
Improving Astronomical Time-series Classification via Data Augmentation with
Generative Adversarial Networks

Germán García-Jara1 , Pavlos Protopapas2 , and Pablo A. Estévez1,3
1 Dept. of Electrical Engineering, Universidad de Chile, Chile; ggarciajara@gmail.com

2 Institute for Applied Computational Science, Harvard University, USA
3 Millennium Institute of Astrophysics, Chile

Received 2022 April 5; accepted 2022 May 11; published 2022 August 9

Abstract

Due to the latest advances in technology, telescopes with significant sky coverage will produce millions of
astronomical alerts per night that must be classified both rapidly and automatically. Currently, classification
consists of supervised machine-learning algorithms whose performance is limited by the number of existing
annotations of astronomical objects and their highly imbalanced class distributions. In this work, we propose a data
augmentation methodology based on generative adversarial networks (GANs) to generate a variety of synthetic
light curves from variable stars. Our novel contributions, consisting of a resampling technique and an evaluation
metric, can assess the quality of generative models in unbalanced data sets and identify GAN-overfitting cases that
the Fréchet inception distance does not reveal. We applied our proposed model to two data sets taken from the
Catalina and Zwicky Transient Facility surveys. The classification accuracy of variable stars is improved
significantly when training with synthetic data and testing with real data with respect to the case of using only
real data.

Unified Astronomy Thesaurus concepts: Variable stars (1761); RR Lyrae variable stars (1410); Cepheid variable
stars (218); Delta Scuti variable stars (370); Long period variable stars (935); Eclipsing binary stars (444);
Astroinformatics (78); Astrostatistics (1882); Neural networks (1933); Time series analysis (1916); Light curve
classification (1954); Surveys (1671)

1. Introduction

Deep learning models have become state of the art in an
extensive range of tasks, such as image recognition, video
analysis, and natural language processing, demonstrating their
immense ability to solve complex problems and outperform
existing algorithms. Based on this fact, applying deep learning
models to the classification of astronomical time series arises as
an interesting approach.

Models have progressively increased their number of
parameters to achieve such results, from thousands to millions.
Unfortunately, architectures with such a large number of
parameters are vulnerable to overfitting. Overfitting occurs
when models memorize the data available in the training set
rather than learning meaningful characteristics from the data so
that the model can generalize and perform well when testing
new and unseen data. To avoid overfitting, models that achieve
state-of-the-art results in different tasks are trained with
annotated data sets that have been extensively processed and
filtered, and that consist of a large number of samples for each
class, thus preventing overfitting.

However, real-world problems present different scenarios in
regard to data. For example, not only there is a small number of
annotations in astronomical time-series data sets, but the
annotations also have highly imbalanced class distributions.
While small data sets already hinder learning by making
algorithms fail at generalizing characteristics of the data,
imbalanced distributions only accentuate this issue (Caruana
2000; He & Garcia 2009). These two characteristics, in

addition to the irregularly time-spaced nature of astronomical
observations, are a considerable difficulty for machine-learning
algorithms and make the classification problem a unique
challenge.
To overcome these problems, data augmentation techniques

are frequently applied to transform small imbalanced data sets
into large and balanced data sets. Most of these techniques,
although widely applied in the domain of images, cannot be
directly applied in the time domain due to its dissimilar
properties. Consequently, augmentation techniques in the time
domain remain a challenge and deserve more attention from the
community (Wen et al. 2021).
Traditional augmentation techniques in the time domain,

such as jittering, window warping, and slicing, assume that
these transformations exist naturally in the data and that the
augmented samples will be valid time series with properties
similar to the existing ones. Moreover, appropriate augmenta-
tion techniques are specific to the data set (Iwana &
Uchida 2021) and the task (Wen et al. 2021). An example of
a data-set-specific technique could be jittering, where additive
Gaussian noise is often used in sensor data sets. Yet this
method cannot model the heteroscedastic nature of astronom-
ical data. On the task-specific side, we could mention slicing or
warping transformations that heavily discard or modify the
context of the time series, potentially altering the original
samples’ class information.
A generative model for data augmentation allows avoiding

assumptions about existing transformations in the data. Since
we will use the generated samples for classification, the
generative model should learn the class-conditional distribution
of the data. Therefore, the model can learn how to generate new
realistic samples directly from the data and preserve the class
information simultaneously.

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 https://doi.org/10.3847/1538-4357/ac6f5a
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
mailto:ggarciajara@gmail.com
http://astrothesaurus.org/uat/1761
http://astrothesaurus.org/uat/1410
http://astrothesaurus.org/uat/218
http://astrothesaurus.org/uat/218
http://astrothesaurus.org/uat/370
http://astrothesaurus.org/uat/935
http://astrothesaurus.org/uat/444
http://astrothesaurus.org/uat/78
http://astrothesaurus.org/uat/1882
http://astrothesaurus.org/uat/1933
http://astrothesaurus.org/uat/1916
http://astrothesaurus.org/uat/1954
http://astrothesaurus.org/uat/1954
http://astrothesaurus.org/uat/1671
https://doi.org/10.3847/1538-4357/ac6f5a
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac6f5a&domain=pdf&date_stamp=2022-08-09
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac6f5a&domain=pdf&date_stamp=2022-08-09
http://creativecommons.org/licenses/by/4.0/


Because of their ability to model complex real-world data
and the wide success they have achieved across a variety of
domains (Sampath et al. 2021), generative adversarial networks
(GANs; Goodfellow et al. 2014) are the generative models of
our choice.

While previous works have explored GAN-based data
augmentation methods for classification, most have focused
on the image domain (Frid-Adar et al. 2018; Salehinejad et al.
2018; Zhu et al. 2018; Huang et al. 2020) and only a few on the
time domain (Ramponi et al. 2018; Zhang et al. 2020).
Furthermore, Ramponi et al. (2018) is the only work that
addresses astronomical time-series generation.

To the best of our knowledge, none of the existing
approaches is suitable for our use case: dealing with irregularly
spaced data, allowing for both multi-class and physical
parameter conditional generation, and focusing on the down-
stream task of classification. In addition, the literature lacks
a GAN evaluation metric to select appropriate models for
classification tasks.

In this work, we propose a GAN-based data augmentation
methodology for time series to improve the classification
accuracy on two astronomical data sets taken from the Catalina
and Zwicky Transient Facility (ZTF) surveys. The main
contributions are:

1. Proposing a GAN model capable of performing condi-
tional generation based on class and physical parameters,
suitable for irregularly spaced time series.

2. Revealing the incapability of the standard GAN evalua-
tion metric (the Fréchet inception distance (FID)) to
assess overfitting and proposing a novel evaluation metric
that overcomes this issue to select an adequate generative
model.

3. Proposing a resampling technique to delay the occurrence
of overfitting.

4. Designing two new data augmentation techniques for
time series that produce plausible time series preserving
the properties of the original ones.

The remainder of the paper is structured as follows:
Section 2 presents a theoretical background of the work. In
Section 3 the utilized data sets and their preprocessing are
explained. Section 4 explains the proposed methodology.
Section 5 presents the obtained results, which are discussed in
Section 6, stating its strengths and weaknesses. Finally,
Section 7 presents the main conclusions of this work and
future steps.

2. Background

2.1. Imbalanced Data Sets

Let = = { }x y,i i i
n

1 be a data set where xi is a real example
and yi ä Y= {1, 2,K,c} a class label associated with xi.  is
said to be imbalanced if the distribution of Y differs
significantly from the discrete uniform distribution { }c1, .
Therefore, imbalanced data sets are composed of one or more
classes (majority classes) that severely outrepresent other
existing classes (minority classes) (He & Garcia 2009).

Given an imbalanced data set , we can apply sampling
techniques to transform its class distribution into a uniform.
The result of this transformation is a modified version of the
original data set, its balanced counterpart u.

