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RESUMEN

Este trabajo trata el problema de encontrar soluciones positivas de la siguiente

clase de ecuaciones semi-lineales elipticas en RN:
Aut-uf +u? =0, (1)

0 < u(z) — 0 as |jz]j] = +oo, (2)

con 1 < p < gq. A estas soluciones se les llama usualmente ’ground states’.

En particular nos interesa la existencia de soluciones radialmente simétricas de
(1)-(2). Esto significa soluciones que dependen de r = ||z — a|| para algin a en RN,

En caso que 1 < p < X2 se sabe que todas las soluciones de (1)-(2) son
radialmente simétricas en torno a algin punto.

Las soluciones radialmente simétricas de este problema corresponden a aquellas
de la ecuacion

N-1
u”+—T—u'+uﬂ—l—u?,_=0, r>0 (3)
! _ 3 —_—
w'(0) =0, u(r)>0Vr>0, rkﬁ_noou(r) =0. (4)

donde %. = max{u,0}. Un hecho conocido, y que revisaremos, es que cuando las
potencias satisfacen % <p<g< % entonces no existe soluciones, mientras
que si % < p < q éstas sf existen y constituyen un continuo: cuanquier solucién
de (3) con valores iniciales '(0)} = 0, u(0) > 0 permanece positiva, y satisface (4).

Mucho mds delicado es el caso de potencias sub y super-criticas combinadas,

esto es

+2
N_2<q. (5)

Un ejemplo interesante fue descubierto por Lin y Ni en este rango: si ademds

1<p<

tenemos que ¢ = 2p — 1 entonces hay una solucién explicita de la forma u(r) =

_1
( Bfﬂ)p_l , donde A y B son constantes positivas explicitas que dependen de p y
N.

Sorprendentemente, quizds, nada mas se sabia hasta ahora en lo relativo a exis-

tencia o no-existencia de ’ground states’ en el caso general (5). En este trabajo se

e




N+2 , entonces dado

N+2

establece los siguientes resultados en este caso: Si se fija ¢ >

32 4] que para pr < p <

cualquier entero k > 1, existe un nimero p; <
(3)-(4) posee al menos k soluciones radiales con decmmzento rdpido, en el 31gu1ente
sentido, u(r) = O(r>~¥) cuando r — oo.

Por otra parte, si se fija - < p < 12, existe un ndmero g > 222 tal que st
T2 < ¢ < gy, entonces (3)-(4) tlene al menos & soluciones con decalmlento rapido.

También se prueba que en la situacion de Lin y Ni ¢ = 2p — 1, no solo la
solucién explicita existe, sino también una infinidad de soluciones de decaimiento
r4pido, siempre y cuando cierta restriccién adicional en p se cumpla. Més aun, si
se fija p, entonces para todo ¢ suficientemente cercano a 2p — 1 existe un nimero
arbitrariamente grande de soluciones.

Una contraparte de no-existencia de soluciones, que tambien se prueba aqui,
es la siguiente: si se fija ¢ y tomamos p suficientemente cercano (0 menor) a N_JEE
entonces no existe soluciones.

El problema de existencia de soluciones con decaimiento lento o singulares, cuya
aparicién no se espera que sea genérica, también se analiza.

Las demostraciones de estos resultados estdn ampliamente basadas en un deli-
cado andlisis de espacio de fase, via métodos de sistemas dindmicos, de un sistema
tri-dimensional equivalente a la ecuacién original. El andlisis geométrico realizado
aparece como una herramienta util que podria aplicarse a otras preguntas en este

campo de estudio.




SUMMARY

This work deals with the problem of finding positive solutions of the following

semi linear elliptic equations in RY.
Au+uP +u? =0, (1)

0 < u(z) — 0 as ||z|| = +o0, (2)

with 1 < p < ¢. Such solutions are usually called ground states.

We are in fact interested in the existence of radially symmetric solutions to
(1)-(2). This means solutions that depends on r = |jz — af| for some a in RY.

In case that 1 < p < ¥%2 it is known that all solutions of (1)-(2) are radially
symmetric around some point.

Radially symmetric solutions around the origin correspond to solutions of the
equation

u”+£{—1u’+uﬂ+ui=0, r>0 (3)

w'(0)=0, u(r)>0Vr>0, rl'}gloou(r) = 0. (4)

where u... = max{u, 0}.

A rather well known fact, which we review, is that when the powers satisfy

N
N-2

ground states do exist and they constitute a continuum: any solution of equation

<p<g=x % then no radial ground states exist, while if % < p < ¢ then

(3) with initial values /(0) = 0, u(0) > 0 remains positive, and satisfies (4).

Much more delicate is the case of combined super-subcritical powers, namely

l<p<

2
N2 ¢ (5)

An interesting example was discovered by Lin and Ni in this range, if we further
have thait g = 2p — 1. In this case there is an explicit solution of the form u(r) =
(ﬁ) ?T where A and B are explicit positive constants depending on p and N.

Perhaps surprisingly, besides this example nothing has been known so far con-
cerning existence or nonexistence of ground states in the general range (5). Con-

cerning this case, in this work the following facts are established:

vii




If ¢ > M42 s fixed, then given any integer & > 1, there exists a number py, < ¥4

such that for pr < p < M2 then (3)-(4) has at least & solutions with fast decay, in
the sense that u(r) = O(r2 ~NY as r — o0.

On the other hand, if +—= N 5 <p< {3 Al +2 is fixed, there is a number g > +2 +2 such
that if §22 < g < g, then (3)-(4) has a.i: least k& radial solutions with fast decay.

It is also established that in Lin and Ni’s situation ¢ = 2p — 1, not only the
explicit solution exists but also an infinite number of ground states with fast decay
exists provided certain additional restriction in p holds. Moreover, if we fix p, then
for all ¢ sufficiently close to 2p — 1 one has an arbitrarily large number of solutions.

A non-existence counterpart of these results also proven here is the following:
if we fix ¢ and then let p be close enough (or below) to YVNTz then no ground states
exist.

The question of existence of slow decay and singular ground states, whose ap-
pearance is not expected to be generic is also analyzed.

The proofs of these results are largely based on a delicate phase-space analysis,
via methods of dynamical systems, of a three dimensional autonomous first order
system equivalent to the original equation. The geometric analysis carried out seems
to be a useful tool that may be applied to the resolution of other subtle questions
arising in this field.
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INTRODUCTION

Since the 1960’s a lot of attention has been devoted to the study of partial
differential equations of the form

Au+ f(u) =0, in RY (0.1)

0 < u(z) — 0 as |[z| = +o0, (0.2)

which arise in a variety of fields, like stationary states of reaction-diffusion equations
in Chemistry, population dynamics, or standing waves of nonlinear Schrodinger
equations in nonlinear optics, among other examples. Here A denotes the standard
Laplacian operator in RN, A = ¥, & and f(u) a real function with f(0) = 0.
Solutions of (0.1) satisfying the decay condition (0.2) are usually referred to as
ground states. The problem of classifying solutions of (0.1)-(0.2) has attracted large
amounts of research, and the answers depend strongly on the particular nonlinearity
f(u) that is being considered. If one looks for solutions depending only on the
distance to the origin, v = u(r), r = ||, then problem (0.1)-(0.2) becomes reduced
to the ordinary differential equation

N -1
u" + -T—u’ + f(u)=0, r>0 (0.3)

'(0)=0, 0<u(r)—0asr— +oo. (0.4)

Solutions of this form are called radially symmetric. An important question for
instance is whether all solutions of (0.1)-(0.2) are radially symmetric around some
point. The answer is affirmative under a variety of conditions. While a broad
literature is available on the subject, which is continued to be developed until today,
one can mention, among the most influential, the works [18], {6], [7], [4].

Perhaps the most celebrated equation of this form is the so-called Lane-Emden-
Fowler equation
Au-+u? =0, in RY (0.5)

with p > 1. This equation was introduced by Lane in 1869, as a model for internal
constitution of stars in Astrophysics, and then considered in the same setting by
Emden in 1907 and by Eddington in 1926. It was in 1931 that Fowler [5] solved

1 .




completely the problem of finding radially symmetric solutions » = u(|z[). The
introduction of the ingenious transformation

2

z(t) = 77 Tu(r)|,=et (0.6)

reduces the equation, for radial solutions, to the autonomous second order ordinary

differential equation
' bar’ +2P — B =0, —oo<t<+oo. {0.7)

where 4' 9 9

a=N—2—m, ﬁ:E(N 2—p——1) (0.8)
whose trajectories can be fully understood via standard phase-plane analysis. We
will carry out completely this analysis in Chapter 3 of this work. We also refer to
the appendix in [11].

In particular, the following facts hold true: when N > 3 the ’critical’ exponent
p= w sets a dramatic shift in the structure of the radial solutions of this equation.
For 1 < p < £22 solutions need to be radially symetric around some point, see [7]
and [4]. Moreover if 1 < p < 22 no radial solution of (0.5), defined in the entire

N +2 such solutions exist

space, exists. See Chapter 1. On the other hand, if p =
and are all of the form

N-2
X Tz
'U.'-A(’!‘)=(IN (A2+T2) ’ '[‘:lxl, A> O

When p > N A2 ground states also exist and they are constituted by a continuum

of the form u;\( ) = T uy(Ar). There is also a difference in asymptotic behavior
of the ground states between the critical and supercritical cases. In fact, observe
that for p = £32 )
up(r) ~ aN)\ 72 p—(N-2)
as 7 — +00, while for p > N+2
_2
ur(r) ~ Cpyr 71,

where the constant

2. 2 1
Op,N:( 7 p—_—-i-- (N-—-Z)})P—l




is precisely that making the right hand side of the above relation a (singular) solu-
tion of the equation. Observe that this singular solution still exists when p = ﬁ—fg

but its decay rate is slower than that of the ground states: like 5,

In view of the above discussion, it seems natural to ask whether there exist
solutions if the nonlinearity is replaced by the sum of two powers, namely the

problem in RY
Au+uP +u? =0, (0.9)

0 < u(z) — 0 as |z| = +oo, (0.10)

with 1 <p < gq.

The study of existence of radially symmetric solutions to (0.9)-(0.10) is the
purpose of the present work.

We should remark that in case that when 1 < p < % in fact all solutions
of (0.9)-(0.10) are radially symmetric around some point, as established by Zou in
[23].

Radially symmetric solutions of this problem correspond to those of the equation

"
U +

W +ul +ul =0, r>0 (0.11)

! —_ : —
#(0) =0, u(r)>0Vr>0, rl}glmu(r) =0. (0.12)

Here u. = max{u,0}. As we will see in Chapter 1, when the powers are both
subcritical or both supercritical, the situation is fairly similar to that of the single
power. In fact, if % <p<g=x %J-_“% then no radial ground states exist, while
if %— < p < g then ground states do exist and they constitute a continuum: any
solution of equation (0.11) with initial values u'(0) = 0, #(0) > 0 remains positive,

and satisfies (0.12).
Much more delicate is the case of combined super-subcritical powers, namely

N+2
N -2

l<p< <q. (0.13)

An interesting example was discovered by Lin and Ni in [12]: in this range, if we
further have ¢ = 2p — 1 then there is an explicit solution of the form

utr) = (52 )"_}‘,

B4 r?

where A and B are explicit positive constants depending on p and N.




