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Resumen

Esta investigacién es acerca de ecuaciones diferenciales con retardo y las aproxima-
ciones numéricas de las soluciones de estas, y en particular, el problema de aprox-
imar soluciones sobre un intervalo no acotado y la transferencia de propiedades
cualitativas entre las soluciones de una ecuacién diferencial con retardo y su cor-
respondiente ecuacidén en diferencias.

Obtenemos resultados de aproximacién y transferencia de propiedades de estabil-
idad exponencial de las soluciones de ecuaciones diferenciales con retardo variable
no autonoma y de ecuaciones diferenciales funcionales retardadas con retroali-
mentacién, a sus respectivas ecuaciones en diferencias, apoyandonos en el uso de
argumento constante a trozos, teoria de ecuaciones diferenciales funcionales y de-
signaldades integrales entre oiros.

También probamos un resultado tipo Cauchy-Peano de existencia global, por
medio de la convergencia de una sucesién de soluciones aproximadas, para una
ecuacién diferencial semi lineal con retardo dependiente del tiempo y del estado.
De esta manera estudiamos la transferencia de propiedades de existencia desde la
ecuacién en diferencias a la correspondiente ecuacién diferencial funcional.

]

Abstract

This research is about differential equations with delay and numerical approxima-
tions of the solutions of these, particularly, the problem of approximate solutions
over an unbounded interval and transference of qualitative properties between
solutions of a differential equation with delay and the corresponding difference
equation.

We obtain results for approximation and transference of exponential stability prop-
erties of solutions of non-autonomous differential equations with variable delay and
retarded functional differential equations with feedback, respectively, to the cor-
responding difference equations by using piecewise ‘constant argument, theory of
functional differential equations and integral inequality among other.

Also we prove a global existence of Cauchy-Peano type theorem, by convergence
of an approximate sequence, for a semi-linear differential equation with time- and
state-dependent delay. This way we study the transference of existence from dif-
ference equation to the corresponding continuous functional differential equations.
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Introduction

1.1 Introduction

“Numerical Analysis is the study of algorithms for the problems of continuous

mathemnatics.”
— L. N. Trefethen, The definition of Numerical Analysis, 1992.

The study about chaotic behavior of some dynamical systems of continuous time was
motivated by unexpected results of numerical approximations of the solutions of system dif-
ferential equations, for example the non-linear system related ‘with weather prediction by
Lorenz (1963). In Sparrow (1982) several numerical approximations to the Lorenz equation
are computed, trying to collect as amount of information as possible. Sparrow was fully aware
of the limitations of the study of chaos by using numerical simulations. Usually it is expected
that qualitative properties of both continuous and discrete time dynamical systems are not
significantly different. However, well-known bounds for the error of numerical methods is
e®TRP where h is the step size, p is the order of the method and T is the length of the time
interval. From the above it follows that: if we compute approximations on a long interval
of time we cannot ensure that the approximation is close to the solution neither that have
similar qualitative features. Several authors have addressed the problem of finding necessary
conditions to ensure that the distance between the approximate and actual solutions of dif-
ferential equations is small, regardless of the length of the time interval. The study of the
relation between the continuous and discrete dynamical systems is an interesting problem,
see Cooke and Gybri (1994); Cryer (1972); Griine (2002, 2003); Gydri (1991); Kloeden and
Lorenz (1986); Kloeden and Schmalfu§ (1996). This type of result are equivalent to find con-
ditions to ensure that discretization of differential equations does not significantly alter the
basic qualitative features of the solutions. For ordinary differential equations it is well known
that if has an asymptotically stable steady or periodic solution, then comparisons between
solutions, for a long time, are possible.

Recently, several researchers have discretized systems of differential equations using piece-
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wise constant argument, they obtained an Euler’s approximation of the solution of original
system, see Mohamad and Gopalsamy (2003); Huang et al. (2006); Abbas and Xia (2013).
These paper follow the ideas developed by Gyori (1991}, who was interested in the conver-
gence of several approximation, by piecewise constant argument, to the actual solution of
a linear differential equation with delay. Actually, that work belongs to a series of papers
about approximations of solutions of delayed differential equations (see Gyori, 1988, 1991;
Cooke and Gyori, 1994; Gyori et al., 1995; Gyéri and Hartung, 2002, 2008). In the theory
of functional differential equations numerical approximation is a key topic since numerical
computations is the main technique to visualize the solutions that, in general, can not be
expressed explicitly, even for non autonomous scalar linear equations. Numerical methods for
differential equations with delay are well-known, see Bellen and Zennaro (2013). Numerical
analysis for the study of stability of delayed differential equations have been developed re-
cently, see Breda et al. (2015). However, the study of numerical approximation of a solution
of functional differential equations over an unbounded interval is in correspondence with the
problem of transference of qualitative properties between a continuous dynamical system and
the corresponding discrete dynamical system. For delay differential equations, in the scalar
case, there are results about presence of spurions dynamics in numerical approximation, i.e.,
dynamics that are not present in the actual solutions (see Gyéri et al, 1996; Hartung and
Turi, 1995; Cooke and Ivanov, 2000). Therefore, numerical approximation is closely related
with the problem of existence and stability of solutions. Since our bibliographic review we
conclude that:

Theorems of approximation and transference of stability properties of differential equations
with variable delay could be generalization of the results in Cooke and Gy&ri (1994); Gyori
and Hartung (2002) to larger cases. These kind of results will contribute to the development
of existing theory at present and can be applied in identification of parameters in differential
equations (see Hartung and Turi, 1997; Hartung et al., 1998, 2000).

Recently Benchohra et al. (2013) have studied the global existence of solutions of functional
differential equations with state-dependent delay. They obtained an existence of Cauchy-
Peano type for equations differential with time- and state- dependent delay by Schauder
fixed point. Theorems of global existence of Cauchy-Peano type, proved by convergence of
a sequence of functions, for differential equations with state-dependent delay would be a
extension of the local existence results of Tavernini (1978) and Gydri et al. (1995) that could
be applied for neutral differential equation with state-dependent delay Hartung et al. (1997). '

Therefore the overall goals of this research are:

3
1. Establish theorems of approximation and transference of stability properties of solutions
of differential equations with variable delay using piecewise constant argument.

2. Establish theorems of approximation and transference of stability properties of solutions
of differential equations with distributed delay using piecewise constant argument.
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3. Relate results of existence, Cauchy-Peano type of solutions of'differential equations
with delay transfer Results existence between solutions of a difference equation and
differential equation with delay.




1.2 Basic theory of differential equations with delay

Suppose g > 0 is a given real number, R = (oo, o0), R™ is an n-dimensional linear
vector space over the field of real numbers with norm ||||; C'(la, b], R"} is the Banach space
of continuous functions mapping the interval [e,b] into R™ with the topology of uniform
convergence. If [a,b] = [¢, 0] we let C = C([g,0],R™) and designate the norm of an element

@ in C by lfell, = sup_g<p<o I @) If
toceR,A>0, and z € C([tg —q,tn +A],Rn),

then for any ¢ € [to,to + A, we let z,(f) = z(t +0),—¢ < 8 < 0. IfDisa subset of
R x C,f: D — R is a given function and “ ' ” represents the right-hand derivative, we say
that the relation

'(t) = f(t2e) (1.1)

is a differential equation with delay or a retarded functional differential equation on . A
function 7 is said to be a solution of equation (1.1) on [tg — g, %0 + A) if there are tp € R and
A > 0 such that = € C([to — g, to + 4),R"), (t,2¢) € D and z(?) satisfies equation (1.1) for
t € [to,to + A). For given tg € R, ¢ € C, we say z(to, @, f) is 2 solution of equation (1.1) with
indtial value ¢ at tg if there is an A > 0 such that z(to, ¢, f) is a solution of equation (1.1) on
[to — g, t0 + A] and z4,(t0, ¢, f) = ¢. The theory of differential equations with delay can be
found in Driver (1977) and Hale and Lunel (1993).

1

1.2.1 Existence

To study existence and uniqueness for differential equation with delay (1.1) with initial
value ¢ at %y by converting into an integral equation we need a continuily condition over
f(t,z), Le. f(t,z:) is continuous with respect to ¢ in [to,to + A) for each given continuous
function x € C.

If f : D — R satisfies continuity condition then a continuous function z € C is & solution
of equation (1.1) with initial value ¢ af fg, over [to — g, to+ A1) for some 0 < Ay < A4, if and
only if

2ty =4 P~ to) for tg—g <t <ty
$(0) + [ f(s,2s)ds fortg <t <o+ Ar

Definition 1.1. The functional f : D — R™ is said to be locally Lipschitz if for each given
(1,$) € D there exist numbers a > 0 and b > 0 such that:

M=[r—ar+ax{peC:|—9¢f, <t}
and f is Lispchitz on M N D.

Next we recall some fundamental theorems
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Theorem 1.1 (Uniqueness). Let f : D — R® satisfy the continuity condition and let it be
locally Lipschitz. Then, given any ¢ € C (1.1) have at most one solution with initial condition
¢ attg on [to — g, A1) for some 0 < A; € Al

Theorem 1.2 (Dependence on initial conditions). Let f : D — R™ satisfy the continuity
condition and let it be (globally) Lipschitz. Let ¢ and 4 € C be given and let x and y be
unique solutions of Fq. (1.1) with 1, = ¢ end y, = . If © and y are both defined on
[to — g, A1) then

=€) — w()]] < ll¢ — pll, eE9) forto <t < Av.
Theorem 1.3 (Local Existence). Let f : D — R” salisfy the continuity condition and let it

be locally Lipschitz. Then, for each ¢ € C, equation (1.1) with z=¢ have o unigue solution on
[to — 7,0 + A) for some A > 0.

The above results can be found in Driver (1977).

1.2.2 Stability

We recall definition of stability of the solution x = 0 for differential equation with delay
(1.1) from Hale and Lunel (1993).

Definition 1.2. Suppose f(t,0) = 0 for all t € R. The solution z = 0 of equation (1.1)
is said to be stable if for any to € R,e > 0, there is a § = d(¢,tp) such that phi satisfies
l¢ll, < & implies |lzs(to, )|, < € fort = to. The solution z =0 of equation (1.1) is said to be
asymptotically stable if it is stable and there is bp = bo(to) > 0 such that if [|@||, < bo implies
z(t;to, @) — 0 as t = co. The solution x = 0 of equation (1.1) is said to be uniformly stable
if the number § in the definition is independent of to. The solution x = 0 of equation (1.1) s
uniformly asymptotically stable if it is uniformly stable and there is by > 0 such that for every
n > 0, there is a T(n) such that if |||, < bo implies x:(to, @) < n fort > to+ T for every
g € R.

