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RESUMEN

En esta Tesis llevamos a cabo la exploracién tedrica y experimental de varios proble-
mas en 6ptica no lineal y otros campos relacionados, los cuales caen en la categoria
general de localizaciéon no lineal en estructuras discretas. En particular, nos enfo-
camos en la creacion y propagacion de solitones 6pticos discretos en arreglos de gufas
de onda no lineales acopladas.

Los problemas abordados en esta Tesis incluyen:

i) Resonancias de Fano en el contexto de metamateriales magnéticos.
ii) Resonancia de Fano en arreglos de gufa con nolinealidad saturable.

jit) Efecto del desorden sobre la propagacién de un pulso inicialmente localizado en

una red finita.
iv) Problema de Anderson donde el desorden solo actiia en los bordes del sistema.

v) Movilidad de golitones discretos en 1D y 2D para una red con nolinealidad

saturable.

vi) Vértices discretos en redes con nolinealidad saturable.




ABSTRACT

In this thesis, we explore theoretically and experimentally different problems of non-
linear optics and related fields, which are in the general class of nonlinear localization
in discrete structures. In particular, we focus on the creation and propagation of dis-
crete optical solitons in nonlinear coupled waveguide arrays.

The problems tackled in this thesis include:

i) Fano resonances in the context of magnetic metamateriales.
ii) Fano resonance in waveguide arrays with saturable nonlinearity.

iit) Effect of disorder on the propagation of an initially localized pulse in a finite

array.
iv) Anderson problem in a system with disordered boundaries.

v) Mobility of discrete solitons in one- and two-dimensional saturable nonlinear

arrays.

vi) Discrete vortices in waveguide arrays with saturable nonlinearity.




1. Introduction

Different physical systems can show surprising parallels when some spatial parameter
is periodically modulated. Periodic potentials possess a discrete translational sym-
metry breaking up the linear wave spectrum, causing electrons in crystalline struc-
tures to be assembled in energy bands and (forbidden) gaps in between them. Light
propagation in photonic crystals is limited to certain frequencies, whereas others are
totally reflected. Similar properties are found for matter waves of Bose -Einstein
condensates in optical lattices, spin waves in ferromagnets, phonons in crystals or
electromagnetic waves in metamaterials. All these examples lead to band structures
containing extended Bloch modes and gaps, where extended states are prohibited.
These gaps are therefore a perfect place in the search of localized modes [1]-[4].

When one or few “irlnpurities” are placed in an otherwise perfect periodic potential,
the translational invariance is broken and the possibility of so called Fano resonances
[6] emerges. This sharp, anti-symmetric resonances are characterized by the total
reflection of plane waves with determined wave vectors in the impurity region. The
wave propagation in the presence of a periodic and a scattering potential is character-

ized by a band-structure (of propagating waves) and a discrete frequency belonging
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to a localized state. Total reflection occurs, when the discrete state is in resonance
with the (continuous) band spectrum. Linear Fano resonances have been reported
in a large number of systems (e.g. [5]-[18]), since the interaction of plane waves
with discrete defect modes is ubiquitous in almost any physical system. We study
the onset of linear Fano resonances in split-ring resonator arrays, which constitute
a simple but useful model for magnetic metamaterials. Scattering of plane waves
is not restricted to be caused by linear impurities, it is also observed in nonlinear
waveguide arrays: Nonlinearity can generate several scattering channels leading to
resonances due to destructive interference and, as a consequence, to total absence of
transmission similar to the original Fano problem [19]-[23]. In a one dimensional (1D)
waveguide-array with an embedded saturable nonlinear impurity we also observed a

nonlinear Fano resonance.

Adding not only a few impurities, but disorder to the whole periodic system leads
to the destruction (;f periodicity, the breaking up of the band structure and to the
onset of a complete localization of the eigenmodes in 1D and 2D, known as Anderson
localization [24]-[26]. Therefore, in infinite, not correlated 1D and 2D lattices, already
the smallest amount of disorder causes exponentially localized modes and the absence
of wave propagation, As disorder-induced localization is based on interference, it is
a universal concept applicable to a variely of physical systems [27], such as the
transport of acoustic waves [28], microwaves [29], spin [30] and matter waves [31].
Recent studies of the the asymptotic behavior of wave packet spreading suggest,

that the addition of nonlinearity to the system leads to the breakdown of complete
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localization, but they take extremely long evolution scales and very large lattices [32],
thus being very far from the regime of possible experimental observation. To focus
on realistic systems,. we concentrate our attention to lattices with a finite length and
explore generic properties of nonlinear disordered lattice systems in the first stages of
their evolution. We present theoretical and experimental evidence that the presence
of weak disorder promotes a more uniform spreading and distribution of a wave
packet; an effect that is further enhanced by the presence of a focusing nonlinearity.
For the case where the disorder is not in the bulk of the system, but it affects only
the boundary of the array, it was predicted [33] that an excitation initially located
inside the bulk of the system would nevertheless undergo Anderson localization as
well. We conﬁrmed_this experimentally by launching a light beam at the center of
a rectangular waveguide array, whose boundary is disordered, and observing beam

localization, after some evolution distance.

Localized modes can not only be caused by defects or disorder - discrete nonlinear
systems are known to support self-localized modes that exist due to the balance
between discrete diffraction and the nonlinearity of the medium. Such spatially
localized modes of discrete lattices, which exist in the absence of defects, are known
as discrete solitons or intrinsic localized modes. They have been predicted in the
studies of the BOSe.—Einstein condensates, in optical lattices and photonic-crystal
waveguides and circuits {2, 34, 35]. In nonlinear optics, discrete optical solitons were
first theoretically predicted by Christodoulides and Joseph [36], and later observed in

experiments in 1D [37] and in 2D [38] in nonlinear optical waveguide arrays [3], which




1. INTRODUCTION 6

provide ample possi.bilities for controlling and changing for example the geometry,
dimensionality and nonlinearity of the system. In contrast to the soliton solutions of
the continuous and homogeneous nonlinear Schridinger equation, which are mobile
by definition, nonlinear localized stationary modes of discrete Schrodinger lattices
are in general immobile. Discreteness and nonlinearity impose an energy barrier,
known as Peierls-Nabarro (PN) potential [39], that any mode has to overcome in
order to move from one lattice site to the next one. The PN potential barrier is
usually defined as the difference in energy (Hamiltonian) at constant Power between
the fundamental localized stationary modes. A particularly interesting property of
the saturable DNLS model [40]-[46] is the existence of certain points, where this
energy difference vanishes, leading to the claim, that spatial solitons may travel in
the lattice without radiation.

We show that, in one and two dimensions and close to the points of vanishing energy
difference, there are regions of stability exchange between the fundamental modes,
associated in general with the appearance of a family of intermediate, asymmetric
stationary solutions [47], connecting the types of symmetric solutions at the bifur-
cation points [48]. ‘The effective energy barriers that depend on these intermediate
solutions are be constructed using a constraint method and we show possible mobility

directions.

In homogeneons media, phase singularities lead to the formation of optical vor-
tices [49], but phase singularities can also be found in periodic media and discrete

systems. Discrete optical vortices were first theoretically studied in discrete lat-
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tices [50, 51] and in continuous models with an external potential [62, 53]. Exper-
imentally they were found independently by two groups [54, 55]. Since then, a lot
more work has been dedicated to analyze different vortex mode families and their
stability in the discrete nonlinear Schrédinger model [56, 57]. Discrete vortices may
come in many configurations. In general, they are characterized by their topological
charge, which counts the number of 27 phase turns along a closed contour around the
phase singularity, but additional phase singularities [58] can lead to multi-charged
vortex modes [59]. In contrast to square lattices, different lattice geometries can al-
low stability also for higher topological charges[60] or stable combinations of dipole
vortices[61]. In the case of defocusing nonlinearity, higher-order modes were also
found to be stable [62, 63]. We explore the families of vortices appearing in focusing
photorefractive discrete Schrédinger lattices. We show, how they are connected to

the linear bands and which kinds of discrete vortices of higher charges can be stable.

This thesis is be organized as follows. In the introductory chapter we present the
theory leading to the Discrete Non Linear Schrédinger equation including a presen-
tation of the nonlinearities used in this thesis (Chapter. 2). Some linear properties
of this equation sets are discussed in Sec. 2.3, followed by properties of nonlinear
stationary solutions in Sec. 2.4.

In Chapter 3 we introduce some numerical methods, which were used and improved in
the present thesis, like the stability analysis presented for general complez stationary

solutions (Sec. 3.1) as well as a constraint method used to construct pseudo-potential
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energy landscapes to explore the possibility of soliton mobility in Sec. 3.2

Chapter 4 addresses the problem of Fano resonances, with a focus on linear properties
in the context of magnetic metamaterials in Sec. 4.1, whereas a nonlinear Fano
problem for saturable waveguide arrays is discussed in Sec 4.2.

The following Chapter 5 is dedicated to disorder. First, we present a brief intro-
duction to the concept of Anderson localization (Sec 5.1), followed by a discussion
of the effect of disorder on the spreading of a wavepacket in finite nonlinear arrays
(Sec. 5.2). Finally, we study experimentally the influence of a disordered boundary
on localization in a linear ordered array of optical waveguides (Sec. 5.3).

The mobility of nonlinear localized solutions is discussed in Chapter 6, for 1D (Sec.
6.1} and 2D lattices 6.2.

Discrete vortices, complex localized solutions with a phase singularity, are studied
in Chapter 7 in the context of saturable nonlinear waveguide arrays.

Chapter 8 concludes this thesis and gives an outlook on possible future projects.




2. The discrete nonlinear Schrodinger

equation

This derivation employs a Coupled-Mode-Theory approach for nonlinear waveguide
arrays and essentially follow the line of derivation obtained in the PhD thesis of R.A.
Vicencio [64].

In a source-free space the wave equation for the electric field E is obtained from the

Maxwell-equations,
180°E

2R 1) —

(2.1)
Assuming that propagation of waves is confined to a propagation direction 2 it is

possible to completely decompose the fields, so the eigenmodes of (2.1) are of the

form

— 1 — .

B(t) = ijjfj(w, yaeis = & cc. (2.2)
with propagation constants k;, frequencies w; and amplitude a. In presence of po-

larization (source), the wave equation becomes

18°E | 1 &P
T2 Ot 7 clq 082

(2.3)
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The Ansatz for its Eigenmodes is inspired in (2.2) with an additional slowly varying

envelope function a(z) of the amplitude in 2:

- 1 - (s 2t
Bt) = 5 3 il palz)e 0 + e (24
J

Coupled waveguides are ideal to be modeled in a discrete scheme. The essential idea
here is to assume that the linear interaction between the waveguides is weak, so there
will be only nearest-neighbor coupling. This means, that only the tails of the modes
interact. The nonlinear interaction is assumed to be local, hence there is no nonlinear
coupling between neighboring waveguides!. For simplicity of notation the discrete
part of the derivation considers only one waveguide interacting with one neighbor.
Interaction with a second one could be implemented easyly in principle, since it
is implemented in the linear part of the equations. The same happens for higher
dimensions or different geometries, since there are just more neighbors to asume in
the linear interaction part. The indices of the field Ez(ﬁ t) denote the waveguide
v = {1,2} under the influence of the field in waveguide p = {1,2}. Note that the
field E,’j (7, ) still depends on the position 7, since we still are in a "semi-continuous"
system, until now we only introduced a separation into two waveguides with modes

defined in the entire space ¥ . Inserting the Ansatz of separable modes (2.4)
o (o 1 Fls v i(kjz—w;
E#(r, ) = 3 quj(a:,y)apj(z)e (hsz—wst) 4 op
]

into equation (2.3), we get

I}t js also possible to study nonlinear nonlocal media like nematic liquid crystals [65], plasmas [66], or
nonlocal photorefractive materials [67] as well as waveguides embedded in a Kerr-media with non-

evanescent coupling leading to nonlinear interaction terms [68]
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=1A_L
- ———
_l__.azpﬁ — ._8.3_. _I_ _QZ— _I__C[?_z_ Z fV (:E (z)e‘(kj —th) + e,
ey 02 Oz? Gy 922 c2 3t2 ¥ y)a

=0 for (2 1) and (2.2)

- %; at;(2) (AL—!&—:— ) vz, y)—!— (2.5)

7i aj, dal(z )
::j(mv y) ( B2 2( ) 2ij—grz(-—)) } e”(k.fz_“’jt) + cc.jl

o~ Z[ v (=, ) ()’(k’z_“ft)—}—cc]

J

3 al (z) dal, (z)

The last approximation is possible for slowly varying modes in 2, thus —4%— < k| ——
In the second line we used the relation {2.1), the wave equation for the sourceless
case, with its eigenmodes —f,’j (z,9)-

To treat the left-hand side of equation (2.5), one splits the polarization into a linear

part depending on all other modes and a nonlinear, but local part,

B, 8) = Poin(F ) + Pr(F, 1) = Y _[Pod™ (7, 8) + B (7 1),
i

The linear polarization inside the waveguide v for the mode j can be expressed as

pulin Wy 1 y Fir v Pt v i(Rej2—t;
By (7, 1) _GOX(I) E (7' )= §€0X§1) [(flj(may)au(z)‘i'fzj(msy)azj(z))ez(k’ #)te.cl.

If we insert it into eq. (2.5), do the temporal derivative for the linear part and

reorder, we obtain for the mode j in waveguide v
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c21E % unl( t)— {Zk fuj(m ) ()

(2.6)

o
3 v—%[(fh(ﬂf y)ay;(2) + Fi; (e y)as; (Z)]} el - cc.

2.1. The Kerr nonlinearity

In centrosymmetric media the polarization has to fulfill the inversion symmetry, so all
terms depending on even powers of the field vanish, thus x‘? = 0. Therefore, the first
nonlinear correction term in the Taylor expansion which has to be considered is x®.
Although all materials exhibit a non-vanishing x® response, only some are nearly
loss-less. The most common examples are AlGaAs and fused silica glasses, which
show a good ratio between nonlinearity and losses [3]. The linear dependency of the
refractive index on the intensity is called Kerr effect. Without loss of generality, we
consider only one mode, i.e. w; — w and k; — k and remember, that the nonlinear
response is local and effectively instantaneous®. The nonlinear polarization can thus

be expressed as

*The timescale 75 of the fluctuations of the beam has to be bigger than the response timescale 7. This
is especially important, when pulsed beams are used to observe a nonlinear response, thus = has to be

in the order of 107 ®sec for a nonlinear excitation with an fs-laser.
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Pjv,nl(T—_o’ t)] — EUX(S),U]Ez(F’ t)lE:;(’F, t)
(2.7)

= 8 [ (3),Vlful2lau12fuauez(kz —wt) 4 X(3)n (ﬁ)3(a$)36i(kz—3wt) + C.C.] )

The generation of higher harmonics (for example 3w) is negligible not only be-
cause of the lower factor of production of 1/3, but also because for the large phase
mismatch[3]. Therefore we only keep the so called self-focusing or self-phase mod-
ulation term with w. Inserting (2.7) in (2.6), after the time derivative we end up

with

8?1,

gz X U Plas R oD + e =

(2.8)

1. BV 85 v 2 ri v 3l v i(kz—w
~{ikf; (@0 25 130 2P0t () + y)az(z))} gilbs=u 4 ¢

Since {2.8) has to be true separately for the term of e(**~%) and its complex conju-

gate, we finally obtain

R R asay = iy B 4 0w Rt + ). (29)

If we now assuine identical waveguides, all the transverse fields have the same form,
since all waveguides have the same mode profile. To eliminate the transversal de-

pendency, we multiply (2.9) with the complex conjugate ffj* and integrate over
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ffi ?,2 dr [ dy, since we have an 1D setting with periodicity ¢ in the direction

&. We define the propagation constant

_ W {1 W e
8= YL (w) = e X (w). (2.10)

The coupling coefficient is given by

Sl Jeo FiFirdndy

=5 - (2.11)
e, S | Fedudy
and the nonlinear coefficient by
_ st [ [ oy o
8 T [ [T T Pdady

—af2

Now we can drop one of the indices and rewrite the equation (2.9) for a dimer as

~ 2 o (a) + Gyne) + 1l ()P (2)
(2.13)
—ig—%i—z) = Bay(z) + Char(2) + Y]aa(z)Pas(z).