As for the solutions of (0.11)-(0.12), one can show that their behavior as r — +o00
may only be of one the following two types: Either O('r‘(N ~2)) in whose case we say
that the solution is of fast decay, or ~ CP,NT_'P?Tf as r — -+oo, which we call slow
decay. We will give the proof of this rather well-known fact in Chapter 1. This is
also the case for singular ground states. A (radial) singular ground state of (0.9) is
a solution u(r) > 0 of (0.11) which satisfies that u(r) = +oo as r — 07,

Ii is perhaps worthwhile mentioning two recent quotes concerning the question
of existence of ground states in the general range of exponents (0.13).

H. Zou, Indiana Univ. Math. J., 1996: When FN_— <p< % < g, the
simple looking equation becomes quite complicated and it has drawn much attention
recently. It should not be surprising when one ezamines the nonlinearity more care-
fully. Indeed, this is exactly the mized-growth case, i.e. subcritical near the origin
u = 0 and supercritical near infinity.

M. Tang, J. Differential Equations, 2000: ... wvery little is known for this
semilinear elliptic equation. Zou proved that any solution is radial; Serrin and Zou
proved that it can admit at most one slow decay solution. Lin and Ni constructed
explicitely some slow decay solutions when ¢ = 2p — 1. On the other hand, it
is unknown if it has any positive solution at all for other (p,q) values. Finally,
it is not even known whether there are any fast decay solutions. The analysis is
surprisingly difficult, and it seems that our approach may not work in this case

Next we state our main results concerning this question. Our first result states

N +‘2

that if ¢ is fixed and we let p approach =5 from below, then this problem has a

large number of radial solutions. A 51m11ar fact takes place if we fix p > 2 and

N+2

then let g approach =5 from above.

Theorem 0.1 (a) Let ¢ > N2 "”2 be fired. Then, given any integer k > 1,there exists
a number py < N2 such that zf pr < p < N2 then (0.11) — (0.12) has at least k
radial ground states with fast decay.
(b) Let —2 <p< % be fired. Then, given any integer k > 1,there exists a
number q; > 822 such that if {22 < q < gx, then (0.11) — (0.12) has at least k
radial ground states with fast decay.

The existence result of Theorem 0.1 concerns fast-decay ground states. In fact,
slow-decay solutions, as that found by Lin and Ni, or singular solutions are harder




to be obtained. It can actually be proven that if a solution of one of those types
exists, then it must be unique, see [19]. For existence of singular ground states or
slow-decay ground states, we have the following result.

Theorem 0.2 (a) Given g > %Jrg, there exists an increasing sequence of numbers

P <pr<...withp T 5 N+2 such that if p = py then there is a radial singular

ground state of (0.11), with ezther slow or fast decay.

(b) Given = N 5 <P < %Jrg, there exists a decreasing sequence of numbers @1 > ¢ >
. with g | % N +2 such that if ¢ = g then there is either a slow decay ground state

or a slow deccpy smgula'r solution.

We observe that the slow-decay solution by Lin and Ni is not covered by the
above asymptotic result. which leaves out in principle the case ¢ = 2p — 1. Our
next result reveals a rather striking resonance phenomenon that arises in such case,
if the range of p is a bit further restricted: Not only Lin and Ni’s solution exists,
but also infinitely many solutions with fast decay. Moreover, if we fix p, then for all
g sufficiently close to 2p — 1 one has an arbitrarily large number of solutions.

Theorem 0.3 Assume that p and g satisfy (0.13) and additionally that

N +2yN
N +2v/N — —4

If g = 2p—1 then there exist infinitely many positive ground states with fast decay of

(0.14)

(0.11)-(0.12). In particular, given any integer k > 1, there ezists a number e > 0
such that if |g— (2p — 1)| < ex then there are at least k radial positive ground states
with fast decay of (0.11)-(0.12).

This result is actually a consequence of a more general fact which we state next.

Theorem 0.4 (a) Assume that p and ¢ satisfy (0.13) and that (0.14) holds. Then
if there is a radial ground state of (0.11)-(0.12) with slow decay, there are infinitely
many radial ground states with fast decay.

(b) Assume that

N<10  or N-2 (0.15)

N 2N — —4

Then if there is a singular radial ground state of (0.11), there are infinitely many

radial ground states with fast decay.




(c) If p, @ are numbers like in cases (i a) or (b), then given any integer k > 1, there
exists a number e > 0 such that if

lp—5l+lg—al <&,
then (0.11)-(0.12) has ot least k radial solutions with fast decay.

In particular, we observe that along the sequence p = pr T % N +2 predicted by

Theorem 0.2, for fixed g > %*”g, infinitely many fast-decay ground sta,tes exist.

Finally, the next issue establishes that in a sense the result of part (a) of Theorem
0.1 is optimal: If we fix g and then let p be close enough (or below) to +— then no
ground states exist. Let us also observe, incidentally, that for ¢ = 2p — 1 there are
ground states, and M2 = 2:8- — 1.

Theorem 0. 5 Let g > ¥£2 +2 be fized. Then there is a number p > =5 such that if
1 < p < P then there are nezther ground states nor radial singular ground states of
(0.11).

The proof of these results is largely based on a rather delicate phase-space
analysis of a three dimensional autonomous first order system equivalent to the .
original equation, which we shall develop in the following chapters. The basic issue
is that the Emden-Fowler transformation (0.6), makes the problem of finding radial
ground states equivalent to that of finding positive solutions, which decay to zero
as t — o0, for the equation

z" + oz’ + 2% + %3 — fz =0, (0.16)
where

4 2 2 g—p
a:N—2—&_—1, ﬁ:q_—_l(N—g_ﬁ)’ 7=2q_—1.
We establish this in Lemma 1.1 in Chapter 1. Also in this chapter we deal with the
comparatively simpler cases (1.19) and (1.20). In fact, in Propositions 1.2 and 1.3
we establish that the situation is quite comparable to the single power case.
In Chapter 2 we carry out a preliminary analysis of a three-dimensional au-
tonomous system equivalent to equation (0.16), and we establish basic facts about

it, as the equivalence of the problem of finding positive solutions to (0.16) with that




of finding heteroclinic trajectories of the system lying simultaneously on the two-
dimensional (surfaces) unstable and stable invariant manifolds of two equilibria, Oo
and O, which represent respectively the asymtotic-behavior at —co and at +oo.

Chapter 3 develops the main tool in the.proof of the existence result Theorem
0.1: A “topological shooting” result, Proposition 3.1, which establishes that if two
trajectories, one emerging from Op and another ending at O, wind around each
other several times, then several distinct intersections of the invariant manifolds
appear, thus yielding existence of several (fast-decay) ground states. In terms of
equation (0.3) simply reads as follows: if u; and uy are two solutions, with u; coming
positive from r = 0, and uy ending eventually positive as 1 — +o0, which cross
each other 2k +1 times, then k solutions exist. In Chapter 4 we carry out the proof
of Theorem (.1 by means of this tool.

The situation predicted in Theorem 0.2 takes place precisely when some degen-
eracy occurs when a certain winding number changes. We prove this in Chapter
5, while we study the case of infinitely many solutions with fast decay under the
conditions of Theorem 0.4. in Chapter 6. The non-existence result of Theorem 0.5,
is established in Chapter 7.

Finally, we would like to mention that methods of dynamical systems applied to
this type of questions have not been extensively used, and they may indeed provide
satisfactory answers in somewhat subtle questions as those here treated. We refer
the reader to the works [10], [11], [3] for related questions treated with geometric
methods. We believe that the method developed in this work may as well be useful
in study of ground states for equations of this type in which the nonlinearity is
not autonomous, such as the prescribed scalar curvature problem in RV, see [13],
[14], [22], [11] and their references, or to quasilinear equations, involving nonlinear
elliptic, rotation-invariant differential operators like the p-Laplacian, see for instance
[20], [17], [21] and references therein.




PRELIMINARY RESULTS

1 Preliminary results

We are interested in solving the following problem

-1
u”—!—Lu'—l—uﬂ-i-ui:O, r>0 (1.1)
T
! _ 3 —_
#(0)=0, uf{r)>0Vr>0, rl}xfwu(r) =0 (1.2)
where p and ¢ satisfies
N 2
N—_—2<p<N_2<q. (13)

1.1 Properties of positive solutions of (1.1)
Let us first establish some general facts valid for all positive solutions of (1.1).

Lemma 1.1 Let u be a solution of (1.1) with u(r) > 0 for all r > 0. Then u is
decreasing in (0,00). Moreover, there is a constant K > 0 depending only on p and ~
N such that for all sufficiently large r > 0,

u(r) < Kr# 1. (1.4)
Proof. To see this, let us write equation (1.1) in the form
(r¥ 1) = —rV T (u? + ). (1.5)

Hence r¥~'u/ is decreasing. Assume by contradiction that there is a number +* > 0
with w'(r*) > 0. Then for all r < r*, ¥V 7'/(r) > rF~1u/(r.) > 0. Integrating this
relation we then obtain
u(r) < —Cyr¥ N + Gy
for positive numbers C1,Cy. This is a contradiction since u is positive for r > 0.
Thus #/(r) <0 for all 7 > 0.
Now we prove assertion (1.4). Since »'(r) < 0, it follows that for any > 0 and

T > 5: T
Y (r) < = [P () + u(s))ds, (16)




Since v is decreasing we can estimate rV~lu/(r) < —uP(r) ff sV 'ds. Since ¢ is

arbitrary we get .
rN1y'(r) < -—up(r)f sV 1ds,
0

for all large 7, hence & < —u(r) Pu/(r). Thus, integrating again, we obtain that

for all sufficiently large r,
)
2N = p—1
O

from where estimate (1.4) follows.

We observe that the above result implies in particular that all positive solutions
of (1.1) go to zero as r — +o0.

Let us now set some terminology. Since a positive solution u of (1.1) is decreas-
ing, two possibilities arise: either w has a finite limit as  — 0% or u(r) — 4-c0 as
r — 0F. In the latter situation we say that u is a singular ground state. If u is
non-singular conditions (1.2) are automatically satisfied.

Next we will define certain behaviors at infinity for a positive solution u of (1.1),
which will later be established to be the only possible ones .

Definition. A positive solution u of (1.1) is said to be of fast decay if u(r) =
O(r?=N) as r — oco. If limy 00 r%u(v") = ﬁ~p1_1, u is called of slow decay.

In order to prove the next result let us consider the exponent p in the Emden-
Fowler transformation, namely

F(t) = rTu(r) [rmet. (17)
Then Z satisfies ‘
-6 — I+ +e 3L =0, —oco <t < too, (1.8)
where
G=—t _(N-9), f=——(N-2-—0), 5=2F
p—1 p—1 p—1 p—1

and these coeflicients are positive, which follows from (1.3).

Proposition 1.1 Assume (1.8} holds. Let u(r) be a solution of (1.1)-(1.2). Then,
u 15 either of fast or slow decay as r — -l-00.




