equivalent to that of Ξ′i . cod(ε′i)(vi (dom(ε′i)v? :: ?)) :: Gi.

By the fundamental property (Th. 3.28) we know that ` vb � vb : ?; we can instantiate this
definition with W0, and we have that (W0, vb, vb) ∈ V∅J?K. By Lemma 3.34, (W1, dom(ε′1)v? ::
?, dom(ε′2)v? :: ?) ∈ TX 7→αJ?K. If dom(ε′1)v? :: ? reduces to error then the result follows immediately.
Otherwise, Ξ′i .dom(ε′1)v? :: ? 7−→∗ Ξ′i . v

′′
i , and (W2, v

′′
1 , v
′′
2) ∈ VX 7→αJ?K, where W2 =↓W1, and some

v′′1 and v′′2 . We can instantiate the definition of VX 7→αJ?→ XK with W2, v′′1 and v′′2 , obtaining that
(W2, v1 v

′′
1 , v2 v

′′
2) ∈ TX 7→αJXK. We then proceed by contradiction. Suppose that Ξ′i.vi v

′′
i 7−→∗ Ξ′′i .v

′
i

(for a big-enough step index). If v′′i = ε′′ivu :: ?, then by evaluation v′i = ε′ivu :: α, for some ε′iv.
But by definition of VX 7→αJXK, it must be the case that for some W3 � W2, (W3, ε

′
1vu :: G1, ε

′
2vu ::

G2) ∈ R, which is impossible because u cannot be ascribed to structurally different types G1 and
G2. Therefore v1 v

′′
1 cannot reduce to a value, and hence the term va [G] vb cannot reduce to a value

either. Because va is non-diverging, its application must produce error.

236

A.8 A Cheap Theorem in GSF

This section shows the proof of the cheap theorem presented in the paper and some auxiliary results.

Definition A.120 Let X(t, α) a predicate that holds if and only if in each evidence of term t, if α
is present, then it appears on both sides of the evidence and in the same structural position. This
predicate is defined inductively as follows:

∀ε ∈ t,X(ε, α)

X(t, α)

where

X(〈αE , αE〉, α)

α 6∈ FTN(E1) ∪ FTN(E2)

X(〈E1, E2〉, α)

X(〈E1, E3〉, α) X(〈E2, E4〉, α)

X(〈E1 → E2, E3 → E4〉, α)

X(〈E1, E3〉, α) X(〈E2, E4〉, α)

X(〈E1 × E2, E3 × E4〉, α)

X(〈E1, E2〉, α)

X(〈∀X.E1, ∀X.E2〉, α)

Corollary A.121 Let t and v be static terms such that ` t : ∀X.T , ` v : T ′, and t [T ′] v ⇓ v′.

1. If ∀X.T v ∀X.X → ? then (t :: ∀X.X → ?) [T ′] v ⇓ v′′, and v′ 6 v′′.

2. If ∀X.T v ∀X.?→ X then (t :: ∀X.?→ X) [T ′] v ⇓ v′′, and v′ 6 v′′.

Proof. Direct by Lemmas 3.21 and 3.24.

Lemma A.122 ∀W ∈ SJΞK, ρ, γ.((W,ρ) ∈ DJ∆K ∧ (W,γ) ∈ GρJΓK), such that ∀v ∈ cod(γi),
X(v, α). If X(ρ(γi(ti)), α), then Ξ . ρ(γi(ti)) 7−→ Ξ′ . t′i and X(t′, α)

Proof. By induction on the structure of ti. The proof is direct by looking at the inductive definition
of construction of evidences (interior), noticing that ∀G,I(, ()X,G) = I(, ()G,X) = 〈X,X〉. Then
by inspection of consistent transitivity we know that, for any evidence of a value 〈E1, E2〉

〈E1, E2〉 # 〈αE , αE〉 = 〈E′1, αE
′〉 ∧ E′1 6= α∗ ⇐⇒ E2 = αE

′′ ∧ E1 6= α∗

but if that is the case ¬(X(〈E1, E2〉, α)), which contradicts the premise.

Theorem A.123 Let v , ΛX.λx : ?.t for some t, such that ` v : ∀X.? → X. Then for any
` v′ : G, we either have v [G] v′ ⇓ error or v [G] v′ ⇑.

Proof. Let ` v v∀ : ∀X.? → X, ` v′ v? : ?. Because ` v∀ : ∀X.? → X and ` v? : ?, by the
fundamental property (Theorem 3.28) we know that

(W0, v∀, v∀) ∈ V∅J∀X.?→ XK

(W0, v?, v?) ∈ V∅J?K

237

Let v∀ = ε(ΛX.(λx : ?.t)) :: ∀X.?→ X, where ε ·; · ` ∀X.?→ X ∼ ∀X.?→ X, and therefore
ε = 〈∀X.?→ X,∀X.?→ X〉.

Note that by the reduction rules we know that

Ξ . v∀ [G] 7−→∗ Ξ′1 . ε1(ε2(λx : ?.t′) :: ?→ α) :: ?→ G

for some t′, where ε1 = 〈?→ αE , ?→ E〉, ε2 = 〈?→ αE , ?→ αE〉, E = lift·(G), Ξ′1 = Ξ, α = G.

By definition of V∅J∀X.? → XK if we pick G1 = G2 = G, and some R, then for some W1 we
know that (W1, v1, v2) ∈ VX 7→αJ?→ XK, where vi = ε2(λx : ?.t′) :: ?→ α.

Also, by the reduction rules we know that Ξ′i.(ε1vi :: ?→ G) v? ⇐⇒ Ξ′i.cod(ε1)(vi (dom(ε1)v? ::
?)) :: G. As dom(ε1) = 〈?, ?〉, then Ξ′ . dom(ε1)v? :: ? 7−→ Ξ′ . v? :: ?. As α 6∈ FTN(v?), then
X(v?, α). Also we know that X(vi, α). Then by Lemma A.122, if Ξ′ . t′[v?] 7−→∗ v′, then X(v′, α),
but that is a contradiction because if (W4, v

′, v′) ∈ VρJαK, then ¬X(v′, α) and the result holds.

238

A.9 Embedding Dynamic Sealing in GSF

In this section, we prove Theorem 4.1, using the simulation relation ≈ between λseal and GSFε,
defined in Figure 4.3. We also define a direct embedding of λseal into GSFε to make the proof
simpler.

dxeε = x

dσeε = suσε

dbeε = εB(εBb :: B) :: ?

dλx.teε = ε?→?(ε?→?λx.dteε :: ?→ ?) :: ?

d〈t1, t2〉eε = ε?×?〈dt1eε , dt2eε〉 :: ?

dπi(t)eε = πi(ε?×?dteε :: ?× ?)

dop(t)eε = let x : ? = dte in εBop(εBx :: B) :: ?

dνx.teε = let x = suε in dteε
dt1 t2eε = let x = dt1eε in let y = dt2eε in (ε?→?x :: ?→ ?) y

d{t1}t2eε = let x = dt1eε in let y = dt2eε in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x

dlet {z}t1 = t2 in t3eε = let x = dt1eε in let y = dt2eε in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in dt3eε

Figure A.6: Compilation from λseal to GSFε

Definition A.124 We said that µ and Ξ are synchronized, denoted µ ≡ Ξ, if and only if σ ∈
µ⇐⇒ σ := ? ∈ Ξ.

Lemma A.125 Let t be a λseal term. If Ξ; Γ ` dte tε : ? then dteε = tε.

Proof. The proof is straightforward by induction on the syntax of t, and following definitions of
dte, Ξ; Γ ` dte tε : ? and dteε .

Lemma A.126 If Ξ; Γ ` dte tε : ?, then µ; Ξ; Γ ` t ≈ tε : ?, for some µ ≡ Ξ.

Proof. By Lemma A.125, we know that tε = dteε . Therefore, we are required to prove that
µ; Ξ; Γ ` t ≈ dteε : ?. We follow by induction on the syntax of t. Since translation preserves typing
(Theorem 3.12), we know that Ξ; Γ ` dteε : ?.

Case (x). Then, we know that
dxeε = x

We have t = x. By premise we know that Ξ; Γ ` x : ? which implies that x : ? ∈ Γ and Ξ;` Γ.
Therefore, µ; Ξ; Γ ` t ≈ dteε : ? by Rule (Rx) and the result follows immediately.

Case (b). Then, we know that
dbeε = εB(εBb :: B) :: ?

We have t = b. Then, we have to prove that µ; Ξ; Γ ` b ≈ εB(εBb :: B) :: ? : ?. We know by the Rule
(Rb) that µ; Ξ; Γ ` b ≈ εBb :: ? : ?. Therefore, by the Rule (Ru) the result follows immediately.

239

Case (λx.t′). Then, we know that

dλx.t′eε = ε?→?(ε?→?λx.dt′eε :: ?→ ?) :: ?

We have t = λx.t′. Then, we have to prove that µ; Ξ; Γ ` λx.t′ ≈ ε?→?(ε?→?λx.dt′eε :: ?→ ?) :: ? : ?.
Since Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ, x : ? ` dt′eε : ?, thus by the induction
hypothesis µ; Ξ; Γ, x : ? ` t′ ≈ dt′eε : ?. Therefore, by the Rule (Rλ) that µ; Ξ; Γ ` λx.t′ ≈
ε?→?λx.dt′eε :: ? : ?. Therefore, by the Rule (Ru) the result follows immediately.

Case (σ). Then, we know that
dσeε = suσε

We have t = σ. Then, we have to prove that µ; Ξ; Γ ` σ ≈ suσε : ?. By premise we know that
Ξ; Γ ` suσε : ? which implies that σ := ? ∈ Ξ and Ξ ` Γ. Therefore, by the Rule (Rs) the result
follows immediately.

Case (t1 t2). Then, we know that

dt1 t2eε = let x = dt1eε in let y = dt2eε in (ε?→?x :: ?→ ?) y

We have t = t1 t2. Then, we have to prove that

µ; Ξ; Γ ` t1 t2 ≈ let x = dt1eε in let y = dt2eε in (ε?→?x :: ?→ ?) y : ?

Since Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt1eε : ? and Ξ; Γ ` dt2eε : ?.
By the induction hypothesis, we know that µ; Ξ; Γ ` t1 ≈ dt1eε : ? and µ; Ξ; Γ ` t2 ≈ dt2eε : ?.
Therefore, by the Rule (RappL) the result follows immediately.

Case (πi(t
′)). Then, we know that

dπi(t′)eε = πi(ε?×?dt′eε :: ?× ?)

We have t = πi(t
′). Then, we have to prove that µ; Ξ; Γ ` πi(t′) ≈ πi(ε?×?dt′eε :: ?× ?) : ?. Since

Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt′eε : ?. By the induction hypothesis,
we know that µ; Ξ; Γ ` t′ ≈ dt′eε : ?. Therefore, by the Rule (Rpi) the result follows immediately.

Case ({t1}t2). Then, we know that

d{t1}t2eε = let x = dt1eε in let y = dt2eε in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x

We have t = {t1}t2 . Then, we have to prove that

µ; Ξ; Γ ` {t1}t2 ≈ let x = dt1eε in let y = dt2eε in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

Since Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt1eε : ? and Ξ; Γ ` dt2eε : ?.By the
induction hypothesis, we know that µ; Ξ; Γ ` t1 ≈ dt1eε : ? and µ; Ξ; Γ ` t2 ≈ dt2eε : ?. Therefore,
by the Rule (Rsed1L) the result follows immediately.

Case (let {x}t1 = t2 in t3). Then, we know that

dlet {x}t1 = t2 in t3eε = let x = dt1eε in let y = dt2eε in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in dt3eε

We have t = let {x}t1 = t2 in t3. Then, we have to prove that

µ; Ξ; Γ ` let {x}t1 = t2 in t3 ≈ let x = dt1eε in let y = dt2eε in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in dt3eε : ?

Since Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt1eε : ?, Ξ; Γ ` dt2eε : ?
and Ξ; Γ, x : ? ` dt3eε : ?. By the induction hypothesis, we know that µ; Ξ; Γ ` t1 ≈ dt1eε : ?,
µ; Ξ; Γ ` t2 ≈ dt2eε : ? and µ; Ξ; Γ, x : ? ` t3 ≈ dt3eε : ?. Therefore, by the Rule (RunsL) the result
follows immediately.

240

Case (〈t1, t2〉). Then, we know that

d〈t1, t2〉eε = ε?×?〈dt1eε , dt2eε〉 :: ?

We have t = 〈t1, t2〉. Then, we have to prove that µ; Ξ; Γ ` 〈t1, t2〉 ≈ ε?×?〈dt1eε , dt2eε〉 :: ? : ?. Since
Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt1eε : ? and Ξ; Γ ` dt2eε : ?. By the
induction hypothesis, we know that µ; Ξ; Γ ` t1 ≈ dt1eε : ? and µ; Ξ; Γ ` t2 ≈ dt2eε : ?. Therefore,
by the Rule (Rpt) the result follows immediately.

Case (op(t′)). Then, we know that

dop(t′)eε = let x : ? = dt′e in εBop(εBx :: B) :: ?

We have t = op(t′). Then, we have to prove that

µ; Ξ; Γ ` op(t′) ≈ let x : ? = dt′e in εBop(εBx :: B) :: ? : ?

Since Ξ; Γ ` dteε : ? and by Lemma A.137, we know that Ξ; Γ ` dt′eε : ?. By the induction
hypothesis, we know that µ; Ξ; Γ ` t′ ≈ dt′eε : ?. Therefore, by the Rule (Rop) the result follows
immediately.

Case (νx.t′). Then, we know that

dνx.t′eε = let x = suε in dt′eε
We have t = νx.t′. Then, we have to prove that µ; Ξ; Γ ` νx.t′ ≈ let x = suε in dt′eε : ?. Since
Ξ; Γ ` let x = suε in dt′eε : ?, we know that Ξ; Γ, x : ? ` dt′eε : ?. By the induction hypothesis, we
know that µ; Ξ; Γ, x : ? ` t′ ≈ dt′eε : ?. Therefore, by the Rule (RsG) the result follows immediately.

Lemma A.127 If ` dte tε : ?, then ` t ≈ tε : ?.

Proof. Direct by A.126.

Lemma A.128 If µ; Ξ ` v ≈ t : ? , then Ξ . t 7−→∗ Ξ . v′, and µ; Ξ ` v ≈ v′ : ?, for some v′.

Proof. The proof is a straightforward induction on the derivation of the rule µ; Ξ ` v ≈ t : ?. We
only take into account rule cases where the term on the left can be a value.

Case (Rb). Trivial case because both terms in the relation are values.

(Rb)
ty(b) = B

µ; Ξ ` b ≈ εBb :: ? : ?

Case (Rs). Trivial case because both terms in the relation are values.

(Rs)
σ := ? ∈ Ξ

µ; Ξ ` σ ≈ suσ : ?

Case (Ru).

(Ru)
µ; Ξ ` v ≈ εDu :: ? : ?

µ; Ξ ` v ≈ εD(εDu :: D) :: ? : ?

If t = εD(εDu :: D) :: ?, then we know by the reduction rules of GSFε that:

Ξ . t 7−→ Ξ . εDu :: ?

Note that εD # εD = εD by Lemma A.136. Then, we have to prove that µ; Ξ ` v ≈ εDu :: ? : ?,
which is a premise. Therefore, the result follows immediately.

241

Case (Rp). Trivial case because both terms in the relation are values.

(Rp)
µ; Ξ ` v1 ≈ εD1u1 :: ? : ? µ; Ξ ` v2 ≈ εD2u2 :: ? : ?

µ; Ξ ` 〈v1, v2〉 ≈ εD1×D2〈u1, u2〉 :: ? : ?

Case (Rλ). Trivial case because both terms in the relation are values.

(Rλ)
µ; Ξ;x : ? ` t1 ≈ t2 : ?

µ; Ξ ` (λx.t1) ≈ ε?→?(λx.t2) :: ? : ?

Case (Rpt).

(Rpt)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` 〈t1, t2〉 ≈ ε?×?〈t′1, t′2〉 :: ? : ?

We have t = ε?×?〈t′1, t′2〉 :: ?. We know that 〈t1, t2〉 = 〈v1, v2〉 for some v1 and v2. Also, we know
by premise that µ; Ξ ` v1 ≈ t′1 : ? and µ; Ξ ` v2 ≈ t′2 : ?. Then, by the induction hypothesis, we
know that exists v′1 and v′2 such that Ξ . t′1 7−→∗ Ξ . v′1, Ξ . t′2 7−→∗ Ξ . v′2, µ; Ξ ` v1 ≈ v′1 : ? and
µ; Ξ ` v2 ≈ v′2 : ?. Now, we have to prove that µ; Ξ ` 〈v1, v2〉 ≈ ε?×?〈v′1, v′2〉 :: ? : ?. But the result
follows immediately by the rule (Rpt).

Case (Rsed1).

(Rsed1)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` {t1}t2 ≈ ε?→?π1(ε?×?t
′
1 :: ?× ?) :: ?→ ? t′2 : ?

We have t = ε?→?π1(ε?×?t
′
1 :: ?× ?) :: ?→ ? t′2. Also, we know that {t1}t2 = {v}σ, for some v and

σ. Then, we know that µ; Ξ ` v ≈ t′2 : ? and µ; Ξ ` σ ≈ t′1 : ?. Then, by the induction hypothesis,
we know that exists v′1 and v′2 and such that Ξ . t′1 7−→∗ Ξ . v′1, Ξ . t′2 7−→∗ Ξ . v′2, µ; Ξ ` σ ≈ v′1 : ?
and µ; Ξ ` v ≈ v′2 : ?. By the rule (Rs), we know that v′1 = suσε . By the dynamic semantics of
GSFε, we know that

Ξ . t 7−→∗ Ξ . ε?→?π1(ε?×?suσε :: ?× ?) :: ?→ ? v′2 7−→∗

Ξ . 〈σ? → ?, ?→ ?〉(λx : σ.εσ?x :: ?) :: ? v′2 7−→ Ξ . εσ?(〈E1, σ
E2〉u :: ?) :: ? 7−→ Ξ . 〈E1, σ

E2〉u :: ?

where v′2 = 〈E1, E2〉u :: ?. Therefore, we have to prove that µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?. As we

know that µ; Ξ ` v ≈ v′2 : ? or what is the same µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?, by the Rule (Rsed2),
the result follows immediately.

Case (Rsed1).

(Rsed1)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` v2 ≈ v′2 : ?

µ; Ξ; Γ ` {v1}v2 ≈ ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ? v′1 : ?

We have t = ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ? v′1. Also, we know that {v1}v2 = {v}σ, for some v and

σ. Then, we know that µ; Ξ ` v ≈ v′1 : ? and µ; Ξ ` σ ≈ v′2 : ?. By the rule (Rs), we know that
v′2 = suσε . By the dynamic semantics of GSFε, we know that

Ξ . t 7−→∗ Ξ . ε?→?π1(ε?×?suσε :: ?× ?) :: ?→ ? v′1 7−→∗

Ξ . 〈σ? → ?, ?→ ?〉(λx : σ.εσ?x :: ?) :: ? v′1 7−→ Ξ . εσ?(〈E1, σ
E2〉u :: ?) :: ? 7−→ Ξ . 〈E1, σ

E2〉u :: ?

where v′1 = 〈E1, E2〉u :: ?. Therefore, we have to prove that µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?. As we

know that µ; Ξ ` v ≈ v′1 : ? or what is the same µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?, by the Rule (Rsed2),
the result follows immediately.

242

Case (Rsed1L).

(Rsed1L)
µ; Ξ; Γ ` t1 ≈ t′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` {t1}t2 ≈ let x = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

We have
t = let x = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x

Also, we know that {t1}t2 = {v}σ, for some v and σ. Then, we know that µ; Ξ ` v ≈ t′1 : ? and
µ; Ξ ` σ ≈ t′2 : ?. Then, by the induction hypothesis, we know that exists v′1 and v′2 such that
Ξ . t′1 7−→∗ Ξ . v′1, Ξ . t′2 7−→∗ Ξ . v′2, µ; Ξ ` σ ≈ v′2 : ? and µ; Ξ ` v ≈ v′1 : ?. By the rule (Rs), we
know that v′2 = suσε . By the dynamic semantics of GSFε, we know that

Ξ . t 7−→∗ Ξ . ε?ε?(ε?→?π1(ε?×?suσε :: ?× ?) :: ?→ ? v′2) :: ? :: ? 7−→∗

Ξ . ε?(ε?〈σ? → ?, ?→ ?〉(λx : σ.εσ?x :: ?) :: ? v′2) :: ? :: ? 7−→
Ξ . ε?ε?(εσ?(〈E1, σ

E2〉u :: ?) :: ?) :: ? :: ? 7−→ Ξ . 〈E1, σ
E2〉u :: ?

where v′1 = 〈E1, E2〉u :: ?. Therefore, we have to prove that µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?. As we

know that µ; Ξ ` v ≈ v′1 : ? or what is the same µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?, by the Rule (Rsed2),
the result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ; Ξ; Γ ` v1 ≈ v′1 : ? µ; Ξ; Γ ` t2 ≈ t′2 : ?

µ; Ξ; Γ ` {v1}t2 ≈ let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1 : ?

We have
t = let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1

Also, we know that {v1}t2 = {v}σ, for some v and σ. Then, we know that µ; Ξ ` v ≈ v′1 : ?
and µ; Ξ ` σ ≈ t′2 : ?. Then, by the induction hypothesis, we know that exists v′2 such that
Ξ . t′2 7−→∗ Ξ . v′2 and µ; Ξ ` σ ≈ v′2 : ?. By the rule (Rs), we know that v′2 = suσε . By the dynamic
semantics of GSFε, we know that

Ξ . t 7−→∗ Ξ . ε?(ε?→?π1(ε?×?suσε :: ?× ?) :: ?→ ? v′2) :: ? 7−→∗

Ξ . ε?(〈σ? → ?, ?→ ?〉(λx : σ.εσ?x :: ?) :: ? v′2) :: ? 7−→
Ξ . ε?(εσ?(〈E1, σ

E2〉u :: ?) :: ?) :: ? 7−→ Ξ . 〈E1, σ
E2〉u :: ?

where v′1 = 〈E1, E2〉u :: ?. Therefore, we have to prove that µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?. As we

know that µ; Ξ ` v ≈ v′1 : ? or what is the same µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?, by the Rule (Rsed2),
the result follows immediately.

Case (Rsed2). Trivial case because both terms in the relation are values.

(Rsed2)
µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ? σ := ? ∈ Ξ

µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?

Case (R?).

(R?)
µ; Ξ; Γ ` v ≈ t′ : ?

µ; Ξ; Γ ` v ≈ ε?t′ :: ? : ?

We have t = ε?t
′ :: ?, where µ; Ξ; Γ ` v ≈ t′ : ?. Then, by the induction hypothesis, we have that

Ξ . t′ 7−→∗ v′′ and µ; Ξ; Γ ` v ≈ v′′ : ?. By the dynamic semantics of GSFε, we know that

Ξ . ε?t
′ :: ? 7−→∗ Ξ . ε?v

′′ :: ? 7−→ Ξ . v′′

Therefore, the result follows immediately.

243

Lemma A.129 If µ; Ξ ` v ≈ tε : ?, then there exists vε s.t. Ξ .tε 7−→∗ Ξ .vε, and µ; Ξ ` v ≈ vε : ?.

Proof. Direct by Lemma A.128.

Lemma A.130 If µ; Ξ ` t ≈ t∗ : ? and t ‖ µ −−→ t′ ‖ µ′, then Ξ . t∗ 7−→∗ Ξ′ . t′∗ and µ′; Ξ′ ` t′ ≈
t′∗ : ?, for some t′∗.

Proof. The proof is a straightforward induction on µ; Ξ ` t ≈ t∗ : ? and case analysis on
t ‖ µ −−→ t′ ‖ µ′. The following rules are the only ones that can be applied in this case.

Case (RsG).

(RsG)
µ; Ξ;x : ? ` t1 ≈ t′1 : ?

µ; Ξ ` νx.t1 ≈ let x = suε in t
′
1 : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = νx.t1. By the reduction rules of λseal, we know that
t ‖ µ −−→ t1[σ/x] ‖ µ, σ. By Lemma A.140, we know that Ξ . suε 7−→∗ Ξ, σ := ? . suσε . By Rule
(Rs), we know that µ, σ; Ξ, σ := ? ` σ ≈ suσε : ?. By the reduction rules of GSFε, we know that

Ξ . let x = suε in t
′
1 7−→∗ Ξ, σ := ? . let x = suσε in t′1 7−→ Ξ, σ := ? . ε?(t

′
1[suσε /x]) :: ?

Then, we are required to show that µ, σ; Ξ, σ := ? ` t1[σ/x] ≈ ε?(t
′
1[suσε /x]) :: ? : ?. We know by

the premise that µ; Ξ;x : ? ` t1 ≈ t′1 : ?, or what is the same µ, σ; Ξ, σ := ?;x : ? ` t1 ≈ t′1 : ?. Since
µ, σ; Ξ, σ := ?;x : ? ` t1 ≈ t′1 : ? and µ, σ; Ξ, σ := ? ` σ ≈ suσε : ?, by the Lemma A.141 and Rule
(R?) the result follows immediately.

Case (Runs).

(Runs)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = v2 in t3 ≈ let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3 : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = let {z}σ = {v}σ in t3. By the reduction rules of
λseal, we know that t ‖ µ −−→ t3[v/z] ‖ µ. We know by the premises that µ; Ξ ` σ ≈ v′1 : ?
and µ; Ξ ` {v}σ ≈ v′2 : ?. Therefore, by Rules (Rs) and (Rsed2), we know that v1 = suσε and
v2 = 〈E1, σ

E2〉u :: ?, for some u, E1 and E2. By the reduction rules of GSFε, we know that

Ξ . let z = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
E2〉u :: ?) in t′3 7−→∗

Ξ . let z = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
E2〉u :: ?) in t′3 7−→∗

Ξ . let z = (〈E1, E2〉u :: ?) in t′3 7−→∗ Ξ . t′3[〈E1, E2〉u :: ?/x]

We are required to show that µ; Ξ ` t3[v/z] ≈ t′3[〈E1, E2〉u :: ?/z] : ?, but we know that µ; Ξ `
{v}σ ≈ 〈E1, σ

E2〉u :: ? : ?, therefore we know by the rule (Rsed2) that µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?.
Finally, by the Lemma A.141, the result follows immediately.

Case (Rop).

(Rop)
µ; Ξ; Γ ` t1 ≈ t2 : B ty(op) = B → B′

µ; Ξ; Γ ` op(t1) ≈ op(εBt2 :: B) :: ? : B′

Applying the induction hypothesis, reduction rules of λseal and GSFε, and Rule (Rδ).

244

Case (RunsL).

(RunsL)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}t1 = t2 in t3 ≈ let x = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t′3 : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = let {z}σ = {v}σ in t3. By the reduction rules of
λseal, we know that t ‖ µ −−→ t3[v/z] ‖ µ. We know by the premises that µ; Ξ ` σ ≈ t′1 : ? and
µ; Ξ ` {v}σ ≈ t′2 : ?. Therefore, by Lemma A.128, we know that Ξ.t′1 7−→∗ Ξ1.v1, Ξ.t′2 7−→∗ Ξ.v2,
µ; Ξ ` σ ≈ v1 : ? and µ; Ξ ` {v}σ ≈ v2 : ?, for some v1 and v2. By Rules (Rs) and (Rsed2), we know
that v1 = suσε and v2 = 〈E1, σ

E2〉u :: ?, for some u, E1 and E2. By the reduction rules of GSFε, we
know that

Ξ . let x = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t′3 7−→∗

Ξ . ε?ε?(let z = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
E2〉u :: ?) in t′3) :: ? :: ? 7−→∗

Ξ . ε?ε?(let z = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
E2〉u :: ?) in t′3) :: ? :: ? 7−→∗

Ξ . ε?ε?(let z = (〈E1, E2〉u :: ?) in t′3) :: ? :: ? 7−→∗ Ξ . ε?ε?ε?(t
′
3[〈E1, E2〉u :: ?/x]) :: ? :: ? :: ?

We are required to show that µ; Ξ ` t3[v/z] ≈ ε?ε?ε?(t
′
3[〈E1, E2〉u :: ?/z]) :: ? :: ? :: ? : ?, but

we know that µ; Ξ ` {v}σ ≈ 〈E1, σ
E2〉u :: ? : ?, therefore we know by the rule (Rsed2) that

µ; Ξ ` v ≈ 〈E1, E2〉u :: ? : ?. Finally, by the Lemma A.141 and the Rule (R?), the result follows
immediately.

Case (RunsR).

(RunsR)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` t2 ≈ t′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = t2 in t3 ≈ let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3 : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = let {z}σ = {v}σ in t3. By the reduction rules of
λseal, we know that t ‖ µ −−→ t3[v/z] ‖ µ. We know by the premises that µ; Ξ ` σ ≈ v′1 : ?
and µ; Ξ ` {v}σ ≈ t′2 : ?. Therefore, by Lemma A.128, we know that Ξ . t′2 7−→∗ Ξ . v2 and
µ; Ξ ` {v}σ ≈ v2 : ?, for some v2. By Rules (Rs) and (Rsed2), we know that v1 = suσε and
v2 = 〈E1, σ

E2〉u :: ?, for some u, E1 and E2. By the reduction rules of GSFε, we know that

Ξ . let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3 7−→∗

Ξ . ε?(let z = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
E2〉u :: ?) in t′3) :: ? 7−→∗

Ξ . ε?(let z = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
E2〉u :: ?) in t′3) :: ? 7−→∗

Ξ . ε?(let z = (〈E1, E2〉u :: ?) in t′3) :: ? 7−→ Ξ . ε?ε?(t
′
3[〈E1, E2〉u :: ?/x]) :: ? :: ?

We are required to show that µ; Ξ ` t3[v/z] ≈ ε?ε?(t′3[〈E1, E2〉u :: ?/z]) :: ? :: ? : ?, but we know
that µ; Ξ ` {v}σ ≈ 〈E1, σ

E2〉u :: ? : ?, therefore we know by the rule (Rsed2) that µ; Ξ ` v ≈
〈E1, E2〉u :: ? : ?. Finally, by the Lemma A.141 and the Rule (R?), the result follows immediately.

245

Case (Rapp).

(Rapp)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ?

µ; Ξ ` v1 v2 ≈ (ε?→?v
′
1 :: ?→ ?) v′2 : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = (λx.t′′1) v2, where v1 = (λx.t′′1). Therefore, we know that
µ; Ξ ` (λx.t′′1) ≈ v′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?. By the rule (Rλ), we know that v′1 = ε?→?λx.t

′′′
1 :: ?,

where Ξ;x : ? ` t′′1 ≈ t′′′1 : ?.

By the dynamic semantics of λseal, we know that

(λx.t′′1) v2 ‖ µ −−→ t′′1[v2/x] ‖ µ

By the dynamic semantics of GSFε, we know that

Ξ . (ε?→?(ε?→?λx.t
′′′
1 :: ?) :: ?→ ?) v′2 7−→∗

Ξ . (ε?→?(λx.t
′′′
1) :: ?→ ?) v′2 7−→ Ξ . ε?(t

′′′
1 [v′2/x]) :: ?

Since µ; Ξ;x : ? ` t′′1 ≈ t′′′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?, we know by Lemma A.141 that µ; Ξ `
t′′1[v2/x] ≈ (t′′′1 [v′2/x]) : ?. By the Rule (R?), we know that µ; Ξ ` t′′1[v2/x] ≈ ε?(t

′′′
1 [v′2/x]) :: ? : ?,

thus the result follows.

Case (RappL).

(RappL)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` t1 t2 ≈ let x = t′1 in let y = t′2 in (ε?→?x :: ?→ ?) y : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = (λx.t′′1) v2, where t1 = (λx.t′′1) and t2 = v2. Therefore,
we know that µ; Ξ ` (λx.t′′1) ≈ t′1 : ? and µ; Ξ ` v2 ≈ t′2 : ?. By Lemma A.128, we know that
Ξ . t′1 7−→∗ Ξ . v′1, Ξ . t′2 7−→∗ Ξ . v′2, µ; Ξ ` (λx.t′′1) ≈ v′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?, for some v′1 and
v′2. By the rule (Rλ), we know that v′1 = ε?→?λx.t

′′′
1 :: ?, where Ξ;x : ? ` t′′1 ≈ t′′′1 : ?.

By the dynamic semantics of λseal, we know that

(λx.t′′1) v2 ‖ µ −−→ t′′1[v2/x] ‖ µ

By the dynamic semantics of GSFε, we know that

Ξ . let x = t′1 in let y = t′2 in (ε?→?x :: ?→ ?) y 7−→∗ Ξ . ε?ε?ε?→?(λx.t
′′′
1) :: ?→ ?) v′2) :: ? :: ?

Ξ . ε?ε?(ε?(t
′′′
1 [v′2/x]) :: ?) :: ? :: ?

Since µ; Ξ;x : ? ` t′′1 ≈ t′′′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?, we know by Lemma A.141 that µ; Ξ `
t′′1[v2/x] ≈ (t′′′1 [v′2/x]) : ?. By the Rule (R?), we know that µ; Ξ ` t′′1[v2/x] ≈ ε?(t

′′′
1 [v′2/x]) :: ? : ?,

therefore we have µ; Ξ ` t′′1[v2/x] ≈ ε?ε?(ε?(t′′′1 [v′2/x]) :: ?) :: ? :: ? : ?, thus the result follows.

Case (RappR).

(RappR)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` v1 t2 ≈ let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y : ?

Since t ‖ µ −−→ t′ ‖ µ′, we know that t = (λx.t′′1) v2, where v1 = (λx.t′′1) and t2 = v2. Therefore,
we know that µ; Ξ ` (λx.t′′1) ≈ v′1 : ? and µ; Ξ ` v2 ≈ t′2 : ?. By Lemma A.128, we know

246

that Ξ . t′2 7−→∗ Ξ . v′2 and µ; Ξ ` v2 ≈ v′2 : ?, for some v′2. By the rule (Rλ), we know that
v′1 = ε?→?λx.t

′′′
1 :: ?, where Ξ;x : ? ` t′′1 ≈ t′′′1 : ?.

By the dynamic semantics of λseal, we know that

(λx.t′′1) v2 ‖ µ −−→ t′′1[v2/x] ‖ µ

By the dynamic semantics of GSFε, we know that

Ξ . let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y 7−→∗ Ξ . ε?ε?→?(λx.t

′′′
1) :: ?→ ?) v′2) :: ?

Ξ . ε?(ε?(t
′′′
1 [v′2/x]) :: ?) :: ?

Since µ; Ξ;x : ? ` t′′1 ≈ t′′′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?, we know by Lemma A.141 that µ; Ξ `
t′′1[v2/x] ≈ (t′′′1 [v′2/x]) : ?. By the Rule (R?), we know that µ; Ξ ` t′′1[v2/x] ≈ ε?(t

′′′
1 [v′2/x]) :: ? : ?,

therefore we have µ; Ξ ` t′′1[v2/x] ≈ ε?(ε?(t′′′1 [v′2/x]) :: ?) :: ? : ?, thus the result follows.

Case (Rpi).

(Rpi)
µ; Ξ ` t ≈ t′ : ?

µ; Ξ ` πi(t) ≈ πi(ε?×?t′ :: ?× ?) : ?

Applying the induction hypothesis, reduction rules of λseal and GSFε, and Rules (Rp) and (Rpt).

Case (R?). We have that

(R?)
µ; Ξ ` t ≈ t′′∗ : ?

µ; Ξ ` t ≈ ε?t′′∗ :: ? : ?

We have t∗ = ε?t
′′
∗ :: ?, where µ; Ξ ` t ≈ t′′∗ : ?. Then, by the induction hypothesis, we have that

Ξ . t′′∗ 7−→∗ Ξ′ . t′′′∗ and µ′; Ξ′ ` t′ ≈ t′′′∗ : ?. We are required to show that µ′; Ξ′ ` t′ ≈ ε?t
′′′
∗ :: ? : ?.

But the result follows immediately by the Rule (R?).

Lemma A.131 Let µ; Ξ ` v1 ≈ εu :: ? : ?. Then, v1 = λx.t1 if and only if u = λx : ?.t2 and
ε = ε?→?.

Proof. The proof follow by the exploration of rules in µ; Ξ ` v1 ≈ εu :: ? : ? and the definition of
the evidence.

Let µ; Ξ ` v1 ≈ εu :: ? : ?. Then, v1 6= λx.t1 then u 6= λx : ?.t2 and ε 6= εG1→G2 .

Proof. By Lemma A.131.

Lemma A.132 If µ; Ξ ` t ≈ t∗ : ? and t ‖ µ −−→ error, then Ξ . t∗ 7−→∗ error.

Proof. The proof is a straightforward induction on µ; Ξ ` t ≈ t∗ : ?. The following rule is the only
one that can be applied in this case (t ‖ µ −−→ error).

247

Case (Rapp).

(Rapp)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ?

µ; Ξ ` v1 v2 ≈ (ε?→?v
′
1 :: ?→ ?) v′2 : ?

Since t ‖ µ −−→ type error, we know that v1 is not a function, and by Corollary A.9 and
µ; Ξ ` v1 ≈ v′1 : ?, we know that v′1 also can not be a function and its evidence, syntactically, can
not be a function. Let suppose that v′1 = ε1u1 :: ?. Then, we know that ε1 # ε?→? fails, and the
result holds.

Ξ . (ε?→?(ε1u1 :: ?) :: ?→ ?) v′2 7−→∗ error

Case (RappL).

(RappL)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` t1 t2 ≈ let x = t′1 in let y = t′2 in (ε?→?x :: ?→ ?) y : ?

By Lemma A.128, µ; Ξ ` t1 ≈ t′1 : ? and µ; Ξ ` t2 ≈ t′2 : ?, we know that Ξ.t′1 7−→∗ Ξ.v′1, Ξ.t′2 7−→∗
Ξ . v′2, µ; Ξ ` v1 ≈ v′1 : ? and µ; Ξ ` v2 ≈ v′2 : ?, for some v′1 and v′2. Since t ‖ µ −−→ type error,
we know that v1 is not a function, and by Corollary A.9 and µ; Ξ ` v1 ≈ v′1 : ?, we know that v′1
also can not be a function and its evidence, syntactically, can not be a function. Let suppose that
v′1 = ε1u1 :: ?. Then, we know that ε1 # ε?→? fails, and the result holds.

Ξ . let x = t′1 in let y = t′2 in (ε?→?x :: ?→ ?) y 7−→∗

Ξ . ε?ε?(ε?→?(ε1u1 :: ?) :: ?→ ?) v′2) :: ? :: ? 7−→ error

Case (RappR).

(RappR)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` t2 ≈ t′2 : ?

µ; Ξ ` v1 t2 ≈ let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y : ?

By Lemma A.128 and µ; Ξ ` t2 ≈ t′2 : ?, we know that Ξ . t′2 7−→∗ Ξ . v′2 and µ; Ξ ` v2 ≈ v′2 : ?,
for some v′2. Since t ‖ µ −−→ type error, we know that v1 is not a function, and by Corollary A.9
and µ; Ξ ` v1 ≈ v′1 : ?, we know that v′1 also can not be a function and its evidence, syntactically,
can not be a function. Let suppose that v′1 = ε1u1 :: ?. Then, we know that ε1 # ε?→? fails, and the
result holds.

Ξ . let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y 7−→∗

Ξ . ε?ε?→?(ε1u1 :: ?) :: ?→ ?) v′2) :: ? 7−→ error

Case (TRpi). (TRpi)
µ; Ξ; Γ ` t ≈ t′ : ?

µ; Ξ; Γ ` πi(t) ≈ πi(ε?×?t′ :: ?× ?) : ?
Similar to the function application

case.

Case (Runs).

(Runs)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ? Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = v2 in t3 ≈ let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3 : ?

Since t ‖ µ −−→ unseal error, we know that t = let {z}σ = {v}σ′ in t3, where σ 6 σ′. We
know by the premises that µ; Ξ ` σ ≈ v′1 : ? and µ; Ξ ` {v}σ′ ≈ v′2 : ?.Therefore, by Rules (Rs) and

248

(Rsed2), we know that v1 = suσε and v2 = 〈E1, σ
′E2〉u :: ?, for some u, E1 and E2. By the reduction

rules of GSFε, we know that

Ξ . let x = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
′E2〉u :: ?) in t′3 7−→∗

Ξ . let x = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
′E2〉u :: ?) in t′3 7−→∗

Ξ . let x = (〈σ?, ?〉(εσ?(〈E1, σ
′E2〉u :: ?) :: σ) :: ?) in t′3 7−→ error

Note that the transitivity between 〈E1, σ
′E2〉 # εσ? fails because σ′ 6 σ. Thus the results follows

immediately.

Case (RunsL).

(RunsL)
µ; Ξ ` t1 ≈ t′1 : ? µ; Ξ ` t2 ≈ t′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}t1 = t2 in t3 ≈ let x = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t′3 : ?

Since t ‖ µ −−→ unseal error, we know that t = let {z}σ = {v}σ′ in t3, where σ 6 σ′. We
know by the premises that µ; Ξ ` σ ≈ t′1 : ? and µ; Ξ ` {v}σ′ ≈ t′2 : ?. Therefore, by Lemma A.128,
we know that Ξ . t′1 7−→∗ Ξ1 . v1, Ξ . t′2 7−→∗ Ξ . v2, µ; Ξ ` σ ≈ v1 : ? and µ; Ξ ` {v}σ′ ≈ v2 : ?, for

some v1 and v2. By Rules (Rs) and (Rsed2), we know that v1 = suσε and v2 = 〈E1, σ
′E2〉u :: ?, for

some u, E1 and E2. By the reduction rules of GSFε, we know that

Ξ . let x = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t′3 7−→∗

Ξ . ε?ε?(let z = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
′E2〉u :: ?) in t′3) :: ? :: ? 7−→∗

Ξ . ε?ε?(let z = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
′E2〉u :: ?) in t′3) :: ? :: ? 7−→∗

Ξ . ε?ε?(let x = (〈σ?, ?〉(εσ?(〈E1, σ
′E2〉u :: ?) :: σ) :: ?) in t′3) :: ? :: ? 7−→ error

Note that the transitivity between 〈E1, σ
′E2〉 # εσ? fails because σ′ 6 σ. Thus the results follows

immediately.

Case (RunsR).

(RunsR)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` t2 ≈ t′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = t2 in t3 ≈ let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3 : ?

Since t ‖ µ −−→ unseal error, we know that t = let {z}σ = {v}σ′ in t3, where σ 6 σ′. We
know by the premises that µ; Ξ ` σ ≈ v′1 : ? and µ; Ξ ` {v}σ′ ≈ t′2 : ?. Therefore, by Lemma A.128,
we know that Ξ . t′2 7−→∗ Ξ . v2 and µ; Ξ ` {v}σ′ ≈ v2 : ?, for some v2. By Rules (Rs) and (Rsed2),

we know that v1 = suσε and v2 = 〈E1, σ
′E2〉u :: ?, for some u, E1 and E2. By the reduction rules of

GSFε, we know that

Ξ . let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3 7−→∗

Ξ . ε?(let z = ε?→?π2(ε?×?suσε :: ?× ?) :: ?→ ? (〈E1, σ
′E2〉u :: ?) in t′3) :: ? 7−→∗

Ξ . ε?(let z = (〈?→ σ?, ?→ ?〉(λx : ?.εσ?x :: σ) :: ?) (〈E1, σ
′E2〉u :: ?) in t′3) :: ? 7−→∗

Ξ . ε?(let x = (〈σ?, ?〉(εσ?(〈E1, σ
′E2〉u :: ?) :: σ) :: ?) in t′3) :: ? 7−→ error

Note that the transitivity between 〈E1, σ
′E2〉 # εσ? fails because σ′ 6 σ. Thus the results follows

immediately.

249

Case (R?).

(R?)
µ; Ξ ` t ≈ t1∗ : ?

µ; Ξ ` t ≈ ε?t1∗ :: ? : ?

Since t ‖ µ −−→ error, we know by the induction hypothesis on µ; Ξ ` t ≈ t1∗ : ? that Ξ.t1∗ 7−→
error. Thus the result follows immediately.

Lemma A.133 If µ; Ξ ` t ≈ t∗ : ? and t ‖ µ 7−→ t′ ‖ µ′, then Ξ.t∗ 7−→∗ Ξ′.t′∗ and µ′; Ξ′ ` t′ ≈ t′∗ : ?,
for some t′∗.

Proof. The proof is a straightforward induction on µ; Ξ ` t1 ≈ t2 : ?. We only take into account
the rules that can be applied.

Case (Rpt).

(Rpt)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` 〈t1, t2〉 ≈ ε?×?〈t1∗ , t2∗〉 :: ? : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we have the following two cases:

• t = 〈t1, t2〉 = f [t1] , where f = 〈[], t2〉.
Therefore, we have that t1 ‖ µ 7−→ t′1 ‖ µ′.
By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus,
we know that

Ξ . ε?×?〈t1∗ , t2∗〉 :: ? 7−→∗ Ξ′ . ε?×?〈t′1∗ , t2∗〉 :: ?

Therefore, the result follows immediately by Rule (Rpt).

• t = 〈t1, t2〉 = 〈v1, t2〉 = f [t2] , where f = 〈v1, []〉. Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′.
By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗ and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Since
µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈ v1∗ : ?.
Thus, we know that

Ξ . ε?×?〈t1∗ , t2∗〉 :: ? 7−→∗ Ξ . ε?×?〈v′1∗ , t2∗〉 :: ? 7−→∗ Ξ′ . ε?×?〈v′1∗ , t′2∗〉 :: ?

Therefore, the result follows immediately by Rule (Rpt).

Case (R?).

(R?)
µ; Ξ ` t1 ≈ t1∗ : ?

µ; Ξ ` t1 ≈ ε?t1∗ :: ? : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we have that t1 ‖ µ 7−→ t′1 ‖ µ′.

By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus, we
know that

Ξ . ε?t1∗ :: ? 7−→∗ Ξ′ . ε?t
′
1∗ :: ?

Therefore, the result follows immediately by Rule (R?).

250

Case (RappL).

(RappL)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` t1 t2 ≈ let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we have the following two cases:

• t = t1 t2 = f [t1] , where f = [] t2. Therefore, we have that t1 ‖ µ 7−→ t1 ‖ µ′.
By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus,
we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→∗

Ξ′ . let x = t′1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y

Therefore, the result follows immediately by Rule (RappL).

• t = t1 t2 = v1 t2 = f [t2] , where f = v1 []. Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′. By
the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗ and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Since
µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈ v1∗ : ?.
Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→∗

Ξ . let x = v1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→
Ξ . ε?(let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y) :: ? 7−→∗

Ξ′ . ε?(let y = t′2∗ in (ε?→?v1∗ :: ?→ ?) y) :: ?

Therefore, the result follows immediately by Rules (RappR) and (R?).

Case (RappR).

(RappR)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` v1 t2 ≈ let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we know that t = v1 t2 = f [t2] , where f = v1 []. Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′. By the
induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗ and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Thus, we know that

Ξ . let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y 7−→∗

Ξ′ . let y = t′2∗ in (ε?→?v1∗ :: ?→ ?) y

Therefore, the result follows immediately by Rule (RappR).

Case (Rpi).

(Rpi)
µ; Ξ ` t1 ≈ t1∗ : ?

µ; Ξ ` πi(t1) ≈ πi(ε?×?t1∗ :: ?× ?) : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we know that t = πi(t1) = f [t1], where πi([]).

Therefore, we have that t1 ‖ µ 7−→ t′1 ‖ µ′.

By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus, we
know that

Ξ . πi(ε?×?t1∗ :: ?× ?) 7−→∗ Ξ′ . πi(ε?×?t
′
1∗ :: ?× ?)

Therefore, the result follows immediately by Rule (Rpi).

251

Case (Rsed1L).

(Rsed1L)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` {t1}t2 ≈ let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we have the following two cases:

• t = {t1}t2 = f [t1] , where f = {[]}t2 .

Therefore, we have that t1 ‖ µ 7−→ t′1 ‖ µ′.
By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus,
we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→∗

Ξ′ . let x = t′1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x

Therefore, the result follows immediately by Rule (Rsed1L).

• t = {t1}t2 = {v1}t2 = f [t2] , where f = {v1}[]. Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′. By
the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗ and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Since
µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈ v1∗ : ?.
Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→∗

Ξ . let x = v′1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→

Ξ . ε?(let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗) :: ? 7−→∗

Ξ′ . ε?(let y = t′2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗) :: ?

Therefore, the result follows immediately by Rules (Rsed1R) and (R?).

Case (Rsed1R).

(Rsed1R)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` {v1}t2 ≈ let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v1∗ : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we know that t = {t1}t2 = {v1}t2 = f [t2] , where f = {v1}[]. Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′.
By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗ and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Thus, we
know that

Ξ . let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗ 7−→∗

Ξ′ . let y = t′2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗

Therefore, the result follows immediately by Rule (Rsed1R).

Case (RunsL).

(RunsL)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ? µ; Ξ; z : ? ` t3 ≈ t3∗ : ?

µ; Ξ ` let {z}t1 = t2 in t3 ≈ let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we have the following two cases:

252

• t = let {z}t1 = t2 in t3 = f [t1] , where f = let {z}[] = t2 in t3.

Therefore, we have that t1 ‖ µ 7−→ t′1 ‖ µ′.
By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus,
we know that

Ξ . let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→∗

Ξ′ . let x = t′1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗

Therefore, the result follows immediately by Rule (RunsL).

• t = let {z}t1 = t2 in t3 = let {z}v1 = t2 in t3 = f [t2] , where f = let {z}v1 = [] in t3. Therefore,
we have that t2 ‖ µ 7−→ t′2 ‖ µ′. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗
and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Since µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that
Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈ v1∗ : ?. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→∗

Ξ . let x = v1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→

Ξ . ε?(let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗) :: ? 7−→∗

Ξ′ . ε?(let y = t′2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗) :: ?

Therefore, the result follows immediately by Rules (RunsR) and (R?).

Case (RunsR).

(RunsR)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ? µ; Ξ; z : ? ` t3 ≈ t3∗ : ?

µ; Ξ ` let {z}v1 = t2 in t3 ≈ let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗ : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
then we know that t = let {z}t1 = t2 in t3 = let {z}v1 = t2 in t3 = f [t2] , where f = let {z}v1 = [] in t3.
Therefore, we have that t2 ‖ µ 7−→ t′2 ‖ µ′. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ Ξ′ . t′2∗
and µ′; Ξ′ ` t′2 ≈ t′2∗ : ?. Thus, we know that

Ξ . let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗ 7−→∗

Ξ′ . let y = t′2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗

Therefore, the result follows immediately by Rule (RunsR).

Case (RsG).

(RsG)
Ξ; Γ, x : ? ` t1 ≈ t′1 : ?

µ; Ξ ` νx.t1 ≈ let x = suε in t
′
1 : ?

Since t = νx.t1, we know that t ‖ µ −−→ t′ ‖ µ′. Therefore, by Lemma A.130, the result follows
immediately.

Case (Runs).

(Runs)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = v2 in t3 ≈ let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3 : ?

Since t = let {z}v1 = v2 in t3, we know that t ‖ µ −−→ t′ ‖ µ′. Therefore, by Lemma A.130, the
result follows immediately.

253

Case (Rapp).

(Rapp)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ?

µ; Ξ ` v1 v2 ≈ (ε?→?v
′
1 :: ?→ ?) v′2 : ?

Since t = v1 v2, we know that t ‖ µ −−→ t′ ‖ µ′. Therefore, by Lemma A.130, the result follows
immediately.

Lemma A.134 If µ; Ξ ` t1 ≈ t2 : ? , Ξ ⊆ Ξ′ and Γ ⊆ Γ′, then Ξ′; Γ′ ` t1 ≈ t2 : ? .

Proof. The proof is a straightforward induction on µ; Ξ ` t1 ≈ t2 : ?.

Lemma A.135 If µ; Ξ ` t ≈ t∗ : ? and t ‖ µ 7−→ error, then Ξ . t 7−→∗ error.

Proof. The proof is a straightforward induction on µ; Ξ ` t1 ≈ t2 : ?. We only take into account
the rules that can be applied (t ‖ µ 7−→ error).

Case (Rpt).

(Rpt)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` 〈t1, t2〉 ≈ ε?×?〈t1∗ , t2∗〉 :: ? : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we have the following two cases:

• t = 〈t1, t2〉 = f [t1] , where f = 〈[], t2〉. Therefore, we have that t1 ‖ µ 7−→ error. By the in-
duction hypothesis, we get that Ξ . t1∗ 7−→∗ error. Therefore, the result follows immediately.

• t = 〈t1, t2〉 = 〈v1, t2〉 = f [t2], where f = 〈v1, []〉.
Therefore, we have that t2 ‖ µ 7−→ error. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error.
Since µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈
v1∗ : ?. Thus, we know that

Ξ . ε?×?〈t1∗ , t2∗〉 :: ? 7−→∗ Ξ . ε?×?〈v′1∗ , t2∗〉 :: ? 7−→∗ error

Therefore, the result follows immediately.

Case (R?).

(R?)
µ; Ξ ` t1 ≈ t1∗ : ?

µ; Ξ ` t1 ≈ ε?t1∗ :: ? : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we have that t1 ‖ µ 7−→ error. By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ error. Thus,
we know that

Ξ . ε?t1∗ :: ? 7−→∗ error

Therefore, the result follows immediately.

254

Case (RappL).

(RappL)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` t1 t2 ≈ let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we have the following two cases:

• t = t1 t2 = f [t1] , where f = [] t2. Therefore, we have that t1 ‖ µ 7−→ error. By the induction
hypothesis, we get that Ξ . t1∗ 7−→∗ error. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→∗ error

Therefore, the result follows immediately by Rule (RappL).

• t = t1 t2 = v1 t2 = f [t2] , where f = v1 [].

Therefore, we have that t2 ‖ µ 7−→ error. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error.
Since µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈
v1∗ : ?. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→∗

Ξ . let x = v1∗ in let y = t2∗ in (ε?→?x :: ?→ ?) y 7−→
Ξ . ε?(let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y) :: ? 7−→∗ error

Therefore, the result follows immediately.

Case (RappR).

(RappR)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` v1 t2 ≈ let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we know that t = v1 t2 = f [t2] , where f = v1 [].

Therefore, we have that t2 ‖ µ 7−→ error. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error.
Thus, we know that

Ξ . let y = t2∗ in (ε?→?v1∗ :: ?→ ?) y 7−→∗ error

Therefore, the result follows immediately.

Case (Rpi).

(Rpi)
µ; Ξ ` t1 ≈ t1∗ : ?

µ; Ξ ` πi(t1) ≈ πi(ε?×?t1∗ :: ?× ?) : ?

If t ‖ µ −−→ t′ ‖ µ′, then by Lemma A.130, the result follows immediately. Else, if t ‖ µ 7−→ t′ ‖ µ′,
we know that t = πi(t1) = f [t1], where πi([]).

Therefore, we have that t1 ‖ µ 7−→ t′1 ‖ µ′.

By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ Ξ′ . t′1∗ and µ′; Ξ′ ` t′1 ≈ t′1∗ : ?. Thus, we
know that

Ξ . πi(ε?×?t1∗ :: ?× ?) 7−→∗ Ξ′ . πi(ε?×?t
′
1∗ :: ?× ?)

Therefore, the result follows immediately by Rule (Rpi).

255

Case (Rsed1L).

(Rsed1L)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` {t1}t2 ≈ let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we have the following two cases:

• t = {t1}t2 = f [t1] , where f = {[]}t2 . Therefore, we have that t1 ‖ µ 7−→ error. By the induc-
tion hypothesis, we get that Ξ . t1∗ 7−→∗ error. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→∗ error

Therefore, the result follows immediately.

• t = {t1}t2 = {v1}t2 = f [t2] , where f = {v1}[].
Therefore, we have that t2 ‖ µ 7−→ error. By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error.
Since µ; Ξ ` v1 ≈ t1∗ : ?, by Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈
v1∗ : ?. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→∗

Ξ . let x = v′1∗ in let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) x 7−→
Ξ . ε?(let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗) :: ? 7−→∗ error

Therefore, the result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ?

µ; Ξ ` {v1}t2 ≈ let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v1∗ : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we know that t = {t1}t2 = {v1}t2 = f [t2] , where f = {v1}[]. Therefore, we have that

t2 ‖ µ 7−→ error

By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error. Thus, we know that

Ξ . let y = t2∗ in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1∗ 7−→∗ error

Therefore, the result follows immediately.

Case (RunsL).

(RunsL)
µ; Ξ ` t1 ≈ t1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ? µ; Ξ; z : ? ` t3 ≈ t3∗ : ?

µ; Ξ ` let {z}t1 = t2 in t3 ≈ let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, we have the following two cases:

256

• t = let {z}t1 = t2 in t3 = f [t1] , where f = let {z}[] = t2 in t3. Therefore, we have that

t1 ‖ µ 7−→ error

By the induction hypothesis, we get that Ξ . t1∗ 7−→∗ error. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→∗ error

Therefore, the result follows immediately.

• t = let {z}t1 = t2 in t3 = let {z}v1 = t2 in t3 = f [t2] , where f = let {z}v1 = [] in t3. Therefore,
we have that

t2 ‖ µ 7−→ error

By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error. Since µ; Ξ ` v1 ≈ t1∗ : ?, by
Lemma A.128, we know that Ξ . t1∗ 7−→∗ Ξ . v1∗ and µ; Ξ ` v1 ≈ v1∗ : ?. Thus, we know that

Ξ . let x = t1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→∗

Ξ . let x = v1∗ in let y = t2∗ in let z = ε?→?π2(ε?×?x :: ?× ?) :: ?→ ? y in t3∗ 7−→

Ξ . ε?(let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗) :: ? 7−→∗ error

Therefore, the result follows immediately.

Case (RunsR).

(RunsR)
µ; Ξ ` v1 ≈ v1∗ : ? µ; Ξ ` t2 ≈ t2∗ : ? µ; Ξ; z : ? ` t3 ≈ t3∗ : ?

µ; Ξ ` let {z}v1 = t2 in t3 ≈ let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗ : ?

If t ‖ µ −−→ error, then by Lemma A.132, the result follows immediately. Else, if

t ‖ µ 7−→ error

, then we know that t = let {z}t1 = t2 in t3 = let {z}v1 = t2 in t3 = f [t2] , where f = let {z}v1 = [] in t3.
Therefore, we have that

t2 ‖ µ 7−→ error

By the induction hypothesis, we get that Ξ . t2∗ 7−→∗ error Thus, we know that

Ξ . let y = t2∗ in let z = ε?→?π2(ε?×?v1∗ :: ?× ?) :: ?→ ? y in t3∗ 7−→∗ error

Therefore, the result follows immediately.

Case (Runs).

(Runs)
µ; Ξ ` v1 ≈ v′1 : ? µ; Ξ ` v2 ≈ v′2 : ? µ; Ξ; z : ? ` t3 ≈ t′3 : ?

µ; Ξ ` let {z}v1 = v2 in t3 ≈ let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3 : ?

Since t = let {z}v1 = v2 in t3, we know that t ‖ µ −−→ error. Therefore, by Lemma A.132, the
result follows immediately.

Lemma A.136 If ε = 〈E,E〉, then ε # ε = ε.

257

Proof. Straightforward induction on the shape of the evidence ε.

Lemma A.137 If Ξ; Γ ` dteε : G then G = ?.

Proof. Straightforward induction on the syntax of t.

Lemma A.138 If µ; Ξ; Γ ` t ≈ tε : ? then Ξ; Γ ` tε : ?.

Proof. Direct by Lemma A.137.

Lemma A.139 If t is closed λseal term, then ·; ·; · ` dteε : ?.

Proof. Straightforward induction on the syntax of t.

Lemma A.140 Ξ . suε 7−→∗ Ξ, σ := ? . suσε , where σ := ? 6∈ Ξ.

Proof. Following the reduction rules of GSF.

Lemma A.141 (Substitution preserves) If µ; Ξ; Γ, x : ? ` t ≈ t∗ : ? and µ; Ξ; Γ ` v ≈ v∗ : ?, then
µ; Ξ; Γ ` t[v/x] ≈ t∗[v∗/x] : ?.

Proof. The proof is a straightforward induction on the derivation of µ; Ξ; Γ, x : ? ` t ≈ t∗ : ? .

Case (Rx).

(Rx)
x : ? ∈ Γ, x : ?

µ; Ξ; Γ, x : ? ` x ≈ x : ?

We have that t = x and t∗ = x. By the definition of substitution, we have that x[v/x] = v and
x[v∗/x] = v∗. Therefore, we are required to prove that µ; Ξ; Γ ` v ≈ v∗ : ?, which follows by the
premise.

If we have

(Rx)
y : ? ∈ Γ, x : ?

µ; Ξ; Γ, x : ? ` y ≈ y : ?

We have that t = y and t∗ = y. By the definition of substitution, we have that y[v/x] = y and
y[v∗/x] = y. Therefore, we are required to prove that µ; Ξ; Γ ` y ≈ y : ?, which follows by the
premise µ; Ξ; Γ, x : ? ` y ≈ y : ? and Lemma A.134.

Case (Rb).

(Rb)
ty(b) = B

µ; Ξ; Γ, x : ? ` b ≈ εBb :: ? : ?

We have that t = b and t∗ = εBb :: ?. By the definition of substitution, we have that b[v/x] = b and
εBb :: ?[v∗/x] = εBb :: ?. Therefore, we are required to prove that µ; Ξ; Γ ` b ≈ εBb :: ? : ?, which
follows by the premise µ; Ξ; Γ, x : ? ` b ≈ εBb :: ? : ? and Lemma A.134.

258

Case (Ru).

(Ru)
µ; Ξ; Γ, x : ? ` v1 ≈ εDu :: ? : ?

µ; Ξ; Γ, x : ? ` v1 ≈ εD(εDu :: D) :: ? : ?

We have that t = v1 and t∗ = εD(εDu :: D) :: ?. By the definition of substitution, we have
that (εD(εDu :: D) :: ?)[v∗/x] = εD(εDu[v∗/x] :: D) :: ?. Therefore, we are required to prove
that µ; Ξ; Γ ` v1[v/x] ≈ εD(εDu[v∗/x] :: D) :: ? : ?, or what is the same µ; Ξ; Γ ` v1[v/x] ≈
(εDu[v∗/x] :: ?) : ? which follows by the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ εDu :: ? : ?.

Case (Rs).

(Rs)
σ := ? ∈ Ξ

µ; Ξ; Γ, x : ? ` σ ≈ suσε : ?

We have that t = σ and t∗ = suσε . By the definition of substitution, we have that σ[v/x] = σ and
suσε [v∗/x] = suσε . Therefore, we are required to prove that µ; Ξ; Γ ` σ ≈ suσε : ?, which follows by
the premise µ; Ξ; Γ, x : ? ` σ ≈ suσε : ? and Lemma A.134.

Case (Rp).

(Rp)
µ; Ξ; Γ, x : ? ` v1 ≈ εD1u1 :: ? : ? µ; Ξ; Γ, x : ? ` v2 ≈ εD2u2 :: ? : ?

µ; Ξ; Γ, x : ? ` 〈v1, v2〉 ≈ εD1×D2〈u1, u2〉 :: ? : ?

We have that t = 〈v1, v2〉 and t∗ = εD1×D2〈u1, u2〉 :: ?. By the definition of substitution, we have that
〈v1, v2〉[v/x] = 〈v1[v/x], v2[v/x]〉 and (εD1×D2〈u1, u2〉 :: ?)[v∗/x] = εD1×D2〈u1[v∗/x], u2[v∗/x]〉 :: ?.
Therefore, we are required to prove that µ; Ξ; Γ ` 〈v1[v/x], v2[v/x]〉 ≈ εD1×D2〈u1[v∗/x], u2[v∗/x]〉 :: ? :
?, or what is the same by Rule (Rp) that µ; Ξ; Γ ` v1[v/x] ≈ εD1u1[v∗/x] :: ? : ? and µ; Ξ; Γ `
v2[v/x] ≈ εD2u2[v∗/x] :: ? : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ εD1u1 :: ? : ? and
µ; Ξ; Γ, x : ? ` v2 ≈ εD2u2 :: ? : ? the result follows immediately.

Case (Rλ).

(Rλ)
Ξ; Γ, x : ?, y : ? ` t1 ≈ t2 : ?

µ; Ξ; Γ, x : ? ` (λy.t1) ≈ ε?→?(λy.t2) :: ? : ?

We have that t = (λy.t1) and t∗ = ε?→?(λy.t2) :: ?. By the definition of substitution, we have
that (λy.t1)[v/x] = (λy.t1[v/x]) and (ε?→?(λy.t2) :: ?)[v∗/x] = ε?→?(λy.t2[v∗/x]) :: ?. Therefore, we
are required to prove that µ; Ξ; Γ ` (λy.t1[v/x]) ≈ ε?→?(λy.t2[v∗/x]) :: ? : ?, or what is the same
µ; Ξ; Γ, y : ? ` t1[v/x] ≈ t2[v∗/x] : ? which follows by the induction hypothesis on µ; Ξ; Γ, x : ?, y : ? `
t1 ≈ t2 : ?.

Case (Rpt).

(Rpt)
µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?

µ; Ξ; Γ, x : ? ` 〈t1, t2〉 ≈ ε?×?〈t′1, t′2〉 :: ? : ?

We have that t = 〈t1, t2〉 and t∗ = ε?×?〈t′1, t′2〉 :: ?. By the definition of substitution, we have
that 〈t1, t2〉[v/x] = 〈t1[v/x], t2[v/x]〉 and (ε?×?〈t′1, t′2〉 :: ?)[v∗/x] = (ε?×?〈t′1[v∗/x], t′2[v∗/x]〉 :: ?).
Therefore, we are required to prove that µ; Ξ; Γ ` 〈t1[v/x], t2[v/x]〉 ≈ (ε?×?〈t′1[v∗/x], t′2[v∗/x]〉 :: ?) :
?, or what is the same by Rule (Rpt) that µ; Ξ; Γ ` t1[v/x] ≈ t′1[v∗/x] : ? and µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? and µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?
the result follows immediately.

Case (Rapp).

(Rapp)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ?

µ; Ξ; Γ, x : ? ` v1 v2 ≈ (ε?→?v
′
1 :: ?→ ?) v′2 : ?

We have that t = v1 v2 and t∗ = (ε?→?v
′
1 :: ? → ?) v′2. By the definition of substitution, we have

that
(v1 v2)[v/x] = v1[v/x] v2[v/x]

259

and
((ε?→?v

′
1 :: ?→ ?) v′2)[v∗/x] = (ε?→?v

′
1[v∗/x] :: ?→ ?) v′2[v∗/x]

Therefore, we are required to prove that

µ; Ξ; Γ ` v1[v/x] v2[v/x] ≈ (ε?→?v
′
1[v∗/x] :: ?→ ?) v′2[v∗/x] : ?

, or what is the same by Rule (Rapp) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ? and µ; Ξ; Γ ` v2[v/x] ≈
v′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? and µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ?
the result follows immediately.

Case (RappL).

(RappL)
µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?

µ; Ξ; Γ, x : ? ` t1 t2 ≈ let z = t′1 in let y = t′2 in (ε?→?z :: ?→ ?) y : ?

We have that t = t1 t2 and t∗ = let z = t′1 in let y = t′2 in (ε?→?z :: ?→ ?) y. By the definition of
substitution, we have that

(t1 t2)[v/x] = t1[v/x] t2[v/x]

and

(let z = t′1 in let y = t′2 in (ε?→?z :: ?→ ?) y)[v∗/x] = let z = t′1[v∗/x] in let y = t′2[v∗/x] in (ε?→?z :: ?→ ?) y

Therefore, we are required to prove that

µ; Ξ; Γ ` t1[v/x] t2[v/x] ≈ let z = t′1[v∗/x] in let y = t′2[v∗/x] in (ε?→?z :: ?→ ?) y : ?

, or what is the same by Rule (RappL) that µ; Ξ; Γ ` t1[v/x] ≈ t′1[v∗/x] : ? and µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? and µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?
the result follows immediately.

Case (RappR).

(RappR)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?

µ; Ξ; Γ, x : ? ` v1 t2 ≈ let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y : ?

We have that t = v1 t2 and t∗ = let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y. By the definition of substitution,

we have that
(v1 t2)[v/x] = v1[v/x] t2[v/x]

and

(let y = t′2 in (ε?→?v
′
1 :: ?→ ?) y)[v∗/x] = let y = t′2[v∗/x] in (ε?→?v

′
1[v∗/x] :: ?→ ?) y

Therefore, we are required to prove that

µ; Ξ; Γ ` v1[v/x] t2[v/x] ≈ let y = t′2[v∗/x] in (ε?→?v
′
1[v∗/x] :: ?→ ?) y : ?

, or what is the same by Rule (RappR) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ? and µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? and µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?
the result follows immediately.

Case (R?).

(R?)
µ; Ξ; Γ, x : ? ` t ≈ t′ : ?

µ; Ξ; Γ, x : ? ` t ≈ ε?t′ :: ? : ?

260

We have that t∗ = ε?t
′ :: ?. By the definition of substitution, we have that

(ε?t
′ :: ?)[v∗/x] = ε?t

′[v∗/x] :: ?

Therefore, we are required to prove that

µ; Ξ; Γ ` t[v/x] ≈ ε?t′[v∗/x] :: ? : ?

, or what is the same by Rule (R?) that µ; Ξ; Γ ` t[v/x] ≈ t′[v∗/x] : ?. By the induction hypothesis
on µ; Ξ; Γ, x : ? ` t ≈ t′ : ? the result follows immediately.

Case (Rpi).

(Rpi)
µ; Ξ; Γ, x : ? ` t′′ ≈ t′ : ?

µ; Ξ; Γ, x : ? ` πi(t′′) ≈ πi(ε?×?t′ :: ?× ?) : ?

We have that t = πi(t
′′) and t∗ = πi(ε?×?t

′ :: ?× ?). By the definition of substitution, we have that

πi(t
′′)[v/x] = πi(t

′′[v/x])

and
(πi(ε?×?t

′ :: ?× ?))[v∗/x] = πi(ε?×?t
′[v∗/x] :: ?× ?)

Therefore, we are required to prove that

µ; Ξ; Γ ` πi(t′′[v/x]) ≈ πi(ε?×?t′[v∗/x] :: ?× ?) : ?

, or what is the same by Rule (Rpi) that µ; Ξ; Γ ` t′′[v/x] ≈ t′[v∗/x] : ?. By the induction hypothesis
on µ; Ξ; Γ, x : ? ` t′′ ≈ t′ : ? the result follows immediately.

Case (RsG).

(RsG)
µ; Ξ; Γ, x : ?, z : ? ` t′′ ≈ t′ : ?

µ; Ξ; Γ, x : ? ` νz.t′′ ≈ let z = suε in t
′ : ?

We have that t = νz.t′′ and t∗ = let z = suε in t
′. By the definition of substitution, we have that

(νz.t′′)[v/x] = νz.t′′[v/x]

and
(let z = suε in t

′)[v∗/x] = let z = suε in t
′[v∗/x]

Therefore, we are required to prove that

µ; Ξ; Γ ` νz.t′′[v/x] ≈ let z = suε in t
′[v∗/x] : ?

, or what is the same by Rule (RsG) that µ; Ξ; Γ, z : ? ` t′′[v/x] ≈ t′[v∗/x] : ?. By the induction
hypothesis on µ; Ξ; Γ, x : ?, z : ? ` t′′ ≈ t′ : ? the result follows immediately.

Case (Rsed1).

(Rsed1)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ?

µ; Ξ; Γ, x : ? ` {v1}v2 ≈ ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ? v′1 : ?

We have that t = {v1}v2 and t∗ = ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ? v′1. By the definition of substitu-

tion, we have that
{v1}v2 [v/x] = {v1[v/x]}v2[v/x]

and

(ε?→?π1(ε?×?v
′
2 :: ?× ?) :: ?→ ? v′1)[v∗/x] = ε?→?π1(ε?×?v

′
2[v∗/x] :: ?× ?) :: ?→ ? v′1[v∗/x]

261

Therefore, we are required to prove that

µ; Ξ; Γ ` {v1[v/x]}v2[v/x] ≈ ε?→?π1(ε?×?v
′
2[v∗/x] :: ?× ?) :: ?→ ? v′1[v∗/x] : ?

, or what is the same by Rule (Rsed1) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ? and µ; Ξ; Γ ` v2[v/x] ≈
v′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? and µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ?
the result follows immediately.

Case (Rsed1L).

(Rsed1L)
µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?

µ; Ξ; Γ, x : ? ` {t1}t2 ≈ let z = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) z : ?

We have that t = {t1}t2 and t∗ = let z = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) z. By
the definition of substitution, we have that

{t1}t2 [v/x] = {t1[v/x]}t2[v/x]

and
(let z = t′1 in let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) z)[v∗/x] =

let z = t′1[v∗/x] in let y = t′2[v∗/x] in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) z

Therefore, we are required to prove that

µ; Ξ; Γ ` {t1[v/x]}t2[v/x] ≈ let z = t′1[v∗/x] in let y = t′2[v∗/x] in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) z : ?

, or what is the same by Rule (Rsed1L) that µ; Ξ; Γ ` t1[v/x] ≈ t′1[v∗/x] : ? and µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? and µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?
the result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?

µ; Ξ; Γ, x : ? ` {v1}t2 ≈ let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1 : ?

We have that t = {v1}t2 and t∗ = let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1. By the definition
of substitution, we have that

{v1}t2 [v/x] = {v1[v/x]}t2[v/x]

and
(let y = t′2 in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1)[v∗/x] =

let y = t′2[v∗/x] in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1[v∗/x]

Therefore, we are required to prove that

µ; Ξ; Γ ` {v1[v/x]}t2[v/x] ≈ let y = t′2[v∗/x] in (ε?→?π1(ε?×?y :: ?× ?) :: ?→ ?) v′1[v∗/x] : ?

, or what is the same by Rule (Rsed1R) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ? and µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ?. By the induction hypothesis on µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? and µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ?
the result follows immediately.

Case (Rsed2).

(Rsed2)
µ; Ξ; Γ, x : ? ` v′ ≈ 〈E1, E2〉u :: ? : ? σ := ? ∈ Ξ

µ; Ξ; Γ, x : ? ` {v′}σ ≈ 〈E1, σ
E2〉u :: ? : ?

We have that t = {v′}σ and t∗ = 〈E1, σ
E2〉u :: ?. By the definition of substitution, we have that

{v′}σ[v/x] = {v′[v/x]}σ

262

and
(〈E1, σ

E2〉u :: ?)[v∗/x] = (〈E1, σ
E2〉u[v∗/x] :: ?)

Therefore, we are required to prove that

µ; Ξ; Γ ` {v′[v/x]}σ ≈ (〈E1, σ
E2〉u[v∗/x] :: ?) : ?

, or what is the same by Rule (Rsed2) that µ; Ξ; Γ ` v′[v/x] ≈ 〈E1, E2〉u[v∗/x] :: ? : ?. By the
induction hypothesis on µ; Ξ; Γ, x : ? ` v′ ≈ 〈E1, E2〉u :: ? : ? the result follows immediately.

Case (Runs).

(Runs)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ? µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ, x : ? ` let {z}v1 = v2 in t3 ≈ let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3 : ?

We have that t = let {z}v1 = v2 in t3 and t∗ = let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? v′2 in t′3. By

the definition of substitution, we have that

(let {z}v1 = v2 in t3)[v/x] = let {z}v1[v/x] = v2[v/x] in t3[v/x]

and
(let z = ε?→?π2(ε?×?v

′
1 :: ?× ?) :: ?→ ? v′2 in t′3)[v∗/x] =

let z = ε?→?π2(ε?×?v
′
1[v∗/x] :: ?× ?) :: ?→ ? v′2[v∗/x] in t′3[v∗/x]

Therefore, we are required to prove that

µ; Ξ; Γ ` let {z}v1[v/x] = v2[v/x] in t3[v/x] ≈ let z = ε?→?π2(ε?×?v
′
1[v∗/x] :: ?× ?) :: ?→ ? v′2[v∗/x] in t′3[v∗/x] : ?

Or what is the same by Rule (Runs) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ?, µ; Ξ; Γ ` v2[v/x] ≈
v′2[v∗/x] : ? and µ; Ξ; Γ, z : ? ` t3[v∗/x] ≈ t′3[v∗/x] : ? . By the induction hypothesis on µ; Ξ; Γ, x : ? `
v1 ≈ v′1 : ?, µ; Ξ; Γ, x : ? ` v2 ≈ v′2 : ? and µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ? the result follows
immediately.

Case (RunsL).

(RunsL)
µ; Ξ; Γ, x : ? ` t1 ≈ t′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ? µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ, x : ? ` let {z}t1 = t2 in t3 ≈ let w = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?w :: ?× ?) :: ?→ ? y in t′3 : ?

We have that t = let {z}t1 = t2 in t3 and

t∗ = let w = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?w :: ?× ?) :: ?→ ? y in t′3

By the definition of substitution, we have that

(let {z}t1 = t2 in t3)[v/x] = let {z}t1[v/x] = t2[v/x] in t3[v/x]

and
(let w = t′1 in let y = t′2 in let z = ε?→?π2(ε?×?w :: ?× ?) :: ?→ ? y in t′3)[v∗/x] =

let w = t′1[v∗/x] in let y = t′2[v∗/x] in let z = ε?→?π2(ε?×?w :: ?× ?) :: ?→ ? y in t′3[v∗/x]

Therefore, we are required to prove that

Ξ; Γ ` let {z}t1[v/x] = t2[v/x] in t3[v/x] ≈

let w = t′1[v∗/x] in let y = t′2[v∗/x] in let z = ε?→?π2(ε?×?w :: ?× ?) :: ?→ ? y in t′3[v∗/x] : ?

Or what is the same by Rule (RunsL) that µ; Ξ; Γ ` t1[v/x] ≈ t′1[v∗/x] : ?, µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ? and µ; Ξ; Γ, z : ? ` t3[v∗/x] ≈ t′3[v∗/x] : ? . By the induction hypothesis on µ; Ξ; Γ, x : ? `
t1 ≈ t′1 : ?, µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ? and µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ? the result follows
immediately.

263

Case (RunsR).

(RunsR)
µ; Ξ; Γ, x : ? ` v1 ≈ v′1 : ? µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ? µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ?

µ; Ξ; Γ, x : ? ` let {z}v1 = t2 in t3 ≈ let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3 : ?

We have that t = let {z}v1 = t2 in t3 and

t∗ = let y = t′2 in let z = ε?→?π2(ε?×?v
′
1 :: ?× ?) :: ?→ ? y in t′3

By the definition of substitution, we have that

(let {z}v1 = t2 in t3)[v/x] = let {z}v1[v/x] = t2[v/x] in t3[v/x]

and
(let y = t′2 in let z = ε?→?π2(ε?×?v

′
1 :: ?× ?) :: ?→ ? y in t′3)[v∗/x] =

let y = t′2[v∗/x] in let z = ε?→?π2(ε?×?v
′
1[v∗/x] :: ?× ?) :: ?→ ? y in t′3[v∗/x]

Therefore, we are required to prove that

Ξ; Γ ` let {z}v1[v/x] = t2[v/x] in t3[v/x] ≈

let y = t′2[v∗/x] in let z = ε?→?π2(ε?×?v
′
1[v∗/x] :: ?× ?) :: ?→ ? y in t′3[v∗/x] : ?

Or what is the same by Rule (RunsR) that µ; Ξ; Γ ` v1[v/x] ≈ v′1[v∗/x] : ?, µ; Ξ; Γ ` t2[v/x] ≈
t′2[v∗/x] : ? and µ; Ξ; Γ, z : ? ` t3[v∗/x] ≈ t′3[v∗/x] : ? . By the induction hypothesis on µ; Ξ; Γ, x : ? `
v1 ≈ v′1 : ?, µ; Ξ; Γ, x : ? ` t2 ≈ t′2 : ? and µ; Ξ; Γ, x : ?, z : ? ` t3 ≈ t′3 : ? the result follows
immediately.

Lemma A.142 If µ; Ξ; Γ, x : ? ` t ≈ tε : ? and µ; Ξ; Γ ` v ≈ vε : ?, then µ; Ξ; Γ ` t[v/x] ≈ tε[vε/x] : ?.

Proof. Direct by Lemma A.141.

The remaining theorems and lemmas are in the main text.

264

A.10 Gradual Existential Types in GSF

This session presents a motivational example for the extension of GSF with existential directly
instead of using the encoding of existential into universal types. Also, we show the translation from
GSF∃ to GSF∃ε and the proof of the fundamental property for existential types.

A.10.1 Existential types: primitive or encoded?

The benefit of a direct treatment of existential types can already be appreciated in the fully-static
setting, with the simple examples of packages s1 and s2 above. Suppose we want to show that s1

and s2 are contextually equivalent, i.e. indistinguishable by any context. To show this equivalence,
it is sufficient to show that the packages are logically related. The proof of this based on the direct
interpretation of the existential types is considerably easier and more intuitive than proving that
their encodings are related. To illustrate this point, we sketch these two proof techniques below in
System F.

Proof with primitive existentials. Two packages are logically related at an existential type, if
there exists a relation R between values of their representation types, such that their term com-
ponents respect the relation R. Here, for v1 and v2 to respect R means that the following three
conditions hold:

• The created semaphores with the operation bit are related. In this case, this imposes that
(true, 1) ∈ R.

• If two semaphores are related, then changing their states with the operation flip yields related
semaphores. Here, applying the flip operation of each package s1 and s2 to the values true
and 1, respectively, yields false and 0. Therefore, (false, 0) ∈ R. Applying the flip operations
on these values yields again true and 1, which are related.

• If two semaphores are related, then the Bool value obtained by applying the operation read
must be the same. It is easy to see that this condition is also satisfied.

Formally, two packages are logically related at an existential type in standard System F (follow-
ing (Ahmed, 2006)):

VρJ∃X.T K = {(pack〈T1, v1〉 as ∃X.ρ(T), pack〈T2, v2〉 as ∃X.ρ(T)) ∈ Atom=
ρ [∃X.T] |

∃R ∈ Rel[T1, T2].(v1, v2) ∈ Vρ[X 7→(R,T1,T2)]JT K}

By this definition, in order to prove that s1 is logically related to s2 at type Sem, it is required
to show that there exists a relation R between the types Bool and Int such that

(v1, v2) ∈ V[X 7→(R,Bool,Int)]JX × (X → X)× (X → Bool)K

Taking R = {〈true, 1〉, 〈false, 0〉}, it is easy to check that the implementations of s1 and s2 preserve
this relation.

Proof with encoded existentials. Using the encoding of Sem in terms of universal types in
order to prove that s1 and s2 are logically related is considerably more complex. First, we have to

265

transform the packages s1 and s2 to type abstractions and prove that

((ΛY.λf : Semclient .f [Bool] v1), (ΛY.λf : Semclient .f [Int] v2)) ∈ VρJ∀Y.Semclient → Y K

where Semclient = ∀X.X × (X → X) × (X → Bool) → Y . The proof of the above leads us to
show that for any type T ′1 and T ′2, and any relation R′ between these types, the following type
applications are related:

((ΛY.λf : Semclient .f [Bool] v1) [T ′1], (ΛY.λf : Semclient .f [Int] v2) [T ′2]) ∈ T[Y 7→(R′,T ′1,T
′
2)]JSemclient → Y K

Several steps further in the proof, we have to show that (f1 [Bool] v1, f2 [Int] v2) ∈ T[Y 7→(R′,T ′1,T
′
2)]JY K,

for any f1 and f2 such that
(f1, f2) ∈ V[Y 7→(R′,T ′1,T

′
2)]JSemclientK

Since f1 and f2 are related under a universal type, we can instantiate them at any types T1 and
T2, and any relation Q between these types, keeping the resulting terms related:

(f1 [T1], f2 [T2]) ∈ T[Y 7→(R′,T ′1,T
′
2),X 7→(Q,T1,T2)]J(X × (X → X)× (X → Bool)→ Y)K

At this point, we can pick the same relation as above, R = {〈true, 1〉, 〈false, 0〉}, such that v1 and
v2 are related.

(v1, v2) ∈ V[X 7→(R,Bool,Int)]JX × (X → X)× (X → Bool)K

Hence, we can instantiate T1 and T2 with the types Bool and Int, and Q with the relation R,
obtaining that

(f1 [Bool], f2 [Int]) ∈ T[Y 7→(R′,T ′1,T
′
2),X 7→(R,Bool,Int)]J(X × (X → X)× (X → Bool)→ Y)K

In a few more steps, we can instantiate the above with v1 and v2, since they are related, finally
obtaining the desired result.

As we can see, as part of the second approach (using the encoding) is needed to prove the same
that is required by the first approach (directly on existential types) and more; being the second
extremely more complex. The equivalence example that we use to illustrate the previous is very
simple. But, for instance, Ahmed et al. (2009a) prove challenging cases of equivalences in the
presence of abstract data types and mutable references, where the use of the encoding would have
hindered the work.

A.10.2 Translation from GSF∃ to GSF∃ε

Figure A.7 shows the translation from GSF∃ to GSF∃ε .

A.10.3 Properties of GSF∃

Proposition A.143 (GSF∃: Precision, inductively) The inductive definition of type precision given
in Figure 5.2 is equivalent to Definition 3.1.

Proof. Direct by induction on the type structure of G1 and G2. Similar to Prop. 3.2.

266

· · ·

(Gpacku)
∆; Γ ` v :: G[G′/X] v′ : G[G′/X] ∆ ` G′

∆; Γ ` pack〈G′, v〉 as ∃X.G packu〈G′, v′〉 as ∃X.G : ∃X.G

(Gpack)
t 6 v ∆; Γ ` t t′ : G1 ε = I(, ()G1, G[G′/X]) ∆ ` G′

∆; Γ ` pack〈G′, t〉 as ∃X.G pack〈G′, εt :: G[G′/X]〉 as ∃X.G : ∃X.G

(Gunpack)

∆; Γ ` t1 t′1 : G1 G1 _ ∃X.G′1 ε = I(, ()G1, ∃X.G′1)
∆, X; Γ, x : G′1 ` t2 t′2 : G2 ∆ ` G2

∆; Γ ` unpack〈X,x〉 = t1 in t2 unpack〈X,x〉 = εt′1 :: ∃X.G′1 in t′2 : G2

Figure A.7: Translation from GSF∃ to GSF∃ε

Proposition A.144 (GSF∃: Consistency, inductively) The inductive definition of type consistency
given in Figure 5.2 is equivalent to Definition B.96.

Proof. Similar to Prop. B.6.1.

Proposition A.145 (GSF∃: Static equivalence for static terms) Let t be a static term and G a
static type (G = T). We have `S t : T if and only if ` t : T .

Proof. Smilar to Prop. 3.10.

Proposition A.146 (GSF∃: Static gradual guarantee) Let t and t′ be closed GSF∃ terms such that
t v t′ and ` t : G. Then ` t′ : G′ and G v G′.

Proof. Similar to Prop. 3.11.

A.10.4 GSF∃: Parametricity

Theorem A.147 (Fundamental Property) If Ξ; ∆; Γ ` t : G then Ξ; ∆; Γ ` t � t : G.

We follow by induction on the structure of t.

Proof.

Case (packu). Then t = ε(packu〈G′, v〉 as ∃X.G′′) :: G, and therefore by the typing rules Epacku
and Easc we have that

(Epack & Easc)
Ξ; ∆; Γ ` v : G′′[G′/X] Ξ; ∆ ` G′ ε Ξ; ∆ ` ∃X.G′′ ∼ G

Ξ; ∆; Γ ` ε(packu〈G′, v〉 as ∃X.G′′) :: G : G

Then we have to prove that:

Ξ; ∆; Γ ` ε(packu〈G′, v〉 as ∃X.G′′) :: G � ε(packu〈G′, v〉 as ∃X.G′′) :: G : G

By induction hypotheses we already know that Ξ; ∆; Γ ` v � v : G′′[G′/X]. But the result follows
directly by Prop A.149 (Compatibility of packu).

267

Case (pack). Then t = pack〈G′, t′〉 as ∃X.G′′, and therefore by the typing rules Epack we have
that

(Epack)
Ξ; ∆; Γ ` t′ : G′′[G′/X] Ξ; ∆ ` G′

Ξ; ∆; Γ ` pack〈G′, t′〉 as ∃X.G′′ : ∃X.G′′

Then we have to prove that:

Ξ; ∆; Γ ` pack〈G′, t′〉 as ∃X.G′′ � pack〈G′, t′〉 as ∃X.G′′ : ∃X.G′′

By induction hypotheses we already know that Ξ; ∆; Γ ` t′ � t′ : G′′[G′/X]. But the result follows
directly by Prop A.150 (Compatibility of pack).

Case (unpack). Then t = unpack〈X,x〉 = t1 in t2, and therefore:

(Eunpack)
Ξ; ∆; Γ ` t1 : ∃X.G1 Ξ; ∆, X; Γ, x : G1 ` t2 : G2 Ξ; ∆ ` G2

Ξ; ∆; Γ ` unpack〈X,x〉 = t1 in t2 : G2

where G = G2. Then we have to prove that:

Ξ; ∆; Γ ` unpack〈X,x〉 = t1 in t2 � unpack〈X,x〉 = t1 in t2 : G2

By induction hypotheses we already know that Ξ; ∆; Γ ` t1 � t1 : ∃X.G1 and Ξ; ∆, X; Γ, x : G1 `
t2 � t2 : G2. But the result follows directly by Prop A.151 (Compatibility of unpack).

Definition A.148 (Operators over evidence)

π∗i (ε) , 〈E∗, E∗〉 where E∗= liftΞ(unlift(πi(ε))) π2
i (ε) , 〈E∗, E∗〉 where E∗=πi(ε)

〈E1, E2〉[X] = 〈E1[X], E2[X]〉 〈E1, E2〉[E3, E4] = 〈E1[E3], E2[E4]〉

〈E1, E2〉[E3, E4, X] = 〈E1[E3/X], E2[E4/X]〉

Proposition A.149 (Compatibility-Epacku) If Ξ; ∆; Γ ` v11 � v12 : G′′[G′/X], Ξ; ∆ ` G′ and
ε Ξ; ∆ ` ∃X.G′′ ∼ G, then

Ξ; ∆; Γ ` ε(packu〈G′, v11〉 as ∃X.G′′) :: G � ε(packu〈G′, v12〉 as ∃X.G′′) :: G : G

Proof. First, we are required to prove that

Ξ; ∆; Γ ` ε(packu〈G′, v1i〉 as ∃X.G′′) :: G : G

But by unfolding the premises we know that Ξ; ∆; Γ ` v1i : G′′[G′/X], therefore:

(Epack & Easc)
Ξ; ∆; Γ ` v1i : G′′[G′/X] Ξ; ∆ ` G′ ε Ξ; ∆ ` ∃X.G′′ ∼ G

Ξ; ∆; Γ ` ε(pack〈G′, v1i〉 as ∃X.G′′) :: G : G

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that

(W,ρ(γ1(ε(packu〈G′, v11〉 as ∃X.G′′) :: G)), ρ(γ2(ε(packu〈G′, v12〉 as ∃X.G′′) :: G))) ∈ TρJGK

268

First we have to prove that:

W.Ξi ` ρ(γi(ε(packu〈G′, v1i〉 as ∃X.G′′) :: G)) : ρ(G)

As we know that Ξ; ∆; Γ ` ε(packu〈G′, v1i〉 as ∃X.G′′) :: G : G, by Lemma A.110 the result
follows immediately.

By definition of substitutions

ρ(γi(ε(packu〈G′, v1i〉 as ∃X.G′′) :: G)) = ερi (packu〈ρ(G′), ρ(γi(v1i))〉 as ∃X.ρ(G′′)) :: ρ(G)

where ερi = ρi(ε) and ερi .n = k. Therefore we have to prove that

(W, ερ1(packu〈ρ(G′), ρ(γ1(v11))〉 as ∃X.ρ(G′′)) :: ρ(G), ερ2(packu〈ρ(G′), ρ(γ2(v12))〉 as ∃X.ρ(G′′)) :: ρ(G)) ∈ TρJGK

Or what is the same

(W, ερ1(packu〈ρ(G′), ρ(γ1(v11))〉 as ∃X.ρ(G′′)) :: ρ(G), ερ2(packu〈ρ(G′), ρ(γ2(v12))〉 as ∃X.ρ(G′′)) :: ρ(G)) ∈ VρJGK

The type G can be ∃X.G′1, for some G′1, ? or a TypeName.

Let ui = packu〈ρ(G′), v1i〉 as ∃X.ρ(G′′) and G∗ = ∃X.G′′, we have to prove that:

(W ′, ερ1u1 :: ρ(G), ερ2u2 :: ρ(G)) ∈ VρJGK

1. If G = ∃X.G′1, by the definition of VρJ∃X.G′1K, we have to prove that ∀W ′′ � W,α.∃R ∈
RelW ′′.j [ρ(G′), ρ(G′)] such that ∀ε′ Ξ; dom(ρ) ` ∃X.G′1 ∼ ∃X.G′1 (ε′.n = l) it is true that

(W ∗, (ρ1(ε) # ρ1(ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε) # ρ2(ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

where W ∗ = W ′′ � (α, ρ(G′), ρ(G′), R).

or what is the same, we have to prove that

(W ∗, (ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε # ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

By Proposition A.155 (decomposition of the evidence) we know that

ρi(ε # ε′)[Ĝ′, α̂] = π∗1(ρi(ε # ε′))[Ĝ′, α̂] # ρi(ε # ε′)[α̂, α̂]

Lets take R = VρJG′K.

Note that

• W ∗ = W ′′ � (α, ρ(G′), ρ(G′),VρJG′K) �W ′

• E′i = liftW ∗.Ξi(ρ(G′)),

• Ei∗ = liftW ∗.Ξi(Gpi), Gpi = unlift(π1(ρi(ε # ε′))) v ρ(G′′),

269

• ρ′ = ρ[X 7→ α],

• εi
−1 = π∗1(ρi(ε # ε′))[Ĝ′, α̂] = 〈Ei∗[E′i/X], Ei∗[α

Ei/X]〉, such that εi
−1 W ∗.Ξi `

ρ(G′′[G′/X]) ∼ ρ(G′′[α/X]), αE
′
i = liftW ∗.Ξi(α), and E′i = liftW ∗.Ξi(ρ(G′)), εi

−1.n = k
and

• (W ′, v11, v12) ∈ VρJG′′[G′/X]K, then (W ∗, v11, v12) ∈ VρJG′′[G′/X]K.

By the Lemma A.153 (compositionality) we know that

(W ∗, π1(ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ′(G′′), π1(ρ2(ε # ε′))[Ĝ′, α̂]v12 :: ρ′(G′′))) ∈ Tρ′JG′′K

or what is the same

(W ∗, π∗1(ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′′)[α/X], π∗1(ρ2(ε # ε′))[Ĝ′, α̂]v12 :: ρ(G′′)[α/X])) ∈ Tρ[X 7→α]JG′′K

Then we know that

(↓kW ∗, ε′1u′1 :: ρ(G′′)[α/X], ε′2u
′
2 :: ρ(G′′)[α/X])) ∈ Vρ[X 7→α]JG′′K

where v1i = ε′1iui :: ρ(G′′[G′/X]) and ε′i = ε′1i # π
∗
1(ρi(ε # ε′))[Ĝ′, α̂].

Note now that

• (↓kW ∗, ε′1u′1 :: ρ(G′′)[α/X], ε′2u
′
2 :: ρ(G′′)[α/X])) ∈ Vρ[X 7→α]JG′′K,

• (ε # ε′)[X] Ξ; ∆, X ` G′′ ∼ G′1, (ε # ε′)[X].n = l

• ↓kW ∗ ∈ SJΞK and (↓kW ∗, ρ′) ∈ DJ∆, XK,

Then, by Lemma A.152 (Ascription Lemma), we know that

(↓k+lW
∗, (ε′1 # ρ′1((ε # ε′)[X]))u′1 :: ρ′(G′1), (ε′2 # ρ′2((ε # ε′)[X]))u′2 :: ρ′(G′1)) ∈ Vρ′JG′1K

or what is the same

(↓k+lW
∗, (ε′1 # ρ1(ε # ε′)[α̂, α̂])u′1 :: ρ(G′1)[α/X], (ε′2 # ρ2(ε # ε′)[α̂, α̂])u′2 :: ρ(G′1)[α/X])) ∈ Vρ[X 7→α]JG′1K

The result follows immediately.

