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Resumen

Cotas para la menor norma en una clase de ideales.

Damos un método analitico para obtener cotas superiores para la menor
norma entre todas las normas de ideales enteros en una clase de ideales de un
cuerpo de nfimeros. Aplicando esto a cuerpos de grados pequeiio, pudimos
mejorar sustancialmente las mejores cotas conocidas hasta el momento.

Contando puntos de altura relativa acotada.

Sean L/K una extensién de cuerpos de nimeros, O ;5 el subgrupo del
grupo de las unidades O}, consistente en los elementos que son raices de
unidades de Op. Consideremos la accién de OF ;. sobre el espacio proyec-
tivo 1-dimensional P*(L), dado por u - [z,3] = [uz,y], para v € Of ¥y
[x,9] € P}(L). Sea Hy(X, P) la altura relativa a K para puntos P en el es-
pacio proyectivo 1-dimensional P1(L). Sea N(L/K, B) el niimero de puntos
P en PY(L*)/Oj i con altura relativa Hy(X, P} < B.

1

Demostramos la férmula N(L/K, B) = CB? + O(B?' izQ1), donde C es
una constante que depende de invariantes aritméticos de L/ K tales como €l
regulador, niimero de clases de ideales y discriminante.




Abstract

Bounds for the smallest norm in an ideal class.

We develop an analytic method for oblaining upper bounds for the small-
est norm among all norms of integral ideals in an ideal class of a number field.
Applying this to number fields of small degree, we are able to substantially
improve on the best previously known bounds.

Counting points of bounded relative height.

Let L/K be an extension of number fields, let O} Jic be the subgroup of the
unit group OF, consisting of clements that are roots of units of 0. Let O, /i
act on the 1-dimensional projective space P1(L) over L by u-[r,y] = fuz,y],
foru € Oy and [x,y] € P(L). Let Hy(I,P) be the height relative to
K for a point P in PY(L). Let N(L/K,B) be the number of points P in
PY(L*)[ O} ) with relative height HL (I, P) < B.

B |
We proved the formula N(L/K,B) = CB* + O(B2 Q) where C is a
constant depending on invariants of L/ K such as the regulator, class number
aund, discriminant.



Introduccién

L
1

En esta tesis se resuelven dos problemas, uno de teorfa analitica de
nimeros y el otro de teoria algebraica de nimeros. Debido a que estos dos
problemas son independientes, en cada seccién se dard una introduccién mas
detallada, con sus principales resultados junto con su propia bibliografia.

Consideremos un cuerpo de niimeros L con [L : Q] = n = r| +2r,, donde
L tiene ry incrustaciones reales y 2r, incrustaciones complejas. Minkowski
prueba que existe una constante C(ry,72), que depende solo de r, y ry, tal
que para cada clase de ideales C, existe un ideal entero oz € C que satisface

N(ac) < C(r1,72)y/|dL|, donde N es la norma y dj, es el discriminante del

cuerpo L.

Obtener una buena cota superior para la constante C'(ry,r;) tiene gran
importancia para el cilculo del mimero de clases de ideales de un cuerpo.
Ademas, ya que N(ac) > 1, se obtiene una buena cota inferior para el discrim-
inante del cuerpo. En [N, pp. 82, 129] se encuentra una extensa bibliograffa
de trabajos relacionados con esta cota.

Minkoswki obtiene la cota [N, p. 96]

[ r
el s ()",
Roger y Mulholland [R], [M], obtienen que para n suficientemente grande
C(ry,ma) < (32.5)""12(15.7)~"2.

Luego Zimmert [Zi] usando métodos analiticos, obtiene la mejor cota dada
hasta el momento para n suficientemente grande, a saber

Clry,ma) < (50.7)F19.97"2,

Ademds Zimmert obtiene las mejores cotas conocidas hasta ahora, cuando el
grado de L es pequefio,

Modificando el método de Zimmert, se obtiene en esta tesis un método,
que al aplicarse a cuerpos de grados pequefios, mejora sustancialmente las

vi




cotas dadas por Zimmert. En la introduccién de la primera seccién se expone
este método, junto con una tabla con las cotas obtenidas.

Fl segundo problema tratado en esta tesis se refiere a contar el nimero
de puntos en el espacio proyectivo P1(L) sobre un cuerpo de néimero L, con
altura relativa a un subcuerpo K acotada. Bergé y Martinet [B-M] definen en
el espacio proyectivo n-dimensional P*(L) una altura relativa a una extensién
L/K de cuerpos de niimeros. Esta altura tiene la propiedad de ser invariante
bajo cierta accién de un subgrupe Of sk del grupo de unidades de L. Bergé y
Martinet demuestran que el niimero de puntos de P*(L) médulo esta accién,
con altura relativa acotada, es finito. Estos resultados plantean el problema
de contar los puntos, médulo la accién de O /K> COTt altura relativa acotada.

Debido a la complejidad de esta altura, en esta tesis se estudia el caso
n = 1. Para obtener este niimero, nos basamos en el trabajo de Schanuel [S]
para la altura clésica. Schanuel demostré que el niimero de puntos P € P!(L)
con altura clasica acotada por B es

DLB? + O(B" Q)

donde Dy, es un término que involucra las constantes clisicas de L: el dis-
criminante, regulador y el niimero de clases. Interesa generalizar este cilculo
al caso relativo L/I para conocer las constantes andlogas a las clisicas en
el caso relativo. Resultan ser, en este caso, el discriminante, regulador y el
nimero de clases cldsicos de L y el regulador relativo de L/K introducido
por Bergé y Martinet,

Sefialamos que en el caso relativo, los cilculos y problemas son bastante
mds engorrosos que en el caso absoluto (X = Q). En la introduccién de la
segunda seccion se expone una sintesis con los resultados obtenidos relativos
a este problema.
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1 Bounds for the smallest norm in an ideal
class

1.1 Introduction

Let K be a number field with [K : Q] = r, + 2ry, where K has 7 real
embeddings and 2r, complex embeddings. Minkowski proved that there
exists a constant C(ry,r;), which depends only on r; and r2, such that
for any ideal class C of X, there exists an integral ideal o € C satisfying
N(ac) < C(r1,r2)y/|dx]. Here N is the absolute norm and dy is the discrim-
inant of the field K.

By results of C. A. Rogers [R] and H. P. Mulholland [M], for [K : Q]
large,

N(ac) < ((32.5)F (15.7)7) ™ /[,

The best bounds so far for the constant C(ry,r,) were given by Zimmert [Zi]

in 1981,
N(ec) < ((50.7)#(29.9))/[dc],

again for [K : Q] large. He also obtained the best known bounds when the
degree of K is small.

Before Zimmert, the bound was always obtained using methods from the
geometry of numbers [N, p. 129]. Zimmert introduced in [Zi] an interesting
analytic method to obtain his bound. In this section of the thesis, we will
modify Zimmert’s method to obtain, for fields of small degree, a bound which
improves on Zimmert’s, In Table 1 below we give both Zimmert’s bound and
the new bound found for each case.

The main technique for obtaining the new-bounds is given by Theorem 1
and its Corollary.

Theorem 1. Let K be a number field. Given an ideal class C, let a¢ be an
integral ideal in C with minimal norm, and let (¢(s) = Y =N(ag) Gm™m°
be the partial zeta function corresponding to C. Then for anyy € R,

m=N(ac¢)




where

F@) = o [ (P i) Rs)as, 1)

27ri -] —i00

) = (_L(:)_) (__I‘(:)__) >0
Pt+y))  \TG+149))

R(s) is a rational function such that there exist €, aij, {20 and n; >0,
with

1_}_27)&( 1+2,},)5-— i . L \-1
R(s) (1—[— . 14 ST 1 —ge,g(s-[—au) .

61 > 0 such that R(s) has no pole in the strip —6, < Re s <0. Furthermore
B and ty are positive constants that depend on 1, T2, R(8) end the choice

of v in T(s).
The next result is an immediate consequence.

Corollary. Suppose that there exists a y, € R such that
F(y) €0, for —oco <y < y,. (%)

Then
Nlac) < (toe™)™" \/]di].

" In Table 1 below, we give Zimmert’s lower bound VIdel/N(ac) > Z(r,7,)

and our new lower hound Z;(r,r;) . In the last column we give the smallest

y/ldx| known for K of the given signature (r1,72) [0 2, p.133). Taking C to
be the trivial class, for which N(ac) = 1, we see that no general lower bound

for \/|dw}/N(ac) could exceed the last column.




Table 1.

norory Z(ry,rs) Z1(r1,72) known d|
2 20 1.760 2.137 2,236
2 01 1.400 1.651 1.732
3 30 4,636 6.235 7.0
3 11 3.355 4.340 4,795
4 4 90 14,45 21.21 26.92
4 21 9.749 13.76 16.58
4 0 2 6.792 9.250 10.81
5 50 50.21 79.19 121.0
5 31 32.12 49.57 67.16
5 1 2 21.11 31.02 40,11
6 6 0 188.1 315.0 547.8
6 0 3 46.74 70.98 98.72
8 80 3088 5644 16801
§ 0 4 385.5 635.5 1121
10 10 ©O 58540 121120 7
10 05 3560 6443 14464

To obtain these bounds by the above Corollary, we need to find a suitable
y2- Unfortunately, very little is known in general about the function F in
Theorem 1. Analyzing Zimmert’s technique, we are able to show that some
y2 ‘exists. However, to obtain new bounds we need a far larger value of y,
than the one given by Zimmert’s proof. To do this we must numerically
calculate F'(y) (see Lemma 4 below) and also develop an algorithm to insure
that for all y < y,, we have F(y) < 0. To approximate F(y) we use an idea
of Friedman [F 2], given in the following Lemma.

Lemma 4. For any integer m > 1, F(y) has the form

Fly) = > (") Pi(y) + e(m, y),

=1

m+ L ico
where e(m,y) = 5;11_—2/ +12 ("Y' R(s)T(s)ds tends to zero as m — oo,
m '2-—100




and P;(y) is a polynomial in y of degree af most ry + r,.

The above Lemma allows us to quickly calculate F(y) numerically for any
given y, since |¢(m, y)| can be bounded explicitly and the polynomials P; can
be determined recursively.

It should be noted that given a real number y, we actually prove that
F(y) < —e¢, for some € > 0. The reason for this is that we use a numerical
approximation of the function F(s), which is quite small in the target zone. In
fact, to prove that a given point Y2 satisfies the condition (), i.e. F(y) <0,
for all —co < y < y3, seems to be quite difficult. We need to work carefully
with the computer and numerical estimates. We use PAR]I [C] to calculate
F(y)} and then to obtain the bound .

We now describe the organization of this part of the thesis:

e In §1.2, we present the basic idea of Zimmert’s method (Lemma 1) in
detail, the proof of Theorem 1.

* In §1.3, we give an approximation of the function F(y) (Lemma 4).

¢ In §1.4, we give an algorithm to prove inequality (%) above.

1.2 Zimmert’s method

Zimmert’s method uses the functional equation of the zeta function of an
ideal class. We present his method, slightly reformulated.

Given an ideal class C of K, denote by C' = JxC~! the conjugate class
of C, where Ok is the different of K. The zeta function of the ideal class
{c = Xaec(N(a))™* satisfies the functional equation A(s,C') = A1 -5,0),
where

A(s,C) = ( li—’:l)arn,b(s) Ce(s),

) () @

I‘a,b(s)

n = [K:Q], a=r;j+ry, b=rs.




For 4 > 0, consider the auxiliary functions:
' rfs & rfstL b
P(s) = Tasld _ _ 2 2
) Lob(s+2v+1) =y M(2+144) )

—s - b
T(s) = fa=d o (0(F) \( o(%
) Lop(s+27+1) T2 iy M(g+1t7) )

and a rational function R(s) such that:

o (2 (L g, g

with e;, a;;, [ >0 and n; > 0.

Lemma 1 (Zimmert). Let f(s) be a Dirichlet series with non-negative co-
efficients, convergent in the halfplane Re(s) > 1. Then for any z > 0 and
T>1,

0< / T 2 R(s)P(s) (s)ds. (5)

T 27t Jrmico
Proof. (Zimmert [Zi]) To prove the Lemma, it suffices to prove that
0<— [ e Ris)P(s)a 6
<o [ R P(s)as, (©)

" The convergence of (6) is given by the condition (4) for R(s), because
we have |R(7 + it)| < 73, for some constant M. This is because in (4)

above, n; > 0 by hypothesis. Consider the infinite product representation
for ' [G-R, p. 944]

1 o 1\% -1

I(s) = - [O+~)@+f)].

5 n n

Using this and denoting (a + b)(5 + 7) by ¢, we have that P(s) is equal to
5

1+27)“( 1+ 2y °°( 1)‘“( 1+27)“( 142y \?
(1+ s 1-}-3—[—1 1;[;[11+n 1+s-]—2n 1+s+2n+1)'




On the vertical line Re (s) = 7, the partial products P,.(s) converge uni-
formly to P(s), where P, (s) is equal to

) () T (e 3) (0 Y (e 22y,
(1+ s 1+ s+ 1 ,;H 1+n 1+s+2n 1+s+2n+1 ’

=1

It is clear that for all m, the function ¢ — [P,(r + it)| is monotonically
decreasing for ¢ > 0. The sameis valid for the function ¢ —s |P(r+1t)].
Hence |P(7+it)~ Pp(74il)| < P(r)+Pn(r). On the line Re s = 7, |P—P,]
is uniformly bounded, because P,,(r) converges to P(r).

