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Resumen

En este trabajo estudiamos los niveles superiores de los cuerpos finitos primos

F, (p > 2 un nimero primo), definido como
sa(F,) = min{s| — 1 =af +--- +af,a; € F}}

El resultado es la determinacién de sa(Fp), y mas generalmente de s4d(Z/p*Z), £ >

1, en términos de los coeficientes de ciertas ecuaciones de perfodo de grado p" ik (0 <

j <r)parad=pkpar,T2> 0,klp—1.




Abstract

In this work we study the higher levels of the prime finite fields Fop > 2a

rational prime), defined as
sa(Fp) = min{s| - 1= @+ +aaeF}

We achieve to determine sy(F,), and more generally, sq(Z/ p*Z) for £>1,in

terms of the coefficients of some period equations of degree prik (0 < j <r)for

d=p'keven,r>0,klp—1.
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Higher Levels of Finite Fields

Introduction

The problem of the representation of rational integers as sum of squares
has been studied since the very first times in mathematics. From this arises
the problem of the representation of -1 as sum of squares, this fime in more
general domains, say, commutative rings, and hence, the problem of deter-
mining the minimal number s of squares needed, if such representation of -1
is possible in the ring.

This arithmetical invariant s = s(0) of a ring O, is known as the Stufe
or level of the ring. Some of the most important results about it establish
that, in case it is finite, then the level of a field is always a power of 2 [Pf],
and the level of a semi-local ring is always of the form 2" or 2" — 1 [Baj, and
also, that any natural number n may be the level of a ring [DLP]. However
the explicit computation of s(0) is, in general, a difficult task.

These results are the motivation for this work, where we study the natural
generalization of the quadratic level to higher even exponents d > 2, i.e., we

study the d* level of a ring O, defined as
54(0) = min{ s ]—1=af+---+af, a; € 0}

if such representation of -1 is possible in O, or, 54(0) = oo otherwise.
In the literature ([PAR 1-2], [PR] and recently [AK]), the problem
has been studied essentially for finite fields or algebraic number fields and its

p-adic completions. The results achieved by these authors are:
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In [PAR1], s4(F,) is found for F, the finite field with ¢ elements. Also,
some results on s4(k) for k a quadratic number field are stated, and more
generally, for k an algebraic number fields it is proved, s4(k) < 16. (Indeed,
by using [B1] one can prove, sy(k) < 2¢. See § 2.(2.2), Chapter I). In
[PR], s4F,) is studied, finding its values for d = 6, 8 and 10. In these
works, some ad-hoc proofs and computer calculations are used, as well as
the theory of cyclotomic numbers to decide which fields Fy (i.e. how large)
have s4(F,) < 2. (Indeed, this can be done for any d > 2 by using a more
general result, on the number of solutions of additive equations over finite
fields [W]. See § 3.(3.1), Chapter I).

In [AK], s4(F,) is studied for d = 27, a power of 2. The authors establish
very interesting experimental and theoretical results. Experimentally, they
find (and so did we, for at least d < 20) that syr(F,) <2 for much smaller
fields than what predicted by § 8.(3.1) , Chapter I. Theoretically, they obtain
sor(F,) < 2,forall g # por p°, where p = char Fy. And syr (Fs) < 3, finding
in fact sor(Fpe) < 2 for all p < 101.711.873.

Thus, these results establish as main open problem the determination of
the d# level for the prime finite fields Fp.

Also, by generalizing some ideas used in [PAR2] we could state sa(ke), kp
the p-adic completion of an algebraic number field &, with ring of integers O
and g C O a prime ideal, in terms of s4(0/gp"), for some » > 1. ( § 4.(2.1),
Chapter I). In particular, for k = Q we obtain s4(Q,) = s4(2/ p1Z) for
d = p'k,r > 0 and (p,k) = 1. In this way the study of the levels of the rings
of integers mod p* becomes as well very interesting.

Hence, we study in this thesis the higher levels sa(Z/ pfZ) for £ > 1 and
p > 2 a rational prime.

Chapter I (excepting perhaps for § 2.(2.2), § 3.3(4%), § 3.(3.1), § 4.(1.3)




and § 4.(2.1)), and the preliminaries in Chapter II and III (excepting for §
1.(3.1), § 1.(3.2), § 1.(3.3), and § 1.(4.2) in Chapter II) are well known
results which we wanted to include for completeness.

Our main results are stablished in § 2. and § 3. in Chapter IL

Chapter II1 is devoted to study some explicit examples and the coefficients
of the period equations.

The resulés achieved are:

In the case £ = 1 of the prime finite field F, (p > 2,dlp — 1 without loss
of generality) and thanks to important ideas due to Prof. E. Becker, we find
that considering the formal series f(T') = m over (K[X]/(X?-1))
[[T]] where & = (F})%, enable us to take all possible sums of d** powers in
F; and with this, by choosing K = Q(¢) the cyclotomic field of the p** roots
of unity (related to F} by Galois Theory), we obtain s4(F,) in terms of the
coefficients of the period equation of degree d. This is, let

P(X) = X4+ X4t 4+ X424 oy € Z[X]

be the minimal polynomial of the gaussian periods of length (p —1)/d. Then

sa(F) = min{n(n + Lawns — (1 + n(p — 1)/d)a 7 0}

(§ 2.(2-2), Chapter II). And actually we only need to consider the first
coefficients a,- - -, /941 since by [T}, sa(Fp) < d/2+1ifd# p—1 and
clearly sp_1(Fp) =p— 1.

We should make notice that this is the first theoretical result on s4(Fp)
for d > 2, and provides a striking relation between the higher levels problem
and the old problem of cyclotomy.

In the case £ > 1, by noticing relations among congruences mod plp> 2

[Sch2], we find s4(Z/2°Z) (and by the way 54(Q2)), in an elementary way.
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Also for p # 2,s4(Z/p'Z) is found in terms of s4((Z/p™'Z)") where d =
P’k with » > 0 and k|p —1 (§ 1.(3.3), Chapter II). (In particular we get
52(Z/p*Z) = 3o(F,), for all £ > 1).

Finally sq((Z/p™+*Z)*) is found in terms of the coefficients of a product
of r 4+ 1 period equations (§ 3.(1.1), Chapter II), generalizing the result
obtained for F,.

About the effective determination of the coefficients of the period equa-
tions, we have recently known some works [G1-2] and [GZ], where the au-
thors show that at least the beginning coefficients may be computed in an
elementary way.

These results turn out to be very important for our work. For example,
they lead us to some converse results (§ 3.(1.5), Chapter IIT), and we believe
they will permit us finding some explicit examples of s4(Z/p'Z) for £> 1.




Chapter I: Higher Levels

§ 1. The Level of a Field

1. Introduction

The level of a field is defined as the minimal number s of squares needed to
represent -1 as sum of squares.

This invariant of the field, which has been called Stufe in German, will be called
here the level, or quadratic level, of the field k¥ and denoted by s = s(k).

The first question to be considered is the set of possible values of s. For example,
if k is an ordered field, no such representation of -1 as sum of a finite number of
squares is possible, so we say s(k) = co. If k = C the complex numbers, then -1 =
(v/~1)? and s(C) = 1.

On the other hand it can be easily proved that no field has level 3, 5, 6, or 7,
while 4 or 8 cannot be excluded by the same method. This suggests that perhaps
only powers of 2 can be values of the quadratic levels.

This question has been asked as a problem in the Jahresbericht der MDYV in 1932
by B.L. van der Waerden.

A partial answer was given soon by H. Kneser, who proved that the only possible
levels are 1, 2, 4, 8 and 16m (m € Z). But it was A, Pfister who answered the question
completely. Pfister proved this very striking result about the level of a field.

Theorem (1.1) [Pf] Let & be a field. Then s(k) is a power of 2.

We will intend to show how the Theory of Quadratic Forms helps giving very
simple proofs of this result. Both proofs we present here are based on the following

result due to Pfister.

Theorem (1.2) Let ¢ =< 1,0; > ®---® < 1,a, > be an n-fold Pfister form over
a field k, and let Di(¢) be the set of elements in & — {0} represented by ¢. Then
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Dy(4) is a group.

Consequences:

(1) Let k be a field and n € N. If oq,+++,09n and fy,- -, Pan are any element in k.
Then, there exist 73, -+, 7z in k such that

(o) (L) -5

=1 i=1 i=1

(2) Let ¢ be a Pfister form over a field k. Then

& isotropic over & = ¢ hyperbolic over &.
1%t Proof of Theorem (1.1): Let s = s(k). Then there exist a;,--,a, € k and
n € N such that
@4 +a?=—1 with 2" <s< 2",
hence
ai+oordfe = —(L+ Gy + -+ )

and then

(6 4+ 4 af)(1+ Gy o+ a5)

—1.
(0t o -+ @

This gives a representation of -1 as product of 2™ by s +1 — 2" < 2" squares.
Hence by (1), -1 has a representation as sum of 2" squares in k. The minimality of

s implies s = 2",

2¢ Proof of Theorem (1.1): Let s = s(k) and n € N be such that 2* < 5 < 27+,
Lets consider the {n+1)-fold Pfister form ¢ = Q1 < 1,1 >=2""1x < 1> . Hence
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¢ =sx <1>L (2" —s)x < 1 > is isotopic over k since sx < 1 > represents -1.
Then ¢ is hyperbolic over k by (2), so

d=2"Tx <1>HPX <I>L2"x < —-1>.

Now by Witt’s cancellation theorem, 2"x <1 > 2"x < —1 > and -1 can be

represented as a sum of 2" squares in k. Then again s = 2",

O

In general the exact determination of the level of a field or ring is a difficult
problem and it is solved only in particular cases. Some examples will be presented

in what follows.
2. Examples
The following are well known examples of the quadratic level.
Theorem (2.1) Let k be a totally complex algebraic number field. Then s(k} < 4.

Proof: It follows from the Hasse-Minkowski Local-Global Principle and the fact
that every quadratic form over Q,, of dimension greater than 4, is isotropic over Q)

for all p = 2,3, -+ < oo prime numbers.

Theorem (2.2) Let £ = Q(v/—m) be a quadratic number field with m > 0 a

square free rational integer. Then

lifm=1
s(k) =4 2ifm Z£7(8),m#1
4 if m = 7(8)
Proof: If follows from the next three results:

(i) Theorem (Lagrange). Every sum of squares in Q is a sum of 4 squares.
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(ii) Theorem (Legendre). Let m > 0 be a rational integer. Then 2% +y* + 22 =m
has an integral solution iff m # 4°(8b+7) with a,b € Z.

(iii) Theorem (Pfister). Let k be a formally real field and @ € ¥ k2 with £(a) being
the length of the shortest representation of e as sum of squares in k. Let n € N
be such that 2* < £(a) < 2**. Then k(/—a) is nonformally real with level
2",

Thus if m > 0 is a square free rational integer, then £{(m) =1 iff m = 1. Otherwise
2 < #(m) < 4 by (i), being £(m) = 4 iff m = 7(8) by (ii). The result follows by (iii).

|
Theorem (2.3) Let k be a formally real field. Let Xi,---,Xm be m indepen-

dent variables and let K be the field extention k(Xi,--- ,Xm)(\/—(Xf + .-+ X2)).
Then s(K) = 2" where n € N such that 2" <m < an+l,

Proof: It follows from (iii) and Cassels’ result which states that in the rational

function field k(Xy,-++, Xm), {(XT + -+ X2)=m

o

Finally, a classic result on finite fields is perhaps the most complete one that we

have about levels of fields.

Theorem (2.4) Let F, be the finite field with ¢ elements. Then

1if g=14)org=2"
S(F4)={ 2 g=3(8)

Proof: Since char F, = 2 is the trivial case, let F§ =< wfwi™? = 1 > with char
F, # 2. Then -1 = w'T is a square in F; iff 4{g — 1. Otherwise, since for every
z € F;,[F2 = |z - F3| = 221 41 =2 then Fj N (z — FY) # @ and every element

in F, in particular -1, is a sum of two squares.
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Hence the problem of the quadratic level is solved for the class of finite fields.
§ 2. Higher Levels

1. Introduction

Let A be a commutative ring with unit and let d > 1 be a rational integer. Then
the higher level of A of exponent d, or, dt* level of A, is defined as
s4(A) = min{s e N | —l=al4---+al,q€A}

if such representation of -1 is possible in A. Otherwise sq(A) = co.

In this work we will only consider rings of characteristic different from 2 and
d > 1 will always means an even rational integer. Otherwise sq(A) is trivially equal
to 1 since either —1 = 1¢ or —1 = (—1).

Some more or less evident remarks on the numbers s4(A) are the {ollowing:
(1) If d'|d, then sa(A) < s4(A). In particular s(A) = s2(A) < sg(A).

(2) If A — B is a ring homomorphism, then s4(B) < s4(A). In particularif AC B
or B=A/I, I C A an ideal

(3) Let A be a ring such that:
i) A contains a primitive £ root of unity (, some £ > 2 prime.
ii) ¢ — 1is not a zero divisor in A.
i) £1 d.
Then s4(A) < £—1.
This follows from considering the homomorphism ¢ :< { >—< { >,¢(¢) =( d,

By iii) ¢ is inyective. Then epiyective, since < ¢ > is finite. Hence ( is a d** power

in A. Nowbyi) 1+(++-+¢**=0,then-lisasumof{—1 d** powers in A.
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(4) Let char A = p. Then s4(4) <p-—1.