(W ∗, (ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε # ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

2. If G ∈ TypeName then ε = 〈H3, α
E4〉. Notice that as αE4 cannot have free type variables

therefore H3 neither. Then ε = ρi(ε). As α is sync, then let us call G′′′ = W.Ξi(α). We have
to prove that:

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

which, by definition of VρJαK, is equivalent to prove that:

(↓W, 〈H3, E4〉u1 :: G′′′, 〈E3, E4〉u2 :: G′′′) ∈ VρJG′′′K

Then we proceed by case analysis on ε:

270

• (Case ε = 〈H3, α
βE4 〉). We know that 〈H3, α

βE4 〉 ` Ξ; ∆ ` G∗ ∼ α, then by Lemma A.114,
〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ G′′′. As βE4 v G′′′, then G′′′ can either be ? or β.

IfG′′′ = ?, then by definition of VρJ?K, we have to prove that the resulting values belong to
VρJβK. Also as 〈H3, β

E4〉 ` Ξ; ∆ ` G∗ ∼ ?, by Lemma A.112, 〈H3, β
E4〉 ` Ξ; ∆ ` G∗ ∼ β,

and then we proceed just like this case once again (this is process is finite as there are
no circular references by construction and it ends up in something different to a type
name). If G′′′ = β we use an analogous argument as for G′′ = ?.

• (Case ε = 〈H3, α
H4〉). We have to prove that

(↓W, 〈H3, H4〉u1 :: G′′′, 〈H3, H4〉u2 :: G′′′) ∈ VρJG′′′K

By Lemma A.114, 〈H3, H4〉 ` Ξ; ∆ ` G∗ ∼ G′′. Then if G′′ = ?, we proceed as the
case G′ = ?, with the evidence ε = 〈H3, H4〉. If G′′ ∈ HeadType, we proceed as the
previous case where G′ = ∀X.G, and the evidence ε = 〈H3, H4〉.
Also, we have to prove that (∀Ξ′, ε′, G∗1, such that ε′.n = k, ε′ = 〈αE∗∗1 , E∗∗2 〉 (↓W ∈
SJΞ′K ∧ ε′ ` Ξ′ ` α ∼ G∗1), we get that

(↓1W, ε′(〈H3, α
H4〉u1 :: α) :: G∗1, ε

′(〈H4, α
E22〉u2 :: α) :: G∗1) ∈ TρJG∗1K)

or what is the same ((〈H3, α
H4〉 # ε′) fails the result follows immediately)

(↓1+kW, (〈H3, α
H4〉 # ε′)u1 :: G∗1, (〈H2, α

H4〉 # ε′)u2 :: G∗1) ∈ VρJG∗1K)

By definition of transitivity and Lemma A.115, we know that

〈H3, α
H4〉 # 〈αE∗∗1 , E∗∗2 〉 = 〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉

We know that 〈E∗∗1 , E∗∗2 〉 ` Ξ′ ` G′′ ∼ G∗1. Since 〈E∗∗1 , E∗∗2 〉 ` Ξ ` G′′ ∼ G∗1, ↓1W ∈
SJΞ′K, (↓1W, 〈H3, H4〉u1 :: G′′, 〈H1, H4〉u2 :: G′′) ∈ VρJG′′K, by Lemma A.101, we know
that (since (〈H3, α

H4〉 # ε′) does not fail then (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉) also does not fail
by the transitivity rules)

(↓1+kW, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u1 :: G∗1, (〈H3, H4〉 # 〈E∗∗1 , E∗∗2 〉)u2 :: G∗1) ∈ VρJG∗1K)

The result follows immediately.

3. If G = ? we have the following cases:

• (G = ?, ε = 〈H3, H4〉). By the definition of VρJ?K in this case we have to prove that:

(W,ρ1(ε)u1 :: ρ(G), ρ2(ε)u2 :: ρ(G)) ∈ VρJconst(H4)K

but as const(H4) = ∃X.?, we proceed just like the case where G = ∃X.G′1, where G′1 = ?.

• (G = ?, ε = 〈H3, α
E4〉). Notice that as αE4 cannot have free type variables therefore E3

neither. Then ε = ρi(ε). By the definition of VρJ?K we have to prove that

(W, 〈H3, α
E4〉u1 :: α, 〈H3, α

E4〉u2 :: α) ∈ VρJαK

Note that by Lemma A.112 we know that ε ` Ξ; ∆ ` G∗ ∼ α. Then we proceed just
like the case G ∈ TypeName.

271

Proposition A.150 (Compatibility-Epack) If Ξ; ∆; Γ ` t1 � t2 : G′′[G′/X], Ξ; ∆ ` G′, then

Ξ; ∆; Γ ` pack〈G′, t1〉 as ∃X.G′′ � pack〈G′, t2〉 as ∃X.G′′ : ∃X.G′′

Proof. First, we are required to prove that

Ξ; ∆; Γ ` pack〈G′, ti〉 as ∃X.G′′ : ∃X.G′′

But by unfolding the premises we know that Ξ; ∆; Γ ` ti : G′′[G′/X], therefore:

(Epack & Easc)
Ξ; ∆; Γ ` ti : G′′[G′/X] Ξ; ∆ ` G′

Ξ; ∆; Γ ` pack〈G′, ti〉 as ∃X.G′′ : ∃X.G′′

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that

(W,ρ(γ1(pack〈G′, t1〉 as ∃X.G′′)), ρ(γ2(pack〈G′, t2〉 as ∃X.G′′))) ∈ TρJ∃X.G′′K

First we have to prove that:

W.Ξi ` ρ(γi((pack〈G′, ti〉 as ∃X.G′′))) : ρ(∃X.G′′)

As we know that Ξ; ∆; Γ ` (pack〈G′, ti〉 as ∃X.G′′) : ∃X.G′′, by Lemma A.110 the result follows
immediately.

By definition of substitutions

ρ(γi((pack〈G′, ti〉 as ∃X.G′′))) = (pack〈ρ(G′), ρ(γi(ti))〉 as ∃X.ρ(G′′))

Therefore we have to prove that

(W, (pack〈ρ(G′), ρ(γ1(t1))〉 as ∃X.ρ(G′′)), (pack〈ρ(G′), ρ(γ2(t2))〉 as ∃X.ρ(G′′))) ∈ TρJ∃X.G′′K

Second, consider arbitrary i < W.j,Ξ1. Either there exist v1 such that:

W.Ξ1 . (pack〈ρ(G′), ρ(γ1(t1))〉 as ∃X.ρ(G′′)) 7−→i Ξ1 . v1

or

W.Ξ1 . (pack〈ρ(G′), ρ(γ1(t1))〉 as ∃X.ρ(G′′)) 7−→i error

Let us suppose that W.Ξ1 . (pack〈ρ(G′), ρ(γ1(t1))〉 as ∃X.ρ(G′′)) 7−→i Ξ1 . v1. Hence, by inspec-
tion of the operational semantics, it follows that there exist i1 ≤ i, Ξ11 and v11 such that:

W.Ξ1 . (pack〈ρ(G′), ρ(γ1(t1))〉 as ∃X.ρ(G′′)) 7−→i1 Ξ11 . (pack〈ρ(G′), v11〉 as ∃X.ρ(G′′)) 7−→1

272

Ξ11 . ε
ρ
1(packu〈ρ(G′), v11〉 as ∃X.ρ(G′′)) :: ∃X.ρ(G′′)

where ε = 〈∃X.G′′, ∃X.G′′〉 and ερi = ρi(ε).

We instantiate the hypothesis Ξ; ∆; Γ ` t1 � t2 : G′′[G′/X] with W , ρ and γ to obtain that:

(W,ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJG′′[G′/X]K

We instantiate TρJG′′[G′/X]K with i1, Ξ11 and v11 (note that i1 ≤ i < W.j), hence there exists
v12 and W1, such that W1 �W , W1 .j = W .j − i1, W.Ξ2 . ρ(γ2(t2)) 7−→∗ W ′.Ξ2 . v12, W ′.Ξ1 = Ξ11,
and (W1, v11, v12) ∈ VρJG′′[G′/X]K (Note that if W.Ξ1 . ρ(γ1(t1)) 7−→i1 error the result follows
immediately). Let’ s take W ′ =↓1W1. Note that we get that (W ′, v11, v12) ∈ VρJG′′[G′/X]K.

Then we have to prove that

(W ′, ερ1(packu〈ρ(G′), v11〉 as ∃X.ρ(G′′)) :: ∃X.ρ(G′′),

ερ2(packu〈ρ(G′), v12〉 as ∃X.ρ(G′′)) :: ∃X.ρ(G′′)) ∈ VρJ∃X.ρ(G′′)K

Let ui = packu〈ρ(G′), v1i〉 as ∃X.ρ(G′′) and ∃X.G1 = ∃X.G′′, we have to prove that:

(W ′, ερ1u1 :: ∃X.ρ(G′′), ερ2u2 :: ∃X.ρ(G′′)) ∈ VρJ∃X.G′′K

1. By the definition of VρJ∃X.G′1K, we have to prove that ∀W ′′ �W ′, α.∃R ∈ RelW ′′.j [ρ(G′), ρ(G′)]
such that ∀ε′ Ξ; dom(ρ) ` ∃X.G′1 ∼ ∃X.G′1 (ε′.n = l) it is true that

(W ∗, (ρ1(ε) # ρ1(ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε) # ρ2(ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

where W ∗ = W ′′ � (α, ρ(G′), ρ(G′), R).

or what is the same, we have to prove that

(W ∗, (ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε # ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

By Proposition A.155 (decomposition of the evidence) we know that

ρi(ε # ε′)[Ĝ′, α̂] = π∗1(ρi(ε # ε′))[Ĝ′, α̂] # ρi(ε # ε′)[α̂, α̂]

Lets take R = VρJG′K.

Note that

• W ∗ = W ′′ � (α, ρ(G′), ρ(G′),VρJG′K) �W ′

• E′i = liftW ∗.Ξi(ρ(G′)),

• Ei∗ = liftW ∗.Ξi(Gpi), Gpi = unlift(π1(ρi(ε # ε′))) v ρ(G′′),

• ρ′ = ρ[X 7→ α],

• εi
−1 = π∗1(ρi(ε # ε′))[Ĝ′, α̂] = 〈Ei∗[E′i/X], Ei∗[α

Ei/X]〉, such that εi
−1 W ∗.Ξi `

ρ(G′′[G′/X]) ∼ ρ(G′′[α/X]), αE
′
i = liftW ∗.Ξi(α), and E′i = liftW ∗.Ξi(ρ(G′)), εi

−1.n = k
and

• (W ′, v11, v12) ∈ VρJG′′[G′/X]K, then (W ∗, v11, v12) ∈ VρJG′′[G′/X]K.

273

By the Lemma A.153 (compositionality) we know that

(W ∗, π1(ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ′(G′′), π1(ρ2(ε # ε′))[Ĝ′, α̂]v12 :: ρ′(G′′))) ∈ Tρ′JG′′K

or what is the same

(W ∗, π∗1(ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′′)[α/X], π∗1(ρ2(ε # ε′))[Ĝ′, α̂]v12 :: ρ(G′′)[α/X])) ∈ Tρ[X 7→α]JG′′K

Then we know that

(↓kW ∗, ε′1u′1 :: ρ(G′′)[α/X], ε′2u
′
2 :: ρ(G′′)[α/X])) ∈ Vρ[X 7→α]JG′′K

where v1i = ε′1iui :: ρ(G′′[G′/X]) and ε′i = ε′1i # π
∗
1(ρi(ε # ε′))[Ĝ′, α̂].

Note now that

• (↓kW ∗, ε′1u′1 :: ρ(G′′)[α/X], ε′2u
′
2 :: ρ(G′′)[α/X])) ∈ Vρ[X 7→α]JG′′K,

• (ε # ε′)[X] Ξ; ∆, X ` G′′ ∼ G′1, (ε # ε′)[X].n = l

• ↓kW ∗ ∈ SJΞK and (↓kW ∗, ρ′) ∈ DJ∆, XK,

Then, by Lemma A.152 (Ascription Lemma), we know that

(↓k+lW
∗, (ε′1 # ρ′1((ε # ε′)[X]))u′1 :: ρ′(G′1), (ε′2 # ρ′2((ε # ε′)[X]))u′2 :: ρ′(G′1)) ∈ Vρ′JG′1K

or what is the same

(↓k+lW
∗, (ε′1 # ρ1(ε # ε′)[α̂, α̂])u′1 :: ρ(G′1)[α/X], (ε′2 # ρ2(ε # ε′)[α̂, α̂])u′2 :: ρ(G′1)[α/X])) ∈ Vρ[X 7→α]JG′1K

The result follows immediately.

(W ∗, (ρ1(ε # ε′))[Ĝ′, α̂]v11 :: ρ(G′1)[α/X], (ρ2(ε # ε′))[Ĝ2, α̂]v12 :: ρ(G′1)[α/X])) ∈ Tρ[X 7→α]JG′1K

Proposition A.151 (Compatibility-Eunpack) If Ξ; ∆; Γ ` t1 � t2 : ∃X.G1, Ξ; ∆, X; Γ, x : G1 `
t′1 � t′2 : G2 and Ξ; ∆ ` G2, then Ξ; ∆; Γ ` unpack〈X,x〉 = t1 in t′1 � unpack〈X,x〉 = t2 in t′2 : G2.

Proof. First, we are required to prove that

Ξ; ∆; Γ ` unpack〈X,x〉 = ti in t
′
i : G2

But by unfolding the premises we know that Ξ; ∆; Γ ` ti : ∃X.G1, Ξ; ∆, X; Γ, x : G1 ` t′i : G2 and
Ξ; ∆ ` G2, therefore:

(Eunpack)
Ξ; ∆; Γ ` ti : ∃X.G1 Ξ; ∆, X; Γ, x : G1 ` t′i : G2 Ξ; ∆ ` G2

Ξ; ∆; Γ ` unpack〈X,x〉 = ti in t
′
i : G2

274

Consider arbitrary W,ρ, γ such that W ∈ SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. We are
required to show that

(W,ρ(γ1(unpack〈X,x〉 = t1 in t′1)), ρ(γ2(unpack〈X,x〉 = t2 in t′2))) ∈ TρJG2K

First we have to prove that:

W.Ξi ` ρ(γi(unpack〈X,x〉 = ti in t
′
i)) : ρ(G2)

As we know that Ξ; ∆; Γ ` unpack〈X,x〉 = ti in t
′
i : G2, by Lemma A.110 the result follows

immediately.

By definition of substitutions

ρ(γi(unpack〈X,x〉 = ti in t
′
i)) = unpack〈X,x〉 = ρ(γi(ti)) in ρ(γi(t

′
i))

Therefore we have to prove that

(W, unpack〈X,x〉 = ρ(γ1(t1)) in ρ(γ1(t′1)), unpack〈X,x〉 = ρ(γ2(t2)) in ρ(γ2(t′2))) ∈ TρJG2K

Second, consider arbitrary i < W.j,Ξ1. Either there exist v1 such that:

W.Ξ1 . unpack〈X,x〉 = ρ(γ1(t1)) in ρ(γ1(t′1)) 7−→i Ξ1 . v1

or

W.Ξ1 . unpack〈X,x〉 = ρ(γ1(t1)) in ρ(γ1(t′1)) 7−→i Ξ1 . error

Let us suppose that W.Ξ1 . unpack〈X,x〉 = ρ(γ1(t1)) in ρ(γ1(t′1)) 7−→i Ξ1 . v1.

Hence, by inspection of the operational semantics, it follows that there exist i1 ≤ i, Ξ11 and v11

such that:
W.Ξ1 . ρ(γ1(t1)) 7−→i1 Ξ11 . v11

Instantiate the second conjunct of Ξ; ∆; Γ ` t1 � t2 : ∃X.G1 with W , ρ, and γ. Note that W ∈
SJΞK, (W,ρ) ∈ DJ∆K and (W,γ) ∈ GρJΓK. Then we have that (W,ρ(γ1(t1)), ρ(γ2(t2))) ∈ TρJ∃X.G1K.
Instantiate this with i1, Ξ11 and v11 . Note that i1 < W.j which follows from i1 ≤ i < W.j.

Hence,there exists W1 �W and v12 such that W.Ξ2 . ρ(γ2(t2)) 7−→∗ W1.Ξ2 . v12, (W1, v11, v12) ∈
VρJ∃X.G1K and W1.j + i1 = W.j.

Hence, v1i = ε′i(packu〈G′i, v′i〉 as ∃X.G′′i) :: ∃X.ρ(G1), where ε′1 = k.n and v′i = εpiui :: Gpi.

From (W1, v11, v12) ∈ VρJ∃X.G1K, it follows that there exists R ∈ RelW1.j
[G′1, G

′
2] such that

∀ε′ Ξ; ∆ ` ∃X.G1 ∼ ∃X.G1 (ε′.n = l) it is true that

275

(W ′1, (ε
′
1 # ρ1(ε′))[Ĝ′1, α̂]v′1 :: ρ(G1)[α/X], (ε′2 # ρ2(ε′))[Ĝ′2, α̂]v′2 :: ρ(G1)[α/X]) ∈ Tρ[X 7→α]JG1K

where W ′1 = W1 � (α,G′1, G
′
2, R). If we take ε′ = I(Ξ, ()∃X.G1, ∃X.G1), then

(ε′i # ρi(ε
′)) = ε′i

Therefore we know that

(W ′1, ε
′
1[Ĝ′1, α̂]v′1 :: ρ(G1)[α/X], ε′2[Ĝ′2, α̂]v′2 :: ρ(G1)[α/X]) ∈ Tρ[X 7→α]JG1K

If W ′1.Ξ1 . ε
′
1[Ĝ′1, α̂]v′1 :: ρ(G1)[α/X] 7−→ error the result follows immediately. Otherwise, if

W ′1.Ξ1 . ε
′
1[Ĝ′1, α̂]v′1 :: ρ(G1)[α/X] 7−→k+l W ′1.Ξ1 . vp1

where vp1 = (εp1 # ε′1[Ĝ′1, α̂]u1 :: ρ(G1)[α/X], then

W ′1.Ξ2 . ε
′
2[Ĝ′2, α̂]v′2 :: ρ(G1)[α/X] 7−→∗ W ′1.Ξ2 . vp2

where vp2 = (εp2 # ε′2[Ĝ′2, α̂]u2 :: ρ(G1)[α/X] and (W ′2, vp1, vp2) ∈ Vρ[X 7→α]JG1K, where W ′2 =↓k+l

W ′1 and W ′2 .j + k + l = W ′1 .j.

Note that
W.Ξ1 . unpack〈X,x〉 = ρ(γ1(t1)) in ρ(γ1(t′1)) 7−→i1

W1.Ξ1 . unpack〈X,x〉 = v11 in ρ(γ1(t′1)) 7−→k+l W1.Ξ1 . t2[α/X][vp1/x] 7−→i2 Ξ1 . v1

where i = i1 + k + l + i2.

Instantiate the second conjunct of Ξ; ∆, X; Γ, x : G1 ` t′1 � t′2 : G2 with W ′2, ρ[X 7→ α],
γ[x 7→ (vp1, vp2)]. Note that W ′2 ∈ SJΞK(W ′2 � W), (W ′2, ρ[X 7→ α]) ∈ DJ∆, XK and (W ′2, γ[x 7→
(vp1, vp2)]) ∈ GρJΓ, x : G1K. Then we have that

(W ′2, γ1(ρ(t′1))[α̂/X][vp1/x], γ2(ρ(t′2))[α̂/X][vp2/x]) ∈ Tρ[X 7→α]JG2K

Instantiate this with i2 < W ′2 .j = W.j − i1 − k − l(i2 = i− i1 − k − l, i < W.j), Ξ1 and v1 . Hence,
there exists W2 �W ′2 and v2 such that

W ′.Ξ2 . γ2(ρ(t′2))[α̂/X][vp2/x] 7−→∗ W2.Ξ2 . v2, W2.Ξ1 = Ξ1, W2 .j + i2 = W ′2 .j and

(W2, v1, v2) ∈ Vρ[X 7→α]JG2K

We are required to show that there exists W2 �W and v2, such that

W.Ξ2 . unpack〈X,x〉 = ρ(γ2(t2)) in ρ(γ2(t′2)) 7−→∗ W2.Ξ2 . v2

, W2 .j + i = W.j(W2 .j = W.j − i1 − k − l− i2, i = i1 + k + l+ i2) and (W2, v1, v2) ∈ VρJG2K, which
follows from (W2, v1, v2) ∈ Vρ[X 7→α]JG2K and Ξ; ∆ ` G2.

276

Proposition A.152 (Ascriptions Preserve Relations) If (W, v1, v2) ∈ VρJGK, ε Ξ; ∆ ` G ∼
G′, W ∈ SJΞK and (W,ρ) ∈ DJ∆K, then (W,ρ1(ε)v1 :: ρ(G′), ρ2(ε)v2 :: ρ(G′)) ∈ TρJG′K.

Proof. We only prove the case for existential, the other cases are in A.6.2.

Case (G = ∃X.G′′1 and G′ = ∃X.G′1). We know that

(W, v1, v2) ∈ VρJ∃X.G′′1K

Where vi = εi(packu〈Gi∗, v′i〉 as ∃X.ρ(G′′′i)) :: ∃X.ρ(G′′1) and εi ` W.Ξi ` ∃X.ρ(G′′′i) ∼ ∃X.ρ(G′′1).
Let’s suppose that ρ1(ε).n = k and ε1.n = m. We have to prove that

(W,ρ1(ε)v1 :: ∃X.ρ(G′1), ρ2(ε)v2 :: ∃X.ρ(G′1)) ∈ TρJ∃X.G′1K

If (ε1 #ρ1(ε)) fails, then we apply Lemma A.111 to show that (ε2 #ρ2(ε)) also fails, therefore the proof
holds immediately. In the other case, (εi # ρi(ε)) do not fail, then by the definition of TρJ∃X.G′1K,
we have to prove that:

(↓kW, (ε1#ρ1(ε))(packu〈G1
∗, v′1〉 as ∃X.ρ(G′′′1)) :: ∃X.ρ(G′1), (ε2#ρ2(ε))(packu〈G2

∗, v′2〉 as ∃X.ρ(G′′′2)) :: ∃X.ρ(G′1))

∈ VρJ∃X.G′1K

or what is the same:

∀W ′′ �↓kW,α.∃R ∈ RelW ′′.j [G
∗
1, G

∗
2].

(W ′′.Ξ1 ` G∗1 ∧W ′′.Ξ2 ` G∗2 ∧ ∀Ξ, ε′ Ξ; dom(ρ) ` ∃X.G′1 ∼ ∃X.G′1,Ξ ∈ SJΞK, ε′.n = l.

(W ′′′, (ε1 # ρ1(ε # ε′))[Ĝ∗1, α̂]v′1 :: ρ(G′1)[α/X], (ε2 # ρ2(ε # ε′))[Ĝ∗2, α̂]v′2 :: ρ(G′1)[α/X]) ∈ Tρ[X 7→α]JG′1K

where W ′′′ = ((W ′′)� (α,G∗1, G
∗
2, R)).

Let’s suppose that v′i = εi
∗ui :: G′′′i [G∗i]. Therefore, we are required to prove that

((↓k+l+mW
′′′)(ε1

∗ # ε1 # ρ1(ε # ε′))[Ĝ∗1, α̂]u1 :: ρ(G′1)[α/X],

ε2
∗ # (ε2 # ρ2(ε # ε′))[Ĝ∗2, α̂]u2 :: ρ(G′1)[α/X]) ∈ Vρ[X 7→α]JG′1K

Note that by Lemma A.156 we get that

(εi # ρi(ε # ε′))[Ĝ∗i , α̂] = (εi # π2
1(ρi(ε # ε′)))[Ĝ∗i , α̂] # ρi(ε # ε′)[α̂, α̂] =

(εi # ρi(π2
1(ε # ε′)))[Ĝ∗i , α̂] # ρi(ε # ε′)[α̂, α̂]

By premise, we know that (W, v1, v2) ∈ VρJ∃X.G′′1K. Then, we instantiate this definition with
(↑k W ′′) �W (W ′′ � (↓kW)⇒ (↑k W ′′) � ↑k↓kW) and α. Therefore, ∃R ∈ RelW ′′.j [G

∗
1, G

∗
2], such

that for all evidence ε′′ Ξ′; dom(ρ) ` ∃X.G′′1 ∼ ∃X.G′′1, in particular ε′′ = π2
1(ε # ε′) (π2

1(ε # ε′).n =
k). Therefore, we know that (W ′′′ = (W ′′ � (α,G∗1, G

∗
2, R))):

277

(W ′′′, (ε1 # ρ1(π2
1(ε # ε′)))[Ĝ∗1, α̂]v′1 :: ρ(G′′1)[α/X], (ε2 # ρ2(π2

1(ε # ε′))[Ĝ∗2, α̂]v′2 :: ρ(G′′1)[α/X])

∈ Tρ[X 7→α]JG′′1K

Then, we get that:
((↓k+lW

′′′), v′′′1 , v
′′′
2) ∈ Vρ[X 7→α]JG′′1K

where v′′′i = εi
∗ # (εi # ρi(π2

1(ε # ε′)))[Ĝ∗i , α̂]ui :: ρ(G′′1)[α/X].

By induction hypothesis on ((↓k+lW
′′′), v′′′1 , v

′′′
2) ∈ Vρ[X 7→α]JG′′1K, with (ε # ε′)[X] Ξ; ∆, X `

G′′1 ∼ G′1 ((ε # ε′)[X].n = m), (↓k+lW
′′′) ∈ SJΞK and ((↓k+lW

′′′), ρ′) ∈ DJ∆, XK , ρ′ = ρ[X 7→ α], we
get that:

((↓k+lW
′′′), ρ′1((ε # ε′)[X])v′′′1 :: ρ(G′1)[α/X], ρ′2((ε # ε′)[X])v′′′2 :: ρ(G′1)[α/X]) ∈ Tρ[X 7→α]JG′1K

or what is the same (note that ρ′i((ε # ε′)[X]) = ρi(ε # ε′)[α̂, α̂]):

((↓k+lW
′′′), ρ1(ε # ε′)[α̂, α̂]v′′′1 :: ρ(G′1)[α/X], ρ2(ε # ε′)[α̂, α̂]v′′′2 :: ρ(G′1)[α/X]) ∈ Tρ[X 7→α]JG′1K

or what is the same:

((↓k+l+mW
′′′), v∗1, v

∗
2) ∈ Vρ[X 7→α]JG′1K

where v∗i = εi
∗ # ((εi # ρi(π2

1(ε # ε′)))[Ĝ∗i , α̂] # ρi(ε # ε′)[α̂, α̂])ui :: ρ(G′1)[α/X].

By the reduction rule

W ′′′.Ξ1 . (ε1 # ρ1(ε # ε′))[Ĝ∗1, α̂]v′1 :: ρ(G′1)[α/X] −→k+m+l W ′′′.Ξ1 . v
∗
1

Therefore, the results follows immediately (((↓k+l+mW
′′′), v∗1, v

∗
2) ∈ Vρ[X 7→α]JG′1K).

Proposition A.153 (CompositionalityEx) If

• W.Ξi(α) = ρ(G′) and W.κ(α) = VρJG′K,

• E′i = liftW.Ξi(ρ(G′)),

• Ei = liftW.Ξi(Gp) for some Gp v ρ(G),

• ρ′ = ρ[X 7→ α],

• εi = 〈Ei[αE
′
i/X], Ei[E

′
i/X]〉, such that εi `W.Ξi ` ρ(G[α/X]) ∼ ρ(G[G′/X]), and

• εi
−1 = 〈Ei[E′i/X], Ei[α

E′i/X]〉, such that εi
−1 `W.Ξi ` ρ(G[G′/X]) ∼ ρ(G[α/X]), then

278

1.

(W, ε′1u1 :: ρ′(G), ε′2u2 :: ρ′(G)) ∈ Vρ′JGK⇒
(W, ε1(ε′1u1 :: ρ(G)) :: ρ(G[G′/X]), ε2(ε′2u2 :: ρ(G)) :: ρ(G[G′/X])) ∈ TρJG[G′/X]K

2.

(W, ε′1u1 :: ρ(G[G′/X]), ε′2u2 :: ρ(G[G′/X])) ∈ VρJG[G′/X]K⇒
(W, ε1

−1(ε′1u1 :: ρ(G[G′/X])) :: ρ′(G), ε2
−1(ε′2u2 :: ρ(G[G′/X])) :: ρ′(G)) ∈ Tρ′JGK

Proof. We only prove the case for existential, the other cases are in A.6.2. We proceed by induction
on G. Let vi = ε′iui :: ρ′(G), ∆ = dom(ρ). We prove (1) first. Let’s suppose that ε′1.n = k, ε1.n = l
and ε1

−1.n = m.

Case (∃Y.G1). We know that

(W, ε′1u1 :: ρ′(G), ε′2u2 :: ρ′(G)) ∈ Vρ′JGK

where ui = packu〈G∗i , v′i〉 as ∃Y.G′′i and G = ∃Y.G1. Therefore, we have to prove that

(W, ε1(ε′1u1 :: ρ(G)) :: ρ(G[G′/X]), ε2(ε′2u2 :: ρ(G)) :: ρ(G[G′/X])) ∈ VρJG[G′/X]K

If ε′i # εi is not defined, the result follows immediately. If it is defined, we have to prove that:

((↓lW), (ε′1 # ε1)u1 :: ρ(G[G′/X], (ε′2 # ε2)u2 :: ρ(G[G′/X])) ∈ VρJG[G′/X]K

or what is the same by the definition of VρJG[G′/X]K, we have to prove that:

∀W ′′ � (↓lW), β.∃R ∈ RelW ′′.j [G
∗
1, G

∗
2].

(W ′′.Ξ1 ` G∗1 ∧W ′′.Ξ2 ` G∗2 ∧ ∀ε′ Ξ; ∆ ` ∃Y.G1[G′/X] ∼ ∃Y.G1[G′/X] ∧ ε′.n = k′

(W ′′′, (ε′1 # ε1 # ρ1(ε′))[Ĝ∗1, β̂]v′1 :: ρ(G1[G′/X][β/Y]), (ε′2 # ε2 # ρ2(ε′))[Ĝ∗2, β̂]v′2 :: ρ(G1[G′/X][β/Y]))

∈ Tρ[Y 7→β]JG1[G′/X]K

where W ′′′ = ((W ′′)� (α,G∗1, G
∗
2, R)). Therefore, we are required to prove that

((↓k+l+k′W
′′′)(ε1

∗ # (ε′1 # ε1 # ρ1(ε′))[Ĝ∗1, β̂])u′1 :: ρ(G1[G′/X][β/Y]),

(ε2
∗ # (ε′2 # ε2 # ρ2(ε′))[Ĝ∗2, β̂])u′2 :: ρ(G1[G′/X][β/Y])) ∈ Tρ[Y 7→β]JG1[G′/X]K

where v′i = εi
∗u′i :: G′′i [G

∗
i /Y].

Note that by Lemma A.157 we know that εi = ρi(ε
∗∗)[α, ρ(G′), X] for some ε∗∗ Ξ; ∆, X `

∃Y.G1 ∼ ∃Y.G1. Therefore, by Lemma A.158 we get that for some ε∗ Ξ; ∆, X ` ∃Y.G1 ∼ ∃Y.G1:

(ε′i # εi # ρi(ε
′))[Ĝ∗i , β̂] = (ε′i # ρi(ε

∗∗)[α, ρ(G′), X] # ρi(ε′))[Ĝ∗i , β̂] =

279

(ε′i # ρi(ε
∗)[α, α,X])[Ĝ∗i , β̂] # (π∗2(ρi(ε

∗))[α, ρ(G′), Y] # ρi(ε′))[β̂, β̂] =

(ε′i # ρ
′
i(ε
∗))[Ĝ∗i , β̂] # (π∗2(ρi(ε

∗))[α, ρ(G′), Y] # ρi(ε′))[β̂, β̂]

By premise, we know that (W, ε′1u1 :: ρ′(G), ε′2u2 :: ρ′(G)) ∈ Vρ′J∃Y.G1K. Then, we instantiate
this definition with (↑l W ′′) � W (W ′′ � (↓lW) ⇒↑ W ′′ � (↑l↓lW)) and β. Therefore, ∃R ∈
RelW ′′.j [G

∗
1, G

∗
2], such that for all evidence ε′′ Ξ; ∆, X ` ∃X.G′1 ∼ ∃X.G′1, in particular, we

instantiate with ε′′ = ε∗[X] (ε′′.n = l). Therefore, we know that (W ′′′ = ((W ′′)� (β,G∗1, G
∗
2, R))):

(↑l W ′′, (ε′1 # ρ′1(ε∗))[Ĝ∗1, β̂]v′1 :: ρ′(G1)[β/Y], (ε′2 # ρ′2(ε∗))[Ĝ∗2, β̂]v′2 :: ρ′(G1)[β/Y] ∈ Tρ′[Y 7→β]JG1K

Therefore, we know that
(↓kW ′′′, v′′1 , v′′2) ∈ Vρ′[Y 7→β]JG1K

where v′′i = εi
∗ # (ε′i # ρ

′
i(ε
∗))[Ĝ∗i , β̂]u′i :: ρ′(G1)[β/Y].

Note that, for some Gph v ρ[Y 7→ β](G1), we get E∗i = liftW ′′′.Ξi(Gph) such that:

• unlift(π2(ρ[Y 7→ β]i(ε
∗))) = Gph v ρ[Y 7→ β](G1) and E∗i = liftW ′′′.Ξi(Gph)

• π∗2(ρi(ε
∗))[β̂, β̂] = π∗2(ρ[Y 7→ β]i(ε

∗)) = 〈E∗i , E∗i 〉, by the definition of π∗2()[.]

• π∗2(ρi(ε
∗))[α, ρ(G′), X][β̂, β̂] = π∗2(ρ[Y 7→ β]i(ε

∗))[α, ρ(G′), X]

• 〈E∗i [αE
′
i/X], E∗i [E′i/X]〉 = 〈E∗i , E∗i 〉[α, ρ(G′), X] = π∗2(ρi(ε

∗))[α, ρ(G′), X][β̂, β̂]

Now, by the induction hypothesis we get:

• (↓kW ′′′, v′′1 , v′′2) ∈ Vρ′[Y 7→β]JG1K

• W ′′′i .Ξ(α) = ρ[Y 7→ β](G′) and W.κ(α) = Vρ[Y 7→β]JG′K,

• E′i = liftW ′′′.Ξi(ρ[Y 7→ β](G′)),

• E∗i = liftW ′′′.Ξi(Gph), Gph v ρ[Y 7→ β](G1),

• ρ′′ = ρ[Y 7→ β][X 7→ α],

• εih = 〈E∗i [αE
′
i/X], E∗i [E′i/X]〉 = π∗2(ρi(ε

∗))[α, ρ(G′), Y][β̂, β̂] (εih.n = l), such that

εih `W ′′′.Ξi ` ρ[Y 7→ β](G1[α/X]) ∼ ρ[Y 7→ β](G1[G′/X])

(↓kW ′′′, ε1hv
′′
1 :: ρ[Y 7→ β](G1[G′/X]), ε2hv

′′
2 :: ρ[Y 7→ β](G1[G′/X])) ∈ Tρ[Y 7→β]JG1[G/X]K

If the combination of evidence does not succeed, then the result follows immediately. Otherwise,
we get that

(↓k+lW
′′′W ′′′, v′′′1 , v

′′′
2) ∈ Vρ[Y 7→β]JG1[G/X]K

where v′′′i = (εi
∗ # (ε′i # ρ

′
i(ε
∗))[Ĝ∗i , β̂] # εih)u′i :: ρ[Y 7→ β](G1[G′/X])

By the ascription Lemma A.152:

280

• (↓k+lW
′′′, v′′′1 , v

′′′
2) ∈ Vρ[Y 7→β]JG1[G/X]K

• ε′[Y] Ξ; ∆, Y ` G1[G′/X] ∼ G1[G′/X] (ε′[Y].n = k′)

• ↓k+lW
′′′ ∈ SJΞK and (↓k+lW

′′′, ρ[Y 7→ β]) ∈ DJ∆, Y K

then we have:
(↓k+lW

′′′, ρ1(ε′))[β̂, β̂]v′′′1 :: ρ[Y 7→ β](G1[G′/X]),

ρ2(ε′))[β̂, β̂]v′′′2 :: ρ[Y 7→ β](G1[G′/X])) ∈ Tρ[Y 7→β]JG1[G/X]K

If the combination of evidence does not succeed, then the result follows immediately. Otherwise,
we get that

(↓k+l+k′W
′′′, v′′′′1 , v′′′′2) ∈ Vρ[Y 7→β]JG1[G/X]K

where v′′′′i = (εi
∗ # (ε′i # ρ

′
i(ε
∗))[Ĝ∗i , β̂] # εih # ρi(ε′))[β̂, β̂])u′i :: ρ[Y 7→ β](G1[G′/X]) Note that

W ′′′.Ξ1 . (ε′1 # ε1 # ρ1(ε′))[Ĝ∗1, β̂]v′1 :: ρ(G1[G′/X][β/Y]) −→k+l+k′ W ′′′.Ξ1 . v
′′′′
1

And, we have to prove

(W ′′′, (ε′1 # ε1 # ρ1(ε′))[Ĝ∗1, β̂]v′1 :: ρ(G1[G′/X][β/Y]), (ε′2 # ε2 # ρ2(ε′))[Ĝ∗2, β̂]v′2 :: ρ(G1[G′/X][β/Y]))

∈ Tρ[Y 7→β]JG1[G′/X]K

Therefore, the result follows immediately (((↓k+l+k′W
′′′), v′′′′1 , v′′′′2) ∈ Vρ[Y 7→β]JG1[G/X]K).

Lemma A.154 If ε Ξ; ∆ ` ∃X.G1 ∼ ∃X.G2 then ε [X] Ξ; ∆, X ` G1 ∼ G2.

Proof. Straightforward by induction on the evidences.

Lemma A.155

ε[E1, E2] = π∗1(ε)[E1, E2] # ε[E2, E2] = π2
1(ε)[E1, E2] # ε[E2, E2]

Proof. Straightforward induction on the evidence structure.

Lemma A.156

(ε # ε′)[E1, E2] = (ε # π∗1(ε′))[E1, E2] # ε′[E2, E2] = (ε # π2
1(ε′))[E1, E2] # ε′[E2, E2]

Proof. Straightforward induction on the evidence structure.

Lemma A.157 If εi W.Ξi ` ρ(G) ∼ ρ(G), W ∈ SJΞK and (W,ρ) ∈ DJ∆K, then ∃ε Ξ,∆ `
G ∼ G such that εi = ρi(ε).

Proof. Straightforward induction on the evidence structure.

281

Lemma A.158 (Evidence decomposition) If

− ε1 Ξ; ∆, X, Y ` G ∼ G

− ε2 Ξ; ∆, X ` G[G′/Y] ∼ G′′ and Ξ; ∆ ` G′

− W ∈ SJΞK, (W,ρ[X 7→ α][Y 7→ β]) ∈ DJ∆, X, Y K, W.Ξi(α) = ρ(Gi) and W.Ξi(β) = ρ(G′)

then ∃ε Ξ; ∆, X, Y ` G ∼ G

(ρi(ε1)[β,G′, Y] # ρi(ε2))[Gi, α,X] = (ρi(ε)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε))[β,G, Y] # ρi(ε2))[α, α,X]

Proof. We proceed by induction on G.

Case (G = B and G′′ = B). Then, we know that εi = 〈B,B〉. Therefore, if we choose ε = 〈B,B〉
the results follows immediately.

Case (G = G′′1 → G′′2, and G′′ = G′1 → G′2). We know that

− ε1 Ξ; ∆, X, Y ` G′′1 → G′′2 ∼ G′′1 → G′′2 implies that

idom](ε1) Ξ; ∆, X, Y ` G′′1 ∼ G′′1

− ε2 Ξ; ∆, X ` (G′′1 → G′′2)[G′/Y] ∼ G′1 → G′2 implies that

idom](ε2) Ξ; ∆, X ` G′′1[G′/Y] ∼ G′1

Therefore by the induction hypothesis, we know that ∃ε′ Ξ; ∆, X, Y ` G′′1 ∼ G′′1 such that

(ρi(idom](ε1))[β,G′, Y] # ρi(idom](ε2)))[Gi, α,X] =

(ρi(ε
′)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε

′))[β,G, Y] # ρi(idom](ε2)))[α, α,X]

Also we know that

− ε1 Ξ; ∆, X, Y ` G′′1 → G′′2 ∼ G′′1 → G′′2 implies that

icod](ε1) Ξ; ∆, X, Y ` G′′2 ∼ G′′2

− ε2 Ξ; ∆, X ` (G′′1 → G′′2)[G′/Y] ∼ G′1 → G′2 implies that

icod](ε2) Ξ; ∆, X ` G′′2[G′/Y] ∼ G′2

Therefore by the induction hypothesis, we know that ∃ε′′ Ξ; ∆, X, Y ` G′′2 ∼ G′′2 such that

(ρi(icod](ε1))[β,G′, Y] # ρi(icod](ε2)))[Gi, α,X] =

(ρi(ε
′′)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε

′′))[β,G, Y] # ρi(icod](ε2)))[α, α,X]

Therefore, it follows that ∃ε Ξ; ∆, X, Y ` G′′1 → G′′2 ∼ G′′1 → G′′2, such that the result follows
immediately (ε = 〈π1(ε′)→ π1(ε′′), π2(ε′)→ π2(ε′′)〉). Note that

282

• idom](ε) = ε′

• icod](ε) = ε′′

• idom]((ρi(ε1)[β,G′, Y] # ρi(ε2))[Gi, α,X]) =

(ρi(idom](ε1))[β,G′, Y] # ρi(idom](ε2)))[Gi, α,X] =

(ρi(ε
′)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε

′))[β,G, Y] # ρi(idom](ε2)))[α, α,X] =

idom]((ρi(ε)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε))[β,G, Y] # ρi(ε2))[α, α,X])

• icod]((ρi(ε1)[β,G′, Y] # ρi(ε2))[Gi, α,X]) =

(icod](ρi(icod](ε1))[β,G′, Y] # ρi(icod](ε2)))[Gi, α,X] =

(ρi(ε
′′)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε

′′))[β,G, Y] # ρi(icod](ε2)))[α, α,X] =

icod]((ρi(ε)[β, β, Y])[Gi, α,X] # (π∗2(ρi(ε))[β,G, Y] # ρi(ε2))[α, α,X])

Note that two evidences are equals if and only if their idom] and icod] equals too.

Case (G = ∀X.G′′1 and G′′ = ∀X.G′1). Similar to function case.

Case (G = G1 ×G2). Similar to function case.

Case (G = α). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = β). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = β). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = X). Then, we know that ε1 = 〈X,X〉 and ε2 = 〈X,X〉. Therefore, with ε = 〈X,X〉 the
result follows immediately.

Case (G = Y). Then, we know that ε1 = 〈Y, Y 〉. Since, ε2 Ξ; ∆, X ` G′ ∼ G′′ and Ξ; ∆ ` G′
(without X), we know that

ρi(ε2)[Gi, α,X] = ρi(ε2)[α, α,X] = ρi(ε2)

Therefore, ∃ε = 〈Y, Y 〉, such that the result follows immediately.

Case (G = Z). Then, we know that ε1 = 〈Z,Z〉 and ε2 = 〈Z,Z〉. Therefore, with ε = 〈Z,Z〉 the
result follows immediately.

Case (G = ?). We follow by case in the evidences.

• ε1 = 〈?, ?〉, then ∃ε = ε2 such that the results follows immediately (by Lemma A.155).

• ε2 = 〈?, ?〉, then ∃ε = ε1 such that the results follows immediately (by Lemma A.155).

• The other evidence cases are covered in other cases of the proof.

Proposition A.159 If Ξ; ∆; Γ ` t1 ≈ t2 : G, then Ξ; ∆; Γ ` t1 ≈ctx t2 : G.

Proof. Similar to Th. A.117.

283

A.10.5 A Weak Dynamic Gradual Guarantee for GSF∃

Proposition A.160 If Ω ` t∗1 : G∗1 6 t∗2 : G∗2, Ω ≡ Γ1 v Γ2, ∆; Γi ` t∗i t∗∗i : G∗i , then
Ω ` .t∗∗1 : G∗1 6 Ξ2 . t

∗∗
2 : G∗2.

Proof. We follow by induction on Ω ` t∗1 : G∗1 6 t∗2 : G∗2. We avoid the notation Ω ` t∗1 : G∗1 6
t∗2 : G∗2, and use t∗1 6 t

∗
2 instead, for simplicity, when the typing environments are not relevant. We

use metavariable v or u in GSF to range over constants, functions and type abstractions. We only
proof here the cases related to existential types. Other cases where proved in Section A.5.

Case (6v).

(6v)
Ω ` u1 : G∗1 6v u2 : G∗2 G∗1 6 G

∗
2

Ω ` u1 : G∗1 6 u2 : G∗2

(Gu)
∆; Γ1 ` u1 u′1 : G∗1 εG∗1 = I(, ()G∗1, G

∗
1)

∆; Γ1 ` u1 εG∗1u
′
1 :: G∗1 : G∗1

(Gu)
∆; Γ2 ` u2 u′2 : G∗2 εG∗2 = I(, ()G∗2, G

∗
2)

∆; Γ2 ` u2 εG∗2u
′
2 :: G∗2 : G∗2

We have to prove that Ω ` Ξ1 .εG∗1u
′
1 :: G∗1 : G∗1 6 Ξ2 .εG∗2u

′
2 :: G∗2 : G∗2. By the rule (6ascε), we

are required to prove that εG∗1 6 εG∗2 , Ω ` Ξ1 . u
′
1 : G∗1 6 Ξ2 . u

′
2 : G∗2 and G∗1 v G∗2. Since G∗1 6 G

∗
2

and Proposition A.170, we know that εG∗1 6 εG∗2 . Also, by Proposition A.171 and G∗1 6 G
∗
2, we now

that G∗1 v G∗2. Therefore, we only have required to prove that Ω ` Ξ1 . u
′
1 : G∗1 6 Ξ2 . u

′
2 : G∗2. We

follow by case analysis on Ω ` u1 : G∗1 6v u2 : G∗2. We only take into account the package, where
ui = packu〈G′i, vi〉 as ∃X.G′′i and G∗i = ∃X.G′′i , where ∃X.G′′1 6 ∃X.G′′2. We know that

(6pack)
G′1 6 G

′
2 Ω ` .v1 : G1 6 Ξ2 . v2 : G2 ∃X.G′′1 v ∃X.G′′2 G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X]

Ω ` .pack〈G′1, v1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . pack〈G′2, v2〉 as ∃X.G′′2 : ∃X.G′′2

(Gpack)
∆; Γ1 ` v1 :: G′′1[G′1/X] v′′1 : G′′1[G′1/X]

∆; Γ1 ` pack〈G′1, v1〉 as ∃X.G′′1 packu〈G′1, v′′1〉 as ∃X.G′′1 : ∃X.G′′1

(Gpack)
∆; Γ2 ` v2 :: G′′2[G′2/X] v′′2 : G′′2[G′2/X]

∆; Γ2 ` pack〈G′2, v2〉 as ∃X.G′′2 packu〈G′2, v′′2〉 as ∃X.G′′2 : ∃X.G′′2

We have to prove that Ω ` .packu〈G′1, v′′1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . packu〈G′2, v′′2〉 as ∃X.G′′2 :
∃X.G′′2, or what is the same by the rule (6packuε), we have to prove that G′1 6 G′2, Ω ` .v′′1 :
G′′1[G′1/X] 6 Ξ2 . v

′′
2 : G′′2[G′2/X] and ∃X.G′′1 v ∃X.G′′2. By premise, G′1 6 G

′
2 and ∃X.G′′1 v ∃X.G′′2

(Proposition A.164) follows immediately. Therefore, we only have required to prove that Ω ` .v′′1 :
G′′1[G′1/X] 6 Ξ2 . v

′′
2 : G′′2[G′2/X], which follows by the induction hypothesis. We know that

v′′1 = ε1v
′
1 :: G′′1[G′1/X] where ε1 = I(, ()G1, G

′′
1[G′1/X])

v′′2 = ε2v
′
2 :: G′′2[G′2/X] where ε2 = I(, ()G2, G

′′
2[G′2/X])

where ∆; Γi ` vi v v
′
i : Gi, and therefore Ω ` Ξ1 . v

′
1 : G1 6 Ξ2 . v

′
2 : G2.

284

By rule (6ascε), we are required to prove that ε1 6 ε2, Ω ` Ξ1 . v
′
1 : G1 6 Ξ2 . v

′
2 : G2 and

G′′1[G′1/X] v G′′2[G′2/X]. By induction hypothesis on Ω ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2, we know
that Ω ` Ξ1 . v

′
1 : G1 6 Ξ2 . v

′
2 : G2. By Proposition A.174, G′′1 6 G′′2 and G′1 6 G′2, we know

that G′′1[G′1/X] 6 G′′2[G′2/X], and therefore G′′1[G′1/X] v G′′2[G′2/X]. By Proposition A.162 and
G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X], we know that

ε1 = I(, ()G1, G
′′
1[G′1/X]) = I(, ()G1pullbackG′′1[G′1/X], G1pullbackG′′1[G′1/X]) 6

I(, ()G2pullbackG′′2[G′2/X], G2pullbackG′′2[G′2/X]) = I(, ()G2, G
′′
2[G′2/X]) = ε2

Therefore, the results holds.

Case (6ascv). We know that

(6ascv)
Ω ` u1 : G∗∗1 6v u2 : G∗∗2 G∗∗1 pullbackG∗1 6 G

∗∗
2 pullbackG∗2 G∗1 v G∗2

Ω ` u1 :: G∗1 : G∗1 6 u2 :: G∗2 : G∗2

(Gascu)
∆; Γ1 ` u1 u′1 : G∗∗1 ε1 = I(, ()G∗∗1 , G

∗
1)

∆; Γ1 ` u1 :: G∗1 ε1u
′
1 :: G∗1 : G∗1

(Gascu)
∆; Γ2 ` u2 u′2 : G∗∗2 ε2 = I(, ()G∗∗2 , G

∗
2)

∆; Γ2 ` u2 :: G∗2 ε2u
′
2 :: G∗2 : G∗2

We have to prove that Ω ` Ξ1 .ε1u
′
1 :: G∗1 : G∗1 6 Ξ2 .ε2u

′
2 :: G∗2 : G∗2, or what is the same by the

rule (6ascε), we have to prove that ε1 6 ε2, Ω ` Ξ1.u
′
1 : G∗∗1 6 Ξ2.u

′
2 : G∗∗2 andG∗1 v G∗2. By Propo-

sition A.161, we know that ε1 = I(, ()G∗∗1 , G
∗
1) = I(, ()G∗∗1 pullbackG∗1, G

∗∗
1 pullbackG∗1) and ε2 =

I(, ()G∗∗2 , G
∗
2) = I(, ()G∗∗2 pullbackG∗2, G

∗∗
2 pullbackG∗2). Since G∗∗1 pullbackG∗1 6 G

∗∗
2 pullbackG∗2, then

ε1 = I(, ()G∗∗1 , G
∗
1) = I(, ()G∗∗1 pullbackG∗1, G

∗∗
1 pullbackG∗1) 6 I(, ()G∗∗2 pullbackG∗2, G

∗∗
2 pullbackG∗2) =

I(, ()G∗∗2 , G
∗
2) = ε2, by Proposition A.162. Thus, we only have to prove that Ω ` Ξ1 . u

′
1 : G∗∗1 6

Ξ2 . u
′
2 : G∗∗2 , and we know that Ω ` u′1 : G∗∗1 6v u′2 : G∗∗2 . We follow by case analysis on

Ω ` u1 : G∗∗1 6v u2 : G∗∗2 . We only take into account the package, where ui = pack〈G′i, vi〉 as ∃X.G′′i
and G∗i = ∃X.G′′i , where ∃X.G′′1 6 ∃X.G′′2. We know that

(6pack)
G′1 6 G

′
2 Ω ` .v1 : G1 6 Ξ2 . v2 : G2 ∃X.G′′1 v ∃X.G′′2 G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X]

Ω ` .pack〈G′1, v1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . pack〈G′2, v2〉 as ∃X.G′′2 : ∃X.G′′2

(Gpack)
∆; Γ1 ` v1 :: G′′1[G′1/X] v′′1 : G′′1[G′1/X]

∆; Γ1 ` pack〈G′1, v1〉 as ∃X.G′′1 packu〈G′1, v′′1〉 as ∃X.G′′1 : ∃X.G′′1

(Gpack)
∆; Γ2 ` v2 :: G′′2[G′2/X] v′′2 : G′′2[G′2/X]

∆; Γ2 ` pack〈G′2, v2〉 as ∃X.G′′2 packu〈G′2, v′′2〉 as ∃X.G′′2 : ∃X.G′′2

We have to prove that Ω ` .packu〈G′1, v′′1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . packu〈G′2, v′′2〉 as ∃X.G′′2 :
∃X.G′′2, or what is the same by the rule (6packuε), we have to prove that G′1 6 G′2, Ω ` .v′′1 :
G′′1[G′1/X] 6 Ξ2 . v

′′
2 : G′′2[G′2/X] and ∃X.G′′1 v ∃X.G′′2. By premise, G′1 6 G

′
2 and ∃X.G′′1 v ∃X.G′′2

(Proposition A.164) follows immediately. Therefore, we only have required to prove that Ω ` .v′′1 :
G′′1[G′1/X] 6 Ξ2 . v

′′
2 : G′′2[G′2/X], which follows by the induction hypothesis.

285

We know that

v′′1 = ε1v
′
1 :: G′′1[G′1/X] where ε1 = I(, ()G1, G

′′
1[G′1/X])

v′′2 = ε2v
′
2 :: G′′2[G′2/X] where ε2 = I(, ()G2, G

′′
2[G′2/X])

where ∆; Γi ` vi v v
′
i : Gi, and therefore Ω ` Ξ1 . v

′
1 : G1 6 Ξ2 . v

′
2 : G2.

By rule (6ascε), we are required to prove that ε1 6 ε2, Ω ` Ξ1 . v
′
1 : G1 6 Ξ2 . v

′
2 : G2 and

G′′1[G′1/X] v G′′2[G′2/X]. By induction hypothesis on Ω ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2, we know
that Ω ` Ξ1 . v

′
1 : G1 6 Ξ2 . v

′
2 : G2. By Proposition A.174, G′′1 6 G′′2 and G′1 6 G′2, we know

that G′′1[G′1/X] 6 G′′2[G′2/X], and therefore G′′1[G′1/X] v G′′2[G′2/X]. By Proposition A.162 and
G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X], we know that

ε1 = I(, ()G1, G
′′
1[G′1/X]) = I(, ()G1pullbackG′′1[G′1/X], G1pullbackG′′1[G′1/X]) 6

I(, ()G2pullbackG′′2[G′2/X], G2pullbackG′′2[G′2/X]) = I(, ()G2, G
′′
2[G′2/X]) = ε2

Therefore, the results holds.

Case (6pack). We know that

(6pack)
G′1 6 G

′
2 Ω ` .t1 : G1 6 Ξ2 . t2 : G2 ∃X.G′′1 6 ∃X.G′′2 G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X]

Ω ` .pack〈G′1, t1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . pack〈G′2, t2〉 as ∃X.G′′2 : ∃X.G′′2

(Gpack)
∆; Γ1 ` t1 t′1 : G1 t′′1 = norm(t′1, G1, G

′′
1[G′1/X])

∆; Γ1 ` pack〈G′1, t1〉 as ∃X.G′′1 pack〈G′1, t′′1〉 as ∃X.G′′1 : ∃X.G′′1

(Gpack)
∆; Γ2 ` t2 t′2 : G2 t′′2 = norm(t′2, G2, G

′′
2[G′2/X])

∆; Γ2 ` pack〈G′2, t2〉 as ∃X.G′′2 pack〈G′2, t′′2〉 as ∃X.G′′2 : ∃X.G′′2

We have to prove that Ω ` .pack〈G′1, t′′1〉 as ∃X.G′′1 : ∃X.G′′1 6 Ξ2 . pack〈G′2, t′′2〉 as ∃X.G′′2 :
∃X.G′′2, or what is the same by the rule (6packε), we have to prove that G′1 6 G′2, Ω ` .t′′1 :
G′′1[G′1/X] 6 Ξ2 . t

′′
2 : G′′2[G′2/X] and ∃X.G′′1 6 ∃X.G′′2. By premise, G′1 6 G′2 and ∃X.G′′1 6 ∃X.G′′2

(Proposition A.164) follows immediately. Therefore, we only have required to prove that Ω ` .t′′1 :
G′′1[G′1/X] 6 Ξ2 . t

′′
2 : G′′2[G′2/X]. We know that

t′′1 = norm(t′1, G1, G
′′
1[G′1/X]) = ε1t

′
1 :: G′′1[G′1/X] where ε1 = I(, ()G1, G

′′
1[G′1/X])

t′′2 = norm(t′2, G2, G
′′
2[G′2/X]) = ε2t

′
2 :: G′′2[G′2/X] where ε2 = I(, ()G2, G

′′
2[G′2/X])

By rule (6ascε), we are required to prove that ε1 6 ε2, Ω ` Ξ1 . t
′
1 : G1 6 Ξ2 . t

′
2 : G2

and G′′1[G′1/X] v G′′2[G′2/X]. By induction hypothesis on Ω ` .t1 : G1 6 Ξ2 . t2 : G2, we know
that Ω ` Ξ1 . t

′
1 : G1 6 Ξ2 . t

′
2 : G2. By Proposition A.174, G′′1 6 G′′2 and G′1 6 G′2, we know

that G′′1[G′1/X] 6 G′′2[G′2/X], and therefore G′′1[G′1/X] v G′′2[G′2/X]. By Proposition A.162 and
G1pullbackG′′1[G′1/X] 6 G2pullbackG′′2[G′2/X], we know that

ε1 = I(, ()G1, G
′′
1[G′1/X]) = I(, ()G1pullbackG′′1[G′1/X], G1pullbackG′′1[G′1/X]) 6

I(, ()G2pullbackG′′2[G′2/X], G2pullbackG′′2[G′2/X]) = I(, ()G2, G
′′
2[G′2/X]) = ε2

Therefore, the results holds.

286

Case (unpack). We know that

(6unpack)
Ω ` .t11 : G1 6 Ξ2 . t21 : G2 Ω, x : schm]

e(G1) v schm]
e(G2) ` .t12 : G′1 6 Ξ2 . t22 : G′2

Ω ` .unpack〈X,x〉 = t11 in t12 : G′1 6 Ξ2 . unpack〈X,x〉 = t21 in t22 : G′2

(Gunpack)

∆; Γ1 ` t11 t′11 : G1 t′′11 = norm(t′11, G1, ∃var](G1).schm]
e(G1))

∆; Γ1, x : schm]
e(G1) ` t12 t′12 : G′1

∆; Γ1 ` unpack〈X,x〉 = t11 in t12 unpack〈X,x〉 = t′′11 in t′12 : G′1

(Gunpack)

∆; Γ2 ` t21 t′21 : G2 t′′21 = norm(t′21, G2, ∃var](G2).schm]
e(G2))

∆; Γ2, x : schm]
e(G2) ` t22 t′22 : G′2

∆; Γ2 ` unpack〈X,x〉 = t21 in t22 unpack〈X,x〉 = t′′21 in t′22 : G′2

We have to prove that Ω ` Ξ1 . unpack〈X,x〉 = t′′11 in t′12 : G′1 6 Ξ2 . unpack〈X,x〉 =
t′′21 in t′22 : G′2, or what is the same by the rule (6unpackε), we have to prove that Ω ` Ξ1 . t

′′
11 :

∃var](G1).schm]
e(G1) 6 Ξ2 . t

′′
21 : ∃var](G2).schm]

e(G2) and Ω, x : schm]
e(G1) v schm]

e(G2) `
Ξ1 . t

′
12 : G′1 6 Ξ2 . t

′
22 : G′2. By the induction hypothesis on Ω, x : schm]

e(G1) v schm]
e(G2) ` .t12 :

G′1 6 Ξ2 . t22 : G′2, we know that Ω, x : schm]
e(G1) v schm]

e(G2) ` Ξ1 . t
′
12 : G′1 6 Ξ2 . t

′
22 : G′2.

Therefore, we only are required to prove that Ω ` Ξ1 . t
′′
11 : ∃var](G1).schm]

e(G1) 6 Ξ2 . t
′′
21 :

∃var](G2).schm]
e(G2). We know that

t′′11 = norm(t′11, G1,∃var](G1).schm]
e(G1)) = ε1t

′
11 :: ∃var](G1).schm]

e(G1)

where ε1 = I(, ()G1, ∃var](G1).schm]
e(G1)) = I(, ()∃var](G1).schm]

e(G1),∃var](G1).schm]
e(G1)) =

ε∃var](G1).schm]
e(G1)

t′′21 = norm(t′21, G2,∃var](G2).schm]
e(G2)) = ε2t

′
21 :: ∃var](G2).schm]

e(G2)

where ε2 = I(, ()G2,∃var](G2).schm]
e(G2)) = I(, ()∃var](G2).schm]

e(G2),∃var](G2).schm]
e(G2)) =

ε∃var](G2).schm]
e(G2)

By induction hypothesis on Ω ` t11 : G1 6 t21 : G2, we know that Ω ` .t′11 : G1 6
Ξ2 . t

′
21 : G2, and by Proposition A.164, we know that G1 v G2, thus ∃var](G1).schm]

e(G1) v
∃var](G2).schm]

e(G2). Therefore, we only have to prove by rule (6Mascε) that ε1 v ε2. But, by
Proposition A.163 and ∃var](G1).schm]

e(G1) v ∃var](G2).schm]
e(G2) the results holds.

Proposition A.161 I(Ξ, ()G1pullbackG2, G1pullbackG2) = I(Ξ, ()G1, G2)

Proof. By the definition of pullback and I(Ξ, ()G1, G2).

287

Proposition A.162 If G1pullbackG2 6 G′1pullbackG′2, then

I(Ξ, ()G1, G2) = I(Ξ, ()G1pullbackG2, G1pullbackG2) 6 I(Ξ, ()G′1pullbackG′2, G
′
1pullbackG′2) = I(Ξ, ()G′1, G

′
2)

Proof. By Proposition A.161 and the definition of 6 in evidence.

Proposition A.163 If G1 6 G2, then

I(Ξ, ()G1, G1) v I(Ξ, ()G2, G2)

Proof. By the definition of I(Ξ,) and the v in evidence.

Proposition A.164 Ω ` Ξ1 . s1 : G1 6 Ξ2 . s2 : G2 then G1 v G2.

Proof. By the definition of pullback and I(Ξ, ()G1, G2).

Proposition A.165 If Ξ1 ` t∗1 6 Ξ2 ` t∗2 and Ξ1 . t
∗
1 −−→ Ξ′1 . t

∗∗
1 , then Ξ2 . t

∗
2 −−→ Ξ′2 . t

∗∗
2 and

Ξ′1 ` t∗∗1 6 Ξ′2 ` t∗∗2 .

Proof. If Ξ1 ` t∗1 6 Ξ2 ` t∗2, we know that ` Ξ1 . t
∗
1 : G∗1 6 Ξ2 . t

∗
2 : G∗2, Ξ1 6 Ξ2, Ξ1 ` t∗1 : G∗1

and Ξ2 ` t∗2 : G∗2. We follow by induction on ` Ξ1 . t
∗
1 : G∗1 6 Ξ2 . t

∗
2 : G∗2. We avoid the notation

` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, and use t1 6 t2 instead, for simplicity, when the typing environments
are not relevant. We only take into account the existential unpack case.

Case (pack). We know that

(6pack)
G′′1 6 G

′′
2 ` Ξ1 . t11 : G11[G′′1/X] 6 Ξ2 . t22 : G22[G′′2/X] ∃X.G11 6 ∃X.G22

` Ξ1 . pack〈G′′1, t11〉 as ∃X.G11 : ∃X.G11 6 Ξ2 . pack〈G′′2, t22〉 as ∃X.G22 : ∃X.G22

Also, since Ξ1 . t
∗
1 −−→ Ξ′1 . t

∗
1, we know that t11 = v11. By Proposition A.175 and ` Ξ1 . t11 :

G11[G′′1/X] 6 Ξ2 . t22 : G22[G′′2/X], we know that t22 = v22.

By the reduction rules, we know that

Ξ1 . pack〈G′′1, v11〉 as ∃X.G11 −−→ Ξ1 . ε∃X.G11packu〈G′′1, v11〉 as ∃X.G11 :: ∃X.G11

Ξ2 . pack〈G′′2, v22〉 as ∃X.G22 −−→ Ξ2 . ε∃X.G22packu〈G′′2, v22〉 as ∃X.G22 :: ∃X.G22

We are required to prove that

` Ξ1 . ε∃X.G11packu〈G′′1, v11〉 as ∃X.G11 :: ∃X.G11 :6 Ξ2. :

ε∃X.G22packu〈G′′2, v22〉 as ∃X.G22 :: ∃X.G22 : ∃X.G11 6 ∃X.G22

This follows immediately by rules (6packuε) and (6ascε). Note that ε∃X.G11 6 ε∃X.G22 , by
Lemma A.163.

288

Case (unpack). We know that

(6unpack)
` Ξ1 . t11 : ∃X.G1 6 Ξ2 . t21 : ∃X.G2 x : G1 v G2 ` Ξ1 . t12 : G′1 6 Ξ2 . t22 : G′2

` Ξ1 . unpack〈X,x〉 = t11 in t12 : G′1 6 Ξ2 . unpack〈X,x〉 = t21 in t22 : G′2

Also, since Ξ1.t
∗
1 −−→ Ξ′1.t

∗
1, we know that t11 = ε11packu〈G′′1, ε1u1 :: G11[G′′1/X]〉 as ∃X.G11 ::

∃X.G1. By Proposition A.175 and ` Ξ1 . t11 : ∃X.G1 6 Ξ2 . t21 : ∃X.G2, we know that t21 =
ε22packu〈G′′2, ε2u2 :: G22[G′′2/X]〉 as ∃X.G22 :: ∃X.G2. By the reduction rules, we know that

Ξ1 . unpack〈X,x〉 = t11 in t12 −−→ Ξ′1 . t12[α̂/X][((ε1 # ε11[Ĝ′′1, α̂])u1 :: G1[α/X])/x]

where Ξ′1 = Ξ1, α := G′′1 and α̂1 = liftΞ′1(α).

We know that ε11 6 ε22, Ξ′1 6 Ξ′2 and G′′1 6 G
′′
2, therefore by Proposition A.167, we know that

ε11[Ĝ′′1, α̂] 6 ε22[Ĝ′′2, α̂]. Therefore, we know that (ε1 # ε11[Ĝ′′1, α̂]) 6 (ε2 # ε22[Ĝ′′2, α̂]), by Proposi-
tion A.168 and ε1 6 ε2.

Therefore, we know that

Ξ2 . unpack〈X,x〉 = t21 in t22 −−→ Ξ′2 . t22[α̂/X][((ε2 # ε22[Ĝ′′2, α̂])u2 :: G2[α/X])/x]

where Ξ′2 = Ξ2, α := G′′2 and α̂2 = liftΞ′2(α).

Since Ξ1 6 Ξ2 and G′′1 6 G′′2, we know that Ξ′1 6 Ξ′2. Therefore, we only are required to prove
that

t12[α̂/X][((ε1 # ε11[Ĝ′′1, α̂])u1 :: G1[α/X])/x] : G′1 6 t22[α̂/X][((ε2 # ε22[Ĝ′′2, α̂])u2 :: G2[α/X])/x] : G′2

By Proposition A.169 we know that t12[α̂1/X] 6 t22[α̂2/X].

We know that ((ε1 # ε11[Ĝ′′1, α̂])u1 :: G1[α/X]) 6 ((ε2 # ε22[Ĝ′′2, α̂])u2 :: G2[α/X]), by the Rule

(6ascε) and since u1 6 u2, (ε1 # ε11[Ĝ′′1, α̂]) 6 (ε2 # ε22[Ĝ′′2, α̂]) and G1[α/X] v G2[α/X] (by Propo-
sition A.172 and Proposition A.173). Finally, by Proposition A.166 the result holds.

Proposition A.166 (Substitution Preserves Precision) If Ω′, x : G1 v G2 ` Ξ1 .s1 : G′1 6 Ξ2 .s2 :
G′2 and Ω′ ` Ξ1 . v1 : G1 6 Ξ2 . v2 : G2, then Ω′ ` Ξ1 . s1[v1/x] : G′1 6 Ξ2 . s2[v2/x] : G′2.

Proof. We follow by induction on Ω′, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2. We avoid the
notation Ω′, x : G1 v G2 ` Ξ1 . t1 : G′1 6 Ξ2 . t2 : G′2, and use t1 6 t2 instead, for simplicity, when
the typing environments are not relevant. Let suppose that Ω = Ω′, x : G1 v G2.

Case (packu). We know that

(6packuε)
G∗∗1 6 G

∗∗
2 Ω ` Ξ1 . v

′
1 : G∗1[G∗∗1 /X] 6 Ξ2 . v

′
2 : G∗2[G∗∗2 /X] ∃X.G∗1 v ∃X.G∗2

Ω ` Ξ1 . packu〈G∗∗1 , v′1〉 as ∃X.G∗1 : ∃X.G∗1 6 Ξ2 . packu〈G∗∗2 , v′2〉 as ∃X.G∗2 : ∃X.G∗2

289

Note that we are required to prove that

Ω ` Ξ1 . packu〈G∗∗1 , v′1[v1/x]〉 as ∃X.G∗1 : ∃X.G∗1 6 Ξ2 . packu〈G∗∗2 , v′2[v2/x]〉 as ∃X.G∗2 : ∃X.G∗2

or what is the same Ω ` Ξ1 . v
′′
1 [v1/x] : G∗1[G∗∗1 /X] 6 Ξ2 . v

′′
2 [v2/x] : G∗2[G∗∗2 /X]. But the result

follows immediately by the induction hypothesis on Ω ` Ξ1 . v
′
1 : G∗1[G∗∗1 /X] 6 Ξ2 . v

′
2 : G∗2[G∗∗2 /X].

Case (pack). We know that

(6packε)
G∗∗1 6 G

∗∗
2 Ω ` Ξ1 . t1 : G∗1[G∗∗1 /X] 6 Ξ2 . t2 : G∗2[G∗∗2 /X] ∃X.G∗1 6 ∃X.G∗2

Ω ` Ξ1 . pack〈G∗∗1 , t1〉 as ∃X.G∗1 : ∃X.G∗1 6 Ξ2 . pack〈G∗∗2 , t2〉 as ∃X.G∗2 : ∃X.G∗2

Note that we are required to prove that

Ω ` Ξ1 . pack〈G∗∗1 , t1[v1/x]〉 as ∃X.G∗1 : ∃X.G∗1 6 Ξ2 . pack〈G∗∗2 , t2[v2/x]〉 as ∃X.G∗2 : ∃X.G∗2

or what is the same Ω ` Ξ1 . t1[v1/x] : G∗1[G∗∗1 /X] 6 Ξ2 . t2[v2/x] : G∗2[G∗∗2 /X]. But the result
follows immediately by the induction hypothesis on Ω ` Ξ1 . t1 : G∗1[G∗∗1 /X] 6 Ξ2 . t2 : G∗2[G∗∗2 /X].

Case (unpack). We know that

(6unpackε)
Ω ` Ξ1 . t1 : ∃X.G∗1 6 Ξ2 . t2 : ∃X.G∗2 Ω, x : G∗1 v G∗2 ` Ξ1 . t

′
1 : G∗∗1 6 Ξ2 . t

′
2 : G∗∗2

Ω ` Ξ1 . unpack〈X,x〉 = t1 in t′1 : G∗∗1 6 Ξ2 . unpack〈X,x〉 = t2 in t′2 : G∗∗2

Note that we are required to prove that Ω′ ` Ξ1 . unpack〈X,x〉 = t1[v1/x] in t′1[v1/x] : G∗∗1 6
Ξ2 . unpack〈X,x〉 = t2[v2/x] in t′2[v2/x] : G∗∗2 . Or what is the same Ω′ ` Ξ1 . t1[v1/x] : ∃X.G∗1 6
Ξ2 . t2[v2/x] : ∃X.G∗1 and Ω′, x : G∗1 v G∗2 ` Ξ1 . t

′
1[v1/x] : G∗∗1 6 Ξ2 . t

′
2[v2/x] : G∗∗2 . But the result

follows immediately by the induction hypothesis on Ω ` Ξ1 . t1 : ∃X.G∗1 6 Ξ2 . t2 : ∃X.G∗2 and
Ω, x : G∗1 v G∗2 ` Ξ1 . t

′
1 : G∗∗1 6 Ξ2 . t

′
2 : G∗∗2 .

Proposition A.167 If ε1 6 ε2, G1 6 G2, Ξ1 6 Ξ2, α := G1 ∈ Ξ1, α := G2 ∈ Ξ2 and ε1[Ĝ1, α̂1]
is defined, then ε1[Ĝ1, α̂1] 6 ε2[Ĝ2, α̂2], where α̂1 = liftΞ1

(α), α̂2 = liftΞ2
(α), Ĝ1 = liftΞ1

(G1) and

Ĝ2 = liftΞ2
(G2).

Proof. Note that α̂1 6 α̂2 and Ĝ1 6 Ĝ2 by Proposition A.170. Suppose that ε1 = 〈∃X.E,∃X.E′〉
and ε2 = 〈∃X.E′′, ∃X.E′′′〉 (since ε1[Ĝ1, α̂] is defined). We are required to prove that

ε1[Ĝ1, α̂1] = 〈E[Ĝ1/X], E′[α̂1/X]〉 6 〈E′′[Ĝ2/X], E′′′[α̂2/X]〉 = ε2[Ĝ2, α̂2]

Thus, we are required to prove that E[Ĝ1/X] 6 E′′[Ĝ2/X] and E′[α̂1/X] 6 E′′′[α̂2/X]. Since
ε1 6 ε2, we know that 〈∃X.E, ∃X.E′〉 6 〈∃X.E′′, ∃X.E′′′〉, and therefore E 6 E′′ and E′ 6 E′′′.
By Proposition A.174 and α̂1 6 α̂2 and Ĝ1 6 Ĝ2, we know that E[Ĝ1/X] 6 E′′[Ĝ2/X] and
E′[α̂1/X] 6 E′′′[α̂2/X]. Therefore the result holds.

Proposition A.168 (Monotonicity of Evidence Transitivity) If ε1 6 ε2, ε3 6 ε4, and ε1 # ε3 is
defined, then ε1 # ε3 6 ε2 # ε4.

290

Proof. By definition of consistent transitivity for = and the definition of precision. We only take
into account the existential type case.

Case ([∃]- εi = 〈∃X.Ei,∃X.E′i〉). By the definition of 6, we know that 〈E1, E
′
1〉 6 〈E2, E

′
2〉 and

〈E3, E
′
3〉 6 〈E4, E

′
4〉. By the definition of transitivity we know that 〈∃X.E1,∃X.E′1〉#〈∃X.E3,∃X.E′3〉 =

〈∃X.E5,∃X.E′5〉 and 〈∃X.E2,∃X.E′2〉#〈∃X.E4,∃X.E′4〉 = 〈∃X.E6,∃X.E′6〉, where 〈E5, E
′
5〉 = 〈E1, E

′
1〉#

〈E3, E
′
3〉 and 〈E6, E

′
6〉 = 〈E2, E

′
2〉 # 〈E4, E

′
4〉. Therefore, we are required to prove that 〈E5, E

′
5〉 6

〈E6, E
′
6〉. But the result follows immediately by the induction hypothesis on 〈E1, E

′
1〉 6 〈E2, E

′
2〉

and 〈E3, E
′
3〉 6 〈E4, E

′
4〉.

Proposition A.169 (Monotonicity of Evidence Substitution) If Ω ` Ξ1.s
∗
1 : G∗1 6 Ξ2.s

∗
2 : G∗2 and

Ξ1 6 Ξ2, then Ω[α/X] ` Ξ1 .s
∗
1[α̂1/X] : G∗1[α/X] 6 Ξ2 .s

∗
2[α̂2/X] : G∗2[α/X], where α := G∗∗1 ∈ Ξ1,

α := G∗∗2 ∈ Ξ2, α̂1 = liftΞ1
(α) and α̂2 = liftΞ2

(α).

Proof. We follow by induction on Ω ` Ξ1 . s
∗
1 : G∗1 6 Ξ2 . s

∗
2 : G∗2. We avoid the notation

Ω ` Ξ1 . s
∗
1 : G∗1[α/X] 6 Ξ2 . s

∗
2 : G∗2[α/X], and use s∗1 6 s

∗
2 instead, for simplicity, when the typing

environments are not relevant. We only take into account the cases related to existential types.

Case (packu). We know that

(6packuε)
G′1 6 G

′
2 Ω ` Ξ1 . v1 : G1[G′1/Y] 6 Ξ2 . v2 : G2[G′2/Y] ∃Y.G1 v ∃Y.G2

Ω ` Ξ1 . packu〈G′1, v1〉 as ∃Y.G1 : ∃Y.G1 6 Ξ2 . packu〈G′2, v2〉 as ∃Y.G2 : ∃Y.G2

We are required to show

Ω[α/X] ` Ξ1 . packu〈G′1[α/X], v1[α̂1/X]〉 as ∃Y.G1[α/X] :6 Ξ2. :

packu〈G′2, v2[α̂1/X]〉 as ∃Y.G2 : ∃Y.G1[α/X] 6 ∃Y.G2[α/X]

Note that G′1[α/X] 6 G′2[α/X] by Proposition A.174 and ∃Y.G1[α/X] v ∃Y.G2[α/X] by Propo-
sition A.173. Therefore, we are required to prove Ω[α/X] ` Ξ1 . (v1[α̂1/X]) : G1[G′1/Y][α/X] 6
Ξ2 . (v2[α̂2/X]) : G2[G′2/Y][α/X]. But the results follows immediately by the induction hypothesis
on Ω ` Ξ1 . v1 : G1[G′1/Y] 6 Ξ2 . v2 : G2[G′2/Y].

Case (pack). We know that

(6packε)
G′1 6 G

′
2 Ω ` Ξ1 . t1 : G1[G′1/Y] 6 Ξ2 . t2 : G2[G′2/Y] ∃Y.G1 6 ∃Y.G2

Ω ` Ξ1 . pack〈G′1, t1〉 as ∃Y.G1 : ∃Y.G1 6 Ξ2 . pack〈G′2, t2〉 as ∃Y.G2 : ∃Y.G2

We are required to show

Ω[α/X] ` Ξ1 . pack〈G′1[α/X], t1[α̂1/X]〉 as ∃Y.G1[α/X] :6 Ξ2. :

pack〈G′2, t2[α̂1/X]〉 as ∃Y.G2 : ∃Y.G1[α/X] 6 ∃Y.G2[α/X]

Note that G′1[α/X] 6 G′2[α/X] by Proposition A.174 and ∃Y.G1[α/X] 6 ∃Y.G2[α/X] by Propo-
sition A.174. Therefore, we are required to prove Ω[α/X] ` Ξ1 . (t1[α̂1/X]) : G1[G′1/Y][α/X] 6
Ξ2 . (t2[α̂2/X]) : G2[G′2/Y][α/X]. But the results follows immediately by the induction hypothesis
on Ω ` Ξ1 . t1 : G1[G′1/Y] 6 Ξ2 . t2 : G2[G′2/Y].

291

Case (unpack). We know that

(6unpackε)
Ω ` Ξ1 . t1 : ∃Y.G1 6 Ξ2 . t2 : ∃Y.G2 Ω, x : G1 v G2 ` Ξ1 . t

′
1 : G′1 6 Ξ2 . t

′
2 : G′2

Ω ` Ξ1 . unpack〈Y, x〉 = t1 in t′1 : G′1 6 Ξ2 . unpack〈Y, x〉 = t2 in t′2 : G′2

We are required to show

Ω[α/X] ` Ξ1.unpack〈Y, x〉 = t1[α̂1/X] in t′1[α̂1/X] : G′1[α/X] 6 Ξ2.unpack〈Y, x〉 = t2[α̂2/X] in t′2[α̂2/X] : G′2[α/X]

Therefore, we are required to prove Ω[α/X] ` Ξ1 . (t1[α̂1/X]) : ∃Y.G1[α/X] 6 Ξ2 . (t2[α̂2/X]) :
∃Y.G2[α/X] and Ω[α/X], x : G1[α/X] v G2[α/X] ` Ξ1 . (t′1[α̂1/X]) : G′1[α/X] 6 Ξ2 . (t′2[α̂2/X]) :
G′2[α/X]. But the results follows immediately by the induction hypothesis on Ω ` Ξ1 . t1 : ∃Y.G1 6
Ξ2 . t2 : ∃Y.G2 and Ω, x : G1 v G2 ` Ξ1 . t

′
1 : G′1 6 Ξ2 . t

′
2 : G′2.

Proposition A.170 (Lift Environment Precision) If G1 6 G2 and Ξ1 6 Ξ2, then Ĝ1 6 Ĝ2, where
Ĝ1 = liftΞ1

(G1) and Ĝ2 = liftΞ2
(G2).

Proof. Remember that

liftΞ(G) =

liftΞ(G1)→ liftΞ(G2) G = G1 → G2

∀X.liftΞ(G1) G = ∀X.G1

∃X.liftΞ(G1) G = ∃X.G1

liftΞ(G1)× liftΞ(G2) G = G1 ×G2

αliftΞ (Ξ(α)) G = α

G otherwise

The prove follows by the definition of Ĝ1 = liftΞ1
(G1) and induction on the structure of the

type.

Case (Gi = ∃X.G′i). We know that G′1 6 G′2. We are required to prove that ∃X.liftΞ1
(G′1) 6

∃X.liftΞ2
(G′2), or what is the same liftΞ1

(G′1) 6 liftΞ2
(G′2). By the induction hypothesis on G′1 6 G

′
2

and Ξ1 6 Ξ2 the result follows immediately.

Proposition A.171 If G∗1 6 G
∗
2 then G∗1 v G∗2.

Proof. Examining 6 rules.

Case (∃X.G1 6 ∃X.G2). We know that

G1 6 G2

∃X.G1 6 ∃X.G2

By the induction hypothesis on G1 6 G2, we know that G1 v G2. We are required to prove that
∃X.G1 v ∃X.G2, which follows immediately by the rule

G1 v G2

∃X.G1 v ∃X.G2

292

Proposition A.172 If G∗1 v G∗2 and G′1 v G′2 then G∗1[G′1/X] v G∗2[G′2/X].

Proof. Follow by induction on G∗1 v G∗2. We only take into account the existential type case.

Case (∃X.G1 v ∃X.G2). We know that

G1 v G2

∃X.G1 v ∃X.G2

By the definition of v, we know that G1 v G2. We are required to prove that

(∃X.G1)[G′1/X] = (∃X.G1[G′1/X]) v (∃X.G2[G′2/X]) = (∃X.G2)[G′2/X]

Or what is the same that (G1[G′1/X]) v (G2[G′2/X]). But the result follows immediately by the
induction hypothesis on G1 v G2.

Proposition A.173 If G1 v G2 and G′1 6 G
′
2 then G1[G′1/X] v G2[G′2/X].

Proof. By Proposition A.171 and Proposition A.172 the results follows immediately.

Proposition A.174 If G1 6 G2 and G′1 6 G
′
2 then G1[G′1/X] 6 G2[G′2/X].

Proof. Straightforward induction on G1 6 G2. Very similar to Proposition A.172.

Proposition A.175 If v1 6 t2 then t2 = v2.

Proof. Exploring 6 rules.

Proposition A.176 If Ξ1 ` t1 6 Ξ2 ` t2 and Ξ1 . t1 7−→ Ξ′1 . t
′
1, then Ξ2 . t2 7−→ Ξ′2 . t

′
2 and

Ξ′1 ` t′1 6 Ξ′2 ` t′2.

Proof. If Ξ1 ` t1 6 Ξ2 ` t2, we know that ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, Ξ1 6 Ξ2, Ξ1 ` t1 : G1

and Ξ2 ` t2 : G2. We avoid the notation ` Ξ1 . t1 : G1 6 Ξ2 . t2 : G2, and use t1 6 t2 instead, for
simplicity, when the typing environments are not relevant.

By induction on reduction Ξ1 . t1 7−→ Ξ′1 . t
′
1. We only take into account the existential unpack

case.

Case (Ξ1 . unpack〈X,x〉 = t11 in t12 7−→ Ξ′1 . unpack〈X,x〉 = t′11 in t12). By inspection of 6, t2 =
unpack〈X,x〉 = t21 in t22, where t11 6 t21 and t12 6 t22. By induction hypothesis on Ξ1 . t11 7−→ Ξ′1 . t

′
11,

we know that Ξ2 . t21 7−→ Ξ′2 . t
′
21, where Ξ′1 ` t′11 6 Ξ′2 ` t′21. Then, by 6, we know that

Ξ′1 ` unpack〈X,x〉 = t′11 in t12 6 Ξ′2 ` unpack〈X,x〉 = t′21 in t22 and the result holds.

293

G 6 G Strict type precision

G1 6 G2

∃X.G1 6 ∃X.G2

Ω ` Ξ1 . s : G 6 Ξ2 . s : G Strict term precision (for conciseness, s ranges over both t and u)

(6packuε)
G′1 6 G

′
2 Ω ` Ξ1 . v1 : G1[G′1/X] 6 Ξ2 . v2 : G2[G′2/X] ∃X.G1 v ∃X.G2

Ω ` Ξ1 . packu〈G′1, v1〉 as ∃X.G1 : ∃X.G1 6 Ξ2 . packu〈G′2, v2〉 as ∃X.G2 : ∃X.G2

(6packε)
G′1 6 G

′
2 Ω ` Ξ1 . t1 : G1[G′1/X] 6 Ξ2 . t2 : G2[G′2/X] ∃X.G1 6 ∃X.G2

Ω ` Ξ1 . pack〈G′1, t1〉 as ∃X.G1 : ∃X.G1 6 Ξ2 . pack〈G′2, t2〉 as ∃X.G2 : ∃X.G2

(6unpackε)
Ω ` Ξ1 . t1 : ∃X.G1 6 Ξ2 . t2 : ∃X.G2 Ω, x : G1 v G2 ` Ξ1 . t

′
1 : G′1 6 Ξ2 . t

′
2 : G′2

Ω ` Ξ1 . unpack〈X,x〉 = t1 in t′1 : G′1 6 Ξ2 . unpack〈X,x〉 = t2 in t′2 : G′2

G _ G Type matching

? _ ∃X.?

Ω ` v : G 6v v : G Strict value precision

(6packu)
G′1 6 G

′
2 Ω ` v1 : G′′1 6v v2 : G′′2 ∃X.G1 v ∃X.G2 G′′1pullbackG1[G′1/X] 6 G′′2pullbackG2[G′2/X]

Ω ` pack〈G′1, v1〉 as ∃X.G1 : ∃X.G1 6v pack〈G′2, v2〉 as ∃X.G2 : ∃X.G2

Ω ` t : G 6 t : G Strict term precision

(6pack)
G′1 6 G

′
2 Ω ` t1 : G′′1 6 t2 : G′′2 ∃X.G1 6 ∃X.G2 G′′1pullbackG1[G′1/X] 6 G′′2pullbackG2[G′2/X]

Ω ` pack〈G′1, t1〉 as ∃X.G1 : ∃X.G1 6 pack〈G′2, t2〉 as ∃X.G2 : ∃X.G2

(6unpack)
Ω ` t1 : G1 6 t2 : G2 Ω, x : schm]

e(G1) v schm]
e(G2) ` t′1 : G′1 6 t

′
2 : G′2

Ω ` unpack〈X,x〉 = t1 in t′1 : G′1 6 unpack〈X,x〉 = t2 in t′2 : G′2

Figure A.8: GSF∃ε and GSF∃: Strict term precision

294

Annex B

Plausible sealing

This chapter describes all the definitions and demonstrations omitted in the Plausible Sealing part.

B.1 The Evidence-Based Language F?
ε

This section presents the complete definition of F?
ε, the type safety proof, and some definitions such

as type substitution and well-formedness.

?δ [G′/X] = ?δ[G′/X]

B[G′/X] = B

X[G′/X] = G′

Y[G′/X] = Y

G1→G1[G′/X] = G1[G′/X]→G2[G′/X]

G1×G1[G′/X] = G1[G′/X]×G2[G′/X]

∀Y.G[G′/X] = ∀Y.G[G′/X]

Substitution of a type variable in δ works as follows:

·[G/X] = ·
(δ,Y : F)[G/X] = δ[G/X],Y : F[G/X]

Definition B.1 (Well-formedness of types)

∆ ` B

X ∈∆

∆ ` X

∆ ` G1 ∆ ` G2

∆ ` G1→G2

∆ ` G1 ∆ ` G2

∆ ` G1×G2

∆,X ` G

∆ ` ∀X.G
∆ ` δ

∆ ` ?δ

295

X ∈ TypeVar, G ∈ GType, ε ∈ Evidence, t ∈ Term, ∆ ⊂ TypeVar, Γ ∈ Var
fin
⇀ GType

G ::= B | X | G→G | G×G | ∀X.G | ?δ (gradual types)
F ::= B | X (instantiation types)
δ ::= δ,X : F | ∅ (instantiation environment)
t ::= v | x | t t | 〈t, t〉 | πi(t) | t [F] | ε t :: G (terms)
v ::= ε u :: G (values)
u ::= b | λx : G.t | 〈u,u〉 | ΛX.t (raw values)
s ::= u | t

∆; Γ ` s : G Term typing

Gb
θ(b) = B ∆ ` Γ

∆; Γ ` b : B
Gλ

∆; Γ,x : G1 ` t : G2

∆; Γ ` λx : G1.t : G1→G2

G×
∆; Γ ` s1 : G1 ∆; Γ ` s2 : G2

∆; Γ ` 〈s1, s2〉 : G1×G2
GΛ

∆,X; Γ ` t : G ∆ ` Γ

∆; Γ ` ΛX.t : ∀X.G

Gx
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G
Gasc

∆; Γ ` s : G′ ∆ ` G ε : G′ ∼ G

∆; Γ ` ε s :: G : G

Gapp
∆; Γ ` t1 : G1→G2 ∆; Γ ` t2 : G1

∆; Γ ` t1 t2 : G2
Gpairi

∆; Γ ` t : G1×G2

∆; Γ ` πi(t) : Gi

GappG
∆; Γ ` t : ∀X.G ∆ ` F

∆; Γ ` t [F] : G[F/X]

t −−→ t or error Notion of reduction

(Rasc) ε2 (ε1 u :: G1) :: G2 −−→

{
ε u :: G2 if ε = ε1 # ε2
error otherwise

(Rapp)
(ε1 (λx : G11.t) :: G1→G2)

(ε2 u :: G1)
−−→

{
cod(ε1) (t[(ε u :: G11)/x]) :: G2 if ε = ε2 # dom(ε1)

error otherwise

(Rpair) 〈ε1 u1 :: G1, ε2 u2 :: G2〉 −−→ (ε1× ε2) 〈u1,u2〉 :: G1×G2

(Rproji) πi(ε 〈u1,u2〉 :: G1×G2) −−→ pi(ε) ui :: Gi

(RappG) (ε (ΛX.t) :: ∀X.G) [F] −−→ (schm(ε) t :: G)[X 7→ F]

t 7−→ t or error Evaluation frames and reduction

f ::= ε� :: G | � t | v � | 〈�, t〉 | 〈v,�〉 | πi(�) | � [F]

R→
t −−→ t′

t 7−→ t′
Rf

t 7−→ t′

f [t] 7−→ f [t′]
Rerr

t −−→ error

t 7−→ error
Rferr

t 7−→ error

f [t] 7−→ error

Figure B.1: F?
ε: Syntax, Static and Dynamic Semantics.

296

Definition B.2 (Well-formedness of δ)

∆ ` ·
∆ ` δ ∆ ` F

∆ ` δ,X : F

Definition B.3 (Well-formedness of Γ)

∆ ` ·
∆ ` Γ ∆ ` G

∆ ` Γ,x : G

Definition B.4 (Well-formedness of F with respect to δ)

δ ` B

X : X ∈ δ

δ ` X

Lemma B.5 (Canonical forms) Consider a value ∆; Γ ` v : G. Then v = ε u :: G , with ∆; Γ `
u : G′ and ε : G′ ∼ G. Furthermore:

1. If G = B, then v = εB b :: B, with ∆; Γ ` b : B and εB : B ∼ B.

2. If G = G1→G2, then v = ε (λx : G′1.t) :: G1→G2, with ∆; Γ,x : G′1 ` t : G′2 and
ε : G′1→G′2 ∼ G1→G2.

3. If G = ∀X.G1, then v = ε (ΛX.t)::∀X.G1, with ∆,X; Γ ` t : G′1 and ε : ∀X.G′1 ∼ ∀X.G1.

4. If G = G1×G2, then v = ε 〈u1,u2〉 :: G1×G2, with ∆; Γ ` u1 : G′1, ∆; Γ ` u2 : G′2 and
ε : G′1×G′2 ∼ G1×G2.

Proof. By direct inspection of the formation rules of evidence augmented terms.

Lemma B.6 If ε1 : G′1 ∼ G1 and ε2 : G′2 ∼ G2, then ε1× ε2 : G′1×G′2 ∼ G1×G2.

Proof. By definition of the judgment ε1× ε2 : G′1×G′2 ∼ G1×G2 and the definition of evidences.

Lemma B.7 If ε : G′1×G′2 ∼ G1×G2 then pi(ε) : G′i ∼ Gi.

Proof. By definition of judgment pi(ε) : G′i ∼ Gi and the definition of evidences.

Lemma B.8 If ε : G′1→G′2 ∼ G1→G2 then dom(ε) : G1 ∼ G′1 and cod(ε) : G′2 ∼ G2.

Proof. By definition of judgments dom(ε) : G1 ∼ G′1 and cod(ε) : G′2 ∼ G2, and the definition
of evidences.

297

Lemma B.9 If ε : ∀X.G′ ∼ ∀X.G then schm(ε) : G′ ∼ G.

Proof. By definition of judgments schm(ε) : G′ ∼ G.

[Progress] If ` t : G then t is a value v, or t 7−→ t′, or t 7−→ error.

Proof. By straightforward induction on typing derivations. The variable case cannot occur (be-
cause t is closed). The cases for lambda-abstractions, type-abstraction, base values and pairs are
immediate, since they are values. The remaining cases are more interesting.

Case. t = t1 t2, ` t1 : G11→G12, ` t2 : G11 and G = G12. By the induction hypothesis, either
t1 is a value, it reduces to error (t1 7−→ error) or it can make a step of evaluation (t1 7−→ t′1);
likewise t2. If t1 can take a step, then rule Rf applies to t. If t1 reduces to error, then rule Rferr
applies to t. If t1 is a value and t2 can take a step, then rule Rf applies. If t1 is a value and t2

reduces to error, then rule Rferr applies. Finally, if both t1 and t2 are values, then the canonical
forms Lemma B.5 tells us that t1 has the form ε (λx : G′1.t

′′
1) :: G11→G12 and t2 has the form

ε′ u :: G11; so rule (Rapp) applies to t . Therefore, t1 t2 −−→ t′′, for some t′′, or t1 t2 −−→ error;
so rule R→ or Rerr applies to t, respectively.

Case. t = 〈t1, t2〉, ` t1 : G1, ` t2 : G2 and G = G1×G2. By the induction hypothesis, either
t1 is a value, it reduces to error (t1 7−→ error) or it can make a step of evaluation (t1 7−→ t′1);
likewise t2. If t1 can take a step, then rule Rf applies to t. If t1 reduces to error, then rule Rferr
applies to t. If t1 is a value and t2 can take a step, then rule Rf applies. If t1 is a value and t2

reduces to error, then rule Rferr applies. Finally, if both t1 and t2 are values, then the canonical
forms Lemma B.5 tells us that t1 has the form ε′1 u1 :: G1 and t2 has the form ε′2 u2 :: G2; so rule
(Rpair) applies to t . Therefore, 〈t1, t2〉 −−→ t′′, for some t′′, so rule R→ applies to t.

