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ANÁLISIS DE DESEMPEÑO DE LOS ESTIMADORES MÍNIMOS CUADRADOS
PONDERADOS Y MÁXIMA VEROSIMILITUD PARA LA ESTIMACIÓN CONJUNTA DE

FLUJO Y RUIDO CELESTE

El presente trabajo de tesis estudia los posibles beneficios de realizar inferencia simultánea al
estimar el brillo de una fuente puntual en el cielo y el ruido de fondo que rodea dicha señal, y
cómo este esquema de estimación conjunta se ve fortalecido al incluir tanta información como sea
posible, en forma de pixeles de una imagen. La primera parte de este análisis se sustenta en límites
fundamentales formulados en teoría de estimación paramétrica, la clásica Cota de Cramér-Rao,
para mostrar cómo el uso de información permite, hasta cierto punto, el desacople de los estimados,
lo que conlleva posibles niveles de precisión comparables al caso de inferir cada parámetro de
manera separada, con conocimiento del otro. Este comportamiento es presentado a lo largo de un
amplio rango de condiciones observacionales y objetos diferentes.

Para la segunda parte the este trabajo se extienden resultados previos sobre estimadores im-
plícitos, desarrollando un marco matemático que permite acotar los momentos de estimadores
multidimensionles definidos implícitamente mediante algún problema de optimización. Diferentes
formas y variantes del estimador de Mínimos Cuadrados Ponderados se desarrollan y emplean para
validar estos resultados matemáticos, los cuales permiten mostrar que el desempeño del estimador
de Máxima Verosimilitud se aproxima estrechamente a los límites fundamentales de precisión, de
manera consistente. Además, se explora el uso potencial de estos resultados como método de
validación para la implementación de algoritmos de estimación.
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PERFORMANCE ANALYSIS OF THE WEIGHTED LEAST-SQUARES AND MAXIMUM
LIKELIHOOD ESTIMATORS IN THE JOINT ESTIMATION OF SOURCE FLUX AND

BACKGROUND

This thesis studies the possible benefits of simultaneous inference when estimating the brightness
of a point source in the sky and the background that the signal is embedded into, and how this joint
estimation scheme is empowered by including as much information, in the form of image pixels,
as possible. The first part of this analysis resorts to fundamental limits of parametric estimation
theory, the classic Cramér-Rao Bound, to show how the incorporation of information allows the
estimates to decouple from each other to some extent, leading to precision levels comparable of
those of separate inference of one quantity with knowledge of the other. Such behavior emerges
for a wide range of observational configurations and objects.

For the second part of the thesis, previous work on implicit estimators is extended as a new
mathematical framework to allow bounding the momenta of multidimensional estimators defined
implicitly through some optimization problem. Different flavors of the Weighted Least-Squares
estimator allow us to validate these mathematical tools, which are then employed to show that
the Maximum Likelihood estimator approaches the fundamental precision limits tightly and con-
sistently. Moreover, potential use of these mathematical tools as a mean for validation of the
implementation of an estimation algorithm is explored.
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Chapter 1

Introduction

1.1 Motivation

In astronomy, one of the key properties to be determined from an object is its brightness. Such
parameter allows to perform meticulous analyses on some of its physical properties, such as mass,
metallicity and age, and to characterize its evolutionary phase on an Hertzsprung-Russell diagram
[Carroll and Ostlie, 2014]. The field of asteroseismology relies on the fluctuation of brightness
to study, among other things, the internal composition of stars [Handberg et al., 2021] or stellar
dynamics [Diago, 2010].

As light sources in the celestial sphere are not isolated, their observation conveys additional
light flux from adjacent objects, instrumental noise and sky background, among other phenom-
ena. Therefore, isolating the target and sky background estimation are broadly recognized as
critical steps to achieve precise characterization of an object’s flux. To cope with those nuisances,
classic approaches rely on aperture methods based on SNR maximization [Howell, 1989], which
perform source separation, background inference and photometry in three different and sequen-
tial stages [Bertin, E. and Arnouts, S., 1996]. Consequently, the notion of an optimal aperture
emerges, beyond which the photometric precision seems to deteriorate as exposure area increases
[Naylor, 1998].

Nevertheless, regarding the inference of flux and background (that is, not taking into account
the problem of identifying and separating different objects within the field of view), the Data
Processing Inequality [Cover and Thomas, 2006] suggests that this sequential estimation process,
in which the background estimate is taken as an input of a subsequent photometry algorithm may
be a sub-optimal approach, as pixels carrying information about the source’s flux also include light
coming from background. Therefore, both estimates may benefit from simultaneous inference, as
more background-containing pixels are incorporated in its estimation, and the precision gain for
that parameter should allow better performance for the source’s flux itself.

Simultaneous estimation has been already explored in the astronomical literature, with promis-
ing results: from concurrent source detection and background estimation [Guglielmetti et al., 2009,
Guglielmetti, 2010] to background inference, photometry and astrometry performed at the same
time [Gai et al., 2017]. However the effect of pixel selection has not been thoroughly studied.
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This thesis offers some insights in this direction. The relevance of this kind of analysis permeates
to related topics such as non-circular aperture shapes (naturally determined by the shape of the
detector pixels) or limited apertures [Bickerton and Lupton, 2013].