2.2. GANs

The GAN framework consists of a game between two
networks. Given an input data set of real samples xr∼ Pr, the
generator network (G) aims to implicitly approximate the data
distribution Pr by performing a mapping between a source of
noise and the real sample space. The result of this mapping are
fake samples xg∼ Pg that attempt to resemble the real ones. In
contrast, the discriminator network (D) tries to distinguish
between xr and fake samples generated by G.
During the training process, the two networks compete

against each other without having control of the opponent’s
parameters. On the one hand, G is trained to generate samples
that resemble the real ones, while on the other hand D is trained
to predict whether a given sample comes from the input data set
or was generated by G. At the end of the training, G will
generate samples similar to the ones in the input data set, and
the D will be unable to tell apart generated from real samples.
Since the creation of GANs, they have revolutionized the

field of generative modeling, showing novel results especially
in the domain of images. As a broad overview of the evolution
process, we could mention includes conditional-generation
models (Mirza & Osindero 2014; Odena et al. 2016), models
that stabilize the erratic behavior of the original GANs
(Arjovsky et al. 2017; Gulrajani et al. 2017; Miyato et al.
2018), and models that generate samples with an impressively
high quality and resolution (Karras et al. 2017; Karras et al.
2018; Brock et al. 2019; Karras et al. 2019) among many other
models and applications. An extensive description of GAN
models in computer vision is provided in Wang et al. (2022).
GANs have also been applied to the time-series domain, with

significant improvements in recent years. The first model
capable of generating continuous sequential data was proposed
by Mogren (2016) adding recurrent neural networks to the
GANs’ generator and discriminator to handle the time-series
temporal evolution. This work was followed by Esteban et al.
(2017), who added label-conditional generation and a focus on
downstream medical tasks. More recently, Yoon et al. (2019)
introduced a jointly trained embedding network that combines
the unsupervised GAN framework with a supervised auto-
regressive model to capture the time-series conditional
temporal dynamics. Lately, Ni et al. (2020) proposed a GAN
framework to deal with long time-series data based on an
approximation of the Wasserstein distance using the signature
feature space, avoiding the usage of costly discriminators and
claiming to achieve state-of-the-art results in measures of
similarity and predictive ability.
The most related work corresponds to the T-CGAN

(Ramponi et al. 2018), which proposes a method to generate
irregularly spaced time series. Still, it does not include
conditional generation with physical parameters of interest, it
does not perform multi-class generation, and similarly to the
works mentioned above, it does not tackle the problem of
model selection for a downstream task.

2.2.1. Wasserstein GAN

The Wasserstein GAN (WGAN; Arjovsky et al. 2017) is one
of the GAN models that is widely used and well known for its
training stability. This GAN leverages an approximation of the
Wasserstein-1 distance to measure the dissimilarity between Pr

and Pg. An upgraded version of this model is the WGAN with
gradient penalty (WGAN-GP, Gulrajani et al. 2017), which

2

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



adds a regularization term to the original WGAN loss to satisfy
the Lipschitz condition on D. The WGAN-GP objectives that
are minimized during the training process are

=
~

-
~

 [ ( )] [ ( )] ( )L
x P

D x
x P

D x , 1G
g g

g
r r

r

l= - +
~

 -
ˆ

[( ( ˆ) ) ] ( )
ˆ

ˆ L L
x P

D x 1 , 2D G
x

x 2
2

where ˆPx is the distribution implicitly defined by sampling
uniformly along linear paths between points sampled from Pr

and Pg, and λ is the penalty coefficient that controls the
strength of the gradient regularization.

2.3. Data Augmentation

Data augmentation refers to a set of techniques applied to a
data set used to create new samples that are slightly different
from the existing ones to increase the number of samples in the
data set. It is frequently used to prevent overfitting, and it helps
improve the performance of machine-learning models for
various applications (Wen et al. 2021). Classic examples of this
in the field of images are rotations, translations, crops, flips,
among others.

In the time domain, data augmentation techniques are less
standardized. Traditional techniques in time series correspond
to nonparametric transformations such as jittering, scaling,
window slicing, and window warping (Guennec et al. 2016).
Parametric techniques can also be applied in data augmenta-
tion, such as the parametric model-based augmentation for
transient phenomena proposed in Pimentel et al. (2022).

2.4. Overfitting in GANs

As described in Karras et al. (2020), overfitting in GANs
occurs when training on small data sets. The less data there is,
the earlier the discriminator becomes too confident in
separating real from generated samples, which impedes
the progress of G and eventually deteriorates the quality of
the generated samples.

Even though Karras et al. (2020) proposed adaptive
discriminator augmentation (ADA) as a technique to deal with
overfitting in GANs, this technique requires the application of
differentiable transformations to augment the training data.
Since our goal is to provide a GAN-based data augmentation
method motivated by the limited augmentation methods for
time series, we intentionally do not include any augmentation
method (apart from oversampling) in the GAN-training
process; hence, we do not consider using ADA.

2.5. Evaluation of GANs

Even though the losses described in Equations (1) and (2)
successfully describe the adversarial problem and quantify the
distance between Pr and Pg, their high variance makes them
unsuitable for using them as a stopping criterion. Even if they
did not suffer from this issue, metrics based on D are specific to
their corresponding G, and cannot generalize properties about
the generated data set. Consequently, the framework requires
additional evaluation metrics to assess the quality of the
generated samples and select the definitive generator for the
downstream task.

Evaluation of generative models requires a notion of the
distance between Pr and Pg. Defining such a measure for high

dimensional distributions is a challenging task and remains an
open problem (Naeem et al. 2020).
An intuitive way of comparing these distributions is as

follows: if a generative model can successfully capture Pr with
Pg, the performance on any downstream task should be similar
when our data comes from any of the two distributions. Setting
the downstream task to classification leads to using classifica-
tion metrics for evaluation.

2.5.1. Classification Metrics

Considering that the ultimate purpose of this work is to
improve the classification of real astronomical objects, we
naturally adopt the classification accuracy metric first proposed
in Yang et al. (2017) and later used in Esteban et al. (2017),
Santurkar et al. (2017), Shmelkov et al. (2018), and Ravuri &
Vinyals (2019). For clarity, we choose to preserve the names in
Esteban et al. (2017): train on synthetic test on real (TSTR) and
train on real test on real (TRTR). These two scores are
computed by training a classifier on synthetic (generated) data
or real data and then evaluating its classification accuracy on
real data.

2.5.2. Feature-based Metrics

Based on the difficulty of finding meaningful metrics in the
input space, quantifying the distance between the distributions
Pr and Pg often involves mapping samples x ä {xr, xg} into a
feature space with a transformation xa f(x), where f is an
intermediate representation of a pretrained classifier (Salimans
et al. 2016; Heusel et al. 2017; Sajjadi et al. 2018;
Kynkäänniemi et al. 2019; Naeem et al. 2020). The classifier
is generally a convolutional neural network (CNN) such as
Inception-v3 (Szegedy et al. 2016), a widely used architecture
in computer vision.
Since the dimensionality of f is often lower than that of x,

the distributions of the feature space are often called manifolds.
We will informally understand these manifolds as connected
regions with a relatively simple structure embedded in a more
complex space.
When evaluating generative models, two desired character-

istics are fidelity and diversity. The former describes how real
the generated samples look in comparison to the real ones,
while the latter measures how much of Pr the model can cover
with Pg.
FID—This metric proposed by Heusel et al. (2017) consists

of a Wasserstein-2 distance between Φr and Φg, the distribu-
tions of fr and fg, respectively.
Under the assumption that both distributions are multivariate

Gaussians, their mean μ and covariance Σ are estimated to
obtain a closed-form of the distance

m m= - + S + S - S S∣∣ ∣∣ ( ( ) ) ( )
( ) ( )

     FID Tr 2 . 3r g r g r g

a

2 1 2

b

While (a) can be interpreted as a measure of fidelity that
indicates the average distance between the two distributions,
(b) can be interpreted as a measure of diversity that compares
the variability of the two distributions.
A particularly relevant limitation of FID in the presence of

highly imbalanced distributions is that computing the last
term in (b) requires full-rank Σ matrices, which makes the
calculation of a per class FID unfeasible if the minority
classes contain fewer samples than the dimensionality of Φ.

3

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



Furthermore, even if we had enough samples to compute it, a
per class score would be unreliable for the minority classes
since FID is known to suffer from high bias for small sample
sizes (Bińkowski et al. 2018).

Precision and recall—Sajjadi et al. (2018) proposed
separating fidelity and diversity into two relative-density-based
metrics: precision and recall. These two metrics improve upon
FID by identifying cases of mode dropping or mode inventing
in the generated distribution, in the pathological case where
different models achieve similar FID values by privileging
either one of the two terms in Equation (3).

Improved precision and recall—Motivated by the failure at
identifying models with poor variability, Kynkäänniemi et al.
(2019) proposed improved precision and recall metrics (P and
R). These metrics are computed by estimating the manifolds
Φ ä {Φr, Φg} according to

f fF =
f FÎ

ˆ ⋃ ( ( )) ( )B NND, , 4k

where Φ ä {Φr, Φg} is a collection of feature samples fä {fr,
fg}, the ball B(x, r) is the solid sphere around x with radius r,
and NNDk(f) is the distance from f to its kth nearest neighbor
within the corresponding manifold. In the presence of outliers,
the KNN approach results in an overestimation of the
manifolds due to the large distances between samples.