2. Examples

As we have seen, the quadratic level of a field is always a power of 2, Then, it is
natural to ask if such a nice behavior is still attained by the 4tk gth ... d levels.

One finds soon, this is not the case, as the following examples in [PAR 1] show:
(1) Let 5 = e/ be a primitive 8tk root of unity. Then s4(Q(n)) = L.
Clearly, since 7* = —1.

(2) Let p = €*™/3 be a primitive cubic root of unity. Then s4(Q(p)) = 2.
Clearly —1 = p + p? = p* + (p?)*. Moreover /=1 ¢ Q(p) and the result follows.

(3) s4(Fae) =3 and s4(F5) = 4.

Straight forward with —1 = 1* 4 6* 4+ 8%(29) and —1 = 14 4+ 14 4 1% 4 14(5).
(4) Forall d > 2, s4(Fy) <2 if ¢=3"

Clearly, since char F, = 3 and s4(F,) < char ¥, — 1.

(5) s4(Q(v —2)) = 6.
Since —1 = 1 + 3(v/—=2)* + (1 + v=2)* + (1 — v—2)* and it may be proved, no

shorter representation is possible.

Also it holds.
Theorem (2.1)([PAR1]) Let m > 0 be an integer. Then

s4(Q(v—m)) < 15.

Proof: If m = 1, we have —1 = 4(3)*, thus 5,(Q(:)) < 4. It m > 1, consider

X = d*(r + vV—m)* + a*(r — vV—m)*,

then
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X = 2a*((r* —m)? — 4r*m) € Z.

Choosing r = [v/m] or r = [y/m] + 1 such that (r* —m)? = 1(2) and X <0,
and taking @ >> 0, a = 1(2), we get X = 2a* = 2(16). Thus —X >> 0 and
—X # 0,15(16). Then a result due to Davenport [Da] says that —X € ¥;* 2%
Hence 0 € 318 Q(+/—m)* and the result follows.

Theorem (2.2) Let & be a totally complex algebraic number field and d > 1 an
integer. Then

Sd(k) S 2d.
Proof: Following a proof in [PAR 1] for d = 4, based on:

i) Birch’s Theorem ([B1]) Let k be an algebraic number field and let by,---, b, be
algebraic integers in k. If n > 2?41, then

hX¢ 4 40, X2=0

is non-trivially solvable in k iff it is non-trivially solvable in every real and p-adic

completion of k.

ii) Hensel’s Lemma ([BS]) Let F(X1,+, Xn) € Zp[Xyq,--+, X,] and 71, , 7 €
Zp,p > 2 prime. And let 6 >0 and 1 < j < n such that

F(y1,+ 1) = 0(p™F1)

%{%(711 v :’Yn) = 0(p6)7 7_é 0(P8+1)-

11




Then, there exist f1,+-,8, € Z, with F(f1,---,0,) =0 and 6; = 7;(p**?) for all

i=1,---m.
We find the equation
X4+ X2=0with n>27+1

is solvable in Z,, for all p = 2,3, - -+ < co. This follows by Hensel’s Lemma:
Write d = pie - pi - - - pi* where po = 2, p; > 2 different primes for1<i<k, k2>
0 and r; > 1. We show

X4+ X3 = 0(p*HY)
dxg=t = 0(p"), Z0(p™) }

is solvable for all p = 2,3,-+- < co.

Case p # 2,p1,-- -, : Then

X+ + Xy = 0p)
dxj # 0(p) }

is solvable since n > 2¢ + 1 > d 41 and F, is a C;— field.

Case p = 2 : Then for all ro > 3.
YR 1 = 0(2) =0(22°) = 0(2") }

d 0(2m), £ 0(2m0+)

1l

fro=2 and d =4: Then n > 17 and
10,10 420 = 0(2°)
4 = 0(22%),# 0(2%)
[fro=2and d>12: Thenn > 22 +1 and

12




YR 1 = 0(2°%) }
d = 0(2%),%0(2%)
Kro=1andd=2:Thenn >5and
12 gr = 02°) }

2.2 = 0(2%),%#0(2%

Ifrg=1and d>6:Thenn >2%+41and
514 = 0(2%) }

d = 0(2),#0@2)

Case p=p; some 1 < i < k: Then for r =r;

2r+1

P
Z ld = 0(p2r+1)

=1
d = 0(p"),#0(p™")
One can easily prove that n > 2¢+1 >4 +1>p** forall p > 3,7 > 1. (For
r=1,4P+1 > p? for all p > 3. and 47" +1 > p*** implies 4p(r+1) > p2(r+1)+1 for gl
r>1)

Thus X2+ -+ X¢ = 0 with n > 2?-+1 is solvable in Z,. But then Birch’s Theorem
gives it is solvable in % and then s4(k) < 2d,

§ 3. Higher Levels of Finite Fields

The first class of rings we will be interested in for the study of higher levels will

be the class of finite fields.
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In the paragraphs 1. and 2. we will state the results from the theory we will
need ([Sch1], [H]). In 3. we will deduce some results.

1. Preliminaries: Additive Equations

Here we will be devoted to estimate the number of solutions of additive equations

of the form
o X3 4ot a, X =0 (%)

over finite fields, with ay, -, a, nonzero elements in the field and dy, - - -, d,, positive

integers.

Our goal is to deduce a general result which bounds the level’s values as a function

of the size of the field.

1.1. Characters of Finite Abelian Groups

Given an abelian (multiplicative) finite group G, a (multiplicative) character on

( is a map  from G to the nonzero complex numbers, such that

x(zy) = x(z)x(y) foral =z,y€G.

Since x(z) = x(1)x(z) and zl61 = 1 (the identity element in &) for all z € G,
we have x(1) = 1 and x(z)!% =1, ie., x(z) is a |G|™* root of unity, for all z € G.

I x,x' are characters on G, then so are the maps xx and x™! defined by
X' (z) = x(z)x'(z) and x"Hz) = 1/x(z) = x(z) (the complex conjugate of x(z)
since |x(z)| = 1 ). We will denote ! by X. Now it is clear that the characters on G
form a group under multiplication, denoted by é’, with identity element xo, called
the principal character defined by xo(z) =1 for all z € G.

Let ¢, = e*™i/™,

Lemma (1.1.1) Let C, be the cyclic group of order n and let w be a generator.
Let a be a residue class modulo n. Then the map x, on O, defined by x,(w) = (;
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is a character of C, and every character of Cy, is of this type. Thus G, is cyclic of

order n.
O
More generally
Lemma (1.1.2) Let G be a finite abelian group. Then G=a.
O

This fact is the basis for the Duality Principle between G' and G.

For example, from obvious propositions like:
1) x(z) =1forall z € G => X = Xo.
2) x1(z) = x2(z) for all z € G = x1 = Xa-
one obtains the non-obvious ones:
1) X(a:)=1forallx€(§'=>:c=1.
2 x(z1) = x(z2) for all x € G = 7, = 7.

Hence, the set of values {x(z)|x € (} characterizes the element = € G.
Similarly one can use characters to characterize subgroups of G. In particular,

we will be interested in the subgroup of the d** powers of G.

Lemma (1.1.3)
D U<G=U={xeCx) =1, forallucl} <G.
() USG=U={zeClx(z)=1frall xe U} <G.
i) @y =U

15




In particular for & = G¢ = {z%|z € G}
x(z?) = x(z)? =1, forallz € G < ¥* = Xo.
Then
Gi={xe G’|x(y) =1, for all y € G%}

and

(@) ={z€Glx(x) =1, forall x € G} = G-
Thus

Lemma (1.1.4) G¢ = {z € G|x(z) = 1, for all x with x* = xo}.

Finally it holds.
Lemma (1.1.5) Let G be a finite abelian group of order n. Then
(i) Given x € G,
n iff X=Xxo
{ 0 iff x#Xo
(ii) Given z € G,

n if z=1
Zx(w)={

x€G 0 iff z#1
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Lemma (1.1.6): Let G be a finite abelian group with & < G a subgroup of index

d and cyclic quotient G/U. Then every character on U has exactly d extensions to

G.

1.2 Character Sums associated with Finite Fields

Let F, be the finite field with ¢ elements. Then the nonzero elements of F; form
a cyclic group F; of order ¢—1. Hence the characters on F; also form a cyclic group
of order ¢ — 1, so that x?~! = xo, for all x € ﬁ‘;

We say x is of order d, if x% = xo and if d is the smallest positive integer with
this property. It is easily seen that d|g — 1.

We say ¥ is of exponent e, if x* = xo. Clearly this is equivalent to d|e.

Let djg — 1. We have by §3.(1.1.4):

z € (F2)* <= x(2) =1, for all characters x of exponent d.

Then every character of exponent d may be considered as a character on the
factor group F;/(F,-)?. There are precisely d such characters.
Lets extend the definition of a character x on F by setting

1if x = Xo
x(0) =
OifX%XU

Thus we have

Lemma (1.2.1) Let d|¢ — 1. Then
d if ae(F})
Y x(e)=4 0 if ag(F;)°

x/x3=x0

1 i a=0

17




Proof: The characters of exponent d are precisely the characters of F;/(F;)d.

Hence the first two cases follow from §3.(1.1.5). If @ = 0 then ¥, /4=y, X(a) =
xo(@) + Fyinye x{a) =14+0=1.

X#X0

O

Lemma (1.2.2) Let N[X?¢ = a] be the number of solutions in F, of the equation
X? = a. Then

N[X?=al= > x(a)

x/x%=x0

Proof: If a € (F})%, let & € Fy be such that g =a. Let V= {z € Fi|z* =1} be
the subgroup of elements of F; of exponent d. Then the lateral class zV is the set
of solutions of X¢ = a in F, since (zz)? = 2%z% = 2% = a for z € V, and any two
solutions z,,x; satisfy (z123)? = 1, therefore 123" € V. Then N[X ¢ = q] = |V}].
But the Duality Principle gives |V]| = |{x € F;|xd = xo}| = d. If @ = 0 then clearly

N[X? = a] = 1. Hence
d if ae(F})?
N[X%=a]=4 0 if ag(F) 2= > x(a
xfx?=xo

1 if a=0

by §3.(1.2.1)

1.8 Gaussian Sums on Finite_Fields: An Introduction

We will now also consider additive characters on F, by considering F; as an

additive group of order ¢ = p", where p = charF,.
Let ¢, = e2™/?.




Lemma (1.3.1) Let F, be the finite field with ¢ = p" elements and ¢ : F, — F,
be the trace. Let a € F,. Then the map 1, on F, defined by #.(z) = ¢4} is an

additive character of Fy and every additive character of Fy is of this type.
The character g defined by to(z) = 1 for all = € F, is the identity element in
F

-
Let y and % be a multiplicative and an additive character on F,. Then the sum

(%) = D x(z)¥(z)

zeFy
is called a Gaussian sum. In view of §3.(1.1.5) it holds

Proposition (1.3.2)
T(x0, ) =0 i o # o

(X, t0) =0 i x# xo

T(Xo,%) =4q
Theorem (1.3.3) Let x # xo and ¥ # . Then |7(x, ¥)| = ¢*/%.

Proof: |7(x,%)]* = L. T, x(2)¥()X(y)$(y)
Without restriction take y # 0, since x(0) = 0, and put = = ty, then

IT0GE)? = o Ze x(@)P(y)x (v )b(—y)
= T x{t) Zyro ¥((t — 1)y)
= Tox(t) X, P((t— y) — e x(t)

= Lx() X, v((E-1)y)
by §3.(1.1.5) since x # xo. And again by §3.(1.1.5) the inner sum is ¢ for ¢ = 1,
and 0 if ¢ # 1. Thus

Ir(6$)* = x(1)g = q.
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9. Estimates on the Number of Solutions of Additive Equations

Lemma (2.1) ([Gr]) Let m be an integer with 0 < m < ¢ —1. Then

-1 if m=0
> en =

zcF3 0 if m#0

Proof: fm=10,% a"= ) 1l=¢-1=-1Hm#0m<g-1letwbea
zeFy zeF}
generator of F, cyclic of order ¢ — 1. Then

Zw _Z(wm) _(_m)j%=0_

eF" =0

O

Theorem (2.2) (Chevalley-Warning) Let f(Xi,--+,Xn) € Fo[X1,---,Xz] be a

form of degree d < n. Then f has a nontrivial zero in F7.

Proof: See [Sch 1], p. 136 or [IR] p. 143.

Theorem (2.3) Set C =< wlw™ = 1 > be a cyclic group of order n. For any
integer d > 0 let C¢ =< w? > be the subgroup of d** powers. Let d* = (d,n). Then
C? = (C%.

