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Resumen

Bl objetivo principal de esta tesis es estudiar las propiedades espectrales de ciertos hamil-
tonianos cuanticos magnéticos, que aparecen en la feorfa matemadtica del efecto cudntico de
Hall, bajo perturbaciones que son relativamente compactas. El operador no perturbado tiene
la forma Hy = Hyandayw + W, donde Hpyngay €8 €l hamiltoniane de Landau, es decir, el oper-
ador de Schrddinger magnético en dos dimensiones con campo magnético constante y W es
el llamado potencial borde, que modela las propiedades del medio, donde se supone que estas
varian en s6lo una direccién. Consideramos dos casos esencialmente diferentes: W monétono
y W petiédico. Debido a su invariancia con respecto al grupo de traslaciones unidimension-
ales, el operador Hy es unitariamente equivalente a una integral directa, cuyas fibras forman
una familia analitica de Kato de operadores de Schrodinger unidimensionales con espectro
puramente discreto. Por lo tanto el espectro de Hy tiene estructura de bandas.

El operador perturbado tiene la forma H = Hy + V), donde el potencial decae al infinito v
modela una impureza localizada.

Principalmente nos inferesa la distribucién asintotica del espectro discreto de H que estd
en una laguna abierta de su espectro esencial. En el caso mondtono damos una condicitén
suficiente, de cardcter geométrico, que garantiza que el niimero de valores propios discretos
de H en cada laguna abierta de su espectro esencial, es finito. Mientras que el caso peritdico
vemos que este nimero es siempre infinito. Si una laguna contiene infinitos valores propios
de H, consideramos la convergencia de estos valores propios al borde de la laguna, la cual
es descrita en términos de hamiltonianos efectivos adecuados. En el caso de V' con soporte
compacto obtenemos cotas asintéticas de los valores propios cerca del borde, que son precisas
en cuanto al orden. El estudio de la distribucion asintética del espectro discreto requiere un
estudio detallado de las funciones de banda del operador no perturbado Hp. Aqui desarrollamos
este anélisis y obtenemos una serie de resultados que podrian ser de interés en si mismas, ya
que ellos tienen aplicaciones potenciales en modelos y problemas relacionados.
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Abstract

The main task of this thesis is to study the spectral properties of certain 2D magnetic quan-
tum Hamiltonians, which arise in the mathematical theory of the quantum Hall effect, under
relatively compact perturbations. The unperturbed operator is of the form Hp = Hyandau+W
where Hianday 18 the Landau Hamiltonian, i.e. the 2D magnetic Schrodinger operator with
constant magnetic field, and W is the so-called edge potential modeling the properties of the
media which are supposed to vary only in one direction. We consider two essentially different
cases: monotonie W and periodic W. Due to its invariance with respect to a one-dimensional
group of translations, the operator Hy is unitarily equivalent to a direct integral whose fi-
bres form a Kato analytic family of 1D Schrédinger operators with purely discrete spectrum.
Therefore, the spectrum of Hp has a band structure.

The perturbed operator has the form H = Hg+ V where the potential V' decays at infinity,
and models a localized impurity.

We are mainly interested in the asymptotic distribution of the discrete spectrum of H lying
in an open gap of its essential one. In the case of a monotone W we establish a sufficient
condition of geometric nature which gunarantees that the number of the discrete eigenvalues of
H in any open gap in its essential spectrum is finite, while in the case of periodic W we show
that this number is always infinite. If a given gap contains infinitely many eigenvalues of H, we
consider the convergence of these eigenvalues to the edges of the gap, which is described in the
terms of appropriate effective Hamiltonians. In the case of compactly supported V we obtain
asymptotic bounds of the eigenvalues near the edges of the gap, which are sharp in order.
The study of the asymptotic distribution of the discrete spectrum requires a detailed study of
the band functions of the unperturbed operator Hg. We perform this analysis and obtain a
series of results which may be of independent interest since they have potential applications
in related problems and models.
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Introduction

The analysis of two-dimensional (2D} magnetic Schrédinger operators has received a lot of
attention during the last 30 years. Generally, the Schridinger operators serve as Hamiltonians
of non relativistic spinless quantum particles subject to a classical electromagnetic field. The
interest towards the 2D magnetic systems is due, in particular, to the fact that they play
a crucial role. in the explanation and the mathematical interpretation of the quantum Hall
effect, i.e. the quantization of the Hall conductance (see [84]), whose discovery brought the
1985 Nobel Prize in Physics to the German physicist- Klaus von Klitzing. The importance of
the applications of 2D magnetic quantum Hamiltonians in physics and technology motivated
the mathematical community not only to study in detail the mathematical aspects of the
quantum Hall effect (see e.g. [3, 44, 23, 16]), but also to undertake a thorough and systematic
study of the general spectral properties of these Hamiltonians.
This thesis is devoted to the study of operator

Hi=Ho+V (0.1)

with
& 2 b i W 0.2
Hoim— g+ (—igs —ta) +WG), 02)

acting in L2(R?). Here b > 0 is the intensity of the constant magnetic field, W € L®(R;R)
depends only on the first variable z, while V € L%(R%,R) decays at infinity. The function
W is called the edge potential describing the properties of the medium which are supposed to
vary only in the z-direction, while V' models a localized perturbation of Hy.

The unperturbed operator Hy is defined initially on C§°(R?), and then is closed in L*(R%).
Thus the operator Hy is self-adjoint in L2(R?) (see [19]). Moreover, the perturbed operator H
is obviously also self-adjoint on Dom(Hy).

Operators of a quite similar form have been widely used in the mathematical theory of the
quantum Hall effect (see e.g. [17, 16, 33, 34]).

We are mainly interested in the asymptotic distribution of the discrete spectrum of H near
the edges of its essential spectrum. In order to introduce the specific problem investigated in
the thesis, we need to describe some features of the unperturbed operator Hy, fixing at the
same time notations which will be used throughout the thesis.

Let F be the partial Fourier transform with respect to y, i.e.

(Fu)(z, k) = (27) 12 f e Wy(z, y)dy, u e LAR?). (0.3)
R

1




Introduction 2

Then we have

@
FHyF* = f h(k)dk (0.4)
R
where the operator
d?
h(k) i= == + (bz — kY +W(z), keR,

is self-adjoint in L2(R). The spectrum of h(k) is discrete and simple for every k € R. Note
also that h(k), k € R, is a Kato analytic family (see [43], [73]}. Note that the domain Dom(h)
of the operator h(k) is independent of k € R.

Fix k € R and denote by {E; (k)};il the increasing sequence of the eigenvalues of ii{k). The
Kato analytic perturbation theory implies that for any 7 € N, E;(k) is a real analytic function
of k € R. When we need to indicate the dependence of E;(k) on b and/or W, we will write
E;(k;b, W) or E;(k; W) instead of E;(k).

It is useful fo introduce ancther fibre operator

h(k) = —a‘% + 8Pz + Wz +k/b), keR, (0.5)
self-adjoint in L2(R). Define the operator U, : L*(R) — L*(R), k € R, unitary in L*(R), by
U f)(@) = flz—k/b), feI*R).
Obviously,

ULR(EUy, = R(E), kE€R.

Then the operator (k) is unitarily equivalent to 2(k), and the eigenvalues of (k) coincide with
those of h(k), namely {E;(k)}32.;, k¥ € R. We introduce the operator h(k) since sometimes it
reveals in a more transparent way the dependence of E;{k,b; W) on the variables &, b, and W.

If W = 0, then the eigenvalues E; are independent of &, and their explicit form is well-known:

Ey(k;b,0) = B;(b,0) =b(2j —1), keR, jeN.

These are the so called Landau levels.
Further,

o0
o(Ho) = | | B;([®), (0.6)
§=1
where ¢ (Hp) denotes the spectrum of the operator Hp.

If we put
- e +_ )
£l = igﬂ E;(k), &; 2161£ E;(k), (0.7)

evidently we have o(Ho) = U741 [£5
spectrum o(Hp).
Let

£]. The intervals £ ,£]f], j € N, are the bands of the

W_ :=essinf W(z), W, :=esssupW(x). (0.8)
zeER reR

Then the mini-max principle implies that
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b(2.7 - 1) +W_ < Ej(k) < b(‘?'.? - 1) + W+1 ke Ra .7 € N: (09)

and (€7 ,€F] C [B(2j — 1) + W_,b(2] — 1) + Wyl
Throughout the thesis we assume that

W_ <W,, (0.10)
i.e. W is not identically constant. Moreover, we will assume that
W+ —W_ < 2b. (011)

Therefore
EF <&, €N, (0.12)

and the intervals (8;' Xy +1)» 7 € N, are open gaps in the spectrum of Hy. Thus, all the bands’
in the specirum of Hy are separated by gaps where discrete spectrum may appear under
appropriate relatively compact perturbations. Note that due to the boundedness of W, the
operator Hy is lower-bounded which implies that {(—oo,£;") is always an open gap. Also, we
should note that (0.11) is not always a necessary condition for (0.12) (see the remark after
Proposition 3.1.4 below).
Now, let us look closer at the perturbative electric potential V. As mentioned, we assume
that
V e LP(R?) := {u € L®(R®) | u(z,y) > 0 as 2?2 + 4% = oo}, {0.13)

which is a simple sufficient condition for the compactness of the operator V{(—A —i)~1. By
the diamagnetic inequality (see [19, Section 1.3]), the operator V(Hp — )71 is also compact,
and hence Weyl’s theorem implies

oo

Gess(Ho + V) = oess(Ho) = | JI€7, &7 )
i=1

Consequently, under condition (0.13), each open gap of ¢{Hp) may contain only discrete spec-
trumof Hy + V.

For simplicity, we will consider perfurbations of a definite sign. More precisely we will
suppose that V > 0, and will consider the operators Hy := Hp £ V. Note that in the case
of positive (resp., negative) perturbations, the discrete eigenvalues of the perturbed operator
which may appear in a given open gap of the spectrum of the unperturbed operator, can
accumulate only to the lower (resp., upper) edge of the gap (see Proposition 1.3.1 below).

Let T be a self-adjoint linear operator in a Hilbert space. Denocte by Po(T") the spectral
projection of T' corresponding to the Borel set O C R, For A > 0 set

No (V) = rankP_, o~y (H-).
Next, fix § € N and assume that (0.11) holds. Pick ) € 0,61 — S;'), and set

J\G_(A) = rank]P(g;r,Ej_H_A) (.H_), J\G”(z\) = rankP(E;_l_A’E;H)(H_;.).
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These functions count the number of the eigenvalues {with their multiplicities) of the oper-
ator H_ (resp., H.) which lie in the intervals (—oc0,£; ) and (8;',8;*,1 —A), 7 € N, (resp.,
(E;JT" +X,€54), 7 € N). Then what we are going to do, is to reduce the investigation of the ac-
cumulation of the discrete eigenvalues of H. to the edges of the gaps of its essential spectrurn,
to the study of the asymptotic behavior as A | 0 of the counting functions .N:,,i()\) These
counting functions are closely related to the Krein spectral shift function (SSF) described in
more detail in Section 1.3, and the study of them could be considered as a first step in the
understanding of the asymptotic behavior of the SSF near the spectral thresholds.

We analyze the functions J\/:;':(/\) under the assumption that W is either monotone or peri-

odic. For definiteness, we consider only J\G-‘"()\) since the function A (A) can be investigated
in a completely analogous manner.

In the monotone and in the periodic case we obtain effective Hamiltonians which govern the
main asymptotic term of JV;I'()\). If W is monotone, the effective Hamiltonian, self-adjoint in
L?(R), has the form

E; + VR, (0.14)

Here V;*°" is an explicit pseudo-differential operator (see (2.2.3) below).

For the periodic model, under appropriate assumptions about the set where the function
E; attains its maximum, and the asymptotics of Ej in a vicinity of this set, we obtain the
effective Hamiltonian

& -
I® (—pja?) = VP (0.15)

self-adjoint in {2(Z) @ L2(R). Here, I is the identity operator in {?(Z), y; is a positive number,
and V¥ is an infinite matrix-valued potential.

Note that the two types of effective Hamiltonians obtained have specific features that make
them different from each other, and from the ones used in the study of other models related
to ours.

These effective Hamiltonians can be used to analyze JV;E(A) for a wide class of perturbative
potentials V. However, we concentrate our efforts on V' compactly supported. One of the
main reasons for this choice is that during the last decade various authors considered the
distribution of the discrete spectrum of the Landau Hamiltonian (i.e. the operator Hy with
W == 0) with relatively compact perturbations of electric, magnetic, or geomstric nature. This
setting has provided interesting results like new types of asymptotics for .N;?’:()\) which are
rather slow and not semi-classical.

The first result we obtain with the help of our effective Hamiltonian, appears-in the monotone
case, and concerns the conditions which guarantee that the operator X has only a finite number
of eigenvalues in each gap of its essential spectrum, that is

NF()=0@), Alo, VjeN (0.16)

The interesting thing is that this sufficient condition depends on the geometric properties of
W and V. Namely, let zt := inf{z € R | W(z) = W.}; then (0.16) holds true if, roughly
speaking, the vertical axis through = is on the right of supp V' (see Theorem 2.2.3 below for
a precise formulation). On the other hand, in the periodic model, every open gap in o(Hp)
contains infinitely many eigenvalues of H, i.e. (0.16) never holds true.
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When the geometric sufficient condition for the validity of (0.16) in the monotone case is
not fulfilled, then generically every open gap of o(Hp) contains infinitely many eigenvalues.
Moreover, we obtain asymptotic bounds

C. <liminf|In A\ "Y2N(A) < limsup | ln A["Y2NF (M) <.C. (0.17)
Alo J A0 J

with constants 0 < C_ < C.. < co which depend on b and supp V. Note that (0.17) implies
that the asymptotic convergence of the eigenvalues of H. to the edge of the spectral gap is
Gaussian, which is the fastest known convergence in a similar setting; for comparison, in the
case of compactly supported perturbations of the Landau Hamiltonian, we have

)
" In]ln ]

NF(N)

f (1+0(1)), AlO, (0.18)
(see [T1] or [55]).

In the periodic model we again obtain asymptotic bounds of type (0.17). However now,
under additional assumptions which are fulfilled, for instance, if b is large enough, we have
C_ = Oy, so that in this case (0.17) impHles the main asymptotic term as A | 0 of J\Gi'(/\).

Let us give now a brief overview of the plan of the text.

The purpose of Chapter 1 is twofold. First, here we put together some facts concerning, for
instance:

& asymptotic distribution of the discrete spectrum for partial differential operators;
e compact linear operators in Hilbert spaces;

o Kato analytic perturbation theory;

e analytically fibred Hamiltonians;

s the Birman-Schwinger principle and its generalizations.

Most of these results are well known and are available in the literature, but we include them
for the sake of reader’s convenience since these facts are systematically used in the thesis.

At the same time, we utilize the abstract framework of the analytically fibred Hamiltonians
and their relatively compact perturbations, as well as important concrete examples such as
periodic Schridinger operators and 2D magnetic Hamiltonians, in order to look at our results
from a more general point of view, and to compare them with some of the existing cornerstone
results in the feld.

In Chapter 2 we investigate the monotone model. We start with the analysis of the prop-
erties of the band functions. We see that they are monotone just as W, and we describe the
asymptotic behavior of E;(k) when k goes to infinity. Further, we construct two effective
Hamiltonians for H, the first one being valid in a more general situation, and the reduced
second one being useful in the case of compactly supported V. Using the first one, we prove
the sufficient condition for N°(A) to be bounded, which, at heuristic level, coincides with the
necessery one. In the case of compactly supported V, and infinitely many eigenvalues in each
open gap, we obtain asymptotic bounds of type (0.17) for J\)?_()\), jEN
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Finally, in Chapter 3 we consider the périodic case. As in the monotone model, the properties
of the band functions is the first topic approached. It is quite easy to see that if W is periodic
of period T, then the band functions E; are periodic of period bT. We perform our further
analysis of F; in a more general situation than merely periodic W, and see that E; behaves
quite similarly to W when b is large. Then, in the case of periodic W we introduce the effective

*Hamiltonians, and for compactly supported V we obtain the asymptotic bounds for A;()) of
type (0.17).



Chapter 1

Preliminary Facts and Results

1.1 FEigenvalue Asymiptotics of Partial Differential Operators

As stated in the Imtroduction, the thesis is devoted to the investigation of the asymptotic
distribution of the discrete eigenvalues of 2D magnetic quantum Hamiltonians, lying in the
gaps of their essential spectra.

The study of the eigenvalue asymptotics for partial differential operators-has a long history.
Almost one hundred years ago H. Weyl published his seminal works [86], [87] where he analyzed
the asymptotic distribution of the eigenvalues of the Dirichlet, (resp., Neumann) Laplacian A}’i
(resp., Ag) on a bounded domain @ C R", n > 2, with a regular boundary 8. From
physics point of view, these eigenvalues coincide with the squares of the eigenfrequencies of 0
under the assumption of a fixed (resp., free) boundary JQ; on a heuristic level the asymptotic
distribution of these eigenfrequencies had been studied by the Dutch physicist P. Debye. In
[86] H. Weyl proved the celebrated law

W
(2m)*

NZ(A) = |2A™2(1 4+ 0(1)), A — oo, (1.1.1)
where N ()\) is the number of the eigenvalues of —A¥ not exceeding A € R and counted with
their multiplicities, wy, is the volume of the unit ball in R™, and || is the Lebesgue measure
of Q. Moreover, he conjectured that the two-term formula should be of the form

l Whe1
4 (2myn-t

W
NN = sl F

AQAP-D2 1 o(A1/2) A o 0, (1.1.2)

H. Weyl obtained (1.1.1) using variational methods developed mainly by himself, and later
by R. Courant and the St. Petersburg school represented by M. Birman, M. Solomyak, G.
Rozenblum, and their students. It turned out that the variational methods are very powerful
when one aims at main-term formulas of type (1.1.1) but in order to obtain sharp remainder
estimates and two-term formulas of type (1.1.2), one needs appropriate Tauberian methods
which do not involve the direct asymptotic analysis of the counting functions Ng(A) but the
investigation of their suitable integral transforms. Applying Fourier Tauberian methods first
suggested by B. Levitan, V. Ivrii proved in [36] that (1.1.2) holds true provided that the
periodic billiards on £2 have measure zero.
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Note that (1.1.1) and (1.1.2) are among the classical results in the field of spectral geometry
relating the geometric properties of § and the spectral data for -—Aﬁ and other more general
elliptic partial differential operators on bounded domains 2. One of the central problems of
the spectral geometry, related to the reconstruction of a domain £ by its spectrum is revealed
in a lively manner by the title “Can we hear the shape of a drum?, of the seminal article of
Mark Kac (see [40]).