Density and coverage—Naeem et al. (2020) proposed
density and coverage (D and C) motivated by the vulnerability
of P and R to outliers. While P measures fidelity depending on
the binary decision of whether a feature sample fg belongs to
the real manifold Φr, D considers the amount of balls B(fr,
NNDk(fr)) within each fg is contained, adding robustness to
real distributions with outliers. On the other hand, C measures
diversity based on the real manifold estimate instead of the
generated one, in contrast to R.

In our practical case, we found that P and C saturate quickly,
not providing meaningful information. Since these metrics
directly depend on the real manifold estimates, we hypothesize
that this behavior can be caused by the sparsity of Φr in the
minority classes, leading to the same overestimation issue as
outliers. Consequently, we decide to use D and R as our fidelity
and diversity metrics.

Let Br
k be the abbreviation of B(fr, NNDk(fr)), and F̂g the

approximation of the generated manifold described in
Equation (4), we compute the D and R metrics according to

å å f
F

=
f f

F F
F FÎ Î∣ ∣

( ) ( )( )D
k

1
1 , 5

g
B g,r g

g g r r

r
k

å f
F

=
f

F F
FÎ

F∣ ∣
( ) ( )( ) ˆR

1
1 , 6

r
r,r g

r r

g

where 1A(x) is the indicator function defined as

=
Î
Ï

⎧
⎨⎩

( ) ( )x
x A
x A

1
1 if ,
0 if .

7A

3. Data

3.1. Data Sets

Because of the recognizable shapes of their light curves
when visualized in phase space, we focus on periodic variable
stars. However, the framework could be effortlessly extended

to other stars of interest if needed. We perform and validate our
experiments on data captured by two time-domain astronomical
surveys.
Catalina Surveys Data Release-1—This catalog described in

Drake et al. (2014), captured with the 8.2 deg2 field-of-view
camera mounted on the CSS 27 inch Schmidt telescope,
provides ∼61,000 light curves of periodic variable objects,
with their corresponding periods and classes. To decrease the
complexity of the multi-class problem induced by the large
number of periodic classes provided, we only consider a subset
of the periodic objects grouped following the mapping
described in Table 1.
ZTF—This survey (Bellm et al. 2018) provides a public

multiband stream of alerts captured by a 47 deg2 field-of-view
camera mounted on the Palomar 48 inch Schmidt telescope, is
capable of scanning the entire northern sky every three nights
and the plane of the Milky Way every night. To enable further
analysis in follow-up telescopes, the alerts are processed by
alert brokers that are designed to provide a rapid and self-
consistent classification. We use the subset of periodic variable
stars present in the ZTF training set created by the ALeRCE
broker (Förster et al. 2021), along with their taxonomy. This
training set was constructed considering sources observed by
ZTF whose labels had been cross matched from different
multiple catalogs.
Previous works (Carrasco-Davis et al. 2021; Sánchez-Sáez

et al. 2021) have already used ZTF data processed by the
ALeRCE broker to train different machine-learning algorithms.
More details about the data processing can be found in Förster
et al. (2021).
After preprocessing both data sets following the steps

detailed in Section 3.2, we obtain the definitive versions of
the data sets that will be used in our experiments, from now on
referred to as the “Catalina” and the “ZTF” data sets. The class
distributions of the preprocessed data sets are shown in Table 2.

3.2. Data Preprocessing

To use the data described in Section 3.1, some preprocessing
steps need to be applied. The preprocessing consists of four

Table 1
Distribution of the Adopted Classes for the Catalina Surveys Data Release-1

New Class Original Class

EBSD/D Contact eclipsing binary (EW)
Semidetached eclipsing binary (β Lyrae)

RRL Fundamental mode RR Lyrae (RRab)
First overtone mode RR Lyrae (RRc)
Multimode RR Lyrae (RRd)
Long-term modulation (Blazkho)

EBC Detached eclipsing binary (EA)

LPV Long period variables (LPV)

DSCT High amplitude δ Scuti (HADS)
Low amplitude δ Scuti (LADS)

CEP Anomalous Cepheids (ACEP)
Type II Cepheids (Cep-II)

Note. The original class acronyms as described in Drake et al. (2014) are
shown in (·).

4

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



main steps: period folding, outlier filtering, time sampling, and
median centering.

3.2.1. Period Folding

Since the desired characteristic shapes of periodic light
curves are only visible in the phase space, we start by folding
the light curves into the period provided in both data sets.
Denoting the light-curve period as T, and the observation time
as t, the folding operation is performed by converting t into ft
according to

f º ( ) ( )t Tmod , 8T

f
f

= ( )
T

, 9t
T

where the congruence symbol ≡ in Equation (8) refers to the
modulo operator with modulus T.

With this operation, we transform times with a variable range
of values to phases with values bounded between 0 and 1. This
transformation is convenient because multiple neural networks
will process the phases, and having inputs with a similar range
is a desirable property when training such algorithms.

3.2.2. Outlier Filtering

Considering that some of the light curves in the data sets can
include a significant amount of noise, we filter out anomalous
observations within each curve of both data sets. These
anomalous observations are in general isolated observations
with a magnitude that does not follow the general behavior of
the magnitudes in the light curve, and including them could be
detrimental to the performance of our algorithms. For the
Catalina data set, the anomalous behavior is quite particular to
each light curve, and a general threshold filtering cannot be
applied; therefore, a different approach is needed.

The Catalina light curves are filtered by comparing each
magnitude with the local statistics of the magnitudes’
neighborhood. This comparison is performed using the z-
score4 of the magnitudes within a window that considers only a
portion of the light curve. The process is performed by sliding
the window through the entire light curve with a window
size ws = 20, removing the outlier observations that satisfy

>z 3score , and repeating 2 times per light curve since
consecutive outlier observations can significantly alter the
moving window’s statistics and not be detected in a single pass.
The results of this filtering step are shown in Figure 1(b). After
this step, we perform a second filtering stage by discarding the

light curves that contain more than 90% of their magnitudes out
of the range delimited by the class medians and class standard
deviations.
On the other hand, anomalous observations in the ZTF data

have been already marked with a magnitude of 100. Hence,
these observations can be filtered out by a simple threshold.
Following the filtering steps used by Sánchez-Sáez et al.
(2021), we use magthr= 30.

3.2.3. Time Subsampling

To bring the problem to a more straightforward domain, we
set the length of the light curves to a predefined value for each
data set. With this simplification, we can work with convolu-
tional architectures rather than recurrent architectures that could
hinder the GAN’s training stability by violating the Lipschitz
constraint, adding extra complexity to the problem.
Given a light curve with an arbitrary number of m

observations, we obtain the fixed-length light curves by
randomly choosing n from the m available observations.
Considering that we choose our points with no particular bias,
this approach should give a reasonable approximation of the
original light curve if n is not too small compared to m.
Since both of our real data sets contain irregularly sampled

light curves, and we perform the subsampling step after the
period folding step, choosing an observation implies selecting a
magnitude with its corresponding observation phase. Both
magnitudes and phases are part of the input of our models, as
will be detailed in Section 4. Figure 1(b) shows an example of
the time subsampling step.
The light-curve length is set to 100 observations for the

Catalina data set, whereas that of the ZTF data set is 40
observations, consistent with the fact that ZTF is a relatively
new sky survey with a lower number of observations per object
compared to the Catalina Survey.
After discarding the light curves that do not have the

minimum length to perform this step, we end up with
approximately 41 k and 56 k samples in the Catalina and
ZTF data sets, respectively, whose class distribution is shown
in Table 2.

3.2.4. Median Centering

The last step to get the data ready for data generation is
centering it around zero so all the magnitudes have a consistent
range that can be learned from the generator. This is done for
each light curve by subtracting the center (median) of the
magnitudes. We compute the median instead of the mean
because of its robustness to outlier magnitudes.
This step is necessary because G is a neural network that

outputs a tanh activation, and it can only generate values in a
symmetrical range around zero. It is worth mentioning that we
could center the data around any other offset, which would
require to also include that offset to the output of the generator;
the importance of performing this step is not the value of the
offset itself, but rather the unification of all the magnitudes
around a single value so our generator can model them.