The extension to the case of N coupled waveguides is straightforward and can be
found in [64]. Therefore, we can write down the DNLS of the light amplitude a,, at

a site n,

i da,(z)

5 = Ba(2) 4 Cran(2) + Crirtnin (2) + Ylon(2) an(2). (2.14)
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When the waveguides furthermore are ordered equidistantly, C;, = Cyq1. By means

of the transformations u, = a, exp(—i8z), C = C/v, £ = 7z and renaming C = C,

z = £ we obtain the dimensionless DNLS:

dun(z)

dz "

—1 Un(2) + Cri12n21(2) -+ [tn(2)Pua(2). (2.15)

2.2. The saturable nonlinearity

Photorefractive materials respond to an external bias electric field by altering their
refractive index. For example, applying different beams, interference patterns can be
used to create bright and dark regions and therefore induce an optic waveguide array,
see e.g. [69] for an review. In regions of high intensity, electrons are excited into
the conduction band, redistribute and get trapped in the darker regions creating a
space-charge-field which acts as an effective screen to the external field modifying the
refraction index through the electro-optic Pockels effect. The corresponding model is
the Vinetskii-Kukhtarev model|71]. The basic equations|70, 71] which describe the
photorefractive effee:t are the following:

The rate equation for the ionized donor density N out of a total of Np is given by

ON

SB35+ L)(Np — N§) = 1NN (2.16)

Here § represents the photoionization cross section which is related fo the absorption
cross section. I is the intensity of the external, imposed beam, whereas I; is the so

called dark radiance, which accounts for the thermally generated electrons. The
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carrier recombination constant is denoted by . and NV, is the density of electrons in

the conduction band. The continuity equation gives

1

0w+ 7=
(N = Ne) + =V - T =0, (2.17)

with e being the absolute value of the electron charge. The current density is com-
posed by a diffusion and a drift component,

J = eN.uE + ks TuVN,, (2.18)

where 1 is the so called electron mobility and kpT is, as usual, the thermal energy.
The total electric field is given by the sum of the external bias field and the field

generated by the charges, applying Gauss law one obtains:

V - (eE) = e(N} — N, — Na), (2.19)

with € being the materials permittivity. It is of importance to note, that Np >
N4 > Ne, which reduces [73] under steady state conditions, where all temporal

derivatives vanish, to

+ e OB\
Nj = N (1+ "~ aa;)’ (2.20)
3(Np — N,) e AE\!
N, = =2 _ i iy1+——=—) . :
N (I+ d)( TN &n) (2.21)

To simplify the notation, we assumed, that the space charge field has only one

component paraliel to . Assuming an imposed beam of finite dimension (thus
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having a width smaller than the crystals extension), we denote the asymptotic limits
of Iy = I(z — +o0) and Ey = E(z — oo) and determine the free electron density

not effected by the external bias field by

_ §(Np— Na)

N,
° "YTNA

(Ioo + L) (2.22)

Taking into account, that J is constant (steady state of eq. (2.17)), we obtain

ON,
NegFo = eNepl B + kyT'p

Oz
or
NgEy kT ON,
= — . 2.
B N.ep  Nee Oz (2:23)
Combining egs. (2.21) and(2.23), we finally obtain
Io+1; e OF kT (8I/0x
E = pietiafyy € 0%y B
I+ 1, ( + N Bx) e U+1o)
(2.24)

! kaE 1 € QE - QZE
T e2N, eN, 8z 92z’

When a strong bias field is applied, the thermal terms are negligible, assuming fur-
thermore a broad beam, [§E/8z| < 1, but still smaller than the crystal width. So,
in a first, isotropic approximation [73, 74], the space- charge-field, which we now

call B, is given by

Ioo+Id

Esc = Eo—_—:
I+ I

(2.25)
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which represents the local, isotropic, instantaneous and nonlinear response of the
crystal to the external bias field.

To determine the discrete equation set, we now present a different approach, taking
into account already in the beginning the response of the material to the exter-
nal field. Furthermore we consider, that some crystals as the commonly used SBN
(Strontium Barium Niobate) are birefringent and restrain the treatment to the ex-
traordinary polarization, which shows a stronger nonlinearity [72]. We start from
the Helmholtz—equa;ion

V2E(7, 1) + (konl)2E = 0, (2.26)

with kg = 27/) for the free-space wavelength A and the propagation direction 2.
‘We assume, that the optical axis of the crystal, the polarization of the beam and
the external bias field are oriented along the 2-direction. These conditions lead to
the nonlinearly perturbed extra-ordinary refractive index (r()* = n} ~nirssBs [73].
Here n, is the unperturbed extra-ordinary refractive index and rs; is the electro-optic
coefficient, for the chosen parallel sefting of polarization, crystal axis and external
field we do not ne(;d to consider the full Pockels tensor #. With the Ansatz of
slowly varying envelope in 2: E = ¢(x, z) exp(ikz) in eq. (2.26), we obtain the

corresponding paraxial approximation [73]:

9 1% ko
'&% -+ ’z_ka—xz‘ = E(ngr33Esc)¢- (2‘27)

Now we can insert eq. (2.25) into eq. (2.27) and normalize: z = kx2€, x = sy with

. . . 1/2
an arbitrary spatial witdth zo and a new adimensional amplitude U == ¢ g}%
: 4%
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Furthermore, we use, that I = (n./2)\/€./to|$|?, define the nonlinear strenght
v = (kozo) nirasFy/2(1 + I /1) and finally rename € — z and s — =, thus we

obtain the saturable NLS

BU(z) 0U(z) U(z)
- = - . 2.2
"oz 822 1+ [U()P (2.28)
We discretize the lattice following a, = U{(nd) with an adimensional lattice spacing d.

2
2 ;;g") = @ny1-+8n-1—2a, and furthermore

The discrete second derivative is given by
we sustitute u, = a,exp(2iz). Finally, the corresponding discrete lattice equation
in 1D, the DNLS equation with saturable nonlinearity (s-DNLS), is given by

iy

i Unt1(2) + Un_1(2) —

Un(2)
1+ Jun{2)[>

{2.29)
The waveguide structure is optieally induced in photorefractive crystals like SBN
(Strontium Barium Niobate), Barium Titanate or Lithium Niobate. Currently there
are two different ways to experimentally achieve lattice structures: One is using
interfering laser beams to produce interference patterns constructing the lattice{e.g.
[75, 76, 38]), the other one uses patterns produced by spatial light modulators (e.g.
[77]-[81]) for the same purpose. In any case, the induced lattice structure has to be

polarized perpendicular to the probe beam to avoid interference between the lattice

and the probe beam.

2.3. Linear properties and discrete diffraction

To be able to consider nonlinear behavior of a system, the first step should be to study

the linear limit. Periodic or discrete media show linear properties, which can not be
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observed in homogeneous media, like linear localized modes at defects [82], photonic
Bloch oscillations [83]-[86], Zener tunneling [87, 88] and dynamical localization [89].

The linear limit of the cubic DNLS [eq. (2.15)] equation is given for a 1D array by
.d
zaun(z) 4 C fupy1(2) + una(2)] = 0. (2.30)
We look for extended solutions inserting a stationary plane wave Ansatz
un(2) = o exp [i(nk -+ Az)],
obtaining the dispersion relation
Ak} = 2C cos{k).

Here & corresponds to the period of the Bloch vector and represents the phase dif-
ferences between adjacent sites, A is the propagation constant or spatial frequency.
Using the periodicity of A we can restrict to —7 < & < 7, which leads to a band
structure for cubic lattices within the interval A € [—2C,2C]. Linear modes are
restricted to exist inside this band.

In 1D s-DNLS lattices [eq. (2.29)] small-amplitude plane waves, correspond to the
band A €.[-2 —+,2 —4]. In the high-amplitude limit, the saturable nature of our
system allows to completely neglect the nonlinearity and implies a second band
X € [-2,2]. So the superior bound of A = 2 of this high-amplitude linear band
corresponds as well to the upper limit of existence of unstaggered localized modes.
Therefore 1D fundamental stationary localized solutions are limited to the region
A € [2 — 7,2, with size .

Our discrete model possesses extended solutions in form of Bloch waves. Their

propagation constant or (spatial) frequency A in the cubic case is limited to one
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band with two semi-infinite gaps , what clearly shows the limitations of the discrete
model. The complete band-structure can be numerically obtained solving the full
wave equation taking into account the periodic distribution of the refractive index
[3]. Although the DNLS is only valid for materials with a large first band-gap,
experiments have shown good agreement with the discrete theory [3]. Limitations of
the model are discussed in Ref. [92].

The superposition of normal modes [3] is a solution to eq. (2.30)

un(2) = ) drii(k) exp(ing) explir(x)z], (2.31)

bt (3

with Fourier components

t{k) = % Z Up| -0 €XD(—inK).

The mode evolution is governed by the dispersion relation (k). Typical input beams
cover only few guides, so the Fourier spectrum is finite with a central %o determined
by the input angle. This can be used for effective diffraction management [90]. If the
input is furthermore a single-site excitation (8-function), the corresponding Fourier

coefficient is a constant 7i{k) = up/27 and the integral 2.31 can be solved:

U (2) = " Jo(2C 2)uy,

where J,(2) is the n-th order Bessel function of the first kind. The extension to a
2D ordered array for a single site-excitation simply leads to the superposition of two
solutions [3, 93]

Up,m(2) = 17" Jn (202} T (2C 2)a0.
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|t Zmax)l

siten

Figure 2.1.: Discrete di'ffraction pattern for a 1D homogeneous array, top: Iun(zmm)l, cross-section of

bottom: evolution of |u.(z}| for a single-site excitation in the center

A plot (Fig. 2.1) of the numerical solution in 1D of Eq. (2.30) shows the charac-
teristics of discrete diffraction in an homogeneous array, which is very different to
diffraction in a continuos medium. Instead of diffractive broadening with the maxi-
mum of the distribution remaining in the excited site, the discrefe diffraction pattern
of & central single-site excitation exhibits distinct side lobes and small amplitudes
around the initially excited site [91], which leada to new behavior when disorder and

nonlinearity are considered as well, as discussed in section 5.2
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2.4. Stationary and nonlinear localized solutions

A stationary profile is defined by u.(z) = exp(iAz) with the propagation constant
or spatial frequency A. Using this Ansatz in the homogeneous 1D DNLS eq. (2.15),

we obtain the following algebraic set of equations

Mip = Clttns1 + Up—1) + At |2t (2.32)

In the case of the s-DNLS, the algebraic equations are given by

U

L 2.33

Mg = Clttnsy + Un-1) —

Yolutions can be found using ,e.g., a multidimensional Newton-Raphson method (see
App. A). Equations for higher dimensions or different geometries differ only in the
linear part. One has to distinguisg two different kinds of stationary solution, the ones
having a real amplitude considered En most of the chapters of this thesis and the ones
having complex amplitudes, thus an additional phase structure called vortices (see
chapter 7). For each solution found one can compute different useful guantities
for their characterization in the DNLS and s-DNLS models, which will be used all
along this thesis. Mgdel (2.15) possesses two conserved quantities, the optical Power

(Norm)
pP= Z juzl? (2.34)

and the Hamiltonian

—
n

H=- {Z [cugaﬁuﬁ + %[uﬁr*]} , (2.35)
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The coordinate 7 depends on the dimension and lattice type [for example, 7l = (k,1)
in a 2D square lattice|. Furthermore, Azu;; denotes the summation over the nearest
neighbors [for example, Azuz = Dplln = Upy1 + Up—y in a 1D lattice] and can be
related to the discrete Laplacian. In the case of the s-DNLS, the Power [eq. (2.34)]

remains unchanged and the Hamiltonian is given by

n

H=- {Z [CuAgzuz — ylog(1 -+ ual®)] } . (2.36)
There is also a dynamic value, which is very useful. We can define an effective
frequency, which considers an instantaneous profile as a stationary one. Using the
equation sets for a stationary profile (2.32) or (2.33), one multiplies by u}; and then

sums over all lattice sites yielding, in the case of the cubic DNLS,

T

)\e,cub Z Iuﬁ'F = )\e,cubp - {Z [Cu:_iAﬁuﬁ + 7[“5[4]} . (237)

and for a saturable system (2.33)

. Un 2
Ae,sat Z |u1'i|2 = )\g,aatP = {Z [CU%AﬁUﬁ — ’}"]ﬁ:'liil } . (238)

n

The effective frequency can be used to check for stationarity, for example, in dynamic
or constraint simulations (see sec. 3.2).
Furthermore, we use the participation number as a quantity to count the number of

sites with significant amplitude. It is defined as

PZ

R= —m. (2.39)

It is an indicator of how many lattice sites are effectively excited in a particular
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profile, with the limits of

1 for up = dnng

R= (2.40)

N for wu,=+/P/N.

Band edge linear modes tend to the value 2N/3 for large arrays.




3. Techniques

3.1. Stability Analysis

In this section we will present a standard stability analysis [43] of the s-DNLS as an

example, in a general geometry it is given by

Un,m

oy mm 3.
T Ul (3.1)

- iUn,m = AU'n.'m,

where AU,,,, denotes the interaction with the neighboring sites, i.e. Apy = Unpim+
Up—1.m+Unms1+Unm—1 in 8 2D square array. We use a perturbed stationary solution
Ansatz U,y = (finm + Onm)ecp(iAz), where @nm represents a stationary solution of

eq. (3.1) and &, a (linear) perturbation of this solution. So we get

0bpm
dz

Unm

)\unm-}-)\énm-—z -"}’I—m

= Al + Db (3.2)

For the last term in first order of the (small) perturbation one gets

26
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T UE T [l + GO + GO L+ [ 1 4 Znim oo

12

( o Snm )( | G T - )
T\ T [l 1+ [t 1 [t 1+ |m]?
1 o e |m?) | Bnlam |Gaml*Oam
T VP ( T P L [l 1 |ﬂnml2)

— 1 (ﬁ, + 67""1 _ ﬁﬁmazm )
= TP \ ™ T4 [P 1+ [l

So (3.2} can be written as

. Odpm nm 20
—f— 4+ AN — Ad, - - mn
B 4 B (5 T~ (P
~ ~ ﬂnm eq. (6.1)
= —Alnm nm YT s 12 -
T + Ally, T P 0

Therefore the evolution equations for the perturbation reads

=:L@7if’a!ﬁ)
a6 TS @
ALY SN wm___ YamOnm |, 3.
75— Magn + Mo = | T~ T i |~ O

Now we split this equation into its real and imaginary part, Tinm = Tnm T Wnm

S = Ot + 1Bam, With (2,7, @, 8) € R. We get for the [raction
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_ Unm + zﬁn.m - (Ofnm - iﬂnm) (ﬂ'f'nm + iynm)z
f(way;a:ﬁ) - (1 +"B?zm+y121.m)2

Ofnm(]. — m?zm + yim) — 2BnmTamYnm
(1 + 2k, +yam)?

iﬁnm(l + mim - yrzxm) — 20 Tamlnm
(1422, +¥2n)? '

Ordering the evolution equations for the perturbations yields

=:—fnm =:Anm

. T 2’)’$nm'ynm) ) N (1 + z . — yz ) X

nm - nm -A L A nm
* [ T ] Rl L T o K

(3.4)
z:g:.m =:%1m

. T 29T mYnm ) T V(1 — &2 + Yomm) |

= A A— nm nm _
o = || Bt |23 A= T ] oo

We define the vectors & = (a1, ..., anar) (and A accordingly) to shorten this expres-

sion to

-C A a a
= =il M . (3.5)
B C/\§3 8

21

ol

The submatrizes A, B, C are defined according to (3.4). The eigenvalue spectrum
{wu} of the stability matrix M yields the information we were looking for: When
{wy} has no positive real part, all perturbations at least will not grow, the stability

criterion is Maz[R(ww)] < 0.
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When the modes are real solutions, ¥nm = 0, the submatrix C' vanishes and we end

up with the set

G—AB = 0

f—-Ba = 0
Qr

G—ABa = 0

f—BAS = 0.

The wellknown solutions are harmonic oscillations, (&, ﬁ) ~ De'%? 1+ Ee~#* where
(2 are the Eigenvalues of (-AB) and (-BA). The stability criterion here is {% € R,

since the perturbation mustn’t grow. To determine {2 = a - ig, we use

_ \/ BB T Tl D))
g - 2 ]

and finally find stable solutions when the stability parameter g = 0.
It is also possible to defermine the corresponding matrizes A, B and C in eq. (3.5)for
the stability analysis of a complex stationary solution of the cubic DNLS (2.15) with

coupling C = 1, they are given by

An,m - _(A - A+ ’Y"Bim + Svygm)dﬂ.m (36)
Bum = (A—A+3y25 + 75m)0nm (3.7)
C’n,m = 27mnmynm6n,m: (38)

with the Kronecker-Delta. &, ;-
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3.2. Constraint method

The constraint method consists in a multidimensional Newton-Raphson method (see
App. A) with an additional physical constraint. It is comparable to a Lagrange
multiplier textbook method with the only specialty, that in our system we add only
ONE constraint equation to a - in general- large set. The constraing method allows
us to construct energy surfaces connecting stationary solutions for a given value of
power. In that senée, it helps us to effectively predict and interpret the dynamics
across the lattice. Critical points will represent stationary solutions, where a co-
herent movement across the lattice should transform one solution into the other by
keeping the power constant [39]. The method was originally introduced by Aubry
and Cretegny [48] and then implemented by Savin et al. [94] to study the mobility
of kinks in nonlinear Klein-Gordon lattices (see also Ref. [95, 96] for a related ap-
proach to analyze travelling breathers in 1D oscillator chains in terms of an effecfive
Hamiltonian.) Lately, it was numerically implemented to analyze surface states in
one-dimensional semi-infinite systems [97, 98]. By adiabatically changing the ampli-
tude in one particular site, specifically chosen as the one after the main peak (the
peak is at n. and the constrained amplitude at n. + 1), the one- and the two-site
solutions could be connected. Ending the sweep when u,, = #n.+1 and the center of
mass of the constrained solution, X, has varied from n. to n.+0.5, a one-dimensional
energy surface, H vs X, can be sketched. Technically speaking, the method used
in Ref. [97, 98] consists on eliminating one equation from the Newton-Raphson

problem, the one of the constrained amplitude which is not anymore an unknown
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variable. However, as the power is kept constant, an equation for P is added and
the frequency A becomes a variable completing the variable-equations set.
We implemented a method where we explicitly vary the center of mass instead of the

amplitude. In 1D, the center of mass is given by

2
X= Zi;"f‘—'—. (3.9)

We choose the site n4 with fixed amplitude A4 given by

\/XP - En#nA nluﬂlz

= (3.10)
Tig

Now we can start to slightly change X and solve the new set keeping P constant.

For the 2D lattice we also implement a constraint method for two fixed centers of
masses {(and amplitudes). Since we are interested in the energy landscape around
the fundamental sta.tionary solutions, we will assume also the amplitude u,m, of the
constrained solutions to be real and positive on the constraint sites. Then, from the

definition of the center of mass coordinates in the horizontal and vertical directions,

X = annlu":mF and Y = Enm mluﬂ,fﬂlz

o P , (3.11)

we can solve for any pair of amplitudes A = Uy, m, and B = Ungm, 8t places

{’J’LA, mA} and {nB, mB}:

Tigtha —NAMB

A = \/mBSn—nBSm—!—P(nBY—mBX)

(3.12)

B = T4Sm — MaSy + P(maX —TLAY)
B npmy — NAME '
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Figure 3.1.: Array scheme showing the constraint locations used to obtain the energy surfaces below.

where S; = 32,.(1 = Snnabmma — OnnpOmmp)Jlunm|® with j = n,m. Thus, as

i
before. the actual constraints will be in the amplitudes A and B, but now we can
tune the center of mass as wished, from a given initially stationary solution towards
any other. In general, the constrained solutions obtained in this way will of course
not be stationary solutions of the full system. To identify any stationary solution -
including the intermediate ones - we check whether the value of A obtained from the
constrained Newton-Raphson scheme coincides with the frequency of a hypothetical
true stationary solution to the full equation set with the computed amplitude pro-
file. Furthermore, constrained solutions allow us to calculate their Hamiltonian, and
therefore to construct an effective energy landscape.