Using this, we obtain

THi{oo T4i00

lim 2*R(s) Py (s)ds = j =*R(s)P(s)ds.

m—oo fo_ s T—i00

Hence, in order to prove the Lemma, it is enough to prove that

4 1 T41c0

< — * .

0< — j . T R(s)Pa(s)ds
We need the following:

Claim: Leta; > 0 and n > 1. Then forz >0,

LT )~Uds >0
— x s+a; s .
278 Jr—ico ]'.__,'E( + J -
J_
In fact, we can assume that 0 < ag < a; < -+ < a,. If we write

f[(s + ;)™ = (s + ap) ™! f[ (1 4 aj)—l |

=0 3=0 8 + ay,

and multiply out, then we see that [Ti<o (8 +a;)"! has the form
E?f’__z bi(s 4 an)™7, with b; > 0. Using the formula, valid for 7 > 0,

T+l. . -5 lo!-"" i~
—I—f O051:"(.5‘ +a,)7ds = T L(T—-J% for # > 1 ,
271 Jr—ioo 0 forz <1

the claim follows, and so (6} is proved. a

Zimmert uses the classical [L, p, 266)

6




Lemma 2. Let f(s), fa(s) be as in the above Lemma and suppose thal both
f(s) and fa(s) can be extended analyticaly to the whole plane, ezcept for a
simple pole at s = 1. Furthermore suppose s(s — DA*T24(8)f(s) is entire of
order 1. Here Toy is as in (2), with a, b non-negative integers and a > 0. If
for some constant A > 0,

A* Top(s)f(s) = A Top(l — s)fa1 — ),
then limy_,o, t7°f(6 4 it) = 0, whenever

e>0 if 621,
e>2(1-6) i 0<6<]1,
c>%1-28) if §<0.

Proof. The (positive) Dirichlet series f(s) and fz(s) converge absolutely for
Re s > 1. By the functional equation above and the convexity theorem
below, we have the Lemma.

Theorem([L, p. 265-266]): Let f(s) be holomorphic in the strip a; <
Re s < a;. For each § € (ay,a;) assume that f(§+ it) grows at most like
a power of |t|, and let 1(8) be the least number > 0 for which F6+1t) <<
[t|#©O)Fe for every € > 0. Assume also that f(8+1t) << e in the strip, with
some a 2> 1. Then (8) is conver as a function of §.

Indeed, 9(8) = 0 for § > 1, since the Dirichlet series converges. As
can be computed for the I'~factors, Lemma 2 follows from the functional
equation and convexity.

Theorem 1. Lel K be a number field. Given an ideal class C , let ag be an
integral ideal in C with minimal norm and let (¢c(s) = 2 m=N(ag) Gmm ™ be
the partial zeta function corresponding to C . Then, for any ¥ E€R,

m=N(ﬂc)

where notation is as in §1.1.

Proof. In the Lemma above take f(s) = (¢(s) and any 7 > 1. By Lemma
2 and the asymptotic formula [[(z + iy)| ~ e~ Z¥[y[*~3, uniformly for z in
an interval and [y >> 0 [G-S, p. 945)], we can shift the line of integration in

7




(5), from Re s = 7 to Re s = —§;. Thus we pick up the residue at s = 0 and
s = 1 corresponding to the (simple) poles of A(s,C). If we use the functional
equation for this function, we have:

0< n(wR(l)P(l)—-AR(D)T(O))—I— o ] Tk (ﬁ)l_’ R(s)T(s)Ce(1~s)ds,

27t Jfi—ico \
(7)

where £ = QF'J?“QR , A= \/l',%l as above, Ry is the regulator of X and
wg is the numf)er of roots of unity in K,
Hence

AR(0)T(0) 1 00 1 pebutioo [ g2\1-0
zR(1)P(1) —-1< kAR(1)P(1) m=§(nc) Img f—r?;—ioo (“9:;) R(s)T(s)ds.
(8)

ROTO) oo RO) (TO41)\" (1 =
o= ROP Y 7 () (340) v o
and put y = log(mN{a ). We rewrite (8) as follow :

Let

= TR, 3, o ()
toe? — < a,Fly-—1lo
T Nw) S RRODPONG , 2, &\ W)
We note that the hypothesis (4) on R(s), implies that R(t) > 0for t > 0.

Hence B = T(UI%(%‘W > 0. 0
‘Zimmert takes the function R(s) = (3+a) where

(s+8) (s+2v=P) (st2v-a)>
0 < a < f < 7. By estimating of the mtegral in (7) and taking the limit

B — v, he obtained a bound Z(ry,1m) < N - J’ where Z(r,r;) = toe¥ 2

IM /1 I 2
Y(ruyray7) = =i (2l ;"”)-2r2(—(1+7)~log(2))—7 -

and 1o is as in (9). For each signature (rq,7,), he chooses v and « in order
to obtain his bound.

Proposition 1. For all s € C with Re s > —7 and Re s # 1,2,3,. -+, we
have

[T(s)] < IT(Re s)|. (10)

8




Proof. We define

_ _ I(s)
G(s,y) = T +q7=3) (11)
and we obtain
- a 11—~ b
T(s) = a(12s, ) G(§+-7‘3, 1+7) . (12)

To prove the proposition we need the following:
Claim For all v > 0 and s € C with Re s < XY and Re s #0,—-1,-2-..
we have

2

1G(s, ) < |G(Re 5,7)].
For s ==z +4 iy, with = and y real and z #0,-1,-2,--., we have by

[G-R, 8.326]

Mz +iy)]" = ( y )2 -

L L S 1 .

P(z) nl;‘]é, + z+n
Hence
- 2
oo TEaltlen))
G(z,v) e, (1 + (;i_L")z) - -2

This proves the claim, Using the claim and (12) we obtain the proposition.

a

In the next Lemma we obtain, by a method analogous to Zimmert’s, a

point y; = y(§;) that satisfies (*). In general, y; is bad bound, but this
point is important in the algorithmn to obtain new bounds.

Lemma 3. Let § <+ be chosen so that the rational funcion R(s), has the
unique simple pole —f8 in the strip —8, < Re s < —b1, where R(s) satisfies
(4), and & > 0 as in Theorem 1. Suppose furthermore that Res.~g(R(s))
is negative. Let 3y = y1(6;) be given by

ik () (2581 )




Then F(y) <0 forall —oco<y<y,.

Proof. We shift the line of integration in (1) from Re 5 = —§; to Re s = —8§,.
Then

Py} = ()" Res vmop (RS T(-B) 4 o [ (e9)'™* R(s)T(s)ds.

27!‘1' -—52—-1-00

Using 8, < + in proposition 1, we have

s [ () Ry T(s)ds

271 J o5 —ico

T(=46. —b2tioco
< ey lDl Py,

As Fy) <0 if

1 8 1
o< 5 (1~ Res e (RL6) ) ) — g (1200 o Ry ).
a
- (sta) -
Remark 1 Let R(s) = A oton)Grasy With
a<f<y<mm<a,. (14)

Let 8, be such that oy > 8, > f. The point v1(62) given in Lemma 3, satisfies

N (B=)T(=8) \ _, ({8 a)iT(=5)
n2 gl ((m =P —ﬁ)) log (2(62 B @J) - (19)

Proof. First, note that by (14), R(s) satisfies (4). By contition of 62, R(s)
has the unique pole —f in the strip §, < Re s < 0.
Furthermore by the condition 0 < « < B < 6; we see that at ¢ = 0,

2 r )2 . ) Ay
g—::—gggi—:z has a maximum. Furthermore, by the condition by < a1 < ay,

one has [R(s)| < . 52—-3)((5::5)2)24- #y for Re s = —6;. Hence
—bf2+i00 (62 - Ct')ﬂ'
R(s)ds| < . 5}
Lo VRO S G S
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1.3 An approximation of F

We will give an approximation of the function

Fo) = 5 [ (@) Rs)T(s)as,

271 S8 —ic0

given in (1). Recall that

with v > 0 as in (2).
Lemma 4. For any integer m > 1, F(y) has the form

m

Fly) = (") P;(y) + e(m, y), (16)
=1
where
elm,y) = L rbaties (ey)l_s R(s)T(s)ds
Y= 21 m-l-%—s'oo i !
t;—~1
Pi(y) = Y eri d_gyny; o5,
k=0

tj=a forj odd and t; = b for j even, and where ck; and dy; are given by
the expansions near s = j:

o0

(@) R(s) = 3 s 1 (5-3)* and T(s) = 3> dy (s—5)F.

k=0 k=—yy

Proof. The function (e¥)'™* R(s) is analytic in the halfplane Re s > —§; and
T(s) has only poles of order a at s = 1,3, 5,:--and of order bat s = 2,4,6,- - -.
Hence if we shift the line of integration from Re (s) = —6; to Re (s) = m+ %
we pick up the residues of these poles.

Given a pole at s = j of order ¢;, if we write (e¥)' ™ R(s) = (ev)t—7+=2) R(s)
then

b1

Res,=; ((*)'™* R(s)T(s)) = (€)' Y e dpor; 4. O
k=0

11




We shall show that |e(m,y)| tends to 0, and can be considered an error
term. We will prove first that the polynomial P; can be found recursively.
For this we recall that

_ I'(s) A fl—s \*® I 1-s b
S =ty TO=6(50) 6(3+55 1)

as in (11) and (12).
Proposition 2.

a) G(s+1,7) = (v~s)sG(s,7).

1 142yt 21-{-21-—43 1
b) G(s,7) G (5 + 3,7) = M4 0(25,9) = —— @ (2 (s + —) ,27) .

4(y — s)s 2
Proof. The formula [I(s+1) = sI'(s) and the duplication formula
227I0(s)0(5 + ) = /aT(2s) [G-R, p. 946], yield a) and b). 0
Proposition 3. If we denote 152 by w, then

o G, G2, 2
—  92(14y—2w)h ’ d

T(s) 2 (14+2y~—2w) al
and

20 hr-dli+ule 1 1 w), 1) G2 + w), 27)°

G+7=GHe)G+w) - DF (+7-G 1w

T(s) = (18)

Proof. By (12) and using the property T'(1 + s) = sI'(s) in (11) (with 1 +
7 — w), we have
p Gw,7)" GG +w,7)°

(1427 —2w)t

Using b) of the Proposition above, we have the Proposition. O

T(s) = 2

Proposition 4,

a) If G(s,v) = T2 _, a;(s + k) for s near —k (k=0,1,2..-), then near

s=—(k+1)
Ro (1) T, (s2481)’
= == d i i ] ) j
Glssm) = (k+D)(v+k+1) Ej:“’(”k“)'

12




b) For all k, if G(2s,27) = de_10j(s + k) near s = —k, then near

s =—(k+ 1)
o f skt i 2s-4k11) oo skt 3
G(23 9 ) —_ j=0( kill) j=0( 2k+1 ) j=0 ("l"]'i'"!";.)
= 20k + 1)(2k + 1) Ay +Ek+1)
e (2gs+k+1))i
3=0 \ 2y+2k+1 _ ;
(27 +2k+1) >J.:b’(5+k+ -

Proof. a) For each k > 0, we only need to rewrite a) in Proposition 2 as
'_G(S +1, 7)
(Y+hk+1=(s+k+1))1+k—(s+Ek+1))

We note that when s is near —(k+1), s+ 1 is near —k. Hence we obtain a).
b) As in a), we write

G(s,7) =

_ G(2(s +1),2v)
G(2s,27) = (27 —2s) 25 (2y — (25 + 1)) (2s — 1)’
and change —2s by 2(k + 1) — 2(s + k +1). 0

Lemma 5. The polynomials P; given in (16), can be found recursively.

Proof. To obtain the coefficients cy ; of the series expansion of (e?)~*R(s),
we only need the series

Z) s+a=(a—j) + (s+7),

k=0

By Lemma 4, we only need to prove that the coefficient d ; of the series
expansion of T'(s) near s = j, can be found recursively.

By (15) in Proposition 4, to obtain the series expansion of T'(s) near
s =1, we only need the series expansions of 22(+7)_ and 3_137’-? near s = 1, and

13




the series expansions of G(s,7) and (28,27) near s = 0. But, by Proposition
4, if we have the above series, we obtain the series expansions for T'(s) near
$ = 3,5,7---. Note that the expansion series of;_:.—h near s = j is given by

i7) above, and the series expansion 225+ jg

, . = 1 (2%7(2log 2)* ok

Analogously, given the series expansions of G(s,7) and (2s,2v) near 0,
we obtain by (16), the series expansion of 7'(s) near 2 (the other series are
given by #i) or iv) above). By Proposition 4, we obtain the series expansions
for T(s) near s = 4,6,8---. O

Lemma 6.

a) For each m € N and any y € R, we have

,:T—m IT(m + %)l m+%+ioo

et < (e B M
b) If we take R(s) = (-‘I-I-ﬁ)(}:j:))(-ﬂ-ﬂz) with 0 <a< f<y<ay <, we

have ;
|T(m + 3)|
21 +m+ 1)

le(m, y)] < (&)™

¢) For each m € N, we have

ped)- o

[ 6°
(PG + 903 +3+9)" (0 + 1+ Hr(z + 3 4+)
Proof.
a) We have by (10) and (16),

mp)] < (e EEER v )

m-}-%—-s’oo
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b) When R(s) = (sa) we bound [ m+%tf: |R(s)ds] as in to

(2+8)(s+e1 ) (stez)? mtl-
132302
Remark 1, but bounding ﬁ—z-&% by 1. Hence,
m+ L +ico
L7 | R(s)ds] < ——.
m+%—ioo oy +m 4 3

¢) Using I'(1 — z)[(z) = ==, we have

1
F@*ﬂF

- (i) (v rreren)
L3 +D0(F+3+7/ \TG+DPE+1+3+7))
Note that, [T(m + 3)| — 0 quickly as m — . |

—{m+i &
r(=5taly

L(Z+3+7)

“Pn~@+w
PA+%+3+7)

1.4 The algorithm

In this section, we will describe the algorithm used to find a largest possible
point y” that satisfies (x). We implemented the algorithm using PARI [C].

