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Resumen

En esta tesis estudiamos la formacién de singularidades durante la evolucién por curvatura
de curvas en el espacio R3. Nociones de cutvatura total de la curva y superficie minima
asociada a ésta son utilizadas para definir radios isoperimétricos que dependen de can-
tidades geométricas tales como largos y 4dreas. Probamos que bajo ciertas hipdtesis de
la curva y superficic minima en cuestidn se descarta la formacién de singularidades tipo
IL. Ademds, mostramos que cerca del punto donde se produce la singularidad es posible
aproximar una curva cualquiera en IR?, que evolucione por curvatura, por una curva plana
con mejores propiedades que la anterior.




Abstract

Tn this thesis, we study the formation of singularities through the curve shortening flow in
R3. Notions of total curvature of the curve and its associated minimal surface are used to
define isoperimetric ratios that depends of geometric quantities such as lengths and areas.
We prove that, under certain assumptions of the curve and minimal surface, the formation
of type II singularities is discarded. Moreover, we show that, close to the singularity, it is
possible to approximate any curve in R3 that evolves by its curvature by a planar curve
with better properties than previous curve.
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Introduction

The Curve Shortening Flow is a geometric heat equation that can be used to deform
curves. More precisely, given an initial curve v, the flow produces a family of curves
that satisfies a certain law of motion. The aim is to analyze the shape of the solutions of
this sort of flow.

One way to motivate the Curve Shortening Flow is to try to write down as naively as
possible a heat equation for v. We want to obtain a flow that is independent of the choice
of parametrization of the curve and this can be achieved by picking a canonical choice
of parametrization, the arcllength parameter 5. Then we can simply write down the heat
equation for this parametrization as follows

2
oy = 6—7 (HE)
gt 0s?

Note that the arc-length parameter is defined using the map <y, and it changes as the
curve changes. Moreover, as the coefficients depend on the derivatives of « the equation
has the structure of a quasilinear heat equation.

Using Frenet's equations (see (1.1.1)) we can write the equation in a2 more geometric
way and the Curve Shortening Flow equation (HE) becomes
Oy
i k-N. (CSF)

That is, the curve moves in the normal direction with speed equal to the curvature at
each point,

This flow was proposed in 1956 by Mullins to model the mdtion of idealized grain
boundaries. In the contextj of geometric measure theory Brakke studied weak solutions
of the Mean Curvature Flow in 1978, of which the Curve Shortening Flow is the 1-
dimensional case. In 1986l Grayson, Gage and Hamilton renewed interest in the Curve
Shortening Flow arising from work on planar curves.

In addition, the Curve Shortening Flow acts to decrease the length of the closed curve
at the fastest rate possible (i'elative to the total speed of motion as measured in the square-
integral sense). Let us make this precise: Given an immersion 7 : 5 — R3, we can
consider smooth variationsjy(z, t) which satisfy

g_:(ﬂi,f)=V(a:,t) and  ¥(z,0) = y0(z),
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where V is an arbitrary (smooth) map from S to R3,
If I denotes the lengthjof ~, by a straightforward estimation we abtain

s (L) (1)

with equality if and only ifjV' is a multiple of % - V. Hence, we say that the Curve Short-
ening Flow is the gradient flow of the length functional and it arises naturally in problems
where a curve energy is relevant. $

For closed compact initial curve the smooth solution to (CSF) exists on a maximal
time interval {0, w), with @ > 0 finite. At time w the curve becomes singular and intu-
itively, this singularity occurs when the maximum curvature becomes unbounded.

The natural extension of the Curve Shortening Flow to higher dimensions is the Mean
Curvature Flow. That is a' one-parameter family F' : M x [0,w) — R™+ of smooth
jmmersions of the n-dimefsional hypersurface M, where F(-,0) = Fp is a2 smooth im-
mersion and F satisfies

—EF.

O ) = H(p, ) w(p,1), forevery (p,8) € Mx[0,0),  (MCP)

where H(p,t) and v{p,t) !a.re the mean curvature and the outer normal, respectively, at
the point F(p, t) of the surface My = F(-, t)(M).

A motivation to study the Mean Curvature Flow is that, in analogy with the Ricci Flow
of metrics on abstract Rie:'nannian manifols [24], it can be used to obtain classification
results for hypersurfaces s'atisfying certain curvature conditions [15]. It also has been
used to derive isoperimetric inequalities [23] and to produce minimal surfaces [6].

In the case of compact surfaces, it is known that there exists a smooth solution to
(MCF) on a maximal time]interval [0,w), with w > 0 finite, and the mean curvature of
the surfaces becomes unbounded as ¢ — w.

In the last decades sevéral different notions of weak solutions have been introduced
to define a flow after the singular time w. In [9] a new approach based on a “surgery
procedure” was considerec} to extend the flow after singularities. Compared with other
notions of weak solutions existing in the literature, the flow with surgeries has the advan-
tage that it keeps track of the changes of topology of the evolving surface and this can be
applied to classify possible geometries of the initial manifold. The surgery construction
was inspired by a procedure criginally introduced by Hamilton in [24] for the Ricci flow,
which deforms metrics on a Riemannian manifold. In three dimensions the Ricei flow of
Hamilton was employed b)I( Perelman, in conjunction with a different surgery procedure,
to prove Thurston’s geomeirization conjecture [10].

It is important to note that the results above on the Mean Curvature Flow were ob-
tained for manifolds of codxmensmn 1. In that setting a fundamental tool is the compar-
ison principle which, among others things, ensures that embeddedness is preserved. In
contrast, the comparison pirmcxple cannot be applied. for higher codimension manifolds

- evolving by the Mean Curvature Flow and this makes it more difficult to study such so-
lutions. Consequently, fewer results are known in that context and usually it is necessary

.l
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to have other preserved quantities. For example, in the study of the Lagrangean Mean
Curvature Flow [1, 2] the existence of a presen}ed Lagrangean is exploited, while in [3] it
is fundamental that a curvature pinching condition is preserved.

The main goal in this thesis is to gain understanding of the Curve Shortening Flow in
R3. We are interested in proposing in the future a type of surgery in the evolution of space
curves, following the work' of Huisken and Sinestrari in [3]. To attain this objective we
need to understand in detail the formation of singularities.

The formation of singularities is fully studied for planar curves that are smooth and
embedded. In [19] it was proved that if the initial curve is closed, convex and embedded
inR?, then the solution to (CSF) stays convex in the evolution, and when £ — w it shrinks
to a point. A generahzatlor‘l of that result can be seen in [16] where it was proved that if
the initial curve is closed, embedded and possibly not convex in IR?, then the solution to
(CSF) becomes a convex curve before the time w. Thus it converges to a point as well.
These theorems were simp!iﬁed by Huisken in [8] using extrinsic and intrinsic distances
and defining certain isoperimetric ratios. Note that in this case there is no formation of
singularities until the time }vhen the curve shrinks to a point.

The first result in this thesis is related to an isoperimetric ratio defined by Grayson in
[16].

Theorem A Suppose-thatly(-,t) satisfies the equation (CSF) and the total curvature of
(-, 0) is less than 4. If (-, t) remains embedded for all t € [0,w) with finite singular
time w, then the isopennelric ratio defined by (2.0.2) is uniformly bounded for all t €
[0,w). In particular, if y(-{t) develops a Type I singularity, then the isoperimetric ratio
converges to 4.

A standard way of cla551fy1ng singularities is into two classes called Type I and Type
II (see Definition 1.3.1). In the case of planar curves if the initial curve is an embedding,
then the formation of Typelll singularities is discarded.

On the other hand, for spaces curves, embeddedness is not preserved by the flow and
other types of singularities|can be formed. Intuitively, since the torsion of a space curve
is not zero, the curve could move in more directions; even if the initial curve lies in a
plane its evolution could bt:3 outside of this plane. However, in this thesis we will prove
that the formation of Type II singularities can be discarded for space curves under suitable
conditions. We will prove

Theorem B Suppose that y(-,t) satisfies the equation (CSF) and the total curvature of
~(-,0) is less than 4, Let [Xt be the minimal surface enclosed by (-, t). If its Gaussian
curvature K(-,t) is ungfarm!y bounded and (-, t) remains embedded for all t € [0,w)
with finite singular time w'and does not shrink to a point, then there is no formation of
Type I singularities.

This theorem complements the result proved in [11], which establishes that if the
initial curve satisfies that its total curvature is less than 4, and the singularity formed in
the spatial curve shortening}ﬂow is of Type I, then the curve shrinks to a round point when
approaching the maximum time cw.



The main idea of the proof is to consider a curve  with total curvature less than
47 and inspired by [8], wciwill use isoperimetric ratios to analyze its behavior through
the evolution by the Curve Shortening Flow. To define isoperimetric quantities we were
motivated by the classic isoperimetric problem, which relates the length with the area
enclosed by a curve. Howe\lrer, in R3 it is not clear how to define the enclosed area and to
circumvent this issue we will consider the solution to Plateau’s Problem, which associates
a minimal surface to a curve . In 1931 Jesse Douglas, simultaneously with Tibor Rado,
showed that every Jordan clirve in R™ bounds at least one minimal surface of disc-type.
Additionally, in [21] it was Shown that the minimal surface is unique if its boundary is an
unknotted curve. Following these results, the area enclosed by an unknotted curve 7y is
well defined and we will us:c it in the definition of isoperimetric quantities.

Others existing results that we will use in the proof of Theorem B are given in [12, 13]
and will be described in Ch?pter 1.

In Chapter 3 we will sH:ow that if -y evolves by its curvature, then it can be approxi-
mated by a “nice” curve 4 close to a singularity. Since this approximation could extend
the time of evolution of vy, the computation of the evolution of these curves and estima-
tion of their curvatures mayj give us the first step to perform a simple surgery. We hope to
address this in the future. The main tool of Chapter 3 will be a result in [12], which states
that singularity formation ista planar phenomenon. Consequently, we will prove that there
exists a plane where -y will be approximated by a graph of a curve over this plane close to
the singularity and we will §how that their curvatures are directly related.

This work is organized as follows: )

In the first chapter we :collect basic facts and notation about the Curve Shortening
Flow, total curvature, singularities and minimal surfaces. Also, we state the results that
will be used freely in the theésis.

The second chapter contains the definitions of isoperimetric ratios using minimal sur-
faces for unknotted curves. Also we will show monotonicity praperties of these ratigs and
theirs rescalings. Next, we|will study the properties of the Grim Reaper (see Definition
1.3.4) and we will define c?rtain isoperimetric ratios related to that curve. We conclude
the chapter with the proof th the main theorem of this thesis,

In the last chapter we define a neighborhood of the singularity to show that the curve
7y restricted to this neighborhood has some properties, in the sense that the-curve is close
to some plane. Secondly, we will show that this curve is approximated bysa space curve
that is a graph of a planar curve. Finally, we estimate the relation among their respective
curvatures. i
i
(
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Chapter 1

Preliminaries

We denote by B the open disk
Bi={w = (u,v) e R?: 4% + v < 1};

and its boundary by
St={p=(u,v):u® +v2 =1}

1.1 Curve Shortening Flow

In order to fix notation, the Frenet matrix for a space curve vy with arc-length parameter s

will be written as:
8 T 0 k 0 T
s N }={ -k 0 7 N }; (1.1.1)
S\ B 0 —7 0 B

where T, N and B are the tangent, normal and binormal vectors, respectively. The quan-
tities & and r are the curvaiure and torsion of .

Definition 1.1.1. The space curve -y evolves by the Curve Shortening Flow or by its
curvature if it satisfies the equation (CSF), where v : §* % 0,w) > R3isa one-parameter
smooth family of curves and (-, 0) =~y is a smooth space curve.

Moreover, we can rewrite the equation (CSF) as:

&y 0T 6% .
5{':—5;:@_' % (1.1.2)

Thus, the Curve Shortening Flow is a system of quasilinear parabelic equztions.