Another large field of applications of the eigenvalue asymptotics for partial differential oper-
ators, is the quantum physics. According to M. Reed and B. Simon (see 72, Section VIIL11]),
the spectral analysis of quantum Hamiltonians is one of the three main mathematical prob-
lems of quantum mechanics, and this problem includes the important task to “estimate the
position and the multiplicity of the point spectrum”. However, in contrast to the elliptic op-
erators on bounded domains which have purely discrete spectrum, the quantum-mechanics
Hamiltonians typically have non-empty essential spectrum. The best known example is the
Schrédinger operator —h2A + gV, self-adjoint in R”, n > 1. Here i > 0 is the Planck constant,
V : B™ — R is the electric potential, and g € R is its coupling constant. If V decays in a
suitable sense at infinity then the essential spectrum of —A2A + gV coincides with [0, co). Let
N(—X; £, g) be the number of the eigenvalues of —I2A -+ gV smaller than —A < 0 and counted
with their multiplicities. Then the asymptotics as A | 0 of N(—X; %, g) with /& and g fixed
describes the distribution of the discrete spectrum of —h?A + gV below the origin which coin-
cides with the bottom of the essential spectrum of-—A%A + gV. The asymptotics as A } 0 and
g — oo have also important applications in quantum mechanics. The investigation of these
asymptotic regimes led to a significant development of the variational methods, including the
so-called Birman-Schwinger principle described in detail in the next section, as well as to cor-
nerstone results of the spectral theory of partial differential operators such as the celebrated
Cwikel-Lieb-Rozenblum estimate (see [74, 75, 53, 18]} according to which we have

NOLY <G [ (Vi)

where the constant ), depends only on the dimension n provided that n > 3, and V €
Lr2(RP), V < 0.

The essential spectra of various quantum Hamiltonians with important applications in
physics, such as the Schrédinger operators with periodic electromagnetic potentials, or the
Landau Hamiltonian, could contain more than one connected component, and hence their
boundary could contain more than one point. One of the central problems in the spectral
analysis of relatively compact perturbations of such operators, is the study of the asymptotic
distribution of the discrete spectrum near the edges of all the open gaps of the essential one.

A significant class of such operators which contains, in particular, the two main models con-
sidered in the thesis, are the analytically fibred Hamiltonians. Their properties are discussed
in more detail in the Sections 1.3 and 1.4.

1.2 Classes of Compact Operators and Their Properties

The analysis of a sequence of discrete eigenvalues of a self-adjoint operator, converging to a
given edge of its essential spectrum, usually reduces via the Birman-Schwinger principle to the
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study of the spectrum of a compact operator (see Proposition 1.3.1 below). For this reason
we introduce in this section certain classes of compact operators and their eigenvalue counting
functions, and discuss briefly their properties; the notations and the facts of this section will
be used throughout the thesis, and, especially, in the proofs of our main results.

Let X;, [ = 1,2, be two separable Hilbert spaces. By £(X;,X2) we denote the class of
bounded linear operators T : X3 — X2. By Seo(Xi,X2) denote the-compact operators, and
by Sp(X1,X2), p € {1,00), the Schatten-von Neumann class of operators T' € Soo(X1,X3) for

which [T, = (Tr (T*T)?/2) /7 < oo.
¥ X = Xp = X, we will write £{X), Seo(X), and Sp(X) instead of L(X,X), Sx(X, X),
and Sp(X,X), p € [1, 00|, respectively. Let T'=T™ € Spo(X). For s > 0 set
n+(8;T) = rank Py ooy (£T); (1.2.1)

thus n.(-;T") are the counting functions respectively of the positive and the negative eigenval-
ues of T. Let T' € Soo(X1,X5). Put

no(s;T) = ny (65 T°T), s>0;
thus n.(-T) is the counting function of the singular numbers of the operator T'. We have
n.(5;T) = n(5;T*), s>0.
Moreover, if X3 =Xy =X, and T =T, we have
ni(s;T) < n(s;T), s>0.
Note that the functions n.. satisfy the Wey! inequalities
ne(s(l+e);T1) —n_(sg;T2) < ni(s; T + 12) < ng(s(l —e); Ta) +nyfse; Tp),  (1.2.2)

with s > 0 and € € (0,1) (see [12, Theorem 9.2.9]), while the function n, satisfies the Ky Fan
inequalities

ne(8(1 +€); T1) — na(s8; o) < ma(8; 11 -+ T2) < mu(s(1 — £); 1) + niu (585 T2), (1.2.3)

with s > 0 and € € (0,1) (see [12, Subsection 11.1.3] ). Finally, for each s > 0 and p € {1, 00)
we have the elementary Chebyshev type inequalify

na(s;T) < s77T}. (1:2.4)

1.3 Amnalytically Fibred Hamiltonians: General Setting

By an analytically fibred operator Hg defined in the Hilbert space #, we mean, following [28]
or [25], an operator which satisfies

@
UHoU* = fﬂ ho(k)du(k), (1.3.1)

where:
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e {)is a real analytic manifold with a measure p given by a positive C*° density;

e U:H— fg H du(k) is unitary, with H a separable Hilbert space;

e The operator hg(k) is self-adjoint in H and has purely discrete spectrum for all k € £
o The resolvent (ho(k) —4)~! is areal analytic function of k € Q.

In what follows we will suppose also that the operator Hg is lower-bounded in #.

‘When we have the direct integral decomposition with these properties we can analyze the
spectrum of the operator Hy in the following way. Denote by {E;(k)}$2, the non-decreasing
sequence of the eigenvalues of ho(k). Then the functions E; : @ — C, 7 € N, are piecewise
analytic. Define

+ .3 NeAR + . .
£ = ié‘s%E-"(k)’ Ej = 21613}33(@.

Then o
o(H)y = (&7.€}).
et

When E;-" <& there is a bounded open gap (8}',8;+1) in the spectrum of Hg. Since
Hj is lower-bounded, we have £] > —o0, and hence (—o0,£7) is an unbounded gap in the
spectrum of Hg.

Let us consider now the discrete spectrum of o & gV, g € Ry, when V € £(#) is a non-
negative relatively compact perturbation of Hg, that is, V > 0 and V(Hg — i)~? is compact.
This implies that Hg £ ¢V can have only discrete spectrum in each gap of the spectrum of
Hp. Define the function

Ni(Ag):= ) dimKer(HoFg'V—-2), A€pHo)NR. (1.3.2)
0<g'<yg

The value Ni(},g) is just the number of eigenvalues of Hg = ¢’V counted with their mul-
tiplicities, which cross the level A as ¢’ goes from 0 to g. An important property of these
functions which has been extensively studied in the literature, is their asymptotic behavior as
g grows to infinity.

A valuable tool in this analysis is the Birman-Schwinger principle (see e.g. [6, 32]) which
implies

Ni(\g) =na(g™ VY2(EL — N)"1VI2), X e p(Ho) MR, (1.3.3)
the functions ny. being defined in (1.2.1).
Another important related asymptotics is described as follows. For A > 0 set

NE(A) = TﬁnkP(_m,g;_A)(Ho - V),

Then Ny (A) is the number of the eigenvalues of Hg — V counted with their multiplicities,
which lie below £] — A. Suppose that (8;’,8}_1_1), 7 € N, is a bounded gap in the spectrum of

Hpy, and for A € (0, T 83*') set

N7 () = rankPgs o 5 (Ho ~ V), NFQ) = rankPies .y e- y(Ho + V).
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Obviously, these functions count the number of eigenvalues with their multiplicities, of the
operators Hg —V or Hg +V inside the intervals (8;', Ei—A)or (E;’ +A, €5,) respectively.
The problem now is to calculate the asymptotic behavior of A ji()\), when A goes to zero.

Proposition 1.3.1. For A > 0 we have
N7(A) = np (L VI2(Hp — E7 +2)71VH2) (1.3.4)
Moreover, for each j € N such that (8_';' < £54) we have
NEQ) =nz(l, VI2(Ho - 5 F ATV +0(1), Alo, (1.3.5)

Proof. Relation (1.3.4) follows from the evident identity My (A) = Ny(€7 — A, 1) and (1.3:3).
Let us prove (1.3.5) for A J}*‘()\); the argument for A ; (A) is completely analogous. Fix Ag €

(0,E54, — S;") and pick § > 0 sufficiently small. Then we have

0 < rankPipt i ,65,-0(Ho+ V) =

N_(EF +Xo,1) — N_(E7;y — 8, 1) — dimKer(FHp + V — €7, +0) <
N_ (Sj_ + Ag, 1).

Therefore, ra.nk]P’(g-;- H8.ET =) (Ho + V) which is a non-increasing function of ¢, is uniformly
] tl
bounded for § > 0 small enough., and every fixed A > 0. Hence, the limit

Ni() =limrankPer e 5(Ho +V)

is well-defined and finite. Now pick A € (0, Ag). We have
NF(A) = N_(Ef + A, 1) = No(EF + 20, 1) + N T (M) (1.3.6)
Now (1.3.5) for A () follows immediately from (1.3.6) and (1.3.3). O

It follows that the asymptotics as g — oo of N.(), g) and the asymptotics as A | of N/ ;k()\)
can be both studied using the Birman-Schwinger principle. However, these two asymptotic
regimes have some essential differences. For instance, typically the asymptotics as g — oo
of N (), g) and N_(),g) are of different nature, while the asymptotics as A | of N j’(/\) and
N7 (A} are practically identical. Also, the asymptotics as A | 0 of N5 (A) or Nj‘()\) have
a local character and depend only on the bard(s} adjoining the edge £7,-or 8_;-", while the
asymptotics as g — oo of N+(}, g} are non-local and typically depend on several (in the case
of Ni(},g), infinitely many) bands of o{Hg).

At this moment, it may be useful to recall the relation between .N‘Ji()\) and the Krein
spectral shift function (SSF). Fix the sign of the perturbation ! of H, and assume (Hg £V —

10f course, the SSF could be defined also without the assumption that the perturbation V has a definite
sign. In this case, however, the S85F £ is not obliged to have a constant sign.
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)7t~ (Hp —~ i) ~! € 51(#). Then there exists a unique £&; € L} , =€ > 0, which satisfies the
Lifshits-Krein formula

Te (F(Ho £ V) — f(H)) = /R e-(E)f'(B)IE, Vf e CP(R),

and the normalization condition £+({\} = 0 for each A < inf o(Hp)Uo(Hy£ V) (see the original
works [54, 51] or the monograph [88]). The function £+ is called the SSF for the operator pair
(Ho +=V,Hp). For almost every A on the absolutely continuous spectrum of the operator
Hp, the SSF &4 is related to the scattering matrix S1(A) for (Hp == V, Hg) by the celebrated

Birman-Krein formula ]
det S+(A) = e~ 2mig(A)

(see the original work [8] or [88]), so that, up to a constant factor the SSF coincides with the
scattering phase. At the same time, for almost every A € p(Hp) N R we have

£:(N) = sEn(1, VI2(Hy — A)71V2)

(see [80] or [60]). Thus, the asymptotics as A | 0 of Nf()\) is closely related to the more
general and challenging problem of studying the asymptotic behavior of the SSF £1*near the
spectral thresholds in o(Hp). ™

The study of the asymptotics as A 1 0 of A Ji(,\) usually reguires a preliminary analysis of
the following basic properties of the band functions:

¢ The descripiion of the set of open gaps in ¢(Hg);
e The structure of the sets {k € Q | Ey(k) = 8?-:}, leN;

e The asymptotic behavior of E;(k) in a vicinity of the set {k € Q | By(k) = S;E} for those
[ € N for which this set is non-empty..

After we dispose of this information concerning E;, we are in position to attack the problem
of finding the asymptotics as A J. 0 of the counting functions J\fji()\). Usually the asymptotic
behavior of these functions is described in the terms of effective Hamiltonians which are simpler
self-adjoint operators whose properties are known, or are easier to be studied. Note that the
investigation of the band functions, and the construction of effective Hamiltonians, could be
of independent interest since such analysis could lead to useful results applicable in related
areas of research.

1.4 Analytically Fibred Hamiltonians: Examples

The general theory discussed in the previous section is now applied to two groups of Hamilto-
nians. The examples selected below are closely related to the two main models considered in
the thesis. That is why we believe that they shed more light on these main models, and allow
the reader to look at our results from the point of view of a more general and visible research
area. At the same time, of course, we do not try by any means to make an exhaustive survey
of all existing results in this relatively large and well established research area.
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The general form of the Hamiltonians under consideration is
H(A, W, V) =(—iV - A+ W +V, (1.4.1)

self-adjoint in L3(R™), n > 1. Here A = (41,...,4,) : B* = R" is the magnetic potential
which generates a magnetic field B. If we identify A with the 1-differential form 37, , A;jdz;,
this means that B = dA. If n = 2, we will identify B with the matrix-valued function

B(z,y) = ( _b(g,y) b(“z]’y) ) (z,y) € R?, (1.4.2)

where b : B2 —+ R is a scalar function defined by b = ‘-53—‘43:2 - %‘%. Since R"™ is simply-
connected, the operator H(A,W,V) is gauge covariant (see e.g. [19, Section 6.1]), and its
spectral properties depend only on the magnetic field B, and not on the magnetic potential
A

Moreover, W and V are electric potentials of different nature: while W is supposed to posses
some ergodic properties, V is assumed to decay at infinity.

1.4.1 Periodic Systems

The first analytically fibred Hamiltonians considered were the periodic Schrodinger operators.
Although direct integrals were introduced formally by J. von Neumann only in [85], the fun-
damental idea of how {0 make the decomposition in the periodic case goes back to the works
of F. Bloch in the theory of solids, and even fo the earlier ones of G. Floquet in relation
with periodic differential equations in the real line (see the notes in [73, Chapter XIII] for
references).

Let A and W be periodic functions in R", with respect to the non-degenerate lattice T
Let T* be the dual lattice of ' and @, Q* be the respective fundamental domains of the
tori T = R*/T, T = R"/I™. Then Hy = H(A,W,0) is an analytically fibred operator,
and the direct integral decomposition is implemented by the so called Floquet-Bloch-Gelfand
transform. This is a unitary operator defined by U : L#(R") — ffﬁ L3(T) |5E|

(Uf)z,k) = Y _exp(—ik- (z + M)z +7), (2,k) € TxT*,
yer

which perform identity (1.3.1) with the operator ho(k) = (iV+A—k)?+W, k € T*, self-adjoint
in L2(T).

Generically, the spectrum of H(A, W, 0) with periodic (A, W) is purely absolutely continu-
ous, and the proof of this fact relies on the analysis of the band functions E;(k). In the case
A =0 and n = 3, this analysis was first done by L. Thomas in [83]. His approach could be im-
mediately extended to the general n-dimensional (see e.g {73, 4]). The case of periodic A # 0,
is also typically purely absolutely continuous; we can cite here the work of M. Birman and T.
Suslina [13], for two dimensions, and the article [81] of A. Sobolev for higher dimensions.

Let us pass to the discussion of the distribution of the discrete spectrum for relatively
compact perturbations of periodic Schrédinger operators.
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The asymptotics as g — oo of the functions Ni(),g) defined in (1.3.2) for A = 0 and W
periodic was investigated in [21] in the one-dimensional case, and in [1, 32] in the multidi-
mensional case. Various far going generalizations of these results could be found in (9, 82].
Note also that the case (A, W) periodic is included as a special case in the general scheme
of [7, 10] where however predominantly only negative rapidly decaying perturbations V' were
considered. In the one-dimensional case the asymptotics as A } 0 of A f(,\) for the operator
—d?/dz? + W + V, W periodic, V decaying i.e. the perturbed Hill operator was considered
in (89, 45]. The multidimensional Schrédinger operator with perturbed periodic electric po-
tential was studied in [67] (see also the short notes [66, 46]). In [67] it was supposed that if
8}" < €7, then the value 8;’ (vesp., £;+1) is taken only by the function E; (resp., E;41); in
[50] it was proved that this hypothesis generically holds true. Further, in [67] it was assumed
that there are finitely many maximal (resp., minimal) points of E; (resp., E;y1), in T*, and
all the extrema are non-degenerate. In the physics literature this condition related to the
existence of the so-called effective masses, is widely believed to be fulfilled in-the generic case;
nevertheless, its validity is proved rigorously only in the case of the infimum of the spectrum
of —A + W (see [47]). Denote by kﬁ, = 1,...,K;’ < oo, (resp., kK, I=1,..., K < 00),
the points where the band function E; (resp., Ej11) reaches its maximum (resp., minimum).