4. Methodology

4.1. General Description

We propose a conditional-generation approach that extends
the T-CGAN (Ramponi et al. 2018), adding the class and

Table 2
Distribution of the Classes of the Preprocessed Data Sets

Catalina ZTF

Class No. of Samples Class No. of Samples

EBSD/D 28,980 EB 31,477
RRL 7533 RRL 18,729
EBC 4500 LPV 5245
LPV 483 DSCT 507
DSCT 241 CEP 471
CEP 182

4 The z-score is the distance of an observed value x to the population mean μ,
measured in terms of the population standard deviation σ. It is computed
by = m

s
-z x .

5

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



amplitude of the light curves to the conditional parameters,
which include the observation phases according to the original
model. The details of how the conditional parameters are
included into the model will be explained in Section 4.2.

A summary of the proposed methodology, that details the
partitions of data sets for the models and metrics is provided in
Figure 2.

We start by partitioning the preprocessed data set  into
train, val, and test, the train, validation, and test sets. Each
class in val and test contains 20% of the total number of
samples of the smallest class in . To train the GAN and the
classifier we use u

gen a uniformly balanced version of the
original train obtained through the resampling block that will
be explained in Section 4.6.

After training the GAN, we use G to create a synthetic
uniformly balanced data setu

gen. Since G performs conditional
generation, to generate a uniformly balanced data set we
sample the conditional vectors z̄ from u

train. It is essential to
mention that the generated data set will follow the distribution
of the data set from which we sample the conditional vectors.
For example, sampling them from train would imply
generating a heavily unbalanced data set. To obtain the TSTR
score, we train a classifier on u

gen and evaluate its accuracy on
a real data set.

We compare the TSTR score to multiple TRTR scores,
computed in a similar manner but using u

train(or slightly
modified versions of it) instead of u

gen. This comparison is
reasonable because the data sets used for evaluation (val and
test) are fixed and balanced by construction: their sampling
process from  is designed to have the same amount of
samples per class.

4.2. Details of the Data Structure

Let ft, a, and c denote the observation phases, amplitudes,
and classes of the light curves, respectively, our GAN’s
generator requires a sample f=¯ [ ]z a c, ,t from the real data set
train and a sample Î ~  ( )z I0,ℓ . The latent space
dimensionality ℓ is set to 16 and 8 for the Catalina and ZTF
data sets, respectively, obeying roughly the proportion between
the light-curve lengths of the data sets. Following a CGAN-like
approach (Mirza & Osindero 2014), the concatenation of z and
z̄ is passed as an input to G to generate synthetic samples.

The conditional parameters are also inputs of D similarly
concatenated with real or generated magnitudes. We create a
tensor version of the conditional parameters for this concatena-
tion to be viable. Let a and c be tensor versions of a and c, and
L and N denote the light-curve length and number or classes of
a data set; we define Î a L as a vector with value a in all its

components, and Î ´c L N as a one-hot encoding of c,
composed by 0 and 1 vectors, where Î { }0, 1 L. The tensor
version of z̄ is f= Î ´ +¯ [ ]z a c, ,t

L N2 . The concatenation
ofz̄ and real or generated magnitudes will be the input of D,
and will be dimensions L× 3+ N.

4.3. Classifier Details

To reduce the variance of the experiments, the classifier
consists of an ensemble of five identical base classifiers trained
independently. The base classifier is a CNN that receives the
concatenation of the magnitudes x and phases ft following the
classification scheme in Ramponi et al. (2018). The input is
forwarded through a set of convolution blocks that halve the
temporal dimension, followed by dense layers. The network is
trained using the Adam optimizer (Kingma & Ba 2015) with
α= 0.0001, β1= 0.9, and β2= 0.999. Table 3 shows the
detailed architecture of the base classifier. To compute all the

Figure 1. (a) Original Cepheid from the Catalina data set. (b) Filtered and
subsampled versions of the original Cepheid.

Figure 2. Diagram of the methodology.

Table 3
Classifier Architecture

Input Î x L

f Î L

Conv. block 2→ 32
Conv. block 32→ 64
Conv. block 64→ 128
Conv. block 128→ 64
Conv. block 64→ 64
Dense ⌈L/32⌉ × 64 → 100
BN, ReLU, dropout 100 → 100
dense, softmax 100 → N

Convolution block (ps = 2, ks = 3, cin, cout)

Block input li × cin
1D convolution, BN li × cin → li × cout
Max pooling, ReLU li × cout → ⌈li/2⌉ × cout

Note. L and N correspond to the light-curve length and number of classes,
respectively, and they vary depending on the selected data set as mentioned in
Section 3. The fixed block parameters ps and ks stand for pool size and kernel
size. Since the convolution blocks always halve the temporal dimension, we
only specify their channel dimensions cin and cout.

6

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



feature-based metrics explained in Section 2.5.2, we use the
output of the last convolution block of this base classifier,
trained on each of the data sets separately.

4.4. GAN Details

In addition to the original WGAN-GP formulation, we
include additional regularization terms to Equations (1) and (2).
Following an AC-GAN-like approach (Odena et al. 2016), the
output of D has two components: Î Drg that tries to separate
real from fake samples and Î Dy

N that tries to predict the
class of the input. Therefore, we add a cross-entropy
regularization of real and generated samples to the discrimi-
nator loss. Also, to prevent the GAN equilibrium from
happening in any arbitrary offset, we add a regularization term
to prevent Drg(xr) from drifting too far away from zero, as
proposed in Karras et al. (2017). To the generator loss, we only
add the cross-entropy regularization of generated samples.
Consequently, the losses minimized in the proposed framework
are

x= + + +~
( ) [ ( ) ] ( )L L H H D x , 10D D r g rg r

2

x= +~ ( )L L H , 11G G g

where Hr=H(yr, Dy(xr)) and Hg=H(yg, Dy(xg)) correspond to
the cross entropy between the real labels and the discriminator
predictions, yg are the real labels used to generate xg, and
ξ= 0.001 and ò= 1 control the strength of each regulariza-
tion term.

We perform ndisk= 5 discriminator iterations per generator
iteration, and train for 400 K generator iterations using the
Adam optimizer with α= 0.0001, β1= 0.5, and β2= 0.9. At
the training time, we compute the exponential moving average
(Yazici et al. 2019) with a decay of 0.999 for the generator
weights, to be used when generating samples for evaluation. A
full description of the GAN architecture is shown in Table 4.

On the one hand, G receives the concatenation of the noise
source z and the conditional variables z̄ as an input, and it
forwards it through a dense layer followed by a set of strided
deconvolutions that duplicate the temporal dimension of every
block and simultaneously halving the number of channels
(except for the last block). On the other hand, D receives the
concatenation of the magnitudes x and the conditional tensor z̄,
and it forwards it through a set of strided convolutions that
halve the temporal dimension of every block and duplicate the
number of channels, followed by a dense layer.

4.5. Preliminary Experiment: The u-GAN

With all details and parameters provided in the above
sections, we perform a preliminary experiment using u

train—

the uniformly balanced version of train—as the GAN-training
set, to then generateu

gen and obtain the TSTR accuracy scores.
This GAN setup will be referred to as “u-GAN.”

It is worth mentioning that this setup is the standard
approach when training machine-learning algorithms, where
u

train is usually preferred over train because it reduces the
biases toward the most populated classes, induced by the
highly imbalanced class distribution of train.

The first finding of performing this preliminary experiment is
that the TSTR accuracy score can vary significantly, depending
on how long we train the GAN. For this reason, we analyze the

behavior of different GAN models throughout the training
process to find an adequate criterion for model selection.
Figure 3 shows the evolution of the validation TSTR accuracies
and FID scores every 10 k iterations. Since computing TSTR
accuracies involves training multiple classifiers, evaluating this
score more frequently is unfeasible.
The preliminary experiment shown in Figure 3 raises two

major concerns that will be addressed in the following sections:

1. The TSTR accuracy reaches an optimal value early in the
GAN training and then decreases consistently, coinciding
with the GAN-overfitting phenomenon explained in
Section 2.4.

2. The FID—the standard metric for evaluating GANs—
cannot always measure the drop in sample quality
reflected in the TSTR accuracy curve, as shown in
Figure 3(a).