Some examples of curves which evolve by the Curve Shortening Flow arethe follow-
ing: =

* The straight line: Since its curvature k is identically 0 it does not change in time.

5




* The cirele: Considering the parametrization

(2, t) = (r(t) cos(z), r{t) sin(z), 0),
the evolution of the circle can be compute by the.evolution of its radio

or _ -1
ot = (e’

We obtain the solution 7(t) = 4 /rg — 2t, where rg is the initial radio. Thus, we get

2
a maximal time of evolution given by w = 320- Therefore, the circle evolves until it
becomes a single point.

* The helix: Consider a curve parametrized as
e, 1) = (A(E) cos(z), A sin(), B)z),

where A and B are functions depending on time. The evolution of the helix is given
by

0A A, OB\ -4 . ,
(a cos(z), e sin(z), E:ﬂ) = m(cos(m), sin(z), 0);

where the functions A and B can be determined by

i;)ﬁ + B In(A)) = —t+ %0)2 + B2In(A(0)),

B{t) = ceR.
Note that the curvature and torsion of the helix are given by:

k — 0 when — oo;

VRN
B

= m — B_l whent — co.

T

Therefore, the Jlimit curve of the evolution is a straight line, although the torsion is
not approaching zero.

There are two important theorems about existence of the Curve Shortening Flow.
From [19] one has short time existence of solutions on a small open interval in time:

Theorem 1.1.2. Let yg be a smooth, immersed and closed curve in B3, There exists

€ > 0 such that solutions v : §* x [0,£) = R® to the Curve Shortening Flow exists.
Furthermore, these solutions are smooth.

In [13] it has been shown that solutions to the space curve flow exist until the curvature
becomes unbounded. More precisely




Theorem 1.1.3. If the curvature of ~ is uniformly bounded on the time interval [0, @),

there exists an € > 0 such that (-, t) exists and is smopth on the extended time interval
0,a-+€).
Proposition 1.1.4 (Geometric Invariance under Tangential Perturbations). If a smooth
Jamily of curves y : ' x [0,w) — R3 saisfies

B

B VAT (1.1.3)

¥(s,0) = 70(s)

where T, N and k are the tangent vector; the normal vector and the curvature of the point
(s, 1), respectively, and also ifa : S x [0, w) — R is a smooth function then there exists
a family of reparametrizations of (-, t) which satisfies (CSF).

Conversely, if a smooth family of curves v : S* x [0, w) — R3 satisfies (CSF), then
any reparametrization satisfies the system (1.1.3) for some a(s, t). -

Proof. Let ¢ : §* x [0,w) — S* be a smooth family of diffeomorphisms of §1 with
©(5,0) = s forevery s € ST and

a

gt'(p(sst) = —a(w(s,t),t).

By the existence and uniqueness theorem for ODE’s on S* this family exists, it is
unique and smooth. Considering the reparametrizations ¥(z, t) = ¥o(z, t),t), one has
o7 By By
EE 5, t) - E(P(S:t)tt) +T(90(3’t)1t) 8t (S,t) .

= k(p(s,2), )N (0(s, 1), 2) + aio(s, 2), )T ({3, £), ) — a(o(s, £), T (ip(s, 2), )
= k((s, 1), )N (0(s, 1), 1)
= k(s,t)N (s, 1).
Hence, 7 satisfies (CSF) and 4p = .
Conversely, if -y satisfies (CSF), then ¥(z, ) = v{¢(z, 1), t) satisfies
g Oy 13}
T = el + T8, (s,
= K(p(s, 1), )N (o(3,8),2) — alio(s, £), BT (s, 1), ).
Therefore, 4 satisfies (1.1.3). |

Since a reparametrization does not geometrically change the curve, an invariant way
of writing (CSF), which factors out the issue od dependence on parametrizations, is

Definition 1.1.5. The space curve -y evolves by Curve Shortening Flow if it satisfies

Z—Z(pa t) - N(p,t) = k(p, 1). (1.1.4)

Herey:8' x [0,w) ~+ R3isa one-parameter smooth family of curves and ~(-,0) = =,
+is @ smooth space curve.




The definition above will be mainly used in Chapter 3, while in Chapter 2 we will
often assume that the curve +y satisfies (CSF).
This definition has the following properties

* Invariance under isometries of R3

Ify: S x [0,w) — B3 is a solution to (1.1.4) and A : R® — &3 is an isometry
then A oy is a solution to (1.1.4).

* Invariance under rescaling space-time
Ify: 8 x [0,w) - RS is a solution to (1.1.4) and for fixed A > 0 we define
Tt St x {0, Mw) = R3 by
M) = Xv(p, A7%8), p € S*

then 7, is solution to the Curve Shortening Flow in the sense (1.1.4).

1.2 Total Curvature

Given a space curve vy, we define its curvature (always non-negative) as

By

k=lzs2

. (1.2.1)

Note that, when «y is 2 planar curve, for every s € S? it is possible to give a sign to its
curvature k(s) as follow: Let {e1, e} be the natural basis of R2. We choose the normal
vector N (s) such that the basis {7'(s), N(s)} possesses the same orientation as the basis
{e1, e2}. Thus the curvature k(s) is defined by

or
5 (8) = k(s) - N(s),

that might be either positive or negative (depending on the chosen orientation for ¥ or
R?).
Thus, we define

Definition 1.2.1. The total curvature of =y is given by:

/ lk-]ds.
oy

Remark 1.2.2. It is clear that |k| coincides with equation (1.2.1 J. Thus, for space curves
we can consider the total curvature as
/ kds. .
¥

In [12, Th.5.1] it was shown that if a curve evolves by its curvature, then its total
curvature is a decreasing function in time:




Theorem 1.2.3. Let y be a solution to the Cizrve Shortening Flow. Then we have

EBE / |k|ds < — / 72|k|ds < 0. (1.2.2)
T vy

Additionally, following {18, Sec.5-7,Th.3] we have:

Theorem 1.2.4 (Fenchel’s Theorem). If 7Y is an embedded curve then the total curvature
f o |k| > 2 and equality holds if and only if the curve is a planar convex curve.

Proof. First, we construct a tubular neighborhood of radius r about -y, forming a toroidal
surface S that is parametrized by:

X(s,v) = v(s) + r cos(v) N (s) + rsin{v) B(s).

Here N and B'denote the normal and binormal vector, respectively.
Using Frenet’s equations, we have

Xs = (L —rk(s)cos(v))T(s) — r7(s) sin(v)N(s) + r7(s) cos(v) B(s);

Xy = —rsin(v)N{(s) + 7 cos(v)B(s);
Xsx Xy = —rcos(w){1 —rk(s) cos(v))N(§) — rsinfw)(1 — Tk(s) cos(v)) B(s);
| s x Xu| = r|(1—7k(s)cos(w))].

Since the surface S is embedded we may choose a radius + <
tees that | X, x X, > 0.

Now we compute the coefficients of the first and second fundamental form and normal
vector of the surface 5 :

m. This guaran-

E = Xs y Xs = (1 b 'f'k(S) (.',OS('U'))2 + T27‘(3)2;

F = X, X, =r%(s);

G = X,-X,= r2;

v = é‘:—;i;i]- = —cos(v)N(s) — sin{v) B(s);

e = v-Xg=—k(s)cos(v)(l — rk(s) cos(v)) +rr(s)%;
= v X =r7(8);

g = v Xp=n

Note that in the factors eg ~ f2 and EG — F? the torsion 7 does not appear. Thus,
X e i . :
using the formula K = E"F@% we obtain that the Gaussian curvature is well defined,

and:
_ —k(s) cos(v)
T r(1 —rk(s) cos(v))”

Moreover, the Gaussian curvature X is positive if cos(v) < 0, i.e. when t<v< -37"'
We shall denote by S... and S_ the subsets of S where the Gaussian curvature X is positive
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and negative, respectively. Since S is a torus with Euler characteristic 0, the Gauss-Bonnet
Theorem implies that

-

KdA = / K[szX,,ldsdv=f —k(s) cos(v)dsdv
51 St

St
3

; = fET(— cos(v))dv/;kds

2

= 2fkds.
¥

Therefore, the total Gaussian curvature of S is equal to twice the total curvature of
the curve -.

On the other hand, the Gauss map M : S —+ S2 restricted to 8. is surjective. This
follows from observing that for any given g € S2 there is 2 plane P parallel to the tangent
plane at g that satisfies P N S = . By sliding P to the first poini of tangency p € S,
the tube 5 must lie entirely on one side of P (since otherwise it would not hit the poini p
first). This implies that K (p) > 0, i.e. p € S;.. This shows that M(S,) = 52.

Moreover, the Gaussian curvature K is the Jacobian of the Gauss map for an ori-
entable surface. Therefore, using a change of variables we get that 1. S KdA > 4.

Finally, we can conclude that the total curvature is positive and greater or equal than
2.

A proof of f,y |kl = 2 if and only if -y is a planar convex curve can be found in
[18]. &

We consider two types of embedded curves: unknotted and knotted curves.

Definition 1.2.5. [7] An embedded curve v : S* — R® is unknotted if there is an
orientation-preserving homeomorphism of R® onto itself which maps <y onto a planar
circle inR3, i.e. onto S*; otherwise, «y is knotted or is a knot.

Unknotted Knotied

Figore 1.1

From [20] we have the following:

Lemma 1.2.6. If the curve -y is knotted its total curvature is greater or equal than 4.
However, if the total curvature of =y is less than 4 then <y is an unknotted curve,
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Thus, we can prove the following proposition:

Proposition 1.2.7. Ifthe initial curve g has total curvature less than Am and its evolution
by curvature =y, stays embedded then ~, will be unknotted Jor everyt € [0,w).

Proof. 'We have that

f Iklds < dr.
70

Hence, as g; is embedded for every ¢ € [0, w}, using the Theorem 1.2.3 we obtain
|klds < | |k|ds < 4.
Te “Yo

Thus, for every ¢ € [0,w) the total curvature of ; is less than 47, Therefore, (-, t) is
an unknotted curve for every ¢ € [0, w). O

Another important result that we will use in this thesis is the well known Gauss-
Bonnet Theorem in RS:

Theorem 1.2.8. Suppose M is a compact two-dimensional surface in B3 with boundary

8M. Let K be the Gaussian curvature of M, and let kg be the geodesic curvature of M.,
Then

/ KdA+ / kg ds = 2mx (M), (1.2.3)
M aM

where dA is the element of area of the surface, and ds is the line element along the
boundary of M. Here x(M) denote the Euler characteristic of M.

A proof of this theorem can be found in [18].

1.3 Singularities

Theorem 1.1.3 states that if the curvature is bounded then it is possible to extend the time
of evolution. Thus, there exists a maximal time when the curvature becomes unbounded.
Therefore, we say that the evolution of -y by curvature forms a singularity at time w when
the-curvature k(:, w) “blows-up”, i.e. when the curvature k(-, ) tends to infinity as t — w.
Singularity formation can be classified according to the following definitions.

Definition 1.3.1.
* The singularity formation is of Type I if Hmg_,,,(sup &2(., t))(w — t) is bounded.
* The singularity formation is of Type IT if liny._,.,(sup E2(-, ) {(w—1) is unbounded.
To study the formation of these singularities we define two types of sequences:

Definition 1.3.2.
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* {(Dn,tn)} € S1x[0,w) is a blow-up sequence if

B th=w and  lim E¥pn, ) = oo
7100 n—o0

* {(pnitn)} € SIX[0,w) is an essential blow-up sequence if it is a blow-up sequence
and there exists p € R, independent of n, such that

p (sup k*(-, 1)) < k*(Dn,tn) whent < t,.

In [12, Th.6.1] it was proved that if {(ps, t,)} is an essential blow-up sequence, then
the formation of singularities is a planar phenomenon in the following sense.