Proposition 12. Suppose |e(m,y)| < £ for all y in an interval [z1, 2], with
é(m,y) as in (16). Let a1 € [z1,25) be such thal there exists § = &(ay) > 0,
satisfying

[a1,01 + 6] € [z1,22),
and

Sgila+8)+ 3 gila)+deM < =2 (19)
Jj€A JjeBuC 2

where

9;(y) = e”(l"j)Pj(y) Jor1 <3 <m, P; as in Lemma 4,

A = {1 <j < m|g; is increasing on [zy,z,]},
B = {1<j<m]g; is decreasing on [z, 2,]},
C = {1<j<m|g; is not monotone on [z,x4]},

15




c=H#C and for each j € C, |¢i(y)] < M for z; < y < .
Then all y € [ay,a; + 8] satisfy (x), provided a; satisfies (*).

Proof. Note that by (16), F(y) = T2, 6;(y) + e(m,y). Ky € [ar, a1 + 8], we
have by the mean value theorem and the definition of A, B and (' and (19),

F(y) <Y gilar+8) + Y gila) + X gi(y) + e(m,y) <

jed jEB jec
< Zgj(ﬂ1+5)+ Z gi(a1)+6c M +¢(m,y) < 0. a
jeA jeBuC

We work with the rational function

(s+e)
(s B)(s +2(2y — B))(s +2(27y — &)’

— oy — il 3 :
where o = 71—4_‘;(%_—1) as in [Zi, p. 373], and 0 € @ < B < 7. Note that
R(s) satisfies (14).

Changing the variable y to 2 = 5¢¥, we have empirically, in general that
F(log(£Z)) seems to have the following shape

R(s) =

where z; = toe** with g, given by (13) or (15), and z* = t4¢¥" is the bound
sought.

To obtain y* rigorously, we find a point y; given by (13) or by (15).
We choose 0 < ¢ < -—ﬂg‘—l. Using Lemma 6, we choose m; such that
le(m1,y)| < £ for each y > y;. Then using Proposition 12 successively to
move {rom a; = y; in the interval [y;, 2] to some largest y,, we obtain y*.

In Table 2 below, we give 4, #; = #ge¥!; an upper bound for F(y), m,
and the bound z* =t5e¥’.
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n rn rn v

2.48
3.09
1.63
1.92
1.25
1.41
1.61
1.04
1.15
1.27
0.91
1.16
0.74
0.94
0.64
0.82

ST o)

—
O OO0 OGO ON & LD

SO 0000 S S OO LR s R G
CUL D e OO M COR = OO - O

— —

F4

0.20360
0.15003
0.60690
0.41994
2.0029
1.3195
0.89110
7.1184
4.5012
2.9145
26.716
6.5421
424.17
54.767
7452.2
98.560

Table 2.

upper bound
for I (yl)

—5.9027

—4.7945 -
—~1.0926 -
—4.327 -
—-1.781 -
~1.651 -
—1.146 -
—2.062 -
—2.821.
—3.284 .
—1.543 -
—6.095 -

+1077.

10~
10°8
10~
10-3
10~4
1078
10-2
10-3
104
10-1
10—*

—6.005

—1.032 -

1072

—182.064

—6.604 -

17

10-3

m

2.1379
1.6518
6.2350
4.3407
21.219
13.768
9.2504
79.190
49.572
31.025
315.00
70.987
5644.0
635.51
112120
6443.8
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2 Counting points of bounded relative height.

2.1 Introduction

Given a number field L, let {7y,...,0,,} be the real embeddings of L and
let {04y415+-1 05,421, } be the complex embeddings, with Ospti = Tspptp4i
for 1 < ¢ <1y, where ~ denotes complex conjugation. We write Oy, for the
ring of algebraic integers of L, Of, for the group of units of Oy,

For each P = [xg, 21, -, z,] in the n-dimensional projective space P*(L)
over L, with z; € L not all equal to 0, define the height

[L:Q]
Hy(P) = N I, o, fles(enlh (¥

where a = (zg, %y - - -, z,,) is the fractional ideal generated by the z;’s, and ¥
is the absolute norm of ideals. Given a positive real number B, let v(L,B,n)
be the number of points P € P*(L) with height Hy(P) < B.

We note that, when L = Q and n = 1, Hg([1,4]) = max(|p|, |¢]), where
a = pfq, with p and q relatively prime integers and ¢ > 0. Hence v(Q, B,1)
is the numbers of pairs (p, q) with p and ¢ as above and with absolute value
less than or equal to B. In this case, »(Q, B,1) = 2 B* 4+ O(Blog B). This
is equivalent to the classical fact [H-W, Theorem 331] that 5= E(IT) is the
probability that two large random positive integers be relatively prime.

Schanuel [S] obtained that »(L,B,n~—1) is

Uil R (QSL(Q,T):L)n - { O(BlogB) ifn=2and L=Q, (+4)

CL{n)Wy, d}f 2 O(Bn_m) otherwise,

where Ry, is the regulator of L, dy, is the absolute value of the discriminant, by,
is the class number, (y, is the Dedekind zeta-function and Wy, is the number
of roots of unity in L.

For P € P*(Q), the absolute height H(P) is given by HM(P)I_ﬂb—l,
where M is any number field such that P & P"(M). Bergé and Martinet

[B-M, p. 159 ] defined for P € P*(L), the height Hi(X, P) relative to a
subfield K of L by

Hi(K,P) = }nf{H([Eyimu, ey i ) QL

Wk
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where H is the absolute height, j runs over Z and ¢; runs over 0. For
0 € L*, we define Hy,(X,0) by Hy,(K,[0,1]). We note that H:(Q,8) = H.(6).

Let OF,x be the subgroup of O}, consisting of those u € O} such that
there exists j € Z, j # 0 such that v’ € O}. We define the action of (Or)”
on P*(L) by (ug,-++, 1) - (€0, ++ y 2] = [ugzo, - - *y Up~1Zn—1, Tp), for each
(‘U.g, tery u,,_l) c (OE/K)“ qnd [:’I.'o, ey, :’Bn] € Pu(L)_

Bergé and Martinet [B-M 1, p. 159] point out that, for all ¢ € (Or )"
and P € P*(L), Hy(K,e-P) = Hp(K,P), and furthermore proved that
the number of points in P*(L)/ (O1k)" with bounded height is finite
[B-M 1, p. 174].

For n =1 and a positive real number B, we denote by N(L/K, B,1)
the number of points P in PY(L)/(0; ), with Hy(K,P) < B. Thus
v(L,B,1) = Wi, N(L/Q, B,1), as Schanuel does not divide by the action
of O /Q = KL, the group of roots of unity in L. We are able to generalize
Schanuel’s result (+*) as follows.

Theorem 1. For an eztension L/K of number fields, and a large positive
real number B, we have

RpRychy, (2’L(21r)‘1-)2 9 O(Blog ?) ifL=Q,
I L)\ wpd)? O(B" Q)  otherwise,

where Iy e = [OEIK : Okpr), and the constant Crix depends only on the
ramification pattern of the archimedean places of I and K.

Bergé and Martinet [B-M 1] defined the relative regulator Brjx = E—%"}&.
In' terms of Rp i one can write

N(L/K,B,1) = Cpx

2 1
N(L/K,B,l)=éi;‘—(%g—z—i—32 + 0(32_m),

_ 2°L{2x)LRy . . _ . .
where &, = —T}V;i)?,— is the residue at s = 1 of any ideal class zeta function
of L. In P*(L) we expect a formula of the type

’LLPCE+1 CL/K(TI.)

In the next two theorems, we compute Cryx when L is either a totally
real or a totally complex number field. Put LIk = ff?’ where for a field M
we define €ps = 1 if M is totally real field and €y = 2 otherwise.

N(L/K,B,n) ~ B,
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Theorem 2. Given an extension L/K of number fields, so that each is either
totally real or totally complez, we have

O A=tk ([L:K])’"K u(T [L:K])
L/K 2epsi €N ek o erik

where v is the free rank of the unit group of K and

o= E (1)) B )

i=0 n—k

Theorem 3. Given an extension L/K of number fields, so that L is a totally
complex field and K is neither totally real nor totally complex, we have

. (LK) 1,
Cupe = o v (s,{,tK, 5[L.K]) ,

where

2n—1 M In —1 m—1 n 1 Hm-1 k ]
= B (T () E )
v(l,m, n) 2k k B % &

where [z] denotes the integer part of T,

Note that [L: K] is even under the asumptions in Theorem 3.

These theorems are based on Theorem 5 below. We need first a varia-
tion of a formula, due to Bergé and Martinet, which gives an expression for
Hy(I,8) analogous to (*) above.

Theorem 4. Let 0 € L*, put 0 = 2,25, with r1,z2 € Oy, and denote the
Op-ideal (1) + (z2) by a. For any embedding 7 of K into C, consider the
[L: K] embeddings a‘ff) of I into C that extend 7, ordered so that:

12 (0)] 2 16(0)] > ... 2 lofik (O)]
Then

[L:K]

Hi(K,0) = N(a)™* ] max (II o), IT |a§f’(a,-2)1).

=1
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Corollary. If L = K, or if K is a totally real number field and L is a
totally complez quadratic extension of K, then for 0 € L,

Hp(XK,8) = max (N(c), N(b)),

where the ideal () = ¢b™", with b and ¢ being relatively prime integral ideals.

We note that Bergé and Martinet {B-M 1, p. 167] obtained this corollary
when L = K.
Define T : L* x L* — R for (z,y) € L* x L* by

[L:K]

T(z,y) = [ max([] [o{”(@)l, ]To{"(=2)]),

i=1

where for each embedding 7 of K, we order the embeddings af’) that
extend 7 as in Theorem 4, for 0 = xy~'. Hence, for non zero z,y € Of,
Hy (K, xy™") = N((=) + (¥)) " T(x, y).

We define t : (R* x C*#)?> » R to be the continuous extension of T
to (R™ x C**)?, where L x L < (R* x C*)? is induced by the geometric
embedding @y, : L — R* x C¥ given by (1(0)); = 6;(9). We consider the
action of OF - X OF on (R** x C*2)? which for (u,¢) € Of/x X Of, takes
(z,y) € (R™ x C"*)? to (pg(e)pL(u)r, pr{e)y), where we are considering
R* x C"% with component-wise multiplication.

- Let Z* be the closure of ¢or,(L*) in R** x C*2. Given a subset A of 7* x T*
and a positive number B, define

Ta(B) = {(z,y) € A| t(z,y) < B}.

Recall that a subset T C R” is said to be k-Lipschitz parametrizable if

there exists a finite number of Lipschitz maps $; : I¥ = T, where I* denotes
the unit cube in R* [L, 1, p. 128].
With the above definitions, we can formulate

Theorem 5. Let A be a cone which is also a fundamental domain forT*xI*
with respect to the above action of O} i« X 0. Suppose furthermore that the
boundary of Ta(B) is (2[L: K] — 1)-Lipschitz parametrizable. Then, the
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number of points i € PYL)]O} i, with Hy(K,z) < B is

%L py, O(BlogB) ifK=1L=q,
—————Vol(T4(1))B* 1
dr(L(2) oMTAL) +{ O(B2 Q1) otherwise.

Next, we describe the organization of this part of the thesis:

¢ In §2.2, we give the proof of Theorem 4, of its corollary, and an impor-
tant special case of Theorem 1.

In §2.3, we give the proof of Theorem 5.

o In §2.4, we give a fundamental domain A as in Theorem 5.

In §2.5, we give the proof of Theorem 1.

In §2.6, we give the proof of Theorems 2 and 3 .

2.2 A height formula and an example.
Let L/K be an extension of number fields.

Theorem 4. Let 0 € L*, put 0 = zy23", with x,,z, € OL, and denote the
Op-ideal (1) + (x2) by n. For any embedding 1 of K into C, consider the
[L: K] embeddings o',-("') of L into C that extend 7, ordered so that:

(0] 2 @) 2 ... 2 6§ (0)]. (1)

Then

[L:K]
HL(,0) = N(&™ ]] ma ([[ o)) T la,f”(wz)l) R

where N is the absolute norm of ideals.

Proof. For 6 € L*, consider the principal ideal (8) = b7, with ¢ and »
being relatively prime integral ideals. We use an equivalent formulation of
Hy(K, 0} given in [B-M 2, p. 4], namely

(LK)

Hy(K, 0) = N(b) J] max (1, II |a‘,§r)(a:1$2"1)[) , (2)s

i=1
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(there is an obvious typographic mistake in [B-M 1, p. 165, line 16), where
the above formula is cited from [B-M 2]). Hence, by the product rule [Fro-T,
p. 113], we have

{L:K]

Hi (X, 0) = N(b)N((2,))"! ] max (H 0¥ (zy)], Hlaff’(mz)l) .