The main idea of the analysis in [67] consists in restricting our attention fo small vicinities
of the extremal points kﬁ:j. As a result, a Schrédinger-type effective Hamiltonians of the form

1
K;

a5 (—%(Mﬁv; V) + v) , (1.4.3)

=1

+

self-adjoint in @{ijl L%(R™), were introduced in [67]. Here —M_,;E'l (vesp., M;;) is the Hesse
matrix of the band function E; (resp., Ej11)}, evaluated at the maximal point kj; (resp.,
at the minimal point &7;); note that in [67] for simplicity only the effective Hamiltonian

corresponding to K ;‘E =1 was described explicitly.
Under certain hypotheses on the decay of V, which should not be too fast, the application
of these effective Hamiltonians yields the following semiclassical asymptotics

KT
1 ¥
Ni) = Gy 2

Since the spectral properties of Hy depend on B, it is natural to consider also the case
where B and W are periodic with respect to the same lattice I". Note the evident fact that the
periodicity of A implies the periodicity of B but not vice versa. For simplicity, assume n = 2
and that T' = {{m, )|m,l € Z}. Then Q = (0,1)? and Q* = (0,2n)*.

Here we distinguish between three cases. Let

{lw k) € B> | (MFEF) £ V() < -3} (L +0(D), ALo.

@=fwawm@
Q

be the magnetic flux through the unit cell . First, if @ = 0 we can find a funciion. ¢, periodic
in T such that Ay = b (see (1.4.2)) and then we are again in the situation of a periodic
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A= (—%‘5, %‘5), described in the previous paragraph. Suppose now that @ % 0,. Then we

can choose by magnetic potential, A(z,y) = A(z,y) + (0, Bx), with A periodic and (0, ®x)
linear. If % € @, there still exists a commutative magnetic Floquet-Bloch theory. To see this,
assume without loss of generality that % € Z, define the unitary operators t; : L{R%) — L(R?),
i=12, by .

(tlf)(miy) = e—t‘:’yf(m_l_ lay); (t2f)($7y) = f(-'B,y+ 1)1
and the unitary operator U : L(R?) — [5 L2('I[‘)(—2‘%g by

(UF) (@ yskayho) = 3 » e EtpIthaltall 484 £)( o),
peEZ gL

Thus, in the situation of (b, W) periodic with % € Z, the analytically fibred decomposition
(1.3.1) for Hg = H(A,V, W) is related to this unitary operator U, while hg(k) is defined as
the unique self-adjoint operator in L?(Q) generated by the closed quadratic form

f |V — A — E)uj® dzdy
Q
with domain
{v e WHQ) : u(0,p) = ™ u(L,p),y € (0,1),u(z,0) = u(z, 1),z € (0,1)}

(see [31, 57]). Finally in the case @ ¢ 27(Q there exists no commutative Floquet-Bloch theory.
If ® is rational, it is believed by many authors that the spectrum of H(A, W,0) with (b, W)
periodic, is typically absolutely continuous. Note, however, that the Landau Hamiltonian
which corresponds to the case n = 2, b constant and non-vanishing, and W = 0 provides an
evident counterexample. Another example is provided by one of the spin-down component of
the 2D Pauli operator with periodic magnetic field of positive mean value (see [22, 5, 70]).

On the other hand, in the case n = 2, B constant and ® € 27Q, F. Klopp showed recently
in [49] that set of W € L*°(R2) which are periodic with respect to the same I, for which
o(H(A,W,0)) is absolutely continuous, is & Gs-dense set. Even earlier. C. Beeken treated
in his Ph.D. thesis [2] the same problem and obtained an explicit sufficient condition on the
Fourier coefficients of W which guarantees that o(H(A,W,0)) is absolutely continuous. As
explained in the Introduction, in Chapter 3 of the thesis we treat the case n = 2, B # ()
constant, and periodic W which depends only on one variable. As a by-product in Proposition
3.1.4 below we show that for general (not necessarily periodic) non.constant potentials W &
C?(R) such that W, W', W” € L*°(R), and for any a € R, the spectrum of H(A,W,0) on
{—~o00, @) is absolutely continuous, provided that the intensity b of the magnetic field is larger
than some by = bo(e, W) > 0.

Finally, let us comment briefly the scarce existing results on the discrete spectrum of
H(A, W, V) for periodic B and W but non periodic A. In the case of rapidly decaying negative
perturbations V, the general results of [65, 10] on the asymptotics as g — oo of N_(A, g} cover
such A and W as a very special case. In the case W = 0, B # 0 constant, and slowly decaying,
as well as positive rapidly decaying perturbations, the asymptotics as g — oo of Ni(), g) was
considered in [65, 68]. To author’s best knowledge the only special case of B and W periodic
but A non periodic, for which the asymptotics as A ] 0 of the functions A/ Ji {A) was studied, is
the model examined in Chapter 3 of the thesis (see also [56]).
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1.4.2 2D Magnetic Hamiltonians

Let us describe now some models which are close to the ones treated in this thesis, namely,
magnetic Schrodinger operators in L2(R?). Let us start with the description of the analytic
fibred decomposition which we need for all the models considered in the section. We suppose
that b in (1.4.2) depends only on the z-variable, and b(z) > 0, x € R. Similarly, we assume
that the electric potential W is bounded and depends only on the z-variable. Choose A(z) =
(0, B(z)), with B(z) = [; b(t)dt. Introduce the operator

Hy = (—iV - A+ W, (1.4.4)

self-adjoint in L?*(R x Z). Here Z C R is a non-empty open interval; if Z # R then we impose
appropriate boundary conditions. Then decomposition (1.3.1) is well defined with U = F, the
partial Fourier transform with respect to y (see (0.3)), @ = R, and the fibre

ho(k) =~y + (B(&) — k) + W(e),
equipped with appropriate boundary conditions if T # R, which is self-adjoint in L*(T).
The fact that this decomposition is analytic is a well known resuit which follows easily from
the Kato perturbation theory (see [43] or [73]).
Let us consider several concrete models which have important applications in quantum
physics, and represent classes of examples with different properties of the band functions.

(i) Landau Hamiltonian. As a first example let us discuss the celebrated Landan Hamilfonian
i.e. b > 0 constant, W = 0, and Z = R. The spectral properties of this operator were first
investigated in the pioneering works of V. Fock {26} and L. Landau [52]. The decomposition
into a direct integral yields band functions which are identically equal to the Landau levels
b2 —1),jeN.

5b B4 (k)

b Ey(k)

B By (k)
k

Band Functions: Landau Hamiltonian

For the asymptotics as g ~ oo of the counting functions N*(},g) in this case, we have
already cited {10, 65, 68]. The asymptotics as A | 0 of Nf()\) for perturbation of power-like
decay was first considered in [64] (see also the short notes [63, 37] and the monograph {38]).
The effective Hamiltonian used to analyze N Ji (A) in [64] is a ¥DO in L?(R) with Weyl symbol

= [ 0s@ese )V (o + )2 Kby — ) doda'dE,  (3,F) € TR,
R3
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- Where tp; is the normalized jth Hermite function. Then the asymptotic behavior of Nf()\) is
given by

NE) = o {(@) €BF| £ V(mg) > M1 +o(1)) < A72%, ALo,

where o > 0 is the decay rate of V. Further, it.was in [71] and [55] where very fast decaying
potentials were studied for the first time. In [71] a complete scale of the type of the decay of

V was considered. In particular, if limjg) 0 In V(z)/ ||?# = —p > 0, then we have
2| In A[/8 if 0<pB<l,
InA ; —
NFQ) ~ 1 watsm if =1, Al0. (1.4.5)

ey A>1L
Note that the behavior for § > 1 is not semiclassical. The case of V' with compact support
was considered in [71] as well as in [55]. As already mentioned in the Infroduction, in this case
asymptotic relation (0.18) holds true.

In both articles the authors based their results in the study of certain Toeplitz operators.
Let P; be the orthogonal projection onto the space Ker(Hp — 5(2j — 1)), 7 € N. Then the
referred Toeplitz operators are just P;V P;. These operators are the very key of the subject,
and are used by many other authors in similar situations .

N.Filonov and A.Pushnitski developed in [24] the results of [71, 55] for compactly supported
V, and obtained an asymptotic formula describing the convergence of the discrete eigenvalues
of the perturbed operator to the Landau levels, which is more precise than {0.18). In particular,
this formula recovers the logarithmic capacity of the support of V' which could be considered
as an original and deep result in the field of the spectral geometry.

At this point we would like to mention that most of the compactly supported electric per-
turbations considered so far (including the ones treated in this thesis) have a definite sign.
This implies that the corresponding Toeplitz operators are of a definite sign as well. Recently,
the article of A. Pushnitski and G. Rozenblum [62] deals with the case of Toeplitz operators
in Bargmann spaces whose symbol has a variable sign. Bounds for the asymptotic behavior
of the eigenvalues of the operator are obtained and an application to the discrete spectrum of
perturbed Landau Hamiltonian is given.

Magnetic perturbations of the Landau Hamiltonian have been also examined. In [76] com-
pactly supported perturbations of the constant magnetic field combined with compactly sup-
ported electric potentials have been considered. Using appropriate creation and annihilation
operators, the authors construct approximate spectral eigenspaces corresponding to a small
vicinity of a given Landau level, imitating what happens in the unperturbed case of a con-
stant magnetic field. After the analysis of the arising Toeplitz operators, it is found out that
the discrete eigenvalues converge to the Landau levels in a similar way as if only compactly
supported electric potentials were switched on, and that an asymptotic relation analogous to
(0.18) holds true.

Finally, let us mention some geometric perturbations of the Landau Hamiltonian which leave
invariant its essential spectrum, e.g. self-adjoint operators generated by the same differential
operation but considered on the complement of compact set in R? and equipped with appropri-
ate boundary conditions. In [61] A. Pushnitski and G. Rozenblum studied the asymptotics as
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AlOof N ;" (}) in the case of Dirichlet boundary conditions, while in [59] M. Persson attacked
the analogous problem for A" l (») and Neumann boundary conditions.

(ii) Sirip Hamiltonian. Let us consider now the Hamiltonian in (1.4.4) with b > 0 constant,
and W = 0, but this time with Z = (—a,a), & > 0, and Dirichlet boundary conditions. The
analysis of the band functions was carried out by V. Geiler and M. Senatorov in [27]. In
this case E;(k) behaves like k? as k — 00, and has a unigue minimum, at & = 0. Since the
unperturbed operator has a purely absolute continuous spectrum coinciding with [E4(0), co),
only the counting function A (\) could be considered here. Its asymptotics as A | 0 was
investigated in [14], where actually the Krein spectral shift function was studied near each
spectral threshold E;(0), j € N.

Band Functions: Strip Hamiltonian

Let us describe the effective Hamiltonian introduced in [14] in order to investigate the behavior
of the SSF near the threshold E;(0). Let ¥; € Ker (hp(0) — E;(0)) be a real eigenfunction nor-
malized to one in L*(—a,a). Set also u; := 1/2EJ(0) and put w;(y) = J2. Vi, ) ¥;(z) de.
Then the operator

d
—‘ujd—yz- i'wj, (1.4.6)

self-adjoint in L2(R), plays the role of an effective Hamiltonian corresponding to Hg &V with
V € LL(R?), V > 0, and the responsible for the threshold E;(0). With the help of the effective

Hamiltonian —,ulgg — wy which is responsible for the first spectral threshold E;(0), it was
found in {14] that A; (A) behaves semiclassically, i.e.

NN = @m) {1, k) € TR mk? —wi(y) < -2} (1 +0(1), AL,

under the assumption that w; does not decay too fast at infinity, i.e. roughly speaking,
that limpy o0 [y|*wi(y) = £ > 0 with € (0,2) and £ > 0. If, on the conirary, we have
wi{y) = O({y)™*) with a > 2, then Mg (A) = O(1) as A | 0, i.e. in this case the operator
Hy — V could have only finitely many discrete eigenvalues.

(i%i) ‘Half-Plane Hamiltonien. Consider now the magnetic Hamiltonian in (1.4.4) with b > 0
const, W = 0, and Z = (0, 00) with Dirichlet boundary conditions. The band functions E;(k)
were investigated by S. De Bigvre and J. Pulé in [20]. It was found in that article that the band
functions are strictly decreasing, E;(k) tends to infinity as & — —o0, and E;(k) converges to
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the Landan level b(2j — 1) as k — oco; hence, in particular, the spectrum of Hy is absolutely
continuous. Moreover, the Landau levels are thresholds of the spectrum of .

Band Functions: Half-Plane Hamiltonian

To perform an analysis of the asymptotic behavior of the SSF near the spectral thresholds
similar to the one for the strip Hamiltonian is an interesting and challenging open problem.

(iv) Monotone Edge Potential. Let us discuss now the first of the main models considered in
this thesis (see also [15]). This is the magnetic Hamiltonian in (1.4.4) with b > 0 constant
T =R, and W monotone. For definiteness, we assume that W is not decreasing. Then we have
Wi = limy 400 W(z) (see (0.8) for the definition of W..). The band functions are bounded,
non decreasing, and we have

£ i (B — B(94 — .
Sj—kh_lfj:EJ(k) b(2j — 1)+ Wz

Thus, the band functions do not reach their suprema and infima at finite points.

Band Functions: Monotone Edge Potential

In the k-representation the general effective Hainiltonian obtained for this model has been
introduced in (0.14) (see also (2.2.3)). Its potential-energy part V" is a pseudo-differential
operator with a contravarianf operator written explicitly in the terms of the perturbation V.
Note that in contrast to the potential-energy operators occurring in the effective Hamiltonians
(1.4.3) and (1.4.6), the Weyl symbol of the operator V**" depends non-trivially on both
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variables of (y,k) € T*R. The deep reason for this important difference is that the suprema
and the infima of the band functions E; which coincide with the edges of the spectral gaps, are
only asymptotic values never reached at finite points. Note that the operator V*°" is unitarily
equivalent to the Toeplitz operator P;V P; which arises as an effective Hamiltonian when we
consider perturbations of the Landau Hamiltonian. In the case of non-constant monotone W,
the effective Hamiltonian (0.14) however contains also a non-trivial kinetic part E;.

This model has another remarkable characteristic, namely, that depending on a geometric
condition between W and V, we can have a finite or infinite number of eigenvalues of H in
each gap of o(Hp).

(v) Periodic edge potential. The second of the models studied in the thesis (see also [56]) is
the Hamiltonian in (1.4.4) with b > 0 constant, W periodic with period T, and T = R. The
band functions are bounded and periodic with period 6T. An important feature of the band
functions which is shown, is that they approximate well W, provided that b is large enough.

5b+W+ ..............................................................................................

2
3 T 1 T L T B T R LR
b+W+/\—/ ...................................... A
R 7 T LA T B e PP e E PR P PR

Band Functions: Periodic Edge Potential

The main novelty here comes from the fact that the band functions being periodic and
defined over the whole real axis, have infinitely many points in which the extremal values
are taken. Due to this the effective Hamiltonian used in Chapter 3 for the analysis of the
asymptotics as A | 0 of N;?"()\), is introduced in (0.15) under the assumption that 0 is the
only point on [0,5T") where E; achieves its maximum, and this maximum is non-degenerate.
Then we have p; = 3E7(0) in (0.15), and V;™ is an infinite matrix-valued potential written
explicitly in the terms of the perfurbation V.

In contrast to the case of the monotone edge potentials, in this model every open gap of
the spectrum of Hy always contains infinitely many eigenvalues even for compactly supported
perturbations.

(vi) Twatsuka Hamiltonien. Finally, we discuss briefly the Hamiltonian in (1.4.4) with b = b(z)
monotone function admitting different limits of the samesignasz — —occand z — co, W =0,
Z = R. This model known as the Iwatsuka Hamiltonian, since it was introduced by A. Iwatsuka
in [39).

Suppose for definiteness that b is non-decreasing, and limz, 3 oo b(z) = by with 0 < b_ < by.
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Then it is shown in [39] that
EF =bs(2j—1), jeN.

The main results on the asymptotic distribution of the discrete spectrum for perturbations
Hg £ V of the Iwatsuka Hamiltonian were obtained by S. Shirai. In {78] he studied the
asymptotics as g — oo of the functions N1}, g), and in [77] he investigated the asymptotics
as A — oo of the functions N Ji()\) In both cases only perturbations V' of power-like decay
were considered.




Chapter 2

Monotone Edge Potential

In this chapter we study the operator H defined in (0.1) - (0.2), under the assumption that
the edge potential W is monotone. For definiteness we shall consider only non-decreasing W,
It will be evident that a completely analogous treatment could be done in the non-increasing
case.

In Section 2.1, spectral properties of the unperturbed operator Hy are studied, in particular,
the behavior of the band functions Ej;, j € N. In Section 2.2 we state the main results of the
chapter, that is, we describe effective Hamiltonias, and the asymptotic bounds of J\f_,’,-"‘. The
proofs of our main results could be found in Sections 2.3 — 2.6.

2.1 Basic spectral properties of H

We start the study of the operator H by considering first the unperturbed operator Hy,
specifically, general properties of the band functions Ej;(k).

By analogy with the operator & (see (0.5)), it is also useful to consider the shifted harmonic
oscillator 2 ’

hoo 1= =25 + bz? + Wy, (2.1.1)
self-adjoint in L2(R).

Proposition 2.1.1. Assume that W is non-decreasing and bounded. Then for each 7 € N the
eigenvalue E;(k) is a non-decreasing function of k € R, and

Jm Ej(k) =b(2j— 1)+ Wo,  lim E;(k) =b(2j — 1) + Wi (2.1.2)

holds true.