Theorem 1.3.3. If {(pn,tn)}} is an essential blow-up sequence then

. T
Jim E(pru tn) =0.
Analogously to the planar case, the curve can be rescaled in space and in time to obtain
a limit curve with bounded curvature. According to [12] the limit of rescaled solutions
can be classified in the following way:

* If -y forms a Type I singularity, then -y is asymptotic to a planar solution which is
homothetically shrinking, i.e. it is a contracting self-similar solution. These planar
solutions were studied and classified by Abresch-Langer [25] (see Fig.1.2).

* If v forms a Type II singularity, then there exists an essential blow-up sequence
{(pn,tn)} such that a rescaling of +y converges along a subsequence of {(Pn,tn)}
to a convex eternal solution ~.,. Next, in [12] it was shown that a solution of
this type is a graph that moves by translation and satisfies a parabolic differential
equation. Such solution is known as the Grim Reaper (see Fig.1.3).

Definition 1.3.4. ({16]) The Grim Reaper is the planar curve defined by
Yeo(Z, ) = (2, — In{cos(z))) + (0,1),
where T € (%, %) and it moves upwards with constant speed in time.

Remark 1.3.5. The Grim Reaper is a convex curve with bounded curvature and total

curvature equal to m. Moreover, . is a solution to the Curve Shortening Flow following
(1.1.4}.

1.4 Minimal Surfaces

Minimal surfaces can be defined by several equivalent ways in R3. In this thesis we use
the following:
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Figure 1.2: Abresch-Langer Curves
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Figure 1.3: Grim Reaper

Definition 1.4.1. A surface X is minimal if it satisfies H = 0 with H its mean curvature.

Remark 1.4.2. Given a minimal surface it is possible to find (locally) a conformal parametriza-
tion X : B — R® that satisfies

92X  8’x

where v = %ﬁ%ﬁ denotes the normal vector to the tangent space and A is the Laplace-

Beltrami aperator of the surface. Thus, it is possible to choose a harmonic parametriza-
tion of a minimal surface.

Given an unknotted curve -+ the problem of finding a minimal surface with boundary
Y is known as the Platean Problem. In the second chapter, we will use a-parametrization
of a disc-type minimal surface with this boundary, given by

Theorem 1.4.3. Consider the following system of non-linear partial differential equa-
tions: ~

AX =0 ie X is harmonic;

[Xul®> = |1 Xu> = Xy - Xy =0 ie. X is conformal; (1.4.2)

Xlog : 0B — v is a parametrization of .

Then there exists X € HY(B,R3) N CY(B, R?) such that it is a solution of (1.4.2)
and defines a minimal surface with norm given by

IXIE = [ (XP +9XP) du.
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Here H2(B,R?) denotes to the Sobolev space of L2-functions and G°( B, R3) de-

notes the space of continuous functions X : B — R2. A proof of this Theorem can be
found in [14].

Remark 1.4.4. We may choose Xy and X, non identically zero. If one of them were
identically zero, for example X, using the relations (1.4.3) we get that X, is identically
* zero as well;.this implies that X is a constant function but X |st =~y and <y is not constant.

Now, we want to define the area associated to an unknotted and embedded curve v.
Using Theorem 1.4.3 we have that given 2 curve « there exists a minimal surface with
boundary -y. Moreover, by [21] we have that if the boundary is unknotted then there exists
a unigue minimal surface that satisfies (1.4.2).

Thus, the area assogiated to the curve will be defined as the area of that minimal
surface. More specifically,

Definition 1.4.5. Let vy be an unknotted space curve. If X : B — R ; {u,v) = X(u,v)

is a parametrization of the minimal surface with boundary +, then its enclosed area is
given by: '

8xX X
A= L IE'E(’U,'U) x E('M, 7)) dudy. (143)

- Remark 1.4.6. Note that if we assume that "o is unknotted, Proposition 1.2.7 implies that
its evolution «y; will be unknotted for every t € [0, w). Thus, from [21] we will have that

there exists a unique associated minimal surface Xi. Therefore, for every t the area 4;
will be well-defined.

Furthermore, 4n°{26] it was shown that every minimal surface with boundary satisfies
the following isoperimetric inequality.

Theorem 1.4.7. Let X € C*(B,R®) be a minimal surface, assume that X is of class
HY2(B,R3). If L(X) denotes the length of the boundary of X and A(X) denotes the
area of X we have that if L(X) < oo, then its area A(X) < co and

41}A(X) < L3(X). (L4.4)

Equality is attained ifand only if X : B — R3 represents a (simply covered) disk.




Chapter 2
Type I Singularity

The aim of this chapter is to prove the main theorems of this thesis:

Theorem A Suppose that (-, t) satisfies the equation (CSF. } and the total curvature of
(-, 0) is less than 4. If (-, t) remains embedded Jor all t € [0,w) with finite singular
time w then the isopermetric ratio defined by (2.0.2) is uniformly bounded for all t €
[0,w). In particular, if v(-,t) develops a Type 1 singularity then the isoperimetric ratio
converges to 4mw.

Theorem B Suppose that y(-,t) satisfies the equation (CSF) and the total curvature of
(-, 0) is less than 4w. Let X, be the minimal surface enclosed by (-, t). Ifits Gaussian
curvature K (-t} is uniformly bounded and ~(-,t) remains embedded Jordilt € [0,w)
with finite singular time w and does not shrink to a point, then there is no formation of
Type I singularities.

The proof of these results relies on certain isoperimetric ratios,
. We first note that the area of the surface X : B — R3 is given by AX) = [, dp,
where y is the canonical measure associated to the metric induced by the immersion X;
From Definition 1.4.5 and Proposition 1.2.7 we get that for every ¢ there exists an unique

minimal surface X (-, %) with boundary ~(-,£). Thus, we can define for every ¢t € [0, w)
the area of such surface:

Definition 2.0.8. Let v(-,) be an unknotted space curve that evolves by its curvature.
FX(t): B = R®: (u,0) = X(u, v,t) is a parametrization of the minimal surfuce
enclosed by (-, t), we can define its enclosed area by:

ox : oxX
At—L'E(u’U’t) X %(u,v,t) dudv. . (2.0.1)

Remark 2.0.9, Since the Emit curve of the rescaled solution may not be closed, it is

convenient to assume that each , is defined on the real line as a periodic map. Thus, we
assime that ¥(-,t) : (55, 2] -+ R3.

Thus, we define i

15
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(i) Let (-, £) be a solution of (CSF) and X (-, £) its enclosed minimal surface. If Ly¢ is the
length of v(-, %) and A, is the area of X (-, ), we define the isoperimetric ratio

L2
() :='Ii.

Remark 2.0.10. Note that this isoperimetric ratio generalizes the isoperimetric
ratios employed by Hamilton [23] and Grayson [16].

(2.0.2)

-~

' (if) Let (-, #) be a solution of (CSF) and X (-, t) its enclosed minimal surface. Given two
different points y(a, t) and y(b, £} such that

b 0
s(8) i= /D ds(t) < - and —s(a) 1= / B <t 203

we consider the piecewise geodesic I'gp(-,2) on X; that minimizes the distance
between y(a, t) and (b, t). In particular,

Tas(0, t) = W(b: t): Pab(lst) =v{a, t)'

We will denote the length of U'ap (-, t) as dfy and the length of (-, t) between o and
bas I}, We define the isoperimetric ratio

li

Gla,b,2) = 22 ' (2.0.4)
'ab

Remark 2.0.11. Note that G(a,b,t) > 1 and it generalizes the isoperimetric ratio

employed by Huisken [8]. Moreover, if the curve (-, ) is not embedded then this
ratio would be unbounded,

The rest of this chapter is organized as follows: In section 2.1 we will study the
isoperimetric ratio defined by (2.0.2), we will compute its evolution in time and we will
show that it is invariant under rescalings. These computations imply. Theorem A which
relates to a result of Grayson for planar curves [16], In the second section we will study the
isoperimetric ratio defined by (2.0.4), we will estimate its spatial variation, its evolution
in time and we will show that it is invariant under-rescalings as well. In section 2.3 we
will use known results to ensure the convergence of a family of surfaces. The last section
is devoted to prove Theorem B, using the properties of the isoperimetric ratios {o discard
the formation of Type II singularities.

2.1 Isoperimetric Inequality I I

The aim of this section is to consider the isoperimetric ratio of (+»t) defined by equation
(2.0.2) and to find bounds on this ratio through its evolntion. Also we will compute the
evolution by curvature of the length and area associated to the curve ¥(-, ).

We start by computing the evolution of the length L. Following [13, Lem. 1.4] we
obtain '
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Lemma 2.1.1. If (., t) evolves by curvature then the evolution of its length is given by:

9, _ 2
'a—tLt = _-_[},k ds. (2.1.1)

Progf. If wis a time independent parametrization of the circle, then the arc-length param-
eter is given by: ds = lg—;ﬂl duw. Thus,

3")(,&_
Lt—-[rds(t)—/;l‘%
Therefore,
ki

0L _ f‘—a- dw=f ——_%%.%dw=/ L"at'g%dw
8t 51 Ot | Ow 5t I g%] st

= f (%N—kZT—I-k'rB) --aldw
51 w

dw (2.1.2)

ds

= f (a—kN—sz—]—krB)-T’ﬁ‘dw
St 63 . 61!.)

= —/kzds.
o
O

Let X : B — R® be a minimal surface and ¢ > 0. If X (+,t) is the minimal surface
associated to the evolution (-, ¢) of the boundary =y, then X (-, t) is a variation of X, i.e.
is a function X : B x (—¢,¢) ~ R? such that X (-,0) = X and X(-,t) € 1.

HY = %}—f- is a vector field along the surface X, from [17, Chap. 1.2] we will compute
the evolution of the area A;.

Lemma 2.1.2. If y(-,) evolves by curvature, then the evolution of its enclosed area is
given by:

—(?-At = — / kods, where kg is the geodesic curvature, (2.1.3)
ot o

Proof. We know that the area as function at time ¢ is: a
o

At;A(Xf)=[B\/deqTﬂdudy=[g\/det (<%,%?>>dﬁdu.

1
From [17] we know that if » is the inward unit normal vector to the surfﬁ%:e and Y7 ig
the tangent component of Y, then for any surface in motion we have

%\/det(gij = y/det(gi;) (div(YT) - H(Y, Y. Vo214
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Thus,
a d
aAt = _/B dys

: /.e (div(¥T) ~ H{Y, 1)) y/det(g:;)dudv

[ @™y ~ (v, 00) d
X

jl

I

f div(Y " )dy, ( since the surface is minimal, H = 0)
X

= f YT vdp, ( by the Divergence Theorem)
7

=. /-(kN)T svds = — / kgds-
it i

Finally, we can prove
2
Theorem 2.1.3. %5 is decreasing in time. .

Proof. We start by showing that L2 — dx 4, is decreasing. Using equations (2.1.1) and!
(2.13):

8, 4 Y ]
E(Lt —471’At) = 2LtaLt 471'atAt

= —2L / k*ds + 4mr f kqds.
it i

Moreover, Holder’s inequality implies that:

2
( f |k|ds) <L / k2ds, JELS)
¥ v

and since k2 = k_g + k:?v with &y the normal curvature, we have that:

[kql < |K]. (2.1.6)
Thus,

(L2 —4rd) < —2 ('[rlk]ds)z—i—élw[rm[ds

—-2/;|k]ds ([rlk[ds—Zw)
-—2/kds ([kds—ihr)

0.

Il

IA
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The last step followed from Theorem 1.2.4.
Therefore,

d 3]
ZLtra—tLt - 4W5£At S 0. (2.1.7)

On the other hand, using inequality (2.1.7) and the isoperimetric inequality given by
Theorem 1.4.7, we obtain

S(m _ 2o, IEO,
t\A;) — Aot AZart
19,
< 0

2.1.1 Rescaled Solution

The goal here is to define a rescaled solution and its associated minimal surface for Y
along a blow-up sequence. We also observe that the isoperimetric ratio defined in this
section is invariant by rescaling.