Proof: We have d* = (d,n), then d* divides d and every d** power in C is a d**
power in C, thus C¢ C C%*. Also, there exist A, u € Z such that d* = Ad + pn, then

wd = wrteEr = (M4 since w™ = 1, thus C%° C C°.
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This means that the number of solutions of () in ¥y does not change if we
take df = (d;, ¢ — 1) instead of d; for ¢ = 1,---,n. Then without loss of generality,

we may assume di[g — 1,4 =1,+--,n.
Lemma (2.4) Let ¢ # o be an additive character and a € F. Let d|g — 1. Then

S oplayt)= Y x(e)r(x¥)

yeF, xfx%=x0

Proof: Given z € Fy, let N = N[X? = z] be the number of solutions in F, of the
equation X? = z. Then by §3.(1.2.2)

N= > xlo.

x/x%=xo

Then

> Playh) = 3 plaz) 3o x(=).

yeF, zeF, x/x%=x0

Replacing z by a1z, and noticing x(a~'z) = ¥(a)x(z), we get
SyeF, P(ay%) = Taoer, ¥(2) Tyxa=xo X(@)X(2)
= Tfxtmxe X(@) Loek, X(2)P(2)

= Lixd=xo X(@)T(X; ¥)-

Proposition (2.5) Let f(Xj, -, X,) € Fg[Xi,-++,X,] and let N be the number
of solutions in F} of f = 0. Then

1

N=—E z z !b(f(wlﬁ"'awn))

q P J-"'.‘l.ch.]v -‘BnEFq
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where % runs through all additive characters of F;. Moreover if ¢ # /g is fixed, then
1q(z) := ¥(ax) runs through all additive characters if a runs through F;. Then

N=1Y T o 3 gaf(@r- )

q acF el zn€F,

Proof: By §3.(1.1.5)

g if f(z1, - ,20) =0

%:¢(f($1:"'7mn)) = {

0 otherwise

Now considering the sum through all 4, -,z, € F, the result follows.

Theorem (2.6) Let N be the number of solutions in F} of the equation aXd 4
cor @y X% =0, where @1, --,a, € F; and dijg — 1 for all i = 1, -n. Then

1
N=q"‘1+(l—~) 3o Y xlar) - Xalan)T(x1, %) - T(Xno ¥)
q X1¥X0 Xn#Xo
x=x0 Xn =Xo

where 1 # 1 is an additive character, x; are multiplicative character forz = 1,---n

and Xy © - * Xn = Xo-
Proof: By §3.(2.5)
GN = TieF, LoeF, ' 2ozneF, "!)(a(almidl + o anzin))

= Eaqu Ezl,---,mnGFq %b(aalzfl) e 'ﬂb(aanmg")

= YacF, I, (Emsqu qb(aa,-:nf‘))

Now by §3.(1.2.2)
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> dlaaaf) = Y dleay) Y, xiw)

zi€Fy, vieFy xi/xg=xo
Since aa; # 0, replacing y; by (aa;) 'y we get

inqu qb(aa;a:f‘) = Ey;‘EFq ¢(y1) le./x:'s':xD E(aai)xi(yi)

=¥ Xi(aa:) e, Xi(yi) (i)

d.
xifx;" =xo

= EX:‘/X?‘ - E(aai)T(Xh ")b) .

qN —q* = Tapo(Tofxdmxo X3(001)7(X1, %)) -~ (X, pyinmyo Xn(00n)7 (Xns %))

= Ea#(} P T Exr./xﬁ"=x0 Xi(aaz) - -ﬂ(aan)'r(xh ¥)+ T(Xns )

d .
X1 /x11 =X0

= Zx;. “4Xn Xl(al) Xﬂ(aﬂ) (zﬂ?&ﬂxl X"(a))

X —XO

By §3.(1.1.5) we see that the inner sum is ¢ — 1 or zero in case X1+ Xr = Xo
or not. And since G(x:,%) = 0 if x; = X0, we obtain

gN—¢"=(qg—1) > x(a) - Xalan)m(x1,%) - 7(xn, %)

x1#xo, wXn#EX0
Xn=Xo

o
x; =xo

and the result follows.

As consequence of this result N satisfies

|N - qn--ll < (1 - ;ll') Z Iyl(al) teT Yn(an)T(XI) I‘)b) Tt T(Xm "lb)l

This will allow us to find the lower bound for N we are looking for.
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Let F; =< w|w?™? =1 > . If x; are characters of exponent d;,z =1,---,n, then
yxi(w) = e2™mil% some 0 < m; < d;. Moreover if x; # Xo and X1+ Xn = Xo, then
0 <m; <d; and ’—;—:’-4—---—!—%362.

Let us consider then A(dy,---,dn) := [{{m1,"+-,my) € Z" | 0 < m; < d; and
o4... 4 B2 € 2}, Le., the number of sumands in the sum of characters that

estimates N above.
Since |r(x:,%)| = ¢*/? by §3.(1.3.3) and |x1(a;)| = 1, we obtain N satisfies

1
|N - qn_.ll S (1 - E)qnle(dla e 1dn)-

Lemma (2.7) Let A,(d) = [{(m1, -, ms) €Z" |0 <m; <dand my+---+m, =
0(d)}|. Then

Aud) = =D a1yt oy

Proof: We have A;(d) =0, Ay(d) = d — 1. For n > 2 we see (ma,---,mn) € As(d)
iff 0 < m; < dand —m, =my + -+ +ma_a(d) with my + -+ - + mn_1 # 0(d).
This is, there are (d — 1)*~* — A,_1(d) possibilities for (my,- -+, m,), and these
determine m,. Hence A,(d) = (d — 1)* ' — An_1(d). Then
= nti- d—1 n n—
A = S ttra -1 = D1y - e,

k=1
8

Corollary (2.8) Let d|g—1. Let N be the number of solutions in ¥} of the equation
X¢ 4+ X4 = 0. Then

IV = < (1= DI -1 = (1P - e
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3. Some Bounds for s4(F,)

Now we are able to establish the first results on the higher level of F'; of degree
d > 2 (g =p",p > 2 prime), as well as the bound announced in §3.1.

Let sd(q) = Sd(Fq).

(1*) It suffices to consider djg—1 :
By §3.(2.3) we have (F;)? = (F;)* for d* = (d,¢ — 1), thus sa(g) = s4-(9)-

(2) sa(g) <min{p—1,d}:
This results from writing —1 = 37— 1¢ and from Chevalley-Warning’s thoerem

1=1
§3.(2.2) for X¢+---+ X3, =0.

(3*) sulg) < $+41if (¢d) #(p,p—1):
See [T].

(4*) Let dlp — 1. Then s4(p) =p—1 if d=p—1:

Assume s4(p) = p—1 and d < p— 1. Then §3.(2.1) gives zzeF; 24 = 0, thus
sa(p) £ p—2 which contradicts our assumption. On the other hand s,_,(p) =p—1
clearly.

In particular, if 27|p — 1

sy(p)=p—1 iff p=2"+11is a Fermat prime

(5*) (IPAR 2]) Let d = 2"k with r > 1 and (2,%) = 1. Then

i) s4(g) =1 iff sar(g)=1:
If —1 = a%,a € F:, then —1 = (a*)*". On the other hand if —1 = ¢*’,a € F,
then —1 = (=1)F = a%.

ii) Sgr(Q) =1 iﬁ- q= 1(2r+1) :
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If-1=a",a€F; Thenl= a¥*. Thus 27¥|¢ — 1. On the other hand, let
g—1=0(2"*) and F} =< wlw™! = 1 >, then —1 = wle=V/? = ", some

¢ € Z. The result follows by i).

The study of higher levels is embedded in the theory of Homogeneous Forms of
degree d > 2, however, here it does not seem to exist the adecuate tools to attack
the problem like in the quadratic case. The only general result one could establish,
is consequence of well known theorems on the estimates of the number of solutions
of additive equations over finite fields, which we have already settled in §3.2. and

seems to be long ignored.
Theorem (3.1) Let d > 2,d|q — 1. Then
g > @07 = s4(g) <s.
Proof: By §3.(2.8) we have the number N of solutions in Fi*! of the equation
X3¢+ X¢ 4+ + X% = 0 satisfies
1
IV - ¢ < AL — )™+
where
1 - 8
Ad) = (1 Dd 1)~ (-1}
Hence, there exists a nontrivial solution if we have
N2 ¢ - Ald(g- 1)V >1

i.e.

i G
( =1 ) q > A(d).
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But noticing that

1+g+---+¢"
q(-""l)ﬂ

> ¢=1/2 and & > A(d)
then
V2> = N>1.
Thus
g > d¥/) = s4(q) <s.

O

We have obtained, as expected, bounding s4(g) by a function of the size of the
field F,. For example: sq(g) <2 if ¢ > d*

However, computer results ([AK] and ourselves) have shown this bound far from
being optimal, since s4(¢) seems to be already 2 for much smaller fields then those
predicted.

This and other results will be given next.

Remark (3.2) N[XZ+ X¢+ X§] > 1if ¢ — A(d)(g — 1)¢*/* > 1, where A(d) =
@D [(d—1)2—(—1)Y] = (d—1)(d—2), i, /2 +g7/? > (d~1)(d~2) = N > 1.
Thus ¢ > (d — 1)%(d — 2)% — 1 => s4{q) < 2.

§ 4. Known Results

Parnami, Agrawal, Rajwade and Pall have published several works on higher

levels, with the ones we started our work.

1. On Sd(Fq)




Here we just want to present some examples, calculated by these authors and
ourselves, using § 3.(3.2) and ad-hoc proofs or computer calculations for the missing

cases.

Proposition (1.1) ([PAR1])

ifg=1(8)org=2"
ifg=25

if g =29

otherwise

s4(q) =

DD Cd B

Proof: Let ¢ = p*,n > 1. We have s4(g) =1 for p =2 or ¢ = 1(8) by §3.3.(5%). If
g = 3(8),84(g) = 2 since then p = 3(4) and n = 1(2), thus —1 = 2 + z3 is solvable
in F,, but 22 = 22¥7"1 in F, and 2+ ¢ — 1 = 0(4), so actually -1 € YIFLIE
g = 5(8),q = 5,13,21(24) and we have: i) ¢ = 21(24) = 3]g = p = 3, hence
ss(q) <p—1=2 ii) ¢=13(24) = 3[g— 1, then s4(¢) = 2 by §2.1.(3).  1ii)
g = 5(24) => s4(q) < 2if ¢ > (4 —1)*(4 —2)* — 1 = 35 by § 3.(3.2), thus the only
chances for s4(g) to be greater that 2 are ¢ = 5,29. One finds s4(5) = 4(-1 = 4-1%(5))
and $4(29) = 3(—1 = 1* + 6¢ + 8(29)).

Proposition (1.2) ([PARZ2])

1 ifg=1(4)org=2"
se(q) = 6 ifg="T
6\d 3 if ¢=31,67,79,139,223
2 otherwise
1 ifg=1(16) org=2"
wlg =i b a=54
s\d 3 if g = 29,89,137,233,761
2 otherwise

1 ig=1(4) org=2"
solg) = | 10 ifa=11
wlg 3 ifg=T1,131,311,431,491,911
2  otherwise
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Proposition (1.3)

1 ifg=1(8) org=2"

12 if¢g=13

6 ig=T

4 if ¢ =25,229

3 if ¢ = 29,31,61,67,79,139,157,
223,277,349,421, 661, 733,
877,1069, 1453, 1669, 1741

2  otherwise

312(Fq)

.

2. On s(k,), k, the p-adic completion of an Algebraic Number Field

Let % be an algebraic number field, O the ring of integers in k,p C O a prime
ideal over p and k, the p-adic completion of k at p. Let v = v, be the g-adic
valuation on k,, A = {z € ky|v(z) > 0} the complete discrete valuation ring and

m = {z € Ajy(z) > 0} the maximal ideal in A.
(HOCkC k, = 3,1(0) z Sd(k) > sd(kp).

(2) k, = Quot (A),A D m principal = sa(k,) = s4(A) : Clearly sa(kp) < sa(A).
Now if =1 = ¢§+---+ ¢, ¢; € ky, then multiplying by the denominators, there exist
Cip, 1, -, 0t € A such that 0 = of + o + - -+ + aZ. Then, simplifying if necessary,
we may assume mi(e;) some 0 < j < s, hence o; € A*, the subgroup of units in A,

and sg(A) < s. Thus sa(ky) > sa(A).
(3) O — Ofp' = 54(0) > 54(0/p") 2 34(0/p*?) 2 -+ for all i > 1.

(4) A/mi =2 Ofp' for all i > 1:
It follows since A/m = O/ p.

(5) Hensel’s Lemma: Let f(Xi,--+,Xn) € A[Xy,---,X,] where A is a complete
discrete valuation ring, with maximal ideal m. Let ¥1,+++,7, in A, 6 > 0 and some

1 < j € n such that
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Flnye ) = 0(mH)
3_3;%-'(’71, et v’Yn) = 0(m6)§ ":,é 0(m5+1)'

Then, there exist 0;,--,8, € A with f(1,++,0,) =0and 0; = 4i(m?) for all
1<z2<n.

(6) sa(ky) > sa(Ofp') for all i > 1:

By A — A/m’,s4(A) > sa(A/m’) Now (2) and (4) give sy(kp) = sa(A4) 2
54(0 /") for all i > 1.

This last remark shows that the increasing sequence in N, {sa(O/g")}iz1, is

bounded by s4(k,,). Indeed we proved

Theorem (2.1) Let d = p"k with r > 0 and (p, k) = 1.
Let g®||p. Then sq(ky) is finite, moreover

sa(ky) = 5a(O/ ™)

Proof: We have A C k,, is a complete discret valuation ring with m C A maximal
ideal, mNO =p, pNZ = (p) and (p) = p°A, A C O an ideal with pf.A.

By (6), it suffices to prove sy(k,) < sa(O/p***!) Let fo, b1, -, Bs in O be such
that

B+ -+ B = 0(p™ ), pt(B;) some 0 <2 < s

Thus dBf! = 0(p™), # 0(p™*+!) since p™*||(p"). Hence by Hensel’s Lemma there

exist o, @y, -+, @ in A such that ad4-- +af = 0in A. Then sq(k,) < s4(0/p**1)

and the result follows.
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In particular, in the case k = Q we obtain

34(Qp) = sa(Z/p*T'Z) i d=pkr=1

54(Qp) = Sd(FP) if pid.