For homogeneous linear system of functional differential equations the uniformly asymp-
totically stability of the solution z = 0 and the exponentially asymptotically stability of the
solution = = 0 are equivalent (see Hale and Lunel, 1993, pp. 185).

1.2.3 Variation of parameters

In the theory of linear evolution equations an important tool is formula of variation of
parameter. We [ollow (Driver, 1977) and consider the linear delay differential system

- '(t) = L(t, z) + h(t), (1.2)

where L : [0, 4) xC — R™ is linear for all ¢t € [0, 4), } is a continuous n-vector-valued function
on {0, A). The variation of parameter give us an expression of {t;fp, ¢) in terms of solutions
of the linear homogeneous equation

y'(8) = L(t, w)- (1.3)
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Next, we. define the unit step function u : [—¢,0] = R by

[0 for —g<o <,
u(cr)—{ 1 fore=0 (14)

Theorem 1.4. Let L : [0, A) x C — R™ is linear for allt € [0, A), h is a continuous n-vector-
valued function on [0, A). Then for each ¢ € C the unique solution of equation (1.2) is given

by
. A
2(t;to, ) = y(t; o, §) + ]t y(t: 5, h(sYus)ds, (15)

where y(t; to, &) is the solution of (1.3) with initial function .

1.2.4 Halanay Inequality

Halanay (1966) proved an asymptotic formula for the solutions of a differential inequality
with delay, and applied it in the stability theory of delayed linear systems. Since beginning
of the twenty-first century several authors have called Halanay inequality to such inequality
(see Baker and Tang, 2000; Mohamad and Gopalsamy, 2000; Liz and Trofimchuk, 2000; Liz
and Ferreiro, 2002; Liz et al., 2005).

Theorem 1.5. Let ¢y be a real number and g be a non-negative number. Ifv : [tg—g,00) —+ RT
satisfies

—d—v(t) < —av(t) + 8 [ sup 'u(s)] s >
dt sEft—g,t]

where & and B are constants with o > 3 > 0, then
0(t) < [l ll, €7 for > 4, (1.6)
where 77 ts the unique positive solution of
n=a-— [l (1.7)

Proof. We follow the proof of Driver {1977). We start showing that equation (1.7} has a
unigue positive solution, we consider the function defined by:

At) =t — a+ e’

Since A{0) < 0, A(a) > 0, and A'(t) = 1+ Bget? > 0, it follows that there is a unique € R
for which A(n) == 0. Moreover 0 < 77 < . '

Define w(t) = [Jvy |, e~ %) for ¢ € [tg, 00) and let k > 1 be arbitrary. Then v(t) < kw(t)
for g — g < t < tg. Now suppose that v(t) = kw(t) for some ¢ € (fp,00). Then since v and w
are continuous functions, there must exist some ¢1 € (tg,00) such that:

() < kw(t) for tg — g <t < 1 and v(t1) = kw(ty).
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This could not oceur if v/(£1) were lest to kw'(¢1). But, on the other hand, we find

v'(t1) £ —av(t) + Bllunl,

< —akw(t) + Bkw(t, — q)
k[l ly ™47 (—a + ™)
= kvl et} (_p)
= kw,(tl)!

a contradiction. Thus we conclude that
v(t) < kw(t) for to < 4.
Finally let £ — 1 to find v(t) < w(t), which is (1.6). a

Baker and Tang {2000) were, to our knowledge, the first to get a Halanay type inequalities
for non-autonomous functional differential equations. Mohamad and Gopalsamy (2000) they
also obtained a Halanay type inequalities for non-autonomous functional differential equations.
To conclude this section we show an integral version of Halanay inequality.

Lemma 1.1. Consider

¢
o) < o, e ol—t) £ (1) —!—f etk [ sup 'u(u)] ds, t2=tg,
to u€[s—q,s]

where o,q and K are positive real numbers, and f € C(R) is a positive non decreasing function.
Ifo > K > 0, then there exist n > 0 and M > 0 such that

v(t) < [lull, F(E)eE), ¢ > g,
where 1 1s the real solution of
=0 — Ke™M,

Proof. We define w(t) := %, so we have

¢
w(t) < lvgllg e~ (t-to) _|_f e—ot—5)
ty

[SuPuE[s—q,s] f(u)] [
f()

sup w(u)] ds.
uE[s--g,5]

Since the function f is non decreasing we have

t
w(t) < |lveg ”‘;r g~ {t—to) +ft e t=s) i [ sup w(u)] ds.
0

uE[s—g,s}
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Now define

(t) . { ”UtD“q for g — q <it<ip
P} = “Uto]]qe—d(t—*o) + J; et} | [supue[s_q,s] w(u)] ds forig <ft.

Then p is continuous and nonegative, and w(t) < u(t) for tg — g < t. Moreover, for {g <1

#’(t)S—cr;,a(t)+Kl sup ,u(u)].
ueft—q,i]

Since ¢ > K > 0, by Halanay’s inequality, there exists 17 > 0 such that
p(t) < e M) >4

Therefore
w(t) < pt) < flog[l,e7E2), £ >4,

and
w(t) < |lvgll, FR)eTE), ¢ > o,

O

1.3 Basic theory of differential equations with Piecewise Con-
stant Argument ;

Differential equations with piecewise continuous arguments (DEPCA) arise when looking
for an extension of the theory of functional differential equations (IFDE)} with continuous
arguments to differential equations with discontinuous argnment.

The theory of scalar DEPCA of type

2'(t) = (&, =(t), z(R(2))),

where the argument () is constant on certain intervals, for example h{t) is the gratest-
integer function. The study of DEPCA was initiated by Wiener (1983, 1984); Cooke and
Wiener (1984). DEPCA has received attention of several researcher because include impulsive
and loaded equations of control theory, and some biomedical models have used DEPCA as
successful mathematical model, see Busenberg and Cooke (1988); Byrne and Gourley (2001);
Gourley (2003).

DEPCA are hybrid equations, because they combine the characteristics of continuous and
discrete equations. The continuity of a solution in points that unite two consecutive intervals,
implies the existence of recursive relations for the solution in these points.

Akhmet {2007) introduced differential equations with piecewise constant argument of gen-
eralized type (DEPCAG), these kind of functional differential equation have been widely
developed (see for instance Akhmet, 2008, 2010; Pinto, 2008, 2011, and references therein).
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1.3.1 Approximation using piecewise constant argument
Given a real normed vectorial space V, and the vectorial delay differential equations,
¥ = FtyhylE—7)), 7>0, (1.8)
with the initial condition
y(t) =¢(t), -T1<t<0, @eC=C(-70,V), (1.9)

where f : RT x V x V — V is a continuous function and 7 > 0 is a real number. In Gyori
(1991) was introduced an approximating delay differential equation with p1ecew1se constant
argument, related to equation (1.8) in the following form:

24,(8) = £ (& zn([t]n)s 2 ([ — [718)) (1.10)
with the initial condition
zp(nh) = p(nh), n=-k,---,0, (1.11)

where A = % and & > 1 is an integer, and [In = [] h is the usual greatest integer function.
By = solution of initial value problem (1.10)-(1.11) we mean a function zp, defined on {-kh :
k=0,1,- -, such that — A < —kh < 0} by (1:11), which satisfy the following properties on
Rt

1. The function z; is continuous on RT,

2. the derivative 2} (t) exists at each point ¢ € R* with the possible exception of the points
kh(k=0,1,2,---) where finite one-sided derivatives exist, and

3. the function zj satisfies (1.10)‘ on each interval I\ p) = [kh, (k+1)h) for £=0,1,2,---.
The equation (1.10) it is equivalent to
z,(t) = f (¢, zn(An), zn(h(n — k))), t € lmpn), n 20,

with the initial condition (1.11): We have that the solution of (1.10)-(1.11) must be a solution
of

2p(t) = zp(hn) + ]ht f(s,a(n),a{n — k))ds,t € Irn gy,

where h, = hAn; and a{n) := a,(n) is a family of initial value that must solve the delayed
system of difference equations

a(n +1) = 24 (hn) + / F(s,a(n), a(n — k))ds,n € N, (1.12)

with the initial condition
a(n) =@(hn), n=-k--,0 (1.13)

It follows from our discussion that is necessary for the approximation method the existence
of unique solutions of delayed nonlinear equations (1.8)-(1.9), (1.10)-(1.11) and (1.12)-(1.13).
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2

Non-autonomous differential
equations with variable delay

The study of transference of uniform asymptotic stability between solutions of linear dif-
ferential equation with delay and the corresponding discrete difference equation starfed with
Cooke and Gyéri (1994).

Gyéri et al. (1996) approximated several differential equations with time- and state-
dependent delay. However, when they computed the approximation for the functional dif-
ferential equation

/() = y(t — y(H)]) + sin(2e) — sin(¢ — sin®(¥)), £ > 0,

with initial function ¢(t) = sin®(¢), they noted differences between asymptotic behaviours of
numerical and actual solutions (see Hartung and Turi, 1995).

Cooke and Ivanov (2000) studied the dynamic of the solutions of a singular difference equa-
tion with delay which can be interpreted as an Euler discretizations of a singularly perturbed
differential equations with delay. They stated, in the conclusion of their paper, that numerical
approximation of solutions of singularly perturbed delay differential equations maybe showing
dynamics which are irrelevant to the actual dynamics in these equations. These type of dif-
ficulties, namely spurious fixed point, are well-known for Runge-Kutta methods of numerical
approximation for ordinary differential equations.

Mohamad and Gopalsamy (2000} proved Halanay-type inequalities for nonautonomous
scalar systems with discrete and distributed delays. They use piecewise constant argement to
obtain a discrete non-autonomous difference systems and then show discrete time inequalities,
which are analogues of continuous time inequalities. Therefore, in some sense, they also
proved the transference of stability of differential equations with delay and the corresponding
difference equation.

Liz and Ferreiro (2002) proved a discrete version of Halanay’s inequality and used it to
obtain the transference of asymptotic stability between the solutions of

#'(t) = —ax(t) + o) f (%), w0 = ¢,
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and -
ﬂ-}'lh—mn. = —QaIpn + b(tﬂ)f(tﬂ’ Qﬁn)'

Gyéri and Hartung (2002) studied the transference of uniform asymptotic stability between
solutions of linear neutral differential equation with constant delay and the corresponding
discrete difference equation, this way they extended and complement the result of Cooke and
Gydri (1994).