Definition 2.1.4. A rescaled solution T of v along a blow-up sequence
{(pn,tn)} € §1 % [0,0) is a curve 4, : 8 3¢ [~AZty, X2 (w — tn)) = R2 defined by:

'Yn(':f) =AlOpy( ) + By); T= }\i(t —tn),

where A, € R*, 0, € 50(3), B, € R? are chosen so that In 15 @ solution of the Curve
Shortening Flow and:

* Ya(Pn,0) =0 € R3;
* the unit tangent vector T, (ps, 0) = (1,0,0);
* kn - No(ps,0) = (0,1, 0).

fe
Remark 2.1.5. Since we will use geometric quantities such as length ond area, and we
know which they are invariant under rotations or translations, we assume thar Yol E) =

Ay(st), withT = A2(t — t,,), then we can compute ;

O _ 320 a0y _ &

E A Teia il wi Al
O _ 8’7__
Bs = Mgy =MD
dsn(f) = I%l: ds = Ands(t);
Tn('ui) = T(':E); :
A .
Fm _ N; .

Os2 A
Nn(vf) = N(,f)
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Therefore, the rescaled curve v,(-,t) evolves by its curvature and

( £)

Fn (-

(2.1.8)
Remark 2.1.6. In addition, by definition of rescaled solution we have that
k2(pn,0) = 1, then
X2 = K (pn, tn).- (2.1.9)
Therefore, if {(pn, tn) }n is a Blow-up sequence then A2 converges to infinity as n tends to
infinity,
We define a minimal surface associated to the rescaled curve Ta(+,T) by the parametriza-

tion:

Xoz:B=RY: (u,v) = Kagu,v) = A Xe(u,v). (2.1.10)
Lemma 2.1.7. The rescaled surface parameterized by X, 5 with boundary ~,(-,1), is

minimal.

Proof. This is obtained directly from the equivalence with existence of harmonic coordi-
nates:

() Since X; is harmonic

L A 9
Alng = —m=+ 32 5—( ) (’\ "8y )
¥
82 d
- a gt ( 37 %)
= (.

Therefore, X, ; is harmonic.

(if) Since X; is conformal

OXng|*  |0Xnz| A e I

\ du | | v An %Xt ~n E‘;Xt =0,
BXng 0Xuz 4 (0 8
du  ov —/\“B_uxtaXt =0

Therefore, X, 7 is conformal.
() X, tlop : OB ~ ya(-,T) parameterize v, (-, ).

’ A
Xnilor = (AaXe)los = AnXilop = Any( ) =1, D).
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In what follows, we denote by Apas the area of X, 7.

Lemma 2.1.8. Let y,(-,%) be a rescaled solution of V(-1 t) and L5, A, 7 its length and
minimal enclosed area, respectively, then

(Ln,f)z _ (Lt)2
Anx - Ap

Joralln € N,

Proof. ‘Since the length and enclosed area are invariant by rotation and translation, we
assuine that:

() = dav(h1), E=Xl(t— tn)-
Clearly,

Lﬂ,f= / dsn(i) = ]Ands(t) = Ap L.
In Y
8xX

We know that the area of a minimal surface is Area(X) = So |5 x 8% | dudv.
Then, if A,, ; is the area of minimal surface Xp,i (with boundary v, (-, %)}, we have:

' X,
An,{= /B)\% % X —a—vt dudy = A?},At

Finally,
Lad _ WAL _ (Lo
Any AZA; Ay

foralln € N.

JED

Following Theorem 2.1.3 and Lemma 2.1.8 we conclude

Theorem A. Suppose that y(-,t) satisfies the equation (CSF} and the rotal curvature of
¥(+, 0) is less than 4z, If y(-,t) remains embedded for all t € [0,w) with finite singular
time w then the isopermetric ratio defined by (2.0.2) is uniformly bounded for all t €

[0,w). In particular, if v(-,t) develops a Type I singularity then the isoperimetric ratio
converges to 4w.

2.2 Isoperimetric Inequality I

In this section we will study the isoperimetric ratio defined by equation (2.0.4), The aim
is to find bounds for this ratio through its evolution. +

If w is the singular time, suppose that for fixed ty < w the maximum of G is attainted
at (CL, b, o).

Consider a. and b, variations of o and b, respectively, such that !
d s{ae) =.A d s(be) =B and @ (a)—-ﬂ i be) =0
de £=0 A de =} o de? 5=Os N dE—2 £=| S( E) e
J
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Here s is the arc-length parameter of (-, #g), i.e.

e ' be
5(ae) == f ds(tp) and s{a.):= / ds(ip).
0 i
LetT(-, 20} : [0,1] = X, be a vadation of Tas(-, o) such that
FE(O,to) = '}'(b;_-,tg), Fs(l,to) = ’}'(ag,tg) and To(z, tp) = Tas(z, to).
If d° denotes the length of T (-, £g) and If° denotes the length of (-, tg) between a,

and b,, then we define
Ifo

G20 i= G(ae, be, to) = o

Remark 2.2.1. Since X (-,1q) is a minimal surface, we have that
Kauat0)=Xun(,t0) =0 and " Xu(t0)- Ko, t0) = 0 = [Xu(-y t0) 2= X (-, t0) 2,

where u, v are given by the isothermal parametrization of X(-, tp).
This relations implies

Xu(': tO) - Xuv('ato) = —qu(': tO) : X‘U'('stﬂ) = XU(‘:tO) - Xm}(':to)
Xuv('stO) ‘Xv(':tﬂ) = _-Xu('1 fﬂ) ’ va(':tﬂ) = Xu(HtO) : qu(‘vtﬂ)-

Moreover, if T. (-, to) is the tangent vector of Te (-, to) we have that

Tg(‘,t[)) = Ugp Xu(';tﬂ) Ve X‘U(':tﬂ)

tr—_

1/u§—!—v§ IXu(':tD)I \/'U%-I-v% [X”(':tﬂ)l
e

BEXLL('; tU) = ua:qu(': t[)) -+ 'U:chu('; to)
d
-(%Xv('stt)) = UpXuy(, i) + ”:r:Xw('atO)'

We start by computing the first and second spatial variations of these lengths,

Proposition 2.2.2. The first spatial variation of d° is given by

dii 40 = ATo(1,t0) - Tyla, o) — BTo(0, ) - T, (b to).
e=0

Froof. We have that T (z,tp) = X(u(z, to,€),v(z, to, ), to) and dfe = ful ds(tp).
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Thus, following Remark 2.2.1 we compute
idte = i f '
de € de i]
d 1
= E/; [Xe] V12 + 02 do

1
d . d
- fE]th/ug-{—'ug+]Xu|&-€-\/u§:+vgd:c
0
_ flﬁ/ugwgdxu
1]

| Xul  de

8
'6—$r5(',f0) dz

2Uze + 'Ua:'ume)

(u.
Xy + | X
BV =

_/1 Uz + 2 (e X + e Ko) - -2 F Ty t0) - (tze Xy + v2eXy) do
= T \UgAyuy etuy) T T T e\ W) {Uzegtq gy
0 yuz+v2 | %]

dx

t Xy . 8X,
= . . —_— ,t . reliy e
]; Te(y to) (us 5 TV ) + Te(yt0) - (Uze Xy + 12 X,) do

1
9
- /0 TalCsto) - o (e X X do
8

! d
= [ Tt 2L to)ae
d 1 15 d
= Ts('atﬂ) ' Eé']-‘s(':tﬂ) o _-/D‘ %Te(';tﬂ) " Egrﬂ‘('!to)dz 2
d 1
= T.(-,tp)- EPE(-, to){ (since I'; is a piecewise geodesic). &
0

Since I'c (-, fp) is a piecewise geodesic, we obtain

%dgo - (%s(as)) To(1,t0) - Ty (e, to) — (%s(be)) T(0,t0) - Ty(ber to). (22.1)

Thus,

de

d;° = ATo(1, t0) - Ty(a, to) — BTo(0, %) - T (b, t0). !

]

Note that Tp(1, tp) is the unit tangent vector to T'(-,to) at y(b, t0), T5(0, 2o) is the unit
tangent vector to I'(-, %0) at -y(a, to), T, {b, £o) is the unit tangent vector to ¥(-,%a) at b and
T,(a, to} is the unit tangent vector to (-, o) at a.

Proposition 2.2.3. The first spatial variation of (fg is given by

L1
4l eop_ g
de e=0
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Progf. We compute

T O _d B _d _d
EIE =% .. ds(tg) = = (5(bs) — s(ae)) = dEs(bs) dlEs(cus). (2.2.2)
Thus, ]
i o 3
| [P=8B—-A

0

Lemma 2.2.4. Let a,b be a sin (2.0.3). Then, the tangent vectors T (- to) and Ty(-, o)
satisfy

dotu
Tg(l,to) . T‘T(a’ to) = TU(O, io) . T-,(b, to) = — e,

lg"
Proof. The first variation of this isoperimetric ratio is given by
d (It 1 4, o d ,
(i) - (@ &*" @-23)
Since the maximum of G is attained at € = 0, then

d
0= %

» Qﬁ“ = Z?U- (B - A)_(di:::? (ATﬂ(l,fo) . TT(a,f.'g) - BT[](D,t(]) - T—-y(b,f:n)) .

Thus, if we make B = A = 1, we obtain

E.

To(1,tp) - T.r(a., to) = To(0, tp) - Tq(b, to),
and if we set B =1, A = 0, we obtain

to
TU(O:tO) . Tq(b, tg) = — dU

F.
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From (2.2.1) we obtain that the second spatial variation of dlo is given by

j; v = (;—zs(as)) Te(1, to) - Ty e, to) + (.J‘i_s(ae)) (—d—TE(l,to)) T (aer o)

(000 7010 (7toct) = (B0 0,102, 00)

- (009) (27:0.0) Dot~ (Lo9) 20,10 (550w
- (& zs(ac)) Tt ) Tileert) + (fatee)) (£2040)) Tyfene)

= (G20) 7019 2y 0) - (00 (70,0 T, t0)

# (25000 byl )Te(1 ) o)

~ (£560) kot 0,80) - o).

Therefore,
a2 . d d
E . dec =A (a; DTE(]., to)) . Trr(a.,tg) - B (d_el OTE(O, tg)) ~Trr(b, tu)
e=| E=| £=l

+ Ak, t0) T (1, %0) - Ny (a, to) — B2 (b, t0)To(0, ) - Ny (b, tp).
On the other hand, following (2.2.2) we obtain

2 42 a2
a7 = o) - ds2s(a5)
Thus, .
% lstu =0. !

Lemma 2.2.5. The curvature of y(-, 1y

), the tangent vector of Ty, to) and the normal
vector of y(-, o) satisfy

k‘}'(a’? tU)TD(l,tU) : N’Y(al tO) - k‘r(b: tU)TU(OI 1‘.'0) : N’Y(bi tB) = 0.
Proof. The second variation of the isoperimetric ratio is given by
.ﬁ l_;(i_ = -1_d_2[fo__2__idtuilto__lt__ d dfo_{_ﬁ _?Z_dtn ?
de? dEto deto de2® (dsgn)z de © de € (dJ“)Z de?2 "€ (d;o)s de € .

pig

(A%

iy




Since the maximum of G0 is attained at & = 0, then

42
0 > —| g
d62 e={
= __L_ (_Ci dfo) (_‘_i_ ltu)_ IJD _‘i to 2!0t0 (i dta)z
(&) \ el ™ )\l ™ ) ™ (gpoy? 22|, & F oy \ ],
= - (%30)2.{2 (B—A) (.ATQ(].,tU) . T,,,(a,, tp) — BTy(0,0) - (0, t0))

d
'{'lote./‘l (Ede— i, Te(1, to)) <T(a,ty) — lotuB (-d—alszoﬂ(o,fo)) . T'),(b, ty)
+15° A%k (0, t0) (L, t) - Ny (a, o) — Iy° B2k (b, 0)To(0, 20) - N,/ (b, to)

- 2dg: (ATU(L tﬂ) : T’]’(a: tO) - BTO(O? tU) * T'r(b, ?50))2:| .