The only results from the literature on higher levels of Q,, as far as we know,

state:
(i) Ramanujam’s Theorem ([Ra]) Let d = p"k, (p, k) = 1. Let

= r+1 H p#2 P 1 ifk=p-1
1l r+2 if p=2 | 0 otherwise

Then

d if ptd
Sd(Qp) <

(Bt)k+6—1 ifpld
(ii) Revoy’s Theorem ([R]) s2r(Q2) = 2% - 1.

Hence, the study of higher levels of the rings of integers modulo p* would give
us the higher levels of the class of the p-adic fields.
We will give an elementary proof for (ii) in § 1.(3.4), Chapter IL

3. On s4(F,) for d a Power of 2

Let d = 27,7 > 1 and let A = h(q) the dyadic valuation of ¢ ~ 1, ie, ¢—1=
254 ,(2,£) = 1. Then by §3.3.(1*) and §3.3.(5")

1 if r<h
sar(Fg) =
1 <sp(F) <28 if r>h

this is, the increasing sequence of higher levels {sy-(Fg)}-1 takes only two values

and it stabilizes from r = h(g) on.




Recently, Amice and Kahn have found very interesting theoretical and experi-

mental results on s(q) = s (Fy) :

Theorem (3.1) ([AK]) Let s(gq) = s (F;) > 1. Then
1) VT > (1= ) [ -1y - (-] = s@) <

In particular,
q > 22hs/(s—1) — S((]) <s

2) ¢ (2" —1)*(2"-2)" = s(9) =

3) ¢ > (2" —1)(2%* —3-28 +3) = s(q) <3.

4) g=p* = s(q) <3.
5 ¢#p,p° = s(g) =2

Proof: The first four statements are direct consequences of § 3.(2.8). Now for 5),
let ¢ = p*. If n = 0(2), then it may be proved by induction, that 3 divides ¢ — 1,
if p & 3. Then there exist a cubic root of unity in the field and thus s(¢) = 2 by
§ 2.1.(3) and clearly s(g) = 2 if p =3 = char F. If n = 1(2), then 2" divides
g—1=@p-D1+p+---+p* 1) iff 2% divides p — 1. Thus for n > 5 we have
g > p® > 2% > 2% then s(q) = 2 by 1).

Also, experimental results from [AK] show that s(p®) = 2, for all primes p up
to 101.711.873 and s(p) < 12, for all p < 10° (excluding Fermat primes). Actually
they find s(p) = 2 as soon as p > 9172k() for p < 10°, h(p) < 7 (instead of p > 24:()
by § 3.(3.1), Chapter I).
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4. Open Problems

The preceding results leave as main open problems, the determination of sq(p),
the d** level of the prime finite fields for p > 2 and more generally, the determination

of s4(Z/p'Z),£ > 1, since these would also provide the dt* levels of the p-adic fields
Q,-
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Chapter II: s4(Z/p*Z) for d > 2

In this Chapter we will establish the main result on the d** level of the prime
finite fields F,,p > 2, and its generalization to the rings of integers modulo
o, £>1.

It will be seen that s4{F,) can be completely determined by the coefficients
iz, 03,7+ yqp241 Of the period equation T+ T4 1 + qpT% 2+ --- + a4 € Z[T]
agssociated to the factorization p — 1 = de.

In this way, a striking relation has been found between the higher levels problem

and the old problem of cyclotomy.
The generalization of this result has been also achieved for s4(Z/p*Z),¢ > 1
when p > 2, while s4(Z/2‘Z) is found directly.

§ 1. Preliminaries

We start studying the congruences modulo pf, £>1, p>2 a prime:

X+ 4+ X%=c (modp?) where c€Zandd>2even .

Moreover, all through this chapter it will be considered the following factorization
of d respect to p:
r>0, k even if p#£2

d=p'k with ptk and
r>Lk>1 i p=2

We will write for short just d = p"k.

We say a solution (z,,--,z,) of a congruence is primitive if p 7 z; for some
1<i<n.

For ¢ = —1 it may be easily seen, it is enough to consider solutions (z1,---,z,)
with z; in the group of units of integers modulo pf, for all s =1,---,n. Thus we

will state first the structure of these groups ([IR], [H]).
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1. The Structure of the Group of Units mod p*

Let U; = (Z/p' Z)* be the group of units mod p*, £>1, p>2 a prime.

£=1:

In this case U, is the multiplicative group F, of the nonzero elements of the
finite field with p elements and has order ¢(p) = p—1. Thusif a € F}, the order
of a divides p— 1. Actually for any d|p—1, there exists a € F, with order d.

In particular for d =p —1. Hence
Theorem (1.1) F} is a cyclic group.

O

We will call an element w € F; a primitive rool mod p il w generates Fj.

Then one has w?™! = 1( mod p).

£>1:
e=1(

In this case U, has order o(p®) = p*~!(p—1). One finds descompositions of I/,

as direct product of cyclic groups.
Structure of U, for p# 2:
Theorem (1.2) U; = U, x U, direct product of cyclic groups given by

U, = <w(m0d %) w = w? (mod p%), w, a primitive root mod p>

with [Uy| =p—1.

U, = <1 + ap(mod p*)|a # 0(mod p))
with |, | =p*".

Moreover U; is cyclic given by
U = (Lb(mod P& = 1(mod p), &P~ # 1{mod p2)> .
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Remark (1.3) The generator of U, is completely determined by the properties
w = w,( modp), w, a primitive root mod p and w”! = 1(mod p’). In this
case we say w is a normalized primitive root mod p . Thus, a generator of U,

is @ = w(l+ p)*(mod p¥) where w is a normalized primitive root mod p and
a Z 0(mod p).

Structure of U, for p=2:

Theorem (1.4) U, = U, x U, direct product of cyclic groups given by

]

U, = <-—1> with []=2,

Uy < 1+ a-2%(mod 2%)|a # O(mod 2) > with |24, | = 22,

Remark (1.5) For {> 3,
(Z/2° Z)* N {a(mod 2%)|a = 1( mod 4)} =,

is cyclic of order 2¢-2, generated by 5 (mod 2¢). For £=1,2 the group of units
mod 2¢ are cyclic, generated by 1 (mod 2) and 3 (mod 4), and these are the

only cases since +5 (mod 2‘) has order 2¢-2.

These theorems follow mainly from the following useful properties on congruences
modulo p* ([IR], p. 40-45, or, [H] p. 77-84):

Lemma (1.6)

(i) If £>1, then

a=b (modp’) = o =¥ (modp™)
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(it) If v =1, then
a = 1(mod p*) = e® " =1(mod p), VL= v
(iii) If p 2, then
a=1+bp (modp?) = & =1+0bpi(modp™), VE>1
(iv) f p=2, then

a=1+5-28(2%) = & =1+5-20(2%), W>2

2. Congruences mod p‘

Let
(Z/p*Z), £21 if p#2
G =

(Z/2¢Z)*N{a=1(mod 4)}, £>2 if p=2
Then Gy is a cyclic group of order

{ pPHp—1) if p#2
|G| =

962 if p=2
Let d > 2. Recall

>0, keven if pFH2

d=p’"k,p]‘kand{
r>1,k>1 if p=2

And define
r+1 if p#2
v =
r4+2 if p=2
Then |Ge| = p*"*(p —1), and the following relations between congruences

mod p* and congruences mod p’, £ > v may be proved ([Sch2]).
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Lemma (2.1) Let @ # 0(mod p) be such that X 4 = g(mod p*) is solvable. Then
sois X?= g(mod p) forall £> 1.

Proof. Notice that a # 0{mod p) and X? = a{mod p) solvable, gives a € Gy,
(le. @ = l(mod 4) if p = 2). Thus, le§ w be a generator of Gy, of order
p¥(p—1) and a=w?(mod p*). One has

{ w™(mod pf), p#2

z =
(=1)°w(mod 2¢), p=2
w*(mod p%), P#2
y=
(—1)Pw(mod 2¢), p=2

are solutions of % = a(mod p*) and y? = a(mod p’) iff dp = a(mod |G,|)
and de = a(mod |Gy|), and this holds iff (4,|G.|)le and (d,|Gel)la. Since it is
enough to show the result for £ > » and thus (d,|Ge|) = (0"k,p"*(p—1)) =
p"(k,p—1) = (d,]G,[), then the result follows.

O

Lemma (2.2) ¥ X¢+4.--+X? = ¢ (mod p”) has a primitive solution, then
the number N of primitive solutions of X& +--- + XZ = c(mod p*) satisfies
N > p=)»-1_ for all £> p. In particular N >1, for all £2>».

Proof: Let zf----+z% = ¢ (mod p”) with z; # O(mod p) be a primitive
solution. Then ¢ — (8 4 --- + 22) # O(mod p). Choose y; = zi(mod p*) for

i=2,---,n. It can be easily seen that there are plé=)(n=1) pogsible choices for the

yls modulo pf, £> v, and for each choice the congruence

X*=c— (3 +- - +ya)(mod p*)

has X = z; as a solution. Thus by §1.(2.1) above this congruence is solvable
mod pt, for all £> 1. In particular the number N of primitive solutions mod 7t

satisfies N > pl=)@-1) > 1, for all £> ».
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3. On the Higher Levels of Z/p'Z

Let d = p"k as above and

sa(Z/pt Z) = min{ s €N |af + -+ a? = —1(mod )}

If the congruence X+ ---+ X2 = —I(mod p*} has a (necessarily) primitive
solution, then by §1.(2.2) above it has a primitive solution mod pt, forall £> .

Thus
sa(Z{p* Z) < s4(Zfp* ) forall £>v.
Since trivially a solution mod p° is a solution mod p* for v </, we obtain
Proposition (3.1) Let d =p"k andlet v =741 if p#2, v=r+21if p=2.
Then

sa(Z/p* Z) = s4(Z/p” Z) for all £>v.

Thus, it suffices to find s4(Z/p* Z) for £ < w.
On the other hand, if d>2 for p=2,

r+1 if p#£2
d=pk>2v=
r+2 if p=2
then
z = 0(mod p) = 2% = 0(mod p*) = 0(mod p) for all £ < ».

Hence it suffices to consider solutions of X¢ + -++ + X?¢ = —1(mod p?) with

z; # 0(mod p), i.e., @; in the group of units mod pf, for all £ < v. Thus we have

proved
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Proposition (3.2) Let d=p"k (d>2 il p=2). Andlet » as above. Then

sa(Z[p* T) = s4((Z/p* 2)*) forall £< .

Now in case p # 2 we find:
Then Gy = (Z/p*Z)* is cyclic and thus by § 3.(2.3), Chapter I

54(Ge) = s5a4+(Ge) if d" = (d,|Ge)
Hence it suffices to study the d** level of G¢ for d| |Gy, i.e., for
d=pkwithklp—land0<r<l+r—v=~£—-1

since v = r41. But then £ > ». This together with propositions §1.(3.1) and §1.(3.2)
give it suffices to find the dth level of Gy for £=v=r+1.

Thus, we have found a relation among the higher levels of the ring of integers

mod p? for p# 2.

Theorem (3.3) Let p # 2 and G¢ = (Z/p* Z)*. Let d =p'k, with klp—1
without loss of generality and v =r+12>1 . Then

Sd(G,,) if £ Z v

sa(Z/p" Z) = {
Spt—lk(Gg) if 4 <V

In particular

83(Z/p" Z) = s5(F,) for all £ > 1.
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Thus for p # 2 we see the problem is solved if we may find
54(Gry1) for d =p"k, k|p—1.

Incase p=2:

The d** level of the ring of integers mod 2° may be determined in an elementary

way.

Theorem (3.4) Let d=2"k>2, v=r+2. Then

-1 ifl>v
Sd(Z/2EZ)=

201 ifl<v
and

4 if £>3
s{Z/2' Z) = {
261 if £=1,2
Proof: Let a+---+a = —1(mod 2”) with s minimal. Then a; = 1(mod 2)
forall ¢ =1,---,ssinced > 2 gives d > v and then a = O(mod 2) gives
a® = 0(mod 2").
Hence by §1.(1.4)(iv), af = 1(mod 2"+?) forall ¢ =1,---s.
Thus ef = I1(mod 2¢) for all £ < v. It follows that s = —1(mod 2°) for all
? < v. The minimality of s gives s =2¢—1 forall £ <v. Now §1.(3.1) gives
s=2"—=1 forall £> .
If d=2 one finds

s0(ZJ2Z) =1, 32(Z/4Z) =3, 52(Z/BZ) =4,
and by §1.(3.1) with d=p=2 and v=r+2=3
53(Z/2'Z) = 55(Z/8 Z) =4 forall £>3.
Hence the result follows.
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4. On the Period Equation for dlp —1

The method of Gauss to solve the cyclotomic equation X7 —1 =0 (related to

[

the constructibility of a regular polygon of p sides, “... principles upon which the

division of a circle into p parts depends ...”, [ Gauss diary, March 30, 1796]), leads

to the concept of the cyclotomic periods and its properties which we would like to

include here for completeness ([B]):

Let p be an odd prime. Then the roots of the irreducible cyclotomic polynomial

1+ X+ X244+ X 1=0 (1)

are given by the powers of a primitive p'* root of unity

¢ @)

=2 represents, in

Now, if w is a primitive root modulo p, then 1,w,---,w?
some order, the numbers 1,2,---,p — 1(mod p). Then the set (2) may also be

written as

G0 (3)

In this way, the roots of (1) are arranged in such a way that each one is the w®™
power of the previous one, as the first is the w™ power of the last.