Proof. We will carry out the proof by using the equation (1.8) . Multiplying
equation (1.8) by 7 and integrating, we obtain the relation

T
&f #(s)*ds =
~ — = ~ +1 =~ 2
LA PR e g+ (1) | TR _ AE(T) 1.9
We call §+1 o
F(§) = 241 ‘33-

We will prove that F(Z(t)) has a limit as £ — 400, after which our assertion easily
follows. Let us notice that [12° #'(s)2ds is finite. In fact, by (1.7), & satisfies

2
p—1

(1) = ———&(t) + er T (eh).
Both terms in the right hand side of the equality are bounded thanks to the relation
N1y (r) = ~f sV (P (s) + ud(s))ds.
0

1t follows that all terms in the right hand side of equality (1.9) are uniformly
bounded, hence for certain constant C,

() = C — F(z(t)) + o(1). (1.10)

with o(1) — 0 as ¢ = +co. We claim that F(z(t)) — C as t = +o00. Let us assume
the opposite: then for some § > 0 there is a sequence of numbers s, with s, — +co
as n — +oo such that C' — F(%(s,)) > 26 . Since Z(s,) is a bounded sequence, we
may pass to a subsequence which we label the same way, such that #(s,) — L, for
some number L, and which is furthermore such that

C—-F(L) > 4.
Let h be any positive number. We have that
snth 1/2
vh ( f :’é’(t)”dt) > |&(sn + h) — E(sp))-

Thus 1o
15(s0 -+ h) — E(s)| < VF ( / °° :E’(t)zdt) .
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Since [ #'(t)%dt is finite, we get from the above expression that for any h > 0,

—Co

and any s € [0, h], Z(s, + s) = L. Let us now set
Gn(s) = C — F(Z(sp + 8)).
Then Gy is uniformly bounded in [0, 4] and Gn(s) = C — F(L). It follows that

lim fo " Go(s)ds = /0 *(C = F(L))ds = h(C - F(L)).

300

Thus from relation (1.10) and our contradiction assumption,

8n

+h
lim & (t)2dt = h(C — F(L)) > dh.

n—o0 Sn

But this is impossible, since f°°_ &' (¢)*d¢ is finite. Hence F(Z(t)) — C as t — +o0,
as claimed. In particular we have that #'(¢) -» 0 as ¢ = +oco. Now because of the
definition of F', we also see that only one limit point for Z(¢) as t — 400 is possible,
for otherwise F(Z(t)) would be along a sequence going to infinity away from the
value C. Finally, coming back to the equation satisfied by Z,

G - T+ I+ e T3 =0,

setting I = lim;, 4o #(¢), using that lim, 4., Z'(t) = 0 and choosing a sequence
s, — +oo along which 7(s,) — 0, we end up with the relation

—BL - IP = 0.
Thus either L=0o0r L =3 7T as claimed. This concludes the proof. O

Now we infroduce a second Emden-Fowler transformation of (1.1)-(1.2), which
is more suitable for the analysis of solutions near r = 0. Let us consider the change

of variables
o(t) = rETu(r) e (1.11)

Then z defined in this way satisfies
z" +ax' — Br+ 5L+ ek =0, —oo <t< oo, (1.12)
and, as we will see later,

z(t) > 0 Vi, t_lgzrhnoo$(t) =0, (1.13)

11




where
4 _ 2 2 _oi™P

O.’:N—Q'—'E—_-"T,

and these coeflicients are positive, which follows from (1.3).

Our next result asserts that problems (1.1)-(1.2) and (1.12)-(1.13) are equivalent
under the transformation (1.11). Similarly, transformation (1.7) makes (1.1)-(1.2)
equivalent to (1.8) with appropriate conditions at infinity.

Lemma 1.2 Let u(r) be a positive solution of (1.1) in (0,00). Let %(t) be given by
(1.11) end % given by (1.7). Then

(a) lim; oo E(2) = 0,  limg,400 2(t) = 0.

(b) u(r) satisfies (1.2) if and only if limt_,ioo (¢) =

(c) u(r) has fast decay if and only if hmt_,_,_m E(t) =

(d) u(r) has slow decay if and only if imy_, 1o Z(t) = ﬂFi—l

(e) u{r) is a singular ground state if and only lim, , o, x(t) = ﬁ'q'i"f.

Proof. Let u be a positive solution of (1.1). Let us prove part (a). We recall that
2
from relation (1.4), we have that u(r) < Kr~#T for large r. By definition of z(Z)

2(t) < Ke @homt 3 0,

The other assertion of part (a) follows symmetrically.

we then have

Let us prove part (b) Let z(Z) be given by (1.11). It is immediately verified that
z satisfies equation (1.12). Let us check that z(f) —+ 0 as ¢ — —oc0. In fact, let us
set u(0) = ¢. ‘Then u{e*) — ¢ as t = —oo, and hence z(t) = e%u(e*) — 0.

Now let us assume that we have a solution z(z) of (1.12)-(1.13), and set

2

u(r) = z(log vz)r—qu. (1.14)

Since z(t}) — 0 as t — +oo, we get u(r) = 0 as r — co. We have to show that u
has a limit as r — 0% and that «/(0%) = 0. To establish this we make the following
claim:

Given d > 0 there exist numbers 7' < 0 and C > 0 such that

() < CeFTM yi< T (1.15)

12




Since z(t) satisfies equation (1.12), and z(¢) — 0 as ¢ = —oo, we find that given ‘
8" > 0, there is a ; < 0 such that |

2 tar' - (B-8Nx >0, Vi<i,.
Let us choose & so that A = ﬁ — 0 be exactly the positive root of
M4ad—(B-0)=0.
Then z(t) = 7=~ gatisfies the equation
2 ta—(f-08)z=0.

Let C be a positive number so that z(f;) — Cz(%1) < 0. Then h(t) = z(t) — Cz(t)
satisfies that h(t;) < 0 and

B ol —(B—8h >0, Vi<t. (1.16)

We will show next that actually A(¢) < 0 for all ¢ < #;, so that estimate (1.15)
holds true. To see this, we consider the functions h.(t) = h(t) — ee~*t, where p is
an arbitrary number with 0 < p < @. Since k() = 0 as ¢ — —oo, we can find a
number f, < #; such that h. (¢} < 0 for all ¢ < #;. Now, since h satisfies relation
(1.16), we get then

R 4 ahl — (B—8)h. > e(—p° +ap+{(—-8) >0, Vi<i. (1.17)
Now, if it happened that

hs(t2) = terﬁax) h's(t) > 0,

1:te

with #, € (t1,1.), then hl(tz) = 0, hZ(t2) < 0, then relation (1.17) would be impos-
sible. Hence h.(t) < 0 for all £ < #;. Since £ was arbitrary, it follows then that
h(t) < 0 for ¢t < ¢, as desired. Thus estimate (1.15) holds with T = ¢;. Now, in
terms of « given by (1.14) this means exactly that there exists a number 7y = ¢¥ > 0
such that

u(r) < Cr~% YO<r<rg.

Let us now use the equation satisfied by u. We obtain the following relation

¥l (r) = vl 7l (rg) + frm (wP(s) + u9(s))s™ ds.

13




Since u grows at most as a small negative power as r — 07, it follows that the right
hand side of the above expression has a limit, let us call it L, so that

limr¥ ' (r) = L.
r—0

We claim that L = 0. Let us assume the opposite. Then, given € > 0 we get that

for some 7 > 0
L—c¢
N1

L+e

?"N—_l, YVOo<r<¥

<u/(r) <
Hence, by integration

L 1 _
u(r) = N 5w +6(r), Vo<r<r,

where {0(r)| < §55r*" + C for some C > 0. Choosing ¢ < || is then attained,

since u(r) = O(r~%) as r — 0 where 4 is arbitrarily small. Hence L = 0. Now,
coming back to the equation satisfied by v we find then that

¥ (r) = =) + [ @P(s) + ui(s))sds,
so that letting 6 — 0,
u'(r) =N fnr(up(s) + u?(s))s" ds. (1.18)

Again using u(s) = O(s™%) as s = 0, for arbitrarily small §, we find that «'(r) — 0
as r — 0 as required. It also follows that the limit as r — 0 of u(r) itself exists.
The corresponding assertion (c) for Z is proved similarly. Finally, assertion (d) is
already contained in the proof of Proposition 1.1, and the proof of (e) is symmetric.
O

1.2 Study of solution for sub and super critical exponents

Here we consider the purely sub-critical and purely super-critical cases, which turn
out to be simpler to analyze. These are the cases

+2

<=
N“2<p<q N-=-2 (1.19)
and 5
< .
N5 <P<4 (1.20)

For the sub-critical case we have the following result.

14




Proposition 1.2 Assume (1.19) holds. Then no solution to problem (1.12)-(1.13)

exists.

Proof. Let us assume that there is such a solution z. Let us multiply equation
(1.12) by 2z’ and integrate between s_ and s,. Let us also integrate by parts the
last term. Then we find

d'(s)? , a)™ B e
[ 5 -+ p— 2ﬂc(s) 3=3_+
5+ ! 2 e’ysm(s)p-{-l s=84 Y #+ TS p+i
—_— T - —— ds = 0. .
oz_/;_ z'(s)°ds + P [f=5+ ol e¥z(s)Pds (1.21)
Now, we claim that

lim eMz(t)**! = 0. (1.22)
t—r+oo

In fact, by definition of x we have that

eMz ()P = ezgf_}tu(et)pﬂ.

Now, from the proof of Lemma 1.1, we have that u satisfies estimate (1.4). This

relation implies
p} pl_— o+l
u(et) ! < K 16 2?—1t,

and hence
e_’th(t)P'l‘l S K’P+16_2pt,

where p = g—i — ;’f—i > 0. Thus (1.22) holds. Now, let us choose sequences s_ =
§" — —oo and s; = s% — 400, such that z'(s%) — 0. Such sequences exist since
z(s) — 0 as s —+ £o0. Then from (1.22) and (1.21), we obtain after letting n — oo,

+oa +o0
ozf 7' (5)%ds — Iﬁ/_m e"z(s)"ds = 0.

—0Q

Since v > 0 and « < 0 if (1.19) is assumed, we get that z(2) vanishes identically,
and we have reached a contradiction which finishes the proof. O

Let us consider now the super-critical case. In this case we will prove that there
are indeed solutions to (1.1)-(1.2). These solutions form a continuum and have slow
decay. More precisely, let us consider the initial value problem

N-1
u’ + —T—u’+uﬂ+ui =0, r>0 (1.23)

2'(0) =0, u(0)=c>0. (1.24)

15




This problem is indeed solvable. In fact, let us consider the integral equation
e /0 TN fo " SN2 () + ul(s))ds = B(u)(r).
It is easily checked that if § > 0 is chosen sufficiently small then ® applies the set
={u e C0,]/Ju - clls < 1}

into itself. Here

[[vfleo = sup Jv(r)].
0<r<d

Besides, ® is a contraction mapping of the complete metric space B; with the
metric induced by || || Thus (1.23)-(1.24) has a (unique) local solution. This
local solution becomes decreasing. Since the nonlinearity is uniformly bounded
along the whole range of u, it follows that the solution can actually be extended to
the whole real line.

Proposition 1.3 Assume that the ezponents p, q satisfy (1.20). Then for anyc >0
the solution of (1.23)-(1.24) satisfies that u(r) > 0 for all v > 0. Moreover u(r) has
slow decay in the sense that there is a k > 0 such that for all sufficiently large 7,

u(r) < kr . (1.25)

Proof. Let ¢ > 0 be fixed, and » the solution of the initial value problem (1.23)-
(1.24). We consider the transformation Z(z) given by (1.7).
We recall that the equation now satisfied is

' —af — BT+ I e = 0.