The choice for positions {na, m4} and {ng, mp} is evidently not unique, but in order
to most efficiently trace out a smooth energy landscape connecting the fundamental
solutions (if it exists), the constraint sites should preferably be chosen within the unit

cell where the amplitudes are large. It turned out that, starting from a stationary

one-site solution centered at {n.,m.}, in most cases the best option is to choose
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the first constraint at site {ne + 1,mc} or {ne,mc+ 1}, and the other one at site
{ne+1,mc 4 1}, as sketched in Fig. 3.1. The results shown in the following sections
are obtained using these constraint sites. We also tried using constraint sites at
{n. +1,m.} and {n,mc+ 1} (ie., along a diagonal); however, with this choice
we typically were n(;t able to find the solution centered in between four-sites when
starting from the one-site mode. Instead, the NR method with constraints on these
sites generally converges, at X = n.+ }2-, Y =m.+ %, to a two-site diagonal solution.
This is an exact solution for the unconstrained cubic DNLS at high powers, but to

the s-DNLS only for larger nonlinearities than the ones considered in Chap. 6.




4. Fano resonances

The eigenmodes of a linear periodic array are plane Bloch waves. In the presence
of one or few “impurities” the translational invariance is broken; so the presence of
judiciously placed defects makes possible interesting resonance phenomena, such as
Fano resonances (FR)[5|, where there is total reflection of plane waves through the
impurity region, in an otherwise periodic potential. In a typical FR system, the wave
propagation in the presence of a periodic scattering potential is characterized by open
and closed channels. The open channel guides the propagating waves as long as the
eigenfrequencies of closed channels do not match the spectram of linear waves. The
total reflection of waves in the open channel occurs when a localized state originat-
ing from one of the closed channels resonates with the open channel spectrum. The
original setting [5] considered two weakly coupled harmonic oscillators, one of them
driven by a periodic force. Since the interaction of plane wave eigenmodes (band)
of a periodic potential with defects (discrete mode) is ubiquitous in physical sys-
tems, reported Fano resonances are nearly countless. To name only a few, they have
been found in wells with a quantum dot in an Aharonov-Bohm interferometer[6],

in the electronic transport through a single-electron transistor [7], in arrays of sub-

34
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wavelength holes in metal films [8], quantum well structures [9], electron waveguides
containing donor impurities [10], in a quantum wire with & side-coupled quantum
dot [11], semiconductor quantum wells [12], weakly coupled single-electron transis-
tors [13], bulk semiconductors [14], biased semiconductor superlattices [15], carbon
nanotubes [16], and plasmonic nanowires [17]. These are only a few of the more than
6000 citations of the original work of Ugo Fano (see Ref. [18] for a review of recent
findings).

Scattering of plane waves can not only be caused by linear impurities, but is also
observed in nonlinear waveguide arrays: Nonlinearity generates several scatiering
channels which can lead to resonances due to destructive inferference and, as a con-
sequence, to total absence of fransmission similar to the original Fano problem. As
examples we can cite the prediction of Fano resonances in the context of nonlin-
ear quadratic waveguide arrays [20] and also, in a very different research area, the
prediction of similar resonances in Bose-Einstein condensates [21].

In this chapter we vu:ill consider different linear defects leading to Fano resonances in
the context of metamaterials in section 4.1 and a nonlinear Fano setting in saturable

waveguide arrays in section 4.2.

4.1. Linear Fano resonances in Split-ring resonator arrays

The FR effect can be used to control the electromagnetic response in novel, man-made
materials, such as metamaterials (MM). They are characterized for having negative

dielectric permittivity and negative magnetic permeability over a finite frequency
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range, endowing them with unusual electromagnetic wave propagation properties
[105, 106]. One of the most studied MMs is a metallic composite structure consist-
ing of arrays of wires and split-ring resonators (SRRs). The theoretical treatment
of such structures relies mainly on the effective-medium approximation where the
composite is treated as a homogeneous and isotropic medinm, characterized by ef-
fective macroscopic parameters. The approach is valid, as long as the wavelength of
the electromagnetic field is much larger than the linear dimensions of the MM con-
stituents. The magnetic properties of SRR arrays have been explored in a number
of works [107] -[114].

Tn this section, we consider Fano resonance effects due to few defects whose position,
with respect to the periodic SRR array can be easily tuned, making this type of
configuration an intfaresting one to probe experimentally.

Let us consider a one-dimensional, periodic array of split-ring resonators (SRRs),
in the absence of nonlinearity, driving and dissipation. The most simple form of a
split-ring resonator is that of a small, conducting ring with a slit. In general, each
SRR unit in the array can be mapped to a resistor-inductor-capacitor (RL.C) circuit
featuring self-inductance L, ohmic resistance R, and capacitance C built across the
slit. Tn our case, we will consider the case of negligible resistance R. Thus, each SRR
unit possesses a resonant frequency wp =~ 1 / v/LC. In the array, each SRR is coupled
to their nearest neighbor via mutual induction [107].

The evolution equation for the charge @, residing on the nth ring is

d? @Qn _
a’tE (LQn + ;MﬂQO) + 'E ] (4‘1)
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0-0-0-0-0 0-00 - OO0

Figure 4.1.: Two typical configurations for the SRR array.

where M,,, is the mutual induction between rings n and m. We cast this equation
in dimensionaless form by defining 7 = wet, @n = @n/CUs, Aum = My /L, where Uy
is & characteristic voltage across the slits.

The dimensionless evolution equation for the charge ¢, residing on the nth ring reads

now

d?
E;;_"g" (qn + E Am'nq:'n.) T = 01 (4‘2)

m#En

where )\, denotes the ratio of the mutual inductances between the nth and the
mth ring to the self inductance of the rings, and decreases as the inverse cube of the
ring-to-ring distance, Anm o |2 —m|™2 (m # n). In the limit of weak coupling (large
distance between SRR units), it is customary to take Apm = A dnym-

The two most simple SRR configurations are shown in 4.1. In one of them (left), all
couplings are positive, while for the second (right), they are all negative, as a result
of Lenz’s law. The stationary modes of Eq.(4.2) are obtained by posing a solution
in the form ¢,(t) = n exp(i€27). This leads to the stationary equations,

— (g + Y AamlGm) + ga =0. (4.3)

m#n

Magnetoinductive plane waves of the form ¢, = A exp(ikn), lead to the dispersion

relation

1

0? =
1423 o0 Aomcos(km)’

(4.4)

We must impose the physical condition ©? > 0. Using that Agn, has the form
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Aom = A/m? leads to:
1 2
D i — 4.5
%@ < K@ -
or, —~0.41595 < X < 0.554605, where ((s) is the Riemann Zeta function ((s) =
Yore, k7. As we will see, the limits in condition (4.5) change a bit when one assumes

a weak coupling limit where few or even only one of the Ag, is retained.

4.1.1. Magnetoinductive defects and Fano resonances

We consider now several simple cases involving defects coupled to the SRR array.
These defects are created, for instance, by altering the electromagnetic characteristics
of some rings, which can be achieved by changing one or more geometric features
of the rings. Another way is by altering their relative coupling with respect to the
array. In the case where nonlinearity and dissipation are not considered, two simple
choices are to alter the slit width of a ring which alters its capacity only, affecting
the value of its resonant frequency. Another simple choice is to couple the array to
one or several external defect consisting of a ring placed outside the SRR array. This

affects the value of the coupling between the SRR and the external ring only.

4.,1.1.1. Single capacitance impurity

The first case we study is a single capacitance impurity embedded in the array (Fig.
4.2), which, without loss of generality, we place at n = 0. This impurity is created

by changing the slit width of the ring at n = 0. The stationary equation for this case
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is

- 92(qn + Z )\an'm) -+ (1 + 6n,UA)q" =0, (4'6)

m#n

where A is the change in the (dimensionless) resonance frequency at the defect
position. When the slit width tends to zero, its capacitance diverges, making the
resonant frequency approach zero. This implies A —+ —1. On the other hand, when
the slit width is large, the local capacitance goes to zero, and the resonant frequency
diverges, implying that A — co. Thus, —1 < A < 0.

Usually, embedded defects coupled locally do not lead to Fano Resonance phenomena
(perfect plane-wave reflection). In the SRR array ;however, the couplings are dipolar
and therefore, long-range, and non-local effects have to be considered. For compu-
tational simplicity we will work with couplings to first-and second nearest neighbors
only. The hope is th.at interference between the path through nearest neighbors and
the one through next-nearest neighbors will give rise to Fano Resonances. Equation

(4.6} becomes:

— Q% g + Mgnts + Gret1) + N (Grs2 + @u2)] + (1 + Ano)gn = 0. (4.7)

where A is the coupling among next-nearest neighbors. We pose a plane wave solu-

tion of the form

Ie* - Re #n  n<—1
In = (4'8)
T etn , > 1.

After replacing this ansatz into (4.7), one obtains after a little algebra:

1

02 =
1+ 2Acos(k) + 2X cos(2k)

(4.9)
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Figure 4.2.: Top: Capacitive defect embedded in SSR array, with couplings to first-and second nearest

e
1

:
8] [0}

{UJR]

TRANSMISSION
TKA\SP:_EISSICN
in
TRANSMISSION
=
fn

TR.'\NSlgISSION
in

neighbors. Bottom: (a)-(d) show the transmission coefficient vs. wavector, for several parameter values:
() A=—0.1,N = (1/8)\, A = 0.7, (b) A =04,X =021, A = —0.5, () A=0.4, X =0.21,A = 0.5, (d)
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and
t=|T/I]? = lji—ig 2, (4.10)
where
A = —2isin(k)[2)\" cos(3k) + 6AX (A cos(k) + X cos(2k))
+A(A% +3X%)]
B = —2isin(k)[ 22N (Acos(k) + N cos(2k)) + AN )
C = [(1+2xcos(k)+2X cos(2k))(AZ + 22\ Ne ™
=A%+ 2X% cos(2k)) |. (4.11)

Now, for the SRR case where dipolar interactions fall with the inverse cube of the
distance between SRR units, we have A’ = (1/8)A. After inserting this into Egs.(4.9)
and (4.10) and after imposing Q% > 0, we conclude that —(4/9) < A < (4/7) is the
relevant coupling regime for this SRR configuration. Inside this regime it is possible

to have a relatively weak Fano resonance, as shown in Fig. 4.2(a). As expected,
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when coupling to second nearest neighbors is neglected (A = 0), there is no FR at

all, since in that case the transmission becomes

(2Xsin(k))?

b= EXem(R) + A1 + Dhcos(R)E

(4.12)

which can only be zero at k = 0,w. For more general A, X values, it is possible
to have zero, one, and even two different strong Fano resonances, as shown in Fig.

4.2(b)-(d) respectively.

4,1.1.2. Single inductive impurity

Another simple case is a single inductive impurity embedded in the array. This is
achieved by placing a SRR unit at different distances from the left and right portions
of the array, leading to asymmetrical couplings Az and Ap. Only couplings between
nearest-neighbors are assumed. This case was already considered [115]. In this case,
it can be proven that there is no FR for any choice of Ay, Ag; the transmission vs
wavevector curve shows a single maximum at k = «/2. For the special symmetric
case AL = Ag, there is a transmission resonance (¢ = 1) at k = /2.

We move now to simple cases where the defect(s) lie(s) outside the SRR array, and

thus, their coupling can be tuned by changing their distance to the array.
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Figure 4.3.: (a) SRR array with external inductive defect. (b) Transmission coefficient vs wavevector,

for different values of the relative coupling defect. The lines show the theoretical results, symbols the
direct numerical integration: A; /A = 1.25(circles), 1.5(squares), 1.75 (rhombi) and 2.0(stars). (c¢) Output

profile after ¢ = 1500 as a function of wavector and ring site, for A; /A = 1. Impurity site is located at

4.1.2. Single external inductive defect: First case

The first case of this type is that of a single external inductive defect coupled to the
SRR at n = 0 via coupling to first and second nearest neighbors via coupling param-
eters A\; and \s, respectively (Fig. 4.3(a)). From the geometry of the configuration,

it is easy to obtain the relationship

o737 —3/2
Ay (2 . (4.13)
A A1 ' '
For simplicity, we assume only nearest neighbor coupling among the SRR units.
For this approximation to be consistent, one must impose Aj, A2 > (1/8)A. From

Eq.(4.13), this implies A; /X > Max{(1/8),3%2} = 37%2 = 0.192.
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The stationary equations for this case are

— A (Gni1 + Ta1) + @ + Ge( Ao + A2bn 1) g = O

—P(Migo + Aogr T ¢e) +ge = 0, (4.14)

where ¢, is the charge residing on the external defect ring. We assume a plane wave

solution of the form

Ty Re ™ n<—1
Gn = (415)

T etkn , > L
The transmission coefficient for this configuration becomes

4 ((A;) (%) + (1+ (3)") cos(k) ) sin(k))
(20)? + deit (A1) (R) + (1 + ) (22)? + 2 sin(2k)

t=|T/I? = (4.16)

where ), is given by Eq.(4.13) for the SRR system. The most interesting feature of
this transmission coefficient is the presence of a Fano resonance, whose position varies
with the value of A\; /) (see Fig. 4.3(b)). The FR occurs when A; Ap+{A2+A3) cos(k) =
0, which is possible, from Eq.(4.13), for all 0 < |A;/A| < 2.449. Therefore, the
relevant interval where FR exists in our model is given by 0.192 < A1/A < 2.449.
This can be achieved by simply changing the distance between the SRR array and
the external defect. Note from Eq.(4.16) that, if we neglect the effect of Ag, the
position of the FR remains locked at k = /2.

To get a better feeling for what would be expected to see in an actual experiment
for this system, we perform a numerical simulation of a wide pulse impinging on the
inductive impurity region. We used an array of 10® rings and resort, to a symplectic

algorithm (see App. B) to trace the time evolution of an initial broad gaussian pulse
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un(0) = A exp[—a(n—ng)?| explik{n—no)], where ng = —300, A = 0.1 and oo = 0.001
which means a width of about 120 sites, in order to simulate a plane wave with a
well-defined k. The rings coupled to the inductive defect are placed at n = 0, %1,
Figure 4.3(b) shows numerical simulation results for the transmission coeflicient vs
wavevector for several X' /A values, with A = 0.4. The agreement between analytics
(lines in Eq.(4.16)) and numerics (symbols} is excellent, and the Fano resonances are
clearly shown. The numerical discrepancies at wavevectors close to k& = 0, 7 are due
to the long integration times needed since the pulse is quite slow at these k values,
In Fig. 4.3(c) we show the output profile of the gaussian pulse for different k-values,
after an integration time ¢ = 1500. The transmission increases monotonically up to
k == 0.389 #(0.868 ) from the bottom (top), then decreases steadily until it vanishes

completely at k = 0.6017, where the Fano Resonance is located.

4.1.3. Single external inductive defect: Second case

The next case we consider is a variation of the previous one, where the external
defect is now located halfway between two SRR units (Fig. 4.4(a)). Without loss
of generality, we take the external defect coupled symmetrically to the units at
n = 0 and n = 1, with coupling X. As before, the units in the array interact
through nearest-neighbor couplings A only. In order ,for this approximation to be
consistent, and taking into account the dipolar nature of the inductive couplings, we

need [X| > (1/8)A.
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The stationary equations read

- QQ[A(Q’n-I-l + Q'nw-l) + g+ Xqve (51;,0 + ‘Sn,l)] + =0

—?X(go + @1)] + ¢ = 0, (4.17)

where g, is the charge on the external defect ring. We pose a plane wave solution of

the type

T eikn+R e-—ikn ;N § -1
Qn = (4.18)

T eikn ,n > 2.

leading to a transmission coefficient:

2

(e — 1)(M2 + 2X% cos(k)) |
2(N2 + A2 cos(k)(1 — ef*))

T

t=1—
I

(4.19)

Fano resonances are possible when X24+2X2 cos(k) = 0. This implies, kr = —(1/2)(N'/A)?,
which is possible only if [\ /)| < v/2. This constraint plus the consistency condition,

give us the relevant coupling parameter window for this SRR configuration:

(1/8) <

%" <V (4.20)

Figure 4.4(b) shows some transmission curves for parameter values inside and outside
this window. The position and width of the Fano resonance depend on the ratio
|\/X], which can be externally tuned by changing the distance between the defect
and the array. Figure 4.4(c) shows output intensity profile after propagation of
t = 1500 as a function of wavevector and site position.

In conclusion, we have examined extensively Fano resonance effects in a SRR array
coupled to internal (capacitive) and external (inductive) defects. In the case of inter-

nal or embedded defects, the presence of coupling to second neighbors, in addition to
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(a)

0

-400 =200

Figure 4.4.: (a) External defect coupled symmetrically to the SSR array. Only couplings to first nearest
neighbors are considered. (b) Transmission vs wavevector for several A'/A values: 0.5 (circles), 1.0
(rhombi) and 1.5 (triangles). (¢) Output profile after t = 1500 as a function of wavevector and ring site,

for Ai/A=1.

the customary first neighbor coupling, is necessary to induce the FR phenomenon.
For external defects, the FR phenomenon depends mainly of the geometric configu-
ration between the defect(s) and the SRR array. The position and strength of these
FR could be easily tuned in current experiments, and constitute a clear example of
the possibility of controlling the transport of electromagnetic waves across a periodic

magnetic metamaterial.
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4.2. Nonlinear Fano-Resonances in saturable waveguide

arrays

Tn the present section, we study a saturable nonlinear impurity embedded in a linear
waveguide array as a new possible experimental setup to observe Fano resonances.
Recently, scattering of plane waves by bright and dark solitons has been experimen-
tally studied in saturable nonlinear media [116] but, to the best of our knowledge, no
direct observation of Fano resonances has been implemented yet in discrete media.
We also characterize the main properties of nonlinear impurity modes (NLM) in this
type of system and suggest the possibility of a switching-mode scheme, based on a
judicious tuning of the system parameters.