Mohamad and Gopalsamy (2003) studied the asymptotic behaviour of continuous-time
cellular neural neiworks with discrete delays. Using piecewise constant argument they ob-
tained discrete-time analogues of the continuous-time cellular neural networks and proved
that the asymptotic behaviour of the contimious-time systems are preserved by the discrete-

{ime analogues.
In this chapter we study discretization, approximation and transference of uniform asymp-
totic stability of a non-autonomous linear differential equations with variable delay.

2.1 Discretization by piecewise constant argument

We consider the homogeneous non-autonomous linear differential equations with variable

delay
z'(t) = —a(t)x(t — (1)), (2.1)

where a : [0,00) — [0,00) and r : [0,00) — [0, g], with initial condition
z(t)=p(t), —¢<t<0, peC=C(-q0R), (2.2)

where ¢ := suptemg{r(t)} is a positive real number. The set of DEPCA corresponding to
equation (2.1) is:

24(0) = —oan [t = [r(EW)],], ) (2.3)

where []p = [|h with [] the ‘usual greatest integer function. The initial condition for differ-
ential equation (2.3) is
zi(nh) = @(nh), n=-k---.0, (2.4}

where A is a positive number in the interval (0, g]. In fact we can consider b = { where k > 1is
an integer. By a solution of (2.3)-(2.4) we mean a function z, defined on {ih:i=—k,-.-,0}
by (2.4), which satisfy the following properties on R*:

i) The function 2, is continuous on R¥,

ii) the derivative z},(¢) exists at each point ¢ € R* with the possible exception of the points
ih{i=0,1,2,---) where finite one-sided derivatives exist, and

iii) the function 2z, satisfies (2.3) on each interval I(;py := [jh, (§ +1)h) for j =0,1,2,--

14




Note that for every positive h close to zero, it is expected that solutions of (2.3)-(2.4) has
similar qualitative features to the solutions of (2.1)-(2.2), since [t]n — ¢ uniformly on R, as
h — 0. But this can be false, even for Euler’s method, in the setting of singular functional
differential equations, see Cooke and Ivanov (2000).
If we denote

t_ rizlh)

(k7)== [E - [T]]h’
then equation (2.3) can be write like

24 (8) = —a(t)zp(m(t, 7).

For £ € I(; ) the function r([£]h) take just one value, therefore the function [T—([E]ﬂ-] = ky is
a fixed integer for ¢ € Ij; ). It follows that

r([1)h t
G- M2 = sl
_ [t—zf;»i«zh_ki]
_ [t_ih-l—i—ki],

since ¢ € I; ) we have 0 < 158 < 1, 50

tip .
F- ) - oo

It is follows that
")fh(t, 7‘) = h(@ — k,‘), fort e I(z,h)

Therefore (2.3) is equivalent to
2 () = —a()zn(h(i — k1)), € Ipy, 42 0. (2.5)
Note that, for th < t < (i +1)h, we integrate (2.5) and obtain

f
alt) = zn(ih) - /;ha(s)dszh(h(z’—ki)).

Making ¢ —+ (i -+ 1)h~, [rom the continuity of z, we obtain

(G+1)h
(i +Dh)ds = zu(ih) — jih als)dszn(h(i - k).

Therefore the sequence 35(7) := zx(3h) satisfy the linear difference equation with variable
delay

(nt+1)h
san+1) =salm) = [ als)dsan(n — ko), 2.6
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with initial conditions
su{n) =pmh), n=0,1,--, —g=<-nh<0. (2.7)

Note that (2.6)-(2.7) is a discretization of the differential equations with variable delay (2.1)-
(2.2) that coincides with Euler’s approximation method for autonomous differential equations
with variable delay. From the recurrence relation (2.6) and initial conditions, we have

3(0) = (0)
h
(1) = sl O)—/ a(8)ds3r(0 — ko),
(2 = )~ [ oldssu(1— k)
= 3(0) — /a(s)dsah(ﬂ ko) — / a(s)dszn(1 — k1).

Therefore the sequence 3, solution of (2.6)-(2.7) is well-defined, and satisfy

n-1l LG4k
=p(0)— .[h a(s)dszp(i— ki), k=0 (2.8)
i=0 "
From (2.8), it follows that the solution of (2.3)-(2.4) for ¢ > 0 can be written

, ¢
an(®) = nlm) + [ ale)dssn (n— k),

n(t) = @(0) - Ti / a(s)dssn (i — ki) — /n th a(8)dszn (n — kn),

where n = n(t) is such that nh <t < (n-+ 1}h. Thus, we have proved

Theorem 2.1. The initial value problem (2.3)-(2.4) has a unique solution in the form

i4-1)
zp(t) = ©(0) — Z/ " a(s)dszn(i — ki) — f (8)ds3n (n — k)

for t > 0 and the sequence 3(-) satisfies the nonlinear difference equations (2.6) with initial
conditions (2.7).
2.2 Aproximation over compact interval

We begin this section by addressing the problem of approximation of solutions of initial
value problem (2.1)-(2.2) over compact interval. We follows some ideas of Gydri (1991) to
obtain.
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Theorem 2.2. Ifr : [0,00) — [0, ¢] is a continuous function then, for any ¢ € C, the solutions
z(p)(t) and z;(p)(t) of the initial value problems (2.1)-(2.2) and (2.3)-(2.4), respectively,
satisfy the following relations for allT > 0

lim, max [2(9)(8) ~ (@) O] =0

namely

T T .
max (0)(0) - ()0 < [efo s [ a(s)ds] wa (e (B5T) +205T) . (29)
where wy(h;T) and wz(h;T) are defined by

we(h;t) = max{|r(ta) — r(t1)|: 0 <t1,82 <&, [ta —t1| SR},
wy (wr(hyt) + 2h;8) = max{|z(ts) —z(t1)]: —~g <ti,ta <4, [tz — 4| < 28 +wp(h,t)}.

Proof. Consider the solutions z(t} = z(¢)(f) and zx(t) = 23(p)(t) of initial value problems
(2.1)-(2.2) and (2.3)-(2.4), respectively. Then from (2.1) and (2.3) we find

2'(t) — 24(t) = —a(®) [=(t — 7)) — za (7)),
for all ¢ > 0. Thus the function e, (t) = z(t) — zp(t) satisfies
en(t) = —a(t)en(mm(t, 7)) — alt) [5( — r(8)) — (w8 7))},

for all t > 0 with £5(0) = 0 and ex(y,(t, 7)) = 2((t, 7)) — 2a(ya(t, 7). We integrate over
[0,] and obtain

t t
er® < [ als)lenlm(s,r)lds + [ als)le(s ()~ lm(sr))l ds
< [ a(s)lents,r{s))lds + (o)
where ;
ﬁﬁ%zﬁa@h@—ﬂ@~x@@wM@,t2&
On the other hand,

vu(8,1) < sforalls >0,
and from initial conditions we have that
ler (v (s, 7)) = ko(r(s, 7)) — zplvals, 7)) = 0,

for all s > 0 such that (s — r) < 0. Therefore function §(f) = miaxp<s<t |[en(s)| satisfies the
inequality

Em5LEM&MMMﬁ+mm£L%®ﬂw@+mm,tzm
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since the integral term and f;(2) are monotone increasing functions. Now, from Gronwall-
Bellman inequality we find

£() < fu()eh %, e o1 (2.10)
Now, we note that |t — r(£) — (6, 7)| = [t —7(£) — (i — ki)h| where i = [£] and k; = [r(iih]h)]’
S0

t—r@) —mE| < [ —dhl+ir(E) — kil
= |t~ [%]h r(E) — [——mT([i]h)]hl
7

@ -r )]+ e - (2

+

< h+

< h+

r(6) — r{iz )| +
< 2h+uw(h;t), (2.11)

where w,(h;t) = max {|r(t2) — r(t1)| : 0 < #1,t2 <%, |t2 —#1] < h}. Note that for uniformly
continuons function r, w.(h,t) tends to zero as A — 0. Set

wy (wr(h;t) - 2h;t) = max {|z(t2) — z(t1)| 1 —g <, t2 <8, 2 — ta| < 28 +wp(h,t)}.
Then from (2.11) it is follows that
(s — 7(5)) — an(5, )| < g (wr(Bs) + 2318),

for all 0 < s < ¢ and for all r. Also,

£
@) < j a(s)ds wx(wr(h;t) + 2h;t), t>0,
0
and clearly (2.10) yields
t i
£(t) < eJo 5(s)ds f als)ds wp (we(h:T) 1 20:T),  te[0,7). (2.12)
0

Since (2.12) and [e(2)] = |2(t) — zx(t)| = |2()(t) — 2z (p) (@)} < £() we obtain (2.9) for all
h=%>0andte[0,7]. So,forallT >0

max |z(ip)(t) — zr(p) ()] <

fTa(s)ds T
0<t<T ese fo a(s)ds| wy (we(h;T) +2h0;T) = 0,

as h — 0, from the uniform continuity of the functions z and r on [0, T].
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2.3 Transference of stability properties

In this section we obtain a necessary conditions for transference of uniform asymptotic
stability of the zero solution of (2.1) to the zero solution (2.6). We assume that:

(A1) The zero solution of (2.1) is uniformly asymptotically stable, (see definition 1.2),
(A2) the function a(t) is bounded, namely

ag = sup |a(t)] < co. (2.13)
£20

(A3) The function r(z) is uniformly continuous on [0, cc).

Next we will obtain an estimate for the distance between the solutions of initial value problems
(2.1)-(2.2) and (2.3)-(2.4) on [0, co).

Theorem 2.3. If the assumptions (A1), (A2) and (A3) holds. Then for h small enough,
and for every v & C the solutions x(p)(t) and zn(w)(t) of the linear differential equations with
delay (2.1) and (2.3), respectively, satisfy

|2(} () — zu{) (D] < K s lz()(s) — za(0)(s)] + K1()Mn |lll | €750, ¢ > g,
0—g<s<
where 1) > 0, to.= 3¢+ wy(g) and K1(h) = a? [2h + wr ()] K, with ag defined in (2.13) and
wr(ﬂ) = maX{IT(tg),—T(fl)I 2 0 <, 19 ]tg —t]_] < f},
and K1{h) — 0 as h = 0.