Case. t = ε t1 :: G and ` t1 : G′. By the induction hypothesis, either t1 is a value, it reduces to
error (t1 7−→ error) or it can make a step of evaluation (t1 7−→ t′1). If t1 can take a step, then
rule Rf applies to t. If t1 reduces to error, then rule Rferr applies to t. Finally, if t1 is a value,
then the canonical forms Lemma B.5 tells us that t1 has the form ε′ u :: G′; so rule (Rasc) applies
to t. Therefore, ε t1 :: G −−→ t′′, for some t′′, or ε t1 :: G −−→ error; so rule R→ or Rerr applies
to t, respectively.

Case. t = πi(t1), ` t1 : G1×G2 and G = Gi. By the induction hypothesis, either t1 is a value,
it reduces to error (t1 7−→ error) or it can make a step of evaluation (t1 7−→ t′1). If t1 can take a
step, then rule Rf applies to t. If t1 reduces to error, then rule Rferr applies to t. Finally, if t1 is
a value, then the canonical forms Lemma B.5 tells us that t1 has the form ε 〈u1,u2〉 :: G1×G2;
so rule (Rproji) applies to t. Therefore, πi(t1) −−→ t′′, for some t′′; so rule R→ applies to t.

Case. t = t1 [F], ` t1 : ∀X.G1 and G = G1[X 7→ F]. By the induction hypothesis, either t1 is a
value, it reduces to error (t1 7−→ error) or it can make a step of evaluation (t1 7−→ t′1). If t1 can
take a step, then rule Rf applies to t. If t1 reduces to error, then rule Rferr applies to t. Finally, if
t1 is a value, then the canonical forms Lemma B.5 tells us that t1 has the form εΛX.t′′1 :: ∀X.G1;
so rule (RappG) applies to t. Therefore, t1 [F] −−→ t′′, for some t′′; so rule R→ applies to t.

[Preservation −−→] If ` t : G and t −−→ t′ then ` t′ : G.

298

Proof. By straightforward induction on typing derivations. The variable case cannot occur (be-
cause t is closed). The cases for lambda-abstractions, type-abstraction, base values and pairs cannot
also occur, since they are values. The remaining cases are more interesting.

Case. t = t1 t2, ` t1 : G11→G12, ` t2 : G11 and G = G12. From the evaluation rules, we
see that there is only one rules by which t −−→ t′ can be derived: (Rapp). Therefore, t1 has the
form ε (λx : G′1.t

′′
1) :: G11→G12, t2 has the form ε′ u :: G11 and t′ = cod(ε) (t′′1[(ε′ # dom(ε) u ::

G′1)/x]) :: G12. By Lemma B.8, we get that dom(ε) : G11 ∼ G′1 and cod(ε) : G′2 ∼ G12. Let
us define v = (ε′ # dom(ε) u :: G′1). Since ` u : G′′1 and ε′ # dom(ε) : G′′1 ∼ G′1, by rule Gasc,
we get that ` v : G′1. Since ` v : G′1 and x : G′1 ` t′′1 : G12, then ` t′′1[v/x] : G12. Since
cod(ε) : G′2 ∼ G12, by rule Gasc, we get that ` t′ : G12. Therefore, the result holds.

Case. t = 〈t1, t2〉, ` t1 : G1, ` t2 : G2 and G = G1×G2. From the evaluation rules, we see
that there is only one rules by which t −−→ t′ can be derived: (Rpair). Therefore, t1 has the form
ε1 u1 :: G1, t2 has the form ε2 u2 :: G2 and t′ = (ε1× ε2) 〈u1,u2〉 :: G1×G2. By Lemma B.6,
we get that ε1× ε2 : G′1×G′2 ∼ G1×G2. By rules Gasc and G×, we get that ` t′ : G1×G2.
Therefore, the result holds.

Case. t = ε t1 :: G and ` t1 : G′. From the evaluation rules, we see that there is only one rules by
which t −−→ t′ can be derived: (Rasc). Therefore, t1 has the form ε′ u :: G′ and t′ = (ε′ # ε) u :: G.
Since ε′ # ε : G′ ∼ G, by rule Gasc, we get that ` t′ : G. Therefore, the result holds.

Case. t = πi(t1), ` t1 : G1×G2 and G = Gi. From the evaluation rules, we see that there is
only one rules by which t −−→ t′ can be derived: (Rproji). Therefore, t1 has the form ε 〈u1,u2〉 ::
G1×G2 and t′ = pi(ε) ui :: Gi. By Lemma B.7, we get that pi(ε) : G′i ∼ Gi. Since pi(ε) : G′i ∼
Gi, by rule Gasc, we get that ` t′ : G. Therefore, the result holds.

Case. t = t1 [F], ` t1 : ∀X.G1 and G = G1[X 7→ F]. From the evaluation rules, we see that
there is only one rules by which t −−→ t′ can be derived: (RappG). Therefore, t1 has the form
εΛX.t′′1 :: ∀X.G1 and t′ = (schm(ε)[X 7→ F] t′′1[X 7→ F] :: G1[X 7→ F]). By Lemma B.9, we get
that schm(ε) : G′1 ∼ G1. By Lemma B.55, we get that ∆; Γ ` t′′1[X 7→ F] : G′1[X 7→ F]. By
Lemma B.58, we get that schm(ε)[X 7→ F] : G′1[X 7→ F] ∼ G1[X 7→ F]. By rule Gasc, we get that
` t′ : G. Therefore, the result holds.

[Preservation] If ` t : G and t 7−→ t′ then ` t′ : G.

Proof. By straightforward induction on t 7−→ t′. The Rerr and Rferr cases cannot occur because
error is not a term. The remaining cases are more interesting.

Case (R→). t −−→ t′. Directly by B.1.

Case (Rf). t = f [t1] and t1 7−→ t′1. We know that ` f [t1] : G and ` t1 : G′, where f : G′ −→ G.
Then, by the induction hypothesis on ` t1 : G′, we get that ` t′1 : G. THerefore, ` f [t′1] : G and
the result holds.

Lemma B.10 (Type Safety) If ` t : G then either t
∗7−→ v with ` v : G, t

∗7−→ error, or t
diverges.

Proof. Direct by B.1 and B.1.

299

B.2 Evidence in F?
ε

This section presents definitions and proof related to the evidence.

B.2.1 Proof Relevant Gradual Type Precision

Lemma B.11 (Inversion) Suppose c : G1 v G2.

1. If G2 = B, then G1 = B and c = B.

2. If G2 = X, then G1 = X and c = X.

3. If G2 = G′2→G′′2, then G1 = G′1→G′′1 and c = c′→c′′.

4. If G2 = G′2×G′′2, then G1 = G′1×G′′1 and c = c′× c′′.

5. If G2 = ∀X.G′2, then G1 = ∀X.G′1 and c = ∀X.c′.

6. If G2 = ?δ, then one of the following hold:

• G1 = B and c = injB.

• G1 = X and c = injX and X : X ∈ δ.

• G1 = B, c = injX and X : B ∈ δ.

• G1 = Y, c = injX, X 6= Y, X : Y ∈ δ and Y : Y ∈ δ.

• G1 = G′1→G′′1 and c = inj→(c′→c′′).

• G1 = G′1×G′′1 and c = inj×(c′× c′′).

• G1 = ∀X.G′1 and c = inj∀(∀X.c′).
• G1 = ?δ′, c = inj? and δ′ ⊆ δ.

Proof. Straightforward by Definition of c : G1 v G2.

Lemma B.12 (Inversion of the type precision transitivity) Suppose c1 : G1 v G2, c2 : G2 v G3,
c3 : G1 v G3 and c1;c2 = c3.

1. If c3 = B, then G1 = G2 = G3 = B and c1 = c2 = B.

2. If c3 = X, then G1 = G2 = G3 = X and c1 = c2 = X.

3. If c3 = ∀X.c′3, then G1 = ∀X.G′1, G2 = ∀X.G′2, G3 = ∀X.G′3, c1 = ∀X.c′1, c2 = ∀X.c′2
and c′1;c′2 = c′3.

4. If c3 = c′3 −→ c′′3, then G1 = G′1 −→ G′′1, G2 = G′2 −→ G′′2, G3 = G′3 −→ G′′3,
c1 = c′1 −→ c′′1, c2 = c′2 −→ c′′2, c′1;c′2 = c′3 and c′′1;c′′2 = c′′3.

5. If c3 = injB, then one of the following hold:

• G1 = G2 = B, G3 = ?δ, c1 = B and c2 = injB, or

300

• G1 = B, G2 = ?δ, G3 = ?δ′, δ ⊆ δ′, c1 = injB and c2 = inj?.

6. If c3 = injX, then one of the following hold:

• G1 = G2 = F, G3 = ?δ, X : F ∈ δ, c1 = F and c2 = injX, or

• G1 = F, G2 = ?δ, X : F ∈ δ, G3 = ?δ′, δ ⊆ δ′, c1 = injX and c2 = inj?.

7. If c3 = inj∀(c), then c = ∀X.c′3 and one of the following hold:

• G1 = ∀X.G′1, G2 = ∀X.G′2, G3 = ?δ, c1 = ∀X.c′1, c2 = inj∀(∀X.c′2) and c′1;c′2 = c′3,
or

• G1 = ∀X.G′1, G2 = ?δ, G3 = ?δ′, δ ⊆ δ′, c1 = inj∀(∀X.c′3) and c2 = inj?.

8. If c3 = inj→(c), then c = c′3 −→ c′′3 and one of the following hold:

• G1 = G′1 −→ G′1, G2 = G′2 −→ G′2, G3 = ?δ, c1 = c′1 −→ c′′1, c2 = inj→(c′2 −→ c′′2),
c′1;c′2 = c′3 and c′′1;c′′2 = c′′3, or

• G1 = G′1 −→ G′′1, G2 = ?δ, G3 = ?δ′, δ ⊆ δ′, c1 = inj→(c′3 −→ c′′3) and c2 = inj?.

Proof. Straightforward by Definition of c1;c2 = c3.

Lemma B.13 (Associativity of Precision Transitivity) For all c4 we get that c1;(c2;c3) = c4 iff
(c1;c2);c3 = c4.

Proof. We proceed by induction on c4.

• If c4 = B, then by Lemma B.12, we know that c1 = B, c2 = B and c3 = B. Thus, we know
that (B;B);B = B and B;(B;B) = B. Therefore, the result holds.

• If c4 = X, then by Lemma B.12, we know that c1 = X, c2 = X and c3 = X. Thus, we know
that (X;X);X = X and X;(X;X) = X. Therefore, the result holds.

• If c4 = ∀X.c′4, then by Lemma B.12, we know that c1 = ∀X.c1, c2 = ∀X.c′2 and c3 = ∀X.c′3.
If (∀X.c1;∀X.c′2);∀X.c′3 = ∀X.c′4, we know by inspecting the rules of gradual type precision
transitivity that

– there exists c such that ∀X.c1;∀X.c′2 = c, by Definition B.21.

– c = ∀X.c′ and c1;c′2 = c′.

– ∀X.c′;∀X.c′3 = ∀X.c′4 and c′;c′3 = c′4.

– there exists c′′ such that ∀X.c′2;∀X.c′3 = c′′, by Definition B.21.

– c′′ = ∀X.c′′′ and c′2;c′3 = c′′′.

– By the induction hypothesis on c′4, with (c1;c′2);c′3 = c′4, we know that c1;(c′2;c′3) = c′4.

– Thus, we know that ∀X.c1;(∀X.c′2;∀X.c′3) = ∀X.c′4.

In a similar way, if ∀X.c1;(∀X.c′2;∀X.c′3) = ∀X.c′4, we know by inspecting the rules of gradual
type precision transitivity that

– there exists c such that ∀X.c′2;∀X.c′3 = c, by Definition B.21.

301

– c = ∀X.c′ and c′2;c′3 = c′.

– ∀X.c1;∀X.c′ = ∀X.c′4 and c1;c′ = c′4.

– there exists c′′ such that ∀X.c1;∀X.c′2 = c′′, by Definition B.21.

– c′′ = ∀X.c′′′ and c1;c′2 = c′′′.

– By the induction hypothesis on c′4, with c1;(c′2;c′3) = c′4, we know that (c1;c′2);c′3 = c′4.

– Thus, we know that (∀X.c1;∀X.c′2);∀X.c′3 = ∀X.c′4.

Therefore, the result holds.

• If c4 = c′4 −→ c′′4, then by Lemma B.12, we know that c1 = c1 −→ c′′1, c2 = c′2 → c′′2 and
c3 = c′3 −→ c′′3. If (c1 −→ c′′1;c′2 −→ c′′2);c′3 −→ c′′3 = c′4 −→ c′′4, we know by inspecting the
rules of gradual type precision transitivity that

– there exists c such that c1 −→ c′′1;c′2 −→ c′′2 = c, by Definition B.21.

– c = c11 −→ c21, c1;c′2 = c11 and c′′1;c′′2 = c21.

– c11 −→ c21;c′3 −→ c′′3 = c′4 −→ c′′4, c11;c′3 = c′4 and c21;c′′3 = c′′4.

– there exists c′ such that c′2 −→ c′′2;c′3 −→ c′′3 = c′, by Definition B.21.

– c′ = c12 −→ c22, c′2;c′3 = c12 and c′′2;c′′3 = c22.

– By the induction hypothesis on c′4 and c′′4, with (c1;c′2);c′3 = c′4 and (c′′1;c′′2);c′′3 = c′′4,
we know that c1;(c′2;c′3) = c′4 and c′′1;(c′′2;c′′3) = c′′4.

– Thus, we know that c1 −→ c′′1;(c′2 −→ c′′2;c′3 −→ c′′3) = c′4 −→ c′′4.

In a similar way, if c1 −→ c′′1;(c′2 −→ c′′2;c′3 −→ c′′3) = c′4 −→ c′′4, we know by inspecting the
rules of gradual type precision transitivity that

– there exists c such that c′2 −→ c′′2;c′3 −→ c′′3 = c, by Definition B.21.

– c = c11 −→ c21, c′2;c′3 = c11 and c′′2;c′′3 = c21.

– c1 −→ c′′1;c11 −→ c21 = c′4 −→ c′′4, c1;c11 = c′4 and c′′1;c21 = c′′4.

– there exists c′ such that c1 −→ c′′1;c′2 −→ c′′2 = c′, by Definition B.21.

– c′ = c12 −→ c22, c1;c′2 = c12 and c′′1;c′′2 = c22.

– By the induction hypothesis on c′4 and c′′4 , with c1;(c′2;c′3) = c′4 and c′′1;(c′′2;c′′3) = c′′4,
we know that (c1;c′2);c′3 = c′4 and (c′′1;c′′2);c′′3 = c′′4.

– Thus, we know that (c1 −→ c′′1;c′2 −→ c′′2);c′3 −→ c′′3 = c′4 −→ c′′4.

Therefore, the result holds.

• If c4 = injB, then by Lemma B.12, we have the following cases.

– c1 = B, c2 = B and c3 = injB. Straightforward by looking at rules of gradual type
precision transitivity (B;B = B and B;injB = injB).

– c1 = B, c2 = injB and c3 = inj?. Straightforward by looking at rules of gradual type
precision transitivity (B;injB = injB and injB;inj? = injB).

– c1 = injB, c2 = inj? and c3 = inj?. Straightforward by looking at rules of gradual
type precision transitivity (injB;inj? = injB, inj?;inj? = inj? and injB;inj? =
injB).

302

• If c4 = injY, then by Lemma B.12, we have the following cases.

– c1 = F, c2 = F and c3 = injY. Straightforward by looking at rules of gradual type
precision transitivity (F;F = F and F;injY = injY).

– c1 = F, c2 = injY and c3 = inj?. Then the result follows because F;injY = injY and
injY;inj? = injY, and therefore, F;(injY;inj?) = injY and (F;injY);inj? = injY.

– c1 = injY, c2 = inj? and c3 = inj?. Then the result follows because injY;inj? =
injY and inj?;inj? = inj?, and therefore, injY;(inj?;inj?) = injY and (injY;inj?);inj? =
injY.

• If c4 = inj∀(c
′
4), then by Lemma B.12, we have the following cases.

– c1 = ∀X.c1, c2 = ∀X.c′2 and c3 = inj∀(∀X.c′3). If (∀X.c1;∀X.c′2);inj∀(∀X.c′3) =
∀X.inj∀(c′4), we know by inspecting the rules of gradual type precision transitivity that

∗ there exists c such that ∀X.c1;∀X.c′2 = c, by Definition B.21.

∗ c = ∀X.c′ and c1;c′2 = c′.

∗ ∀X.c′;inj∀(∀X.c′3) = inj∀(∀X.c′4) and c′;c′3 = c′4.

∗ there exists c′′ such that ∀X.c′2;inj∀(∀X.c′3) = c′′, by Definition B.21.

∗ c′′ = inj∀(∀X.c′′′) and c′2;c′3 = c′′′.

∗ By the induction hypothesis on c′4, with (c1;c′2);c′3 = c′4, we know that c1;(c′2;c′3) =
c′4.

∗ Thus, we know that ∀X.c1;(∀X.c′2;inj∀(∀X.c′3)) = inj∀(∀X.c′4).

In a similar way, if ∀X.c1;(∀X.c′2;inj∀(∀X.c′3)) = inj∀(∀X.c′4), we know by inspecting
the rules of gradual type precision transitivity that

∗ there exists c such that ∀X.c′2;inj∀(∀X.c′3) = c, by Definition B.21.

∗ c = inj∀(∀X.c′) and c′2;c′3 = c′.

∗ ∀X.c1;inj∀(∀X.c′) = inj∀(∀X.c′4) and c1;c′ = c′4.

∗ there exists c′′ such that ∀X.c1;∀X.c′2 = c′′, by Definition B.21.

∗ c′′ = ∀X.c′′′ and c1;c′2 = c′′′.

∗ By the induction hypothesis on c′4, with c1;(c′2;c′3) = c′4, we know that (c1;c′2);c′3 =
c′4.

∗ Thus, we know that (∀X.c1;∀X.c′2);inj∀(∀X.c′3) = inj∀(∀X.c′4).

Therefore, the result holds.

– c1 = ∀X.c1, c2 = inj∀(c
′
2) and c3 = inj?. Straightforward by looking at rules of grad-

ual type precision transitivity (∀X.c1;inj∀(c
′
2) = inj∀(c

′
4), inj∀(c

′
2);inj? = inj∀(c

′
2)

and inj∀(c
′
4);inj? = inj∀(c

′
4)).

– c1 = ∀X.c1, c2 = inj∀(c
′
2) and c3 = inj?. Straightforward by looking at rules of grad-

ual type precision transitivity (∀X.c1;inj∀(c
′
2) = inj∀(c

′
4), inj∀(c

′
2);inj? = inj∀(c

′
2)

and inj∀(c
′
4);inj? = inj∀(c

′
4)).

– c1 = inj∀(c1), c2 = inj? and c3 = inj?. Straightforward by looking at rules of
gradual type precision transitivity (inj∀(c1);inj? = inj∀(c1), inj?;inj? = inj? and
inj∀(c1);inj? = inj∀(c1), where c1 = c4).

• If c4 = inj→(c′4), then by Lemma B.12, we have the following cases.

303

– c1 = c1 −→ c′′1, c2 = c′2 −→ c′′2 and c3 = inj→(c′3 −→ c′′3). If (c1 → c′′1;c′2 →
c′′2);inj∀(c

′
3 −→ c′′3) = inj∀(c

′
4 −→ c′′4), we know by inspecting the rules of gradual

type precision transitivity that

∗ there exists c such that c1 −→ c′′1;c′2 −→ c′′2 = c, by Definition B.21.

∗ c = c11 −→ c12 and c1;c′2 = c11 and c′′1;c′′2 = c12.

∗ c11 −→ c12;inj→(c′3 −→ c′′3) = inj→(c′4 −→ c′′4), c11;c′3 = c′4 and c12;c′′3 = c′′4.

∗ there exists c′′ such that c′2 −→ c′′2;inj→(c′3 −→ c′′3) = c′′, by Definition B.21.

∗ c′′ = inj→(c21 −→ c22), c′2;c′3 = c21 and c′′2;c′′3 = c22.

∗ By the induction hypothesis on c′4 and c′′4, with (c1;c′2);c′3 = c′4 and (c′′1;c′′2);c′′3 = c′′4,
we know that c1;(c′2;c′3) = c′4 and c′′1;(c′′2;c′′3) = c′′4.

∗ Thus, we know that c1 −→ c′′1;(c′2 −→ c′′2;inj→(c′3 −→ c′′3)) = inj→(c′4 −→ c′′4).

In a similar way, if c1 −→ c′′1;(c′2 −→ c′′2;inj→(c′3 −→ c′′3)) = inj→(c′4 −→ c′′4), we
know by inspecting the rules of gradual type precision transitivity that

∗ there exists c such that c′2 −→ c′′2;inj→(c′3 −→ c′′3) = c, by Definition B.21.

∗ c = inj→(c11 −→ c12), c′2;c′3 = c11 and c′′2;c′′3 = c12.

∗ c1 −→ c′′1;inj→(c11 −→ c12) = inj→(c′4 −→ c′′4), c1;c11 = c′4 and c′′1;c12 = c′′4.

∗ there exists c′′ such that c1 −→ c′′1;c′2 −→ c′′2 = c′′, by Definition B.21.

∗ c′′ = c21 −→ c22, c1;c′2 = c21 and c′′1;c′′2 = c22.

∗ By the induction hypothesis on c′4 and c′′4, with c1;(c′2;c′3) = c′4 and c′′1;(c′′2;c′′3) = c′′4,
we know that (c1;c′2);c′3 = c′4 and (c′′1;c′′2);c′′3 = c′′4.

∗ Thus, we know that (c1 −→ c′′1;c′2 −→ c′′2);inj→(c′3 −→ c′′3) = inj→(c′4 −→ c′′4).

Therefore, the result holds.

– c1 = c1 −→ c′′1, c2 = inj→(c′2) and c3 = inj?. Straightforward by looking at rules of
gradual type precision transitivity (c1;c2 = c4, c2;inj? = c2 and c4;inj? = c4).

– c1 = inj→(c1), c2 = inj? and c3 = inj?. Straightforward by looking at rules of
gradual type precision transitivity (c1;inj? = c1, inj?;inj? = inj? and c1;inj? = c1,
where c1 = c4).

• If c4 = inj?, then by inspecting the rules of gradual type precision transitivity, we know that
c1 = inj?, c2 = inj? and c3 = inj?, and the result follows straightforwardly.

Lemma B.14 If

• c : G v G

• c′ : G v G′

then for all c′′ such that c;c′ = c′′, we get that c′′ = c′.

Proof. We proceed by induction on c : G v G. We have the following cases by inspecting the
syntax of c : G v G.

304

• If B : B v B, where c = B and G = B, then we have the following cases by inspecting the
type precision transitivity rules.

– If c′ = injB, G′ = ?δ and injB : B v ?δ , then we know that the only type precision
transitivity rule applicable is B;injB = injB, where c′′ = c′ = injB. Thus, the result
follows.

– If c′ = injX , G′ = ?δ , injX : B v ?δ and X : B ∈ δ, then we know that the only type
precision transitivity rule applicable is B;injX = injX , where c′′ = c′ = injX . Thus,
the result follows.

• If inj? : ?δ v ?δ , where c = inj? and G = ?δ , then we have the following cases by inspecting
the type precision transitivity rules.

– If c′ = inj?, G′ = ?δ′ , inj? : ?δ v ?δ′ and δ ⊆ δ′, then we know that the only type
precision transitivity rule applicable is inj?;inj? = inj?, where c′′ = c′ = inj?. Thus,
the result follows. Thus, the result follows.

• If ∀X.c1 : ∀X.G1 v ∀X.G1, where c = ∀X.c1, G = ∀X.G1 and c1 : G1 v G1, then we have
the following cases by inspecting the type precision transitivity rules.

– If c′ = ∀X.c1 and G′ = ∀X.G′1, where ∀X.c1 : ∀X.G1 v ∀X.G′1 and c1 : G1 v G′1,
then we apply the induction hypothesis on c1 : G1 v G1 with c1 : G1 v G′1, and we
get that for all c′′1 such that c1;c1 = c′′1, c1 = c′′1. Therefore, we get that for all ∀X.c′′1
such that ∀X.c1;∀X.c1 = ∀X.c′′1, ∀X.c1 = ∀X.c′′1. Thus, the result follows.

– If c′ = inj∀(∀X.c1) and G′ = ?δ , where inj∀(∀X.c1) : ∀X.G1 v ?δ , ∀X.c1 : ∀X.G1 v
∀X.?δ,X:X and c1 : G1 v ?δ,X:X , then we apply the induction hypothesis on c1 : G1 v
G1 with c1 : G1 v ?δ,X:X , and we get that for all c′′1 such that c1;c1 = c′′1, c1 = c′′1.
Therefore, we get that for all ∀X.c′′1 such that ∀X.c1;∀X.c1 = ∀X.c′′1, ∀X.c1 = ∀X.c′′1.
Hence, we get that for all inj∀(∀X.c′′1) such that ∀X.c1;inj∀(∀X.c1) = inj∀(∀X.c′′1),
inj∀(∀X.c1) = inj∀(∀X.c′′1). Thus, the result follows.

• If c1 −→ c2 : G1 −→ G2 v G1 −→ G2, where c = c1 −→ c2, G = G1 −→ G2,
c1 : G1 v G1 and c2 : G2 v G2, then we have the following cases by inspecting the type
precision transitivity rules.

– If c′ = c1 −→ c′2 and G′ = G′1 −→ G′2, where c1 −→ c′2 : G1 −→ G2 v G′1 −→
G′2, c1 : G1 v G′1 and c′2 : G2 v G′2, then we apply the induction hypothesis on
c1 : G1 v G1 and c2 : G2 v G2 with c1 : G1 v G′1 and c′2 : G2 v G′2, and we
get that for all c′′1 and c′′2 such that c1;c1 = c′′1 and c2;c′2 = c′′2, c1 = c′′1 and c′2 = c′′2.
Therefore, we get that for all c′′1 −→ c′′2 such that c1 −→ c2;c1 −→ c′2 = c′′1 −→ c′′2,
c1 −→ c′2 = c′′1 −→ c′′2. Thus, the result follows.

– If c′ = inj→(c1 −→ c′2) and G′ = ?δ , where inj→(c1 −→ c′2) : G1 −→ G2 v ?δ ,
c1 −→ c′2 : G1 −→ G2 v ?δ −→ ?δ , c1 : G1 v ?δ and c′2 : G2 v ?δ , then we
apply the induction hypothesis on c1 : G1 v G1 and c2 : G2 v G2 with c1 : G1 v
?δ and c′2 : G2 v ?δ , and we get that for all c′′1 and c′′2 such that c1;c1 = c′′1 and
c2;c′2 = c′′2, c1 = c′′1 and c′2 = c′′2. Therefore, we get that for all c′′1 −→ c′′2 such
that c1 −→ c2;c1 −→ c′2 = c′′1 −→ c′′2, c1 −→ c′2 = c′′1 −→ c′′2. Hence, we get that
for all inj→(c′′1 −→ c′′2) such that c1 −→ c2;inj→(c1 −→ c′2) = inj→(c′′1 −→ c′′2),
inj→(c1 −→ c′2) = inj→(c′′1 −→ c′′2). Thus, the result follows.

305

Lemma B.15 If c : G v ?δ and δ ⊆ δ′ then c : G v ?δ′.

Proof. By induction on syntax of c. We have the following cases such that c : G v ?δ .

• If c = injX , where injX : F v ?δ and X : F ∈ δ, then we know that injX : F v ?δ′ , since

δ ⊆ δ′, we get that X : F ∈ δ′. Thus, the result holds.

• If c = injB, where injB : B v ?δ , then the result holds because injB : B v ?δ′ , for any ?δ′ .

• If c = inj?, where inj? : ?δ′′ v ?δ , then the result holds since δ′′ ⊆ δ and δ ⊆ δ′, we get

that δ′′ ⊆ δ′.

• If c = inj→(c), where inj→(c′) : G v ?δ , c′ : G v ?δ −→ ?δ , then we know that
G = G′ −→ G′′, c′ = c′′ −→ c′′′, c′′ : G′ v ?δ and c′′′ : G′′ v ?δ . Thus, by the induction
hypothesis on c′′ and c′′′, with c′′ : G′ v ?δ and ?δ′ , and c′′′ : G′′ v ?δ and ?δ′ , we get
that c′′ : G′ v ?δ′ and c′′′ : G′′ v ?δ′ , therefore c′′ −→ c′′′ : G′ −→ G′′ v ?δ′ −→ ?δ′ and
inj→(c′) : G v ?δ′ . Thus, the result follows.

• If c = inj∀(c
′), where inj∀(c

′) : G v ?δ , c′ : G v ∀X.?δ,X:X , then we know that G = ∀X.G′,
c′ = ∀X.c′′ and c′′ : G′ v ?δ,X:X . Thus, by the induction hypothesis on c′′, with c′′ : G′ v
?δ,X:X and ?δ′,X:X , we get that c′′ : G′ v ?δ′,X:X , therefore ∀X.c′′ : ∀X.G′ v ∀X.?δ′,X:X and
inj∀(c

′) : G v ?δ′ . Thus, the result follows.

B.2.2 Pullback Operator

Definition B.16 ((Partial) Precision meet operator) If

• c1 : G1 v G

• c2 : G2 v G

Then we will define

pullback(G, (G1, c1), (G2, c2)) ∈ {(G3, c3, c4, c5) | c3 : G3 v G1, c4 : G3 v G2, c3;c1 = c5 and c4;c2 = c5}∗

306

We define the function by induction on the precision judgements c1 : G1 v G and c2 : G2 v G:

pullback(B, (B,B), (B,B)) = (B,B,B,B)

pullback(X, (X,X), (X,X)) = (X,X,X,X)

pullback(∀X.G, (∀X.G1,∀X.c1), (∀X.G2,∀X.c2)) =

∣∣∣∣∣(∀X.G3,∀X.c3,∀X.c4, ∀X.c5) if

pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5)

pullback

(
G −→ G′, (G1→G′1, c1 −→ c′1),

(G2 −→ G′2, c2 −→ c′2)

)
=

∣∣∣∣∣∣∣
(G3 −→ G′3, c3 −→ c′3, c4 −→ c′4, c5 → c′5) if

pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5)∧
pullback(G′, (G′1, c

′
1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5)

pullback

(
G×G′, (G1×G′1, c1× c′1),

(G2×G′2, c2× c′2)

)
=

∣∣∣∣∣∣∣
(G3×G′3, c3× c′3, c4× c′4, c5× c′5) if

pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5)∧
pullback(G′, (G′1, c

′
1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5)

pullback(?δ , (B, injB), (B, injB)) = (B,B,B, injB)

pullback(?δ , (F, injX), (F, injX)) = (F,F,F, injX) if X : F ∈ δ

pullback(?δ , (G1, inj∀(c1)), (G2, inj∀(c2))) =

∣∣∣∣∣(G3, c3, c4, inj∀(c5)) if

pullback(∀X.?δ,X:X , (G1, c1), (G2, c2)) = (G3, c3, c4, c5)

pullback(?δ , (G1, inj→(c1)), (G2, inj→(c2))) =

∣∣∣∣∣(G3, c3, c4, inj→(c5)) if

pullback(?δ→?δ , (G1, c1), (G2, c2)) = (G3, c3, c4, c5)

pullback(?δ , (G1, inj×(c1)), (G2, inj×(c2))) =

∣∣∣∣∣(G3, c3, c4, inj×(c5)) if

pullback(?δ × ?δ , (G1, c1), (G2, c2)) = (G3, c3, c4, c5)

pullback(?δ , (?δ′ , inj?), (G2, c2)) =
∣∣(B, injB,B, injB) if G2 = B ∧ c2 = injB

=
∣∣(F, injX ,F, injX) if G2 = F ∧ c2 = injX ∧X : F ∈ δ′

=

∣∣∣∣∣(G3, inj∀(c3), c4, inj∀(c5)) if c2 = inj∀(c)

pullback(∀X.?δ,X:X , (∀X.?δ′,X:X ,∀X.inj?), (G2, c)) = (G3, c3, c4, c5)

=

∣∣∣∣∣(G3, inj→(c3), c4, inj→(c5)) if c2 = inj→(c)

pullback(?δ→?δ , (?δ′→?δ′ , inj?→inj?), (G2, c)) = (G3, c3, c4, c5)

=

∣∣∣∣∣(G3, inj×(c3), c4, inj×(c5)) if c2 = inj×(c)

pullback(?δ × ?δ , (?δ′ × ?δ′ , inj?× inj?), (G2, c)) = (G3, c3, c4, c5)

=
∣∣(?δ′∩δ′′ , inj?, inj?, inj?) if G2 = ?δ′′ ∧ c2 = inj?

pullback(?δ , (G1, c1), (?δ′ , inj?)) = (G3, c3, c4, c5) if pullback(?δ , (?δ′ , inj?), (G1, c1)) = (G3, c4, c3, c5)

pullback(G, (G1, c1), (G2, c2)) = undefined otherwise

Lemma B.17 (Pullback operator and its universal property) There exists a partial pullback op-
erator such that if c1 : G1 v G and c2 : G2 v G, and pullback(G, (G1, c1), (G2, c2)) =
(G3, c3, c4, c5), then c3 : G3 v G1, c4 : G3 v G2, c3;c1 = c5 and c4;c2 = c5. The pullback
operator is universal in the following sense. If there exists G′3, c′3, c′4 and c′5 such that c′3;c1 = c′5
and c′4;c2 = c′5, then pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) and there exists a unique
c : G′3 v G3 such that c;c3 = c′3, c;c4 = c′4 and c;c5 = c′5.

307

Proof. We proceed by induction on c′5 : G′3 v G and by Lemma B.12 with c′3;c1 = c′5 and
c′4;c2 = c′5.

1. B : B v B (c′5 : G′3 v G). Then, c′5 = B and G′3 = G = B. Since c′3;c1 = c′5 and c′4;c2 =
c′5, by Lemma B.12, we know that c′3 = c1 = c′4 = c2 = B and G1 = G2 = B. Therefore,
we know that pullback(G, (G1, c1), (G2, c2)) = pullback(B, (B,B), (B,B)) = (B,B,B,B).
Thus, we know that pullback(G, (G1, c1), (G2, c2)) = (B,B,B,B) and there exist a unique
c = B such that B : B v B (c : G′3 v G3) and

• B : B v B (c3 : G3 v G1)

• B : B v B (c4 : G3 v G2)

• B;B = B (c3;c1 = c5)

• B;B = B (c4;c2 = c5)

• B;B = B (c;c3 = c′3)

• B;B = B (c;c4 = c′4)

• B;B = B (c;c5 = c′5)

2. X : X v X (c′5 : G′3 v G). Then, c′5 = X and G′3 = G = X. Since c′3;c1 = c′5 and c′4;c2 =
c′5, by Lemma B.12, we know that c′3 = c1 = c′4 = c2 = X and G1 = G2 = X. Therefore,
we know that pullback(G, (G1, c1), (G2, c2)) = pullback(X, (X,X), (X,X)) = (X,X,X,X).
Thus, we know that pullback(G, (G1, c1), (G2, c2)) = (X,X,X,X) and there exist a unique
c = X such that X : X v X (c : G′3 v G3) and

• X : X v X (c3 : G3 v G1)

• X : X v X (c4 : G3 v G2)

• X;X = X (c3;c1 = c5)

• X;X = X (c4;c2 = c5)

• X;X = X (c;c3 = c′3)

• X;X = X (c;c4 = c′4)

• X;X = X (c;c5 = c′5)

3. ∀X.c′a5 : ∀X.G′3a v ∀X.Ga (c′5 : G′3 v G). Then, c′5 = ∀X.c′a5, G′3 = ∀X.G′3a and
G = ∀X.Ga. Since c′3;c1 = c′5 and c′4;c2 = c′5, by Lemma B.12, we know that c′3 = ∀X.c′3a,
c1 = ∀X.ca1, c′4 = ∀X.c′a4, c2 = ∀X.ca2, G1 = ∀X.Ga1 and G2 = ∀X.Ga2, where

• ca1 : Ga1 v Ga

• ca2 : Ga2 v Ga

• c′a3 : G′a3 v Ga1

• c′a4 : G′a3 v Ga2

• c′a5 : G′a3 v Ga

• c′a3;ca1 = c′a5

• c′a4;ca2 = c′a5

By the induction hypothesis on c′a5 : G′a3 v Ga, we know that pullback(Ga, (Ga1, ca1),
(Ga2, ca2)) = (Ga3, ca3, ca4, ca5) and there exists a unique ca : G′a3 v Ga3 such that

308

• ca3 : Ga3 v Ga1

• ca4 : Ga3 v Ga2

• ca3;ca1 = ca5

• ca4;ca2 = ca5

• ca;ca3 = c′a3

• ca;ca4 = c′a4

• ca;ca5 = c′a5

We know, by the definition of meet B.16, that

pullback(∀X.Ga, (∀X.Ga1,∀X.ca1), (∀X.Ga2, ∀X.ca2)) =

(∀X.Gc3, ∀X.cc3, ∀X.cc4, ∀X.cc5) | (Gc3, cc3, cc4, cc5) = pullback(Ga, (Ga1, ca1), (Ga2, ca2))

Therefore, by the definition of meet B.16, we know that

(∀X.Ga3, ∀X.ca3, ∀X.ca4, ∀X.ca5)

= pullback(∀X.Ga, (∀X.Ga1,∀X.ca1), (∀X.Ga2, ∀X.ca2))

and there exists a unique ∀X.ca : ∀X.G′a3 v ∀X.Ga3 such that

• ∀X.ca3 : ∀X.Ga3 v ∀X.Ga1

• ∀X.ca4 : ∀X.Ga3 v ∀X.Ga2

• ∀X.ca3;∀X.ca1 = ∀X.ca5

• ∀X.ca4;∀X.ca2 = ∀X.ca5

• ∀X.ca;∀X.ca3 = ∀X.c′a3

• ∀X.ca;∀X.ca4 = ∀X.c′a4

• ∀X.ca;∀X.ca5 = ∀X.c′a5

Thus, the result holds.

4. c′a5 −→ c′b5 : G′a3 −→ G′b3 v Ga −→ Gb (c′5 : G′3 v G). Then, c′5 = c′a5 −→ c′b5,
G′3 = G′3a −→ G′3b and G = Ga −→ Gb. Since c′3;c1 = c′5 and c′4;c2 = c′5, by Lemma B.12,
we know that c′3 = c′3a −→ c′3b, c1 = ca1 −→ cb1, c′4 = c′a4 −→ c′b4, c2 = ca2 −→ cb2,
G1 = Ga1 −→ Gb1 and G2 = Ga2 −→ Gb2, where

• ca1 : Ga1 v Ga

• ca2 : Ga2 v Ga

• c′a3 : G′a3 v Ga1

• c′a4 : G′a3 v Ga2

• c′a5 : G′a3 v Ga

• c′a3;ca1 = c′a5

• c′a4;ca2 = c′a5

• cb1 : Gb1 v Gb

• cb2 : Gb2 v Gb

309

• c′b3 : G′b3 v Gb1

• c′b4 : G′b3 v Gb2

• c′b5 : G′b3 v Ga

• c′b3;cb1 = c′b5

• c′b4;cb2 = c′b5

By the induction hypothesis on c′a5 : G′a3 v Ga and c′b5 : G′b3 v Gb, we know that
(Ga3, ca3, ca4, ca5) = pullback(Ga, (Ga1, ca1), (Ga2, ca2)), (Gb3, cb3, cb4, cb5) = pullback(Gb,
(Gb1, cb1), (Gb2, cb2)) and there exists unique ca : G′a3 v Ga3 and cb : G′b3 v Gb3 such
that

• ca3 : Ga3 v Ga1

• ca4 : Ga3 v Ga2

• ca3;ca1 = ca5

• ca4;ca2 = ca5

• ca;ca3 = c′a3

• ca;ca4 = c′a4

• ca;ca5 = c′a5

• cb3 : Gb3 v Gb1

• cb4 : Gb3 v Gb2

• cb3;cb1 = cb5

• cb4;cb2 = cb5

• cb;cb3 = c′b3

• cb;cb4 = c′b4

• cb;cb5 = c′b5

We know, by Definition of meet B.16, that

pullback(Ga −→ Gb, (Ga1 −→ Gb1, ca1 −→ cb1), (Ga2 −→ Gb2, ca2 −→ cb2)) =

(Gc3 −→ Gd3, cc3 −→ cd3, cc4 −→ cd4, cc5 −→ cd5) |

(Gc3, cc3, cc4, cc5) = pullback(Ga, (Ga1, ca1), (Ga2, ca2)) ∧ (Gd3, cd3, cd4, cd5) =

pullback(Gb, (Gb1, cb1), (Gb2, cb2))

Therefore, by Definition of meet B.16,

(Ga3 −→ Gb3, ca3 −→ cb3, ca4 −→ cb4, ca5 −→ cb5)

= pullback(Ga −→ Gb, (Ga1 −→ Gb1, ca1 −→ cb1), (Ga2 −→ Gb2, ca2 −→ cb2))

and there exists a unique ca −→ cb : G′a3 −→ G′b3 v Ga3 −→ Gb3 such that

• ca3 −→ cb3 : Ga3 −→ Gb3 v Ga1 −→ Gb1

• ca4 −→ cb4 : Ga3 −→ Gb3 v Ga2 −→ Gb2

• ca3 −→ cb3;ca1 −→ cb1 = ca5 −→ cb5

310

• ca4 −→ cb4;ca2 −→ cb2 = ca5 −→ cb5

• ca −→ cb;ca3 −→ cb3 = c′a3 −→ c′b3

• ca −→ cb;ca4 −→ cb4 = c′a4 −→ c′b4

• ca −→ cb;ca5 −→ cb5 = c′a5 −→ c′b5

Thus, the result holds.

5. injB : B v ?δ (c′5 : G′3 v G). Then, c′5 = injB, G′3 = B and G = ?δ . Since c′3;c1 = c′5
and c′4;c2 = c′5, by Lemma B.12, we get the following cases.

• c′3 = c′4 = B, c1 = c2 = injB, G′3 = G1 = G2 = B and G = ?δ . Therefore,
we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (B, injB), (B, injB)) =
(B,B,B, injB). Thus, we know that (B,B,B, injB) = pullback(G, (G1, c1), (G2, c2))
and there exists a unique c = B such that B : B v B (c : G′3 v G3) and

– B : B v B (c3 : G3 v G1)

– B : B v B (c4 : G3 v G2)

– B;injB = injB (c3;c1 = c5)

– B;injB = injB (c4;c2 = c5)

– B;B = B (c;c3 = c′3)

– B;B = B (c;c4 = c′4)

– B;injB = injB (c;c5 = c′5)

Therefore, the result holds.

• c′3 = B, c′4 = injB, c1 = injB, c2 = inj?, G′3 = B, G1 = B, G2 = ?δ′ and G = ?δ ,

where δ′ ⊆ δ. Therefore, we know that pullback(G, (G2, c2), (G1, c1)) = pullback(?δ ,
(?δ′ , inj?), (B, injB)) = (B, injB,B, injB), and pullback(G, (G1, c1), (G2, c2)) = pullback(?δ ,
(B, injB), (?δ′ , inj?)) = (B,B, injB, injB). Thus, we know that (B,B, injB, injB) =
pullback(G, (G1, c1), (G2, c2)) and there exists a unique c = B such that B : B v B
(c : G′3 v G3) and

– B : B v B (c3 : G3 v G1)

– injB : B v ?δ′ (c4 : G3 v G2)

– B;injB = injB (c3;c1 = c5)

– injB;inj? = injB (c4;c2 = c5)

– B;B = B (c;c3 = c′3)

– B;injB = injB (c;c4 = c′4)

– B;injB = injB (c;c5 = c′5)

Therefore, the result holds.

• c′3 = injB, c′4 = B, c1 = inj?, c2 = injB, G′3 = B, G1 = ?δ′ , G2 = B and G = ?δ ,

where δ′ ∈ δ. Therefore, we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ ,
(?δ′ , inj?), (B, injB)) = (B, injB,B, injB). Thus, we know that (B, injB,B, injB) =
pullback(G, (G1, c1), (G2, c2)) and there exists a unique c = B such that B : B v B
(c : G′3 v G3) and

– injB : B v ?δ′ (c3 : G3 v G1)

– B : B v B (c4 : G3 v G2)

– injB;inj? = injB (c3;c1 = c5)

– B;injB = injB (c4;c2 = c5)

311

– B;injB = injB (c;c3 = c′3)

– B;B = B (c;c4 = c′4)

– B;injB = injB (c;c5 = c′5)

Therefore, the result holds.

• c′3 = c′4 = injB, c1 = inj?, c2 = inj?, G′3 = B, G1 = ?δ1 , G2 = ?δ2 and G =
?δ . Therefore, we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ1 , inj?),
(?δ2 , inj?)) = (?[δ1∩δ2], inj?, inj?, inj?). Thus, we know that (?δ1∩δ2 , inj?, inj?, inj?) =
pullback(G, (G1, c1), (G2, c2)) and there exists a unique c = injB such that injB : B v
?δ1∩δ2 (c : G′3 v G3) and

– inj? : ?δ1∩δ2 v ?δ1 (c3 : G3 v G1)

– inj? : ?δ1∩δ2 v ?δ2 (c4 : G3 v G2)

– inj?;inj? = inj? (c3;c1 = c5)

– inj?;inj? = inj? (c4;c2 = c5)

– injB;inj? = injB (c;c3 = c′3)

– injB;inj? = injB (c;c4 = c′4)

– injB;inj? = injB (c;c5 = c′5)

Therefore, the result holds.

6. injX : F v ?δ (c′5 : G′3 v G). Then, c′5 = injX , G′3 = F and G = ?δ , where X : F ∈ δ.
Since c′3;c1 = c′5 and c′4;c2 = c′5, by Lemma B.12, we get the following cases.

• c′3 = c′4 = F, c1 = c2 = injX , G′3 = G1 = G2 = F and G = ?δ . Therefore,
we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (F, injX), (F, injX)) =
(F,F,F, injX) because X : F ∈ δ. Thus, we know that (F,F,F, injX) = pullback(G,
(G1, c1), (G2, c2)) and there exist a unique c = F such that F : F v F (c : G′3 v G3)
and

– F : F v F (c3 : G3 v G1)

– F : F v F (c4 : G3 v G2)

– F;injX = injX (c3;c1 = c5)

– F;injX = injX (c4;c2 = c5)

– F;F = F (c;c3 = c′3)

– F;F = F (c;c4 = c′4)

– F;injX = injX (c;c5 = c′5)

Therefore, the result holds.

• c′3 = F, c′4 = injX , c1 = injX , c2 = inj?, G′3 = F, G1 = F, G2 = ?δ′ and G = ?δ ,

where X : F ∈ δ′ ⊆ δ. Therefore, we know that pullback(G, (G2, c2), (G1, c1)) =
pullback(?δ , (?δ′ , inj?), (F, injX)) = (F, injX ,F, injX) because X : F ∈ δ′, and
pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (F, injX), (?δ′ , inj?)) = (F,F, injX , injX).
Thus, we know that (F,F, injX , injX) = pullback(G, (G1, c1), (G2, c2)) and there ex-
ists a unique c = F such that F : F v F (c : G′3 v G3) and

– F : F v F (c3 : G3 v G1)

– injX : F v ?δ′ (c4 : G3 v G2)

– F;injX = injX (c3;c1 = c5)

– injX ;inj? = injX (c4;c2 = c5)

– F;F = F (c;c3 = c′3)

312

– F;injX = injX (c;c4 = c′4)

– F;injX = injX (c;c5 = c′5)

Therefore, the result holds.

• c′3 = injX , c′4 = F, c1 = inj?, c2 = injX , G′3 = F, G1 = ?δ′ , G2 = F and G = ?δ ,

where X : F ∈ δ′ ⊆ δ. Therefore, we know that pullback(G, (G1, c1), (G2, c2)) =
pullback(?δ , (?δ′ , inj?), (F, injX)) = (F, injX ,F, injX) because of X : F ∈ δ′. Thus,
we know that (F, injX ,F, injX) = pullback(G, (G1, c1), (G2, c2)) and there exists a
unique c = F such that F : F v F (c : G′3 v G3) and

– injX : F v ?δ′ (c3 : G3 v G1)

– F : F v F (c4 : G3 v G2)

– injX ;inj? = injX (c3;c1 = c5)

– F;injX = injX (c4;c2 = c5)

– F;injX = injX (c;c3 = c′3)

– F;F = F (c;c4 = c′4)

– F;injX = injX (c;c5 = c′5)

Therefore, the result holds.

• c′3 = c′4 = injX , c1 = inj?, c2 = inj?, G′3 = F, G1 = ?δ1 , G2 = ?δ2 , X : F ∈ δ1, X :
F ∈ δ2, X : F ∈ δ1 ∩ δ2, and G = ?δ . Therefore, we know that pullback(G, (G1, c1),
(G2, c2)) = pullback(?δ , (?δ1 , inj?), (?δ2 , inj?)) = (?δ1∩δ2 , inj?, inj?, inj?). Thus, we
know that (?δ1∩δ2 , inj?, inj?, inj?) = pullback(G, (G1, c1), (G2, c2)) and c = injX

such that injX : F v ?δ1∩δ2 (c : G′3 v G3, note that X : F ∈ δ1 ∩ δ2) and

– inj? : ?δ1∩δ2 v ?δ1 (c3 : G3 v G1)

– inj? : ?δ1∩δ2 v ?δ2 (c4 : G3 v G2)

– inj?;inj? = inj? (c3;c1 = c5)

– inj?;inj? = inj? (c4;c2 = c5)

– injX ;inj? = injX (c;c3 = c′3)

– injX ;inj? = injX (c;c4 = c′4)

– injX ;inj? = injX (c;c5 = c′5)

Therefore, the result holds.

7. inj∀(∀X.c′a5) : ∀X.G′a3 v ?δ (c′5 : G′3 v G). Then, c′5 = inj∀(∀X.c′a5), G′3 = ∀X.G′a3 and
G = ?δ . Since c′3;c1 = c′5 and c′4;c2 = c′5, by Lemma B.12, we get the following cases.

• c′3 = ∀X.c′a3, c′4 = ∀X.c′a4, c1 = inj∀(∀X.ca1), c2 = inj∀(∀X.ca2), G′3 = ∀X.G′a3,
G1 = ∀X.Ga1, G2 = ∀X.Ga2 and G = ?δ . Therefore, we know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (∀X.Ga1, inj∀(∀X.ca1)), (∀X.G2, inj∀(∀X.ca2))) =

(∀X.G0,∀X.G0, ∀X.G0, inj∀(∀X.c0))

Thus, we know that (∀X.G0, ∀X.G0,∀X.G0, inj∀(∀X.c0)) = pullback(G, (G1, c1),
(G2, c2)) and there exists a unique c = ∀X.G0 such that ∀X.G0 : ∀X.G0 v ∀X.G0

(c : G′3 v G3) and

– ∀X.G0 : ∀X.G0 v ∀X.G0 (c3 : G3 v G1)

– ∀X.G0 : ∀X.G0 v ∀X.G0 (c4 : G3 v G2)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c3;c1 = c5)

313

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c4;c2 = c5)

– ∀X.G0;∀X.G0 = ∀X.G0 (c;c3 = c′3)

– ∀X.G0;∀X.G0 = ∀X.G0 (c;c4 = c′4)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c5 = c′5)

Therefore, the result holds.

• c′3 = ∀X.G0, c′4 = inj∀(∀X.c0), c1 = inj∀(∀X.c0), c2 = inj?, G′3 = ∀X.G0, G1 =
∀X.G0, G2 = ?δ′ and G = ?δ , where δ = δ′,X : F and d : F v ?δ′ . Therefore, we
know that pullback(G, (G2, c2), (G1, c1)) =

pullback(?δ , (?δ′ , inj?), (∀X.G0, inj∀(∀X.c0))) = {(∀X.G0, inj∀(∀X.c0), ∀X.G0, inj∀(∀X.c0))},
and pullback(G, (G1, c1), (G2, c2)) =

pullback(?δ , (∀X.G0, inj∀(∀X.c0)), (?δ′ , inj?)) = {(∀X.G0, ∀X.G0, inj∀(∀X.c0), inj∀(∀X.c0))}.
Thus, we know that there exists (∀X.G0,∀X.G0, inj∀(∀X.c0), inj∀(∀X.c0)) = pullback(G,
(G1, c1), (G2, c2)) and c = ∀X.G0 such that ∀X.G0 : ∀X.G0 v ∀X.G0 (c : G′3 v G3)
and

– ∀X.G0 : ∀X.G0 v ∀X.G0 (c3 : G3 v G1)

– inj∀(∀X.c0) : ∀X.G0 v ?δ′ (c4 : G3 v G2)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c3;c1 = c5)

– inj∀(∀X.c0);inj? = inj∀(∀X.c0) (c4;c2 = c5)

– ∀X.G0;∀X.G0 = ∀X.G0 (c;c3 = c′3)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c4 = c′4)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c5 = c′5)

Therefore, the result holds.

• c′3 = inj∀(∀X.c0), c′4 = ∀X.G0, c1 = inj?, c2 = inj∀(∀X.c0), G′3 = ∀X.G0, G1 =
?δ′ , G2 = ∀X.G0 and G = ?δ , where δ = δ′,X : F and d : F v ?δ′ . Therefore, we
know that pullback(G, (G1, c1), (G2, c2)) =

pullback(?δ , (?δ′ , inj?), (∀X.G0, inj∀(∀X.c0))) = {(∀X.G0, inj∀(∀X.c0), ∀X.G0, inj∀(∀X.c0))}.
Thus, we know that (∀X.G0, inj∀(∀X.c0),∀X.G0, inj∀(∀X.c0)) = pullback(G, (G1, c1),
(G2, c2)) and there exists a unique c = ∀X.G0 such that ∀X.G0 : ∀X.G0 v ∀X.G0

(c : G′3 v G3) and

– inj∀(∀X.c0) : ∀X.G0 v ?δ′ (c3 : G3 v G1)

– ∀X.G0 : ∀X.G0 v ∀X.G0 (c4 : G3 v G2)

– inj∀(∀X.c0);inj? = inj∀(∀X.c0) (c3;c1 = c5)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c4;c2 = c5)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c3 = c′3)

– ∀X.G0;∀X.G0 = ∀X.G0 (c;c4 = c′4)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c5 = c′5)

Therefore, the result holds.

• c′3 = c′4 = inj∀(∀X.c0), c1 = inj?, c2 = inj?, G′3 = ∀X.G0, G1 = ?δ1 , G2 = ?δ2
and G = ?δ . Therefore, we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ ,
(?δ1 , inj?), (?δ2 , inj?)) = {(∀X.G0, inj∀(∀X.c0), inj∀(∀X.c0), inj∀(∀X.c0))}. Thus,
we know that there exist (∀X.G0, inj∀(∀X.c0), inj∀(∀X.c0), inj∀(∀X.c0)) = pullback(G,
(G1, c1), (G2, c2)) and c = ∀X.G0 such that ∀X.G0 : ∀X.G0 v ∀X.G0 (c : G′3 v G3)
and

– inj∀(∀X.c0) : ∀X.G0 v ?δ1 (c3 : G3 v G1)

314

– inj∀(∀X.c0) : ∀X.G0 v ?δ2 (c4 : G3 v G2)

– inj∀(∀X.c0);inj? = inj∀(∀X.c0) (c3;c1 = c5)

– inj∀(∀X.c0);inj? = inj∀(∀X.c0) (c4;c2 = c5)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c3 = c′3)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c4 = c′4)

– ∀X.G0;inj∀(∀X.c0) = inj∀(∀X.c0) (c;c5 = c′5)

Therefore, the result holds.

8. inj? : ?δ′ v ?δ (c′5 : G′3 v G). Then, c′5 = inj?, G′3 = ?δ′ and G = ?δ . Since c′3;c1 = c′5
and c′4;c2 = c′5, by Lemma B.12, we know that c′3 = c1 = c′4 = c2 = inj?, G1 = ?δ1 and
G2 = ?δ2 . Therefore, we know that pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ1 , inj?),
(?δ2 , inj?)) = (?δ1∩δ2 , inj?, inj?, inj?). Thus, we know that pullback(G, (G1, c1), (G2, c2)) =
(?δ1∩δ2 , inj?, inj?, inj?) and there exist a unique c = inj? such that inj? : ?δ′ v ?δ
(c : G′3 v G3) and

• inj? : ?δ1∩δ2 v ?δ1 (c3 : G3 v G1)

• inj? : ?δ1∩δ2 v ?δ2 (c4 : G3 v G2)

• inj?;inj? = inj? (c3;c1 = c5)

• inj?;inj? = inj? (c4;c2 = c5)

• inj?;inj? = inj? (c;c3 = c′3)

• inj?;inj? = inj? (c;c4 = c′4)

• inj?;inj? = inj? (c;c5 = c′5)

Therefore, the result holds.

B.2.3 Associativity of consistent transitivity

Lemma B.18 (Associativity of Evidence composition) Take

• ε1 : G1 ∼ G2

• ε2 : G2 ∼ G3

• ε3 : G3 ∼ G4

Then

• (ε1 # ε2) # ε3 = ε1 # (ε2 # ε3)

315

Proof. Let

• (G12, c1, c2) ∈ ε1

• (G23, c
′
2, c3) ∈ ε2

• (G34, c
′
3, c4) ∈ ε3

The evidence (ε1 # ε2) # ε3 is then defined as illustrated in the following drawing:

We are required to prove that for all (G(123)4, cf , cg), we get that (G(123)4, cf , cg) ∈ ((G12, c1, c2)#
(G23, c

′
2, c3))#(G34, c

′
3, c4) if and only if (G(123)4, cf , cg) ∈ (G12, c1, c2)#((G23, c

′
2, c3)#(G34, c

′
3, c4)).

Let’s suppose first that the evidence (G(123)4, cf , cg) ∈ ((G12, c1, c2) # (G23, c
′
2, c3)) # (G34, c

′
3, c4).

Then, we are required to prove that (G(123)4, cf , cg) ∈ (G12, c1, c2) # ((G23, c
′
2, c3) # (G34, c

′
3, c4))

(the backwards direction is similar).

A Therefore, we know that (G12, c1, c2)#(G23, c
′
2, c3) is defined. Thus, we know that pullback(G2,

(G12, c2), (G23, c
′
2)) is defined. Therefore, pullback(G2, (G12, c2), (G23, c

′
2)) = (G123, c12, c23, co),

and we know by definition of meet (Definition B.16) that

A.1) c12;c2 = co

A.2) c23;c′2 = co

A.3) c12 : G123 v G12

A.4) c23 : G123 v G23

A.5) co : G123 v G2

A.6) c2 : G12 v G2

A.7) c′2 : G23 v G2

B Then, we know that there exists (G123, ce, ca) ∈ (G12, c1, c2) # (G23, c
′
2, c3) such that (by

definition of consistent transitivity)

316

B.1) c23;c3 = ca

B.2) c12;c1 = ce

B.3) ca : G123 v G3

B.4) ce : G123 v G1

B.5) c1 : G12 v G1

B.6) c3 : G23 v G3

C Also, we know that pullback(G3, (G123, ca), (G34, c
′
3)) is defined. Therefore, pullback(G3,

(G123, ca), (G34, c
′
3)) = (G(123)4, c123, c

′
4, cc), and we know by definition of meet (Defini-

tion B.16) that

C.1) c123;ca = cc

C.2) c′4;c′3 = cc

C.3) c123 : G(123)4 v G123

C.4) c′4 : G(123)4 v G34

C.5) cc : G(123)4 v G3

C.6) c′3 : G34 v G3

D Thus, (G(123)4, cf , cg) ∈ (G123, ce, ca) # (G34, c
′
3, c4) and (by definition of consistent transi-

tivity)

D.1) c123;ce = cf

D.2) c4;c′4 = cg

D.3) cf : G(123)4 v G1

D.4) cg : G(123)4 v G4

D.5) c4 : G34 v G4

E By (B.1) and (C.1), we get that c123;(c23;c3) = cc, and by Lemma B.13, we get that
(c123;c23);c3 = cc. By Definition B.21, we get that there exists cb such that

E.1) c123;c23 = cb

E.2) cb;c3 = cc

E.3) cb : G(123)4 v G23

F By (B.2) and (D.1), we get that c123;(c12;c1) = cf , and by Lemma B.13, we get that
(c123;c12);c1 = cf . By Definition B.21, we get that there exists cp such that

F.1) c123;c12 = cp

F.2) cp;c1 = cf

F.3) cp : G(123)4 v G12

G By (B.6), (C.6), (E.3), (C.4), (E.2) and (C.2), we make use of the universal property
(Lemma 6.3), this means that we must have pullback(G3, (G23, c3), (G34, c

′
3)) = (G234, c

′
23, c34, c

′
o)

(i.e. this meet must be defined) and there exists a unique ch such that

G.1) ch;c34 = c′4

317

G.2) ch;c′23 = cb

G.3) ch;c′o = cc

G.4) c′23;c3 = c′o

G.5) c34;c′3 = c′o

G.6) ch : G(123)4 v G234

H By (C.3), (A.5) and Lemma B.20, we get that there exists ck such that ck : G(123)4 v G2

and c123;co = ck. By c123;co = ck, (A.1) and (F.1), and, (A.2) and (E.1), and Lemma B.13,
we get that

H.1) cp;c2 = ck

H.2) cb;c′2 = ck

H.3) c123;co = ck

H.4) ck : G(123)4 v G2

I By (G.2) and (H.2), we get that (ch;c′23);c′2 = ck, and by Lemma B.13, we get that
ch;(c′23;c′2) = ck. By Definition B.21, we get that there exists ci such that

I.1) c′23;c′2 = ci

I.2) ch;ci = ck

I.3) ci : G234 v G2

J By (G.1) and (D.2), we get that (ch;c34);c4 = cg, and by Lemma B.13, we get that
ch;(c34;c4) = cg. By Definition B.21, we get that there exists c′i such that

J.1) c34;c4 = c′i

J.2) ch;c′i = cg

J.3) c′i : G234 v G4

Note that (G234, ci, c
′
i) ∈ (G23, c

′
2, c3) # (G34, c

′
3, c4), by the definition of consistent transi-

tivity.

K By (A.6), (I.3), (F.3), (G.6), (H.1) and (I.2), we make use of the universal property (Lemma 6.3),
this means that we must have pullback(G2, (G12, c2), (G234, ci)) = (G1(234), cm, cn, c

′′
o) (i.e.

this meet must be defined) and there exists a unique cl such that

K.1) cl;cm = cp

K.2) cl;cn = ch

K.3) cl;c
′′
o = ck

K.4) cm;c2 = c′′o

K.5) cn;ci = c′′o

K.6) cm : G1(234) v G12

K.7) cn : G1(234) v G234

K.8) c′′o : G1(234) v G2

K.9) cl : G(123)4 v G1(234)

318

L By (K.2) and (G.2), we get that (cl;cn);c′23 = cb, and by Lemma B.13, we get that
cl;(cn;c′23) = cb. By Definition B.21, we get that there exists c′b such that

L.1) cn;c′23 = c′b

L.2) cl;c
′
b = cb

L.3) c′b : G1(234) v G23

M By (I.1) and (K.5), we know that cn;(c23;c′2) = c′′o, and by Lemma B.13, we get that
(cn;c23);c′2 = c′′o. Then, by (L.1), we get that

M.1) c′b;c′2 = c′′o

N By (A.6), (A.7), (K.6), (L.3), (K.4) and (M.1), we make use of the universal property
(Lemma 6.3), this means that there exists a unique c′h such that (we already know that
pullback(G2, (G12, c2), (G23, c

′
2)) = (G123, c12, c23, co))

N.1) c′h;c12 = cm

N.2) c′h;c23 = c′b

N.3) c′h;co = c′′o

N.4) c12;c2 = co

N.5) c23;c′2 = co

N.6) c′h : G1(234) v G123

O By (N.1) and (K.1), we know that cl;(c
′
h;c12) = cp, and by Lemma B.13, we get that

(cl;c
′
h);c12 = cp. Since c123;c12 = cp, we get that

O.1) cl;c
′
h = c123

P By (K.2) and (G.3), we get that (cl;cn);c′o = cc, and by Lemma B.13, we get that cl;(cn;c′o) =
cc. By Definition B.21, we get that there exists c′c such that

P.1) cn;c′o = c′c

P.2) cl;c
′
c = cc

P.3) c′c : G1(234) v G3

Q By (K.2) and (G.1), we get that (cl;cn);c34 = c′4, and by Lemma B.13, we get that
cl;(cn;c34) = c′4. By Definition B.21, we get that there exists c′′4 such that

Q.1) cn;c34 = c′′4

Q.2) cl;c
′′
4 = c′4

Q.3) c′′4 : G1(234) v G34

R By (C.2) and (Q.2), we know that (cl;c
′′
4);c′3 = cc, and by Lemma B.13, we get that

cl;(c
′′
4;c′3) = cc. Since (P.2), we get that

R.1) c′′4;c′3 = c′c

S By (C.1) and (O.1), we know that (cl;c
′
h);ca = cc, and by Lemma B.13, we get that

cl;(c
′
h;ca) = cc. Since (P.2), we get that

S.1) c′h;ca = c′c

319

T By (B.6), (C.6), (N.6), (Q.3), (S.1) and (R.1), we make use of the universal property
(Lemma 6.3), this means that there exists c′l such that (we already know that pullback(G3,
(G123, ca), (G34, c

′
3)) = (G(123)4, c123, c

′
4, cc))

T.1) c′l;c123 = c′h

T.2) c′l;c
′
4 = c′′4

T.3) c′l;cc = c′c

T.4) c123;c3 = cc

T.5) c′4;c′3 = cc

T.6) c′l : G1(234) v G(123)4

U Since (T.6) and (K.9), we can conclude from Lemma B.22 that c′l = cl = refl
v
G(123)4

and

G1(234) = G(123)4.

V By (K.1) and (F.2), we get that (cl;cm);c1 = cf . By Lemma B.13, we know that cl;(cm;c1) =
cf . By Definition B.21, there exists cf

∗ such that cm;c1 = cf
∗ and cl;cf

∗ = cf . By
Lemma B.14, cl = refl

v
G(123)4

and cl;cf
∗ = cf , we know that cf

∗ = cf and cm;c1 = cf .

W By (J.2) and (K.2), we get that (cl;cn);c′i = cg. By Lemma B.13, we know that cl;(cn;c′i) =
cg. By Definition B.21, there exists cg

∗ such that cn;c′i = cg
∗ and cl;cg

∗ = cg. By

Lemma B.14, cl = refl
v
G(123)4

and cl;cg
∗ = cg, we know that cg

∗ = cg and cn;c′i = cg.

X Finally, the result holds, since (G1(234), cf , cg) ∈ (G12, c1, c2) # (G234, ci, c
′
i), by definition of

consistent transitivity.

Lemma B.19 If

• c1 : G1 v G2

• c2 : G2 v G3

• c1;c2 = c3

then

• c3 : G1 v G3

Note that this lemma doesn’t follow from Lemma B.20, because this lemma says that c3 : G1 v
G3 must hold for all c3, not just the one that is shown to exist in that other lemma.

Proof. We proceed by induction on c1;c2 = c3.

• B;B = B. Then, we know that c1 = c2 = c3 = B and G1 = G2 = G3 = B. Therefore,
c3 : G1 v G3 because B : B v B, and the result holds.

320

• X;X = X. Then, we know that c1 = c2 = c3 = X and G1 = G2 = G3 = X. Therefore,
c3 : G1 v G3 because X : X v X, and the result holds.

• ∀X.c1;∀X.c′2 = ∀X.c′3, where c1;c′2 = c′3. Then, we know that c1 = ∀X.c1, c2 = ∀X.c′2,
c3 = ∀X.c′3, G1 = ∀X.G′1, G2 = ∀X.G′2 and G3 = ∀X.G′3, where c1 : G′1 v G′2, c′2 :
G′2 v G′3 and c1;c′2 = c′3. Then, by the induction hypothesis on c1;c′2 = c′3, we know that
c′3 : G′1 v G′3. Therefore, ∀X.c′3 : ∀X.G′1 v ∀X.G′3 (c3 : G1 v G3), and the result holds.

• c1 −→ c′′1;c′2 −→ c′′2 = c′3 −→ c′′3, where c1;c′2 = c′3 and c′′1;c′′2 = c′′3. Then, we know that
c1 = c1 −→ c′′1, c2 = c′2 −→ c′′2, c3 = c′3 −→ c′′3, G1 = G′1 −→ G′′1, G2 = G′2 −→ G′′2
and G3 = G′3 −→ G′′3, where c1 : G′1 v G′2, c′′1 : G′′1 v G′′2, c′2 : G′2 v G′3, c′′2 : G′′2 v G′′3,
c1;c′2 = c′3 and c′′1;c′′2 = c′′3. Then, by the induction hypothesis on c1;c′2 = c′3 and c′′1;c′′2 = c′′3,
we know that c′3 : G′1 v G′3 and c′′3 : G′′1 v G′′3. Therefore, c′3 −→ c′′3 : G′1 −→ G′′1 v G′3 −→
G′′3 (c3 : G1 v G3), and the result holds.

• B;injB = injB. Then, we know that c1 = B, c2 = c3 = injB, G1 = G2 = B and G3 = ?δ .
Therefore, c3 : G1 v G3 because injB : B v ?δ , and the result holds.

• F;injX = injX . Then, we know that c1 = F, c2 = c3 = injX , G1 = G2 = F and G3 = ?δ ,
where X : F ∈ δ. Therefore, c3 : G1 v G3 because injX : F v ?δ , and the result holds.

• c1;inj (c′2) = inj (c′3), where c1;c′2 = c′3. Inspecting the type precision rules, we have the
following cases. Then, we know that c2 = inj (c′2), c3 = inj (c′3) and G3 = ?δ . Inspecting
the type precision rules, we have the following cases.

– c2 = inj∀(c
′
2) and c3 = inj∀(c

′
3). Therefore, c′2 : G2 v ∀X.?δ,X:X . Thus, by the

induction hypothesis on c1;c′2 = c′3, we get that c′3 : G1 v ∀X.?δ,X:X . Thus, inj∀(c
′
3) :

G1 v ?δ . Therefore, c3 : G1 v G3, and the result holds.

– c2 = inj→(c′2) and c3 = inj→(c′3). Therefore, c′2 : G2 v ?δ −→ ?δ . Thus, by
the induction hypothesis on c1;c′2 = c′3, we get that c′3 : G1 v ?δ −→ ?δ . Thus,
inj→(c′3) : G1 v ?δ . Therefore, c3 : G1 v G3, and the result holds.

• c;inj? = c. Then, we know that c1 = c3 = c, c2 = inj?, G2 = ?δ and G3 = ?δ′,X:F , where

δ ⊆ δ′. Since c : G1 v ?δ , by Lemma B.15, we know that c : G1 v ?δ′,X:F . Therefore,
c3 : G1 v G3 because c : G1 v ?δ′,X:F , and the result holds.

Lemma B.20 If

• c1 : G1 v G2

• c2 : G2 v G3

then there exists a c3 such that

• c3 : G1 v G3

• c1;c2 = c3

321

Proof. We proceed by induction on c2 : G2 v G3.

Case (B : B v B). Since G2 = B, by Lemma B.11, we know that c1 = B and G1 = B. Since,
B;B = B, the result holds.

Case (X : X v X). Since G2 = X, by Lemma B.11, we know that c1 = X and G1 = X. Since,
X;X = X, the result holds.

Case (c21→c22 : G21→G22 v G31→G32). Since G2 = G21→G22, by Lemma B.11, we know
that c1 = c11→c12 and G1 = G11→G12. We know that c21 : G21 v G31, c22 : G22 v G32,
c11 : G11 v G21 and c12 : G12 v G22. By the inductive hypothesis, we get that c11;c21 = c31

and c12;c22 = c32. Therefore, we get that c11→c12;c21→c22 = c31→c32, and the result holds.

Case (c21→c22 : G21→G22 v G31→G32). Since G2 = G21→G22, by Lemma B.11, we know
that c1 = c11→c12 and G1 = G11→G12. We know that c21 : G21 v G31, c22 : G22 v G32,
c11 : G11 v G21 and c12 : G12 v G22. By the inductive hypothesis, we get that c11;c21 = c31

and c12;c22 = c32. Therefore, we get that c11→c12;c21→c22 = c31→c32, and the result holds.

Case (c21× c22 : G21×G22 v G31×G32). Since G2 = G21×G22, by Lemma B.11, we know
that c1 = c11× c12 and G1 = G11×G12. We know that c21 : G21 v G31, c22 : G22 v G32,
c11 : G11 v G21 and c12 : G12 v G22. By the inductive hypothesis, we get that c11;c21 = c31

and c12;c22 = c32. Therefore, we get that c11× c12;c21× c22 = c31× c32, and the result holds.

Case (∀X.c21 : ∀X.G21 v ∀X.G31). Since G2 = ∀X.G21, by Lemma B.11, we know that c1 =
∀X.c11 and G1 = ∀X.G11. We know that c21 : G21 v G31 and c11 : G11 v G21. By the inductive
hypothesis, we get that c11;c21 = c31. Therefore, we get that ∀X.c11;∀X.c21 = ∀X.c31, and the
result holds.

Case (injB : B v ?δ). Since G2 = B, by Lemma B.11, we know that c1 = B and G1 = B. Since,
B;injB = injB, the result holds.

Case (injX : F v ?δ ∧X : F ∈ δ). Since G2 = F, by Lemma B.11, we know that c1 = F and
G1 = F. Since, F;injX = injX , the result holds.

Case (inj→(c′2) : G2 v ?δ). We know that c′2 : G2 v ?δ→?δ and c1 : G1 v G2. Thus, by the
inductive hypothesis, we get that c1;c′2 = c′3. Therefore, c1;inj→(c′2) = inj→(c′3), and the result
holds immediately.

Case (inj×(c′2) : G2 v ?δ). We know that c′2 : G2 v ?δ × ?δ and c1 : G1 v G2. Thus, by the
inductive hypothesis, we get that c1;c′2 = c′3. Therefore, c1;inj×(c′2) = inj×(c′3), and the result
holds immediately.

Case (inj∀(c
′
2) : G2 v ?δ). We know that c′2 : G2 v ∀X.?δ,X:X and c1 : G1 v G2. Thus, by the

inductive hypothesis, we get that c1;c′2 = c′3. Therefore, c1;inj∀(c
′
2) = inj∀(c

′
3), and the result

holds immediately.

Case (inj? : ?δ v ?δ′). We know that c1;inj? = c1. Since c1 : G1 v ?δ , by Lemma B.15, we get
that c1 : G1 v ?δ′ , an the result holds.

Definition B.21 We write (c1;c2);c3 = c4 to mean that there exists c′ such that c1;c2 = c′ and
c′;c3 = c4. In the same way, we write c1;(c2;c3) = c4 to mean that there exists c′ such that
c2;c3 = c′ and c1;c′ = c4.

Lemma B.22 (Antisymmetry) If

• c1 : G1 v G2

322

• c2 : G2 v G1

Then G1 = G2 and c1 = refl
v
G1

= c2.

Proof. By induction on the derivation of c1 : G1 v G2. Most of the cases follow easily by inversion
and induction.

Case (B : B v B). By Lemma B.11, we know that c2 = B = refl
v
B = c1 and G1 = G2. Thus,

the result holds.

Case (X : X v X). By Lemma B.11, we know that c2 = X = refl
v
X = c1 and G1 = G2. Thus,

the result holds.

Case (c11→c′11 : G11→G′11 v G21→G′21). We know that c11 : G11 v G21 and c′11 : G′11 v G′21.
By Lemma B.11, we know that c2 = c22→c′22, where c22 : G21 v G11 and c′22 : G′21 v G′11. By
the inductive hypothesis, we get that c11 = c22 = refl

v
G11

, G11 = G21, c′11 = c′22 = refl
v
G′11

and

G′11 = G′21, as we are required to show.

Case (c11× c′11 : G11×G′11 v G21×G′21). We know that c11 : G11 v G21 and c′11 : G′11 v G′21.
By Lemma B.11, we know that c2 = c22× c′22, where c22 : G21 v G11 and c′22 : G′21 v G′11. By
the inductive hypothesis, we get that c11 = c22 = refl

v
G11

, G11 = G21, c′11 = c′22 = refl
v
G′11

and

G′11 = G′21, as we are required to show.

Case (∀X.c11 : ∀X.G11 v ∀X.G21). We know that c11 : G11 v G21. By Lemma B.11, we
know that c2 = ∀X.c22, where c22 : G21 v G11. By the inductive hypothesis, we get that
c11 = c22 = refl

v
G11

and G11 = G21, as we are required to show.

Case (injB : B v ?δ). This case is not possible because is not the case that ?δ v B.

Case (injX : F v ?δ ∧X : F ∈ δ). This case is not possible because is not the case that ?δ v F.

Case (inj→(c) : G v ?δ). This case is not possible because is not the case that ?δ v G (note that
c : G v ?δ→?δ).

Case (inj×(c) : G v ?δ). This case is not possible because is not the case that ?δ v G (note that
c : G v ?δ × ?δ).

Case (inj∀(c) : G v ?δ). This case is not possible because is not the case that ?δ v G (note that
c : G v ∀X.?δ,X:X).

Case (inj? : ?δ v ?δ′ ∧ δ ⊆ δ′). By Lemma B.11, we know that c2 = inj? and δ′ ⊆ δ. Since δ′ ⊆ δ

and δ ⊆ δ′, we know that δ = δ′, and therefore G1 = G2 = ?δ = ?δ′ and c1 = c2 = inj? = refl
v
?δ

,

as we are required to prove.

B.2.4 Evidence operations

Definition B.23 If

• ε1 = { (G1, c11, c12) }

• ε1 : G11 ∼ G12

• ε2 = { (G2, c21, c22) }

323

• ε2 : G21 ∼ G22

Then we define

• ε1 −→ ε2 = { (G1→G2, c11 −→ c21, c12 −→ c22) }

• ε1× ε2 = { (G1×G2, c11× c21, c12× c22) }

• ∀X.ε1 = { (∀X.G1,∀X.c11, ∀X.c12) }

• reflEv(B) = { (B,B,B) }

• reflEv(X) = { (X,X,X) }

• reflEv(?δ) = { (?δ , inj?, inj?) }

and we have:

• (ε1 −→ ε2) : (G11 −→ G21) ∼ (G12 −→ G22)

• (ε1× ε2) : (G11×G21) ∼ (G12×G22)

• (∀X.ε1) : (∀X.G11) ∼ (∀X.G12)

• reflEv(B) : B ∼ B

• reflEv(?δ) : ?δ ∼ ?δ

• reflEv(X) : X ∼ X

Definition B.24 For any gradual type G, we define refl
v
G : G v G:

refl
v
B = B refl

v
X = X refl

v
G1→G2

= refl
v
G1
−→ refl

v
G2

refl
v
G1×G2

= refl
v
G1
× refl

v
G2

refl
v
∀X.G = ∀X.reflvG refl

v
?δ

= inj?

Definition B.25 (Reflexive Evidence) For any gradual type G, we extend the definition of reflEv(B),
reflEv(X) and reflEv(?δ) above with the following definitions:

reflEv(G1→G2) = reflEv(G1) −→ reflEv(G2)

reflEv(G1 ×G2) = reflEv(G1)× reflEv(G2)

reflEv(∀X.G) = ∀X.reflEv(G)

Then we have that reflEv(G) : G v G.

Definition B.26 (Inject) If ftv(G) ⊆ dom(δ), then we define inject
v
G : G v ?δ:

inject
v
B = injB

inject
v
X = injX

inject
v
?δ

= inj?

inject
v
G1→G2

= inj→(injectvG1
→inject

v
G2

)

inject
v
G1×G2

= inj×(injectvG1
× inject

v
G2

)

inject
v
∀X.G = inj∀(∀X.inject

v
G)

324

B.3 F?
ε: Gradual Parametricity

Example. We illustrate the interpretation of the unknown type by considering some examples.
Let εInt? = {(Int, reflInt, injInt)}, εInt = {(Int, reflInt, reflInt)}, εX? = {(Int, reflInt, injX)},
δ = X : X, and δ′ = X : Int.

• (n, εInt?42 ::?δ′ , εInt?42 ::?δ′) ∈ VρJ?δK because for ε = {(Int, injInt, reflInt)} ` ε : δ _ Int,
as εInt? # ρ.i(ε) = εInt, then B (n, εInt42 :: Int, εInt42 :: Int) ∈ VρJIntK (and for every other
evidence consistent transitivity is not defined).

• (n, εInt?42 :: ?δ′ , εInt?43 :: ?δ′) 6∈ VρJ?δK because for ` {(Int, injInt, reflInt)} : δ _ Int, as
B (n, εInt42 :: Int, εInt43 :: Int) 6∈ VρJIntK.

• Suppose B (n, εInt42 :: Int, εInt43 :: Int) ∈ ρ.R(X). Then (n, εX?42 :: ?δ′ , εX?43 :: ?δ′) ∈
VρJ?δK because for ε = {(X, injX , reflX)}, ` ε : δ _ X, as εX? # ρ.i(ε) = εInt, then
B (n, εInt42 :: Int, εInt43 :: Int) ∈ VρJXK = ρ.R(X).

• But (n, εX?42 :: ?δ′ , εX?43 :: ?δ′) 6∈ VρJ?δ′K because for ε = {(Int, injX , reflInt)} ` ε : δ′ _
Int, as εX # ρ.i(ε) = εInt, but B (n, εInt42 :: Int, εInt43 :: Int) 6∈ VρJIntK.

• Suppose ρ.R(X) = VρJIntK, and εm = εInt? ∪ εX?. Then (n, εm42 :: ?δ , εm42 :: ?δ) ∈ VρJ?δK
because (1) for ε = {(X, injX , reflX)}, ` ε : δ _ X, as εm #ρ.i(ε) = εX? #ρ.i(ε) = εInt, then
B (n, εInt42 :: Int, εInt42 :: Int) ∈ VρJXK = ρ.R(X); and (2) for ε = {(Int, injInt, reflInt)},
` ε : δ _ Int, as εm # ρ.i(ε) = εInt? # ρ.i(ε) = εInt, then B (n, εInt42 :: Int, εInt42 :: Int) ∈
VρJIntK.

Theorem B.27 (Fundamental Property) If Ξ; ∆; Γ ` t : G then Ξ; ∆; Γ ` t � t : G.

Proof. By induction on the type derivation of t.

Case (Gasc). Then t = ε s :: G, and therefore:

(Gasc)
∆; Γ ` s : G′ ε : G′ ∼ G

∆; Γ ` ε s :: G : G

We follow by induction on the structure of s.

• If s = b then:

(Gb)
θ(b) = B ∆ ` Γ

∆; Γ ` b : B

Then we have to prove that ∆; Γ ` εb :: G � εb :: G : G, but the result follows directly by
Prop B.28 (Compatibility of Constant).

• If s = λx : G1.t
′ then:

(Gλ)
∆; Γ,x : G1 ` t′ : G2

∆; Γ ` λx : G1.t
′ : G1 −→ G2

Then we have to prove that

∆; Γ ` ε (λx : G1.t
′) :: G � ε (λx : G1.t

′) :: G : G

325

Since ∆; Γ,x : G1 ` t′ : G2, by the induction hypotheses we know that ∆; Γ,x : G1 ` t′ �
t′ : G2. Then, the result follows directly by Prop B.29 (Compatibility of term abstraction).

• If s = ΛX.t′ then:

(GΛ)
∆,X; Γ ` t′ : G′′ ∆ ` Γ

∆; Γ ` ΛX.t′ : ∀X.G′′

Then we have to prove that

∆; Γ ` ε (ΛX.t′) :: G � ε (ΛX.t′) :: G : G

Since ∆,X; Γ ` t′ : G′′, by the induction hypotheses we know that ∆,X; Γ ` t′ � t′ : G′′.
Then, the result follows directly by Prop B.30 (Compatibility of type abstraction).

• If s = 〈u1,u2〉 then:

(Gpair)
∆; Γ ` u1 : G1 ∆; Γ ` u2 : G2

∆; Γ ` 〈u1,u2〉 : G1×G2

Then we have to prove that

∆; Γ ` ε 〈u1,u2〉 :: G � ε 〈u1,u2〉 :: G : G

Since ε : G1×G2 ∼ G, we know that G can be either G′1×G′2 or ?δ .

– G = G′1×G′2. We know by premise that ∆; Γ ` π1(ε) u1 :: G′1 : G′1 and ∆; Γ `
π2(ε) u2 :: G′2 : G′2. Then by the induction hypotheses we know that ∆; Γ ` π1(ε) u1 :: G′1 �
π1(ε) u1 :: G′1 : G′1 and ∆; Γ ` π2(ε) u2 :: G′2 � π2(ε) u2 :: G′2 : G′2. Then, the result
follows directly by Prop B.31 (Compatibility of pairs).

– G = ?δ . By Lemma B.41, we know that ε = inj×2(ε1) = ε1#ε2, where ε1 = extract×2(ε),
ε2 = [(?δ × ?δ , inj?× inj?, inj×(inj?× inj?))] and ε1 : G1×G2 ∼ ?δ × ?δ . We know
by premise that ∆; Γ ` π1(ε1) u1 :: ?δ : ?δ and ∆; Γ ` π2(ε1) u2 :: ?δ : ?δ . Then by
the induction hypotheses we know that ∆; Γ ` π1(ε1) u1 :: ?δ � π1(ε1) u1 :: ?δ : ?δ
and ∆; Γ ` π2(ε1) u2 :: ?δ � π2(ε1) u2 :: ?δ : ?δ . Then, the result follows directly by
Prop B.32 (Compatibility of pairs).

• If s = t′ then:

(Gasc)
∆; Γ ` t′ : G′ ε : G′ ∼ G

∆; Γ ` ε t′ :: G : G

Since ∆; Γ ` t′ : G′, by the induction hypotheses we know that ∆; Γ ` t′ � t′ : G′. Then,
the result follows directly by Prop B.35 (Compatibility of ascriptions).

Case (Gpair). Then t = 〈t1, t2〉, and therefore:

(Gpair)
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2

∆; Γ ` 〈t1, t2〉 : G1×G2

where G = G1×G2. We have to prove that

∆; Γ ` 〈t1, t2〉 � 〈t1, t2〉 : G1×G2

Since ∆; Γ ` t1 : G1 and ∆; Γ ` t2 : G2, by the induction hypotheses we know that ∆; Γ ` t1 �
t1 : G1 and ∆; Γ ` t2 � t2 : G2. Then, the result follows directly by Prop B.33 (Compatibility of
pairs).

326

Case (Gx). Then t = x, and therefore:

(Gx)
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G

Then we have to prove that ∆; Γ ` x � x : G. The result follows directly by Prop B.34
(Compatibility of variables).

Case (Gapp). Then t = t1 t2, and therefore:

(Gapp)
∆; Γ ` t1 : G11 −→ G12 ∆; Γ ` t2 : G11

∆; Γ ` t1 t2 : G12

where G = G12. We have to prove that:

∆; Γ ` t1 t2 � t1 t2 : G12

Since ∆; Γ ` t1 : G11 −→ G12 and ∆; Γ ` t2 : G11, by the induction hypothesis we obtain that
∆; Γ ` t1 � t1 : G11 −→ G12 and ∆; Γ ` t2 � t2 : G11. Then, the result follows directly by
Prop B.3 (Compatibility of term application).

Case (GappG). Then t = t′ [F], and therefore:

(GappG)
∆; Γ ` t′ : ∀X.G′′ ∆ ` F

∆; Γ ` t′ [F] : G′′[F/X]

where G = G′′[F/X]. Then we have to prove that

∆; Γ ` t′ [F] � t′ [F] : G′′[F/X]

Since ∆; Γ ` t′ : ∀X.G′′, by the induction hypotheses we know that:

∆; Γ ` t′ � t′ : ∀X.G′′

Then the result follows directly by Prop B.37 (Compatibility of type application).

Case (Gpairi). Then t = πi(t
′), and therefore:

(Gpairi)
∆; Γ ` t′ : G1×G2

∆; Γ ` πi(t
′) : Gi

where G = Gi. Then we have to prove that

∆; Γ ` πi(t′) � πi(t′) : Gi

Since ∆; Γ ` t′ : G1×G2, by the induction hypothesis we obtain that ∆; Γ ` t′ � t′ : G1×G2.
Then the result follows directly by Prop B.36 (Compatibility of pair projection).

Lemma B.28 (Compatibility-Gb) If θ(b) = B, ε : B ∼ G and ∆ ` Γ, then ∆; Γ ` ε b :: G �
ε b :: G : G.

327

Proof. We know that θ(b) = B, ε : B ∼ G and ∆ ` Γ. We are required to prove that

∆; Γ ` ε b :: G � ε b :: G : G

Let suppose that t = ε b :: G. First, we have to prove that ∆; Γ ` t : G, which follows immediately
by the typing rules (Gb) and (Gasc). Second, we have to prove that for all n, ρ and γ such
that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(t)), ρ2(γ2(t))) ∈ TρJGK. Thus,
we are required to prove that ` ρ1(γ1(t)) : ρ1(G) and ` ρ2(γ2(t)) : ρ2(G), which follow by
Lemma B.60. Since ρi(γi(t)) = ρi(ε) b :: ρi(G) are already values, then we have to prove that:
(n, ρ1(γ1(t)), ρ2(γ2(t))) ∈ VρJGK. We proceed by case analysis on G. Since ε : B ∼ G, then either
G = B or G = ?δ .

• G = B. Then, we know that ε = {(B,B,B)} = reflEv(B) = ρi(ε), by Lemma B.41. Thus,
we are required to prove that (n, reflEv(B) b :: B, reflEv(B) b :: B) ∈ VρJBK, which follows
immediately.

• G = ?δ . Let suppose that ρi(γi(ε b :: ?δ)) = ρi(ε) b :: ρi(?δ) = ρi(ε) ui :: ρi(?δ) and G∗ = B.
We are required to prove that

(n, ρ1(ε) u1 :: ρ1(?δ), ρ2(ε) u2 :: ρ2(?δ)) ∈ VρJ?δK

Or what is the same, we are required to prove that for all GR and ε′ (` ε′ : δ _ GR), we get
that

(n, ρ1(ε′) (ρ1(ε) u1 :: ρ1(?δ)) :: ρ1(G′R), ρ2(ε′) (ρ2(ε) u2 :: ρ2(?δ)) :: ρ2(G′R)) ∈ TρJG′RK

By Lemma B.51, we know that ρi(ε) # ρi(ε′) and ρi(ε # ε′) behaves equivalent, where (ε # ε′) :
G∗ ∼ G′R (dom(ρ) = ∆). Thus if ρi(ε # ε′) fail, or what is the same if (ε # ε′) fails, then the
result follows immediately because both term behaves equivalent. If (ε #ε′) does not fail then,
we know that ρi(ε) # ρi(ε′) = ρi(ε # ε′). Since ε : G∗ ∼ ?δ , ε′ : ?δ ∼ G′R and ε # ε′ is defined,
by Lemma B.65, we know that S(G∗, ?δ′) = G′R, therefore, G′R = B. Thus, we proceed in
the same way as the first case, with evidence (ε # ε′) : B ∼ B.

Lemma B.29 (Compatibility-Gλ) If ∆; Γ,x : G1 ` t1 � t2 : G2, ε : G1 −→ G2 ∼ G, then
∆; Γ ` ε (λx : G1.t1) :: G � ε (λx : G1.t2) :: G : G.

Proof. We know that ∆; Γ,x : G1 ` t1 � t2 : G2, ε : G1 −→ G2 ∼ G. We are required to prove
that ∆; Γ ` ε (λx : G1.t1) :: G � ε (λx : G1.t2) :: G : G.

Let suppose that tiλ = ε (λx : G1.ti) :: G. First, we have to prove that ∆; Γ ` tiλ : G, which
follows immediately by the typing rules (Gλ) and (Gasc). Second, we have to prove that for all n, ρ
and γ such that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(t1λ)), ρ2(γ2(t2λ))) ∈ TρJGK.
Thus, we are required to prove that ` ρ1(γ1(t1λ)) : ρ1(G) and ` ρ2(γ2(t2λ)) : ρ2(G), which follow
by Lemma B.60. Since ρi(γi(tiλ)) = ρi(ε) (λx : ρi(G1).ρi(γi(ti))) :: ρi(G) are already values, then
we have to prove that: (n, ρ1(γ1(t1λ)), ρ2(γ2(t2λ))) ∈ VρJGK. We proceed by case analysis on G.
Since ε : G1→G2 ∼ G, then either G = G′1→G′2, for some G′1 and G′2, or G = ?δ .

328

• G = G′1→G′2. We are required to prove that for all n′ ≤ n,v′1 = ε′1 u′1 :: ρ1(G′1),v′2 =
ε′2 u′2 :: ρ2(G′2). B (n′,v′1,v

′
2) ∈ VρJG′1K, we get that

(n′, ρ1(γ1(t1λ)) v′1, ρ2(γ2(t2λ)) v′2) ∈ TρJG′2K

Note that dom(ρi(ε)) = ρi(dom(ε)) and dom(ε) : G′1 ∼ G1. Since B (n′,v′1,v
′
2) ∈ VρJG′1K,

dom(ε) : G′1 ∼ G1 and (n′, ρ) ∈ DJ∆K, by the Lemma 6.10, we get that

B (n′, ρ1(dom(ε)) v′1 :: ρ1(G1), ρ2(dom(ε)) v′2 :: ρ2(G1)) ∈ TρJG1K

Then, we know that both term behaves equivalent. If both terms fail the result follows
immediately. Otherwise, if (ε′1 #dom(ρ1(ε))) is defined, we know by the operational semantics
that

ρ1(γ1(t1λ)) v′1−→1cod(ρ1(ε)) (ρ1(γ1(t1))[((ε′1 # dom(ρ1(ε))) u′1 :: ρ1(G1))/x]) :: ρ1(G′2)

ρ2(γ2(t2λ)) v′2 −→∗ cod(ρ2(ε)) (ρ2(γ2(t2))[((ε′2 # dom(ρ2(ε))) u′2 :: ρ2(G1))/x]) :: ρ2(G′2)

Since (ε′1 # dom(ρ1(ε))) is defined, we get that

B(n′, (ε′1 # ρ1(dom(ε))) u′1 :: ρ1(G1), (ε′2 # ρ2(dom(ε))) u′2 :: ρ2(G1)) ∈ VρJG1K

We instantiate the premise ∆; Γ,x : G1 ` t1 � t2 : G2, with n′, ρ and γ′ = γ[x : ρ(G1) 7→
(v′′1,v

′′
2)], where v′′i = (ε′i # ρi(dom(ε))) u′i :: ρi(G1) and B(n′,v′′1,v

′′
2) ∈ VρJG1K. Note that

(n′, ρ) ∈ DJ∆K by the definition of DJ∆K and (n′, γ′) ∈ GρJΓ,x : ρ(G1)K because (n′, γ) ∈
GρJΓK and B(n′,v′′1,v

′′
2) ∈ VρJG1K. Then, we know that

B(n′, ρ1(γ1(t1))[v′′1/x], ρ2(γ2(t2))[v′′2/x]) ∈ TρJG2K

Note that ρi(γ
′
i(ti)) = ρi(γi(ti))[v

′′
i /x]. If the above terms reduce to error then the result

follows immediately. Otherwise, we know that for all j < n′, if ρ1(γ1(t1))[v′′1/x] 7−→ jv1s then

we know that ρ2(γ2(t2))[v′′2/x]
∗7−→ v2s andBj(n′,v1s,v2s) ∈ VρJG2K. SinceBj(n′,v1s,v2s) ∈

VρJG2K and cod(ε) : G2 ∼ G′2, by Lemma 6.10, we get that

Bj(n′, ρ1(cod(ε)) v1s :: ρ1(G′2), ρ2(cod(ε)) v2s :: ρ2(G′2)) ∈ TρJG′2K

If transitivity fails both term fail and the result follows immediately. Otherwise, let us suppose
that vis = εis uis :: ρi(G2), then we know that

Bj(n′, (ε1s # ρ1(cod(ε))) u1s :: ρ1(G′2), (ε2s # ρ2(cod(ε))) u2s :: ρ2(G′2)) ∈ VρJG′2K

Let us suppose that vif = (εis # ρi(cod(ε))) uis :: ρi(G
′
2), then we get that Bj(n′,v1f ,v2f) ∈

VρJG′2K. Therefore, we know that

ρ1(γ1(t1λ)) v′1 −→1 cod(ρ1(ε)) (ρ1(γ1(t1))[((ε′1 #dom(ρ1(ε))) u′1 :: ρ1(G1))/x]) :: ρ1(G′2) −→j

ρ1(cod(ε)) v1s :: ρ1(G′2) −→0 v1f

ρ2(γ2(t2λ)) v′2 −→∗ cod(ρ2(ε)) (ρ2(γ2(t2))[((ε′2 #dom(ρ2(ε))) u′2 :: ρ2(G2))/x]) :: ρ2(G′2) −→∗

ρ2(cod(ε)) v2s :: ρ2(G′2) −→∗ v2f

Thus, we are required to prove that B1+j (n′,v1f ,v2f) ∈ VρJG′2K, but we already know that
Bj (n′,v1f ,v2f) ∈ VρJG′2K, therefore, by Lemma B.45, the result follows immediately.