Proof. The fact that F; are non-decreasing bounded functions of & follows directly from the
mini-max principle. Lef us prove (2.1.2). Pick E > —b— W_. Then for each k € R we have
—E <b+W_ <info(h(k)) (see (0.9)). Moreover, —F < b+ W, =inf o(). Then,

WE;(k) + BY ™ — (b(25 — 1) + Wy + B)7Y| <
[(h(k) -+ BY N (Wy —W (- + E/b))(hoo + E) 7Y <

22
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(h(E) + BY M| (W — W + E/B)) (oo + E)2|. (2.1.3)
It is also clear that }
l|(h(k) + B)™Y| < (E+b+W_)1, (2.1.4)

and the r.h.s, is k-independent. Further, the multiplier by (W, — W{(- + &/b)), = € R, tends
strongly to zero as k — oo, while the operator (R + E)~! is compact and k-independent.
Hence, the operator (W — W (- 4+ k/b)){hes + E)~! tends uniformly to zero as k — co. Now,
(2.1.3) — (2.1.4) imply

Jim (Bj(k) + B = (25 - )+ Wi+ E), j €N,

which yields the second limit in (2.1.2). The first one is proved in the same manner. O

Proposition 2.1.1 implies that if W_ < W.. holds, then there are no identically constant
functions Ej, j € N. Applying the general theory of analytically fibred Hamiltonians (see e.g.
[73, Section XIIIL.16]), we immediately obtain the following

Corollary 2.1.2. Assume that W is non-decreasing and bounded, end W_ < W, holds true.
Then the spectrum of the operator Hy is absolutely continuous and

o(Ho) = cae(Ha) = | J[b(2 — 1) + WL, b(2j — 1) + Wy,
i=1

Our next theorem will play a crucial role in the construction of the effective Hamiltonian
introduced in the next section. For its formulation we need the following notations.
Fix k£ € R and j € N, denote by 7;(k) the orthogonal projection onto Ker (h(k) — E;(k)).
Then we have
wj(k) = (w5 RNy (5 5), (2.1.5)
where (-,+) is the scalar product in L?(R), and v;(z;k), € R, is an eigenfunction of h(k)
which satisfies
R(k)y;( k) = By(k)bi (5 k) 19558l zamy = 1. (2.1.6)
Moreover, ¥;(-; k) could be chosen to be real-valued.
Set

hoolk) = Ushoold], = —% +(bz— k)2 + Wy, kER,

the operator A, being defined in (2.1.1). Denote by 7;00(k), & € R, j € N, the orthogonal
projection anto Ker (hoo(k) — EJ}*' ). Then, similarly to (2.1.5), we have

Tioa(k) = (4 Wj00 (s KV j00 (5 K), (2.1.7)
where the eigenfunction ;.o (x; k) satisfies

_ 32%,09

(@3 k) + (b2 — B)*1,00(2: B) = b(2F — Djoa(@ik), 0001 B2y = 1, (2.1.8)

Oz
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and ¢ould be chosen to be real-valued as well. The functions 90, § € N, admit an explicit
description. Namely, if we put

Hj_l(m)e—zzﬂ

wi(x) == (21 — D zeR, jeN, (2.1.9)

where
H,(z) = (—1)e" o~ R z
olx) = (—1)%e T v TER, g€Zy,
are the Hermite polynomials (see e.g. [4, Chapter I, Egs. (8.5}, (8.7)]), then the real-valued

function ¢; satisfies
_99;!(53) + mz(Pj(m) = (2j — 1)(:93'(37): “‘20.7'".62(11{) =1,

and we have

ool k) = b 40,25 —bY2E), jeN, zeR, keR. (2.1.10)
Put )
b—g+3/2 )
Note that . ror v
hieo(w; k) = 1y (kY Lem @B 2 1 o(1)) (2.1.12)

as k — oo, uniformly with respect to x belonging to compact subsets of R.

Theorem 2.1.3. Fir j € N. Then we have

(&~ 550) " lmsoo — w1 =0, (2.1.13)

lim
k—oo

the trace-class norm being defined in Section 1.2
We will divide the proof of the theorem into several propositions, in which we investigate

separately the asymptotics of EJ'-" — E;(k) and {7,060 — m(k)[1 = 0.

As in Proposition 2.1.1, it is more convenient to consider the operator i(k) instead of h(k).
Let us introduce then the corresponding analogous objects.
Set
Pi(zy k) 1= Uiz k) = (= + k/bik), zeR, keR, jeN,

the function ¢; being defined in (2.1.6). Evidently,
h(k)s(z; k) = Bs(R)i(zi k), |195(i ) pamy = 1.
By analogy with (2.1.5) put

73(k) = (B (5 RN (5 k), kER, jeN.
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Similarly, set
W0} 1= Usthj oo(; k) = B/ 40;(01%2), 2z €R, jeN,
(see (2.1.9) for the definition of the function ;). Then
Footoo(®) = Ef Bie0()y  Pj0ollz2my = L.
Put _ _
ﬁj,co = (-" ¢jrw)¢jrm’ j € N'
Since we have

UpT; (B = (R, UnTjodli = mjoo(k), kEER, jeN,

relation (2.1.13) is equivalent fo
—1/2
1 ek _ B, T =
Jim (5_,,. Ei(#) " 1fse0 — F3(E)la =0. (2.1.14)

Let us first examine the asymptotic behavior of || — #;(k)||1 as £ — co. In order to do
that we need a preliminary result.

For z € C\ (0(hoo) \ {£]}) set
R, 4(2) i= (oo — 2) 71 ~ Tjco)-
Similarly, for z € C\ (e(h(k)) \ {E;(k)}) put
Ry (2) == (h(k) — 2)7H(I — &;(k)).
Set o
Up(z) =Wy —W(z + k/b) = hoo — h(k), TER, keR.
Lemma 2.1.4. We have
#j00 = 5,007 (k) — 75,00V Ry (£ ) = 7(k)R; .00 — Ry (€] Wi ,00, (2.1.15)
#t5(k) = #t(k) .00 -+ (k) Uk Rg, (B5) = 500 (k) + B (B Ui (k). (2.1.16)

Proof. We have
o0 = 00l (k) + Fjo0(l — 75(K})
= 0075 (k) + Fj00lhoo — EF — Up)(R(E) — EF ) HI — #5(K)).
Since 7;00(foo — 8;') = 0, we obtain the first equality in (2.1.15). The second equality is

obtained by taking the adjoint. In relations (2.1.16) we have only exchanged the role of E(k)
and hoo. O

ey
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Set
_ 1/2
@j(k) = @j(k;W) = (f Uk(a:)'gbj,oo(a:)zdm) , kKeER. (2.1.17)
R
By the dominated convergence theorem we have limy_, o, ®;(k) = 0. Note that
B3(k) = (T 300U j00) 7% = (50003 " = 13 *Fseolln = WtjooU | = 103 ool
(2.1.18)

Proposition 2.1.5. Fiz j € N. Then we have
75,00 — 73 (K) ]Iz = o(85(k)), Kk — oo (2.1.19)
Proof. By (2.1.15) and (2.1.16) we have .
00 — (k) = ~T5,00Uk Ry (€] ) — R 3 (Bi) Ui s00 + Rex i (B U (R 00 — 7)),

ie,
(I — Ry {(B;) Ui (75,00 — 3(k)) = —Fs00Us R (€] ) — Ros (B ) Ui c0-

Since 8 — limg_yo U, = 0 and the operator R;,LOJ(E_,-) is compact and uniformly bounded, we
have limg—co ][R';Lo’j(Ej)Uk" = 0. Therefore, the operator I — Rg-o,j(Ej)Uk is invertible for
sufficiently great k, and for such k we have

Tjo0 — T5(k) = —(I — RE ;(EnUk) (75,0008 Ri (€]) + R 3(B5)Uiftsi00)-
Therefore,

500 — F5(B)l1 < I — R 4 B5)0:) MU RHEN + | RS s ENT DU .

(2.1.20)
Arguing as above, we easily find that
. 1/2pmLeots — 13 1 Arrl/2y
Jim (U Ry (6] = Jim | B 5 (BT "]l = 0. (2.1.21)
The combination of (2.1.20), (2.1.21), and (2.1.18) implies (2.1.19). H
Proposition 2.1.6. For any j € N we have
— E;(k) = @;(k)*(1 +0(1)), k— oo. (2.1.22)
Proof. Assume k large enough. Evidently,
1 s -
83 'I‘r.h',m'r_,oo =~ / Froo(frop — ) " Hdw = —2—m’I‘r W(hoo —w) Ldw

Ly

where I'; is & sufficiently small circle run over in the anticlockwise direction which contains in
its interior E;(k) and 8"' but no other points from the spectra of (k) and heo. Similarly,

By(k) = —%I& ]P jm(fz(k) - ) ldu.
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Therefore,

&f ~ Esth) = ~=Tr [ (oo )™~ (h(8) ~ ) oo =
i

2im_'ﬁ s w(Froo — ) U (B(R) — ). (2.1.23)

Applying the Cauchy theorem, we easily get

1 7 —177 (% 1 _
ami ), W(hoo — W) Up(h{k) —w) dw =
7,005 (K) — £} 500U Ry (EF) — BjRog 5(By) Uity (k). (2.1.24)

Comparing (2.1.23) and (2.1.24), and.bearing in mind (2.1.18}, we obtain
EF — Ej(k) — ®;(k)* =
Tr #5,00Uk(75(k) — j00) — E T ﬁj,wU,,.R;L(s;r) — EyTr RL (Ey)Usi; (k). (2.1.25)

In order to complete the proof of (2.1.22), it remains to show that the three terms on the r.h.s.
of (2.1.25) are of order o(®;(k)?) as k — oc.
First, we have

ITr 75,00V (73 (8) — Tj00)] < |00l “INTE 2175 (6) — oolle = o(@5(R)%), & —*(00, |
2.1.26

by (2.1.18}, (2.1.19), and the fact that ][Ué/ ?|| is uniformly bounded with respect to k € R.
Next, using the trivial identities ;00 = 77 o, and Rj’*(é’f )i (k) = 0, as well as the cyclicity of
the trace, we obtain

Tr 75,00 U B (E]) = —Tr (&5(k) = #j,00)75,00Uk B (E5F). (2.1.27)
Therefore, similarly to (2.1.26), we have
|67 Tr 750Uk BF (€7 < 1€ 1175(6) — Fjollill 500 Un MU 2B EF ) = 0(®;()?) (2.1.28)
as k -+ oc. Finally, by analogy with (2.1.27) we have
Tt Ry ;(Bj)Usftj(k) = Tr Rog ;(B5)Uy; (k) (i3 (R) — Fj00) =
Tr R (85 Y 00(75(R) — Fg00) + Tt R s (B Ur (75 (k) — Fig,00)%.

Hence,
|E{Tr Rog 5(B5)Uxit (k)| <

|25 (R) 1R 5(BNU AU coll 175 (k) — 700l t
B (| BE BVl (B) — Ricoll? = o(@;(k)2), & — oo, (2.1.29)

by (2.1.18}, (2.1.19), and the fact that |E;(k)|, ||R5L°)j(Ej(k))Ué/2][, and || Ry, ;(E;(K))Ug| are
uniformly bounded with respect to k € R.
Putting together (2.1.25), (2.1.26), (2.1.28}, and (2.1.29), we obtain (2.1.22). (W]
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Now relation (2.1.14), and hence (2.1.13}, follows immediately from (2.1.19) and (2.1.22),
so that the proof of Theorem 2.1.3 is complete.

To end this section, we examine the explicit asymptotic behavior of E;' ~Ej(k) as k — o0
when W is a step function. This simple special case will play an important role in the proofs
of our. main results in the general case of bounded non-decreasing W.

Let w_,wy € R, w_ < wy, g € R. Put

_Jwy if xz>m,
wi(z) == { w. i z<mp (2.1.30)

Proposition 2.1.7. Assume that w_ < wy. Then we have
o;(k;w) = '{m';—w_)pjkzj_:ie_(b_u BB 0) (] L o(1)), K —+ oo, (2.1.31)

the number p; being defined in (2.1.11}.

Proof. By (2.1.17), .
zo—k/b

&; (ki w)? = f (W — w_ )i c0(z)de.

—0a

Bearing in mind (2.1.10), (2.1.9), and making a change of variables, we obtain
p1/2
Now, {2.1.32) and (2.1.11) easily imply

p3/2-d9i- 132071 b1p2 jx" 2 on
by 2ky

- e eV e Ydy(l + o(l k — oo,
\/??(J 1)! oo ( ( ))’

T _ .
O;(k; W)? = (wy —w_) f H;(02y — b 2g)2 = @002 g, (97 30)

D4k w)? = (wy —w_)

(2.1.33)
The integral in (2.1.33) can be estimated by the Laplace method ( see e.g. [58]} which yields
g —ba:z 2ka:(]
f et b2y — $(1 +0o(1)), k— oo (2.1.34)
— 2k
Combining (2.1.33) and (2.1.34), we obtain (2.1.31). O

With this proposition in our hands, we can put together (2.1.22) and (2.1.31) and find that

Ey(k,w) = &7 (w) — m+—_2%"-lpjk2j—3e—(b—1,2k_51/2"”")2 (1+0(1)), k—o0.  {2.1.35)
Thus, in spite of the fact that the band functions E;(k;b, W), k € R, j € N, imitate in many
aspects the behavior of the edge potential W (see e.g. Proposition 2.1.1 or Propositions 3.1.3
and 3.1.5 below), asymptotic relation (2.1.35) reveals an important difference: the function w
is equal to its maximal value w, on the interval [z, c0), while the band functions Ej;(k; b, w),
4 € N, being analytic increasing functions, never reach their suprema 8:;*' . This purely quantum
effect related to the uncertainty principle, explains many of the asymptotic results obtained
in the sequel.
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2.2 Main Results

This section contains the statemenis of the main results we shall prove in this chapter. As ex-
plained in the introduction, for definiteness, we will consider the case of positive perturbations,
and respectively the asymptotic behavior as A | 0 of J\G‘"(A), JEN, Ae(0,2b+4 W_ ~W,.).

2.2.1 General Effective Flamiltonian

For A € [-00,00) and X > 0, define S;(A; 4) : L2(4,00) — L*(R2) as the operator with
integral kernel

(@m) 2V (@, y) e oo R)(EF — Bik) + 072, kER, (my)eR% (221)
the function 1, being defined in (2.1.10).

Theorem 2.2.1. Assume that V € LP(R%;R). Fiz j € N and A € [~00,00). Then for any
€ € (0,1) we have

n(1 + & 85(A; A)) + O(1) S NF(X) € m(l — & 55(2; 4)) +0(1), A lo0. (2.2.2)

The proof in contained in Section 2.3.

Let us write explicitly the effective Hamiltonian encoded in (2.2.2), which is responsible for
the asymptotics term as A J. 0 of AT (A).

For (z,£) € T*R =R? and j € N set

Uy (k) = b2 Mg (i k), kER.
Note that for each j € N the system {‘I'maﬁ;i}(x,g)e'r'n is overcomplete with respect to the
measure =dzdg, i.e. for each f € L2(R) we have

o [ CagatPdd = [ 15
R B

27{ Tn
(see {4, Chapter 5, Section 2} or [79, Section 24]). For (x,£) € T"R and j € N set Prg; =

(s ¥z,65) ¥z, and introduce the operator

mon ,__ i .
VP = o fT V(8O Pagydadt (2.2.3)

where the integral is understood in the weak sense. Then V™" can be interpreted as a YDO
with contravariant (generalized anti-Wick symbol) V' (see [4]). Moreover, we have

Si(X; —00)*Si(h; —00) = (£} — By + \)THAVPOEF — B; + Ay, (2.2.4)

Bearing this in mind, and applying the Birman-Schwinger principle, we find that {2.2.2) with
A= -00and ¢ € (0,1) can be re-written as

rank P g+ iaee)( B+ (L4e) VP +0() <
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_N; ) <
ra.nk]P’(sq._E_A Oo)(E- +(1- E)"lviEnon) +0(1), Alo
Due to this, we have that the operator E;+V;"" bounded and self-adjoint in L2(R), which was
already introduced in (0.14), could be mterpreted as the effective Hamiltonian which gOverns

main the asymptotic term- of J\G'I'( ) as A L 0, the multiplier by E; being its “kinetic” part,
and the ¥DO V™" being its “potential” part.

2.2.2 Effective Hamiltonian for the Case of Compactly Supported V

In this subsection a new effective Hamiltonian is described under the assumption that V is
compactly supported. More precisely, we suppose that there exist bounded domains ;. C R2
with Lipschitz houndaries, and constants cg: > 0 such that

¢ xa-(2,¥) < Viz,y) < cfxa (zy), (z,y) €R? (2.2.5)

where xq_. denotes the characteristic function of the domain Q..

For 6 € (0,1/2) introduce the intervals
I_=I_(8):=(6,1-8), Iy=1I.(6):=(0,1434).

In addition define the operator I'y (m) : L*(1-) — L?(Q.) as the operator with integral

kernel )
7 W2 gmba® /2 gmiz-tig)k 1/ 2, kel (ry)eQ._,

and the operator I'} (m) : L*(I;) — L*(£2;) as the operator with integral kernel
a2t 2gmiaHiy Ok /2§ ¢ I, (z,y)€fl;.
Remark. Introduce the set
B(Sy) == {u € L*(Q1) | uis analytic in Q..} (2.2.6)
considered as a subspace of the Hilbert space L*(Q.; ¢ —ba® dzdy). Note that as a functional set
B(£2..) coincides with the Bergman space over Q4 (see e.g. [30, Subsection 3.1]). Then we can
say that, up to unitary equivalence, the operators PJ (m) maps L*(I;) into the holomorphic
space B(Q4).
Set
= inf{z € R|W(z) = W,}. (2.2.7)

Note that by the assumption W_ < W, we have 2+ > —co.