=1

But if (21) + (22) = a and (2323") = 6™ with b, ¢ relatively integral ideals,
then (21) = ac and (x3) = ab. 0

Corollary. If L = K, or if K is a totally real number field and L is a
totally compler quadratic extension of K, then

Hp(K,0) = max ( N(c}, N(v) ),

where () = b~ with ¢ and b being relatively prime integral ideals.

Proof. In the second case, let 0 = 4237, () = ac, (z2) = ab. Then

Hy(K,0) = N(a)™ ﬁl:max (1:[|a§f’(ml)|, H|a,!f)(w2)|) -

= N(a)™" max (Hlagf)(wl)P’H |a§7)(:c2)|2) = N(a)™! max (N(af),N(ab)) =

T

= max (N(c), N(b)) .

The case L = K is similar [B-M 1, p. 167]. O
In the introduction we defined:
e Opx= {u €O} |3j € Z such that j £ 0 and v € O}\»} , (3)
* The action of (OF )" on P*(L) given by
(s~ s nca) * [0,y @] = [tt020, +++y U1 Tmor,y 2], (4)
We denote:
the ideal class group of L by C},, the set of integral ideals by I},
a.'.n‘df'li‘:he ideal class of a by [d]. (5)
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Remark 1. It follows that, when L = K, or when K is a totally real number
field and L is a totally complezr quadratic extension of K, the number of
Pe PI(L)/(’)E/K such that Hp(K,P) < B is the same as the number
of pairs of ideals (c,b) € I, x I, so that [ =[], N(c), N(b) < B and
¢, b are relatively prime.

We note that in the both cases O} /i = O7. We define

Pg = {P & PI(L)/OE/I{ | HL(‘K:‘P) < B and p # [1:0]:}) 71"' [01 1]}:
Ap = {(c8) €Iy x I | [d=[s],(6) = 1 and N(c), N(b) < B}. o
6

Note that if [z1,20] = P € PY(L)/O3k, then zy # 0 and z, # 0. Given
P € Pg, let [zy,z,] = P, with z;, =, € U1 non zero. There exists a
unique pair (¢,b) € Ap such that (z;) = ac and (z,) = ab (It is clear that
[6] = [c], and by the Corollary above, N(c), N(b) < B). The pair (s,b) € Ap
is independent of the choice of z;, z, € Oy, because, for each non zero
a € L*, for each u € Of i, we have (uaz;) = ((@)a)c and (@zs) = ((2)a)b.
If (a)a = mf™?, with m and f being relatively prime integer ideals, then flc
and f|b, but (c,b) = 1, henee (a)a is an integer ideal,

Let x : Ps — Ap be so that x(P) = (c,b) as above. This is a bijective
function. In fact:

o If x(P1) = x(R) = (;,b), let P, = [z1,25] and P, = [a, z4], with
z; € Op and z; # 0. Then &6™' = (2,23") = (z3z;'). Hence there
exists u € Of such that z;25" = uzaz;! . Then [£1, 2] = [23,24] in
P(L)/O; x (remember that OF = Oirx )-

¢ To show surjectivity, let (c,6) € Ap. Then there exists = € L* such
that ¢~! = (z). Hence by the corollary above, Hx(L,[z,1]) < B and
then [z, 1] = (c, ).

Example. When L = K, or when K is a totally real number field and
L is a totally complex quadratic extension of K, the number of points x in

PI(L)/OEII(, with H(K,z) < B is

(2,(2,r)t RL)"" b g { O(BlogB) ifK=1L=Q,

dy/*w, CL(2) O(B%[T'%Q—l) otherwise.
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To prove the example, we will use the above Remark.
Tor each ideal class C of L and B € Ry, we define:

A(C,B)
A(C, B)

{(a,0) €I x I, | m,0y €C, N(a), N(a2) < B},
{(m,02) € Ap | 1,02 €C},

with Ap as in (6) and J;, as in (5). We have

ic,5)= U (e b))

acly (b1 .bz)GA([“]_IC'F?ET)

We denote by M(C, B) (respectively M(C, B)) the cardinality of A(C, B)
(respectively A(C, B)). Hence, noting that M ([a]‘IC, j—\,%) = 0if N(a) > B,
we obtain

MCB) = Y M ([a]_lc, -ﬁ-) .

N(a)<B N(a)
By Mébius inversion (see Proposition 1 below),

uEB)= ¥ wal (e 7)) (7
N(n)<

where g is the Mobius function on ideals.
Now, Abel summation [A, p. 72] yields

—’ﬂ:OIo B).
O ®

Indeed, let a(n) = #{a| N(a) = n} and f(n) = L. Then

N(b)<B N_t‘;)- = 2, aln)f(n) = A(B)/(B) - A()f(1) - _/IB A(t)f'(t)dt,

n<B

where A(z) = 3, a(n). Since the number A(z) of integral ideals of L, with
norm at most = is phx + O(z!"VEQl) [, 1, p, 132), where p is a constant
that depends on L, we obtain that this expression is O(log B)
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For fixed s > 1, we have that

ple) 1 -
N(b‘T‘SB NGy~ e TOET) (9)

because
Z #(0) - 1 Z £(b)
N(b)<B N(b)ﬂ' CL(‘S) N{t)>B N(b)s
and the latter term is bounded by LN@E)>B -ﬁ%)—, Indeed, we can prove as
above that, s p Nﬁ; = O(B'"*). Returning to (7), w distinguish two
cases:
o When K = L =Q, M(C,z) = [z]? = (z + O(1))?. Hence by (7) and
(8),

M(C,B) = ;B (-g + 0(1)) un) = fé—) + O(Blog B).

o Otherwise, we note that M(C,z) = (Mre(z))?, where My ¢(x) is the
number of integral ideals b of L in C, with N(b} < 2. By [L 1, p. 132],
Mye = pz + O(z'~VN), where the O constant depends only on L and

p= 2—:{%’%. Hence by (7) M(C, B) is

vre((wa) ) o) )]

> ula)

N(w)<B
(10)
Now, for fixed £ > 1 we have that
B\’ #(a)
#{(a)O ((—) ) =0 (B‘ = O(BY,
N@%g N(a) N(:;?SB N(a)t

because the sum is bound by {1,(£). Hence using (9) and (10) we have
P2 B2

MG B) = ((2)

+0(B*¥),

for each class C.
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As Ap and Pg in (6) are bijection, we conclude that the numbers of elements
z € PY(L /Ot i with H(K,z) < B is

(28(%)%;,)2 b o O(BlogB) fK=L=q,
di? (r(2) O(B _Q_) otherwise.

Proposition 1. Let f, g: C;, x Ryp = R le functions satisfying
feB) = ¥ g ([a]*c, i) ,
N(a)<B N(a)
for BE Ry and C € Cr. Then
B
9(C,B) = 3 p(a (a]"lc )
N{a)<B N( )

where y is the Mébius function defined by:

‘p(p) = -1, for all prime ideals p,
me') =0, for all j > 1,
#OL) = 1,
p(ab) = u(a)u(e) for all relatively prime ideals a and b
Proof.
1 -1 B
> w#en)f ([ﬂl] C, ) 2 wa) ¥ g ([a1ﬂ2] C, N—_) =
Ni{m)<B N{a) N(m)<B N(QQ)SW% (0102)
1, B
= 2 g(la” CN@) 2 Ha)=g(C.B),
N(a)<B %)/ simma
because
_J 1 fa=0g,
Z,u(b) o { 0 otherwise. (11)
Bn
a
Similary, we have
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Proposition 2. Let f, g: I x Ry = R be functions satisfying

f(avB) = E g(“b:B)’
NO)< R

for Be Ryy and a € I,. Then
g(a, B) = Z #(b) f(ab, B).

NS5ty
Proof.
Z t(a1)f (acn, B) = Z #(a1) E g(anyag, B) =
N(m)<xtay N(m)< 75 N(w2) < meery
= E g(ab, B) Z #(m)=g(a,B),
NS =
by (11). 0

2.3 Proof of Theorem 5.

Given (z,y) € L* x L*, for each embed(hng 7 of K into C, order the
embeddings of L into C that extend 7, as in (1) for § = 2y~ Define

[L:K])

o) = [T mex (TIo(a)], [TIof (). (12)

i=1

Note that for non zero z, y € O, if (z) + (y) = u, then by (2),

Hi(K, [z, y]) = N(x)""T(z,3). (13)

Furthermore, for non zero « € Oy, one has

N((z) + ()" Tz, y) = N((ox) + (ey)) ' T(az, ay).

For 071 as in (3), define an action of Oix x Of on L* x L* by
(u,€)(z,y) = (euz,ey), (14}
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for (u,e) € O; ) x O3, and (2,y) € L* x L*.
We denote sy, and ¢, by s and ¢, keeping the subscript only when neces-
sary. Let

Cot =R’ xC¥, CI, =R™x C*, (15)
and let r : L — C,; be the geometric embedding of L in C,,, given by
or(z) = (oy(z),---  Ostae()). (16)

Note that ¢y, is not quite the usual embedding: Here we consider all the
embeddings of L into C.

For u € O /i and € € O, we define linear transformations J, and 6, on
Cot % Csy given by

Vu(z,y) = (pu(u)r,y) and O(z,y) = (pu(e)w, prle)y),

where multiplication in Cs, is taken component-wise.

We define the action of OE/K x 0 on Cj,; x C,: as follows.
For (u,¢} € Ok X O}, and (z,y) € C,, X Csyt, the action is given by
(0 0 9,)(x,y). Note that

Be 0 Bu(2,9) = (prle)pr(u)z , prle)y). (17)
This action is compatible with the action of Ok X Of on L*x L* given
in (14).

We define t:C7, x C;¢ — R as the unique continuous function with
domain C7, x C7, and such that, for all z, y € L*, t(p(2), 0(v)) = T(z, y),
with T as in (12).

Noting that C,, is isomorphic to II- [Iajr Ly and is isomorphic to each
reordering of the L,, where L, denotes the closure of o(L) in C, we can
write £ € Cyy as (z_(n) or simply (7). The function t is such that given

(z,y) € C;, x Cz,

[L:K]

#e,9) 1= T mox (T, i), (18)

where for each embedding 7 of I into C, we order the embeddings of L into
C that extend 7 so that,

|27 (i) 7] 2 l2Fa ()™, (19)
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Note that for each (g,u) € Ok X Of and (z,y) € Cy x C;

5,0

t(0, 0 du(x, 7)) = t(z,y), (20)

because, if we take I = #{i | [, |«7| > II, |y7[} and j such that v € O, we
have

K]

t(0e 0 du(z,y)) = (H II IG’Q’(E)I) (H IT(uj)l) ' t(z,y) = t(z,y).

=1 T

Note that the closure 7 of (L) is isormorphic to R® x C* and thus to
RN, where N = [L:Q]. Put

" =1 (\Cx,- (21)

Thus, Z* is the closure of ¢r,(L*) in R* x C*2. Given a subset A of 7* x I,
for B € R0 we define the sets T(B) and Ta(B) by

T(B):= {(z,y) € I* x I" | t(z,y) < B}, Ta(B)=T(B)n A. (22)

Lemma 1. Let A be a fundamental domain for (T x I)/(O1 )k x OF).
For each ideal o of L and B a real positive number, denote by M(a, B) the
number of pairs (z,y) € (a x a) [} Tu(B). We have for o € L,

B
M(aa,B) = M (a, IN(aJI) .
Proof. Let E{a,B) = (a x a)(){(z,y) € A | t(z,y) = B} and b(s, B) =
#E(a, B). We have that for each o € L*, b(aa, B) = b{a, ﬁ;ﬁ) In fact,
given (z,y) € E(aq,B) (here aa is taken as lattice in Ceyt), there exist
a, b € a, such that (,y) = (er(@)er(a), pr(a)pr(b)). Furthermore by
(18), 4(2,0) = IV(@]t(px(e),po(B), hence s (a)pn(®) = ko But
A is a fundamental domain for (Z* x 7*)/ (O1/x * O1), hence there exist
(u,€) € Of e X OF such that 0, o Yuler(a),or{d)) = (2,w) € A It is
clear that t(z, w) = t(py(a), p(b)) and (z,w) = (pLeua),or(eb)) € (axa).
Hence b(cva, B) < ¥(a, ﬁ)_l) Taking o™, aa and ﬁ instead of v, a and
B, we obtain b(a, ITI(?&TI') < b(aa, B). Hence the Lemma. ]
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A subset T of some Euclidean space is said to be k-Lipschitz parametriz-
able if there exists a finite number of Lipschitz maps ¢; : I* — T, where I*
denote the unit cube in k-space, such that T = Ujé; (15).

Theorem 5. Let A be a cone which is also a fundamental domain for
T*xTI* with respect to the action described in (17) above. Suppose furthermore
that the boundary of Ta(1) is (2[L: K] — 1)-Lipschitz parametrizable. Then
the number N(L]/K, B) of points = € PI(L)/OZ/K, with Hy(K,z) < B is

92th, O(BlogB) ifK=L=Q,
—=Vol(T4(1)) B> o1
dr(r(2) VollZ4(1)) +{ O(BZ lf-Ql) otherwise,

where T(1) is as in (22), dy, is the absolute value of the discriminant of L,
hy is the class number, and (1, is the Dedekind zeta-function.