If p—1 is factored, say, p—1 = de, then the p—1 roots in (3) may be

distributed in d groups of e members.

C: wa, Tty C‘J(e—l)d

Cw : de-{-z : ngd-[-l’ - Cw(e—l)d+1

...........................

- —
Cu l,ngd 1 , Cad—l, e Cde.—l
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satisfying each group, that each of their roots is the w

dth  power of the previous

one, as the first is the w®* power of the last.

These groups define sums called periods:

o _ C_I_-de +Cw2d+...+cw(e—-1)d

Cw+cwd+1 +szd+1 gouee +Cw(e-—-1)d+1

T

---------------------------------

nd_l — de—l +Cw2d-—-1 +CW

which satisfy the following properties:

()

(if)

(iii)

(iv)

If we replace the root ( by ¢“™, then the periods do not change. More
generally, if we replace ( by ¢ " then the periods 70,71, *,,4—1 become

Thy TTh+41s s Nhdd=1, i-e'v Mhyt s Wd=15T0s Ty * s Ph-1-

The distribution of all roots of (1) into periods does not depend on the choice

of w, the primitive root modulo p.

All periods are numerically different: Otherwise, assume 753 = 7%, some

0<h#k<d—1. Then

th + de+h RS Cw(E-——l)d—i-h _ ka _ de+k e Cw(e—l)d-!—k -0

is a nontrivial equation for ¢, since in different periods, different roots of (1)
occur. Now dividing by (, since no power of w is zero, we obtain an equation
f(¢) =0, with deg f at most p—2. This contradicts the fact that (1), the
irreducible polynomial of {, has degree p— 1.

Any integral polynomial function of the roots of (1), invariant by substitution

of { by ¢ “’d, is an integral linear function of the periods: Let

fl{)=a+ao +a(*+---+ ap_g(,'“”:’—2 with a,ag,-+,a,2 € Z,
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be such that f(¢) = F(¢“"). Hence

f(cwd) — f(cw"’d) —_ = f(Cw(e—I)d)
and then
ef({) = ea+ aono + army + - -+ + ap_a7p—2-

An important consequence of this fact is that the product of any two periods,
being an integral function invariant by substitution of { by ¢+*, is a linear

function of the periods, i.e.,

gone = (5,00 + (b, )+ -+~ + (B, d — L)paa + e, 0<k<d—1
where
(k, k) = {(4,2),0 <,z <e— [l + ™ =™ (p)}|, 0 < kA <d-1

and

{ 1 ife=0(2) and k=0, or, e=1(2) and k=d/2
6 =

0 otherwise

Moreover replacing ¢ by ¢“", we obtain

N Tragk = (5,0)m + (ks 1)mir + -+ - + (b, d — 1)mpa—1 + Sre

so that every product may be obtained in this way.

The cyclotomic problem is solved if we have the coefficients of the period

equation or the d? cyclotomic constants (k,4),0 <k, h <d—1.
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(v)

(vi)

Every integral function of the roots of (1), invariant by substitution of (

by ¢“, has an integral value: Just consider d = 1, then the only period is
=¢+{"+ -+ ¢#*~" = —1. Now let F be an integral function of the
roots of (1), then F(¢) = F(¢*) = F(¢*"), hence, an integral linear function

of ny, thus F({) € Z.

Hence by (), the symetric functions of the periods are integers, i.e.,

P(X) = (X —no)(X —m}- (X —na-1) € Z[X]
The period equation

P(X) =I5 (X —mi) € Z[X]

is irreducible: Let P(X)|P(X),P(X) nonconstant. Then P(m;) =0 for
some 0 < k < d-1. But then P(p) = P((* +-.2) = f(¢) = 0,
some f(X) € Z[X]. Thus the irreducible polynomial of ¢ divides f. Hence
F(¢") =0 for all roots of (1). Then P(nsss) = B¢ +-.-) = F(¢*") =0,
ie., P has all periods as roots, i.e., P(X) = P(X) is irreducible.

Now we can settle the following lemma which we will need in §2.

Lemma (4.1) Let djp —1. Let Q(¢) be the cyclotomic field of the pt
roots of unity, and U = (F;)d the subgroup of the d* powers in F}. Let
N0, M1y~ -y Md—1 € Q(() be the periods for dp — 1. Then

Fix U = Q(no).

Proof: It is well known that Gal (Q(()/Q) = F};0,: ( — ¢* . Now let L =
Fix U, the elements of Q(() fixed by #. Then by construction 7 € L. Moreover,
by Galois correspondence Gal(L/Q) & F,/U, thus [L: Q] =[F;: U] =d. But
7o is one of the d periods for d|p — 1. Then by (vi) above, [Q(7) : Q] = d.
Hence L = Q(no).
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Thus, we see that the subfield of Q({) of degree d over Q, is associated to U
in the Galois correspondence and hence to the d** level problem.

Moreover we could prove the following generalization, which we will need in §3.

Lemma (4.2) Let { be a primitive root of the cyclotomic equation X P _1=0.
Then their o(p™?!) = p"(p—1) primitive roots may be ordered in d = p"k, klp—1,
different periods of e = L”;—ll terms

ole—1ydti

= T g L 0<i<d-1

which are all the roots of an irreducible polynomial over Z. Moreover let U, =
Gf-i—l and I = Fix u,-.}.l. Then

L = Q(m).
Proof: We have the minimal polynomial of ¢ over Q is
Irr (¢, Q)(X) = X0 Lo x -2 o X
and
Gal (Q(¢)/Q) & (Z/p™*" E)" = Gr41504 : { — (*(a modulo p™**, (a,p) = 1).

¥ L = Fix U;41, where U,,; is the subgroup of d** powers in G,y1,
then Gal(L/Q) = G,pafUry1. Thus [L: Q] = [Gryq 2 Upy1] = d. Moreover by
construction, no = ¢ 4 ¢** +--- + ¢V e L.

We want to show n; #n; forall 0 <i#j <d—1. Assume 7 =9; for some
0<i#j3<d-1. Then

Xwi + de-{-s‘ et Xw(e—x)dﬁ . ij L Xw(e—l)d+j =0
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is a nontrivial equation satisfied by (. Dividing by { we have, there exist f(X) €
Z{X] such that f(¢) =0, with deg f <p"+*' -2 and all 2¢ powersof X i f

being different. Then Irr(¢, Q)(X)|f(X).
If =0, then p—1 < p-2, which is a contradiction.
If r>0, let g(X) € Z[X] be such that

FX)=Q+X" 4+ X )g(X)

Since deg g+ (p—1)p" < p'+1—2, then degg <p" —2. Let g(X) =i ooX*
with £ <p" —2.
Thus

i ¢ p
F(X) =T ((, Q)(X)g(X) = EQ‘ka + ngXP"‘"‘ 4ot ngx(p—l)p"M
k=0

k=0 k=0
is a sum of pfy some {y < £, different powers of X, since £ < p" —2.
Then

2e = ply = ple=(p—1)/k

which is a contradiction too. Therefore all d periods are different. Now since
o € L and n; = 6,i(10), then Irr (70, Q) = =3 (X —n;) € Z[X] and L = Q(io)-

O

§2. sq4(Fp)

1. Preliminaries

Let F, be the prime finite field with p elements, p # 2 a prime. To find the

d® level of F,, s4(p) = sq(Fp), we must study the congruence mod p
X¢ 4o+ X2 = —1(mod p),

where we know it is enough to consider d|p — 1.
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Let U = (F;)d be the subgroup of the d™* powers of elements in F}, of order
e = (p—1)/d. We want to consider all possible sums of elements in ¥/, in order to
find the minimal length s of the sums which represent —1.

One way to do this is considering the formal series

1

- Truen X" € k[[T]] , k some field,

f(T)

since then

(=3 (rxx “)k -3 ( )3 X“l*"‘*‘*k) 7,

k=0 ucld k=0 \uy, - up€ld

and thus, with X such that X’ = X¢ if : = j(mod p), ie, X # 1 such that |

X? =1, we obtain

F(T) = I’z—:l (i N(k,j)Tk) X’ € K[[T]], k= K[X]/(X? —1) for some field K,

=0 \k=0

where
N(ko5) = [{(uny+ ) € UPhis + -+ + ug = jamod p)}
In this way a first expression for s4(p) is attained:
sa(p) = min{ k| us + -+ +ux = —1(mod p), u; € U} = min{ k [N(k,p — 1) # 0},
le.

s4(p) = ordp(F(T")) where F(T)= f: N(k,p—1)T*

and ordr being the usual valuation on the ring of formal series ( ordz (332, axT%) =
min{k[ay, # 0} ).
On the other hand, considering the following well known result, an election for

K may be done, which enables us to calculate N(k,p—1) otherwise.
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Proposition (1.1) Let K be a field containing a cyclic group of order n and let
C' be a cyclic group of the same order. Then the group ring K[C] is isomorphic
to the direct product of n copies of K.

Proof: Let <(|("=1>CK andlet C =< X|X"=12>. It suffices to find an
orthogonal system of idempotents in K[C]. For p €< (> let us define

1 n—1 L.
e =~ 0 X € K[C].

=0

It is easy to see that €2 =¢,, e,-ey =0 if p# p, and Pooeces € = 1.

Thus, this is such a system and we may write
X=1-X=(T,e) X = 5,5l X)X
= T,p- 5 Ti p HHXH
= Ep PEp

and more generally
MX) =Tk kX = TRk (T, pep)fE
= Yidhi (T, p'e,)
= %, (Tid ki) e,
= 3, klp)e,

Thus, ¢ : K[C] — II"7'K, h(z) — (A(p))se<c>, I8 an isomorphism.

Notice that Q((), where ( is a primitive p™ root of unity, contains a cyclic

group of order p. Hence
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Q(O)IX]/(X? - 1) = Q)< X/X? =1 >] = TFQ(().

Then, let K = Q({) be the cyclotomic field generated by ( a fixed primitive
pt* root of unity, i.e., ¢ #1 such that (? =1, and k = Q({)[X]/(X? —1).

Constructing an orthogonal system of idempotents in &

o1
= lz:,a"X' where p €< ( >
i=0
one obtains by §2.(1.1)
= > h(p)e, forall h(z)€k.

PESC>

Applying this to

= I_—TLS(-—) k[[T]] , where S(X %X" €k

we obtain

Lemma (1.2) Let N(k,j) = [{(u1,--,ur) € UF|us + -+ + ux = j( mod p)}|
where U = (F;)d, and d|p—1. Let { is a fixed primitive p™ root of unity. Then

N(k E S(p)'7 where S(p)=3_ p*
pE(> ueld
Proof: We have
1 Lo ]

f(T) = —aroc = 3 S(X)*T* , where S5(X X
1-TS8(X) g__% %
thus by §2.(1.1)
p—1
S(X)= 3 S(p)ey , with ¢, = 12~'x*
pEC>
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and then
F(T) = Zio(Xeces S( P)ep)

(
(Epe<c> S(e) eP)
= Tk (TF0 (Toeces S(0)5) X7) T

= Yo (Zk—{l > ( pe<es S (P)kﬁi) Tk) X
Hence

N(k,j) = Z S(p)s

PELC>
O

In this way, an expression for N(k,7) € Q({) has been found, that relates the
higher levels problem of F, with the cyclotomic field Q(¢), which has a isomorphic
to F; Galois group.

2. The Main Result

The main role in the expressions of N(k,j) is played by S5(¢) where ( is a

(primitive) p™ root of unity.

Lemma (2.1) Let K = Q(¢) be the cyclotomic field generated by { a primitive
p™* root of unity. Let G = Gal(Q(()/Q) =F;, U= (F;)? <G, and dlp—1.
Then

Fix U = Q(S(¢)) where S{¢)=>_¢*

ucld
Proof: We have
S(C) = Z (" =g
ucl

is one of the d roots ol the period equation for d|p — 1. Thus the result follows by
§1.(4.1).
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Now we are able to prove the following striking result on the d** levels of prime

finite fields.