Multiplying the above equation by #', integrating from —oco to T, and also integrat-
ing by parts the last term we find

2d 'T f —8 q+1d Y
6 [ #(spas+ Lo el R O

R0 SR

p+1
We observe that it is imp0551ble that £(T) < 0 unless & = 0. On the other hand,
for a similar reason, we cannot have the existence of a sequence T, — +oco with
#(Tn) — 0. We conclude that Z(t} > ¢ > 0 for all large £. This implies the validity
of relation (1.25), thus concluding the proof. O

TS =

"’(T)




As a consequence of this chapter, we mention that our problem in what follows
is to prove existence of solutions of problem (1.12)-(1.13), which correspond to non-
singular ground states with fast or slow decay. We will be also interested in singular
solutions. We will consider that p, g satisfies (1.3).

17




THE PHASE SPACE ANALYSIS

2 The phase space analysis

Recall that we are looking for solution of

o' + oz’ + 35 + ek —Pr=0, —oo<t< oo (2.1
x(f) > 0 Vi, tl}immw(t) =0. (2.2)
where
4 2 2 g—p
=N-2——— =—(N-2— —— = 2=

Also recall that we are considering that p and g satisfy the relations

2
N_3 P<yN_3<%

from where it follows that the coefficients «, § and y are positive.
For our purpose we introduce the new variables ¥y = 2’ and z = ¢7. Equation
(2.1) becomes then equivalent to the autonomous first order system

' =y,

Y = —ay+ fr — z8 — 22h,

. (2.3)
2=z

z>0

The results of last chapter imply that in terms of these variables our task is
equivalent to finding solutions x(t) = (z(¢), y(%), 2(f)) of this system, with z(t) > 0,
such that x(¢) — (0,0,0) as t — —oo, while (z(%),y(t),2(t)) — (0,0,+00) as
t — +00. We will establish this fact in the following lemma.

Lemma 2.1 z(t) satisfies (2.1)-(2.2) if and only if x() = (z(t), y(t), 2(t)) sat-
isfies (2.8) with the conditions z(t) > 0 Vt, x(t) — (0,0,0) as t - —oo and
(x(8), y(2), 2(t)) — (0,0, +00) as & — +o0.

We will be concerned with the phase space analysis of (2.3). This means the

study of the orbit structure of this system. We also introduce some notations that
will be helpful for us in what follows.
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General remarks for the phase space analysis of (2.3):

1. The positive z-axis is an orbit for the flow.

2. The plane z = 0 is invariant under the flow. We carry out this phase plane

analysis below.

3. Orbits cross transversally the plane z = 0. For y > 0, they go into the region
z > 0 while the opposite happens for y < 0.

4. The two-dimensional foliation F given by

F={{($ayaz)/z=c}: CER+}:

is invariant under the flow. The planes 2z = ¢ move upwards in time. In fact

z(t) = zpe™, v positive.

5. The system has two singularities Oy = (0,0,0) and P, = (ﬁq%,(], 0), which
are hyperbolic saddle points.

6. The unstable manifold of Oy, W*{Oy), is two-dimensional and transversal to
the plane z = 0 and its stable manifold, W*(Oy), is one-dimensional and
lies in z = 0. The unstable manifold of Py, W*(F,), is one-dimensional and
is transversal to the plane z = 0 and its stable manifold, W*(F), is two-
dimensional and lies in z = 0.

7. The unstable manifold of O, W*(Qy), contains the z-axis for z > 0. This
semi-axis separates W*((Op) into two components invariant under the flow,
one of them is a half-plane contained in z < 0 (observe that for z < 0 the
resulting system is linear). The other component, W(Oy), is a surface not
necessarily fully contained in z > 0.

Since we are looking for solutions x of (2.3) with x(¢) — (0,0, +o0)} as t = +00
we will study the “point” (0,0, +oco) at infinity. For this purpose, we introduce the
following coordinate system at infinity:

1

zp-l,
1

Y+ )z T, (2.4)

81
I
3

7=




In coordinates (Z, 7, Z) the system (2.3) is written as

-

T =1,
A s s (25)
7= -5z
z2>0
where now
. 4 = 2 2 . q—p
= ———(N-—-2), =—(N—-2—-—), =2—
—S-W-2), A= Tq(N-2-- T, Ge2it

are all positive coefficients.

This change of coordinates corresponds exactly to use the Emden-Fowler trans-
formation with the exponent p, rather than g, in the original equation.

Similarly as with system (2.3), we have now the following.

General remarks for the phase space analysis of (2.5):

1. The positive Z-axis is an orbit for the flow.

2. The plane Z = 0 is invariant under the flow. We carry out this phase plane
analysis below.

3. Orbits cross transversally the plane Z = 0. For § > 0, they go into the region
Z < 0 while the opposite happens for ¢ < 0.

4. The two-dimensional foliation F given by

F={@7532/z=c}, ce R*},

is invariant under the flow. The planes Z = ¢ move downwards in time. In
fact Z(t) = %é™", ¥ positive.

5. The system has two singularities O = (0,0, 0) and Py, = (8 rﬁ, 0,0), which
are hyperbolic saddle points.

6. The stable manifold of O, W*(Ou), is two-dimensional and transversal to
the plane Z = 0 and its unstable manifold, W*{O), is one-dimensional and
lies in 7 = 0. The stable manifold of P, W*(P,), is one-dimensional and
is transversal to the plane 2 = 0, and its unstable manifold, W“(Poo), is
two-dimensional and lies in Z = 0.
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7. The stable manifold of O, WS(OOO), contains the Z-axis for Z > 0. This
semi-axis separates W*(Oy,) into two components invariant under the flow,
one of them is a half-plane contained in # < 0 (observe that for £ < 0 the
resulting system is linear). The other component, Wi(ow), is a surface not
necessarily fully contained in Z > 0. | '

Next we describe the phase plane diagram associated to systems (2.3) and (2.5)
when restricted respectively to the planes z =0 and Z = 0.

We analyze the situation corresponding to different ranges of the exponents p

and gq.

2.1  The phase plane analysis

Now we will be concerned with the following two-dimensional system.

{ ¥ =y, (2.6)

Yy = —ay+ Bz — x5
where a > -A% and

4 2 2
Y ﬂ_a___l(N_Q—a_l):

a=(N-2)—

with IV > 3.

Since a > 2, we have § > 0 and there are two singularities, O = (0, 0) which is
a hyperbolic saddle point and P = (85T a—l ,0), which has different nature depending
of the different values of . Linearizing we see that O has an associated one unstable

eigenvalue -2 — (N — 2) < 0 with associated eigenvector (1 — (N —2)), and

ta— 1
one stable eigenvalue, - with eigenvector (1, -25).

(1) The case a = N "“2 . Here @ = 0. The singularity P is a center. In fact the
system in this special case is Hamiltonian, with energy given by

H,y) =%+ == - . (2.7)

H is constant along all orbits, and those locally surrounding P are periodic orbits

enclosed by a homoclinic orbit of (. See Figure 1.

(i) The case a > 22

eigenvalues,

. Now a > 0. P is a hyperbolic attractor, with two stable

—a \/a2 —4p(a—1)
5 .
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We see that these eigenvalues are complex if and only if
o< N—-2¢/N-1
N-2/N-1-4
In this case P is an attractor spiral focus. If instead
0> N—-2y/N -1
N-2/N-1-4

the two eigenvalues are real and negative and P becomes a stable node. Also, these

N<10 or

singularities are connected by a heteroclinic orbit from O fo P, constituted exactly
by the unstable manifold of Q. This is checked directly using the fact that the
functional H given by (2.7) is now strictly decreasing along non constant orbits, see
Figure 2 for details.

(iii) The case a < % In this situation @ < 0. P is a hyperbolic repulsor, with

two unstable eigenvalues,

—ax \/az —48(a —1)
5 :

These eigenvalues are complex if and only if

0> N+2¢/N-1
N+2/N—-1-4

In this case P is an repulsive spiral focus. If instead

Lo NN
N+2y/N—-1-4

the two eigenvalues are real and positive and P becomes a unstable node. These

(2.9)

singularities are connected by a heteroclinic orbit from P to 0, constituted exactly
by the stable manifold of O. To check this one uses the fact that the functional H
given by (2.7) is now strictly increasing along non constant orbits, see Figure 3.

2.2 Completing the phase space analysis

Now we consider the full systems (2.3) and (2.5). Concerning (2.3), we restrict
ourselves to analyze trajectories that lie in the half-space z > 0. The plane z =0
contains the two singularities of the flow, Oy = (0,0,0) and P = (ﬁqﬁ,ﬂ, 0), which
are hyperbolic. Additionally to the eigenvalues and eigenvectors considered in the
planar case (ii) in the previous subsection, the singularity Op possesses the unstable
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eigenvalue v = 2%%? with corresponding eigenvector (0,0, 1). Thus, from standard
invariant manifold theory, see for instance [9], Op has a two dimensional unstable
manifold W*(Oy), constituted by all trajectories approaching Oy as ¢ — —oo, whose
tangent plane at Oy is spanned by the two unstable eigenvectors. Moreover, it
coincides with this plane for £ < 0, since 2, = 0 and the flow is linear on this
region. W*(Op) contains the entire z-axis as well as the heteroclinic orbit on z =0
connecting Oy and P,. It is also transversal to the planes z =0 and x = 0.

Concerning the singularity P, we obtain the unstable eigenvalue v with associ-

ated eigenvector

Blp—1) +ay+7?
=7 g )
o
and, as we have seen from the planar analysis (ii), that P, has two stable eigenvalues
—ax \/az —48(p—1)
5 .
It thus follows that the unstable manifold of P for z > 0, which we call W*(F,),
is one-dimensional, and constituted by a single orbit. Its stable manifold is two-

1,

dimensional and lies in 2z = 0. We recall that P, is a spiral focus attractor for the
flow restricted to this plane if (2.8) holds, and a stable node otherwise.

We consider now the flow for system (2.5). Similarly as before, the plane Z =0
is invariant under this new flow whose singularities are the points O, = (0,0,0)
and P, = (5’#, 0,0), which are again hyperbolic. As we have seen in the planar
case (iii), for the flow restricted to Z = 0, Oy is a hyperbolic saddle point and Py,
is a hyperbolic repulsor which are connected by a heteroclinic orbit. Linearizing
around O, one obtains an extra stable eigenvalue —7 L 2%“;—:11’-1 with associated
eigenvectors (0,0,1). Thus, O has a two dimensional stable manifold W*(Oo),
constituted by all trajectories approaching Oy, as ¢ — oo, whose tangent plane
at O is spanned by the two stable eigenvectors and iticoincides with this plane
for < 0. W*(Ou) contains the entire 3-axis as well as; the heteroclinic orbit on
% = 0 connecting P, and O. It is also transversal to the planes Z =0 and £ = 0.
Now, linearizing around the singularity P, we obtain one rs.table eigenvalue —v with

associated eigenvector

(-1,-5,P4= %;M+'72)

and two unstable eigenvalues

& +1/a? — 4f(g—1)
5 .

R
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We recall that these eigenvalues are complex if and only if relation (2.8) holds with
a replaced by p and the unstable manifold is two-dimensional and lies in % = 0.

Next we specify an important notational point. Let us gecall that the coordinates

% and x are related by the transformation |
1 I

T =xze1, i
- S ;
F= @+ 5)x", (2.10)
F= —r;r
29—

Let us write by brevity X = T(x). In the sequel we Wlll denote by W*(O,) the
object W* (Os) expressed in the x coordinates, and SlIIllla.I'ly for other objects of
these kind. Thus we set

W*(0u) =T (W (0w, W*(Po) = T~ (*(P))

Let now state some general properties of the orbit structure that we will use later
and let also translate our original problem into the language of invariant manifolds
of the above discussed systems. f
Lemma 2.2 Let x(t) = (z(2),y(t),e") be a solution of system (2.8). X(t) =
(Z(t), #(1), ) a solution of (2.5). i
(a) Assume that z(t) > 0 for all —co < t < 1. Then the orbit of x is either
contained in W*(Op) or it coincides with W*(F).