This thesis assesses this problematic both from fundamental principles based on the Cramér-Rao
Bound, which has already been studied in a comprehensive manner in astronomy [Mendez et al., 2013,
Mendez et al., 2014]; and from actual achievability with practical implementations of estimators,
which already have been proved to be optimal (or near-optimal) for astrometry [Espinosa et al., 2018],
with similar results to those presented here.

1.2 Assumptions

Most of this work accounts for the following hypothesis:

• The studied objects are isolated from other similar light sources. That is, inside the observing
device’s field of view, the measured light comes either from the target source itself or from
background.

• Other effects such as zodiacal light or pixel bleeding will not be taken into account. We
will assume such effects as not present at all or have been properly managed, and that such
cleansing will not have significant effects on our results.

• We consider point sources only, which are assumed to be fully characterizable by a position
point in the sky, a function that determines how its light spreads over the observing instru-
ment, and evidently its brightness. For this work, complete and precise knowledge on both
location and spreading profile is assumed.

1.3 Objectives

1.3.1 Main Objectives

From a methodological standpoint, part of this thesis aims to the mathematical development
of bounds on the statistical performance of implicit estimators, which solve some optimization
problem over a high-dimensional space. We also aim to study the problem of joint estimation of
source flux and background in astronomy from a theoretical perspective, by means of Cramér-
Rao’s theory and the characterization of the problem’s fundamental limits for precision. Finally,
we evaluate some practical solutions for the posed inference problem by assessing the optimality
of some classic estimators.

1.3.2 Specific Objectives

The specific objectives of this work are the following:

• Develop a formal and succint generalization of the performance bounds for implicitly defined
estimators in the case of an arbitrary number of dimensions or parameters.

• Perform a quantitative analysis of the Cramér-Rao performance bounds and how they evolve
as functions of different phenomenological and decision-related conditions, this to support
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the idea of using as much information (pixels) as possible when performing simultaneous
inference.

• Implementation and analysis of the Maximum Likelihood (ML) estimator and different fla-
vors of the Weighted Least-Squares (WLS) estimator; and assess their optimality relative to
fundamental limits.

• Design and implement an adequate estimator for experimental validation of the developed
mathematical tools.

• Explore the potential use of our results as a well-founded mean to validate -and discriminate
between- different implementations of an estimation algorithm.

1.4 Structure

The structure of the rest of the document is as follows:

• Section 2 introduces the formal definition of the inference problem studied along this work,
followed by some important results on parameter estimation and a brief review of previous
works that served as inspiration both theoretic- and methodologic-wise.

• Section 3 presents the mathematical tools developed in this work by merging and extending
previous results discussed in Section 2.4. This framework allows to place bounds on the
performance of multidimensional implicit estimators and constitutes one of the cornerstones
of the analysis carried out in following sections.

• Section 4 explores the fundamental limits of the problem of joint estimation of flux and
background for point sources. Starting with further specification of the phenomenological
model and common assumptions in photometry studies. We analyze the effect of decision
over the inference scheme and usage of information on the Cramér-Rao Bounds for different
observational scenarios.

• Once theoretical bounds have been characterised, Section 5 examines their achievability by
means of practical estimators, specifically different flavors of the Weighted Least-Squares
estimator. By adequate selection of the weights we study closed-form expressions for the
estimators to assess its optimality, as well as non-closed ones, defined implicitly by an opti-
mization problem. This allows us to put into test and verify the mathematical tools developed
in Section 3.

• After experimental validation of our bounding strategy, Section 6 focuses on another classical
estimation mechanism: the Maximum Likelihood estimator. We study its optimality with
respect to the Cramér-Rao Bounds and possible uses of the results of Section 3 as a way to
assess proper implementation of an estimator.

• Section 7 presents the conclusions on this work and some of the possible guidelines for future
directions.
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Chapter 2

Preliminaries and Background

In this section, the formal context and notation of this work is given: the basic setting of the
problem is introduced in Section 2.1, followed by some background on parameter estimation shown
in Sections 2.2 and 2.3.

2.1 The Joint Source Flux and Background Estimation Prob-
lem

The main inference problem posed in this work is that of estimating the brightness of a point
source and the expected background noise to be measured by the instrument, which includes
open-sky photon emissions and noise from the instrument itself. A point source imaged with a
one-dimensional CCD array1 is parameterized by the pair (xc, F̃ ) ∈ R×R+, where xc denotes the
relative position of the point source in the array, measured in arcseconds, and F̃ corresponds to the
source’s brightness measured in photo-e−. These two parameters induce a probability distribution
µxc,F̃

over the sample space R × R+ = X. A point source represented by a point on X translates
into a nominal brightness profile in the device, which can be expressed by:

F̃xc,F̃
(x) = F̃ · ϕ(x− xc, σ), (2.1)

where ϕ(x − xc, σ) denotes the one-dimensional Point Spread Function (PSF), which determines
the light distribution coming from the point source over the array, parameterized by its width
σ (measured in arcseconds), and therefore the quality of the observing site [Mendez et al., 2013,
Mendez et al., 2014].