Proof. Consider the solutions z(¢) = z(yp)(¢) and zx(¢) = 2z,(p)(t) of differential equations
with delay (2.1) and (2.3), respectively. We define the error function Ei(-) = z(-) — zp(*), i
follows that

Ep(t) = —a(®) [z(t — () — 2n{y (&7

for all t > 0. Adding and substracting a(t)z(t — r(t)) we obtain -
Ey(t) = —a(t)Bn(t — r(t)) — a(t) [2a(t — () — 280wt 7)),

and, by fundamental theorem of calculus, we have

~r(t)
BA() = —aBh(e — () ~a(t) [ |46k
Now, from (2.3), we obtain
t—r(t)
Bh(t) = ~a())Ealt — 1) - a®) [ al@)en(mle s,
mitr)
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it is follows that

, b-r(t)
EL(#) = —a(®)En(t = 7(8)) -+ al) )

a{€) Ep (v (€, 7))dE + gn(t),
Tt

where )
e
o) = o) [ @l RRCER
Wt
Since variation-of-constants formula, (see Driver, 1977, pp. 334), we have

t r(s)
En(t) = Utto, Eng) + | U (t;s, [a(s) ( Lo a(&)Eh(fm(f,r))dg) +gh(s)] u) ds,

where U (t;20, En,, ) is the unique solution of equation (2.1) with initial value Ep, at fo, and
u is the unit step function u : [—g,0] — R defined by (1.4). Thus [E,(t)] for all £ > to satisfles

s—1(3)
U (t; 3, [a(S) ( _/ a(cf)Eh(%(&,T))d&) +gh(3)} U)

T {s:r)

ds.

(2.15)

Since we assume that zero solution of (2.1) is _uniformly asymptotically stable, there are

constants o > 0 and K > 0, (see Hale and Lunel, 1993, pp. 185}, such that for each ¢ € C we
have

B (9] < [0, B, )+ [

Ut 5,8 < K ll6llye™@), t2s. (2.16)
Moreover, there exists a constant My such that ,
lz(®)| < Mo [lpllge™, t20. (2.17)

In order to use (2.17) to estimate gx(t) we need find a positive real number %o such that for
t > tp then
0= 7h(£: t)! whenever § > ’Yh(t’ T)'

We recall (2.11), i.e., |t — r(&) — w(,7)| = I, ) — £ +7(E)| < 2h 4 we(h), it is follows
t—r(t) —wp(h) — 2b < W(t,7) <t —7(t) + we(h) + 2h.
Since h € (0,q] and 7 is uniformly continuous on [0, 00) it follows
t—3g—wr(g) <t —r(t) —wrg) — 29 <t —7(t) ~wr(h) - 2k < m(E 7). (2.18)
Now we use (2.17) and (2.13} in (2.14) to estimate gx(t) for ¢ > ¢o := 3¢ +w(g) and obtain:

t—r(t)
a3 [f NECHENIE:

n (T

A

lgn (8]

A

t—r(t)
a? [ My |||l e~ EmNge
'’

R (tir)

I

t—r(t)
CE% _/‘_! MO "(p”q e_g‘sea[g_'fh(f,r))]d&’

{Er)
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since (2.11) and uniform continuity of r we have

A

t—r(t)
G [ Mo el et e g
mr)
—T(

< eI @) ag /t

Yu(tr

lgn (2]

Next, using (2.11)}, we estimate s — (s,T)

s oA(sr) = s—r(s) - (er) +1(5)

<
< 3Q+wr(‘I)-

Since t > tp 1= 3¢ +wr(g), (2.11), (2.18) and (2.20) inequality (2.19) become inio

ga(t)] < e "*afM (ol 20 +wr(R)],

where

My = Mge®lBat2wr ()]

21
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) My ”(P”q ea'['wr(h)+2h.]d€.

(2.19)
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Using estimations (2.16) and (2.21) for #g := 3¢ + w,(g), in (2.15) we obtain for £ > tp

’

s5—r{3)
U (t;s, [a(s) (/; al&) B (v (€, r))dé) +gn{s) ds

(AERY

O < 10t B+ [

< K, e
t s—1(s)
+ f Kl |a(s) f a(€)Er (11 (€,7))dE | + gn(s)| ull e ¢~ )ds
to 'Tﬁ(,g,r) .
< K[t
o s—r{s) t
s [l | [ a@Baomema || +lon(a)l | er0ds
to 1h(8,T)
t s—r(s)
< K”Eh,,o"qe_o'(tﬁto)-}—ag/ K/( )Eh(']’h(g,'f‘))df e—a’(t—-.s)ds
to Tn(s,T
£
+ | Keo*adMy ||, [2h +w-(R)]e "¢ ds
to
¢ s—r(3)
< KBl v [ K{ i) [ et
! o h(s,r)SsSs—r(s) nisr)
+ad KMy floll, (2 +w-(R)] e 't
£
= K|E,| e_a(t_to)‘i‘agf K sup 1Ba ()] ) (5 — 7(5) — (s, 7)) e 7 Cds
7 1o This,r)<e<Ls—r(s)
+ad K My Jloll, [2h +we (R)] et
4
< Kl wadhrun @] [ K sp () s
! o \s—3g-wr(h)<e<s

+ay KMy ol (2 -+ wr(R) €™

t
= ) [K By ||, + EaMa loleot] + Kalw) [ €7D s |Blds,
0

a—tp<css
where Kj(h) := a2 [2h + w(r; h)] K. If h is small enough such that:
o> Ky (h),

then by Halanay type inequality, Lemmal.l, there exists 7 > 0 such that

|En(8)] < [K [ B ||, + a2 fioll o8] €710, 2 > 1, (2.22)

where 7 is the positive solution of

=0 — Ki(h)e".
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Thus we have proved the fundamental theorem of this chapter. There are similar results
to our results, however the novelty of our theorem lies in the considered delayed differential
equation and thé technique used in the proof. Both Cooke and Gyori (1994) and Gyéri
and Hartung (2002) they relied on the Gronwall-Bellman inequality to obtain an estimating
exponential decay. Using Gronwall-Bellman inequality (2.22) become into

O] < [ B |, + Katmads ol | 10, 22,

where g = o — K1(h)e®?. Therefore we need . small enough such that
o > Ki(h)e™ = a2 [2h + w(r; )] Ke 9.

On the other hand, the necessary condition to use Halanay type inequality is: s small enough
such that
o> Ki(h) = af [2h +w(r; h)] K,

then
IBa(0)] < [K | Bt |, + Ba) Ml 08| €76, 22 20,

where 7 is the positive real solution of
n=0c— Ki{h)e™.

We note that the size of h is independent of the delay size ¢, and the number —n is the unique
real solution of the characteristic equation

A= —0+ Ki(h)e™, (2.23)
corresponding to the differential equations with delay
y' () = —oy(t) + Ki(h)y(t — 9)-

In fact —y is the eigenvalue of the characteristic equation (2.23) with the greatest real part.

Now we can prove that the solutions of (2.6)-(2.7) approximate uniformly the solutions of
(2.1)-(2.2), and also that zero solution of (2.6)-(2.7) is uniformly asymptotically stable.

Corollary 2.1. Under the conditions of the theorem 2.3, we have that:
1. |z — zp (L) | = 0 as h = 0, fort > 0;

2. the zero solution of the difference equations with delay (2.6)-(2.7) is uniform asymptot-
teally stable.
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Proof. In section 2.1 we have shown that (2.6)-(2.7) correspond to a discrete version of differ-
ential equation (2.1)-(2.2). We recall that z;(hn) = 31{(n) for n any positive integer. If £ < 2o
we use theorem 2.2, If £ > ¢ then

() =z ([tle) | < o) — 2 ({Ea) | + |2 () — 2n (Fla) |-

Then, from inequality (2.22), we have

o) — za (fHa)| < [=(8) — = ([} |+ [K | B |, - Kr)1 e, [ﬂh] e~ nllth—to),

Next, for € > 0 there are positive constants hy, ko and hs such that:

If b < hy then |z(t) — = ([t]x) | < §, since continuity of . If A < Ag then "Ehto

theorem 2.2. If A < hg then Kj(h) < m—éﬁ%. Therefore, for h < min{hy, hig, h3} it is
q

follows

Iq < 3%, from

lx(t) — 2 (ft]a) | < §+g+§=e.

We have shown part 1. Since inequality (2.22) we have also
|z(nh) —3n(n)] < [K “Eh:o "q + K1 (h)M; |]<p||qnh] e~ mhta} 4 0 as n — oo.

Since the zero solution of (2.1)-(2.2) is uniformly asymptotically stable, and |z(nh) — za(n})||
decay rate exponentially to =zero, it is follows that 3p(n) tends to zero exponentially, for
every initial conditions (. Since the difference equation (2.6) is lineal, and the zero solution is
exponentially stable, it follows that the zero solution of (2.6)-(2.7) is uniformly asymptotically
stable. O

Thus we have shown that under the hypotheses of theorem 2.3 the numerical approxima-
tions of equation (2.6) are good for all T' > 0, independent of the size of 7. Moreover the
corresponding discrete difference equation is uniformly asymptotically stable also. Further-
more, our result is independent of delay size, this was possible thanks to our use of inequality
Halanay. Thus we extend and improve the results of Cooke and Gy®ri (1994). We use piecewise
constant argument, theory of functional differential equations and Halanay-type inequality in
the proof. We emphasize our use of Halanay-type inequality at the proof of our result because
given us the estimate (2.22) an optimal inequality for iransference of uniform stability, which
improve the results of Cooke and Gyéri (1994) obtained using Gronwall-Bellman inequality.

2.4 Applications and examples

In our result we assume that the zero solution of (2.1) is uniformly asymptotically stable,
the problem of find necessary conditions for uniform stability of non-autonomous differential
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equations with variable delay called the attention of several authors because its difficuléy.
Next we recall some stability criteria for equation (2.1) and apply our result to obtain stability
criteria for difference equation.

A classic result of stability for functional differential equations can be found in Yorke
(1970). A consequence of Yorke's theorem is:

Theorem A. (Yorke). If the function a(-) satisfy
O0<alt) <a, t2>0

for a positive constani o such that

3
0< =.
aq<2

Then the zero solution of (2.1) is uniformly asymptotically stable.