329

• G = ?δ . Let suppose that ρi(γi(tiλ)) = ρi(ε) (λx : ρi(G1).ρi(γi(ti))) :: ρi(G) = ρi(ε) ui ::
ρi(?δ) and G∗ = G1→G2. We are required to prove that

(n, ρ1(ε) u1 :: ρ1(?δ), ρ2(ε) u2 :: ρ2(?δ)) ∈ VρJ?δK

Or what is the same, we are required to prove that for all GR and ` ε : δ _ GR, we get that

(n, ρ1(ε′) (ρ1(ε) u1 :: ρ1(?δ)) :: ρ1(GR), ρ2(ε′) (ρ2(ε) u2 :: ρ2(?δ)) :: ρ2(GR)) ∈ TρJGRK

By Lemma B.51, we know that ρi(ε) # ρi(ε′) and ρi(ε # ε′) behaves equivalent, where (ε # ε′) :
G∗ ∼ GR. Thus if ρi(ε # ε′) fail, or what is the same if (ε # ε′) fails, then the result follows
immediately because both term behaves equivalent. If (ε #ε′) does not fail then, we know that
ρi(ε) #ρi(ε′) = ρi(ε # ε′). Since ε : G∗ ∼ ?δ , ε′ : ?δ ∼ GR and ε # ε′ is defined, by Lemma B.65,
we know that S(G∗, ?δ) = GR, therefore, GR = ?δ→?δ . Thus, we proceed in the same way
as the first case, with evidence (ε # ε′) : G1→G2 ∼ ?δ→?δ .

Lemma B.30 (Compatibility-GΛ) If ∆,X; Γ ` t1 � t2 : G′, ε : ∀X.G′ ∼ G and ∆ ` Γ, then
∆; Γ ` ε (ΛX.t1) :: G � ε (ΛX.t2) :: G : G.

Proof. We know that ∆,X ` t1 � t2 : G′, ε : ∀X.G′ ∼ G and ∆ ` Γ. We are required to
prove that ∆; Γ ` ε (ΛX.t1) :: G � ε (ΛX.t2) :: G : G. Let suppose that tiΛ = ε (ΛX.ti) ::
G. First, we have to prove that ∆; Γ ` tiΛ : G, which follows immediately by the typing rules
(GΛ) and (Gasc). Second, we have to prove that for all n, ρ and γ such that (n, ρ) ∈ DJ∆K
and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(t1Λ)), ρ2(γ2(t2Λ))) ∈ TρJGK. Thus, we are required to
prove that ` ρ1(γ1(t1Λ)) : ρ1(G) and ` ρ2(γ2(t2Λ)) : ρ2(G), which follow by Lemma B.60.
Since ρi(γi(tiΛ)) = ρi(ε) (ΛX.ρi(γi(ti))) :: ρi(G) are already values, then we have to prove that
(n, ρ1(γ1(t1Λ)), ρ2(γ2(t2Λ))) ∈ VρJGK. We proceed by case analysis on G. Since ε : ∀X.G′ ∼ G,
then either G = ∀X.G′′, for some G′′, or G = ?δ .

• G = ∀X.G′′. We are required to prove that for all ` F1, ` F2 and R ∈ Rel[F1,F2], we get
that

(n, ρ1(γ1(t1Λ)) [F1], ρ2(γ2(t2Λ)) [F2]) ∈ Tρ;X 7→(F1,F2,R)JG′′K

Let suppose that ρ′ = ρ; X 7→ (F1,F2, R). We know by the operational semantics that

ρ1(γ1(t1Λ)) [F1] −→1 schm(ρ1(ε))[X 7→ F1] (ρ1(γ1(t1))[X 7→ F1]) :: ρ1(G′′)[F1/X]

ρ2(γ2(t2Λ)) [F2] −→1 schm(ρ2(ε))[X 7→ F2] (ρ2(γ2(t2))[X 7→ F2]) :: ρ2(G′′)[F2/X]

Note that schm(ρi(ε))[X 7→ Fi] = ρi(schm(ε))[X 7→ Fi] = ρ′i(schm(ε)) and schm(ε) : G′ ∼
G′′ . We instantiate the premise ∆,X; Γ ` t1 � t2 : G′, with n − 1, ρ′, γ. Note that
(n− 1, γ) ∈ GρJΓK by the definition of GρJΓK and (n− 1, ρ′) ∈ DJ∆,XK because (n− 1, ρ) ∈
DJ∆K and R ∈ Rel[F1,F2]. Then, we know that

B (n, ρ′1(γ1(t1)), ρ′2(γ2(t2))) ∈ Tρ′JG′K

Note that ρ′i(γi(ti)) = ρi(γi(ti))[X 7→ Fi]. If the above terms reduce to error then the
result follows immediately. Otherwise, we know that for all j < n − 1, if ρ1(γ1(t1))[X 7→
F [1]] 7−→ jv1s then we know that ρ2(γ2(t2))[X 7→ F [2]]

∗7−→ v2s and B1+j (n,v1s,v2s) ∈

330

Vρ′JG′K. Since B1+j (n,v1s,v2s) ∈ Vρ′JGK, schm(ε) : G′ ∼ G′′ and (n− 1, ρ′) ∈ DJ∆,XK by
Lemma 6.10, we get that

B1+j (n, ρ′1(schm(ε)) v1s :: ρ′1(G′′), ρ′2(schm(ε)) v2s :: ρ′2(G′′)) ∈ Tρ′JG′′K

If transitivity fails both term fail and the result follows immediately. Otherwise, let us suppose
that vis = εis uis :: ρ′i(G

′), then we know that

B1+j (n, (ε1s # ρ′1(schm(ε))) u1s :: ρ′1(G′′), (ε2s # ρ′2(schm(ε))) u2s :: ρ′2(G′′)) ∈ Vρ′JG′′K

Let us suppose that vif = (εis#ρ
′
i(schm(ε))) uis :: ρ′i(G

′′), then we get thatB1+j (n,v1f ,v2f) ∈
Vρ′JG′′K. Therefore, we know that

ρ1(γ1(t1Λ)) [F1] −→1 schm(ρ1(ε))[X 7→ F1] (ρ1(γ1(t1)[X 7→ F1]) :: ρ1(G′′)[F1/X])) −→j

ρ1(schm(ε))[X 7→ F1] v1s :: ρ1(G′′)[F1/X] −→0 v1f

ρ2(γ2(t2Λ)) [F2] −→∗ schm(ρ2(ε))[X 7→ F2] (ρ2(γ2(t2)[X 7→ F2]) :: ρ2(G′′)[F2/X])) −→∗

ρ2(schm(ε))[X 7→ F2] v2s :: ρ2(G′′)[F2/X] −→∗ v2f

Thus, we are required to prove that B1+j (n,v1f ,v2f) ∈ Vρ′JG′′K which already we proved.
Therefore, the result follows immediately.

• G = ?δ . Let suppose that ρi(γi(tiΛ)) = ρi(ε) (ΛX.ρi(γi(ti))) :: ρi(G) = ρi(ε) ui :: ρi(?δ) and
G∗ = ∀X.G′. We are required to prove that

(n, ρ1(ε) u1 :: ρ1(?δ), ρ2(ε) u2 :: ρ2(?δ)) ∈ VρJ?δK

Or what is the same, we are required to prove that for all GR and ` ε′ : δ _ GR, we get
that

(n, ρ1(ε′) (ρ1(ε) u1 :: ρ1(?δ)) :: ρ1(GR), ρ2(ε′) (ρ2(ε) u2 :: ρ2(?δ)) :: ρ2(GR)) ∈ TρJGRK

By Lemma B.51, we know that ρi(ε) # ρi(ε′) and ρi(ε # ε′) behaves equivalent, where (ε # ε′) :
G∗ ∼ GR. Thus if ρi(ε # ε′) fail, or what is the same if (ε # ε′) fails, then the result follows
immediately because both term behaves equivalent. If (ε #ε′) does not fail then, we know that
ρi(ε) #ρi(ε′) = ρi(ε # ε′). Since ε : G∗ ∼ ?δ , ε′ : ?δ ∼ GR and ε # ε′ is defined, by Lemma B.65,
we know that S(G∗, ?δ) = GR, therefore, GR = ∀X.?δ,X:X . Thus, we proceed in the same
way as the first case, with evidence (ε # ε′) : ∀X.G′ ∼ ∀X.?δ,X:X .

Lemma B.31 (Compatibility-Gpairu) If ∆; Γ ` π1(ε) u1 :: G′1 � π1(ε) u′1 :: G′1 : G′1, ∆; Γ `
π2(ε) u2 :: G′2 � π2(ε) u′2 :: G′2 : G′2, and ε : G1×G2 ∼ G′1×G′2, then ∆; Γ ` ε 〈u1,u2〉 ::
G′1×G′2 � ε 〈u′1,u′2〉 :: G′1×G′2 : G′1×G′2.

Proof. We know that ∆; Γ ` π1(ε) u1 :: G′1 � π1(ε) u′1 :: G′1 : G′1, ∆; Γ ` π2(ε) u2 :: G′2 �
π2(ε) u′2 :: G′2 : G′2, and ε : G1×G2 ∼ G′1×G′2. We are required to prove that ∆; Γ ` ε 〈u1,u2〉 ::
G′1×G′2 � ε 〈u′1,u′2〉 :: G′1×G′2 : G′1×G′2. Let suppose that v1 = ε 〈u1,u2〉 :: G′1×G′2 and
v2 = ε 〈u′1,u′2〉 :: G′1×G′2 First, we have to prove that ∆; Γ ` vi : G′1×G′2, which follows
immediately by the typing rules (Gpair) and (Gasc). Second, we have to prove that for all n,
ρ and γ such that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(v1)), ρ2(γ2(v2))) ∈

331

TρJG′1×G′2K. Thus, we are required to prove that ` ρ1(γ1(v1)) : ρ1(G′1×G′2) and ` ρ2(γ2(v2)) :
ρ2(G′1×G′2), which follow by Lemma B.60. Since ρ1(γ1(v1)) = ρ1(ε) (〈ρ1(γ1(u1)), ρ1(γ1(u2))〉) ::
ρ1(G′1×G′2) and ρ2(γ2(v2)) = ρ2(ε) (〈ρ2(γ2(u′1)), ρ2(γ2(u′2))〉) :: ρ2(G′1×G′2) are already values,
then we have to prove that (n, ρ1(γ1(v1)), ρ2(γ2(v2))) ∈ VρJG′1×G′2K. Or what is the same, by
the definition of VρJG′1×G′2K, we are required to prove that (n, π1(ρ1(γ1(v1))), π1(ρ2(γ2(v2)))),∈
TρJG′1K and (n, π2(ρ1(γ1(v1))), π2(ρ2(γ2(v2)))) ∈ TρJG′2K. Therefore, we are requires to prove
that B1 (n, ρ1(γ1(π1(ε) u1 :: G′1)), ρ2(γ2(π1(ε) u′1 :: G′1))),∈ VρJG′1K and B1 (n, ρ1(γ1(π2(ε) u2 ::
G′2)), ρ2(γ2(π2(ε) u′2 :: G′2))),∈ VρJG′2K, which follows immediately instantiating the premises
∆; Γ ` π1(ε) u1 :: G′1 � π1(ε) u′1 :: G′1 : G′1 and ∆; Γ ` π2(ε) u2 :: G′2 � π2(ε) u′2 :: G′2 : G′2,
with n− 1, ρ and γ.

Lemma B.32 (Compatibility-Gpairu?δ) If ∆; Γ ` π1(ε) u1 :: ?δ � π1(ε) u′1 :: ?δ : ?δ, ∆; Γ `
π2(ε) u2 :: ?δ � π2(ε) u′2 :: ?δ : ?δ, and ε : G1×G2 ∼ ?δ × ?δ, then ∆; Γ ` inj×2(ε) 〈u1,u2〉 ::
?δ � inj×2(ε) 〈u′1,u′2〉 :: ?δ : ?δ.

Proof. By Lemma B.31 and similar to the function case ascribed to unknown.

Lemma B.33 (Compatibility-Gpair) If ∆; Γ ` t1 � t′1 : G1 and ∆; Γ ` t2 � t′2 : G2, then
∆; Γ ` 〈t1, t2〉 � 〈t′1, t′2〉 : G1×G2.

Proof. We know that ∆; Γ ` t1 � t′1 : G1 and ∆; Γ ` t2 � t′2 : G2. We are required to prove
that ∆; Γ ` 〈t1, t2〉 � 〈t′1, t′2〉 : G1×G2. First, we have to prove that ∆; Γ ` 〈t1, t2〉 : G1×G2

and ∆; Γ ` 〈t′1, t′2〉 : G1×G2, which follows immediately by the typing rule (Gpair). Second,
we have to prove that for all n, ρ and γ such that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get
that (n, 〈ρ1(γ1(t1)), ρ1(γ1(t2))〉, 〈ρ2(γ2(t′1)), ρ2(γ2(t′2))〉) ∈ TρJG1×G2K. Thus, we are required
to prove that ` 〈ρ1(γ1(t1)), ρ1(γ1(t2))〉 : ρ1(G1)× ρ1(G2) and ` 〈ρ2(γ2(t′1)), ρ2(γ2(t′2))〉 :
ρ2(G1)× ρ2(G2), which follow by Lemma B.60. Consider arbitrary i < n. Either there exists
t1
∗ such that 〈ρ1(γ1(t1)), ρ1(γ1(t2))〉 7−→ it1

∗ or 〈ρ1(γ1(t1)), ρ1(γ1(t2))〉 7−→ ierror. First, let us
suppose that 〈ρ1(γ1(t1)), ρ1(γ1(t2))〉 7−→ it1

∗. If t1
∗ is not a value the result holds immediately.

Let us suppose t1
∗ = v1. Hence, by inspection of the operational semantics, it follows that there

exist i1 < i, i2 < i− i1, v11, v21 and v1 such that

〈ρ1(γ1(t1)), ρ1(γ1(t2))〉 7−→ i1〈v11, ρ1(γ1(t2))〉 7−→ i2〈v11,v22〉 7−→ 1v1

where v1 = ε11× ε21 〈u11,u21〉 :: ρ1(G1)× ρ1(G2), v11 = ε11 u11 :: ρ1(G1) and v21 = ε21 u21 ::
ρ1(G2). We instantiate the premise ∆; Γ ` t1 � t′1 : G1 with n, ρ and γ to obtain that
(n, ρ1(γ1(t1)), ρ2(γ2(t′1))) ∈ TρJG1K. Then, we know that both term behaves equivalent. If both
terms fail the result follows immediately. Otherwise, we instantiate TρJG1K with i1 and v11 (note

that i1 < i < n), hence there exists v12, such that ρ2(γ2(t′1))
∗7−→ v12 and Bi1 (n,v11,v12) ∈

VρJG1K. Next, we instantiate the premise ∆; Γ ` t2 � t′2 : G2 with n − i1, ρ and γ to obtain
that Bi1 (n, ρ1(γ1(t2)), ρ2(γ2(t′2))) ∈ TρJG2K. Then, we know that both term behaves equivalent.
If both terms fail the result follows immediately. Otherwise, we instantiate TρJG2K with i2 and

v21 (note that i2 < i − i1 < n − i1), hence there exists v22, such that ρ2(γ2(t′2))
∗7−→ v22 and

Bi1+i2 (n,v21,v22) ∈ VρJG2K. We know by the operational semantics that

〈ρ2(γ2(t′1)), ρ2(γ2(t′2))〉 ∗7−→ 〈v12, ρ2(γ2(t′2))〉 ∗7−→ 〈v12,v22〉 7−→ 1v2

where v2 = ε12× ε22 〈u12,u22〉 :: ρ2(G1)× ρ2(G2), v12 = ε12 u12 :: ρ2(G1) and v22 = ε22 u22 ::
ρ2(G2). Also, by the operational semantics we know that πi(v1) 7−→ 1vi1 and πi(v2) 7−→ 1vi2. We

332

are required to prove that Bi1+i2 (n,v1,v2) ∈ VρJG1×G2K. Or what is the same, we are required to
prove that Bi1+i2 (n, π1(v1), π1(v2)) ∈ TρJG1K and Bi1+i2 (n, π2(v1), π2(v2)) ∈ TρJG2K. Therefore,
we are required to prove that Bi1+i2+1 (n,v11,v12) ∈ VρJG1K Bi1+i2+1 (n,v21,v22) ∈ VρJG2K,
which follows by Lemma B.45. Finally, the result holds.

Lemma B.34 (Compatibility-Gx) If x : G ∈ Γ and ∆ ` Γ, then ∆; Γ ` x � x : G.

Proof. We know that x : G ∈ Γ and ∆ ` Γ. We are required to prove that ∆; Γ ` x � x : G.
First, we have to prove that ∆; Γ ` x : G, which follows immediately by the typing rule (Gx).
Second, we have to prove that for all n, ρ and γ such that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get
that (n, ρ1(γ1(x)), ρ2(γ2(x))) ∈ TρJGK. Thus, we are required to prove that ` ρ1(γ1(x)) : ρ1(G)
and ` ρ2(γ2(x)) : ρ2(G), which follow by Lemma B.60. Since ρi(γi(x)) = γi(x) = vi are already
values, then we have to prove that (n, γ1(x), γ2(x)) ∈ VρJGK. Or what is the same, we are required
to prove that (n,v1,v2) ∈ VρJGK, which follows immediately by definition of (n, γ) ∈ GρJΓK.

Lemma B.35 (Compatibility-Gasc) If ∆; Γ ` t1 � t2 : G′ and ε : G′ ∼ G, then ∆; Γ ` ε t1 ::
G � ε t2 :: G : G.

Proof. We know that ∆; Γ ` t1 � t2 : G′ and ε : G′ ∼ G. We are required to prove that
∆; Γ ` ε t1 :: G � ε t2 :: G : G. First, we have to prove that ∆; Γ ` ε ti :: G : G, which follows
immediately by the typing rule (Gasc). Second, we have to prove that for all n, ρ and γ such
that (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, ρ1(ε) ρ1(γ1(t1)) :: ρ1(G), ρ2(ε) ρ2(γ2(t2)) ::
ρ2(G)) ∈ TρJGK. Thus, we are required to prove that ` ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) : ρ1(G) and
` ρ2(ε) ρ2(γ2(t2)) :: ρ2(G) : ρ2(G), which follow by Lemma B.60. Consider arbitrary i < n. Either
there exists t′1 such that ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) 7−→ it′1 or ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) 7−→ ierror.
First, let us suppose that ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) 7−→ it′1. If t′1 is not a value the result holds
immediately. Let us suppose t′1 = v′1. Hence, by inspection of the operational semantics, it follows
that there exist i1 < i, and v11 such that ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) 7−→ i1ρ1(ε) v11 :: ρ1(G). We in-
stantiate the premise ∆; Γ ` t1 � t2 : G′ with n, ρ and γ to obtain that (n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈
TρJG′K. We instantiate TρJG′K with i1 and v11 (note that i1 < i < n), hence there exists v12, such

that ρ2(γ2(t2))
∗7−→ v12, and Bi1 (n,v11,v12) ∈ VρJG′K. Let us suppose that v1i = εi ui :: ρi(G

′).
Since Bi1 (n,v11,v12) ∈ VρJG′K, ε : G′ ∼ G′ and (n− i1, ρ) ∈ DJ∆K, by Lemma 6.10, we get that
Bi1 (n, ρ1(ε) v11 :: ρ1(G), ρ2(ε) v12 :: ρ2(G)) ∈ TρJGK. Therefore, we get that both term fail and
the result hold immediately, or both term reduce and Bi1 (n, (ε1 #ρ1(ε)) u1 :: ρ1(G), (ε2 #ρ2(ε)) u2 ::
ρ2(G)) ∈ VρJGK. By inspection of the operational semantics, we know that

ρ1(ε) ρ1(γ1(t1)) :: ρ1(G) 7−→ i1ρ1(ε) v11 :: ρ1(G) 7−→ 0(ε1 # ρ1(ε)) u1 :: ρ1(G)

and
ρ2(ε) ρ2(γ2(t2)) :: ρ2(G)

∗7−→ ρ2(ε) v12 :: ρ2(G)
∗7−→ (ε2 # ρ2(ε)) u2 :: ρ2(G)

Thus, we are required to prove that Bi1 (n, (ε1 #ρ1(ε)) u1 :: ρ1(G), (ε2 #ρ2(ε)) u2 :: ρ2(G)) ∈ VρJGK,
which already is proved. Therefore, the result holds.

333

[Compatibility-Eapp] If ∆; Γ ` t1 � t2 : G1 −→ G2 and ∆; Γ ` t′1 � t′2 : G1, then
∆; Γ ` t1 t′1 � t2 t′2 : G2.

Proof. We know that ∆; Γ ` t1 � t2 : G1 −→ G2 and ∆; Γ ` t′1 � t′2 : G1. We are required to
prove that ∆; Γ ` t1 t′1 � t2 t′2 : G2. First, we have to prove that ∆; Γ ` ti t′i : G2, which follows
immediately by the typing rule (Gapp). Second, we have to prove that for all n, ρ and γ such that
(n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(t1)) ρ1(γ1(t′1)), ρ2(γ2(t2)) ρ2(γ2(t′2))) ∈
TρJG2K. Thus, we are required to prove that ` ρ1(γ1(t1)) ρ1(γ1(t′1)) : ρ1(G2) and ` ρ2(γ2(t2)) ρ2(γ2(t′2)) :
ρ2(G2), which follow by Lemma B.60. Consider arbitrary i < n. Either there exists t1

∗ such
that ρ1(γ1(t1)) ρ1(γ1(t′1)) 7−→ it1

∗ or ρ1(γ1(t1)) ρ1(γ1(t′1)) 7−→ ierror. First, let us suppose that
ρ1(γ1(t1)) ρ1(γ1(t′1)) 7−→ it1

∗. If t1
∗ is not a value the result holds immediately. Let us suppose

t1
∗ = v1. Hence, by inspection of the operational semantics, it follows that there exist i1 < i, i2 <

i−i1, i3 = i−i1−i2, v11 and v21 such that ρ1(γ1(t1)) ρ1(γ1(t′1)) 7−→ i1v11 ρ1(γ1(t′1)) 7−→ i2v11 v21 7−→ i3v1.
We instantiate the premise ∆; Γ ` t1 � t2 : G1→G2 with n, ρ and γ to obtain that (n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈
TρJG1→G2K. Then, we know that both term behaves equivalent. If both terms fail the result fol-
lows immediately. Otherwise, we instantiate TρJG1→G2K with i1 and v11 (note that i1 < i <

n), hence there exists v12, such that ρ2(γ2(t2))
∗7−→ v12 and Bi1 (n,v11,v12) ∈ VρJG1→G2K.

Next, we instantiate the premise ∆; Γ ` t′1 � t′2 : G1 with n − i1, ρ and γ to obtain that
Bi1 (n, ρ1(γ1(t′1)), ρ2(γ2(t′2))) ∈ TρJG1K. Then, we know that both term behaves equivalent. If
both terms fail the result follows immediately. Otherwise, we instantiate TρJG1K with i2 and

v21 (note that i2 < i − i1 < n − i1), hence there exists v22, such that ρ2(γ2(t′2))
∗7−→ v22

and Bi1+i2 (n,v21,v22) ∈ VρJG1K. Now, we instantiate Bi1 (n,v11,v12) ∈ VρJG1→G2K, with
n − i1 − i2 ≤ n − i1 and Bi1+i2+1 (n,v21,v22) ∈ VρJG1K (Bi1+i2 (n,v21,v22) ∈ VρJG1K and
Lemma B.45), and we get that Bi1+i2 (n,v11 v21,v12 v22) ∈ TρJG2K. Then, we know that both
term behaves equivalent. If both terms fail the result follows immediately. Otherwise, we instantiate
TρJG2K with i3 and v1 (note that i3 = i − i1 − i2 < n − i1 − i2), hence there exists v2, such that

v12 v22
∗7−→ v2 and Bi1+i2+i3 (n,v1,v2) ∈ VρJG2K. Finally, the result holds.

Lemma B.36 (Compatibility-Gpairi) If ∆; Γ ` t1 � t2 : G1×G2 then ∆; Γ ` πi(t1) � πi(t2) :
Gi.

Proof. We know that ∆; Γ ` t1 � t2 : G1×G2. We are required to prove that ∆; Γ ` πi(t1) �
πi(t2) : Gi. First, we have to prove that ∆; Γ ` πi(t1) : Gi and ∆; Γ ` πi(t2) : Gi, which follows
immediately by the typing rule (Gpairi). Second, we have to prove that for all n, ρ and γ such that
(n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, we get that (n, πi(ρ1(γ1(t1))), πi(ρ2(γ2(t2)))) ∈ TρJGiK. Thus,
we are required to prove that ` πi(ρ1(γ1(t1))) : ρ1(Gi) and ` πi(ρ2(γ2(t2))) : ρ2(Gi), which follow
by Lemma B.60. Consider arbitrary i < n. Either there exists t1

∗ such that πi(ρ1(γ1(t1))) 7−→ it1
∗

or πi(ρ1(γ1(t1))) 7−→ ierror. First, let us suppose that πi(ρ1(γ1(t1))) 7−→ it1
∗. If t1

∗ is not a
value the result holds immediately. Let us suppose t1

∗ = v1. Hence, by inspection of the
operational semantics, it follows that there exist i1 < i, i2 = i − i1, v11 and v1 such that
πi(ρ1(γ1(t1))) 7−→ i1πi(v11) 7−→ i2v1. We instantiate the premise ∆; Γ ` t1 � t2 : G1×G2

with n, ρ and γ to obtain that (n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ TρJG1×G2K. Then, we know that
both term behaves equivalent. If both terms fail the result follows immediately. Otherwise, we
instantiate TρJG1×G2K with i1 and v11 (note that i1 < i < n), hence there exists v12, such that

ρ2(γ2(t2))
∗7−→ v12 and Bi1 (n,v11,v12) ∈ VρJG1×G2K. By the definition of Bi1 (n,v11,v12) ∈

VρJG1×G2K, we know that Bi1 (n, πi(v11), πi(v12)) ∈ TρJGiK. Then, we know that both term
behaves equivalent. If both terms fail the result follows immediately. Otherwise, we instantiate

334

TρJGiK with with i2 and v1 (note that i2 = i − i1 < n − i1), hence there exists v2, such that

πi(v12)
∗7−→ v2 and Bi1+i2 (n,v1,v2) ∈ VρJGiK. Thus, the result follows immediately.

Lemma B.37 (Compatibility-GappG) If ∆; Γ ` t1 � t2 : ∀X.G and ∆ ` F, then ∆; Γ ` t1 [F] �
t2 [F] : G[F/X].

Proof. We know that ∆; Γ ` t1 � t2 : ∀X.G and ∆ ` F. We are required to prove that
∆; Γ ` t1 [F] � t2 [F] : G[F/X].

First, we have to prove that ∆; Γ ` ti [F] : G[F/X], which follows immediately by the typ-
ing rule (GappG). Second, we have to prove that for all n, ρ and γ such that (n, ρ) ∈ DJ∆K
and (n, γ) ∈ GρJΓK, we get that (n, ρ1(γ1(t1)) [ρ1(F)], ρ2(γ2(t2)) [ρ2(F)]) ∈ TρJG[F/X]K. Thus,
we are required to prove that ` ρ1(γ1(t1)) [ρ1(F)] : ρ1(G[F/X]) and ` ρ2(γ2(t2)) [ρ2(F)] :
ρ2(G[F/X]), which follow by Lemma B.60. Consider arbitrary i < n. Either there exists t′1
such that ρ1(γ1(t1))[ρ1(F)] 7−→ it′1 or ρ1(γ1(t1))[ρ1(F)] 7−→ ierror. First, let us suppose that
ρ1(γ1(t1))[ρ1(F)] 7−→ it′1. If t′1 is not a value the result holds immediately. Let us suppose t′1 = v′1.
Hence, by inspection of the operational semantics, it follows that there exist i1 < i, and v11 such
that ρ1(γ1(t1)) [ρ1(F)] 7−→ i1v11 [ρ1(F)]. We instantiate the premise ∆; Γ ` t1 � t2 : ∀X.G
with n, ρ and γ to obtain that (n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ TρJ∀X.GK. We instantiate TρJ∀X.GK
with i1 and v11 (note that i1 < i < n), hence there exists v12, such that ρ2(γ2(t2))

∗7−→ v12, and
Bi1 (n,v11,v12) ∈ VρJ∀X.GK. We instantiate VρJ∀X.GK with F1 = ρ1(F), F2 = ρ2(F), and R =
VρJFK. Then Bi1 (n,v11 [F1],v12 [F2]) ∈ Tρ;X 7→(F1,F2,R)JGK. We instantiate Tρ;X 7→(F1,F2,R)JGK
with i2 = i − i1, and v′1, such that v11 [F1] 7−→ i2v′1. Therefore there must exist v′2 such that

v12 [F2]
∗7−→ v′2 and Bi1+i2 (n,v′1,v

′
2) ∈ Vρ;X 7→(F1,F2,R)JGK. Finally, the result follows by Compo-

sitionality (Prop 6.9).

Lemma B.38 (Compositionality) Let ∆ ` F, ∆,X ` G, (n, ρ) ∈ DJ∆K, and R = VρJFK, then
VρJG[F/X]K = Vρ,X 7→(ρ1(F),ρ2(F),R)JGK.

Proof. By case analysis on G, and induction on (n,G). Let ρ′ = ρ,X 7→ (ρ1(F), ρ2(F), R).

Case (G = B). We know that

VρJB[F/X]K = VρJBK = Vρ′JBK

Therefore, the result holds.

Case (G = X). We know that

VρJX[F/X]K = VρJFK = R = ρ′.R(X) = Vρ′JXK

Therefore, the result holds.

Case (G = Y ∧Y 6 X). We know that

VρJY[F/X]K = VρJYK = ρ.R(Y) = ρ′.R(Y) = Vρ′JYK

Therefore, the result holds.

Case (G = G1→G2). We are required to prove that

VρJG1→G2[F/X]K = Vρ,X 7→(ρ1(F),ρ2(F),R)JG1→G2K

335

Or what is the same, we are required to prove that

VρJG1[F/X]→G2[F/X]K = Vρ,X 7→(ρ1(F),ρ2(F),R)JG1→G2K

We divide this case in two proofs.

• If (n,v1,v2) ∈ VρJG1[F/X]→G2[F/X]K then (n,v1,v2) ∈ Vρ′JG1→G2K. We are required
to prove that ∀n′ ≤ n,v′1,v′2. B (n′,v′1,v

′
2) ∈ Vρ′JG1K, we get that

(n′,v1 v′1,v2 v′2) ∈ Tρ′JG2K

Since B (n′,v′1,v
′
2) ∈ Vρ′JG1K by the induction hypothesis on (n′,G1), we know that B

(n′,v′1,v
′
2) ∈ VρJG1[F/X]K. Since (n,v1,v2) ∈ VρJG1[F/X]→G2[F/X]K, we instantiate this

with n′ ≤ n,v′1,v′2. B (n′,v′1,v
′
2) ∈ VρJG1[F/X]K. Therefore, we get that

(n′,v1 v′1,v2 v′2) ∈ TρJG2[F/X]K

We know that for all i < n′, if v1 v′1 7−→ ierror, then v2 v′2
∗7−→ error, and therefore,

the result holds. Also, we know that for all i < n′, if v1 v′1 7−→ iv1f , then we know that

v2 v′2
∗7−→ v2f and Bi (n′,v1f ,v2f) ∈ VρJG2[F/X]K. By the induction hypothesis on (n′,G2),

we get that Bi (n′,v1f ,v2f) ∈ Vρ′JG2K, and the result holds.

• If (n,v1,v2) ∈ Vρ′JG1→G2K then (n,v1,v2) ∈ VρJG1[F/X]→G2[F/X]K.

We are required to prove that ∀n′ ≤ n,v′1,v′2. B (n′,v′1,v
′
2) ∈ VρJG1[F/X]K, we get that

(n′,v1 v′1,v2 v′2) ∈ TρJG2[F/X]K

Since B (n′,v′1,v
′
2) ∈ VρJG1[F/X]K by the induction hypothesis on G1, we know that

B (n′,v′1,v
′
2) ∈ Vρ′JG1K. Since (n,v1,v2) ∈ Vρ′JG1→G2K, we instantiate this with n′ ≤

n,v′1,v
′
2. B (n′,v′1,v

′
2) ∈ Vρ′JG1K. Therefore, we get that

(n′,v1 v′1,v2 v′2) ∈ Tρ′JG2K

We know that for all i < n′, if v1 v′1 7−→ ierror, then v2 v′2
∗7−→ error, and therefore,

the result holds. Also, we know that for all i < n′, if v1 v′1 7−→ iv1f , then we know that

v2 v′2
∗7−→ v2f and Bi (n′,v1f ,v2f) ∈ Vρ′JG2K. By the induction hypothesis on G2, we get

that Bi (n′,v1f ,v2f) ∈ VρJG2[F/X]K, and the result holds.

Therefore, the result holds.

Case (G = G1×G2). Similar to the function case.

Case (G = ∀Y.G1). We are required to prove that

VρJ(∀Y.G1)[F/X]K = Vρ,X 7→(ρ1(F),ρ2(F),R)J∀Y.G1K

Or what is the same, we are required to prove that

VρJ∀Y.(G1[F/X])K = Vρ,X 7→(ρ1(F),ρ2(F),R)J∀Y.G1K

We divide this case in two proofs.

336

• If (n,v1,v2) ∈ VρJ∀Y.(G1[F/X])K then (n,v1,v2) ∈ Vρ′J∀Y.G1K. We are required to prove
that for all ` F1,` F2, R ∈ Rel[F1,F2], we get that

(n,v1 [F1],v2 [F2]) ∈ T(ρ′;Y 7→(F1,F2,R))JG1K

Since (n,v1,v2) ∈ VρJ∀Y.(G1[F/X])K, we instantiate this with ` F1,` F2, R ∈ Rel[F1,F2].
Therefore, we get that

(n,v1 [F1],v2 [F2]) ∈ T(ρ;Y 7→(F1,F2,R))JG1[F/X]K

We know that for all i < n, if v1 [F1] 7−→ ierror, then v2 [F2]
∗7−→ error, and therefore,

the result holds. Also, we know that for all i < n, if v1 [F1] 7−→ iv1f , then we know

that v2 [F2]
∗7−→ v2f and Bi (n,v1f ,v2f) ∈ Vρ;Y 7→(F1,F2,R)JG1[F/X]K. By the induction

hypothesis on G1, we get that Bi (n,v1f ,v2f) ∈ Vρ′;Y 7→(F1,F2,R)JG1K, and the result holds.

• If (n,v1,v2) ∈ Vρ′J∀Y.G1K then (n,v1,v2) ∈ VρJ∀Y.(G1[F/X])K. We are required to prove
that for all ` F1,` F2, R ∈ Rel[F1,F2], we get that

(n,v1 [F1],v2 [F2]) ∈ T(ρ;Y 7→(F1,F2,R))JG1[F/X]K

Since (n,v1,v2) ∈ Vρ′J∀Y.G1K, we instantiate this with ` F1,` F2, R ∈ Rel[F1,F2]. There-
fore, we get that

(n,v1 [F1],v2 [F2]) ∈ T(ρ′;Y 7→(F1,F2,R))JG1K

We know that for all i < n, if v1 [F1] 7−→ ierror, then v2 [F2]
∗7−→ error, and therefore,

the result holds. Also, we know that for all i < n, if v1 [F1] 7−→ iv1f , then we know that

v2 [F2]
∗7−→ v2f and Bi (n,v1f ,v2f) ∈ Vρ′;Y 7→(F1,F2,R)JG1K. By the induction hypothesis on

G1, we get that Bi (n,v1f ,v2f) ∈ Vρ;Y 7→(F1,F2,R)JG1[F/X]K, and the result holds.

Therefore, the result holds.

Case (G = ?δ). Then we have to prove that

VρJ?[F/X]δK = Vρ,X 7→(ρ1(F),ρ2(F),R)J?δK

If X 6∈ FTV (δ) (∆ ` ?δ) then ?[F/X]δ = ?δ . Therefore, we are required to prove that VρJ?δK =
Vρ′J?δK, which follows immediately, by Lemma B.46. If X ∈ FTV (δ), we know that X : X ∈ δ.
Let us prove that (n,v1,v2) ∈ VρJ?[F/X]δK if and only if (n,v1,v2) ∈ Vρ′J?δK. Let F1 = ρ1(F) and
F2 = ρ2(F).

• First let us prove that (n,v1,v2) ∈ Atomvρ[?[F/X]δ] if and only if (n,v1,v2) ∈ Atomvρ′ [?δ].
We know that

Atomvρ[?[F/X]δ] = Atom[ρ1(?[F/X]δ), ρ2(?[F/X]δ)]

= Atom[ρ1(?[ρ1(F)/X]δ), ρ2(?[ρ2(F)/X]δ)]

and

Atomvρ′ [?δ] = Atom[(ρ1, X 7→ ρ1(F))(?δ), (ρ2, X 7→ ρ2(F))(?δ)]

= Atom[ρ1(?δ [ρ1(F)/X]), ρ2(?δ [ρ2(F)/X])]

= Atom[ρ1(?[ρ1(F)/X]δ), ρ2(?[ρ2(F)/X]δ)]

and the result holds.

337

• Let δ′ = [F/X]δ. Note that since δ′ = [F/X]δ and δ′ ` F, we know that

ρi(δ
′) = ρi([F/X]δ) = (ρ,X 7→ (ρ1(F), ρ2(F), R))i(δ) = ρ′i(δ)

Next we prove that
∀GR and ` ε : δ′ _ GR, (n, ρ1(ε)v1 :: ρ1(GR), ρ2(ε)v2 :: ρ2(GR)) ∈ TρJGRK, if and only if
∀G′R and ` ε′ : δ _ G′R, (n, ρ′1(ε′)v1 :: ρ′1(G′R), ρ′2(ε′)v2 :: ρ′2(G′R)) ∈ Tρ′JG′RK.

Let us prove the ⇐ direction first. We proceed by case analysis on GR. We proceed as
follows, for each GR and ` ε : δ _ GR, we show that exists some G′R and ` ε′ : δ _ G′R
such that ρi(ε) = ρ′i(ε

′).

1. (Case GR = B). Therefore, ε = [(B, injB,B)]. Then ρi(ε) = ρi([(B, injB,B)]) = [(B,
injB,B)]. Next, we can choose G′R = B, and ε′ = [(B, injB,B)]. Note that ρ′i(ε

′) =
ρ′i([(B, injB,B)]) = [(B, injB,B)] = ρi(ε). Thus, the result holds.

2. (Case GR = Y and Y 6 X). Since δ′ = [F/X]δ and GR = Y a δ′, we know
that Y 6 X, Y : (F′[F/X]) ∈ δ′, Y : F′ ∈ δ. Therefore, ε = [((F′[F/X]), injY,
(F′[F/X]))]. Then

ρi(ε) = ρi([((F
′[F/X]), injY, (F

′[F/X]))]) = [(ρi(F
′[F/X]), injY, ρi(F

′[F/X]))] =

[(ρ′i(F
′), injY, ρi(F

′))]

Next, we can choose G′R = Y a δ, and ε′ = [(F′, injY,F
′)]. Then

ρ′i(ε
′) = ρ′i([(F

′, injY,F
′)]) = [(ρ′i(F

′), injY, ρ
′
i(F
′))] = ρi(ε)

Thus, the result holds.

3. (Case GR = X). Since X : F ∈ δ′, we know that ε = [(F, injX ,F)]. Note that

ρi(ε) = ρi([(F, injX ,F)]) = [(ρi(F), injX , ρi(F))]

Next, we can choose G′R = X, and since X : X ∈ δ, we get that ε′ = [(X, injX ,X)].
Then

ρ′i(ε
′) = ρ′i([(X, injX ,X)]) = [(ρ′i(X), ρ′i(injX), ρ′i(X))] = [(ρi(F), injX , ρi(F))] = ρi(ε)

Thus, the result holds.

4. (Case GR = ?δ′→?δ′). Then ε = [(?δ′→?δ′ , inj→(inj?→inj?), inj?→inj?)]. Then
ρi(ε) = [(?ρi(δ′)→?ρi(δ′), inj→(inj?→inj?), inj?→inj?)]. Next, we can choose G′R =

?δ→?δ , and ε′ = [(?δ→?δ , inj→(inj?→inj?), inj?→inj?)]. Then, since ρi(δ
′) = ρ′i(δ),

we know that

ρ′i(ε
′) = [(?ρ′i(δ)→?ρ′i(δ), inj→(inj?→inj?), inj?→inj?)]

= [(?ρi(δ′)→?ρi(δ′), inj→(inj?→inj?), inj?→inj?)]

= ρi(ε)

and the result holds.

5. (Case GR = ?δ′ × ?δ′). Then ε = [(?δ′ × ?δ′ , inj×(inj?× inj?), inj?× inj?)]. Then
ρi(ε) = [(?ρi(δ′)× ?ρi(δ′), inj×(inj?× inj?), inj?× inj?)]. Next, we can choose G′R =

338

?δ × ?δ , and ε′ = [(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)]. Then, since ρi(δ
′) =

ρ′i(δ), we know that

ρ′i(ε
′) = [(?ρ′i(δ)× ?ρ′i(δ), inj×(inj?× inj?), inj?× inj?)]

= [(?ρi(δ′)× ?ρi(δ′), inj×(inj?× inj?), inj?× inj?)]

= ρi(ε)

and the result holds.

6. (Case GR = ∀Y.?δ′,Y:Y). Note that ε = [(∀Y.?δ′,Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)].
Then

ρi(ε) = ρi([(∀Y.?δ′,Y:Y, inj∀(∀Y.inj?),∀Y.inj?)]) = [(∀Y.?ρi(δ′),Y:Y, inj∀(∀Y.inj?),∀Y.inj?)]

Next, we can choose G′R = ∀Y.?δ,Y:Y, and ε′ = [(∀Y.?δ,Y:Y, inj∀(∀Y.inj?),∀Y.inj?)].
Then, since ρi(δ

′) = ρ′i(δ), we know that

ρi(ε
′) = ρ′i([(∀Y.?δ,Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)]) = [(∀Y.?ρ′i(δ),Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)] = ρi(ε)

and the result holds.

Let us prove the ⇒ direction. We proceed by case analysis on G′R. We proceed as follows,
for each G′R a δ and ` ε′ : δ _ G′R, we show that exists some GR a δ′ and ` ε : δ′ _ GR

such that ρ′i(ε
′) = ρi(ε).

1. (Case G′R = B). Therefore, ε′ = [(B, injB,B)]. Then ρ′i(ε
′) = ρ′i([(B, injB,B)]) =

[(B, injB,B)]. Next, we can choose GR = B a δ′, and ε = [(B, injB,B)]. Note that
ρi(ε) = ρi([(B, injB,B)]) = [(B, injB,B)] = ρ′i(ε

′). Thus, the result holds.

2. (Case G′R = Y and Y 6 X). Since δ′ = [F/X]δ and G′R = Y a δ, we know that
Y : F′ ∈ δ and Y : (F′[F/X]) ∈ δ′. Therefore, ε′ = [(F′, injY,F

′)]. Then

ρ′i(ε
′) = ρ′i([(F

′, injY,F
′)]) = [(ρ′i(F

′), injY, ρ
′
i(F
′))] = [(ρi(F

′[F/X]), injY, ρi(F
′[F/X]))]

Next, we can choose GR = Y a δ′, and ε = [((F′[F/X]), injY, (F
′[F/X]))]. Note that

ρi(ε) = ρi([((F
′[F/X]), injY, (F

′[F/X]))]) = [(ρi(F
′[F/X]), injY, ρi(F

′[F/X]))] = ρ′i(ε
′)

Thus, the result holds.

3. (Case G′R = X). Since X : X ∈ δ, we know that ε′ = [(X, injX ,X)]. Then

ρ′i(ε
′) = ρ′i([(X, injX ,X)]) = [(ρ′i(X), ρ′i(injX), ρ′i(X))] = [(ρi(F), injX , ρi(F))]

Next, we can choose GR = X and since X : F ∈ δ′, we know that ε = [(F, injX ,F)].
Note that

ρi(ε) = ρi([(F, injX ,F)]) = [(ρi(F), injX , ρi(F))] = ρ′i(ε
′)

Thus, the result holds.

4. (Case G′R = ?δ→?δ). Then ε′ = [(?δ→?δ , inj→(inj?→inj?), inj?→inj?)]. Thus,
ρ′i(ε

′) = [(?ρ′i(δ)→?ρ′i(δ), inj→(inj?→inj?), inj?→inj?)]. Next, we can choose GR =
?δ′→?δ′ , and ε = [(?δ′→?δ′ , inj→(inj?→inj?), inj?→inj?)].

Thus, ρi(ε) = [(?ρi(δ′)→?ρi(δ′), inj→(inj?→inj?), inj?→inj?)]. Then, since ρi(δ
′) =

ρ′i(δ), we know that

ρ′i(ε
′) = [(?ρ′i(δ)→?ρ′i(δ), inj→(inj?→inj?), inj?→inj?)]

= [(?ρi(δ′)→?ρi(δ′), inj→(inj?→inj?), inj?→inj?)]

= ρi(ε)

and the result holds.

339

5. (Case G′R = ?δ × ?δ). Then ε′ = [(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)]. Thus,
ρ′i(ε

′) = [(?ρ′i(δ)× ?ρ′i(δ), inj×(inj?× inj?), inj?× inj?)]. Next, we can choose GR =
?δ′ × ?δ′ , and ε = [(?δ′ × ?δ′ , inj×(inj?× inj?), inj?× inj?)].

Thus, ρi(ε) = [(?ρi(δ′)× ?ρi(δ′), inj×(inj?× inj?), inj?× inj?)]. Then, since ρi(δ
′) =

ρ′i(δ), we know that

ρ′i(ε
′) = [(?ρ′i(δ)× ?ρ′i(δ), inj×(inj?× inj?), inj?× inj?)]

= [(?ρi(δ′)× ?ρi(δ′), inj×(inj?× inj?), inj?× inj?)]

= ρi(ε)

and the result holds.

6. (Case G′R = ∀Y.?δ,Y:Y). Note that ε′ = [(∀Y.?δ,Y:Y, inj∀(∀Y.inj?),∀Y.inj?)]. Thus,
ρi(ε

′) = ρ′i([(∀Y.?δ,Y:Y, inj∀(∀Y.inj?),∀Y.inj?)]) = [(∀Y.?ρ′i(δ),Y:Y, inj∀(∀Y.inj?),
∀Y.inj?)].

Next, we can choose GR = ∀Y.?δ′,Y:Y, and ε = [(∀Y.?δ′,Y:Y, inj∀(∀Y.inj?),∀Y.inj?)].
Thus,

ρi(ε) = ρi([(∀Y.?δ′,Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)]) = [(∀Y.?ρi(δ′),Y:Y, inj∀(∀Y.inj?),∀Y.inj?)]

Then, since ρi(δ
′) = ρ′i(δ), we know that

ρi(ε
′) = ρ′i([(∀Y.?δ,Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)]) = [(∀Y.?ρ′i(δ),Y:Y, inj∀(∀Y.inj?), ∀Y.inj?)] = ρi(ε)

and the result holds.

Lemma B.39 (Ascription Lemma) If (n,v1,v2) ∈ VρJGK, (n, ρ) ∈ DJ∆K, ∆ ` G′ and ε : G ∼ G′,
then (n, ρ1(ε)v1 :: ρ1(G′), ρ2(ε)v2 :: ρ2(G′)) ∈ TρJG′K.

Proof. We proceed by induction on (n,G,G′). We start by doing a case analysis on ε : G ∼ G′.
Suppose vi = εui ui :: ρi(G

′).

Case (ε : B ∼ B). We know that

1. Since G = B and G′ = B, by Lemma B.41, we know that ε = {(B,B,B)} = ρi(ε).

2. Since (n,v1,v2) ∈ VρJBK, we know that (n,v1,v2) ∈ Atomρ[B], and therefore, vi = εui ui ::
B, where εui = {(B,B,B)}, by Lemma B.41.

3. Then εui # ρi(ε) = εui = {(B,B,B)}.

4. We have to prove that (n, εu1 u1 :: B, εu2 u2 :: B) ∈ VρJBK, which follows by Lemma B.45.

Case (ε : X ∼ X). We know that

1. Since G = X and G′ = X, by Lemma B.41, we know that ε = {(X,X,X)}, and therefore,
ρi(ε) = ρi({(X,X,X)}) = [(ρi(X), reflvρi(X), refl

v
ρi(X))] = reflEv(ρi(X)).

2. Since (n,v1,v2) ∈ VρJXK, we know that (n,v1,v2) ∈ Atom[ρ1(X), ρ2(X)], and therefore,
vi = εui ui :: ρi(X) and εui : Gui ∼ ρi(X), for some Gui.

340

3. By Lemma B.62, we know that εui # ρi(ε) = εui.

4. We have to prove that (n, εu1u1 :: ρ1(X), εu2u2 :: ρ2(X)) ∈ VρJXK, which follows by
Lemma B.45.

Case (ε : G′′1→G′′2 ∼ G′1→G′2). We know that

1. G = G′′1 −→ G′′2, and G′ = G′1 −→ G′2 for some G′′i ,G
′
i.

2. We know that (n,v1,v2) ∈ VρJG′′1 −→ G′′2K, where vi = εi(λx : Gxi.ti) :: G′′i1 −→ G′′i2, for
G′′i1 = ρi(G

′′
1), G′′i2 = ρi(G

′′
2) and εi : Gi ∼ G′′i1 −→ G′′i2.

3. We have to prove that:

(n, ρ1(ε)v1 :: G′11 −→ G′12, ρ2(ε)v2 :: G′21 −→ G′22) ∈ TρJG′1 −→ G′2K

for G′i1 = ρi(G
′
1) and G′i2 = ρi(G

′
2).

4. By Lemma B.40 and B.51, we know that εi = dom(εi)→cod(εi) and ρi(ε) = dom(ρi(ε))→cod(ρi(ε)).

5. As εi # ρi(ε) = (dom(ρi(ε)) # dom(εi))→(cod(εi) # cod(ρi(ε))), this means that proving that

(ε1 # ρ1(ε)) is defined ⇐⇒ (ε2 # ρ2(ε)) is defined

is equivalent to prove that

(dom(ρ1(ε)) # dom(ε1)) is defined ⇐⇒ (dom(ρ2(ε)) # dom(ε2)) is defined∧
(cod(ε1) # cod(ρ1(ε))) is defined ⇐⇒ (cod(ε2) # cod(ρ2(ε))) is defined

6. Suppose that εi # ρi(ε) = ελi. Then we have to prove that

(n, ελ1(λx : Gx1.t1) :: G′11 −→ G′12, ελ2(λx : Gx2.t2) :: G′21 −→ G′22) ∈ VρJG′1 −→ G′2K

i.e. let us take any n′ ≤ n, v′1 and v′2, such that B (n′,v′1,v
′
2) ∈ VρJG′1K, where vi

′ = ε′iui
′ ::

G′i1, then we have to prove that

(n′, (ελ1(λx : Gx1.t1) :: G′11 −→ G′12) v′1, (ελ2(λx : Gx2.t2) :: G′21 −→ G′22) v′2) ∈ TρJG′2K

7. By Lemma B.47, we know that

• dom(ελi) = dom(εi # ρi(ε)) = dom(ρi(ε)) # dom(εi)

• cod(ελi) = cod(εi # ρi(ε)) = cod(εi) # cod(ρi(ε))

8. By induction hypothesis on (n′−1,G′1,G
′′
1), with B (n′,v′1,v

′
2) ∈ VρJG′1K and dom(ε) : G′1 ∼

G′′1, we obtain that

B (n′, dom(ρ1(ε))v′1 :: G′′11, dom(ρ2(ε))v′2 :: G′′21) ∈ TρJG′′1K

9. If (ε′i # dom(ρi(ε))) fails, then (ε′2 # dom(ρ2(ε))) fails, and the result holds.

10. If (ε′i # dom(ρi(ε))) does not fail, i.e. (ε′1 # dom(ρ1(ε))) = εa1 and (ε′2 # dom(ρ2(ε))) = εa2,
then it is true that:

B (n′, εa1u′1 :: G′′11, εa2u′2 :: G′′21) ∈ VρJG′′1K

341

11. By the definition of VρJG′′1 −→ G′′2K, we know that:

∀n′′ ≤ n.∀v′′1,v′′2. B (n′′,v′′1,v
′′
2) ∈ VρJG′′1K⇒ (n′′,v1 v′′1,v2 v′′2) ∈ TρJG′′2K

We instantiate this with v′′i = εaiu
′
i :: G′′i1 and n′′ = n′ ≤ n, to derive that:

(n′, (ε1(λx : Gx1.t1) :: G′′11 −→ G′′12) (εa1u′1 :: G′′11), (ε2(λx : Gx2.t2) :: G′′21 −→ G′′22) (εa2u′2 :: G′′21)) ∈ TρJG′′2K

12. Then by Lemma B.18, as (ε′i#dom(ρi(ε)))#dom(εi) = ε′′′1 ⇐⇒ ε′i#(dom(ρi(ε))#dom(εi)) = ε′′′1 ,
then if (dom(ρ1(ε)) # dom(ε1)) is not defined and (dom(ρ2(ε))) # dom(ε2)) is defined, we get
a contradiction as both must behave uniformly as the terms belong to TρJG′′2K. Then if both
combination of evidence fail, then the result follows immediately. Let us suppose that the
combination does not fail, then

(εi(λx : Gxi.ti) :: G′′i1 −→ G′′i2) (εaiu
′
i :: G′′i1)

17−→ cod(εi) ([ε′′′i ui
′ :: Gxi)/x]ti) :: G′′i2

where (εa1 # dom(ε1)) = ε′′′1 and (εa2 # dom(ε2)) = ε′′′2 . If the resulting terms reduce to values
(vif)

cod(ε1) ([ε′′′1 u′1 :: Gx1)/x]t1) :: G′′12 −→k v1f

cod(ε1) ([ε′′′2 u′2 :: Gx2)/x]t2) :: G′′22 −→∗ v2f

then B1+k (n′,v1f ,v2f) ∈ VρJG′′2K.

13. We apply induction hypothesis to the previous result with (n′−1−k,G′′2,G′2), with evidence
cod(ε) : G′′2 ∼ G′2, to obtain that:

B1+k (n′, cod(ρi(ε))v1f :: G′2, cod(ρi(ε))v2f :: G′2) ∈ TρJG′2K

Then vif has to have the form: vif = εci uif :: G′′i2, where ε′′1 #cod(ε1) = εc1, and ε′′2 #cod(ε2) =
εc2, for some ε′′i ,uif . Suppose that cod(ε1) # cod(ρ1(ε)) = εz1 is defined for now. Then by
Lemma B.18, we know that (ε′′1 # cod(ε1)) # cod(ρ1(ε)) = εf1 ⇐⇒ ε′′1 # (cod(ε1) # cod(ρ1(ε))) =
εf1, then (cod(εi) # cod(ρi(ε))) must behave uniformly (either the two of them fail, or the two
of them does not fail). Then we know that (ε1 # ρ1(ε)) is defined ⇐⇒ (ε1 # ρ2(ε)) is defined.
Let us suppose that both (εi # ρi(ε)) do not fail (otherwise the result holds immediately).
Then we know that

B1+k (n′, εf1u1f :: G′12, εf2u2f :: G′22) ∈ VρJG′2K

14. Then by the reduction rule of application terms, we obtain that:

(ελ1(λx : Gx1.t1) :: G′11 −→ G′12) (ε′1u′1 :: G′11)
17−→ εz1 ([ε′′′1 u′1 :: Gx1)]t1) :: G′12

k7−→ εz1 (ε′′1u1f ::) :: G′12

07−→ εf1 u1f :: G′12

and

(ελ2(λx : Gx2.t2) :: G′21 −→ G′22) (ε′2u′1 :: G′21)
∗7−→ εz2 ([ε′′′2 u′2 :: Gx2)/x]t2) :: G′22

∗7−→ εz2 (ε′′2u2f ::) :: G′22

∗7−→ εf2 u2f :: G′22

then we have to prove that

B1+k (n′, εf1u1f :: G′12, εf2u2f :: G′22) ∈ VρJG′2K

as we have already shown.

342

Case (G = ∀X.G′′1 and G′ = ∀X.G′1). We know that

1. G = ∀X.G′′1, and G′ = ∀X.G′1 for some G′′1 and G′1.

2. We know that (n,v1,v2) ∈ VρJ∀X.G′′1K, where vi = εi(ΛX.ti) :: ∀X.G′′i1, for G′′i1 = ρi(G
′′
1),

and εi : Gi ∼ ∀X.G′′i1, for some Gi.

3. We have to prove that:

(n, ε1
ρv1 :: ∀X.G′i1, ε2ρv2 :: ∀X.G′i1) ∈ TρJ∀X.G′1K

for εi
ρ = ρi(ε), and G′i1 = ρi(G

′
1).

4. By Lemma B.40 and B.51, we know that εi = ∀X.schm(εi) and εi
ρ = ∀X.schm(εi

ρ).

5. As εi # εi
ρ = ∀X.schm(εi) #∀X.schm(εi

ρ) = ∀X.(schm(εi) # schm(εi
ρ)) = ∀X.schm(εi # εi

ρ) (by
Lemma B.49), this means that proving that

(ε1 # ε1
ρ) is defined ⇐⇒ (ε2 # ε2

ρ) is defined

is equivalent to prove that

(schm(ε1) # schm(ε1
ρ)) is defined ⇐⇒ (schm(ε2) # schm(ε2

ρ)) is defined

6. Suppose that εi # εi
ρ = εΛi . Then we have to prove that

(n, εΛ1(ΛX.t1) :: ∀X.G′11, εΛ2(ΛX.t2) :: ∀X.G′21) ∈ VρJ∀X.G′1K

i.e. let us take any F1,F2, R ∈ Rel[F1,F2], then we have to prove that

(n, εΛ1(ΛX.t1) :: ∀X.G′11 [F1], εΛ2(ΛX.t2) :: ∀X.G′21 [F2]) ∈ Tρ′JG′1K

for ρ′ = (ρ; X 7→ (F1,F2, R))

7. By the definition of VρJ∀X.G′′1K, we know that for all F′1,F
′
2, R

′ ∈ Rel[F′1,F
′
2]

(n, ε1(ΛX.t1) :: ∀X.G′′11 [F′1], ε2(ΛX.t2) :: ∀X.G′′21 [F′2]) ∈ T(ρ;X 7→(F′1,F
′
2,R
′))JG′′1K

We instantiate this with F1,F2, R ∈ Rel[F1,F2] to derive that

(n, ε1(ΛX.t1) :: ∀X.G′′11 [F1], ε2(ΛX.t2) :: ∀X.G′′21 [F2]) ∈ Tρ′JG′′1K

8. By the reduction rules, we know that

(εi(ΛX.ti) :: ∀X.G′′i1) [Fi]
17−→ (schm(εi[X 7→ Fi]) (ti[X 7→ Fi]) :: G′′i1[X/Fi])

We know that both terms fail an the result holds, or if

(schm(ε1[X 7→ F1]) (t1[X 7→ F1]) :: G′′11[X/F1])−→kv1f

then
(schm(ε2[X 7→ F2]) (t2[X 7→ F2]) :: G′′21[X/F2]) −→∗ v2f

and B1+k(n,v1f ,v2f) ∈ Vρ′JG′′1K.

343

9. We know by Lemmas B.51 and B.49 that

schm(εΛi)[X 7→ Fi] = schm(εi # εi
ρ)[X 7→ Fi] = (schm(εi) # schm(εi

ρ))[X 7→ Fi] =

(schm(εi)[X 7→ Fi]) # (schm(εi
ρ)[X 7→ Fi]) = (schm(εi)[X 7→ Fi]) # (schm(εi

ρ′))

where for εi
ρ′ = ρ′i(ε).

10. We apply induction hypothesis to the previous result with (n−1−k, G′′1, G′1) andB1+k(n,v1f ,v2f) ∈
Vρ′JG′′1K, schm(ε) : G′′1 ∼ G′1 , to obtain that:

B1+k(n, (schm(ε1
ρ′))v1f :: G′1, (schm(ε2

ρ′))v2f :: G′1) ∈ Tρ′JG′1K

Then vif has to have the form: vif = εci uif :: G′′i1, where ε′′1 # (schm(ε1)[X 7→ F1]) =
εc1, and ε′′2 # (schm(ε2)[X 7→ F2]) = εc2, for some ε′′i ,uif . Suppose that (schm(ε1)[X 7→
F1]) # (schm(ε1

ρ′)) = εz1 is defined for now. Then by Lemma B.18, we know that (ε′′1 #
(schm(ε1)[X 7→ F1])) # (schm(ε1

ρ′)) = εf1 ⇐⇒ ε′′1 # ((schm(ε1)[X 7→ F1]) # (schm(ε1
ρ′))) =

εf1, then (schm(ε1)[X 7→ F1]) # (schm(ε1
ρ′)) must behave uniformly (either the two of them

fail, or the two of them does not fail). Then we know that (ε1 # ε1
ρ) is defined ⇐⇒ (ε2 #

ε2
ρ) is defined. Let us suppose that both (εi # εi

ρ) do not fail (otherwise the result holds
immediately). Then we know that

B1+k(n, εf1u1f :: G′11, εf2u2f :: G′21) ∈ Vρ′JG′1K

11. Then by the reduction rule of type application, we obtain that:

(εΛ1(ΛX.t1) :: ∀X.G′11) [F1]
17−→ εz1 (t1[X 7→ F1]) :: G′11[F1/X]

k7−→ εz1 (ε′′1u1f ::) :: G′11[F1/X]

07−→ εf1 u1f :: G′11[F1/X]

and

(εΛ2(ΛX.t2) :: ∀X.G′21) [F2]
∗7−→ εz2 (t2[X 7→ F2]) :: G′21[F2/X]
∗7−→ εz12 (ε′′2u2f ::) :: G′21[F2/X]
∗7−→ εf2 u2f :: G′21[F2/X]

then we have to prove that

B1+k(n, εf1u1f :: G′11, εf2u2f :: G′22) ∈ Vρ′JG′1K

as we have already shown.

Case (ε : ?δ ∼ B). We know that

1. Since (n,v1,v2) ∈ VρJ?δK, we get that (n,v1,v2) ∈ Atom[ρ1(?δ), ρ2(?δ)], and therefore,
vi = εui ui :: ρi(?δ) and εui : Gui ∼ ρi(?δ), for some Gui.

2. We are required to prove that

(n, ρ1(ε) v1 :: B, ρ2(ε) v2 :: B) ∈ TρJBK

344

3. Since G = ?δ and G′ = B, by Lemma B.41, we know that ∀S ∈ ε, S = [(B, injB,B)], or
S = [(B, injX ,B)] and X : B ∈ δ. Note that ∀S ∈ ε, [S] : ?δ ∼ B.

4. We first prove that for ∀S ∈ ε, we get that (n, ρ1([S])v1 :: ρ1(B), ρ2([S])v2 :: ρ2(B)) ∈ TρJBK.

5. Let us suppose that S = [(B, injB,B)]. Since (n,v1,v2) ∈ VρJ?δK, we instantiate this with
GRa = B, where ε′a = [(B, injB,B)] = [S], such that ` ε′a : δ _ GRa. Thus, we get that

(n, ρ1(ε′a) v1 :: B, ρ2(ε′a) v2 :: B) ∈ TρJBK

where ε′a = ρi(ε
′
a) = [(B, injB,B)] = [S]. Or what is the same, we get that

(n, ρ1([S]) v1 :: B, ρ2([S]) v2 :: B) ∈ TρJBK

By the definition of TρJBK, if εu1 # ρ1(ε′a) = εu1 # ρ1(ε) fails then εu2 # ρ2(ε′a) = εu2 # ρ2(ε) also
fails. Also, by the definition of TρJBK, if εu1 # ρ1(ε′a) succeeds then εu2 # ρ2(ε′a) also succeeds
and (n, (εu1 # ρ1(ε′a)) u1 :: B, (εu2 # ρ2(ε′a)) u2 :: B) ∈ VρJBK.

6. Now, let us suppose that S = [(B, injX ,B)] and X : B ∈ δ. Since (n,v1,v2) ∈ VρJ?δK, we
instantiate this with GRb = X (δ ` X), where ε′b = [(B, injX ,B)] = [S] (X : B ∈ δ), such
that ` ε′b : δ _ GRb. Thus, we get that

(n, ρ1(ε′b) v1 :: B, ρ2(ε′b) v2 :: B) ∈ TρJBK

where ε′b = ρi(ε
′
b) = [(B, injX ,B)] = [S]. Or what is the same, we get that

(n, ρ1([S]) v1 :: B, ρ2([S]) v2 :: B) ∈ TρJBK

By the definition of TρJBK, if εu1 #ρ1(ε′b) = εu1 #ρ1(ε) fails then εu2 #ρ2(ε′b) = εu2 #ρ2(ε) also
fails. Also, by the definition of TρJBK, if εu1 # ρ1(ε′b) succeeds then εu2 # ρ2(ε′b) also succeeds
and (n, (εu1 # ρ1(ε′b)) u1 :: B, (εu2 # ρ2(ε′b)) u2 :: B) ∈ VρJBK.

7. We know that ∀S ∈ ε, ε1 # ρ1([S]) ⇐⇒ ε2 # ρ2([S]). Therefore, by Lemma B.52, we get
that (εu1 # ρ1(ε)) fails, then (εu2 # ρ2(ε)) fails, and the result follows. Otherwise, we get that
(εu1 #ρ1(ε)) succeeds, then (εu2 #ρ2(ε)) succeeds, and therefore, we are required to prove that

(n, (εu1 # ρ1(ε)) u1 :: B, (εu2 # ρ2(ε)) u2 :: B) ∈ VρJBK

8. Since εui : Gui ∼ ρi(?δ), for some Gui, ρi(ε) : ρi(?δ) ∼ B and (εui # ρi(ε)) is defined, by
Lemma B.43, we know that (εui # ρi(ε)) = {(B,B,B)} = reflEv(B). Since ` εui ui :: ρi(?δ) :
ρi(?δ), εui : Gui ∼ ρi(?δ), ρi(ε) : ρi(?δ) ∼ B and εui # ρi(ε) is defined, then Gui = B and
ui = b. Thus, we are required to prove that

(n, reflEv(B) b :: B, reflEv(B) b :: B) ∈ VρJBK

which follows immediately. Thus, the result holds.

Case (ε : ?δ ∼ X). We know that

1. Since (n,v1,v2) ∈ VρJ?δK, we get that (n,v1,v2) ∈ Atom[ρ1(?δ), ρ2(?δ)], and therefore,
vi = εui ui :: ρi(?δ) and εui : Gui ∼ ρi(?δ), for some Gui.

2. We are required to prove that

(n, ρ1(ε) v1 :: ρ1(X), ρ2(ε) v2 :: ρ2(X)) ∈ TρJXK

345

3. Since G = ?δ and G′ = X, by Lemma B.41, we know that ∀S ∈ ε, S = [(X, injX ,X)] and
X : X ∈ δ, or S = [(X, injY,X)], X 6= Y, X : X ∈ δ, and Y : X ∈ δ. Note that ∀S ∈ ε,
[S] : ?δ ∼ X.

4. We first prove that for ∀S ∈ ε, we get that (n, ρ1([S])v1 :: ρ1(X), ρ2([S])v2 :: ρ2(X)) ∈ TρJXK.

5. Let us suppose that S = [(X, injX ,X)] and X : X ∈ δ. Since (n,v1,v2) ∈ VρJ?δK, we
instantiate this with GRa = X, where ε′a = [(X, injX ,X)] = [S], such that ` ε′a : δ _ GRa.
Thus, we get that

(n, ρ1(ε′a) v1 :: ρ1(X), ρ2(ε′a) v2 :: ρ2(X)) ∈ TρJXK

where ρi(ε
′
a) = ρi([(X, injX ,X)]) = [(ρi(X), injX , refl

v
ρi(X))] = ρi([S]). Or what is the

same, we get that

(n, ρ1([S]) v1 :: ρ1(X), ρ2([S]) v2 :: ρ2(X)) ∈ TρJXK

By the definition of TρJXK, if εu1 # ρ1([S]) fails then εu2 # ρ2([S]) also fails. Also, by the
definition of TρJXK, if εu1 # ρ1([S]) succeeds then εu2 # ρ2([S]) also succeeds and

(n, (εu1 # ρ1([S])) u1 :: ρ1(X), (εu2 # ρ2([S])) u2 :: ρ2(X)) ∈ VρJXK

Since εui : Gui ∼ ρi(?δ), for some Gui, ρi([S]) : ρi(?δ) ∼ Bi and (εui # ρi([S])) is de-
fined, by Lemma B.43, we know that (εui # ρi([S])) = [(Bi,Bi,Bi)] = reflEv(Bi). Since
` εui ui :: ρi(?δ) : ρi(?δ), εui : Gui ∼ ρi(?δ), ρi([S]) : ρi(?δ) ∼ Bi and εui # ρi([S]) is defined,

then Gui = Bi and ui = bi. Thus, we know that

(n, reflEv(B1) b1 :: B1, reflEv(B2) b2 :: B2) ∈ VρJXK

6. Now, let us suppose that S = [(X, injY,X)], X 6= Y, X : X ∈ δ and Y : X ∈ δ. Since
(n,v1,v2) ∈ VρJ?δK, we instantiate this with GRb = Y (δ ` Y), where ε′b = [(X, injY,
X)] = [S] (Y : X ∈ δ), such that ` ε′b : δ _ GRb. Thus, we get that

(n, ρ1(ε′b) v1 :: ρ1(X), ρ2(ε′b) v2 :: ρ2(X)) ∈ TρJXK

where ρi(ε
′
b) = ρi([(X, injY,X)]) = [(ρi(X), injY, refl

v
ρi(X))] = [S]. Or what is the same,

we get that
(n, ρ1([S]) v1 :: ρ1(X), ρ2([S]) v2 :: ρ2(X)) ∈ TρJXK

By the definition of TρJXK, if εu1 # ρ1([S]) fails then εu2 # ρ2([S]) also fails. Also, by the
definition of TρJXK, if εu1 # ρ1([S]) succeeds then εu2 # ρ2([S]) also succeeds and

(n, (εu1 # ρ1([S])) u1 :: ρ1(X), (εu2 # ρ2([S])) u2 :: ρ2(X)) ∈ VρJXK

We know that ρi(X) = Bi. Since εui : Gui ∼ ρi(?δ), for some Gui, ρi([S]) : ρi(?δ) ∼ Bi

and (εui # ρi([S])) is defined, by Lemma B.43, we know that (εui # ρi([S])) = [(Bi,Bi,Bi)] =
reflEv(Bi). Since ` εui ui :: ρi(?δ) : ρi(?δ), εui : Gui ∼ ρi(?δ), ρi([S]) : ρi(?δ) ∼ Bi and
εui # ρi([S]) is defined, then Gui = Bi and ui = bi. Thus, we know that

(n, reflEv(B1) b1 :: B1, reflEv(B2) b2 :: B2) ∈ VρJXK

7. We know that ∀S ∈ ε, ε1 # ρ1([S]) ⇐⇒ ε2 # ρ2([S]). Therefore, by Lemma B.52, we get
that (εu1 # ρ1(ε)) fails, then (εu2 # ρ2(ε)) fails, and the result follows. Otherwise, we get that
(εu1 #ρ1(ε)) succeeds, then (εu2 #ρ2(ε)) succeeds, and therefore, we are required to prove that

Bj (n, (εu1 # ρ1(ε)) u1 :: ρ1(X), (εu2 # ρ2(ε)) u2 :: ρ2(X)) ∈ VρJXK

346

8. We know that ρi(X) = Bi. Since εui : Gui ∼ ρi(?δ), for some Gui, ρi(ε) : ρi(?δ) ∼ Bi and
(εui #ρi(ε)) is defined, by Lemma B.43, we know that (εui #ρi(ε)) = [(Bi,Bi,Bi)] = reflEv(Bi).
Since ` εui ui :: ρi(?δ) : ρi(?δ), εui : Gui ∼ ρi(?δ), ρi(ε) : ρi(?δ) ∼ Bi and εui#ρi(ε) is defined,
then Gui = Bi and ui = bi. Thus, we are required to prove that

(n, reflEv(B1) b1 :: B1, reflEv(B2) b2 :: B2) ∈ VρJXK

as we have already shown.

Case (ε : ?δ ∼ G′ and G′ = G′1→G′2, or G′ = G′1×G′2 or G′ = ∀X.G′1). We know that

1. G = ?δ , and G′ = G′1→G′2, or G′ = G′1×G′2 or G′ = ∀X.G′1.

2. Suppose vi = εui ui :: ρi(?δ) .

3. Since ε : ?δ ∼ G′, where G′ = G′1→G′2, or G′ = G′1×G′2 or G′ = ∀X.G′1, by Lemma B.41,
we know that evidence ε can be decomposed in two evidence, εa , such that ` εa : δ _ GR,
εb = extractc1(ε), where ε = εa # εb, εa : ?δ ∼ GR, εb : GR ∼ G′, S(?δ ,G

′) = GR and
c(G′) = c.

4. Since ε = εa # εb, by Lemma B.51, we know that ρi(ε) = ρi(εa) # ρi(εb).

5. Since (n,v1,v2) ∈ VρJ?δK, we instantiate this with GR and εa, then we get that

(n, ρ1(εa) v1 :: ρ1(GR), ρ2(εa) v2 :: ρ2(GR)) ∈ TρJGRK

6. Since εui # ρi(ε) = εui # (ρi(εa) # ρi(εb)), by Lemma B.18, we know that εui # ρi(ε) = εui #
(ρi(εa) # ρi(εb)) = (εui # ρi(εa)) # ρi(εb). Therefore, we know that if (εui # ρi(εa)) fail, then
εui # ρi(ε) also fail.

7. By definition TρJGRK, we know that if εu1 # ρ1(εa) fails then εu2 # ρ2(εa) also fails. Thus, the
result holds.

8. By the definition of TρJGRK, if εu1 # ρ1(εa) succeeds then εu2 # ρ2(εa) also succeeds and

(n, (εu1 # ρ1(εa)) u1 :: ρ1(GR), (εu2 # ρ2(εa)) u2 :: ρ2(GR)) ∈ VρJGRK

9. Since (n, (εu1 # ρ1(εa)) u1 :: ρ1(GR), (εu2 # ρ2(εa)) u2 :: ρ2(GR)) ∈ VρJGRK, (n, ρ) ∈ DJ∆K
and εb : GR ∼ G′ , by the induction hypothesis on (n,GR,G

′), where GR < ?δ , we get that

(n, ρ1(εb) ((εu1#ρ1(εa)) u1 :: ρ1(GR)) :: ρ1(G′), ρ2(εb) ((εu2#ρ2(εa)) u2 :: ρ2(GR)) :: ρ1(G′)) ∈ TρJG′K

By definition TρJG′K, we know that if (εu1 # ρ1(εa)) # ρ1(εb) fails then (εu2 # ρ2(εa)) # ρ2(εb)
also fails. Thus, the result holds. By the definition of TρJG′K, if (εu1 #ρ1(εa) #ρ1(εb)) succeeds
then (εu2 # ρ2(εa) # ρ2(εb)) also succeeds and

(n, ((εu1 # ρ1(εa)) # ρ1(εb)) u1 :: ρ(G′), ((εu2 # ρ2(εa)) # ρ1(εb)) u2 :: ρ(G′)) ∈ VρJG′K

Thus, the result holds.

Case (ε : G ∼ ?δ). We know that

1. G′ = ?δ .

347

2. Since (n,v1,v2) ∈ VρJGK, we know that vi = εui ui :: ρi(G).

3. We have to prove that (n, ρ1(ε) v1 :: ρ1(?δ), ρ2(ε) v2 :: ρ2(?δ)) ∈ TρJ?δK.

4. Therefore, we have to prove that if εu1 #ρ1(ε) fails then εu2 #ρ2(ε) fails, and that if εu1 #ρ1(ε)
succeeds then εu2 #ρ2(ε) succeeds, and (n, (εu1 #ρ1(ε)) u1 :: ρ1(?δ), (εu2 #ρ2(ε)) u2 :: ρ2(?δ)) ∈
VρJ?δK).

5. Since ε : G ∼ ?δ , by Lemma B.61, we know that there exists GR
∗ and ε∗ such that ` ε∗ :

δ _ GR and ε # ε∗ is defined. We know that ε∗ : ?δ ∼ GR
∗, for some GR

∗ < ?δ and
(ε # ε∗) : G ∼ GR

∗. Therefore, we can use the induction hypothesis on (n,G,GR
∗), with

(n,v1,v2) ∈ VρJGK and (ε # ε∗) : G ∼ GR
∗, and we get that

(n, ρ1(ε # ε∗) v1 :: ρ1(GR
∗), ρ2(ε # ε∗) v2 :: ρ2(GR

∗)) ∈ TρJGR
∗K

6. By Lemma B.51, we know that ρi(ε # ε∗) = ρi(ε) # ρi(ε∗). By Lemma B.18, we know that
εui#(ρi(ε)#ρi(ε∗)) = (εui#ρi(ε))#ρi(ε∗). By the definition of TρJGR

∗K, we know that εu1#(ρ1(ε#
ε∗)) = (εu1 #ρ1(ε))#ρ1(ε∗) fails then εu2 #(ρ2(ε #ε∗)) = (εu2 #ρ2(ε))#ρ2(ε∗) also fails. Therefore,
we get that if εu1 # ρ1(ε) fails then εu2 # ρ2(ε) fails, and the result holds. Also, we know that
εu1 # (ρ1(ε # ε∗)) = (εu1 # ρ1(ε)) # ρ1(ε∗) succeeds then εu2 # (ρ2(ε # ε∗)) = (εu2 # ρ2(ε)) # ρ2(ε∗)
also succeeds. Therefore, we get that if εu1 # ρ1(ε) succeeds then εu2 # ρ2(ε) succeeds, and
thus, we are required to prove that (n, (εu1 # ρ1(ε)) u1 :: ρ1(?δ), (εu2 # ρ2(ε)) u2 :: ρ2(?δ)).

7. Thus, we are required to prove that GR and ` ε′ : δ _ GR, then

(n, ρ1(ε′) ((εu1#ρ1(ε)) u1 :: ρ1(?δ)) :: ρ1(GR), ρ2(ε′) ((εu2#ρ2(ε)) u2 :: ρ2(?δ)) :: ρ2(GR)) ∈ TρJGRK

8. By Lemma B.18, (εui # ρi(ε)) # ρi(ε′) ⇐⇒ εui # (ρi(ε) # ρi(ε′)) (either both (εui # ρi(ε)) # ρi(ε′)
and εui # (ρi(ε) # ρi(ε′)), succeed or fail).

9. By Lemma B.51, ρi(ε) # ρi(ε′) = ρi(ε # ε′). Therefore, εui # ρi(ε # ε′) = (εui # ρi(ε)) # ρi(ε′).

10. We know that if ε#ε′ fails, then both ρ1(ε#ε′) and ρ2(ε#ε′) fail, and thus, both (εui#ρi(ε))#ρi(ε′)
and (εui # ρi(ε)) # ρi(ε′) fail; therefore the result holds.

11. Otherwise, ε # ε′ succeeds and (ε # ε′) : G ∼ GR. Notice that δ ` GR and GR < ?δ . Thus,
by the induction hypothesis on (n,G,GR), with (n,v1,v2) ∈ VρJGK and (ε # ε′) : G ∼ GR,
we get that

(n, ρ1(ε # ε′) v1 :: ρ1(GR), ρ2(ε # ε′) v2 :: ρ2(GR)) ∈ TρJGRK

12. By definition of TρJGRK, we know that

(εu1 # ρ1(ε # ε′)) ⇐⇒ (εu2 # ρ2(ε # ε′))

Therefore, we get that (εu1#ρ1(ε))#ρ1(ε′) ⇐⇒ (εu2#ρ2(ε))#ρ2(ε′). Thus, if (εu1#ρ1(ε))#ρ1(ε′)
fails, then (εu2 # ρ2(ε)) # ρ2(ε′) also fails, and the result holds.

Otherwise, if (εu1 # ρ1(ε # ε′)) = (εu1 # ρ1(ε)) # ρ1(ε′) succeeds then (εu2 # ρ2(ε # ε′)) = (εu2 #
ρ2(ε)) # ρ2(ε′) also succeeds, and

(n, (εu1 # ρ1(ε # ε′))u1 :: ρ1(GR), (εu2 # ρ2(ε # ε′))u2 :: ρ2(GR)) ∈ VρJGRK

Or what is the same, we get that

(n, ((εu1 # ρ1(ε)) # ρ1(ε′)) u1 :: ρ1(GR), ((εu2 # ρ2(ε)) # ρ2(ε′)) u2 :: ρ2(GR)) ∈ VρJGRK

Thus, the result holds.

348

Lemma B.40 Consider v = ε u :: G and ` v : G.

1. If G = B then ε = {(B,B,B)}.

2. If G = G1→G2 then ε = ε1→ε2, for ε1 = dom−1(ε) and ε2 = cod(ε).

3. If G = G1×G2 then ε = ε1× ε2, for ε1 = π1(ε) and ε2 = π2(ε).

4. If G = ∀X.G′ then ε = ∀X.ε′, for ε′ = schm(ε).

Proof. Directly by Lemma B.41.

Lemma B.41 Consider ε : G ∼ G′.

1. If G = B and G′ = B, then ε = {(B,B,B)}.

2. If G = X and G′ = X, then ε = {(X,X,X)}.

3. If G = G1→G2 and G′ = G′1→G′2, then ε = ε1→ε2, where ε1 = dom−1(ε) and ε2 = cod(ε).

4. If G = G1×G2 and G′ = G′1×G′2, then ε = ε1× ε2, where ε1 = π1(ε) and ε2 = π2(ε).

5. If G = ∀X.G1 and G′ = ∀X.G′1, then ε = ∀X.ε′, where ε′ = schm(ε).

6. If G = B and G′ = ?δ, then ∀S ∈ ε, S = (B,B, injB), or S = (B,B, injX) and X : B ∈ δ.

7. If G = X and G′ = ?δ, then ∀S ∈ ε, S = (X,X, injX) and X : X ∈ δ, or S = (X,X,
injY), X 6= Y, X : X ∈ δ, and Y : X ∈ δ.

8. If G = G1→G2 and G′ = ?δ, then ε = inj→2(ε1) = ε1 # ε2, where ε1 = extract→2(ε) and
ε2 = {(?δ→?δ , ?δ→?δ , inj→(?δ→?δ))}.

9. If G = G1×G2 and G′ = ?δ, then ε = inj×2(ε1) = ε1 # ε2, where ε1 = extract×2(ε) and
ε2 = {(?δ × ?δ , ?δ × ?δ , inj×(?δ × ?δ))}.

10. If G = ∀X.G1 and G′ = ?δ, then ε = inj ∀2(ε1) = ε1 # ε2, where ε1 = extract∀2(ε) and
ε2 = {(∀X.?δ,X , ∀X.?δ,X , inj∀(∀X.?δ,X))}.

11. If G = ?δ and G′ = B, then ∀S ∈ ε, S = (B, injB,B), or S = (B, injX ,B) and X : B ∈ δ.

12. If G = ?δ and G′ = X, then ∀S ∈ ε, S = (X, injX ,X) and X : X ∈ δ, or S = (X, injY,
X), X 6= Y, X : X ∈ δ, and Y : X ∈ δ.

13. If G = ?δ and G′ = G′1→G′2, then ε = inj→1(ε1) = ε2 # ε1, where ε1 = extract→1(ε) and
` ε2 : δ _ ?δ→?δ.

14. If G = ?δ and G′ = G′1×G′2, then ε = inj×1(ε1) = ε2 # ε1, where ε1 = extract×1(ε) and
` ε2 : δ _ ?δ × ?δ.

15. If G = ?δ and G′ = ∀X.G′1, then ε = inj ∀1(ε1) = ε2 # ε1, where ε1 = extract∀1(ε) and
` ε2 : δ _ ∀X.?δ,X:X.

349

Proof. We know that ε : G ∼ G′.

1. If G = B and G′ = B, then ε = {(B,B,B)}. Let us suppose that (G′′, c1, c2) ∈ ε. We
know that c1 : G′′ v B and c2 : G′′ v B. Therefore, by Lemma B.11, we get that G′′ = B,
c1 = B and c2 = B. Thus, the result holds.

2. If G = X and G′ = X, then ε = {(X,X,X)}. Let us suppose that (G′′, c1, c2) ∈ ε. We
know that c1 : G′′ v X and c2 : G′′ v X. Therefore, by Lemma B.11, we get that G′′ = X,
c1 = X and c2 = X. Thus, the result holds.

3. If G = G1→G2 and G′ = G′1→G′2, then ε = ε1→ε2, where ε1 = dom−1(ε) and ε2 =
cod(ε). Let us suppose that S = (G′′, c1, c2) ∈ ε. We know that c1 : G′′ v G1→G2 and
c2 : G′′ v G′1→G′2. Therefore, by Lemma B.11, we get that G′′ = G′′1→G′′2, c1 = c11→c12

and c2 = c21→c22. Thus, we know that

• {S1} = dom−1(S) = {(G′′1, c11, c21)}
• {S2} = cod(S) = {(G′′2, c12, c22)}
• {S1}→{S2} = {(G′′1→G′′2, c11→c12, c21→c22)} = (G′′, c1, c2) = S

Thus, the result holds.

4. If G = G1×G2 and G′ = G′1×G′2, then ε = ε1× ε2, where ε1 = π1(ε) and ε2 = π2(ε).
Let us suppose that S = (G′′, c1, c2) ∈ ε. We know that c1 : G′′ v G1×G2 and c2 :
G′′ v G′1×G′2. Therefore, by Lemma B.11, we get that G′′ = G′′1×G′′2, c1 = c11× c12 and
c2 = c21× c22. Thus, we know that

• {S1} = π1(S) = {(G′′1, c11, c21)}
• {S2} = π2(S) = {(G′′2, c12, c22)}
• {S1}×{S2} = {(G′′1×G′′2, c11× c12, c21→c22)} = (G′′, c1, c2) = S

Thus, the result holds.

5. If G = ∀X.G1 and G′ = ∀X.G′1, then ε = ∀X.ε′, where ε′ = schm(ε). Let us suppose that
S = (G′′, c1, c2) ∈ ε. We know that c1 : G′′ v ∀X.G1 and c2 : G′′ v ∀X.G′1. Therefore, by
Lemma B.11, we get that G′′ = ∀X.G′′1, c1 = ∀X.c11 and c2 = ∀X.c21. Thus, we know that

• {S′} = schm(S) = {(G′′1, c11, c21)}
• ∀X.{S′} = {(∀X.G′′1, ∀X.c11,∀X.c21)} = (G′′, c1, c2) = S

Thus, the result holds.

6. If G = B and G′ = ?δ , then ∀S ∈ ε, S = (B,B, injB), or S = (B,B, injX) and X : B ∈ δ.
Let us suppose that (G′′, c1, c2) ∈ ε. We know that c1 : G′′ v B and c2 : G′′ v ?δ .
Therefore, by Lemma B.11, we get that G′′ = B, c1 = B, and c2 = injB or c2 = injX and
X : B ∈ δ. Thus, the result holds.

7. If G = X and G′ = ?δ , then ∀S ∈ ε, S = (X,X, injX) and X : X ∈ δ, or S = (X,X, injY),
X 6= Y, X : X ∈ δ, and Y : X ∈ δ. Let us suppose that (G′′, c1, c2) ∈ ε. We know that
c1 : G′′ v X and c2 : G′′ v ?δ . Therefore, by Lemma B.11, we get that G′′ = X, c1 = X,
and c2 = injX and X : X ∈ δ, or c2 = injY and X 6= Y, X : X ∈ δ, and Y : X ∈ δ. Thus,
the result holds.

350

8. If G = G1→G2 and G′ = ?δ , then ε = inj→2(ε1) = ε1 # ε2, where ε1 = extract→2(ε) and
ε2 = [(?δ→?δ , inj?→inj?, inj→(inj?→inj?))]. Let us suppose that S = (G′′, c1, c2) ∈ ε.
We know that c1 : G′′ v G1→G2 and c2 : G′′ v ?δ . Therefore, by Lemma B.11, we get that
G′′ = G′′1→G′′2, c1 = c11→c12 and c2 = inj→(c21→c22). Thus, we know that

• {S1} = extract→2({S}) = {(G′′1→G′′2, c11→c12, c21→c22)}
• {S1} # ε2 = {S}
• inj→2({S1}) = {(G′′1→G′′2, c11→c12, inj→(c21→c22))} = (G′′, c1, c2) = S

Thus, the result holds.

9. If G = G1×G2 and G′ = ?δ , then ε = inj×2(ε1) = ε1 # ε2, where ε1 = extract×2(ε) and
ε2 = [(?δ × ?δ , inj?× inj?, inj×(inj?× inj?))]. Let us suppose that S = (G′′, c1, c2) ∈ ε.
We know that c1 : G′′ v G1×G2 and c2 : G′′ v ?δ . Therefore, by Lemma B.11, we get that
G′′ = G′′1×G′′2, c1 = c11× c12 and c2 = inj×(c21× c22). Thus, we know that

• {S1} = extract×2({S}) = {(G′′1×G′′2, c11× c12, c21× c22)}
• {S1} # ε2 = {S}
• inj×2({S1}) = {(G′′1×G′′2, c11× c12, inj×(c21× c22))} = (G′′, c1, c2) = S

Thus, the result holds.

10. If G = ∀X.G1 and G′ = ?δ , then ε = inj ∀2(ε1) = ε1 # ε2, where ε1 = extract∀2(ε) and
ε2 = [(∀X.?δ,X:X , ∀X.inj?, inj∀(∀X.inj?))]. Let us suppose that S = (G′′, c1, c2) ∈ ε. We
know that c1 : G′′ v ∀X.G1 and c2 : G′′ v ?δ . Therefore, by Lemma B.11, we get that
G′′ = ∀X.G′′1, c1 = ∀X.c11 and c2 = inj∀(∀X.c21). Thus, we know that

• {S1} = extract∀2({S}) = {(∀X.G′′1,∀X.c11, ∀X.c21)}
• {S1} # ε2 = {S}
• inj ∀2({S1}) = {(∀X.G′′1,∀X.c11, inj∀(∀X.c21))} = (G′′, c1, c2) = S

Thus, the result holds.

11. If G = ?δ and G′ = B, then ∀S ∈ ε, S = (B, injB,B), or S = (B, injX ,B) and X : B ∈ δ.
Similar to the inverse case.

12. If G = ?δ and G′ = X, then ∀S ∈ ε, S = (X, injX ,X) and X : X ∈ δ, or S = (X, injY,
X), X 6= Y, X : X ∈ δ, and Y : X ∈ δ. Similar to the inverse case.

13. If G = ?δ and G′ = G′1→G′2, then ε = inj→1(ε1) = ε2 # ε1, where ε1 = extract→1(ε),
` ε2 : δ _ ?δ→?δ and ε2 = [(?δ→?δ , (inj?→inj?)inj→, inj?→inj?)]. Similar to the
inverse case.

14. If G = ?δ and G′ = G′1×G′2, then ε = inj×1(ε1) = ε2 # ε1, where ε1 = extract×1(ε),
` ε2 : δ _ ?δ × ?δ and ε2 = [(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)]. Similar to the
inverse case.

15. If G = ?δ and G′ = ∀X.G′1, then ε = inj ∀1(ε1) = ε2 #ε1, where ε1 = extract∀1(ε), ` ε2 : δ _
∀X.?δ,X:X and ε2 = [(∀X.?δ,X:X , inj∀(∀X.inj?),∀X.inj?)]. Similar to the inverse case.

351

Lemma B.42 If ε : ?δ ∼ G, with G = G1→G2, or G = G1×G2, or G = ∀X.G1, then
ε = ε1 # ε2, where S(?δ ,G) = GR, c(G) = c, ` ε1 : δ _ GR and ε2 = extractc1(ε).

Proof. Directly by Lemma B.41.

Lemma B.43 If ε : B ∼ ?δ, ε′ : ?δ ∼ B and ε # ε′ is defined, then ε # ε′ = {(B,B,B)}.

Proof. Since ε # ε′ is defined, then we know that ε # ε′ : B ∼ B. Then, by Lemma B.41, we know
that ε # ε′ = {(B,B,B)}, and the results holds.

Lemma B.44 If ∆; Γ ` ε u :: ?δ : ?δ, ε : Gu ∼ ?δ, ε′ : ?δ ∼ B and ε # ε′ is defined, then Gu = B
and u = b.

Proof. Since ε # ε′ is defined, then we know that ε # ε′ : Gu ∼ B. Then, Gu = ?δ′ or Gu = B.
Since ∆; Γ ` ε u :: ?δ : ?δ , ε : Gu ∼ ?δ , we know by (Gasc) rule that ∆; Γ ` u : Gu. Therefore,
Gu cannot be ?δ′ , thus Gu = B and u = b. Finally, the result holds.

Lemma B.45 If (n,v1,v2) ∈ VρJGK and j < n, then Bj (n,v1,v2) ∈ VρJGK.

Proof. We proceed by induction on n and G. We know that (n,v1,v2) ∈ VρJGK and j < n. We
are required to prove that Bj (n,v1,v2) ∈ VρJGK. Or what is the same, we are required to prove
that (nj ,v1,v2) ∈ VρJGK, where nj = n− j ≤ n.

Case (G = B). Immediate from the definition of VρJBK and (n,v1,v2) ∈ VρJBK.
Case (G = X). Immediate from definitions of VρJXK = ρ.R(X) ∈ Rel[ρ1(X), ρ2(X)] and Rel[ρ1(X), ρ2(X)],
and (n,v1,v2) ∈ VρJXK.
Case (G = G1→G2). Consider arbitrary n′, v′1 and v′2 such that n′ ≤ nj and B (n′,v′1,v

′
2) ∈

VρJG1K. It is suffices to show that (n′,v1 v′1,v2 v′2) ∈ TρJG2K. Instantiate (n,v1,v2) ∈ TρJG1→G2K
with n′, v′1 and v′2, noting that n′ ≤ nj ≤ n. Hence, we have (n′,v1 v′1,v2 v′2) ∈ TρJG2K as we are
required to show.

Case (G = G1×G2). The proof of this case is straightforward.