As ground-based observation model let’s consider that a photon integrating device (such as
CCDs) measures a vector I = [I1, . . . , In]

⊺, where Ii ∈ N corresponds to the photon count measured
by the ith pixel in the device. Each one of these measurements Ii is modelled as an independent
Poisson random variable driven by the total expected flux λi(xc, F̃ ), given by:

1The analysis can be extended to the two-dimensinal case [Mendez et al., 2013].
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λi(xc, F̃ ) = E {Ii} = F̃i(xc, F̃ ) + B̃i, ∀i = 1, . . . , n, (2.2)

where F̃i(xc, F̃ ) denotes the source’s flux profile proportion spread along the ith pixel and B̃i denotes
the (expected) additive background noise coming from external sources other than the observed
point source itself, such as photon emissions coming from the open-sky and the noise of the
instrument itself (read-out noise and dark-current [Janesick, 2001, Howell, 2006, Janesick, 2007,
McLean, 2008]).

The way the expected pixel flux F̃i(xc, F̃ ) relates to the source’s profile is by quantization of
the latter. That relation can be expressed through equations (2.3) and (2.4):

F̃i(xc, F̃ ) = F̃ · gi(xc), ∀i = 1, . . . , n, (2.3)

gi(xc) =

∫ xi+
∆x
2

xi−∆x
2

ϕ(x− xc, σ)dx, ∀i = 1, . . . , n. (2.4)

In equation (2.4), xi denotes the relative position of the ith pixel’s center projected into the
sky, while ∀i = 1, . . . , n − 1,∆x = xi+1 − xi denotes the array resolution or pixel size. Both
quantities are measured in arcseconds. Note that, for gi(xc) to be a dimensionless quantity, the
point spread function ϕ shall take values measured in arcsec−1. Though not strictly necessary for
the analysis in future sections, a basic assumption is that of good coverage of the studied object
[Lobos et al., 2015, Espinosa et al., 2018], in the sense that given its relative position xc:

n∑
i=1

gi(xc) ≈
∑
i∈Z

gi(xc) =

∫ ∞

−∞
ϕ(x− xc, σ) = 1. (2.5)

Satisfying the assumption shown in equation (2.5) should lead to consistent and more precise
estimations, as will be shown later in Sections 5 and 6.

Assuming absolutely precise knowledge of the source’s PSF and position xc, the inference prob-
lem studied is that of estimating the expected flux parameters F̃ and B̃i. Nevertheless, the di-
mensionality of this estimation problem can be reduced considerably under the assumption of
homogeneous background, which states that B̃i = B̃, ∀i = 1, . . . , n. Note that the background B̃
corresponds to background flux per pixel and not to a quantity spread along the instrument, it is
therefore measured in photo-e−/pixel. Such an assumption is commonly used for the photometry
estimation problem [Lindegren, 2008, Gai et al., 2017]. That allows to rewrite λi(xc, F̃ ) as:

λi(xc, F̃ ) = E {Ii} = F̃ · gi(xc) + B̃, ∀i = 1, . . . , n. (2.6)

The independence relation Ii ⊥⊥ Ij, i ̸= j allows to write the likelihood (joint probability func-
tion) of the observation vector I, given source parameters (xc, F̃ ) and background B̃, as:
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L(I;xc, F̃ , B̃) = p(I|xc, F̃ , B̃)

=
n∏

i=1

e−λi(xc,F̃ ) · λIi
i (xc, F̃ )

Ii!

=
n∏

i=1

e−(F̃ ·gi(xc)+B̃) ·
(
F̃ · gi(xc) + B̃

)Ii
Ii!

.

(2.7)

It is worth noting that despite F̃ and B̃ being measured in units of counts (or photo-e−) both
quantities take values in R+. The main reason behind this is that both variables combine both the
count rates over time and the fixed integration (or imaging) time t. More formally, each observation
Ii is a Counting Process, or Poisson Process [Ross, 1996] whose increments Ii = N(t) distribute as
a Poisson random variable with parameter λ′

it = λi, where λ′
i denotes the count rate of the process

in units of photo-e−/sec. Though it is possible to focus the problem on estimating the count rate
itself (see, for example, the data products developed by the TESS Data for Asteroseismology group
[Handberg et al., 2021]), and similar results to those shown in this work may be found, it is not
the current focus nor our approach to the problem.

More formally, the posed estimation task is that of finding a parameter vector θ̂ = ( ˆ̃F, ˆ̃B) that
accounts as a prescription (or statistics) that allows to infer the underlying parameters (F̃ , B̃) from
I. The estimations ( ˆ̃F, ˆ̃B) are then given by a decision rule τ(I) : Nn → Θ = R+ × R+ so that
( ˆ̃F, ˆ̃B) ≡ τ(I).

2.2 The Cramér-Rao Lower Bound

The celebrated Cramér-Rao Lower Bound (CRLB) [Rao, 1945, Cramér, 1946] offers a performance
bound on the expected variance (estimation error) of the family of unbiased estimators. More
precisely, let {Ii}ni=1 be a collection of independent observations, whose probability density (or
mass) function L(·;θ) is induced by a parameter vector θ = (θ1, . . . , θm) ∈ Θ,m ∈ N over a
parameter space Θ (typically Θ = Rm). The objective of an estimation problem is to find a
parameter vector θ̂ ∈ Θ called estimator. Hopefully, θ̂ shall be unbiased2, so that the absolute
error in the limit equals 0, and have low variance, in order to achieve the lowest Mean Squared
Error (MSE). To illustrate this [Kay, 1993], in a one-dimensional estimation problem, let b(θ̂) be
the estimator’s bias, then

b(θ̂) = E{θ̂} − θ = 0. (2.8)

Then, the MSE can be expressed as

2In the sense that E{θ̂} = θ.
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MSE(θ̂) = E
{(

θ̂ − θ
)2}

= V ar(θ̂)−
(
E{θ̂ − θ}

)2
= V ar(θ̂)− b2(θ̂)

= V ar(θ̂).