Theorem (2.2) Let F, be the prime finite field with p > 2 elements and let

d > 1 besuch that d|p—1. Let
P(T) =T+ agT ! + 0 T2 4+ 4 g € Z[T]

be the gaussian period equation of degree d. Then

(p) = min{n | (n + Dows — (1 407 D), 2 0)

Proof: We have s4(p) = ordr(F(T)) where

F(T) = 3" N(k,p — )T*

k=0

and

N(bp—1)= >3 S(e)p with S(p)= 3 "

ueld

and p running through the p* roots of unity in Q(¢). Then
pN(k,p=1) = S(1)* +E,05(p)*p
= (Ul + 2 S
= [U*+ Ceergu Tueu S(C)(C
= U+ 2oceFs iU S(¢) e ¢

— lulk"I'Z:ceF;ﬂJ S(cm)k+1

Now since Fj/U & Gal(L/Q); oz : { — (%, where L = Q(5(())
§2.(2.1), then
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N(k,p—1) = i (jl® + t2sQ(S(OF),
tr/q the usual trace on L/Q. Thus
F(T) = Yk % (]L{Ik + SoeFs/u 0':,-(5((:))’““"1) ik

= S0k (MPFT* + Toersu 0(S())ox(S())FTF)
¢ (et + Teerg o s00T) -
Now let
P(T) = ir(S5(¢), QUT) = Meergyu (T' — 02(5(0))).
Then its reciprocal polynomial is
H(T) = T°P(T™) = Waepsu (1 — 0u(S(O)T)

and satisfies

H(T)= 3 —ou(S(OM,eryn (1 —oy(SO)T),

veF s yée
thus

HI) s _al50)

HT) ™ &= ol5O)T
Then

_ L (HT) - (- UT)H(T)

1 H'(T))

1
F(T)=§(1_|u|sr“ H(T —p( (1 MIT)H(T)

Moreover if

P(T) =T+ ayT" + T2 -+ 4 € Z[X]
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where

m==- ¥ alS@)=- 3 ¢ =—(-1)=1

¥y fit z€Fy

then
H(T) =%+ +T+1 € Z[X]

and

H(T) ~ (- UITH{F) = ol +dUNT+---+
+Ho(1 + kJU[) = (k + Dog42) T+

+-- 4+ (14 U] — 202)T,
and it holds

ordy(H(T)) = ordg(1 — |U|T) = 0.
With this we have finally obtained
sa(p) = ordr(F(T)) = ordr(H(T) — (1 - [{|T)H'(T))
fe.

salp) = min{ k| (k+ Dapr — 1+ £2= Dy 20

O

This seems to be the first general result on the higher levels of prime finite fields

and provides a very striking relation to the problem of cyclotomy.

Although finding the coeflicients of the period equation is an old problem, for

s4(p) we only need to know g, -+,a4m4; since by [T], sq(p) £ d/2 41, if

d#p-—1.
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Moreover, experimental results have shown that the main part of the problem is
solved if we can decide which primes p have sy(p) > 2, i.e., if we can decide when
Jon £ (1 + Zi’%ll)ag. Thus the first coefficients «ay and a5 give already a great
deal of information.

By using gaussian sums one may find expressions for the coefficients of the period
equation. This will be done in the next chapter.

Now we will establish a generalization of §2.(2.2) to the rings of integers

mod pf, for £>1 and p # 2, which is the case still missing.

§3 Sd(Z/peZ), { 2 1

1. Generalization of the Main Result to Z/p*Z, £>1 for p#2

In § 1.(3.3) we established the levels of the rings of integers mod pf(£ > 1, p # 2)

in terms of
3a((Z/p"t'Z)*) for d=p'k (d even, r > 0,k[p—1).

And in this case, a generalization of the main result can be achieved as follows.
Forall0 <7 <r,let

Grases = (B/5P2)"
and
Urgr—5 = Gfil_j where d; = p 7k, k|p— 1.

Thus, G; = F} and U, = U = (F})".
Recall that Z/; = U( mod p'), hence [t4| = || = (p — 1)/k.
Let ¢ be a primitive pT+Dt% root of unity. Thus ¢?’ is a primitive pr+1=9)t root
and it holds
Gal (Q((”)/Q) = Grirsiz :(” — ("*(2 mod p™ 7, (z,p) = 1)
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and

Q(S(CPJ)) = Fix Ury1-j, where s(cpi) = 3> Cpfu

w€lp 15

as we proved in § 1.(4.2). This defines r + I period equations

PJ'(T) = H-'?-'GGr-!-l—j/ur-]-]—j (T - S(CPJ )x)

of degree d; = p™k.

Then we have found

Theorem (1.1) Let G, = (Z/p™*')* and d = p'k even where p > 2 prime, r > 0
and k|p — 1. Let

H(T) = aq,T* + agaT* " + -+ ey T +1 € Z[X]

be the product of the r + 1 reciprocal polynomials of the period equations P;(T") of

degree p~7k,0 < j < r, where d. = (Zr:i—;l) k. Then

. —1
(Grar) = minfrnl(n + Dawas — (1 +nZ Dy 20}
Proof: As we want to study the congruence

Xf Feee —]—X;,’I = —1(mod p™*1),

we will consider this time the formal series

1
™=
f( ) l—TzuGHr.i.J, Xu

since then

=fr p rref (5w

k=0 u€lfry k=0 \up,ui€lfryy

and thus, with X such that X = X7 iff {= j(modp*!), we obtain
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A(T) = ’ Z_ (fj N(k, j)T") x4 e (K[X)/(X” — 1)) [IT]], K some field,

3=0 k=0

where
N(k,5) = [{(uz, - ux) € Ulyylus + -+ + ug = j(mod p™)}.
Hence

Sd(G‘r-i-I) = OI‘dT (E N(k, pr+1 - ].)Tk) .

k=0

Now, let K = Q(¢), where ¢ is a primitive p*+)* root of unity. Hence by
§2.(1.1)

QU)X)/(X?™ ~1) =1 1Q((),

via an orthogonal system of idempotents given by

1 pr-i-l_l
— —~1 vi
€ = prH Z pX,
=0

where p €< ( > runs through all p"+1# roots of unity. Then one may easily see
that

S(X)= > X"= ) S(p)e,, where S(p)= > p"

u€lrp1 PELL> uelly g1
and hence
f(T) = TR S(X)yT*
= Eﬁ—.o (Zp€<ﬂ> S(p)kep) T*
r41 oo i .
= 2o i (TR0 (Toeces S(0)p79) TF) X7,
Then

87




N(k, )= p,H Y. S(p)e.

PELC>

Just like in the case r = 0, the cyclotomic field Q({) and G,41, and more
generally, Q(Cf’j) and Gyyi1-; for 0 £ j < r, are related by Galois Theory and as
seen in § 1.(4.2)

Gal (Q(5((”))/Q) & Gry1oifUrss-j, Where S(C7) = 3 (¥

uGlry1—;

These remarks lead us to find the sum ¥ = p" ' N(k,p™! — 1) :

S o= Y, LS

prH1
= S(l + Z ,5‘((:) C'.[. Z S(Cm CpJ
=0 J_]_

(ip)=1
= WUl + Ticoy, SCVEC + X0 S(¢)er
— ]ulk + EwEGr+1/Ur+1 EuEUr.;.l (Czu)kg:m 1 EP r—1 S(ij)kcpi

= |u[k + E.’L’EGr+1/ur+1 S(C’:)k'i'l + E;}"“‘—ll S(n.?)kn.?

where 7 = (P is a primitive p"* root of unity. Then by the remarks above we
have
Gal(Q(n)/(Q) =G
and
Gal(Q(S())/Q) = G, /Y,
where

U, =G%, dy =p" k.
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Therefore, the second sum may be found by repeating the process used for the

first. Thus repeating this process we obtain
E = ]ulk + EJJEG!‘-}-I/Hr-{-l S(Cx)k-l-l + zmeGr/uf S(sz)k-[-l
+ Eﬂ?EGr—llur—I S(sz:c)k-l'l 4o

oe ZmGG1/H1 S(Cp"m)k-!-l_
Hence

F(T) = Yo N(kp+t - 1)T*

= E:'J:O P"% (Ibll’lc + 2;:0 Ezeg""'i—j/ur—i-l-—j S(ijx)k*'l) Tk

1 1 r s(¢F'
= T (m F 20 Xw€Crgajfhrian; ﬁ@?))_r)

Again, considering the reciprocal of
Pi(T) = Ilpegyprjjthrsn; (T — S (C”j )*) of degree p" 'k
ie.
Hy1-(T) = Tatgastthoss—i (1 = ST )°T).

which satisfies

Hla (1) 5(¢7=)
1— S(¢P=)T

HT+1—.’:"(T) 2€Grp1—i U t1_;

we finally obtain

1y H:H_,-(T)) ~ odg (H(T) — (1 [U|T)B(T)

sa(Grya) = ordz (FW T S Hea(T) (1= (T H(T)

where
H(T) = Hi(T)Hy(T) - - Hoa(T).
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Now since
ordr(1 — U|T) = orde(H(T)- - Ha(T)) =0

then
1)

sq(Gyry1) = ordp(H — (1 — -1y

) (7).

Now let
H(T) = cg,T* + ag 1 T* 7 4+ au(T) + 1 € Z[T]

where d, = 377 _, Pk = (3%1_1-)14: Then we obtain

54(Grys) = min{al(n + Dawys — (1 + 1= D), £ 0}

Remark (1.2) Clearly for r =0 ie. G,;1=F, we recover §2(2.2).

2. Application to Q,

In § 4.2., Chapter I, we established that if p”||d, then

sa(Qp) = s4(Z/p* ' Z)

Now, by § 1.(3.3) and § 1.(3.4) we obtain
Theorem (2.1) Let d = p’k even, r > 0,k]p — 1. Then

sd(Z/pZ) i p#2
sa(Qp) =4 27+ -1 if p=2,d>2

4 if p=2,d=2
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With this, an improvement of Ramanujam’s result settled in §4.2. , Chapter I,

is achieved.
Corollary (2.2) Let d = p"k even, r > 0,k|p — 1 for p > 2 prime. Then

pr+1_1

Proof: We have
oy (p—1)
5¢(Z/p™Z) = min {1 <n <d.|(n+Dapy —(1+ nT)an # 0}
where d, = (21:_1—1_1) k. Thus the result follows.

a

This results enable us to give a list of examples of the values of s4(Q,), obtaining
by the way, the quadratic level for the class of the p-adic fields:
Corollary (2.3)

1 i p=1(4)

4 if p=2
52(Qp) = { } =¢ 2 if p=3(4)
Sg(Fp) if P % 2

4 if p=2
[ 1 if p=1(8)
3 if p=29

15 if p=2
54(Q,) = =4 4 if p=>5

s4(Fp) if p#2
15 if p=2

2  otherwise
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7 i p=2
s6(Qp) =14 2 if  p=3

ss(Fp) otherwise

31 if p=2

s5(Qp) = {
sg(F,) if p#2

7 if p=2

SIO(QP) == ]. lf = 5
s10(F,) otherwise

15 if p=2

Slz(Qp) = 8 if p= 3

312(F,) otherwise
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Chapter III: On the explicit
determination of s4(F,)

In the preceding Chapter, the dt* level of the rings Z/p*%,£ > 1 was found in
terms of the coefficients of some period equations.

As examples, we would like to find here s4(F,)} explicitly for d < 8. This will
be done by obtaining the coecfficients of the period equations in terms of character
sums on F}.

This will also lead us to find beautiful formulae for the primes p with d** level
s > 2, in terms of parameters that appear in the representation of p, or multiples of
p, by binary quadratic forms.

Further, since the main problem is now the determination of coefficients of the
period equations, we will present an inductive method to express them in terms of
some sums of Jacobi sums.

Even though it does not seem to be easy to calculate in general these last sums
(we have found them only for d < 8), this provides a criteria to decide when s4(F,) >
2.

In the case £ > 1, the same theory may be applied, but now the character sums

mod p’ cannot be found explicitly, at least for £ > 3. We believe that the recently
known results [G1 -2] and [GZ] will permit us finding some explicit examples of

54(Z/p*Z) for £ > 1.
§ 1. Preliminaries

Let

‘ d=p'keven,klp—1
PJ(X) = HEEGr+1—j/ur+1—j(X - S(CPJ)G) and
0<j<r

be the period equations of degree p" 7k defined in Chapter II, where ( is a primitive
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pr+D% root of unity , Gryam; = (Z/p 78 Uy = Gf{ll_l_j and S(¢¥) =
D uellpys ¢,

Since S((*),0 < j < r and its conjugates turn out to be a character sum on
Gyy1-j, we will present here the results from the theory of characters and character

sums we will use to calculate the coeflicients of these polynomials ([H], [BE]).

1. Characters mod p*

Let (Z/mZ)"* be the group of units mod m, m > 1 a rational integer.

A character on (Z/mZ)* will be called a character mod m and all results seen
in §3.1.1., Chapter I on characters of finite abelian groups hold.

In particular, we will be interested in m = p* where £ > 1 and p > 2 prime. We
will denote as before (Z/p‘Z)* by Ge.

2. Gaussian Sums and Character Sums mod p*

Let xm be a character mod m and let (,;, be a primitive m** root of unity. Then

T(xm (o) = 2 Xm(@)iw

:mOdm

(=, m)=1
is the Gaussian sum associated to the character x,,, where a is a rational integer

mod m.

The following properties hold for these sums ([H] p. 444-450):

(1) 7(xm» €2) = Xm(€)7(Xm, (%) for ¢ mod m,(c,m) = 1.

(2) Let mp = oy 2nd a0 = % Then

{(aym)°

i = 2= £ (22 (22) et

where ¢ and g are the Euler and Mdbius functions, x = x5, 7(x) = 7(x,{;) and f

is the conductor of xy,.
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Via this reduction formula one only needs to find the Gaussian sums 7(x) for

primitive characters y mod p%, i.e., characters with conductor f = p’.
(3) 7(xm, () # 0 = " € Z is square free and prime to f.

In our case m = pf, this conditions say: If x is a character mod p® with conductor

f=p"(v <), then

(X, () # 0 = a = p""ag, (a0,p) = L.