We consider the s-DNLS (2.29) equation in a dimensionless form with a defect,
composed by a linear and a ndnlinear part at one site (n = n;) of a 1D waveguide

array:

B Ouy,
¢ oz

B
= (Un+1 + ’Lt.n_l) + (E — T—}—_lun_li unén,ni- (42].)

¢ is the strength of the linear defect and S the nonlinear coefficient. We include both
type of defects, linear and nonlinear, in order to deal with a more general problem.
A linear site impurity can be created by altering the geometry of a given waveguide,
while at the same time tuning the spacing with its nearest-neighbors in order to keep
its coupling with the rest of the array unaltered. On the other hand, the nonlinear
response at the impurity site can be boosted by a judicious amount of extra metal
doping [117].

First, we look for stationary localized solutions centered at site m;. We insert
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into (4.21) the ansatz u,(z) = Un(2) = Upz™ ™l with Up,& € R. Up is the

impurity-mode amplitude and z determines its localization length. By defining

g = B/(1 + U2) and imposing |z] < 1 we obtain: z = (g — €)/2 & \/1+ (g — €)%/4
and A = £1/4+ (g —¢€)2. The relation between g and € determines the sign of
A For g > € (g < ¢) the sign is minus (plus), z and A < 0 (z and X > 0),
and the solution is staggered (unstaggered). The optical power is defined as P =
> ual? = Ugm/]g — ¢|. Hereafter, we fix # = 10 and € = 5 (Thus, if
Uy =1 — g = ¢). Figure 4.5 shows power vs propagation constant of the impurity
mode. From Fig.4.5(a) we see that there is no power threshold for staggered modes
(which are always linearly stable). On the other hand, unstaggered modes posses a
threshold that separates two regimes: 8P/d\ < 0 unstable and 8P/0A > 0 stable
solutions. When nonlinear modes approach the linear band (|g — €| — 0), the optical
power diverges. This amplitude-dependent “transition” implies that, unlike other
impurity systems, for a single saturable impurity, one could switch from a staggered
to an unstaggered mode just by varying the input power.

Now, we look for Fano resonances, i.e. what would happen, if a2 small-amplitude plane
wave is scaitered by our nonlinear impurity mode. In the impurity region, where the
interaction takes place, a “local mode” can be generated [21]. This mode corresponds
to an extra channel, which is created by the interaction. When this mode is fully
excited, a zero transmission of plane waves may occur due to destructive interference,
and a Fano resonance appears [18]. We assume the plane wave amplitude ¢,(2) to

be much smaller than the impurity-mode amplitude, i.e. |¢o| <« |Up|. We insert
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Figure 4.5.: (a) P vs A diagram for NLM. (b) A vs Up for NLM (black lines) and wee vs Up for local modes

(gray lines), 8 = 10 and € = 5.

tn(2) = Un(2) + é,(2) and linearize (4.21) with respect to ¢,(z) obtaining:

2

J n - - 2 *
¢ 2 ) Qﬁﬂon.nl + Q_Uge.mz%(;n‘m_ (422)

0z

—1

= ¢n+1 T @J‘l*l + (f - [_j 6

To solve this problem, we use the ansatz ¢,(z) = ane™? + biel?~%)* in (4.22),

obtaining two coupled discrete equations:

Wan = (a’n+1 + anfl) + Landfz,n.,a (423)

(2A — w)by, = (bpy1 + bn—1) + Lbypdn ;s (4.24)

where Le, = (e — ¢°/B) en + (¢*U2/B) dy, with ¢, # d,, (¢, dn = @y, by). an corre-
sponds to the open channel, i.e. a traveling plane wave with a frequency given by
wr = 2cosk. k is the plane wave vector which, in a experiment, is related to the
input angle. Therefore, the linear band covers the region [—2,2]. b, corresponds to

a closed channel, whose frequency is determined by the interaction. The resonance
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occurs when the open channel amplitude at the impurity site is zero and the local
mode is fully excited. Therefore, we decouple (4.24) [taking ap = 0] and look for

localized solutions of the form b, = boy!" ™! with |y| < 1. We find that the frequency

of this mode is we = 2A £ \/ 4+ (e — g2/B)?, where the plus (minus) sign holds for
e< g*/B (> g%/B), and A > 0 (< 0) if g < € (> €). We notice that a resonance is
only possible when the frequency of the open channel matches the frequency of the
closed one. It can be proved that we € [—2,2| for 8 > € > 0. In any other case, we.
will be outside of the band and no resonances will be observed. This condition also
implies that the linear impurity is absolutely necessary for having Fano resonances in
the present model. Fig.4.5(b) shows the existence region of the local nonlinear mode
as a function of U,. The frequency w,, lies inside the linear band approximately for
Us € [1,1.9] and, therefore, only in such a region a plane wave can excite a local
mode and ,in principle, be totally reflected.

The scattering problem is studied by considering an incoming plane wave and a

localized local mode:

I eik(n—ni) +R e—ik(n—n,-) cn <
an == ?
T gtk(n—ni) T n>n

Jn—n;| )

bnzbﬂy

By inserting this ansatz in (4.23) and (4.24) af sites n = n;,n; =1 we find, that
T =TI+ Rand w = w, = 2cosk. By solving the algebraic problem we get the

transmission coefficient ¢ = |T/I|* in closed form as ¢ = 4sin? k/[4sin® k + Q2(k)]
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Figure 4.6.: Transmission coefficient 7" as a function of beam angle k£ and amplitude Up. Bright (dark)

regions denote high (low) 7'. Dashed line marks places where wi = wee and T = 0.

where,

2 4774 {1
Q) = |e— L + 90/5 i
B 2 /(A —cosk)2—1+ 5 —¢

(4.25)

where the plus (minus) sign is used if A —cosk > 1 (< 1). By fixing S and ¢, the
remaining free parameters are the beam angle & and the amplitude Uy. Figure 4.6
shows the transmission coefficient in terms of & and Up. First, we clearly see that
t = 0 (Fano resonance) appears only in the range Uy ~ {1, 1.9} where the frequency
of the open channel can coincide with the frequency of the closed channel. Second,
resonances are only possible when the NLM is unstaggered (Up > 1). This picture
suggests a high degree of controllability of the transmission coefficient: By choosing
different input powers and/or different input beam angles, we can efficiently control
the amount of light going through or reflected back from the impurity region.

We perform numerical simulations of (4.21) in order to confirm our theoretical find-
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Figure 4.7.: (a) t vs k for Uy = 0.5 (squares), 1.36 (diamonds), and 2 (circles). (Lines correspond to
theoretical ¢ and symbols to numerical simulations results.) (b) Linear output profile for different k and

Uy = 1.36. The dashed line marks the position of the impurity site.

ings. As an initial condition, we take a localized nonlinear impurity mode Upz!™ ™!

and an incoming plane wave initially centered at ng:
, ; 2 .
On = Qg eXpP [—a(n — nyp) } exp [ik(n — ng)] .

The initial amplitude ¢y = 0.01 was chosen very small compared to Uy to fulfill the
analytical criteria. ny < n; in order to avoid a possible initial overlap. « = 0.001
provides a wide spacial distribution (~ 120 sites) to correctly simulate the scatter-
ing of a “plane wave” with a well defined k. In Fig.4.7(a) we show results for three
different values of Uy. The agreement between the theoretical ¢ (lines) and direct
numerical simulations (symbols) is excellent. This result validates our theory and
provides a good support for observing this phenomenon in real experimental setups.
Below the critical amplitude Uy = 1, no resonance exist because no local mode can
be excited. The transmission profile is similar to the one found for the scattering of

a plane wave against a linear impurity (Uy = 0) [150]. For Uy > 1, the observation
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of Fano resonances is allowed. However, the stability of the nonlinear mode should
also be considered. A small-amplitude plane wave can be viewed as a linear per-
turbation, therefore the localized solution has to be stable in order to numerically
(and experimentally) observe the resonance. For Uy = 1.36, the red theoretical curve
matches perfectly the numerical one (diamonds) where the unstaggered solution is
stable. Stability is an extra condition that should be fulfilled (for nonlinear cubic
impurities[21], the nonlinear localized mode is always stable). Finally, for large am-
plitudes no resonances are possible, because w,. lies outside the band. The NLM
grows in power and becomes an effective wall for the plane wave. Therefore, total
absence of transmission is expected for large Up.

Finally, for a fixed Uy = 1.36 we construct the output profile for different angles [see
Fig.4.7(b)]. For small k-values, the transmission is very high achieving its maximum
(t = 1) around = /8. As k is increased, the transmission and reflection coefficients
becomes of the same order of magnitude. For k > 7/4, most of the energy is reflected,
becoming a maximum exactly at the Fano resonance, where no transmitted light is
observed.

In conclusion, we proposed a new possible setup for observing Fano resonances in
optical waveguide arrays. We found a very good agreement between theory and
numerical simulations showing that, in principle, this phenomenon could be observed

in current experiments.




5. Disorder

5.1. Anderson localization

The original concept of Anderson localization assumes a periodic structure where
disorder is introduced via a random change of the local properties at each site of the
lattice, leading to wave localization due to interference between multiple scattering
paths [24]. Although it was first described in the context of condensed matter [24,
25], there are now examples in many other fields: Acoustics [28], microwaves [29],
Bose-Einstein condensates[31] and optics [118]-[122], to name a few. This problem

assumes, in general, a linear 1D Hamiltonian system plus disorder,
H= Z[enlunlz + Onunu:_!_]_ + C’nun+1u,’;]
n

In 1D and 2D all Eigenstates are exponentially localized { e ™) within the lo-
calization length "¢". For diagonal (on-site) disorder in the propagation constant
& € [-5, %] (ie., “site energy” in the quantum mechanical context), an upper
bound of the localization length is given by £ ~ 96C?/W?2, as was shown in [124].

But what happens for weak disorder, when the localization length grows so much,

that it is no longer observable in experiments. And what happens, when furthermore
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nonlinearity comes into the mix?

Recently, optical waveguide lattices [3] have emerged as ideal systems to study the
interplay of disorder and nonlinearity in simple table-top experiments. After a first
experimental study of wave evolution in a disordered nonlinear fiber array [140],
the averaging of multiple individual realizations of disorder was introduced [121] as
a fundamental concept, resulting in the first-time-ever experimental demonstration
of genuine Anderson-localization, i.e. exponentially localized modes. Furthermore,
in the optical domain it was proven in experiment and theory that a random dis-
placement of the inter-guide distance (off-diagonal disorder) also shows exponential
localization similar to the results when changing the local properties (propagation

constants) of the individual sites [123, 125].

5.2. Disorder in finite nonlinear arrays

When a weak nonlinearity is added to the disordered system, it has been predicted
that the nonlinearity will either promote or inhibit the wave packet spreading, de-
pending on the systems details and the relative strength of disorder and nonlinearity
[133]-[139]. The problem of wave packet spreading under the impact of disorder
and nonlinearity was studied by several authors (see, e.g., Ref. [141] and references
therein), who tried to observe the asymptotic behavior of the wave-packet by employ-
ing extremely long evolution scales and very large lattices, observing the breakdown
of complete localization. However, these studies are detached from currently realistic

experimental setups and possible applications [32]. Nevertheless, it is a general con-
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sensus that a (stronger) focusing nonlinearity will facilitate localization [2], what was
also shown experimentally in [121]. Whereas this work was performed in a 2D system,
in a subsequent experiment [122] the impact of nonlinearity on localization, in a 1D
system, was experimentally analyzed, culminating in the same result: focusing non-
linearity indeed enhances localization of propagating waves. Thus, a general picture
of the effects of the interplay between disorder and nonlinearify remains unclear. In-
terestingly, very recently disorder-induced transport enhancement was demonstrated
in a photonic quasicrystal [142]. In such systems, the fractal band-structure in the
ordered system is “smoothened” by disorder, which results in an increased spreading
of the evolving wave packet. However, it is important to note that such a system is
fundamentally different from common 1D and 2D lattices where the band structure
is smooth when disorder is absent (i.e., the second derivatives on the band exist).
We will show, that an increase of disorder can result in the smoothing of the light
distribution for an initially localized excitation. This effect is even further facilitated
by a focusing nonlinearity. We focus on realistic systems and lattices at a finite prop-
agation length, where the dynamical evolution is bound and the system dimensions
can be smaller than the localization length, Hence, we aim to identify generic prop-
erties of nonlinear disordered lattice systems in the first stages of their evolution.
We find a clear transition between weakly and strongly disordered systems.

The light evolution is again modeled by a set of normalized DNLS equations:

LMy 2
— Z"Ez— b Gnu;n + ; Cn,mum + Iunl run_- (5-1)

The coordinate n depends on the dimension and lattice type [for example, n = (k,1) -
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in a 2D square lattice]. The quantity €, is the propagation constant (i.e., “site energy”
in the quantum mechanical context) of the n-th guide. The hopping between adjacent
lattice sites n and m is described by the coupling constant Cy, n,. In our model we
impose disorder on both, the propagation constant [e, € {~W,/2,W,/2}| and the
coupling constants [Cyym € 1+{—W,/2, W,/2}]; the disorder is thereby characterized
by the disorder strengths W, and W, respectively. Note that we limited W, to the
interval {0, 2}, to assure that the inter-site coupling is always positive. A simulation
of light propagation in a waveguide array is shown in Fig. 5.1(a).

One of the most useful measures used for the description of localization phenomena
in finite systems is the participation ratio (PR) [142] that is measured after a fixed
propagation distance and yielding a rough estimate of the number of sites that are
occupied by the wave packet [see eq. (2.39)], i.e., where the light has a significant
amplitude at the output facet of the sample. As pointed out in [142], in order to get
meaningful data for finite lattices, one has to average over k different realizations
of disorder, requiring also an averaged PR: R = <ZHN=1 |'u,n[4/P2>H1 [148]. The
quantity P is the total optical power evolving in the system, and N is the total
number of lattice sites.

We start our analysis by carrying out extended numerical simulations in 1D lattices,
using Eq. (5.1) In our theoretical analysis, we numerically integrate Eq. (5.1), con-
sidering multiple random realizations and performing an averaging process for the
relevant quantities. In the 1D case, we use N = 81 waveguides with an initially

localized excitation: u,(0) = \/ﬁdn,nc, where 7, corresponds to the input position.
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Figure 5.1.: (a) Sketch of the light propagation in a 1D waveguide array, when only one waveguide is
excited. (b)-(d) Simulated intensity distribution in the lattice sites for ordered (b), single realization of
on-site disorder degree W, = 0.36 (c) and W, = 1 (d) after propagation through the waveguide array
when only the central waveguide is excited. (e) Simulated averaged PR R vs. on-site disorder for different
levels of inter-site disorder after linear (low power) propagation. (f) Simulated averaged PR vs. Power
P and onsite-disorder W, after nonlinear propagation (black contour denotes R = Rg). In all cases, the

PR is normalized to Ro = R(W. = 0).
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The participation ratio was taken at the propagation distance 2,4, = N/4 (in nor-
malized units). In order to simulate linear propagation, the total optical power P
is chosen very small (< 0.01). In order to recapitulate Anderson’s results [24], we
show in Fig. 5.1(b)-(d) output distributions for the ordered lattice and two levels of
pure on-site disorder, showing a ballistic spreading for the ordered (W, = 0) case
[Fig. 5.1(b)]. The diffraction pattern exhibits distinct side lobes and small ampli-
tudes around the initially excited central site. When weak disorder is introduced
[W. = 0.36, Fig. 5.1(c)], the part of the power contained in these lobes is redis-
tributed to the waveguides close to the center. By increasing the disorder further, a
localization around the excited site is observed, with exponentially decreasing tails
on both sides [Fig. 5.1(d)]. However, an important aspect hereby is the occupa-
tion of the individual lattice sites, that defines the PR, i.e. the effective width of
the diffraction pattern. Qur simulations reveal something very surprising: As the
(weak) disorder strength is increased, the average PR increases too [black solid line
in Fig. 5.1(e)], although the second moment decreases [144]. Upon further incre-
ment of the disorder, the spatial profile reduces its expansion and the PR decreases
henceforth. The figure shows a clear maximum of the number of excited sites which
separates regimes of expansion and localization [144].

Additionally, we investigated how mixed disorder influences the light propagation by
increasing the amount of inter-site disorder W,. The results for W, = W,/3, W, /2,
and W, are shown in Fig. 5.1(f) as the red dashed line, the blue dotted line, and the
pink dash-dotted line, respectively. From our simulations it is evident that, as the

inter-site disorder increases, the initial growth of the PR is reduced, and eventually
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vanishes (i.e. R/Ry < 1 for all disorder levels) for suficiently high inter-site disorder.
In a next step, we analyzed the impact of nonlinearity, i.e. the propagation of high-
power lights fields. A focusing nonlinear term in Eq.(5.1) facilitates the self-focusing
of the excitation around the initially excited site [145]. Therefore we find in the
weak-disorder regime the increase of the PR is enhanced in the presence of a small
amount of nonlinearity. Figure 5.1(¢) shows the average participation ratio of the
profile after propagating a defined distance in the presence of on-site disorder W,
and power (nonlinearity) P in a 1D, lattice. For P =~ 0, we find an increasing PR
for weak disorder. Switching off the disorder and consider only nonlinearity, the
picture is similar: the PR increases up to some maximum value due to redistribution

of the power in the waveguides andithen drops as the wave packet localizes [146].