The behavior detailed in (a) can be understood as follows: in
a balanced data set such as u

train, overfitting is not only
strongly influenced by the limited amount of training samples,
but it also is exacerbated by the amount of imbalance of the
original class distribution of train. As the imbalance grows,

Table 4
GAN Architecture

(a) Generator

Input Î z ℓ

Î + +z̄ L N1

Dense, ReLU ℓ + (L + 1 + N)→ 4 × 1024
Deconv. block 1024 → 512
Deconv. block 512 → 256
Deconv. block 256 → 128
Deconv. block 128 → 64
Deconv. block 64 → 1
Tanh · s L × 1

Deconvolution block (s = 2, ks = 5, cin, cout)

Block input li × cin
1D deconvolution li × cin → 2li × cout
ReLU 2li × cout

(b) Discriminator

Input Î ´x L 1

Î ´ +¯ ( )z L N2

Conv. block 1 + (2 + N)→ 64
Conv. block 64→ 128
Conv. block 128→ 256
Conv. block 256→ 512
Conv. block 512→ 1024
Dense ⌈L/32⌉ × 1024→ N + 1

Convolution block (s = 2, ks = 5, cin, cout)

Block input li × cin
1D convolution li × cin → ⌈li/2⌉ × cout
LeakyReLU ⌈li/2⌉ × cout

Note. ℓ, L, and N correspond to the latent space dimensionality, light-curve
length and number of classes, respectively, which depend on the selected data
set as mentioned in Sections 3 and 4. The fixed block parameters s and ks stand
for stride and kernel size, respectively, and li represents the input length of the
blocks. Since the convolution/deconvolution blocks always adjust the temporal
dimension by a factor of 2, we only specify their channel dimensions cin and
cout.

7

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



samples in the minority classes need to be excessively repeated
in order to equate the number of samples in the majority
classes, resulting in quick GAN overfitting caused by D
learning fast how samples of the minority classes look. The
rapid decay in validation TSTR accuracy is problematic
considering that we need to compute this metric every 10 k
iterations. Hence, the best model selected by this metric could
be suboptimal if the decay occurs suddenly, which motivates
the proposed resampling block explained in Section 4.6.

The discrepancy described in (b), although undesirable, is
not surprising; it was also reported in Ravuri & Vinyals (2019),
and it is completely plausible considering the limitations of FID
related to mode dropping and mode inventing mentioned in
Section 2.5.2. These two phenomena can drastically affect how
Pg relates to Pr and thus affect the TSTR accuracy without
being reflected in the FID, which suggests that FID is not
always reliable in the presence of highly unbalanced data sets,
and motivates the proposed -score for model selection
explained in Section 4.7.

4.6. Resampling Block

Motivated by the rapid GAN overfitting shown in Figure 3,
we propose a resampling operation that can successfully delay
the occurrence of this behavior.

The resampling operation consists of continuously drawing
samples from the N classes of a data set , to modify its class
distribution. Let S be the number of samples of . We start by
splitting into N sub-data sets ={ }i i

N
1 of size ={ }Si i

N
1, where each

data set i only contains samples from the ith class. From each
sub-data set, we draw without replacement until there are no
samples left, then i is shuffled and the sampling process
continues.

The goal of this operation is to modify the class distribution
of  by controlling the probability pi of drawing a sample from
each i. The resampling block serves as a generalization of the
uniform balancing operation by extending the target class
distribution to nonuniform distributions. To illustrate this
clearly, we describe two edge cases. On the one hand, we
could leave the original class distribution unbalanced by setting
pi= Si/S, in which case the resampling block does not affect

the class distribution, and it would be equivalent to a shuffle
and repeat operation. On the other hand, we could obtain the
balanced version of by simply setting pi= 1/N, which is how
we get u

train from train.
Apart from these two scenarios, we could also generate any

data set g whose class distribution lies in between that of 
and u, created by linearly interpolating between the
aforementioned probabilities:

g g g= + - < <⎛
⎝

⎞
⎠

( ) ( )p
N

S

S

1
1 , where 0 1, 12i

i

where the two edge cases can be recovered with γ= 0 for the
imbalanced , and γ= 1 for the balanced u. By using the
proposed γ-resampling we are able to control the overfitting
speed of the model, as shown in Figure 4. Training a GAN with

g = ( )1u implies that all the samples from the minority
classes are rapidly shown to the model, leading to fast
overfitting. On the other hand, using g =( )0 implies that
training batches rarely contain a sample from the minority
classes (one every 230 samples will be Cepheids of the
Catalina data set, roughly 1 Cepheid every four batches),
avoiding fast overfitting but inducing slow and unstable
training. Training with g< <g ( )0 1 allows a reasonable
learning pace without overfitting rapidly, as shown in Figure 4
for γ= 0.25. A model trained with g will be referred to as
“γ-GAN.”

4.7. Model Selection: The -score

As mentioned in Section 4.5, the behavior of TSTR
accuracies shown in Figure 3 evidences the need for a criterion
to choose an adequate G. While using the validation TSTR
accuracy for model selection might look appropriate, doing so
involves training new classifiers for every candidate of G, an
operation that becomes computationally expensive. The
problem then lies in finding a fast-to-compute metric that
correlates with the TSTR accuracy (and implicitly with the
quality of the generated samples).

Figure 3. Evolution of the validation TSTR accuracy and FID over the course of GAN training for the different data sets. Both scores were computed every 10 k
iterations of a single GAN model. The computation of the FID was done with 50 k generated samples divided into 10 batches and the entire real data set, as suggested
in Heusel et al. (2017).

8

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



The natural option for this metric would be FID, but as also
shown in Figure 3(a), it fails to measure the decrease in quality
of the generated samples reflected in the TSTR accuracy curve.
Additionally, since FID is only a measure of the distance
between Pg and Pr, it cannot differentiate between the fidelity
and diversity of the generated samples (Naeem et al. 2020), and
it provides an arbitrarily weighted average between them.

As an alternative, we propose a metric that leverages equally
two measures of fidelity and diversity: density(D) and recall
(R). Figure 5 shows the results of computing the per class
density and recall metric for the Catalina data set.

The fact that D values are not bounded by one is consistent
with the formula presented in Equation (5) and can happen if
points in the generated manifold in average belong to more
than K balls of the real manifold, which is probably caused by
the overestimation of the real manifold mentioned in
Section 2.5.2, due to sparse feature spaces. An illustration
of this situation is shown in Figure 6, where the sparsity in
the real distribution causes that the generated samples in
average belong to more than K= 2 balls, leading to

= + + + =( )D 1.51

4

2

2

3

2

4

3

3

2
. Additionally, if we reduce

the sparsity of the real distribution by removing the furthest
sample (bottom left), we get = + + + =( )D 11

4

1

2

2

2

3

3

2

2
.

Since R is bounded between 0 and 1 by definition, the
unbounded behavior ofD is undesirable because it favorsD
over R in any mean we compute between them. In addition, we
find thatD also presents a clear bias toward the less populated
classes. To overcome these problems, we perform a per class
min-max normalization toD and R according to Equation (3).

=
-
-

¢ ( )D
D D

D D
, 13i

i i

i i

min

max min

=
-
-

¢ ( )R
R R

R R
, 14i

i i

i i

min

max min

where the subscript (·)i denotes score of the ith class, and the
superscripts (·)min,max denote the minimum and maximum score
of the class, respectively.

After the class scores are normalized, we combine them in an
equally weighted F-score described in Equation (15). Finally,

considering that we are equally interested in the different
classes, the -score is obtained by computing the balanced F-
score (macro F-score), as shown in Equation (16).

=
+

¢ ¢

¢ ¢
( )F

D R

D R

2
, 15i

i i

i i

å- = ( )
N

Fscore
1

. 16
i

i

When computing the balanced F-score, we prefer the mean
of the class F-scores over the F-score of the class means

Figure 4. Evolution of TSTR accuracy over the course of GAN training for different values of γ. The figure shows mean ± standard deviation over 15 independent
runs of the classifier and a single GAN model. The computation of both metrics was done every 10 k GAN iterations.

Figure 5. Class density and recall metrics of the Catalina data set.

Figure 6. Two-dimensional scenario that illustrates a case in which D is not
bounded by 1. The dashed lines show the regions Br

2: circles around the real
feature samples fr, with radii equal to the distance to their second nearest
neighbors. The numbers inside each sample fg denote the number of circles
that enclose the sample.

9

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



intending to weight equally majority and minority classes, as
suggested by Opitz & Burst (2019).

The results of computing the -score for multiple GANs
trained with different values of γ are shown in Figure 7. As can
be seen, the -score curves and validation accuracy curves
from Figure 4 seem to have a high correlation, which becomes
more evident when analyzing the γ= 0 curve for the Catalina
data set.