(2.9)

Because of this, an unbiased estimator that is optimal in terms of the MSE is often referred to
as the Minimal Variance Unbiased Estimator (MVUE).

Given the relevance that the concept of variance has in usual estimation problems, it is fortunate
that the CRLB offers performance bounds in terms of variance, which are given under some
regularity conditions. Furthermore, it allows (under certain conditions, which are not always
satisfied3) to formulate the estimator that achieves said bound, which will naturally be the MVUE.
The CRLB in its vector form is stated as follows:

Theorem 2.1 (Cramér-Rao Lower Bound) Let θ = {θ1, . . . , θm},m ∈ N be a collection of param-
eters over a parameter space Θ, which induces a probability distribution L(I;θ) on an observation
space O such that the following regularity condition is satisfied:

EI∼L(I;θ)

{
∂ lnL(I;θ)

∂θi

}
= 0, ∀i ∈ {1, . . . ,m}, ∀θ ∈ Θ. (2.10)

Then, any unbiased estimator θ̂ of θ, given by a decision rule τ : Nn → Θ, θ̂ ≡ τ(I), has a
covariance matrix Cθ̂ that satisfies:

Cθ̂ − I−1
θ ⪰ 0, (2.11)

where ⪰ 0 denotes that the matrix on the LHS is positive semi-definite and Iθ ∈ Mm×m denotes
the Fisher Information Matrix, which is defined by:

[Iθ](i,j) = −EI∼L(I;θ)

{
∂2 lnL(I;θ)

∂θi∂θj

}
= EI∼L(I;θ)

{
∂ lnL(I;θ)

∂θi
· ∂ lnL(I;θ)

∂θj

}
, ∀i, j ∈ {1, . . . ,m}.

(2.12)

Moreover, if there exists some function h : O → Θ such that

∂ lnL(I;θ)

∂θi
= [Iθ(h(I)− θ)]i , ∀i ∈ {1, . . . ,m}, (2.13)

3This does not mean that there’s no MVUE, but that the MVUE’s (co)variance does not achieve the bounds.
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then the MVUE is given by θ̂ = h(I), and its covariance matrix is I−1
θ .

From Theorem 2.1, it follows that for any unbiased estimator:

V ar(θ̂i) = [Cθ̂](i,i) ≥ [I−1
θ ](i,i), ∀i ∈ {1, . . . ,m}. (2.14)

Though Theorem 2.1 does not assert the existence of an estimator that achieves the CRLB, it is
still possible to find the MVUE. To do so, one can resort to sufficient statistics theory [Kay, 1993].

2.3 Sufficient Statistics

When the decomposition presented in Theorem 2.1 through equation (2.13) can not be satisfied,
there’s no such an estimator that attains the CRLB. Nevertheless, it is still possible to find the
MVUE, that is a function (or decision rule) τ ∗(I) in the space of functions from O to Θ ⊆ Rm

that are unbiased such that, for any other function τ(I) in the same space:

V ar(τi(I)) ≥ V ar(τ ∗i (I)) > [I−1
θ ](i,i), ∀i ∈ {1, . . . ,m}. (2.15)

Theory on sufficient statistics offers some useful theorems and tools to find such and estimator.
More formally, a statistic T (I) is a random variable, function of a sample vector whose probability
function is parameterized by a parameter vector θ, i.e., I ∼ p(I|θ).

T (I) is said to be sufficient if new observations I, conditioned on a realization of T , become
independent from θ. This notion is formalized through the Neyman-Fisher Factorization Theorem
(see Theorem 2.2), which also allows to find such an statistic.

Theorem 2.2 (Neyman-Fisher Factorization Theorem) If the probability function of a random
variable I, p(I|θ), can be written as:

p(I|θ) = g(T (I),θ) · h(I), (2.16)

being g some function that depends on I only through T , and h a function of I only; then T (I) is a
sufficient statistic for θ. Conversely, if T (I) is a sufficient statistic for θ, the likelihood of the
observations, p(I|θ) can be factorized as in equation (2.16).

It is important to note that Theorem 2.2 does not guarantees the existence of such an statistic
for a given likelihood function, only a property it satisfies if it exists.

If a sufficient statistic for θ is found, the Rao-Blackwell-Lehmann-Scheffe (RBLS) Theorem
[Levy, 2008] allows to find the MVUE from that statistic.

Theorem 2.3 (Rao-Blackwell-Lehmann-Scheffe Theorem) Let θ̌ be an unbiased estimator of θ
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and T (I) a sufficient statistic for θ, then its conditional expectation θ̂ ≡ EI∼p(I|θ){θ̌|T (I)} is

1. a valid estimator for θ (i.e., not explicitly dependent on θ)

2. unbiased
3. of lesser variance than that of θ̌,∀θ ∈ Θ, in the sense that, if

Cθ̌ ≡ EI∼p(I|θ){(θ̌ − θ)(θ̌ − θ)†},
Cθ̂ ≡ EI∼p(I|θ){(θ̂ − θ)(θ̂ − θ)†}

(2.17)

denote the covariance matrices of θ̌ and θ̂, respectively, then Cθ̂ ⪰ Cθ̌.