Case (G = ∀X.G1). Consider arbitrary B1, B2 and R such that B1, ` B2 and R ∈ Rel[B1,B2].
It suffices to show that (nj ,v1 [B1],v2 [B2]) ∈ T(ρ;X 7→(B1,B2,R))JG1K. Or what is the same, we are
required to prove that ∀i < nj ≤ n,

(∀v1f .v1 [B1] 7−→ iv1f ⇒ ∃v2f . v2 [B2]
∗7−→ v2f∧ Bi (nj ,v1f ,v2f) ∈ V(ρ;X 7→(B1,B2,R))JG1K)∧

(v1 [B1] 7−→ ierror⇒ v2 [B2]
∗7−→ error)

Instantiate (n,v1,v2) ∈ VρJ∀X.G1K, with B1, ` B2 and R ∈ Rel[B1,B2]. Then, we get that
∀i < n,

(∀v1f .v1 [B1] 7−→ iv1f ⇒ ∃v2f . v2 [B2]
∗7−→ v2f∧ Bi (n,v1f ,v2f) ∈ V(ρ;X 7→(B1,B2,R))JG1K)∧

(v1 [B1] 7−→ ierror⇒ v2 [B2]
∗7−→ error)

352

If v1 [B1] 7−→ ierror then v2 [B2]
∗7−→ error and the result holds. If v1 [B1] 7−→ iv1f then

we know that ∃v2f . v2 [B2]
∗7−→ v2f∧ Bi (n,v1f ,v2f) ∈ V(ρ;X 7→(B1,B2,R))JG1K. By the induc-

tion hypothesis on G1 (n − i < n), with Bi (n,v1f ,v2f) ∈ V(ρ;X 7→(B1,B2,R))JG1K, we get that
Bi (nj ,v1f ,v2f) ∈ V(ρ;X 7→(B1,B2,R))JG1K as we are required to show.

Case (G = ?δ). It suffices to show that ∀GR, ε such that ` ε : δ _ GR, ε : ?δ ∼ G′R, we get

(nj , ρ1(ε) v1 :: ρ1(G′R), ρ2(ε) v2 :: ρ2(G′R)) ∈ TρJG′RK

Therefore, we are required to prove that ∀i < nj ≤ n,

(∀v1f .ρ1(ε) v1 :: ρ1(G′R) 7−→ iv1f ⇒ ∃v2f .ρ2(ε) v2 :: ρ2(G′R)
∗7−→ v2f∧ Bi (nj ,v1f ,v2f) ∈ VρJG′RK)∧

(ρ1(ε) v1 :: ρ1(G′R) 7−→ ierror⇒ ρ2(ε) v2 :: ρ2(G′R)
∗7−→ error)

Instantiate (n,v1,v2) ∈ VρJ?δK, with GR. Then, we get that

(n, ρ1(ε) v1 :: ρ1(G′R), ρ2(ε) v2 :: ρ2(G′R)) ∈ TρJG′RK

Thus, if ρ1(ε) v1 :: ρ1(G′R) 7−→ ierror then we know that ρ2(ε) v2 :: ρ2(G′R)
∗7−→ error, and the

result holds. Otherwise, if ρ1(ε) v1 :: ρ1(G′R) 7−→ iv1f , we know that ρ2(ε) v2 :: ρ2(G′R)
∗7−→ v2f

and Bi (n,v1f ,v2f) ∈ VρJG′RK. Thus, we are required to prove that Bi (nj ,v1f ,v2f) ∈ VρJG′RK. We
have five cases to consider.

• G′R = B. Immediate from the definition of VρJBK and Bi (n,v1f ,v2f) ∈ VρJBK.

• G′R = X. Immediate from definitions of VρJXK = ρ.R(X) ∈ Rel[ρ1(X), ρ2(X)] and Rel[ρ1(X), ρ2(X)],
and Bi (n,v1f ,v2f) ∈ VρJXK.

• G′R = ?δ→?δ . Consider arbitrary n′, v′1 and v′2 such that n′ ≤ nj − i and B (n′,v′1,v
′
2) ∈

VρJ?δK. It is suffices to show that (n′,v1f v′1,v2f v′2) ∈ TρJ?δK. Instantiate Bi (n,v1f ,v2f) ∈
VρJ?δ→?δK with n′, v′1 and v′2, noting that n′ ≤ nj−i ≤ n−i. Hence, we have (n′,v1 v′1,v2 v′2) ∈
TρJ?δK as we are required to show.

• G′R = ?δ × ?δ . The proof of this case is straightforward.

• G′R = ∀X.?δ,X:X . Consider arbitrary B1, B2 andR such that B1, ` B2 andR ∈ Rel[B1,B2].
It suffices to show that Bi (nj ,v1f [B1],v2f [B2]) ∈ T(ρ;X 7→(B1,B2,R))J?δ,X:XK. Or what is the
same, we are required to prove that ∀i′ < nj − i ≤ n− i,

(∀v′1f .v1f [B1] 7−→ i′v′1f ⇒ ∃v′2f . v2f [B2]
∗7−→ v′2f∧ Bi+i

′
(nj ,v

′
1f ,v

′
2f) ∈ V(ρ;X 7→(B1,B2,R))J?δ,X:XK)∧

(v1f [B1] 7−→ i′error⇒ v2f [B2]
∗7−→ error)

Instantiate Bi (n,v1f ,v2f) ∈ VρJ∀X.?δ,X:XK, with B1, ` B2 and R ∈ Rel[B1,B2]. Then, we
get that ∀i′ < n− i,

(∀v′1f .v1f [B1] 7−→ i′v′1f ⇒ ∃v′2f . v2f [B2]
∗7−→ v′2f∧ Bi+i

′
(n,v′1f ,v

′
2f) ∈ V(ρ;X 7→(B1,B2,R))J?δ,X:XK)∧

(v1f [B1] 7−→ i′error⇒ v2f [B2]
∗7−→ error)

If v1f [B1] 7−→ i′error then v2f [B2]
∗7−→ error and the result holds. If v1f [B1] 7−→ i′v′1f

then we know that ∃v′2f . v2f [B2]
∗7−→ v′2f∧ Bi+i

′
(n,v′1f ,v

′
2f) ∈ V(ρ;X 7→(B1,B2,R))J?δ,X:XK. By

the induction hypothesis on n− i− i′ < n, with Bi+i
′

(n,v′1f ,v
′
2f) ∈ V(ρ;X 7→(B1,B2,R))J?δ,X:XK,

we get that Bi+i
′

(nj ,v
′
1f ,v

′
2f) ∈ V(ρ;X 7→(B1,B2,R))J?δ,X:XK as we are required to show.

353

Lemma B.46 Let ∆ ` G, ρ′ = (ρ; X 7→ (B1,B2, R)) and (n, ρ′) ∈ DJ∆,XK. Then

1. VρJGK = Vρ′JGK.

2. TρJGK = Tρ′JGK.

Proof. The proof proceeds first proving (1) and then (2), by induction on n and G.

1. We consider the cases for G. In each case, we may equivalently show that VρJGK = Vρ′JGK.
Or what is the same

(n,v1,v2) ∈ VρJGK ⇐⇒ (n,v1,v2)Vρ′JGK

Case (G = B). Immediate from the definition of VρJBK, Lemma B.72 and (n,v1,v2) ∈ VρJBK.
Case (G = Y). Note that Y 6= X. Immediate from definitions of VρJYK = ρ.R(Y) =
ρ′.R(Y) = Vρ′JYK.
Case (G = G1→G2). We first prove the =⇒ direction. Consider arbitrary n′, v′1 and v′2
such that n′ ≤ n and B (n′,v′1,v

′
2) ∈ Vρ′JG1K. It is suffices to show that (n′,v1 v′1,v2 v′2) ∈

Tρ′JG2K. Instantiate (n,v1,v2) ∈ VρJG1→G2K with n′, v′1 and v′2, noting thatB (n′,v′1,v
′
2) ∈

VρJG1K by the inductive hypothesis of part (1) for G1. Hence, we have (n′,v1 v′1,v2 v′2) ∈
TρJG2K. By the inductive hypothesis of part (2) for G2, we have that (n′,v1 v′1,v2 v′2) ∈
Tρ′JG2K, as we were required to show. The ⇐= direction is analogous.

Case (G = G1×G2). The proof of this case is straightforward.

Case (G = ∀Y.G1). We first prove the =⇒ direction. Consider arbitrary B′1, B′2 and R′

such that B′1, ` B′2 and R′ ∈ Rel[B′1,B
′
2]. It suffices to show that (n,v1 [B′1],v2 [B′2]) ∈

Tρ′;Y 7→(B′1,B
′
2,R
′)JG1K. Instantiate (n,v1,v2) ∈ VρJ∀Y.G1K, with B′1, ` B′2 andR′ ∈ Rel[B′1,B

′
2].

Then, we get that (n,v1 [B′1],v2 [B′2]) ∈ Tρ;Y 7→(B′1,B
′
2,R
′)JG1K. By the inductive hypothesis

of part (2) for G1, we have that (n,v1 [B′1],v′2 [B′2]) ∈ Tρ′;Y 7→(B′1,B
′
2,R
′)JG1K, as we were

required to show. The ⇐= direction is analogous.

Case (G = ?δ). We first prove the =⇒ direction. It suffices to show that ∀GR and ` ε : δ _
GR, we get

(n, ρ′1(ε) v1 :: ρ′1(GR), ρ′2(ε) v2 :: ρ′2(GR)) ∈ Tρ′JGRK

or what is the same

(n, ρ1(ε) v1 :: ρ1(GR), ρ2(ε) v2 :: ρ2(GR)) ∈ Tρ′JGRK

Therefore, we are required to prove that

(∀v1f .ρ1(ε) v1 :: ρ1(GR) 7−→ 0v1f ⇒ ∃v2f .ρ2(ε) v2 :: ρ2(GR)
∗7−→ v2f∧(n,v1f ,v2f) ∈ Vρ′JGRK)∧

(ρ1(ε) v1 :: ρ1(GR) 7−→ 0error⇒ ρ2(ε) v2 :: ρ2(GR)
∗7−→ error)

Instantiate (n,v1,v2) ∈ VρJ?δK, with GR. Then, we get that

(n, ρ1(ε) v1 :: ρ1(GR), ρ2(ε) v2 :: ρ2(GR)) ∈ TρJGRK

Thus, if ρ1(ε) v1 :: ρ1(GR) 7−→ 0error then we know that ρ2(ε) v2 :: ρ2(GR)
∗7−→ error,

and the result holds. Otherwise, if ρ1(ε) v1 :: ρ1(GR) 7−→ 0v1f , we know that ρ2(ε) v2 ::

ρ2(GR)
∗7−→ v2f and (n,v1f ,v2f) ∈ VρJGRK. Thus, we are required to prove that (n,v1f ,v2f) ∈

Vρ′JGRK. We have five cases to consider.

354

• GR = B. Immediate from the definition of VρJBK, Lemma B.72 and (n,v1f ,v2f) ∈
VρJBK.

• GR = Y. Note that Y 6= X. Immediate from definitions of VρJYK = ρ.R(Y) =
ρ′.R(Y) = Vρ′JYK.

• GR = ?δ→?δ . Consider arbitrary n′, v′1 and v′2 such that n′ ≤ n and B (n′,v′1,v
′
2) ∈

Vρ′J?δK. It is suffices to show that (n′,v1f v′1,v2f v′2) ∈ Tρ′J?δK. Or what is the same
that ∀i < n′,

(∀v′1f ,v1f v′1 7−→ iv′1f =⇒ ∃v′2f ,v2f v′2
∗7−→ v′2f∧ Bi (n′,v′1f ,v

′
2f) ∈ Vρ′J?δK)∧

(v1f v′1 7−→ ierror =⇒ v2f v′2
∗7−→ error)

Instantiate (n,v1f ,v2f) ∈ VρJ?δ→?δK with n′, v′1 and v′2, noting that B (n′,v′1,v
′
2) ∈

VρJ?δK, by the inductive hypothesis of part (1) for n′ − 1 < n. Hence, we have
(n′,v1f v′1,v2f v′2) ∈ TρJ?δK. Thus, both terms fail and the result holds, or we in-
stantiate with i and v′1f , such that v1f v′1 7−→ iv′1f , and therefore there exists v′2f

such that v2f v′2
∗7−→ v′2f and Bi (n′,v′1f ,v

′
2f) ∈ VρJ?δK. Since i > 0, we know that

n′− i < n. Therefore, by the inductive hypothesis of part (1) for n′− i < n, we get that
Bi (n′,v′1f ,v

′
2f) ∈ Vρ′J?δK, as we are required to show.

• GR = ?δ × ?δ . The proof of this case is straightforward.

• GR = ∀Y.?δ,Y:Y. Consider arbitrary B′1, B′2 and R such that B′1, ` B′2 and R′ ∈
Rel[B′1,B

′
2]. It suffices to show that (n,v1f [B′1],v2f [B′2]) ∈ T(ρ′;Y 7→(B′1,B

′
2,R
′))J?δ,Y:YK.

Or what is the same, we are required to prove that ∀i < n,

(∀v′1f .v1f [B′1] 7−→ iv′1f ⇒ ∃v′2f . v2f [B′2]
∗7−→ v′2f∧ Bi (n,v′1f ,v

′
2f) ∈ V(ρ′;Y 7→(B′1,B

′
2,R
′))J?δ,Y:YK)∧

(v1f [B′1] 7−→ ierror⇒ v2f [B′2]
∗7−→ error)

Instantiate (n,v1f ,v2f) ∈ VρJ∀Y.?δ,Y:YK, with B′1, ` B′2 and R′ ∈ Rel[B′1,B
′
2]. Then,

we get that ∀i < n,

(∀v′1f .v1f [B′1] 7−→ iv′1f ⇒ ∃v′2f . v2f [B′2]
∗7−→ v′2f∧ Bi (n,v′1f ,v

′
2f) ∈ V(ρ;Y 7→(B′1,B

′
2,R
′))J?δ,Y:YK)∧

(v1f [B′1] 7−→ ierror⇒ v2f [B′2]
∗7−→ error)

If v1f [B′1] 7−→ ierror then v2f [B′2]
∗7−→ error and the result holds. If v1f [B′1] 7−→ iv′1f

then we know that ∃v′2f . v2f [B′2]
∗7−→ v′2f∧ Bi (n,v′1f ,v

′
2f) ∈ V(ρ;Y 7→(B′1,B

′
2,R
′))J?δ,Y:YK.

Since i > 0, we know that n − i < n. Therefore, by the inductive hypothesis of part
(1) for n′ − i < n, we get that Bi (n,v′1f ,v

′
2f) ∈ V(ρ′;Y 7→(B′1,B

′
2,R
′))J?δ,Y:YK as we are

required to show.

The ⇐= direction is analogous.

2. We may equivalently show that TρJGK = Tρ;X 7→(B1,B2,R)JGK. Or what is the same

(n, t1, t2) ∈ TρJGK ⇐⇒ (n, t1, t2)Tρ;X 7→(B1,B2,R)JGK

We first prove the ⇐= direction. Assume that Tρ;X 7→(B1,B2,R)JGK. We are required to show
that (n, t1, t2) ∈ TρJGK. We proceed by cases on termination of t1.

Case. t1 7−→ kvf1, where k < n. Instantiate the assumption with k and vf1. We have that
there exist some vf2 such that t2

∗7−→ vf2 and Bk (n,vf1,vf2)Vρ;X 7→(B1,B2,R)JGK. Choose vf2.

We have that t2
∗7−→ vf2 and Bk (n,vf1,vf2) ∈ TρJGK, by part (1). Therefore, we have that

(n, t1, t2) ∈ TρJGK as we were required to show.

355

Case. t1 7−→ kerror, where k < n. Instantiate the assumption with k. We have that
t2

∗7−→ error. Therefore, we also have that (n, t1, t2) ∈ TρJGK, as we were required to
show.

The proof for the the =⇒ direction is identical.

Lemma B.47 If ε1 : G1→G′1 ∼ G→G′ and ε2 : G→G′ ∼ G2→G′2, then dom(ε1 # ε2) =
dom(ε2) # dom(ε1) and cod(ε1 # ε2) = cod(ε1) # cod(ε2).

Lemma B.48 If ε1 : G1×G′1 ∼ G×G′ and ε2 : G×G′ ∼ G2×G′2, then πi(ε1 # ε2) = πi(ε1) #
πi(ε2).

Proof. We know that ε1 : G1→G′1 ∼ G→G′ and ε2 : G→G′ ∼ G2→G′2. We are required to
prove that dom(ε1 # ε2) = dom(ε2) # dom(ε1) and cod(ε1 # ε2) = cod(ε1) # cod(ε2). We proceed
by proving that for all S1 ∈ ε1 and S2 ∈ ε2, we get that dom({S1} # {S2}) = dom({S2}) #
dom({S1}) and cod({S1} # {S2}) = cod({S1}) # cod({S2}). Since ε1 : G1→G′1 ∼ G→G′, ε2 :
G→G′ ∼ G2→G′2 and ε1 # ε2 : G1→G′1 ∼ G2→G′2, we know that {S1} : G1→G′1 ∼ G→G′,
{S2} : G→G′ ∼ G2→G′2 and {S1} # {S2} : G1→G′1 ∼ G2→G′2. By Lemma B.41, we know
that {S1} = dom−1({S1})→cod({S1}), {S2} = dom−1({S2})→cod({S2}) and ({S1} # {S2}) =
dom−1({S1} # {S2})→cod({S1} # {S2}). Let us define

• dom−1({S1}) = {(G11, c11, c
′
11)}

• dom−1({S2}) = {(G21, c
′
21, c21)}

• cod({S1}) = {(G12, c12, c
′
12)}

• cod({S2}) = {(G22, c
′
22, c22)}

• dom({S1}) = {(G11, c
′
11, c11)}

• dom({S2}) = {(G21, c21, c
′
21)}

Therefore, we know that S1 = (G11→G12, c11→c12, c
′
11→c′12) and S2 = (G21→G22, c

′
21→c′22,

c21→c22). By definition of meet, we get that

pullback(G→G′, (G11→G12, c
′
11→c′12), (G21→G22, c

′
21→c′22)) =

(G3→G′3, c3→c′3, c4→c′4, c5→c′5)

where pullback(G, (G11, c
′
11), (G21, c

′
21)) = (G3, c3, c4, c5) and pullback(G′, (G12, c

′
12), (G22, c

′
22)) =

(G′3, c
′
3, c
′
4, c
′
5). Therefore, we know that {S1} # {S2} = (G3→G′3, c1→c1, c2→c′2), where

• (c3→c′3);(c11→c12) = (c1→c1)

• (c4→c′4);(c21→c22) = (c2→c′2)

• c3;c11 = c1

356

• c4;c21 = c2

• c′3;c12 = c1

• c′4;c22 = c′2

• dom({S1} # {S2}) = {(G3, c2, c1)}

• cod({S1} # {S2}) = {(G′3, c1, c
′
2)}

Since pullback(G, (G11, c
′
11), (G21, c

′
21)) = (G3, c3, c4, c5), by Lemma B.67, we get that pullback(G,

(G21, c
′
21), (G11, c

′
11)) = (G3, c4, c3, c5). Thus, we get that

• dom({S2}) # dom({S1}) = {(G21, c21, c
′
21)} # {(G11, c

′
11, c11)} = {(G3, c2, c1)}. Note that

c4;c21 = c2 and c3;c11 = c1.

• cod({S1}) # cod({S2}) = cod({(G12, c12, c
′
12)}) # cod({(G22, c

′
22, c22)}) = {(G′3, c1, c

′
2)}

We are required to prove that

• dom({S1} # {S2}) = {(G3, c2, c1)} = dom({S2}) # dom({S1})

• cod({S1} # {S2}) = {(G′3, c1, c
′
2)} = cod({S1}) # cod({S2})

Therefore, the result follows immediately.

Lemma B.49 If ε1 : ∀X.G1 ∼ ∀X.G and ε2 : ∀X.G ∼ ∀X.G2, then schm(ε1 # ε2) = schm(ε1) #
schm(ε2).

Proof. We know that ε1 : ∀X.G1 ∼ ∀X.G and ε2 : ∀X.G ∼ ∀X.G2. We are required to prove
that schm(ε1 # ε2) = schm(ε1) # schm(ε2). We proceed by proving that for all S1 ∈ ε1 and S2 ∈ ε2,
we get that schm({S1} # {S2}) = schm({S1}) # schm({S2}). Since ε1 : ∀X.G1 ∼ ∀X.G and
ε2 : ∀X.G ∼ ∀X.G2 and ε1 # ε2 : ∀X.G1 ∼ ∀X.G2, we know that {S1} : ∀X.G1 ∼ ∀X.G,
{S2} : ∀X.G ∼ ∀X.G2 and {S1} # {S2} : ∀X.G1 ∼ ∀X.G2. By Lemma B.41, we know that
{S1} = ∀X.schm({S1}), {S2} = ∀X.schm({S2}) and ({S1} # {S2}) = ∀X.schm({S1} # {S2}). Let
us define

• schm({S1}) = {(G12, c12, c
′
12)}

• schm({S2}) = {(G22, c
′
22, c22)}

Therefore, we know that S1 = (∀X.G12,∀X.c12,∀X.c′12) and S2 = (∀X.G22, ∀X.c′22,∀X.c22). By
definition of meet, we get that

pullback(∀X.G, (∀X.G12,∀X.c′12), (∀X.G22,∀X.c′22)) =

(∀X.G3,∀X.c3, ∀X.c4, ∀X.c5)

where pullback(G′, (G12, c
′
12), (G22, c

′
22)) = (G3, c3, c4, c5). Therefore, we know that {S1}#{S2} =

(∀X.G3, ∀X.c1, ∀X.c2), where

357

• (∀X.c3);(∀X.c12) = (∀X.c1)

• (∀X.c4);(∀X.c22) = (∀X.c2)

• c3;c12 = c1

• c4;c22 = c2

• schm({S1} # {S2}) = {(G3, c1, c2)}

Thus, we get that

• schm({S1})#schm({S2}) = schm({(∀X.G12,∀X.c12, ∀X.c′12)})#schm({(∀X.G22, ∀X.c′22,∀X.c22)}) =
{(G12, c12, c

′
12)} # {(G22, c

′
22, c22)}{(G3, c1, c2)}

We are required to prove that

• schm({S1} # {S2}) = {(G3, c1, c2)} = schm({S1}) # schm({S2})

Therefore, the result follows immediately.

Lemma B.50 {S1} : G1 ∼ G, {S2} : G ∼ G2 and ∆ ` F, then ({S1} # {S2})[X 7→ F] =
{S1}[X 7→ F] # {S2}[X 7→ F].

Proof. Let us suppose that S1 = (G′1, c1, c1) and S2 = (G′2, c
′
2, c2). By Lemma B.68, we know

that
pullback(G, (G′1, c1), (G′2, c

′
2)) = (G3, c3, c4, c5) ⇐⇒

pullback(G[X 7→ F], (G′1[X 7→ F], c1[X 7→ F]), (G′2[X 7→ F], c′2[X 7→ F])) =

(G3[X 7→ F], c3[X 7→ F], c4[X 7→ F], c5[X 7→ F])

Thus, both combination fail and the result holds, or both combination are defined. Let us suppose
that

• pullback(G, (G′1, c1), (G′2, c
′
2)) = (G3, c3, c4, c5)

• c3;c1 = c′3

• c4;c2 = c′4

Thus, we know that

• {S1} # {S2} = {(G3, c
′
3, c
′
4)}

• ({S1} # {S2})[X 7→ F] = {(G3[X 7→ F], c′3[X 7→ F], c′4[X 7→ F])}

• {S1}[X 7→ F] = (G′1[X 7→ F], c1[X 7→ F], c1[X 7→ F])

• {S2}[X 7→ F] = (G′2[X 7→ F], c′2[X 7→ F], c2[X 7→ F])

358

Since pullback(G, (G′1, c1), (G′2, c
′
2)) = (G3, c3, c4, c5), by Lemma B.68, we get that

pullback(G[X 7→ F], (G′1[X 7→ F], c1[X 7→ F]), (G′2[X 7→ F], c′2[X 7→ F])) =

(G3[X 7→ F], c3[X 7→ F], c4[X 7→ F], c5[X 7→ F])

Thus, we get that

• Since c3;c1 = c′3, by Lemma B.66, we get that c3[X 7→ F];c1[X 7→ F] = c′3[X 7→ F].

• Since c4;c2 = c′4, by Lemma B.66, we get that c4[X 7→ F];c2[X 7→ F] = c′4[X 7→ F].

• Thus, we get that {S1}[X 7→ F] # {S2}[X 7→ F] = {(G3[X 7→ F], c′3[X 7→ F], c′4[X 7→ F])}.

Therefore, the result follows immediately.

Lemma B.51 If ε1 : G1 ∼ G, ε2 : G ∼ G2 and (n, ρ) ∈ DJ∆K, then ρi(ε1 # ε2) = ρi(ε1) # ρi(ε2).

Proof. We are required to prove that ρi(ε1 # ε2) = ρi(ε1) # ρi(ε2). We proceed by proving that for
all S1 ∈ ε1 and S2 ∈ ε2, ρi({S1} # {S2}) = ρi({S1}) # ρi({S2}). This result follows by Lemma B.70.
Thus, the whole results holds.

Lemma B.52 If

• ε1 : G1 ∼ ρ1(G)

• ε2 : G2 ∼ ρ2(G)

• ε : G ∼ G′

• (n, ρ) ∈ DJ∆K

• ∀S ∈ ε, ε1 # ρ1({S}) ⇐⇒ ε2 # ρ2({S})

then ε1 # ρ1(ε) ⇐⇒ ε2 # ρ2(ε).

Proof. Les us first prove that if ε1 # ρ1(ε) =⇒ ε2 # ρ2(ε) (the other way around is similar). Or
what is the same, we are required to prove that if ε1 #ρ1(ε) fails, then ε2 #ρ2(ε) fails, and if ε1 #ρ1(ε)
succeeds, then ε2 # ρ2(ε) succeeds. We know that ∀S ∈ ε, if ε1 # ρ1([S]) fails, then ε2 # ρ2([S]) fails,
and if ε1 # ρ1([S]) succeeds, then ε2 # ρ2([S]) succeeds.

If ε1 #ρ1(ε) fails, then we know that ∀S ∈ ε, ε1 #ρ1([S]) fails; thus ∀S ∈ ε, we get that ε2 #ρ2([S])
fails, and as conclusion ε2 # ρ2(ε) fails, and the result holds.

If ε1 #ρ1(ε) succeeds, then we know that ∃S ∈ ε, ε1 #ρ1([S]) succeeds; thus, we get that ε2 #ρ2([S])
succeeds, and as conclusion ε2 # ρ2(ε) succeeds, and the result holds.

359

Lemma B.53 ∆,X ` G if and only if ∆ ` G[X 7→ F].

Proof. Directly by the definition of ∆,X ` G.

Lemma B.54 If ∆ ` F then ∆,X ` Γ if and only if ∆ ` Γ[X 7→ F].

Proof. Then, we have to prove that for all x : G ∈ Γ, ∆,X ` G if and only if ∆ ` G[X 7→ F],
which follows immediately by Lemma B.53.

Lemma B.55 If ∆ ` F′ then ∆,X; Γ ` t : G if and only if ∆; Γ[X 7→ F′] ` t[X 7→ F′] : G[F′/X].

Proof. We know that ∆ ` F′. We are required to prove that ∆,X; Γ ` t : G if and only if
∆; Γ[X 7→ F′] ` t[X 7→ F′] : G[F′/X].

We first prove that if ∆ ` F′ and ∆,X; Γ ` t : G, then ∆; Γ[X 7→ F′] ` t[X 7→ F′] : G[F′/X].
We proceed by induction on ∆,X; Γ ` t : G.

Case (Gb). We know that t = b, G = B, and

(Gb)
θ(b) = B ∆,X ` Γ

∆,X; Γ ` b : B

Also, we know that t[X 7→ F′] = b[X 7→ F′] = b. Therefore, we are required to prove that
∆; Γ[X 7→ F′] ` b : B, which follows immediately by rule (Gb) and Lemma B.54.

Case (Gx)). We know that t = y, and

(Gx)
y : G ∈ Γ ∆,X ` Γ

∆,X; Γ ` y : G

Therefore, we know that t[X 7→ F′] = y[X 7→ F′] = y. Therefore, we are required to prove that
∆; Γ[X 7→ F′] ` y : G[F′/X], which follows immediately by (Gx) rule, and since y : G ∈ Γ, then
x : G[F′/X] ∈ Γ[X 7→ F′] and Lemma B.54.

Case (Gλ). We know that t = λy : G1.t
′, G = G1→G2, and

(Gλ)
∆,X; Γ,y : G1 ` t′ : G2

∆,X; Γ ` (λy : G1.t
′) : G1→G2

We know that (λy : G1.t
′)[X 7→ F′] = λy : G1[F′/X].(t′[X 7→ F′]). We re required to prove that

∆; Γ[X 7→ F′] ` λy : G1[F′/X].(t′[X 7→ F′]) : G1[F′/X]→G2[F′/X]. Or what is the same, by rule
(Gλ), we are required to prove ∆; Γ,y : G1[F′/X] ` t′[X 7→ F′] : G2[F′/X]. By the induction
hypothesis on ∆,X; Γ,y : G1 ` t′ : G2, the result follows immediately.

Case (Gpair). We know that t = 〈s1, s2〉, G = G1×G2, and

(Gpair)
∆,X; Γ ` s1 : G1 ∆,X; Γ ` s2 : G2

∆,X; Γ ` 〈s1, s2〉 : G1×G2

We know that (〈s1, s2〉)[X 7→ F′] = 〈s1[X 7→ F′], s2[X 7→ F′]〉. We are required to prove that
∆; Γ[X 7→ F′] ` 〈s1[X 7→ F′], s2[X 7→ F′]〉 : G1[F′/X]×G2[F′/X]. Or what is the same, by rule
(Gpair), we are required to prove that ∆; Γ[X 7→ F′] ` s1[X 7→ F′] : G1[F′/X] and ∆; Γ[X 7→ F′] `
s2[X 7→ F′] : G2[F′/X]. By the induction hypothesis on ∆,X; Γ ` s1 : G1 and ∆,X; Γ ` s2 : G2,
the result follows immediately.

360

Case (GΛ). We know that t = ΛY.t′, G = ∀Y.G′′, and

(GΛ)
∆,X,Y; Γ ` t′ : G′′ ∆,X ` Γ

∆,X; Γ ` (ΛY.t′) : ∀Y.G′′

We know that (ΛY.t′)[X 7→ F′] = ΛY.(t′[X 7→ F′]). We are required to prove that ∆; Γ[X 7→ F′] `
ΛY.(t′[X 7→ F′]) : ∀Y.(G′′[F′/X]). Or what is the same, by rule (GΛ), we are required to prove
that ∆,Y; Γ[X 7→ F′] ` t′[X 7→ F′] : G′′[F′/X]. By the induction hypothesis on ∆,X,Y; Γ ` t′ :
G′′, the result follows immediately.

Case (Gasc). We know that t = ε s :: G, and

(Gasc)
∆,X; Γ ` s : G′′ ε : G′′ ∼ G

∆,X; Γ ` ε s :: G : G

We know that (ε s :: G)[X 7→ F′] = (ε[X 7→ F′] (s[X 7→ F′]) :: G[F′/X]). Thus, we are required
to prove that ∆; Γ[X 7→ F′] ` ε[X 7→ F′] (s[X 7→ F′]) :: G[F′/X] : G[F′/X]. Or what is the same,
by (Gasc) rule, we are required to prove that ε[X 7→ F′] : G′′[F′/X] ∼ G′′[F′/X], which follows
by Lemma B.58, and ∆; Γ[X 7→ F′] ` (s[X 7→ F′]) : G′′[F′/X]. By the induction hypothesis on
∆,X; Γ ` s : G′′, the result follows immediately.

Case (Gapp). We know that t = t1 t2 and G = G2, and

(Gapp)
∆,X; Γ ` t1 : G1→G2 ∆,X; Γ ` t2 : G1

∆,X; Γ ` t1 t2 : G2

We know that (t1 t2)[X 7→ F′] = (t1[X 7→ F′]) (t2[X 7→ F′]). Therefore, we are required to
prove that ∆; Γ[X 7→ F′] ` (t1[X 7→ F′]) (t2[X 7→ F′]) : G2[F′/X]. Or what is the same, by rule
(Gapp), we are required to prove that ∆; Γ[X 7→ F′] ` t1[X 7→ F′] : G1[F′/X]→G2[F′/X] and
∆; Γ[X 7→ F′] ` t2[X 7→ F′] : G1[F′/X], which follow immediately by the induction hypothesis on
∆,X; Γ ` t1 : G1→G2 and ∆,X; Γ ` t2 : G1.

Case (Gpairi). We know that t = πi(t
′) and G = Gi, and

(Gpairi)
∆,X; Γ ` t′ : G1×G2

∆,X; Γ ` πi(t
′) : Gi

We know that (πi(t
′))[X 7→ F′] = πi((t

′[X 7→ F′])). Therefore, we are required to prove that
∆; Γ[X 7→ F′] ` πi((t

′[X 7→ F′])) : Gi[F
′/X]. Or what is the same, by rule (Gpairi), we are required

to prove that ∆; Γ[X 7→ F′] ` t′[X 7→ F′] : G1[F′/X]×G2[F′/X], which follow immediately by the
induction hypothesis on ∆,X; Γ ` t′ : G1×G2.

Case (GappG). We know that t = t′ [F] and G = G′′[F/X], and

(GappG)
∆,X; Γ ` t′ : ∀X.G′′ ∆,X ` F

∆,X; Γ ` t′ [F] : G′′[F/X]

We know that (t′ [F])[X 7→ F′] = (t′[X 7→ F′]) [F[F′/X]]. Therefore, we are required to prove
that ∆; Γ[X 7→ F′] ` (t′[X 7→ F′]) [F[F′/X]] : G′′[F[F′/X]/X]. Or what is the same, by the rule
(GappG), we are required to prove that ∆; Γ[X 7→ F′] ` t′[X 7→ F′] : ∀X.(G′′[F′/X]), which follows
immediately by the induction hypotheses on ∆,X; Γ ` t′ : ∀X.G′′.

Next, we prove the other way around. We are required to prove that if ∆ ` F′ and ∆; Γ[X 7→ F′] `
t[X 7→ F′] : G[F′/X], then ∆,X; Γ ` t : G.

361

Case (b). We know that t = b, and t[X 7→ F′] = b[X 7→ F′] = b. Also, we know that

(Gb)
θ(b) = B ∆ ` Γ[X 7→ F′]

∆; Γ[X 7→ F′] ` b : B

Thus, we know that G = B and we are required to prove that ∆,X; Γ ` b : B, which follows
immediately by rule (Gb) and Lemma B.54.

Case (y). We know that t = y, and t[X 7→ F′] = y[X 7→ F′] = y. Thus, we know that

(Gx)
y : G[F′/X] ∈ Γ[X 7→ F′] ∆ ` Γ[X 7→ F′]

∆; Γ[X 7→ F′] ` y : G[F′/X]

Therefore, we are required to prove that ∆,X; Γ ` y : G, which follows immediately by (Gx) rule,
Lemma B.54, and since y : G[F′/X] ∈ Γ[X 7→ F′], then y : G ∈ Γ.

Case (λ). We know that t = λy : G1.t
′, and (λy : G1.t

′)[X 7→ F′] = λy : G1[X 7→ F′].(t′[X 7→
F′]). Thus, we also know that

(Gλ)
∆; Γ[X 7→ F′],y : G1[X 7→ F′] ` t′[X 7→ F′] : G2[X 7→ F′]

∆; Γ ` (λy : G1[X 7→ F′].(t′[X 7→ F′]) : G1[X 7→ F′]→G2[X 7→ F′]

where G = G1→G2. We re required to prove that ∆,X; Γ ` λy : G1.t
′ : G1→G2. Or what is

the same, by rule (Gλ), we are required to prove that ∆,X; Γ,y : G1 ` t′ : G2. By the induction
hypothesis on t′, with ∆; Γ[X 7→ F′],y : G1[X 7→ F′] ` t′[X 7→ F′] : G2[X 7→ F′], the result follows
immediately.

Case (pair). We know that t = 〈s1, s2〉, and (〈s1, s2〉)[X 7→ F′] = 〈s1[X 7→ F′], s2[X 7→ F′]〉. Thus,
we know that

(Gpair)
∆; Γ[X 7→ F′] ` s1[X 7→ F′] : G1[X 7→ F′] ∆; Γ[X 7→ F′] ` s2[X 7→ F′] : G2[X 7→ F′]

∆; Γ[X 7→ F′] ` 〈s1[X 7→ F′], s2[X 7→ F′]〉 : G1[X 7→ F′]×G2[X 7→ F′]

where G = G1×G2. We are required to prove that ∆,X; Γ ` 〈s1, s2〉 : G1×G2. Or what is the
same, by rule (Gpair), we are required to prove that ∆,X; Γ ` s1 : G1 and ∆,X; Γ ` s2 : G2.
By the induction hypothesis on s1 and s2, with ∆; Γ[X 7→ F′] ` s1[X 7→ F′] : G1[X 7→ F′] and
∆; Γ[X 7→ F′] ` s2[X 7→ F′] : G2[X 7→ F′], the result follows immediately.

Case (Λ). We know that t = ΛY.t′, and (ΛY.t′)[X 7→ F′] = ΛY.(t′[X 7→ F′]). Thus, we know
that

(GΛ)
∆,Y; Γ[X 7→ F′] ` t′[X 7→ F′] : G′′[X 7→ F′] ∆ ` Γ

∆; Γ[X 7→ F′] ` ΛY.(t′[X 7→ F′]) : ∀Y.(G′′[X 7→ F′])

where G = ∀Y.G′′. We are required to prove that ∆,X; Γ ` ΛY.t′ : ∀Y.G′′. Or what is the same,
by rule (GΛ), we are required to prove that ∆,Y; Γ ` t′ : G′′. By the induction hypothesis on t′,
with ∆,Y; Γ[X 7→ F′] ` t′[X 7→ F′] : G′′[X 7→ F′], the result follows immediately.

Case (asc). We know that t = ε s :: G, and (ε s :: G)[X 7→ F′] = (ε[X 7→ F′] (s[X 7→ F′]) ::
G[X 7→ F′]). Thus, we know that

(Gasc)
∆; Γ[X 7→ F′] ` s[X 7→ F′] : G′′[X 7→ F′] ε[X 7→ F′] : G′′[X 7→ F′] ∼ G[X 7→ F′]

∆; Γ[X 7→ F′] ` ε[X 7→ F′] (s[X 7→ F′]) :: G[X 7→ F′] : G[X 7→ F′]

Thus, we are required to prove that ∆,X; Γ ` (ε s :: G) : G. Or what is the same, by (Gasc) rule,
we are required to prove that ε : G′′ ∼ G, which follows by Lemma B.58, and ∆,X; Γ ` s : G′′.
By the induction hypothesis on s, with ∆; Γ[X 7→ F′] ` s[X 7→ F′] : G′′[X 7→ F′], the result follows
immediately.

362

Case (app). We know that t = t1 t2, and (t1 t2)[X 7→ F′] = (t1[X 7→ F′]) (t2[X 7→ F′]]). Thus,
we know that

(Gapp)
∆; Γ[X 7→ F′] ` t1[X 7→ F′] : G1[X 7→ F′]→G2[X 7→ F′] ∆; Γ[X 7→ F′] ` t2[X 7→ F′] : G1[X 7→ F′]

∆; Γ[X 7→ F′] ` (t1[X 7→ F′]) (t2[X 7→ F′]) : G2[X 7→ F′]

where G = G2. Therefore, we are required to prove that ∆,X; Γ ` t1 t2 : G2. Or what is the same,
by rule (Gapp), we are required to prove that ∆,X; Γ ` t1 : G1→G2 and ∆,X; Γ ` t2 : G1, which
follow immediately by the induction hypothesis on t1 and t2, with ∆; Γ[X 7→ F′] ` t1[X 7→ F′] :
G1[X 7→ F′]→G2[X 7→ F′] and ∆; Γ[X 7→ F′] ` t2[X 7→ F′] : G1[X 7→ F′].

Case (pairi). We know that t = πi(t
′), and (πi(t

′))[X 7→ F′] = πi(t
′[X 7→ F′]). Thus, we know that

(Gpairi)
∆; Γ[X 7→ F′] ` t′[X 7→ F′] : G1[X 7→ F′]×G2[X 7→ F′]

∆; Γ[X 7→ F′] ` πi(t
′[X 7→ F′]) : Gi[X 7→ F′]

where G = Gi. Therefore, we are required to prove that ∆,X; Γ ` πi(t
′) : Gi. Or what is the same,

by rule (Gpairi), we are required to prove that ∆,X; Γ ` t′ : G1×G2, which follow immediately
by the induction hypothesis on t′, with ∆; Γ[X 7→ F′] ` t′[X 7→ F′] : G1[X 7→ F′]×G2[X 7→ F′].

Case (appG). We know that t = t′ [F], and (t′ [F])[X 7→ F′] = (t′[X 7→ F′]) [F[X 7→ F′]]. Thus,
we know that

(GappG)
∆; Γ[X 7→ F′] ` t′[X 7→ F′] : ∀Y.G′′[X 7→ F′] ∆ ` F[X 7→ F′]

∆; Γ[X 7→ F′] ` (t′[X 7→ F′]) [F[X 7→ F′]] : G′′[F[X 7→ F′]/X]

where G = G′′[F/X]. Therefore, we are required to prove that ∆,X; Γ ` t′ [F] : G′′[F/X]. Or
what is the same, by the rule (GappG), we are required to prove that ∆,X; Γ ` t′ : ∀Y.G′′,
which follows immediately by the induction hypotheses on t′, with ∆; Γ[X 7→ F′] ` t′[X 7→ F′] :
∀Y.G′′[X 7→ F′].

Lemma B.56 If ∆; Γ ` v : G′ then ∆; Γ,x : G′ ` t : G if and only if ∆; Γ ` t[v/x] : G.

Proof. We first prove that if ∆; Γ ` v : G′ and ∆; Γ,x : G′ ` t : G, then ∆; Γ ` t[v/x] : G. We
proceed by induction on ∆; Γ ` t : G.

Case (Gb). We know that t = b, G = B, and

(Gb)
θ(b) = B ∆ ` Γ,x : G′

∆; Γ,x : G′ ` b : B

Also, we know that t[v/x] = b[v/x] = b. Therefore, we are required to prove that ∆; Γ ` b : B,
which follows immediately.

Case (Gx)). We know that t = y, and

(Gx)
y : G ∈ Γ ∆ ` Γ,x : G′

∆; Γ,x : G′ ` y : G

We have the following cases.

• y = x. We know that t[v/x] = x[v/x] = v. Then, we know that G′ = G. Therefore, we are
required to prove that ∆; Γ ` v : G, which follows immediately by the premise.

363

• y 6= x. We know that t[v/x] = yv/x = y. Therefore, we are required to prove that
∆; Γ ` y : G, which follows immediately (y : G ∈ Γ).

Case (Gλ). We know that t = λy : G1.t
′, G = G1→G2, and

(Gλ)
∆; Γ,x : G′,y : G1 ` t′ : G2

∆; Γ,x : G′ ` (λy : G1.t
′) : G1→G2

We know that (λy : G1.t
′)[v/x] = λy : G1.(t

′[v/x]). We re required to prove that ∆; Γ `
λy : G1.(t

′[v/x]) : G1→G2. Or what is the same, by rule (Gλ), we are required to prove
∆; Γ,y : G1 ` t′[v/x] : G2. By the induction hypothesis on ∆; Γ,x : G′,y : G1 ` t′ : G2, we
get that ∆; Γ,y : G1 ` t′[v/x] : G2, and the result follows immediately.

Case (Gpair). We know that t = 〈s1, s2〉, G = G1×G2, and

(Gpair)
∆; Γ,x : G′ ` s1 : G1 ∆; Γ,x : G′ ` s2 : G2

∆; Γ,x : G′ ` 〈s1, s2〉 : G1×G2

We know that (〈s1, s2〉)[v/x] = 〈s1[v/x], s2[v/x]〉. We are required to prove that ∆; Γ ` 〈s1[v/x], s2[v/x]〉 :
G1×G2. Or what is the same, by rule (Gpair), we are required to prove that ∆; Γ ` s1[v/x] : G1

and ∆; Γ ` s2[v/x] : G2. By the induction hypothesis on ∆; Γ,x : G′ ` s1 : G1 and ∆; Γ,x : G′ `
s2 : G2, the result follows immediately.

Case (GΛ). We know that t = ΛX.t′, G = ∀X.G′′, and

(GΛ)
∆,X; Γ,x : G′ ` t′ : G′′ ∆ ` Γ,x : G′

∆; Γ,x : G′ ` (ΛX.t′) : ∀X.G′′

We know that (ΛX.t′)[v/x] = ΛX.(t′[v/x]). We are required to prove that ∆; Γ ` ΛX.(t′[v/x]) :
∀X.G′′. Or what is the same, by rule (GΛ), we are required to prove that ∆,X; Γ ` t′[v/x] : G′′.
By the induction hypothesis on ∆,X; Γ,x : G′ ` t′ : G′′, the result follows immediately.

Case (Gasc). We know that t = ε s :: G, and

(Gasc)
∆; Γ,x : G′ ` s : G′′ ε : G′′ ∼ G

∆; Γ,x : G′ ` ε s :: G : G

We know that (ε s :: G)[v/x] = (ε (s[v/x]) :: G). Thus, we are required to prove that ∆; Γ `
(ε (s[v/x]) :: G) : G. Or what is the same, by (Gasc) rule, we are required to prove that ∆; Γ `
(s[v/x]) : G′′. By the induction hypothesis on ∆; Γ,x : G′ ` s : G′′, the result follows immediately.

Case (Gapp). We know that t = t1 t2 and G = G2, and

(Gapp)
∆; Γ,x : G′ ` t1 : G1→G2 ∆; Γ,x : G′ ` t2 : G1

∆; Γ,x : G′ ` t1 t2 : G2

We know that (t1 t2)[v/x] = (t1[v/x]) (t2[v/x]). Therefore, we are required to prove that ∆; Γ `
(t1[v/x]) (t2[v/x]) : G2. Or what is the same, by rule (Gapp), we are required to prove that
∆; Γ ` t1[v/x] : G1→G2 and ∆; Γ ` t2[v/x] : G1, which follow immediately by the induction
hypothesis on ∆; Γ,x : G′ ` t1 : G1→G2 and ∆; Γ,x : G′ ` t2 : G1.

Case (Gpairi). We know that t = πi(t
′) and G = Gi, and

(Gpairi)
∆; Γ,x : G′ ` t′ : G1×G2

∆; Γ,x : G′ ` πi(t
′) : Gi

We know that (πi(t
′))[v/x] = πi((t

′[v/x])). Therefore, we are required to prove that ∆; Γ `
πi((t

′[v/x])) : Gi. Or what is the same, by rule (Gpairi), we are required to prove that ∆; Γ `
t′[v/x] : G1×G2, which follow immediately by the induction hypothesis on ∆; Γ,x : G′ ` t′ :
G1×G2.

364

Case (GappG). We know that t = t′ [F] and G = G′′[F/X], and

(GappG)
∆; Γ,x : G′ ` t′ : ∀X.G′′ ∆ ` F

∆; Γ,x : G′ ` t′ [F] : G′′[F/X]

We know that (t′ [F])[v/x] = (t′[v/x]) [F]. Therefore, we are required to prove that ∆; Γ `
(t′[v/x]) [F] : G′′[F/X]. Or what is the same, by the rule (GappG), we are required to prove that
∆; Γ ` t′[v/x] : ∀X.G′′, which follows immediately by the induction hypotheses on ∆; Γ,x : G′ `
t′ : ∀X.G′′.

Next, we prove the other way around. We are required to prove that if ∆; Γ ` v : G′ and
∆; Γ ` t[v/x] : G, then ∆; Γ,x : G′ ` t : G. We proceed by induction on the structure of t.

Case (b). We know that t = b, and t[v/x] = b[v/x] = b. Also, we know that

(Gb)
θ(b) = B ∆ ` Γ

∆; Γ ` b : B

Thus, we know that G = B and we are required to prove that ∆; Γ,x : G′ ` b : B, which follows
immediately by rule (Gb).

Case (y). We know that t = y having the following cases.

• y = x. We know that t[v/x] = x[v/x] = v. Then, we know that G′ = G. Therefore, we are
required to prove that ∆; Γ,x : G′ ` x : G′, which follows immediately by the (Gx) rule.

• y 6= x. We know that t[v/x] = yv/x = y and

(Gx)
y : G ∈ Γ ∆ ` Γ

∆; Γ ` y : G

Therefore, we are required to prove that ∆; Γ,x : G′ ` y : G, which follows immediately by
the (Gx) rule (y : G ∈ Γ).

Case (λ). We know that t = λy : G1.t
′, and (λy : G1.t

′)[v/x] = λy : G1.(t
′[v/x]). Thus, we also

know that

(Gλ)
∆; Γ,y : G1 ` t′[v/x] : G2

∆; Γ ` (λy : G1.(t
′[v/x]) : G1→G2

where G = G1→G2. We re required to prove that ∆; Γ,x : G′ ` λy : G1.t
′ : G1→G2. Or what is

the same, by rule (Gλ), we are required to prove ∆; Γ,x : G′,y : G1 ` t′ : G2. By the induction
hypothesis on t′, with ∆; Γ,y : G1 ` t′[v/x] : G2, we get that ∆; Γ,x : G′,y : G1 ` t′ : G2, and
the result follows immediately.

Case (pair). We know that t = 〈s1, s2〉, and (〈s1, s2〉)[v/x] = 〈s1[v/x], s2[v/x]〉. Thus, we know
that

(Gpair)
∆; Γ ` s1[v/x] : G1 ∆; Γ ` s2[v/x] : G2

∆; Γ ` 〈s1[v/x], s2[v/x]〉 : G1×G2

where G = G1×G2. We are required to prove that ∆; Γ,x : G′ ` 〈s1, s2〉 : G1×G2. Or
what is the same, by rule (Gpair), we are required to prove that ∆; Γ,x : G′ ` s1 : G1 and
∆; Γ,x : G′ ` s2 : G2. By the induction hypothesis on s1 and s2, with ∆; Γ ` s1[v/x] : G1 and
∆; Γ ` s2[v/x] : G2, the result follows immediately.

365

Case (Λ). We know that t = ΛX.t′, and (ΛX.t′)[v/x] = ΛX.(t′[v/x]). Thus, we know that

(GΛ)
∆,X; Γ ` t′[v/x] : G′′ ∆ ` Γ

∆; Γ ` ΛX.(t′[v/x]) : ∀X.G′′

where G = ∀X.G′′. We are required to prove that ∆; Γ,x : G′ ` ΛX.t′ : ∀X.G′′. Or what is the
same, by rule (GΛ), we are required to prove that ∆,X; Γ,x : G′ ` t′ : G′′. By the induction
hypothesis on t′, with ∆,X; Γ ` t′[v/x] : G′′, the result follows immediately.

Case (asc). We know that t = ε s :: G, and (ε s :: G)[v/x] = (ε (s[v/x]) :: G). Thus, we know
that

(Gasc)
∆; Γ ` s[v/x] : G′′ ε : G′′ ∼ G

∆; Γ ` ε (s[v/x]) :: G : G

Thus, we are required to prove that ∆; Γ,x : G′ ` (ε s :: G) : G. Or what is the same, by (Gasc)
rule, we are required to prove that ∆; Γ,x : G′ ` s : G′′. By the induction hypothesis on s, with
∆; Γ ` s[v/x] : G′′, the result follows immediately.

Case (app). We know that t = t1 t2, and (t1 t2)[v/x] = (t1[v/x]) (t2[v/x]). Thus, we know that

(Gapp)
∆; Γ ` t1[v/x] : G1→G2 ∆; Γ ` t2[v/x] : G1

∆; Γ ` (t1[v/x]) (t2[v/x]) : G2

where G = G2. Therefore, we are required to prove that ∆; Γ,x : G′ ` t1 t2 : G2. Or what
is the same, by rule (Gapp), we are required to prove that ∆; Γ,x : G′ ` t1 : G1→G2 and
∆; Γ,x : G′ ` t2 : G1, which follow immediately by the induction hypothesis on t1 and t2, with
∆; Γ ` t1[v/x] : G1→G2 and ∆; Γ ` t2[v/x] : G1.

Case (pairi). We know that t = πi(t
′), and (πi(t

′))[v/x] = πi(t
′[v/x]). Thus, we know that

(Gpairi)
∆; Γ ` t′[v/x] : G1×G2

∆; Γ ` πi(t
′[v/x]) : Gi

where G = Gi. Therefore, we are required to prove that ∆; Γ,x : G′ ` πi(t
′) : Gi. Or what is

the same, by rule (Gpairi), we are required to prove that ∆; Γ,x : G′ ` t′ : G1×G2, which follow
immediately by the induction hypothesis on t′, with ∆; Γ ` t′[v/x] : G1×G2.

Case (appG). We know that t = t′ [F], and (t′ [F])[v/x] = (t′[v/x]) [F]. Thus, we know that

(GappG)
∆; Γ ` t′[v/x] : ∀X.G′′ ∆ ` F

∆; Γ ` (t′[v/x]) [F] : G′′[F/X]

where G = G′′[F/X]. Therefore, we are required to prove that ∆; Γ,x : G′ ` t′ [F] : G′′[F/X]. Or
what is the same, by the rule (GappG), we are required to prove that ∆; Γ,x : G′ ` t′ : ∀X.G′′,
which follows immediately by the induction hypotheses on t′, with ∆; Γ ` t′[v/x] : ∀X.G′′.

Lemma B.57 c : G v G′ if and only if c[X 7→ F] : G[X 7→ F] v G′[X 7→ F].

Proof. We are required to prove that c : G v G′ if and only if c[X 7→ F] : G[X 7→ F] v
G′[X 7→ F]. First, we prove that if c : G v G′ then c[X 7→ F] : G[X 7→ F] v G′[X 7→ F].
We proceed by induction on

366

Case (B : B v B). We know that c = B, G = B and G′ = B. We know that

B : B v B

Also, we know that c[X 7→ F] = B[X 7→ F] = B, G[X 7→ F] = B[X 7→ F] = B and G′[X 7→ F] =
B[X 7→ F] = B. Thus, we are required to prove that B : B v B, which follows immediately.

Case (Y : Y v Y). We know that c = Y, G = Y and G′ = Y. We know that

Y : Y v Y

We have the following cases.

• Y = X. Therefore, we know that c[X 7→ F] = X[X 7→ F] = F, GX 7→F = X[X 7→ F] = F
and G′[X 7→ F] = X[X 7→ F] = F. Thus, we are required to prove that F : F v F, which
follows immediately.

• Y 6= X. Therefore, we know that c[X 7→ F] = Y[X 7→ F] = Y, G[X 7→ F] = Y[X 7→ F] =
Y and G′[X 7→ F] = Y[X 7→ F] = Y. Thus, we are required to prove that Y : Y v Y,
which follows immediately.

Case (c→c′ : G1→G′1 v G2→G′2). We know that c = c′→c′′, G = G1→G′1 and G′ = G2→G′2.
We know that

c′ : G1 v G2 c′′ : G′1 v G′2
c′→c′′ : G1→G′1 v G2→G′2

Also, we know that c[X 7→ F] = (c′→c′′)[X 7→ F] = c[X 7→ F]→c′[X 7→ F], G[X 7→ F] = (G1→G′1)[X 7→
F] = G1[X 7→ F]→G′1[X 7→ F] and G′[X 7→ F] = (G2→G′2)[X 7→ F] = G2[X 7→ F]→G′2[X 7→
F]. Thus, we are required to prove that c′[X 7→ F] : G1[X 7→ F] v G2[X 7→ F] and c′′[X 7→ F] :
G′1[X 7→ F] v G′2[X 7→ F], which follows immediately by the induction hypothesis on c′ : G1 v G2

and c′′ : G′1 v G′2.

Case (c′× c′′ : G1×G′1 v G2×G′2). We know that c = c′× c′′, G = G1×G′1 and G′ = G2×G′2.
We know that

c′ : G1 v G2 c′′ : G′1 v G′2
c′× c′′ : G1×G′1 v G2×G′2

Also, we know that c[X 7→ F] = (c′× c′′)[X 7→ F] = c[X 7→ F]× c′[X 7→ F], G[X 7→ F] =
(G1×G′1)[X 7→ F] = G1[X 7→ F]×G′1[X 7→ F] and G′[X 7→ F] = (G2×G′2)[X 7→ F] =
G2[X 7→ F]×G′2[X 7→ F]. Thus, we are required to prove that c′[X 7→ F] : G1[X 7→ F] v
G2[X 7→ F] and c′′[X 7→ F] : G′1[X 7→ F] v G′2[X 7→ F], which follows immediately by the
induction hypothesis on c′ : G1 v G2 and c′′ : G′1 v G′2.

Case (∀Y.c : ∀Y.G1 v ∀Y.G2). We know that c = ∀Y.c′, G = ∀Y.G1 and G′ = ∀Y.G2. We
know that

c′ : G1 v G2

∀Y.c : ∀Y.G1 v ∀Y.G2

Also, we know that c[X 7→ F] = (∀Y.c′)[X 7→ F] = ∀Y.c[X 7→ F], G[X 7→ F] = (∀Y.G1)[X 7→
F] = ∀Y.G1[X 7→ F] and G′[X 7→ F] = (∀Y.G2)[X 7→ F] = ∀Y.G2[X 7→ F]. Thus, we are
required to prove that c′[X 7→ F] : G1[X 7→ F] v G2[X 7→ F], which follows immediately by the
induction hypothesis on c′ : G1 v G2.

Case (injB : B v ?δ). We know that c = injB, G = B and G′ = ?δ . We know that

injB : B v ?δ

367

Also, we know that c[X 7→ F] = injB[X 7→ F] = injB, G[X 7→ F] = B[X 7→ F] = B and
G′[X 7→ F] = ?δ [X 7→ F] = ?δ[X 7→F]. Thus, we are required to prove that injB : B v ?δ[X 7→F],
which follows immediately.

Case (injY : F′ v ?δ). We know that c = injY, G = F′ and G′ = ?δ . We know that

Y : F′ ∈ δ

injY : F′ v ?δ

We have the following cases.

• F′ = X. Thus, we know that c[X 7→ F] = injY[X 7→ F] = injY, G[X 7→ F] = X[X 7→
F] = F and G′[X 7→ F] = ?δ [X 7→ F] = ?δ[X 7→F]. Thus, we are required to prove that injY :
F v ?δ[X 7→F], which follows immediately because Y : (X[X 7→ F]) = Y : F ∈ ?δ[X 7→F].

• F′ 6= X. Thus, we know that c[X 7→ F] = injY[X 7→ F] = injY, G[X 7→ F] = F′[X 7→
F] = F′ and G′[X 7→ F] = ?δ [X 7→ F] = ?δ[X 7→F]. Thus, we are required to prove that injY :
F′ v ?δ[X 7→F], which follows immediately because Y : (F′[X 7→ F]) = Y : F′ ∈ ?δ[X 7→F].

Case (inj→(c′) : G v ?δ). We know that c = inj→(c′) and G′ = ?δ . We know that

c′ : G v ?δ→?δ

inj→(c′) : G v ?δ

Also, we know that c[X 7→ F] = inj→(c′)[X 7→ F] = inj→(c′[X 7→ F]) and G′[X 7→ F] = ?δ [X 7→
F] = ?δ[X 7→F]. Thus, we are required to prove that c′[X 7→ F] : G[X 7→ F] v ?δ[X 7→F]→?δ[X 7→F],
which follows immediately by the induction hypothesis on c′ : G v ?δ→?δ .

Case (inj×(c′) : G v ?δ). We know that c = inj×(c′) and G′ = ?δ . We know that

c′ : G v ?δ × ?δ

inj×(c′) : G v ?δ

Also, we know that c[X 7→ F] = inj×(c′)[X 7→ F] = inj×(c′[X 7→ F]) and G′[X 7→ F] = ?δ [X 7→
F] = ?δ[X 7→F]. Thus, we are required to prove that c′[X 7→ F] : G[X 7→ F] v ?δ[X 7→F]× ?δ[X 7→F],
which follows immediately by the induction hypothesis on c′ : G v ?δ × ?δ .

Case (inj∀(c
′) : G v ?δ). We know that c = inj∀(c

′) and G′ = ?δ . We know that

c′ : G v ∀Y.?δ,Y:Y

inj∀(c
′) : G v ?δ

Also, we know that c[X 7→ F] = inj∀(c
′)[X 7→ F] = inj∀(c

′[X 7→ F]) and G′[X 7→ F] = ?δ [X 7→
F] = ?δ[X 7→F]. Thus, we are required to prove that c′[X 7→ F] : G[X 7→ F] v ∀Y.?(δ,Y:Y)[X 7→F],
which follows immediately by the induction hypothesis on c′ : G v ∀Y.?δ,Y:Y. Note that ?(δ,Y:Y)[X 7→F] =
?(δ[X 7→F]),Y:Y.

Case (inj? : ?δ v ?δ′). We know that c = inj?, G = ?δ . G′ = ?δ′ . We know that

δ ⊆ δ′

inj? : ?δ v ?δ′

Also, we know that c[X 7→ F] = inj?[X 7→ F] = inj?, G[X 7→ F] = ?δ [X 7→ F] = ?δ[X 7→F] and
G′[X 7→ F] = ?δ′ [X 7→ F] = ?δ′[X 7→F]. Thus, we are required to prove that inj? : ?δ[X 7→F] v
?δ′[X 7→F], which follows immediately since δ ⊆ δ′ then δ[X 7→ F] ⊆ δ′[X 7→ F].

368

Next, we prove that if c[X 7→ F] : G[X 7→ F] v G′[X 7→ F] then c : G v G′. We proceed by
induction on c. The proof is very similar to the first one.

Lemma B.58 If ∆ ` F, then ε : G′ ∼ G if and only if ε[X 7→ F] : G′[F/X] ∼ G[F/X].

Proof. We proceed by proving that for all (G∗, c1, c2) ∈ ε, we get that [(G∗, c1, c2)] : G′ ∼ G if
and only if [(G∗, c1, c2)][X 7→ F] : G′[X 7→ F] ∼ G[X 7→ F]. Or what is the same, we are required
to prove that c1 : G∗ v G′ if and only if c1[X 7→ F] : G∗[X 7→ F] v G′[X 7→ F] and c2 : G∗ v G if
and only if c2[X 7→ F] : G∗[X 7→ F] v G[X 7→ F]. By Lemma B.57, the result follows immediately.

Lemma B.59 If ε : G′ ∼ G and (n, ρ) ∈ DJ∆K, then ρ1(ε) : ρ1(G′) ∼ ρ1(G) and ρ2(ε) : ρ2(G′) ∼
ρ2(G).

Proof. We know that ε : G′ ∼ G and (n, ρ) ∈ DJ∆K. We are required to prove that ρ1(ε) :
ρ1(G′) ∼ ρ1(G) and ρ2(ε) : ρ2(G′) ∼ ρ2(G). We proceed by induction on ∆.

• ∆ = ∅. By the definition of (n, ρ) ∈ DJ∆K, we know that ρ = ∅. Thus, we know that
ρi(ε) = ε, ρi(G

′) = G′ and ρi(G) = G. Therefore, we are required to prove that ε : G′ ∼ G,
which follows immediately by the premise.

• ∆ = ∆′,X. By the definition of (n, ρ) ∈ DJ∆K, we know that ρ = ρ′[X 7→ (B1,B2, R)]
and (n, ρ′) ∈ DJ∆′K. We know that ρi(ε) = ρ′i(ε[X 7→ Bi]), ρi(G

′) = ρ′i(G
′[Bi/X]) and

ρi(G) = ρ′i(G[Bi/X]). Thus, we are required to prove that ρ′i(ε[X 7→ Bi]) : ρ′i(G
′[Bi/X]) ∼

ρ′i(G[Bi/X]). By Lemma B.58, we know that ε[X 7→ B1] : G′[B1/X] ∼ G[B1/X] and
ε[X 7→ B2] : G′[B2/X] ∼ G[B2/X]. By the induction hypothesis on ∆′, with (n, ρ′) ∈
DJ∆′K and evidence ε[X 7→ B1] : G′[B1/X] ∼ G[B1/X] and ε[X 7→ B2] : G′[B2/X] ∼
G[B2/X], we get that ρ′1(ε[X 7→ B1]) : ρ′1(G′[B1/X]) ∼ ρ′1(G[B1/X]) and ρ′2(ε[X 7→ B2]) :
ρ′2(G′[B2/X]) ∼ ρ′2(G[B2/X]). Thus, the result follows immediately.

Lemma B.60 If ∆; Γ ` t : G, (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK, then ` ρ1(γ1(t)) : ρ1(G) and
` ρ2(γ2(t)) : ρ2(G).

Proof. We know that ∆; Γ ` t : G, (n, ρ) ∈ DJ∆K and (n, γ) ∈ GρJΓK. We are required to prove
that ` ρ1(γ1(t)) : ρ1(G) and ` ρ2(γ2(t)) : ρ2(G). We proceed by induction on ∆; Γ ` t : G.

Case (Gb). We know that t = b, G = B, and

(Gb)
θ(b) = B ∆ ` Γ

∆; Γ ` b : B

Also, we know that ρi(γi(t)) = ρi(γi(b)) = b and ρi(G) = ρi(B) = B. Therefore, we are required
to prove that ` b : B, which follows immediately.

369

Case (Gx)). We know that t = x, and

(Gx)
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G

Since x : G ∈ Γ and (n, γ) ∈ GρJΓK, we know that (x 7→ (v1,v2)) ∈ γ, and (n,v1,v2) ∈ VρJGK.
Therefore, we know that ` vi : ρi(G) and ρi(γi(t)) = ρi(γi(x)) = vi. Thus, we are required to
prove that ` vi : ρi(G), which follows immediately.

Case (Gλ). We know that t = λx : G1.t
′, G = G1→G2, and

(Gλ)
∆; Γ, x : G1 ` t′ : G2

∆; Γ ` (λx : G1.t
′) : G1→G2

We know that ρi(γi(λx : G1.t
′)) = λx : ρi(G1).ρi(γi(t

′)) and ρi(G1→G2) = ρi(G1)→ρi(G2). We
re required to prove that ` λx : ρi(G1).ρi(γi(t

′)) : ρi(G1)→ρi(G2). Or what is the same, by rule
(Gλ), we are required to prove x : ρi(G1) ` ρi(γi(t

′)) : ρi(G2). By the induction hypothesis on
∆; Γ, x : G1 ` t′ : G2, with (n, ρ) ∈ DJ∆K and (n, γ[(x 7→ (v1,v2))]) ∈ GρJΓ, x : G1K, where
(n,v1,v2) ∈ VρJG1K, we know that ` ρi(γi(t

′))[vi/x] : ρi(G2). Since (n,v1,v2) ∈ VρJG1K, we
know that ` vi : ρi(G1). By Lemma B.56, we get that x : ρi(G1) ` ρi(γi(t

′)) : ρi(G2), and the
result follows immediately.

Case (Gpair). We know that t = 〈s1, s2〉, G = G1×G2, and

(Gpair)
∆; Γ ` s1 : G1 ∆; Γ ` s2 : G2

∆; Γ ` 〈s1, s2〉 : G1×G2

We know that ρi(γi(〈s1, s2〉)) = 〈ρi(γi(s1)), ρi(γi(s2))〉 and ρi(G1×G2) = ρi(G1)× ρi(G2). We
are required to prove that ` 〈ρi(γi(s1)), ρi(γi(s2))〉 : ρi(G1)× ρi(G2). Or what is the same, by rule
(Gpair), we are required to prove that ` ρi(γi(s1)) : ρi(G1) and ` ρi(γi(s2)) : ρi(G2). By the
induction hypothesis on ∆; Γ ` s1 : G1 and ∆; Γ ` s2 : G2, the result follows immediately.

Case (GΛ). We know that t = ΛX.t′, G = ∀X.G′, and

(GΛ)
∆,X; Γ ` t′ : G′ ∆ ` Γ

∆; Γ ` (ΛX.t′) : ∀X.G′

We know that ρi(γi(ΛX.t′)) = ΛX.ρi(γi(t
′)) and ρi(∀X.G′) = ∀X.ρi(G′). We are required to prove

that ` ΛX.ρi(γi(t
′)) : ∀X.ρi(G′). Or what is the same, by rule (GΛ), we are required to prove

that X ` ρi(γi(t
′)) : ρi(G

′). By the induction hypothesis on ∆,X; Γ ` t′ : G′, with (n, ρ, [(x 7→
(B,B,V∅JBK))]) ∈ DJ∆,XK and (n, γ) ∈ GρJΓK, we get that ` ρi(γi(t

′))[X 7→ B] : ρi(G
′)[X 7→ B].

Thus, by Lemma B.55, we get that X ` ρi(γi(t
′)) : ρi(G

′), and the result follows immediately.

Case (Gasc). We know that t = ε s :: G, and

(Gasc)
∆; Γ ` s : G′ ε : G′ ∼ G

∆; Γ ` ε s :: G : G

We know that ρi(γi(ε s :: G)) = ρi(ε) ρi(γi(s)) :: ρi(G). Thus, we are required to prove that
` ρi(ε) ρi(γi(s)) :: ρi(G) : ρi(G). By (Gasc), we are required to prove that

• ρ1(ε) : ρ1(G′) ∼ ρ1(G) and ρ2(ε) : ρ2(G′) ∼ ρ2(G), which follow immediately by Lemma B.59.

• ` ρi(γi(s)) : ρi(G
′), which follows by the induction hypothesis on ∆; Γ ` s : G′.

Case (Gapp). We know that t = t1 t2 and G = G2, and

(Gapp)
∆; Γ ` t1 : G1→G2 ∆; Γ ` t2 : G1

∆; Γ ` t1 t2 : G2

370

We know that ρi(γi(t1 t2)) = ρi(γi(t1)) ρi(γi(t2)) and ρi(G1→G2) = ρi(G1)→ρi(G2). There-
fore, we are required to prove that ` ρi(γi(t1)) ρi(γi(t2)) : ρi(G2). Or what is the same, by rule
(Gapp), we are required to prove that ` ρi(γi(t1)) : ρi(G1)→ρi(G2) and ` ρi(γi(t2)) : ρi(G1),
which follow immediately by the induction hypothesis on ∆; Γ ` t1 : G1→G2 and ∆; Γ ` t2 : G1.

Case (Gpairi). We know that t = πi(t
′) and G = Gi, and

(Gpairi)
∆; Γ ` t′ : G1×G2

∆; Γ ` πi(t
′) : Gi

We know that ρ1(γ1(πi(t
′))) = πi(ρ1(γ1(t′))), ρ2(γ2(πi(t

′))) = πi(ρ2(γ2(t′))), ρ1(G1×G2) =
ρ1(G1)× ρ1(G2) and ρ2(G1×G2) = ρ2(G1)× ρ2(G2). Therefore, we are required to prove that
` πi(ρ1(γ1(t′))) : ρ1(Gi) and ` πi(ρ2(γ2(t′))) : ρ2(Gi). Or what is the same, by rule (Gpairi),

we are required to prove that ` ρ1(γ1(t′)) : ρ1(G1)× ρ1(G2) and ` ρ2(γ2(t′)) : ρ2(G1)× ρ2(G2),
which follow immediately by the induction hypothesis on ∆; Γ ` t′ : G1×G2.

Case (GappG). We know that t = t′ [F] and G = G′[F/X], and

(GappG)
∆; Γ ` t′ : ∀X.G′ ∆ ` F

∆; Γ ` t′ [F] : G′[F/X]

We know that ρi(γi(t
′ [F])) = ρi(γi(t

′)) [ρi(F)] and ρi(G
′[F/X]) = ρi(G

′)[ρi(F)/X]. Therefore,
we are required to prove that ` ρi(γi(t

′)) [ρi(F)] : ρi(G
′)[ρi(F)/X]. Or what is the same, by the

rule (GappG), we are required to prove that ` ρi(γi(t
′)) : ∀X.ρi(G

′), which follows immediately
by the induction hypotheses on ∆; Γ ` t′ : ∀X.G′.

Lemma B.61 If ε : G ∼ ?δ, then there exists GR and ε′ such that ` ε′ : δ _ GR and ε # ε′ is
defined.

Proof. We know that ε : G ∼ ?δ We are required to prove that there exists GR and ε′ such that
` ε′ : δ _ GR and ε # ε′ is defined. We proceed by the shape of the evidence.

• (B,B,B) ∈ ε. This case is not possible because {(B,B,B)} : B ∼ B. It is not the case that
{(B,B,B)} : B ∼ ?δ .

• (B,B, injB) ∈ ε. Then, we can take GR = B. Note that

– ε′ = (B, injB,B) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because [(B, injB,B)] # [(B, injB,B)] = {(B,B,B)} ∈ ε′′. Thus,
the result follows.

• (B, injB, injB) ∈ ε. Then, we can take GR = B. Note that

– ε′ = (B, injB,B) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because [(B, injB, injB)] # [(B, injB,B)] = [(B, injB,B)] ∈ ε′′.
Thus, the result follows.

• (B,B, injX) ∈ ε. Then, we know that X : B ∈ δ and we can take GR = X. Note that

– ε′ = (B, injX ,B) and ` ε′ : δ _ GR.

371

– ε′′ = ε # ε′ is defined because [(B,B, injX)] # [(B, injX ,B)] = {(B,B,B)} ∈ ε′′. Thus,
the result follows.

• (X,X,X) ∈ ε. This case is not possible because {(X,X,X)} : X ∼ X. It is not the case
that {(X,X,X)} : X ∼ ?δ .

• (X,X, injY) ∈ ε. Then, we know that Y : X ∈ δ and we can take GR = Y. Note that

– ε′ = (X, injY,X) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because [(X,X, injY)] # [(X, injY,X)] = {(X,X,X)} ∈ ε′′. Thus,
the result follows.

• (F, injZ, injY) ∈ ε. Then, we know that Z : F ∈ δ, Y : F ∈ δ and we can take GR = Y.
Note that

– ε′ = (F, injY,F) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because [(F, injZ, injY)] # [(F, injY,F)] = [(F, injZ,F)] ∈ ε′′.
Thus, the result follows.

• (G1→G2, c11→c12, c21→c22) ∈ ε. This case is not possible because

[(G1→G2, c11→c12, c21→c22)] : G11→G12 ∼ G21→G22

It is not the case that

[(G1→G2, c11→c12, c21→c22)] : G11→G12 ∼ ?δ

• (G1×G2, c11× c12, c21× c22) ∈ ε. This case is not possible because

[(G1×G2, c11× c12, c21× c22)] : G11×G12 ∼ G21×G22

It is not the case that

[(G1×G2, c11× c12, c21× c22)] : G11×G12 ∼ ?δ

• (∀X.G1,∀X.c11, ∀X.c21) ∈ ε. This case is not possible because

[(∀X.G1,∀X.c11, ∀X.c21)] : ∀X.G11 ∼ ∀X.G21

It is not the case that

[(∀X.G1,∀X.c11, ∀X.c21)] : ∀X.G11 ∼ ?δ

• (G1→G2, c11→c12, inj→(c21→c22)) ∈ ε. Then, we can take GR = ?δ→?δ . Note that

– ε′ = (?δ→?δ , inj→(inj?→inj?), inj?→inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(G1→G2, c11→c12, inj→(c21→c22))] # [(?δ→?δ , inj→(inj?→inj?), inj?→inj?)] =

[(G1→G2, c11→c12, c21→c22)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (G1×G2, c11× c12, inj×(c21× c22)) ∈ ε. Then, we can take GR = ?δ × ?δ . Note that

372

– ε′ = (?δ × ?δ , inj×(inj?× inj?), inj?× inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(G1×G2, c11× c12, inj×(c21× c22))] # [(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)] =

[(G1×G2, c11× c12, c21× c22)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (∀X.G1, ∀X.c11, inj∀(∀X.c21)) ∈ ε. Then, we can take GR = ∀X.?δ,X:X . Note that

– ε′ = (∀X.?δ,X:X , inj∀(∀X.inj?),∀X.inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(∀X.G1,∀X.c11, inj∀(∀X.c21))] # [(∀X.?δ,X:X , inj∀(∀X.inj?),∀X.inj?)] =

[(∀X.G1,∀X.c11, ∀X.c21)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (G1→G2, inj→(c11→c12), inj→(c21→c22)) ∈ ε. Then, we can take GR = ?δ→?δ . Note
that

– ε′ = (?δ→?δ , inj→(inj?→inj?), inj?→inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(G1→G2, inj→(c11→c12), inj→(c21→c22))]#[(?δ→?δ , inj→(inj?→inj?), inj?→inj?)] =

[(G1→G2, inj→(c11→c12), c21→c22)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (G1×G2, inj×(c11× c12), inj×(c21× c22)) ∈ ε. Then, we can take GR = ?δ × ?δ . Note
that

– ε′ = (?δ × ?δ , inj×(inj?× inj?), inj?× inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(G1×G2, inj×(c11× c12), inj×(c21× c22))]#[(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)] =

[(G1×G2, inj×(c11× c12), c21× c22)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (∀X.G1, inj∀(∀X.c11), inj∀(∀X.c21)) ∈ ε. Then, we can take GR = ∀X.?δ,X:X . Note that

– ε′ = (∀X.?δ,X:X , inj∀(∀X.inj?), ∀X.inj?) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because

[(∀X.G1, inj∀(∀X.c11), inj∀(∀X.c21))] # [(∀X.?δ,X:X , inj∀(∀X.inj?), ∀X.inj?)] =

[(∀X.G1, inj∀(∀X.c11),∀X.c21)] ∈ ε′′

by Lemma B.41. Thus, the result follows.

• (?δ′ , inj?, inj?) ∈ ε. Then, we can take GR = B. Note that

373

– ε′ = (B, injB,B) and ` ε′ : δ _ GR.

– ε′′ = ε # ε′ is defined because [(?δ′ , inj?, inj?)] # [(B, injB,B)] = [(B, injB,B)] ∈ ε′′.
Thus, the result follows.

Lemma B.62 If ε : G ∼ G′ and ε′ = {(G′, reflvG′ , refl
v
G′)}, then ε # ε′ = ε.

Proof. We know that ε′ = [(G′, reflvG′ , refl
v
G′)]. We are required to prove that ε # ε′ = ε. Or

what is the same, we are required to prove that for all (G′′, c1, c2) ∈ ε, we get that

[(G′′, c1, c2)] # [(G′, reflvG′ , refl
v
G′)] = [(G′′, c1, c2)]

Since c2 : G′′ v G′, by Lemma B.64, we know that pullback(G′, (G′′, c2), (G′, reflvG′)) = (G′′, reflvG′′ , c2, c2).

Since c1 : G′′ v G and c2 : G′′ v G′, by Lemma B.87, we get that refl
v
G′′ ;c1 = c1 and

c2;reflvG′ = c2. Therefore, the result follows immediately.

Lemma B.63 reflEv(G) = initEv(G,G) = {(G, reflvG , refl
v
G)}.

Proof. reflEv(G) = initEv(G,G) = [(G, reflvG , refl
v
G)]. By definition of initEv(G,G) and Lemma B.114,

initEv(G,G) = [(G u G, initPT(G,G), initPT(G,G))] = [(G, reflvG , refl
v
G)]

Therefore, the result follows.

Lemma B.64 If c : G′ v G then pullback(G, (G′, c), (G, reflvG)) = (G′, reflvG′ , c, c).

Proof. We proceed by induction on c : G′ v G.

Case (B : B v B). We know that G = G′ = B and c = B. We know that reflvB = B and

pullback(G, (G′, c), (G, reflvG)) = pullback(B, (B,B), (B, reflvB)) = (B,B,B,B) = (G′, reflvG′ , c, c)

Therefore, the result follows immediately.

Case (X : X v X). We know that G = G′ = X and c = X. We know that reflvX = X and

pullback(G, (G′, c), (G, reflvG)) = pullback(X, (X,X), (X, reflvX)) = (X,X,X,X) = (G′, reflvG′ , c, c)

Therefore, the result follows immediately.

Case (c1→c2 : G′1→G′2 v G1→G2). We know that G′ = G′1→G′2, G = G1→G2, c = c1→c2,
refl

v
G′1→G′2

= refl
v
G′1
→refl

v
G′2

and refl
v
G1→G2

= refl
v
G1
→refl

v
G2

. Also we know that

c1 : G′1 v G1 c2 : G′2 v G2

c1 −→ c2 : G′1 −→ G′2 v G1 −→ G2

374

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(G1→G2, (G
′
1→G′2, c1→c2), (G1→G2, refl

v
G′1
→refl

v
G′2

)) =

(G3→G′3, c3→c′3, c4→c′4, c5→c′5)

where pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G3, c3, c4, c5) and pullback(G2, (G
′
2, c2), (G2, refl

v
G′2

)) =

(G′3, c
′
3, c
′
4, c
′
5). By the induction hypothesis on c1 : G′1 v G1 and c2 : G′2 v G2, we know that

pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G′1, refl
v
G′1
, c1, c1) and pullback(G2, (G

′
2, c2), (G2, refl

v
G′2

)) =

(G′2, refl
v
G′2
, c2, c2). Therefore, the result follows immediately.

Case (c1× c2 : G′1×G′2 v G1×G2). We know that G′ = G′1×G′2, G = G1×G2, c = c1× c2,
refl

v
G′1×G′2

= refl
v
G′1
× refl

v
G′2

and refl
v
G1×G2

= refl
v
G1
× refl

v
G2

. Also we know that

c1 : G′1 v G1 c2 : G′2 v G2

c1 −→ c2 : G′1 −→ G′2 v G1 −→ G2

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(G1×G2, (G
′
1×G′2, c1× c2), (G1×G2, refl

v
G′1
× refl

v
G′2

)) =

(G3×G′3, c3× c′3, c4× c′4, c5× c′5)

where pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G3, c3, c4, c5) and pullback(G2, (G
′
2, c2), (G2, refl

v
G′2

)) =

(G′3, c
′
3, c
′
4, c
′
5). By the induction hypothesis on c1 : G′1 v G1 and c2 : G′2 v G2, we know that

pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G′1, refl
v
G′1
, c1, c1) and pullback(G2, (G

′
2, c2), (G2, refl

v
G′2

)) =

(G′2, refl
v
G′2
, c2, c2). Therefore, the result follows immediately.

Case (∀X.c1 : ∀X.G′1 v ∀X.G1). We know that G′ = ∀X.G′1, G = ∀X.G1, c = ∀X.c1,
refl

v
∀X.G′1

= ∀X.reflv
G′1

and refl
v
∀X.G1

= ∀X.reflvG1
. Also we know that

c1 : G′1 v G1

∀X.c1 : ∀X.G′1 v ∀X.G1

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(∀X.G1, (∀X.G′1, ∀X.c1), (∀X.G1,∀X.reflvG′1)) =

(∀X.G3, ∀X.c3,∀X.c4,∀X.c5)

where pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G3, c3, c4, c5). By the induction hypothesis on c1 :

G′1 v G1, we know that pullback(G1, (G
′
1, c1), (G1, refl

v
G′1

)) = (G′1, refl
v
G′1
, c1, c1). Therefore,

the result follows immediately.

Case (injX : F v ?δ). We know that G′ = F, G = ?δ , c = injX , reflv?δ = inj? and refl
v
F = F.

Also, we know that
X : F ∈ δ

injX : F v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (F, injX), (?δ , inj?)) = (F,F, injX , injX) = (G′, reflvG′ , c, c)

Therefore, the result follows immediately.

375

Case (injB : B v ?δ). We know that G′ = B, G = ?δ , c = injB, reflv?δ = inj? and refl
v
B = B.

Also, we know that

injB : B v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (B, injB), (?δ , inj?)) = (B,B, injB, injB) = (G′, reflvG′ , c, c)

Therefore, the result follows immediately.

Case (inj→(c1) : G′ v ?δ). We know that G = ?δ , c = inj→(c1) and refl
v
?δ

= inj?. Also, we

know that
c1 : G′ v ?δ→?δ

inj→(c1) : G′ v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj→(c1)), (?δ , inj?)) = (G3, c4, inj→(c3), inj→(c5))

where pullback(?δ→?δ , (?δ→?δ , inj?→inj?), (G
′, c1)) = (G3, c3, c4, c5). We are required to prove

that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj→(c1)), (?δ , inj?)) = (G′, reflvG′ , inj→(c1), inj→(c1))

By the induction hypothesis on c1 : G′ v ?δ→?δ , we get that

pullback(?δ→?δ , (G
′, c1), (?δ→?δ , inj?→inj?)) = (G′, reflvG′ , c1, c1)

Thus, we get that

pullback(?δ→?δ , (?δ→?δ , inj?→inj?), (G
′, c1)) = (G′, c1, refl

v
G′ , c1)

Therefore, the result follows immediately.

Case (inj×(c1) : G′ v ?δ). We know that G = ?δ , c = inj×(c1) and refl
v
?δ

= inj?. Also, we

know that
c1 : G′ v ?δ × ?δ

inj×(c1) : G′ v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj×(c1)), (?δ , inj?)) = (G3, c4, inj×(c3), inj×(c5))

where pullback(?δ × ?δ , (?δ × ?δ , inj?× inj?), (G
′, c1)) = (G3, c3, c4, c5). We are required to prove

that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj×(c1)), (?δ , inj?)) = (G′, reflvG′ , inj×(c1), inj×(c1))

By the induction hypothesis on c1 : G′ v ?δ × ?δ , we get that

pullback(?δ × ?δ , (G
′, c1), (?δ × ?δ , inj?× inj?)) = (G′, reflvG′ , c1, c1)

Thus, we get that

pullback(?δ × ?δ , (?δ × ?δ , inj?× inj?), (G
′, c1)) = (G′, c1, refl

v
G′ , c1)

Therefore, the result follows immediately.

376

Case (inj∀(c1) : G′ v ?δ). We know that G = ?δ , c = inj∀(c1) and refl
v
?δ

= inj?. Also, we

know that
c1 : G′ v ∀X.?δ,X:X

inj∀(c1) : G′ v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj∀(c1)), (?δ , inj?)) = (G3, c4, inj∀(c3), inj∀(c5))

where pullback(∀X.?δ,X:X , (∀X.?δ,X:X ,∀X.inj?), (G′, c1)) = (G3, c3, c4, c5). We are required to
prove that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (G
′, inj∀(c1)), (?δ , inj?)) = (G′, reflvG′ , inj∀(c1), inj∀(c1))

By the induction hypothesis on c1 : G′ v ∀X.?δ,X:X , we get that

pullback(∀X.?δ,X:X , (G
′, c1), (∀X.?δ,X:X ,∀X.inj?)) = (G′, reflvG′ , c1, c1)

Thus, we get that

pullback(∀X.?δ,X:X , (∀X.?δ,X:X ,∀X.inj?), (G′, c1)) = (G′, c1, refl
v
G′ , c1)

Therefore, the result follows immediately.

Case (inj? : ?δ v ?δ′). We know that G′ = ?δ′ . G = ?δ , c = inj?, refl
v
?δ′

= inj? refl
v
?δ

= inj?.

Also, we know that
δ′ ⊆ δ

inj? : ?δ′ v ?δ

We know that

pullback(G, (G′, c), (G, reflvG)) = pullback(?δ , (?δ′ , inj?), (?δ , inj?)) =

(?δ′ , inj?, inj?, inj?) = (G′, reflvG′ , c, c)

Therefore, the result follows immediately.

Lemma B.65 If ε : G ∼ ?δ, G 6 ?δ′, ` ε′ : δ _ GR and ε # ε′ is defined, then S(G, ?δ) = GR.

Proof. We follow by case analysis on GR.

Case (GR = B). We know that ε′ = [(B, injB,B)] or ε′ = [(B, injX ,B)] (X : B ∈ δ), where
` ε′ : δ _ GR. Therefore, ε′ : ?δ ∼ B and GR = B. Since ε # ε′ is defined, we know that
ε # ε′ : G ∼ B. Since G 6 ?δ′ , then G = B. Therefore, S(G, ?δ) = S(B, ?δ) = B = GR, and the
result follows immediately.

Case (GR = F). Therefore, ε′ = [(F, injX ,F)], where ` ε′ : δ _ GR and X : F ∈ δ. Therefore,
ε′ : ?δ ∼ F. Since ε # ε′ is defined, we know that ε # ε′ : G ∼ F. Since G 6 ?δ′ , then G = F.
Therefore, S(G, ?δ) = S(F, ?δ) = F = GR, and the result follows immediately.

Case (GR = ?δ→?δ). We know that ε′ = [(?δ→?δ , inj→(inj?→inj?), inj?→inj?)] and ` ε′ : δ _
GR. Since ε #ε′ is defined, we know that ε #ε′ : G ∼ ?δ→?δ . Since G 6 ?δ′ , then G = G1→G2, for
some G1 and G2. Therefore, S(G, ?δ) = S(G1→G2, ?δ) = ?δ→?δ = GR, and the result follows
immediately.

377

Case (GR = ?δ × ?δ). We know that ε′ = [(?δ × ?δ , inj×(inj?× inj?), inj?× inj?)] and ` ε′ : δ _
GR. Since ε #ε′ is defined, we know that ε #ε′ : G ∼ ?δ × ?δ . Since G 6 ?δ′ , then G = G1×G2, for
some G1 and G2. Therefore, S(G, ?δ) = S(G1×G2, ?δ) = ?δ × ?δ = GR, and the result follows
immediately.

Case (GR = ∀X.?δ,X:X). We know that ε′ = [(∀X.?δ,X:X , inj∀(∀X.inj?),∀X.inj?)] and ` ε′ : δ _
GR. Since ε # ε′ is defined, we know that ε # ε′ : G ∼ ∀X.?δ,X:X . Since G 6 ?δ′ , then G = ∀X.G1,
for some G1. Therefore, S(G, ?δ) = S(∀X.G1, ?δ) = ∀X.?δ,X:X = GR, and the result follows
immediately.

Lemma B.66 c;c′ = c′′ ⇐⇒ c[X 7→ F];c[X 7→ F] = c′′[X 7→ F].

Proof. We are required to proof that c;c′ = c′′ ⇐⇒ c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F]. We
first prove the =⇒ direction: c;c′ = c′′ =⇒ c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F]. We proceed by
induction on c;c′ = c′′.

Case (B;B = B). We know that

• c = B, c′ = B and c′′ = B.

• c[X 7→ F] = B[X 7→ F] = B.

• c′[X 7→ F] = B[X 7→ F] = B.

• c′′[X 7→ F] = B[X 7→ F] = B.

• c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since B;B = B.

Thus the result follows immediately.

Case (Y;Y = Y). We have the following cases.

• Y = X. We know that

– c = X, c′ = X and c′′ = X.

– c[X 7→ F] = X[X 7→ F] = F.

– c′[X 7→ F] = X[X 7→ F] = F.

– c′′[X 7→ F] = X[X 7→ F] = F.

– c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since F;F = F.

Thus the result follows immediately.

• Y 6= X. We know that

– c = Y, c′ = Y and c′′ = Y.

– c[X 7→ F] = Y[X 7→ F] = Y.

– c′[X 7→ F] = Y[X 7→ F] = Y.

– c′′[X 7→ F] = Y[X 7→ F] = Y.

378

– c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since Y;Y = Y.

Thus the result follows immediately.

Case ((c1→c2);(c1→c′2) = (c1;c1)→(c2;c′2)). We know that

• c = c1→c2, c′ = c1→c′2 and c′′ = (c1;c1)→(c2;c′2).

• c[X 7→ F] = (c1→c2)[X 7→ F] = c1[X 7→ F]→c2[X 7→ F].

• c′[X 7→ F] = (c1→c′2)[X 7→ F] = c1[X 7→ F]→c′2[X 7→ F].

• c′′[X 7→ F] = ((c1;c1)→(c2;c′2))[X 7→ F] = (c1;c1)[X 7→ F]→(c2;c′2)[X 7→ F].

• Thus, we are required to prove that

(c1[X 7→ F]→c2[X 7→ F]);(c1[X 7→ F]→c′2[X 7→ F]) = (c1;c1)[X 7→ F]→(c2;c′2)[X 7→ F]

Let us suppose that c1;c1 = c′′1 and c2;c′2 = c′′2, for some c′′1 and c′′2. Therefore, we are required
to show that c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F] and c2[X 7→ F];c′2[X 7→ F] = c′′2[X 7→ F].

• By the induction hypothesis be get that c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F] and c2[X 7→
F];c′2[X 7→ F] = c′′2[X 7→ F], as we required to show.

Case ((c1× c2);(c1× c′2) = (c1;c1)×(c2;c′2)). We know that

• c = c1× c2, c′ = c1× c′2 and c′′ = (c1;c1)×(c2;c′2).

• c[X 7→ F] = (c1× c2)[X 7→ F] = c1[X 7→ F]× c2[X 7→ F].

• c′[X 7→ F] = (c1× c′2)[X 7→ F] = c1[X 7→ F]× c′2[X 7→ F].

• c′′[X 7→ F] = ((c1;c1)×(c2;c′2))[X 7→ F] = (c1;c1)[X 7→ F]×(c2;c′2)[X 7→ F].

• Thus, we are required to prove that

(c1[X 7→ F]× c2[X 7→ F]);(c1[X 7→ F]× c′2[X 7→ F]) = (c1;c1)[X 7→ F]×(c2;c′2)[X 7→ F]

Let us suppose that c1;c1 = c′′1 and c2;c′2 = c′′2, for some c′′1 and c′′2. Therefore, we are required
to show that c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F] and c2[X 7→ F];c′2[X 7→ F] = c′′2[X 7→ F].

• By the induction hypothesis be get that c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F] and c2[X 7→
F];c′2[X 7→ F] = c′′2[X 7→ F], as we required to show.

Case ((∀Y.c1);(∀Y.c1) = ∀Y.(c1;c1)). We know that

• c = ∀Y.c1, c′ = ∀Y.c1 and c′′ = ∀Y.(c1;c1).

• c[X 7→ F] = (∀Y.c1)[X 7→ F] = ∀Y.c1[X 7→ F].

• c′[X 7→ F] = (∀Y.c1)[X 7→ F] = ∀Y.c1[X 7→ F].

• c′′[X 7→ F] = (∀Y.(c1;c1))[X 7→ F] = ∀Y.(c1;c1)[X 7→ F].

379

• Thus, we are required to prove that

(∀Y.c1[X 7→ F]);(∀Y.c1[X 7→ F]) = ∀Y.(c1;c1)[X 7→ F])

Let us suppose that c1;c1 = c′′1, for some c′′1. Therefore, we are required to show that
c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F].

• By the induction hypothesis be get that c1[X 7→ F];c1[X 7→ F] = c′′1[X 7→ F], as we required
to show.

Case (B;injB = injB). We know that

• c = B, c′ = injB and c′′ = injB.

• c[X 7→ F] = B[X 7→ F] = B.

• c′[X 7→ F] = injB[X 7→ F] = injB.

• c′′[X 7→ F] = injB[X 7→ F] = injB.

• c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since B;injB = injB.

Thus the result follows immediately.

Case (F′;injY = injY). We have the following cases.

• F′ = X. We know that

– c = X, c′ = injY and c′′ = injY.

– c[X 7→ F] = X[X 7→ F] = F.

– c′[X 7→ F] = injY[X 7→ F] = injY.

– c′′[X 7→ F] = injY[X 7→ F] = injY.

– c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since F;injY = injY.

Thus the result follows immediately.

• F′ 6= X. We know that

– c = Y, c′ = Y and c′′ = Y.

– c[X 7→ F] = Y[X 7→ F] = Y.

– c′[X 7→ F] = Y[X 7→ F] = Y.

– c′′[X 7→ F] = Y[X 7→ F] = Y.

– c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since Y;Y = Y.

Thus the result follows immediately.

Case (c;inj (c1) = inj (c;c1)). We know that

• c′ = inj (c1) and c′′ = inj (c;c1).

• c′[X 7→ F] = inj (c1)[X 7→ F] = inj (c1[X 7→ F]).

380

• c′′[X 7→ F] = inj (c;c1)[X 7→ F] = inj ((c;c1)[X 7→ F]).

• We are required to prove that c[X 7→ F];c1[X 7→ F] = (c;c1)[X 7→ F], which follows imme-
diately by the induction hypothesis.

Case (c;inj? = c). We know that

• c′ = inj? and c′′ = c.

• c′[X 7→ F] = inj?[X 7→ F] = inj?.

• c′′[X 7→ F] = c[X 7→ F].

• c[X 7→ F];c′[X 7→ F] = c′′[X 7→ F], since c[X 7→ F];inj? = c[X 7→ F].