Proof. By the example, when K = L = Q we have that N (L/K,B) is
Ef_{;T -+ O(Blog B). Furthermore in this case we can take

A={((z,y) ER" X R" [0 <z and 0 < y}.

In this case T4(1) = {(z,5) e R*x R* [ 0 < &, y < 1} and Vol (Ta(1)) = 1.
We will exclude this case.
For an integral ideal a and a positive real number B, we denote by:

 M(a, B) the number of pairs (z,3) € (a x )/ (O x Of) such that
T(z,y}) < B, where the action is given by (14).

‘¢ M*(a, B) the number of pairs (z,y) € (a x 0)/(Of i x OF) such that
() + (¥) = a and T(z,y)) < B.

o M([d), B) the number of points [z,y] € PI(L)/O}‘U,K such that
[(z) + (y)] = [o] and HL(IK,[z,y]) < B, where the action is given by
(4).

We note that M([a}, B) is finite by [B-M 1, p. 174]. We shall prove that
M(a, B) and M*(a, B} are also finite. If we regard a X a C Csp X C,y,
on which the action was already defined by (17), we have that M(a, B) =

#((a X a) TAB)), as in Lemma 1. Furthermore by [L 1, p. 115], a X a is

1/2y 2
2 lattice in R* with a fundamental domain F with Vol(F} = (ﬂ“z)-%["—) .
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For o € Q* and (z,y) € Ciy x C5y, we have by (18), t(az,ay) =
la|Nt(z,y). By continuity, we have this for each ¢ € R*. Hence Ta(B) =
BWT4(1), as A is a cone and Vol (Ta(B)) = B? Vol (Tu(1)).

Let {a1,-,a,} be ideals representing the class group of L. By standard
results in the geometry of numbers [L1, p. 128],

o o itey) = (0) (i) (i) +0 ((Wﬁﬁ) Hm) |

where the O-constant depends on a;, L and A. Denote this constant by €q;.
If we put

-
cr, = maX ¢q. | N{a;
L 15:'5::“( (’)) '

(m%,) Tea (mfwm)

Given a an ideal, put a = au; for some « € L* and a; € {ag,--+, 0}
Using Lemma 1, we have

M{(a, B) = Vol (T4(1)) (N(Std1’2)2B2+ o(( TNI(;T)I )“ﬂv), (23)

where the O constant only depend on L and A.

If we rewrite M*(a, B) as the number of pairs (z,y) € (ax 0)/(OF X O1)
(z # 0, y # 0) such that (z) + (y) = a and Hi(K,[z,y]) < BN(a)™?! (by
(13)), then we obtain

we have

M([d], B) = M* (a, BN(u)). (24)
Furthermore, by definition of M and M*, we obtain
M(a,B) = E M*(ab, B),
NS 75
where we used the fact that, if N(ab) > B then M *(ab, B} = 0. Indeed
M*(ab, B) = M([ab], I_V"E%ﬁ) by (24), and Hy(IK,[z,y]) > 1. Using Proposi-

tion 2,
M*(a,B)= > M (ab, B)p(o).
NS wg
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Using (23), we obtain

M*(e,B)= Y (VoI(T,A(l)) (&ﬁf)z” +0 ( ( Nib))z-i’)) 4(6)

NS 7
_ _2B o) o (B YT _me)
= VOI(T.A(I)) (N(a)d},h) N(hgw?a N(b)2 i ((N(a)) ) N({,EN%T N(b)}—?l?’

because the O-constant in (23) does not depend on the lattice.
Hence, using (9), we have

2t 2-1/N
M*(a, B) = Vol(TA(l)) W-)EEE&,_(?T B10 ( (%) ) . (25)

By (24) and (25), we have

2275 (1“,4(1))192
dr(r(2)

This number is independent of the ideal class [o]. Hence, the number of
points = € P(L)/Of ;- with Hy(K,z) < Bis

H([“LB) = M"(a, BN(a)) = + O(Bz_lfN)'

924/l (TA(I)) he
dr(r(2)

In Lemma 5 of the following section we obtain a fundamental domain as
required for Theorem 5.

N(L/K,B) = B+ O(B*/N), m

2.4 Fundamental domain for Theorem 5.

We will first construct in Proposition 6 a fundamental domain D = U D&Y,
which is a cone but has in general, an unbounded intersection with T() =
{(z,y) € I*xT* | t(z,y) < 1}. We then modify D to obtain in Proposition 8
a fundamental domain A as required in Theorem 5. Define 9 : Cs, — R+
by

(v()), = gl (26)
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where C7, = R** x C* as in (15). Note that % o ¢, is not quite the
usual logarithmic embedding when ¢ > 0, as we repeat complex conjugate
embeddings. Define

p2i=1P X9 and V =4¢(T" x I, (27)
with 7* as in (21). Note that V C R*** x R*** has dimension 2(s 4 ¢t). Put
L:L" =R Li=goyy,

with ¢ and % as in (16) and (26) respectively. Define the action of
O%/x x Of on R**% x R+ by

(v,€) - (z,9) = (L(e), £(e)) + (L(w),0) + (z,y), (28)
for (u,€) € Of i x O} and (z,y) € R*? x R*+*, Note that
(u,€) - dalz,y) = ¢2((0c 0 9 )(x, ¥))- (29)

Let W =W, ® W, C V, where W, W, be spanned by
Wi = ((£(e), £(e)) | € € O1) and W ={(L(u),0) |u€ Of ).  (30)

Let {e;}i%, be a system of fundamental units of I, and let {w:}:X be
a set of free generators of O}, modulo torsion, where r;, = s+ —1 and
rx = sk +1ix — 1. The union of {E; | 1 < i <rg } and {U; |1<i<rx}
is a basis for W, where

B = ((L(e:), L(es)) and  Uj = (L(u;),0). (31)

Lemma 2. Let W' be a subspace of V such that V = W' @ W, where V is
as in (27} and W = Wy @ Wy as in (30). Let A = A(W') be the subset of V
given by

TL TK
(z,9) € A iff (z,y) = w4y B+ BiU; with w' € W and 0 < ey, Bi < 1.
i=1 i=1

If S € C3, x C}, is closed under the action of Ofyx X OFf given in (17), then
- 2r
¢21(A) n {(‘T: y) €S l 0< arg(ml), a'rg(yl) < WL},
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is a fundamental domain for S with respect to this action, if ¢, is as in (27),
E; and U; as in (31).
Proof. Given (x,y) € S, we write

(bue) o) = w' + 3 e + &) By + S + i),

i=1 i=1

where w' € W, 0 <, fi <1 and ¢, d; € Z.
Put g = eft .- %, p=ult. --uf_&"’ and (2',3") = 0,1 0 9 (z,y). It
is clear that (/,3") € ¢3'(A). Let pg, be a primitive root of unity in L of

order Wi. We find &y, %, € Z such that 0 < arg(y pff") < %’ and

0 < arg(zq 1" ™) < . Let (2,w) = (wr(pz® "', o1.(p7" )y). Using
(29) we have

P2(2,w) = 63(0,-1 09 1o (2, 4)) = (o7, p7™) - (', o).

But £(p}?) = L(p}*) = 0. Hence by (28), #a(z,w) = ¢y(2’,¥') and so
(z,w) € ¢37(A). Is clear that (2,w) € S, because S closed under the ac-
tion. Furthermore 0 < arg(z;), arg(w;) < w-- Hence we have found (z,w)

in ¢31(A) N {(m,y) €5 | 0< arg(xy), arg(y) < —%} such that (z,y} =
. oﬂpa—zu(z,w). The proof of uniqueness of (z,w) is straightforward
L L

(cf. [B-C, p. 349]). O

Lemma 2 gives a tool for obtaining fundamental domains for 7* x Ix,
with respect to the action given in (17). But given a fundamental domain
A for 7% x I*, A may not satisfy the hypothesis of Theorem 5, or it may be
difficult to calculate Vol(T4(1)). An example of this occurs, when we take W’
in Lemma 2 as W with respect to the natura] Euclidean structure, Instead,
we partition 7* x I* into convenient subsets which are invariant under the
action of 07 1 x O3 as follows.

For each embedding 7 of K, let g, be an ordering of the embeddings o
that extend 7. We assume that if ¢ is a complex embedding of I which
extends a real embedding  of K, then {o, 7} = {o7, o7.,} for some .
Define the set C' = C}, with ¢ = (g, ), by

C={z9) €T x " | |2T(u7) ™| 2 Iofa(974) ™| for all é and 7,}, (32)
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where I~ is given in (21) and the ordering of the coordinates is the one
corresponding to g. Thus Z* x 7* = Uy Cy, where the C, overlap only on the
boundary (given by equality in (32) for some ¢ and 7).

We note that for each (z,y) € Cy, there exists k, with 0 < k < [L: K],

such that
Tz > 1> [T l2fe (Wha) 7Y
T T

For 0 < k < [L: K], we define the set B®) = B{® by

59~ {e)eo

ey 21> 1T I(wzﬂ(yzﬂ)-‘n}. (33)

Proposition 3. For each 0 < k < [L : K], the set B® is closed under the
action of Of ;- x Of given in (17).

Proof. U0 <k <[L: K], (x,y) € B® and (u,€) € OE,K x OF, we put
(z,w) = 0 0 D (2,y) = (pr(ew)z, pr(€)y). Thus, for each 7,

I (i)™ = |of (ew) 2T (o7 (€) w7) 7| = |07 (u) =7 (7).

But, o7 (u) = o7 (u), because u € O7 k- Hence (z,y) € C implies (z,w) € C.
Also, T[, |z (w])™*| = II, |«7(y7)~"| for each 7. Hence, if (z,y) € B® then
(z,w) € B®), O

Note that for each (z,y) € B®,

k [L:K]
t(z,y) =] (H l=f1 TI W} I) : (34)

T i=1 i=k41
where £ is as in (18).

Since ¢,(B™*) is invariant under translation by elements in W (by (28),
(29) and the proof of proposition 3), we will define such translations on the
space V to obtain a suitable subspace Vi = W’ to apply lemma 2 with
S = B®), We need first some definitions. Let

() = 1 if ¢ is a real embedding ,
A= 2 otherwise.
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Given k with 1 <k < [L : K], define P, = P§ by
P = {7 | e(r) = (o)} .
We fix 7 = 77 any embedding of K such that: (36)
e If P # ¢ then choose any r, € P,.
o f P =¢and {7 | 0], # 0L} # 6 then choose 7y, such that oy # o

o If B = ¢ and {7 | 0], # 0f} = ¢ then take any 7, because in this
case B®) is empty.

With this choice of 7 we define linear function wy, v, : V — W, where
W = W1 + W, as in (30), such that for each (z,y) € V:

wi(x,y) = (2,2) and wy(z,y) € W;. (37)
Here z is given by:

4 = af, forr¢ {n,m),

) 1 12 . _
7] = _EW > >+ > > =2, for 7 € {n,7},
k7 \wg{nim} i=1 T'e{n, 7} {i#kloT #a7'}

zl = oI for 1<i<k-2,

= = g7 for k+2<:i< [L:K],

Za = 2y i o], #0f,

2 = Yh Oig1 F o

z = zf f  ie{k-1, k+1}and o7 =0,

Similary,

vi(2, ) = (2,0) and v(z,y) € W, (38)
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where for each 1 <i <[L: K], z is given by:

T

5 = ?!I: for all T ¢ {Th?l"},

zl = _.C{ITH E’r'ﬁ{ﬂ.ﬁ} yl:'1 for v € {Thﬁ}'

For 1 <k < [L: K], using W C V we define the transformation

ft: V=V, fi=Id—w, (39)
Let
N=(n)eV, w,=(ww)eW (40)
be given by
.1 . [TlCT]_T:I‘_)" if 7€ {n,7}and (i=koro! =0]),
hE (L:Q Wi = ) otherwise ,
Note that I
N —wy = ﬁ(vkavk), (41)
where ( ) and (i = k )
+_J) 1 if re{n,7}an t=korg] =0}),
(i)} = { 0 otherwise . (42)
Define
2 if K is totally real and L is totally complex,
ko=4 2 il L/K is mixed (see below), (43)
1 olherwise,

where we say that L/K is mixed if K is totally real, I is neither totally real
nor totally complex, and for all embeddings r, gy, is complex.

Lemma 8. Foreach 1 <k <[L:K] and (z,9) € V there exist a, b}
(1 <4< [L: K]) and Ay(z,y) in R such that fk(m,y)—}-f;_.(vk(fk(m,y))) can

be written as

k-1 [L:K]
> (E af{0,ef} + 3 al(e], 0)) + a0, ve) +ay(N —wy),  (44)
T =1 i=k-+1
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where {e]}; is the canonical basis for RY = R+ qnd Sk, v are given by
(39} and (38).

If (z,y) = da(z,w) with (z,w) € B®, where B®) gnd $2 are as in (33)
and (27) respectively, then ay = log t(z,w) ), where t is the function given
in (18).

If (z,9) = éa(z,w) with (z,w) € BO, taking k = ko, we have that
Fie(z,y) + fe(ve(filz, 7)) can be written as

[L:K]
20 D2 Bilel,0) + ! (vi, 0) + an (A —wy),
T i=k+1

where ay = log (t(z, w)) :

Proof. Let 1 < % <[L: K] and (z,y) € V. We need only write down the
functions fi, vy and 1wy, given in (39), (38) and (37) respectively, to obtain
that fi(z,y) + fi(vi(fi(z,))) has the form

k-1 [L:K)
2\ 206+ 37 B(eF,0) | +er(0,va) + exvi, 0),
T i=1 i=k+1
where vy is as in (42). By (41) we have

61(0, V;_-) + CQ(VL-, U) = (LF (U,V;;) -+ aJV(N - Wk),

for some ay, and ap. Hence Se(z,y) + fi(vi(fi(z,¥))) has the form (44)
claimed.