Additionally, if T (I) is complete, θ̂ is the MVUE.

A sufficient statistic T (I) is said to be complete if and only if there exists only one function
g(T (I)) that is unbiased, i.e., such that EI∼p(I|θ){g(T (I))} = θ.

Note that the completeness of T (I) is itself a property of the model p(I|θ). In particular, the
family of exponential density functions is complete [Kay, 1993, Levy, 2008].

2.4 Related Work

The current work is heavily influenced in its methodology by the works of Méndez et al. on Cramér-
Rao [Mendez et al., 2013] and Espinosa et al. on near-optimal estimators [Espinosa et al., 2018]
for astrometry.

The former aims to characterize exhaustively the Cramér-Rao Bounds for the problem of esti-
mating the relative position of a resolved point source. The authors explore the behavior of the
bound under different observational scenarios and find interesting limits for source-dominated and
background-dominated cases. They find as well that, for a wide range of signal-to-noise ratios, the
Maximum Likelihood and Least-Squares (LS) estimators approach the bound tightly. This work
is expanded to a two-dimensional case in which astrometry is determined alongside photometry
[Mendez et al., 2014]. Therein, scenario’s SNR and joint Cramér-Rao bounds are related with
good correspondence between them, as well as predictions that confirm common heuristics on the
field in a theoretic-based manner are performed.

The second work mentioned assesses the optimality of the ML and WLS estimators for as-
trometry by expanding Fessler’s work on implicit estimators [Fessler, 1996]. Fessler developed
general first and second order Taylor expansions for said kind of estimators to allow bias and
variance approximations. Espinosa et al. restricted themselves to the one-dimensional case, but
developed Fessler’s methodology further by formulating bounds on those quantities rather than
just approximations. With that newly formulated mathematical tools they studied the behaviors
of the estimators with respect to the Cramér-Rao bound already discussed [Mendez et al., 2013],
finding that ML offers optimal performance over a wide range of relevant observational conditions,
both by showing that their bounds tightly enclose the fundamental limit and how the empirical
precision matches it. WLS estimator was shown to be less consistent as it exhibits sub-optimal
performance as SNR increases. The current work recovers their spirit and formulations to expand
them back to the multidimensional case, allowing work on any number of parameters.

11



Last but not least, it is worth noting two practical examples of joint estimation already put
into practice in the astronomy field.

On one hand stands the Bayesian background-source separation technique developed by Gugliel-
metti in her Ph.D. dissertation [Guglielmetti, 2010]. Briefly put, the method successfully perform
accurate background estimates while detecting different sources on an image. However, the step-
wise paradigm remains partially as detected source’s flux estimates require the previous background
ones4.

Back on the parametric estimation field lies the work of Gai et al. on joint estimation of flux,
background and position [Gai et al., 2017]. They developed a maximum likelihood framework to
simultaneously get consistent estimates for these three quantities. They also studied the correlation
between their estimates in a well-understood manner.

4The current work is not different for that matter, nevertheless. Here we take for granted the detection phase,
while merging the background-flux estimation ones.
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Chapter 3

Finding Performance Bounds for
high-dimensional Implicit Estimators

As stated in Section 2.1, an estimator is given by a decision rule τJ(·), which is often given as the
solution of a generic optimization problem of the form

τJ(I) ≡ argmin
α∈Θ

J(α, I), (3.1)

where α represents the resulting p-dimensional vector parameter, and I is a n-dimensional ob-
servation vector. This generalization can lead to two different situations: either the resulting
decision rule can be obtained in a closed or explicit form, where its variance and bias may be
determined directly. The other possible scenario is that of an implicit estimator [Fessler, 1996,
Lobos et al., 2015, Espinosa et al., 2018]. This latter case is difficult to assess since not having an
expression for τJ(·) prevents one to determine its moments.

For the last case, one can resort to a Taylor expansion in order to approximate [Fessler, 1996] or
bound [Espinosa et al., 2018] both the estimator’s bias and variance. The proposed methodology
in [Espinosa et al., 2018] to bound the performance of a single-parameter implicit estimator can
be extended to the multidimensional case.

For that matter, it is assumed that the cost function J(α, I) has a unique optimal value at
α = τJ(I) such that it also satisfies the first order condition given in equation (3.2). Note that,
given an observation vector I, J(α, I) is a function depending only on the parameter vector α.

0 = ∇J(α, I)

∣∣∣∣
α=τJ (I)

= [J ′(α, I)]
⊺

∣∣∣∣
α=τJ (I)

=


∂

∂α1
J(τJ(I), I)

...
∂

∂αp
J(τJ(I), I)

 .