‘Thus, if we make A =1, B = —1, we obtain

=
v

- (T;;)—z [- 4(To(1,20) - Ty(a, to) + To(0, ta) - T (b, t0))

+I3° ( dii » Te(l,tg)) - Ty(a, to) + 1 (% . T(0, to)) - Ty (b, 1)
+15° k{0, 10)To(1, t0) - Nola, to) — KOk (b, 10)To(0, o) - N, (b, to)

- -ioi:: (Tg(l,to) . Tq(a,tu) 4 To(O, to) - T,Y(b, tn))2 .

Using Lemma 2.2.4, we get

ky(a, to)Tu(1,to) - Ny(a,tp) — ko (b, 20)T0(0, £0) - No(b,to) > — Te{1,t0) - Ty (e, 1)

e=0

TS(O? tO) ’ T’r(b: tﬂ)'
£=0
(2.2.4)

D

On the other hand, if we set 4 = —1, B =1, we obtain

0> -

L 3 [4(—1’0(1,?-‘0) +T(asto) — To(0, 20) - T (8, 2o))

(4°)
_1to (dig €=0TE(1,fo)) - T(a,to) — A]to ('C%L:OTE(O, to)) - T (b, %)
15k (a, 20)To(1, 20) - Ny, o) — Kok (B, t0)To (0, to) - Ny (b, 20)

A 2
) (=To(1,t0) - Ty(a, to) — To(0,%0) - T (b, £g)) ] .
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Using Lemma 2.2.4, we get

k‘)’(a‘: t())Tg(l,tg) : N’}‘(a'a tU) - k’?’(b1 tU)TU(O:tU) ' N’r(b’ tﬂ) 2 '(E Tg(l,to) : T‘r(a: tﬂ)

e=0
d
+ = Te(0,p) - T (b, tg).
de £==0 ¢ 7
(2.2.5)
Therefore, if we add (2.2.4) and (2.2.5) we conclude
ky{a, tQ)Tg(l,fo) - Ny (a,tp) — k. (b, t0)To{0, %) - Nfr(b, o} > 0. (2.2.6)
' 0

The evolution in time of the isoperimetric ratio G (a;b,t) is computed below,

Following the first variation of d?° and that 7 evolves by its curvature, we compute
the evolution of df

Lemma 2.2,6. If X (-,t) is the parametrization of the minimal surface with boundary
(-, %), not necessarily isothermal, then the evolution in time of df is given by

% dff = k’r(a‘a tO)TO(]-:tO) : N’)‘(ai t'ﬂ) - k’y(b: tO)TO(O: tO) : N‘)‘(by tU) - Gl-
i=ip

Here Gy is a function that depends of the evolution of X and it is given by

1 a8 8 .
G1 -—-L Tg . EE--a—tX(-,t)dm.

J
prely

Proof. We know that
1
dz = f VKl + 2000 X Xy F IR e
0
Thus,

i=[
a

lg
Sa = f 57 VXl + 2000, X, - X, + [ X P02 dae
0

1 3]
B m [IXHIUgEElXﬂI + ]Xu|2u:cuzt +ugve Xy - Xy -+ UgUgs Xy, - Xy + UgUp Xt - Xy
Bz~ 0

29

Fuzv Xy, - Xt + ]X,,[g'uxvzt + [ Xp|vZ 5

X, ]] dz.

On the other hand, note that

o
a_m'rﬂ = quz‘,‘vam;

1
VIXulPa2 + 2uzv X, - X, + [ X, 202 (
8 8

=nlo = U Kyt 3 Uzt Xy + Ve Xt + Ut Xy
Ot 0z

T =

Kutts + X‘u'um) )




28

It is easy to see that
5% f To- Bt Bz
In addition, note that

88y _88ry 806X

ot 8z bz Ot Oz Ot
Thus, we obtain

1
Edg = _/TO ié&dm_/' Th - — 6 BX
at 0

oz Ot
_ .. OLo|*  rtem ar, .. 30X
_T"W R fOT" 5z o
8 0X
= ky(a,t)To(1,) - Ny(a,t) — &y (b, £)T0(0,8) - N, (b, ) — Tg _—r ——dz.
ta
Remark 2.2.7. Note that if we assume that | K (-, t)| is uniformly bounded on time implies
that
d a ¢
G, = Tg ( t)dm‘( dy - | sup |K(,t)] . (2.2.7)
5 at te(0w)

For further details, we refer the reader to Appendix A.

On the other hand, we know that

d
dt

b
i == [ B0 to)ds(ra).

=ty

Therefore, the evolution of the isoperimetric ratio G(a, b, t) is given by

e (5) = g [ Bow00

- (dl;f)z (y(a,t0)To(1, 20) - Noy(a, to) — key(b, t0)T0(0, %) - N'r(l?: t0) ~ G1).

Following Lemma 2.2.5 we obtain

i

t=ty (dlit) = (E,?:?Gl‘ (2.2.8)

Using Remark 2.2.7, we conclude




29

Lemma 2.2.8. The isoperimetric ratio defined by (2.0.4) satisfies

15 (zf},)
- < | S )exp(Ct), C= sup |K(,1)
4t = \ag ) @ tE[O.I:J)] G

Remark 2.2.9. Note that the assumption on [E (-, B)] is related with embeddedness of the
minimal surface.

Using this result, we can prove the following proposition

Proposition 2.2.10. The isoperimetric ratio G(a,b,t) is bounded for every a,b as in
(2.03)and t € [0,w).

Proof. Using Lemma 2.2.8, since ¢ is finite, only we need to prove that G(a, b, 0) is finite.
Suppose that there exist two points yo(a) and ~p(b) such that G(a, b, 0) is infinity.
Since 13, is finite for every points, then d% = 0. However, the embeddedness of Xo

implies that 43 = 0 if and only if 18 = 0, that means which Yo(a) and yo(b) tend to the

same poinit yo(P).
Note that this point P satisfies (2.0.3), w.l.o.g we will assume that P = 0.
If P = 0, using Mean Value Theorem, we have that there exist €,¢ € (a,b) such that

by o I = Im@lle—al _ vl

dgy ~ 1700(®) — (@) IIgEMNIo—al ~ 4N

Since g is embedded, a, b tend to 0 implies that £, ¢ tend to the same point,

Therefore, G(a, b, 0) tends to 1 if yo(a) and ~a(b) tend to the same point ~(0).

Note that if the maximum of G(a, b, 0) is attained at the endpoints in the condition
(2.0.3) then the isoperimetric ratio G(a, b,0) cannot approach infinity becanse the curve
¥(+,0) is embedded up to the singular time. Thus, that bound of the this ratio cannot be
explicitly computed in terms of the initial data, O

Now, we prove properties of the isoperimetric ratio defined by (2.0.4) if the curves
(-1t} and Tgp(-, t) are rescaled along a blow-up sequence (Definition 2.1.4).

Lemma 2.2.11. The isoperimetric ratio defined by (2.0.4) is invariant under this rescal-
ing. ¥

3
Procf. Since I'ny(:,t) lies on X, following Section 2.1.1, if Xnis the minimal surface
associated to the rescaled curve Ya(, %)  then we can;, consider
(Tas)n (-, ) = AnLap (-, £) as the'rescaling of Tos(-,t).
Therefore, it is easy to see that
£
(Iab) n atb -

(g(a: b!i))n = i == = g(aa ba 'E),
(dab)n dab Ef)
. . 14
where (ljb) is the length of the rescaled curve 7,(-,%) and (d;b) is the length of the
n ki1
rescaled curve (Lgp)n(-, ). 1 5 [l

1
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Proposition 2.2.12. fthe Gaussian curvature K (-,8) of X (-, £) is uniformly. bounded in
time then the curvature of (Lap(-,)),, tends to zero when n tends to infinity.

Proof. 1f (kap)n(+, ©) denotes the curvature of (T'gs(+, 2)),,. then we have
Kap(-, 1
(kab)n(':f) = _Au,
) 13

where kgp(-, t) is the curvature of Tgp(-, ¢) and A, = K2 (D, tn).
On the other hand, as I';5(+, ) is a piecewise geodesic then (kap (-4 ))? is equal to its
normal curvature ((kqs) (-, £))2.

Following Euler’s Theorem we know that there exists § € [0, 27) such that
kn = ky cos®(8) + ko sin(6),

where k1 and k& are the principal curvatures.

Moreover, as X (-, t) is a minimal surface for every ¢ then we have that ky = —ky and
its Gaussian Curvature is given by K (-, ) = —k2(., £).
Thus, we obtain

k?v(-,t) < k%('zt)": IK(:t)I

Therefore, as |K(-, t)| is uniformly bounded, we conclude

((Rag)a(B)? = (Fatdi (0P JEGAL

/\% - )\?’1 n—oq

2.3 Convergence of Minimal Surfaces

This section will be essential to prove that a sequence of minimal surfaces with total

boundary- curvature at most 47 and evolving according (CSF), converges to a planar sur-

tace. Recalling a result of Courant about the convergence of the areas of these surfaces.
From {4, Th.25] we obtain:

Theorem 2.3.1. Suppose that {M,} C R are orientable, embedded, simply connected,
minimal surfaces and that |, M, |Kal < A < co. Then (after passing to a subsequence)
{My} converges smoothly in R3 to a limit minimal surface M,

Remark 2.3.2. Note that this convergence is considered in the Sobolev space defined in
‘Theorem 1.4.3.

Proposition 2.3.3." Let X; be a minimal surface where its boundary (-, t) has total cur-

vature less than 4, then [, |K(-,t)|dA < 2 for all t € [0,w), where K {-11) is the
Gaussian curvature of the surface X,.




N R

3

Progf. Since X} is a minimal surface, its Gaussian Curvature K¢ (-,) will be non-positive.
Using the Gauss-Bonnet Theorem we get

fX G ldA = fX K(aa= [kl ods-om s [r ., JEalds =2,

'T('!t)
where kg(-,t) is the geodesic curvature of (-, £),

On the other hand, if k(-,£) is the curvature, k2(-,£) = k5 (,t) + K2(-,t), where
kn(:,t) is the normal curvature and k,(-, 2) is the geodesic curvature, Thus, [kg(-,2)} <
%, 2]

In addition, we have f’y(-,t) |%(-,)|ds < 4 forall t € [0,w). ]

Theorem 2.3.4. Let {X,}nen be a sequence of the associated minimal surfaces of the
rescaled solution (-, 0) defined previously. Then, that sequence converges smoothly 1o
a minimal surface. Moreover, this limit surface is a planar surface,

Proof. Firstly, it is easy to compute that [K, (-, 0)] = A2 |K (-, tp)[. Then, using Propo-
sition 2.3.3 we get

f K (-, 0)ld Ay, = f K (- 6| dAs, < 2. @31
Xn

tn

Moreover, {Xn}aen is a sequence of minimal surfaces with total Ganssian curvature
less than 27, as the boundaries have total curvatures less than 4. Using Theore:n 1.4.3
we obtain that the minimal surfaces {X,} are of disk-type, i.e. embedded anc simply
connected. Therefore, using Theorem 2.3.1 we get that the sequence {Xntnen converges
to a minimal surface.

On the other hand, from equation (2.3.1) we can conclude that Kn(-,0) = Oae. when
n — o0. Thus, by the relation between the square norm of second fundamental form and
the Gaussian curvature (in  the case of minimal surfaces i R9),
|4n(-,0)[* = —2Kn(-, 0), we obtain that the limit is a planar minimal surface, |

. . . . . . 1
In the next section we want to estimate the 1soperimetric ratios of the rescaled curve

Yn{:,0) and of regions of the limit curve Yeo- For this we will use an important result

. proved by Courant: .