Example 2.1. We consider the non-autonomous linear differential equations with delay

2(f) = [1 + 3‘;@] 2t — | cos(®)]) (2.24)

Since 0 < 14 E‘g(—t)- < % and 0 < |cos(t)] < 1, it follows that ag = % < %, therefore from
theorern A the zero solution of (2.24) is uniformly asymptotically stable so (A1) and (A2)
holds. Since the function cos(z) is uniformly continuous on R (A3) holds. So theorem 2.3
and corollary 2.1 are valid. Therefore we can approzimate the solution of (2.24) by the family
of difference equations (2.6) corresponding to (2.24)

3n(n41) = 3n(n) — an(n)an(n — ka),

i

where

() = L{:H}h [1 N Sin3(s)] ds = h— cos({n + 1)2) — cos(nh)’
and o _ Leosh)]
e [ h ]
It follows that the zero solution of
1)h) — h h
_cos((n+ )3) cos(n )}311 (n [|cos]En )|D } (2.25)

is uniformly asymptotically stable. We note thal, since mean value theorem, (2.25) is equiva-

salin+1) = () = {1

lent to
mn+1)-smmn) = — {h _ coslln 1),';) —cos(nh) } 3n (n - [—l Cosl(lnh)l])
Y {1 3 %.cos((n + 1)2} — cos(nh) } i (n 3 [] cos}(lnh)]])
_ {1 + s1n(§n+1)}3h (n B [I cosgr}h)[]) ’
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for some cpr1 € (nh,nh +h).

3n(n + I})L ~m) _ [1 N ﬂgﬂ] i (n - ['—995}(:1—}‘)’]) : (2.26)

Figure 2.1: Approximate solution of (2.24) with initial function ¢ =5 and A = 0.5

JN—, J SO . - -
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Figure 2.2: Approximate solution of (2.24) with initial funciion ¢ =5 and h = 0.3
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Figure 2.3: Approximate solution of (2.24) with initial function ¢ = 5 and h = 0.25
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3

Retarded functional differential
equation with feedback

Differential equations with delay arise like useful mathematical predictive model, among
other sciences, in the theory of growth of a single species. For instance, the works of Nicholson
(1954, 1957) involving the Australian sheep blowfly Lucila cuprina has become a classic ex-
ample of model of population with delay. The experiments exhibit clear patterns of sustained
large oscillations of nearly constant frequency. May in 1974, used a delayed logistic differential
equation to obtain a predictive model of Nicholson’s Blowflies. However, the May’s successful
model considered a delay equals to 8.52 days while the directly measured values vary between
11 to 14 days. Gurney et al. (1980), devised other model with the aim to solve the difference
between computed and observed values of the time delay. They consider the delay differential
equation with feedback

N'(t) = —8N(t) + PN(t — g) exp(—aN(t — g)), (3.1)

where ¢ > 0, P > 0 and & > 0, to describe the dynamics of Nicholson’s blowflies. A good pre-
sentation and a interesting review of this topic can be founds at Banks (1994) and Berezansky
et al. (2010), respectively.

Mackey and Glass considered a family of delay differential equations with feedback

z(t —q)

Rl 52)

7' (t) = —6z(t) + B
where §, 3, g and 1 are positive real numbers to illustrate the appearance of complex dynamics
in physiological control systems. They suggested that some physiological disorders can be
characterized by change in qualitative features of dynamics (Mackey and Glass, 1977; Glass
and Mackey, 1979). Moore about this equation can be found at Glass and Mackey (2010).

The above models consider delay differential equation with feedback, this kind of differ-
ential equations have been studied by several researcher (Liz et al., 2002, 2005; Rést and W,
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2007; Liz and Rést, 2009). We note that there is some Lotka-Volterra systems which presents
similar dynamics to delay functional differential equation with feedback, (Kuang and Smith,

1993).
In this chapter we consider the retarded functional differential equation with unimodal

feedback 0
2(8) = —a(t) + f ( [ B(o)alt+ o‘)da) >0, (3.3)

where §, g are positive constants, 8 : [—¢,0] — R such that f_oqﬂ(a)da =1, and f is the
delay feedback function f : Rt — R¥.

Our aims are study the existence of equilibria of (3.3) and its stability, obtain a dis-
crete equation corresponding to (3.3) by piecewise constant argument, and finally study the
{ransference of stability properties of the steady state.

3.1 Equilibria and stability

In this section we shall find the equilibria of Equation (3.3) and condition for the local
exponential stability of them. We start with the definition of unimodal function

Definition 3.1. The function § : R — RY is called unimodal if:
1. f(z) >0 forallz >0, f(0) =0;
2. there is a unique xg > 0 such that

fliz)>0 4f0 <z <m0, f(z0) =0 and f'{z) <0 if x> o,

3. f"(z) < 0 if 0 <z < w0 and limg 00 f(z) = 0.

Figure 3.1: Graph of an unimodal function

——

Since the assumption

0
f f(o)do =1, (3.4)

-q
the equilibria of equation (3.3) correspond to solutions of the equation

-8+ f(§) =0. (3.5)

.
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Since the definition of unimodal function it follows that zero is a solution of (3.5). If f'(0) < 4,
then zero is the unique solution. In the other hand, if f/(0) > & there is a positive equilibrium
K. We denote z(t) a solution of Equation (3.3), and define a function y(t) = z(f) — £, whith
€ € {0, K}. It is follows that y satisfy the functional differential equation

0
(@) =20 =~y + £ (0wt + )i +€) - 1), (36)

since ¢ is solution of (3.5). The corresponding linear variational equation, corresponding to
equation (3.6) about &, for v(2) is

V() = —8v(t) + F(€) / v(t + 0)do. (3.7)
Proposition 3.1. If
&> f'(€) >0, (3.8)
then the zero solution of Equation (3.7) is exponentially stable.

Proof. To state the stability of the zero solution of Equation (3.7), we use a Halanay Inequality
and the upper right Dini derivative D¥|v(t)]. Since Lemma 3 of Chen and Cao (2003) we
have

o)
D+|’U(t)] - lv(t)l (t)
= U() O’ v G)ag

= aiv(t)1+f(e)l”g§| 3 e(a)v(t+a)da

< a1+ 119 [ e)ote +o)lds

0
< o)+ @) [ 80)o s (o)

t—g<ost

= —oju(t)] + f'(€) sup |v(o)}.
t—g=a<t

Since the assumption (3.8) and Halanay inequality there exists ¢ > 0 such that:

lo(e)| < [loll e (3.9)
where

p=35—f'(€)e.
Then the zero solution of (3.7) is exponentially stable. O
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If f/(0) < & the condition (3.8) holds, then zero is a locally exponentially stable equilibrium
of (3.3). If f/(0) > & then the zero solution is unstable, and to apply Proposition 3.1 is
necessary that f'(X) > 0. In consequence, if f/(0) > § and K belongs to the interval (0, zo)
the condition (3.8) holds, so K is a locally exponentially stable equilibrium of (3.3).

There is a third possibility, f'(0) > & and K > zp. In this case f'(z) < 0 for z > zp, so
we can not apply the Proposition 3.1. We focus in the first two cases, where the equilibrium
is locally exponentially stable.

Figure 3.2: Case 1: y = éz and y = f(z), with f/(0) < ¢

Figure 3.3: Case 2: y = 6z and y = f(z), with F(0) > § and K € (0, z0)

-
#
.

3.2 Discretization by piecewise constant argument for distributed
delay

In this section, we discretize the refarded functional differential equation with unimodal
feedback (3.6) using piecewise constant, i.e. we consider the equation:

/@) = ~5u®)+ £ ([ 0@+ oo +€) = 1.
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‘The corresponding differential equation with piecewise comstant arguments, since £ is an
equilibrium of (3.3), is given by

-1
v{t) = —dya(t)+f (§+ >~ On (D) yn(([t/H] +j)h)) - F (), (3.10)

=k
where O, (§) = j:,,-(gﬂ)hﬂ(a)da, for h € (0,q]. We can consider h = % for k > 1 an integer.

By the solution of above equation (3.10), we mean a function yp(¢), defined on {jh : j =
—k,---,—1,0} such that

1. The function y is continuous on R¥.
2. The function y; satisfies (3.10) on each interval I py = [ih, (i + 1)h) for i = 0,1,---.

3. The corresponding derivatives of yx(t) should exist at each point ¢ € R*, with the
possible exception of the points th (i = 0,1,2-.+), where finite one-sided derivatives
exists.

We can rewrite equation (3.10) for ¢ € [rh, (r + 1)h) as

-1
u(E) = —Oun(t) +f (E-f— > Orn () un((r +j)h)) - f(§).

i=k
yh(nh’) = (}5(71]’1.), = _k: ---,0. ’

Using variation of constants formula, for rh < t < (r + 1)k, the solution of (3.10) can be
written as

H
mt) = e Hyn) 4 [ o509
rh

-1
f (€+ >3 On G un((r +J')h)) —f(f)] ds
=k

1 — g—0(t~7h) —1
= e My (rh) 4~ [f £+ 2. On(@m(Cr +J')h)) - f(ﬁ)} ;

for r > 0. Replacing t = (r + 1)k, integrating and using continuity of y5, we obtain
1 gk

w((r+1R) = ePy(rh) + 56

j=—k

—1
f (€+ Z Op (7) unl(r +j)h)) - f(cf)] :

for 7 > 0. Define sequence Y (r) := yn(rh). This sequence satisfies the following non-linear
delay difference equation

— g0k —1
pa(r +1) = e Py(r) + ! 5 lf (§+ > Or{) malr +J')) —f(é)} , (3.11)

=k
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with initial condition
gp(ry=d¢é(rh) r=-k -k+1,---. (3.12)

The initial value problem (3.11)-(3.12) is a discretization of the original problem (3.3). From
the above recurrence relation and initial conditions, we obtain

o(0) = $(0), . _
oa(l) = e‘*‘”‘m(%# (§+ > O nh1+a))—f(£) :

j=—k

_e— | -1 |
m(@) = e M) |7 (§+ > ©n (j)Uh(2+j)) - £ (8)

P

— —02h M = ) Y
= )+ T |6+ 3 en ) m+d) ) - £ ()

J=—k

1—e % =
s !f (5-!— > On(5)oa(2 +j)) ~f(§)] :

=k

From the initial conditions, the above sequence 1]?(7') is well defined.