Theorem 2.2.2. Suppose that W is a bounded non-decreasing function with W_ < W, and
that - < 0o. Assume that V € LP(R%;R) satisfies (2.2.5). Then we have

NFN) 2 (1 + )/ (Wa — W_) /5 T5 (VB A) + O(1), (2.2.8)

NFQ) € nalr(t - e/ (Wa — Wiat — )/ e P IETHBRAD) +01),  (229)
asAl0, foralljeN, A>0,£¢c(0,1), § €(0,1/2) and r > 0.
The proof of Theorem 2.2.2 could be found in Section 2.4.
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2.2.3 Asymptotic Bounds for N

Put
X = {z € R|there exists y € R such that (z,y) € esssuppV'},

X =infX, XV :=supd.

The quantities we are interested in, namely z* defined in (2.2.7), and X are related in two
ways, as is shown on the two figures below for the case of compactly supported V.

W—I— W+

ess suppV

" ess suppV

X+t gt gt X+

Figure 1.a Figure 1. b

Our first theorem in this subsection contains a sufficient condition for the boundedness of
J'\/;-'". Roughly speaking, it concerns the situation described on Figure 1.a.

Theorem 2.2.3. Let W be a bounded and non-decreasing function with W_ < W, and
z¥ < co. Assume that V € LP(R?), V 2 0, —c0o < X~ < X7 < 0. Suppose in addition that
ess supger Jp V(% ¥)dy < oo, and
Xt <ot (2.2.10)
Then we have
Nf)=0(@1), A0, jeN. (2.2.11)

The proof of Theorem 2.2.3 is contained in Section 2.5.

Now we turn to the situation presented on Figure 1.b, namely £& < X*. Assume that V
satisfies (2.2.5). Then if we identify when appropriate R® with C writing z = z + iy € C for
(z,y) € R?, the quoted geometric condition can be expressed in the following manner

Q.n{zeC|Rez>z7} £ (2.2.12)

In this situation if z+ = co, we have X* < 7 due to 2.2.5, and then Theorem 2.2.3 implies
(2.2.11). It is then natural to assume in the next theorem zt < co. Since the operator Hy is
invariant under magnetic translations, we may choose zt = 0 without any loss of generality.

The estimates obtained for NJ-‘" (A) contain some explicit constants related with the support
of V. In order to define these constants we need the following notations, Let Q C B2 be a
bounded domain. Set

K_()={(p,q) eR?|p<q,3z€R suchthat (z,p--t(g—p))cf,Vte(0,1]},
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c_(Q:= sup (g—p).
(pg)EK ()

In other words, c_(f2) is just the maximal length of the vertical segments contained in €.
Next, for 8 € [0,00) put
#(s):==|{t > Oftlnt < s}.

Let Bgr({) C R? be the open disk of radius R > 0 centered at ¢ € C. Set

K (Q2):={(,R)eRx(0,00)|3n€R suchthat QC Bp(¢-+in)},

%)
HY = o (eR

where &4 1= max{£,0}. Then it is evident that
s (@) > %diam @ > %c_(n). (2.2.13)
Put :
Q4 :={z € Qu|Rez > 0}.
Note that (2.2.12) implies Q.+ # 0.

Theorem 2.2.4. Suppose that W is o bounded non-decreasing function with W_ < W,
and 1t = 0. Assume that V satisfles (2.2.5), and (2.2.12) holds true. Then the asymptotic
relations

o —1/2 51+ 1/2
lulx\%nf]ln)q /.N;- (\) > b¥2C_ (2.2.14)
and
limsup | In M| 7/2AF (X) < b2, (2.2.15)
Alo

hold for all j € N, where C_ := (2w)_1c_(ﬁ_) and Cy. := ecy (Qy). In particular,

ln.N""()\) 1

A Tn nA| — JeN.

Remarks. (i) Under the hypotheses of Theorem 2.2.4 we have 0 < C- < C; due to (2.2.13),
Q. c Q, and 1/7 <.e. To prove that the limit limyyp | In A|~/2N, +()\) exists, and calculate
this limit is an interesting open problem from the field of the spectral geometry, related to the
ones considered in [24, 62].
(i) Due to inequality (2.2.14), we have that H has infinitely many eigenvalues in each gap of
o(H), when hypotheses of Theorem 2.2.4 are met.

The proof of Theorem 2.2.4 is contained in Section 2.6.
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2.3 Proof of Theorem 2.2.1

‘We prove first a preliminary result. To this end we define the following operators. Pick j € N,
A € [~o0,00) and A > 0, and set

[H] @B
PiA)i=F [ m(R)dhF, Pieo(d) = F* f i00(K)R F,
(A:m) (A,OO)

&
Ti(\ A) v= F* f( . m)(&‘;’ — E;(k) + N Y r(k)dk F,

[43]
T; ool X 4) = F* f (& — Bi(k) + A) Y2 o (k)dk F.
{A,00)

Lemma 2.3.1. Assume M € LP(R2). Then the operator MTjoo(); A) is compact for any
A >0 and A € [—00,00). Moreover, for any A1, Ay € [—00,00) the operator

M (T,00(A; A1) — Tj00(A; A2)) (2.3.1)
extends to a uniformly bounded and continuous operator for A > 0.

Proof. Denote by xg the characteristic function of a disk of radius R centered af the origin.
For A > 0 and 4 € [—o0,00) write

MTj00() A) = X MT; oM A) + (1 = Xr)MTjo0(; A). (2.3.2)

The first operator at the r.h.s of (2.3.2) is Hilbert-Schmidt for any R € (0, 00), and the norm
of the second one tends to zero as R — oo. Hence, the operator MTj(A; A) is compact.
Further, the case 4; = Ap in (2.3.1) is trivial so that we suppose A; # As. Define the value
for A = 0 of the operator in (2.3.1) as

&
MF (& — Bij(R)) s oo(k)dl F
(A-,A1)

with A_ := min{4;, As} and A} := max{A;, As}. Now the uniform boundedness for A > 0
of the operator in (2.3.1) follows from the estimates

[M(Tj00(As A1) — TioolXs A2))]| < IM[eomey  sup (£ — B;(k))™2, A >0,
.kE(A A.|.]

-7

while the uniform continuity of this operator for A > 0 follows from the estimates
| M ((Tj,00(A1; A1) — Tj00( A5 A2)) — (Theo(A2; A1) — Theo{Ae; A2)))| <

= del|M||zwmzy  sup  (EF —E3(B)7T% A2 20.
ke(A_,A4]
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Now we are in position to prove Theorem 2.2.1.
The Birman-Schwinger principle (see Proposition 1.3.1) implies
NFO) =n_ (VYA (Hy - £F = \)7'VYH +0(1), Al (2.3.3)
Pick A € R. Applying the Weyl inequalities (1.2.2), we get
(L + 8 VYHEF — Ho+ \)7'P; iV —n(s; VIAEF — Ho+ N M I~ P, V%) <
n_(LVY2(Hy — £ — X)W <
ns (1= VYVES — Ho+ AP, V) +na(s VVA(EF — Ho+ NI I - P, 1) VH?), (2.3.4)
for any s € (0,1). By V € LP(R? R) and the diamagnetic inequality, we easily find that
na(s; VYA(E} — Ho + N)7HI - P, )V = 0(1), Alo. (2.3.5)
Further, for any > 0 we have
n (% VYAEF — Ho+ )71, 4V =
ni (% VY2F f T (& — B8 £ N (R)dRFVY2) =
(A,00)
n.(r; VI2T(\; A)). (2.3.6)
Applying the Ky-Fan inequalities (1.2.3), we obtain
(1 + 8); V2T 00 A)) — na(rs; V2 (Ty00(X &) — T3 4)) <
nu(r; VT3 A)) <

na(r(L — 8); VY2 T,00(05 A)) + 1a(rs; V(T 00 (X A) — Ty(3; 4))). (2.3.7)

Now note that _ _
VY2 (DX A) — TN A))]| <

IV e 502085~ B5(8) ™y 8) — (], (23.8)
k>

uniformly with respect to A > 0. By (2.3.8) and Theorem 2.1.3 we find that for each ¢ > 0
there exists Ag = Ag(g) such that A > Ap(g) implies

V(T A) - (5 A < ¢
for each A > 0. Choosing A > Ag(rs) in (2.3.7) we find then that
na(rs; VI/2(Ty 00X A) — Ty(3; 4))) = 0 (2.3.9)

for each A > 0. Next, the Ky-Fan inequalities imply that for any A > 0,7 >0, s € (0,1) and

A, A, we have
(7 (14 8); V/2T500 (% A)) = malrs; V2(T00(3 A) — T3 A))) <
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1 (3 VY2 T00(A ) <
n(r(1 — 8); V2T 00( N A)) + 1lrs; VYT 00(2s A) — Thoo(A; A))). (2.3.10)
By Lemma 2.3.1 we have

na(r; VY/(T,00(0 4) — Tioo(B A))) = 0(1), AL0, (2.3.11)

for any fixed r > 0.
Finally note that
T.00(A A)Pii00(4) = Tje0 (s A)
and define the operator Wy : L*(4,00) — Pjico(4)L*(R?), by (Wou)(z,y) := (F*Tt1,00)(2, 1),
where (k) is the extension by zero of v(k) to the whole real axis. It is easy to see that W is

unitary and that
Vl/Q,I:‘inO(A)WO = Sj(A, A)s

then

(3 VI2T; (0 A)) = m(r; S(; A)) (2.3.12)
for each 7 > 0, A > 0. Putting together (2.3.3) — (2.3.7), and (2.3.9) — (2.3.12), we obtain
(2.2.2).

The proof of Theorem 2.2.1 is now complete.

2.4 Proof of Theorem 2.2.2

This proof needs a technical result, Lemma 2.4.1 below, and an intermediate step, Proposition
2.4.2 below.
Define the operators Fj, [ = 0,1. by

(Fiv)(z) == /R e*klu(k)dk, veCPR), zedl.

Note that Fjv are entire functions in C, and (Fyv)(z) = %(Z). Morecver, the operators
F} can be extended as continuous operators from D,’:Dmp (R), the space of compactly supported
distributions, dual to C*°(R), into the space of functions entire in C. Set

ACES fg e~ |[(F)(z + iy)dzdy, ve CP(A,0), [=0,L
Ea

Denote by D[f:] the closure of Cg°(A, 00) in the norm generated by the quadratic form f=.

Lemma 2.4.1. The gquadratic form ff,t is closable in D] ffh], and the operator FE generated
by its closure, is compact in D{fi].

Proof. Consider D| ff': + foi], the closure of C§°(A,o0) in the norm: generated by the quadratic
form ff: + foi. The quadratic form foi is bounded, and hence closable in D] ,)"1i + foi]. Denote
by F* the operator generated by its closure in D[fi= + fif]. For v € CS°(4, 0o) set

w(z,y) = (Fov){z +1iy), z+iyeC.
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Then we have

] — f e wPdrdy,  fE[u] = 2 f == |V Pdady. (2.4.1)
Qi 0

+

Since the £2: is a bounded domain with a Lipschitz boundary, the Sobolev space H(Q.) is
compactly embedded in L?(2t). Hence, (2.4.1) implies that F* is compact.

Let us now check that |F*| < 1. Evidently, [F%] < 1. Assume ||[F*|| = 1. Since F* is
compact, this means that there exists 0 # v= € D[fi" + f3] such that f[v] = 0. Let {vE} nen
be a sequence of functions v € C°(4,00) C CSP(R) converging to v+ in D ff': + fE]. Set
wi(z) = (FovZ)(z). Evidently, for any n € N we have wE € B(S21) (see (2.2.6)). Since
B(£)) is complete, there exists wt & B(Q1) such that limy, o, [|wE — wF] B@) = 0. Since
(Frob)(z) = %ﬂi-, it is not difficult to check that f[v¥] = 0 implies that w® is constant in
Q. (see e.g. [30, Theorem 2, Exercise 1]), and hence w* admits a unique analytic extension as
a constant to C. Then the distributional Paley-Wiener theorem (see e.g. [35, Theorem 1.7.7])
combined with {72, Theorem V.11] implies that ¥= is proportional to the Dirac é-function
supported at & = 0. Since suppv* C {4,00) and A > 0 we conclude that v* = 0 as an
element of D'(R), and hence f[v*] + fi¥jv%] = 0, which contradicts with the hypothesis that
v% # 0 as an element of D[fi* + f]. Therefore, ||F=|| < 1, and the quadratic form s
bounded, and hence closable in D] fli] Finally, the operator F* generated by its closure is
unitarily equivalent to (I — F%)"'F* and therefore is compact in D[fZ]. |

Without lost of generality, assume that £ = 0. Define the non-decreasing functions

- e W+ if > 0,
Wy () '_{ W. i z<0,
Wy if z>-§
+ — YT (e §Y e + = y
Wy (z) = Wy (2 6) .—{ W(—8) if @< -0, é >0,
Since 2+ =0 and § > 0 we have
Wi (z) < W{z) g Wit (z;8), z€R (2.4.2)
which together with the mini-max principle immediately implies
E;(k;Wy) < E;j(ky W) < E(l; Wy). (2.4.3)
Set
w.. := {x € R[there exists y € R such that (z,y) € Q+}. (2.4.4)

Let A >0, A € [—o0,00). Fix 7 € N. Define Q;-i:(/\; A) : L*(A,00) = L?(S4.) 8s the operator
with integral kernel

i \2 4 - ~1/2 .
(2:1.) / ezkye_(bl/zx—b 1/2k)2/2 (Ej_—Ej(k, WSI:)_!_A) / (Hk)g—l’ (24.5)

2n

with k € (A, 00), (x,) € {2, the number p; being defined in (2.1.11).
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Proposition 2.4.2. Suppose that W s ¢ bounded non-decreasing function with W_ < W..
Assume that V € LP(R%R) satisfies (2.2.5). Then for every A> 0, r >0, and ¢ € (0,1), we
have

ma(r(14 )5 /g Q5 (05 A)) + OW) < ma(rs S50 4) < malr(1—e) /e QF (%5 4) + 0(1),

| (2.4.6)
as A 1 0, where S;(\; A} is the operator defined by (2.2.1), and cg: are the constants occurring
in (2.2.5).

Proof. Inequalities (2.2.5) and (2.4.3), combined with the min-max principle, imply the esti-
mates

na(r; /€5 55 (X A)) < s S35 4)) < mu(rs 4/ 55 (A 4)) (24.7)
where §§':(A; A) : L*(A,00) — L?3(Q4) is the operator with integral kernel

(@m) "2 o K)EF — B WE) + )7, keR, (z,9) € Qa.

In the case j = 1 inequality (2.4.7) yields immediately (2.4.6) since in this case we have
Sli()\; Ay = Qli()\;A). Assume j > 2. Then we have

j—1
Yioolm k) = 557 S Pj@)(—ky1lem O RV e R, keR, (2.4.8)
=0

where P ; is a polynomial of degree less than or equal to {, and Fy j-= 1. Therefore,

=1
SFN4) =) PB;QF(A)B

1=0
where the operator B : L2(A, c0) — L?{4, o) with A > 0 is defined by
(Bu)(k) = k- lu(k), ke (Ao00), ue (A o).

Further, for each u € L2(4,c0) and 5 € (0,1), we have

2
dzrdy >

g1

> P (@5 (A A)Blu) (2, v)

157 05 Ayl = ||
Q =0

A=) [ [Pos(@@5 O\ A)B) (a0 oy

2
dzdy >

i—1

(t —1) fﬂ 3" B (@)@ (A A)Ble)(z, )

- li=1

(= [ |Pos@P(@5 v B dody-
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j—1 9
0 =G -6 Y [ Q5 0u AP e, dody
=177
with ¢; 1= maxj=y . ;—150p¢,_ B, ;(7)?, the set w_ being defined in (2.4.4). Therefore,

55 A8 (s 4) 2

i-1
(1 -mQ; M A*Q; X A) — (G- D' = 1) D B'Q7 (N A Q7 (N AB.  (24.9)

=1
Similarly,
SHX ASF (3 4) <
i-1
A +mQF A QFNA) + (- D™ + e > BQF (M AQF(A)B (2.4.10)
=1

with 7 > 0, and ¢ := max=1,.,j-15UPzew0, 11 (%)%, Let us consider now the quadratic forms
0] = of 2, ] = Jf|1@,*(x;A>B'unizmi) =

) o —1/2 , 2
f Mlativ) gt /2 (g; — Ey(k; W5E)+A) / (k) Lu(k)dk| dzdy
A

[~
§h.
(2.4.11)

with # € C§°(4,00), A > 0, _7 >2,1=0,...,7 — 2. Evidently, ati[u] > 0, and azi[u] =0
implies ¥ = 0. Denote by D[al l, 1 =0,...,7 — 2, the completion of C§°(4, 00} in the norm
generated by a[i

Further, for j >.2,1=0,...,7 — 2, and A > 0, define the operator i{;; » by
—1/2

(U u) (k) = e~V K2 (5; — Bl WE) + ,\) F2y(k), ke (4,0).

ity

Note that the mapping 5 AR : C5°(A, 00) = C§°(A, 00) is bijective, and we have
afu] = [ ,\u] az+1["] [L{ “u] e CP(4,), 1=0,...,5—2 (24.12)

It follows from Lemma 2.4.1 that the quadratxc form aﬁ_l is closable in D[a,t Li=0,...,5—-2.

Denote by Ai the operator generated in Dlg; ] by the closure of the quadratic form afi_l

Since A, = (L{ﬂ: /\)“I]F U= 1, Le. the operator Ait is unitarily equivalent to F*, and F= does
not depend on )\ we find that G’(Ai) is independent of A\, Moreover, since ¥ is compact by
Lemma 2.4.1, we find that the operator AI:': is compact as well.