Therefore, for P < 4 nonlinearity may facilitate the delocalization process. Below the
critical nonlinearity P < 4 for 1D la.Ltices there is a mixture of localization induced
by disorder and nonlinear, resulting in a higher number of excited sites. This causes
an increase of the PR with the maximum shifted to smaller values of the disorder
strength. ’
During my visit in Jena in 2011, our experiments are carried out in fs-laser written
waveguide arrays (see App. C ). Fox the analysis of 1D samples, we fabricated sev-
eral arrays with N = 81 sites each:i One without disorder, and nine with varying
degrees of disorder (and 30 realizations for each degree of disorder). Disorder was
introduced by varying the spacing between the guide centers: d = (23 = 64)[um)],

dq = (0,0.25,0.5,0.75,1,1.5,2,3,4,6). The difference in overlap of the individual

waveguide modes additionally creates a statistic detuning of the guides and, there-
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fore, an on-site disorder besides the inter-site disorder. An input-beam at A = 800
nm from a Ti:Sapphire laser was launched into a single waveguide in the center of
the array using a standard microscope objective. At the end facet of the sample, the
intensity patterns were recorded using a CCD camera. Whereas the linear regime
(Pun) was measured by using the continuous wave-mode of the laser (i.e., the laser
power was only a few mW), the nonlinear regime was studied in the pulsed regime
with pulse peak power of Py ~ IMW and Fys ~ 2.7MW. The participation number
R was computed for all the different settings, including its standard deviation, and
normalized to the value of the linear single-site excitation of an ordered array (Ri,o).
Our numerical predictions are confirmed by our experimental resulés, summarized
in Fig. 5.2. A microscope image of the front facet of an ordered and a disordered
1D lattice is shown in Fig. 5.2(a). Fig. 5.2(b) shows different propagation patterns
of an ordered array (upper row), a single disordered realization (middle row), and
an averaged output profile for the same disorder level (lower row). From each real-
ization, the PR was computed and then averaged. As it can be clearly seen from
our experimental data [see Fig. 5.2(c)], in the linear regime, we indeed observe the
delocalization tendency with the increase of weak disorder and a diffusion-peak at
a disorder level of §; = 1.5 pm spacing variation between the guides. When non-
linearity comes into play, the diffusion-peak shifts towards smaller disorder levels,
and additionally maximum significantly increases. However, the delocalization is
only observed for sufficiently small nonlinearities. If the nonlinearity is too high, the
smoothening effect vanishes as the self-focusing is sufficiently strong to inhibit any

diffusion/expansion process.
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spacing disorder

Figure 5.2.: (a) Microscopic images of an ordered (top) and disordered (bottom) 1D array. (b) Experimen-
tal intensity output patterns. Upper row: ordered array; middle row: single realization disordered array;
bottom row: averaged disordered output pattern. (¢) Experimental PR R versus disorder strengths for

different levels of input power.

In 2D waveguide arrays, various different settings are possible that have a different
impact on the localization/delocalization behavior of the propagation wave packet.
One of the simplest 2D structures is the square lattice where each lattice site is

coupled to four nearest-neighbors only. Hence, in the ordered linear case, a square
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lattice constitutes a "superposition" of two perpendicular 1D arrays. A microscope
image of a square waveguide lattice is shown in Fig. 5.3(a), and an experimental
output intensity pattern of such a structure is shown in Fig. 5.3(b). After exciting a.
single waveguide at the center of the structure, the diffraction pattern exhibits four
distinet side lobes. Similar to the 1D system, when on-site disorder is introduced in
model (5.1), an increase of the PR is found [see Fig. 5.3(c)]. When additionally inter-
site disorder is introduced, at some point the diffusion-peak vanishes and localization
is observed for all disorder levels.

For the experimental analysis of the 2D square sample, we fabricated lattices with
21 x 21 sites with three different levels of disorder and one ordered array. The mean
distances dp,r = (17 £ & ){um] with &, = (0,2,4,6). Although the vertical distance
was kept fixed at d, = 23[um], this setting is equivalent to a 2D fully disordered
lattice [149].

These theoretical consider.ations are fully proven by our experimental results, which
are summarized in Fig. 5.3(d). For small inter-site disorder the PR significantly
grows, and for further increase of the disorder the PR drops, resulting in localization
of the wave packet (black solid line). Importantly, distinct side lobes in the diffrac-
tion pattern only occur when a single waveguide is excited [2, 3]; wide Gaussian
beams create a homogeneous Gaussian shaped propagation pattern. Such a pattern
continuously narrows for increasing disorder. In the experiments we used a Gaussian
beam that covers approximately 9 sites. We clearly see that there is no delocaliza-
tion enhancement for such initial condition [Fig. 5.3(d), red dashed line]. As for

pure inter-site disorder no diffusion-peak is observed in our simulations, we therefore
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Figure 5.3.: (a) Microscope image of the fabricated ordered square lattice. (b) Corresponding averaged
output intensity profile. (c) Numerical simulation of the PR for different mixed disorder: W. = 0
(black solid line), W. = W./4 (red dashed line), W. = W, /2 (blue dotted line). (d) Experimental
results for single-site (black solid line) and gaussian (red dashed line) input excitations, averaged over

25 realizations. All data is normalized to the ordered array Ry.

conclude that the variation of the inter-site spacing results in a mixed disorder in
the fabricated samples.

Another example of 2D arrays are the hexagonal lattices, where each site is coupled
to six nearest-neighbors. Its band structure is very different to the one found in
the square-lattice. Additionally, the diffraction pattern of a delta-like input beam
does not exhibit the distinctive outer lobes that were characteristic for the square
lattice. A typical diffraction pattern of such a structure is shown in Fig. 5.4(a).
Adding disorder only leads to an increased localization, as shown in Fig. 5.4(b),

which matches the experimental results reported in Ref. [121].
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Figure 5.4.: (a) Numerical output intensity pattern for an hexagonal lattice. (b) Numerical simulation of
the PR for different mixed disorder: W, = 0 (black solid line), W. = W. /4 (red dashed line), W. = W, /2

(blue dotted line). The data is normalized to the ordered array Rp.

Most explanations concerning diffusion and expansion processes in disordered lattices
resort to band structure changes. However, the reduction of the pseudo-gaps in a
disordered lattice |142] does not necessarily imply that a particular excitation located
at any input position will be able to excite more states. Even if this were so, it is not
clear that more excited states will give rise to a better expansion or the distribution
of the power of the wave packet. The excitation of the “correct”, i.e., well delocalized
eigenstates, is probably more relevant. For weak disorder it is not possible to claim
that, by considering a single-site excitation, a particular state will get excited; this
may be only possible for strong disorder when all linearstates are very localized.
Therefore, in our view it is not useful to discuss a precise excitation of states, as
this would be certainly a matter of probability [32] and it will not correspond to a
representative case.

Instead, we use a different approach to validate our observations based on simple
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dynamical arguments. A wave packet initially localized in a single waveguide can
be decomposed into a superposition of plane waves, each one with a different trans-
verse velocity. In the absence of disorder, during propagation this wave packet will
form the typical side lobes of the diffraction pattern [2, 3] where the waves possess
a high transverse velocity, and most of the propagating power is concentrated in
these lobes. For weak disorder one can assume that launching light into a single
waveguide excites a number of different linear modes with different transverse veloc-
ities. Therefore, the main lobes still propagate without strong distortions as those
plane waves possess sufficient kinetic energy to overcome the disordered potential
wells and to move across the lattice. However, some waves with less kinetic energy
will get trapped in the impurity regions of the particular disorder distribution. As a
consequence, the wave will expand more homogeneously, localizing energy in the in-
put region (small velocity waves), in the lobes (high velocity waves), and in between
(intermediate velocities). When the disorder is further increased, also the waves in
the side lobes will get trapped as their energy becomes comparable to the deeper
disordered potential wells. Therefore, light reduces its expansion and the localization
starts to dominate the picture (see Fig. 5.1 and Refs. [140, 121, 122]). In this vein,
the PR will increase at small disorder strength and decrease only at sufficiently high
disorder. It is important to clarify that this process does not have implications in the
edge-to-edge-diameter of the wave packet; it rather implies a smoother distribution of
the light and therefore a higher PR. As the side lobes remain the dominating feature
of the propagation pattern even in the far field [147], the effect reported here is not

connected to the initial diffusive spreading at short propagation distances [148]. At
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low disorder strengths, the distribution of energy across the lattice is dominated by
the side lobes, as they can be found in various lattices such as 1D, 2D square and
honeycomb, and 3D lattices - all of these structures will therefore exhibit the initial
increase of the PR for small disorder and, therefore, a diffusion-peak.

Assuming a disorder level in the vicinity of the maximum of PR, adding a weak
nonlinearity will increase the (random) refractive index at each site, in an amount
proportional to the light intensity on the site. This causes the high-intensity side
lobes to be affected the most, whereas the ‘slow’ waves in the center are not affected
much. However, the latter are already localized, as their energy content is insufficient
to overcome the disordered potential wells. Thus, the nonlinear deepening of the
random potential wells, renormalizes the disorder strength of the individual iattice
sites. This, in turn, causes the increment of the participation ratio to be higher and
to occur at smaller values of disorder strength than in the linear case, in agreement
with our experimental and numerical results.

An exception is found in the triangular (hexagonal) lattice that, due to the high
number of next-neighbors (6), possesses an unusual discrete diffraction pattern with
no distinct lobes, resembling the diffraction pattern of a continuous medium. Thus,
for the triangular lattice no enhancement of the PR, even at weak disorder, is found,
in agreement with the experimental findings reported in [121].

Our results, that hold in any periodic system that is described by our model, shed new
light on the old question how disorder and nonlinearity impact the evolution of wave
packets. We claim that these results may hold for any lattice that, in the absence of

disofder and/or nonlinearity, presents clear signatures of discrete diffraction.
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5.3. Influence of a disordered boundary

In rough or corrugated channels, the phenomenon of Anderson localization is con-
nected to the transmission of electrons or optical pulses. In these systems, the
channel surface is disordered along the propagation direction. Theoretical studies
showed transitions between diffusive and localized regimes [126]-][128]. Transport
behavior was also considered in [129]-[131], where multiple scattering from longitu-
dinal surface roughness caused localization of waves, although regimes of coexistence
between ballistic, diffusive and localized transport, depending on the symmetry of
the corrugation profile, have been predicted [132].

Recently, a different kind of “corrugated waveguide” was considered theoretically
[33]. Here the disorder is only in the transverse direction, and does not change along
the direction of propagation. Also, the optical medium in the bulk, away from the
corrugated surface, possesses a periodic index of refraction along the two transver-
sal directions. The disorder is imposed on the boundary by random displacement.
Despite the weak disorder, a light beam still tends to localize in the center of such a
system far from the boundary.

Let us consider a 2D rectangular N x M waveguide array (Fig.5.5). The linear

evolution equations for the mode amplitudes u, are

du
Z Cuyjg + Z Chyttpg = —z—d;’q , (5.2)

J=p£l F=q%l

where n = (p, ¢} denotes the position of the guide center. C, are the coupling coeffi-
cients between nearest-neighbors guides. They decay exponentially with the mutual

distance between the guides. To keep our approach general, we assume anisotropic
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Figure 5.5.: Scheme of a finite two-dimensional coupled array of elliptical waveguides with disordered

boundary.

coupling in the horizontal and vertical direction. At the boundary of the array,
randomness is introduced by displacing the guides from their (ordered) positions,
along the boundary surface. This creates random couplings among the boundary
guides, for the horizontal coupling Cp, — Cre “»® as well as for the vertical coupling
C, — Cye™*?, The quantity A is a random number in {—1,1] and the randomness
strengths wy and w, along the horizontal and vertical boundaries respectively are
different due to the ellipticity of the guides. The bulk, that represents the ordered
part of the array, is connected to the disordered boundary layer with coupling values
computed from the mean pythagorean distance. These conditions are close to the
possibilities of experimental realization [125].

First, in order to illustrate the localization mechanisms in the system under con-
sideration, we analyze a waveguide array with 13 x 5 waveguides and disordered
boundary and perform a direct numerical integration of Eq.(5.2) with a single-site
excitation at the array center (n, m.) = (7,3). The parameters chosen for the sim-

ulation of the disordered case (left column of Fig. 5.6) are: Cj = 2, C, = 1.7,
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wy = 11/28, w, = 4/17 [103]. For comparison, we compute the evolution of the
ordered case and its pure discrete diffraction (right column of Fig. 5.6). For small
propagation distances (z = 5), both systems show discrete diffraction with maxima
at the outer lobes. The amplitude of the initially excited site decreases steadily
with z. However, after a transition distance of z, ~ 10, that is necessary for a
complete backscattering cycle, the influence of the boundary layer becomes appar-
ent. In the boundary-disordered case, for z > 10, the amplitude of the center site
is non-vanishing for all propagation lengths. It continues to oscillate with 2, but
finally saturates to a nearly stationary mode, showing the persistence and stability
of localization due to the disordered boundary. The main difference to the case of
a completely disordered system (bulk + surface) is that the initial oscillations due
to discrete diffraction are stronger. In addition, simulations done for unsymmetrical
excitations, also show localization at the initial excited waveguide.

We prepared 30 disordered-boundary waveguide arrays with a length of 101 mm with
N x M = 13 x 5 waveguides each. The inter-guide separation in the ordered bulk,
which is also the mean separation at the {disordered) boundary, was of 14 pgm and
17 pm, along the horizontal and vertical directions, respectively. Disorder in the
waveguide spacing was induced by varying the inter-guide distance: dj, = 14 &= 5.5A
pm and d, = 17 £ 4A pm, with A € [—1, 1] randomly equally distributed.

In each array the individual central waveguide was excited using a Ti:Sapphire laser
system at low input power to ensure linear propagation. At the end facet, the inten-
sity patterns were recorded with a CCD camera. For the observation of localization

a wavelength of 840 nm was used, corresponding to coupling coefficients [103] of
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Cp(Cy) ~ 2.2(1.8) em™1.
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Figure 5.6.: Comparison between simulations of the disordered boundary waveguide array of Eq.(5.2) (left
column) with C, = 2, C3 = 1.7, wa = 11/28, wsz = 4/17, averaged over 100 realizations and an ordered

13 x 5 array (right column)
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Figure 5.7.: Experimental results for the 13 x 5 arrays: (a) Microscope image of one configuration of
boundary-disordered, (b) ordered array, (¢) mean output of 30 realizations of the boundary-disordered
waveguide array, A = 840 nm (d) output of the ordered array, (e), (f) logarithmic plots of |un m.|,
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The experimental results, shown in Fig. 5.7, demonstrate a clear localization ten-
dency around the position of the input beam. A microscopic image of a single
realization of the 13 x 5 boundary-disordered array is shown in Fig. 5.7(a), where
the ordered center as well as the boundary layer with disordered spacing can be
seen. For comparison we also show a microscopic image of the completely ordered
13 x 5 waveguide array. In Fig. 5.7(c), the mean output intensity of 30 realizations
is shown, where localization on the central input site is clearly observed. When

comparing with the intensity distribution in an ordered array |Fig. 5.7(d)] we find
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that the propagation distance is sufficiently long for complete delocalization in the
ordered case. Thus, the observed localization effects can be attributed to the dlis—
ordered boundary layer. The stronger coupling obtained in the 13 x 5 array due to
the longer wavelength leads to exponential localization in both coupling directions,
shown in Figs. 5.7(e) and 5.7(f).

In summary, we have shown both, numerically and experimentally that the presence
of weak disorder can lead to a smoothing of the light distribution for an initially
localized optical beam in 1D and 2D waveguide arrays. Moreover, the addition of
focusing nonlinearity facilitates the smoother spreading even further. The regions
separating enhanced spreading (weak disorder) and localization (strong disorder)
can be clearly identified and the general behavior can be explained by dynamical
arguments.

Furthermore, we have investigated experimentally the influence of a disordered bound-
ary in a finite 2D coupled waveguide array and found asymptotic partial localization
of the wave packet in the center of the bulk region far away from the boundary. The
presence of a disordered boundary can give rise to Anderson localization in regions
away from the boundary. This result may be extrapolated to larger finite lattices, if

one allows for a sufficiently long propagation distance,




6. Mobility

Mobility of localized solutions in nonlinear cubic waveguide arrays {WAs) is a well
studied area. As far as the power stays low in an 1d system, the energy barrier
imposed by the discreteness and the nonlinearity (usually called Peierls-Nabarro
(PN) potential [39]) will stay small and solutions will move across the lattice by just
giving them a judicious kick [151, 152]. For larger powers, the energy barrier grows
and mobility is not possible anymore. In 2d, there is no mobility to be found at all.
However, a particularly interesting property of the one-dimensional (1D) s-DNLS
model [40]-[46] is the existence of certain “sliding velocities”, where localized discrete
solitons may travel in the lattice without radiation. This behavior was connected to
the existence of “transparent points” associated with the vanishing of a PN potential
barrier, usually defined as the difference in energy (Hamiltonian) at constant power
(norm) between the two fundamental localized stationary solutions centered at one
site (odd mode) and symmetrically in between two sites (even mode). Close to
the points of vanishing of this energy difference are regions of stability exchange
between the even and odd solutions, associated in general with the appearance of a

family of intermediate, asymmetric stationary solutions [47], connecting both types of
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symmetric solutions at the bifurcation points [48]. The effective energy barrier caused
by this intermediate solutions (IS) will strongly depend on them. The existence of
regimes of enhanced mobility close to such bifurcation points is also well-known from
studies of other one-dimensional lattice models [48, 153, 68]. In general d-dimensional

lattice the s-DNLS is given by

d'u,n

as usual uj represents the light amplitude at site 7, v the strength of the nonlinear-
ity with respect to the coupling coeflicient, and z a normalized propagation distance
along the waveguides. The coupling to neighboring sites 7 is represented by the
sum. We use stationary solutions according to the definition (2.33) and obtain the
same linear behavior as in Sec. 2.3: Small-amplitude plane waves in a d-dimensional
system define the band A € [—2d — v, 2d — -], while high-amplitude plane waves de-
fine a second band X € [—-2d,2d]. Therefore in-phase stationary localized solutions
are limited to exist in the region A € [2d — v, 2d], bifurcating from the fundamen-
tal modes of those bands [47]. We remember the (6.1) two dynamically conserved

quantities, the Hamiltonian (eq. 2.36) and the optical power (eq. 2.34).