Thus the result follows immediately.

The ⇐= is analogous.

Lemma B.67 pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) ⇐⇒ pullback(G, (G2, c2), (G1, c1)) =
(G3, c4, c3, c5).

Proof. We are required to prove that

pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) ⇐⇒ pullback(G, (G2, c2), (G1, c1)) = (G3, c4, c3, c5)

We first prove the =⇒ direction:

pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) =⇒ pullback(G, (G2, c2), (G1, c1)) = (G3, c4, c3, c5)

We proceed by induction on c1 and c2 and case analysis on pullback(G, (G1, c1), (G2, c2)).

Case (pullback(B, (B,B), (B,B))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(B, (B,B), (B,B)) = (B,B,B,B) = pullback(B, (B,B), (B,B)) = pullback(G, (G2, c2), (G1, c1))

Therefore, the results follows immediately.

Case (pullback(X, (X,X), (X,X))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(X, (X,X), (X,X)) = (X,X,X,X) = pullback(X, (X,X), (X,X)) = pullback(G, (G2, c2), (G1, c1))

Therefore, the results follows immediately.

Case (pullback(G′1→G′2, (G11→G12, c11→c12), (G21→G22, c21→c22))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(G′1→G′2, (G11→G12, c11→c12), (G21→G22, c21→c22)) =

(G′3→G′′3, c
′
3→c′′3, c

′
4→c′′4, c

′
5→c′′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) and pullback(G′2, (G12, c12), (G22, c22)) =

(G′′3, c
′′
3, c
′′
4, c
′′
5). By the induction hypothesis we get that pullback(G′1, (G21, c21), (G11, c11)) =

(G′3, c
′
4, c
′
3, c
′
5) and pullback(G′2, (G22, c22), (G12, c12)) = (G′′3, c

′′
4, c
′′
3, c
′′
5). Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(G′1→G′2, (G21→G22, c21→c22), (G11→G12, c11→c12)) =

(G′3→G′′3, c
′
4→c′′4, c

′
3→c′′3, c

′
5→c′′5)

Finally, the results follows immediately.

381

Case (pullback(G′1×G′2, (G11×G12, c11× c12), (G21×G22, c21× c22))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(G′1×G′2, (G11×G12, c11× c12), (G21×G22, c21× c22)) =

(G′3×G′′3, c
′
3× c′′3, c

′
4× c′′4, c

′
5× c′′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) and pullback(G′2, (G12, c12), (G22, c22)) =

(G′′3, c
′′
3, c
′′
4, c
′′
5). By the induction hypothesis we get that pullback(G′1, (G21, c21), (G11, c11)) =

(G′3, c
′
4, c
′
3, c
′
5) and pullback(G′2, (G22, c22), (G12, c12)) = (G′′3, c

′′
4, c
′′
3, c
′′
5). Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(G′1×G′2, (G21×G22, c21× c22), (G11×G12, c11× c12)) =

(G′3×G′′3, c
′
4× c′′4, c

′
3× c′′3, c

′
5× c′′5)

Finally, the results follows immediately.

Case (pullback(∀X.G′1, (∀X.G11,∀X.c11), (∀X.G21, ∀X.c21))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(∀X.G′1, (∀X.G11, ∀X.c11), (∀X.G21,∀X.c21)) =

(∀X.G′3,∀X.c′3,∀X.c′4, ∀X.c′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) By the induction hypothesis we get

that pullback(G′1, (G21, c21), (G11, c11)) = (G′3, c
′
4, c
′
3, c
′
5). Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(∀X.G′1, (∀X.G21, ∀X.c21), (∀X.G11,∀X.c11)) =

(∀X.G′3,∀X.c′4,∀X.c′3, ∀X.c′5)

Finally, the results follows immediately.

Case (pullback(?δ , (B, injB), (B, injB))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (B, injB), (B, injB)) = (B,B,B, injB) =

pullback(?δ , (B, injB), (B, injB)) = pullback(G, (G2, c2), (G1, c1))

Therefore, the results follows immediately.

Case (pullback(?δ , (F, injX), (F, injX))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (F, injX), (F, injX)) = (F,F,F, injX) =

pullback(?δ , (F, injX), (F, injX)) = pullback(G, (G2, c2), (G1, c1))

Therefore, the results follows immediately.

Case (pullback(?δ , (G
′
1, inj→(c1)), (G′2, inj→(c′2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj→(c1)), (G′2, inj→(c′2))) =

(G′3, c
′
3, c
′
4, inj→(c′5))

where pullback(?δ→?δ , (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we get

that
pullback(?δ→?δ , (G

′
2, c
′
2), (G′1, c1)) = (G′3, c

′
4, c
′
3, c
′
5)

Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G
′
2, inj→(c′2)), (G′1, inj→(c1))) =

(G′3, c
′
4, c
′
3, inj→(c′5))

Finally, the results follows immediately.

382

Case (pullback(?δ , (G
′
1, inj×(c1)), (G′2, inj×(c′2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj×(c1)), (G′2, inj×(c′2))) =

(G′3, c
′
3, c
′
4, inj×(c′5))

where pullback(?δ × ?δ , (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we get

that
pullback(?δ × ?δ , (G

′
2, c
′
2), (G′1, c1)) = (G′3, c

′
4, c
′
3, c
′
5)

Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G
′
2, inj×(c′2)), (G′1, inj×(c1))) =

(G′3, c
′
4, c
′
3, inj×(c′5))

Finally, the results follows immediately.

Case (pullback(?δ , (G
′
1, inj∀(c1)), (G′2, inj∀(c

′
2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj∀(c1)), (G′2, inj∀(c

′
2))) =

(G′3, c
′
3, c
′
4, inj∀(c

′
5))

where pullback(∀Y.?δ,Y:Y, (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we

get that
pullback(∀Y.?δ,Y:Y, (G

′
2, c
′
2), (G′1, c1)) = (G′3, c

′
4, c
′
3, c
′
5)

Therefore, we have that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G
′
2, inj∀(c

′
2)), (G′1, inj∀(c1))) =

(G′3, c
′
4, c
′
3, inj∀(c

′
5))

Finally, the results follows immediately.

Case (pullback(?δ , (?δ′ , inj?), (G2, c2))). We proceed by cases analysis.

• G2 = B and c2 = injB. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (B, injB)) = (B, injB,B, injB)

Also, we know that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (B, injB), (?δ′ , inj?)) = (G′3, c
′
3, c
′
4, c
′
5)

where pullback(?δ , (?δ′ , inj?), (B, injB)) = (G′3, c
′
4, c
′
3, c
′
5) = (B, injB,B, injB). There-

fore, pullback(G, (G2, c2), (G1, c1)) = (B,B, injB, injB), as we are required to show.

• G2 = F, c2 = injX and X : F ∈ δ′. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (F, injX)) = (F, injX ,F, injX)

Also, we know that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (F, injX), (?δ′ , inj?)) = (G′3, c
′
3, c
′
4, c
′
5)

where pullback(?δ , (?δ′ , inj?), (F, injX)) = (G′3, c
′
4, c
′
3, c
′
5) = (F, injX ,F, injX). Therefore,

pullback(G, (G2, c2), (G1, c1)) = (F,F, injX , injX), as we are required to show.

383

• c2 = inj→(c′2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj→(c′2))) = (G′3, inj→(c′3), c′4, inj→(c′5))

where pullback(?δ→?δ , (?δ′→?δ′ , inj?→inj?), (G2, c2)) = (G′3, c
′
3, c
′
4, c
′
5). Also, we know

that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G2, inj→(c′2)), (?δ′ , inj?)) = (G′′3, c
′′
4, c
′′
3, c
′′
5)

where pullback(?δ , (?δ′ , inj?), (G2, inj→(c′2))) = (G′′3, c
′′
3, c
′′
4, c
′′
5) = (G′3, inj→(c′3), c′4, inj→(c′5)).

Therefore, pullback(G, (G2, c2), (G1, c1)) = (G′3, c
′
4, inj→(c′3), inj→(c′5)), as we are re-

quired to show.

• c2 = inj×(c′2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj×(c′2))) = (G′3, inj×(c′3), c′4, inj×(c′5))

where pullback(?δ × ?δ , (?δ′ × ?δ′ , inj?× inj?), (G2, c2)) = (G′3, c
′
3, c
′
4, c
′
5). Also, we know

that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G2, inj×(c′2)), (?δ′ , inj?)) = (G′′3, c
′′
4, c
′′
3, c
′′
5)

where pullback(?δ , (?δ′ , inj?), (G2, inj×(c′2))) = (G′′3, c
′′
3, c
′′
4, c
′′
5) = (G′3, inj×(c′3), c′4, inj×(c′5)).

Therefore, pullback(G, (G2, c2), (G1, c1)) = (G′3, c
′
4, inj×(c′3), inj×(c′5)), as we are required

to show.

• c2 = inj∀(c
′
2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj∀(c
′
2))) = (G′3, inj∀(c

′
3), c′4, inj∀(c

′
5))

where pullback(∀Y.?δ,Y:Y, (∀Y.?δ′,Y:Y,∀Y.inj?), (G2, c2)) = (G′3, c
′
3, c
′
4, c
′
5). Also, we know

that

pullback(G, (G2, c2), (G1, c1)) = pullback(?δ , (G2, inj∀(c
′
2)), (?δ′ , inj?)) = (G′′3, c

′′
4, c
′′
3, c
′′
5)

where pullback(?δ , (?δ′ , inj?), (G2, inj∀(c
′
2))) = (G′′3, c

′′
3, c
′′
4, c
′′
5) = (G′3, inj∀(c

′
3), c′4, inj∀(c

′
5)).

Therefore, pullback(G, (G2, c2), (G1, c1)) = (G′3, c
′
4, inj∀(c

′
3), inj∀(c

′
5)), as we are required

to show.

• G2 = ?δ′′ and c2 = inj?. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (?δ′′ , inj?)) = (?δ′uδ′′ , inj?, inj?, inj?) = pullback(G, (G2, c2), (G1, c1))

Therefore, the result follows immediately.

Case (pullback(?δ , (G1, c1), (?δ′ , inj?))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G1, c1), (?δ′ , inj?)) = (G′′3, c
′′
4, c
′′
3, c
′′
5)

where (G′′3, c
′′
3, c
′′
4, c
′′
5) = pullback(?δ , (?δ′ , inj?), (G1, c1)) = pullback(G, (G2, c2), (G1, c1)). There-

fore, the result holds.

The ⇐= direction is analogous.

384

Lemma B.68 pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) ⇐⇒

pullback(G[X 7→ F], (G2[X 7→ F], c2[X 7→ F]), (G1[X 7→ F], c1[X 7→ F])) = (G3, c4, c3, c5)[X 7→ F]

Proof. We are required to prove that pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) ⇐⇒

pullback(G[X 7→ F], (G2[X 7→ F], c2[X 7→ F]), (G1[X 7→ F], c1[X 7→ F])) = (G3, c4, c3, c5)[X 7→ F]

We first prove the =⇒ direction: pullback(G, (G1, c1), (G2, c2)) = (G3, c3, c4, c5) =⇒

pullback(G[X 7→ F], (G2[X 7→ F], c2[X 7→ F]), (G1[X 7→ F], c1[X 7→ F])) = (G3, c4, c3, c5)[X 7→ F]

We proceed by induction on c1 and c2 and case analysis on pullback(G, (G1, c1), (G2, c2)). Note
that by definition of substitution, we know that

(G3, c4, c3, c5)[X 7→ F] = (G3[X 7→ F], c4[X 7→ F], c3[X 7→ F], c5[X 7→ F])

Case (pullback(B, (B,B), (B,B))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(B, (B,B), (B,B)) = (B,B,B,B)

Thus, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(B[X 7→ F], (B[X 7→ F],B[X 7→ F]), (B[X 7→ F],B[X 7→ F])) = pullback(B, (B,B), (B,B)) = (B,B,B,B) =

(B,B,B,B)[X 7→ F]

as we are required to show.

Case (pullback(Y, (Y,Y), (Y,Y))). We have the following cases.

• X = Y. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(X, (X,X), (X,X)) = (X,X,X,X)

Thus, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(X[X 7→ F], (X[X 7→ F],X[X 7→ F]), (X[X 7→ F],X[X 7→ F])) = pullback(F, (F,F), (F,F)) = (F,F,F,F) =

(X,X,X,X)[X 7→ F]

as we are required to show.

• X 6= Y. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(Y, (Y,Y), (Y,Y)) = (Y,Y,Y,Y)

Thus, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(Y[X 7→ F], (Y[X 7→ F],Y[X 7→ F]), (Y[X 7→ F],Y[X 7→ F])) = pullback(Y, (Y,Y), (Y,Y)) = (Y,Y,Y,Y) =

(Y,Y,Y,Y)[X 7→ F]

as we are required to show.

385

Case (pullback(G′1→G′2, (G11→G12, c11→c12), (G21→G22, c21→c22))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(G′1→G′2, (G11→G12, c11→c12), (G21→G22, c21→c22)) =

(G′3→G′′3, c
′
3→c′′3, c

′
4→c′′4, c

′
5→c′′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) and pullback(G′2, (G12, c12), (G22, c22)) =

(G′′3, c
′′
3, c
′′
4, c
′′
5). By the induction hypothesis we get that

pullback(G′1[X 7→ F], (G11[X 7→ F], c11[X 7→ F]), (G21[X 7→ F], c21[X 7→ F])) =

(G′3[X 7→ F], c′3[X 7→ F], c′4[X 7→ F], c′5[X 7→ F])

and
pullback(G′2[X 7→ F], (G12[X 7→ F], c12[X 7→ F]), (G22[X 7→ F], c22[X 7→ F])) =

(G′′3[X 7→ F], c′′3[X 7→ F], c′′4[X 7→ F], c′′5[X 7→ F])

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

(G′3[X 7→ F]→G′′3[X 7→ F], c′3[X 7→ F]→c′′3[X 7→ F], c′4[X 7→ F]→c′′4[X 7→ F], c′5[X 7→ F]→c′′5[X 7→ F]) =

(G′3→G′′3, c
′
3→c′′3, c

′
4→c′′4, c

′
5→c′′5)[X 7→ F]

as we are required to show.

Case (pullback(G′1×G′2, (G11×G12, c11× c12), (G21×G22, c21× c22))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(G′1×G′2, (G11×G12, c11× c12), (G21×G22, c21× c22)) =

(G′3×G′′3, c
′
3× c′′3, c

′
4× c′′4, c

′
5× c′′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) and pullback(G′2, (G12, c12), (G22, c22)) =

(G′′3, c
′′
3, c
′′
4, c
′′
5). By the induction hypothesis we get that

pullback(G′1[X 7→ F], (G11[X 7→ F], c11[X 7→ F]), (G21[X 7→ F], c21[X 7→ F])) =

(G′3[X 7→ F], c′3[X 7→ F], c′4[X 7→ F], c′5[X 7→ F])

and
pullback(G′2[X 7→ F], (G12[X 7→ F], c12[X 7→ F]), (G22[X 7→ F], c22[X 7→ F])) =

(G′′3[X 7→ F], c′′3[X 7→ F], c′′4[X 7→ F], c′′5[X 7→ F])

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

(G′3[X 7→ F]×G′′3[X 7→ F], c′3[X 7→ F]× c′′3[X 7→ F], c′4[X 7→ F]× c′′4[X 7→ F], c′5[X 7→ F]× c′′5[X 7→ F]) =

(G′3×G′′3, c
′
3× c′′3, c

′
4× c′′4, c

′
5× c′′5)[X 7→ F]

as we are required to show.

386

Case (pullback(∀Y.G′1, (∀Y.G11, ∀Y.c11), (∀Y.G21, ∀Y.c21))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(∀Y.G′1, (∀Y.G11,∀Y.c11), (∀Y.G21,∀Y.c21)) =

(∀Y.G′3,∀Y.c′3,∀Y.c′4, ∀Y.c′5)

where pullback(G′1, (G11, c11), (G21, c21)) = (G′3, c
′
3, c
′
4, c
′
5) By the induction hypothesis we get

that

pullback(G′1[X 7→ F], (G11[X 7→ F], c11[X 7→ F]), (G21[X 7→ F], c21[X 7→ F])) =

(G′3[X 7→ F], c′3[X 7→ F], c′4[X 7→ F], c′5[X 7→ F])

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

(∀Y.G′3[X 7→ F]G′′3[X 7→ F], ∀Y.c′3[X 7→ F]c′′3[X 7→ F],∀Y.c′4[X 7→ F]c′′4[X 7→ F], ∀Y.c′5[X 7→ F]c′′5[X 7→ F]) =

(∀Y.G′3, ∀Y.c′3,∀Y.c′4,∀Y.c′5)[X 7→ F]

as we are required to show.

Case (pullback(?δ , (B, injB), (B, injB))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (B, injB), (B, injB)) = (B,B,B, injB)

Thus, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (B[X 7→ F], injB[X 7→ F]), (B[X 7→ F], injB[X 7→ F])) =

pullback(?δ [X 7→ F], (B, injB), (B, injB)) = (B,B,B, injB) =

(B,B,B, injB)[X 7→ F]

as we are required to show.

Case (pullback(?δ , (F
′, injY), (F′, injY))). We have the following cases.

• F′ = X. We know that Y : X ∈ δ and

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (X, injY), (X, injY)) = (X,X,X, injY)

Thus, we have that Y : F ∈ δ[X 7→ F] and

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (X[X 7→ F], injY[X 7→ F]), (X[X 7→ F], injY[X 7→ F])) =

pullback(?δ [X 7→ F], (F, injY), (F, injY)) = (F,F,F, injY) =

(X,X,X, injY)[X 7→ F]

as we are required to show.

387

• F′ 6= X. We know that Y : F′ ∈ δ and

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (F
′, injY), (F′, injY)) = (F′,F′,F′, injY)

Thus, we have that Y : F′ ∈ δ[X 7→ F] and

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (F′[X 7→ F], injY[X 7→ F]), (F′[X 7→ F], injY[X 7→ F])) =

pullback(?δ [X 7→ F], (F′, injY), (F′, injY)) = (F′,F′,F′, injY) =

(F′,F′,F′, injY)[X 7→ F]

as we are required to show.

Case (pullback(?δ , (G
′
1, inj→(c1)), (G′2, inj→(c′2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj→(c1)), (G′2, inj→(c′2))) =

(G′3, c
′
3, c
′
4, inj→(c′5))

where pullback(?δ→?δ , (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we get

that

pullback(?δ [X 7→ F]→?δ [X 7→ F], (G′1[X 7→ F], c1[X 7→ F]), (G′2[X 7→ F], c′2[X 7→ F])) = (G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (G′1[X 7→ F], inj→(c1[X 7→ F])), (G′2[X 7→ F], inj→(c′2[X 7→ F]))) =

(G′3, c
′
3, c
′
4, inj→(c′5))[X 7→ F]

as we are required to show.

Case (pullback(?δ , (G
′
1, inj×(c1)), (G′2, inj×(c′2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj×(c1)), (G′2, inj×(c′2))) =

(G′3, c
′
3, c
′
4, inj×(c′5))

where pullback(?δ × ?δ , (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we get

that

pullback(?δ [X 7→ F]× ?δ [X 7→ F], (G′1[X 7→ F], c1[X 7→ F]), (G′2[X 7→ F], c′2[X 7→ F])) = (G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (G′1[X 7→ F], inj×(c1[X 7→ F])), (G′2[X 7→ F], inj×(c′2[X 7→ F]))) =

(G′3, c
′
3, c
′
4, inj×(c′5))[X 7→ F]

as we are required to show.

388

Case (pullback(?δ , (G
′
1, inj∀(c1)), (G′2, inj∀(c

′
2)))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G
′
1, inj∀(c1)), (G′2, inj∀(c

′
2))) =

(G′3, c
′
3, c
′
4, inj∀(c

′
5))

where pullback(∀Y.?δ,Y:Y, (G
′
1, c1), (G′2, c

′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction hypothesis we

get that

pullback(∀Y.(?δ,Y:Y)[X 7→ F], (G′1[X 7→ F], c1[X 7→ F]), (G′2[X 7→ F], c′2[X 7→ F])) = (G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Therefore, we have that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (G′1[X 7→ F], inj∀(c1[X 7→ F])), (G′2[X 7→ F], inj∀(c
′
2[X 7→ F]))) =

(G′3, c
′
3, c
′
4, inj∀(c

′
5))[X 7→ F]

as we are required to show.

Case (pullback(?δ , (?δ′ , inj?), (G2, c2))). We proceed by cases analysis.

• G2 = B and c2 = injB. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (B, injB)) = (B, injB,B, injB)

Also, we know that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (B[X 7→ F], injB[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?), (B, injB)) =

(B, injB,B, injB) = (B, injB,B, injB)[X 7→ F]

as we are required to show.

• G2 = F′, c2 = injY and Y : F′ ∈ δ′.

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (F
′, injY)) = (F′, injY,F

′, injY)

We have the following cases.

– F′ = X. We know that Y : X ∈ δ′ and

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (X, injY)) = (X, injY,X, injY)

Thus, we have that Y : F ∈ δ′[X 7→ F] and

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (X[X 7→ F], injY[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?), (F, injY)) = (F, injY,F, injY) =

(X, injY,X, injY)[X 7→ F]

as we are required to show.

389

– F′ 6= X. We know that Y : F′ ∈ δ′ and

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (F
′, injY)) = (F′, injY,F

′, injY)

Thus, we have that Y : F′ ∈ δ′[X 7→ F] and

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (F′[X 7→ F], injY[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?), (F
′, injY)) = (F′, injY,F

′, injY) =

(F′, injY,F
′, injY)[X 7→ F]

as we are required to show.

• c2 = inj→(c′2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj→(c′2))) = (G′3, inj→(c′3), c′4, inj→(c′5))

where pullback(?δ→?δ , (?δ′→?δ′ , inj?→inj?), (G2, c
′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction

hypothesis, we have that

pullback((?δ→?δ)[X 7→ F], ((?δ′→?δ′)[X 7→ F], (inj?→inj?)[X 7→ F]), (G2[X 7→ F], c′2[X 7→ F])) =

(G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Also, we know that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (G2[X 7→ F], inj→(c′2[X 7→ F]))) =

(G′3[X 7→ F], inj→(c′3[X 7→ F]), c′4[X 7→ F], inj→(c′5[X 7→ F])) =

(G′3, inj→(c′3), c′4, inj→(c′5))[X 7→ F]

as we are required to show.

• c2 = inj×(c′2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj×(c′2))) = (G′3, inj×(c′3), c′4, inj×(c′5))

where pullback(?δ × ?δ , (?δ′ × ?δ′ , inj?× inj?), (G2, c
′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induction

hypothesis, we have that

pullback((?δ × ?δ)[X 7→ F], ((?δ′ × ?δ′)[X 7→ F], (inj?× inj?)[X 7→ F]), (G2[X 7→ F], c′2[X 7→ F])) =

(G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Also, we know that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (G2[X 7→ F], inj×(c′2[X 7→ F]))) =

(G′3[X 7→ F], inj×(c′3[X 7→ F]), c′4[X 7→ F], inj×(c′5[X 7→ F])) =

(G′3, inj×(c′3), c′4, inj×(c′5))[X 7→ F]

as we are required to show.

390

• c2 = inj∀(c
′
2). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (G2, inj∀(c
′
2))) = (G′3, inj∀(c

′
3), c′4, inj∀(c

′
5))

where pullback(∀Y.?δ,Y:Y, (∀Y.?δ′,Y:Y,∀Y.inj?), (G2, c
′
2)) = (G′3, c

′
3, c
′
4, c
′
5). By the induc-

tion hypothesis, we have that

pullback((∀Y.?δ,Y:Y)[X 7→ F], ((∀Y.?δ′,Y:Y)[X 7→ F], (∀Y.inj?)[X 7→ F]), (G2[X 7→ F], c′2[X 7→ F])) =

(G′3, c
′
3, c
′
4, c
′
5)[X 7→ F]

Also, we know that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (G2[X 7→ F], inj∀(c
′
2[X 7→ F]))) =

(G′3[X 7→ F], inj∀(c
′
3[X 7→ F]), c′4[X 7→ F], inj∀(c

′
5[X 7→ F])) =

(G′3, inj∀(c
′
3), c′4, inj∀(c

′
5))[X 7→ F]

as we are required to show.

• G2 = ?δ′′ and c2 = inj?. We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (?δ′ , inj?), (?δ′′ , inj?)) = (?δ′uδ′′ , inj?, inj?, inj?)

Also, we know that

pullback(G[X 7→ F], (G1[X 7→ F], c1[X 7→ F]), (G2[X 7→ F], c2[X 7→ F])) =

pullback(?δ [X 7→ F], (?δ′ [X 7→ F], inj?[X 7→ F]), (?δ′′ [X 7→ F], inj?[X 7→ F])) =

(?δ′uδ′′ [X 7→ F], inj?, inj?, inj?) =

(?δ′uδ′′ , inj?, inj?, inj?)[X 7→ F]

as we are required to show.

Case (pullback(?δ , (G1, c1), (?δ′ , inj?))). We know that

pullback(G, (G1, c1), (G2, c2)) = pullback(?δ , (G1, c1), (?δ′ , inj?)) = (G′′3, c
′′
4, c
′′
3, c
′′
5)

where
(G′′3, c

′′
3, c
′′
4, c
′′
5) = pullback(?δ , (?δ′ , inj?), (G1, c1)) =

pullback(G, (?δ′ , inj?), (G1, c1))

Thus, this case can be resolved with the cases above.

The ⇐= direction is analogous.

We use the following definition of ρi(t):

(ρ,X 7→ (F1,F2, R))i(t) = ρi(t[Fi/X])

·i(t) = t

We use notation

(ρ,X 7→ G1)(δ) = ρ([G1/X]δ)

(·)(δ) = δ

391

c(G) =

B G = B

X G = X

−→ G = G1→G2

× G = G1×G2

∀ G = ∀X.G′

S(?δ ,G) =

B G = B

X G = X

?δ→?δ G = G1→G2

?δ×?δ G = G1×G2

∀X.X. ?δ G = ∀X.G′

Definition B.69 Throughout the proofs we apply induction on this relation. We say that

(n,G) < (n′,G′) ⇐⇒ n < n′ ∨ (n = n′ ∧G < G′)

(n,G1,G2) < (n′,G′1,G
′
2) ⇐⇒ n < n′ ∨ (n = n′ ∧ (G1,G2) < (G′1,G

′
2)

(G1,G2) < (G′1,G
′
2) ⇐⇒ (G1 < G′1 ∧G2 < G′2)∨

(G1 = G′1 ∧G2 < G′2)∨
(G1 < G′1 ∧G2 = G′2)

δ′ ⊂ δ

?δ′ < ?δ B < ?δ

X : F ∈ δ

X < ?δ

G1 ≤ ?δ G2 ≤ ?δ
G1→G2 < ?δ

G ≤ ?δ,X:X

∀X.G < ?δ

G1 ≤ ?δ G2 ≤ ?δ
G1×G2 < ?δ

Lemma B.70 {S1} : G1 ∼ G, {S2} : G ∼ G2 and (n, ρ) ∈ DJ∆K, then ρi({S1} # {S2}) =
ρi({S1}) # ρi({S2}).

Lemma B.71 If ρ ⊆ ρ′, then Atomρ[G] ⊆ Atomρ′ [G].

Lemma B.72 Let ∆ ` G, ρ′ = (ρ; X 7→ (B1,B2, R)) and (n, ρ′) ∈ DJ∆,XK. Then Atomρ[G] =
Atomρ′ [G].

B.4 F?
ε: Gradual Guarantees

392

Ω ` c : s v s Term precision

vb
Ω ` reflB : b v b

vx

Ω(x) = c : G1 v G2

Ω ` c : x v x

vλ
Ω,x 7→ c : G′1 v G′2 ` c′ : t1 v t2

Ω ` c→c′ : λx : G′1.t1 v λx : G′2.t2
vΛ

Ω ` c : t1 v t2

Ω ` ∀X.c : ΛX.t1 v ΛX.t2

v×
Ω ` c : s1 v s2 Ω ` c′ : s′1 v s′2

Ω ` c× c′ : 〈s1, s
′
1〉 v 〈s2, s

′
2〉

vpairi
Ω ` c1× c2 : t1 v t2

Ω ` ci : πi(t1) v πi(t2)

vapp
Ω ` c′ −→ c : t1 v t2 Ω ` c′ : t′1 v t′2

Ω ` c : t1 t′1 v t2 t′2
vappG

Ω ` ∀X.c : t1 v t2

Ω ` c[X 7→ F] : t1 [F] v t2 [F]

vasc
Ω ` c′ : s1 v s2 c : G1 v G2 [c′]ε1 v ε2[c]

Ω ` c : ε1s1 :: G1 v ε2s2 :: G2

Figure B.2: F?
ε: Term Precision

Definition B.73 Let c : G1 v G2, then c[X 7→ reflF] is defined as:

B[X 7→ reflF] = B

X[X 7→ reflF] = F

Y[X 7→ reflF] = Y

(c1 −→ c2)[X 7→ reflF] = c1[X 7→ reflF] −→ c2[X 7→ reflF]

(c1× c2)[X 7→ reflF] = c1[X 7→ reflF]× c2[X 7→ reflF]

(∀Y.c1)[X 7→ reflF] = ∀Y.(c1[X 7→ reflF])

injB[X 7→ reflF] = injB

injX [X 7→ reflF] = injX

inj→(c1)[X 7→ reflF] = inj→(c1[X 7→ reflF])

inj→(c1)[X 7→ reflF] = inj×(c1[X 7→ reflF])

inj∀(c1)[X 7→ reflF] = inj∀(c1[X 7→ reflF])

inj?[X 7→ reflF] = inj?

Lemma B.74 [c1]ε1 v ε2[c2] and [c′1]ε′1 v ε′2[c′2] if and only if [c1 −→ c′1](ε1 −→ ε′1) v (ε2 −→ ε′2)[c2 −→
c′2].

Proof. We are required to prove that for all (G1 −→ G′1, c11 −→ c′11, c12 −→ c′12) ∈ (ε1 −→ ε′1)
there exists (G2 −→ G′2, c21 −→ c′21, c22 −→ c′22) ∈ (ε2 −→ ε′2), cl, cr and ctt such that

• ctt : G1 −→ G′1 v G2 −→ G′2

• ctt;c21 −→ c′21 = cl

• c11 −→ c′11;c1 −→ c1 = cl

393

• ctt;c22 −→ c′22 = cr

• c12 −→ c′12;c2 −→ c′2 = cr

We know by the definition of (ε1 −→ ε′1) that

• (G1, c11, c12) ∈ ε1

• (G′1, c
′
11, c

′
12) ∈ ε′1

Also, we know by [c1]ε1 v ε2[c2] and [c1]ε′1 v ε′2[c′2], that for (G1, c11, c12) ∈ ε1 and (G′1, c
′
11,

c′12) ∈ ε′1, there exist (G2, c21, c22) ∈ ε2, c′′1, c′′2, ct, and (G′2, c
′
21, c

′
22) ∈ ε′2, c′′′1 , c′′′2 and c′t, such

that

• ct : G1 v G2

• ct;c21 = c′′1

• c11;c1 = c′′1

• ct;c22 = c′′2

• c12;c2 = c′′2

• c′t : G′1 v G′2

• c′t;c
′
21 = c′′′1

• c′11;c1 = c′′′1

• c′t;c
′
22 = c′′′2

• c′12;c′2 = c′′′2

Therefore, we know that

• ct −→ c′t : G1 −→ G′1 v G2 −→ G′2

• ct −→ c′t;c21 −→ c′21 = c′′1 −→ c′′′1

• c11 −→ c′11;c1 −→ c1 = c′′1 −→ c′′′1

• ct −→ c′t;c22 −→ c′22 = c′′2 −→ c′′′2

• c12 −→ c′12;c2 −→ c′2 = c′′2 −→ c′′′2

Thus, taking cl = c′′1 −→ c′′′1 , cr = c′′2 −→ c′′′2 and ctt = ct −→ c′t, the result follows immediately.

Lemma B.75 [c1]ε1 v ε2[c2] and [c′1]ε′1 v ε′2[c′2] if and only if [c1 × c′1](ε1× ε′1) v (ε2 × ε′2)[c2×
c′2].

394

Proof. We are required to prove that for all
(G1 ×G′1, c11 × c′11, c12 × c′12) ∈ (ε1×ε′1) there exists (G2 ×G′2, c21 × c′21, c22 × c′22) ∈ (ε2×ε′2),
cl, cr and ctt such that

• ctt : G1 ×G′1 v G2 ×G′2

• ctt;c21 × c′21 = cl

• c11 × c′11;c1 × c1 = cl

• ctt;c22 × c′22 = cr

• c12 × c′12;c2 × c′2 = cr

We know by the definition of (ε1 × ε′1) that

• (G1, c11, c12) ∈ ε1

• (G′1, c
′
11, c

′
12) ∈ ε′1

Also, we know by [c1]ε1 v ε2[c2] and [c1]ε′1 v ε′2[c′2], that for (G1, c11, c12) ∈ ε1 and (G′1, c
′
11,

c′12) ∈ ε′1, there exist (G2, c21, c22) ∈ ε2, c′′1, c′′2, ct, and (G′2, c
′
21, c

′
22) ∈ ε′2, c′′′1 , c′′′2 and c′t, such

that

• ct : G1 v G2

• ct;c21 = c′′1

• c11;c1 = c′′1

• ct;c22 = c′′2

• c12;c2 = c′′2

• c′t : G′1 v G′2

• c′t;c
′
21 = c′′′1

• c′11;c1 = c′′′1

• c′t;c
′
22 = c′′′2

• c′12;c′2 = c′′′2

Therefore, we know that

• ct × c′t : G1 ×G′1 v G2 ×G′2

• ct × c′t;c21 × c′21 = c′′1 × c′′′1

• c11 × c′11;c1 × c1 = c′′1 × c′′′1

• ct × c′t;c22 × c′22 = c′′2 × c′′′2

395

• c12 × c′12;c2 × c′2 = c′′2 × c′′′2

Thus, taking cl = c′′1 × c′′′1 , cr = c′′2 × c′′′2 and ctt = ct × c′t, the result follows immediately.

Lemma B.76 [c1]ε1 v ε2[c2] if and only if [∀X.c1]∀X.ε1 v ∀X.ε2[∀X.c2].

Proof. We are required to prove that for all (∀X.G1, ∀X.c11,∀X.c12) ∈ ∀X.ε1 there exists (∀X.G2,
∀X.c21, ∀X.c22) ∈ ∀X.ε2, cl, cr and ctt such that

• ctt : ∀X.G1 v ∀X.G2

• ctt;∀X.c21 = cl

• ∀X.c11;∀X.c1 = cl

• ctt;∀X.c22 = c′r

• ∀X.c12;∀X.c2 = c′r

We know by the definition of ∀X.ε1 that (G1, c11, c12) ∈ ε1.

Also, we know by [c1]ε1 v ε2[c2] that for (G1, c11, c12) ∈ ε1, there exist (G2, c21, c22) ∈ ε2,
c1, c′2, ct, such that

• ct : G1 v G2

• ct;c21 = c1

• c11;c1 = c1

• ct;c22 = c′2

• c12;c2 = c′2

Therefore, we know that

• ∀X.ct : ∀X.G1 v ∀X.G2

• ∀X.ct;∀X.c21 = ∀X.c1

• ∀X.c11;∀X.c1 = ∀X.c1

• ∀X.ct;∀X.c22 = ∀X.c′2

• ∀X.c12;∀X.c2 = ∀X.c′2

Thus, taking cl = ∀X.c1, cr = ∀X.c′2 and ctt = ∀X.ct, the result follows immediately.

Lemma B.77 If

396

• c′ : G v G′

• d : G′ v G′′

• c′;d = c

then c is unique and c : G v G′′.

Proof. We proceed by induction on the type precision transitivity rules. We have the following
possible cases.

• If we have that B;B = B, where c′ = B and d = B, then the only possibility for c is c = B,
by inspecting the rules of type precision transitivity, where B : B v B. Thus, the result
follows.

• If we have that B;injB = injB, where c′ = B, d = injB and d : B v ?δ , then the only
possibility for c is c = injB, by inspecting the rules of type precision transitivity, where
injB : B v ?δ . Thus, the result follows.

• If we have that X;X = X, where c′ = X and d = X, the only possibility for c is c = X, by
inspecting the rules of type precision transitivity, where X : X v X. Thus, the result follows.

• If we have that F;injX = injX , where c′ = F, d = injX and d : F v ?δ , then the only
possibility for c is c = injX , by inspecting the rules of type precision transitivity, where
injX : F v ?δ . Thus, the result follows.

• If (c1 −→ c′2);(d1 −→ d2) = c1 −→ c2, where c′ = c1 −→ c′2, d = d1 −→ d2, c = c1 −→ c2,
G = G1 −→ G2, G′ = G′1 −→ G′2, G′′ = G′′1 −→ G′′2, c1 : G1 v G′1, d1 : G′1 v G′′1,
c′2 : G2 v G′2, d2 : G′2 v G′′2, c1;d1 = c1 and c′2;d2 = c2, then, we know by the induction
hypothesis on c1;d1 = c1 and c′2;d2 = c2 that c1 and c2 are unique and c1 : G1 v G′′1 and
c2 : G2 v G′′2. Therefore, c = c1 −→ c2 is unique and c1 −→ c2 : G1 −→ G2 v G′′1 −→ G′′2.
Thus, the result follows.

• If (∀X.c1);(∀X.d1) = ∀X.c1, where c′ = ∀X.c1, d = ∀X.d1, c = ∀X.c1, G = ∀X.G1,
G′ = ∀X.G′1, G′′ = ∀X.G′′1, c1 : G1 v G′1, d1 : G′1 v G′′1 and c1;d1 = c1, then, we know
by the induction hypothesis on c1;d1 = c1 that c1 is unique and c1 : G1 v G′′1. Therefore,
c = ∀X.c1 is unique and ∀X.c1 : ∀X.G1 v ∀X.G′′1. Thus, the result follows.

• If we have that c′;inj? = c′, where d = inj?, c′ : G v ?δ and d : ?δ v ?δ , then the
only possibility for c is c = c′, by inspecting the rules of type precision transitivity, where
c′ : G v ?δ , by Lemma B.15. Thus, the result follows.

• If we have that c′;inj→(d′) = inj→(c1), where d = inj→(d′), c′;d′ = c1, c′ : G v G′,
d : G′ v ?δ and d′ : G′ v ?δ −→ ?δ , then by the induction hypothesis on c;d′ = c1, we know
that c1 is unique and c1 : G v ?δ −→ ?δ . Therefore, we know that c = inj→(c1) is unique
and c : G v ?δ . Thus, the result follows.

• If we have that c′;inj∀(d
′) = inj∀(c1), where d = inj∀(d

′), c′;d′ = c1, c′ : G v G′,
d : G′ v ?δ and d′ : G′ v ∀X.?δ,X:X , then by the induction hypothesis on c;d′ = c1, we
know that c1 is unique and c1 : G v ∀X.?δ,X:X . Therefore, we know that c = inj∀(c1) is
unique and c : G v ?δ . Thus, the result follows.

397

Lemma B.78 (Monotonicity of Consistent Transitivity) If

• ε1 : G1 ∼ G′1

• ε′1 : G′1 ∼ G′′1

• ε2 : G2 ∼ G′2

• ε′2 : G′2 ∼ G′′2

• d : G1 v G2

• d′ : G′1 v G′2

• d′′ : G′′1 v G′′2

• [d]ε1 v ε2[d′]

• [d′]ε′1 v ε′2[d′′]

then

• [d](ε1 # ε′1) v (ε2 # ε′2)[d′′]

Proof. We are required to prove that [d](ε1 # ε′1) v (ε2 # ε′2)[d′′], or what is the same that for all
(Gm1, ca, cb) ∈ ε1 # ε′1, there exists (Gm2, ce,df) ∈ ε2 # ε′2, ci, c′i and dt

∗ such that

• dt
∗ : Gm1 v Gm2

• dt
∗;ce = ci

398

• ca;d = ci

• dt
∗;cf = c′i

• cb;d′′ = c′i

Let’s suppose that (Gm1, ca, cb) ∈ (G11, c1, c1) # (G′11, c
′′
1, c
′′′
1), for some (G11, c1, c1) ∈ ε1 and

(G′11, c
′′
1, c
′′′
1) ∈ ε′1.

A Then, we know that pullback(G′1, (G11, c1), (G′11, c
′′
1)) must be defined. Therefore, there

exists (Gm1, cm1, c
′
m1, cd) = pullback(G′1, (G11, c1), (G′11, c

′′
1)) such that (Definition B.16):

A.1) cm1 : Gm1 v G11

A.2) c′m1 : Gm1 v G′11

A.3) cd : Gm1 v G′1

A.4) cm1;c′1 = cd

A.5) c′m1;c′′1 = cd

B We also know that (by definition of consistent transitivity):

B.1) ca : Gm1 v G1

B.2) cb : Gm1 v G′′1

B.3) cm1;c1 = ca

B.4) c′m1;c′′′1 = cb

C Since [d]ε1 v ε2[d′] and [d′]ε′1 v ε′2[d′′], by Definition 6.11, we know that for (G11, c1,
c1) ∈ ε1 and (G′11, c

′′
1, c
′′′
1) ∈ ε′1, there exists (G22, c2, c

′
2) ∈ ε2, c11, c12 and dt, and (G′22,

c′′2, c
′′′
2) ∈ ε′2, c′11, c′12 and d′t such that:

C.1) dt : G11 v G22

C.2) c11 : G11 v G2

C.3) c12 : G11 v G′2

C.4) dt;c2 = c11

C.5) c1;d = c11

C.6) dt;c
′
2 = c12

C.7) c′1;d′ = c12

C.8) d′t : G′11 v G′22

C.9) c′12 : G′11 v G′2

C.10) c′11 : G′11 v G′′2

C.11) d′t;c
′′
2 = c′12

C.12) c′′1;d′ = c′12

C.13) d′t;c
′′′
2 = c′11

C.14) c′′′1 ;d′′ = c′11

399

D By (A.3), d′ : G′1 v G′2, Lemma B.20 and Lemma B.77, we get that there exists a unique cl

such that

D.1) cl : Gm1 v G′2

D.2) cd;d′ = cl

E By (A.4), (C.7) and Lemma B.13, we get that

E.1) cm1;c12 = cl

F By (C.6) and (E.1), we get that cm1;(dt;c
′
2) = cl. By Lemma B.13, we get that (cm1;dt);c

′
2 =

cl. By Definition B.20, we know that exists c4 such that

F.1) cm1;dt = c4

F.2) c4;c′2 = cl

F.3) c4 : Gm1 v G22

G By (A.5), (C.12) and Lemma B.13, we get that

G.1) c′m1;c′12 = cl

H By (C.11) and (G.1), we get that c′m1;(d′t;c
′′
2) = cl. By Lemma B.13, we get that (c′m1;d′t);c

′′
2 =

cl. By Definition B.20, we know that exists c′4 such that

H.1) c′m1;d′t = c′4

H.2) c′4;c′′2 = cl

H.3) c′4 : Gm1 v G′22

I By c′2 : G22 v G′2, c′′2 : G′22 v G′2, (F.3), (H.3), (F.2) and (H.2), we make use of the univer-
sal property (Lemma 6.3), this means that there exist (Gm2, cm2, c

′
m2, ch) = pullback(G′2,

(G22, c
′
2), (G′22, c

′′
2)) and ck such that

I.1) ck : Gm1 v Gm2

I.2) ck;cm2 = c4

I.3) ck;c′m2 = c′4

I.4) ck;ch = cl

I.5) cm2;c′2 = ch

I.6) c′m2;c′′2 = ch

I.7) ch : Gm2 v G′2

J By (B.1), d : G1 v G2, Lemma B.20 and Lemma B.77, there exists a unique ci such that

J.1) ci : Gm1 v G2

J.2) ca;d = ci

K By (B.3) and (J.2), we get that (cm1;c1);d = ci. By Lemma B.13, we know that cm1;(c1;d) =
ci. By (C.5) and Lemma B.77, we know that c11 is unique and therefore

K.1) cm1;c11 = ci

400

L By (C.4) and (K.1), we know that cm1;(dt;c2) = ci. By Lemma B.13, we get that (cm1;dt);c2 =
ci. By (F.1) and Lemma B.77, we know that c4 is unique and therefore

L.1) c4;c2 = ci

M By (I.2) and (L.1), we know that (ck;cm2);c2 = ci. By Lemma B.13, we know that
ck;(cm2;c2) = ci. By Definition B.21, we get that there exists ce such that

M.1) ce : Gm2 v G2

M.2) cm2;c2 = ce

M.3) ck;ce = ci

N By (B.2), d′′ : G′′1 v G′′2, Lemma B.20 and Lemma B.77, there exists a unique c′i such that

N.1) c′i : Gm1 v G′′2

N.2) cb;d′′ = c′i

O By (B.4) and (N.2), we get that (c′m1;c′′′1);d′′ = c′i. By Lemma B.13, we know that
c′m1;(c′′′1 ;d′′) = c′i. By (C.14) and Lemma B.77, we know that c′11 is unique and therefore

O.1) c′m1;c′11 = c′i

P By (C.13) and (O.1), we know that c′m1;(d′t;c
′′′
2) = c′i. By Lemma B.13, we get that

(c′m1;d′t);c
′′′
2 = c′i. By (H.1) and Lemma B.77, we know that c′4 is unique and therefore

P.1) c′4;c′′′2 = c′i

Q By (I.3) and (P.1), we know that (ck;c′m2);c′′′2 = c′i. By Lemma B.13, we know that
ck;(c′m2;c′′′2) = c′i. By Definition B.21, we get that there exists cf such that

Q.1) cf : Gm2 v G′′2

Q.2) c′m2;c′′′2 = cf

Q.3) ck;cf = c′i

Note that (Gm2, ce, cf) ∈ ε2 # ε′2. More specifically (Gm2, ce, cf) ∈ (G22, c2, c
′
2) # (G′22, c

′′
2,

c′′′2), where (G22, c2, c
′
2) ∈ ε2 and (G′22, c

′′
2, c
′′′
2) ∈ ε′2.

R Since (B.1) (ca : Gm1 v G1), d : G1 v G2, (I.1) (ck : Gm1 v Gm2), (M.1) (ce : Gm2 v
G2), (Q.1) (cf : Gm2 v G′′2), (B.2) (cb : Gm1 v G′′1), d′′ : G′′1 v G′′2, taking dt

∗ = ck, we
get that

• ck;ce = ci(M.3)

• ca;d = ci (J.2)

• ck;cf = c′i (Q.3)

• cb;d′′ = c′i (N.2)

Thus, the result holds.

Theorem B.79 Suppose ` t1 : G1 and ` c : t1 v t2. Then,

401

• ` t2 : G2 and c : G1 v G2.

• t1
∗7−→ v1 implies t2

∗7−→ v2 and ` c : v1 v v2.

• t1 diverges implies t2 diverges.

Proof. The proof is by case analysis on the reduction of t1 or t2.

• Suppose that t1
∗7−→ v1. Then, we get that t2

∗7−→ v2, ` c : v1 v v2, by Lemma B.88, and
the result holds.

• Suppose that t1 diverges. Then, we get that t2 diverges, by Lemma B.88, and the result
holds.

Lemma B.80 If ` c : v1 v t2 then t2 = v2.

Lemma B.81 If c : G1 v G2 then c[X 7→ F] : G1[F/X] v G2[F/X].

Proof. Follow by induction on c : G1 v G2.

Case (B : B v B). The results follows immediately due to B[X 7→ F] = B, B[F/X] = B and
B : B v B.

Case (Y : Y v Y). We have the following cases.

• Y 6 X The results follows immediately due to Y[X 7→ F] = Y, Y[F/X] = Y and Y : Y v
Y.

• Y = X. The results follows immediately due to X[X 7→ F] = F, X[F/X] = F and F : F v F.

Case (c1→c2 : G11→G12 v G21→G22). We know that

c1 : G11 v G21 c2 : G12 v G22

c1→c2 : G11→G12 v G21→G22

Then, we know that c1 : G11 v G21 and c2 : G12 v G22. We know that

• (G11→G12)[F/X] = (G11[X/F]→G12[X/F])

• (G21→G22)[F/X] = (G21[X/F]→G22[X/F])

Thus, we are required to prove that

• c1[X 7→ F]→c2[X 7→ F] : (G11[X/F]→G12[X/F]) v (G21[X/F]→G22[X/F])

Or what is the same, we are required to prove that

• c1 : G11[X/F] v G21[X/F]

402

• c2 : G12[X/F] v G22[X/F]

But the result follows immediately by the induction hypothesis on c1 : G11 v G21 and c2 : G12 v
G22.

Case (c1× c2 : G11×G12 v G21×G22). We know that

c1 : G11 v G21 c2 : G12 v G22

c1× c2 : G11×G12 v G21×G22

Then, we know that c1 : G11 v G21 and c2 : G12 v G22. We know that

• (G11×G12)[F/X] = (G11[X/F]×G12[X/F])

• (G21×G22)[F/X] = (G21[X/F]×G22[X/F])

Thus, we are required to prove that

• c1[X 7→ F]× c2[X 7→ F] : (G11[X/F]×G12[X/F]) v (G21[X/F]×G22[X/F])

Or what is the same, we are required to prove that

• c1 : G11[X/F] v G21[X/F]

• c2 : G12[X/F] v G22[X/F]

But the result follows immediately by the induction hypothesis on c1 : G11 v G21 and c2 : G12 v
G22.

Case (∀Y.c1 : ∀Y.G11 v ∀Y.G21). We know that

c1 : G11 v G21

∀Y.c1 : ∀Y.G11 v ∀Y.G21

Then, we know that c1 : G11 v G21. We know that

• (∀Y.G11)[F/X] = (∀Y.G11[X/F])

• (∀Y.G21)[F/X] = (∀Y.G21[X/F])

Thus, we are required to prove that

• ∀Y.c1[X 7→ F] : (∀Y.G11[X/F]) v (∀Y.G21[X/F])

Or what is the same, we are required to prove that

• c1 : G11[X/F] v G21[X/F]

But the result follows immediately by the induction hypothesis on c1 : G11 v G21.

403

Case (injB : B v ?δ). The results follows immediately due to B[X 7→ F] = B, B[F/X] = B and
injB : B v ?δ [F/X].

Case (injY : F′ v ?δ). We know that Y : F′ ∈ δ and therefore, Y : F′[F/X] ∈ δ[F/X]. Thus, we
get that injY : F′[F/X] v ?δ [F/X], as we are required to show.

Case (inj→(c′) : G1 v ?δ). We know that c′ : G1 v ?δ→?δ . By the inductive hypothesis,
we get that c′[F/X] : G1[F/X] v ?δ [F/X]→?δ [F/X]. Therefore, we get that inj→(c′[F/X]) :
G1[F/X] v ?δ [F/X], and the result holds.

Case (inj×(c′) : G1 v ?δ). We know that c′ : G1 v ?δ × ?δ . By the inductive hypothesis,
we get that c′[F/X] : G1[F/X] v ?δ [F/X]× ?δ [F/X]. Therefore, we get that inj×(c′[F/X]) :
G1[F/X] v ?δ [F/X], and the result holds.

Case (inj∀(c
′) : G1 v ?δ). We know that c′ : G1 v ∀Y.?δ,Y:Y. By the inductive hypothesis, we get

that c′[F/X] : G1[F/X] v ∀Y.?δ,Y:Y[F/X]. Therefore, we get that inj∀(c
′[F/X]) : G1[F/X] v

?δ [F/X], and the result holds.

Case (inj? : ?δ v ?δ′). The results follows immediately due to δ[F/X] ⊆ δ′[F/X] and inj? :
?δ [F/X] v ?δ′ [F/X].

Lemma B.82 If [c]ε1 v ε2[c′] then [c[X 7→ F]]ε1[X 7→ F] v ε2[X 7→ F][c[X 7→ F]].

Proof. Since [c]ε1 v ε2[c′], we know that for all (G′′1, c1, c1) ∈ ε1, there exists (G′′2, c2, c
′
2) ∈ ε2,

c′′1, c′′2 and ct such that

• ct : G′′1 v G′′2

• ct;c2 = c′′1

• c1;c = c′′1

• ct;c
′
2 = c′′2

• c′1;c′ = c′′2

We are required to prove that [c[X 7→ F]]ε1[X 7→ F] v ε2[X 7→ F][c′[X 7→ F]]. We proceed by
proving that for all S1 = (G′′1[X 7→ F], c1[X 7→ F], c1[X 7→ F]) ∈ ε1[X 7→ F], there exists S2 =
(G′′2[X 7→ F], c2[X 7→ F], c′2[X 7→ F]) ∈ ε2[X 7→ F], c′′1[X 7→ F], c′′2[X 7→ F] and ct[X 7→ F] such
that

• ct[X 7→ F] : G′′1[X 7→ F] v G′′2[X 7→ F]

• ct[X 7→ F];c2[X 7→ F] = c′′1[X 7→ F]

• c1[X 7→ F];c[X 7→ F] = c′′1[X 7→ F]

• ct[X 7→ F];c′2[X 7→ F] = c′′2[X 7→ F]

• c′1[X 7→ F];c′[X 7→ F] = c′′2[X 7→ F]

The result holds immediately by Lemmas B.81 and B.66.

404

Lemma B.83 If [c1→c′1]ε1 v ε2[c2→c′2] then

• [c2]dom(ε1) v dom(ε2)[c1]

• [c′1]cod(ε1) v cod(ε2)[c′2]

Proof. Since [c1→c1]ε1 v ε2[c2→c′2], we know that for all S1 ∈ ε1,
S1 = (G11→G12, c11→c12, c

′
11→c′12) ∈ ε1 and there exists S2 = (G21→G22, c21→c22, c

′
21→c′22) ∈

ε2, c′′11→c′′12, c′′21→c′′22 and ct→c′t such that

• ct→c′t : G11→G12 v G21→G22

• ct→c′t;c21→c22 = c′′11→c′′12

• c11→c12;c1→c1 = c′′11→c′′12

• ct→c′t;c
′
21→c′22 = c′′21→c′′22

• c′11→c′12;c2→c′2 = c′′21→c′′22

We know that

• ct : G11 v G21

• ct;c21 = c′′11

• c11;c1 = c′′11

• ct;c
′
21 = c′′21

• c′11;c2 = c′′21

• c′t : G12 v G22

• c′t;c22 = c′′12

• c12;c1 = c′′12

• c′t;c
′
22 = c′′22

• c′12;c′2 = c′′22

We know that dom({(G11→G12, c11→c12, c
′
11→c′12)}) = {(G11, c

′
11, c11)}, dom({(G21→G22,

c21→c22, c
′
21→c′22)}) = {(G21, c

′
21, c21)}, cod({(G11→G12, c11→c12, c

′
11→c′12)}) = {(G12, c12,

c′12)} and cod({(G21→G22, c21→c22, c
′
21→c′22)}) = {(G22, c22, c

′
22)}. Thus, the result holds im-

mediately.

Lemma B.84 If [c1× c′1]ε1 v ε2[c2× c′2] then

• [c1]π1(ε1) v π1(ε2)[c2]

• [c′1]π2(ε1) v π2(ε2)[c′2]

405

Proof. Since [c1× c1]ε1 v ε2[c2× c′2], we know that for all S1 ∈ ε1,
S1 = (G11×G12, c11× c12, c

′
11× c′12) ∈ ε1 and there exists S2 = (G21×G22, c21× c22, c

′
21× c′22) ∈

ε2, c′′11× c′′12, c′′21× c′′22 and ct× c′t such that

• ct× c′t : G11×G12 v G21×G22

• ct× c′t;c21× c22 = c′′11× c′′12

• c11× c12;c1× c1 = c′′11× c′′12

• ct× c′t;c
′
21× c′22 = c′′21× c′′22

• c′11× c′12;c2× c′2 = c′′21× c′′22

We know that

• ct : G11 v G21

• ct;c21 = c′′11

• c11;c1 = c′′11

• ct;c
′
21 = c′′21

• c′11;c2 = c′′21

• c′t : G12 v G22

• c′t;c22 = c′′12

• c12;c1 = c′′12

• c′t;c
′
22 = c′′22

• c′12;c′2 = c′′22

We know that π1({(G11×G12, c11× c12, c
′
11× c′12)}) = {(G11, c

′
11, c11)}, π1({(G21×G22, c21× c22,

c′21× c′22)}) = {(G21, c
′
21, c21)}, π2({(G11×G12, c11× c12, c

′
11× c′12)}) = {(G12, c12, c

′
12)} and

π2({(G21×G22, c21× c22, c
′
21× c′22)}) = {(G22, c22, c

′
22)}. Thus, the result holds immediately.

Lemma B.85 (Monotonicity of Type Substitution) If [∀X.c′]ε1 v ε2[∀X.c], then [c′](schm(ε1))
v (schm(ε2))[c] and [c′[F/X]](schm(ε1)[F/X]) v (schm(ε2)[F/X])[c[F/X]].

Proof. Similar to the function case.

Lemma B.86 If ` c : v1 v t2 then t2 = v2.

Proof. Exploring ` c : v1 v t2 rules.

Lemma B.87 If c : G v G′ then c;reflvG′ = c and refl
v
G ;c = c.

406

Proof. We proceed by induction on c : G v G′.

Case (B : B v B). Since, reflvB = B and B;B = B, the result holds.

Case (X : X v X). Since, reflvX = X and X;X = X, the result holds.

Case (c1→c2 : G11→G12 v G21→G22). We know that c1 : G11 v G21 and c2 : G12 v G22.
By the inductive hypothesis, we get that refl

v
G11

;c1 = c1, c1;reflvG21
= c1, refl

v
G12

;c2 = c2

and c2;reflvG22
= c2. We know that refl

v
G11→G12

= refl
v
G11
→refl

v
G12

and refl
v
G21→G22

=

refl
v
G21
→refl

v
G22

. We are required to prove that refl
v
G11
→refl

v
G12

;c1→c2 = c1→c2 and

c1→c2;reflvG21
→refl

v
G22

= c1→c2. Or what is the same, we are required to show that reflvG11
;c1 =

c1, c1;reflvG21
= c1, reflvG12

;c2 = c2 and c2;reflvG22
= c2, as we already showed.

Case (c1× c2 : G11×G12 v G21×G22). We know that c1 : G11 v G21 and c2 : G12 v G22.
By the inductive hypothesis, we get that refl

v
G11

;c1 = c1, c1;reflvG21
= c1, refl

v
G12

;c2 = c2

and c2;reflvG22
= c2. We know that refl

v
G11×G12

= refl
v
G11
× refl

v
G12

and refl
v
G21×G22

=

refl
v
G21
× refl

v
G22

. We are required to prove that refl
v
G11
× refl

v
G12

;c1× c2 = c1× c2 and

c1× c2;reflvG21
× refl

v
G22

= c1× c2. Or what is the same, we are required to show that reflvG11
;c1 =

c1, c1;reflvG21
= c1, reflvG12

;c2 = c2 and c2;reflvG22
= c2, as we already showed.

Case (∀X.c1 : ∀X.G11 v ∀X.G21). We know that c1 : G11 v G21. By the inductive hypothesis,
we get that refl

v
G11

;c1 = c1 and c1;reflvG21
= c1. We know that refl

v
∀X.G11

= ∀X.reflvG11

and refl
v
∀X.G21

= ∀X.reflvG21
. We are required to prove that ∀X.reflvG11

;∀X.c1 = ∀X.c1 and

∀X.c1;∀X.reflvG21
= ∀X.c1. Or what is the same, we are required to show that refl

v
G11

;c1 = c1

and c1;reflvG21
= c1, as we already showed.

Case (injB : B v ?δ). We know that refl
v
B = B and refl

v
?δ

= inj?. Since, B;injB = injB and

injB;inj? = injB, the result holds.

Case (injX : F v ?δ ∧ X : F ∈ δ). We know that refl
v
F = F and refl

v
?δ

= inj?. Since,

F;injX = injX and injX ;inj? = injX , the result holds.

Case (inj→(c′) : G v ?δ). We know that refl
v
?δ

= inj?. Also, we know that c′ : G v
?δ→?δ . By the inductive hypothesis, we get that refl

v
G ;c′ = c′. We are required to prove

that inj→(c′);inj? = inj→(c′), which holds immediately. Also, we are required to prove that
refl

v
G ;inj→(c′) = inj→(c′). Thus, we are required to prove that refl

v
G ;c′ = c′, as we already

showed.

Case (inj×(c′) : G v ?δ). We know that reflv?δ = inj?. Also, we know that c′ : G v ?δ × ?δ . By

the inductive hypothesis, we get that reflvG ;c′ = c′. We are required to prove that inj×(c′);inj? =

inj×(c′), which holds immediately. Also, we are required to prove that reflvG ;inj×(c′) = inj×(c′).

Thus, we are required to prove that reflvG ;c′ = c′, as we already showed.

Case (inj∀(c
′) : G v ?δ). We know that refl

v
?δ

= inj?. Also, we know that c′ : G v
∀X.?δ,X:X . By the inductive hypothesis, we get that refl

v
G ;c′ = c′. We are required to prove

that inj∀(c
′);inj? = inj∀(c

′), which holds immediately. Also, we are required to prove that
refl

v
G ;inj∀(c

′) = inj∀(c
′). Thus, we are required to prove that refl

v
G ;c′ = c′, as we already

showed.

Case (inj? : ?δ v ?δ′). The result holds immediately since refl
v
?δ

= inj?, refl
v
?δ′

= inj? and

inj?;inj? = inj?.

407

Lemma B.88 Suppose ` c : t1 v t2.

1. If t1 = v1, then t2 = v2.

2. If t1 7−→ t′1, then t2 7−→ t′2, and we have ` c : t′1 v t′2.

Proof. We prove Case (1), directly, by Lemma B.80. We prove Case (2) by induction on reduction
t1 7−→ t′1.

Case (t1 −−→ t′1). By Lemma B.89, we know that t2 −−→ t′2 and ` c : t′1 v t′2. Thus, the result
holds immediately.

Case (ε11 t11 :: G11 7−→ ε11 t′11 :: G11). By inspection on ` c : t1 v t2 (vasc rule), we know that
t2 = ε22 t22 :: G22, [c′]ε11 v ε22[c], ` c′ : t11 v t22 and c : G11 v G22. By induction hypothesis
on t11 7−→ t′11, we get that t22 7−→ t′22 and ` c′ : t11 v t22. Then, by (vasc) rule, we know that
` c : ε11 t′11 :: G11 v ε22 t′22 :: G22 and the result holds.

Case (t11 t12 7−→ t′11 t12). By inspection on ` c : t1 v t2 (vapp rule), we know that t2 = t21 t22,
` c′→c : t11 v t21 and ` c′ : t12 v t22. By induction hypothesis on t11 7−→ t′11, we know that

t21 7−→ t′21 and ` c′→c : t′11 v t′21. Then, by (vapp) rule, we know that ` c : t′11 t12 v t′21 t22

and the result holds.

Case (v11 t12 7−→ v11 t′12). By inspection on ` c : t1 v t2 (vapp rule) and Lemma B.80, we
know that t2 = v21 t22, ` c′→c : v11 v v21 and ` c′ : t12 v t22. By induction hypothesis on
t12 7−→ t′12, we know that t22 7−→ t′22 and ` c′ : t′12 v t′22. Then, by (vapp) rule, we know that
` c : v11 t′12 v v21 t′22 and the result holds.

Case (〈t11, t12〉 7−→ 〈t′11, t12〉). By inspection on ` c : t1 v t2 (vpair rule), we know that
t2 = 〈t21, t22〉, ` c1 : t11 v t21 and ` c2 : t12 v t22, where c = c1× c2. By induction hypothesis
on t11 7−→ t′11, we know that t21 7−→ t′21 and ` c1 : t′11 v t′21. Then, by (vpair) rule, we know
that ` c1× c2 : 〈t′11, t12〉 v 〈t′21, t22〉 and the result holds.

Case (〈v11, t12〉 7−→ 〈v11, t
′
12〉). By inspection on ` c : t1 v t2 (vpair rule) and Lemma B.80,

we know that t2 = 〈v21, t22〉, ` c1 : v11 v v21 and ` c2 : t12 v t22, where c = c1× c2. By
induction hypothesis on t12 7−→ t′12, we know that t22 7−→ t′22 and ` c2 : t′12 v t′22. Then, by
(vpair) rule, we know that ` c1× c2 : 〈v11, t

′
12〉 v 〈v21, t

′
22〉 and the result holds.

Case (t11 [F] 7−→ t′11 [F]). By inspection on ` c : t1 v t2 (vappG rule), t2 = t22 [G22] and
` ∀X.c′ : t11 v t22, where c = c′[X 7→ F]. By induction hypothesis on t11 7−→ t′11, we know

that t22 7−→ t′22 and ` ∀X.c′ : t′11 v t′22. Then, by (vappG) rule, we know that ` c′[X 7→ F] :
t′11 [F] v t′22 [F] and the result holds.

Case (πi(t11) 7−→ πi(t
′
11)). By inspection on ` c : t1 v t2 (vproji rule), t2 = πi(t22) and

` c1× c2 : t11 v t22, where c = ci. By induction hypothesis on t11 7−→ t′11, we know that
t22 7−→ t′22 and ` c1× c2 : t′11 v t′22. Then, by (vproji) rule, we know that ` ci : πi(t

′
11) v

πi(t
′
22) and the result holds.

Lemma B.89 If ` c : t1 v t2 and t1 −−→ t′1, then t2 −−→ t′2 and ` c : t′1 v t′2.

Proof. We proceed by induction on ` c : t1 v t2.

Case (` c : b v b). This case does not apply because b is not a term t; therefore it can not reduce.

408

Case (` c : (λx : G1
∗.t1

∗) v (λx : G2
∗.t2

∗)). This case does not apply because (λx : G1
∗.t1

∗) is
not a term t; therefore it can not reduce.

Case (` c : (ΛX.t1
∗) v (ΛX.t2

∗)). This case does not apply because (ΛX.t1
∗) is not a term t;

therefore it can not reduce.

Case (` c : 〈s11, s12〉 v 〈s21, s22〉). Similar to functions.

Case (` c : ε1 s
∗
1 :: G1 v ε2 s∗2 :: G2). We know by (vasc) rule that

[c′]ε1 v ε2[c] ` c′ : s∗1 v s∗2 c : G1 v G2

` c : ε1 s
∗
1 :: G1 v ε2 s∗2 :: G2

Since t1 −−→ t′1, we know that t1 = ε1 (ε11 u11 :: G1
∗) :: G1, where s∗1 = ε11 u11 :: G1

∗. Since
` c′ : s∗1 v s∗2 and s∗1 is a value, by Lemma B.80, we know that s∗2 is a value, and therefore,

t2 = ε2 (ε22 u22 :: G2
∗) :: G2, where s∗2 = ε22 u22 :: G2

∗. By the reduction rule for ascriptions, we
know that

ε1 (ε11 u11 :: G1
∗) :: G1 −−→ (ε11 # ε1) u11 :: G1

Since ` c′ : s∗1 v s∗2, by (vasc) rule, we know that

[c′′]ε11 v ε22[c′] ` c′′ : u11 v u22 c′ : G1
∗ v G2

∗

` c′ : ε11 u11 :: G1
∗ v ε22 u22 :: G2

∗

Since [c′′]ε11 v ε22[c′], [c′]ε1 v ε2[c] and (ε11 # ε1) is defined, by Lemma B.78, we get that
[c′′](ε11 # ε1) v (ε22 # ε2)[c]. Therefore, we get that

ε2 (ε22 u22 :: G2
∗) :: G2 −−→ (ε22 # ε2) u22 :: G2

Then, by (vasc) rule, we get that

[c′′](ε11 # ε1) v (ε22 # ε2)[c] ` c′′ : u11 v u22 c : G1 v G2

` c : (ε11 # ε1)u1 :: G1 v (ε22 # ε2)u2 :: G2

Thus, the result holds.

Case (` c : t11
∗ t12

∗ v t21
∗ t22

∗). We know that

` c′→c : t11
∗ v t21

∗ ` c′ : t12
∗ v t22

∗

` c : t11
∗ t12

∗ v t21
∗ t22

∗

Since t1 −−→ t′1, we know that t11
∗ = ε11 (λx : G1

∗.t11) :: G12 −→ G11 and t12
∗ = v12 =

ε12 u12 :: G12. By Lemma B.80, we know that t21
∗ = ε21 (λx : G2

∗.t21) :: G22 −→ G21 and
t22
∗ = v22 = ε22 u22 :: G22. By the reduction rules, we know that

(ε11 (λx : G1
∗.t11) :: G12 −→ G11) (ε12 u12 :: G12) −−→ cod(ε11) (t11[((ε12 # dom(ε11)) u12 :: G1

∗)/x]) :: G11

Since ` c′→c : t11
∗ v t21

∗, by (vasc) rule and (vλ) rules, we know that

[c1→c2]ε11 v ε21[c′→c] x : c1 : G1
∗ v G2

∗ ` c2 : t11 v t21 c′→c : G12 −→ G11 v G22 −→ G21

` c : ε11 (λx : G1
∗.t11) :: G12 −→ G11 v ε21 (λx : G2

∗.t21) :: G22 −→ G21

Also, since ` c′ : v12 v v22, we know, by (vasc) rule, that

409

[c′′]ε12 v ε22[c′] ` c′′ : u12 v u22 c′ : G12 v G22

` c′ : ε12 u12 :: G12 v ε22 u22 :: G22

Since [c1→c2]ε11 v ε21[c′→c], by Lemma B.83, we know that [c′]dom(ε11) v dom(ε21)[c1]
and [c2]cod(ε11) v cod(ε21)[c]. Since [c′′]ε12 v ε22[c′] and [c′]dom(ε11) v dom(ε21)[c1], by
Lemma B.78, we know that [c′′](ε12 # dom(ε11)) v (ε22 # dom(ε21))[c1].

Therefore, we know that

(ε21 (λx : G2
∗.t21) :: G22 −→ G21) (ε22 u22 : G22) −−→ cod(ε21) (t21[((ε22 # dom(ε21)) u21 :: G2

∗)/x]) :: G21

Thus, by the (vasc) rule, [c′′](ε12 # dom(ε11)) v (ε22 # dom(ε21))[c1], c1 : G1
∗ v G2

∗ and ` c′′ :
u12 v u22, we know that ` c1 : ((ε12 # dom(ε11)) u11 :: G1

∗) v ((ε22 # dom(ε21)) u21 :: G2
∗).

Therefore, since x : c1 : G1
∗ v G2

∗ ` c2 : t11 v t21 and ` c1 : ((ε12 # dom(ε11)) u11 :: G1
∗) v

((ε22 # dom(ε21)) u21 :: G2
∗), by Lemma B.90, we know that

` c2 : (t11[((ε12 # dom(ε11)) u11 :: G1
∗)/x]) v (t21[((ε22 # dom(ε21)) u21 :: G2

∗)/x])

Finally, since [c2]cod(ε11) v cod(ε21)[c] and c : G11 v G21, by (vasc) rule, the result holds.

` c : cod(ε11) (t11[((ε12 # dom(ε11)) u11 :: G1
∗)/x]) :: G11 v cod(ε21) (t21[((ε22 # dom(ε21)) u21 :: G2

∗)/x]) :: G21

Case (` c : t1
∗ [F] v t2

∗ [F]). We know that

` ∀X.c′ : t1
∗ v t2

∗

` c′[X 7→ F] : t1
∗ [F] v t2

∗ [F]

Since t1 −−→ t′1, we know that t1
∗ = ε11 ΛX.t11 :: ∀X.G11. By Lemma B.80, we know that

t2
∗ = ε22 ΛX.t22 :: ∀X.G22. Since ` ∀X.c′ : t1

∗ v t2
∗, by (vasc) and (vΛ) rules, we know that

[∀X.c′′]ε11 v ε22[∀X.c′] ` c′′ : t11 v t22 ∀X.c′ : ∀X.G11 v ∀X.G22

` ∀X.c′ : ε11 ΛX.t11 :: ∀X.G11 v ε22 ΛX.t22 :: ∀X.G22

By the reduction rules, we know that

(ε11 (ΛX.t11) :: ∀X.G11)[F] −−→ (schm(ε11)t11 :: G11)[F/X]

We know that (schm(ε11)t11 :: G11)[F/X] = (schm(ε11)[X 7→ F])(t11[X 7→ F]) :: G11[F/X].

Also, by the reduction rules, we know that

(ε22 (ΛX.t22) :: ∀X.G22)[F] −−→ (schm(ε22)t22 :: G22)[F/X]

We know that (schm(ε22)t22 :: G22)[X 7→ F] = (schm(ε22)[X 7→ F])(t22[X 7→ F]) :: G22[F/X].
By Lemma 6.13, we know that [c′′[X 7→ F]](schm(ε11)[X 7→ F]) v (schm(ε22)[X 7→ F])[c′[X 7→ F]].
Since ` c′′ : t11 v t22, by Lemma B.91, we know that Ω ` c′′[X 7→ F] : t11[X 7→ F] v t22[X 7→ F].
By Lemma B.81, we know that c′[X 7→ F] : G11[F/X] v G22[F/X].

Finally, by (vasc) rule the result holds.

` c′[X 7→ F] : (schm(ε11)t11 :: G11)[F/X] v (schm(ε22)t22 :: G22)[F/X]

410

Case (` c : πi(t1
∗) v πi(t2

∗)). We know that

` c1× c2 : t1
∗ v t2

∗

` ci : πi(t1
∗) v πi(t2

∗)

Since t1 −−→ t′1, we know that t1
∗ = v1 = ε1 〈u11,u12〉 :: G11×G12.

By Lemma B.80, we know that t2
∗ = v2 = ε2 〈u21,u22〉 :: G21×G22. By the reduction rules,

we know that
πi(t1

∗) −−→ πi(ε1)u1i :: G1i

πi(t2
∗) −−→ πi(ε2)u2i :: G2i

Since ` c1× c2 : t1
∗ v t2

∗, by (vasc) rule and (vpair) rules, we know that

[c1× c′2]ε1 v ε2[c1× c2] Ω ` c1 : u11 v u21 Ω ` c′2 : u12 v u22 c1× c2 : G11×G12 v G21×G22

` c1× c2 : ε1 〈u11,u12〉 :: G11×G12 v ε2 〈u21,u22〉 :: G21×G22

Since [c1× c′2]ε1 v ε2[c1× c2], by Lemma B.83, we know that [c′i]πi(ε1) v πi(ε2)[ci]. Finally,
since [c′i]πi(ε1) v πi(ε2)[ci], ci : G1i v G2i and Ω ` c′i : u1i v u2i, by (vasc) rule, the result holds.

` ci : πi(ε1)u1i :: G1i v πi(ε2)u2i :: G2i

Case (` c : 〈s11, s12〉 v 〈s21, s22〉). We know that

` c1 : s11 v s21 ` c2 : s12 v s22

` c1× c2 : 〈s11, s12〉 v 〈s21, s22〉

Since t1 −−→ t′1, we know that s1i = v1i = ε1i u1i :: G1i. Since ` c1 : s11 v s21 and ` c2 : s12 v
s22, by Lemma B.80, we know that s2i = v2i = ε2i u2i :: G2i. By the reduction rules, we know that

〈s11, s12〉 −−→ (ε11 × ε12) 〈u11,u12〉 :: G11×G12

〈s21, s22〉 −−→ (ε21 × ε22) 〈u21,u22〉 :: G21×G22

Since ` c1 : s11 v s21 and ` c2 : s12 v s22, By (vasc) rule, we know that

[c′i]ε1i v ε2i[ci] ` c′i : u1i v u2i ci : G1i v G2i

` ci : s1i v s2i

Since [c1]ε11 v ε21[c1] and [c′2]ε12 v ε22[c2], by Lemma B.75, we get that [c1× c′2](ε11 × ε12)
v (ε21 × ε22)[c1× c2]. Finally, since Ω ` c′i : u1i v u2i, [c1× c′2](ε11 × ε12) v (ε21 × ε22)[c1× c2]
and c1× c2 : G11×G12 v G21×G22, by (vasc) and (vpair) rules, the result holds.

` c1× c2 : (ε11 × ε12) 〈u11,u12〉 :: G11×G12 v (ε21 × ε22) 〈u21,u22〉 :: G21×G22

411

Lemma B.90 If Ω,x : c : G1 v G2 ` c′ : s1 v s2 and Ω ` c : v1 v v2, then Ω ` c′ : s1[v1/x] v
s2[v2/x].

Proof. We proceed by induction on Ω,x : c : G1 v G2 ` c′ : s1 v s2. Let Ω′ = Ω,x : c : G1 v
G2.

Case (vb). We know that
vb

Ω′ ` B : b v b

Since b[v1/x] = b[v1/x] = b, the result follows immediately.

Case (vx). We know that

vx
y : c′′ : G′1 v G′2 ∈ Ω′

Ω′ ` c′′ : y v y
We have the following cases.

• y = x. The result follows immediately due to Ω ` c : v1 v v2, t1[v1/x] = x[v1/x] = v1

and t2[v2/x] = x[v2/x] = v2.

• y 6 x. Since y[v1/x] = y[v1/x] = y, the result follows immediately.

Case (vλ). We know that

vλ
Ω′,y : c1 : G′1 v G′2 ` c2 : t1 v t2

Ω′ ` c1 −→ c2 : (λy : G′1.t1) v (λy : G′2.t2)

Note that we are required to prove that

Ω ` c1 −→ c2 : λy : G′1.(t1[v1/x]) v λy : G′2.(t2[v2/x])

Or what is the same, we are required to prove that Ω,y : c1 : G′1 v G′2 ` c2 : t1[v1/x] v t2[v2/x].
The result follows immediately by the induction hypothesis on Ω′,y : c1 : G′1 v G′2 ` c2 : t1 v t2.

Case (vΛ). We know that

vΛ
Ω′ ` c1 : t1 v t2

Ω′ ` ∀X.c1 : (ΛX.t1) v (ΛX.t2)

Note that we are required to prove that

Ω ` ∀X.c1 : ΛX.(t1[v1/x]) v ΛX.(t2[v2/x])

Or what is the same, we are required to prove that Ω ` c1 : t1[v1/x] v t2[v2/x]. The result follows
immediately by the induction hypothesis on Ω′ ` c1 : t1 v t2.

Case (vpair). We know that

vpair
Ω′ ` c1 : s′1 v s′2 Ω′ ` c2 : s′′1 v s′′2

Ω′ ` c1× c2 : 〈s′1, s′′1〉 v 〈s′2, s′′2〉

Note that we are required to prove that

Ω ` c1× c2 : 〈s′1[v1/x], s′2[v1/x]〉 v 〈s′′1[v2/x], s′′2[v2/x]〉

Or what is the same, we are required to prove that Ω ` c1 : s′1[v1/x] v s′′1[v2/x] and Ω ` c2 :
s′2[v1/x] v s′′2[v2/x]. The result follows immediately by the induction hypothesis on Ω′ ` c1 : s′1 v
s′2 and Ω′ ` c2 : s′′1 v s′′2.

412

Case (vapp). We know that

vapp
Ω′ ` c1 −→ c2 : t1 v t2 Ω′ ` c1 : t′1 v t′2

Ω′ ` c2 : t1 t′1 v t2 t′2

Note that we are required to prove that

Ω ` c2 : (t1[v1/x]) (t′1[v1/x]) v (t2[v2/x]) (t′2[v2/x])

Or what is the same, we are required to prove that Ω ` c1 −→ c2 : t1[v1/x] v t2[v2/x] and
Ω ` c2 : t′1[v1/x] v t′2[v2/x]. The result follows immediately by the induction hypothesis on
Ω′ ` c1 −→ c2 : t1 v t2 and Ω′ ` c1 : t′1 v t′2.

Case (vpairi). We know that

vpairi
Ω′ ` c1× c2 : t1 v t2

Ω′ ` ci : πi(t1) v πi(t2)

Note that we are required to prove that

Ω ` ci : πi(t1[v1/x]) v πi(t2[v2/x])

Or what is the same, we are required to prove that Ω ` c1× c2 : t1[v1/x] v t2[v2/x]. The result
follows immediately by the induction hypothesis on Ω′ ` c1× c2 : t1 v t2.

Case (vappG). We know that

vappG
Ω′ ` ∀X.c1 : t1 v t2

Ω′ ` c1[X 7→ F] : t1 [F] v t2 [F]

Note that we are required to prove that

Ω ` c1[X 7→ F] : (t1[v1/x] [F]) v (t2[v2/x] [F])

Or what is the same, we are required to prove that Ω ` ∀X.c1 : t1[v1/x] v t2[v2/x]. The result
follows immediately by the induction hypothesis on Ω′ ` ∀X.c1 : t1 v t2.

Case (vasc).

vasc
[c1]ε1 v ε2[c2] Ω′ ` c1 : s′1 v s′2 c2 : G1 v G2

Ω′ ` c2 : ε1s′1 :: G1 v ε2s′2 :: G2

Note that we are required to prove that

Ω ` c2 : (ε1 s′1[v1/x] :: G1) v (ε2 s′2[v2/x] :: G2)

Or what is the same, we are required to prove that Ω ` c1 : s′1[v1/x] v s′2[v2/x]. The result follows
immediately by the induction hypothesis on Ω′ ` c1 : s′1 v s′2.

Lemma B.91 If Ω ` c : s v s′, then Ω[X 7→ F] ` c[X 7→ F] : (s[X 7→ F]) v (s′[X 7→ F]).

Proof. We proceed by induction on Ω ` c : s v s′.

Case (Ω ` B : b v b). We know that B[X 7→ F] = B and b[X 7→ F] = b. The result holds
immediate since Ω[X 7→ F] ` B : b v b, by rule vb.

413

Case (Ω ` c : x v x). Since c : G1 v G2, by Lemma B.81, we get that c[X 7→ F] : G1[X 7→
F] v G2[X 7→ F]. We know that c[X 7→ F] : G1[X 7→ F] v G2[X 7→ F] ∈ Ω[X 7→ F] and
x[X 7→ F] = x. The result holds immediate since Ω[X 7→ F] ` c[X 7→ F] : x v x, by rule vx.

Case (Ω ` c′→c′′ : (λx : G′1.t1) v (λx : G′2.t2)). We know that Ω,x : c′ : G′1 v G′2 ` c′′ : t1 v t2.
Therefore, by the induction hypothesis, we get that

Ω[X 7→ F],x : c′[X 7→ F] : G′1[X 7→ F] v G′2[X 7→ F] ` c′′[X 7→ F] : t1[X 7→ F] v t2[X 7→ F]

as we are required to show, by rule vλ.

Case (Ω ` ∀X.c′ : (ΛX.t1) v (ΛX.t2)). We know that Ω ` c′ : t1 v t2. Therefore, by the
induction hypothesis, we get that

Ω[X 7→ F] ` c′[X 7→ F] : t1[X 7→ F] v t2[X 7→ F]

as we are required to show, by rule vΛ.

Case (Ω ` c′ : ε1s1 :: G1 v ε2s2 :: G2). We know that Ω ` c′′ : s1 v s2. Therefore, by the induc-
tion hypothesis, we get that Ω[X 7→ F] ` c′′[X 7→ F] : s1[X 7→ F] v s2[X 7→ F]. By Lemma B.81,
we know that c′[X 7→ F] : G1[X 7→ F] v G2[X 7→ F]. By Lemma B.82, we know that [c′′[X 7→ F]]ε1[X 7→ F]
v ε2[X 7→ F][c′[X 7→ F]]. Therefore, the result holds by vasc rule.

Case (Ω ` c′ : t1 t′1 v t2 t′2). We know that Ω ` c′′→c′ : t1 v t2 and Ω ` c′′ : t′1 v t′2. Therefore,
by the induction hypothesis, we get that Ω[X 7→ F] ` c′′[X 7→ F]→c′[X 7→ F] : t1[X 7→ F] v
t2[X 7→ F] and Ω[X 7→ F] ` c′′[X 7→ F] : t′1[X 7→ F] v t′2[X 7→ F]. Therefore, the result holds by
vapp rule.

Case (Ω ` c′× c′′ : 〈s1, s
′
1〉 v 〈s2, s

′
2〉). We know that Ω ` c′ : s1 v s2 and Ω ` c′′ : s′1 v

s′2. Therefore, by the induction hypothesis, we get that Ω[X 7→ F] ` c′[X 7→ F] : s1[X 7→ F] v
s2[X 7→ F] and Ω[X 7→ F] ` c′′[X 7→ F] : s′1[X 7→ F] v s′2[X 7→ F]. Therefore, the result holds by
vpair rule.

Case (Ω ` ci : πi(t1) v πi(t2)). We know that Ω ` c1× c2 : t1 v t2. Therefore, by the induction
hypothesis, we get that Ω[X 7→ F] ` c1[X 7→ F]× c2[X 7→ F] : t1[X 7→ F] v t2[X 7→ F]. There-
fore, the result holds by vpairi rule.

Case (Ω ` c′[X 7→ F] : t1 [F′] v t2 [F′]). We know that Ω ` ∀Y.c′ : t1 v t2. Therefore, by the
induction hypothesis, we get that Ω[X 7→ F] ` ∀Y.(c′[X 7→ F]) : t1[X 7→ F] v t2[X 7→ F]. There-
fore, the result holds by vappG rule.

B.5 The Static Language System F1

B.6 The Gradual Source Language F?

B.6.1 Lifting the Static Semantics

ftv(·) = ·

ftv(δ,X : X) = ftv(δ) ∪ ftv(X)

414

∆; Γ ` t : T Term typing

(Tx)
x : T ∈ Γ ∆ ` Γ

∆; Γ ` x : T
(Tb)

θ(b) = B ∆ ` Γ

∆; Γ ` b : B
(Tλ)

∆; Γ, x : T1 ` t : T2

∆; Γ ` λx : T1. t : T1 → T2

(Tpair)
∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

∆; Γ ` 〈t1, t2〉 : T1 × T2
(TΛ)

∆, X; Γ ` t : T ∆ ` Γ

∆; Γ ` ΛX. t : ∀X.T

(Tasc)
∆; Γ ` t : T ′ T ′ = T

∆; Γ ` t :: T : T
(Tapp)

∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

dom(T1) = T2

∆; Γ ` t1 t2 : cod(T1)

(Tpairi)
∆; Γ ` t : T

∆; Γ ` πi(T) : proj i(T)
(TappG)

∆; Γ ` t : T ∆ ` F
∆; Γ ` t [F] : inst(T, F)

dom : Type⇀ Type
dom(T1 → T2) = T1

dom(T) undefined o/w

cod : Type⇀ Type
cod(T1 → T2) = T2

cod(T) undefined o/w

proj i : Type⇀ Type
proj i(T1 × T2) = Ti
proj i(T) undefined o/w

inst : Type2 ⇀ Type
inst(∀X.T, T ′) = T [T ′/X]\X
inst(T, T ′) undefined o/w

B[T ′/X]\X = B

X[T ′/X]\X = T ′

Y [T ′/X]\X = Y

(T1 → T2)[T ′/X]\X = T1[T ′/X]\X → T2[T ′/X]\X
(T1 × T1)[T ′/X]\X = T1[T ′/X]\X × T2[T ′/X]\X

(∀Y. T)[T ′/X]\X = ∀Y. T [T ′/X]\X

Figure B.3: System F1: Syntax and Static Semantics

Lemma B.92 (α is Sound) If A is not empty, then A ⊆ γ(α(A)).

Proof. By induction on the structure of the non-empty set A.

Case ({B }). Then α(A) = α({B }) = B and γ(B) = {B }. Therefore, A = {B } ⊆ {B } = γ(α(A)),
as we are required to prove.

Case ({X }). Then α(A) = α({X }) = X and γ(X) = {X }. Therefore, A = {X } ⊆ {X } = γ(α(A)),
as we are required to prove.

Case ({Ti1→Ti2}). Then α({Ti1→Ti2}) = α({Ti1})→α({Ti2}). We know that

γ(α({Ti1})→α({Ti2})) = γ(α({Ti1}))→γ(α({Ti2})) = {T1→T2 | T1 ∈ γ(α({Ti1})), T2 ∈ γ(α({Ti2}))}

By the inductive hypotheses, on {Ti1} and {Ti2}, we get that {Ti1} ⊆ γ(α({Ti1})) and {Ti2} ⊆
γ(α({Ti2})). Therefore, we get that {Ti1→Ti2} ⊆ {Ti1}→{Ti2} ⊆ γ(α({Ti1}))→γ(α({Ti2})), as we
are required to prove.

Case ({Ti1×Ti2}). Then α({Ti1×Ti2}) = α({Ti1})×α({Ti2}). We know that

γ(α({Ti1})×α({Ti2})) = γ(α({Ti1}))× γ(α({Ti2})) = {T1×T2 | T1 ∈ γ(α({Ti1})), T2 ∈ γ(α({Ti2}))}

415

t −−→ t Notion of reduction

v :: T −−→ v

(λx : T. t) v −−→ t[v/x]

πi(〈v1, v2〉) −−→ vi

(ΛX. t)[F] −−→ t[F/X]

t 7−→ t or error Evaluation frames and reduction

f ::= � :: T | � t | v � | 〈�, t〉 | 〈v,�〉 | πi(�) | � [F]

(R→)
t −−→ t′

t 7−→ t′
(Rf)

t 7−→ t′

f [t] 7−→ f [t′]

(Rerr)
t −−→ error
t 7−→ error

(Rferr)
t 7−→ error
f [t] 7−→ error

Figure B.4: System F1: Dynamic Semantics

γ(B) = {B }
γ(X) = {X }

γ(G1→G2) = γ(G1)→ γ(G2)

γ(G1×G2) = γ(G1)× γ(G2)

γ(∀X.G1) = ∀X. γ(G1)

γ(?δ) = {T | ftv(T) ⊆ ftv(δ) }

α({B }) = B

α({X }) = X

α({T1 → T2}) = α({T1})→α({T2})
α({T1 × T2}) = α({T1})×α({T2})
α({∀X.T1}) = ∀X.α({T1})

α({T}) = ?δ where ftv(δ) = ftv({T})

Figure B.5: Type concretization (γ) and abstraction (α)

By the inductive hypotheses, on {Ti1} and {Ti2}, we get that {Ti1} ⊆ γ(α({Ti1})) and {Ti2} ⊆
γ(α({Ti2})). Therefore, we get that {Ti1×Ti2} ⊆ {Ti1}×{Ti2} ⊆ γ(α({Ti1}))× γ(α({Ti2})), as we
are required to prove.

Case ({∀X.Ti1}). Then α({∀X.Ti1}) = ∀X.α({Ti1}). We know that

γ(∀X.α({Ti1})) = ∀X.γ(α({Ti1})) = {∀X.T1 | T1 ∈ γ(α({Ti1}))}

By the inductive hypotheses, on {Ti1}, we get that {Ti1} ⊆ γ(α({Ti1})). Therefore, we get that
{∀X.Ti1} = ∀X.{Ti1} ⊆ ∀X.γ(α({Ti1})), as we are required to prove.

Case ({Ti} heterogeneous). Then α({Ti}) = ?δ , where ftv(δ) = ftv({Ti}). Then, we know that
γ(α(A)) = γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Since ftv({Ti}) = ftv(δ) = ftv(?δ), we get that
A ⊆ γ(?δ).

Lemma B.93 (α is Optimal) If A is not empty and A ⊆ γ(G) then α(A) v G.

416

Proof. We proceed by induction on G.

Case (B). We know that γ(B) = {B }. Since A is no empty and A ⊆ γ(G), then we know that
A = γ(B) = {B }. Also, we know that α({B }) = B v B = G, as we are required to prove.

Case (X). We know that γ(X) = {X}. Since A is no empty and A ⊆ γ(G), then we know that
A = γ(X) = {X}. Also, we know that α({X}) = X v X = G, as we are required to prove.

Case (G1→G2). We know that γ(G1→G2) = γ(G1)→γ(G2). Since A is no empty and A ⊆ γ(G),
then we know that A = {T11→T12}, {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2). We know that α(A) =
α({T11→T12}) = α({T11})→α({T12}). We are required to prove that α({T11})→α({T12}) v
G1→G2. Therefore, by (v→), we are required to show that α({T11}) v G1 and α({T12}) v G2,
which follows immediately by the inductive hypothesis on G1 and G2, with {T11} ⊆ γ(G1) and
{T12} ⊆ γ(G2), noting that {T11} and {T12} are not empty set because {T11→T12} is not empty.

Case (G1×G2). We know that γ(G1×G2) = γ(G1)× γ(G2). Since A is no empty and A ⊆ γ(G),
then we know that A = {T11×T12}, {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2). We know that α(A) =
α({T11×T12}) = α({T11})×α({T12}). We are required to prove that α({T11})×α({T12}) v
G1×G2. Therefore, by (v×), we are required to show that α({T11}) v G1 and α({T12}) v G2,
which follows immediately by the inductive hypothesis on G1 and G2, with {T11} ⊆ γ(G1) and
{T12} ⊆ γ(G2), noting that {T11} and {T12} are not empty set because {T11×T12} is not empty.

Case (∀X.G1). We know that γ(∀X.G1) = ∀X.γ(G1). Since A is no empty and A ⊆ γ(G), then we
know that A = {∀X.T11}, {T11} ⊆ γ(G1). We know that α(A) = α({∀X.T11}) = ∀X.α({T11}). We
are required to prove that ∀X.α({T11}) v ∀X.G1. Therefore, by (v∀), we are required to show that
α({T11}) v G1, which follows immediately by the inductive hypothesis on G1, with {T11} ⊆ γ(G1),
noting that {T11} is not empty set because {∀X.T11} is not empty.

Case (?δ). We know that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Since A ⊆ γ(G), by Lemma B.98, we
know that ftv(A) ⊆ ftv(?δ) = ftv(δ). By Lemma B.101, we get that ftv(A) = ftv(α(A)) and
thus, ftv(α(A)) ⊆ ftv(?δ). Therefore, by Lemma B.100, we get that α(A) v ?δ , as we are required
to show.

α(γ(G)) = G.

Proof. We know that γ(G) v γ(G). Thus, by Lemma B.93, we get that α(γ(G)) v G. By
Lemma B.92, we get that γ(G) ⊆ γ(α(γ(G))), thus, by Definition B.94, we know that G v α(γ(G)).
Since α(γ(G)) v G and G v α(γ(G)), we know that α(γ(G)) = G.

Definition B.94 G1 v G2 if and only if γ(G1) ⊆ γ(G2).

[Precision, inductively] The inductive definition of type precision given in Figure B.6 is equiv-
alent to Definition B.94.

Proof. We first prove that G1 v G2 =⇒ γ(G1) ⊆ γ(G2). We proceed by induction on G1.

Case (G1 = B). Since B v G2, we know that G2 = B or G2 = ?δ .

• If G2 = B, then we have to prove that γ(B) = {B } ⊆ {B } = γ(B), which follows immediately.

• If G2 = ?δ , then we have to prove that γ(B) = {B } ⊆ {T | ftv(T) ⊆ ftv(δ)} = γ(?δ), which
follows immediately.

417

Case (G1 = X). Since X v G2, we know that G2 = X or G2 = ?δ .

• If G2 = X, then we have to prove that γ(X) = {X} ⊆ {X} = γ(X), which follows immediately.

• If G2 = ?δ , by (vX?), we know that X : X ∈ δ, or what is the same X ∈ ftv(δ). We have to
prove that γ(X) = {X} ⊆ {T | ftv(T) ⊆ ftv(δ)} = γ(?δ), which follows immediately since
X ∈ ftv(δ).

Case (G1 = G11→G12). We know that γ(G11→G12) = γ(G11)→γ(G12) = {T11→T12 | T11 ∈ γ(G11) ∧
T12 ∈ γ(G12)}. Since (G11→G12) v G2, we know that G2 = G21→G22 or G2 = ?δ .