Now it follows easily from (2.4.9) - (2.4.10) that for each £ € (0,1) there exist subspaces H.
of C§°(A, 0o} such that the codimensions codim H+ are finite and independent of A, and

157 (s Ayull® 2 (1 +)721Q7 (% Aull®, w e Ho, (2.4.13)

155 (% Ayull® < (1 - &)2QF (N Auf®,  w € (24.14)
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Combining (2.4.13) - (2.4.14) with standard variational arguments (see. e.g. {11, Lemma 1.13]
and the proof of [11, Lemma 1.16]), we get

(1} .§J-'(A; A)) Z na(r(1+£); Q5 (A A)) — codimH—_, (2.4.15)
7475 §;’(A; A)) < nulr(1 -1 QF (N A)) + codim K. (2.4.16)
Putting together (2.4.15) - {2.4.16) and (2.4.7), we arrive at (2.4.6). |

Now we are in position to prove Theorem 2.2.2.
By Theorem 2.2.1 and Proposition 2.4.2 we only need to prove that for every r > 0, A> 0,
§€(0,1/2), and e € (0,1)

(1 Q7 (X 4)) 2 na(r(1 + )V Wi — Wi T3 (V] ln X)) 4+ O(2), (2.4.17)
na(r; QF (N 4)) < na(r(1 — €)y/ Wy — W(=0)e A THBA) +O(1),  (2.4.18)

as Al 0.
Let A > 0, 4 € [—o0,00). Define the operators Mfl(/\;A) : L2(Qe) — L3(Q4) as the
operators with integral kernels

: o . — ) ]
;’—;e-f’(m”ﬂ’z)/z f (& — Ej(k W) + N) "0 Vet ket silu—vgy (2.4.19)
A

with (z,), (=',3') € Q. Bvidently, QF (A A)QF (A A)* = M (); A). Therefore,
ne(r; Q5 (N A QF (N A)) = ne (s ME (A 4), >0, (2.4.20)

In the rest of the proof of the proposition we just show by successive simplifications that we can
replace the operators M 3%1 {X; A) by their “asymptotic values” as A | 0, namely the operators

const. TF (+/b In A} TF (1/b] In A[)™.

The main ideas of these steps are inspired by the elementary asymptotic analysis as A J- 0 of the
integral in (2.4,19}; here we apply essentially the results of Propositions 2.1.6 and 2.1.7 on the
asymptotics of B;(k) as k& — co. The technical details of the proof become somewhat tedious
since we need to ensure an adequate control on the differences of the eigenvalue counting
functions for the successive approximations.

First, we concentrate at the proof of (2.4.17). Fix £ > 0. Then by (2.1.35) there exists
Ap = Aj (g) such that k& > Ay implies

Wy — W
2

EF — Bl W) < (1 +¢) kY8R, (2.4.21)
For p > 0 and A > 0 define M;,(), A,p) : L?(Q.) - L?(Q_) as the operator with integral
kernel

_gj_ b a?)/2 f oo(p + Aka-—Zjeb—lkz)—lkek(m-I-z'-{-i(y—y'))dk (2.4.22)
= A
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with (z,y), (z’,¥’) € ... Then (2.4.21) implies that for A; = max{A4, A7} we have

nrs My (5 A)) = n (rs Mip(h, A2 (L + &) (W — W2)/2)) (2.4.23)
Fix § € (0,1/2). Set A := |InA|*/%, and assume that X > 0 is small that 4; < 6vBA. Then,
by the mini-max principle,

n(rs M0, AL p)) 2 na(rs My, (A, 6VBA,p)), p>0, r>0. (2.4.24)

In the integral defining the kernel of the operator M;,(A, 5vbA, p) (see (2.4.22)), change the

variable k = vBA(1 +u)%/? with u € (—1 + §%,00). Then we see that the integral kernel of
Mjfz()\, 8v/bA, p) is equal to

pybA? g—bla?+a?)/2 f « (p+ (VBA(L + u)1/2)3—-23'enzu)—1e(m+x'+z'(y—y’))x/5A(1+u)”zdu_
4 —1+42
Define M;3(2,6,p) : L*(2-) — L?(Q2_) as the operator with integral kernel
—14+(1-8)
pbA? bz )2 f o (p+ (VBA(L + u)/2)3-% ehu)Leleta"+ily—yNVBAL+ 2 g,

dr ~1+462
with (z,9), {(z',¥") € Q... Evidently, the mini-max principle implies

n4(r Mgz()\,ﬁ\/l_m,p)) > nu{rs Miz(A6,p), p>0, r>0, §€(0,1/2).  (2.4.25)
Further, define M ,(A,4,p) : L*(Q_) — L%(Q-) as the operator with integral kernel

— —5)2
pij2 e bz +z?)/2 / 1+(1-9) e(x—l-x'-!-i(y—y'))\/EA(l-E-u)”zdu (2.4.26)
4mp —1+462

with (z,), (z',y') € Q1_. By the dominated convergence theorem,
Yy

lim [|M55(\ 8,9) — Miy (A, 8,)]3 = 0

where || - ||l2 denotes the Hilbert-Schmidt norm. Fix & > 0. Applying the Weyl inequalities and
the Chebyshev-type estimate (1.2.4}, with p= 2

n*(s; M;3(A! (5,?) - MJ-:4(A,6,]J)) $ 8—2” ES(A! Jip) - MJ?:{(A? 6??)”%: s> 01

we get
n4(r; Mi(A, 6,0)) > ny(r(1+2); M7,(A,8,0) +O(1), Alo. (2.4.27)

In the integral defining the kernel of the operator M (), 8, 1) (see (2.4.26)), change the variable

(14 u)*? = k with k € (4,1 — 8). Then we see that the integral kernel of M;4(A8,1) equals

PiOA® _yezizny f 10 (el DVBAR -
Cr— e kdk, (z,y), (z',y") e Q.
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Therefore

M7\ 6,p) = g—;r;(\/b] In DTS (/B I A (2.4.28)

Combining now (2.4.20), (2.4.23), (2.4.24), (2.4.25), (2.4.27), and (2.4.28), we obtain (2.4.17).
Let us now prove (2.4.18). The proof is quite similar to that of (2.4.17), so that we omit
certain details. Set 11 =0 and vy =11 j € N, > 2. Pick ¢ € (0,1). Then there exists
AF = Af(e) such that k > A} implies

) Wi —W(-8

& ~ By W) > (1 - 2=
For p > 0 and A > 0 define M;,(\, 4,p) : L*(Q1) — L*(Q4) as the operator with integral
kernel

ik 4 1) 8O HAB20)?, (2.4.29)

_;iie—-b(::c2+:c'2)/2 fm(p + A(k + Vj)3—2jeb_1k2+25k)—lkek(m+:x:'+i(y—y')+25)dk, (2430)
ad A

with (z,v), (z',3') € Q3. Therefore, similarly to (2.4.23), we have
map (73 My (s )< (13 Mh(A, Av, (1~ )pse™ (W — W(=5))/2)) (2.4.31)
for A; = max{A, A{}. Moreover, it is easy to check that
4 (r; Mi5(0 A, p)) = na(r Mj5(0,0,0)) + O(1), A0, (2.4.32)

for any A > 0, p > 0. In the integral defining the kernel of the operator MJ?’:Q(A, 0,p) (see

(2.4.30)), change the variable k = vbA(1 + u)'/2 with u € {(—1,00). Then we see that the
integral kernel of MJTf'z(A, 0,p) is equal to

p;bA* o—bleP+a?)/2
477

/-oo (p+ (\/EA(]. + u)1/2 + vj)3—2j8A2u+26erA(l+u)1/2)—1e(:l:-!-r’+i(y—y')+2t5)\/51\(1+u)1f2du‘
-1
Define now Mj53(),6,p) : L*(€) — L*(4.), as the operator with integral kernel

pij2 e—b(:s2+:s'2)/2
47

_ 2
f LHI+) (p+ (‘\/EA.(I + u)1/2 + Vj)3—2jeA2u+26\/5A(1+u)1/2)—1e(:r:-l—z'—!—i'(y—y’)+26)\/5A(1+u)1/2du
-1

with (z,), (z/,v') € Q4. By the dominated convergence theorem,

b IM5(0,6.0) — M50, 6.9) 1 = 0.

Therefore, similarly to (2.4.27), we obtain
ny(r; Mi5(0 8,p)) € ny(r(1 — e M50, 6,p)) + O(1), AloQ, (2.4.33)
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for any r > 0, £ € (0,1), 6 > 0, p > 0. Next, define MJT4(,\,5,p) s L2(Qy) = L2(Q4), 6 > 0, as
the operator with integral kernel

(.?:, y)! (mfay,) € Q+'

— 2
ijA2 g~ b +a)/2 f 1++) ez’ +ily—y' }+28)VBA(L+u) /2 du
dmp -1 ’
Evidently, the mini-max principle implies

ni (s Mi(0 6,0)) < na(r; Miy(A,6,p)), r>0. (2.4.34)

Finally, by analogy with (2.4.28), we get

M3(26,p) = g—;rj(\/b[ T ATF (/B[ Tn AN, (2.4.35)

Putting together (2.4.20) and (2.4.31) — (2.4.35), we arrive at (2:4.18).
The proof of Theorem 2.2.2 is now complete.
2.5 Proof of Theorem 2.2.3
By Theorem 2.2.1, it suffices to show that
na(r; S3(A; A)) = O(1), A0, (2.5.1)
for any fixed 7 > 0 and A € [—oc0, 00). We have

na(r S50 4) < 2T S50 AY 5505 4) = 5 To() (252)

T2

where

T = [ [ (& ~ Byt W) + N Nenlai RV (2, ) oy
A Jr
Now pick £ € (X+,2¥) which is possible due to (2.2.10), and set

Wiz) = { %(Lf) ! i mz ja":. (2.5.3)

Since W{z) < W(z), z € R, the mini-max principle implies
(& — Bi(ksb, W) + 01 < (F — Bi(lsb, W)+ 0L, keR, jeN, A>0

Therefore,
To(A) < (ess sup f V(:c,y)dy) i(N) (2.5.4)
zeER JR

where

o pXt ~
T1(\) = fA fx (& — Bilhksb, W) + N (e k) dimdk.
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Taking into account (2.1.12), (2.1.22), and (2.1.31), and bearing in mind that the interval
[X~,X*] is compact, we find that for sufficiently large 4 > 0 and any A > 0 we have

oo pX*t
Ti(A) < 4(Wo — W(E)! max e b= f Le—26E—2) gt
.‘EE[X",X"'] A x—-

o0
_ ~yy—1 —b(z?—12) —2k(z—XT)
<2Wy —W(E) :ce[I)I{IE‘,}gﬁ] e [4 e dk < o0, (2.5.5)

due to & > X*. Putting together (2.5.2) - (2.5.5), we obtain (2.5.1), and hence, (2.2.11).

2.6 Proof of Theorem 2.2.4

2.6.1 Lower Bound

In this subsection we prove (2.2.14). Taking into account Theorem 2.2.2, we find that it suffices
to show that for any r > 0 independent of A > 0, we have

lgﬁ)llirﬁ]nf |In X" 2n 4 (r; 05 (VB I A])*T5 (v/B]In A)) > C—. (2.6.1)

Let © C R? be a bounded domain, and Z C (0,c0) be a bounded open non-empty interval.
For m > 0 and § > 0 define the operator Gn s(2,Z) : L¥Z) — L3(Z) as the operator with
integral kernel

7 P VER f eMEHEEEW) gy kK e, (2.6.2)
)
where dy(z) = dzdy is the Lebesgue measure on R?.
Set o2 o
i bz — -
€— = mlelbf_ e, ex: xsgﬁe , (2.6.3)

the sets wy being defined in (2.4.4). Then we have
Ty (m)' Ty (m) 2 €_Gmo(Q—,1_(8)), m>0. (2.6.4)

Further, let R € 0 ¢ Q_ be an open non-empty rectangle whose sides are parallel to the
coordinate axes. Since a translation z v+ z + i, 7 € R, in the integral in (2.6.2) generates a
unitary transformation of the operator Gp, o(€2—,I_(d)) into an operator unitarily equivalent
to it, we assume without any loss of generality that R = (o, ) x (—L, L) with0 < e < 8 < 00
and L € (0,00). Evidently,

gm,O(Q'—’I-(a)) = gm,U(Rl I (6)): m > 0. (265)

For 7 € R and § € (0,1/2) define the operator G} ;(m) : L*(I.(8)) — L*(I_(5)) as the integral
operator with kernel

emn(k+kr) sin (m(k bl k’)) 2v kk'

!
%) kg M EI0)
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Then
Gmo(R,I-(6)) = GE,J(mL) - G;,é(mL). (2.6.6)

Define the operator gz{m) : L%(Z) — L2(Z), m > 0, as the operator with integral kernel

sin (m{k — k') 2VEE

!
wh-F) krk PFEE

Note that we have gzr(m) := yz(m)*yz{m) where yz(m) : L*(Z) — L?((0,00) x (—m,m)) is
the operator with integral kernel

a2~ letmdkpl/2 e g 0,00), ye€(—m,m).

Evidently, for any finite m > 0, the operator yz{m) is Hilbert-Schmidt, and |yz(m)|| < 1.
Therefore,
gz(m) =gz(m)* =0 (2.6.7)

is a trace-class operator, and ||gz{m)]| < 1. Simple variational arguments yield
n4(r; Gg5(m) — G 5(m)) 2 no(r(l — PPmy~L G2 (m)) >

ny(re=m(1 — glo=Blmy=l g o(m)), >0, §€(0,1/2). (2.6.8)

Combining (2.6.4) — (2.6.8), we find that under the hypotheses of Theorem 2.2.4 for each
0 € (0,1/2) we have

n4(r; T (m)*Ty (m) 2 na(re™ (e (1 — )T g, (5 (mL)). (2.6.9)
In order to complete the proof of (2.6.1), we need the following
Proposition 2.6.1. For all ] € N we have

]
hm m T gr(m) = ]—ﬂ_l (2.6.10)

m—ro0

Proof. Let [ = 1. Then, Tr gz{m) = m—fl Let now I > 2. Set

sinmk

om(k) 1= = kel
Denote by xz the characteristic- function of the interval Z. Then we have
Tr gz(m)’ =

f f Skt — ko) lka — k) - (s — F)bom et — it )%
R R

ol S
(kl + kz)(kg + kg) . (k[_l -4 k;)(k[ +k

Changing the variables ky = t1, kj =41 +m™t;, § =2,...,1, we get

)x-z(kl) oo xz(ky)dky ... dRy.

Tr gz(m)' =




CHAPTER 2. MONQOTONE EDGE POTENTIAL 45

m [ [ Sr(-ta)ortta = ). da(on — )0 5
24 (t + m—ltg) vt + m_lf;)
(281 + m~ ) (281 +m (e 4+ 23)) ... (281 + m Lty - 1)) (281 + m )
xz(t)xz(ts +m e} ... xz(tr + m~le)dty ... dty.

Applying the dominated convergence theorem, we get

X

mh;l}’loom"lﬁgI(m)l = III []; Ve L ¢1(—t2)¢1(t2 — t3) ey (ti—l — t[)¢1(t[)dt2 ... di (2611)
Further, we have .
410 = 5 [ Fxean(©d teR

Fherefore,

/R .[R $1(—t2)d1(ta~1t3) ... pr(ti—1—tr)da(i)dtz ... dly =% jR X(~11)(§)'de = % (2.6.12)

Putting together {2.6.11) and (2.6.12), we obtain (2.6.10). O

Now Proposition 2.6.1 and estimate (2.6.7) combined with the Kac-Murdock-Szeg6 theorem
(see the original work [41], [29, Section 11.8], or [69, Lemmas 3.1, 3.2]), imply the following

Corollary 2.6.2. We have

B s se(0,1),

Tr{i_xpoo m " n.(s; gr(m)) = { ™ (2.6.13)

0 if s>1.

Now we are in position to prove (2.6.1). Fix arbitrary s € (0,1). Assume that m is so large
that re 28 (e_(1 — e2(@=P¥m))~1 < 5. Then (2.6.9) implies

ni(r; Ty (m) Ty (m))} = ny(s; 91_s)(mL)). (2.6.14)
Putting together (2.6.13) and (2.6.14), we find that the asymptotic estimate

1i%nf [l X" 20, (r; T (\/BO] I ATy (/B[ I AD) > @(1 — 26)

holds for every § € (0,1/2). Letting ¢ J. 0, and optimizing with respect to L we obtain (2.6.1).