6.1. 1D systems

It was shown in Ref. [40] that there exist points where the fundamental solution’s en-
ergies coincide, what was interpreted as vanishing points of the PN barrier. Confrary
to what is expected, the fundamental solutions remain immobile in these points. In

order to achieve a good mobility it is necessary to increase the amount of power

-
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Figure 6.1.: P versus A for odd, even, and intermediate solutions in full, dashed, and thin lines, respectively.

Inset: profiles corresponding to filled circles.

up to the bifurcation point where the IS disappears, which were not known at this
moment. A constraint method [97, 98| (see section 3.2) can be used to identify the
ISs and describe a pseudo-potential landscape among all stationary modes.

In the following, we discuss these properties for v = 10 (focusing nonlinearity). A
different v will produce different curves but the main saturable phenomenology will
be preserved. Localized solutions are computed by using a standard Newton-Raphson
method. Fig. 6.1 shows a power versus frequency diagram for both fundamental
modes - the odd and the even solutions - including the IS. As expected, the IS
corresponds to a non-symmetric profile connecting the two fundamental modes [see
Fig. 6.1-inset|. The two fundamental solutions cross each other - repeatedly - as
P increases. In regions where |P,qq — P.yen| is large, a family of IS appears. It is

remarkable that all the ISs of the first family have A = 0 and connect both (even and
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odd) modes for this value. In such a situation, Eq.(6.1) corresponds to the integrable
Ablowitz-Ladik equation [45], which has an analytic mobile solution. However, in the
physical s-DNLS model, it is not expected to find radiationless travelling solutions,
since mobile modes require to have the same power and not the same frequency.
We perform a standard linear stability analysis (see Sec. 3.1) by computing the
largest unstable eigenvalue of the linearized spectrum, denoted as "g". Fig. 6.2(a)
shows our resulis where g = 0 implies stable solutions and g > 0 unstable ones.
For all regions where the fundamental solutions are simultaneously stable (three
regions in this plot, but infinite when P — oo ), the unstable IS appears. In these
regions there are points where the energy of both fundamental solutions is exactly
the same [see inset in Fig. 6.2(a) for the first bistable region (P ~ 20)]. However,
the effective energy barrier is not zero if the IS is considered as well. In Fig. 6.2(b)
we plot Ay = |Hogq — Heen| and AH = |Hpay — Hpin| versus power. For the
first two “bistable” regions, we clearly see that AHy goes to zero as it was previously
predicted in Ref. [40]. However, when we consider the energy barrier the solution
really experiences ( i.e. AH ), there is always a nonzero barrier to overcome in order
to move a localized solution across the lattice. In fact, this barrier can be very small
but it is - strictly speaking - nonzero. A first guess could be, that the most favorable
region for mobility would be the one where AH is a minima. However, this is not
the case for stationary solutions. If we kick an odd or even mode, we are putting in
motion an immobile-defined solution, therefore there is always radiation from tails.
As a consequence, the power of the moving solution is lower than the initial one. So,

if we initially take the solution where AH is a minima (P,), the effective barrier will
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increase [see Fig. 6.2(b)]. A better option would be the one where P > F, where,
due to radiation, the power and the effective barrier decrease. Now, in order to go
deeper in the understanding of the dynamics of 1D saturable WAs, we construct an
energy landscape. By defining the center of mass X = > nlu,|?/P and using a
constraint method (see.Sec. 3.2), we compute H versus X and P. Fig. 6.2(c) shows
our computations around the first bistable region. In this plot, X = n and n 41
correspond to odd modes while X = n - 0.5 corresponds to even one. For low power,
the potential is cubic-like in the sense that the odd mode is stable while the even one
is unstable (lower curve for P = 15). By increasing the power, both fundamental
solutions are simultaneously stable because they are both a local minima in this
potential. Consequently, a maxima in-between appears, the unstable IS (middle
curve for P = 20.5 where AHy = 0). Then, by further increasing the power, the odd
solution transforms into an unstable maxima while the even one becomes the only
minima of this potential (upper curve for P = 26). The IS originates when the even
mode stabilizes; then it changes its center of mass to an odd mode (symmetrically
to the right and to the left due to the system symmetry). Finally, the IS disappears
when the odd mode destabilizes. In that sense, the IS can be thought as a stability
catalyzer for the two fundamental modes.

To the best of our knowledge, mobility in this kind of systems was never predicted for
a more realistic experimental input condition like gaussian input profiles. Previous
simulations, starting from stationary solutions, observed good mobility [40, 45, 47].
However, saturable solutions are not well localized in the power-exchange regions

and, furthermore, by increasing the power they become broader. Therefore, in a
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Figure 6.2.: (a) g versus P for odd, even, and intermediate solutions in full, dashed, and thin lines,

respectively. Inset: H versus P. (b) Ay (thick line) and AH (thin line) versus P. (c) Energy surface

where light (dark) color denotes a high (low) H-value.
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experiment, dynamics will be strongly determined by the power and shape of the
chosen beam profile. We took as an input beam a five-site wide gaussian-like profile:
1, (0) = Aexp[—a(n—n.)? explik(n —n.)] for n = nsyn. £ 1,n.42 , and u,(0) =0,
otherwise. The kick % is proportional to the experimental angle and it does not
alter the power but adds a small amount of effective kinetic energy. With this initial
condition, we numerically integrate model (6.1) from z = 0 to z = z; and measure
the center of mass at the lattice output: X; = X(z7). Fig. 6.3(a) shows our
results for different input power (P). For very low power (P ~ 0), the dynamics
are essentially linear and mobility decreases as the system becomes nonlinear up
to P = 50, when the saturable system behaves as a cubic one [see Fig. 6.3(b)].
Then, by further increasing the power, solutions start to move. When the power
is increased, fundamental solutions are geometrically similar and differences in the
Hamiltonian are very small, therefore the profile is allowed to move with k& # 0,
as it is observed in the average tendency of the curve [diagonal straight line with
X; o« Pin Fig. 6.3(a)]. However, some “resonant” dynamics is found for different
levels of power. There are different regions where mobility is enhanced as shown in
Figs.6.3(c) and (d). It is plausible to assume that this behavior corresponds to a
manifestation of the continuously repeating bistable regions discussed for stationary
solutions. Therefore, for even higher powers, there should be good mobility, in
principle without limitations. The mobility windows for gaussian pulses do not
coincide with the mobility regions for stationary solutions, since a gaussian pulse
will always have a higher cost in power loss due to radiation. But, nevertheless,

the recurrent appearance of enhanced mobility for certain powers shows an excellent
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Figure 6.3.: (a) Output X versus input P. (b)-(d) Dynamical examples for P = 54, 300, and 550,

respectively. v = 10, n. = 26, k = 0.3, o« = 1/3, z5 = 50.

agreement between gaussian and stationary profiles.

6.2. Directional mobility of discrete solitons in 2D lattices

It is still an open issue whether moving discrete solitons may exist as localized modes
also in two-dimensional (2D) lattices. As was shown numerically in [47], a scenario
with exchange of stability through bifurcations with asymmetric stationary solutions

appears also for the 2D saturable model in an isotropic square lattice, involving in
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this case three different types of fundamental solutions [158]: one-site (odd-odd,
00), two-site (odd-even, OE), and four-site (even-even, EE) modes. It was also
shown numerically in [47], that solutions with good (but generally not radiationless)
mobility in the axial directions may.exist in these regimes, and that the necessary
energy needed for rendering a mobile stable stationary solution agreed well with the
concept of PN-barrier, if its definition was extended to take into account also the
energy for the relevant intermediate stationary solution {(an analogous situation is
well-known for the PN potential of kinks [159]). Very similar observations were also
made later for a 2D DNLS model with cubic-quintic nonlinearity [160]. Moreover, in
the low-power regime of the 2D s-DNLS equations, good mobility was also observed
in diagonal directions [47].

However, the relation between existence of regions of stability exchange, small PN-
barrier and mobile localized solutions in 2D is not that trivial, as shown, e.g., for
a model with cubic inter-site nonlinearities in [161]: even in regimes with small PN
barrier and existence of intermediate solutions, the mobility may be very poor, if
there is no continuous path in phase space passing close to the relevant station-
ary modes. On the other hand, as was observed for the low-power (i.e., close to
continuum limit) regime of a 2D lattice with quadratic nonlinearity in [162], the
effective Peierls-Nabarro potential may in some situations be weak enough to allow
mobility in arbitrary directions, without any direct connection to bifurcations and
symmetry-broken stationary solutions.

So there is clearly need for a better understanding of the conditions for mobility

in 2D lattices. It is the purpose of the present section to generalize the concept
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Figure 6.4.: Examples of spatial profiles for (a) one-site (Q0), (b) two-site horizontal (EO), (c) two-site
vertical (OE), (d) four-site solutions (EE), (e) IS1, (f) IS2, (g) 1S3-vertical, and (h) diagonal solutions,
respectively, illustrated for an isotropic lattice.

of PN-barrier as discussed above, and introduce a full 2D PN potential surface de-

scribing the pseudo-potential landscape in-between all stationary modes. We will

use the numerical constrained Newton-Raphson (NR) method (sec. 3.2) to explicitly
construct these surfaces for the 2D saturable model from [47], and show how pa-
rameter regimes and directions of good mobility may be immediately identified from
smooth, flat parts of these surfaces. We will also illustrate how the interplay between
translational motion in one lattice direction and oscillatory motion in the orthogonal
direction can be intuitively understood from the topology of the corresponding PN

surfaces.

The fundamental localized stationary solutions to Eq. (6.1), defined as solutions with
real amplitudes u, ,, having a single maximum distributed on the sites in one unit-

cell of the lattice, were described for the isotropic case in [47]|. In general, we may
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identify one-site (O0), two-site horizontal (EQ), two-site vertical (OE), and four-site
(EE) solutions. Figs. 6.4(a)-(d) show typical profiles for these types of excitations.
As discussed in [47], all these in-phase localized solutions bifurcate from the fun-
damental linear mode, thus the upper band edge in the small-amplitude limit, and
merge into the corresponding high-amplitude plane-wave mode in the infinite-power
limit. As a consequence, they exist in the region A € {4 —+, 4], so that the size of the
existence region will be just 7. [A two-site diagonal solution [163] [see Fig. 6.4(h)]
could also be excited but only in frequency regimes where solutions are very localized
with A < 0, requiring large values of y (v 2 8.2)]. In addition, in certain parameter
regimes there are also asymmetric, intermediate stationary solutions, associated with
exchange of stability between the symmetric ones [47]. We may identify three types
of such solutions, termed henceforth intermediate 1 (IS1), intermediate 2 (IS2), and
intermediate 3 (IS3), respectively. IS1 and IS3 both connect a stable two-site mode,
OE/EO, with another simultaneously stable solution: the one-site mode OO (IS1),
or the four-site mode EE (IS3) [see Figs. 6.4(e) and (g)]. Thus, in these cases the un-
stable intermediate solutions act as carriers of instability between the corresponding
fundamental modes. The unstable IS2 solution exists when both two-site solutions
are stable. As can be seen in Fig. 6.6(c), it is a saddle point carrying a minimum,
which connects the unstable one-site solution OO with the likewise unstable four-site

solution EE, and stabilizes the latter mode upon reaching it [see Fig. 6.4(f)].
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), 182 (thin dotted black), and 1S3 (thin dashed black), respectively.
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Figs. 6.5 shows fundamental properties of different stationary solutions for an isotropic
lattice with ¥ = 4. Power versus frequency curve is shown in Fig. 6.5(a), where
different solutions repeatedly cross each other in the whole range of parameters.
In Fig. 6.5(a)-inset we plot AP/P = (P, — Poo)/Foo as a function of A, for
i = 00,FE0/OFE, BE, 151,152,153, This figure shows clearly how solutions cross
each other including many intermediate solutions appearing in the region A ~ 1.3.
Moreover, we also observe these crossings when plotting AH = H; — Hpo versus
power [Fig. 6.5(b)]. (We plot AH instead of H because Hamiltonian differences
between stationary solutions of the same power are generally quite small, which is
indeed a favorable scenario for moving solutions). Inset in Fig. 6.5(b) shows a zoom
in the region P ~ 0.8 where the Hamiltonian of different fundamental solutions
matches at some points. Good mobility may be expected close to these regions but,
still, it will be strongly determined by the specific kick or perturbation given to the
solution in order to put it in motion.

Stability versus power for the same solutions as in Figs. 6.5(a), (b) is shown in Fig.
6.5(c). From this figure, we can see how unstable intermediate solutions IS1, IS2,
IS3 appear when two or three solutions (regarding OE and EO as different solutions)
are simultaneously stable. Note that we never observed regions for simultaneously
stable one and four-site solutions for isotropic coupling, but in the anisotropic case

such regions do exist [164].
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6.2.1. Description of PN surfaces

By exploring the parameter-space (v, P), we have identified regions where we were
able to compute complete two-dimensional energy suriaces (using an constraint
method as shown in Sec. 3.2) and regions where we cannot. In general, complete
surfaces could not be obtained for large values of the nonlinearity constant, v 2 6,
when solutions get strongly localized. In some cases we were able to trace some spe-
cific mobility directions (e.g., along lattice axes or diagonal)} connecting stationary
solutions with almost equal Hamiltonian, but not the full two-dimensional scenario
involving all fundamental solutions. Note also that, as remarked in [47], for large v
and small power the s-DNLS model essentially behaves as a cubic DNLS model with
effective l;onlinearity ~P. Consequently, we could not find complete energy surfaces
with all fundamenta] solutions for the cubic DNLS either (although surfaces involv-
ing the two-site diagonal solution in place of the EE solution could be obtained as

mentioned in Sec. 3.2; for the cubic DNLS this two-site solution does exist as a true

stationary solution above some level of power [163]).
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Figure 6.6.: Energy surfaces for 4 = 4, in the five different power regimes discussed in the text : (a)
P =5 (b) P =945 (¢) P = 10; (d) P = 12; (e) P = 35.5. The center of mass {X,Y} for the
four stationary solutions are: {8,8} (00), {8.5,8} (EO), {8,8.5} (OE), and {8.5,8.5} (EE). White dots
denote local extrema corresponding to intermediate solutions. (System size N = M = 15 and fixed

boundary conditions were used.)
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On the other hand, for very small values of -y, the computation of energy surfaces
becomes difficult for technical reasons: due to the widening of the solutions, con-
siderably larger lattices are needed to remove the influence from boundary effects.
Therefore, in the following, we will present the main phenomenology for the isotropic
case found for intermediate values of 7, 3 < v S 5, where complete surfaces involv-
ing all four fundamental solutions were obtained for all values of the power. We
will present results for the particular value y = 4, but the scenario is found to be
qualitatively the same for all 7 in this interval.

From Fig. 6.5(c), we may identify essentially five different regimes where energy
surfaces of qualitatively different nature should be expected, depending on the level
of power. The first one is for low power, where (similarly to the cubic DNLS) the
one-site solution is always stable and the other fundamental stationary solutions are
all unstable. The corresponding energy surface is illustrated in Fig. 6.6(a), where
the one-site solution yields the energy minimum, the two-site solutions saddle points
and the four-site solution the maximum. Note that, in this low-power regime, the
surfaces for this value of v are still rather flat, and therefore some mobility may result
if the one-site solution is kicked to overcome the barriers, in the axial as well as in
the diagonal directions, as illustrated by Figs. 4(a) and (c) in Ref. [47]. (Another
example of mobility in this regime is discussed in Sec. 6.2.2 below.)

The saturable nature of the system becomes evident at higher powers. In the second
regime, appearing for the first time when 9.27 < P S 9.55, the one- and the two-site
solutions are stable simultaneously and, as shown in Fig. 6.6(b), these three points

all correspond to local minima of the surface. Intermediate solutions IS1 connecting
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the one- with the two-site solutions in the horizontal and vertical directions appear
as saddle points [white dots in Fig. 6.6(b)]. Note that the energy landscape for
the parameter values in Fig. 6.6(b) is almost flat between the one-site and two-site
solutions in the axial directions, leading to the very good axial mobility shown in
Fig. 4 (d) of Ref. [47], while the maximum corresponding to the unstable four-site
solution creates a too large effective barrier to overcome in the diagonal direction.
The third power region is the one in which only the two-site solutions are stable. It
appears for the first time when 9.55 < P < 10.04, and is illustrated in Fig. 6.6(c).
Here, the stable two-site solutions correspond to two local minima of the surface, and
the unstable one- and four-site solutions both to local maxima. The two unstable
solutions are connected by the intermediate solution IS2 (white dot at the surface),
corresponding to a saddle point which for symmetry reasons (for the isotropic lattice)
will lie along the diagonal connecting the unstable solutions. As will be illustrated
in Sec. 6.2.2, the easiest mobility in this case is expected to occur in a diagonal
direction, connecting the two stable stationary solutions.

