Tabla de Contenido

1.	\mathbf{Intr}	roducción	1			
	1.1.	Motivación	1			
	1.2.	Hipótesis	5			
	1.3.	Objetivos	5			
		1.3.1. Objetivo general	5			
		1.3.2. Objetivos específicos	5			
	1.4.	Alcance del trabajo	5			
	1.5.	Metodología	6			
2.	Estado del arte y Marco teórico					
	2.1.	Cargas estructurales en un aerogenerador	7			
		2.1.1. Tipos de carga y tensiones en una turbina eólica	8			
		2.1.2. Sistema de coordenadas para análisis de cargas	Ĝ			
		2.1.3. Tipos de carga a analizar	12			
		2.1.3.1. Viento uniforme y constante	12			
		2.1.3.2. Cizalladura de viento cortante y vientos cruzados	12			
	2.2.	Dinámica del aerogenerador	13			
		Modelamiento de la máquina síncrona de imanes permanentes (PMSM)	14			
		2.3.1. Ecuaciones de la máquina síncrona de imanes permanentes	16			
		2.3.2. Transformación de ecuaciones al sistema de referencia al rotor	19			
		2.3.3. Ecuaciones de la máquina al sistema de referencia del rotor	20			
		2.3.4. Modos de operación del PMSM	21			
		2.3.4.1. Operación como motor	21			
		2.3.4.2. Operación como generador	22			
	2.4.	Lazos de control	22			
		2.4.1. Control vectorial (VC) orientado en flujo de la máquina síncrona de				
		imanes permanentes	22			
		2.4.2. Control vectorial del conversor conectado a la red	24			
	2.5.	Modelamiento vibracional del sistema mecánico de un aerogenerador	26			
		2.5.1. Elemento de viga	28			
		2.5.2. Ecuaciones cinemáticas del sistema mecánico de un aerogenerador	31			
		2.5.2.1. Energías cinéticas	32			
		2.5.2.2. Energías potenciales	34			
		2.5.2.3. Ecuaciones de movimiento del sistema	34			
		2.5.3. Estudio del estado de degradación del aspa	36			
	2.6	Modelos electromecánicos	38			

3. Mo	delamiento y validación del sistema mecánico	4
3.1.	Modelo cinemático del sistema mecánico	4
	3.1.1. Energías cinéticas	4
	3.1.2. Energías potenciales	4
	3.1.3. Ecuaciones de movimiento del sistema	4
3.2.	Validación del modelo del aspa	4
3.3.	Validación modelo rotacional del aspa	
	3.3.1. Comparativa del modelo lineal y no lineal en condiciones estáticas y	
	ángulo de pitch 0°	
	3.3.2. Comparativa del modelo lineal y no lineal en condiciones rotacionales	
	3.3.2.1. Modelo no lineal	
	3.3.2.2. Modelo lineal	
3.4.	Respuesta vibracional del modelo	
	3.4.1. Caso de estudio: Respuesta a un perfil de viento	
4 Ma	delamiento y simulación sistema electro-mecánico	
	Modelo electro-mecánico	
4.2.		
1. 2.	4.2.1. Bornes máquina	
	4.2.2. Enlace DC	
	4.2.3. Bornes conversor de la red	
	4.2.4. Filtro LCL	
	gradación aspa	
5.1.	Matriz de degradación	
C C		
	nclusiones y trabajo futuro	
0.1.	Trabajo futuro	
Bibliog	grafía	
	5	
Anexo	A. Elementos matriciales	
Anexo	B. Características de elementos finitos	
Anexo	C. Coordenadas $abc/\alpha\beta/dq$.	
Anexo	D. Detección de amortiguamiento naturales	