4.8. Baselines

To evaluate our generated data sets in the classification task,
we compare the TSTR classification accuracies to multiple
baselines. These baselines consist of TRTR classification
accuracy scores when training in augmented real data sets. It
is worth mentioning that the training sets used to compute the
scores are all balanced data sets, either GAN generated (TSTR)
or real augmented (TRTR).

Acknowledging the heteroscedastic behavior of astronomical
data, we do not consider jittering as a suitable operation for the
problem. Additionally, we discard utilizing window-slicing
techniques since our convolutional architectures work on
preprocessed time series with a fixed number of observations.
Consequently, our augmentation methods consist of over-
sampling and different window-warping-based operations.

4.8.1. Oversampling

The oversampling augmentation corresponds to generating
the balanced data set u

train by repeating samples from the
original data set train, using the resampling block described in
Section 4.6.

4.8.2. Window Warping

Let x(t) be a continuous signal sampled at times t. The
window-warping operation starts by selecting a random time
window delimited by the values [ ]t t,1 2 , where all the times tw in
the window satisfy t1� tw� t2. The warping operation expands
or contracts the signal by scaling the variations Δt in tw and

shifting the times t> t2 accordingly, altering the time series’
length.
Since we work with folded light curves in phase space,

window-warping expansion could be incongruous with the fact
that the phase space has an upper bound of 1. Consequently, we
derive a new transformation to avoid such incongruence: soft
window warping.

4.8.3. Soft Window Warping

We preserve the core idea of window warping by designing
expansions and contractions that do not increase the time
series’ length. Given a random window, we formulate the
problem as finding a mapping twa f (tw) such that the length of
the transformed window is at most that of the original, this is
f (t1)� t1, f (t2)� t2. We believe that expansions and contrac-
tions should be naturally performed with respect to the center
of the window, expanding from the center to the limits and
contracting from the limits to the center.
A mapping that meets these requirements is

= + -
= = +
= -

( ) · ( ( ))
( )

( ) ( )

f t a b k t c

a c t t
b t t

tanh
2

2, 17

w w

1 2

2 1

where the values of a, b, and c are determined by the desired
behavior with respect to the center of the window. The constant

k is randomly sampled in the interval⎡⎣ ⎤⎦,
a a

1

2

2 and it modulates

the strength of the expansions or contractions by modifying the
saturation degree of the (·)tanh , producing expansions when
saturated and contractions otherwise.
Even though the proposed transformation is designed to be

applied across the time axis, it can be easily extended to the
signal axis by noting that since the time intervals are
monotonous, t1, t2 are the minimum and maximum values in
the window respectively. Hence, the natural extension to the

Figure 7. Evolution of the  -score for different gamma values over the course of GAN training for the different data sets. Each curve shows mean ± standard
deviation over five computations of the metrics, for a single GAN model.

10

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



signal axis is

= + -
=

=

= = +
= -

Î

Î

( ) · ( ( ))
( )

( )

( )
( ) ( )

f x a b k x c
m x t

m x t

a c m m
b m m

tanh
min

max

2
2. 18

w w

t t

t t

1

2

1 2

2 1

w

w

When applying these transformations to our astronomical
light curves, we consider the signal axis as the magnitude axis,
and the time axis as the phase axis. These two transformations
referred to as soft time warping and soft magnitude-warping,
are illustrated in Figure 8. The result of simultaneously
applying these two transformations will be referred to as soft
mixed warping.

5. Results

5.1. Generated Samples

Figure 9 shows some samples of the GAN-generated light
curves. The conditional vector z̄ used to generate these samples
considers phases, amplitudes, and classes of the real data
shown in the first two columns. Accordingly, and as it can be
seen, most of the generated samples preserve the real class and
amplitude. It is worth mentioning that although some generated
samples present normal fluctuations in phase and magnitude
with respect to the real ones, there are also samples that do not
look plausible (see Figure 10), which could be attributed to the
lack of truncation techniques or any type of filtering to improve
the fidelity of the generated samples, which we address in
Section 6.

5.2. Classification

The classification accuracies obtained by using different
training sets are shown in Table 5. The first four rows show
TRTR classification results when training on real data that has
been augmented with the random transformations described in
Section 4.8. The soft-warping transformations (rows B–D) are

applied to the data set previously balanced by oversampling.
The last four rows show TSTR classification results when
training on GAN-generated data, comparing the proposed γ-
resampling for GAN training (γ-GAN) against uniform
resampling (u-GAN), and the proposed -score for model
selection against the validation accuracy criterion.
As Table 5 shows, none of the soft-warping transformations

achieves statistically significant differences with respect to the
oversampling baseline (row A).
On the other hand, the benefits of using generative models

are clear. Both GAN models achieve significant improvements
with respect to the oversampling baseline, either using the
validation accuracy criterion or the -score criterion for model
selection.
We can also notice that using the γ-resampling can be

beneficial in comparison to using the uniform approach. For
both data sets, the minimum TSTR classification accuracy
corresponds to the u-GAN (E for Catalina and F for ZTF),
while the maximum corresponds to the γ-GAN (H for both data
sets). Furthermore, for each data set, the best TSTR accuracy is
always significantly better than the worst.
Regarding the model selection criteria, the -score shows to

be an effective criterion, achieving accuracies that are at least
statistically equivalent to the ones obtained by the computa-
tionally expensive validation accuracy criterion. Furthermore, it
can sometimes obtain significantly better results, as shown in
the ZTF data set by the γ-GAN model.
Interestingly, the combination of the proposed γ-GAN +

-score obtains the best classification accuracies overall,
statistically outperforming all existing methods for ZTF data
set, and all but one (γ-GAN + val. accuracy) for the case of the
Catalina data set.

6. Discussion

6.1. Quality of Generated Samples

Thus far, we have presented a framework for generating
realistic light curves that can be used to improve the
classification of real astronomical objects. In the entire process,
we constantly generate sets of samples that are then compared
to the set of real samples, computing global metrics that
indicate the quality of the model based on the distance between
the sets. However, no metrics to evaluate the quality of
individual samples have been mentioned.
In fact, Figure 9 shows that although the generated samples

look generally realistic, there can be samples that present
artifacts, making them not the best candidates for the classes
they intend to represent. While these could be easily solved by
applying truncation techniques on latent space of G, it would
not be informative about the quality of the individual samples
themselves, impeding us from learning what makes a sample
look realistic.
The selected metric to evaluate individual sample quality is

the realism score (Kynkäänniemi et al. 2019), computed over
the manifold representation used for the D and R metrics.
Given a generated feature sample fg and a set of real samples
Φr= {fr}, the similarity between fg and the real manifold Φr

is calculated as

f
f

f f
F =

-f FÎ
 ⎧

⎨⎩

⎫
⎬⎭

( )
( )

( )
 
 
NND

, max , 19g r
k r

r g

2

2r r

Figure 8. Examples of the soft window-warping transformations for an
eclipsing binary of the ZTF data set. (a) Soft time-warping contraction. (b) Soft
time-warping expansion. (c) Soft magnitude-warping contraction. (d) Soft
magnitude-warping expansion.

11

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



Figure 10. Realism score ranking of the ZTF generated light curves. To rank the samples, we first generated a replication of the u
train, computed their realism score,

and then selected the best and worst samples from the sorted realism scores.

Table 5
Accuracy of the Classification of the Different Augmentation Methods on Test Data Sets

Method Catalina ZTF

Accuracy p-value Accuracy p-value

[%] A [%] A

TRTR A Oversampling 73.44 ± 1.22 72.61 ± 0.69
B Soft time warping 74.06 ± 1.04 .145 72.69 ± 0.99 .786
C Soft mag warping 73.64 ± 1.79 .723 72.45 ± 0.70 .533
D Soft mixed warping 73.82 ± 1.50 .452 72.53 ± 0.69 .753

u-GAN A E F G A E F G
TSTR E Val Acc 75.97 ± 0.94 <.001 74.17 ± 0.62 <.001

F  -score 76.28 ± 0.74 <.001 .324 73.79 ± 0.50 <.001 1.3.075

γ-GAN
G Val Acc 76.86 ± 1.09 <.001 .024 .102 74.37 ± 0.51 <.001 .342 0.003
H  -score 76.97 ± 0.79 <.001 .004 .041 .752 74.94 ± 0.44 <.001 <.001 <.001 .002

Note. For each method, we report the mean and standard deviation calculated over 15 independent runs. We also report the p-value of the two-sided Welch’s tests
between each method (rows) and the baselines shown with capital letters in the columns. The method with the highest test classification accuracy’s mean is marked in
bold for each dataset.