(3.2)
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Under these general assumptions, the estimator’s Taylor expansion around the mean vector Ī
is as follows:

τJ(I) ≈ τJ(Ī) + τ ′J(Ī) · (I− Ī) + e(Ī, I− Ī), (3.3)

where

e(Ī, I− Ī) =
1

2

n∑
i=1

n∑
h=1

∂2

∂Ii∂Ih
τJ(Ī+ t(I− Ī))(Ii − Īi)(Ih − Īh)

=
1

2

n∑
i=1

n∑
h=1


∂2

∂Ii∂Ih
τJ,1(Ī+ t(I− Ī))

...
∂2

∂Ii∂Ih
τJ,p(Ī+ t(I− Ī))

 (Ii − Īi)(Ih − Īh),

(3.4)

for some fixed but unknown value t ∈ [0, 1]. The expansion in equation (3.3) can be used to bound
the bias and variance associated to each of the vector’s components. Noting α⋆ as the ground-truth
parameter vector, it follows that, for each j ∈ {1, . . . , p}:

|EI∼L(I;α⋆) {τJ,j(I)} − α⋆
j | ≤ |τJ,j(Ī)− α⋆

j |+ max
t∈[0,1]

∣∣EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

}∣∣
≡ |τJ,j(Ī)− α⋆

j |+ εJ,j

≡ ε′J,j,

(3.5)

V ar(τJ,j(I)) ∈
[[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) − βJ,j,

[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + βJ,j

]
1, (3.6)

where

βJ,j = max
t∈[0,1]

EI∼L(I;α⋆)

{(
ej(Ī, I− Ī)

)2}
+ 2max

t∈[0,1]

∣∣∣EI∼L(I;α⋆)

{[
τ ′J,j(Ī)

]
(j,·) (I− Ī) · ej(Ī, I− Ī)

}∣∣∣ .
(3.7)

For ease of notation, we define σ2
J,j ≡

[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) to be the central value of the

interval in (3.6), i.e.:

V ar(τJ,j(I)) ∈
[
σ2
J,j − βJ,j, σ

2
J,j + βJ,j

]
. (3.8)

1In what remains of this work, the expectations that define second-order momenta such as V ar(·) and Cov(·)
are taken w.r.t the likelihood function L(I;α⋆), unless otherwise stated.
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These inequalities heavily resemble those found by [Espinosa et al., 2018] for the one-dimensional
case, i.e., p = 1, and do not depend on the exact value of τJ(I), but on its first- and second-order
derivatives; being their calculation a critical task to work up to.

The components of said derivatives can be calculated by following a similar methodology of
that proposed by Fessler [Fessler, 1996]. For that purpose a family of operators can be stated as
follows: let i, j ∈ N and a real function f(α, I), f : Θ × Nn → R, then ∇ijf(·) denotes a tensor
function

∇ijf(·) = ∂i+j

∂αi∂Ij
f(·), (3.9)

where f is derived i times with respect to the vector α and j times with respect to I.

Then, the first derivative of τJ evaluated at some observation vector I, namely

τ ′J(I) =
[

∂
∂I1

τJ(I) . . . ∂
∂In

τJ(I)
]

=


∂
∂I1

τJ,1(I) . . . ∂
∂In

τJ,1(I)
... . . . ...

∂
∂I1

τJ,p(I) . . . ∂
∂In

τJ,p(I)

, (3.10)

can be calculated as

τ ′J(I) = −
[
∇20J(τJ(I), I)

]−1 [∇11J(τJ(I), I)
]
, (3.11)

where ∇20J(τJ(I), I) and ∇11J(τJ(I), I) denote p× p and p× n matrices, respectively. Thus being
τ ′J(I) a p× n matrix.

Finding the second-order derivative τ ′′J (I) boils down to calculate each of the n2 vectorial com-
ponents

∂2

∂Ii∂Ih
τJ(I) =

[
∂2

∂Ii∂Ih
τJ,1(I) . . . ∂2

∂Ii∂Ih
τJ,p(I)

]⊺
. (3.12)

In order to find the p components of the vector defined in equation (3.12) one can resort to
Fessler’s equation (15) [Fessler, 1996], which allows to state a set of p equations in said p unknowns.
Therefore, the derivative in equation (3.12) can be written in a matrix form as

∂2

∂Ii∂Ih
τJ(I) = −

[
∇20J(τJ(I), I)

]−1
[
P i,h
J (I) +Qi,h

J (I)
]
, (3.13)

where
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P i,h
J (I) ≡

[
[τ ′J(I)]

⊺
(·,i)
[
∇30J(τJ(I), I)

]
(j,·,·) [τ

′
J(I)](·,h) +

[
∇21J(τJ(I), I)

]
(j,·,h) [τ

′
J(I)](·,i)

]p
j=1

∈ Rp×1,

(3.14)

Qi,h
J (I) ≡

[[
∇21J(τJ(I), I)

]
(j,·,i) [τ

′
J(I)](·,h) +

[
∇12J(τJ(I), I)

]
(j,i,h)

]p
j=1

∈ Rp×1. (3.15)

The demonstration for the equations and bounds exposed in this section is detailed in Appendix
A.
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Chapter 4

Cramér-Rao Lower Bound for Joint Source
Flux and Background Estimation

In this section, the behavior of the Fisher Information Matrix and the CRLBs for the joint estima-
tion problem introduced in Section 2.1 is studied through simulations. In order to do that, some
model considerations need to be specified. On one hand, a Gaussian PSF is assumed, i.e.,

ϕ(x) =
1√
2πσ2

exp

(
−1

2

x2

σ2

)
, (4.1)

which is a reasonable choice in the considered context of a ground-based observation model
[Mendez et al., 2010]. From equation (2.5) it verifies that F̃ is indeed the total expected flux
of the source spread along the array:

n∑
i=1

F̃i(xc, F̃ ) = F̃
n∑

i=1

gi(xc)

= F̃
n∑

i=1

∫ xi+
∆x
2

xi−∆x
2

ϕ(x− xc, σ)dx

≈ F̃

∫ ∞

−∞
ϕ(x− xc, σ)dx

= F̃ .