2.6.2 TUpper bound

In this subsection we prove {2.2.15). By analogy with (2.6.1), it suffices to show that for any
r > 0 independent of A > 0, we have

laifol limsup | In A~Y2n (r; TF (/B[ In A)*TF (1/B[ln A])) < Cy (2.6.15)
Alo
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IH(m)'TE(m) < €10ms(@s; L(8), m >0, (2.6.16)

the integral kernel of the operator G, 5(£24;Z) being defined in (2.6.2), and the number e
being defined in (2.6.3).
Define

Evidently,

Q.(8) := {z € Q| Rez > —26}
for & > 0 so that ,(0) = Q.. Since we have G 5(Q. \ §24.(6); 1.(6)) > 0 and

3 144
Hm Ty G (s \ Q4(8); I1(8)) = 77 lim m? / 2 Re 2tk gy (2 kdk = 0,
m—eo o JaN\Le)

m—+00
we easily find that the Weyl inequalities entail
14 (73 Om,5(Q+: 1+ (8))) < ni(r(1 — €);Gm (R4 (8); I:(8))) +0(1), m =00,  (26.17)

for each r > 0 and £ € (0,1). Further, pick an open disk Br(¢) C R? such that ,.(§) C Br(¢).
Evidently,

N4(7 G 6 (4 (8); 1 (8))) < na (7 Gmys(Br(C); 1:(8))), 7> 0. (2.6.18)
Next, put I = L(6) = (0,(1 + 8)~'), and define Gf (m) : L*(L.) — L?(I,) as the operator
with integral kernel
ﬁ_1m262m(£+6)+-[ em(zk-;—iki)dp(z)’ k, ¥ e I*(J).
Br(0)

Changing the variable z — 2+ ¢ in the integral defining the kernel of G, 5(Br((); () (see
(2.6.2)), and after that changing the variable & —+ (1+6)%k in I.(d), we find that the mini-max
principle implies

14(75 G, s(BR(C; L+ (8))) < e (r G (1 + 8)*m)), 7> 0, (2.6.19)

with £ = Re(. Further, expanding the exponential functions into power series, and passing to
polar coordinates, we get

iy ot 2p2L1.Ng
f emizk+zk )d,u(z) = B2 Z ('m Rkk )
Br(0)

g @+ 1)

Therefore, the quadratic form of the operator G;"(m) can be written as

|Gg)? (2.6.20)

oo R)2q+2
G (m)u,u = 2m{+d)s E : (m
(G5 (m) )Lz(I.) = (@M2(g+1)

where
= f Ku(R)dk, ue IXL(6), g€ Z..
L.(8)
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Let {pg{k)}qez. be the system of polynomials orthonormal in L2(I.(8)), obtained by the
Gram-Schmidt procedure from {k%}4ez,, k € I.(§). Then,

g
k= Zeq,lpl(k): ke L(), ge€ Dy,
=0

with appropriate 8,;; in what follows we set 85y =0 for [ > ¢q. Put
w= [ pBubb ue FEE), g€z
1.(8)

Then we have

oc
fig="Y O, gq€Zs, (2.6.21)
=0
and
o0
||”|l%2(1.(5)) = Zo Jutg?. (2.6.22)
q=
Further, it is easy to check that
o (1 +6)‘2‘ t
2
> o= Z f Kk = Z <o
=0 1=0 D) 2l+1

Therefore, the operator © : 1%(Z1) — 1?(Z4) defined by

oo
(eu)q = Z eq,luh gc Z"h u= {ul}lez.;.s
=0

is a Hilbert-Schmidt, and hence bounded operator. Let p(m) : 12(Z..) — 12(Z..) be the diagonal
operator with diagonal entries

28} (((;;:z);fi), g Zs. (2.6.23)
Now (2.6.20) — (2.6.23) imply
ni(s; GH(m)) = ny(s;©0%p(m)O), s>0. (2.6.24)
Evidently,
n4(s; 0 p(m)O) < ns(s; O p(m)), s >0. (2.6.25)
On the other hand, for any s > 0 we have
ni(s; p(m)) = # {q €Zy em(g.:j;q.@_}__}f)wl } , §>0. (2.6.26)

Applying the Stirling formula
¢! = 2m)* (g + )T g+ 1) (1 +0(1), g oo,
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we find that for each = € (0,1) there exists gop € Zy such that

em(£+5)+ (mR)Q"*"l
# { q€Zy By Vs p <
| E+8)s _ g+ 1 g+1 In (vV27s(1 —€))
# {q €2+ B~ eRm prr eRm + 4o (2:6:27)

Passing from Darboux sums to Riemann integrals, we find that for each constant ¢ € R we

have () 41 +1
R -1 + q q _i —
o ™ #{qu+’ R elen(eRm)+m}_

e (G501, o

Putting together (2.6.16) — (2.6.19) and (2.6.24) — (2.6.28), we get

limsup | In A" Y2 (r TF (VB[ ) TF (VO IR Al < ( (1 62VieRs (£+1§)+)

for any § > 0. Letting 6 | 0 and optimizing with respect to £ and R, we obtain (2.6.15).




Chapter 3

Periodic Edge Potential

In this chapter we consider the operator H introduced in {0.1) — (0.2), but this time the function
W is supposed to be periodic with period T' > 0. Asin Chapter 2, first we investigate in Section
3.1 the spectral properties of the unperturbed operator Hy, in particular, the behavior of the
associated band functions near their extrema. In Section 3.2, we state the main results of the
chapter, starting with the description of the effective Hamiltonians, and then passing to the
asymptotic bounds as A | 0 for A;(A). The proofs of these main results are in Sections 3.3 —
3.5

3.1 Basic Spectral Properties of H

We start with the simple observation that if W is periodic with period T, then the explicit
expression for the operator A(k) (see (0.5)) implies that all the band functions Ej, j € N, are
periodic functions with period 7 := 5T

The asymptotics as A | 0 of J\fji(/\), j € N, is intimately related to the structure of the set
My = {k e 0,7) | Bj(k) =5}

and the behaviour of E; in a vicinity of this set. Even though we mvestlgate for definiteness
only the asymptotics of N . here it is convenient to consider both sets MZ,

First of all, we assume that the band function E; is not identically constant. Proposition 3.1.3
below contains an explicit sufficient condition for this.

Further, since the functions E; are periodic, non-constant, and real-analytic, every set M;!:,

. A%
j € N, is non empty and finite, i.e. M;E = {kcdr:,;r} Aﬂ: € N. Moreover, for each kfﬁ- € M;t
a=1
there exists [ = l(kij) € N such that
d*E;, 4
dk: k) =0, s=1,...,21—-1, and ; dkm (

If l(kij) =1 for some kij € .Mji, we will say that koic,i is & non-degenerate point, and we will
sef

) >0,

1
pt; = ¢§E;'(k§ ) (3.1.1)

49
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In Theorem 3.2.3 we assume that the maxima of the band function E; are non-degenerate.
Corollary 3.1.6, based on Propositions 3.1.5 and 3.1.5, offers an explicit sufficient condition
which puarantees this non-degeneracy. In order to prove Propositions 3.1.3 and 3.1.5, and
Corollary 3.1.6 we need some preliminary facts on the behavior of the band functions E; for
large b > 0. Since these auxiliary resuits could be of independent interest, we perform this
analysis for a more general class of bounded W.

Fix j € N. Asin Chapter 2 we denote by n;(k) is the orthogonal projection onto Ker (h(k)—

E;(k)).
Lemma 3.1.1. Let W e L®(R,R). Fiz j € N. Then there exists a real eigenfunction
¥;(-; k) € Ranmj(k) = Ker (h(k) — E;(k)) such that |[¢0;(; k)|l 2y = 1, and the function

R 3 ks 9i(4 k) € LA(R) (3.1.2)
is analytic,

Proof. Our argument will follow the main lines of the proof of [39, Lemma 2.3 (v)], which on
its turn is based on [73, Theorem XII.12] (see also the original work [42]). Since the coefficients
of the differential operator h{k) are real, there exists a real eigenfunction ;(-; 0} € Ran;(0)
such that ||4;(;;0)]lz2my = 1. On the other hand, [73, Theorem XI1.12] implies that for k
in a complex vicinity of the real axis, there exists an analytic family of invertible bounded
operators w(k) such that )

s (5 0) = 5 (K)eoy (B): (3.1.3)
Moreover, for real k, the operators w;(k) can be chosen o be unitary. Following the argument
in the proof of [39, Lemma 2.3 (v}], we find that in our case of a differential operator with real
coefficients, the operator w;(k) can be chosen to be real and unitary for real k. Set

®i(5 k) = wi(R)3(:; 0)-
Evidently, for & € R, the function ¢;(-; k) is real, and ||¢;{-; k)| z2@®) = 1, while (3.1.3) implies
that the function defined in (3.1.2) is analytic. O

In the sequel we will use the canonical representation
mi(k) = (o (5 R (5 R)
with an eigenfunction ;(; k) satisfying the properties described in Lemma 3.1.1. Note that

forany j €N
(e lr + k) =¢(x — 1T k), z€R, l€Z, keR. (3.1.4)

As in Chapter 2 put
Di(z; k) =iz +k/Bk), z€R, kcR, jeN
Evidently, [[$;(; k)|lz2@) = 1, and

2.7 . . " ~
%;pz’ (k) -+ b?2pi(@; k) + Wiz + k/b); (z; k) = Ej (ki (w; k). (3.1.5)

Put _ _
7j(k) = (5 (- RDY;(5k), keER, jeN.
Next, we deduce a suitable formula for the derivative Ei(k), k € R, j € N.
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Lemma 3.1.2. Let W € L®(R;R)), and W/,W" € L°(R). Then

Ej(k;b, W) = % fR W (z + k/b);(z; k) da. (3.1.6)
Proof. The standard Feynman-Hellmann formula (see e.g. [73, Theorem XIII 1/2]) implies

Ei(k) = —2 fR (b — k)b (a; ) de (3.1.7)

Our further manipulations of the integral in (3.1.7) could be easily justified by the well-known
properties of the eigenfunction 1; (see e.g. [4, Theorem 4.6]).
Integrating by parts, we obtain

) = 2 f it ) O e ke
Ei(k) = 7 R(ba: kYvi(z; k) B (z; k)de.
Bearing in mind that 1;(k) satisfies the equation h(k);(k) == E;(k);(k), we find that

ety =2 [(am k)3 k) — W(z)¢j(m;k)-{—Ej(k)v,b,-(m;k)) iy =

%/R (z% (%ﬁ(z; k)z) W(:z:) = (¥ k) 2). +Ej(k)_(% (0 (; k)g)) e =
3 _4 W (z);(z; k)2 dz.

Changing the variable z — = + k/b in the last integral, we obtain (3.1.6). O

Qur next two propositions concern the asymptotic behavior for large b of the dérivatives
Ej(k) and EJ(k) respectively.

Proposition 3.1.3. Let W € CAR)NL®(R) with W/, W" € L™(R). Suppose that W’ (zg) >0
(resp., W'(xzo) < 0) for some zo. Pick j € N. Then there exists b = bp(W, 7) such that b > bo
implies Ej(bxo; b, W) > 0 (resp., Ej{bzo;b, W) <0).

Proof. Pick b > 2||W || and denote by T'; the circle of radius b, centered at b(27 —1). Denote

by h(b,0) the harmonic oscillator ——5 + b2z, Then the interior of T'; contains the eigenvalue

E;(k; b, W) (resp., b(2§ — 1)) of the operator h{k;b, W) (resp., of h(b 0)) while the rest of the
spectra of these operators lie in the exterior of I';. Since #;(k) 1= (-,%;(; k))zb_,( k), (3.1.6)
implies

bE}(k; b, W) = Tr (W'(- + k/b)i;(k)) =

2m : ( f W(- -+ k/b)(A(k; b, W) — w)™ ldw) -

1 1" 5b.0) — )l | —
mﬁ(LW(-{-k/b)(h(b,O) ) dw)
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27t

L ( f W/(- + k/B)(R(b,0) — w) W (- + k/b)(R(k; b, W) — w)“ldw) , (3.1.8)
Ty

the contour I'; being run over in clockwise direction. Further, we have

2mi

L.Tr (/ W(- + k/b)(h{b, 0)*—w)_1dw) =
Ty

b/2 /R Wz + k/b)e; (b *z) s = ji; Wby + 57 k)e; (y)?dy =

W) + [ 9y 57— W R ) (3.1.9)

where ; are the normalized Hermite functions (see 2.1.9).
Combining (3.1.8) and (3.1.9), we get

Ej(k; b, W) — %W’(b—lk) = %(Kl + Ka) (3.1.10)

with

Ky = —%’I‘r ( f W!(- + k/b)(R(b,0) — ) TW (- + k/b)(R(k; b, W) — w)—ldw) ,
T r;

Ky = fR(W’(b“I/zy +b71k) — Wb E) e (y) dy.

It is easy to check that we have —
K| Senb™,  |Ka| < eb™, (3.1.11)
with
oo 1/2 1/2
&1 = [Wlzeo@) | Wl sy (Z(zu —dl- 1)“") ( > @U-dl-3/27%+ 4) ;
=1 leN:#]
(3.1.12)
e L Ty T (3..13)
Putting together (3.1.10) and (3.1.11), we get
B! (k; b, W) — %W’(b"lk) < b2 + epp/2, (3.1.14)

Now, bearing in mind that by hypothesis W'(zg) > 0 (vesp., W'(zg) < 0), we find that if

o+ —1—401|W’(270)I)2}, (3.1.15)

b > by := max {2||W||L°°(R)’ ( 2W (o)

then E}(bzo) > C (resp., E(bxo) < 0). O
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proposition 3.1.3 immediately implies the following

Corollary 3.1.4. Assume that W satisfies the hypothesis of Proposition 8.1.5. Then for each
j € N there exists by = bo(, W) > 0 such that b > by implies that

inf E;(k;b, W) < sup E;(k; b, W). (3.1.16)
keR keR

Remark: The absolute continuity of the spectrum of the operator Hy is equivalent to the
validity of (3.1.16) for any j € N. Unfortunately, the constant ¢z in (3.1.13), and hence by
in (3.1.15), grow unboundedly as j — oo so that Proposition 3.1.3 only implies that for any
o € R there exists by = bg(a W) such that b > bo implies that the spectrum of the operator
Hy(b) on the interval (—oo, ¢) is absolutely continuous.

In the special case when W is periodic one, of the difficulties in the proof of the absolute
continuity of a(Hg(h, W)) for general non-constant periedic W : R — R, is related to fact that
we have

Jim (sji —B(2j—1) — (W)) =0 (3.1.17)

where (W) is the mean value of W (see [48]); in particular, limjco (Ej' —&F ) = 0. On the
other hand, (3.1.17) implies as a by-product that for j € N large enough, inequality (0.12) is
valid even if (0.11) does not hold true.

Proposition 3.1.5. Let W = W € C3(R)N L®(R) with W!,W" , W" e L*(R). Suppose that
W (zo) > 0 (resp., W"(zp) < 0) for some zp. Pick j € N. Then there exists by = bi(W, 5)
such that b > by implies E’;-' (bzo; b, W) > 0 (resp., E(bxo;b,W) <0).

Proof. First of all, note thai
2
3”’3( k) = *bf( PR ”bf( + Rk /b k).

Applying Lemma 3.1.1, we conclude that %"’;f-(, k) € L*(R). Calculating the derivative with
respect to & in (3.1.6) we have

1
Bk b, W) = o5 f W+ ko) (s )Pt f Wz —:—k/b) (x k) (z; B)da. (3.1.18)
As in the proof of (3.1.14}, we suppose that b > 2|W ||z (), and find that
| f Wz + k/b)g;(z; k)Pdw — W”(k/b)’ < egbt b (3.1.19)
R

where the constants ¢z and ¢, are defined by analogy with ¢; and e, replacing W’ by W in
(3.1.12), and W" by W*" in (3.1.13). Further, obviously,

P

< W lzeomy 6.’: (%)

(3.1.20)

' f W'z —I—k/b) (:r: kY (z; k)dz

L2(R)
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Since the functions g{;(, k} and 1,'[;_,-(-; k) are orthogonal in L3(R), we find that

i oy e O
W('a k) = (I - W_?(k))ﬁ(':k)a

Deriving equation (3.1.5) with respect to k, we easily get

Wi (k) =~ (k) — ByR) I =)W C RO E),  (@12D)
and, hence, )
Bisn| < gIWilw. (3.1.22)
! Li(R)

Now the combination of (3.1.18) — {3.1.22) yields

Bl (k;b, W) — bl—zW"(b‘lk) < esb™3 + ogh™o/? (3.1.23)

with ¢ = ¢z + 2||W'{| peo(m) |W"|| Loo(w)- Therefore W”(zo) > 0 (resp., W"(zo) < 0), implies
E}(bzo) > 0 (resp., Ej(bxo) < 0}, provided that

2
s + deg|W" ' .
b> b ;= max {2]]W[|Loe(m), (C4 + \/2';;,,(;50'” (-'En)l) } . (3.1.24)

]

Remark: Propositions 3.1.3 and 3.1.5 show that for large magnetic fields b the band functions
Ej, j € N, behave quite similarly to the edge potential W. This behavior could be considered
as semiclassical.

The combination of Propositions 3.1.3 and 3.1.5-easily yields the following

Corollary 3.1.6. Let W =W € C3(R) be a T-periodic function such that W'(z) =0, z € R,
implies W"(x) # 0. Assume that the sets M3, == {z € [0,T) | W (z) = W} consist of AL, € N
points. Then for each 7 € N there exists bo(j, W) > 0 such that b > by implies that the set
.M;t contains exactly A‘:,EV points, and all of them are non-degenerate.

3.2 Main Results

In this section, we introduce the effective Hamiltonians which under suitable assumptions on
W and V govern the main asymptotic term as A | 0 of -.f'\)‘;"()\), and establish the corresponding
agymptotic bounds. For the rest of the chapter, we always assume that W is periodic, V :
B2 — R is Lebesgue measurable, and satisfies the estimates

0< V(z,y) < Go(L+lz)™ (L +{y))™™2,  (2,9) € R?, 321

with some Cp € [0, o0), and my € (0,00), I =1,2.

R
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3.2.1 Effective Hamiltonians
Recall that A = #M], and put &; := {1,..., 4F}. Assume that the set M} = {k+ }aesj

@, j
contains only non-degenerate points; Corollary 3.1.6 gave sufficient conditions for this. For
A > 0 define

Q1) : I3(Z x S;) ® L*(R) — L*(R?)

as the operator with integral kernel
- 3 (ke i+ -1/2
(@) 72V (@, Pyl — AT (a2 40)

with (I,e) € Z x 8;, k € R, and (z,y) € R?, the quantities ,ui',j > 0 being defined in
(3.1.1). Under condition (3.2.1) with m; > 1, ma > 1, we have that Q1(}) € So(I%(Z x &) ®
L?(R); L*(R?)) for any A > 0.