Theorem 2.3.5, ({22, Th.3.6]) Let {Xntnen be a sequence of minimal surfaces with
boundaries +, of bounded lengths L,,. If the surface X, tends to a minimal surface X
whose boundary v has length L = limyp, ;00 Ly, then the areas Ay of the mininmlfsmfaces

Xy tend to the area A of X. 1
2.4 Main Theorem %
x
From {12, Th. 7.3] we know that if {(py, ,)} is an essential blow-up sequence and
wn = A2 (w—ty), with we = lim W, st
00 17
w 1
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then there exists a subsequence such that the rescaled solutions “» converge uniformly on
compact sets of IR X [—oo, we] to a smooth, nontrivial limit Yoo Moreover, the conver-
gence is G (uniformly on coixlpact.scts) at least and the solution ., exists at least on the
interval [—oo, 0.

It is important to recall that as the limit curve may not be closed, we are assuming that
each -y, is defined on the real line as a perodic map,

In [12] was proved that the limit ., is 2 family of convex planar curves and if we
assume that (-, t) forms a Type II singularity at time w (here wy, = o0), then there
exists an essential blow-up sequence {(pyn, )} such that a limit of rescalings along this
sequence converges uniformly on compact subsets of R x [—co, oo] to the Grim Reaper
(1.3.4).

Since we know that R is homeomorphic to any open interval, we will consider that
Yn converges uniformly on compact sets of (—%, T) x [—00, 00] t0 veo. Moreover, as we
assume that v, is defined on the real line as a periodic curve, we can suppose that the
parametrization of y, is given by:

Tt (=50 2] X [, M — ) — RO, @24.1)

The purpose of this section is to prove the main result of this thesis

Theorem B. Suppose that (-, t) satisfies the equation (CSF) and the total curvature of
¥+, 0) is less than 4m. Let X; be the minimal surface enclosed by v(-, t). Ifits Gaussian
curvature K(-,t) is uniformly bounded and (- ,t) remains embedded forallt € [0,w)
with finite singular time w and does not shrink to a point, then there is no formation of
Type II singularities.

To show this theorem, we will use the results in sections 2.1, 2.2, 2.2 and the resuits
proved in [12]. Also, following the definitions given by (2.0.2) and (2.0.4) we will define
isoperimetric ratios for the Grim Reaper.

Consider the following compact subset of (—%, DI xR,

For the endpoints of K, —c(m) = (-5 + 1) and ofm) := (3 — 1), there are two
possibilities:

of{m,) ]
f ds(t) > % or f ds(t) = %, for somet < £, (2.4.2)
0

—a(m}

or

a(m) 0 - L, g
f ds(t) < —> and / ds(t) < -T“, foreveryt < t,. (2.4.3)
]

—alm)

~%
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H we suppose in addition that the evolution of 7¥(-,t) forms a Type II singularity, from
[12] we know that given & > 0 there exists N(m) € N such that V¥n > N(m) we have
that vn|ic,,, converges uniformly in C* to o, |x,n» 1.e. for fixed m

nI_j‘_{]g'o 'Yn]me = ’YOQEICm and nli)nclo ’Y:'Ltnm = 'T(’)OIK:m! (2‘4‘4)

where the Grim Reaper Yoo : (=5, £) xR — R2 is given by o (z, 0) = (z, — In(cos(z))).

The proof of this theorem will be divided in two cases given by the conditions (2.4.2)
and (2.4.3).

The first case Throughout this case we will denote by L, the length of the curve’
Yn(+,0), by dsn,(0) the arc-length parameter of 4, (-,0) and by Ay, the area of the minimal
surface X0

‘We have that the endpoints of the compact set X, satisfy

a(m)
/ ds(tn) S Ltﬂ .

~a(m)

Thus, we obtain

a{m)
/ ds, < L. (2.4.5)
—a(m)
If the evolution of the curve « forms a Type II singularity, then Yalk,. converges
uniformly in C! to yeo)k,, When 7 tends to infinity.
Denote by Ly, the length of v,|x,, ie.

a(m)
Lngm = / dsy,.

—a(m)

Throughout this section we will denote by Trm(-,t,) the piecewise geodesic on X,
that joins y(—a(m), t.) with y(a(m), t,) and its rescaled curve as (Cm)n(:,0).

Since (I'y)n(+, 0) stays on the minimal surface X,,, the curve Yol U Trmln{-, 0)
enclosed a region X, ,, of this surface. We will denote by An r as the area of this region,

In this case we will consider the isoperimetric ratio defined by (2.0.2)

2

Lﬂ,m
I(ﬂ, m) = ﬂ

Lemma 2.4,1. The isoperimetric ratio T, {n, m) is uniformly bounded from grtbove for every
n € N and for every m € N that satisfies (2.4.2). '{
o

Proof. Following Theorem 2.1.8 we have that the isoperimetric ratio is invariant under
rescalings, thus 1

2 L}

— t1]

AT 4

1
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Moreover, Theorem A shows that this isoperimetric ratio is uniformly bounded for every
t € [0,w). Thus,
4 L, B
T < 4, < B,
where 3 is a finite constant independent of n and m. Therefore, using the relation (2.4.5)
we obtain

2
L < L < Btn .
An,m Aﬂ.,m An,m
Since Ap ;m < 4, the region Xpm C X, and the points —a(m), a{m) satisfy 2.4.2),
then there exists 0 < B < 1 such that

Apm = BA,.

Thus, we obtain

Lim B
2 < = SO0
Avm B

+

O

On the other hand, if we consider {(T'm)oo as the straight line that joins the points
Yool—5 + -71;, 0) with yo(3 — X, 0), we obtain a bounded region associated fo the Grim
Reaper, denoted by X rm, such that its boundary is Yool km U (Trm)oo- We will denote by
Loo,m the length of vk, and by Aca,m the area of this bounded region.

: , . , . L3 S ,
Lemma 2.4.2. The isoperimetric ratio A... - converges to infinity when m tends to infin-

Ly 'm
Proof. 'We know that

Too(2) = (=, In(cos(z));
Yoo () (1, tan(=));
7@l = sec(s).

I

Moreover, it is easy to see that the straight line is given by

(Tm)oo(z) = (2, — In (cos (a(m)))) -

Therefore, we compute

afm)
Leom = f Iviollds = / sec(z)dx;
Km —afm)

and
alm) .
Acon = /_ |~ n(cos(a{m))) + In(eos(z))dz }
= —2a(m)In{cos(a(m))) + = In{cos(z))dz.

—a(m)
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-

Clearly, Loo,m and Aeo rm, converge to infinity when m tends to infinity. Thus, using
L’hopital’s rule we obtain

!

lim =20 = lim =
!
m—roo Lgo,m m—+00 2Loom Lo m

From the fundamental theorem of calculus we can compute:

Lom = sec(a(m))e! (m) + sec(—a(m))e! (m)
= 2sec(a(m))o'(m),

and
Ao = —20/(m)In{cos(c(m))) — 2a(m) tan(a{m))a’(m)
+In(cos{c(m))) e (m) + In(cos(—a(m)))e! (m)
= —2a(m) tan{a(m))c/(m).
Hence, , .
ﬁ = —sin(a(m))a(m) — _1’23.
Therefore, ,
im 2 = =r—=0

m—roo Lgo,m m—ce ZLOO.mL:.:o,m

O

Remark 2.4.3. Theorem 2.3.4 states that the surface Xy converges to a planar surface
away from its boundary implying that the curve on.the surface (U )n (-, 0) converges (CL
at least) to a planar curve (T, co-

However, as in this case we assume that the Gaussian curvature of X(,tn) is uni-
formly bounded, we obtain that (T'y)n(-,0) converges (C* at least) to a planar curve
(Tm)oo Up to the boundary.

Moreover, from Proposition 2.2.12 we have that the limit curve (T'r)oo is a straight
line that joins the points oo (—a(m), 0) with Yo (e(m), 0).

For further details, we refer the reader to Appendix A.

E , . L2 L2 Lo
Lemma 2.4.4. The isoperimetric ratio AL converges to A:"; as n comerges to infinity.

Progf. From the relation (2.4.4) we compute

A Lo = M | Iballas |

L, dm Itz = [ fas”

= Loo,m-

Iy
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Moreover, following Remark 2.4.3 we have that (T'm);, uniformly converges to ('),
Thus, for m fixed, the length of the boundary of X, converges to the length of the
boundary of X, m, as 7 converges to infinity.

Therefore, using Theorem 2.3.5 we obtain that for m fixed Apm converges to Aoim
as n converges to infinity, ]

Proposition 2.4.5. Suppose that (-, t) satisfies the equation (CSF), the total curvature of
¥+, 0) is less than 4 and the endpoints of Ky satisfy (2.4.2). If (-, t) remains embedded
Jor all t € [0,w) with finite singular time w and does not. shrink to a point, then there is
no formation of Type Il singularities,

Proof. We will prove the result by contradiction, that is, given a curve (-, %) that evolves
by curvature we will assume that -y(-, 0) has total curvature less than 47 and that (-, 1)
remains embedded for all ¢ € [0, w), but there is formation of Type IT singularities.

From [12] we know that there exists a subsequence along an essential blow-up se-
quence {(pn,#n)} such that the rescaled solutions +, converge uniformly on compact
subsets of (F*, 7} x[—co, ca] to the Grim Reaper +.,. Therefore, for K, defined above,
we have

. : ’ ot
7}1{2‘0 ’Yﬂ-[]Cm = ’Ym]xm a‘nd n,li}-ngo ‘Tn]]Cm - 700 |)Crn.'
For m fixed, we estimate

2 2 2
Loo,m Loc,m _ Ln,m

Aoo,m An,m

Lm
Anm]

+ (2.4.6)

Aco,m

Using Lemma 2.4.1 we have that there exist constants B, B independent of n and m such
that

L m
An.m

L? B
=B = <
Anm

From Lemma 2.4.4 we get that for every & > 0 and for m fixed we have

Lom  Zim|
Aom  Anm
Thus, using (2.4.6) we obtain i
2
B
Bl < et = < oo,
Aco,m - B

o

However, from Lemma 2.4.2, if we let m tend to infinity we obtain a Eontradiction,
since B is finite and B € (0, 1]. O

te
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The second case

Throughout this case we will denote the length of the piecewise geodesic (T'y)n (-, 0)
by (dm),, and the length of -y, (-, 0) between —a{m) and e(m) by (In),, -

Using Lemma 2.1.1 and condition (2.4.3), it is easy to see that a(m) and —a(m)
satisfy

a(m) .

f ds@®) < %<&, Vi < tn,
0 4

0
/ ds(t) < %<L‘ Vi < .

—a(m) z}

Therefore, for every ¢ < ¢, the points ~a(m) and a(m) satisfy the condition (2.0.3),
If we denote the length of (T'n)oo by (dn),, and the length of Yoo+, 0) between
—a(m) and a(m) by (I,),, , then we prove

Lemma 2.4.6. The isoperimetric ratio (%:))ﬂ converges to infinity when m tends to infin-
ity. =

Proof. Since (TI'yp)oo is the straight line that joins —a(m) with a(m) then

On the other hand, we have
Ondeo= [ sostarie — [* suctapio = 1,
= sec{z)de — sec{z)de = L,
o __a(m) m—roo _%

where I, is the length of the Grim Reaper v and it is infinity. O

Lemma 2.4.7, The isoperimetric ratio (%’"n)ﬁ converges to %: when i tends to infinity.

Proof. Using Remark 2.4.3, for m fixed we have that (T'm)?, uniformly converges to
(T'm).,, then

1 1
Jzn (=l U = [ i Il = (4o

On the other hand, following (2.4.4) we have

Cx

{m) a(m)
. T ! — : f —
Aim (i), = lm i) vallde = f_ .. [allds = (In) -
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Proposition 2.4.8. Suppose that ¥(-, £} satisfies the equation (CSF), the total curvature of
v(:,0) is less than Ax and the endpoints of K, satisfy (2.4.3). If the Gaussian curvature
K(-,t) of Xy is uniformly bounded and V(-1 t) remains embedded for all t € [0,w) with
finite singular time w and does not shrink to a point, then there is no formation of Type IT
singularities,

Proof. We will prove the result by contradiction, that is, given a curve (-, ¢) that evolves
by curvature we will assumne that «y(-, 0) has total curvature less than 4, X; has Gaussian
curvature uniformly bounded in time and that y(-, t) remains embedded for all £ € [0,w),
but there is formation of Type II singularities.