Figure 9. Real and generated light curves of the ZTF data set. To produce the synthetic curves in green, we perform conditional generation with the attributes (phases,
class, and amplitude) of the real curves in blue.

12

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



where NNDk(f) is the distance from f to its kth nearest
neighbor within the corresponding manifold. Equation (19)
compares the radii of the KNN induced hyperspheres with
center in fr to the distance between fr and the sample fg.
Naturally, if fg does not belong to any of the hyperspheres, 
will be low, and its value will increase the closer fg is to any
fr.

The effect of ranking the generated samples of the ZTF data
set by realism score is shown in Figure 10.

Because it can successfully identify artifacts that could be
filtered out of the data set, we would in principle expect that
using a realism score filtering would improve our results even
further. However, this is not the case. Empirically, we found no
statistical differences when applying this filtering to our
generated data sets. We hypothesize that these artifacts,
although undesirable, are not crucial when defining the
decision boundaries of the problem, hence, they have little
impact on the classification accuracy. Moreover, strongly
filtered data sets cause a drop in the classification accuracy,
probably caused by their over-constrained diversity.

6.2. Classification Results

Soft-warping transformations—Regarding the effects of the
proposed soft-warping augmentations for classification, we can
see that despite the fact that they create plausible light curves,
they do not show improvements in the classification task. We
hypothesize that the diversity added to the data set by these
transformations is not substantial enough for the classifiers to
benefit from it.

γ-resampling—The results suggest that the proposed resam-
pling offers a clear improvement upon uniform resampling for
GAN training. We believe that this improvement comes from the
delay in the GAN overfitting, providing more potentially good
models to choose from before the GAN completely overfits. With
respect to the no-resampling model, Figure 4 shows that models
trained γ= 0 and γ= 0.25 reach comparable accuracies,
consistently with the fact that the resampling block does not
add any extra information. Using the resampling block can offer a
more stable training that reaches similar performance in a shorter
training time. This can be particularly relevant if the defined
iteration horizon is not long enough to capture the peak accuracy
as in Figure 4(b). For this reason, we do not think that γ should
be tuned thoroughly, and we set it to γ= 0.25, placing the
-score peak within the extent of training iterations, earlier than
the peak of γ= 0 but later than that of γ= 1.
-score—For the model selection criterion, the correlation

between the metrics and the classification results validate the
-score as a metric to evaluate the quality of the generated
samples. Using this metric instead of the validation accuracy, it
is interesting because of the subtle improvements in TSTR. It
also offers faster computation times: computing -score is
approximately 6 times faster than computing the validation
TSTR accuracy.

We hypothesize that these subtle improvements come from
the robustness of the G-score against overfitting. While the
-score compares u

gen to the entire training set train, the
validation accuracy score is computed on the small data setval
for evident reasons. Hence, it is more susceptible to overfitting.
A fact that reinforces this hypothesis is the consistently lower
variance of the models selected with the -score criterion
compared to validation accuracy. On the other hand, computing

the -score also has some drawbacks related to the normal-
ization step restrictions. Since the normalization requires the
minimum and maximum value of the D and R metrics, we
cannot compute the -score during the training time, and we
must first completely train the models. In addition to this, it
only allows for comparison between different candidates of the
same run, not permitting comparisons between different runs
that likely have different normalization parameters.

6.3. Alternative to the -score

Evaluating generative models by fidelity and diversity can be
posed as a multi-objective problem. Thus, we provide an
alternative to the -score that considers both objectives (D and
R) simultaneously, according to the problem’s nature.
As an alternative to evaluate all candidates with TSTR

validation accuracy, we propose evaluating only candidates
that lie on the Pareto frontier5 of the raw macro density and
macro-recall. For example, in the case of the Catalina data set,
doing so would imply evaluating approximately 1/4 of total
candidates.
The disposition of the optima for the Catalina data set is shown

in Figure 11. Interestingly, the model selected with the validation
accuracy criterion is in the suboptimal region which supports the
idea of overfitting explained in Section 6.2. On the other hand,
the model selected with -score belongs to the Pareto frontier,
which is not necessarily guaranteed considering the extra
normalization step included in the computation of the -score.
Using this alternative offers an attractive advantage. Not

performing the normalization step of the -score allows for
comparing different GAN setups in the DR plane, which could
also be used to perform hyperparameter optimization of the
models. In this scenario, we first need to identify the models
that lie in the Pareto frontier considering all the D and R scores
and then evaluate these candidates based on the validation
TSTR score to choose an operating point.

7. Conclusions

In this work, we have presented a GAN-based data
augmentation methodology for astronomical time series, to
improve the classification accuracy of periodic variable stars by
mitigating the problems of small and imbalanced astronomical
data sets.

Figure 11. Macro density and recall metrics for the Catalina data set. Each
point corresponds to the average of 5 independent computation of density and
recall for a single GAN model.

5 In multi-objective optimization, the Pareto frontier is the set of all the Pareto
optimal solutions. A Pareto optimal solution is defined as a solution that cannot
be improved in any individual objective without worsening others.

13

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez



Using our methodology, we can generate diverse synthetic
data sets of irregularly sampled time series that capture the
original training sets’ properties and leverage their diversity to
outperform classifiers trained on real data. Motivated by the
rapid overfitting of our generative model in this unbalanced
setup, we propose a resampling technique (γ-resampling) to
mitigate this behavior. Also, inspired by the incapability of FID
to measure this overfitting, we propose a novel evaluation
metric (-score) that correlates with TSTR classification
accuracy; hence it helps select a generative model among the
possible candidates saved during training.

The proposed model could be extended to work with
classifiers that are currently operating in real-time such as the
ALeRCE light-curve classifier (Sánchez-Sáez et al. 2021),
boosting its performance on the ZTF stream and eventually on
its successor, the Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST; Zeljko et al. 2019), contributing to
understanding the tridimensional structure and formation of our
galaxy and its neighbors.

7.1. Future Work

Although effective in this simplified setup, the presented
methodology could be improved by upgrading it to a scenario
where the input data has a variable length. This upgrade should
involve recent GAN models that include recurrent neural
networks in their architectures, such as Yoon et al. (2019) or Ni
et al. (2020). In addition, the generation of data with variable
length should also be addressed.

Regarding conditional generation, we used the class-condi-
tional parameter to generate data sets with uniform class
distributions. Although our model permits other conditional
parameters such as amplitude, in all experiments we replicated the
distribution of their real counterparts. An interesting extension of
the work could include analyzing how the results vary depending
on the generated conditional distribution of these parameters, and
other physical parameters that may be relevant to include.

Finally, all our synthetic data sets were generated by
sampling z from a multivariate Gaussian distribution related
to data samples generation. Evaluating different sampling
methods, such as those presented in Kynkäänniemi et al.
(2019), and inspecting how they affect the qualitative and
quantitative results, could be an exciting path to follow.

The authors acknowledge support from the National Agency of
Research and Developments Millennium Science Initiative
through grant IC12009, awarded to the Millennium Institute of
Astrophysics (G.G., P.E.) and from the National Agency for
Research and Development (ANID) grants: FONDECYT Regular
#1220829 (P.E.), and Magister Nacional/2019-22190949 (G.G.).
This work was funded in part by the Institute for Applied
Computational Science (IACS), Harvard University (P.P.).

ORCID iDs

Germán García-Jara https://orcid.org/0000-0001-8202-9314
Pavlos Protopapas https://orcid.org/0000-0002-8178-8463
Pablo A. Estévez https://orcid.org/0000-0001-9164-4722

References

Arjovsky, M., Chintala, S., & Bottou, L. 2017, arXiv:1701.07875
Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2018, PASP, 131,

018002

Bińkowski, M., Sutherland, D. J., Arbel, M., & Gretton, A. 2018, arXiv:1801.
01401

Brock, A., Donahue, J., & Simonyan, K. 2019, arXiv:1809.11096
Carrasco-Davis, R., Reyes, E., Valenzuela, C., et al. 2021, AJ, 162, 231
Caruana, R. 2000, in Proc. Am. Assoc. for Artificial Intelligence (AAAI) Conf.