(b) Assume that Z(t) > 0 for allty < t < co. Then the orbit of X is either contained

in W#{Ow) or it coincides with W*(Py). E

Lemma 2.3 (a) Solution with fast decay of (1.1)-(1.2)
which lies in W*(Op) N W*(Oy)-

(b) Solution with slow decay of (1.1)-(1.2) corresponds to an orbit which lies in
W¥(O) N W*(Pyo).

(c) Positive singular solution with fast decay of (1.1 2 corresponds to an orbit
which lies tn W*(FPy) N W*(O). |

(d) Positive singular solution with slow decay of (1.1) corresponds to an orbit
which lies in W*(Fy) N W*(Pw). #

corresponds to an orbit

|
Lemma 2.4 The unstable manifold of Py, W*(F,), is contained in the closure
of the unstable manifold of Oy, W*(Oy). Similarly, the stable manifold of P,
W*(P.), is contained in the closure of the stable manz’fol%[i of Opo, W“(Ooo).

8
L
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The Proofs of Lemmas 2.2 and 2.3 are easily ca,rrie(ﬂi out from fhe results of
Chapter 1, after a change of notation. For the proof of Lemma 2.4 we will make
use of the well-known Palis’ A-lemma, see for instance [1§] or [8]. Its statement in
the context we are dealing with is as follows. 1i
Lemma 2.5 Consider a system of the form z' = f(z), fE of class C* . Denote by

w(x,t) its associated flow. Let P be a hyperbolic saddle »pomt of f(z) with stable
and unstable manifolds W*(P), W*(P), with respective dzmenszons ns and n,. Let
D be a small n,-dimensional disk transversal to the ﬂow which intersects W*(P)
at the point (). Let B* be any compact disk inside W"(P) which contains P. Let
us denote D, = ©(t,D). Then, given &€ > 0, there exists a tp > 0 such that for
each t > to there exists a disk D; contained in Dy which contains ¢(t,Q) and is C*

e-close to B™.

Proof of Lemma 2.4 As we have seen, I is a hyperboli(% singularity whose unsta-
ble manifold W*(F;) is a one dimensional curve. Take a short segment transversal
to the z = 0 plane which lies entirely in the two dimensional manifold W(0,)
(taken for instance close and almost parallel to the z-a,xis{). By virtue of the above
lemma, the flow will take this segment into a one dimensional segment, still con-
tained in W*(Qy), which gets arbitrarily uniformly close t? any given finite piece of
the curve W*(F,). This proves that W*(F,) lies on the boundary of W*(Oy). The
symmetric assertion that W*(P,,) is contained in the boujr\_ndary of W*(Oy) follows

similarly.See Figure 4. O
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THE TOPOLOGICAL ARGUMENT

3 The topological argument for the proof of
Theorem 0.1

|
|

The following result is the key step in the proof of Theorem 0.1, which we will carry

out in Chapter 4. Hw

Proposition 3.1 Letxo(t) = (z0(£), Yo(2), 20(2)) be an orbit in W*(Op) and Xeot) =
(Too (1), Yoo(t), 200 (2)) be an orbit in WH(Oy). Assume that zo(t) > 0 in (—oo, Tp),
Teo(t) > 0 in (Te, +00) and that Tg — T has at least 2k 1 zeroes in (Tos, Tp) for

some k > 1. Then there exist at least k — 1 orbits in W“(Og) NW*(O).
|

Remark.We can translate this Proposition in terms of e(guation (1.1) as follows:

Assume that equation (1.1) has a solution uy(r) deﬁned and positive on an in-
terval (0, Ry) and a solution uw(r) defined and positive’ 'on an interval (Roo,00).
Assume also that Ry, < Ry, 1y Z e and that 1 — te has at least 2k +1 zeroes n
(Reo, Ro) for some k > 1. Then there exist at least k — 1ffmdzal ground states 'wzth
fast decay of (0.9). \f

For instance the proof of part (a) of Theorem 0.1 will be reduced to showing that
for each number k the assumptions of this result indeed hold if we fix ¢ supercritical
and then let p be close enough from below to the crltlcal exponent. Similarly for

part (b). i!

|

We have divided the proof of Proposition 3.1 into three lemmas. First we need
some preliminary observations, as well as some notation zyind definitions.

We may assume that only a finite number of orbits lie Stimultaneously in W*(Oy)
and in W*(Os) (otherwise an infinite number of ground states with fast decay auto-
matically exist), then slightly perturbing x;(f) (i = 0, c0) to neighboring trajectories
in W*(Oy), respectively in W*(O), we may also assume without loss of generality
that these trajectories do not lie simultaneously in the two manifolds.

We recall that the z-axis separates the manifold W”‘(Oo) into two components
invariant under the flow, one of them a half-plane containéd in z < 0, and the other

‘

{
f

I
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a surface WZ(Op), which we define so that it contains the z-axis. Observe that
W3(Oy) is not necessarily contained in z > 0. Let us observe that the trajectory xo
splits W}(Qy) into two components. Let us call Hy the closure of the component
which contains the z-axis.

Let U(z) = HyN{z = z}, for any z, > 0, be the section of Hy in the {z = 2}
plane. Then U(z) is a C! curve without self-intersections, whose endpoints are
(0,0, zp) and the point of the trajectory xo in the plane {z = z}.

Similarly, the z-axis separates the manifold W*(O) into two components in-
variant under the flow, one of them a half-plane contained in £ < 0, the other a
surface W3 (Ou), which we define so that it contains the z-axis. Now, the trajec-
tory Xo splits W3(Oy) into two components. Let us call Hy, the closure of the
component which contains the z-axis. We denote S(z) = He N {2z = 2}, for any
zo > 0, the section of Hy, in the {z = #} plane.

Remark. QOur goal is to prove that for certain z, the curves U(z) and S(z)
intersect at least at kK — 1 points. Due to the form of system (2.3), we conclude that
the same is true for all z > 0. Observe that these intersections correspond to £ —1
distinct trajectories lying simultaneously in W*(Oy) and W*(Oy). In order to do
this we need the next definitions.

We can lift a planar curve o(s), s € [0,1], in B2\ {(z0,%0)}, to a curve &(s) =
(6(s), p(s)) in the polar coordinates plane via the relation

o(s) = (zo + p(3) sinb(s), yo + p(3) cos B(s))

Definition. The winding number of the curve o around (o, yo) is the number

W (5, (30,30)) = [5-(61) — 0(O)),

where [-] denotes integral part.

Next we consider two disjoint curves ¢, and ¢, in the 3-dimensional space,
parametrized by the z-coordinate in the form

¢i(z) = (zi(2),wil2), 2}, 1.=1,2, z€ [z, 2]

Definition. The linking number of ¢, ¢z in [21, 25} is the integer W (o, (0,0)),
where 0(z) = (#1(2) — 22(2), ¥1(2) — y2(2)), z € [, z3).
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The linking number is obviously invariant under homotopies which preserve
endpoints of the curves, keep the curves disjoint and preserve their z-coordinates.

Let ¢;(z) be a parametrization of the trajectories x;, ¢ = 0,00 via the z-
coordinate, namely ¢;(z) = x;(y 'log2). Fix a number z > 0. Let 0.(s), s € [0,1],
be a one-to-one parametrization of U(z) such that o,(0) = (0,0,2) and 0.(1) =
¢o(2). See Figure 5 for a description of the linking situation we are concerned with.

Proposition 3.1 will be a direct consequence of the three lemmas we state and
prove next.
leTo

Let us denote by z_, z, the numbers given by z_ = v tel>, z, = v 1e™®, where

Ty and Tj are the numbers mentioned in Proposition 3.1. Notice that z_ < z;.

Lemma 3.1 Let k be the number in the assumptions of Proposition 8.1. Let 0 <
71 < 2o be numbers such that z; < z_ and zy < z2. Then the linking number of the

curves ¢g and oo n (21, 22), is at least k.

Observe that there is a unique value of z for which ¢ (z) crosses the plane
x = (. We define z; to be this value.

Lemma 3.2 Letf z; > z;. Then the winding number of the curve o,,, contained in
the plane z = zp, around the point doo(22), W(0s,, Pool(22)), s equals m — 1 or m,
where m 1is the linking number of the curves ¢p and ¢, n [Z1, 20].

Lemma 3.3 If z; is chosen sufficiently large, then the curves U(z;) and S(z)
intersect at least W(0,,, doo(22)) times.

We will devote the rest of this chapter to the proof of these results.

Proof of Lemma 3.1. We will show that the linking number of ¢y and ¢, in
[21, 2] where 2k +1 zeros of Ty — Zo, exist in the interval [t,,,t,,], is at least k. Here
t, =y llogz.

By definition of the linking number, it equals the winding number around the
origin of the curve o(z) = @o(2) — ¢oo(2) in [21, z3]. Let h = Ty — 2o, then o(2) =
(h, B, 0)(ytlogz). Since this number is invariant under a reparametrization of
the curve o, it equals that of 6(¢) = (h, h)(%), t € [¢t4,1t.,). Note that this curve
does not touch the point (0,0) since x;, 2 = 0, co can not have intersection. Hence
the winding number around the point W (4, (0,0)) is indeed well defined. Let us
also observe that whenever i vanishes, & crosses transversally the line A = 0 in
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the clockwise direction. Let Z,, < ;3 < &3 < ... < fgp41 < i, be the zeroes of
h, and consider a lifting (p(t), 8(¢)} of &, so that &(t) = (p(t) sin(t), p(t) cos 6(2)).
Without loss of generality we may assume 6(t,,) € (0,#7). Then 8(¢;) = jw for
j=1,...,2k + 1.1t follows that (2k -+ 1)7 < 6(¢.,) and hence

N 1
W(Js (0= 0)) = [%(H(tzz) - g(tzl)] = k.
This concludes the proof. O

Remark. We observe from the above proof that the linking number of ¢ and ¢, is
nondecreasing as a function of the interval where it is measured, namely the linking
number in [z}, 23] is larger than or equal to that in [2;, 22] whenever [z, 2] C [2], 25].

Proof of Lemma 3.2. The proof consists on the contruccion of a suitable homo-
topy of ¢y and ¢, which will make it easier to handle the relation between linking
and winding numbers of the objects in the statement of the lemma. By definition
of Z1, we have that du.(2) € {z > 0} for all z > 7.

Let us consider the surface Hy defined earlier in this chapter. Then the set

U(fl) U U(Zz) U {(0, 0, z) | Z1 <2< 22} U gbn([zl, 2’2]),

is the boundary of Hy = HoN {# < z < 2}, in manifold sense, see Figure 5. Let
o(t,x) denote the solution of (2.3) with ¢(0,x) = x.
Let us define the curve ¢5 in Hy as:

cp(_:%b.},---llog_‘r}fz_l,a-zl(l — _z_—gz:l)) if 2 S z2<zZ1+¢€
p5(z) = ¢ (0,0,2) ifZ+e<z<m—c¢,

(:0((1 - 'ZLZEE)’Y—l log'ziz"o'n(z;?ﬁ)) if 2 —E<Z S Zg.