(4) Let G =< w(1 + p)( mod p°)|[w = wy(modp) for some wy primitive root mod
p,wP"! = 1( mod pf) and (1 + p)?
p'(p > 2) is of the form

£=1

= 1( mod p®) > . Then every character mod

X = XX
where X, and x,¢ are characters mod p° with conductors p and p® defined by

X‘P(w) = Cp—l 3 Xp(]- +P) = 1.
Xpt (@) = 1, xp¢(1 + p) = Gy

Moreover, x # Xo is primitive iff &/ Z0(p—1)if £ =1 or " £0(p) if £ > 1.
(5) x a character mod p is primitive if and only if the order of y is d = p*~1k with
klp— 1.

Now, let x be a primitive character mod p%, £ > 1. Then:
(6) 7(x)r(x) = ITC)I* = p".
(1) 7()7(X) = x(-1)p"(p - 1)-

Finally, lets consider in particular characters mod p :
Let v, A be characters modp of orders k,£|p—1 ( i.e. x, A are primitive characters

on F} with x* = X = 0, the principal character).
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Let ¢ = {, be a primitive p™ root of unity.

Then we will consider the character sums:

) =7(6¢) = Y x(=)*

mGF;

which is the Gaussian sum associated to the character y. And

(oA = 2, x(z)A(y)

.r,yEF;
zdy=1

called the Jacobi sum associated to the characters y and A.
These sums are in fact related. We will state their main properties ([H] p.
453-465):
(1) 7(x0) = Soer; ¢ = 1.
(2) () = "I = p.
(3" 7(x)7(X) = x(-1)p.
(4') In particular for ¢ = (;) the quadratic character modp defined by
(a) 1 if @ is a square modp.
p ~1 if otherwise
it holds v # o, %% = xo and
VP i p=1(4)
(%) =
ivp if p=3(4).

(5" 7(x,¢) € Q(¢,{x), where (i is a primitive k' root of unity.

Moreover by Galois correspondence we have:
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1 — Q) —— Q6 G)

A
U=FF . L — LQ(G&)
| | |
F; — Q — Q)
with
Gal (LQ(C:)/Q(C)) = Gal (L/Q) =F /U
and since

7(x)* = x(a)7(x)

hence 7(x) is invariant by exactly the automorphisms corresponding to @ : { —
(%, a € U subgroup of F} of index k with cyclic quotient. Thus 7(x) has exactly &
conjugates in LQ((x). Then

LQ(G) = QG )(r(x))-

Now, since x* = xo, then 7(x)* is invariant by the entire Galois group. Hence
()" € QG)-

(6") 7(x0, X0} = P-

(7') Let x # Xo. Then

(X, Xo) = (X0, x) = 0.
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(8') Let x, A and xA # xo. Then

T()7(A)
W(Xa ’\) = W— and |7?(X, A)[ = \/1_7

and
(9") Let x # xo with order & > 3. Then

T(x)* = x(=Dpr (6 X)7(x: %) - - 7 (6, x5 72).

(10") Let £]p — 1 and let x be a character modp with x* # xo. Then

()" = (x5 ML ptay, 73 ) = XA(OT(XT ey L X, )

wEXp v¥EXx0

In particular if x* # yo, we obtain
7(x)? = ¥(2)7(xV)7(x, %) where ¢ = (P?) is the quadratic character.

Finally, lets introduce a new character sum defined by

k(x) = x(4)7(x, x)-

Then ([BE]):
(11) Let x # xo0,% = (;) . Then

k(x) = 7(x, %)
(12’) Let x be a character with order > 2 and ¢ = (;) . Then
k(x) = (_?1) k(xh) = x(=1)m(x, X¢)
(13") Let x be a character with order = 2k. Then

Kx) = (“_13"1") B = (=D ).
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Now we are in conditions to express the coefficients of the polynomials P;(X),0 <

j <, in terms of character sums mod p"¥1~7, We have:

8(¢”) = Cuttoas; ¢ = 7(x0)
is the Gaussian sum associated to xo the principal character on U,;;_;, since Cf’j 1s
a primitive pU" 1D root of unity.

Now since Gy.41—j [Ur41-; is cyclic of order dy41-; = p"~?k, we have by § 3.(1.1.6),

Chapter 1, xo has exactly d,1-; extensions to G,41~; and hence we find:

S(CPJ) = TUr+1-—j(XU) = 10 zxdr-i-zn.f:xo 7(x)

dri1—g

and
S(ij)a = dr+11—.f E)«:d"‘*’l---f=>':o X(G)T(X)

for all @ € Grya—j/Ury1-j;0: Cf’j — Cf’i“.
Then, the coefficients of P;(X) will be obtained as the symmetric functions of

S(ij)uaa € Gry1-jfUry1—j-
§2. Examples

Next we will find the period equations for d = 4, 6 and 8 in terms of character
sums modp, to obtain these levels for F,.

It will be seen that finding (or at least bounding) the solutions of certain dio-
phantine quadratic equations, provides the primes p for which s4(p) > 2.

Besides, a determination of these primes is found related to their representation,

or the representation of multiples of them, by certain binary quadratic forms.

1. s4(Fp)

Let p be a prime such that p=1(4), p £ 1(8). Let U = (F})*, F,=<w >,

¢ a primitive p?* root of unity and s(¢) = ¥y %
Let x be a biquadratic character mod p, given by x(w) = ¢, a primitive 4
root of unity. Thus ¥ = ¢ = (;) the quadratic character, x> = ¥ = x~! and
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x* = xo the principal character. Then we have

$(€) = mu(x0) = 31r(0) +7(9) + 7(x) + 7(0)]

Now since

7(Xo) = -1
7(x) = /p since p=1(4)
{x)r(x) = x(-1)p=-p since p#1(8)
and by (10')
7(x) = $(2)r($)n(x, ¥)

where 7(X, ¥) = Yppy=1 X(2)¥(y) the Jacobi sum associated to x and 4.
Then we find

(x)* = —vPr
(X)! = —/PF

where
7= P(Q)w(x,¥) = a+ bi € Z[i].
This provides a representation of p as sum of two squares, such that
p=7% =a® +b® with ¢ =1(mod 4), b= 0(mod 2).

With all this, finding the conjugates of 5({) we obtain the period equation of
degree 4:
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P(X) = TaersulX —s(0))
= (1) X = 7(x0) — 7(8) ~ (x) — 7(%))-

(4X = 7(x0) — () — ir() —i7()-

(4X = 7(x0) + 7($) + i7(x) = ir(%))-

(4X —7(x0) + 7(¥) — it(x) + i7(X))

= X'+ X3+ X? a3 X +ay
where
s = EEB

0y = 14+{142a)p

16

1+2(1+2a(2-—-a))p+9p
G4 = 256

Now, by the result on the d** level of F, obtained in §2.(2.2), Chapter II, it holds

( )>n<=)(n+1)an+1 (1+n( ))O!n

Thus, as we know since p # 1(8)

1 and 2a; = (1
S4(.P) > al g ( + 4 4

Following, we get

34(])) >2 = 30!3 = (]. + !p_;ll)ag

<~ 31+(1+2a)p)=3+4p+p°
i.e.
34(p) > 2 <= p=6a—1.
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Since p = a®+ 4%, then
ba—1l=a*+0>a’4+4=1<a<5

and hence p <29. Actually only p=5,29 satisfy p Z 1(8).
And finally

54(p) >3 = 4day=(1 _1_3@%1)_)0[3 with p=6a—1
<> 5a’—6a+1=0, ach
< a=1
&= p=25H
for which clearly we have s4(5) = 4 since then d = p — 1. Thus
(1 iff p=1(8) or p=2
4 if p=5

s4(p) = 4
3 if p=29

2 otherwise

0

Remark (1.1) Actually, these are the values of the 4% level for F,, ¢ = p”, ie.

84(q) <2 for all ¢ # p.

2. s¢(F,)

Let p>2 be a prime such that p=1(3), p # 1(4). Let Y = (F})° F; =< w >

,( a primitive p* root of unity and s(¢) = ¥ uep C*.

Let ¥ be a cubic character mod p, given by x{w) = p = ¢*™/3, and ¢ = (;)

the quadratic character. Hence ¢ = x% has order 6. Then
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By Galois correspondence we have:

1 — Q)
U=(F;)* —— Q)
3
(¥ —— QP
2
. Q

Now recalling
P(—1) = —1 since p = 3(4)
and by (9') and (10),

7(x)7(X) = x(—1)p = p since p = 1(6)

and
(x)® = pr
7(X)® = p7
where
a4+ 3bhv/-3

7= x2)r(6$) = ——
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This provides a representation of 4p as sum of squares such that

4p=a® +276° with a=1(3).

Remark (2.1) x(2) =1<= b=0(2).
With this, finding the minimal polynomial of s({) over Q(i,/p), and then

squaring, we obtain the period equation of degree 6:

where

g =

3 =—

o4 =

g =

Qg =

with

p(X) = X6+X5 +0!2X4+O.’3X3+G4X2 —]—a5X + Qg

5tp
12

55110 + {6(R + 1) + 3R’ — al}yp]

sy 5 + {3(R+2)? + 2(3F' — a) — 26% — 6}p+ {6t + 5)77]

LA+ {(R+2BR+1)—a®) - BR+1-R)+a+1)}p+{(R+2)Bt+1)
+3(R+1— R') +a}p?]

#B(R+1—R)p+ap— 1} +{(3 +1)p+3(B+1) - a*}’p]

a=2Rew

a if x(2)=1

R =2Rey(2)7 = ¢ I%"H’f’l if x(2)=p

e it x(2) =7

\ 2

’

a if x(2)=1

R =2Rex(2)wr={ = if x(2)=p

2

et i x(@2)=5

.
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2 i x(2)=1

t=2Re x(2) = {
-1 if x(2)#1

where p = (—1+414/3)/2 and x is the cubic character as defined above.

Thus, we obtain

Ss(p)>2 — 3a3=(1+Q§B-)a2
<= 32R+1)+R)p—ap+10=p>+Tp+10

= p=6(R+1)+38R ~a-17
ile.
8a—1 i x(2)=1
-‘36(13)>2 = p= —'L_11227b—1 if x(2)=p

U= ) i x(2) = 4
Here, we should distinguish two cases.
Case x(2)=1: 4dp=a®+ 27, then

2 2b2
8a-1=#, b=0(2)

gives 4 <a <28, and hence p < 223.

Since
p=8i—1, t=2, and R=R =a,

then
ss(p) >3 < 81a?—128¢+16=0, ac Z

< a=4

<~ p=31

But then, s¢(31) =4 (since sy(p) < $+1 if d#p—1, by [T]). Then, this is
the only prime with x(2) =1 and level s > 3, the other p =233 has level s = 3.
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Case x(2) £ 1: 4p = a®+ 270 = —22a 4 2(27)b — 4, then we obtain the

diophantine equation
(a+ 11 +27(bF 1)? = 144

with solutions

b=+1 and a=1 or —23(=1(3)),
or

a=3(2)—11 and b=2c+1, wheree=1or -1,
ie.
p=179,133,13,67,139 or 7.
Actually only
p=17,67,79,139 # 1(4).

Following, we get

(

-1
se(p) >3 = day =(1+ —p—z—))ag,

with p determined by sg(p) > 2 and a5 = 5@[10 + 7p + p?].

Since
— {—ad9b)
—11a'k27b R = 2
p=————1, t=-1and
2 Rf — !—G:ng!

2

where the sing + or — depends on whether x(2)=p or p, then

3
s6(p) >3 <= p* +8p+17=-2p+ 5(—&:[:964—4)2-{—6(—43:{196—-2)—4a(a+l)
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We find out for p = 67 = L——E)—z'—;ﬂﬂ, that p= ﬂj—%ﬂ —1 does not

satisfy the equation above, then s(67) = 3.

Similarly, se(79) = s¢(139) = 3.

On the other hand, p=1T7= ﬂ%—_ll —1 (since x(2) = p), satisfies the
equation above.

Actually, one can verify that p =7 satisfies the equation for

. -1
o) >4, e, Sos=(1+222 Do,

and

-1
se(p) > 5, i.e., bag=(1+ 5(p g ))a5

or, we can immediately state sg(7) =6, as it is clear.
Thus

(1 i p=1(4) or p=2
6 if p=7
ss(p)=+¢ 4 if p=31

3 if p=67,79,139,233

2 otherwise

O

Remarks. (2.2) Actually these are the values of the 6% level for F,, ¢ = p",.
ie. , s4(g) < 2 for all ¢ # p.

3. sg(F,)

Let p > 2 be a prime such that p = 1(8), p # 1(16). Similarly to the

preceding examples, and using this time the representations of p
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p=a’+20 with a,=—1(4)
and
p=a’+b with a=1(4), b=0(2)
given by
k()] = Im{p, )| and |7] = |o(2)m(x, $)]

where ¥ = (;) , a character of order 8, and yx a character of order 4, since by

(13), k(p) = (L) k(¢®) = k(¢®), thus k(p) € Fiz < £3 >= Q(v/=2), and

p
7(x,) € Q(+/—1). Then we come to obtain, after rather long calculations, the
period equation of degree 8 :

PX)=X04+ X"+ X4+ g

where
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45}

Qg

471

O

Qg

a7

g

=[28 + Ce] = Zi2

Jt

[66 + 6Cs + C5] = 5%[7 +3p+2(1 + 2¢)ap + 4(1 — x(2))a.p]

[

8

270 + 15Cs + 5Cs + C4] = [70 + 60p + 8(1 + 2¢)ap + 160(1 — x(2))a-p
+(70 — 96¢)p? — 8a’p — 48aZp

+32((3 + €)x(2) — 3)aa.p|

- [56 + 20Cs + 10C5 + 4C4 + C3] = &[7+ {10 + 20(1 + 2¢)a + 4(1 — x(2))a.
—4a* — 24a?