(Palo Alto, CA: AAAI), 51, https://aaai.org/Papers/Workshops/2000/
WS-00-05/WS00-05-011.pdf

Drake, A. J., Graham, M. J., Djorgovski, S. G., et al. 2014, ApJS, 213, 9
Esteban, C., Hyland, S. L., & Rätsch, G. 2017, arXiv:1706.02633
Frid-Adar, M., Diamant, I., Klang, E., et al. 2018, Neurocomputing, 321, 321
Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., et al. 2021, AJ,

161, 242
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, arXiv:1406.2661
Guennec, A. L., Malinowski, S., & Tavenard, R. 2016, in ECML/PKDD

Workshop on Advanced Analytics and Learning on Temporal Data, https://
halshs.archives-ouvertes.fr/halshs-01357973

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C.
2017, arXiv:1704.00028

He, H., & Garcia, E. 2009, IEEE Transactions on Knowledge and Data
Engineering, 21, 1263

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. 2017,
arXiv:1706.08500

Huang, Y., Jin, Y., Li, Y., & Lin, Z. 2020, IEEE Access, 8, 88399
Iwana, B. K., & Uchida, S. 2021, PLoSO, 16, e0254841
Karras, T., Aila, T., Laine, S., & Lehtinen, J. 2017, arXiv:1710.10196
Karras, T., Aittala, M., Hellsten, J., et al. 2020, arXiv:2006.06676
Karras, T., Laine, S., & Aila, T. 2018, arXiv:1812.04948
Karras, T., Laine, S., Aittala, M., et al. 2019, arXiv:1912.04958
Kingma, D. P., & Ba, J. 2015, arXiv:1412.6980
Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., & Aila, T. 2019,

arXiv:1904.06991
Mirza, M., & Osindero, S. 2014, arXiv:1411.1784
Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. 2018, arXiv:1802.05957
Mogren, O. 2016, arXiv:1611.09904
Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., & Yoo, J. 2020, arXiv:2002.09797
Ni, H., Szpruch, L., Sabate-Vidales, M., Xiao, B., Magnus, W., et al. 2021, in

Proc. Second ACM Int. Conf. AI Finance (New York, NY: ACM)
Odena, A., Olah, C., & Shlens, J. 2016, arXiv:1610.09585
Opitz, J., & Burst, S. 2019, arXiv:1911.03347
Pimentel, O., Förster, F., & Estévez, P. A. 2022, arXiv:2201.08482
Ramponi, G., Protopapas, P., Brambilla, M., & Janssen, R. 2018, arXiv:1811.

08295
Ravuri, S., & Vinyals, O. 2019, arXiv:1905.10887
Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., & Gelly, S. 2018,

arXiv:1806.00035
Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., & Barfett, J. 2018, in IEEE

Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (New
York, NY: IEEE Press), 990

Salimans, T., Goodfellow, I., Zaremba, W., et al. 2016, in Proc. 30th Int. Conf. on
Neural Information Processing Systems (Red Hook, NY: Curran), 2234, https://
proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-
Paper.pdf

Sampath, V., Maurtua, I., Martín, J. J. A., & Gutierrez, A. 2021, J. Big Data,
8, 1

Sánchez-Sáez, P., Reyes, I., Valenzuela, C., et al. 2021, AJ, 161, 141
Santurkar, S., Schmidt, L., & Madry, A. 2017, arXiv:1711.00970
Shmelkov, K., Schmid, C., & Alahari, K. 2018, arXiv:1807.09499
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. 2016, in IEEE

Conf. Computer Vision Pattern Recognition (CVPR) (New York, NY:
IEEE), 2818

Wang, Z., She, Q., & Ward, T. E. 2022, ACM Computing Surveys, 54, 1
Wen, Q., Sun, L., Yang, F., et al. 2021, in Proc. 30th Joint Conf. Artificial

Intelligence (IJCAI), ed. Z. Zhou (IJCAI), 4653
Yang, J., Kannan, A., Batra, D., & Parikh, D. 2017, arXiv:1703.01560
Yazici, Y., Foo, C.-S., Winkler, S., et al. 2019, arXiv:1806.04498
Yoon, J., Jarrett, D., & van der Schaar, M. 2019, in Advances in Neural

Information Processing Systems, 32, ed. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox et al. (Red Hook, NY: Curran
Associates, Inc.), https://proceedings.neurips.cc/paper/2019/file/c9efe5f
26cd17ba6216bbe2a7d26d490-Paper.pdf

Željko, I., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
Zhang, Z., Han, J., Qian, K., et al. 2020, IEEE J. Biomedical and Health

Informatics, 24, 300
Zhu, X., Liu, Y., Li, J., Wan, T., & Qin, Z. 2018, in Pacific-Asia Conf.

Knowledge Discovery Data Mining, ed. D. Phung, V. Tseng, G. Webb,
B. Ho, & M. Ganji (Cham: Springer), 349

14

The Astrophysical Journal, 935:23 (14pp), 2022 August 10 García-Jara, Protopapas, & Estévez

https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0001-8202-9314
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0002-8178-8463
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
https://orcid.org/0000-0001-9164-4722
http://arxiv.org/abs/1701.07875
https://doi.org/10.1088/1538-3873/aaecbe
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B/abstract
https://ui.adsabs.harvard.edu/abs/2019PASP..131a8002B/abstract
http://arxiv.org/abs/1801.01401
http://arxiv.org/abs/1801.01401
http://arxiv.org/abs/1809.11096
https://doi.org/10.3847/1538-3881/ac0ef1
https://ui.adsabs.harvard.edu/abs/2021AJ....162..231C/abstract
https://aaai.org/Papers/Workshops/2000/WS-00-05/WS00-05-011.pdf
https://aaai.org/Papers/Workshops/2000/WS-00-05/WS00-05-011.pdf
https://doi.org/10.1088/0067-0049/213/1/9
https://ui.adsabs.harvard.edu/abs/2014ApJS..213....9D/abstract
http://arxiv.org/abs/1706.02633
https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/10.3847/1538-3881/abe9bc
https://ui.adsabs.harvard.edu/abs/2021AJ....161..242F/abstract
https://ui.adsabs.harvard.edu/abs/2021AJ....161..242F/abstract
http://arxiv.org/abs/1406.2661
https://halshs.archives-ouvertes.fr/halshs-01357973
https://halshs.archives-ouvertes.fr/halshs-01357973
http://arxiv.org/abs/1704.00028
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
http://arxiv.org/abs/1706.08500
https://doi.org/10.1109/ACCESS.2020.2992683
https://doi.org/10.1371/journal.pone.0254841
https://ui.adsabs.harvard.edu/abs/2021PLoSO..1654841I/abstract
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/2006.06676
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1904.06991
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1802.05957
http://arxiv.org/abs/1611.09904
http://arxiv.org/abs/2002.09797
http://arxiv.org/abs/1610.09585
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/2201.08482
http://arxiv.org/abs/1811.08295
http://arxiv.org/abs/1811.08295
http://arxiv.org/abs/1905.10887
http://arxiv.org/abs/1806.00035
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://doi.org/10.1186/s40537-021-00414-0
https://doi.org/10.3847/1538-3881/abd5c1
https://ui.adsabs.harvard.edu/abs/2021AJ....161..141S/abstract
http://arxiv.org/abs/1711.00970
http://arxiv.org/abs/1807.09499
https://doi.org/10.1145/3439723
http://arxiv.org/abs/1703.01560
http://arxiv.org/abs/1806.04498
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I/abstract
https://doi.org/10.1109/JBHI.2019.2907286
https://doi.org/10.1109/JBHI.2019.2907286

	1. Introduction
	2. Background
	2.1. Imbalanced Data Sets
	2.2. GANs
	2.2.1. Wasserstein GAN

	2.3. Data Augmentation
	2.4. Overfitting in GANs
	2.5. Evaluation of GANs
	2.5.1. Classification Metrics
	2.5.2. Feature-based Metrics


	3. Data
	3.1. Data Sets
	3.2. Data Preprocessing
	3.2.1. Period Folding
	3.2.2. Outlier Filtering
	3.2.3. Time Subsampling
	3.2.4. Median Centering


	4. Methodology
	4.1. General Description
	4.2. Details of the Data Structure
	4.3. Classifier Details
	4.4. GAN Details
	4.5. Preliminary Experiment: The u-GAN
	4.6. Resampling Block
	4.7. Model Selection: The G-score
	4.8. Baselines
	4.8.1. Oversampling
	4.8.2. Window Warping
	4.8.3. Soft Window Warping


	5. Results
	5.1. Generated Samples
	5.2. Classification

	6. Discussion
	6.1. Quality of Generated Samples
	6.2. Classification Results
	6.3. Alternative to the G-score

	7. Conclusions
	7.1. Future Work

	References