We check next that for € small, ¢g and ¢§ are homotopic inside ﬁo, with in-
variant z-coordinate. It is straightforward-to check that there is a homeomorphism
F : Hy — [0,1] x [#1, 2] which leaves the z-coordinate invariant and satisfies the
following properties

FU(z)) =[0,1] x{z:}, F(U(z)) =10,1] x {2},

F({(0,0,2) |1 <2< }) = {0} x 71,22,  F(o([Z1, 22]) = {1} x [21, 2].

On the other hand, it can also be checked that the curves F'(¢o(z)) and F(¢5(z)),
z € |7, 2] are homotopic inside the rectangle [0,1] x [z, 2], with a homotopy G
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which leaves the endpoints of these curves as well as their z-coordinates invariant.
F~loG is a homotopy in H, with the desired properties. See Figure 6.
It follows that the linking number of ¢y and ¢o, equals that of ¢§ and ¢eo.

Let us write
Poo(Z1) = (0,71, 21),  Doo(22) = (@2, Y2, 22)-

We define ¢, as the polygonal curve

0,ih,2)if5 <z< Z +e¢
$5(2) =1 (0,41, 7 +e) + 25 dif s +e<z<m—¢
(@2, Y2, 2) f 20 —e < 2 < 29,

where d = (T2, Y2 — 71,22 — Z1 — 2¢). Then ¢y, and ¢%, are homotopic inside

{21 £ 2 < 2} \ {¢5([21, 2]},

leaving endpoints fixed and z-coordinate invariant. Indeed, if we choose § and e
sufficiently small, we obtain that ¢u([Z1, 22]) and ¢%,([Z1, z2]) are contained in the
set

R={l(z,y) - (0,41)| <6, <2<z +e}U

{£>0, Z+e<z<n—ctU{|(z,y) — (z2,10)] <6, m—e <z < 2},

and ¢5([z1,22]) N R = @. It is checked that a homotopy in R with the desired
properties can be built up.

Hence the linking number of the curves ¢y, ¢ in [Z1, 2] equals that of ¢§ and
Do

We claim that the winding number of o,, around the point ¢ (2), measured
in the plane z = z is equal to m — 1 or m, where m is the linking number of ¢§
and ¢Z,. We have that

on(1—2)—(0,5,7)ifz1 <z<Z +¢
B5(2) — @5 (2) = ¢ —(0,51,0) — 22222 (22,42 — §1,0) Z1 +e < 2 < 23 — ¢,

%(ﬂﬂl) - (3»'2,3}2:22) if 20 —e <z < 2.

£

Let us call ¢(2) the z-y component of ¢§(z) — ¢< (z). Let us write
3(2) = (o(2) sin 6(2), p(2) cos (2)).

We observe that W (g, (0,0)) corresponds precisely to the linking number of @5 and

£
o7

W6, 0,0) = [-(0(z) — 0(2))] =
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(5002 +€) = 8(21) + 02 =€) — 671 +6) - 6(z2) = 6z — ). (31)

We claim that
|0(z1 +¢€) —0(Z)|<m (3.2)

and
[0(z2 — &) — 8(% +¢)| < 7. (3.3)

We check first (3.2). We recall that o, is a parametrization of U(z) = HyN {z =
Z1}. Because of the form of vector field defining system (2.3), W{(Oq) cannot
intersect the set {x = 0,y > 0}. On the other hand, W*(Oy) splits into a half-plane
H contained in {z < 0,y < 0} and W§(Oy). From these facts it follows that U(Z;)
does not intersect {z < 0,y > 0} and hence (3.2) holds true. Now, since between
z; +¢ and 2z — €, the curve ¢(2) is a line segment, inequality (3.3) readily follows.
From (3.2), (3.3) and (3.1) it follows that

n< W(g,(0,0)) <n+1

where 1
n=[o_(6(z) = 6(z — &)l

But 7 is precisely the winding number we want to estimate and W (4, (0,0)) = m.
Thus the claim follows, and hence the lemma. O

Proof of Lemma 3.3. We recall that for z; > 0, the section S(z) is given by
H,, N {z = 2}, which is a curve with endpoints (0,0, z2) and X« (77 logzp). We
have that the orbit of x lies in W*(Oy), so that in coordinates (2.4), %(¢) — 0
ag t — +oo. Hence if Z, is sufficiently small, 5’(22) is well approximated by the
segment joining its endpoints. Now, the image of this segment via transfolrma.tion
(2.4) is a line segment joining (0,0, ;) and xa(7~'log 2,), where 2z = %, =) Thus,
if %, is small enough, we also have that S(zp) is well approximated by the segment
joining its endpoints.

Let n,,(s), s € [0,1] be a parametrization of S(z;) such that 7.,(0) = (0,0, z;),
N2y (1) = @oo(22) = (T2, Y2, 22). Let us call i the vector in R? whose components
are the =,y coordinates of 7,,. Since S{z;} does not have self-intersections, we
may choose 7 to be one-to-one. %(s), s € [0,1), can be lifted to a curve f(s) =
(0 (s), py(s)) in the polar coordinates plane, so that

1(s) = (pa(s) sinBy(5) -+ o, po(s) cos B,(s) + pa).
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Now, as we have mentioned, the z-axis separates W*((Qp) into two components,
one of them a half-plane contained in £ < 0, ¥ < 0 and the other the surface we
called W¥(Og). Thus U(z,) does not intersect this half-plane. We denote by [ the
parametrization of (z,y)-coordinates of the line constituting the intersection of the
half plane and z = 2, let us say I(s) = —(s,as), s > 0, for some a > 0. We call
I = (6, p;) its lifting to polar coordinates around (zs,7ys) as above. We call o the

planar curve whose components are the (z,y)-components of ¢,,, and & = (0,, p,)
its lifting to polar coordinates around (zs,ys). Since 7(0) = o(0) = [(0%) = (0,0),

then 7(0) =&

Let us cal
Sp < 51 < ..
large, we hav

(0) = 1(0) = (60, po).

1 m the integer m = W (o, (x2,¥2)). Then there exist numbers 0 =
. < $m < 1 such that 8,(s;) = 2j7 + 6. Now, if 25 is sufficiently
e that o(1) € {z < 0} and we can conclude 0,(1) > 2(m + L)w + 6.

Thus, if we set §,..1 = 1, then s, < $p41. We will show that for each 1 < 5 < m

5((85-1,8541)

intersects the curve 7(s) + (25, 0).

Let us observe that since 7 is well approximated by the segment joining (0, 0)

and (3:2 3 y2) )

We also have

Besides, pi(s)
7+ (24m,0) a

hen

bp—m < Oy(s) <bBg+m forallsel0,1).
that

B —m < Oy(s) <O +7 forall s € (0,c0).

— 0o if § = ++oo. Thus, the curve L; obtained by joining the curves
nd [ + (2j7,0) is contained in the set

((27 — D)m -+ 0o, (2§ + 1) + bp) % (0, 00).

L; does not lllave self-intersections, so that it separates the half-plane p > 0 into
two components, one of them containing the set {# < (2 — 1)w + 6} and the
other {# > (2j -+ 1} -+ 6p}. Therefore, for all 1 < j < m, &(s;, 8;11) intersects

L;. Since o d
intersects 7 +
that these co
a; € (sj_l,sj
if jy # jo the
i + (272, 0)

oes not intersect I, & does not intersect I + (24, 0). Hence &(s;, 5511)
- (247,0), and the claim is thus proven, see Figure 7. Next we see
rrespond to distinct intersections the original coordinates, Now, let
;) be such that &(a;) lies on the curve § + (2j7,0). We have that
n 5(aj;) # &(aj,). In fact, if otherwise, the curves 4 + (24;7,0) and
would intersect, and then the curve n would self intersect, and this

does not happen. Thus, for all 7, there is a b; such tat &(a;) = 7(b;) -I- (24, 0), so

that o(a;) =
U(z) and S(

n(b;). Since o is one-to-ome, all points o'(a;) are distinct, and hence
2>) intersect at least at m — 1 points. This concludes the proof. O
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EXISTENCE OF GROUND STATES

4 Existence of ground states:
Proof of Theorem 0.1

In this chapJer we will carry out the proof of Theorem 0.1, which follows as a
corollary of the results of the previous chapter. Let us consider first the situation

in part (a) off the theorem. Part (b) is actually symmetric. Then we fix a number
Ni +2

g with ¢ >
given k > 1,
orbits xo(t)

W#(Os) with the properties that z(£) > 0 in (—o0,Tp),

and Ty — Too

Proposition 3.1 tells us that part (a) holds true if we show that
there is a number py < 2= such that for pr < p < NEZ there exist
(s0(t), o(t),20(2)) in TWH(00) a1 Xeolt) = (o (8], Yo 1), Zee(t)) i

Zeo(t) > 0 in (T, +00)
is not identically zero and has at least 2k - 1 zeroes in (T, Tp) . To

do this, we need first the following fact.

Lemma 4.1 |Assume p = Y22 and q > p. Let (z(t), y(t),
W(Op) with|z(t) > 0 and :r:(t) >0 ast — —oo. Then
(i) z(t) > 0 for allt € IR.

(i) £(t) defined by transformation (2.4} is uniformly bounded and remains away
from zero as t — oo.

Proof. This

N2
p= 3t <y,

Proof of Th

of Proposition 3.1 with and arbitrary large & provided that p is sufficiently close to
Ntz

z(t)) be any trajectory in

result is nothing but a restatement of Proposition 1.3 for the case
in terms of the solution after changing variables. O,

eorem 0.1 part (a). We will check the validity of the assumptions
the critical exponent. Let us fix first p = Let X0 (f) be the only trajectory of
(2.3) with z-component e?* whose orbit comc1des with W#(Py,). Consider also any
(fixed) trajec'ory x(¢) in W*(Op) which does not coincide with xoo(2). Let Zoo(t)
and Z(?) be their respective first coordinates in the transformation (2.4). We claim
that Z — T has an infinite number of zeros. We present two different. proofs of this
fact:

Proof 1. et t,, be any sequence with £, — +co. Let us set Z,(t) = Z(t, + £).
Then from the previous lemma, Z,(¢) is uniformly bounded above, and below away

from zero. Z,) satisfies the equation
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Nt2 - -
B4 FN T e 6,5 — BF, =0, —oo<t< +oo, (4.1)
with 6, = e~ = — 0. By a standard compactness argument, it follows that, passing
to a subsequence %, — Z, uniformly on compact intervals, where T solves

2 —

F'+FEVE — fE=0, —oco0<t< +oo, (4.2)

Z is bounded| above and below away from zero. Besides, since Z and Z,, do not
coincide, and [x is the only trajectory in W*(P,,) and Zo.(t+1t,) — ﬁ;ﬁ uniformly
on compacts,|then Z is non constant. But the only solutions positive and bounded

away from zero of the above equation are periodic, and cross the constant value

B 7T an infinite number of times. This proves the claim. O

Proof 2. When p= % we have that in the "-coordinates there exists a foliation
constituted by cylinders, which is invariant for the flow associated to system (2.5),
which have a's their cross-section in the plane Z = 0, each of the periodic orbits
of the two-dimensional flow when restricted to that plane. This happens because
this system is normally contractive, see [16}. On the other hand, the orbits remain
bounded, and also away from the plane x = 0, as follows from Proposition 1.3 .
Therefore eaclh orbit in W*(0,) must accumulate into one of those periodic orbits.
This shows that each orbit which does not coincide with W*(P,,) winds around

that one-dimensional manifold infinitely many times, as desired. O

Now we clontinue with the proof of the theorem, part (a). Let us consider an
interval [, ty] where one sees 2k 1 zeros of & — . For fixed ¢, we take a number
p slightly smaller than % Then in the ~ coordinates, W*(P,) remains as close
as we wish on each given compact interval of the Z-coordinate to the trajectory
Koo 1f one chaoses p close enough to critical. Similarly, one can find a trajectory in
W™(Og) very|close to X for all p near critical. Since the 2k -+ 1 zeros of & — %, are
simple, the same will be true for those close-by trajectories, in the interval (1, ts)
for p sufficiently close to critical. In this way, the assumption of Proposition 3.1 do
hold in the situation described in (a) of Theorem 0.1 and the result hence follows.