+16((3 + €)x(2) — 3)aa.

—16x(2)a2a. + 8(1 — 4x(2))aal}p

+{(35 — 48¢) + 20(2 — 1)a

+8(5 + 42 — x(2)(3 + 2¢))a.) }p%]

%[28 + 15Cs + 10C5 + 6C4 + 3C5 + Co]

78 + 6Cs + 5C5 + 4C4 +3C5 +2C; + O]

w1+ Cs+ Cs + Cy + Ca+ C2 + Cy + G

where € results to be equal to x(2) = £1, x the biquadratic character defined

before, and the constants Cp (0 < k < 6) are determined in terms of the coefficients

of the minimal polynomial of 8(¢) =8S5(()+1—./p over Q(,/p):
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Cy

Ch

Co

since

where

and

6=4(w+wﬁ),{

v =16(71 + 124/P) {

ip
16[Bap — 271]
100p? + 2[5p* + 1672p + 46,] — 1682p — 32[3p + 42)p

—160p[Bep + 271] + 8[4f2p + 167, + 46a]p
+328,[3p + 472]p

64[Bap + 2m)% + 20p[5p% + 1672p + 464]
—16[3p + 4v3]%p — 86:[45:p + 167 + 46,]p

—16[B2p + 2m][5p* + 1672p + 461]
+8[3p + 47:)[482p + 167 + 46,]p

[B5p* + 1672p + 461 — [462p + 1671 + 462)%p
irr (0(C), QVP(X) =X+ 8X* —4X +6

b = p
tB = 4(ﬂ1 + ﬁ2\/z_’) )
ﬂ2 = a+2a,

n = x(2)a. —ca

Y2 = ep— x(2)aa.

z = {2a2+a®+4(ex(2) — 1aa.}p + 79

y = {4(3 —ex(2))a. —4a}p + 200}

Then, we obtain
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18a—1 if x(2)=1
sg(p) >2<=p=
24a,—6a—1 if x(2)=-1

Studying the diophantine equations defined by this and the representations of

p as sum of squares, we get
Case x(2)=1:

ss(p) >2=p <305
Case x{(2)=-1:

sg(p) > 2 = p <869

Now, like before, we find:
(1 if p=1(16) or p=2

4 if p=41

sg(p) =
3 if p=—89,137,233,761

2 otherwise

“

|

Remark (3.1) Actually these are the values of the 8 level of Fy, ¢ = p", i.e., 55(q) <
2 for all ¢ # p.

Remark (3.2) We should mention that the cyclotomic numbers of even order d =
6,8,10,12,14,16,20,24 and 30 have been found (see [LW]). Thus, the correspond-
ing period equations may be computed ( in terms of the symmetric powers sums
Sp = Ef;(} 7%, by Newton’s identities S, + 15,1 + @252+ -+ ap_151 + na,, =

0,0 < n < d), then s4(F) may be considered as known for these exponents too.
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§ 3. On the Coeflicients of the Period Equation

1. On the Coeflicients of the Period Equation for s4(F,)

In §2. we calculated s(¢) and its conjugates in terms of Gaussian sums, i.e.,
1
$(0) = mulxo) = 5 3 ()
x%=x0

and

(0 =3 ¥ #ayrlx)

Xd=XD

where a € G = Gal(Q(()/Q) = Fp/U; a: ( — (“.

Here we will also write @ < b for a,b € G if a = w' (mod U), b = w! (mod
Uy with0<i<y<d-1.

Thus we obtain the following expressions for the coeficients of the period equation

PX)=X 4+ X1+ p X4 2+ tagfor dp—1:
0 = —Tas(()* = —Teers ("= —(-1) = L.
% = Tacas (5 Satono X2(a1)7(x1)) (& Tty X2(02)7(x2))
= & Dyderdeno (Lar<er X1(a1)Xa(a2)) 7(x1)7(x2)

and, in general

=0 (z: xltal)---xn(an))r(xl)---r(xn) (%)

xf:...:xﬁ:x‘) a1 <'“<an

forall 1<n<d.
(P /U]l =d = {(a1,---,a.) € GMa1 <+++ <y} # @, forall 1 <n<d).

Now, notice that the products 7(x1):--7(xn) commute, so we may find these
sums as follows.

Since
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Yo > xla)Re(ee) = 3. Y xa(e1)xa(az)

X1:X2 a1 <az X1:X2 312>a2

then

SN x(a)xe(a2) =2 ) Y xa(a)xela2) + D D xa(ar)xz(as)

X1:X2 21,82 X1,X2 e1<az X14X2 e1=0a2

Hence, we obtain

o = gg > ngl(m)gxz(az) - 5 )| 7))

Let x be a character of order d. Then

it d—1 if 2dlp—1
X1 = -

=1 -1 if 2dip-—1
and
d if x=x0
> x(@)=
zeFy/u 0 if x# xo.
Thus

@2 = g5 Tiz0 (DCar<as X ()X (a2) T()T(X)
= 5[ (x0) - $ 25 A7) -
Since 7(x*)r(¥') = x'(=1)p and 7(x0) = —1, we find

d—l pd—l ;

i.e.
(=p)d-1) 31 2d|p—1
Gy =
pH-1) i 2dip-1.
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Similarly, we obtain a formula for the inner sums Y, c...cq, X1(@1)** Xn(@s) in

terms of the free sums 3, , ¢, 221" " *» 2oag -0y Which may be found by properties

of character sums.

To simplify the writing, we will introduce the following notation: Let

Zal yeBE

Ea1<---<ak

o_g(n.-—k)

J'-(n_k)2

dr,(:’l.-—-)‘c:)3

1l

Yot e et senapmerman X1(01) 77+ Xn (@)
Equ'“an- Ea; L. T TR P )_Cl ((1.1) te )_(ﬂ (aﬂ)

i+(E+1)+-+(n—k)

o™ L G+ 1) 4  (n— k)2

24+ 1)+ +in—k)
+E+12 4+ (4 D) (r—k)

: " -—.k)2

(n—k)?

= ol 4+ i+ 4 (- B

forn>2,2<:<n—k0<k<n—-2

Then we find

Lemma (1.1)
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N giccan = oy peean — (10— DL+ o'gﬂ-l)] ey ooy

(n—F)

O | s A AP o) a1 < <anoy

LA+ 24+ 224+ 2" o,

- Za;
Proof: We had found

> =23 +¥

ay,a2 aj<az ap

and then

RO IEDYD

ay <az a1,a2 a1

Now considering

> -x(x)

a1,a2,83 az a1,82

we obtain

Za;,az,aa = Y (2 Eu; <ay T Za;)
= 22 a1<azaes T 200,05
= 2(3 T a1<ar<as T2 Xay<agmas) T (2 Xaicaz + 2ay)
= B, carcas +2(1 +2) Taycag + Ty

Thus, recurrently we prove by induction that
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Parman = U Yay concan (n—l)'[l-i—a _IJ]EM( <ot

dees

+(n— k)1 405 4 o 4t o] 2oa << anok

+...

2+ 24224+ 27T, L0,

+ 20

and the result follows.

=]

This leads to a general expression of the coefficients of the period equation in

terms of Gaussian sums.

Following we find

(g

this is

3 =

where

SHES (o)

_I_M J"‘I XJ( 1)

d-1

+2 3 (TR

i,7,k=1
a+1+k o{d)

5 dz[d2—3d+2+(3d 6)p — 2a53p]

d=-1
= 3, X070, X
=+;5=‘_01(d)
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Thus in general e, is completely determined up to the determination of

d-1
= X ) erl (),

peninoye=l

£
i1 +tin—1 E0(d)

where Y is a character of order d.

Corollary (1.2) Let dlp—~1, 2d{p—1. Then

sap) >2 <= p=—1— 35 ¥ (=Dr(x’,x)-
i,j=1

i+7£0(d)

A

This result provides a general criteria to decide when s4(p) > 2, for any d > 2.

Certainly, the sums o3, .-, are not easy to calculate. We have done it only

for d < 8. And we believe that a much deeper study on the arithmetic of the fields

were they live is needed to procede.

Remark (1.3) Just recently we be came acquainted with the works of Gurak [G1-

2] and Gupta-Zagier [GZ], where they study the coefficients of the period equations

for e = (p — 1)/d fixed. They show that at least the beginning coefficients may be

computed in an elementary way.

They prove that: If p = 1(e),e > 1 with minimal prime factor £, then the

coefficient a,, of the period equation of degree d = (p — 1)/e is a polynomial in p

of degree [r/£], if p > n¥(®) (where ¢ is the Euler function and [ | is the greatest

integer function). In particular if 1 < » < ¥, then
an = (14 (n—De)(1+ (n —2)e) -+ (1 +2€)(1 + €)/nl.
This result actually gives
kar=(1+(k—1)e)arr forall 1 < k <n,

which is exactly the relation that determines s4(Fy).

Hence we find as inmediate consequences
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Corollary (1.4) Let d|Jp— 1 and let 1 < e = (p — 1)/d with minimal prime factor
L. 1 <n<{and p>n®e, then

sq(Fp) > n.

O

Moreover, recalling that s;(F,) < 2 if 3d|p — 1, we obtain the following converse

result.

Corollary (1.5) Let d|p — 1,2d t p — 1 and let ¢(p,d) be the Euler function of
(p—1)/d> 1.
If p > 3¢9, then it holds

54(F,) =2 <= 3d|p—1.

Proof: s4(F,) > 1 since 2d ]Lp — 1. Hence clearly 3d|p — 1 = 34(F,) = 2.

Conversely, assume 3d { p — 1. Then the minimal prime factor in (p — 1)/d is
£ > 5. Thus for n = 3, if p > 3¢9 then 3a; = (1 +2(p — 1)/d)a; by (1.4) above.
Hence s4(F,) > 2 and the result follows.

2. On the Coefficients of the Period Equations for s4(Z/p‘Z)

The same method developed in 1. may be applied to find expresions for the

coefficients of the period equations

. d; = p" Ik, klp—1
PJ’(X) = HaeGr+1_j/u,+1_j(X - S(ij)a) of degree
0<j<r

involved in the calculation of s4(F/p‘Z).

88




The easiest example of s4(Z/p"*'Z) we may try to find is that for r = 1 with

E=2:
Let

= (Z/p*Z)" Uy = GR,dy =2p=d

G] = (Z/pZ)",L[l = Gfl,dl = 2

and
HU(T) = ﬁde =+ ﬁd..le_l 4+ /T +1

Hy(T) = agT? + o T + 1
reciprocal polynomials of

Po(T) = aegyu(T — S(¢7°)?)

P(T) = lae, uy (T = S(¢P)*)-

Then

H(T) = H,(T)H,(T) = ’}’d+.chd-'-‘c + ’Yd+k—1Td+k_1 + T +1

where

Yo = Z aiff; with apg=a; = fp = 1.
i+j=~£

Then

H(T) - (1 - 2= Dy = df[(w( D~ (4 D))yl T

k

n=0

and

sap(Z/p*Z) = min{nl(1 4 0Ly 2 (4 D).
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Let s = s9,(Z/p*Z)
For H{(T) we know:

ap = 1
{ —(p—1)/4if p=1(4)
g =
(p+1)/4if p=3(4)
For Ho(1') we find:
B = — ey, S(C)*
- z.'J:EGzﬂ.lz Zueuz C:zm
= - E:cEGg C:2
= - [TL G -
= —[(-1)=(-1)]
=0

Following by the method developed in 1., applying lemma (3.1) to characters

mod p?, we obtain
@ 1))22 ,jz—_jl (% 2.x(a) Zb: x0) = % )3 fﬂ(ﬂ)) ()7 (x’)

where y is a primitive character mod p?, of order d = 2p, and a,b € G3/U,.
Notice that then x* is primitive for all 1 < i # p < 2p — 1. Hence

T(x)) # 0foralll1<i#p<2p—1

m(x0) = 0

and

7(x?) =0 where x” is the quadratic character mod p*.
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Moreover, for all: <1 #p <2p—1

T(x)7(¥') = x'(-1)p(p — 1)

and
2p-1 2p if —1¢ u'z
Y X(-1)=
=0 0 if —1€U,

Thus we obtain

—E0 i p=1(4)

e =
0 if p=34)
since x? is the quadratic character and s = 1 iff p = 1(4), otherwise s > 1 = 2y, =
(14 ip;i,ll) = f, = £. (Actually this fact may be elementary proved).

Similarly we find

1 gl ; .
Bs=—-—== D, (x')r0)r(x*t)
12p f5=1
£,5,84+1=0(p)

where the sum may be expressed in a simpler way since if x is a primitive character
mod p? (i.e. if x has order d = pk, some k|p — 1), then 7(x) = p(,2, where (2
is a primitive p? ™ root of unity. Then, by the reduction formula (2) in §1.1, the
Gaussian sums mod p? may be computed.

Since the case p = 1(4) is solved, let us take p = 3(4).

Then the following conditions may be obtained:

(p-1)
2

3> 1 since 2y, =(1+ m ie =0
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§>2 <= 3ya=(1+2&1),
= fy=2etl

§>3 < 4y,=(1+38)y,
= b= +;2"3

Remark (2.1) We believe that the results in [G1-2] and [GZ] will let us compute
explicit examples of s4(Z/p‘Z) even if £ > 2.
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