The fourth regime corresponds to simultaneously stable two- and four-site solutions.
Such a regime appears for the first time when 10.04 < P < 10.32. If we further
increase the power, we will find a similar region with these three simultancously
stable solutions for 34.5 < P < 36.25. In this regime, as illustrated in Fig. 6.6(e),
the two- and four-site solutions all correspond to minima, the unstable intermediate
solutions IS3 to saddle points, and the one-site solution to a maximum. Thus,
comparing Figs. 6.6(b) and (e), we see that the structure of the potential has been

completely inverted. Now, a big “hill” is located at the one-site solution, and as a
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consequence no mobility is expected involving this solution. As will be shown below
in Sec. 6.2.2, the simplest mobility scenario will now be the one in which the two-site
solutions travel through the four-site one across the lattice.

The fifth regime, with the four-site solution being the only stable one, occurs for the
first time when 10.32 < P < 34.5. As illustrated in Fig. 6.6(d), the four-site solution
is now a minimum of the PN potential, while the other three unstable solutions
correspond to saddle points (EQ and OE) and maximum (QO), respectively. (There
are no intermediate solutions in this regime.) Thus, by increasing the power we have
now reverted the surface compared to the low-power regime in Fig. 6.6(a).

Further increasing of power for 36.25 < P < 43.6 exhibits a new region of stable
two-site solutions, corresponding to the third regime. For 43.6 S P S 44.2 the one-
and two-site solutions are simultaneously stable, so the scenario is equivalent to the
second regime, followed again for P 2 44.2 by the first regime, respectively. This sec-
ond complete inversion thus corresponds to a regain of the low-power characteristics
of the surface. Furthermore, repetition of these scenarios can be found for P 2 118,
and we confirmed, e.g., the existence of a complete, smooth surface, analogous to

the one shown in Fig. 6.6(d) for the fifih regime (for P = 120).

6.2.2. Mobility dynamics for isotropic lattices

To explicitly show the connection between the different types of energy surfaces de-
scribed in Sec. 6.2.1 and the mobility of localized solutions, we numerically integrate
model (6.1) by taking as initial condition a stationary solution uy, , perturbed with

a small kick:
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Figure 6.7.: Examples of mobility dynamics in the propagation direction z, corresponding to surfaces
shown in Fig. 6.6(a), (c), (d), and (e), respectively. In each subfigure, top figures show profiles movement
[(a) shows a colormap where colors were normalized to the maximum amplitude of each plot; this
colormap also applies to (b)-(d)], and bottom figures center of mass evolution for X (full line) and Y
(dashed line). (a) P =5, kz = ky = 0.038; (b) P =10, —kz = ky = 0.018; (c) P = 12, kz = ky = 0.015;

(d) P = 35.5, kr = 0.015 and k, = 0. (Other parameter values are the same as in Fig. 6.6.)
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Upm(0) = Upm explikz(n — n) + iky(m — m.)], where k; and k&, correspond to the
kick strength in the horizontal and vertical directions, respectively.

If the surfaces would be completely flat, sclutions should move even with an infinites-
imally small kick. However, as we have seen, in general surfaces are not flat due to
the discreteness and the self-induced PN potential, and although the PN barrier can
be very small in certain directions, it is generally non-zero. Therefore, in order to
put a localized solution in movement, some amount of kinetic energy (represented
by this kick) should be given to effectively overcome the energy barriers.

We first discuss an example from the first, low-power, regime corresponding to the
energy surface in Fig. 6.6(a) (as mentioned above, different mobility examples from
this regime were shown in Figs. 4 (a) and (c) in Ref. [47]). Here, we took the
(unstable) EO solution and kicked it with very small &, and k, in both directions,
yielding the dynamics numerically observed in Fig. 6.7(a). In the y-direction, the
kinetic energy is not sufficient to overcome the barrier created by the four-site so-
lution, while in the z-direction it can move towards the minimum corresponding to
the one-site solution. The resulting dynamics for the cenfer-of-mass positions show
how the movement in the horizontal direction gets combined with oscillations in the
vertical one. The dependence X vs z also clearly shows how the solution feels the
potential in terms of its velocity: maximum velocities occur around integer lattice
sites (where the potential is a minimum}) while the minimum velocities occur close to
middle points (see full line in Fig. 6.7(a); compare also with the analogous scenarios
for the kicked OO mode in Figs. 4 (a) and (c) of Ref. [47]).

In the second power regime, with energy surfaces as in Fig. 6.6(b), good mobility
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can be expected only in axial directions, with effective energy barrier determined by
the intermediate solution between the one- and the two-site solutions (as discussed
in Ref. [47]). The solution moves very slowly and adiabatically traces the shape of
the potential with a minimal velocity at the places of the intermediate solutions.

In the third power regime, with surfaces as in Fig. 6.6{(c), a very interesting kind of
mobility is observed: a diagonal mobility between the (stable) horizontal and vertical
two-site solutions as illustrated in Fig. 6.7(b). The initial EO solution, kicked equally
in the (—z)- and y-directions, gets sufficient kinetic energy to pass over the small
barrier created by the intermediate IS2 solution. It then continues through the OE
solution, passes another IS2 barrier, and then to the other EO solution shiffed by one
site in both directions. Although the potential connecting these two solutions is not
completely flat, there is a very good transport of energy in this direction, allowing
mobility for more than one lattice diagonal in the considered 15 x 15 lattice.

If we take a look at the surface in the fifth power regime [Fig. 6.6(d)], we realize that
an initial (unstable) one-sife solution may move in any direction by slightly kicking
it since it corresponds to a maximum. Fig. 6.7(c) shows an example for kicking the
one-site solution symmetrically in both directions in order to make it move passing
through the four-site, i.e., a diagonal movement. The velocity has maximum in the
minima of the potential (corresponding to the EE solution) and minimum in the
potential maxima (OO solution) (no intermediate solutions appear in this regime).
Finally, in the fourth power regime, we see from the surface [Fig. 6.6(e)] that the two-
and four-site solutions are stable simultaneously, presenting an intermediate solution

in-between them, that will define the effective energy barrier. This barrier is very
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small and, therefore, a very small kick is required. Figure 6.7(d) shows the evolution
starting from a two-site vertical solution, passing through the intermediate one and
arriving to the four-site solution.

As illustrated by the example in Fig. 6.7(a), the energy surfaces also provide intu-
itive interpretations to the observed dynamics of discrete solitons with additional
perturbations transverse to the direction of motion.

In conclusion, we have carried out a deep study on the problem of mobility of localized
modes. For nonlinear saturable 1D photonic lattices we found several regions of
bistability where stationary solutions possess a small but nonzero energy barrier.
The effective energy barrier among all stationary localized solutions was constructed,
allowing us to get a deeper understanding of discrete saturable nonlinear systems, By
using these properties with a more realistic input condition, we were able to observe
very good mobility and also to find different regions of resonant response where the
mobility is enhanced.

In two-dimensional saturable discrete systems we numerically implemented a con-
strained Newton-Raphson method to construct full Peierls-Nabarro energy surfaces,
which appeared as very useful tools for predicting the dynamical properties of local-
ized excitations. Although these surfaces were never found to be completely flat (and
therefore the corresponding Peierls-Nabarro barriers is strictly never zero), parame-
ter regimes and directions of good mobility were observed to correspond to smooth
and flat parts of the surfaces.

Five different surface topologies could be identified in different power regimes, de-

pending on the stability properties of the different fundamental stationary solitons.
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By numerically studying the dynamics of perturbed stationary solutions, we showed
how these different topologies yielded qualitatively different kinds of optimal mobil-
ity, generally in axial or diagonal directions and with velocities varying according to
the shape of the potential while the profile is propagating across the lattice. The
energy surfaces were also found to be very useful for interpreting the dynamics re-
sulting from the interplay between translational and oscillatory motion in orthogonal
directions.

Thus, the constraint method developed in this thesis appears to be a very good tool
for the understanding of the mobility dynamics of localized excitations in higher-
dimensional lattices, clearly showing the effective energy barriers that localized so-

lutions experience.




7. Vortices in discrete saturable arrays

Periodic media and discrete systems can not only support localized modes with real
amplitudes, but also solutions with an additional phase structure like discrete vor-
tices. "These modes have one or various phase singularities and were first theoretically
studied in discrete lattices [50, 51] and in continuous models with an external po-
tential [52, 53]. Experimentally, they were observed simultaneously by two groups
[54, 55]. Since then, different vortex mode families and their stability, in the discrete
nonlinear Schrédinger (DNLS) model {57, 56], have been analyzed. Discrete vor-
tices (DV) come in many configurations. They are characterized by their topological
charge or winding number S, which counts the number of phase turns between 0 and
2w along a closed contour around the phase singularity. But additional phase sin-
gularities [126] can lead to multi-charged vortex modes [59, 165] and vortex clusters
[166]. In contrast to square lattices, different lattice geometries can allow stability
also for higher topological charges [60] or stable combinations of dipole vortices [61].
In the case of defocusing nonlinearity, higher-order modes were also found to be sta-
ble [62, 63]. Introduction of anisotropy in square lattices also has a strong influence

on the stability of higher charged vortex clusters [168].

a7
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‘There are numerous ways to distribute the amplitudes around the phase singularity,
for the continuous saturable lattice model various families of charge-1(S = 1) vortices
were predicted to exist outside the linear bands [167].

One interesting aspect, which has not been studied yet is the excitation of nonlinear
vortex modes bifurcating from a linear solution. Linear vortex modes can be formed
as a linear combination of band modes and continued into the nonlinear regime.
Furthermore, we will explore, which kinds of DV can be stable for charge S = 1,2, 3
in discrete saturable arrays in different amplitude geometries for a fixed nonlinearity
v = 10, which allows for well separated bands.

For a general complex stationary solution of the 2D version of equation (2.29) with
frequency A we can write 1, ;m(2) = wnmexp(idz) = (Tnm + Y m) exp(irz) with

Tnmy Yn, € R, what yields

TYEn,m
ALy = A - l ;
B T
(7.1)
T¥nm
A = AYpm— :
T T Tt Vom

Here Aty = Un—1,m + Unt1,m + Unm—1 + Upm41 is the 2D linear interaction term.
In order to study the linear stability of stationary localized solutions we refer to the

method described in section 3.1.

7.1. From discrete linear vortices to combined solutions

We already presented in Sec. 2.3 the two linear bands in the s-DNLS model, The

first one is found in the limit of small amplitudes, A € [—~4 —+,4 — 1], the second one
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Figure 7.1.: P vs. A continuation of linear vortices in the saturable case, v = 10. For § = 1, two possible
continuations were found (black and blue), S = 2 is shown with a green line. The stable (unstable)
regimes are plotted with full (dashed) lines, insets show amplitude and phase examples corresponding to

the dots.

for high powers and A € [~4,4]. To find the modes, we solve the linear Eigenvalue
problem in the small amplitude limit of Eqs.(7.1) for an array of N? sites. The

Eigenmodes ., and yy, , are both denoted by v, ,, and given by:

vl = sin(k;n) sin(k;m) for i, =1,2,..., N, (7.2)

n,m

where k; = 7l/(N + 1) with Eigenfrequencies

wij = 2[cos(k;) + cos(k;)]. (7.3)

It is possible to construct discrete linear vortices(DLV): solutions consisting of super-

position of Eigenmodes (7.2), which vanish at the lattice borders and have a defined
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topological charge with a phase-singularity. A discrete linear vortex, with topological

charge § = 1, is given by

Unm = (Tom + Wom), (7.4)

whereas the solution

Ungm = (T2, +iy22), (7.5)

yields a discrete linear vortex with vorticity S = 2. To construct these combined
linear modes an identical eigenfrequency w;; is necessary in order to excite a dy-
namically stationary pattern. Both DLV are marked in Fig. 7.1 with red dots.
The respective nonlinear modes can be continued from linear modes inside the band
in the limit of vanishing amplitude by using a multidimensional Newton-Raphson
method. In Fig. 7.1 we plot Power P vs. irequency A for a 15 x 15 array and
v = 10. Additionally we perform a standard linear stability analysis. In Fig. 7.1 see,
that the continuations of the linear vortex modes preserve at first the linear stability
of the band modes, but with growing frequency A they turn unstable, but return
to stability for higher powers. This behavior is represented by full lines for stable
modes and dashed curves marking instability, respectively. In the case of the S =1
modes, we found a very interesting behavior. At some point near, but below the
band edge the donut-shaped solution bifurcates into two branches, which have either
3 or 4 local maxima, that get more and more pronounced with increasing frequency.

These modes evolve into a combination of 3 and 4 peaks, respectively, conserving the
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vorticity of § = 1. Examples are shown in the inset of Fig. 7.1. We assume, that in
the case of larger lattice sizes other scenarios with more or less peaks may occur. For
instance, for a 25 x 25 array we found as well a two peak solution, but the symme-
try of the lattice will nevertheless favour four-peaked modes (blue line). "Spatially
compact" DV modes can not be formed as linear combination of band modes due
to their intrinsic distribution over the whole lattice. Therefore, localized vortices do

not bifurcate from the linear DLV and possess en unavoidable power threshold.

Figure 7.2.: Scheme of a ¢ = 1 vortex structure

7.2. Mode families

We will now construct the different families of DV solutions with their specific phase
and amplitude profiles in a 21 x 21 array. One can define several families, depending
on the number of sites (¢) with small or vanishing amplitude in the center and
topological charge (S). An exemple of a scheme for an amplitude distribution with

»=11s shown in Fig. 7.2, where the blue sites denote the excited sites, whereas the
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black dashed site in the center has a vanishing amplitude and a phase singularity.
In the following, we explore possible configurations with ¢ =0,1,2,4 and § = 1,2,3
and additionally perform the stability analysis.

For ¢ = 0, the DV’s correspond to the so called quadrupole solitons [62] and can
only exist with charge S = 1,2 [56]. In the discrete saturable case both types can
be marginally stable in a finite power-interval, as shown in Fig. 7.3(2) with full
lines. It is important to note, that there is no bifurcation from a linear mode and
both families exhibit coexistence of at least two possible solutions for fixed power.
In the case of S = 2, there is even a power interval with 4 simultaneous solutions,
one stable and three of them unstable. All curves are closed. This behavior can
be understood as follows: One family has to be either connected to a linear mode
or mode superposition or can start and cease to exist via saddle-node bifurcations.
Since the low-power linear band is forbidden due to the localized character of the
DV, there will be a bifurcation in the vicinity creating solution-pairs. Thus they
have to dissapear as well in pairs or both be connected into the high-power linear
band.

Typical amplitude and phase examples corresponding to the dots in the plots are
shown in the insets of Fig. 7.3.

For ¢ = 1, shown in Fg. 7.3(b), we were able to find DV’s with § = 1,2, 3, again there
are stable regimes for all solution types, the curves are closed and completely located
outside the low power linear band. For two central sites, ¢ = 2 [ see Fig. 7.3(c)], we
found only unstable vortices, which we assume to be caused by the asymmetry of

the configuration.
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For ¢ =4 and § = 2,3, [Fig. 7.4(a)] we found two families for either charge, one of
them centered more in the corners of the vortex mode, the other one centered on the
sides. Only the "corner centered" solution with S = 2 presents a stable regime, all
others were found to be unstable everywhere. The most interesting case can be found
for ¢ > 4 and § = 1. Here we found the coexistence of at least 6 branches, one of
them reaching the high-amplitude band. The continuation in the lower power regime
showed signs of a multitudinous existence of branches, similar to the continuous case
[167]. Remarkable is the coexistence of two simultaneously stable branches, which
furthermore are nearly equal in power and frequency, examples are shown in Fig.
7.4(c4,c5) and in the right inset. All stable structures possess four pronounced peaks
with some overlap with rather well separated phase distributions. In addition we
show in Fig. 7.4(b) the continuation from the linear vortex mode outside the band
into the high amplitude linear band. This mode has 4 peaks with a fixed phase for
each of them around 4 central sides. This structure can be found to be stable in the
same power regime, where the ¢ > 4 family stabilizes with comparable, only slightly
different frequency. We interpret this behavior as follows: Due to the saturable
nature of the system the modes are more extended close to the bands and more
localized far from them. When the DV has very pronounced peaks, it can also be
constructed from different discrete solitons with an additional phase structure. They
can be stable, when they are far from each other. The appearance of the existence
of extra branches can be understood as the "continuation and multiplication" of the
behavior found in other families, where we observed up to 4 simultaneously existing

solutions, but since for ¢ > 4 the peaks are more separated, the "directions" of
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growth or saturation of the solution has more possibilities. The growing mechanism
shifts the peak centers further and further away from the starting ¢ = 4 seed, the
number of branches to be found will be mainly restricted by the system size. This
very special modes should therefore be able to connect to the DLV modes in finite
lattices; we found at least the continuation of one branch into the high-Power band.
In conclusion, we observed the continuation of linear vortex modes in s-DNLS lattices
into the nonlinear regime and constructed furthermore closed DV families located
outside the linear bands. The special branching mechanisms found for the family

with ¢ > 4 and S = 1 were attributed to saturation effects.
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Figure 7.3.: P vs. A, (a) ¢ = 0 for § = 1(2) shown with thin (thick) lines. (b) for e =1, § = 1(2,3)
shown in thin (thick, gray), and (c) ¢ = 2, § = 1(2, 3) showed in thin (thick, gray), The stable (unstable)
regimes are plotted with full (dashed) lines, insets show amplitude and phase examples corresponding to

the dots.
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Figure 7.4.: (a)P vs. A, ¢ = 4 for two different families: S = 2 is shown with a thick black line, where
dashed parts denote the unstability, while all other families are completely unstable. S = 3 is plotted
with a dotted (dotdashed) line. Amplitude and phase examples correspond to the dots. (b)P vs. A, for
S =1 and ¢ > 4, (c)profiles and phases, from (1)-(7) corresponding to the empty circle, empty square,

star, filled square, circle, diamond and triangle, respectively




8. Conclusion and Outlook

This thesis focused on spatially localized modes in nonlinear waveguide arrays. Spe-
cial interest was tak_en in the effect on localization and wavepacket spreading caused
by linear and nonlinear impurities and disorder in finite arrays. The mobility of
localized modes in nonlinear saturable lattices is discussed and complex localized

solutions with a nontrivial phase structure are studied.