Since (2,y) = fy(e,y) + filve(filz, 1)) + (wr,w) +
(wr,w1) € Wi and (w,,0) € Wa, we have that if (z,y) =
(z)w) € BW, then by (34), log(t(z, 1)) is

% (LK) [L:K] 4 (LK) 3
2 (S ) - (£ 1) o5 (3t + S,

(w2, 0), where
¢2(z,w), with

T =1 i=k41 T =1 =1 i=1

where N = [L : Q). Hence we obtain N FF=ay =log (t(z,w)), because

[L:K]
> > (wi)f =0, and > (w3)T = 0 for each 1.
T i=1 T
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On the other hand, if (z,y) = ¢s(z,w) with (z,w) € B®, then taking
k =k,
(0, vi) + e2(vy, 0) = af* (v, 0) + ap(N — wy),
for some q}} and ay. Hence fi(z,y) + fi(vp(fi(z, 1 ))) has the form claimed.
As before, N2 = log (t(z,w)). 0

For 1 <k <[L:K], let Vi be the subspace of ¥V whose elements can be
written as

k-1 [L:K]
z(z: T, 4 3 az(e:r,o)) SOV eV, (49
T i=1 i=k+1

with all coefficient a real and such that, if 67 = a_}' then o] = a7, as we are
requiring V. C V' (see (27)). Denote by V; the subspace of V whose elements
can be written as

[L:K]
>~ af(ef,0) +af (vi, 0) + axl, (46)
1=k+1
where & = ko, with k& as in (43).

Proposition 4. For each 0 < k < [L : K], we have V = Vi @ W, where
W =W, & W, as in (30).

Proof. Foreach 1 <k < [L: K] and (z,y) € V, we have using fi, = Id —wy,

(213) = sVl D [ )—on o) (e, )

Using Lemma 3, it is clear that V = V;, + W, as Im(wy), Im(v,) C W.
For k=0, we have V =V}, + W as above with Jro =1d —wy,.
For each k, the dimension of V; is

)3 (#{areal, ofr} + H17 comple, “[T}-1)+ > el

2 2
7 real r complex

=sp+i,—sg —tg+2=r, —rg+2. As dim (W) = rL + rg, we have
dim (Vi)+dim (W) = (rp—rg+2)+(rp4ry) = 2(rp+1) = 2(sp+1L) = dim V.
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Hence V = V., @ W. ]
For each V,, put AW = A(V:) as in Lemmna 2. Let

D = {(m,y) € ¢7(AM) N BM |0 < arg(y), arg(y) < -I?Vl} , (47)
L
with B®*) as in (33).
Note that when (z,y) € DW), $,(x,y) can be written for & # 0 as

k-1 [L:K) r e
> (E aj(0,ef) + ) ai(e], UJ) +ai (0,vi) +avN + 3" B 4+ Y AU,
=1

T =1 i=k+1 i=1
(48)
and for k =0, as

T

ﬂiUi: (49)

i=1 =

[L:K) i,
> ( > “;'r(e::,ﬂ)) +ap (vi, 0) + awN + D o E; 4+

T \i=kotl

with 0 < «;, f; < 1, and where v, and A are as in (42) and (40), E;, U; are

iy by
as in (31), and ko is as in (43). Furthermore ay = log (t(:z:,e ))

Proposition 5. For each 0 < k < [L: K], D™ is ¢ cone and a fundamental
domain for the action of Oi/K X O3 on BW),

Proof. Lemma 2 shows that D®*) is a fundamental domain for B®,

For (z,y) € C7, x C¥, and X > 0, ¢y(Az, Ay) = (N log {ADNV + ¢a(x, v).
Hence ¢y(Az, Ay) € A® if and only if ¢y(z,y) € AW (recall N € V;). Since
B® is clearly a cone and arg(z) = arg(Az) for A < 0, we see that D} is a
cone, O

Lemma 4. For0 < k <[L: K]. (z,y) € D® if and only if
(i) 0 < argz, argy < %,
(%) ¢2(x,y) be written as in (48) or (49) (depending on k).
(tii} The coefficients af of (48) or (49), satisfy the inequalities:
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o Fork+#£0:

1) af < af <o < af,

2) @ty <ap, and forT ¢ {n, 7}, af_, <0.
3) a7 <0.

4) ) < k1 S 0 S Ay

5) aihy £ ~ap, and for T € {n, Th areq < 0.
6) T, Ly <0.

(50)
o Fork—=0:

1’) airL:I\’] S a‘{L.‘If]—I S aas S a1:0+1.
2') az:]-l-l _<_ al::, and for T g {Tlgﬁ}, a1:0+1 S U.
3) a, <0,

where ko is as in (43).

Furthermore, for B > 0, ¢, (TD(;.-)(B)) is the intersection of ¢o(D®) with

the region given by ay < log B, where ayr is the coefficient of N in formulas
(48) and (49).

Proof. Given (z,y) € D®, using the definition of D given in (47), we have
0 < argay, argy; < -VZV’T; Also, ¢o(z,y) € A can be written as in (48)
for k # 0, or as in (49) for k = 0. Furthermore, since ¢2(B®) is invariant
under translation by elements in W (cf. Proposition 3, (28) and (29)) and
$2 = 1p X 9, with (1(x)); = log |x;|, we have:

* The inequalities given for C in (32), be become under ¢, the inequalities
1), 2), 4) and 5) (respectively in the inequalities 1’) and 2%)) for the
coeflicients «] when & # 0 (respectively, when k = 0).

¢ The inequalities given for B® in (33), be become the inequalities 3)
and 6) (respectively, the inequality 3°) when k 3 0 (respectively, when
k=0).

Note that we have used all the conditions that define D®).
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Conversely, if (z,y) satisfies the conditios (i), (i) and (iii), then, by (ii),
(z,y) € ¢;° AU")). Hence together with the inequalities given in (60), we

have that (z,y) € BY). Hence, by (i), and (47), we have (z,y) € DK,
On the other hand, if (x,y) € D® with t(z,¥) < B, then by lemma 3,
ay = logt(z,y). Hence ay < log B. O

Proposition 8. For B > 0, let Tpuy(B) be as in {22). Then Tpwy(B) is
bounded for k=0 or k= [L : K].
Fork#0, k#[L: K], and (2,v) € Tpuy, we have:

o Fort ¢ {m, 7}, |z7| and |y7| are bounded for all 5.

o Forr € {n,T}, |2]| is bounded for 1 < i<k, and lyT| is bounded for
E<i<[L: K]

Proof: It suffices to show that log |z]| and log |y7| are bounded above for 7
and ¢ as in the proposition. Using (48) , we have for & #0

TL rK
log |27 = ax+)_ ejlog o7 ()14 B;log |07 (u;) |+

i=t =1

{o ifi>kand k#0,

a] otherwise,

and

TL
log [yf| = ax + 3 ajlog |07 ;)] +

i=1

ap if (i,7) = (k, T1) or of = ;I-T:
0 otherwise,

{a}’ ifi>k+1and k#0,

For k = 0, we obtain analogous formulas from (49).
Hence, by the above and lemma 4, there exists a constant ¢’ that depends
only on L and K such that for ¢ = ¢’ + log B, we have:

o For k 3 0 and for 7 ¢ {r, 77}
Lologlef| < e for 1 <i<k+1,
2. —dtlog|zl,,| < log|2]| < d+log |21, |, for k+2 < i < [L: K]-1,
3. —¢ +log|y7 | < log 7] < ¢+ loglyfyal, for 2 <7 < k—2,
4. loglyf| < e fork—1<i<[L: K].
Hence log [z]| and log |y7] are bounded for all 7 and # {n,71}.
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o For k # 0 and for 7 € {n, 77}

5 logjzi| < e for1 <i <k,
6. loglyf[ < ¢, for k <i < [L: K].

Note that for k = [ : K], we have furthermore that for 7 & {n,7},
~¢' 4 log |y | < log |47 < ¢ +log yfyul, for 2 < i < [L: K] — 1.

Hence log |y7[ is bounded above. Note in this case that log =7 is
bounded above because k = [L : K] in inequality 5.

e For k =0, taking ko as in (43), we have that for all 7:

L log|z]| < e for 1 <i< ko +1,
2. ~d+loglxl,,| <log|zl| < o' +log |2l y|, kot2<i< [L: K}-1,
3. loglyf[ < ¢, for 1 <i<[L: K]

Hence log | 7] and log |y7| are bounded above for all T and i. a

Using ¥, af,, <0 ((6) in Lemma 4), we have:

Remark 3. For each 1 < k <[L: K] -1, the set D™ can be written as:
DH = Dyl DiaU -+ U D jreqrets
where U denotes disjoint union of sets,

Do = {(z,y) € D® | gy < 0, :
Dy = {(z,y) € D® | et Gy > 0 and i o, <0},

and the af are the coefficients of ¢y(x,y) as in (48).

(51)

Note that in the case K = Q that Schanuel [S] studied the above decom-
position has only one term. It is a special feature of the relative case that
we must decompose D) further to take into account the units in O k-

For each 1 <7 < [K : Q] —1, define & : Di; — V by

_ i - {I:K) . i . [L:K] .
(2,9} = dalz,y) + 3 0y, (0, 2 ez’) - (E ak’ﬂ) (07 2. et"“)
=1 t=1 =1

i=1
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i=1 i=1 t=1

i (L:K)-k [L:K]-% i [L:K]~k [L:K]—k
Ty Ti1 Tit1 75 Ti Ty
+ Zakh > eritr D erfr | =2 4 > e D €re | s
=1 i=1 t=1

where the a are the coeflicients of ¢;(z,y) as in (48). Note that & (z,y) =
¢2(z,y) + w, with w € W.

Proposition 7. For (z,y) € Dy; and 1 <i < (K : Q] -1, di(z,y) can
be written as:

_ [K:Q] k=1 o QI [LK] v
lay)= 30 207 0,e7)+ Y, 3 bP(ef,0) + axN+
=1

i=1 J=1 t=k+2

3‘+I R . [I":Q] X - TL T
+ Z b? (0.ef) + Z b1 (edy1,0) + Z“J‘Ej + ZﬁjUj?
i=1

j=t F=itt i=1
where ay, «; and B; are as in (48).
Furthermore, for all t and 7, U7 is bounded above.

Proof: A calculation, using definition of & and (48), yields

( 1<j<iandté¢ {kk+1},

a; +eag,, if { or
J=landt=kF,

a;tt — e 38, agy i j=i+landi#k,

b:j = < i T . .
— 2o Uiy if J=i+4+landt =k,
agh, if 2<j<iandt=k,
| a if  i4+2<j<{K:Q]and any ¢,
(52)
with

_ 1 for 1<t<k,
T V-1 for k+1<t<[L:K)

By the inequalities given in (50), we obtain that b7 <O0forj#i41.
Using furthermore the definition of Dy in (51), we obtain that bt < 0 and
together (50) we obtain &' < 0 for each ¢. 0
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For 1 <k<[L:K]-1land1<:i<[K:Q]-1, define the subspace
Vi of V given by vectors that can be written as

[K:Q] k=1 . . [K:Q] [L:K] o i+l . . [K:Q) ' ‘
Z th’(oa e’ )+ Z Z b,’(ct’,O)-[-a,\fN-[—Z bk"({],ek’)-}- Z sz-l-l(e;',-l-lao)'
i=1 t=1 i=1 i=k42 =1 J=it+l

(53)
For each Vi, put Ar; = A(Vy;), as in Lemma 2. Denote by Ag; the
subset of ¢37(Ax;) N B¥) given by
{@y
Put Apg := Dy,
Proposition 8. Foreach 1 <k < [L: K]—1 the set
AW = AroU -+ U A prqiens (55)

2 - -
0 < arg(x1), arg(y) < —E, by*' <0and b < 0} . (54)
L

is a fundamental domain for B*) gnd each Ar; is a cone.
Furthermore for each real positive number B, the set Tyuy(B) is bounded,
with Ty (B) as in {22).

Proof: For each 1 <i < [K : Q] — 1, using the definition of &, Proposition
7 and definition of V;;, we obtain V =V ; & W. Taking in Lemma 2 the set
S given by
S=8= |J U 0od.(Ds),
wEO] ,y €€0Y
we obtain that A ; is a fundamental domain for S;. Hence using that Ao =
Do and Remark 3, we have A" js a fundamental domain for B®).

Ay,; is a cone basically because A" € V. ;. Furthermore, by Proposition 7,
the set {(z,y) € Ay; | {(z,y) < B} is bounded. The condition 57*' < 0 and
the expression for the elements of Ay ; given in (53) insure that Ay ;NAr; = ¢
when 7 # 1. O

We will prove for A = U, ULL::{,{] (Ag)®), that T4(1) has a boundary which
is (2V — 1)-Lipschitz parametrizable, where T4(1) is as in (22), (A)¥ as in
(65) for the ordering g, and we let A® = DO and AULK) = p(L:K))

Since T4(1) = ANT(1), we have

aT4(1) C (aAnTn) U (Z n a:m)),
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where OA denotes the boundary of A and A denotes the closure of A in
I x I, where 7 is as in (21).