• We have that G2 = G21→G22, such that G11 v G21 and G12 v G22, by (v→) rule. Therefore, by
the induction hypotheses on G11 and G12, we know that γ(G11) ⊆ γ(G21) and γ(G12) ⊆ γ(G22),
where γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(G21) = {T21 ∈ γ(G21)} and γ(G12) = {T12 ∈ γ(G12)} ⊆
γ(G22) = {T22 ∈ γ(G22)}. We know that γ(G21→G22) = γ(G21)→γ(G22) = {T21→T22 | T21 ∈
γ(G21)∧T22 ∈ γ(G22)}. We are required to prove that γ(G11→G12) ⊆ γ(G21→G22), or what is
the same {T11→T12 | T11 ∈ γ(G11)∧T12 ∈ γ(G12)} ⊆ {T21→T22 | T21 ∈ γ(G21)∧T22 ∈ γ(G22)}.
Thus, we are required to prove that γ(G11) ⊆ γ(G21) and γ(G12) ⊆ γ(G22), which we already
know.

• We have that G2 = ?δ , and we know that G11 v ?δ and G12 v ?δ , by (v→?) rule. Therefore, by
the induction hypotheses on G11 and G12, we know that γ(G11) ⊆ γ(?δ) and γ(G12) ⊆ γ(?δ),
where γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} and γ(G12) = {T12 ∈
γ(G12)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. We are required to prove that γ(G11→G12) ⊆
γ(?δ), or what is the same {T11→T12 | T11 ∈ γ(G11)∧T12 ∈ γ(G12)} ⊆ {T | ftv(T) ⊆ ftv(δ)}.
Thus, we are required to prove that γ(G11) ⊆ γ(?δ) and γ(G12) ⊆ γ(?δ), which we already
know.

Case (G1 = G11×G12). We know that γ(G11×G12) = γ(G11)× γ(G12) = {T11×T12 | T11 ∈ γ(G11)∧
T12 ∈ γ(G12)}. Since (G11×G12) v G2, we know that G2 = G21×G22 or G2 = ?δ .

• We have that G2 = G21×G22, such that G11 v G21 and G12 v G22, by (v×) rule. Therefore, by
the induction hypotheses on G11 and G12, we know that γ(G11) ⊆ γ(G21) and γ(G12) ⊆ γ(G22),
where γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(G21) = {T21 ∈ γ(G21)} and γ(G12) = {T12 ∈ γ(G12)} ⊆
γ(G22) = {T22 ∈ γ(G22)}. We know that γ(G21×G22) = γ(G21)× γ(G22) = {T21×T22 | T21 ∈
γ(G21)∧T22 ∈ γ(G22)}. We are required to prove that γ(G11×G12) ⊆ γ(G21×G22), or what is
the same {T11×T12 | T11 ∈ γ(G11)∧T12 ∈ γ(G12)} ⊆ {T21×T22 | T21 ∈ γ(G21)∧T22 ∈ γ(G22)}.
Thus, we are required to prove that γ(G11) ⊆ γ(G21) and γ(G12) ⊆ γ(G22), which we already
know.

• We have that G2 = ?δ and we know that G11 v ?δ and G12 v ?δ , by (v×?) rule. Therefore, by
the induction hypotheses on G11 and G12, we know that γ(G11) ⊆ γ(?δ) and γ(G12) ⊆ γ(?δ),
where γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} and γ(G12) = {T12 ∈
γ(G12)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. We are required to prove that γ(G11×G12) ⊆
γ(?δ), or what is the same {T11×T12 | T11 ∈ γ(G11)∧T12 ∈ γ(G12)} ⊆ {T | ftv(T) ⊆ ftv(δ)}.
Thus, we are required to prove that γ(G11) ⊆ γ(?δ) and γ(G12) ⊆ γ(?δ), which we already
know.

Case (G1 = ∀X.G11). We know that γ(∀X.G11) = ∀X.γ(G11) = {∀X.T11 | T11 ∈ γ(G11)}. Since
(∀X.G11) v G2, we know that G2 = ∀X.G21 or G2 = ?δ .

418

• We have that G2 = ∀X.G21, such that G11 v G21, by (v∀) rule. Therefore, by the induction
hypotheses on G11, we know that γ(G11) ⊆ γ(G21), where γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(G21) =
{T21 ∈ γ(G21)}. We know that γ(∀X.G21) = ∀X.γ(G21) = {∀X.T21 | T21 ∈ γ(G21)}. We are
required to prove that γ(∀X.G11) ⊆ γ(∀X.G21), or what is the same {∀X.T11 | T11 ∈ γ(G11)} ⊆
{∀X.T21 | T21 ∈ γ(G21)}. Thus, we are required to prove that γ(G11) ⊆ γ(G21) which we
already know.

• We have that G2 = ?δ , and we know that G11 v ?δ,X:X, by (v∀?) rule. Therefore, by the
induction hypotheses on G11, we know that γ(G11) ⊆ γ(?δ,X:X), where γ(G11) = {T11 ∈
γ(G11)} ⊆ γ(?δ,X:X) = {T | ftv(T) ⊆ ftv(δ,X : X)} and we are required to prove that
γ(∀X.G11) ⊆ γ(?δ), or what is the same {∀X.T11 | T11 ∈ γ(G11)} ⊆ {T | ftv(T) ⊆ ftv(δ)}.
Thus, we are required to prove that γ(G11) ⊆ γ(?δ,X:X), which we already know.

Case (G1 = ?δ). Since ?δ v G2, we know that G2 = ?δ′ and δ ⊆ δ′, by (v?). Therefore, we know that
ftv(δ) ⊆ ftv(δ′). We are required to show that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} ⊆ {T | ftv(T) ⊆
ftv(δ′)} = γ(G2), which follows by ftv(δ) ⊆ ftv(δ′).

Next, we prove that γ(G1) ⊆ γ(G2) =⇒ G1 v G1. We proceed by induction on G1.

Case (G1 = B). Since γ(B) ⊆ γ(G2), we know that G2 = B or G2 = ?δ .

• If G2 = B, then we have to prove that B v B, which is trivial by (vB).

• If G2 = ?δ , then we have to prove that B v ?δ , which is trivial by (vB?) rule.

Case (G1 = X). Since γ(X) ⊆ γ(G2), we know that G2 = X or G2 = ?δ .

• If G2 = X, then we have to prove that X v X, which is trivial by (vX).

• If G2 = ?δ , since γ(X) = {X} ⊆ γ(G2) = γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}, we know that
X ∈ ftv(δ), and therefore X : X ∈ δ. We have to prove that X v ?δ , which is triviaSl by
(vX?) rule and X : X ∈ δ.

Case (G1 = G11→G12). We know that γ(G11→G12) = γ(G11)→γ(G12) = {T11→T12 | T11 ∈ γ(G11) ∧
T12 ∈ γ(G12)}. Since γ(G11→G12) ⊆ γ(G2), we know that G2 = G21→G22 or G2 = ?δ .

• We have that G2 = G21→G22, such that γ(G21→G22) = γ(G21)→γ(G22) = {T21→T22 | T21 ∈
γ(G21) ∧ T22 ∈ γ(G22)} and {T11→T12 | T11 ∈ γ(G11) ∧ T12 ∈ γ(G12)} ⊆ {T21→T22 | T21 ∈
γ(G21) ∧ T22 ∈ γ(G22)}. Thus, we know that γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(G21) = {T21 ∈
γ(G21)} and γ(G12) = {T12 ∈ γ(G12)} ⊆ γ(G22) = {T22 ∈ γ(G22)}. Therefore, by the induction
hypotheses on G11 and G12, we know that G11 v G21 and G12 v G22. Therefore, by (v→)
rule, G11→G12 v G21→G22, and the result holds.

• We have that G2 = ?δ , such that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Thus, we know that
γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} and γ(G12) = {T12 ∈ γ(G12)} ⊆
γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Therefore, by the induction hypotheses on G11 and G12, we
know that G11 v ?δ and G12 v ?δ . By (v→?) rule, we are required to prove that G11→G12 v
?δ→?δ , or what is the same, we are required to show that G11 v ?δ and G12 v ?δ , which we
already know.

Case (G1 = G11×G12). We know that γ(G11×G12) = γ(G11)× γ(G12) = {T11×T12 | T11 ∈ γ(G11)∧
T12 ∈ γ(G12)}. Since γ(G11×G12) ⊆ γ(G2), we know that G2 = G21×G22 or G2 = ?δ .

419

• We have that G2 = G21×G22, such that γ(G21×G22) = γ(G21)× γ(G22) = {T21×T22 | T21 ∈
γ(G21) ∧ T22 ∈ γ(G22)} and {T11×T12 | T11 ∈ γ(G11) ∧ T12 ∈ γ(G12)} ⊆ {T21×T22 | T21 ∈
γ(G21) ∧ T22 ∈ γ(G22)}. Thus, we know that γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(G21) = {T21 ∈
γ(G21)} and γ(G12) = {T12 ∈ γ(G12)} ⊆ γ(G22) = {T22 ∈ γ(G22)}. Therefore, by the induction
hypotheses on G11 and G12, we know that G11 v G21 and G12 v G22. Therefore, by (v×) rule,
G11×G12 v G21×G22, and the result holds.

• We have that G2 = ?δ , such that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Thus, we know that
γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} and γ(G12) = {T12 ∈ γ(G12)} ⊆
γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Therefore, by the induction hypotheses on G11 and G12, we
know that G11 v ?δ and G12 v ?δ . By (v×?) rule, we are required to prove that G11×G12 v
?δ × ?δ , or what is the same, we are required to show that G11 v ?δ and G12 v ?δ , which we
already know.

Case (G1 = ∀X.G11). We know that γ(∀X.G11) = ∀X.γ(G11) = {∀X.T11 | T11 ∈ γ(G11)}. Since
γ(∀X.G11) ⊆ γ(G2), we know that G2 = ∀X.G21 or G2 = ?δ .

• We have that G2 = ∀X.G21, such that γ(∀X.G21) = ∀X.γ(G21) = {∀X.T21 | T21 ∈ γ(G21)} and
{∀X.T11 | T11 ∈ γ(G11)} ⊆ {∀X.T21 | T21 ∈ γ(G21)}. Thus, we know that γ(G11) = {T11 ∈
γ(G11)} ⊆ γ(G21) = {T21 ∈ γ(G21)}. Therefore, by the induction hypotheses on G11, we know
that G11 v G21. Therefore, by (v∀) rule, ∀X.G11 v ∀X.G21, and the result holds.

• We have that G2 = ?δ , such that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Thus, we know that
γ(G11) = {T11 ∈ γ(G11)} ⊆ γ(?δ,X:X) = {T | ftv(T) ⊆ ftv(δ,X : X)}. Therefore, by the
induction hypotheses on G11, we know that G11 v ?δ,X:X. By (v∀?) rule, we are required to
prove that ∀X.G11 v ∀X.?δ,X:X, or what is the same, we are required to show that G11 v ?δ,X:X,
which we already know.

Case (G1 = ?δ). Since γ(?δ) = {T | ftv(T) ⊆ ftv(δ)} ⊆ γ(G2), we know that G2 = ?δ′ , where
γ(?δ′) = {T | ftv(T) ⊆ ftv(δ′)}. Therefore, we have that ftv(δ) ⊆ ftv(δ′), or what is the same
δ ⊆ δ′. We are required to prove that ?δ v ?δ′ , which follows by (v?) rule and δ ⊆ δ′.

Lemma B.95

1. B u B = B;

2. X u X = X;

3. (G1→G′1) u (G2→G′2) = (G1 u G2)→(G′1 u G′2);

4. (G1×G′1) u (G2×G′2) = (G1 u G2)×(G′1 u G′2);

5. (∀X.G1) u (∀X.G2) = ∀X.(G1 u G2);

6. ?δ1 u ?δ2 = ?δ1∩δ2;

7. B u ?δ = ?δ u B = B;

8. X u ?δ = ?δ u X = X if X : X ∈ δ;

9. (G1→G′1) u ?δ = ?δ u (G1→G′1) = (G1 u ?δ)→(G′1 u ?δ);

420

10. (G1×G′1) u ?δ = ?δ u (G1×G′1) = (G1 u ?δ)×(G′1 u ?δ);

11. (∀X.G1) u ?δ = ?δ u (∀X.G1) = ∀X.(G1 u ?δ,X:X);

12. G1 u G2 is undefined otherwise.

Proof.

1. B u B = B. Since γ(B) = {B } and α({B }) = B, we get that B u B = α(γ(B) ∩ γ(B)) =
α({B } ∩ {B }) = α({B }) = B, as we are required to show.

2. X u X = X. Since γ(X) = {X } and α({X }) = X, we get that X u X = α(γ(X) ∩ γ(X)) =
α({X } ∩ {X }) = α({X }) = X, as we are required to show.

3. (G1→G′1) u (G2→G′2) = (G1 u G2)→(G′1 u G′2). We know that

(G1→G′1) u (G2→G′2) = α(γ(G1→G′1) ∩ γ(G2→G′2)) = α((γ(G1)→γ(G′1)) ∩ (γ(G2)→γ(G′2))) =

α((γ(G1)∩γ(G2))→(γ(G′1)∩γ(G′2))) = α(γ(G1)∩γ(G2))→α(γ(G′1)∩γ(G′2)) = (G1uG2)→(G′1uG′2)

as we are required to show. Note that (A∩B)× (C ∩D) = (A×C)∩ (B×D), by set theory.

4. (G1×G′1) u (G2×G′2) = (G1 u G2)×(G′1 u G′2). We know that

(G1×G′1)u (G2×G′2) = α(γ(G1×G′1)∩γ(G2×G′2)) = α((γ(G1)× γ(G′1))∩ (γ(G2)× γ(G′2))) =

α((γ(G1)∩γ(G2))×(γ(G′1)∩γ(G′2))) = α(γ(G1)∩γ(G2))×α(γ(G′1)∩γ(G′2)) = (G1uG2)×(G′1uG′2)

as we are required to show. Note that (A∩B)× (C ∩D) = (A×C)∩ (B×D), by set theory.

5. (∀X.G1) u (∀X.G2) = ∀X.(G1 u G2). We know that

(∀X.G1) u (∀X.G2) = α(γ(∀X.G1) ∩ γ(∀X.G2)) = α((∀X.γ(G1)) ∩ (∀X.γ(G2))) =

α(∀X.(γ(G1) ∩ γ(G2))) = ∀X.α(γ(G1) ∩ γ(G2)) = ∀X.(G1 u G2)

as we are required to show.

6. ?δ1 u ?δ2 = ?δ1∩δ2 . We know that

?δ1 u ?δ2 = α(γ(?δ1) ∩ γ(?δ2)) = α({T | ftv(T) ⊆ ftv(δ1) } ∩ {T | ftv(T) ⊆ ftv(δ2) }) =

α({T | ftv(T) ⊆ ftv(δ1) ∩ ftv(δ2) }) = α({T | ftv(T) ⊆ ftv(δ1 ∩ δ2) }) = ?δ1∩δ2

7. B u ?δ = ?δ u B = B. We know that γ(B) = {B }, α({B }) = B, {B } ⊆ γ(?δ) and
{B } ∩ γ(?δ) = {B }. Thus, B u ?δ = α(γ(B) ∩ γ(?δ)) = α({B } ∩ γ(?δ)) = α({B }) = B and
?δ u B = α(γ(?δ) ∩ γ(B)) = α(γ(?δ) ∩ {B }) = α({B }) = B, as we are required to show.

8. Xu ?δ = ?δ uX = X if X : X ∈ δ. We know that γ(X) = {X }, α({X }) = X, {X } ⊆ γ(?δ) (X :
X ∈ δ and ftv(X) = {X } ⊆ ftv(δ)) and {X }∩γ(?δ) = {X }. Thus, Xu?δ = α(γ(X)∩γ(?δ)) =
α({X }∩γ(?δ)) = α({X }) = X and ?δuX = α(γ(?δ)∩γ(X)) = α(γ(?δ)∩{X }) = α({X }) = X,
as we are required to show.

421

9. (G1→G′1) u ?δ = ?δ u (G1→G′1) = (G1 u ?δ)→(G′1 u ?δ). We know that (γ(?δ)→γ(?δ)) ⊆ γ(?δ)
and (γ(G1)→γ(G′1)) ∩ γ(?δ) = (γ(G1)→γ(G′1)) ∩ (γ(?δ)→γ(?δ)). Thus, we get that

(G1→G′1) u ?δ = α(γ(G1→G′1) ∩ γ(?δ)) = α((γ(G1)→γ(G′1)) ∩ (γ(?δ)→γ(?δ))) =

α((γ(G1)∩γ(?δ))→(γ(G′1)∩γ(?δ))) = α((γ(G1)∩γ(?δ)))→α((γ(G′1)∩γ(?δ))) = (G1u?δ)→(G′1u?δ)

and
?δ u (G1→G′1) =

α(γ(?δ)∩γ(G1→G′1)) = α((γ(?δ)→γ(?δ))∩(γ(G1)→γ(G′1))) = α((γ(?δ)∩γ(G1))→(γ(?δ)∩γ(G′1))) =

α((γ(?δ)∩γ(G1)))→α((γ(?δ)∩γ(G′1))) = α((γ(G1)∩γ(?δ)))→α((γ(G′1)∩γ(?δ))) = (G1u?δ)→(G′1u?δ)

10. (G1×G′1)u ?δ = ?δ u (G1×G′1) = (G1 u ?δ)×(G′1 u ?δ). We know that (γ(?δ)× γ(?δ)) ⊆ γ(?δ)
and (γ(G1)× γ(G′1)) ∩ γ(?δ) = (γ(G1)× γ(G′1)) ∩ (γ(?δ)× γ(?δ)). Thus, we get that

(G1×G′1) u ?δ = α(γ(G1×G′1) ∩ γ(?δ)) = α((γ(G1)× γ(G′1)) ∩ (γ(?δ)× γ(?δ))) =

α((γ(G1)∩γ(?δ))×(γ(G′1)∩γ(?δ))) = α((γ(G1)∩γ(?δ)))×α((γ(G′1)∩γ(?δ))) = (G1u?δ)×(G′1u?δ)

and
?δ u (G1×G′1) =

α(γ(?δ)∩γ(G1×G′1)) = α((γ(?δ)× γ(?δ))∩(γ(G1)× γ(G′1))) = α((γ(?δ)∩γ(G1))×(γ(?δ)∩γ(G′1))) =

α((γ(?δ)∩γ(G1)))×α((γ(?δ)∩γ(G′1))) = α((γ(G1)∩γ(?δ)))×α((γ(G′1)∩γ(?δ))) = (G1u?δ)×(G′1u?δ)

11. (∀X.G1) u ?δ = ?δ u (∀X.G1) = ∀X.(G1 u ?δ,X:X). We know that (∀X.γ(?δ,X:X)) ⊆ γ(?δ) and
(∀X.γ(G1)) ∩ γ(?δ) = (∀X.γ(G1)) ∩ (∀X.γ(?δ,X:X)). Thus, we get that

(∀X.G1) u ?δ = α(γ(∀X.G1) ∩ γ(?δ)) = α((∀X.γ(G1)) ∩ (∀X.γ(?δ,X:X))) =

α(∀X.(γ(G1) ∩ γ(?δ,X:X))) = ∀X.α((γ(G1) ∩ γ(?δ,X:X))) = ∀X.(G1 u ?δ,X:X)

and

?δu(∀X.G1) = α(γ(?δ)∩γ(∀X.G1)) = α((∀X.γ(?δ,X:X))∩(∀X.γ(G1))) = α(∀X.(γ(?δ,X:X) ∩ γ(G1))) =

∀X.α((γ(?δ,X:X) ∩ γ(G1))) = ∀X.α((γ(G1) ∩ γ(?δ,X:X))) = ∀X.(G1 u ?δ,X:X)

12. G1 uG2 is undefined otherwise. If we try to calculate G1 uG2 = α(γ(G1)∩ γ(G2)), we will get
that γ(G1) ∩ γ(G2) = ∅, therefore, α(γ(G1) ∩ γ(G2)) is not defined and the result holds.

Definition B.96 (Consistency) G1 ∼ G2 if and only if there exists T1 and T2 such that T1 = T2,
T1 ∈ γ(G1) and T2 ∈ γ(G2).

[Consistency, inductively] The inductive definition of type consistency given in Figure B.6 is
equivalent to Definition B.96.

Proof. We first prove that if G ∼ G′ by definition in Figure B.6, we get that G ∼ G′, by Defini-
tion B.96. We proceed by induction on G ∼ G′.

422

Case (B ∼ B). We are required to prove that B ∼ B, or what is the same that there exists T1 and
T2 such that T1 = T2, T1 ∈ γ(G) = γ(B) = {B } and T2 ∈ γ(G′) = γ(B) = {B }. Thus, if we choose
T1 = T2 = B, the result holds.

Case (X ∼ X). We are required to prove that X ∼ X, or what is the same that there exists T1 and
T2 such that T1 = T2, T1 ∈ γ(G) = γ(X) = {X } and T2 ∈ γ(G′) = γ(X) = {X }. Thus, if we choose
T1 = T2 = X, the result holds.

Case (G1→G2 ∼ G′1→G′2). By the inductive hypothesis on G1 ∼ G′1 and G2 ∼ G′2, we get that that
there exists T1 and T ′1, and T2 and T ′2 such that T1 = T ′1, T1 ∈ γ(G1), T

′
1 ∈ γ(G′1), T2 = T ′2, T2 ∈ γ(G2)

and T ′2 ∈ γ(G′2). We are required to prove that that there exists T1→T2 and T ′1→T ′2 such that
T1→T2 = T ′1→T ′2, T1→T2 ∈ γ(G1→G2) = γ(G1)→γ(G2) and T ′1→T ′2 ∈ γ(G′1→G′2) = γ(G′1)→γ(G′2),
as we have already showed.

Case (G1×G2 ∼ G′1×G′2). By the inductive hypothesis on G1 ∼ G′1 and G2 ∼ G′2, we get that
that there exists T1 and T ′1, and T2 and T ′2 such that T1 = T ′1, T1 ∈ γ(G1), T

′
1 ∈ γ(G′1), T2 = T ′2,

T2 ∈ γ(G2) and T ′2 ∈ γ(G′2). We are required to prove that that there exists T1×T2 and T ′1×T ′2
such that T1×T2 = T ′1×T ′2, T1×T2 ∈ γ(G1×G2) = γ(G1)× γ(G2) and T ′1×T ′2 ∈ γ(G′1×G′2) =
γ(G′1)× γ(G′2), as we have already showed.

Case (∀X.G1 ∼ ∀X.G′1). By the inductive hypothesis on G1 ∼ G′1, we get that that there exists T1 and
T ′1, T1 = T ′1, T1 ∈ γ(G1) and T ′1 ∈ γ(G′1). We are required to prove that that there exists ∀X.T1 and
∀X.T ′1 such that ∀X.T1 = ∀X.T ′1, ∀X.T1 ∈ γ(∀X.G1) = ∀X.γ(G1) and ∀X.T ′1 ∈ γ(∀X.G′1) = ∀X.γ(G′1),
as we have already showed.

Case (B ∼ ?δ). We are required to prove that B ∼ ?δ , or what is the same that there exists T1 and
T2 such that T1 = T2, T1 ∈ γ(G) = γ(B) = {B } and T2 ∈ γ(G′) = γ(?δ) ⊇ {B }. Thus, if we choose
T1 = T2 = B, the result holds.

Case (?δ ∼ B). Identically, to the inverse case.

Case (X ∼ ?δ ∧ X : X ∈ δ). We are required to prove that X ∼ ?δ , or what is the same that there
exists T1 and T2 such that T1 = T2, T1 ∈ γ(G) = γ(X) = {X } and T2 ∈ γ(G′) = γ(?δ) ⊇ {X } (since
X : X ∈ δ and ftv(X) = {X } ⊆ ftv(δ)). Thus, if we choose T1 = T2 = X, the result holds.

Case (?δ ∼ X ∧ X : X ∈ δ). Identically, to the inverse case.

Case (G1→G2 ∼ ?δ). By the inductive hypothesis on G1 ∼ ?δ and G2 ∼ ?δ , we get that that there
exists T1 and T ′1, and T2 and T ′2 such that T1 = T ′1, T1 ∈ γ(G1), T

′
1 ∈ γ(?δ), T2 = T ′2, T2 ∈ γ(G2)

and T ′2 ∈ γ(?δ). We are required to prove that that there exists T1→T2 and T ′1→T ′2 such that
T1→T2 = T ′1→T ′2, T1→T2 ∈ γ(G1→G2) = γ(G1)→γ(G2) and T ′1→T ′2 ∈ γ(?δ) ⊇ γ(?δ)→γ(?δ), as we
have already showed.

Case (G1×G2 ∼ ?δ). By the inductive hypothesis on G1 ∼ ?δ and G2 ∼ ?δ , we get that that there
exists T1 and T ′1, and T2 and T ′2 such that T1 = T ′1, T1 ∈ γ(G1), T

′
1 ∈ γ(?δ), T2 = T ′2, T2 ∈ γ(G2)

and T ′2 ∈ γ(?δ). We are required to prove that that there exists T1×T2 and T ′1×T ′2 such that
T1×T2 = T ′1×T ′2, T1×T2 ∈ γ(G1×G2) = γ(G1)× γ(G2) and T ′1×T ′2 ∈ γ(?δ) ⊇ γ(?δ)× γ(?δ), as
we have already showed.

Case (∀X.G1 ∼ ?δ). By the inductive hypothesis on G1 ∼ ?δ,X:X, we get that that there exists
T1 and T ′1 such that T1 = T ′1, T1 ∈ γ(G1) and T ′1 ∈ γ(?δ,X:X). We are required to prove that
that there exists ∀X.T1 and ∀X.T ′1 such that ∀X.T1 = ∀X.T ′1, ∀X.T1 ∈ γ(∀X.G1) = ∀X.γ(G1) and
∀X.T ′1 ∈ γ(?δ) ⊇ ∀X.γ(?δ,X:X), as we have already showed.

Case (?δ ∼ G1→G2). Identically, to the inverse case.

Case (?δ ∼ G1×G2). Identically, to the inverse case.

Case (?δ ∼ ∀X.G). Identically, to the inverse case.

Case (?δ ∼ ?δ′). We know that B ∈ γ(?δ) and B ∈ γ(?δ′), thus, the result holds.

423

Next, we prove that if G ∼ G′, by Definition B.96, we get that G ∼ G′, by definition in Figure B.6.
By Definition B.96, we know that G ∼ G′ if there exists T and T ′ such that T = T ′ T ∈ γ(G) and
T ′ ∈ γ(G′). We proceed by induction on T .

Case (B). Then, we know that B ∈ γ(G) and B ∈ γ(G′). Thus, we have the following cases.

• G = B and G′ = B. The result holds immediately, since B ∼ B.

• G = B and G′ = ?δ . The result holds immediately, since B ∼ ?δ .

• G = ?δ and G′ = B. The result holds immediately, since ?δ ∼ B.

• G = ?δ and G′ = ?δ′ . The result holds immediately, since ?δ ∼ ?δ′ .

Case (X). Then, we know that X ∈ γ(G) and X ∈ γ(G′). Thus, we have the following cases.

• G = X and G′ = X. The result holds immediately, since X ∼ X.

• G = X, G′ = ?δ and X : X ∈ δ. The result holds immediately, since X ∼ ?δ .

• G = ?δ , G
′ = X and X : X ∈ δ. The result holds immediately, since ?δ ∼ X.

• G = ?δ , G
′ = ?δ′ , X : X ∈ δ and X : X ∈ δ′. The result holds immediately, since ?δ ∼ ?δ′ .

Case (T1→T2). Then, we know that T1→T2 ∈ γ(G) and T1→T2 ∈ γ(G′). Thus, we have the following
cases.

• G = G1→G2 and G′ = G′1→G′2. Thus, we know that T1→T2 ∈ γ(G1→G2) and T1→T2 ∈
γ(G′1→G′2). Therefore, we get that T1 ∈ γ(G1), T2 ∈ γ(G2), T1 ∈ γ(G′1) and T2 ∈ γ(G′2).
By the inductive hypothesis, we get that G1 ∼ G′1 and G2 ∼ G′2. Therefore, the result holds
immediately, since G1→G2 ∼ G′1→G′2.

• G = G1→G2 and G′ = ?δ . Thus, we know that T1→T2 ∈ γ(G1→G2) and T1→T2 ∈ γ(?δ) ⊇
γ(?δ)→γ(?δ). Therefore, we get that T1 ∈ γ(G1), T2 ∈ γ(G2), T1 ∈ γ(?δ) and T2 ∈ γ(?δ).
By the inductive hypothesis, we get that G1 ∼ ?δ and G2 ∼ ?δ . Therefore, the result holds
immediately, since G1→G2 ∼ ?δ .

• G = ?δ and G′ = G′1→G′2. Identically to the previous case.

• G = ?δ and G′ = ?δ′ . The result holds immediately, since ?δ ∼ ?δ′ .

Case (T1×T2). Then, we know that T1×T2 ∈ γ(G) and T1×T2 ∈ γ(G′). Thus, we have the
following cases.

• G = G1×G2 and G′ = G′1×G′2. Thus, we know that T1×T2 ∈ γ(G1×G2) and T1×T2 ∈
γ(G′1×G′2). Therefore, we get that T1 ∈ γ(G1), T2 ∈ γ(G2), T1 ∈ γ(G′1) and T2 ∈ γ(G′2).
By the inductive hypothesis, we get that G1 ∼ G′1 and G2 ∼ G′2. Therefore, the result holds
immediately, since G1×G2 ∼ G′1×G′2.

• G = G1×G2 and G′ = ?δ . Thus, we know that T1×T2 ∈ γ(G1×G2) and T1×T2 ∈ γ(?δ) ⊇
γ(?δ)× γ(?δ). Therefore, we get that T1 ∈ γ(G1), T2 ∈ γ(G2), T1 ∈ γ(?δ) and T2 ∈ γ(?δ).
By the inductive hypothesis, we get that G1 ∼ ?δ and G2 ∼ ?δ . Therefore, the result holds
immediately, since G1×G2 ∼ ?δ .

424

• G = ?δ and G′ = G′1×G′2. Identically to the previous case.

• G = ?δ and G′ = ?δ′ . The result holds immediately, since ?δ ∼ ?δ′ .

Case (∀X.T1). Then, we know that ∀X.T1 ∈ γ(G) and ∀X.T1 ∈ γ(G′). Thus, we have the following
cases.

• G = ∀X.G1 and G′ = ∀X.G′1. Thus, we know that ∀X.T1 ∈ γ(∀X.G1) and ∀X.T1 ∈ γ(∀X.G′1).
Therefore, we get that T1 ∈ γ(G1) and T1 ∈ γ(G′1). By the inductive hypothesis, we get that
G1 ∼ G′1. Therefore, the result holds immediately, since ∀X.G1 ∼ ∀X.G′1.

• G = ∀X.G1 and G′ = ?δ . Thus, we know that ∀X.T1 ∈ γ(∀X.G1) and ∀X.T1 ∈ γ(?δ) ⊇
∀X.γ(?δ,X:X). Therefore, we get that T1 ∈ γ(G1) and T1 ∈ γ(?δ,X:X). By the inductive
hypothesis, we get that G1 ∼ ?δ,X:X. Therefore, the result holds immediately, since ∀X.G1 ∼ ?δ .

• G = ?δ and G′ = ∀X.G′1. Identically to the previous case.

• G = ?δ and G′ = ?δ′ . The result holds immediately, since ?δ ∼ ?δ′ .

Definition B.97 (Consistent lifting of functions) Let Fn be a function of type Typen → Type. Its

consistent lifting F]n, of type GTypen → GType, is defined as: F]n(G) = α({Fn(T) | T ∈ γ(G) })

The abstract interpretation framework allows us to prove the following definitions: [Consistent

type functions] The definitions of dom], cod], inst], and proj]i given in Fig. B.6 are consistent
liftings, as per Def. B.97, of the corresponding functions from Fig. B.3.

Proof.

Case (dom]). If dom](G) = α({ dom(T) | T ∈ γ(G) }) is defined, we know thatA = { dom(T) | T ∈ γ(G) } 6=
∅. Therefore, by the definition of dom(T), we know that at least T = T1→T2 ∈ γ(G) and T1 ∈ A.
Therefore, we know that G = ?δ or G = G1→G2.

• If G = ?δ , we know that dom](G) = dom](?δ) = ?δ (definition in figure). We know that

ftv({ dom(T) | T ∈ γ(?δ) }) = ftv(δ)

Therefore, we get that dom](G) = dom](?δ) = α({ dom(T) | T ∈ γ(?δ) }) = ?δ (Def. B.97).
Thus, the result holds.

• If G = G1→G2, we know that dom](G) = dom](G1→G2) = G1 (definition in figure). We
know that γ(G1→G2) = γ(G1)→γ(G2) = {T1→T2 | T1 ∈ γ(G1) ∧ T2 ∈ γ(G2) }. Also, we know
that dom](G1→G2) = α({ dom(T) | T ∈ γ(G1→G2) }) = α({T1 | T1→T2 ∈ γ(G1)→γ(G2) }) =
α(γ(G1)) (Def. B.97). By Corollary B.6.1, we know that α(γ(G1)) = G1. Therefore, dom](G1→G2) =
α(γ(G1)) = G1, and the result holds.

Case (cod]). If cod](G) = α({ cod(T) | T ∈ γ(G) }) is defined, we know thatA = { cod(T) | T ∈ γ(G) } 6=
∅. Therefore, by the definition of cod(T), we know that at least T = T1→T2 ∈ γ(G) and T1 ∈ A.
Therefore, we know that G = ?δ or G = G1→G2.

425

• If G = ?δ , we know that cod](G) = cod](?δ) = ?δ (definition in figure). We know that

ftv({ cod(T) | T ∈ γ(?δ) }) = ftv(δ)

Therefore, we get that cod](G) = cod](?δ) = α({ cod(T) | T ∈ γ(?δ) }) = ?δ (Def. B.97).
Thus, the result holds.

• If G = G1→G2, we know that cod](G) = cod](G1→G2) = G2 (definition in figure). We
know that γ(G1→G2) = γ(G1)→γ(G2) = {T1→T2 | T1 ∈ γ(G1) ∧ T2 ∈ γ(G2) }. Also, we know
that cod](G1→G2) = α({ cod(T) | T ∈ γ(G1→G2) }) = α({T2 | T1→T2 ∈ γ(G1)→γ(G2) }) =
α(γ(G2)) (Def. B.97). By Corollary B.6.1, we know that α(γ(G2)) = G2. Therefore, cod](G1→G2) =
α(γ(G2)) = G2, and the result holds.

Case (inst]). If inst](G,G′) = α({ inst(T, T ′) | T ∈ γ(G) ∧ T ′ ∈ γ(G′) }) is defined, we know that

A = { inst(T, T ′) | T ∈ γ(G) ∧ T ′ ∈ γ(G′) } 6= ∅

Therefore, by the definition of inst(T, T ′), we know that at least T = ∀X.T1 ∈ γ(G) and T1 ∈ A.
Therefore, we know that G = ?δ or G = ∀X.G1.

• If G = ?δ , we know that inst](G,G′) = inst](?δ ,G
′) = ?δ (definition in figure). We know that

ftv({ inst(T, T ′) | T ∈ γ(?δ) ∧ T ′ ∈ γ(G′) }) = ftv(δ)

Therefore, we get that inst](G,G′) = inst](?δ ,G
′) = α({ inst(T, T ′) | T ∈ γ(?δ) ∧ T ′ ∈ γ(G′) }) =

?δ (Def. B.97). Thus, the result holds.

• If G = ∀X.G1, we know that inst](G,G′) = inst](∀X.G1,G
′) = G1[G

′/X]\X (definition in
figure). We know that γ(∀X.G1) = ∀X.γ(G1) = { ∀X.T1 | T1 ∈ γ(G1) }. Also, we know that

inst](∀X.G1,G
′) = α({ inst(T, T ′) | T ∈ γ(∀X.G1) ∧ T ′ ∈ γ(G′) }) =

α({T1[T ′/X]\X | ∀X.T1 ∈ ∀X.γ(G1) ∧ T ′ ∈ γ(G′) }) = α(γ(G1[G
′/X]\X))

(Def. B.97). By Corollary B.6.1, we know that α(γ(G1[G
′/X]\X)) = G1[G

′/X]\X. Therefore,
inst](∀X.G1,G

′) = α(γ(G1[G
′/X]\X)) = G1[G

′/X]\X, and the result holds.

Case (proj]i). If proj]i(G) = α({ proj i(T) | T ∈ γ(G) }) is defined, we know thatA = { proj i(T) | T ∈ γ(G) } 6=
∅. Therefore, by the definition of proj i(T), we know that at least T = T1×T2 ∈ γ(G) and T1 ∈ A.
Therefore, we know that G = ?δ or G = G1×G2.

• If G = ?δ , we know that proj]i(G) = proj]i(?δ) = ?δ (definition in figure). We know that

ftv({ proj i(T) | T ∈ γ(?δ) }) = ftv(δ)

Therefore, we get that proj]i(G) = proj]i(?δ) = α({ proj i(T) | T ∈ γ(?δ) }) = ?δ (Def. B.97).
Thus, the result holds.

• If G = G1×G2, we know that proj]i(G) = proj]i(G1×G2) = Gi (definition in figure). We know
that γ(G1×G2) = γ(G1)× γ(G2) = {T1×T2 | T1 ∈ γ(G1) ∧ T2 ∈ γ(G2) }. Also, we know that

proj]i(G1×G2) = α({ proj i(T) | T ∈ γ(G1×G2) }) = α({Ti | T1×T2 ∈ γ(G1)× γ(G2) }) =

α(γ(Gi)) (Def. B.97). By Corollary B.6.1, we know that α(γ(Gi)) = Gi. Therefore, proj]i(G1×G2) =
α(γ(Gi)) = Gi, and the result holds.

426

Lemma B.98 If A ⊆ γ(G) then ftv(A) ⊆ ftv(G).

Proof. We proceed by induction on G.

Case (B). We know that γ(B) = {B }. Since A is no empty and A ⊆ γ(G), then we know that
A = γ(B) = {B }. Also, we know that ftv({B }) = ∅ ⊆ ∅ = ftv(B), as we are required to prove.

Case (X). We know that γ(X) = {X }. Since A is no empty and A ⊆ γ(G), then we know that
A = γ(X) = {X }. Also, we know that ftv({X }) = {X } ⊆ {X } = ftv(X), as we are required to
prove.

Case (G1→G2). We know that γ(G1→G2) = γ(G1)→γ(G2) and ftv(γ(G1)→γ(G2)) = ftv(γ(G1)) ∪
ftv(γ(G2)). SinceA is no empty andA ⊆ γ(G), then we know thatA = {T11→T12}, ftv({T11→T12}) =
ftv({T11}) ∪ ftv({T12}), {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2). Therefore, we are required to
show that ftv({T11}) ∪ ftv({T12}) ⊆ ftv(γ(G1)) ∪ ftv(γ(G2)). By the inductive hypothesis on
G1 and G2, with {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2), we get that ftv({T11}) ⊆ ftv(γ(G1)) and
ftv({T12}) ⊆ ftv(γ(G2)). Thus, we have that ftv({T11})∪ ftv({T12}) ⊆ ftv(γ(G1))∪ ftv(γ(G2)),
as we required to prove.

Case (G1×G2). We know that γ(G1×G2) = γ(G1)× γ(G2) and ftv(γ(G1)× γ(G2)) = ftv(γ(G1))∪
ftv(γ(G2)). SinceA is no empty andA ⊆ γ(G), then we know thatA = {T11×T12}, ftv({T11×T12}) =
ftv({T11}) ∪ ftv({T12}), {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2). Therefore, we are required to
show that ftv({T11}) ∪ ftv({T12}) ⊆ ftv(γ(G1)) ∪ ftv(γ(G2)). By the inductive hypothesis on
G1 and G2, with {T11} ⊆ γ(G1) and {T12} ⊆ γ(G2), we get that ftv({T11}) ⊆ ftv(γ(G1)) and
ftv({T12}) ⊆ ftv(γ(G2)). Thus, we have that ftv({T11})∪ ftv({T12}) ⊆ ftv(γ(G1))∪ ftv(γ(G2)),
as we required to prove.

Case (∀X.G1). We know that γ(∀X.G1) = ∀X.γ(G1) and ftv(∀X.γ(G1)) = ftv(γ(G1)) \ X. Since A
is no empty and A ⊆ γ(G), then we know that A = {∀X.T11}, ftv({∀X.T11}) = ftv({T11}) \ X,
{T11} ⊆ γ(G1). Therefore, we are required to show that ftv({T11}) \ X ⊆ ftv(γ(G1)) \ X. By the
inductive hypothesis on G1, with {T11} ⊆ γ(G1), we get that ftv({T11}) ⊆ ftv(γ(G1)). Thus, we
have that ftv({T11}) \ X ⊆ ftv(γ(G1)) \ X, as we required to prove.

Case (?δ). We know that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Since A ⊆ γ(?δ), we know that
ftv(A) ⊆ ftv(γ(?δ)) = ftv(?δ) = ftv(δ), by Lemma B.101. Therefore, since A ⊆ γ(?δ), we know
that ∀T ∈ A, ftv(T) ⊆ ftv(δ) = ftv(?δ), therefore, we get that ftv(A) ⊆ ftv(?δ), as we are
required to prove.

Lemma B.99 If G v G′ then ftv(G) ⊆ ftv(G′).

Proof. We know that G v G′ and we are required to show that ftv(G) ⊆ ftv(G′). Since G v G′,
by Definition B.94, we know that γ(G) ⊆ γ(G′). Therefore, ftv(γ(G)) ⊆ ftv(γ(G′)). Thus, by
Lemma B.101, we know that ftv(γ(G)) = ftv(G) and ftv(γ(G′)) = ftv(G′). Then, we get that
ftv(γ(G)) = ftv(G) ⊆ ftv(G′) = ftv(γ(G′)), as we are required to show.

Lemma B.100 If ftv(G) ⊆ ftv(?δ) then G v ?δ.

427

Proof. We know that ftv(G) ⊆ ftv(?δ) and we are required to show that G v ?δ . By Defini-
tion B.94, we are required to prove that γ(G) ⊆ γ(?δ). We know that γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}.
By Lemma B.101, we know that ftv(G) = ftv(γ(G)). Since ftv(γ(G)) = ftv(G) ⊆ ftv(?δ) =
ftv(δ), we know that ∀T ∈ γ(G), ftv(T) ⊆ ftv(γ(G)) ⊆ ftv(δ), therefore, we get that ∀T ∈ γ(G),
T ∈ γ(?δ). Thus, γ(G) ⊆ γ(?δ), as we are required to prove.

Lemma B.101 ftv(G) = ftv(γ(G)).

Proof. We are required to prove that ftv(G) = ftv(γ(G)). We proceed by induction on G.

Case (B). We know that ftv(G) = ftv(B) = ∅ = ftv({B }) = ftv(γ(B)) = ftv(γ(G)). Therefore,
the result follows immediately.

Case (X). We know that ftv(G) = ftv(X) = {X } = ftv({X }) = ftv(γ(X)) = ftv(γ(G)). There-
fore, the result follows immediately.

Case (G1→G2). We know that ftv(G1→G2) = ftv(G1) ∪ ftv(G2) and γ(G1→G2) = γ(G1)→γ(G2).
Therefore, we have that ftv(γ(G1→G2)) = ftv(γ(G1)) ∪ ftv(γ(G2)). By the inductive hypothesis
on G1 and G2, we get that ftv(G1) = ftv(γ(G1)) and ftv(G2) = ftv(γ(G2)). Thus, we get that
ftv(G1) ∪ ftv(G2) = ftv(γ(G1)) ∪ ftv(γ(G2)), as we are required to prove.

Case (G1×G2). We know that ftv(G1×G2) = ftv(G1)∪ ftv(G2) and γ(G1×G2) = γ(G1)× γ(G2).
Therefore, we have that ftv(γ(G1×G2)) = ftv(γ(G1)) ∪ ftv(γ(G2)). By the inductive hypothesis
on G1 and G2, we get that ftv(G1) = ftv(γ(G1)) and ftv(G2) = ftv(γ(G2)). Thus, we get that
ftv(G1) ∪ ftv(G2) = ftv(γ(G1)) ∪ ftv(γ(G2)), as we are required to prove.

Case (∀X.G1). We know that ftv(∀X.G1) = ftv(G1) \ {X } and γ(∀X.G1) = ∀X.γ(G1). Therefore,
we have that ftv(γ(∀X.G1)) = ftv(γ(G1)) \ {X }. By the inductive hypothesis on G1, we get that
ftv(G1) = ftv(γ(G1)). Thus, we get that ftv(G1) \ {X } = ftv(γ(G1)) \ {X }, as we are required
to prove.

Case (?δ). We know that ftv(?δ) = ftv(δ) and γ(?δ) = {T | ftv(T) ⊆ ftv(δ)}. Therefore, we have
that ftv(γ(?δ)) = ftv(δ), as we are required to prove.

Lemma B.102 G u G = G.

Proof. We know that G u G = α(γ(G) ∩ γ(G)) = α(γ(G)) = G, by Corollary B.6.1.

Lemma B.103 If G1 ∼ G2 then G1 u G2 is defined.

Proof. Since, G1 u G2 = α(γ(G1) ∩ γ(G2)), by Definition B.96, we know that γ(G1) ∩ γ(G2) 6= ∅.
Therefore, we have that α(γ(G1) ∩ γ(G2)), is defined, an the result holds.

Lemma B.104 If G1 ∼ G2 then initEv(G1,G2).

Proof. We know that initEv(G1,G2) = {(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))}. By
Lemma B.103, we have that G1 u G2 is defined. We know by Lemma B.118, that G1 u G2 v G1

and G1 u G2 v G2. Since G1 u G2 v G1 and G1 u G2 v G2, we know that initPT(G1 u G2,G1) and
initPT(G1 u G2,G2), are defined. Thus, initEv(G1,G2) is define, and the result follows.

428

Lemma B.105 If G1 v G2 then initPT(G1,G2).

Proof. Straightforward, by Definition of initPT(G1,G2) (Definition B.106).

B.6.2 Typing judgement

?δ1;X:X;δ2 [G′/X]\X = ?δ1;δ2

B[G′/X]\X = B

X[G′/X]\X = G′

Y[G′/X]\X = Y

G1→G2[G
′/X]\X = G1[G

′/X]\X→G2[G
′/X]\X

G1×G1[G
′/X]\X = G1[G

′/X]\X×G2[G
′/X]\X

∀Y.G[G′/X]\X = ∀Y.G[G′/X]\X

B.6.3 Elaborating F? to F?
ε

Definition B.106 (Initial Proof) If G v G′, then we define initPT(G,G′) : G v G′ as follows:

initPT(B,B) = reflB

initPT(X,X) = reflX

initPT(G1→G2,G
′
1− −→ G′2) = initPT(G1,G

′
1) −→ initPT(G2,G

′
2)

initPT(G1 × G2,G
′
1 × G′2) = initPT(G1,G

′
1)× initPT(G2,G

′
2)

initPT(∀X.G1, ∀X.G′1) = ∀X.initPT(G1,G
′
1)

initPT(B, ?δ) = injB

initPT(X, ?δ) = injX

initPT(G1→G2, ?δ) = inj→(initPT(G1→G2, ?δ→?δ))

initPT(G1×G2, ?δ) = inj×(initPT(G1×G2, ?δ × ?δ))

initPT(∀X.G1, ?δ) = inj∀(initPT(∀X.G1,∀X.?δ,X:X))

initPT(?δ , ?δ′) = inj?

Example of elaboration. We now present the elaboration of program 2 of Table 6.1. Program
(ΛX.λx : ?.x :: X) [Bool] 42 is elaborated as follows.

1. As x : ?X, then x :: X elaborates to t1 = ε1 x :: X, where ε1 = {(X, injX ,X)} justifies that
?X ∼ X.

2. As all values in F?
ε are ascribed, λx : ?X.x :: X is elaborated to t2 = ε2(λx : ?X .t1) :: ?X→X,

where ε2 = {(?X→X, inj?→reflX , inj?→reflX)} justifies that ?X→X ∼ ?X→X.

3. Similarly, the type abstraction is also ascribed: ΛX.λx : ?X.x :: X elaborates to t3 = ε3 (ΛX.t2)::
∀X.?X→X, where ε3 = {(∀X.?X→X,∀X.inj?→reflX , ∀X.inj?→reflX)} justifies that
∀X.?X→X ∼ ∀X.?X→X.

429

4. Type application (ΛX.λx : ?X.x :: X) [Bool] elaborates to t4 = ε4 (t3 [Bool]) :: ? −→ Bool,
where
ε4 = {(Bool→Bool, injX→reflBool, injBool→Bool), (?→Bool, inj?→reflBool, inj?→reflBool)}
justifies that ?X −→ Bool ∼ ? −→ Bool (sealing/unsealing evidence).

5. Number 42 is ascribed to its type and elaborated to t5 = ε5 42 :: Int, where ε5 = {(Int, reflInt, Int)}
which justifies the reflexive judgement Int ∼ Int.

6. The elaborated function argument t5 is ascribed to the domain of the function type: t6 =
ε6 t5 :: ?, where ε6 = {(Int, reflInt, injInt)} which justifies that Int ∼ ?.

7. Finally, the whole program elaborates to
t4 t6 = (ε4 (ε3 (ΛX.ε2(λx : ?X .ε1 x::X)::?X→X)::∀X.?X→X [Bool])::?→Bool) (ε6(ε5 42 :: Int)::
?).

Armed with the dynamic semantics of F?
ε and the concrete representation of evidence, we

now illustrate the reduction of program 2 of Table 6.1: (ΛX.λx : ?.x :: X) [Bool] 42. Its com-
plete elaboration is the F?

ε term (ε4 (ε3 (ΛX.ε2(λx : ?X .ε1 x :: X) :: ?X→X) :: ∀X.?X→X [Bool]) ::
?→Bool) (ε6(ε5 42 :: Int)::?), where ε1 = {(X, injX , reflX)}, ε2 = {(?X→X, inj?→reflX , inj?→reflX)},
ε3 = {(∀X.?X→X, ∀X.inj?→reflX ,∀X.inj?→reflX)},
ε4 = {(Bool→Bool, injX→reflBool, injBool→reflBool), (?→Bool, inj?→reflBool, inj?→reflBool)},
ε5 = {(Int, reflInt, reflInt)}, and ε6 = {(Int, reflInt, injInt)}. The program reduces as follows:

(ε4 (ε3 (ΛX.ε2(λx : ?X .ε1 x :: X) :: ?X→X) :: ∀X.?X→X [Bool]) :: ?→Bool) (ε6(ε5 42 :: Int) :: ?)
(RappG)7−→(ε4 (ε′3 (ε′2(λx : ?X:Bool.ε

′
1 x :: Bool) :: ?X:Bool→Bool) :: ?X:Bool→Bool) :: ?→Bool) (ε6(ε5 42 :: Int) :: ?)

where ε′1 = {(Bool, injX , reflBool)} and ε′2 = ε′3 = {(?X:Bool→Bool, inj?→reflBool, inj?→reflBool)}
(Rasc) 7−→(ε4 (ε′2 (λx : ?X:Bool.ε

′
1 x :: Bool) :: ?X:Bool→Bool) :: ?→Bool) (ε6(ε5 42 :: Int) :: ?)

(Rasc) 7−→(ε4 (λx : ?X:Bool.ε
′
1 x :: Bool) :: ?→Bool) (ε6(ε5 42 :: Int) :: ?)

because ε′3 # ε4 = ε4
(Rasc) 7−→(ε4 (λx : ?X:Bool.ε

′
1 x :: Bool) :: ?→Bool) (ε6 42 :: Int)

because ε′5 # ε6 = ε6
(Rapp) 7−→(ε5 (ε′1 (ε 42 :: ?) :: ?X:Int) :: Bool)

where ε # dom(ε4) = ε and ε5 = cod(ε4) = {(Bool, reflBool, reflBool)}
(Rasc) 7−→error

because {(Int, reflInt, injInt)} # {(Bool, injX , reflBool)} is undefined

Theorem B.107 (Elaboration Preserves Typing) If ∆; Γ ` t : G, then ∆; Γ ` t : G t′ and
∆; Γ ` t′ : G.

Proof. The proof proceed by induction on the typing derivation of ∆; Γ ` t : G.

Case (Gx). We know that t = x and

(Gx)
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G

Thus, we get that

(EGx)
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G x

Therefore, by (Gx) rule, we get that ∆; Γ ` x : G, and the result follows immediately.

430

Case (Gb). We know that t = b, G = B, and

(Gb)
θ(b) = B ∆ ` Γ

∆; Γ ` b : B

Thus, we get that

(EGb)
θ(b) = B ∆ ` Γ

∆; Γ ` b : B reflEv(B) b :: B

Since reflEv(B) : B ∼ B, by (Gb) and (Gasc) rules, we get that ∆; Γ ` reflEv(B) b :: B : B, and
the result follows immediately.

Case (Gλ). We know that t = λx : G1.t1, G = G1→G2, and

(Gλ)
∆; Γ, x : G1 ` t1 : G2

∆; Γ ` λx : G1.t1 : G1→G2

Since ∆; Γ, x : G1 ` t1 : G2, by the induction hypothesis, we get that ∆; Γ, x : G1 ` t1 : G2 t′1 and
∆; Γ,x : G1 ` t′1 : G2. Thus, we get that

(EGλ)
∆; Γ, x : G1 ` t1 : G2 t′1

∆; Γ ` λx : G1.t1 : G1→G2 reflEv(G1→G2) (λx : G1.t
′
1) :: G1→G2

Since reflEv(G1→G2) : G1→G2 ∼ G1→G2, by (Gλ) and (Gasc) rules, we get that ∆; Γ `
reflEv(G1→G2) (λx : G1.t

′
1) :: G1→G2 : G1→G2, and the result follows immediately.

Case (Gpair). We know that t = 〈t1, t2〉, G = G1×G2, and

(Gpair)
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2

∆; Γ ` 〈t1, t2〉 : G1×G2

Since ∆; Γ ` t1 : G1 and ∆; Γ ` t2 : G2, by the induction hypothesis, we get that ∆; Γ ` t1 : G1 t′1,
∆; Γ ` t1 : G1, ∆; Γ ` t2 : G2 t′2 and ∆; Γ ` t2 : G2. Thus, we get that

(EGpair)
∆; Γ ` t1 : G1 t′1 ∆; Γ ` t2 : G2 t′2

∆; Γ ` 〈t1, t2〉 : G1×G2 〈t′1, t′2〉

By (Gpair) rule, we get that ∆; Γ ` 〈t′1, t′2〉 : G1×G2, and the result follows immediately.

Case (GΛ). We know that t = ΛX.t1, G = ∀X.G1, and

(GΛ)
∆,X; Γ ` t1 : G1 ∆ ` Γ

∆; Γ ` ΛX.t1 : ∀X.G1

Since ∆,X; Γ ` t1 : G1, by the induction hypothesis, we get that ∆,X; Γ ` t1 : G1 t′1 and
∆,X; Γ ` t′1 : G1. Thus, we get that

(EGΛ)
∆,X; Γ ` t1 : G1 t′1 ∆ ` Γ

∆; Γ ` ΛX.t1 : ∀X.G1 reflEv(∀X.G1) (ΛX.t′1) :: ∀X.G1

Since reflEv(∀X.G1) : ∀X.G1 ∼ ∀X.G1, by (GΛ) and (Gasc) rules, we get that

∆; Γ ` reflEv(∀X.G1) (ΛX.t′1) :: ∀X.G1 : ∀X.G1

Thus, the result follows immediately.

431

Case (Gasc). We know that t = t1 :: G, and

(Gasc)
∆; Γ ` t1 : G′ G′ ∼ G

∆; Γ ` t1 :: G : G

Since ∆; Γ ` t1 : G′, by the induction hypothesis, we get that ∆; Γ ` t1 : G′ t′1 and ∆; Γ ` t′1 : G′.
Since G′ ∼ G, by Lemma B.104, we get that initEv(G′,G) : G′ ∼ G. Thus, we get that

(EGasc)
∆; Γ ` t1 : G′ t′1 ε = initEv(G′,G)

∆; Γ ` t1 :: G : G ε t′1 :: G

Therefore, by (Gasc) rule, we get that ∆; Γ ` ε t′1 :: G : G, and the result follows immediately.

Case (Gpairi). We know that t = πi(t1), G = proj]i(G
′
1) and

(Gpairi)
∆; Γ ` t1 : G′1

∆; Γ ` πi(t1) : proj]i(G
′
1)

Since ∆; Γ ` t1 : G′1, by the induction hypothesis, we get that ∆; Γ ` t1 : G′1 t′1 and ∆; Γ `
t′1 : G′1. Since proj]i(G

′
1) is defined, by Lemma B.137, we know that G′1 _ G1×G2 is defined and

proj]i(G
′
1) = Gi, for some G1 and G2. Since G′1 _ G1×G2, by Lemmas B.129 and B.104, we know

that ε = initEv(G′1,G1×G2) is defined. Thus, we get that

(EGpairi)
∆; Γ ` t1 : G′1 t′1 G′1 _ G1×G2 ε = initEv(G′1,G1×G2)

∆; Γ ` πi(t1) : Gi πi(ε t′1 :: G1×G2)

Therefore, by (Gpairi) and (Gasc) rules, we get that ∆; Γ ` πi(ε t′1 :: G1×G2) : Gi, and the
result follows immediately.

Case (GappG). We know that t = t1 [F], G = inst](G′1,F) and

(GappG)
∆; Γ ` t1 : G1 ∆ ` F

∆; Γ ` t1 [F] : inst](G′1,F)

Since ∆; Γ ` t1 : G′1, by the induction hypothesis, we get that ∆; Γ ` t1 : G′1 t′1 and ∆; Γ `
t′1 : G′1. Since inst](G′1,F) is defined, by Lemma B.138, we know that G′1 _ ∀X.G1 is defined and
inst](G′1,F) = G1[F/X]\X, for some G1. Since G′1 _ ∀X.G1, by Lemmas B.129 and B.104, we know
that ε = initEv(G′1,∀X.G1) is defined. Thus, we get that

(EGappG)

∆; Γ ` t1 : G t′1 ∆ ` F G′1 _ ∀X.G1

ε1 = initEv(G′1,∀X.G′1) ε2 = instEv(G1,X,F)

∆; Γ ` t1 [F] : G1[F/X]\X ε2((ε1t′1 :: ∀X.G1) [F]) :: G1[F/X]\X

Therefore, by (Gasc) and (GappG) rules, we get that ∆; Γ ` ε2((ε1t′1 :: ∀X.G1) [F]) :: G1[F/X]\X :
G1[F/X]\X, and the result follows immediately.

Case (Gapp). We know that t = t1 t2, G = cod](G1) and

(Gapp)

∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2

dom](G1) ∼ G2

∆; Γ ` t1 t2 : cod](G1)

Since ∆; Γ ` t1 : G1 and ∆; Γ ` t2 : G2, by the induction hypothesis, we get that ∆; Γ ` t1 : G1 t′1,
∆; Γ ` t′1 : G1, ∆; Γ ` t2 : G2 t′2 and ∆; Γ ` t′2 : G2. Since cod](G1) is defined, by Lemma B.136,
we know that G1 _ G11→G12 is defined and dom(G1) = G11 and cod(G1) = G12, for some G11 and

432

G12. Since G1 _ G11→G12, by Lemmas B.129 and B.104, we know that ε1 = initEv(G1,G11→G12)
is defined. Since dom](G1) ∼ G2, by Lemma B.104, we know that ε2 = initEv(G2,G11) is defined.
Thus, we get that

(EGapp)

∆; Γ ` t1 : G1 t′1 ∆; Γ ` t2 : G2 t′2 G1 _ G11→G12

ε1 = initEv(G1,G11→G12) ε2 = initEv(G2,G11)

∆; Γ ` t1 t2 : G12 (ε1t′1 :: G11→G12) (ε2t′2 :: G11)

Therefore, by (Gasc) and (Gapp) rules, we get that ∆; Γ ` (ε1t′1 :: G11→G12) (ε2t′2 :: G11) : G12,
and the result follows immediately.

B.6.4 Gradual Guarantees

Definition B.108

· v ·
Γ1 v Γ2 G1 v G2

Γ1, x : G1 v Γ2, x : G2

Definition B.109

(·, ·) ≡ ·
(Γ1,Γ2) ≡ Ω G1 v G2

(Γ1, x : G1,Γ2, x : G2) ≡ Ω, x : G1 v G2

Definition B.110

· ·
Ω Ω c = initPT(G1,G2)

Ω, x 7→ G1 v G2 Ω,x 7→ c : G1 v G2

Lemma B.111 If Ω ` t1 : G1 v t2 : G2, ∆; Γ1 ` t1 : G1 and (Γ1,Γ2) ≡ Ω, then ∆; Γ2 ` t2 : G2,
G1 v G2, Γ1 v Γ2.

Proof. The proof proceed by induction on the typing derivation ∆; Γ1 ` t1 : G1. By Lemma B.126,
we get that Γ1 v Γ2.

Case (Gb). Trivial by definition of term precision using (vb).

vb
Ω ` b : B v b : B

Note that B v B.

Case (Gx). Trivial by definition of term precision using (vx).

vx
x : G1 v G2 ∈ Ω

Ω ` x : G1 v x : G2

Note that since x : G1 v G2 ∈ Ω, by Definition B.109, we know that x : G2 ∈ Γ2 and G1 v G2.

Case (Gλ). Then t1 = (λx : G′1.t) and G1 = G′1→G′2. By (Gλ) we know that:

(Gλ)
∆; Γ1, x : G′1 ` t : G′2

∆; Γ1 ` λx : G′1.t : G′1→G′2
(B.1)

433

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision, t2 must have the
form t2 = (λx : G′′1.t

′) and therefore

(vλ)
Ω,x : G′1 v G′′1 ` t : G′2 v t′ : G′′2 G′1 v G′′1

Ω ` (λx : G′1.t) : G′1→G′2 v (λx : G′′1.t
′) : G′′1→G′′2

(B.2)

Using induction hypotheses on ∆; Γ1, x : G′1 ` t : G′2, we get that ∆; Γ2, x : G′′1 ` t′ : G′′2 and G′2 v G′′2.
Then we can use rule (Gλ) to derive:

(Gλ)
∆; Γ2, x : G′′1 ` t′ : G′′2

∆; Γ2 ` (λx : G′′1.t
′) : G′′1→G′′2

Since G′1 v G′′1 and G′2 v G′′2, we get that G′1→G′2 v G′′1→G′′2, by Definition of Type Precision, and
the result holds.

Case (GΛ). Then t1 = (ΛX.t) and G1 = ∀X.G′1. By (GΛ) we know that:

(GΛ)
∆,X; Γ1 ` t : G′1

∆; Γ1 ` (ΛX.t) : ∀X.G′1
(B.3)

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision t2 must have the form
t2 = (ΛX.t′) and therefore

(vΛ)
Ω ` t : G′1 v t′ : G′′1

Ω ` (ΛX.t) : ∀X.G′1 v (ΛX.t′) : ∀X.G′′1
(B.4)

Using the induction hypotheses on ∆,X; Γ1 ` t : G′1, we get that ∆,X; Γ2 ` t′ : G′′1 and G′1 v G′′1.
Then we can use rule (GΛ) to derive:

(GΛ)
∆,X; Γ2 ` t′ : G′′1

∆; Γ2 ` (ΛX.t′) : ∀X.G′′1

Since G′1 v G′′1, we get that ∀X.G′1 v ∀X.G′′1, by Definition of Type Precision, and the result holds.

Case (Gpair). Then t1 = 〈t′1, t′2〉 and G1 = G′1×G′2. By (Gpair) we know that:

(Gpair)
∆; Γ1 ` t′1 : G′1 ∆; Γ1 ` t′2 : G′2

∆; Γ1 ` 〈t′1, t′2〉 : G′1×G′2
(B.5)

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision, t2 must have the form
〈t′′1, t′′2〉 and therefore

(v×)
Ω ` t′1 : G′1 v t′′1 : G′′1 Ω ` t′2 : G′2 v t′′2 : G′′2

Ω ` 〈t′1, t′2〉 : G′1×G′2 v 〈t′′1, t′′2〉 : G′′1 ×G′′2
(B.6)

Using induction hypotheses on ∆; Γ1 ` t′1 : G′1 and ∆; Γ1 ` t′2 : G′2, we get that ∆; Γ2 ` t′′1 : G′′1,
∆; Γ2 ` t′′2 : G′′2, G′1 v G′′1 and G′2 v G′′2. Then we can use rule (Gpair) to derive:

(Gpair)
∆; Γ2 ` t′′1 : G′′1 ∆; Γ2 ` t′′2 : G′′2

∆; Γ2 ` 〈t′′1, t′′2〉 : G′1×G′2

Since G′1 v G′′1 and G′2 v G′′2, we get that G′1×G′2 v G′′1 ×G′′2, by Definition of Type Precision, and
the result holds.

434

Case (Gasc). Then t1 = t :: G1. By (Gasc) we know that:

(Gasc)
∆; Γ1 ` t : G G ∼ G1

∆; Γ1 ` t :: G1 : G1
(B.7)

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision t2 must have the form
t2 = t′ :: G2 and therefore

(vasc)
Ω ` t : G v t′ : G′ G1 v G2

Ω ` t :: G1 : G1 v t′ :: G2 : G2
(B.8)

Using induction hypotheses on ∆; Γ1 ` t : G, we get that ∆; Γ2 ` t′ : G′ and G v G′. ∆; Γ ` t′ : G′,
where G v G′. We can use rule (Gasc) and Lemma B.130 to derive:

(Gasc)
∆; Γ2 ` t′ : G′ G′ ∼ G2

∆; Γ2 ` t′ :: G2 : G2

By premise, we know that G1 v G2. Therefore, the result holds.

Case (Gapp). Then t1 = t′1 t
′
2 and G1 = cod](G′1). By (Gapp) we know that:

(Gapp)

∆; Γ1 ` t′1 : G′1 ∆; Γ1 ` t′2 : G′2
dom](G′1) ∼ G′2

∆; Γ1 ` t′1 t
′
2 : cod](G′1)

(B.9)

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision t2 must have the form
t2 = t′′1 t′′2 and therefore

vapp

Ω ` t′1 : G′1 v t′′1 : G′′1 Ω ` t′2 : G′2 v t′′2 : G′′2
G′1 _ G11− −→ G12 G′′1 _ G21− −→ G22

Ω ` t′1 t′2 : G12 v t′′1 t′′2 : G22
(B.10)

Using the induction hypotheses on ∆; Γ1 ` t′1 : G′1 and ∆; Γ1 ` t′2 : G′2, we get that ∆; Γ2 ` t′′1 : G′′1,
∆; Γ2 ` t′′2 : G′′2, G′1 v G′′1 and G′2 v G′′2. By definition type precision and the definition of dom], we
know that dom](G′1) v dom](G′′1) and, therefore by Lemma B.130, we get that dom](G′′1) ∼ G′′2. Also,
by the previous argument, we get that cod](G′1) v cod](G′′1). Note that since G′′1 _ G21− −→ G22,
we know that dom](G′′1) = G21 and cod](G′′1) = G22, by Lemma B.136. Then we can use rule (Gapp)
to derive:

(Gapp)

∆; Γ2 ` t′′1 : G′′1 ∆; Γ2 ` t′′2 : G′′2
dom](G′′1) ∼ G′′2

∆; Γ2 ` t′′1 t′′2 : cod](G′′1)

and the result holds.

Case (GappG). Then t1 = t [F]. By (GappG) we know that:

(GappG)
∆; Γ1 ` t : G′1 ∆ ` F

∆; Γ1 ` t [F] : inst](G′1,F)
(B.11)

where G1 = inst](G′1,F). Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision
t2 must have the form t2 = t′ [F] and therefore

(vappG)

Ω ` t : G′1 v t′ : G′2 G′1 6 G′2
G′1 _ ∀X.G′′1 G′2 _ ∀X.G′′2

Ω ` t [F] : G′′1[F/X] v t′ [F] : G′′2[F/X]
(B.12)

435

Using induction hypotheses on ∆; Γ1 ` t : G′1, we get that ∆; Γ2 ` t′ : G′2 and G′1 v G′2. We can use
rule (GappG) to derive:

(Gasc)
∆; Γ2 ` t′ : G′2 ∆ ` F

∆; Γ2 ` t′ [F] : inst](G′2,F)

Finally, by Lemma B.141 we know that inst](G′1,F) v inst](G′2,F) and since G′2 _ ∀X.G′′2, by
Lemma B.138, we know that inst](G′2,F) = G′′2[F/X]\X. Thus, the result holds.

Case (Gpairi). Then t1 = πi(t) and G1 = proj]i(G). By (Gpair) we know that:

(Gpairi)
∆; Γ1 ` t : G

∆; Γ1 ` πi(t) : proj]i(G)
(B.13)

Consider t2 such that Ω ` t1 : G1 v t2 : G2. By definition of term precision, t2 must have the form
πi(t
′) and therefore

(vpairi)
Ω ` t : G v t′ : G′ G _ G11×G12 G′ _ G21×G22

Ω ` πi(t) : G1i v πi(t′) : G2i
(B.14)

Using induction hypotheses on the premises ∆; Γ1 ` t : G, we get that ∆; Γ2 ` t′ : G′ and G v G′.
Then we can use rule (Gpairi) to derive:

(Gpairi)
∆; Γ2 ` t′ : G′

∆; Γ2 ` πi(t′) : proj]i(G
′)

Finally, by Lemma B.140 we can infer that proj]i(G) v proj]i(G
′) and since G′ _ G21×G22, by

Lemma B.137, we know that proj]i(G
′) = G2i. Thus, the result holds.

Lemma B.112 If c : G v G′ then c = initPT(G,G′).

Proof. We proceed by induction on c : G v G′.

Case (B : B v B). Since, initPT(B,B) = B, the result holds.

Case (X : X v X). Since, initPT(X,X) = X, the result holds.

Case (c1→c2 : G11→G12 v G21→G22). We know that c1 : G11 v G21 and c2 : G12 v G22. By the
inductive hypothesis, we get that c1 = initPT(G11,G21) and c2 = initPT(G12,G22). We are required
to prove that c = c1→c2 = initPT(G11→G12,G21→G22) = initPT(G11,G21)→initPT(G12,G22), as
we already showed.

Case (c1× c2 : G11×G12 v G21×G22). We know that c1 : G11 v G21 and c2 : G12 v G22. By the
inductive hypothesis, we get that c1 = initPT(G11,G21) and c2 = initPT(G12,G22). We are required
to prove that c = c1× c2 = initPT(G11×G12,G21×G22) = initPT(G11,G21)× initPT(G12,G22), as
we already showed.

Case (∀X.c1 : ∀X.G11 v ∀X.G21). We know that c1 : G11 v G21. By the inductive hypothesis, we get
that c1 = initPT(G11,G21). We are required to prove that c = ∀X.c1 = initPT(∀X.G11,∀X.G21) =
∀X.initPT(G11,G21), as we already showed.

Case (∀X.c21 : ∀X.G21 v ∀X.G31). Since G2 = ∀X.G21, by Lemma B.11, we know that c1 = ∀X.c11

and G1 = ∀X.G11. We know that c21 : G21 v G31 and c11 : G11 v G21. By the inductive hypothesis,
we get that c11;c21 = c31. Therefore, we get that ∀X.c11;∀X.c21 = ∀X.c31, and the result holds.

436

Case (injB : B v ?δ). Since, initPT(B, ?δ) = injB, the result holds.

Case (injX : F v ?δ ∧ X : F ∈ δ). We have the following cases.

• F = B. This case is not possible because X : B 6∈ δ, we have that X : Xδ.

• F = Y. We know that X : Y ∈ δ, therefore X = Y. We know that initPT(X, ?δ) = injX , and
the result holds.

Case (inj→(c′) : G v ?δ). We know that c′ : G v ?δ→?δ and G = G11→G21. By the inductive
hypothesis, we get that c′ = initPT(G, ?δ→?δ). We are required to prove that c = inj→(c′) =
initPT(G, ?δ) = inj→(initPT(G, ?δ→?δ)), as we already showed.

Case (inj×(c′) : G v ?δ). We know that c′ : G v ?δ × ?δ and G = G11×G21. By the inductive
hypothesis, we get that c′ = initPT(G, ?δ × ?δ). We are required to prove that c = inj×(c′) =
initPT(G, ?δ) = inj×(initPT(G, ?δ × ?δ)), as we already showed.

Case (inj∀(c
′) : G v ?δ). We know that c′ : G v ∀X.?δ,X:X and G = ∀X.G11. By the inductive

hypothesis, we get that c′ = initPT(G, ∀X.?δ,X:X). We are required to prove that c = inj∀(c
′) =

initPT(G, ?δ) = inj∀(initPT(G, ∀X.?δ,X:X)), as we already showed.

Case (inj? : ?δ v ?δ′). The result holds immediately since initPT(?δ , ?δ′), as we already know.

Lemma B.113 If Ω ` t1 : G1 v t2 : G2 then G1 v G2.

Proof. Straightforward induction on Ω ` t1 : G1 v t2 : G2.

Lemma B.114 initPT(G,G) = refl
v
G .

Proof. We proceed by induction on G.

Case (G = B). Then, we know that initPT(B,B) = refl
v
B = B. Therefore, the result follows

immediately.

Case (G = X). Then, we know that initPT(X,X) = refl
v
X = X. Therefore, the result follows

immediately.

Case (G = G1→G2). Then, we know that

• initPT(G1→G2,G1→G2) = initPT(G1,G1)→initPT(G2,G2)

• refl
v
G1→G2

= refl
v
G1
→refl

v
G2

By the induction hypothesis on G1 and G2, we get that initPT(G1,G1) = refl
v
G1

and initPT(G2,G2) =

refl
v
G2

. Therefore, initPT(G1,G1)→initPT(G2,G2) = refl
v
G1
→refl

v
G2

, and the result follows im-
mediately.

Case (G = G1×G2). Then, we know that

• initPT(G1×G2,G1×G2) = initPT(G1,G1)× initPT(G2,G2)

• refl
v
G1×G2

= refl
v
G1
× refl

v
G2

437

By the induction hypothesis on G1 and G2, we get that initPT(G1,G1) = refl
v
G1

and initPT(G2,G2) =

refl
v
G2

. Therefore, initPT(G1,G1)× initPT(G2,G2) = refl
v
G1
× refl

v
G2

, and the result follows im-
mediately.

Case (G = ∀X.G1). Then, we know that

• initPT(∀X.G1, ∀X.G1) = ∀X.initPT(G1,G1)

• refl
v
∀X.G1

= ∀X.reflvG1

By the induction hypothesis on G1, we get that initPT(G1,G1) = refl
v
G1

. Therefore, ∀X.initPT(G1,G1) =

∀X.reflvG1
, and the result follows immediately.

Case (G = ?δ). Then, we know that initPT(?δ , ?δ) = refl
v
?δ

= inj?. Therefore, the result follows
immediately.

Lemma B.115 If G v ?δ then initPT(G, ?δ) = inject
v
G .

Proof. We proceed by induction on G. Note that since G v ?δ , then initPT(G, ?δ) is defined. By
Lemma B.99, we get that ftv(G) ⊆ δ. Thus, injectvG is defined.

Case (G = B). Then, we know that initPT(B, ?δ) = inject
v
B = injB. Therefore, the result follows

immediately.

Case (G = X). Then, we know that initPT(X, ?δ) = inject
v
X = injX . Therefore, the result follows

immediately.

Case (G = G1→G2). Then, we know that

• initPT(G1→G2, ?δ) = inj→(initPT(G1, ?δ)→initPT(G2, ?δ))

• inject
v
G1→G2

= inj→(injectvG1
→inject

v
G2

)

By the induction hypothesis on G1 and G2, we get that initPT(G1, ?δ) = inject
v
G1

and initPT(G2, ?δ) =

inject
v
G2

. Therefore, inj→(initPT(G1, ?δ)→initPT(G2, ?δ)) = inj→(injectvG1
→inject

v
G2

), and
the result follows immediately.

Case (G = G1×G2). Then, we know that

• initPT(G1×G2, ?δ) = inj×(initPT(G1, ?δ)× initPT(G2, ?δ))

• inject
v
G1×G2

= inj×(injectvG1
× inject

v
G2

)

By the induction hypothesis on G1 and G2, we get that initPT(G1, ?δ) = inject
v
G1

and initPT(G2, ?δ) =

inject
v
G2

. Therefore, inj×(initPT(G1, ?δ)× initPT(G2, ?δ)) = inj×(injectvG1
× inject

v
G2

), and
the result follows immediately.

Case (G = ∀X.G1). Then, we know that

438

• initPT(∀X.G1, ?δ) = ∀X.initPT(G1, ?δ,X:X)

• inject
v
∀X.G1

= ∀X.injectvG1

By the induction hypothesis on G1, we get that initPT(G1, ?δ,X:X) = inject
v
G1

. Therefore, ∀X.initPT(G1, ?δ,X:X) =

∀X.injectvG1
, and the result follows immediately.

Case (G = ?δ). Then, we know that initPT(?δ , ?δ′) = inject
v
?δ

= inj?. Therefore, the result
follows immediately.

Lemma B.116 If G v G′ then initPT(G,G′);injectvG′ = inject
v
G .

Proof. We proceed by induction on G v G′.

Case (Base Type). G = B and G′ = B. We know that B v B. Therefore, we get that initPT(G,G′) =
initPT(B,B) = B and inject

v
G = inject

v
G′ = injB. Since B;injB = injB the result follows

immediately.

Case (Type Variable). G = X and G′ = X. We know that X v X. Therefore, we get that
initPT(G,G′) = initPT(X,X) = X and inject

v
G = inject

v
G′ = injX . Since X;injX = injX

the result follows immediately.

Case (Function Type). G = G1− −→ G′1 and G′ = G2− −→ G′2. We know that

G1 v G2 G′1 v G′2
G1− −→ G′1 v G2− −→ G′2

We are required to prove that initPT(G1− −→ G′1,G2− −→ G′2);inject
v
G2−−→G′2

= inject
v
G1−−→G′1

.

We know that initPT(G1− −→ G′1,G2− −→ G′2) = initPT(G1,G2)− −→ initPT(G′1,G
′
2), inject

v
G1−−→G′1

=

inject
v
G1
− −→ inject

v
G′1

and inject
v
G2−−→G′2

= inject
v
G2
− −→ inject

v
G′2

. Thus, we are required

to prove that

initPT(G1,G2)− −→ initPT(G′1,G
′
2);inject

v
G2
− −→ inject

v
G′2

= inject
v
G1
− −→ inject

v
G′1

Or what is the same, we are required to prove that initPT(G1,G2);inject
v
G2

= inject
v
G1

and

initPT(G′1,G
′
2);inject

v
G′2

= inject
v
G′1

, which follows immediately by the induction hypothesis on

G1 v G2 and G′1 v G′2.

Case (Universal Type). G = ∀X.G1 and G′ = ∀X.G2. We know that

G1 v G2

∀X.G1 v ∀X.G2

We are required to prove that initPT(∀X.G1, ∀X.G2);inject
v
∀X.G2

= inject
v
∀X.G1

.

We know that initPT(∀X.G1,∀X.G2) = ∀X.initPT(G1,G2), inject
v
∀X.G1

= ∀X.injectvG1
and inject

v
∀X.G2

=

∀X.injectvG2
. Thus, we are required to prove that

∀X.initPT(G1,G2);∀X.injectvG2
= ∀X.injectvG1

Or what is the same, we are required to prove that initPT(G1,G2);inject
v
G2

= inject
v
G1

. which
follows immediately by the induction hypothesis on G1 v G2.

439

Case (Inject Base Type). G = B and G′ = ?δ . We know that B v ?δ . Therefore, we get that
initPT(G,G′) = initPT(B, ?δ) = injB, injectvG = injB and inject

v
G′ = inj?. Since injB;inj? =

injB the result follows immediately.

Case (Inject Type Variable). G = X and G′ = ?δ . We know that

X : F ∈ δ
X v ?δ

Therefore, we get that initPT(G,G′) = initPT(X, ?δ) = injX , injectvG = injX and inject
v
G′ =

inj?. Since injX ;inj? = injX the result follows immediately.

Case (Inject Function Type). G = G1− −→ G′1 and G′ = ?δ . We know that

G1→G2 v ?δ→?δ
G1→G2 v ?δ

We are required to prove that initPT(G1− −→ G′1, ?δ);inject
v
?δ

= inject
v
G1−−→G′1

.

We know that initPT(G1− −→ G′1, ?δ) = inj→(initPT(G1, ?δ)− −→ initPT(G′1, ?δ)), inject
v
G1−−→G′1

=

inj→(injectvG1
− −→ inject

v
G′1

) and inject
v
?δ

= inj?. Thus, we are required to prove that

inj→(initPT(G1, ?δ)− −→ initPT(G′1, ?δ));inj? = inj→(injectvG1
− −→ inject

v
G′1

)

Since c;inj? = c, we are required to prove that initPT(G1, ?δ) = inject
v
G1

and initPT(G′1, ?δ) =

inject
v
G′1

, which follows immediately by Lemma B.115.

Case (Inject Universal Type). G = ∀X.G1 and G′ = ?δ . We know that

∀X.G1 v ∀X.?δ,X:X

∀X.G1 v ?δ

We are required to prove that initPT(∀X.G1, ?δ);inject
v
?δ

= inject
v
∀X.G1

.

We know that initPT(∀X.G1, ?δ) = inj∀(∀X.initPT(G1, ?δ)), inject
v
∀X.G1

= inj∀(∀X.inject
v
G1

) and

inject
v
?δ

= inj?. Thus, we are required to prove that

inj∀(∀X.initPT(G1, ?δ));inj? = inj∀(∀X.inject
v
G1

)

Since c;inj? = c, we are required to prove that initPT(G1, ?δ) = inject
v
G1

, which follows immedi-
ately by Lemma B.115.

Case (Unknown Type). G = ?δ and G = ?δ′ . We know that

δ ⊆ δ′

?δ v ?δ′

Therefore, we get that initPT(G,G′) = initPT(?δ , ?δ′) = inj? and inject
v
G = inject

v
?δ

= inject
v
G′ =

inject
v
?δ′

= inj?. Since inj?;inj? = inj?, the result follows immediately.

Lemma B.117 If G1 v G2, then G1 u G2 = G2 u G1 = G1.

440

Proof. We proceed by induction on G1 v G2.

Case (B v B). Then, we get that G1 u G2 = G2 u G1 = B u B = B = G1. Thus, the result follows
immediately.

Case (X v X). Then, we get that G1 u G2 = G2 u G1 = X u X = X = G1. Thus, the result follows
immediately.

Case (G11→G12 v G21→G22). Then, we know that

• G11 v G21 and G12 v G22

• G1 u G2 = (G11→G12) u (G21→G22) = (G11 u G21)→(G12 u G22)

• G2 u G1 = (G21→G22) u (G11→G12) = (G21 u G11)→(G22 u G12)

By the induction hypothesis on G11 v G21 and G12 v G22, we get that

• G11 u G21 = G21 u G11 = G11

• G12 u G22 = G22 u G12 = G12

Thus, we get that (G11 u G21)→(G12 u G22) = (G21 u G11)→(G22 u G12) = G11→G12, and the result
follows immediately.

Case (G11×G12 v G21×G22). Then, we know that

• G11 v G21 and G12 v G22

• G1 u G2 = (G11×G12) u (G21×G22) = (G11 u G21)×(G12 u G22)

• G2 u G1 = (G21×G22) u (G11×G12) = (G21 u G11)×(G22 u G12)

By the induction hypothesis on G11 v G21 and G12 v G22, we get that

• G11 u G21 = G21 u G11 = G11

• G12 u G22 = G22 u G12 = G12

Thus, we get that (G11 u G21)×(G12 u G22) = (G21 u G11)×(G22 u G12) = G11×G12, and the result
follows immediately.

Case (∀X.G11 v ∀X.G21). Then, we know that

• G11 v G21

• G1 u G2 = (∀X.G11) u (∀X.G21) = ∀X.(G11 u G21)

• G2 u G1 = (∀X.G21) u (∀X.G11) = ∀X.(G21 u G11)

By the induction hypothesis on G11 v G21, we get that

• G11 u G21 = G21 u G11 = G11

441

Thus, we get that ∀X.(G11 u G21) = ∀X.(G21 u G11) = ∀X.G11, and the result follows immediately.

Case (B v ?δ). Then, we get that G1 uG2 = G2 uG1 = B u ?δ = ?δ uB = B = G1. Thus, the result
follows immediately.

Case (X v ?δ and X : F ∈ δ). Then, we get that G1 u G2 = G2 u G1 = X u ?δ = ?δ u X = X = G1.
Thus, the result follows immediately.

Case (G11→G12 v ?δ). Then, we know that

• G11 v ?δ and G12 v ?δ

• G1 u G2 = (G11→G12) u (?δ→?δ) = (G11 u ?δ)→(G12 u ?δ)

• G2 u G1 = (?δ→?δ) u (G11→G12) = (?δ u G11)→(?δ u G12)

By the induction hypothesis on G11 v ?δ and G12 v ?δ , we get that

• G11 u ?δ = ?δ u G11 = G11

• G12 u ?δ = ?δ u G12 = G12

Thus, we get that (G11u ?δ)→(G12u ?δ) = (?δ uG11)→(?δ uG12) = G11→G12, and the result follows
immediately.

Case (G11×G12 v ?δ). Then, we know that

• G11 v ?δ and G12 v ?δ

• G1 u G2 = (G11×G12) u (?δ × ?δ) = (G11 u ?δ)×(G12 u ?δ)

• G2 u G1 = (?δ × ?δ) u (G11×G12) = (?δ u G11)×(?δ u G12)

By the induction hypothesis on G11 v ?δ and G12 v ?δ , we get that

• G11 u ?δ = ?δ u G11 = G11

• G12 u ?δ = ?δ u G12 = G12

Thus, we get that (G11u ?δ)×(G12u ?δ) = (?δ uG11)×(?δ uG12) = G11×G12, and the result follows
immediately.

Case (∀X.G11 v ?δ). Then, we know that

• G11 v ?δ,X:X

• G1 u G2 = (∀X.G11) u ?δ = (∀X.G11) u (∀X.?δ,X:X) = ∀X.(G11 u ?δ,X:X)

• G2 u G1 = ?δ u (∀X.G11) = (∀X.?δ,X:X) u (∀X.G11) = ∀X.(?δ,X:X u G11)

By the induction hypothesis on G11 v ?δ,X:X, we get that

• G11 u ?δ,X:X = ?δ,X:X u G11 = G11

442

Thus, we get that ∀X.(G11 u ?δ,X:X) = ∀X.(?δ,X:X u G11) = ∀X.G11, and the result follows immedi-
ately.

Case (?δ v ?δ′ and δ ⊆ δ′). Since δ ⊆ δ′, we know that δ ∩ δ′ = δ. Then, we get that G1 u G2 =
G2 u G1 = ?δ u ?δ′ = ?δ′ u ?δ = ?δ∩δ′ = ?δ = G1. Thus, the result follows immediately.

Lemma B.118 If G = G1 u G2, then G v G1 and G v G2.

Proof. By induction on G1 u G2.

Case (B u B). We know that B u B = B. Directly because B v B.

Case (X u X). We know that X u X = X. Directly because X v X.

Case ((G′1→G′′1) u (G′2→G′′2)). We know that (G′1→G′′1) u (G′2→G′′2) = (G′1 u G′2)→(G′′1 u G′′2). By the
induction hypothesis on (G′1 u G′2) and (G′′1 u G′′2), we have that (G′1 u G′2) v G′1, (G′1 u G′2) v G′2,
(G′′1 u G′′2) v G′′1 and (G′′1 u G′′2) v G′′2. Thus, by the (v→) rule, we get that (G′1→G′′1) u (G′2→G′′2) v
G′1→G′′1 and (G′1→G′′1) u (G′2→G′′2) v G′2→G′′2, as we are required to show.

Case ((G′1×G′′1)u (G′2×G′′2)). We know that (G′1×G′′1)u (G′2×G′′2) = (G′1 uG′2)×(G′′1 uG′′2). By the
induction hypothesis on (G′1 u G′2) and (G′′1 u G′′2), we have that (G′1 u G′2) v G′1, (G′1 u G′2) v G′2,
(G′′1 u G′′2) v G′′1 and (G′′1 u G′′2) v G′′2. Thus, by the (v×) rule, we get that (G′1×G′′1) u (G′2×G′′2) v
G′1×G′′1 and (G′1×G′′1) u (G′2×G′′2) v G′2×G′′2, as we are required to show.

Case ((∀X.G′1) u (∀X.G′2)). We know that (∀X.G′1) u (∀X.G′2) = ∀X.(G′1 u G′2). By the induction
hypothesis on (G′1 u G′2), we have that (G′1 u G′2) v G′1 and (G′1 u G′2) v G′2. Thus, by the (v∀) rule,
we get that (∀X.G′1)u (∀X.G′2) v ∀X.G′1 and (∀X.G′1)u (∀X.G′2) v ∀X.G′2, as we are required to show.

Case (?δ1 u ?δ2). We know that ?δ1 u ?δ2 = ?δ1∩δ2 . We are required to prove that ?δ1∩δ2 v ?δ1 and
?δ1∩δ2 v ?δ2 , which follows by rule v?, δ1 ∩ δ2 ⊆ δ1 and δ1 ∩ δ2 ⊆ δ2.

Case (B u ?δ = B). We know that B u ?δ = B. We are required to show that B v B and B v ?δ ,
which follow immediately by rules (vB) and (vB?).

Case (X u ?δ = X). We know that X u ?δ = X and X : F ∈ δ. We are required to show that X v X
and X v ?δ , which follow immediately by rules (vX), (vX?) and X : F ∈ δ.
Case ((G′1→G′′1) u ?δ). We know that (G′1→G′′1) u ?δ = (G′1 u ?δ)→(G′′1 u ?δ). By the induction
hypothesis on (G′1 u ?δ) and (G′′1 u ?δ), we know that (G′1 u ?δ) v G′1, (G′1 u ?δ) v ?δ , (G′′1 u ?δ) v G′′1
and (G′′1u?δ) v ?δ . We are require to show that (G′1u?δ)→(G′′1u?δ) v G′1→G′′1, or what is the same,
by (v→), we are required to prove that (G′1 u ?δ) v G′1 and (G′′1 u ?δ) v G′′1, which we already know.
Also, we are required to prove that (G′1 u ?δ)→(G′′1 u ?δ) v ?δ . Or what is the same, by (v→?) rule,
we are required to prove that (G′1 u ?δ) v ?δ and (G′′1 u ?δ) v ?δ , which we already know.

Case ((G′1×G′′1) u ?δ). We know that (G′1×G′′1) u ?δ = (G′1 u ?δ)×(G′′1 u ?δ). By the induction
hypothesis on (G′1 u ?δ) and (G′′1 u ?δ), we know that (G′1 u ?δ) v G′1, (G′1 u ?δ) v ?δ , (G′′1 u ?δ) v G′′1
and (G′′1 u ?δ) v ?δ . We are require to show that (G′1 u ?δ)×(G′′1 u ?δ) v G′1×G′′1, or what is the
same, by (v×), we are required to prove that (G′1 u ?δ) v G′1 and (G′′1 u ?δ) v G′′1, which we already
know. Also, we are required to prove that (G′1u ?δ)×(G′′1 u ?δ) v ?δ . Or what is the same, by (v×?)
rule, we are required to prove that (G′1 u ?δ) v ?δ and (G′′1 u ?δ) v ?δ , which we already know.

Case ((∀X.G′1) u ?δ). We know that (∀X.G′1) u ?δ = ∀X.(G′1 u ?δ,X:X). By the induction hypothesis
on (G′1u?δ,X:X), we know that (G′1u?δ,X:X) v G′1, (G′1u?δ,X:X) v ?δ,X:X. We are require to show that
∀X.(G′1 u ?δ,X:X) v ∀X.G′1, or what is the same, by (v∀), we are required to prove that (G′1u?δ,X:X) v
G′1. which we already know. Also, we are required to prove that ∀X.(G′1 u ?δ,X:X) v ?δ . Or what is

443

the same, by (v∀?) rule, we are required to prove that (G′1 u ?δ,X:X) v ?δ and (G′′1 u ?δ,X:X) v ?δ,X:X,
which we already know.

Case (?δ u B). Analogous to the inverse case.

Case (?δ u X). Analogous to the inverse case.

Case (?δ u G′2→G′′2). Analogous to the inverse case.

Case (?δ u G′2×G′′2). Analogous to the inverse case.

Case (?δ u ∀X.G′2). Analogous to the inverse case.

Lemma B.119 If G1 v G2 and G2 v G3, then G1 v G3.

Proof. Since G1 v G2 and G2 v G3, by Definition B.94, we know that γ(G1) ⊆ γ(G2) and γ(G2) ⊆
γ(G3). Therefore, we know that γ(G1) ⊆ γ(G3). By Definition B.94, we get that G1 v G3, as we are
required to show.

Lemma B.120 If G1 v G2, G′1 v G′2, G1 u G′1 is defined, then G2 u G′2 is defined and (G1 u G′1) v
(G2 u G′2).

Proof. We know by Lemma 7.8, that G1 u G′1 = α(γ(G1) ∩ γ(G′1)) is define, i.e γ(G1) ∩ γ(G′1) 6= ∅.
By Definition B.94, we know that γ(G1) ⊆ γ(G2) and γ(G′1) ⊆ γ(G′2), therefore γ(G2) ∩ γ(G′2) 6= ∅,
and this means that α(γ(G2) ∩ γ(G′2)) is defined and G2 u G′2 is defined. Also, we are required
to prove that (G1 u G′1) v (G2 u G′2), or what is the same, by Definition B.94, we are required
to show that α(γ(G1) ∩ γ(G′1)) v G2 u G′2. We know that γ(G1) ∩ γ(G′1) ⊆ γ(G2) ∩ γ(G′2) and by
Soundness (Lemma B.92), we know that γ(G2) ∩ γ(G′2) ⊆ γ(α(γ(G2) ∩ γ(G′2))). Therefore, we get
that γ(G1)∩ γ(G′1) ⊆ γ(α(γ(G2)∩ γ(G′2))) = γ(G2 uG′2). By Optimality (Lemma B.93), we get that
α(γ(G1) ∩ γ(G′1)) v G2 u G′2, as we are required to show.

Lemma B.121 If initEv(G1,G2) = ε then {(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))} =
ε.

Proof. We proceed by induction on the syntax of initEv(G1,G2).

Case (initEv(B,B)). G1 = B and G2 = B. We know that

• initEv(G1,G2) = initEv(B,B) = refl
v
B = {(B,B,B)}

• G1 u G2 = B u B = B

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(B u B, initPT(B u B,B), initPT(B u B,B))] =
[(B, initPT(B,B), initPT(B,B))] = {(B,B,B)}

Therefore, the result follows immediately.

Case (initEv(X,X)). G1 = X and G2 = X. We know that

• initEv(G1,G2) = initEv(X,X) = refl
v
X = {(X,X,X)}

444

• G1 u G2 = X u X = X

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(X u X, initPT(X u X,X), initPT(X u X,X))] =
[(X, initPT(X,X), initPT(X,X))] = {(X,X,X)}

Therefore, the result follows immediately.

Case (initEv(G11→G12,G21→G22)). G1 = G11→G12 and G2 = G21→G22. We know that

• initEv(G1,G2) = initEv(G11→G12,G21→G22) = initEv(G11,G21)→initEv(G12,G22)

• G→G′ = G1 u G2 = (G11→G12) u (G21→G22) = (G11 u G21)→(G12 u G22)

• c1→c1 = initPT(G1 u G2,G1) = initPT((G11 u G21)→(G12 u G22),G11→G12) =
initPT((G11 u G21),G11)→initPT((G12 u G22),G12)

• c2→c′2 = initPT(G1 u G2,G2) = initPT((G11 u G21)→(G12 u G22),G21→G22) =
initPT((G11 u G21),G21)→initPT((G12 u G22),G22)

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(G→G′, c1→c1, c2→c′2)]

By the induction hypothesis on initEv(G11,G21) and initEv(G12,G22), we get that

• initEv(G11,G21) = [((G11 u G21), initPT((G11 u G21),G11), initPT((G11 u G21),G21)) = [(G, c1,
c2)]

• initEv(G12,G22) = [((G12 u G22), initPT((G12 u G22),G12), initPT((G12 u G22),G22)) = [(G′,
c1, c

′
2)]

Thus, we get that initEv(G1,G2) = initEv(G11,G21)→initEv(G12,G22) = [(G→G′, c1→c1, c2→c′2)].
Therefore, the result follows immediately.