A Coupled-Mode-Theory approach for nonlinear waveguide arrays leading to a Dis-
crete Non Linear Schrédinger equation was introduced in Chapter 2. The nonlinear
mechanisms were presented and linear - as well as some of the properties of nonlinear

stationary solutions - of this equation set were discussed.

We introduced some numerical methods, which were used and improved in the
present thesis, like the stability analysis presented for general complez stationary
solutions as well as a constraint method used to construct pseudo-potential energy

landscapes.

Chapter 4 discussed the problem of Fano resonances, with a focus on linear properties

in the context of magnetic Metamaterials, whereas a nonlinear Fano problem was
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discussed for saturable waveguide arrays.

We examined Fano resonance effects in split ring resonator arrays coupled to internal
(capacitive) and external (inductive) defects. In the case of embedded defects, the
presence of coupling to second neighbors, in addition to the usual first neighbor
coupling, was necessary to induce the resonance phenomena. For external defects,
the Fano phenomenon depended mainly of the geometric configuration between the
defect(s) and the array. The position and strength of these resonances showed a
clear example of the possibility of controlling the transport of electromagnetic waves
across magnetic metamaterials. We also proposed a possible setup for observing Fano
resonances in nonlinear optical waveguide arrays. A very good agreement between
theory and numerical simulations was found showing the possibility to tune the
resonance behavior by means of the amplitude of the localized mode. The allowed
power interval of the localized modes necessary for the observation of Fano resonances
was clearly identified and confirmed by direct numerical calculations.

Chapter 5 was dedicated to disorder. We presented a brief introduction to the
concept of Anderson localization. We discussed the influence of disorder on wave
propagation in finite nonlinear arrays. We showed, numerically and experimentally,
that the presence of weak disorder can lead to the smoothing of the distribution
of an initially localized optical beam in 1D and 2D waveguide arrays after a finite
propagation length. Moreover, the addition of focusing nonlinearity facilitates this
effect even further. The regions of smoothened distribution (weak disorder) and
localization (strong disorder) could be clearly separated. The general behavior can

be explained in terms of simple dynamical arguments.
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We investigated experimentally the influence of a disordered boundary in a finite
2D coupled waveguide array and found asymptotic partial localization of the wave
packet in the center. of the bulk region far away from the boundary. We concluded,
that the presence of a disordered boundary can give rise to localization in regions
away from the boundary. This result could be extrapolated to larger finite lattices,

if one allows for a sufficiently long propagation distance.

The mobility of nonlinear localized solutions in 1D and 2D saturable lattices were
discussed in Chapter 6. In 1D photonic lattices several regions of bistability were
found, where stationary solutions possess a small but nonzero energy barrier. The
effective energy barrier among all stationary localized solutions was constructed al-
lowing us to get a deeper understanding of discrete saturable nonlinear systems. By
using these properties with a more realistic input condition, we were able to observe
very good mobility and also to find different regions of resonant response where the
mobility is enhanced. In two-dimensional saturable discrete systems we numerically
implemented an improved constrained Newton-Raphson method to construct fuil
Peierls-Nabarro energy surfaces, which appeared as very useful tools for predicting
the dynamical properties of localized excitations. Five different surface topologies
could be identified in different power regimes, depending on the stability properties
of the different fund‘amental stationary solitons. Although these surfaces were never
found to be completely flat (and therefore the corresponding Peierls-Nabarro barriers
is strictly never zero), parameter regimes and directions of good mobility were shown

to correspond to smooth, flat parts of the surfaces.
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Discrete vortices, co;nplex localized solutions with a phase singularity, were studied in
Chapter 7 in the context of saturable waveguide arrays. We observed the continuation
of linear vortex modes with topological charge S = 1 and S =: 2 into the nonlinear
regime, where different distributions of the amplitudes were found. Furthermore,
we constructed closed families of discrete vortices located outside the linear bands.
The special branching mechanisms leading to numerous simultaneous solutions with
additional simultaneous stability, found for the family with ¢ > 4 and S = 1, were
interpreted. Due to the saturable nature of the system the modes were more extended
close to the bands and more localized far from them. The appearance of the existence
of extra branches could be understood as the "continuation and multiplication" of the
behavior found in other families, where we observed up to 4 simultaneously existing

solutions.

For sure only some aspects of the physics of localized modes in nonlinear discrete
systems were considered in this thesis and there remain many open questions. Along
this thesis we considered only conservative systems, but including losses and gain
certainly will make the picture more complete, rich and for sure is a wide field to
explore. Also, takin;g; into account correlations in the disorder gives rise to mobility
edges and a partially delocalized spectrum and could show very interesting effects.
Also, one interesting question could be, what happens to the pseundopotential land-

scapes, when an asymmetric and zero-mean driving potential is added.
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A. Multidimensional Newton Raphson

In one dimension, the Newton-Raphson method [99] consists in the following steps,
when searching for the roots of a function located in the neighborhood to the starting

guess (seed) z:

0 = flo+68)=fx)+ f’@)ﬂ@am...

f=)

TR TRy

Thus, one iteration step consist in calculating

_ f(z)
f(z:) (A1)

This method is a very useful tool, because its convergency is quadratic and therefore

Tir1 = &y

faster than other methods[99], provided that the derivative of the function is analyt-
ically known and does not vanish in the roots. The main drawback is, that it gives
no guarantee of convergency, the seed has to be close to the root.

The generalization to a multidimensional setting with a vectorial seed x is straight-

forward:
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0 = f(x+468) =f(x)+I(x)d
=dJ = —-J{x)f(x)
Xip1 = X — J7H(x)f(x), (A.2)
with the Jacobian matrix
oh . ok
85\'}'1 Ba:n
J=1 : : {A.3)
Ofn . Ofa
oy Oz,

In sets of DNLS equations, the Jacobian is analytical and in general non singular, so

we can use the Newton-Raphson methodto find stationary solutions. For example, it

is more convenient in a cubic DNLS to start with a seed in the anti-continuos(high-

power) limit, where the initial seed is expected to be more similar to the actual

solution. Once found one solution, the power or nonlinearity can be slighty changed,

to continue the solution branch to more extended solution, which for example can

be found close to the band edges.




B. Finding the Hamiltonian for the

symplectic integrator

Symplectic integrators are a very useful tool in the long-time integration of conser-
vative Hamiltonian systems, since they conserve the phase-space volume (symplectic
manifold) and thus the energy. General numerical methods such as the ordinary
Runge-Kutta methods [99] can introduce non-Hamiltonian perturbations leading to
the introduction of an artificial dissipation term caused only by the numerical in-
tegrator. Because qf this problem methods of symplectic infegration for Hamilto-
nian systems were introduced, which do preserve the features of the Hamiltonian
structure by doing canonical or symplectic transformation in each integration step
[169, 170, 171]. They are especially used in long-term integrations of Hamiltonian
systems like In DNLS lattices with disorder and nonlinearity [138].

We used a symplectic Runge-Kutta integrator implemented in Mathematica for sep-
arable Hamiltonian systems of the form H(p,¢) = T(p) + V(g), which asks for the
canonical equations. Therefore it is necessary to find an Hamiltonian for the problem

of coupled SRR described in Sec. 4.1. Following any classical mechanics textbook
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procedure, we start with the Lagrangian

L =T-V (B.1)
N-—-1

1 N e + .
= 52 [d = ql+ 30 Mo, (B.2)

to derive the equation for the canonical momentum

oL ) . .
DPn = % =gn T )\[Q'n+1 + Q'n—1]- (B-3)

We can express this equation set more compact, using P =p, and Q = ¢, and the

matrix

(1 A D e e e \

v | 54

\ R | D\ 1)

This leeds to the expression

ﬁzM-é = é:l\/[(‘l)-ﬁ and G, = fa(P)

The inverse of M in this case has to be obtained numerically. The separable Hamil-

tonian is then defined as
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N-1
U B S e (P
= MOEYIBP — ZIMEIBP + ZIGP — A Y (B fura(P)

N—1
1 — - — -,
H = 5 Z [2fn(P)pn - fn(P)2 +Q:21] —A Z fn(P).fn-i-l(P)' (B5)
Once this equation set is obtained for any specific lattice geometry, it can be imple-
mented and integrated with better control of the error and more stable than using

an ordinary Runge-Kutta integrator.




e

C. Fs-laser written waveguides

When ultrashort laser pulses are tightly focused into glasses, permanent refractive
index changes can be achieved [100]. When the intensity in the focal region becomes
high enough, multi-photon absorption and tunneling ionization in addition with an
ionization avalanche can lead to the formation of a localized plasma and initiate the
rearrangement of the network structure [101, 102]. To produce the waveguide arrays,
a Tisapphire laser system (RegA/Mira, Coherent Inc.) with a repetition rate of 100
kHz and a pulse duration of about 150 fs at a wavelength of A = 800 nm is used.
The beam is focuse:d into a polished fused-silica sample using a 20x microscope
objective with a numerical aperture of 0.45, a sketch of the writing process is shown
in Fig. C.1(a). A high precision positioning system (ALS 130, Aerotech) allows for
the control of the positions of individual waveguides as well as the writing velocities.
Each guide has dimensions of 4 x 12 ym? and exhibits a refractive index increase of
~ 5 x 1074103, 104], as shown in Fig. C.1(c). The nearfield of an exemplary mode

is shown in Fig. C.1(b).

131




C. FS-LASER WRITTEN WAVEGUIDES 132

Mode at 633 nm
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Figure C.1.: Sketch of the fs-laser writing process




D. Publica}tions

133




e 4

D. PUBLICATIONS 134

September 15, 2009 / Vol. 34, No. 18 / OPTICS LETTERS 2721

Fano resonances in waveguide arrays with
saturable nonlinearity

Uta Naether,* Daniel E, Rivas, Manue] A. Larenas, Mario I. Molina, and Redrige A. Vicencio
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posted Aungust 18, 2609 {Doc. ID 111748); published September 4, 2608

Wa study a waveguide array with an embedded nonlinear saturable impurity. We solve the impurity problem
in closed form and find the nonlinear localized modes. Next, we consider the scattering of a small-amplitude
plune wave by a nonlinear impurity mede, and discover regions in parameter space where transmission is
fully suppressed. We relate these findings with Fano resonances and propose this setup as a means to con-
trol the transport of light across the array. © 2009 Optical Society of America
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Peierls-Nabarro energy surfaces and directional mobility of discrete solitons
in two-dimensional saturable nonlinear Schrodinger lattices

Uta Naether,” Rodrigo A. Vicencio,!"? and Magnus Johansson®”
'Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiaga, Chile
2Center for Optics and Photonics, Universidad de Concepcion, Casilla 4016, Concepcidn, Chile
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We address the problem of directional mobility of discrete solitons in two-dimensional rectangular lattices,
in the framework of a discrete nonlinear Schrodinger model with saturable on-site nonlinearity. A numerical
constrained Newton-Raphson method is used to calculate two-dimensional Peicrls-Nabarro energy surfaces,
which describe a pseudopotential landscape for the slow mobility of cohercnt localized excitations, comresponding
to continuous phase-space trajectories passing close to stationary modes. Investigating the two-parameter space
of the model throngh independent variations of the nonlinearity constant and the power, we show how parameter
regimes and directions of good mobility are connected to the existence of smooth surfaces connecting the
stationary states. In particular, directions where solutions can move with minimum radiation can be predicted
from flatter parts of the surfaces. For such mobile solutions, slight perturbations in the transverse direction yield
additional transverse oscillations with frequencies determined by the curvature of the energy surfaces, and with
amplitudes that for certain velocities may grow rapidly. We also describe how the mobility properties and surface
topologies are affected by inclusion of weak laitice anisotropy.
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Mobility of high-power solitons in saturable
nonlinear photonic lattices

Uta Naether,** Rodrigoe A. Vicencio,* and Milutin Stepié®
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*Corresponding author: unaether@u.uchila.cl
Received January 27, 2011; sccepted March 5, 2011;
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We theoretically study the properties of one-dimensional sonlinear saturable photonic lattices exhibiting multipls
mobility windows for stationary solutions. The effective energy barrier decreases to a minimim in those powaer
regions where a new intermediate stationary soluticn appears. As an application, we investigate tha dynamics
of high-power Gaussian-like beams finding several regions whete the light transport {5 enhanced. © 2011 Optical
Society of America

OCIS codes: 1500100, 190.5330, 190.6135, 230.4320.
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Fano resonances in magnetic metamaterials

Uta Naether and Mario 1. Molina
Departmento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile and
Center for Optics and Photonics (CEFOP), Casilla 4016, Concepcidn, Chile
(Received 3 March 201 1; revised manuscript received B August 2011; published 5 October 2011)

1467

We study the scattering of magnetoinductive plane waves by interna! {external) capacitive (inductive) defects
coupled to n one-dimensional split-ring resonater array. We examine 2 number of simple defect configurations
where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable
external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling
to second ncighbors is necessary for the occurence of Fano resonance. For external inductive defects, Fano
resenances are commonplace, and they can be tuned by changing the relative orientation or distance between the

defect and the SSR array,
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Anderson localization in a periodic
photonic lattice
with a disordered boundary
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We investigate experimentally the light evolution inside a two-dimensional finite periodic array of weakly coupled
optical wavegnides with a disordered boundary. For 2 completaly lacalized initial condition away from the surface,
we find that the disordered boundary induces an asymptotic localization in the bulk, centered around the initial
position of the input beam. © 2012 Optical Society of America

OCIS codes: 1302700, 240.6700, 290.5525.
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Nonlinear localized modes in Glauber-Fock
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We study a nonlinear Glauber-Fack lattice and the conditions for the axcitation of localized structures. We inves-
tigate the particular linsar properties of thess lattices, including linear localized modes. We investigate numerically
nonlinear modes centered in each site of the lattice. We found a strong disegreement of the general tendency be-
tween the statfonary and the dynemical excitation thresholds. We define r new parameter that tekes into account the
stationary and dynamical proporties of localized excitations. © 2012 Optical Society of Ametica

OCIS codes: 1500190, 150.5530, 100.6135, 230.4320.
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Abstract. Nonlinearity and disorder in discrete systems give rise to fascinating
dynamics in various fields of physics. Photonic lattices allow investigation of
them in an optical context. The very nature of discrete propagation allows perfect
reconstruction of arbitrary initial wave packets by introducing phase shifts
to specific lattice sites. We investigate, both numerically and experimentally,
the interplay of nonlinearity with this so-called segmentation imaging in the
presence of disorder. We find that whereas in the linear regime perfect imaging is
achieved for arbitrary amounts of coupling disorder, the onset of nonlinear self-
focusing generally destroys imaging. Interestingly, the influence of Anderson
localization in strongly disordered lattices renders the imaging significantly more
susceptible to nonlinear perturbations.
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Experimental observation of super-diffusive transport in random dimer lattices
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(Dated: October 15, 2012)

We experimentaily observe anomalous wavepacket evolution in a realization of 2 one-dirnensional
finite binary Anderson mode! in the presence of short-range correlations, To this end, we employ
weakly-coupled optical waveguides with propagation constants €1 and £2. The correlations enforce
the creation of dimers, Le., two adjacent waveguides with the same €, randomly placed along the
Iattice. A transition from a ballistic to a super-difusive wavepacket expansion and, eventually, to
localization is observed as the contrast batween the two propagation constaats increases.

PACS numbers: 42.82.Et, 42.25.8s, 11.40,Er

Enhanced distribution of a wave-packet
in lattices with disorder and nonlinearity
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Stiitzer?, Andreas Ténnermann?, Stefan Nolte?, Mario 1. Molina!,
Rodrigo A. Vicencio', and Alexander Szameit?
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Hnstirare of Applied Physics, Friedrich. Schifier-Uni versitit Jena, Max-Wien-Plazz 1, 07743
Jena, Germany
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Absiract:  We show, numerically and experimentally, that the presence
of weak disorder results in an enhanced energy distribution of an initially
{ocalized wave-packet, in one- and two-dimensional finite Iatrices, The
addition of a focusing nonlinearity facilitates the spreading effect even
further by increasing the wave-packet effective size, We find a clear
transition between the tepions of enhanced spreading (weak disorder) and
localization (strong localization),

€ 2012 Optical Society of Amerea

OCTS codes: (D70.7345) Wive Ppropagation: (£30.2790) Guided waves; (190:0190) Nonlinear
Optics.
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Self-trapping transition in nonlinear cubic lattices
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Forultad de Cicncias, Universidad de Chile, Santingo, Chile
(Dated: October 15, 2012}

We explore the fundumental question sbout the critical aonlinoarity value noeded to dynamically
localize encrgy in diverse discrete nonllnear {Kerr) Inttices. A simplo criterdum is developed - for
the case of an initially localized cxcitation - that defines the traasition regions in parameter space
(“dynamical tongues™) from s delocatized to a localized profiln. An estimate of the critical nonlin-
carity value for which this transition occurs s obtained with numerical computations performed in
one-, two-, and three-dimendonal nenlinear lattices. We diseuss the validity and possible extensions
of this criterium to more complex latticos.

PACS numbers: 42,26.Dd, 42.65.Tg, 72.15.Rn

Existence of intermediate solutions in a saturable nonlinear coupler
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2Facully of Electrical Engineering, Helmut Schmidt University, 25043 Hamburg, Germany
(Dated: October 3, 2012}

We show, theoretically and experimentally, the existence of intermedinte modes in a noalinear
saturable coupler, In spite of its simplicity, we found that this model shows generic and fundamental
properties of saturable Inttices that can be applied to undemtand larger non-integrable systems.
The study of this basic unit becomes crucial to understand localization mechanisms and dynamical
properties of discrete nonlinear saturable systems. We theoretically predict the regions of existence
of intermedinte solutions, and experimentally confirm it by observing a multi-stable regime.

PACS numbers: 42,65 W1, 63.20,Pw, 63.20.Ry, 05.45.Yv