Theorem 3.1. The initial value problem (3.10) has a unigue solution in the form

' . _ g—8(t—nh) -1
() = fﬂFmMﬂm+j;—7r——-P(§+E:@hgmﬂn+ﬂ)—f@1: (3.13)

for t > 0 where n := [t/h] and the sequence yp(-) satisfies the non kinear difference equations
(3.11) with initial conditions (3.12).

3.3 Transference of stability properties of equilibria

Next we shall find necessary conditions for transference of local exponential stability of
equilibria of (3.3) in the cases 1 and 2.

Theorem 3.2. If§ > f/(£) > 0 then, the zero solution of equotions (3.6) and (3.11) are both
locally exponentially siable.

Proof. From proposition 3.1 it follows that the condition § > f/(¢) > 0 implies that the zero
solution of (3.6) is locally exponentially stable. In order to prove that the local stability of
the zero solution of (3.11) we consider the variational equation

op(r+1) = 8_5hﬂh(?")+ f (€ Z Or (4) or(r + 7)- (3.14)
j=—k
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The equation (3.14) can be written in the form

Avp(r) = ba(r+1) —oa(r)
o
= —(1—¢7 )nh(r)+ 7 (&) Z On () on(r -+ ).

j=—k

From variation of parameter formula for difference equation, for n > 0, we have

or(n) = (e7)" o 0)+Z (=) 22 G)Zek Jou(i+4).  (3.15)

i=—k

Now we can estimate |vp{n)| to obtain

1 n—1 n—i-11 —
oam)] < ()" @)+ () = ) 3 046) ot +9)
i=0 j=—k
AL n-1 spyn—i-11 - e_‘sh

< () @1+ X0 ()T 5O max (9l

i=0
since variation of parameter formula we obtain
1— ~—6h
Aloa(m)] = —(1 - & ™) on(m)| +~—5—F(€)  max_[on(s)] (3.16)

From the assumptions § > f/'(£) > 0 follows that
!
—6h —sny £'(6)
1<1-e> (1-e%) 222> 0

Therefore (3.16) satisty the assumption of discrete version of Halanay inequality Liz and
Ferreiro (2002), then there exists a positive constant Ag such that

on(l < (_pma lon1) -

kE<i<0

Then the zero solution of (3.14) is exponentially stable. Therefore the zero solution (3.11) is
locally exponentially stable. 0

The novelties of our theorem 3.2 are:

1. We have adapted the method developed bi Mohamad and Gopalsamy (2000) and Liz
and Ferreiro (2002) to retarded functional differential equations with unimodal feedback,
up to we know, there is not similar result in the literature.

2. We conclude that the local exponential stability of equilibrium holds for both equations
(3.3) and (3.11), i.e. we have proved transference of stability properties of equilibria
from continuous dynamical system to discrete.
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3.3.1 Applications and examples

Example 3.1. To idlustrate our theorem 3.2 we consider a the following Nicholson differential
equation with continuously distributed delay

0 ]
Nﬁﬁr&N@H%/ N(t + o)doe™ J-1 N+od7 (3.17)
-1
We note that (3.17) corresponds to case 2, see figure 8.4. The positive equilibrivm of (3.17)

Figure 3.4: Graph of y = 2% and y = 4ze™7

9
1 0% 1 s ] 28 3 4 H L5

is K =n(2). ,
Therefore we can approzimate the solution of (3.17) by the family of difference equations
(8.11)-(3.12), to obtain .

_ e—2h ~-1 . -1 .
bp(r+1) = e *ou(r)+ lTe [2 (ln(2) +h > Uh(r+j)) o2 —amn(g)|

=k

Figure 3.5: Approximate solution of (3.17) with initial function ¢ =5 +1In(2) and A = 0.5
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Figure 3.6: Approximate solution of (3.17) with initial function’ ¢ = 5 -+ In(2) and & = 0.25
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Figure 3.7: Approximate solution of (3.17) with initial function ¢In(2) — 0.4 and A = 0.5
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Figure 3.8: Approximate solution of (3.17) with initial function ¢1n(2) — 0.4 and h = 0.25
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3.3.2 Exponential decay rate of the error

In this subsection we obtain an analogous result to theorem 2.3. In order to do that we
rewrite equation (3.6) as

0
HoWls+oMo+€) = HO - £ @) [ ohnlt+o)a, (319

—-q

y'(t)=Ly) + f (/0

—q
where

B = ~590) 1 £/ ©) [ 06olute+ ) (3.19)

Assumption (3.8) and Proposition 3.1 implies that solution = 0 of the linear homogeneous
functional differential equation

z'(t) = L(zs) (3.20)
is it > 0 exponentially stable. Now we consider the function
glu) == f (u+8&) — f(€) - f (€)u (3.21)

From Definition 3.1 the function f is twice continuously differentiable over the interval (0, o).
So, ‘Taylor’s theorem holds, and from Lagrange form for the remainders we have that:

glu) - glus) = flus— vz tus &) — F(E)us—fluz+E)+ F (€ us
= f(ug+8&)+ f (ua+ &) (u1 — ug)
O g - ) s — un) — f (w2 E)

2
= [Feero-r©+ 2 0m - w)] m-w)

= [f”(ﬁl)uz + fﬂéﬂ) (12 - “2)] (u1 - u2).

where ¥ is between ug + £ and u; — us, and ¥; between ug -+ £ and £. Therefore the function
g() is locally Lipschitz.
The above situation motivates us to study a semi linear functional differential equation

v(t)=L{w)+g (fj; B(o)y(t + o‘)da) . (3.22)

where the linear functional differential equation (3.20) is u-exponentially stable,and g : R =+ R
is a Lipschitz continuous function such that g(0) = 0. The DEPCA corresponding (3.22) is

40 =)+ ([ #@anlth +loh)iz). (323

In order to estimate the error |y(¢) — 2x(¢)|, we need some previous result.
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Proposition 3.2. We assume the zero solution of (3.20) is p-exponentially stable and the
function g : R — R is a Lipschilz continuous function such that g(0) = 0, i.e. there exists a
positive constant K such thai

lg(u1) — g(ug)| < Kluy — ugl.
If p > K > 0, then the function y(t} solution of (3.22) satisfy
@)l < [yl €30 (3.24)

where A s the positive solution
A=p— X9

Proof. We use formula of variation of parameter in equation (3.22) and obtain

y(t) = Ut to, yeo) + /t: U (t; s, 9 (/H[:H(a)y(s + a)dau)) ds.

So, from the p-exponential stability of the zero solution, we have

t 0
ly(t)| < e—H{t—to) ”yt0“q+/ e~ #E=5) 1y (/ 8(o)y(s -I—cr)da) ds
- to —q
3 0
< g Hlt—to} “yto”q +/ e MUK I/ B(J)y(s +o)do|ds
7 to —q
t
< e Hlt—to) ||yto“q+f e 0K sup  [y(o)|ds.
to S'“CISUS:‘-*

Since the assumption u > K > 0, from Ialany inequality, there exists a positive A such that

()] < llasoll 67,

where A is the positive solution

A=p—eR
|
As consequence of the above proposition we state the following Lemma.
Lemma 3.1. If the solution of (3.22) satisfy (3.24), for any initial function ¢ € C, then
ly(s + o) =[] + [el)] < Ma(p,0,B)e™™, s >0,
where
Ma(p, 0, 1) 1= loll, X THH0) (5 4 [£(€) + K )2h, (3.25)

and Ma(p,0,h) = 0 as h — 0.

i
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Proof. From variation of parameter, triangular inequality and equation (3.19) we obtain

s+o
[
[

s)n+Holn

o (st 0 ( ot 2 3))

/{s;:[a}h I.J(y") e (f_zg(")y(“ +ff)da) |
/s+ﬂ (le(u)]+f'(§) sup |y(o)| +K sup [?J(U)l) i

D
{sln+ola u—glosu u—gloSu

l¥(s + o) — y([sls + [l

du

A

1A

s+
= [T (@ +K]_sp o)) du
[sin+[o]n u—q<osu
Since y(t) satisfy (3.24), we have:
3+o 1 .
ly(s + o) —y([sha +olad)l < Sllll, e~ Muho)gy
[slh+oln
s+o
HI©O + Kl [ ety
[slr+leln
sto
< ||‘P|[q e—)\(!ﬂnﬂvlh—tu)(g + 719 +K]6Aq)/{;] 4ol du
hT(Clh
< lpllgem o2 0)(6 + [£1(€) + KleX)2h.
Since (3.25), the lemma is proved. O

Now we can prove that the error in our approximation has an exponential decay rate to
zero, as t tends to infinity.

Theorem 3.3. Under the assumptions Proposition 3.2. If the parameters involve salisfy
A>K >0,
\

then for h small enough, and for every ¢ € C the solutions y(p)(t) and zp(@)(E) of the
functional differential equations (3.22) and (3.23), respectively, satisfy

|En(8)] < (“Eh:o "q + KM(p, g, h)e_)‘t"t) eHoli=to) ¢ >4y,

With Mao(p, q, h) defined by (3.25) and

D < up = A — Kehod,
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Proof. For every h € (0, hg) from equations (3.22) and (3.23), it follows that Ex(t) .= y(t) —
zp(t) satisfy the differential equation

0

Ej(t) = L(Ep)+g (/q 8(c)y(t + O')dO') —g (fmoq 8(a)zn([t)n + [cr]f,,)dcr) .