(4.2)

As was said before, σ is usually related to image quality, since narrower PSFs translate into
less light-spreading. An alternative measure of quality is that of "Full-Width at Half-Maximum"
(FWHM), which is related to the Gaussian σ through:

FWHM = 2
√
2 ln 2σ. (4.3)
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For astronomical applications, detector’s noise sources are dominated by the diffuse light coming
from the sky due to the long exposure times (unless the targeted source is too bright and requires
very short exposures), then the background per pixel B̃ is dependent on the pixel size ∆x. Such
a background model can be formulated by [Mendez et al., 2013] [Winick, 1986]:

B̃ = G∆xfs +D +RON2, (4.4)

where G denotes the detector’s (inverse-) gain in units of photo-e−/ADU (ADU stands for "analog
to digital unit"), fs denotes the sky background in units of ADUs/arcsec, and D and RON denote
dark-current and read-out noise, respectively, in units of photo-e−. This model allows to translate
noise from the sky itself into individual pixels, taking into account instrumental noise too, while
being able to capture the effect of exposure time through fs [Winick, 1986].

Note that the source’s flux and the background can be transformed into ADUs through G, and
vice versa. Those conversions are denoted as F and B, respectively, and relate to the quantities
measured in photo-e− by means of:

F̃ = G · F, (4.5)

B̃ = G ·B. (4.6)

For analysis purposes, it is also worthwhile to develop a measurable form of signal-to-noise
ratio [Mendez et al., 2013] that captures to some extent the quality of the signal as the source is
observed through the CCD detector under determined sky conditions. The sampled signal S (in
photo-e−) can be defined as:

S = F̃ ·
∫ xu

xl

ϕ(x− xc, σ)dx, (4.7)

where xl and xu are suitably chosen (but arbitrary) apertures such that an appreciable fraction of
the total flux is included. For the Gaussian case considered above, this expression can be written
as:

S = F̃ · P (u+), P (u) =
2√
π

∫ u

0

e−v2dv, (4.8)

where u+ = (xu − xl)/
√
2σ denotes the chosen aperture, which is symmetric with respect to the

source’s position xc, that is xu − xc = xc − xl.

The total noise, N , is considerred to have contributions from the detector’s read-out noise, from
the sky noise and the noise from the source itself [Mendez et al., 2013], all of them assumed to
follow a Poisson distribution, such that:
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N =
√

S +Npix(G∆xfs +RON2), (4.9)

where Npix denotes the number of pixels under the same region in which the signal S was sampled,
i.e., the pixels used to get an estimation ˆ̃F . Finally, the signal-to-noise ratio (SNR) is given by
S/N . This definition can be extended and generalized. To do so, let J ⊆ {1, . . . , n} be a set of
sub-indices such that Npix = |J |. J denotes the indices of the pixels to be used to perform the
estimation through a decision rule τ(·). Therefore, the signal sampled with pixels whose index i is
contained in J , SJ , and the corresponding total noise, NJ , are given by:

SJ = F̃ ·
∑
i∈J

gi(xc), (4.10)

NJ =
√

SJ +Npix(G∆xfs +RON2)

=
√

SJ + |J |(G∆xfs +RON2).
(4.11)

Under the assumption that only full pixels are taken into consideration, i.e., xl and xu can only
take values on the borders of pixels1, there would be some set of indices J such that SJ = S and
NJ = N , for some pair (xl, xu).

When the pixels indexed by J are used as information sources, the Fisher information matrix
for the joint estimation problem posed here can be expressed as:

Iθ =

[∑
i∈J

g2i (xc)

λi(xc,F̃ )

∑
i∈J

gi(xc)

λi(xc,F̃ )∑
i∈J

gi(xc)

λi(xc,F̃ )

∑
i∈J

1
λi(xc,F̃ )

]
≡
[
I1,1 I1,2

I2,1 I2,2

]
. (4.12)

Note that, as expected, I1,2 = I2,1. Then, as stated in Theorem 2.1, the CRLBs are given by:

V ar( ˆ̃F ) ≥ σ2
F̃
=

I2,2

I1,1 · I2,2 − I2
1,2

=
I2,2

|Iθ|
, (4.13)

V ar( ˆ̃B) ≥ σ2
B̃
=

I1,1

I1,1 · I2,2 − I2
1,2

=
I1,1

|Iθ|
. (4.14)

It is worth noting that for this particular problem, equation (2.13) is not satisfied. Therefore,
no MVUE can be found through Theorem 2.1 and the bounds in equations (4.13) and (4.14) are
not achieved.

1xl ∈ {x ∈ R : x = xi − ∆x
2 , i = 1, . . . , n} and xu ∈ {x ∈ R : x = xi +

∆x
2 , i = 1, . . . , n}.
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4.1 The Cramér-Rao Bounds under different Pixel Selection
Schemes

From equation (4.12), it is natural to expect that different pixel selections (J ) determine different
performance bounds. For example, it is reasonable to expect that if only the most-external pixels
are employed for inference, little to none source flux shall be measured and, therefore, an imprecise
estimator ˆ̃F would be gotten. This section aims to provide some insight on the effect of J on Iθ, σ

2
F̃

and σ2
B̃
.