Theorem 3.2.1. Let W € L®(R;R) be a T-periodic function. Let V satisfy (3.2.1) with
my > 1, mg > 1. Fiz § € N. Assume that (0.12) holds true, and the set Mj' contains only
non-degenerate points. Then for each € € (0,1) we have

n(1+& Q) + O1) S NF(A) < nu(l — g Qi (A)) +O(1), (3.2.2)
as A L0,

The proof of Theorem 3.2.1 can be found in Secfion 3.3,
Now we shall give an equivalent formulation of Theorem 3.2.1 in the terms of an explicit
effective Hamiltonian. Define the “diagonal” operator p € L(I%(Z x S;)) by

(l”u)l,a = p,l',ju;,a, [eZ, we Sj,

where 1 := {0} ayezxs; € IX(Z x S;). On I*(Z x 8;) ® H2(R) define the operator

d?
o= 1o (~3)
self-adjoint in {%(Z x &;) ® L*(R). Further, define the operator
VI =V e LI*Z x 5;) © L*(R))

by

VW@ = > Viems@)ums®), veER, (3.2.3)
meZ, BES;

where
N k+

! —i{{(l—m)r+k,
Viasmp(¥) = 5 [R Ve, y)i(e — 1Tk} )b (@ — mTs K j)dw e ~5 0,

and w € I%(Z x S;) ® L*(R). Thus the operator Hp — gV with g > 0, self-adjoint on Dom(#Hy),
can be interpreted as a Schrédinger operator on the real line with infinite-matrix-valued at-
tractive potential —gV, and a coupling constant g > 0.
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Applying the Birman-Schwinger principle and the inverse Fourier transform with respect to
k € R, we easily find that Theorem 3.2.1 yields

rankPr_o, 3 (Ho — (1 —€)V) +O(1) < J\f;-(/\) <rankP_o _5)(Ho—~(1+)V)+ 0(1),

as A | 0, for any € € (0,1), when the hypothesis of the Theorem 3.2.1 are fulfilled.
Next, assuming a somewhat faster decay of V as y — 00, we can obtain an asymptotic
estimate similar to (3.2.2) involving an operator which is simpler than @;()). Define

Oy : 3(Z x &;) — L*(R?)
as the operator with integral kernel
—1/4 , +
(£2) " V@0 i@ TR )EEHED, (L0) Zx S, (zy) € RE.

Again, if V satisfies (3.2.1) with m; > 1, my > 1, then Oy € So(I%(Z x S;); L2(R2).

Theorem 3.2.2. Let W € L°(R;R) be a T-periodic function. Let V satisfy (3.2.1) with
my > 1 and mg > 3. Fir j € N and assume (0.12). Then for each ¢ € (0,1) we have

na((1+)V2VA; Q) + O(1) SNFQ) < ma((L — €)Y 2V Q)+ 0(1), AL0.  (3.2.4)

The proof-of Theorem 3.2.2 is contained in Section 3.4.

3.2.2 Asymptotics Bounds for N

Theorems 3.2.1 — 3.2.2 can be used for the investigation of the asymptotic behaviour as X | 0 of
J\GT" (A) for a large class of rapidly decaying perturbations V. In this subsection we concentrate
on perturbations of compact support.

In order to formulate the theorem we need the following notations. For ¢ > 0 set Ent(t) :=
min{! € N|! > t}. Further, let 2 C R? be an open, bounded, non-empty set. Let V($2) be the
set of the closed vertical intervals J C € of positive length |7|. Evidently, V(Q) # @. Put

1
C(Q) = sup —
7€V Ent 57ty )

If 7 € V(2), then elementary topological arguments imply that there exists a horizontal
interval Z of positive length, such that the rectangle 7 x J is contained in .

Theorem 3.2.3. Let W € L*(R;R) be a T-periodic function. Suppose that V : R? — [0, c0)
is a Lebesgue measurable function such that

e_xa_(2,y) < V(z,y) < cyxa.(z,9), (z,y) €R?, (3.2.5)

where xq, are the characteristic functions of the open, bounded and non-empty sets Q1. C R?,
and cy € (0,00) are constants. Fiz j € N and assume (0.12). Suppose that the set Mj_
contains only non-degenerate points. Then we have

\/5 s —1/2 f =1/2 pr+
—C(Q_)shrﬁhnf[ln)q fJ\G?*‘()\)ShIf\lfoupHnM PNF ()

N < Y2 4y (3.2.6)

VR
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as ealier, A.;f' = #M}". In particular, if A;' =1, and there exists a closed vertical segment
J C Q.. of length || > 5 so that C(Q-) = 1, we have

V2

llmllnA|“1/2N+(A i

We prove Theorem 3.2.3 in Section 3.5.

Remarks: (i) Corollary 3.1.8 guarantees the existence of edge potentials W and magnetic

fields b for which the set M;" contains only non-degeneraie points, and A"' = 1. Thus there
exist explicit examples where the assumptions of Theorem 3.2.3 are met.
(ii) Theorem 3.2.3 implies that every open gap ( -1-1) contains infinitely many discrete
eigenvalues of the operator H for generic not zdentlcally vanishing decaying perturbations
V = 0. By (3.2.6) the asymptotic rate of the convergence of these eigenvalues is not faster
than Gaussian.

In principle, the analysis of the asymptotic behavior as A | 0 of N, +(A) without the non-
degeneracy assumption concerning the set M;" is also feasible but much more complicated
from technical point of view, so that we omit the details. However, we would just like to note
that

(k—kE P =o((k— k2%, k—ki,

o7

ifleNI>1

hence, the replacement of non-degenerate points k j € M+ by degenerate ones does not

decrease the quantity Hmyg [In X\|=/2A; "'(A) (see (3. 3 2), (3. 3 3), and (3.3.4) bellow). Thus
we find that from the proof of Theorem 3 2.1,

Corollary 3.2.4. Let W € L=(R; R} be a T-periodic function. Assume that V : R? — [0, 00)
is a Lebesgue measurable function which satisfies (0.13) and the lower bound in (3.2.5). Fix
j € N. Assume that £ < 8+ and (0.12) holds true. Then we have

S o —1/2
0<11%nf|1n>\| PNF(N).

In particular, the open gap (£ '1',53,_ 11) contains infinitely many discrete eigenvalues of the
operator Hy, and the asymptotic convergence of these eigenvalues to the edge 8"' 8 not faster
then Gaussian.

3.3 Proof of Theorem 3.2.1
The Birman-Schwinger principle entails
NFO) =n_(GVY2Hy - & = )" WY +0(1), Alo, (3.3.1)

(see (1.3.5)). Choose § > 0 so small that the intervals O 4(8) := (it + k+- -4, + k"' +8),
l € Z, ¢ € 8, are pairwise disjoint. Set 5 := U,a)ezxs; Orald)- Introduce the orthogonal
projection

5]
Py = F* f w3 (k) dk F
Og
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acting in L#(R?). Since g;!— is not in the spectrum of the operator Hy restricted to
(I — P; 5)Dom(Hy), we find that the operator V¥/?(Hy — & — NI — P;5)VY/2 converges in
norm as A | 0 to a compact operator. Therefore, the Weyl inequalities (1.2.2) easily imply

ny(1+&VV2AEF — Ho+ A)7TPsVY2) +0(1) <
n-(L;VY2(Hy — £ — X)"IVY/2) <

na(l— & VY2ES ~ Ho+ N PsVY2) +0(1), Alo, (3.3.2)

with £ € (0,1).
For A > 0 define T1(\) : L*(R?) — L*(0;) as the operator with integral kernel

@r) " M2(EF — Bi(k) + NV i k)e VY (3, 9) %, (z,y) €RE, k€O (3.3.3)

Then we have
VYHEF — Ho+ N 71P VY = IOV TN, (3.3.4)

and hence
ny (B VIR(ES — Bi(k) + NPV Y2) = o Ti(N) = nu(s; Ti(W)*), s>0. (3.3.5)
Let W: L%(0;5) — I*(Z x S;) ® L?(—4§,8) be the unitary operator defined by
Wulrolk) == ulk+lr+ kL), (La)€ZxS;, ke(-6,06),

with u € L2(Os). Define T2(A) : 2(Z x S;) ® L2(—38,8) = L*(R?), A > 0, as the operator with
integral kernel

@r) 2V (z, y) Pz — 1Tk + k) '(’~+‘T+’~aﬂv(g+ Bk +kE )+ 2712,
where (l,a) € Z x S;, k € (=§,0), (z,¥) € R% By (3.1.4), we have To(A\)W = Ti(\)*.

Therefore,
(83 T1(A)*) = nu(3;, T2(A)), s>0, A>0. (3.3.6)

Define T3()) : I3(Z x 8;) ® L*(—6,8) — L*(R?), A > 0, as the operator with integral kernel
(2 2V (2, y) Py (o — VT )P (12 1 02,
with ({,) € Z x S, k € (—4§,68),"(z;y) € R2. Then
I172(2) — T3 =
(27) j Viz,) f lste —T5k + BE)EF — Byl kL) + 272
(La)GEx Sy

2
—tpi(z — IT5 k) ud K2+ N2 dk dmdy <

’C!J
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Glz{f |£+ Bi(k+ kL) + AR - (ud k2+)\)‘1/2|2dk+

aES;
/_ 6 (k—2 fR 0o+ k) — (k)| dz-) KAt 2 + )\)_ldk} (33.7)
‘where the quantity
Cr:=Cy maxz 1+ [z +IT™™ f(l + |y|) "2 dy (3.3.8)
=

with Cy being.introduced in (3.2.1), is finite due to m > 1 and ms > 1. Since we have
& — Bilk+ k3 + 072 = (ul B2+ A2 =
Bk + k%) — &F +pl
JEF = Bjls+ kL) + N (e 62+ 3) (\/s:*Ir Byl +k3;) + A+ JuE b2+ )

and

Bi(k+ kL) — &F +ul B =0(®%), k—0,

we find that the first term in the braces at the r.h.s of (3.3.7) is uniformly bounded with
respect to A > (. Similarly,

b BB+ 07 <1/pt;, A>0, keR (3.3.9)

Further, elementary calculations yield

k—2A|’§bj($,k+k+J)—¢3 msng)| dm</ H"T ks+k+ )][2ds. (3.3.10)

Since the orthogonal projection m;(k) depends analytically on k, we find that the combination
of (3.3.9) and (3.3.10) implies the uniform boundedness with respect to A > 0 of the second
term in the braces at the r.h.s. of (3.3.7). Therefore (3.3.7) yields

[72(A) = Ta(A)ll2 = O(1), Alo. (3.3.11)
Combining (1.2.3), (1.2.4) with p = 2, and (3.3.11), we get
({1 +€); T3(A)) + O(1) < ma(s5;T2(N) S (sl —2); T3(N) +O(1), 110, (33.12)

with s > 0 and € € (0,1).
Finally, define 73(\)} : I2(Z x S;) ® L*(R) — L?(R2), A > 0, as the operator with integral
kernel

_ AT _
(2r)~Y/ 2T/'(ct:,y)l/ 2¢j(m -7 k:i',j)e‘("“ +"c~a)y(p";jk2 +A) 1 2X(_5,5)(k),

where (,e) € Z x 85, k € R, (z,4) € R2, and x(_sz is the characteristic function of the
interval (—9,d). Evidently,

ne(8; T3(N)) = n.(s;Ta(A)), s>0, A>0. (3.3.13)
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At the same time we have

1723 — 213 =
%!

OO
> [ Ve -1k Py [+ a5 ),
T tayezxs; T* 8 ! w0 acS;

L

the constant C) being introduced in (3.3.8). Arguing as in the derivation of (3.3.12), we get
na(s(1 -+ €); Q1(A)) + O(1) < nals; Ta(A)) < ma(s(1 —); Q1 (X)) +O(1), 210, (3.3.14)

with s > 0 and ¢ € (0,1). Putting together (3.3.1), (3.3.2), (3.3.5), (3.3.12), (3.3.13), and
(3.3.14}, we obtain (3.2.2).

The proof of Theorem 3.2.1 is now complete.

-~ 3.4 Proof of Theorem 3.2.2

We have
ne(s; O1(N)) = ny (%, QN (N)*), s>0, A>0. (3.4.1)

The operator Mj(A) := ©1{2)Q;(\)* : L3(R2) — L2(R?) admits the integral kernel

VI |
ey 3

z .+ !
— TR0V (g~ 1T (2! — 1T KL ),
(Lo)eZxs; 2 ﬂa,j)\

with {z,y), (z',7) € R%. Define Mp(}) : L%(R?) — L?(R?) as the operator with integral kernel
TG @T) Y — eIy o TS (e — 1T,
Wo)emxs; 24/ B jA

with (z,y),(z',y) € R2 Taking into account (3.2.1) and the elementary inequalities 0 <
1—e <t t>0, we get
1M (%) — MW} <

2 + 2
Co gg}g;(%aﬁ X

2
/. 2(1+[m|)—*"*(1+1m'[)-"*1( > twj(x~—1T;kz]-)¢j(m'—mk;,-)l) dada'

(a)eZxS;

L@ s byl — o Py (3.4.2)

Applying the Cauchy-Schwarz inequality, we obtain

2
fRz(l A+ )7L+ f2!)T™ ( Z [s(z — IT5 kF )b (e’ — 1T ki—.s')i) dzdz’ <

(L, a)EZXS;




CHAPTER 3. PERIODIC EDGE POTENTIAL 61

2
+ —my
Al (?gﬁc%;(l—!- |z 4 1T1) ) < o0 (3.4.3)
since my > 1. Similarly,
L 1)y - o Py’ < o0 (3.4

since mg > 3. Now, (3.4.2) — (3.4.4) imply
1M:(3) — Ma(M)llz = O(1), Alo.
Arguing again as in the derivation of (3.3.12), we get
nq(s(1 +); Ma(A)) + O(1) < np(s; Mi(A) € na(s(l —€); Ma(N)) +O(1),A 10, (3.4.5)
with & € (0,1), s > 0. Finally,
1

=7 *1 A 01
Mz(\) 5 ﬁQ2Qg >
and, hence,
n4(s% Ma(N) = mu(sy/2VA; @), s>0, A>0. (3.4.6)

Now the combination of (3.2.2), (3.4.1), (3.4.5), and (3.4.6), yields (3.2.4).
The proof of Theorem 3.2.2 is now. complete.

3.5 Proof of Theorem 3.2.3

In order to prove Theorem 3.2.3 we need the following
Lemma 3.5.1. Let W € C}(R) be real-valued periodic function. Then for any bounded interval
T C R of positive length, and for any ky € R we have

lim ¢ 2in / Di{z — £ ko)2dz = —b. (35.1)
z

E—rEoo

Relation (3.5.1) follows easily from |48, Theorem 1.1], so that we omit the details.

Now we are in position to prove of Theorem 3.2.3. First, let us make another reduction step
in which we use specifically the compactness condition on the support of V.

Let £ C R? be an open bounded non-empty set.. Define Q3(Q) : i3(Z x 8;) — L2(Q) as the
operator with integral kernel

- IR
(W) (e — IR RN, (La) €2 S)), (my) € Q.
Then {3.2.5) combined with the mini-max principle implies

Ne(5;6-Q3(022)) < ny(s; Qa) < nuls; 1. 03(R)), s>0. (3.5.2)




CHAPTER 3. PERIODIC EDGE POTENTIAL 62

3.5.1 TUpper Bound

We start by proving the upper bound in {3.2.6). Since the set Q. is bounded it is contained
in some rectangle Ry := I, x J; where T, and J are bounded intervals of positive lengths.
Evidently,

(85 Q3(2+)) € nuls; C3(R1)), s>0. (3.5.3)

Let M € Seo(1%(Z x S;)) be the “diagonal” operator defined by
(M:;"u)g‘a = Vz-,{_aul,m (l,a) € Z x &5,
where u = {ua}y yezxs,; € I%(Z x 8;), and
VAR (pg’j) s PGSR VAR (AR 1)] $ile — T3 kL Ydz, (La)eZx ;.
BES; mezZ L+
Applying the Cauchy-Schwarz inequality, we find that
Q3(R+)*Q3(Ry) < My,

which combined with the mini-max principle yields

na(sY 2V O3(Ry)) < ny(sP2V My") =
# {(l,a) eZx&|vf, > 322\[\} , s3>0, A>0. (3.5.4)
Applying Lemma 3.5.1, we easily find that
_#{toezxsivh, > g |
o 1o A[1/2 =

Combining now (3.2.4) with the upper bound in (3.5.2), (3.5.3), (3.5.4), and (3.5.5), we obtain
the upper bound in (3.2.6}.

s> 0. (3.5.5)

3.5.2 Lower Bound

Let J_ bea closed vertical interval lo length ¢ € (0, 00), contained in Q.. Due to the invariance
of Hy with respect to y-translations, we may assume without any loss of generality that the
exists a bounded interval Z_ of length ¢ € (0, 00) such that Z_ x (0,q) C 2—. Set

2m 27

Then we have R_ :=72_ x (0, -:‘f—z) C §2_, and therefore

n.(s; Q3(0-)) = n.(s; Q3(R-)), s>0. (3.5.6)
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Let My € S55(1%(Z)) be the “diagonal” operator defined by
(M3 u)m = Vjptim, mEZ,
where u 1= {um},,cz, and

v, = _m ti(z — mLT; kf:j)zd:n, ™ € Z.

y/ L T
Restricting the operator Q3(R_) onto the subspace
{ui={algaezns, €PEX S ua=0 i IEIZ or a#l},

applying the mini-max principle, and taking into account that

2T

f”" ez'L(m--m’)'rydy — '2_71'5m mty m,m e Z,
0 '
we easily find that

na(s/2VA; Q3(R.)) > n+(s2h2\/x; M7)y=+4# {m € Z|vy, > 322\/X} , 8>0, A>0.

(3.5.7)
Utilizing again Lemma 3.5.1, we get
. #{mGZIV;I>3\/X} V2
Mo TSNE = VTL(g)’ (858)

Putting together (3.2.4), the lower bound in (3.5.2), (3.5.6), (3.5.7), and (3.5.8), and optimiz-
ing with respect to ¢, we obtain the lower bound in (3.2.6).
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