Using variation of parameter formula and elementary estimations we obtain

Bu(®)] < et

Eh,, ] .

g (/j; Bla)y(s + J)dcr) —-g (/:Q(a)zh({s]h - [g]h)dg) ds

t
+ e—#(t_f’)
g

e—#(t—to)

IA

By,
to q

ds

I / Oqe(g)y(3+o—)dg— / Zg(g)zh([s]h']'[a]h)do

to

ds

< e |y, |+ [ k| [ 60)Enlsln + ol
0 -g

ds. (3.26)

4+ [fent-ag f Do)yl + o) — y(lshs + [oln)ldo

to —q

Since ¢t > A > 0, we have

t
Eh‘ﬁl|q+ft e MK sup  |Ey(o)|ds
0

En@)] < e | u_
S—g<o=s

-} te“’\(t“‘s)K _;1:1(&0 ly(s -+ o) — y([sla + [o]a)]] ds. (3.27)

o

Now, from Lemma 3.1 we obtain

t
B0 < e By | + [ eIK sup [Bn(o)lds
0

S—¢So<s
[4
+ | e KMy (g, q, R)eds
tp

t
< 0 (B |+ KMaloq, e ) + [ IR aup By (o)]ds.

to §—g<o<s

Therefore, from assumption A > K > 0 and Halanay inequality, there exists a positive
constant pg such that

1Bu ()] < (||Ehm ,TEM:(p,, h)e-“%) emHolt) g > 4, (3.28)

where pig = A — Ke#od, O
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Thus we have proved our theorem 3.3, the novelty of this result lies in consider a semi-
linear retarded functional differential equation and extended the technique used by Cooke
and Gyori (1994) and Gy6ri and Hartung (2002) to the case where the delay is continuously
distributed. We note the use of Halanay inequality as key technique to prove our result.
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4

Differential equation with state
dependent delay

Many situations of basic sciences depends on external or internal influence, a possible
mathematical model to consider in that case is a differential equation with variable delay.
‘When there is internal influence the model corresponding is a functional differential equation
with state-dependent delay. This kind of differential equations with delays are an interesting
field for the mathematicians (Walther, 2014). For example the simplest functional differential
equations

7' (t) = —an(t — d{zy)) : (4.1)

with a non-constant delay functional d : C — [0, ¢, and & € R — {0} it is not linear. The
existence and uniqueness theory for differential equation with state-dependent delay is quite
different to the developed by Hale and Lunel (1993). To illustrate the differences between
both theories, we consider the initial value problem

#(t) = —z(t — |=@®)]), t=>0, (1.2)
-1, fort < —1,

Y(t) = { 14+ 3+ 1)Y3, for ~1<t< -, (4.3)
1+ 1%, for £ <t<0.

The functions z(f) = t + 1 and ®(t) = ¢ + 1 — t3/2 are both solutions of the initial value
problem (4.2)-(4.3), for ¢ in a neighbourhood of zero. Therefore, continuous initial data do
not guaranteed uniqueness of solutions of differential equation with state-dependent delay.
Winston (1974) gave the above example and Driver (1963) developed a fundamental theory
for state-dependent delay differential equation.
Tavernini (1978) studied the numerical approximation of solutions of functional differential
equation like
u’(t) = f(t% u), >0, (4.4)

43




where the delay may be state-dependent. Tavernini proved the convergence of Euler polygonal
and obtained an uniqueness-existence theorem. Gyori et al. (1995) developed a numerical
approximation for a class of differential equations with time- and state- dependent delay, and
gave a version of Cauchy-Peano existence theorem for this class of differential equations based
in the previous work of Gyéri et al. (1993). Hartung et al. (1997) extended the previous work
for a class of neéutral functional differential equations with state dependent delay described by

(20 + st - da(e s0)) ) = £(t.0®,a - di(ta@))), t20,  @49)

Benchohra et al. (2013) have studied the global existence of solutions of functional differ-
ential equations with state-dependent delay

y'(t) = Ay(®) + f (b vpean) 2o >0, (4.6)

where f : [0,00) x B — E is a given function, A : D(A) ¢ E — F is the infinitesimal
generator of a strongly continuous semigroup 7'(¢),¢ € [0, 00), B is an abstract phase space,
p:[0,0)x B — R, and F is a real Banach space. The anthors used Schauder fixed point
theorem as key technique, therefore the uniqueness is not ensured, so they obtained a Cauchy-
Peano existence global theorem.

In this chapter we study transference of qualitative properties between differential equa-
tions with state-dependent delay and the corresponding difference equation, we shall prove a
global Cauchy-Peano existence theorem for a differential equation with state-dependent delay.
Our key techniques are approximations by piecewise constant argument and Arzela-Ascoli the-
orem. In this way we state transference of existence of solutions between a difference equation
and the corresponding differential equations with delay.

4.1 Discretization by piecewise constant argument

In this section we consider the scalar differential equations with state-dependent delay

y'(8) = —by(t) + f (b, y(t — (t,9())), €20, (4.7)

where b ¢ RT, f : R¥ x R — R is a continuous function and r : Rt x R — R7 is a bounded
continuous function. The initial conditions are

y(t) =(t), te[-A0; (4.8)

where
Ai=sup{r(t,u):{ > 0,u € R}.

A function y is said to be a solution of equation (4.7) on [-q, A) if there is A > 0 such that
y € C(j—gq, A),R), and y(t) satisfies equation (4.7) for ¢ € [0, A). For given ¢ € C, we say
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y(t; 0, ¢) is a solution of equation (4.7) with initiel value ¢ at 0 if there is an A > 0 such that
y(£;0, @) is a solution of equation (4.7) on [—g, A] and y(0, ¢) = ¢.

We shall prove a Cauchy-Peano existence theorem for the initial value problem (4.7)-(4.8)
by the convergence of solutions of the corresponding difference equation. We consider the
family of piecewise constant functions that []o = [£]h, for A > 0, where [] is the great
integer function. Note that [}, — £ as & — 07, uniformly on R. This family allows us to
consider the family of differential equations with piecewise constant argument

2 (8) = —bzn(t) + f (£, 20 (W (t))), t20, (4.9)
and the initial conditions
zp(k) = k), £=0,1,---, =A<-kh <0, (4.10)

where
() = [t — [r ([Ea. 20 ([Ela))];, -

By a solution of initial value problem (IVP) (4.9)-(4.10} we mean a function 2, defined on
{=kh : k=0,1,..-, —A < —kh < 0} by (4.10), which satisfies the following properties on
R™: '

(i) the function zj, is continuous on RT,

(ii) the derivative z}(t) exists at each point t € R with the possible exception of the points
kh (k=0,1,2,--) where finite one-sided derivatives exist, and

(iif) the function 2y satisfies (4.9) on each interval I py := [kh, (k4+1)h) for k=0,1,2,--- .

Next we obtain theorem about existence of solutions of the initial value problem (4.9)-(4.10),
also we obtain the discrete equations associated with the differential equation with $ime- and
state-dependent delay (4.7)-(4.8). Next we consider the notation ay (k) = z,(kh).

Theorem 4.1. The IVP (4.9)-(4.10) has a unigue solution in the form

e PO £ (s, 05 (1 — di)) ds + '[‘; e P9 £ (s, ap (k -- dy)) ds,

(4.11)
for t > 0. The difference equation corresponding to the discrete version of IVP (4.7}-(4.8) is

—bt =
w0) = o0+ 3 [

G+1,k)

an(k -+ 1) = e PPy (k) + e EBEDR=9) £ (5 0, (k—di))ds, k>0, (4.12)
I(k,h) )

where dy, = [r(kh, an(k))/h], and ap(k) = 25(kh).
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Proof. For t € I3, ny we have that
25,(8) = —bzp(t) + £ (£, zn (1 (2))),

from the variation of parameters formula we have that the solution of (4.9) on I 5 is

t
zp(t) = et kD) 4 (BR) -+ / e =9 £ (s, 2, (71(s))) ds.
kh
Making ¢ — (k- 1)A™, from the continuity of z;, we obtain

zp((k + 1DB) = ez, (kR) + hn e HEFDR=8) £ (g 2. ((k — dp)R))ds, k> 0.
Therefore the sequence ap(k) := zp(kh) satisfy the nonlinear delay difference equation
an(k+1) = e ay (k) + - e M E+D=) ¢ (5 qp(k — di))ds, & > 0. (4.13)
With initial conditions

a(k) = o(kh), k=0,1,---, —-A<—kh<O. (4.14)

From the recurrence relation and initial conditions, we have

uh(o) = (p(O),

an(1) = e ay(0) + /;< X e~ £ (s, ap(— [r(0, an(0))/A])) ds
= POk [ 0f om0/ b

a(2) = e hay(1)+ f; eP2h=9) 1 (s an (1 — [r(1, an(1))/R])) ds

2.h)

- [e‘bhw(O) [ eI (5, an( (0, an(0)) /D) ds

(L,k)

+ A )e‘b@”""")f (8,an(1 = [r(1,an(1))/A])) ds

_ e_b(2h)g0(0) + f{ e"b(zh“s)f (s, ap(—[r(0, ap(0))/R])) ds
(1,h)}

= + e M f (5, an(1 - [r(L, an(1))/R])) ds.

Tz
Therefore
k-1
ap (k) = e (R (0) + Z/I- e th=3) £ (s a1 (i —~ di))ds, k> 0. (4.15)
=0 f(i+1,h)
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The sequence ap (k) is well-defined, because —A < (k — d(ap))h < kh for every k =0,1,2,---.
It follows that the solution of (4.9)-(4.10) for ¢ € It 5 can be written

i
au(t) = a0+ [ eI (5, (k- di)) s,

or

k-1 &
w0 =0+ Y [ I i d)ds [ o0 (s, (k- ) .

(i+1,h)

]

4.2 Cauchy-Peano type theorem

In order o conclude the existence of solution of (4.7)-(4.8) by the convergence of solution
of (4.12)-{4.11), as k tends to zero, we state our main assumptions

(H1) The delay function r is bounded and locally Lipschitz-continuous on R* x R, i.e.,

(a) For any £ > .0 and u € R there exists a positive constant Q such that:
Ir@t,u)] < Q.
(b) For every T > 0 and M > 0 there exists a constant Ly = L(T, M) such that:
(21, 11) — 7tz u2)| < Lo(lts — to] + Jug — u2]), % € [0,T),u; € [0, M],i = 1,2.

(H2) The function f(f,u) is Lipschitz-continuous on the second variable, i.e., there exists a
constant L; € R¥ such that:

]f(t: ul) - f(f’a uZ)[ < Ll]ul - 'U'ZI, le R+: u; € R,Z =1,2;
and f(-,0) =0 for every t € R,
(H3) The coeflicients of delay differential equation (4.7) satisfy:

b>1y>0. (4.16)

‘We state some properties of the family of funciions

Qp, == {25 solutions of IVP (4.9)-(4.10), for & € (0, ¢]}. {4.17)
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Proposition 4.1. Assume (H2), (H3) holds. Then the set  is uniformly bounded by a
convergent to zero function. Actually, for any h € (0, q] the family of functions zp, satisfy:

Izl < llelly €™,

where p is the real solution of
p=b—Iet. (4.18)

Proof. For any h € (0, g], from (H2), we have:
@l < a0+ [ ¥ G znlomo) s
O + [ €IS (5,1 (5) - £ (5,0) + 5o, )

bt ‘ —b{t—s)
gl + [ ¢ Lallznom ).