Thus, from [12] we know that there exists a subsequence along an essential blow-up
sequence {(pn,t,)} such that the rescaled solutions Yn converge uniformly on compact
subsets of (57, §) x [~00, co] to the Grim Reaper 7q,. Therefore, for K, defined above,
we have

A Yol = Yoolicm a0d  Mm Al = Yolk,,.

If the endpoints of K, satisfy (2.4.3), then we consider the isoperimetric ratio defined
by (2.0.4). Thus, for every n and m we estimate

(m)eol = Hdm)eo  (mdn| " [(dm)n

Using Lemma 2.2.11 and Proposition 2.2.10 we have that there exists a constant C
independent of n and m such that

4-

. (24.7)

(o] _ (e _
(dndnt  (dm), ~

From Lemma 2.4.7 we have that for every & > 0 there exists N' (m) > O such that for
every n > N(m) we have
(fn)eo _ {im)n

(dm)oo  (dm),,
‘Thus, using (2.4.7) we obtain that for n big enough

l () oo
(dm) oo

However, from Lemma 2.4.6, if we let m tend to infinity we obtain a contradiction,
since C is finite. O

<e+C.

1

Proof of the Main Theorem B. Combining Proposition 2.4.5 and 2.4.8 we obtain the re-
sult, =

Remark 2.4.9. It is important to recall that the hypothesis on total curvature, is used in
the existence and uniqueness of the minimal surface X (-,t) along of Chapter 2.

=




Chapter 3

Planarity

3.1 - Approximation by a graph

The purpose of this section is to show that if 7y evolves by curvature and it develops a
singularity then the curve -y restricted to a neighborhood of the singularity can be approx-
imated by a graph over an open planar curve. To prove this, we will first show that the
curve in this neighborhood is “quasi-planar”, Next, we will define the planar curve and

the associated graph. Finally, we will show that this graph approximates the space curve
close to the singularity. )

These results are the first step to realize a simple surgery close to the singularity, which
we hope to do in the future.

We start by giving some definitions,

Definition 3.1.1. A space curve is said to be planar at a pointp € S* if (@) =0, where
k is its curvature and T is its torsion.

Remark 3.1.2. This definition was first given in [12],

. We consider d > 0, (pp,t,) € §tx [0,w) and the neighborhood of Y(Pn, ta) given

by
/pd(t)< © andjty—t<-2 4 311
psn_Mtn n _.._M‘t_n,--)
where My, = sup k%(-,t,).

In [12, Th. 6.1] Altschuler proved that limy o0 £ (Bn,tn) = O along an esseh-

tial blow-up sequence {{p,,%,)}. Thus, for every € > 0 there exists a neighborhood
Ve(Pn, t,) such that

N{pn, ta, d)={(p, 1) €5 Xy, w) :

I%@’t)l <& V(p,t) € Ve(pay tn).

Remark 3,1.3. We can choose d. > 0 such that N (Prytn,de) C Ve(On, tn). Thus, we
obtain that -
00| <t V.)€ Nipn,ta, ).

39
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: Note that when e — ( the neighborhood V. (Pnyto) is shrinking to the point (Pnytn).
Thus, we have that d, — O ase — 0.

Throughout this chapter, for every € > O we will consider de € R defined above.

The idea of this chapter is to approximate -y close to the singularity by a “nice” curve.

Firstly, we will prove that for every & > 0 and for (p1,1), (p2,t) € N{pn,tn,de), the
angle between their binormal vectors is close to zero. Since the variation of this angle is
the torsion, we will estimate

1, pn,t) = f " rldse) = / " lrto,)] lli,—;” dp. (3.2

L

Theorem 3.1.4. Let & > 0 and (py,t), (p2,t) € N{(pn, ta, de). If ©(p1, pa, t) denotes the
angle beiween the binormal vectors of y{p1, t) and ~(p, t), then

O(p1,p2,1t) <e.

[ ]
fp?z 0,4)
»n

w6, las(ya
e f 7 ko, &)l ds(t) .

n

Proof. From (3.1.2) we have

@(P1,1‘J2, t) dp

O
op

A

Thus, by Theorem 1.2.3, we have that there exists Ca > O such that
O(p1,p2, t) < eCp.
O
Since O(p1, pa,t) < £ we have that cos(©(p1, pz,t)) ~ 1. Moreover, using that

COS(@(Pl,P:’.:f)) = B(plst) : B(pg,f) for every (plit')n (pg,,‘t) € N(Pm tn:d£)3

we obtain
B(p1,t} - B(pa,t) ~ 1 and || B(py, t) — B(pg,t)|| ~ 0. (3.1.3)
On the other hand, for every € > 0 and for every (p1,1), (p2,t) € N(pn,tn, d;) we
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get

I7(1,2) = T2, )| <, Dllv(or,2) — 1o
1) {1, t) ~ Y, )l + o1, o) = 7(ma, )]
+ P2 tn) = (o,

Sk(! t) l:k(’t)!t - t'n,l + -/pm db‘(tn) + k(, f)lt - fn]]

i [d4
o]

My, M,

de fd

From [12, Cor.3.14] we obtain that if p > 0 is the constant in Definition 1.3.2 then
there exists a constant @y < oo, depending only on p, such that for

te [tﬂ, tn -+ 67‘311%—] we have k2 < o M, . Thus; for every £ > 0 we have

Sk(: t) I:2k('1 t)

1T(p1,) ~ T(p2, )] < 2014d: + VT /4s. (3.1.4)

Therefore, using equations (3.1.3) and (3.1.4), if ¢ — 0 we conclude that for every
(pl)t)) (P2:t) € N(pnltn, dg) we have

"Ttplstj - T@%t)” ~0 and "N@ht) - N(pz,t)” ~ (}. (3.1.5)
Moreover, from [13] we have the following formulae for the evolution of a space curve:

g 0 a8 5 8

-6_1':59- = agg'ﬁ'k 33 (3.1.6)
ar ak
T = N+ kB (3.1.7)
ok 9%k 3 o
il -a?—i-k —~ k75 (3.1.8)

2 2k 2
Br G“r  20kdr 20% or (3-'0) + o7k, (3.1.9)

B T 52 %055 TR oZ W2 \Bs

We can compute from the previous equations the evolution of the normal vector in the
following way. First, we know from Frenet's equations that %E =kN, so

80T Ok AN
== N+k

8t 8s ot E




On the other hand, using equation (3.1.6) we have
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20T _ 9or  or
8tds = s ot ds
00k 3
= -Eg[gN-i—krB] + BN
6%k 8LAN 8k or 8B 3
%k ok ak ar 2 3
= @N—kaT—!—%EB—{-kaB—kv N+ E°N.
Thus,
ON  11/8% 9 . Ok 8k ak dr
Therefore, the evolution of the normal vector is given by
aN 2rfk O7 Ok "

To compute the evolution of the binormal vector we use the following relations:

B:-B=1, B-N=0, B:-T=0.

Thus,
%—f-B = 0
%‘?-B = HB-Z—:::—I;T
Hence,
% - (?]g% + %) N, G.L1D)

Using the equations of evolution (3.1.7), (3.1.10) and (3.1.11), we can prove the fol-

lowing proposition:

Proposition 3.1.5. The norm of the evolution of the tangent, normal and binormal vector

are bounded by multiples of M, .

Progf. Using the equations of evolution of T, N and B we obtain:

ar|? k\? 2

a— = (a) -I-(kT) o
AN |2 BkN? 1 7/ 8k ar\?
”‘5? B (5‘) +§(25;T+’“a)

aB|? 1/ 0k ar\? ¢

“-B—t- = (kz’i’)z + 'k—g (2&-7‘ + k‘a—:) . U




R
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From [12, Cor.3.14] we find constants az, &3 < 00, depending only on p in Definition
1.3.2 such that for ¢ € (£, tn + g;05—] we have

(kr) az]\/ftzn
2
&) - e

Ok ar\?

IA

IA

IA

A3
0!3 tn”
Hence,

2
] <

< 0‘2Mt:i + -—-—a3Mf‘n < (as + ag)Mi

oN | 1
ot k2

0B - 2 . L 3 2
B < ceM; + -kgath" < (oo +az)M..

In addition, if (p, t1), (p, t2) € N(pn,tn,d:) we obtain

aT
T, t1) — T(p, )] < 5 |1 161 — el < 2v20sd,,
8N
[N (o, t1) — N{p, t2)[| < 57 || B — t2l < 2ve2 T asd.,
8B
]|B(p, tl) - B(p! 1{"1.7')” < 'EE' Itl - t2[ < 2+/0g + ady.

Therefore, if £ — 0 we get
”T(pstl‘)_T@#tﬁZ)” ~ 0, "N(P, tl)_N(p: t2)” ~0 and ”B(p, tl)_'B(p: t2)" ~ 0.
Thus, we conclude

Theorem 3.1.6. For every & > 0 and (s1,t1), (s2,£2) € N (D tn, de} we have

iT(s1,t1) = T(s2,82)|| ~ 0, (3.1.12)
IN(s1,81) — N(sa,82)| ~ 0, (3.1.13)
IlB(Sl:tl)_B(321t2)" ~ 0. (3114)

Now, we want to approximate the curve (-, ), where £ satisfies [t —t,]| < Mdf—. First,
we will prove that if (-, £) evolves by its curvature then its norm is uniformly bounded,

'
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Proposition 3.1.7. Ify evolves by its curvature and [|y(., O)|| is uniformly bounded, then
llev (-, Ol is uniformly bounded for every t & [0, w).

Proof. We compute

a
55"’}’:&” =

2l =

2
P 1 ()
el Il flve

Since -y; evolves by its curvature we obtain

32
952 ”’}’:”

] 52 1 (%u . %)2
'a—t””ft" = é’?][%” - ”"}’t” + ”'}’t”3
82
=< 5?][7:“-

The maximum principle implies that the maximum of ||| is decreasing in time. Thus,
][’Y(',t)“ < max“’)’(:g)”

O

On the other hand, it is known that Frenet’s frame {T(s, t), N (s,t), B(s,1)} is an

orthonormal basis of R?, so, for every (s,t) € N(pn, tn,d;) the space curve (8, t) can
be written as linear combination of T'(s, t), N (s, ) and B(s, t):

Y(s,) = a{s, £)T(s,£) + b(s, )N (s, t) + c(s, t)B(s,t), (3.1.19

wﬁere a, b, ¢ are continuous real functions.

Let Ty = T'(s0,t0) be a fixed tangent unit vector, let Ny = N(sp,ta) be a fixed
normal unit vector and let By = B(sg, to) be a fixed binormal unit vector at some point
(s0,t0) € N{(pn,tn,de). Consider the plane generated by Ty and Np. '
We define the planar curve 7 as the projection of the curve <y ont the plane (Tp, Np),
ie.

'_Y(s: t) = (7(S’t) . TO)TU - (W(S:t) : NO)NO:
and,  as the following curve

4(s,t) = 3(s,2) + c(s,) By,
where c(s, t) is given by (3.1.15).