Case (initEv(G11×G12,G21×G22)). G1 = G11×G12 and G2 = G21×G22. We know that

• initEv(G1,G2) = initEv(G11×G12,G21×G22) = initEv(G11,G21)× initEv(G12,G22)

• G×G′ = G1 u G2 = (G11×G12) u (G21×G22) = (G11 u G21)×(G12 u G22)

• c1× c1 = initPT(G1 u G2,G1) = initPT((G11 u G21)×(G12 u G22),G11×G12) =
initPT((G11 u G21),G11)× initPT((G12 u G22),G12)

• c2× c′2 = initPT(G1 u G2,G2) = initPT((G11 u G21)×(G12 u G22),G21×G22) =
initPT((G11 u G21),G21)× initPT((G12 u G22),G22)

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(G×G′, c1× c1, c2× c′2)]

By the induction hypothesis on initEv(G11,G21) and initEv(G12,G22), we get that

• initEv(G11,G21) = [((G11 u G21), initPT((G11 u G21),G11), initPT((G11 u G21),G21)) = [(G, c1,
c2)]

445

• initEv(G12,G22) = [((G12 u G22), initPT((G12 u G22),G12), initPT((G12 u G22),G22)) = [(G′,
c1, c

′
2)]

Thus, we get that initEv(G1,G2) = initEv(G11,G21)× initEv(G12,G22) = [(G×G′, c1× c1, c2× c′2)].
Therefore, the result follows immediately.

Case (initEv(∀X.G11,∀X.G21)). G1 = ∀X.G11 and G2 = ∀X.G21. We know that

• initEv(G1,G2) = initEv(∀X.G11,∀X.G21) = ∀X.initEv(G11,G21)

• ∀X.G = G1 u G2 = (∀X.G11) u (∀X.G21) = ∀X.(G11 u G21)

• ∀X.c1 = initPT(G1 u G2,G1) = initPT(∀X.(G11 u G21), ∀X.G11) =
∀X.initPT((G11 u G21),G11)

• ∀X.c2 = initPT(G1 u G2,G2) = initPT(∀X.(G11 u G21), ∀X.G21) =
∀X.initPT((G11 u G21),G21)

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(∀X.G,∀X.c1, ∀X.c2)]

By the induction hypothesis on initEv(G11,G21), we get that

• initEv(G11,G21) = [((G11 u G21), initPT((G11 u G21),G11), initPT((G11 u G21),G21)) = [(G, c1,
c2)]

Thus, we get that initEv(G1,G2) = ∀X.initEv(G11,G21) = [(∀X.G,∀X.c1, ∀X.c2)]. Therefore, the
result follows immediately.

Case (initEv(G1, ?δ) and ftv(G1) ∈ δ). G2 = ?δ .

• initEv(G1,G2) = initEv(G1, ?δ) = [(G1, refl
v
G1
, injectvG1

)].

• G1 v ?δ , by Lemma B.100 and ftv(G1) ∈ δ.

• G1 u ?δ = G1, by Lemma B.117 and G1 v ?δ .

• initPT(G1 u G2,G1) = initPT(G1 u ?δ ,G1) = initPT(G1,G1) = refl
v
G1

, by Lemma B.114.

• initPT(G1 u G2,G2) = initPT(G1 u ?δ , ?δ) = initPT(G1, ?δ) = inject
v
G1

, by Lemma B.115.

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(G1, refl
v
G1
, injectvG1

)].

Therefore, the result follows immediately.

Case (initEv(?δ ,G2) and ftv(G2) ∈ δ). G1 = ?δ .

• initEv(G1,G2) = initEv(?δ ,G2) = [(G2, inject
v
G2
, reflvG2

)].

• G2 v ?δ , by Lemma B.100 and ftv(G2) ∈ δ.

• G2 u ?δ = G2, by Lemma B.117 and G2 v ?δ .

446

• initPT(G1 u G2,G1) = initPT(?δ u G2, ?δ) = initPT(G2, ?δ) = inject
v
G2

, by Lemma B.115.

• initPT(G1 u G2,G2) = initPT(?δ u G2,G2) = initPT(G2,G2) = refl
v
G2

, by Lemma B.114.

• [(G1 u G2, initPT(G1 u G2,G1), initPT(G1 u G2,G2))] = [(G2, inject
v
G2
, reflvG2

)].

Therefore, the result follows immediately.

Lemma B.122 If G1 v G2, ε1 = reflEv(G1), ε2 = reflEv(G2) and c = initPT(G1,G2), then [c]ε1
v ε2[c].

Proof. We know that ε1 = reflEv(G1) = initEv(G1,G1) = {(G1, refl
v
G1
, reflvG1

)} and ε2 =

reflEv(G2) = initEv(G2,G2) = {(G2, refl
v
G2
, reflvG2

)}, by Lemma B.63. Since G1 v G2, we know
that initPT(G1,G1) is defined. If we take ct = initPT(G1,G1), by Lemma B.87, we get that

• initPT(G1,G2);refl
v
G1

= initPT(G1,G2)

• refl
v
G1

;initPT(G1,G2) = initPT(G1,G2)

• initPT(G1,G2);refl
v
G2

= initPT(G1,G2)

• refl
v
G2

;initPT(G1,G2) = initPT(G1,G2)

as we are required to show.

Lemma B.123 If G1 v G2 and G2 v G3, then initPT(G1,G2);initPT(G2,G3) = initPT(G1,G3).

Proof. Since G1 v G2 and G2 v G3. We know that initPT(G1,G2) : G1 v G2 and initPT(G2,G3) :
G2 v G3. Thus, by Lemma B.20, we get that initPT(G1,G2);initPT(G2,G3) = c3, such that
c3 : G1 v G3. Therefore, by Lemma B.112, we get that c3 = initPT(G1,G3), and the result
holds.

Lemma B.124 If G1 v G2, G′1 v G′2, ε1 = initEv(G1,G
′
1), ε2 = initEv(G2,G

′
2), c = initPT(G1,G2)

and c′ = initPT(G′1,G
′
2), then [c]ε1 v ε2[c′].

Proof. We know that

• ε1 = initEv(G1,G
′
1) = [(G1 u G′1, initPT(G1 u G′1,G1), initPT(G1 u G′1,G

′
1))] = [(G′′1, initPT(G′′1,G1),

initPT(G′′1,G
′
1))], where G1 u G′1 = G′′1.

• ε2 = initEv(G2,G
′
2) = [(G2 u G′2, initPT(G2 u G′2,G2), initPT(G2 u G′2,G

′
2))] = [(G′′2, initPT(G′′2,G2),

initPT(G′′2,G
′
2))], where G2 u G′2 = G′′2.

• Since G1 v G2, G′1 v G′2, G1 u G′1 and G2 u G′2 are defined, by Lemma B.120, we get that
G1 u G′1 = G′′1 v G′′2 = G2 u G′2.

447

• G′′1 v G1, G′′1 v G′1, G′′2 v G2 and G′′2 v G′2, by Lemma B.118. Therefore, G′′1 v G1 v G2,
G′′1 v G′1 v G′2, G

′′
1 v G′′2 v G2 and G′′1 v G′′2 v G′2, by Lemma B.119.

Since G′′1 v G1 v G2, G
′′
1 v G′1 v G′2, G

′′
1 v G′′2 v G2 and G′′1 v G′′2 v G′2, by Lemma B.123, we get

that

• initPT(G′′1,G
′′
2);initPT(G′′2,G2) = initPT(G′′1,G2)

• initPT(G′′1,G1);initPT(G1,G2) = initPT(G′′1,G2)

• initPT(G′′1,G
′′
2);initPT(G′′2,G

′
2) = initPT(G′′1,G

′
2)

• initPT(G′′1,G
′
1);initPT(G′1,G

′
2) = initPT(G′′1,G

′
2)

We are required to prove that [c]ε1 v ε2[c′], where c = initPT(G1,G2) and c′ = initPT(G′1,G
′
2). By

Definition 6.11, if we take ct = initPT(G′′1,G
′′
2), c′′1 = initPT(G′′1,G2) and c′′2 = initPT(G′′1,G

′
2), the

result follows immediately.

Lemma B.125 If G1 6 G2, ε1 = instEv(G1,X,F), ε2 = instEv(G2,X,F), c = initPT(G1,G2),
c′ = initPT(G1[F/X]\X,G2[F/X]\X), then [c[F/X]]ε1 v ε2[c′].

Proof. We proceed by induction on G1 6 G2.

Case (B 6 B). G1 = B and G2 = B. We know that

• ε1 = instEv(G1,X,F) = instEv(B,X,F) = reflEv(B) = {(B,B,B)}

• ε2 = instEv(G2,X,F) = instEv(B,X,F) = reflEv(B) = {(B,B,B)}

• c = initPT(G1,G2) = initPT(B,B) = B

• c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(B[F/X]\X,B[F/X]\X) = initPT(B,B) = B

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required to
prove [B]{(B,B,B)} v {(B,B,B)}[B], because c[F/X] = BF/X = B. Note that the result follows
immediately.

Case (Y 6 Y). G1 = Y and G2 = Y. We divide this case in two; if Y = X or Y 6 X.

• Y = X. We know that

– ε1 = instEv(G1,X,F) = instEv(X,X,F) = reflEv(F) = [(F,F,F)]

– ε2 = instEv(G2,X,F) = instEv(X,X,F) = reflEv(F) = [(F,F,F)]

– c = initPT(G1,G2) = initPT(X,X) = X

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(X[F/X]\X,X[F/X]\X) = initPT(F,F) = F

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [F][(F,F,F)] v [(F,F,F)][F], because c[F/X] = X[F/X] = F. Note that the result
follows immediately.

448

• Y 6 X. We know that

– ε1 = instEv(G1,X,F) = instEv(Y,X,F) = reflEv(Y) = [(Y,Y,Y)]

– ε2 = instEv(G2,X,F) = instEv(Y,X,F) = reflEv(Y) = [(Y,Y,Y)]

– c = initPT(G1,G2) = initPT(Y,Y) = Y

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(Y[F/X]\X,Y[F/X]\X) = initPT(Y,Y) =
Y

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [Y][(Y,Y,Y)] v [(Y,Y,Y)][Y], because c[F/X] = Y[F/X] = Y. Note that the result
follows immediately.

Case (G11− −→ G12 6 G21− −→ G22). G1 = G11− −→ G12 and G2 = G21− −→ G22. We know that

• G11 6 G21 and G12 6 G22

• ε1 = instEv(G1,X,F) = instEv(G11− −→ G12,X,F) = instEv(G11,X,F)− −→ instEv(G12,X,F)

• ε1 = instEv(G2,X,F) = instEv(G21− −→ G22,X,F) = instEv(G21,X,F)− −→ instEv(G22,X,F)

• c = c1 −→ c2 = initPT(G1,G2) = initPT(G11− −→ G12,G21− −→ G22) = initPT(G11,G21) −→
initPT(G12,G22)

• c′ = c1 −→ c′2 = initPT(G1[F/X]\X,G2[F/X]\X) =

initPT((G11− −→ G12)[F/X]\X, (G21− −→ G22)[F/X]\X) =
initPT(G11[F/X]\X,G21[F/X]\X) −→ initPT(G12[F/X]\X,G22[F/X]\X)

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required to
prove

[c1[F/X] −→ c2[F/X]](instEv(G11,X,F) −→ instEv(G12,X,F)) v (instEv(G21,X,F) −→ instEv(G22,X,F))[c1 −→ c′2]

By the induction hypothesis on G11 6 G21 and G12 6 G22, we get that

• [c1[F/X]]instEv(G11,X,F) v instEv(G21,X,F)[c1]

• [c2[F/X]]instEv(G12,X,F) v instEv(G22,X,F)[c′2]

Thus, the result follows immediately, by Lemma B.74.

Case (G11 × G12 6 G21 × G22). G1 = G11 × G12 and G2 = G21 × G22. We know that

• G11 6 G21 and G12 6 G22

• ε1 = instEv(G1,X,F) = instEv(G11 × G12,X,F) = instEv(G11,X,F)× instEv(G12,X,F)

• ε1 = instEv(G2,X,F) = instEv(G21 × G22,X,F) = instEv(G21,X,F)× instEv(G22,X,F)

• c = c1×c2 = initPT(G1,G2) = initPT(G11 × G12,G21 × G22) = initPT(G11,G21)×initPT(G12,G22)

449

• c′ = c1 × c′2 = initPT(G1[F/X]\X,G2[F/X]\X) =

initPT((G11 × G12)[F/X]\X, (G21 × G22)[F/X]\X) =
initPT(G11[F/X]\X,G21[F/X]\X)× initPT(G12[F/X]\X,G22[F/X]\X)

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required to
prove

[c1[F/X]× c2[F/X]](instEv(G11,X,F)×instEv(G12,X,F)) v (instEv(G21,X,F)× instEv(G22,X,F))[c1×c′2]

By the induction hypothesis on G11 6 G21 and G12 6 G22, we get that

• [c1[F/X]]instEv(G11,X,F) v instEv(G21,X,F)[c1]

• [c2[F/X]]instEv(G12,X,F) v instEv(G22,X,F)[c′2]

Thus, the result follows immediately, by Lemma B.75.

Case (∀X.G11 6 ∀X.G21). G1 = ∀X.G11 and G2 = ∀X.G21. We know that

• G11 6 G21

• ε1 = instEv(G1,X,F) = instEv(∀X.G11,X,F) = ∀X.instEv(G11,X,F)

• ε1 = instEv(G2,X,F) = instEv(∀X.G21,X,F) = ∀X.instEv(G21,X,F)

• c = ∀X.c1 = initPT(G1,G2) = initPT(∀X.G11, ∀X.G21) = ∀X.initPT(G11,G21)

• c′ = ∀X.c′1 = initPT(G1[F/X]\X,G2[F/X]\X) = initPT((∀X.G11)[F/X]\X, (∀X.G21)[F/X]\X) =
∀X.initPT(G11[F/X]\X,G21[F/X]\X)

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required to
prove

[∀X.(c1[F/X])](∀X.instEv(G11,X,F)) v (∀X.instEv(G21,X,F))[∀X.c1]

By the induction hypothesis on G11 6 G21, we get that

• [c1[F/X]]instEv(G11,X,F) v instEv(G21,X,F)[c1]

Thus, the result follows immediately, by Lemma B.76.

Case (B 6 ?δ). G1 = B and G2 = ?δ . We divide this case in two; if X : X ∈ δ or X : 6∈ δ.

• X : X ∈ δ = δ1;X : X; δ2. We know that

– ε1 = instEv(G1,X,F) = instEv(B,X,F) = reflEv(B) = {(B,B,B)}
– ε2 = instEv(G2,X,F) = instEv(?δ ,X,F) = [(?δ1;δ2 , inj?, inj?), (F, injX , injF)]

– c = initPT(G1,G2) = initPT(B, ?δ) = injB

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(B[F/X]\X, ?δ [F/X]\X) = initPT(B, ?δ1;δ2) =
injB

450

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are
required to prove [injB]{(B,B,B)} v [(?δ1;δ2 , inj?, inj?), (F, injX , injF)][injB], because
c[F/X] = injB[F/X] = injB. The results follows immediately because [injB]{(B,B,B)}
v [(?δ1;δ2 , inj?, inj?)][injB]. Or what is the same, for all element in ε1 (there is only one
element in ε1, (B,B,B)) there exist an element in ε2 ((?δ1;δ2 , inj?, inj?)), ct, cl and cr

(ct = cl = cr = injB) such that

– ct;inj? = cl (injB;inj? = injB)

– B;c[F/X] = cl (B;injB = injB)

– ct;inj? = cr (injB;inj? = injB)

– B;c′ = cr (B;injB = injB)

Thus, the result holds.

• X : 6∈ δ. We know that

– ε1 = instEv(G1,X,F) = instEv(B,X,F) = reflEv(B) = {(B,B,B)}
– ε2 = instEv(G2,X,F) = instEv(?δ ,X,F) = reflEv(?δ) = [(?δ , inj?, inj?)]

– c = initPT(G1,G2) = initPT(B, ?δ) = injB

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(B[F/X]\X, ?δ [F/X]\X) = initPT(B, ?δ) =
injB

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [injB]{(B,B,B)} v [(?δ , inj?, inj?)][injB], because c[F/X] = injB[F/X] = injB.
Note that the result follows immediately.

Case (Y 6 ?δ and Y : F ∈ δ). G1 = Y and G2 = ?δ . We divide this case in three cases: Y = X and
X : X ∈ δ, Y 6 X and X : X ∈ δ, and Y 6 X and X : 6∈ δ. Note that the case Y = X and Y : 6∈ δ
is not possible because by premise, we know that Y : F ∈ δ.

• X : X ∈ δ = δ1;X : X; δ2. We know that

– ε1 = instEv(G1,X,F) = instEv(X,X,F) = reflEv(F) = [(F,F,F)]

– ε2 = instEv(G2,X,F) = instEv(?δ ,X,F) = [(?δ1;δ2 , inj?, inj?), (F, injX , injF)]

– c = initPT(G1,G2) = initPT(X, ?δ) = injX

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(X[F/X]\X, ?δ [F/X]\X) = initPT(F, ?δ1;δ2) =
injF

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [injX][(F,F,F)] v [(?δ1;δ2 , inj?, inj?), (F, injX , injF)][injF], because c[F/X] =
injX [F/X] = injX . The results follows immediately because [injX][(F,F,F)] v [(F, injX , injF)][injF].
Or what is the same, for all element in ε1 (there is only one element in ε1, (F,F,F)) there
exist an element in ε2 ((F, injX , injF)), ct, cl and cr (ct = F, cl = injX and cr = injF)
such that

– ct;injX = cl (F;injX = injX)

– F;c[F/X] = cl (F;injX = injX)

– ct;injF = cr (F;injF = injF)

451

– F;c′ = cr (F;injF = injF)

Thus, the result holds.

• Y 6 X and X : X ∈ δ = δ1;X : X; δ2. We know that

– ε1 = instEv(G1,X,F) = instEv(Y,X,F) = reflEv(Y) = [(Y,Y,Y)]

– ε2 = instEv(G2,X,F) = instEv(?δ ,X,F) = [(?δ1;δ2 , inj?, inj?), (F, injX , injF)]

– c = initPT(G1,G2) = initPT(Y, ?δ) = injY

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(Y[F/X]\X, ?δ [F/X]\X) = initPT(Y, ?δ1;δ2) =
injY

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are
required to prove [injY][(Y,Y,Y)] v [(?δ1;δ2 , inj?, inj?), (F, injX , injF)][injY], because
c[F/X] = injY[F/X] = injY. The results follows immediately because [injY][(Y,Y,Y)]
v [(?δ1;δ2 , inj?, inj?)][injY]. Or what is the same, for all element in ε1 (there is only one
element in ε1, (Y,Y,Y)) there exist an element in ε2 ((?δ1;δ2 , inj?, inj?)), ct, cl and cr

(ct = cl = cr = injY) such that

– ct;inj? = cl (injY;inj? = injY)

– Y;c[F/X] = cl (Y;injY = injY)

– ct;inj? = cr (injY;inj? = injY)

– Y;c′ = cr (Y;injY = injY)

Thus, the result holds.

• Y 6 X and X : 6∈ δ. We know that

– ε1 = instEv(G1,X,F) = instEv(Y,X,F) = reflEv(Y) = [(Y,Y,Y)]

– ε2 = instEv(G2,X,F) = instEv(?δ ,X,F) = reflEv(?δ) = [(?δ , inj?, inj?)]

– c = initPT(G1,G2) = initPT(Y, ?δ) = injY

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(Y[F/X]\X, ?δ [F/X]\X) = initPT(Y, ?δ) =
injY

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [injY][(Y,Y,Y)] v [(?δ , inj?, inj?)][injY], because c[F/X] = injY[F/X] = injY.
Note that the result follows immediately.

Case (?δ 6 ?δ′ and δ ⊆ δ′). G1 = ?δ and G2 = ?δ′ . We divide this case in three cases: X : X ∈ δ ⊆ δ′,
X : X 6∈ δ and X : X ∈ δ′, and X : X 6∈ δ and X : X 6∈ δ′.

• X : X ∈ δ ⊆ δ′, δ = δ1;X : X; δ2 and δ′ = δ′1;X : X; δ′2. We know that

– ε1 = instEv(G1,X,F) = instEv(?δ ,X,F) = [(?δ1;δ2 , inj?, inj?), (F, injX , injF)]

– ε2 = instEv(G2,X,F) = instEv(?δ′ ,X,F) = [(?δ′1;δ′2 , inj?, inj?), (F, injX , injF)]

– c = initPT(G1,G2) = initPT(?δ , ?δ′) = inj?

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(?δ [F/X]\X, ?δ′ [F/X]\X) =

initPT(?δ′1;δ′2 , ?δ′1;δ′2) = inj?

452

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [inj?][(?δ1;δ2 , inj?, inj?), (F, injX , injF)] v [(?δ′1;δ′2 , inj?, inj?), (F, injX , injF)][inj?],
because c[F/X] = inj?[F/X] = inj?. First, we prove that for (?δ1;δ2 , inj?, inj?) ∈ ε1 there
exist an element in ε2 ((?δ′1;δ′2 , inj?, inj?)), ct, cl and cr (ct = cl = cr = inj?) such that

– ct;inj? = cl (inj?;inj? = inj?)

– inj?;c[F/X] = cl (inj?;inj? = inj?)

– ct;inj? = cr (inj?;inj? = inj?)

– inj?;c
′ = cr (inj?;inj? = inj?)

Second, we prove that for (F, injX , injF) ∈ ε1 there exist an element in ε2 ((F, injX , injF)),
ct, cl and cr (ct = F, cl = injX and cr = injF) such that

– ct;injX = cl (F;injX = injX)

– injX ;c[F/X] = cl (injX ;inj? = injX)

– ct;injF = cr (F;injF = injF)

– injF ;c′ = cr (injF ;inj? = injF)

Thus, the result holds.

• X : X 6∈ δ and X : X ∈ δ′ = ?δ′1;X:Xδ′2 . We know that

– ε1 = instEv(G1,X,F) = instEv(?δ ,X,F) = reflEv(?δ) = [(?δ , inj?, inj?)]

– ε2 = instEv(G2,X,F) = instEv(?δ′ ,X,F) = [(?δ′1;δ′2 , inj?, inj?), (F, injX , injF)]

– c = initPT(G1,G2) = initPT(?δ , ?δ′) = inj?

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(?δ [F/X]\X, ?δ′ [F/X]\X) =

initPT(?δ , ?δ′1;δ′2) = inj?

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are re-
quired to prove [inj?][(?δ , inj?, inj?)] v [(?δ′1;δ′2 , inj?, inj?), (F, injX , injF)][inj?], because
c[F/X] = inj?[F/X] = inj?. The results follows immediately because [inj?][(?δ , inj?, inj?)]
v [(?δ′1;δ′2 , inj?, inj?)][inj?]. Or what is the same, for all element in ε1 (there is only one
element in ε1, (?δ , inj?, inj?)) there exist an element in ε2 ((?δ′1;δ′2 , inj?, inj?)), ct, cl and
cr (ct = cl = cr = inj?) such that

– ct;inj? = cl (inj?;inj? = inj?)

– inj?;c[F/X] = cl (inj?;inj? = inj?)

– ct;inj? = cr (inj?;inj? = inj?)

– inj?;c
′ = cr (inj?;inj? = inj?)

Thus, the result holds.

• X : X 6∈ δ and X : X 6∈ δ′. We know that

– ε1 = instEv(G1,X,F) = instEv(?δ ,X,F) = reflEv(?δ) = [(?δ , inj?, inj?)]

– ε2 = instEv(G2,X,F) = instEv(?δ′ ,X,F) = reflEv(?δ′) = [(?δ′ , inj?, inj?)]

– c = initPT(G1,G2) = initPT(?δ , ?δ′) = inj?

453

– c′ = initPT(G1[F/X]\X,G2[F/X]\X) = initPT(?δ [F/X]\X, ?δ′ [F/X]\X) = initPT(?δ , ?δ′) =
inj?

Therefore, we are required to prove [c[F/X]]ε1 v ε2[c′]. Or what is the same, we are required
to prove [inj?][(?δ , inj?, inj?)] v [(?δ′ , inj?, inj?)][inj?], because c[F/X] = inj?[F/X] =
inj?. Note that the result follows immediately.

Lemma B.126 If (Γ1,Γ2) ≡ Ω then Γ1 v Γ2.

Proof. Directly by Definition B.109 and (Γ1,Γ2) ≡ Ω.

Lemma B.127 If G1 6 G2 then G1 v G2.

Proof. We proceed by induction on G1 6 G2.

Case (B 6 B). The results follows immediately by the rule B v B.

Case (X 6 X). The results follows immediately by the rule X v X.

Case (B 6 ?δ). The results follows immediately by the rule B v ?δ .

Case (X 6 ?δ and X : X ∈ δ). The results follows immediately by the rule X v ?δ .

Case (G11→G12 6 G21→G22). We know that

G11 6 G21 G12 6 G22

G11→G12 6 G21→G22

By the induction hypothesis on G11 6 G21 and G12 6 G22, we know that G11 v G21 and G12 v G22.
We are required to prove that G11→G12 v G21→G22, which follows immediately by the rule

G11 v G21 G12 v G22

G11→G12 v G21→G22

Case (G11×G12 6 G21×G22). We know that

G11 6 G21 G12 6 G22

G11×G12 6 G21×G22

By the induction hypothesis on G11 6 G21 and G12 6 G22, we know that G11 v G21 and G12 v G22.
We are required to prove that G11×G12 v G21×G22, which follows immediately by the rule

G11 v G21 G12 v G22

G11×G12 v G21×G22

Case (∀X.G11 6 ∀X.G12). We know that

G11 6 G12

∀X.G11 6 ∀X.G12

By the induction hypothesis on G11 6 G12, we know that G11 v G12. We are required to prove that
∀X.G11 v ∀X.G12, which follows immediately by the rule

G11 v G12

∀X.G11 v ∀X.G12

454

Case (?δ 6 ?δ′ and δ ⊆ δ′). The results follows immediately by the rule ?δ v ?δ′ .

Lemma B.128 If G1 = G2, then G1 v G2.

Proof. Since, G1 = G2, we have that γ(G1) = γ(G2), and therefore, γ(G1) ⊆ γ(G2). Thus, by
Definition B.94, we have that G1 v G2, and the result holds.

Lemma B.129 If G _ G′, then G′ v G.

Proof. We follow by case analysis on G _ G′.

Case (G1→G2 _ G1→G2). Immediately, by Lemma B.128.

Case (∀X.G _ ∀X.G). Immediately, by Lemma B.128.

Case (G1×G2 _ G1×G2). Immediately, by Lemma B.128.

Case (?δ _ ?δ −→ ?δ). We know that ftv(?δ→?δ) = ftv(?δ), and therefore, ftv(?δ→?δ) ⊆ ftv(?δ).
Thus, by Lemma B.100, the result hold.

Case (?δ _ ∀X.?δ,X:X). We know that ftv(∀X.?δ,X:X) = ftv(?δ), and therefore, ftv(∀X.?δ,X:X) ⊆
ftv(?δ). Thus, by Lemma B.100, the result hold.

Case (?δ _ ?δ × ?δ). We know that ftv(?δ × ?δ) = ftv(?δ), and therefore, ftv(?δ × ?δ) ⊆ ftv(?δ).
Thus, by Lemma B.100, the result hold.

Lemma B.130 If G1 ∼ G2, G1 v G′1 and G2 v G′2, then G′1 ∼ G′2.

Proof. Since G1 v G′1 and G2 v G′2, by Definition B.94, we get that γ(G1) ⊆ γ(G′1) and γ(G2) ⊆
γ(G′2). Since G1 ∼ G2, by Definition B.96, we know that there, exist T1 and T2, such that T1 = T2,
T1 ∈ γ(G1) and T2 ∈ γ(G2). Therefore, we have that T1 ∈ γ(G1) ⊆ γ(G′1) and T2 ∈ γ(G2) ⊆ γ(G′2),
and by Definition B.96, the result holds (G′1 ∼ G′2).

Lemma B.131 If G1 v G2, G1 _ G11→G12 and G2 _ G21→G22, then G11→G12 v G21→G22.

Proof. By definition of G1 _ G11→G12 and G2 _ G21→G22, we get the following cases.

• G1 = G11→G12 and G2 = G21→G22. The result holds, since G1 v G2.

• G1 = G11→G12, G2 = ?δ and G2 _ ?δ→?δ . We are required to show that G11→G12 v ?δ→?δ ,
which follows immediately since G11→G12 v ?δ .

• G1 = ?δ and G2 = G21→G22. This case is not possible since is not the case that ?δ v G11→G12.

• G1 = ?δ , G2 = ?δ′ , G1 _ ?δ→?δ and G2 _ ?δ′→?δ′ We are required to prove that ?δ→?δ v
?δ′→?δ′ , which follows immediately since ?δ v ?δ

′.

455

Lemma B.132 If G1 v G2, G1 _ G11×G12 and G2 _ G21×G22, then G11×G12 v G21×G22.

Proof. By definition of G1 _ G11×G12 and G2 _ G21×G22, we get the following cases.

• G1 = G11×G12 and G2 = G21×G22. The result holds, since G1 v G2.

• G1 = G11×G12, G2 = ?δ and G2 _ ?δ × ?δ . We are required to show that G11×G12 v ?δ × ?δ ,
which follows immediately since G11×G12 v ?δ .

• G1 = ?δ and G2 = G21×G22. This case is not possible since is not the case that ?δ v G11×G12.

• G1 = ?δ , G2 = ?δ′ , G1 _ ?δ × ?δ and G2 _ ?δ′ × ?δ′ We are required to prove that ?δ × ?δ v
?δ′ × ?δ′ , which follows immediately since ?δ v ?δ

′.

Lemma B.133 If G1 v G2, G1 _ ∀X.G11 and G2 _ ∀X.G21, then ∀X.G11 v ∀X.G21.

Proof. By definition of G1 _ ∀X.G11 and G2 _ ∀X.G21, we get the following cases.

• G1 = ∀X.G11 and G2 = ∀X.G21. The result holds, since G1 v G2.

• G1 = ∀X.G11, G2 = ?δ and G2 _ ∀X.?δ,X:X. We are required to show that ∀X.G11 v ∀X.?δ,X:X,
which follows immediately since ∀X.G11 v ?δ .

• G1 = ?δ and G2 = ∀X.G21. This case is not possible since is not the case that ?δ v ∀X.G11.

• G1 = ?δ , G2 = ?δ′ , G1 _ ∀X.?δ,X:X and G2 _ ∀X.?δ′,X:X We are required to prove that
∀X.?δ,X:X v ∀X.?δ′,X:X, which follows immediately since ?δ v ?δ

′, and therefore, ?δ,X:X v ?δ′,X:X.

Lemma B.134 G1→G′1 v G2→G′2 if and only if dom](G1→G′1) v dom](G2→G′2) and cod](G1→G′1) v
cod](G2→G′2).

Proof. We know that dom](G1→G′1) = G1, dom](G2→G′2) = G2, cod](G1→G′1) = G′1 and cod](G2→G′2) =
G′2. We know by (v→) rule, that G1→G′1 v G2→G′2 if and only if G1 v G2 and G′1 v G′2. Therefore,
the result holds.

Lemma B.135 G1×G′1 v G2×G′2 if and only if proj]1(G1×G′1) v proj]1(G2×G′2) and proj]2(G1×G′1) v
proj]2(G2×G′2).

Proof. We know that proj]1(G1×G′1) = G1, proj]1(G2×G′2) = G2, proj]2(G1×G′1) = G′1 and

proj]2(G2×G′2) = G′2. We know by (v×) rule, that G1×G′1 v G2×G′2 if and only if G1 v G2

and G′1 v G′2. Therefore, the result holds.

456

Lemma B.136 G _ G1→G2 if and only if dom](G) = G1 and cod](G) = G2.

Proof. If G _ G1→G2, we know that G = G1→G2, and therefore, dom](G) = G1 and cod](G) = G2.
Thus, the result holds. If dom](G) = G1 and cod](G) = G2, we know that G = G1→G2, or G = ?δ ,
G1 = ?δ and G2 = ?δ . If G = G1→G2, we know that G _ G1→G2, and the result hold. If G = ?δ ,
then G _ ?δ→?δ and the result holds.

Lemma B.137 G _ G1×G2 if and only if proj]i(G) = Gi.

Proof. If G _ G1×G2, we know that G = G1×G2, and therefore, proj]1(G) = G1 and proj]2(G) =

G2. Thus, the result holds. If proj]i(G) = G1 and proj]i(G) = G2, we know that G = G1×G2, or
G = ?δ , G1 = ?δ and G2 = ?δ . If G = G1×G2, we know that G _ G1×G2, and the result hold. If
G = ?δ , then G _ ?δ × ?δ and the result holds.

Lemma B.138 G _ ∀X.G1 if and only if scheme](G) = G1 and G1[G
′/X]\X = inst](G,G′).

Proof. If G _ ∀X.G1, we know that G = ∀X.G1, and therefore, scheme](G) = G1, and therefore,
G1[G

′/X]\X = inst](G,G′) = inst](∀X.G1,G
′). Thus, the result holds. If scheme](G) = G1 and

G1[G
′/X]\X = inst](G,G′), we know that G = ∀X.G1, or G = ?δ , G1 = ?δ,X:X. If G = ∀X.G1, we

know that G _ ∀X.G1, and the result hold. If G = ?δ , then

G _ ∀X.?δ,X:X and the result holds.

Lemma B.139 If G1 v G2 and dom](G1) is defined, then dom](G1) v dom](G2) and cod](G1) v
cod](G2).

Proof. Since G1 v G2, we know by Definition B.94, that γ(G1) ⊆ γ(G2). Since dom](G1) is
defined, we know that dom](G1) = α({ dom(T) | T ∈ γ(G1) }). Therefore, we get that dom](G2) =
α({ dom(T) | T ∈ γ(G2) }) is defined and A = { dom(T) | T ∈ γ(G1) } ⊆ { dom(T) | T ∈ γ(G2) } =
B. By Lemma B.92, we get that A ⊆ γ(α(A)) = γ(dom](G1)) and B ⊆ γ(α(B)) = γ(dom](G2)),
where A ⊆ B ⊆ γ(α(B)) = γ(dom](G2)). Since A ⊆ γ(dom](G2)), by Lemma B.93, we get that
dom](G1) = α(A) v dom](G2), as we are required to prove.

Since G1 v G2, we know by Definition B.94, that γ(G1) ⊆ γ(G2). Since cod](G1) is de-
fined, we know that cod](G1) = α({ dom(T) | T ∈ γ(G1) }). Therefore, we get that cod](G2) =
α({ dom(T) | T ∈ γ(G2) }) is defined and A = { dom(T) | T ∈ γ(G1) } ⊆ { dom(T) | T ∈ γ(G2) } =
B. By Lemma B.92, we get that A ⊆ γ(α(A)) = γ(cod](G1)) and B ⊆ γ(α(B)) = γ(cod](G2)),
where A ⊆ B ⊆ γ(α(B)) = γ(cod](G2)). Since A ⊆ γ(cod](G2)), by Lemma B.93, we get that
cod](G1) = α(A) v cod](G2), as we are required to prove.

Lemma B.140 If G1 v G2 and proj]i(G1) is defined, then proj]i(G1) v proj]i(G2).

Proof. Since G1 v G2, we know by Definition B.94, that γ(G1) ⊆ γ(G2). Since proj]i(G1) is

defined, we know that proj]i(G1) = α({ proj i(T) | T ∈ γ(G1) }). Therefore, we get that proj]i(G2) =
α({ proj i(T) | T ∈ γ(G2) }) is defined and A = { proj i(T) | T ∈ γ(G1) } ⊆ { proj i(T) | T ∈ γ(G2) } =

457

B. By Lemma B.92, we get that A ⊆ γ(α(A)) = γ(proj]i(G1)) and B ⊆ γ(α(B)) = γ(proj]i(G2)),

where A ⊆ B ⊆ γ(α(B)) = γ(proj]i(G2)). Since A ⊆ γ(proj]i(G2)), by Lemma B.93, we get that

proj]i(G1) = α(A) v proj]i(G2), as we are required to prove.

Lemma B.141 If G1 v G2, G′1 v G′2 and inst](G1,G
′
1) is defined, then inst](G1,G

′
1) v inst](G2,G

′
2).

Proof. Since G1 v G2 and G′1 v G′2, we know by Definition B.94, that γ(G1) ⊆ γ(G2) and γ(G′1) ⊆
γ(G′2). Since inst](G1) is defined, we know that inst](G1) = α({ inst](T, T ′) | T ∈ γ(G1) ∧ T ′ ∈ γ(G′1) }).
Therefore, we get that inst](G2) = α({ inst](T, T ′) | T ∈ γ(G2) ∧ T ′ ∈ γ(G′2) }) is defined and A =
{ inst](T, T ′) | T ∈ γ(G1) ∧ T ′ ∈ γ(G′1) } ⊆ { inst](T, T ′) | T ∈ γ(G2) ∧ T ′ ∈ γ(G′2) } = B. By Lemma B.92,
we get that A ⊆ γ(α(A)) = γ(inst](G1,G

′
1)) and B ⊆ γ(α(B)) = γ(inst](G2,G

′
2)), where A ⊆ B ⊆

γ(α(B)) = γ(inst](G2,G
′
2)). Since A ⊆ γ(inst](G2)), by Lemma B.93, we get that inst](G1,G

′
1) =

α(A) v inst](G2,G
′
2), as we are required to prove.

Lemma B.142 If ` t1 : G1 v t2 : G2, ` t1 : G1 t1 and ` t2 : G2 t2, then
` initPT(G1,G2) : t1 v t2.

Proof. Straightforward, by Lemma B.143.

Lemma B.143 If

• Ω ` t1 : G1 v t2 : G2

• ∆; Γ1 ` t1 : G1

• (Γ1,Γ2) ≡ Ω

• ∆; Γ1 ` t1 : G1 t′1

• ∆; Γ2 ` t2 : G2 t′2

• c = initPT(G1,G2)

• Ω Ω

then Ω ` c : t′1 v t′2.

Proof. We proceed by induction on Ω ` t1 : G1 v t2 : G2.

Case (Base values). t1 = b and t2 = b. Thus, we know that

Ω ` b : B v b : B
(Eb)

θ(b) = B

∆; Γ1 ` b : B reflEv(B) b :: B

(Eb)
θ(b) = B

∆; Γ2 ` b : B reflEv(B) b :: B

Therefore, we are required to prove that Ω ` c : (reflEv(B) b :: B) v (reflEv(B) b :: B), where
c = initPT(B,B) = reflB and reflEv(B) = (B, reflB , reflB). Or what is the same, by Rule
(vx), we are required to prove that [B]reflEv(B) v reflEv(B)[c] and c : B v B, which follows
immediately. Thus, the result holds.

458

Case (Variables). t1 = x and t2 = x.

We know that
x : G1 v G2 ∈ Ω

Ω ` x : G1 v x : G2
(Ex)

x : G1 ∈ Γ1 ∆ ` Γ1

∆; Γ1 ` x : G1 x
(Ex)

x : G2 ∈ Γ2 ∆ ` Γ2

∆; Γ2 ` x : G2 x

We are required to prove that Ω ` c : x v x, where c = initPT(G1,G2). Or what is the same,
we are required to prove that x 7→ c : G1 v G2 ∈ Ω, which follows immediately by the definition
of Ω Ω . Thus, the result holds.

Case (Functions). t1 = λx : G3.t3 and t2 = λx : G4.t4.

We know that

Ω, x : G3 v G4 ` t3 : G′3 v t4 : G′4 G3 v G4

Ω ` λx : G3.t3 : G3− −→ G′3 v λx : G4.t4 : G4− −→ G′4

(Eλ)
∆; Γ1,x : G3 ` t3 : G′3 t′3

∆; Γ1 ` λx : G3.t3 : G3→G′3 reflEv(G3→G′3) (λx : G3.t
′
3) :: G3→G′3

(Eλ)
∆; Γ2, x : G4 ` t4 : G′4 t′4

∆; Γ2 ` λx : G4.t4 : G4→G′4 reflEv(G4→G′4) (λx : G4.t
′
4) :: G4→G′4

We are required to prove that

Ω ` c : reflEv(G3→G′3) (λx : G3.t
′
3) :: G3→G′3 v reflEv(G4→G′4) (λx : G4.t

′
4) :: G4→G′4

where c = initPT(G3→G′3,G4→G′4) = initPT(G3,G4) −→ initPT(G′3,G
′
4).

We know, by the induction hypothesis on Ω, x : G3 v G4 ` t3 : G′3 v t4 : G′4, that Ω,x 7→ c′′ : G3 v G4 `
c′ : t′3 v t′4, where c′ = initPT(G′3,G

′
4) and c′′ = initPT(G3,G4). Thus, by Lemma B.113, we get

that G′3 v G′4, and therefore, G3− −→ G′3 v G4− −→ G′4 because G3 v G4.

Since G3− −→ G′3 v G4− −→ G′4, ε3 = reflEv(G3− −→ G′3) = initEv(G3− −→ G′3,G3− −→ G′3),
ε4 = reflEv(G4− −→ G′4) = initEv(G4− −→ G′4,G4− −→ G′4) and c = c′′ −→ c′ = initPT(G3− −→ G′3,G4− −→ G′4) =
initPT(G3,G4) −→ initPT(G′3,G

′
4), by Lemma B.124, we know that [c]ε3 v ε4[c].

Thus, we get that

Ω ` c : reflEv(G3→G′3) (λx : G3.t
′
3) :: G3→G′3 v reflEv(G4→G′4) (λx : G4.t

′
4) :: G4→G′4

Thus, the result holds.

Case (Type abstractions). t1 = (ΛX.t3) and t2 = (ΛX.t4),

We know that

(GΛ)
∆,X; Γ1 ` t3 : G3 ∆ ` Γ1

∆; Γ1 ` ΛX.t3 : ∀X.G3
(GΛ)

∆,X; Γ2 ` t4 : G4 ∆ ` Γ2

∆; Γ2 ` ΛX.t4 : ∀X.G4

Ω ` t3 : G3 v t4 : G4

Ω ` ΛX.t3 : ∀X.G3 v ΛX.t4 : ∀X.G4

(EΛ)
∆,X; Γ1 ` t3 : G3 t′3 ∆ ` Γ1

∆; Γ1 ` ΛX.t3 : ∀X.G3 reflEv(∀X.G3) (ΛX.t′3) :: ∀X.G3

(EΛ)
∆,X; Γ2 ` t4 : G4 t′4 ∆ ` Γ2

∆; Γ2 ` ΛX.t4 : ∀X.G4 reflEv(∀X.G4) (ΛX.t′4) :: ∀X.G4

459

We are required to prove that

Ω ` c : reflEv(∀X.G3) (ΛX.t′3) :: ∀X.G3 v reflEv(∀X.G4) (ΛX.t′4) :: ∀X.G4

where c = initPT(∀X.G3,∀X.G4) = ∀X.initPT(G3,G4).

We know, by the induction hypothesis on Ω ` t3 : G3 v t4 : G4, that Ω ` c′ : t′3 v t′4, where
c′ = initPT(G3,G4). Thus, by Lemma B.113, we get that G3 v G4, and therefore, ∀X.G3 v ∀X.G4.

Since ∀X.G3 v ∀X.G4, ε3 = reflEv(∀X.G3) = initEv(∀X.G3, ∀X.G3), ε4 = reflEv(∀X.G4) =
initEv(∀X.G4,∀X.G4), c = ∀X.c′ = ∀X.initPT(G3,G4), by Lemma B.124, we know that [c]ε3 v
ε4[c].
Thus, we get that Ω ` c : reflEv(∀X.G3) (ΛX.t′3) :: ∀X.G3 v reflEv(∀X.G4) (ΛX.t′4) :: ∀X.G4,
and the result holds.

Case (Function applications). t1 = t3 t′3 and t2 = t4 t′4.

We know that

(Gapp)

∆; Γ1 ` t3 : G3 ∆; Γ1 ` t′3 : G′3
dom](G3) ∼ G′3

∆; Γ1 ` t3 t
′
3 : cod](G3)

(Gapp)

∆; Γ2 ` t4 : G4 ∆; Γ2 ` t′4 : G′4
dom](G4) ∼ G′4

∆; Γ2 ` t4 t
′
4 : cod](G4)

Also, we know that

Ω ` t3 : G3 v t4 : G4 Ω ` t′3 : G′3 v t′4 : G′4
G3 _ G31− −→ G32 G4 _ G41− −→ G42

Ω ` t3 t′3 : G32 v t4 t′4 : G42

(Eapp)

∆; Γ1 ` t3 : G3 t31 ∆; Γ1 ` t′3 : G′3 t32 G3 _ G31→G32

ε3 = initEv(G3,G31→G32) ε′3 = initEv(G′3,G31)

∆; Γ1 ` t3 t
′
3 : G32 (ε3t31 :: G31→G32) (ε′3t32 :: G31)

(Eapp)

∆; Γ2 ` t4 : G4 t41 ∆; Γ2 ` t′4 : G′4 t42 G4 _ G41→G42

ε4 = initEv(G4,G41→G42) ε′4 = initEv(G′4,G41)

∆; Γ2 ` t4 t
′
4 : G42 (ε4t41 :: G41→G42) (ε′4t42 :: G41)

We are required to prove that

Ω ` c : (ε3t31 :: G31→G32) (ε′3t32 :: G31) v (ε4t41 :: G41→G42) (ε′4t42 :: G41)

where c = initPT(G32,G42).

We know, by the induction hypothesis on Ω ` t3 : G3 v t4 : G4, that Ω ` c′ : t31 v t41,
where c′ = initPT(G3,G4). Thus, by Lemma B.113, we get that G3 v G4. By Lemma B.131, we
know that G31→G32 v G41→G42. By Lemma B.134, we get that dom](G31→G32) = G31 v G41 =
dom](G41→G42) and cod](G31→G32) = G32 v G42 = cod](G41→G42).

Since G3 v G4, G31→G32 v G41→G42, ε3 = initEv(G3,G31→G32), ε4 = initEv(G4,G41→G42),
c′ = initPT(G3,G4) and c1 −→ c2 = initPT(G31→G32,G41→G42) = initPT(G31,G41) −→ initPT(G32,G42),
by Lemma B.124, we know that [c′]ε3 v ε4[c1 −→ c2]. Thus, we get that Ω ` c1 −→ c2 :
(ε3t31 :: G31→G32) v (ε4t41 :: G41→G42).

460

We know, by the induction hypothesis on Ω ` t′3 : G′3 v t′4 : G′4, that Ω ` c′′ : t32 v t42, where
c′′ = initPT(G′3,G

′
4). Thus, by Lemma B.113, we get that G′3 v G′4.

Since G′3 v G′4, G31 v G41, ε
′
3 = initEv(G′3,G31), ε

′
4 = initEv(G′4,G41), c′′ = initPT(G′3,G

′
4)

and c1 = initPT(G31,G41), by Lemma B.124, we know that [c′′]ε′3 v ε′4[c1]. Thus, we get that
Ω ` c1 : (ε′3t32 :: G31) v (ε′4t42 :: G41). Finally, the result holds.

Case (Type applications). t1 = t3 [F] and t2 = t4 [F].

We know that

(GappG)
∆; Γ1 ` t3 : G3 ∆ ` F

∆; Γ1 ` t3 [F] : inst](G3,F)
(GappG)

∆; Γ2 ` t4 : G4 ∆ ` F

∆; Γ2 ` t4 [F] : inst](G4,F)

Also, we know that

Ω ` t3 : G3 v t4 : G4 G3 6 G4

G3 _ ∀X.G′3 G4 _ ∀X.G′4
Ω ` t3 [F] : G′3[F/X]\X v t4 [F] : G′4[X/F]\F

(EappG)

∆; Γ1 ` t3 : G3 t′3 ∆ ` F G3 _ ∀X.G′3
ε3 = initEv(G3,∀X.G′3) ε′3 = instEv(G′3,X,F)

∆; Γ2 ` t3 [F] : G′3[F/X]\X ε′3((ε3t′3 :: ∀X.G′3) [F]) :: G′3[F/X]\X

(EappG)

∆; Γ2 ` t4 : G4 t′4 ∆ ` F G4 _ ∀X.G′4
ε4 = initEv(G4,∀X.G′4) ε′4 = instEv(G′4,X,F)

∆; Γ2 ` t4 [F] : G′4[F/X]\X ε′4((ε4t′4 :: ∀X.G′4) [F]) :: G′4[F/X]\X

We have to prove that

Ω ` c : ε′3((ε3t′3 :: ∀X.G′3) [F]) :: G′3[F/X]\X v ε′4((ε4t′4 :: ∀X.G′4) [F]) :: G′4[F/X]\X

where c = initPT(G′3[F/X]\X,G′4[F/X]\X).

Since G3 6 G4, by Lemma B.127, we get that G3 v G4. Then, by Lemma B.133, we get that
∀X.G′3 v ∀X.G′4 and ∀X.G′3 6 ∀X.G′4.

We know, by the induction hypothesis on Ω ` t3 : G3 v t4 : G4 that Ω ` c′ : t′3 v t′4, where
c′ = initPT(G3,G4).

Since G3 v G4, ∀X.G′3 v ∀X.G′4, ε3 = initEv(G3,∀X.G′3), ε4 = initEv(G4,∀X.G′4), c′ = initPT(G3,G4)
and ∀X.c′′ = initPT(∀X.G′3, ∀X.G′4) = ∀X.initPT(G′3,G

′
4), by Lemma B.124, we know that [c′]ε3

v ε4[∀X.c′′]. Thus, we get that Ω ` ∀X.c′′ : (ε3t′3 :: ∀X.G′3) v (ε4t′4 :: ∀X.G′4), and, therefore,
Ω ` c′′′ : (ε3t′3 :: ∀X.G′3) [F] v (ε4t′4 :: ∀X.G′4) [F], where c′′′ = c′′[F/X].

Since we know that ∀X.G′3 6 ∀X.G′4, ε′3 = instEv(G′3,X,F), ε′4 = instEv(G′4,X,F), ∀X.c′′ =
initPT(∀X.G′3,∀X.G′4) and c = initPT(G′3[F/X]\X,G′4[F/X]\X), by Lemma B.125, we get that [c′′[F/X]]ε1
v ε2[c]. Thus, the result follows immediately.

Case (Ascriptions). t1 = t3 :: G3 and t2 = t4 :: G4.

We know that

(Gasc)
∆; Γ1 ` t3 : G′3 G′3 ∼ G3

∆; Γ1 ` t3 :: G3 : G3
(Gasc)

∆; Γ1 ` t4 : G′4 G′4 ∼ G4

∆; Γ2 ` t4 :: G4 : G4

461

Also, we know that

Ω ` t3 : G′3 v t4 : G′4 G3 v G4

Ω ` t3 :: G3 : G3 v t4 :: G4 : G4
(Easc)

∆; Γ1 ` t3 : G′3 t′3 ε3 = initEv(G′3,G3)

∆; Γ1 ` t3 :: G3 : G3 ε3t′3 :: G3

(Easc)
∆; Γ2 ` t4 : G′4 t′4 ε4 = initEv(G′4,G4)

∆; Γ2 ` t4 :: G4 : G4 ε4t′4 :: G4

Therefore, we are required to prove that Ω ` c : (ε3t′3 :: G3) v (ε3t′4 :: G4), where c =
initPT(G3,G4). Or what is the same, we are required to prove that Ω ` c′ : t′3 v t′4, for some c′

and [c′]ε3 v ε4[c].

We know, by the induction hypothesis on Ω ` t3 : G′3 v t4 : G′4, that Ω ` c′ : t′3 v t′4,
where c′ = initPT(G′3,G

′
4). Thus, by Lemma B.113, we get that G′3 v G′4. Since G′3 v G′4,

G3 v G4, ε3 = initEv(G′3,G3), ε4 = initEv(G′4,G4), c′ = initPT(G′3,G
′
4) and c = initPT(G3,G4), by

Lemma B.124, we know that [c′]ε3 v ε4[c]. Thus, the result holds.

Theorem B.144 (Gradual guarantees) Suppose ` t1 : G1 v t2 : G2 and ` t1 : G1.

1. ` t2 : G2 and G1 v G2.

2. If t1 ⇓ v1, then t2 ⇓ v2 and ` initPT(G1,G2) : v1 v v2.
If t1 ⇑ then t2 ⇑.

Proof. We prove (1), directly, by Lemma B.111. Since ` t1 : G1, by Lemma B.111, we know that
` t2 : G2. Since ` t1 : G1 and ` t2 : G2, by Lemma 7.9, we know that ` t1 : G1 t′1 and
` t2 : G2 t′2. Thus, we prove (2) , directly, by Lemma 7.10 and 6.14.

B.6.5 Parametricity

As the logical relations are not defined directly over F? terms, this definition establishes a “weaker”
notion of parametricity than in F?

ε. In particular and as mentioned in Section ??, programs 1 and 2 of
Table 6.1, t1 = (ΛX.λx : ?X.x :: X) [Int] 42 and t2 = (ΛX.λx : ?X.x :: X) [Bool] 42 behaves differently:
the former reduces to 42 and the latter fails. Although the elaboration of ΛX.λx : ?X.x :: X, t∀ =
ε′(ΛX.λx : ?X .ε1x :: X) :: ∀X.?X −→ X, is related to itself, the elaborations of t1 and t2 are not
related. The respective elaborations are (ε2(t∀ [Int])::? −→ Int) (ε42::?) and (ε3(t∀ [Bool])::? −→
Bool) (ε42 :: ?). As ε = {(Int, reflInt, injInt)}, then ε42 :: ?X:Int and ε42 :: ?X:Bool are related
at type ?X:X . Therefore (t∀ [Int]) (ε42 :: ?X:Int) is related to (t∀ [Bool]) (ε42 :: ?X:Bool) as both
program will fail when trying to unseal the argument from X. The problem here are evidences
ε2 and ε3 that automatically seals/unseals the argument: (ε # dom(ε2))42 :: ?X:Int is not related
to (ε # dom(ε3))42 :: ?X:Bool. This is because ε # dom(ε2) = {(Int, reflInt, injInt), (Int, reflInt,
injX)}, but ε # dom(ε3) = {(Int, reflInt, injInt)}, and when combined with unsealing evidence
({(X, injX ,X)}[X 7→ Int] = {(Int, injX , Int)} and {(X, injX ,X)}[X 7→ Bool] = {(Bool, injX ,
reflBool)} where ` {(X, injX ,X)} : X : X _ X) the former succeeds but the latter fails.
Note that this non-parametric behavior does not affect polymorphic functions whose type does not
mention the unknown type, e.g. t′1 = (ΛX.λx :X.x :: X) [Int] 42 and t′2 = (ΛX.λx :X.x :: X) [Bool] 42
are not related as t′2 does not typecheck.

462

B.6.6 Source-level parametric reasoning

Lemma B.145 If ¬?X ∈ G, then schm(initEv(∀X.G,∀X.G))[B/X] = instEv(G,X,B).

Definition B.146

?δ′ [F/X]? =?δ′ [F/X]

X[F/X]? =X

B[F/X]? =B

(G1 −→ G2)[F/X]? =G1[F/X]? −→ G2[F/X]?

∀Y.G[F/X]? =∀Y.G[F/X]?

?δ′ [·/X]\X? =?δ′ [X/X]\X

X[·/X]\X? =X

B[·/X]\X? =B

(G1 −→ G2)[·/X]\X? =G1[·/X]\X? −→ G2[·/X]\X?

∀Y.G[·/X]\X? =∀Y.G[·/X]\X?

Definition B.147 instEv?(G,X,F) : G[F/X]? ∼ G[·/X]\X?

instEv?(B,X,F) = instEv(B,X,F)

instEv?(X,X,F) = initEv(X,X)

instEv?(?δ ,X,F) = instEv(?δ ,X,F)

instEv?(G1→G2,X,F) = instEv?(G1,X,F) −→ instEv?(G2,X,F)

instEv?(∀Y.G,X,F) = ∀Y.instEv?(G,X,F)

Lemma B.148 instEv(G,X,F) = instEv?(G,X,F)[F/X]

Intuitively, a type abstraction f of type ∀X.G behaves polymorphically if (1) X is not in the
scope of unknown types in G, or (2) if X is in the scope of unknown types in G, is instantiated to
the same type and using as relation the value interpretation of the instantiated type. Formally:

Lemma B.149

∆; Γ ` f : ∀X.G ∀B1,B2, R ∈ Rel[B1,B2] ∀n, ρ,∆, ((n, ρ) ∈ DJ∆K ∧ (n, γ) ∈ GρJΓK)
X 6∈ bGc? ∆; Γ ` f [Bi] : inst](G,Bi) ti G′ = G[·/X]\X?

(n, ρ1(γ1(t1)), ρ2(γ2(t2))) ∈ Tρ,X 7→(B1,B2,R)JG′K

Proof.

1. Let ε = initEv(∀X.G, ∀X.G), and ε′i = instEv(G,X,Bi), ∆; Γ ` f : ∀X.G εf :: ∀X.G.

2. Note that ∆; Γ ` f [Bi] : inst](G,Bi) ε′i(εf :: ∀X.G [Bi]) :: G[Bi/X]\X

3. Let ρ′ = ρ,X 7→ (B1,B2, R).

4. Note that ρ′i(G
′) = ρ′i(G[·/X]\X?) = ρi(G[·/X]\X?[Bi/X]) = ρi(G[Bi/X]\X), therefore is well

typed.

5. By Theorem 3.28, (n, ρ1(γ1(εf :: ∀X.G)), ρ2(γ2(εf :: ∀X.G))) ∈ VρJ∀X.GK

6. By (5), (n, ρ1(γ1(εf :: ∀X.G))[B1], ρ2(γ2(εf :: ∀X.G))[B2]) ∈ Tρ′JGK,

7. Let εi = ρi(ε), ε′′i = ρi(ε
′
i), and Gi = ρi(G).

463

8. If

ρ1(γ1(εf :: ∀X.G))[B1] 7−→ schm(ε1)t′1 :: G1[B1/X]

j7−→ schm(ε1)v1 :: G1[B1/X]

7−→ v′1

then ρ2(γ2(εf :: ∀X.G))[B2]
∗7−→ schm(ε2)[B2/X]v2 :: G2[B2/X] 7−→ v′2, and

Bj+2 (n,v′1,v
′
2) ∈ Vρ′JGK

9. Then ρ1(γ1(ε′i(εf :: ∀X.G [Bi]) :: G[Bi/X]\X)) 7−→
ε′′i (schm(εi)[Bi/X]t′i :: Gi[Bi/X]) :: Gi[Bi/X]\X

10. If ¬?X ∈ G

(a) By Lemma B.145 ε′i = schm(ε)[Bi/X], therefore ε′′i = schm(εi)[Bi/X]. Also by Lemma MT

ITODOJ G[Bi/X] = G[Bi/X]\X, then

ε′′1(ε′′1t′1 :: G1[B1/X]) :: G1[B1/X]

j7−→ ε′′1(ε′′1v1 :: G1[B1/X]) :: G1[B1/X]

27−→ v′1 (By Lemma 6.7)

Similarly ε′′2(ε′′2t′2 ::G2[B2/X])::G2[B2/X]
∗7−→ v′2, and by weakening Bj+3 (n,v′1,v

′
2) ∈

Vρ′JGK. As ¬?X ∈ G then G = G′ and the result holds.

Lemma B.150 If ` f : ∀X.?X→X, ` v : B and t = f [B] v, then t ⇓ v with ` v : B v, or
t ⇓ error, or t ⇑.

Proof.

• We know that ` f [B] v : B (ε2 ((ε1 f :: ∀X.?X→X) [B]) :: ?→B) (ε3 v :: ?), where

– ` f : ∀X.?X→X f .

– ` v : B v.

– ε1 : ∀X.?X→X ∼ ∀X.?X→X and ε1 = initEv(∀X.?X→X, ∀X.?X→X).

– ε2 : ?X:B→B ∼ ?→B and

ε2 = instEv(?X→X,X,B) = { (B→B, injX→B, injB→B), (?→B, inj?→B, inj?→B) }.
– ε3 : B ∼ ? = initEv(B, ?) = { (B,B, injB) }.

• By Lemma 7.9 and the Fundamental Property 3.28, we know that ` ε1 f :: ∀X.?X→X �
ε1 f :: ∀X.?X→X : ∀X.?X→X and ` ε3 v :: ? � ε3 v :: ? : ?.

• We instantiate ` ε1 f :: ∀X.?X→X � ε1 f :: ∀X.?X→X : ∀X.?X→X with n, ρ = ∅ and γ = ∅.
Therefore, we know that (n, ε1 f :: ∀X.?X→X, ε1 f :: ∀X.?X→X) ∈ TρJ∀X.?X→XK.

464

• If (ε2 ((ε1 f :: ∀X.?X→X) [B]) :: ?→B) (ε3 v :: ?)
i7−→ v∗, then we know by the operational

semantics that

(ε2 ((ε1 f :: ∀X.?X→X) [B]) :: ?→B) (ε3 v :: ?)

i17−→ (ε2 (vf [B]) :: ?→B) (ε3 v :: ?)

i27−→ (ε2 v′f :: ?→B) (ε3 v :: ?) v′f = εv′f
(λx : G.t) :: ?X:B→B

07−→ ((εv′f
ε2) (λx : G.t) :: ?→B) (ε3 v :: ?)

07−→ ((εv′f
ε2) (λx : G.t) :: ?→B) v′ v′ = εv′ u :: ?

17−→ cod(εv′f
ε2) (t[((εv′ # dom(εv′f

ε2)) u :: G)/x]) :: B

cod(ε2) (cod(εv′f
) (t[(((εv′ # dom(ε2)) # dom(εv′f

)) u :: G)/x]) :: G′) :: B

i37−→ cod(ε2) (cod(εv′f
) vt :: G′) :: B

07−→ cod(ε2) v′t :: B

07−→ v∗

where i = i1 + i2 + i3 + 1.

• If ε1 f :: ∀X.?X→X
∗7−→ error or ε1 f :: ∀X.?X→X diverges, then the result holds immedi-

ately. Otherwise, if ε1 f :: ∀X.?X→X
i17−→ vf , then we know thatBi1 (n,vf ,vf) ∈ VρJ∀X.?X→XK.

• We instantiateBi1 (n,vf ,vf) ∈ VρJ∀X.?X→XK with B1 = B2 = B andR = { (n′,v,v) | n′ ∈ N } ∈
Rel[B,B]. Therefore, we get that Bi1 (n,vf [B],vf [B]) ∈ Tρ′J?X→XK, where ρ′ = ρ; X 7→
(B,B, R).

• If vf [B]
∗7−→ error or diverges, then the result holds immediately. Otherwise, vf [B]

i27−→ v′f
and we instantiate Bi1 (n,vf [B],vf [B]) ∈ Tρ′J?X→XK with i2 and v′f , obtaining that
Bi1+i2 (n,v′f ,v

′
f) ∈ Vρ′J?X→XK.

• We instantiate ` ε3 v :: ? � ε3 v :: ? : ? with n− (i1 + i2 + 1). If ε3 v :: ?
∗7−→ error or diverges

the result holds immediately. Otherwise, ε3 v :: ?
07−→ v′ and Bi1+i2+1 (n,v′,v′) ∈ VρJ?K.

• Observe that εv′ = {(B,B, injB)} and dom(ε2) = { (B, injB, injX), (?, inj?, inj?) }. There-

fore, εv′ # dom(ε2) = { (B,B, injX), (B,B, injB) }. Let us define δ = {X : X }. By case
analysis on ` ε : δ _ GR we get that

– ` {(B, injB, reflB)} : δ _ B and ρ′i(ε) = ε = {(B, injB, reflB)}. Therefore, we get

that ρ′i(ε) (εv′ #dom(ε2) u ::?X:B) ::B
07−→ v and Bi1+i2+1 (n,v,v) ∈ Vρ′JBK. Therefore,

Bi1+i2+1 (n, ρ′1(ε) (εv′ #dom(ε2) u ::?X:B)::B, ρ′2(ε) (εv′ #dom(ε2) u ::?X:B)::B) ∈ Tρ′JBK.

– ` {(X, injX , reflX)} : δ _ X, X : X ∈ δ and δ ` X and ρ′i(ε) = {(B, injX , reflB)}.
Therefore, we get that ρ′i(ε) (εv′ # dom(ε2) u :: ?X:B) :: B

07−→ v and Bi1+i2+1 (n,v,v) ∈
Vρ′JXK. Observe that Vρ′JXK = ρ′.R(X) = R. Therefore, Bi1+i2+1 (n, ρ′1(ε) (εv′ #
dom(ε2) u :: ?X:B) :: B, ρ′2(ε) (εv′ # dom(ε2) u :: ?X:B) :: B) ∈ Tρ′JXK.

– ` {(?δ→?δ , inj→, inj? −→ inj?)} : δ _ ?δ→?δ . We get that Bi1+i2+1 (n, ρ′1(ε) (εv′ #
dom(ε2) u ::?X:B)::ρ′1(?δ→?δ), ρ′2(ε) (εv′ #dom(ε2) u ::?X:B)::ρ′2(?δ→?δ)) ∈ Tρ′J?δ→?δK,

since ρ′i(ε) (εv′ # dom(ε2) u :: ?X:B) :: ρ′i(?δ→?δ)
07−→ error.

465

– ` {(?δ × ?δ , inj×, inj?× inj?)} : δ _ ?δ × ?δ . We get that Bi1+i2+1 (n, ρ′1(ε) (εv′ #
dom(ε2) u::?X:B)::ρ′1(?δ × ?δ), ρ′2(ε) (εv′ #dom(ε2) u::?X:B)::ρ′2(?δ × ?δ)) ∈ Tρ′J?δ × ?δK,

since ρ′i(ε) (εv′ # dom(ε2) u :: ?X:B) :: ρ′i(?δ × ?δ)
07−→ error.

– ` {(∀Y.?δ,Y, inj∀,∀Y.inj?)} : δ _ ∀Y.?δ,Y. We get that Bi1+i2+1 (n, ρ′1(ε) (εv′ #
dom(ε2) u::?X:B)::ρ′1(∀Y.?δ,Y), ρ′2(ε) (εv′#dom(ε2) u::?X:B)::ρ′2(∀Y.?δ,Y)) ∈ Tρ′J∀Y.?δ,YK,

since ρ′i(ε) (εv′ # dom(ε2) u :: ?X:B) :: ρ′2(∀Y.?δ,Y)
07−→ error.

Thus, we get that Bi1+i2+1 (n, εv′ # dom(ε2) u :: ?X:B , εv′ # dom(ε2) u :: ?X:B) ∈ Vρ′J?X:XK.

• We instantiate Bi1+i2 (n,v′f ,v
′
f) ∈ Vρ′J?X→XK with i1 + i2, εv′ # dom(ε2) u :: ?X:B and

εv′ # dom(ε2) u :: ?X:B such that Bi1+i2+1 (n, εv′ # dom(ε2) u :: ?X:B , εv′ # dom(ε2) u :: ?X:B) ∈
Vρ′J?X:XK. Thus, we get thatBi1+i2 (n,v′f (εv′#dom(ε2) u::?X:B),v′f (εv′#dom(ε2) u::?X:B)) ∈
Tρ′JXK.

• If v′f (εv′ # dom(ε2) u :: ?X:B)
∗7−→ error or diverges, then the result holds immediately. Oth-

erwise, v′f (εv′ # dom(ε2) u :: ?X:B)
i37−→ v′t and we instantiate Bi1+i2 (n,v′f (εv′ # dom(ε2) u ::

?X:B),v′f (εv′#dom(ε2) u::?X:B)) ∈ Tρ′JXK with i3 and v′t, obtaining thatBi1+i2+i3 (n,v′t,v
′
t) ∈

Vρ′JXK. Since Vρ′JXK = ρ′.R(X) = R we get that v′t = v.

• Observe that cod(ε2) = {(B,B,B)}. Thus, cod(ε2) v′t :: B
07−→ v and v∗ = v. Finally, the

result holds.

Lemma B.151 If ` f : ∀X.?∅→X, ` v : B and t = f [B] v, then t ⇓ error, or t ⇑.

Proof. By Reductio ad absurdum. Let us suppose that t ⇓ v∗. We are going to prove that we get
a contradiction.

• We know that ` f [B] v : B (ε2 ((ε1 f :: ∀X.?·→X) [B]) :: ?·→B) (ε3 v :: ?·), where

– ` f : ∀X.?·→X f .

– ` v : B v.

– ε1 : ∀X.?·→X ∼ ∀X.?·→X and ε1 = initEv(∀X.?·→X, ∀X.?·→X).

– ε2 : ?·→B ∼ ?·→B and

ε2 = instEv(?·→X,X,B) = { (?·→B, inj?→B, inj?→B) }.
– ε3 : B ∼ ?· = initEv(B, ?·) = { (B,B, injB) }.

• By Lemma 7.9 and the Fundamental Property 3.28, we know that ` ε1 f :: ∀X.?·→X �
ε1 f :: ∀X.?·→X : ∀X.?·→X and ` ε3 v :: ?· � ε3 v :: ?· : ?·.

• We instantiate ` ε1 f :: ∀X.?·→X � ε1 f :: ∀X.?·→X : ∀X.?·→X with n, ρ = ∅ and γ = ∅.
Therefore, we know that (n, ε1 f :: ∀X.?·→X, ε1 f :: ∀X.?·→X) ∈ TρJ∀X.?·→XK.

• If (ε2 ((ε1 f :: ∀X.?·→X) [B]) :: ?·→B) (ε3 v :: ?·)
i7−→ v∗, then we know by the operational

semantics that

466

(ε2 ((ε1 f :: ∀X.?·→X) [B]) :: ?·→B) (ε3 v :: ?·)

i17−→ (ε2 (vf [B]) :: ?·→B) (ε3 v :: ?·)

i27−→ (ε2 v′f :: ?·→B) (ε3 v :: ?·) v′f = εv′f
(λx : G.t) :: ?·→B

07−→ ((εv′f
ε2) (λx : G.t) :: ?·→B) (ε3 v :: ?·)

07−→ ((εv′f
ε2) (λx : G.t) :: ?·→B) v′ v′ = εv′ u :: ?·

17−→ cod(εv′f
ε2) (t[((εv′ # dom(εv′f

ε2)) u :: G)/x]) :: B

cod(ε2) (cod(εv′f
) (t[(((εv′ # dom(ε2)) # dom(εv′f

)) u :: G)/x]) :: G′) :: B

i37−→ cod(ε2) (cod(εv′f
) vt :: G′) :: B

07−→ cod(ε2) v′t :: B

07−→ v∗

where i = i1 + i2 + i3 + 1.

• Since ε1 f :: ∀X.?·→X
i17−→ vf , then we know that Bi1 (n,vf ,vf) ∈ VρJ∀X.?·→XK.

• We instantiate Bi1 (n,vf ,vf) ∈ VρJ∀X.?·→XK with B1 = B2 = B and R = ∅ ∈ Rel[B,B].
Therefore, we get that Bi1 (n,vf [B],vf [B]) ∈ Tρ′J?·→XK, where ρ′ = ρ; X 7→ (B,B, R).

• Since vf [B]
i27−→ v′f , we instantiate Bi1 (n,vf [B],vf [B]) ∈ Tρ′J?·→XK with i2 and v′f ,

obtaining that Bi1+i2 (n,v′f ,v
′
f) ∈ Vρ′J?·→XK.

• We instantiate ` ε3 v ::?· � ε3 v ::?· : ?· with n−(i1+i2+1). Since ε3 v ::?·
07−→ v′, we get that

Bi1+i2+1 (n,v′,v′) ∈ VρJ?·K. By the Ascription Lemma 6.10, with evidence dom(ε2) : ?· ∼ ?·,
we get that Bi1+i2+1 (n, εv′ # dom(ε2) u :: ?·, εv′ # dom(ε2) u :: ?·) ∈ Vρ′J?·K.

• We instantiate Bi1+i2 (n,v′f ,v
′
f) ∈ Vρ′J?·→XK with i1 + i2, εv′ # dom(ε2) u :: ?· and εv′ #

dom(ε2) u :: ?· such that Bi1+i2+1 (n, εv′ # dom(ε2) u :: ?·, εv′ # dom(ε2) u :: ?·) ∈ Vρ′J?·K. Thus,

we get that Bi1+i2 (n,v′f (εv′ # dom(ε2) u :: ?·),v
′
f (εv′ # dom(ε2) u :: ?·)) ∈ Tρ′JXK.

• Since v′f (εv′ #dom(ε2) u ::?·)
i37−→ v′t, we instantiate Bi1+i2 (n,v′f (εv′ #dom(ε2) u ::?·),v

′
f (εv′ #

dom(ε2) u :: ?·)) ∈ Tρ′JXK with i3 and v′t, obtaining that Bi1+i2+i3 (n,v′t,v
′
t) ∈ Vρ′JXK. Since

Vρ′JXK = ρ′.R(X) = R = ∅ we get a contradiction and the result holds immediately.

Universal type is degenerate

In this section, we attempt to prove that the counterexample of Devriese et al. (2018) does not
apply to F?

ε.

Fully-abstract embedding? Jacobs et al. (2021) propose the fully-abstract embedding of a
statically-typed language into its gradually-typed counterpart as a criteria to assess gradual lan-
guages. Informally, this means that terms contextually equivalent in the static language must also

467

be contextually equivalent in the gradual language. Such a result has been disproved for λB via
the following counterexample (Devriese et al., 2018). Consider type Univ , ∃Y.∀X.(X→Y)× (Y→X)
and the next two terms:

ts , λx :Univ.unpack x as 〈Y, x′〉 in let x′′ : (Unit→Y)× (Y→Unit) = x′ [Unit] in π2(x
′′) (π1(x

′′) unit)

tu , λx :Univ.unpack x as 〈Y, x′〉 in let x′′ : (Unit→Y)×(Y→Unit) = x′ [Unit] in π2(x
′′) (π1(x

′′) unit);ωUnit

where ωUnit is the always-diverging term of type Unit. Intuitively, ts and tu are almost the same
function, but the ωUnit in tu makes it always diverge when invoked. Devriese et al. prove that the
invocation π2(x

′′) (π1(x
′′) unit) must diverge for all System F inhabitants of Univ, so that the terms

ts and tu are contextually equivalent.

In λB (and GSF) these two terms are no longer contextually equivalent: there is a context
in which the application of ts terminates. Essentially, the globally scoped sealing used in these
languages allows constructing an inhabitant of Univ which instantiates Y to the unknown type and
does not make the term ts diverge.

While proving fully-abstract embedding for F?
ε is future work, we can already show that the

lexically scoped sealing of F?
ε breaks this counterexample. The following lemma states that the

elaborations of ts and tu are related.

Lemma B.152 If ` ts : Univ→Unit ts and ` tu : Univ→Unit tu, then ` ts � tu :
Univ→Unit.

We currently do not have an existential type, but we can use the version of the example that uses
the standard encoding of the existential type (copied with permission from the auxiliary material
of Devriese et al. (2018)):

Univ′ = ∀Z. (∀Y. (∀X. (X → Y)× (Y → X))→ Z)→ Z

t′u = λx : Univ′. x Unit (ΛY. λx′ : (∀X. (X → Y)× (Y → X)).

let x′′ : (Unit→ Y)× (Y → Unit) = x′ Unit in π2(x′′) (π1(x′′) unit))

t′d = λx : Univ′. x Unit (ΛY. λx′ : (∀X. (X → Y)× (Y → X)).

let x′′ : (Unit→ Y)× (Y → Unit) = x′ Unit in (π2(x′′) (π1(x′′) unit);ωUnit))

The following is a proof sketch that shows that t′u is contextually equivalent to t′d. The idea
is to prove that the two terms are logically related and use a soundness lemma about the LR to
obtain contextual equivalence. In this report, we haven’t actually proven such a soundness lemma
but it should be easy to prove based on the compatibility lemmas that we have used for proving
the fundamental theorem (Theorem 3.28).

Lemma B.153 (n, t′u, t
′
d) ∈ T∅JUniv′ → UnitK for arbitrary n.

Proof sketch. Take n1 ≤ n and v1,v
′
1 ∈ V∅JUniv′K, then it suffices to prove that (n′, t′u v1, t

′
d v2) ∈

TρJUnitK.

Clearly, if t′u v1 7−→ ∗v2, then we must have that v1 Unit v2 7−→ ∗v3 for

v2 = (ΛY. λx′ : (∀X. (X → Y)×(Y → X)). let x′′ : (Unit→ Y)×(Y → Unit) = x′ Unit in π2(x′′) (π1(x′′) unit))

468

and similarly if t′d v′1 7−→ ∗v′3.

It suffices to prove that for R∅ = ∅ ∈ Rel[Unit,Unit], VρJ(n1,v2,v
′
2)K ∈ VZ 7→R∅J∀Y. (∀X. (X →

Y)× (Y → X))→ ZK.

To prove this, take ` τY and ` τ ′Y and RY ∈ Rel[τY , τ
′
Y], then it suffices to prove that for

n2 ≤ n1

(n2,v2 τY,v
′
2 τ
′
Y) ∈ TZ 7→R∅,Y 7→RY J(∀X. (X → Y)× (Y → X))→ ZK

To prove this, it suffices to prove that (n2, v4, v
′
4) ∈ VZ 7→R∅,Y 7→RY J(∀X. (X → Y)× (Y → X))→

ZK for

v4 = λx′ : (∀X. (X→ τY)× (τY → X)). let x′′ : (Unit→ τY)× (τY → Unit) = x′ Unit in π2(x′′) (π1(x′′) unit)

and v′4 similarly.

To prove this, take some n3 ≤ n2 and (n3, v5, v
′
5) ∈ VZ 7→R∅,Y 7→RY J∀X. (X → Y) × (Y → X)K,

then it suffices to prove that (n3, v4 v5, v
′
4 v
′
5) ∈ TZ 7→R∅,Y 7→RY JZK.

It suffices to prove that (n3, t6, t
′
6) ∈ TZ 7→R∅,Y 7→RY JZK for

t6 = let x′′ : (Unit→ τY)× (τY → Unit) = v5 Unit in π2(x′′) (π1(x′′) unit)

Now, takeR> = (n, tt, tt) ∈ Rel[Unit,Unit] and we have that (n3, v5 Unit, v
′
5 Unit) ∈ TZ 7→R∅,Y 7→RY ,X 7→RX J(X →

Y)×(Y → X)K for bothRX = R> andR∅. Therefore, when v5 Unit 7−→ ∗v7 then also v′5 Unit 7−→ ∗v′7,
and we have that (n4, v7, v

′
7) ∈ VY 7→RY ,X 7→RX J(X → Y)× (Y → X)K for both choices for RX and a

smaller n4. It follows that (n4, π1(v7), π1(v′7)) ∈ TY 7→RY ,X 7→R>JX → YK and (n4, π2(v7), π2(v′7)) ∈
TY 7→RY ,X 7→R∅JX → YK.

Since (n4, unit,unit) ∈ VY 7→RY ,X 7→R>JXK = R>, we have that (n4, π1(v7) unit, π1(v′7) unit) ∈
TY 7→RY ,X 7→R>JYK. Since TY 7→RY ,X 7→R>JYK = TY 7→RY ,X 7→R∅JYK, it further follows that (n4, π2(v7) (π1(v7) unit), π2(v′7) (π1(v′7) unit)) ∈
TY 7→RY ,X 7→R∅JXK. Finally, because VY 7→RY ,X 7→R∅JXK = ∅, this means that π2(v7) (π1(v7) unit) and
π2(v′7) (π1(v′7) unit)) must diverge. The remaining proof goal then follows easily from some reason-
ing about the operational behavior of t6 and t′6.

B.7 Examples

Table B.1 summarizes a set of examples extracted from the most recent papers addressing gradual
parametricity (λB (Ahmed et al., 2017), System FG (Igarashi et al., 2017a), GSF (Toro et al.,
2019) and PolyGν (New et al., 2020)). The fourth column refers to the program identifier in our
Table 6.1, indicating that the programs are similar or are displayed to show the same challenge
in gradual parametricity. It is important to note that the programs in Table B.1 are programs of
a gradual version of System F (except for p5 y p6). Therefore, in order to obtain the expected
behavior in λB, PolyGν and F?

ε, we have to insert corresponding casts, seal/unseal terms and
evidences, respectively. Programs p5 and p6 use explicit sealing, so they are only relevant for the
languages PolyGν and F?

ε (in the case of PolyGν , sealX represent sealing terms, and in the case of
F?
ε sealing evidences).

Table B.2 summarizes the different approaches to gradual parametricity, giving the behavior of
each program from Table B.1.

469

Id LanguageProgram IdOT Description
p1 PolyGν (ΛX.λx :X.x :: ? :: Bool) [Bool] true 5 VPR
p2 PolyGν ((ΛX.λx :X.x) :: ∀X.X→? [Int] 1) + 2 4 SNE
p3 PolyGν (ΛX.λx :X.true) :: ∀X.?→Bool [Int] 3 1 NPB
p4 PolyGν (ΛX.λx :X.true) :: ∀X.?→Bool [Bool] 3 3 NPB/RTI
p5 PolyGν (ΛX.λx :X.true) :: ∀X.?→Bool [Int] sealX(3) 1 NPB
p6 PolyGν (ΛX.λx :X.true) :: ∀X.?→Bool [Bool] sealX(3) 3 NPB/RTI
p7 GSF (λg :∀X.X→X.g [Int] 10) ((ΛX.λx :X.x) :: ∀X.?→?) ELP
p8 GSF (λg :∀X.X→X.g [Int] 10) ((ΛX.λx : ?.x) :: ∀X.?→?) ELP
p9 GSF (λg :∀X.X→X.g [Int] 10) ((ΛX.λx : ?.x+1) :: ∀X.?→?) 5 VPR
p10 GSF ((ΛX.λx :X.x) :: ∀X.X→? [Int] 1) + 2 SNE
p11 GSF (ΛX.λx :X.x) :: ∀X.?→? [Int] true 3 RTI
p12 System FG(ΛX.λx : Int.x :: ? :: X) [Int] 1 5 VPR
p13 System FG(ΛX.λx : Int.x :: ? :: X) [Bool] 1 VPR
p14 System FG((λx :∀X.X→X.x) (ΛX.λx :X.x)) [Int] 42 ELP
p15 System FG((λx :∀X.?→X.x) (ΛX.λx :X.x)) [Int] 42 ELP
p16 λB (ΛX.ΛY.λp :X×Y.〈π2(p), π1(p)〉) [Int] [Bool] 〈1, true〉 VPR
p17 λB (ΛX.ΛY.λp :X×Y.〈π2(p), π1(p)〉) [Bool] [Int] 〈true, 1〉 VPR
p18 λB ((ΛX.ΛY.λp : ?.p) :: ∀X.∀Y.(X×Y)→(Y×X)) [Int] [Int] 〈1, 2〉 VPR

Table B.1: Examples.
Id: Program identifier. IdOT: Program identifier in our table. VPR: Disguised violations of parametricity
are detected at runtime. SNE: Seals do not scape the lexical scope of type abstraction. NPB: Shallow non-
parametric behavior. RTI: Type instantiations on a polymorphic use of ? are respected. ELP: External loss
of precision.

Id λB System FG GSF PolyGν F? F?
ε

p1 error error error error error error
p2 error error 3 3 3 3
p3* true true true error true error
p4* true true error error error error
p5* - - - true - true
p6* - - - ill-typed - ill-typed
p7 error error 10 10 10 10
p8 error error 10 10 10 10
p9 error error error error error error
p10 error error 3 3 3 3
p11 true true error error error error
p12 error error error error error error
p13 error error error error error error
p14 42 42 42 42 42 42
p15 error error 42 42 42 42
p16 〈true, 1〉 〈true, 1〉 〈true, 1〉 〈true, 1〉 〈true, 1〉 〈true, 1〉
p17 〈1, true〉 〈1, true〉 〈1, true〉 〈1, true〉 〈1, true〉 〈1, true〉
p18 error error error error error error

Table B.2: Comparison of approaches to gradual parametricity.
(*): Program p3, p4, p5 and p6 only insert seal/unseal terms (PolyGν) or seal/unseal evi-
dences (F?

ε) if it is explicit using the seal syntax.

470

δ ::= δ,X : X | ·
F ::= B | X (simple types)
G ::= F | G→G | G×G | ∀X.G | ?δ (source gradual types)
t ::= b | λx :G.t | ΛX.t | x | 〈t, t〉 | t t | πi(t) | t [F] | t :: G (source gradual terms)

∆; Γ ` t : G Term typing

Gx
x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G
Gb

θ(b) = B ∆ ` Γ

∆; Γ ` b : B
Gλ

∆; Γ, x : G1 ` t : G2

∆; Γ ` λx :G1.t : G1→G2

G×
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2

∆; Γ ` 〈t1, t2〉 : G1×G2
GΛ

∆,X; Γ ` t : G ∆ ` Γ

∆; Γ ` ΛX.t : ∀X.G

Gasc
∆; Γ ` t : G′ ∆ ` G G′ ∼ G

∆; Γ ` t :: G : G

Gapp
∆; Γ ` t1 : G1 ∆; Γ ` t2 : G2 dom](G1) ∼ G2

∆; Γ ` t1 t2 : cod](G1)
Gpairi

∆; Γ ` t : G

∆; Γ ` πi(t) : proj]i(G)

GappG
∆; Γ ` t : G ∆ ` F

∆; Γ ` t [F] : inst](G,F)

dom] : OType⇀ OType

dom](G1→G2) = G1

dom](?δ) = ?δ
dom](G) undefined o/w

cod] : OType⇀ OType

cod](G1→G2) = G2

cod](?δ) = ?δ
cod](G) undefined o/w

proj]i : OType⇀ OType

proj]i(G1×G2) = Gi

proj]i(?δ) = ?δ
proj]i(G) undefined o/w

inst] : OType2 ⇀ OType
inst](∀X.G,G′) = G[G′/X]\X
inst](?δ ,G

′) = ?δ
inst](G,G′) undefined o/w

G ∼ G Type Consistency

B ∼ B X ∼ X

G1 ∼ G′1 G2 ∼ G′2
G1×G2 ∼ G′1×G′2

G′1 ∼ G1 G2 ∼ G′2
G1→G2 ∼ G′1→G′2

G ∼ G′

∀X.G ∼ ∀X.G′ B ∼ ?δ ?δ ∼ B

X ∈ δ
X ∼ ?δ

X ∈ δ
?δ ∼ X

G1 ∼ ?δ G2 ∼ ?δ
G1→G2 ∼ ?δ

G1 ∼ ?δ G2 ∼ ?δ
G1×G2 ∼ ?δ

G ∼ ?δ,X

∀X.G ∼ ?δ

?δ ∼ G1 ?δ ∼ G2

?δ ∼ G1→G2

?δ ∼ G1 ?δ ∼ G2

?δ ∼ G1×G2

?δ,X ∼ G

?δ ∼ ∀X.G ?δ ∼ ?δ′

G v G Type Precision

vB
B v B

vX
X v X

v→
G1 v G2 G′1 v G′2
G1→G′1 v G2→G′2

v×
G1 v G2 G′1 v G′2
G1×G′1 v G2×G′2

v∀
G1 v G2

∀X.G1 v ∀X.G2
vB?

B v ?δ
vX?

X ∈ δ
X v ?δ

v→?

G1→G2 v ?δ→?δ
G1→G2 v ?δ

v×?
G1×G2 v ?δ × ?δ

G1×G2 v ?δ
v∀?

∀X.G v ∀X.?δ,X
∀X.G ⊆ ?δ

v?

δ v δ′

?δ v ?δ′

Figure B.6: F?: Syntax and Static Semantics (fragment).

471

∆; Γ ` t : G t Elaboration rules

Eb
θ(b) = B ∆ ` Γ ε = reflEv(B)

∆; Γ ` b : B ε b :: B
Ex

x : G ∈ Γ ∆ ` Γ

∆; Γ ` x : G x

E×

∆; Γ ` t1 : G1 t′1
∆; Γ ` t2 : G2 t′2

∆; Γ ` 〈t1, t2〉 : G1×G2 〈t′1, t′2〉

Eλ
∆; Γ, x : G1 ` t : G2 t′ ε = reflEv(G1→G2)

∆; Γ ` λx :G1.t : G1→G2 ε (λx : G1.t
′) :: G1→G2

EΛ

∆,X; Γ ` t : G t′ ∆ ` Γ ε = reflEv(∀X.G)

∆; Γ ` ΛX.t : ∀X.G ε (ΛX.t′) :: ∀X.G

Easc
∆; Γ ` t : G′ t′ ∆ ` G ε = initEv(G′,G)

∆; Γ ` t :: G : G εt′ :: G

Eapp

∆; Γ ` t1 : G1 t′1 ∆; Γ ` t2 : G2 t′2 G1 _ G11→G12

ε1 = initEv(G1,G11→G12) ε2 = initEv(G2,G11)

∆; Γ ` t1 t2 : G12 (ε1t′1 :: G11→G12) (ε2t′2 :: G11)

EappG
∆; Γ ` t : G t′ ∆ ` F G _ ∀X.G′ ε1 = initEv(G,∀X.G′) ε2 = instEv(G′,X,F)

∆; Γ ` t [F] : G′[F/X]\X ε2((ε1t′ :: ∀X.G′) [F′]) :: G′[F′/X]\X

Epairi
∆; Γ ` t : G t′ G _ G1×G2 ε = initEv(G,G1×G2)

∆; Γ ` πi(t) : Gi πi(εt
′ :: G1×G2)

G _ G Type matching

G1→G2 _ G1→G2 ∀X.G _ ∀X.G G1×G2 _ G1×G2 ?δ _ ?δ→?δ ?δ _ ∀X.?δ,X

?δ _ ?δ × ?δ

Figure B.7: Translation from F? to F?
ε

472

G 6 G Strict Type Precision

6B
B 6 B

6X
X 6 X

6→
G1 6 G2 G′1 6 G′2
G1→G′1 6 G2→G′2

6×
G1 6 G2 G′1 6 G′2
G1×G′1 6 G2×G′2

6∀
G1 6 G2

∀X.G1 6 ∀X.G2
6B?

B 6 ?δ
6X?

X ∈ δ
X 6 ?δ

6?

δ ⊆ δ′

?δ 6 ?δ′

Ω ` t : G v t : G Term precision

vb
Ω ` b : B v b : B

vx
x : G1 v G2 ∈ Ω

Ω ` x : G1 v x : G2

vλ
Ω, x : G1 v G2 ` t1 : G′1 v t2 : G′2 G1 v G2

Ω ` λx :G1.t1 : G1→G′1 v λx :G2.t2 : G2→G′2

v×
Ω ` t1 : G1 v t2 : G2 Ω ` t′1 : G′1 v t′2 : G′2

Ω ` 〈t1, t′1〉 : G1×G′1 v 〈t2, t′2〉 : G2×G′2
vΛ

Ω ` t1 : G1 v t2 : G2

Ω ` ΛX.t1 : ∀X.G1 v ΛX.t2 : ∀X.G2

vasc
Ω ` t1 : G′1 v t2 : G′2 G1 v G2

Ω ` t1 :: G1 : G1 v t2 :: G2 : G2
vapp

Ω ` t1 : G1 v t2 : G2 Ω ` t′1 : G′1 v t′2 : G′2
G1 _ G11→G12 G2 _ G21→G22

Ω ` t1 t′1 : G12 v t2 t′2 : G22

vpairi

Ω ` t1 : G1 v t2 : G2

G1 _ G11×G12 G2 _ G21×G22

Ω ` πi(t1) : G1i v πi(t2) : G2i

vappG

Ω ` t1 : G1 v t2 : G2 G1 6 G2

G1 _ ∀X.G′1 G2 _ ∀X.G′2
Ω ` t1 [F] : G′1[F/X]\X v t2 [F] : G′2[F/X]\X

Figure B.8: F?: Strict type precision and term precision (fragment).

473

	Introduction
	Gradual Parametricity: Background and Basics
	Parametric Polymorphism
	Gradual Typing
	Gradual Parametricity in a Nutshell
	Gradual Parametricity: Challenges

	I Gradual Parametricity, Revisited
	Gradual System F
	GSF, Informally
	Design Principles
	Properties
	GSF in Action

	Preliminary: The static language SF
	GSF: Statics
	Syntax and Syntactic Meaning of Gradual Types
	Lifting the Static Semantics
	Static Properties of GSF

	GSF: Evidence-Based Dynamics
	Background: Evidence-Based Semantics for Gradual Languages
	Reduction for GSF
	Elaborating GSF to GSF

	GSF: Evidence for Gradual Parametricity
	Simple Evidence, and Why It Fails
	Refining Evidence
	Basic Properties of GSF Evaluation

	GSF and the Dynamic Gradual Guarantee
	Violation of the Dynamic Gradual Guarantee in GSF
	Towards a Weak Dynamic Gradual Guarantee for GSF
	Weak Dynamic Gradual Guarantee for GSF
	Syntactic Strict Precision for GSF

	Gradual Parametricity for GSF
	On Gradual Parametricities
	Gradual Parametricity in GSF
	Parametricity vs. the DGG in GSF
	Gradual Free Theorems in GSF

	Related Work
	Conclusion

	Embedding Dynamic Sealing in GSF
	Overview
	Embedding a Dynamically-Typed Language in GSF
	The Cryptographic Lambda Calculus seal
	Embedding seal in GSF
	Semantic Preservation of the seal Embedding in GSF
	Related Work
	Conclusion

	Gradual Existential Types in GSF
	Existential Types in a Nutshell
	Existential Types: Primitive or Encoded?
	Gradual Existential Types in GSF
	Semantics of GSF
	The Static Language SF
	GSF: Statics
	GSF: Dynamics

	Properties of GSF
	Static Properties
	Dynamic Gradual Guarantees
	Parametricity
	Representation Independence

	Related Work
	Conclusion

	II Plausible Sealing for Gradual Parametricity
	The Gradual Language for Plausible Sealing F?
	Overview of F?
	Evidence for Plausible Sealing
	Comparing Plausible Sealing and Prior Approaches

	The Evidence-Based Language F?
	Syntax and static semantics
	Dynamic semantics

	Evidence for Plausible Sealing in F?
	Proof-relevant precision
	Evidence and consistent transitivity

	F?: Gradual Parametricity
	F?: Gradual Guarantees
	Evidence Precision
	Term precision

	Related Work
	Conclusion

	The Gradual Source Language F?
	F?: Statics
	F?: Elaboration to F?
	Source-level graduality
	Source-level parametric reasoning
	Discussion and Related Work
	Conclusion

	Conclusion
	Bibliography
	ANNEXES
	Annex Gradual Parametricity, Revisited
	SF: Well-formedness
	GSF: Statics
	Syntax and Syntactic Meaning of Gradual Types
	Lifting the Static Semantics
	Well-formedness
	Static Properties

	GSF: Dynamics
	Evidence Type Precision
	Initial Evidence
	Consistent Transitivity
	GSF: Dynamic Semantics
	Translation from GSF to GSF

	GSF: Properties
	Type Safety
	Static Terms Do Not Fail

	GSF and The Dynamic Gradual Guarantee
	Evidence Type Precision
	Monotonicity of Evidence Transitivity and Instantiation
	Weak Dynamic Gradual Guarantee for GSF
	Syntactic Strict Precision for GSF

	GSF: Parametricity
	Auxiliary Definitions
	Fundamental Property
	Contextual Equivalence

	Parametricity vs. the DGG in GSF
	A Cheap Theorem in GSF
	Embedding Dynamic Sealing in GSF
	Gradual Existential Types in GSF
	Existential types: primitive or encoded?
	Translation from GSF to GSF
	Properties of GSF
	GSF: Parametricity
	A Weak Dynamic Gradual Guarantee for GSF

	Annex Plausible sealing
	The Evidence-Based Language F?
	Evidence in F?
	Proof Relevant Gradual Type Precision
	Pullback Operator
	Associativity of consistent transitivity
	Evidence operations

	F?: Gradual Parametricity
	F?: Gradual Guarantees
	The Static Language System F1
	The Gradual Source Language F?
	Lifting the Static Semantics
	Typing judgement
	Elaborating F? to F?
	Gradual Guarantees
	Parametricity
	Source-level parametric reasoning

	Examples