0.

The proof of assertion (b) of Theorem 0.1 is actually symmefric. It can be
understood as basically a reflection of the situation just described. We need the
following analogue of Lemma 4.1.
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Lemma 4.2 | Assume ¢ = Y22 and 5 < p < ¢. Let (z(2),y(t), 2(2)) be any

2
t} > 0 and z(t) > 0 as t — +oco. Then

o

trajectory in W*(Og) with z
(i) z(t) >0 f‘or allt € R.

(i1) z(t) is un‘.z'formly bounded and remains away from zero as t — —oo.

Proof. This iassertion follows in a symmetric manner to that of Lemma 4.1, after
a slight modiﬁcation of Proposition 1.3. O

After this% result, the proof of part (b} of the theorem follows by a similar per-
turbation analysis as that carried out in part (a), except that now we consider

|
t — —co. This concludes the proof of Theorem 0.1. O
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SINGULAR AND SLOW-DECAY
GROUND STATES

5 Singular and slow-decay ground-states:
Proof of Theorem 0.2

In this chapter we will carry out the proof of Theorem 0.2, for which the main
ingredient are again the arguments developed in Chapter 3. We will prove part (a)
of the theorem. Part (b) follows from a symmetric argument.

Let us fix ¢ > % We recall that a singular ground state with slow decay exists
if and only if the one dimensional manifolds W*(F,) and W*(P,,} coincide, while
a singular ground state with fast decay is present whenever W*(Fp) is contained in
W9(Os). Our task is then to show that there is a sequence py 1 % so that one
of these two possibilities takes place at p = py.

Let us consider the solutions x(%) and X, (£) with z-component e whose tra-
jectories coincide respectively with W*(P,) and W*(Py,).

Referring to the notation introduced in Chapter 3, especially in the proof of
Lemma 3.3, we consider for a z > 0 the unstable and stable z-sections UP(z) and
S5?(z) of W*%(0Op) and W*(Oy) respectively. We consider one-to-one parametriza-
tions, o? and 77, of UP(2) and S?(z) with oF(0) = n?(0) = (0,0, 2) and o?(1) =
¢o(z) = P? and 7°(1) = ¢oo(2) = @P. Let also I(s) be the half line constituted by
the z-section of the plane branch of W*(Oy), contained in z < 0.

Let us consider liftings to polar coordinates around the point (),

57(s) = (05(s), p5()), T (s) = (05(5), P5(s)),  IP(s) = (67 (5), pf ()

of these curves, selected so that

(65, p0) = %(0) = i (0) = &*(0)

defines a continuous function of p. .
Let us consider a number py > 72 such that

WH(Py) N (W¥(Pao) UW*(0c0)) = 0. (5.1)
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Let N(po) be the total linking number in (0, co} of the curves ¢y and @o. Then
N(py) < +oo. From the proof of Theorem 0.1 we know that N(p) grows to infinity
as p T % Let us choose a number py < p; < ny_% with N(p1) > N(po) + 4 and
such that (5.1) also holds at p;. The claim, from which the result of part (a) of the
theorem readily follows, is that there must exist a number p € (po,p1) such that
either PP = QP or PP € SP(zy). We will show this, making a suitable choice of z.

Let us observe first that there is a number M > 0 such that for all p € [py, p1],
zp > 1,5 €[0,1], |p2(s)] < M. On the other hand, since x,(t) does not correspond
to a singular ground state for any p € [po,p1], it must cross the z = 0 plane. It
follows that if we fix zg large enough we may also assume that [QP—PP| = g2 (1) > M
for all p € [po, p1)- Let us fix such a z.

Let ng be the winding number ng = W{a?°, Q7). Then, enlarging z if necessary,
we may also assume from Lemma 3.1 that N(pg) < ny < N(po) + 1 Now, from our
choice of p; we then have that

W (o™, Q") > np + 3. (5.2)

Let us consider, the translates of the curve I, [2(s) = I?(s)+(2n7,0). Then if M > 0
is chosen large enough, the curves 2 separate the region p > M into two connected
components for all p € [pp, p1]. Now, 0(s) € (65 — «, 85 -+ x). Let us assume that
the point 57°(1) is between 20 and I5%,. (Actually n = ny or n = ng — 1). Then,
by continuity, 67(1) is between £ and I, for all p € [pp, p1] since this point always
isin p > M, see Figure 8. We conclude that

071 (1) < bo(py) + T+ 2m(n+ 1) < 2mw(ng + 2)
and hence the winding number
W{o?*, Q") < ng + 2.

We have reached a contradiction with (5.2}, and hence the assertion of Theorem
0.2 in its part (a) holds. The proof of part (b) of the theorem is analogous. O
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INFINITELY MANY GROUND STATES

6 Infinitely many ground states:
Proof of Theorem 0.4

We want to find infinitely many fast decay solutions to (0.9)-(0.10) under the as-
sumptions of Theorem 0.4. As we have already seen, this means that we look for
intersections between the invariant manifolds W$(Oe) and W¥(Op).

Our task is to show that under the conditions of Theorem 0.4, parts (a) and (b),
there are infinitely many distinct trajectories lying in W3 (Ow) N W2(0p). Recall
that such trajectories must remain positive in their z-coordinate.

The strategy to establish this is as follows: we stand on a neighborhood of P,
and prove that the curves corresponding to the sections of these manifolds, S(Z)
and U(Z%), for small Zy, actually intersect infinitely many times, thus giving rise to
infinitely many of the seeked trajectories. The proof is based on analysis of the
linearization of system (2.5) in a neighborhood of P.,. In the linear system S(Z) is
seen as a spiral, while U(Z) is almost seen as a segment crossing at the vortex of
S(Z). Thus, in this small neighborhood of P,, one finds infinitely many intersections
between S(Z) and U(Z), which represent infinitely many ground states.

We say that two systems 2/ = f(z) and ¢ = g(y) with respective singularities
Py and Qg are C'-equivalent around these points, if there is a C'-diffeomorphism
between respective neighborhoods of these points which transforms trajectories of
the first system into trajectories of the other, preserving orientations. The following
fact will be important for our purposes.

Lemma 6.1 System (2.5) is C'-equivalent to its linearized system around Po. So
is system (2.3) around Py, provided that relation (2.9) holds. Moreover, the associ-
ated diffeomorphisms preserve orientation.

Proof. To this end we employ the following result, due to Belitskij, [1], [2].

Lemma 6.2 Suppose we have a system of the form z' = f(z) with f(x) = 0
and f smooth in a neighborhood of o. Assume also that zy is a hyperbolic saddle
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point of f with eigenvalues Ay,...,A,. Assume also that none of the relations
Re )\; = Re A\j+Re Xy, is fulfilled. Then the system is C'-equivalent in a neighborhood
of zg to its linear part.

This result applies immediately to system (2.5) around P, if the unstable
eigenvalues are not real, since we have two eigenvalues with the same, negative
real parts, and a third eigenvalue which is positive. Then no of the relations
Re); = Rel; + Re)y is possible. The same happens in system (2.3) around
P, if its stable eigenvalues are not real. If the unstable eigenvalues of P, are real,
then we see that the only possibility to have one of these combinations is that

_a+J@—4fp-1) a-+/a>—4Bp—1)
+ 2 - 2 ’

namely

5 =y/a - 4f(p~1).
But this is impossible since 7 > &, as checked from the definitions of these numbers.

d

We prove first the assertion of part (a) of Theorem 0.4. From Lemma 6.1, we
know that in the situation here considered (2.5) is C'-equivalent in a neighborhood
of P, to the following linear flow:

I’ =7,
¥ =aZ +bj+cz (6.1)
F=dz

where
e=B-p), b=d, c=—f, d=—

After a suitable linear transformation, we check that this system is also linearly
equivalent to a linear system of the form

j’

Il

=

(6.2)

[l

o
S g

+

[t

3

!

A

Let @ : V -+ U be the diffeomorphism setting the equivalence between (2.5) and
(6.2), where V is a neighborhood of P, and ¢/ one of O. As in the original system
(2.3), the origin in (6.2) is a repelling focus when the flow is restricted to the plane
z = ( and the Z-axis is its corresponding stable manifold.

39




Let us recall that the stable manifold of O, contains the stable manifold of
P, in its closure, hence in the neighborhood V of P, W*(Os) NV # . To this
intersection, it corresponds, through the equivalence ®, an invariant manifold M of
system (6.2) inside U. Let 9(t) be the image through & restricted to {Z =0} NV,
of the orbit corresponding to the heteroclinic trajectory which connects Py, to O
It is checked, after making 2/ and V smaller if necessary, that the manifold M must
be constituted exactly by the set of points of the form (3/(t), ) which lie inside ¥,
see Figure 9.

Let %(t) be the solution of (2.5) which corresponds to a slowly decaying solution
of (1.1)-(1.2), which exists by hypothesis. Recall that this trajectory corresponds
precisely to the (one-dimensional) stable manifold of P, hence its image through
d for all sufficiently large ¢ is precisely the part of the z-axis inside U{.

Let us consider a small Z; so that the plane Z = Z; intersects V. Let us con-
sider also the image of W*(Op) through the equivalence ®, near Py,. This two-
dimensional manifold lies on a transversal section to the linear flow of (6.2), given
by & = ®(VN{Z = Z}). Now let us consider the transition map which goes from &
to the plane Z = § with a sufficiently small §. Summarizing, we have a function H
defined on VN {Z = %} with values in /N {Z = ¢} where H is the composition of &
and the transition map. We observe that H is a C*-diffeomorphism. Since trajecto-
ries cross transversally the plane Z = %, so does W*(0,). Hence W*(Op)N{Z = %}
defines a C! curve, except possibly at its endpoint, which corresponds to

{Pl} == Wu(P(}) n {2 = 20}.

Since H is a diffeomorphism, it follows that the set H(W*(Og) NV N {z = %)}) is a
C! curve, which we call « inside the planar section / N {Z = d} which contains the
point P, = (0,0,5). Note that P, # H(P,) since P; is not in W¥(Op).

Let us recall that the image through the equivalence of W*(Oy,) intersected
with ¢ N {Z = 6} is precisely the curve o(t) = (1¥(t), ), a spiral around the point
P = (0,0,4) which can be explicitely computed. Summarizing, we need to show
that the spiral curve o around P and the C! curve v which contains the point
P in its interior do intersect. FEach intersection will correspond to a trajectory in
W(0g) N W*(Ou)- It follows from Lemma 6.3, stated and proved below (the case
@(0%) finite) that these curves must indeed intersect an infinitely many times, each
of which corresponds to a solution of (0.9)-(0.10), see Figure 10.