Remark 3.1.8. Note that 4 can be seen as a graph over the plane (Tp, Np).
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Theorem 3.1.9. The curve v(-,t) in N (Pn,ta, de) is approximated by F(-,t) in the fol-
lowing sense,

II’Y(S,t) - '?(S:t) ” ~ 0, forevery (s,t) € N(pnrtm dE)-
Proof. Lete > O and (s,t) € N(py, tn, d. ). First, note that

c(s,t} =v(s, ) - B(s,1)

=1(s,%)- (B(s,) ~ Bo) +(s,1) - By —
and, consider
v(s,2) = (v(s,2) - To)To + (v(s,8) - No)No + ((s, £) - Bo) Bo. (3.1.17)
Since c is a continuous function, we can show that % approximates -y as follows
17(s,2) —v(s:, )l = le(s,8) ~ (v(s,2) - Bo) [ Boll
= |v(s,t) - (B(s,t) ~ By)| (use (3.1.16))
< | DlIB(s, ) — Bo)ll-
Moreover, using Proposition 3.1.7 and equation (3.1.14) we obtain
| 14(5,8) = 2(5,8)] ~ 0.
' 0

In conclusion, for every ¢ > 0 and given a space curve that forms a singularity at
the point (p,w) there exists an essential blow-up sequence {(py, tn)} such that v(-,t) is
approximated by (-, £) in the neighborhood N (Prrtn, de).

Remark 3.1.10. Using the relations (3.1.12) and (3.1.13) we compute

IT-No| = [T-(No—N~+N)<|Ng—Nj ~0;
IN-Tol = |[N-(L—T+T)| < ||To—T| ~0;
. 2
N-Ny = 1-1¥ 2No" ol

_ 2
T‘Tﬂ = 1._”5?—2110.!.[_~1_

Geometrically that means, which any Frenet frame {T, N, B} at a point in the neighbor-
hood N (pp, tn, de) is close to the fixed Frenet frame {Tp, No, By}




46

3.2 Evolution of the planar curve
The aim in this section is to study the evolution of the planar curve 7, keeping in mind that
7y evolves by its curvature, and to find a relation between the curvature of 7, the curvature

of 7 and the curvature of 4. We have

’—)’(S, t) = {v(s,t) - To)To + (y(s, 2) - No)Vo. (3.2.1)

Since our interest is in the evolution by curvature of the curve then following Proposition
1.1.4, we want to estimate %'tl - N. Note that

8 (8 8
B—Z = (“a% -Tg) T+ (-é%’ -Ng) No= (kN -To)To + (kN - No)No.  (3.2.2)

Moreover, if s is the arc-length parameter of “t, We compute

0% 3, a
%= (oo (2 Mo ) Ny = (T Ty + (7~ M),

5 _
5| = VT DPTT NP=E.
Remark 3.2.1. Note that by Remark 3.1.10 we have that K ~ 1. 3

Using the computations above, we obtain the tangent vector 7' and the arc-length
parameter of 7,

T K=Y (T - To)To + (T - No)No)
ds = Kds.

Moreover,

= =Ks = K7 ((T - To) (kN - Tp) + (T - No)(kN - Np)).
Ik

= B (-R7R) (@ )T + (7 - Ny + K (2 (@ mm+ - o)) )|
=K1 [‘— E73((T - To) (kI - To) + (T - No)(kN - No)) (T« To)Th + (T - No)No)
+ETH(6N - To)To + (6l - No)No) |

= —K (T To)(kIV - To) + (T - No)(kN - No)) (T - To) T -+ (T - No)INp)
+E72 (kN - To)Ty + (kN - No)Np) .

T 1

It
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Note that

(22_2) To=— K [(T- T (kN - To) + (T - To)(T - No) (kI - No)] -+ R-2(6 - Ty)

s [N T (T T N8 3]
__ 2 | (T To)* (kN - Tp) ++ (T - To)(T - No)(kN - No)
=K~ (TOTOJZ—I—(‘I? No)? U 0 _(kN'TO)]
-2 (@ To)(T - No) (N - No) — (EN - To){T - Nop)? ]

(T To)z-l-(T Ng)z

g2y [T TN - o) = (b - To)(T - )
=K 2(T Ng) (T To)2 + (T~ No)? B}
——R~4T - No) (T - To) (6N - No) — (kI - T)(T'- M)}

And also

(‘32 ) - No=—E ™ [(T - T))(T - No) (kN - To) + (T - No)2(kN - No)] + E~%(kV - Np)
=2 -(T To)(T - No) (kN '?3+(T'N0)2(kN-NU) _(_kN_NO)}

-2 [T To)(T - No)(kN - Tp) + (T - No)*(kN - Np) .

=-K~* - (?T’ To)2 _;j(T No)'zu 2 - (kN -NO)]

— 2 (T To)(T - No) (kN - To) — (T - Ty) (kN-Ng)]

(T-To)? + (1"~ Np)?

. (T - No)(kN - Th) — (T - To) (kN - )
=K Z(T‘Tﬁ)[ : (T-Tg;z—i—(T-I\;:))z : ]
=BT T) (T No) (N - Ty) ~ (T - To) Y - Vo).

Itwelety = (kN - To)(T - No) — (T - To)(kN - Ny), we obtain

2
(%)'To = K~YT - Noy;
2_ -
(‘;—5})-% = —K~YT Ty

Hence,

a5 = % (T - No)To — (T - To)No) , (32.3)
and

= (%) @ N mp =2

K¢
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Moreover, as 4 is a planar curve, we have that

- 9?5
it
. 1 8%
V=t
Thus, using equations (3.2.2) and (3.2.3), we compute
oy &3 _ ¥
ot 852 K4
We conclude that 0
I Y e ]
ot 032 os2|| —
Therefore, the evolution of  in the normal direction has velocity:
O = zar
— - N = K*k. 2.
5 N=K (3.2.4)

In conclusion, if a space curve -y evolves by its curvature then its projection on the
plane (Tp, No) evolves by cquation (3.2.4). Moreover, using Remark 3.2.1 we obtain that
the evolution of the planar curve 7 is “quasi by Curve Shortening Flow™, i.e. 7 satisfies

Y - -
- N~k
ot

In addition, using Remark 3.1.10, we have that the curvature of the space curve -y is
related to the curvature of the planar curve 7 by

B[V T)(T - o) — (T To) (v )| -k, (325)

3
2

(@ Toy + (T No?]
where we used (3.1.10).
Therefore, if -y forms a singularity then 4 forms a singularity as well.

On the other hand, we can compute the curvature of ¥ = ¥+ cBy as follows If §
denote the arc-length parameter of 7 and § denote the arc-length parameter of 4 then

0 _ 5,0
5% = T gpPo
oyl fe 2__ .
EH 1+(£) =
. -1{=  0Oc
T = B [7+Z8,):
85

di = Kds.
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Moreover,
0K _ k-1 (20 (O
85 = Tt 05/ \ 832
Thus,
22 R L 2
e o A (ST ST S
32 3 32

5 dc\ [ Jc _ Bc
K1 [—K (83) (6_2) (T+5;Bg) +KTRN+ K i ]

Note that {T', N, By} is an orthogonal basis, i.e. T+ By =0, N - By = 0and T- NV = 0,
Therefore,

-

9% .8\ (&% . o [ 8%
@ = K (63) (5 2)T+K kN+K (682)30

The curvature of 4 is given by

. &4 |2
2
=g
_6c282c2«_2 g {8c\?
=K 3(£) (g + KR4+ K 8(-6?)
3.2.6)
. 82c\? [/ 8c\*
L) ~g [ o7¢ ge
R+ K (852) (as) +1
- 82c\?
— fr—472 -6 { 0°¢
e (22)
Furthermore, we have
8¢ _ ~_;0c
85 K 8s’
and
e 1[0 (- 8¢
=k _a(K a—)]
- = dc &%
1| _g-2m OC -1
Il R S 332]
N 8%
=El|-R 35;((T-T0)(kN-Tg)-{—(T-Ng)(kN-No))+K“1ag

2
NI‘H% ( use (3.1.10)).
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Therefore,

n _ dc 2 e\ ?
I -2 — ~ B —
K \/1+K (85) 1+(65) .
Herce, using (3.2.6) and (3.2.5) we obtain

P d%c
k a5t

+ .
(@) (@)
Therefore, we obtain a direct relation between the curvature of ry and the curvature of
the planar curve 7 in (3.2.5). Also, we obtain a relation depending on c(s, ¢} between the
curvature of -y and the curvature of ¥ in (3.2.7). ,
Our aim in the future would be to consider a not necessarily embedded space curve -y
and to extend its evolution through singularities. The strategy that we intend to use is to
consider 4 as an approximation of y choosing appropriately the function ¢ such that ¢ ~ 0

close to the singularity. We expect that the relations obtained in this chapter combined
with Chapter 2 will give us control on singularities.

B~

(3.2.7)

T e
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Appendix A

Remarks on the Gaussian curvature
of X (-, 1)

In the Chapter 2 we assumed two conditions for the minimal surfaces X (-,8)
* Its Gaussian curvature X (-, %) is uniformly bounded in time;
* X(-,t) converges in C* up to the boundary.

In this appendix we will start showing that the first condition is enough to ensure
Remark 2.2.7. Next, we will discuss the reasons to hope that these conditions are satisfied.

A.l Evolution of X (., ¢)

Similarly to Proposition 1.1.4 we can reparametrize of X (*+t) such that its evolution in
time is only in the normal direction, in the following way:
For a minimal surface X : B x [0,w) — R? such that
a
aX(u, v,t) = V(u, v, t)fi(u, v,t) + Wu, v, )Xy (u,v,8) + Z(u, v, )Xo (u, v, t),
consider ¢(u,v,t) = (p1(u, v, £), ¢a(u, v,£)} € B a smooth family of diffeomorphisms
of B with ¢(u,v,0) = (u, v) for every (u, v) € 8B and
%ga(u, 1) = ~(W(y, v, t), Z(u,v,1)).
If X (u,v,t) = X (p(u,, t), %), then we obtain that

a - . .
X (U, v, 1) = V(u, v, £) Ay, v, t).
ot p
Therefore, we can assume that the evolution of the minimal surface X in time is given
by t
o
EZX(a t) = V('r t)ﬁ(': t)i

where 7(-, ¢) is the unit normal vector to the surface X (- £).

51
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A2 Remark 2.2.7

The aim in this remark is to obtain a lower bound of G defined by

3
Gy = ngaat (- )ds.

Proposition A2.1. If kY is the normal curvature of T'g, then
1
Gy = f V- k(- tds.
0

Proof. Following Section A.1, we have that

86X 1 a.. .
ng 32 Bt = ./OTD-—Vndx

1 av.., on

i
f To- (Z_Vn + Uz Vi, + 'uman) dz

_ /‘ (€3 +2f - ugvs + g - 02) .
VIXul2 + 2uav: Xy - Xy 3 [ X, [Po2

L II(ue,v,)
= V. ) ds
/0 Itz ve)

1
= f VB (., t)ds.
0

Proposition A.2.2. The normal component of the evolution of X{(-,1) satisfies

(gt SDRCE t)) =V2(,¢) < |K(, ).

Proof. We will prove that V satisfies an elliptic equation,

Note that

(9) - 5 (% (B0 (§9)
_ %(ﬁ.gxuu+v||§ﬁZﬁgxw)w 25
- L(j2 1)

= 2VIK],
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where A is the Laplace Beltrami operator.
Therefore, if we consider the elliptic operator £(u) = Au — 2| K |u, then we have

LOV)=0 B
V=£kI ondB.

Thus, using the maximum principle we get

2 8., _\? 8 \? 12 Ny2
Vi= (X 7) S(571a) =®kN-7)? =)< |K].

Therefore, we conclude that

1 1
Gy = f VKD (4 8)ds < f [K(-,t)ISdo*-(sup IK(-,t)[)- A2.1)
0 0 )

te{0w)

A.3 Properties away from the boundary

* Following Section 2.3, we have that the sequence of rescaled minimal surface

{X(-,0}}nr along a blow-up sequence converges to a planar surface. Therefore,
[ K (-, 0)} along this sequence tends to zero.

* The condition | K (-, %)| be uniformly bounded in ¢ holds away from the boundary
without further assumptions. This follows from a result in [5], where the authors
prove that the density is uniformly bounded by the total curvature of the boundary.
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