(A

IA

Since (H3) holds, from Halanay Inequality, there exists g > 0 such that:

lea®l < llollee™, t20,
where p is the real solution g = b — Lje#?. The Proposition is proved. 1

Proposition 4.2, If (H2), (H3) and ¢ is continuous on [—q,0]; then the set of continuous
functions Qy is an equi-continuous set of functions on [0, 00).

Proof. We shall prove that there exists a increasing function é : Rt — R such that for every

€ > 0, we have
lza(ta) — zn(t1)l <€, Vh € (0,q),

whenever ¢y and {1 belongs to [—7, 00) and |¢; —tp] < 8(¢). First we assume that 0 < £; < to.
From (4.9) it follows for ¢ > 0 that

()] < blan(®)] + (& 2 ()] (4.19)
< bza(®)] + Lnlza(m ()], (4.20)

therefore
ll2h]lco < Bllzrllco + Lafl2nlloo-

It follows there exists a positive constant Ma such that ||z}, |lec < Ma. If 0 < #; < #2, by Mean
Value theorem, then

|lzn(ta) — 2 ()| = (21 (O] - ltx — 22|l < Mo - fits - £]|.

In consequence there exists a increasing function & : Rt -+ R* such that §1(c) = . If
ty < f2 < 0 then the assumed continuity of ¢ implies that ¢ is uniformly contmuous over
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[-4,0], therefore there is a increasing function §, : R* — R* such that for every e.> 0, if
[t1 — to] < dp(€) then

lp(to) — pli1)] <e.
Finally, if £ < 0 < ¢3 then, if |tz — 1] < min{d;1(e/2), 5,(c/2)}, from the above estimations
we have

lza(t1) — 2t} < lza{ts) = 26(0)]] -+ [2(0) — zn(t2)|
< % + % =E.

So, we consider a increasing function § : Rt — R? defined by 6(¢) = min{81(e/2), d,(€/2)}.
Then, for every € > 0, if [£; — tg| < d(e) then

|zn(to) — zn(t1)| <&, VR € (0,9),
whenever #g and #; belongs to [—7, c0). O

The prove of Cauchy-Peano existence theorem require some compactness criteria for an
specific space of function. The Arzela-Ascoli theorém is a key result for prove that a subset
of functions, with compact domain, has property of relative compactness. But for a set of
functions without compact domain, the Arzela-Ascoli theorem it is not enough. The equicon-
vergence, in some sense, must be considered (see Gallardo and Pinto, 1996).

Theorem 4.2. If (H1), (H2) and (H3) holds, and ¢ € C([—q,0],R)] is continuous on [—q,0|.
Then the initial value problem (4.7)-(4.8) has, at least, one solution on [—q, 00).

Proof. Take a sequence hy such that: Az -+ 0 as § —+ co. For every h = hy we consider the
initial value problem (4.9)-(4.10). Since theorem 4.1, the initial value problem (4.9)-(4.10}
has a solution 23, on [0,cc). Since Propositions 4.1 and 4.2 it is follows that {zp,} is a
sequence of uniformly bounded and equi-continuous functions on [0, 00) so, by the Arzela-
Ascoli theorem, it follows that we can take a convergent subsequence {z}tk} C {zn.}, on
the interval {0, 1]; next we consider the convergent subsequence {z}lk}, over [0,2]; and there
exists a convergent subsequence {z7, } C {zﬁk}, on the interval [0, 2]; recursively we can get
a convergent subsequence {zf; } C {2 '} over [0,n], for any n a positive integers. We take
the diagonal sequence {z,’;’k} and by construction the uniform convergence of the sequence on
any compact interval it follows, and from Proposition 4.1, the sequence is equiconvergent to

zero, we conclude that
lim z,’: =1y, nuniformly on.R.
koo 'k

For simplicity in the notation, we denote again by z;, the diagonal convergent subsequence.
We extend the functions z}’fk and y{t) to [—g,0] by zﬁk = ¢(t) and y(t) = @(t). Clearly z,’fk (£)
satisfies the initial conditions (4.10). () is a continuous function on [~g, 00} and for all
te [—q,oo),z,’gk(t) — y(t) as k — occ.
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Next we need to show that y(t) satisly (4.7) on [0, 00). We recall that y(2) satisfy (4.7) if
and only if

)= e o(0) + [ 0 (3 (s = (o, ds. (@21

From theorem 4.1, zp, satisfy integral equations (4.21), and from 2z, (¢) — y(¢) as k£ — oo, to
conclude (4.21), we need to prove that

n—1 t
lim [Z/ e 9 f (5,05, (6 — di)) ds —[—f e 09 f (s,ap, (n —dp))ds| =
koo i=0 Y LG.hg) nh

[ 05 5y o= rlosao ds,

for + € RF. We shall use the Lebesgue’s dominated convergence theorem over f (s, Zhy (Ve (5)))—
f(s,y(s—r(3,5(s)))). In order to estimate this difference of functions, We note that for all
0 < § < h, we can find numbers t5, 75, such that [t5 — 75] < & but |[t5]n — [75]s] = h, therefore
we can obtain |[t5]n — [7s]a] < |ts — 75| + h. Now we estimate

|th([s]hk) = Zhy (3),[ < Wy, (h; s) = ma'x{lzhk(tZ) - zhk(tQ)l 10 <ty t0 <5, [8 —to] < M}

Note that Way, (hi;s) tends to zero as Ay tends to zero. We also estimate

[the (8) — 5 + (s, 9(3))] [slhe — [ ([sags 20 (810 )]s, — 5 +1(s,9()]

[[siry — sl +1[r (slng 20, (sl g, — 7(5: 9(sDI

|s — 8| + e + |7 (Islay, 2re ([8]as)) — (s, 9())] + hae
2hy + La (|[slny — sl + |2re ([s)ae) — w(s)])

2hg + Lo (B -+ |2n, ([8]he) — 20 (8)] + |20, (8) — w(8)])
2Ry + Lo (hk +way, (i 8) -+ [J2n, — y||oo)

IA A IA A A

So, finally, we estimate |f (s, zn, (0, (3))) — [ (5,9 (s — v(5,9(s)))} | for simplit;ity we denote
Ag(he) = |f (5, 20, (70, (5))) — £ (5,9 (s — 7(5,9(5)))) | therefore

Ap(hk) < Lnla, (re(8) — v (s — (s, 5(s))) |
< Ln{lan (v (8)) — 2my, (s — (8, 0(D |+ |zny, (s —r(s,9(8))) —y (s — (s, 9())) [}
< Ly {wa, (hi + Ly (i + wa, (k3 8) + 2, — Dlloo) 5 8)] + llemy, — 9lloo -

It follows that

If (8, 20, (ymi (D)) — F (80 (s —7(s,9(s)))) | = O as k — oo, (4.22)
and that

A () < Ly {wzy, (2h1 + Ly (hy + wsy, (13 8) + llzn = Blloo) 59)] + 12y — vlleo} - (4.23)
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Therefore, there exists a measurable function
g(t,s) = e =)L, {wzhl (2h1 + Lo (hl +wgz,, (13 8) + ||z, — y”oo) s+ lzn, — y“oo}

such that f(f g(t, s)ds is well defined for £ € IR'O". Now, from Lebesgue’s dominated convergence
theorem it follows that (4.21)‘ holds, so we conclude that y(¢) satisfy the integral equation
(4.21) that is equivalent to (4.7). O

Example 4.1. We consider the semi-linear differential equations with state-dependent delay
y'(8) = —by(t) +sin (y(t — |eos(y(2))])) - (4.24)

We check that assumptions of theorem 4.2 holds. Since r(t,y(t)) = r(y(t)) = |cos(y())]
follows that r(u) is o bounded function and for real numbers w1 and ua we have

[r{u1) — r{ug)} < |cos(uz) — cos(uz)| < |u; —ua|, w; €R,i=1,2.
Therefore (H1) holds. Since f(t,u) = f(u) = sin{u) (H2) holds with L, = 1. So, for any real

number b > 1 (H3) holds. We conclude that for any b > 1 and a given initial function v € C
equation (4.24) has at least a solution over the interval [0, 00), from theorem 4.2.
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5

Conclusion

In order to get our overall goals we need identify the main assumptions, techniques and
methods used in papers about approximation and transference of stability properties between
solutions of differential equations with delay and the corresponding difference equations.

About the techniques and methods used, we note that the results of Cooke and Gydri
(1994) and Gyéri and Hartung (2002) rest on the functional differential equations that the
error function Ep(t) satisfy. Actuvally Ej(t) satisfy a linear non-homogeneous or semi-linear
functional differential equations. .If the linear homogeneous differential equations with delay
is uniformly asymptotically stable, then is possible conclude the exponential decay rate of
the error by using an integral inequality. In the literature review on this subject, authors
considered Gronwall-Bellman inequality, however we use Halanay inequality since is more
appropriate for delay differential equations. We also note that Mohamad and Gopalsamy
(2000) and Liz and Ferreiro (2002) used Halanay inequality as key technique to prove that
the zero solution of both continuous functional differential equations and discrete equations
are exponentially stable. However, this technique does not state any estimation of the error.

Our theorems 2.3 and 3.3 state the approximation and transference of exponential stabil-
ity properties of solutions of non-autonomous differential equations with variable delay and
retarded functional differential equation with feedback, respectively, to the corresponding dif-
ference equation by using piecewise constant argument, the techniques and methods above
mentioned. Theorem 3.2 state the transference of local exponential stability properties of the
equilibrium of retarded functional differential equation with feedback to the corresponding
difference equation, by using directly Halanay Inequality.

In order to relate existence Cauchy-Peano type theorems for differential equations with
state-dependent delay with the transference of existence between a difference equation to
functional differential equation. We prove theorem 4.2 a global existence result of this kind,
by convergence of a sequence of approximation. We have extended the existence result of
Gydri et al. (1995) and Tavernini (1978) (see Hartung et al., 1997).

Natural applications of our results can be found in the systems of differential equations
used to model cellular neural networks (see Mohamad and Gopalsamy, 2003; Abbas and Xia,
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2013) and identification of parameters in functional differential equations (see Hartung and
Turi, 1997; Hartung et al.,, 1998, 2000). We have applied the techniques presented in our
work t0 a model of cellular neural network, actually in a system of differential equations of
fractional order with delay Tyagi et al. (2016). Our results in Chapter 3 can be applied in
several model of a single population (see Liz et al., 2005), however, we have the conviction
that the procedure developed there can be successful in many models that consider semi-linear
functional differential equations.
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