By Proposition 8, T4(1) is bounded. Hence it suffices to Lipschitz-
parametrize .4 NT(1) and a compact subset of aT(1).

Proposition 9. Any compact subset of OT(1) is (2N~1)-Lipschitz parametriz-
able.

Proof. TFor each ordering g and each 0 < & < [L : K], in view of (34), we
consider the function .4 : T x T — R given by

k [L:K]
o) =1 (H e 1T ly?’l) | (56

=hk+1

where for each 7 the embeddings o7 are ordered by g.
Since ¢ is continuous in Z* x Z* by (18), and the %, are continuous in
I xZ, we have
aT(1) c (1) c Je i ().
ak
It is clear by (56) that ¢, is continuously differentiable with non vanishing
derivates in £;1(1). By the implicit function theorem, for each X ¢ toi(1)
there is an open neighborhood W(X) of ¥ and a differentiable map Py :
[0, 1]?¥~1 — T x T satisfying W(X)n74(1) C pr([0, 12N-1),

Now, if A is compact subset of dT(1), for each g,k we can find a finite
number of neighborhoods W{.X) that cover A N t-:(1). Hence there are a
finite number of continuously differentiable maps ¢y with the property that
Ulm ¢y = f;i( 1). The ¢y are Lipschitz by the mean value theorem. ]

Proposition 10. The closure of ANT(1) = {(z,y) € A t(z,y) <1} is
contained in [0,1{ANS(1)) = {sa [0<s<1, ac AN S(1)}, where

S(1) ={(z,9) € T* x T* [ 4(z,5) = 1. (57)

Proof. Tor (z,y) € ANT(1), there exists a sequence (Zn,1,) € AN T(1)
with (z,,%.) — (z,y). Since A is a finite union of (Ag)ki» where (A,);
is as in (54) for the ordering ¢, there exists a subsequence (z,/,y,/) with
{(zn, ynr)} C (Ag)s,; for some g, k, 4. But (@, ) € 151([0,1]), with £, as
in (56). Hence (z,y) € t;([0,1]) and Loty ) — tor(z, y).
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o If i (z,y) #0, put A =1, 4(z,9) <1 and Ay = tok{Zn, ). Then
A (e, Ypt) — /\"%(:1:, y), where N = {L : Q] and /\;,_"T(zn:,yn-) =

————

S(1). Hence (z,y) = A% (,\‘T’(x, y)) € (0, 1J(AN S(D).

2f-1q

o If iy (z,y) =0, ay = log (tg,k(:rnv,tn:)), where ay is a coefficient

corresponding to A for ¢y(zpr, ), with A as in (40). Hence ays
diverges to —oo. Thus all coordinates of $2(Tn, ynr) diverge to —co.
Hence (2, yw) — 0 and (2,y) = 0 € [0, 1)(A N S(1)). o

Proposition 11. dANT(1) is (2N — 1)-Lipschitz parametrizable.
Proof. Since A is a cone, A0A = 8A for A > 0. By proposition 10,

ANT(1) = AN ANT(1) C dAN[0,1)(A 0 S(1)) = [0,1)(2.AN (),

where S(1) as in (57). Is suffices to find a Lipschitz parametrization of

dANS(1). Indeed il % : [0,1]*M2 — T x T Lipschitz parametrizes
AN S(1), then @ : [0,1]2Y-! & T x T Lipschitz parametrizes .4 N T(1),
where &(z,t) = () for z € [0,1]*¥-2 and ¢ € [0, 1].

For (g,k,{) fixed, where g is an ordering of the embeddings of L into C,
1<k<[L:K]and 1<i<[K:Q], consider the subset F' of T x T, given
by

= (A (58)

Since (z,y) € (Ag)k,, the coefficients oy(z,y) and Bi(z,y) corresponding to
E; and U, for ¢y(2,y), belong to the interval [0, 1), define for (1,1, 6) fixed,
with 1 <1 <7y, 1<t <rgand § € {0,1}, the functions p,, p2: F = Ras
follows:

o First define the functions on I7* x I* by
#l(way) =af($)y)“§ and F‘a’(m,?) "_“ﬂt(z:y)_a
Clearly py and gy are continuous on Z* x I*,

o Extend iy and py to F' continuity, which is possible by (58).
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Hence Hy = p;}(0) and Hy = p3*(0) are closed in F. (59)
Now, define C = Cj by

¢ = (1 U) N (A4)N5D),

where j = (g, k,1,1,t,8). C is compact in Z x Z, because (Hy U Hy) NO(Ag ki
is closed in Z x Z (by (57) and (59)) and (1) N &(A,)x; is compact (it is a
closed an bounded subset of T(1) N (A, )4).

Furthermore, by definition of S(1), H; and H, we have by the implicit
function theorem, that for each A’ € C, there is an open neighborhood W (X' )

and a differentiable map 1y : I*M=2 — T x T satisfying W(X) N (1) C

1/),v(I2N_2). But .
0ANED cUCs,
J

where j runs over all (g, k,1,1,1,8), is a finite union of compact sets. Hence
there are a finite number of differentiable functions %y such that the union

of dx(I*N~2) cover ID N T(1). Again, ¥x(I*¥~2?) is Lipschitz map by the
mean value theorem, 0

Proposition 12. For each ordering g of th-e embeddings of L and for each
05 k<L[L: K],

Vol (Tun(B)) = Vol (Tpyo(B)),

with (A,)) and (D)) as in (55) and (47) respectively (for the ordering g).

Proof. Let g and k be fixed. We have
D& = DpoUDL,U--0 Dy Q-1

with Dy 0 Dy; = ¢ for i # j, Dy; as in (51), ¢,(D™) € A(V4), with A as
in Lemma 2 and V; as in (45).
On the other hand,

A®) = Ao - O Ayirq) — 1,

where for each 1 <i <K : Q) - 1, $a(Ars) C A(Viy), with Vi, as in (53)
and Ak,O = Dk’g.
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It is easy to prove that Vol (T( Ag)k".(B)) = Vol (T(D )i (B)) , using the
linear transformation x : Vi — Vy; given by x(a M) = a A and

k-1 [L:K]
X (Z (z a;-’(O,e}') + Z a;f'(e':,[])) + a?(o’vk)) =

T =1 i=k+1
Qor o WQIEK o wQL
= > > b7(0,e7)+ > b (e, 0)+> b7 (0, e )+ > beri(edir, 0),
j=1 t=1 =1 t=kt2 i=1 J=i+l
where b as given in (52). O

Lemma 5.A fundamental domain for T* x T* with respect to the action of
Oix % Of, described in (17) is

A={JU4)",

g k

where (A;)* is as in (55) and g is an ordering of the embeddings of L. Pur-
thermore, A is a cone such that T4(1) is (2N — 1)-Lipschitz parametrizable, -
where N = [L : Q] and

[L:K)

Vol(Ta(1) = 32 3 Vol (T yw(1)) (60) -

g k=0
with (D,) ¥ as in (47).
Proof. By proposition 8, we have that A is a fundamental domain for T* x 7*

and it is a cone. Using Propositions 9, 10 and 11, we have that 0T a(1)is
(2N — 1)-Lipschitz parametrizable. By proposition 12, we obtain that

[L:K] (L:K]
> Vol(Taym(1)) = Y, Vol(Tip ym(1)).
k=0 k=0

Furthermore, by the definition of C, in (32), we have that if ¢ # g' then
Vol(Cy N Cyr) = 0 because Cy N Cyr is at most (2N — 1)—dimensional, Hence
we was obtained the Lemma, O
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2.5 Proof of Theorem 1.

In this section we will prove Theorem 1. First, we need some notation.
Given an ordering g of the embeddings of L into C, and k with 1 <k<
[L : K], we have as in (45),

k-1 [L:K]
Vi = {Z (Z ai(0,e]) + Y al(ef, O)) +ag (0, vi) +awN| af, ay € R} ,
T =1 i=k4+1

where v; and A are as in (40) and (42), respectively. Hence a natural basis
for V. is:

{(ef,0) | k+1<:i<[L:K], o7 real}
U{(0,e])[1<i<k—1, o7 real}

U {(e] + €l,0) [ k41 Si<[L:K]-1, o}, =07}
U{(0,ef +ef)) [1Si<k -2, ofyy=a7} U {(0,vi), M}.

Let
{ol |i# &, o € P(L)} U {v}, M}, (61)

be this basis, ordered as above, where P(L) = {oy,--- +Csptt, ) 18 a set of
embeddings representing the arquimedean places of I..
For V4, we let our basis be

{(ef +€l1,0) o +1<i<[L: K] -1, 07y, =07}
U{(ef,0) [ko+1<i<[L: K], o real}U {(ve,0), N},
where ko is as in (43).
Now, we can prove Theorem 1.

Theorem 1. For an extension LK of number fields and a large positive real
number B, the number N(L/K,B) of points P € PI(L)/OE/K: with height
Hy(K,P)< B is

N(L/K,B) = Crxk

RiRyhy (2”; (271’)“‘

2 1
. . B® + O(B” i),
Wit @)\ a? ) (B 5)

where notation is as in section 1.




Proof. In the previous section we obtained a fundamental domain A
for I* x I*, with respect to the action described in (17) that satisfies the

conditions of Theorem 5. Hence we only need to calculate Vol (TA( 1)) to

obtain Theorem 1. By lemma 5, we must calculate 3, ¥, Vol(T (;.-}(1)),
9

D
where D) is as in (47).
For a fixed g and k, put § = Th(1) and let:

§= U (0098,
GllenL

S = {(z,y) € 8| for i < sy, zi, ¥ 2 0},

where (0, 0 9, )(z,¥) is the action of (¢,u) € Oi/x x O} on (z,y) € T* x I*
given in (17). It is clear that Vol(§) = 2%=z Vol(S) = WEVol(5). Hence
2231_;

VO](T.ng}(].)) = Vol(S5) = WVOI(?). (62)

We will calculate Vol(S). Since § C (Ry0)®® x C*&, we let R C
(Ryo)2esttz) x [0,27)2t2, correspond to S under the change of coordinates
from z, := z] and y, := y7 to polar coordinates (os T4y Bay ¢.) (respec-
tively, (re,7,,)) when o is a complex embedding (respectively, when o is a
real embedding). Then

Vol(3) = (21) fﬂ I @r) dva, (63)
o€ P(L)complex

where dVi = dr,, -+ - d"as_,,-m. drl - dr:,'L'HL .

If we change the variables r, and 7y to w, = logr, and w), = log 7!, note
that

II  er) T (rorl)= I (rorh) @ =exp( 3 (o) (awptul)),

{UEP(L)complel} O'EP(L} JEP(L) GEP(L)
(64)

with ¢() as in (35). Thus we obtain

Vol($) = ans [ exp (3 elo)ows +u))) v,

oeP(L}
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— ! ’
where dVp: = duw,, - - cdwg, L, dw) - g ey

Now, for (z,y) € S, ¢2(z,y) = ((w,,),(w:,)) can be written as in (48)
{or (49), depending on k). Thus,

TL T
$o(,y) = o +awN + 37 30 afol + Y wE Y U,

ik o7 €P(L) i=1 i=1

where the v} are as in (61), 0 < oy, B; <1, E; = (£(e;:), L(g;)) and
Ui = (£(u),0) as in (31).

Changing the variables w,,w/, to the variables ay, af, oy, B, we trans-
form the region ¢»(S) to a region R x [0, 172475 where R is given by the
inequalities given in (50), with ay < log(B).

If we put
(z1,22) = v +anN +30 3 al o],
i#k oTeP(L)
we have
[ (5, af

TS i i<k,
+

(% af + 50 i (i,7) = (k,m),
(s eador ) = 4 (65)
(af + 2, 24} i i>k41,
(5 %) il i=Fkand7+#m,
and
dw) _ ) 1 Ho=oclandi>k suy [1 ifo=c’andi<k
a(u;—r) - 0 OtherWise ! Nal - 0 ()therwise ?
B(ws) !,
Napr) = .le’ Aap) = _1{?’
wy) w!
atay) = 108 |o{e:), %((;f)l = log |o(e;))
3! a.! w!
3(11‘;;) = Iog |0-(u.|‘)|, %(ﬁl') =




Hence, the corresponding Jacobian determinant J is

J= ]det.A det B|,

N Hfi‘l

where for each 1 < i < rg, m; is such that, {u/™}7%, is a set of generators of
Of modulo torsion, the matrix A = (a;;) is (rp +1) x (ry, + 1) and B = (b;;)
is (r + 1) X (rg + 1), where

_ 1 if (4,7) = (1,1)
{110 loi(e;0)] :£3>i} bj=4 0 AL j=1 0
B10iEj-1 J oglr{uj2)| ifj>1

We have |det A det B| = N % Hence

e(n )RRy

J= Iy g2t )

(66)

On other hand, remembering that (w,,w.) = (2z1,2) + Y5, o; B; -+
YK B:U;, we have

2 o)ws twl)= 3 e(0)((21)s + (22)0) =

oeP(L) oeP(L)

=elop)a; +2ax+ ). Y elof)d].

irk oT€P(L)

Hence, using (63), (64) and lemma 4, we obtain

_ log B
Vol(.5) = (2m)* * Jexp | e(o]!)aft +-2ap+ (o] )al JdaydVy,
R Jco k /7

i#k oTEP(L)
(67)

where R is the region determined by the inequalities given in (50), and
dVr = dai! [Tig, o*"EP(L} daf.