Now, the remark after Lemma 6.3 and the continuity under parameters of the
solutions of the system, implies that if p and ¢ are slightly perturbed, a large
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number of these intersections will persist. This proves the assertion of part (c) of
the theorem in case that the conditions of part (a) hold.

Let us now consider the case of part (b). In case that (0.15) holds, and there
exists a singular solution with fast decay, the proof is symmetric to the one above.

Thus we assume that there is a singular solution with slow decay (a very de-
generate case, which we cannot a priori discard) and that (0.15) holds. This means
that the unstable manifold of P, coincides with the stable manifold of P,. We
consider a function H defined similarly as in the proof of part (a), except that now
the endpoint of the curve « is assumed to coincide with (0,0,8). The stable eigen-
values of F; are complex, so the curve gamma is a spiral. In fact, this follows again
from the Cl-equivalence orientation preserving with the linearization around Py, in
a neighborhood of these point, which implies this character in a section Z = 4§, a
small 8. then the flow lifts this section diffeomorphically toward Z = --co, namely
to z = 07. If the unstable eigenvalues of P, are complex, then as before the cor-
responding curve o is an spiral. Both spirals have same endpoint, they however
wind in opposite directions, as it is easily argued, see Figure 11. In such a case,
Lemma 6.3 for (0%} = —co now applies. If the eigenvalues of P, turned out to
be real, o would not be a spiral but a C* curve up to its endpoint. This is again a
consequence of C-equivalence with the linearization, as stated in Lemma 6.1. This
situation makes again Lemma 6.3 applicable.

Finally the remaining part of assertion (c¢) follows again from the remark after
Lemma 6.3. This concludes the proof of the theorem. O

Next we prove the topological facts used in the proof of the theorem, which are
included in Lemma 6.3 below. Let Fp be a point in the plane. We consider a spiral
curve ¢ around B, of the following form.

o(t) = Py + p(t)(cos pu(t),sin u(t)), te€[0,00).

We assume p and ¢ are continuous, that 0 < p(t) < p(0) for ¢ > 0, that p(£) — 0 as
t — 00, and also that p(0) = 0 < p(t) with p(t) — +oo as ¢t — oco. Let now (s),
s € (0,1] be a continuous curve of the form

v(s) = Py + r(s)(cosf(s),sinb(s)), s€ (0,1].

with r(s) > 0, 8(s) continuous functions in (0, 1] such that r(0F) = 0. 8(s) satisfies
that either 8(0%) = 6, a finite number, or #(0") = —oco. We also assume that both
o and v do not have self-intersections.

We have the validity of the following fact.
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Lemma 6.3 Let o and 7y be curves as above. Assume additionally that v(s) < p(0)
for all t € [0,1] and that ¥(1) # Py and does not lie on the curve . Then the
curves v and o intersect an infinite number of times.

Proof. We lift the curves v and ¢ to the universal covering of the plane without
Py, the polar coordinates plane around Py, .(r,#), r > 0, # € IR. Then the a lifting
of o is of course given by
&(t) = (p(t), u(t))

and that of v by 3(s) = (r(s),8(s)). From the assumptions made, Jordan’s theorem
implies that the curve 7 separates the strip (0, p{0)] x IR of the r-# plane into two
components A_ and A, to the “left” and to the “right” of the curve -y respectively.
Also, the curve 7 lies entirely inside this strip. Consider the family of translates
Fx = 4 -+ (0, 2k7), which are also liftings of . Given a number n, consider a f,
such that p(t) > u(ts) p(t) < 1/n for all £ > ¢,.. The curve o splits again the part
of the A, strip with 8 > pu(t,) into two components A; and AF. If 0(0F) = 6,
is finite, we extend 7 with the half of the #-axis to the left of (0), Then, if & is
chosen sufficiently large, the following happens: there are points of 4; which lie on
Ay, while necessarily 4;(1) lies on A}, it follows by connectedness that the curve
¥k intersects ¢ somewhere in A,. Since the r-coordinate of this point is less than %,
and n is arbitrary, this inherits infinitely many intersections of the original curves
« and o, as desired. O.

Remark. The topological nature of the above argument yields its “stability” in
the following sense: There exist numbers €, sg, £ such that for any continuous
curves o1(%), t € (0,00] and v1(s), s € (0, 1] such that

|o1(®) = o (@) + Im(s) — Y < &

for all ¢ € (0,t], s € [sg, 1], there are at least k distinct intersection points of the
curves oy and 7.
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NONEXISTENCE OF GROUND STATES

7 Nonexistence of ground states:
Proof of Theorem 0.5

In this chapter we will perform the proof of the nonexistence result Theorem 0.5.
Thus, we fix ¢ > % We will show that if p is taken sufficiently close to %,
then no radial ground states of (0.9) (singular or non-singular) exist. The argument
presented below is one of perturbation: No such a solution exists if p = NL_Q This
situation in fact remains true for small perturbations in p.

We consider the initial value problem
N-1

u" + ek +ul=0, r>0 (7.1)

2'(0)=0, u(0)=a>0. (7.2)

Let u,(r) be the unique solution of this initial value problem, whose existence was
proved in Chapter 1. Our purpose below is to analyze the behavior of these solutions
separately in the cases o — +o00 and o — 0.

Let us denote by z,(2) and Z,(¢) their Emden-Fowler transformations, namely

2t

Ta(t) = e Tug(el), Folt) = e Tug(et).

As have seen, ,(t) has associated a trajectory of system (2.3) in W*(Oy), xo(t) =
(zalt), yo(t), €?*). We discuss an important fact about the behavior of x,(t). The
following holds: as @ — --00 a part of the orbit, x,(t), gets very close to the
heteroclinic orbit connecting Op and Fy. To see this, let us notice that dy(r) =
o ug (e~ T r) satisfies

N-—-1
’U;” -+ Tur + 'U;?}. + a,—(q‘—jﬂ)ui = Oa >0 (7'3)

2(0)=0, u(0)=1. (7.4)

Letting o — +-co we get by continuity under parameters of this initial value prob-
lem, that 4, (r) approaches over compacts of [0, co) as & — +oo the positive solution

of
N-1
'+ —u' +ul =0, r>0 (7.5)
T
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2(0) =0, u(0)=1. (7.6)

which after the Emden-Fowler transformation corresponds precisely to the hetero-
clinic orbit connecting Oy and Fp in the plane z = 0. However the relation between
the corresponding transformed vector %,(t) of i, and x,(t) is simply a translation:

Ra(t) = Xa(t — t4)

where ¢, = gg—llog cx. This means that a piece of the orbit associated to x, ap-
proaches the heteroclinic. As a consequence, we have that there are points of this
orbit which become arbitrarily close to £y, as @ — oo. Now, let us consider the
unique trajectory x.(t) with z-component €, corresponding to the one-dimensional
unstable manifold of Py, W*(F,). Associated to this is then the (unique) singular
solution of (7.1) given by ue(r) = 'r_*rz_lm*(log r), where z, is the z-component of
X .
For large «, the trajectory x, enters a neighborhood of 4, where the dynamics
of the system is well described by its linear part, in the sense of Cy-equivalence, see
Hartman and Grobman Theorem, e.g. Theorem 1.1.3 in [8].

Let us recall that Fp is a hyperbolic attractor on the z = 0 plane, either a focus
or a node, while it has one expanding direction transversal to this plane, precisely
the tangent line to the one-dimensional unstable manifold of Fy. Examination of the
linear system yields that an orbit not contained in the z = 0 plane which gets close
to Fy, turns upwards, staying close to W*(FP,) in an entire neighborhood of Fy. Since
this neighborhood is independent of ¢, the conclusion is that in a neighborhood of
Py, the trajectory of x, gets uniformly close to W*(F;) as & — +o0. Continuity in
the initial conditions of the initial value problem associated to the system implies
then that given any compact subset of the half-space z > 0, large alpha implies %,
stays uniformly close to x. on compact subsets. Summarizing we have proven,

Lemma 7.1 Givene > 0, 0 < 4§ <1 and the region As = {6 < z < §7'}, there is
a number & such that for any a > & the part of the curve, X,, contained in A; lies
within en e-neighborhood of x..

Now, let us consider the situation in which e — 0. The following fact holds.

Lemma 7.2 Given numbers % <p< ﬁ—i‘g < q there is a positive number a such
that for any % <p <P and all & < a there is a unigque point t, with E(t,) = 0.
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Proof. We consider now directly problem (7.1)-(7.2). Let us set

Go(r) = o Yug(a~ T 1)

»

Then i, satisfies

N —

N 1., . pe
b + @, +ih, +o?Pil, =0, r>0

@ (0) =0, Ta(0)=1L.

It follows by continuity of the solution of this problem in e, that @, — %o uniformly
over compacts, where 1y is the unique solution of the initial value problem

N-1
v+ —u'+uf =0, r>0
T

£(0) =0, u(0)=1.

This solution vanishes exactly once at certain number 7* > 0, with uy'(7*) < 0 since
p is subcritical. r* is bounded by some number depending only on 5. Hence for all
« sufficiently small, the same will happen at certain point r,. This concludes the
proff. O

Proof of Theorem 0.5. Let us fix g supercritical, and consider first the case
_ N
P=53 !
this situation. In this case # = 0, hence the equation satisfied in the” coordinates is

We claim that no solution of (7.1) positive in the interval (0, co) exists in

' —ai +3 +e 5T =0
Let us observe that this solution satisfies that Z(t) — 0 and #'(£) — 0 as £ — —oo,
hence integrating the equation from —oo to ¢ we obtain the relation

#(1) - aa(t) + [ ;_:zp(f)df <. (7.7)

We have that #(¢) and #(¢) are uniformly bounded. The proof is similar to that car-
ried out at the beginning of Chapter 1. For instance boundedness of % is equivalent
to that of the function rﬁu(r). Integrating (7.1) we obtain that

1 r _
> TN—I/O u?(s)s™V ds.

In particular u is decreasing, so that,

—u/(r)

—u'(r) > ﬁup(r).
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From here it easily follows that u(r) < Cr 71 and u/(r) < Cr~# which imply
that £ and %' are bounded.

Coming back to relation (7.7), we obtain from the boundedness of # and #
that [0 ZP(r)dr < +oo. Hence there is a sequence %, such that #(¢,) — 0 and
#(t,) — 0. But, invoking again relation (7.7) at ¢ = ¢, and letting n — oo we
obtain [ Z?(7)dr = 0, hence £ = 0, a contradiction which proves the claim.

Let us now proceed to the proof of the theorem. We see that the singular solution
x, crosses transversally the plane z = 0 at some height z = Z. From Lemma 7.1,
it follows that for each p close fo % and all x,’s with sufliciently large «, let us
say a > b > 0, also cross z = 0 before reaching height 2z. On the other hand, from
Lemma 7.2, we see that all X],s with sufficiently small e, say 0 < & < g, also cross
the plane Z = 0 and the distance from the crossing point to the Z-axis is bounded
below, away from zero.

Let us now consider z, with « € [a,b]. All 2,’s vanish before infinity if p = %
Continuity of the solution of the initial value problem in p then implies that for all
p sufficiently close to N/(N — 2), and all & € [a, ], z, also vanishes. Summarizing,
we have shown that no solution of problem (7.1) — (7.2) can remain positive for all
7 > 0 if p is sufficiently close to E,—li—g This concludes the proof of the theorem. O
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