Note in (66) that —~ C(T is independent of g and %. Hence by (62) and (67),

Vol(Tp(1)) =

2231 (27[')2‘LRLRK CL/I\’
VVL IL/I\’ 22t
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where

CL/K = 9fL—tx—1 Zzﬁ(ﬁ)_[n(k) exp (e(azl)a"k'l + Z z E(O";r)a;-r) dVR(J‘)'
g k 4

i#k T €P(L)
(68)

Here, for each ordering g and 0 < k < [L : K], dVR‘g"') = dag! [Tizr orepry daf,

R is the subset of R™2~%+! given by the inequalities (50).

Note that the constant Cp/ depends only on the ramification pattern of
the arquimedean places of I and K.

Hence, by Theorem 5, we have proved Theorem 1. O

2.6 Theorems 2 and 3.

In this section, we will calculate Crsx when L is a totally real or totally
complex field.
We note first that when L is totally real or totally complex, for each

pair g, ¢’ of orderings, VOI(T.D(k)(l)) = Vol(TD(:.-)(l)), because for dif-
g g’

ferent g, ¢/, D) and Dg") are isometric, where D{¥ is as in (47) (for ¢ ).
Furthermore ¢(71) = ¢(K) (see (36)), where

«(K) :{ 1 if K is totally real, (69)

2 otherwise.

Hence we consider any fixed ordering g and omit it in subscripts.
We consider separately the case when X is totally real or totally complex,
and the case when it is neither.

2.6.1 K totally real or totally complex.

In this subsection we also asumme that X is totally real or totally complex.

Let
[K: Q] g
= g = =L K =
where ¢y = f(!% and ¢ is as in {69).

We note that, when L is totally complex and K is totally real, B*) is
empty for & odd, so P(L) = {o}; [1<j<ms, T € P(K)}. Hence in this
case we replace the variables af; by af.
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With the above change of index, for K as in this subsection, we have
{gf lofeP(L)}={al|1<i<ns T€C P(K)}.
Calculation of the integral

Noting that €(o7) = ¢(L) for each 7, 7, the integral that appears in {68)

is equal to 1
e(L)re—rx+1 /;le:cp (“‘F + 2 Z“;r) dVg, (71)

TEP(K) i#k
where dV = daj! [],¢ pu¢) iz daf, and R is given by (50).

Put
18 =j;1exp (a}:‘ + 3 Za;’)dV. (72)

TEP(K) i#k
e When k£ = 0 or when k = ng, using 7y = rg -+ 1 and the fact that for
each j,
T541 2§ En i 1 Ty .
j f j exp(}_ x))dxydzy - - da; = ——~—lf exp(j x;)dz;,
—_C -0 -0 =1 (J - 1). bt 3 ¢
(73)
we obtain .
1 ny'”
7% = = .3 .
na((ma — D™~ (mal)m (74)
o When k # 0, k # ny, we put
R=R_UR, (75)

where R_ is the intersection of R with the region given by gy <0
and R, is the intersection of R with the region a,, > 0.

It is clear by (73) that

_ 1
Je. = Hm =T (76)

Note that R, is the subregion of R such that —oco < ap < —ajl; and
0 < ajyy < =% rur, afy,. Hence the integral Jn, is

0 0 -Er Ok -5 T T T
Cf_m...f_ooj; 7 mj; ! exp ((kak‘ +ZT:(n3 - k)az.-+1>dak’dV,

[e0)
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where C = o k-—-l)ll(k—l)!)"l and dV = dagly; -+ - da;7},. Hence

O ¢ Y —Er s a 1 ks
T e TS S

T#EN
(77)
To calculate the integral in (77), we consider two cases, when k = 22 and
when k # 22,

When k # 2.

C 1 1
‘[R+ B (na — 2k)k (k""‘l B (n3 — ]c)m-l) ) (78)
Hence, by (75), we add (76) to (78) to obtain

*) _ 1 (3 — k)((na — k)™ —! — pm-T) _
I (k((na — E)(k - 1)l)m + (na — 2k} (ng — E)I(k)Dm )

() - S R e

because we have the geometric sum

=0 ¢ —

Hence, when k 3 %,

n1=-1 -1 =1y, 2 J
1 = @) ng \ (g .
(na!)m E E .’;’ ng — ks (80)
When k= 22
We note first that for ¢ > I,

o 0 i i —~1
/_ e /_ m(zl;cj)exp(azmj)dxl...dw,- = ;{T (81)
=

i=1
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Hence by (77) and the above, we have

C‘ 0 0 1
[ =S L [ F et ey o2

TE#T) 74Ty

Hence, since ny — k = &, we have that

_ (ny —1)
/n,, k(s — B)(k — Dym (82)
Hence by (75), we add (76) to (82) to obtain

Imh=(M@h_k;&—JﬂVJ-

If we note that when k = =,

nlz_:l( i )j—n and (113-—-1 ) = ( ng—1 )
S \na—k ! k E—1 J°
we find that (80) is also true for k =
Now, for each ordering g, we have by the choice of 7y in (36), e(r;) = ¢(K).

Furthermore the number of orderings g is (na!)™. Hence, by (68)and (71),
we have

(nal)M2te—tie(K) 32 '
Crik = De(L )it Z]( )

By formulas (73) and (80), we have

nnl-—lth-—tK ng—1 _ 1 n1=14,-1 k 3
o= g (2 ()T E )
Lix QEL/KE(L)TI-"’K( E k jzz;) n—k

Noting that ng = LLTM and n; — 1 = r, we have proved

Theorem 2. Given an extension L/ K of number fields, so that each is either
totally real or totally complex, we have

tL—tx L:KI\™ L:K
Crix = - ([ ]) u (T'K, [ ]) )

2eppic e(L)rmmie \ ey €L/K
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where Cpyge is given in Theorem 1, epi asin (70), vy is the free rank of the
unit group of K and

=25 (1) (1) Bl

i=0

Remark 4. Cp/x has a simple form in the next cases:

o If L = K, we have that Cryx = 3u(rg,1) and u(rg,1) = 2. Hence
Crsk =1 in this case, in agreement wih the example in section 1.1,

o If K is totally real and L is a totally complex quadratic extension of
I, we have that Cj, 5 = 2% “2u(rk,1) = 2%~ also in accordance with

. . . . otr—1
example in section 2.2., using Ry, = ¥4 Ri T /f .

e Ifrg =0, we have

u('rK,n) =2+ Z ( Z ) = 2",
k=1

1. When K = Q and L is totally real or totally complex, we have
K] _ sr, +1;. Hence

CLIK

2t

¥ - _.______23L+1L.
(/L/I\ 26(L)"L+l

Noting that when L is totally real or totally complex E(Tz):l‘m =1,
we have that € q = 2%+~ jp according with Schanuel’s result
(++) in the introduction.

2. When K is totally complex and [I : Q] =2, wehavery = t;,—1
and Cpyx = Ju(0,[L : K]). Hence Crxc = K11

o If r =1, we have




This can proved hy comparing coefficient z"y" on expanding (z + y)**
by the binomial theorem and as (z + y)"(z + Y.

In each case, taking n, = [L : K], we have

2.6.2 K mixed.

In this subsection, we consider the cases where I is totally complex and K
is such that sp # 0 and #j # 0. In this case put

n = s+, ni=[L: K], n,=2n,. (83)

Note that in this case, n, is even, because for each real embedding T of K,
there are only complex embeddings & of I that extend 7.
Given k, let
. k41
= |5, (51)

where [2] is the integer part of z i.e. i, is such that 2=k or 2, =k+1.
We have

P(L)y={o] |1 <i<my, 7€ PK) complex} | J{s}; | 1 < i < ny, real}.

Hence, when 7 is real, we replace the variables aj; by «f. With the above
change of index (for r real), what was written 07,3 # k, can now be written
(for 7 real) 07,7 # i Furthermore we have that

{af | o] € P(L)} = {a] |1 <i< e(r)ng, T € P(K)}.

Calculation of the integral

Note that 7 is complex by the choice of 7y in (36).
Also, €(o7) = 2 for all 7, 7. Hence, the integral in (68) is equal to

1 . ] ) r
ori—riH _[,-, exp (“kl + ) Yd+ ¥ E“j) dVz, (85)

T real joki, Teomplex £
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[ 3

where dVp = daf! [],. L, af [TreP(ic)comples ;25 a7 and the region R is
given by (50) (but replacing k by 7, when 7 is real}. Put

1® =f exp (ai‘ ty Y4+ X Z“;) dVr,  (86)
R Treal jekiy TEP(K Yeomplex j#k
o When & =0, or when % = na, using (73) we obtain

t—1_sp
1 n2 n3

) _ _
T e DO~ e O
s When k # 0, k # n, we subdivide R as in (75).
It is clear by (73) that
1
/_ - k((n2 — E)(k — 1))t ((ng — i) (i, — D))ox (88)

Note that, in this case when T is real, we have o7_| = ¢]. Hence Ry is
the subregion of R such that:

— 00 < ap < —agly.
1
US“E{HS*( > “Z+1+§

AT complex

> al ). (% even)

Treal
0<ap, <- Z CHY (k odd )
T#T complex

Since the integral Jr, depends on the parity of k, we will consider the
two case separately. When k is even.

By the choice of i\, we have, & = 2,. Using (73), fp, is

Q 0 -5 p—all
C/— .. .'/_Oojl; f_c‘:“ exp (kaz‘ + E (ng — k)a}:_,_l + Z(ng — ik)a};_!_l) da;'dV,

Teomplex Treal
where

1

; ; , dV = lal, .,
((r2 = k = DIk — DY ((ng — 41 — D)1z — 1)) TGQK) dafyy

C =
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and X = Z a}_+1+2 E “:,.+1

TH#T) y complex Treal

Integrating with respect to ai' and letting af,, = %a;-’k +1> We have

/’ o / f / ¥ exp (Z (n2 — B)ai,; + (ny — 2k)“1~+1)

‘r:,é'r]

(89)
where & ' = Z

T € P(K)
T#m

To calculate the integral in (89), we consider two cases: when k = %2 and

k# 22,

When £ # 22, we have

j _ Cox 1 B 1
Ry B k('nz - 2].:) k-1 (n2 —_ k)m—l ’

Hence, using k = 2, and n; — &k = 2(ns — 71), we have

T
Gk+1.

[ = (s 250 = B = =t oy )
A e e e
Adding (88) to (90) we obtain
o =
225 ((ny — k)kl)tx ((ng — 4 )4)ox (ny — 2k)
Using (79) and noting that 2=k — 3 — i and & =44, we have
J®) n;x lngx Ng ng —1 et ng—1\% m =~ k d
nol(ng )i (ng)lox \ & k H .=D ne—k)
(91)

When [ = 22, using (81), and (89), we have

/ ny—1 o0
R~ R((k = 1)l(ng — B ({5 — Dy i) T)or (92)
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Adding (88) to (92) we have

m

1M = :
k{(ix — 1)Y(ng — i )1)*5 ((k — 1)I(ng — k))ix

If we note that, when & = =,

ni-1 k i n2—1 ‘ng—]. n3—1 n3—1
5 () = (701)=(22d) ()= (32),

we find that formula (91) is holds.

When £ is odd
By the choice of i;, we have k& = 2i; — 1. From (73), we have

/;u - 0/_'; a /io /o-z [-:P“ °xp (mZl + z (n2 - k)“Zﬂ) day,

Tcomplex

where

1
© = T = k= D= (s = G =Dy T2

rEP(K), complex
1';51'1

and dV = II day .

T€P(IK), complex

. Integrating with respect to af!, we have

[ = (m2 = k)((mg — )t~ — g
Ry ((m2 — EYED((ng — £)(3, — 1)])*x (ny — 2k)

Adding (88) to (93),

(n2 — k)tfc — ktr
((na — E)RY)x ((ng — i) 14y — 1)Y)ox(ng — 2&)°

Using (79) we have

. 1 n np—1 Y% ng \Fm
e st (1) () (5
n2l{(ng — D))ic-Tnglixe \ & k H ;,
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Hence formula (91) is also true when £ is odd.

Now, for each ordering g of the embeddings, we have by the choice of .
in (33), ¢(1) = 2. Furthermore the number of orderings g is (nol)t (ngl)ix.
Hence, by (68),

2*L—*x+1(n3!)~'x (ngl)”‘ ngz
CL/K = Sro—rx¥l LZ% I(k).

Hence, by formulas (87) and (91), we have

tr~tpe. 35, tx—1y ~1
2t~ R, )

CL/K ( 2"1-"'"!{'!'1

(E ) ) () E )

Noting that 2n3 = ny = [L : K] we have proved

Theorem 3. Given an extension L/K of number fields, so that L is a totally
complex field and K is neither totally real nor totally complez, we have

L:KJx 1
CL/K = [—2'3_1.4.]1_ b (sKatK: §[L : I{]) )

where

mm=2+ £ () (07 () ()

3=0

and [z] denotes the integer part of z.

Remark 5. Note that
v(0,m,n) = u(m — 1,2n),

where u (respectively v) is as in theorem 2 (respectively theorem 3).
Since when K and L are totally complex, we have €k =1 and

7L
Eﬁ%’ the formula for Cp/x given in Theorem 2, satisfies the formula

given in Theorem 3,

i
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