For this, three pixel selection schemes are studied through simulations. A "sequential" scheme
shall refer to sequentially adding pixels from left to right, thus getting a sequence of sets given
by (Jk) = {{1}, {1, 2}, {1, 2, 3} . . . , {1, . . . , n}}; an "aperture" scheme denotes that, starting from
the pixel the source is located at (denoted by nxc), sequentially adding adjacent pixels (left- and
right-pixel), obtaining a sequence of the form (Jk) = {{nxc}, {nxc − 1, nxc , nxc +1}, {nxc − 2, nxc −
1, nxc , nxc +1, nxc +2}, . . . }; finally a "random" scheme denotes sequentially adding random pixels
which have not been added yet. Note that the random scheme may be understood as a sequential
scheme performed over a permutation of the full set of indices {1, . . . , n} as seen on Figure 4.12.
Note that the permutation presented in Figure 4.1 is the one considered for this analysis.

The parameters that characterize the source, device and sky conditions along this section are:
D = 0, RON = 5 photo-e−, G = 2 photo-e−/ADU, ∆x = 0.2 arcsec, n = 41 pixels, fs = 1502.5
ADUs/arcsec, nxc = 21, dither = 0, FWHM = 1.0 arcsec and F̃ = 10002 photo-e−. The dither
parameter expresses an offset between the nth

xc
pixel’s center and the actual position of the point

source xc [Mendez et al., 2013, Mendez et al., 2014].
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0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

g i
(x
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Sequential

Figure 4.1: Quantified PSF3, gi(xc), and its permutation, which is employed for the random
selection scheme.

Considering the three selection schemes and scenario above mentioned, Figure 4.2 shows the
four elements of the Fisher information matrix, as described in equation (4.12), and its determinant
|Iθ|. It shows increasing trends that are expected for the problem of joint estimation of F̃ and B̃.
Those curve shapes determine to some extent how the Cramér-Rao bounds curves behave.

2For accurate computation of the gi(xc) values the mpmath [Johansson et al., ] Python library was used through-
out this work.

3Also referred to as Pixel Response Function (PRF) [Handberg et al., 2021].

20



0 5 10 15 20 25 30 35 40
Number of Pixels used Npix

0

2

4

6

1,
1 

[fo
to

-e
1 ]

1e 5

Sequential
Random
Aperture

0 5 10 15 20 25 30 35 40
Number of Pixels used Npix

0

2

4

2,
2 

[fo
to

-e
1 ]

1e 2

Sequential
Random
Aperture

0 5 10 15 20 25 30 35 40
Number of Pixels used Npix

0

2

4

6

1,
2 

[fo
to

-e
1 ]

1e 4

Sequential
Random
Aperture

0 5 10 15 20 25 30 35 40
Number of Pixels used Npix

0

1

2

3

|
| [

fo
to

-e
2 ]

1e 6

Sequential
Random
Aperture

Figure 4.2: Fisher matrix elements and its determinant for different selection schemes.

Focusing on the upper-left graphic presented in Figure 4.2, the curve corresponding to the
sequential scheme shows that the first ∼ 15 pixels added contain no information about the source,
because of the shape of the PSF on that region, since its value is 0 for all practical effects. Then, as
pixels near the mode of the PSF are added (pixels that contain flux coming from the source), I1,1

increases rapidly, until it saturates, since no source flux is taken from the last-added observations.
On the other hand, for the aperture scheme, I1,1 increases due to the increasing fraction of F̃
observed. This curve saturates as the last pixels added mostly measure background information.
For the random case, what’s most remarkable about the curve for I1,1 is that it tends to "jump"
each time a pixel whose gi(xc) value is relatively high is added. Moreover, the higher gi(xc) is the
more I1,1 increases.

Note that for any selection scheme, saturation of the elements in the Fisher matrix is a conse-
quence of the coverage assumption of equation (2.5).

For the case of I2,2 depicted in the upper-right graphic on Figure 4.2, it happens the opposite of
what is observed for I1,1. When pixels near the source are added, the slope of the curve decreases.
Therefore one can conclude that those pixels give less information about the background due to
the influence of F̃ on the statistics of the corresponding mean values λi(xc, F̃ ). It is worth noting
that in any of the three cases shown, I2,2 does not saturate. The main reason behind this behavior
is the homogeneous background assumption across the field of view.

For the curves outside the diagonal of Iθ, those curves resembles what was shown for I1,1.
Again, this can be explained by the coverage assumption: note that both terms have the form∑

i∈J αigi(xc), which is clearly bounded considering supi∈J |αi| < ∞.

Finally, though the curves for |Iθ| may be difficult to interpret, the fact that they show a slope
very similar to that seen for I2,2 (at least for the sequential and aperture schemes after ∼ 25 pixels
are added) allows to infer how the Cramér-Rao bounds curves behave. For that matter, since the
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slopes of I2,2 and |Iθ| (eventually) become similar to each other, their ratio shall become constant
at some point, too. On the other hand, since I1,1 saturates eventually and the determinant |Iθ| does
not, it is reasonable to expect that the ratio I1,1/|Iθ| exhibits a monotonic decreasing behavior.
Both mentioned fractions correspond precisely to the CRLBs shown in equations (4.13) and (4.14).

Before analysing the actual behavior of the CRLBs, let us introduce some concepts and notation.
For ease of visualization, it may be convenient to express the Cramér-Rao bound for flux F̃ in
terms of magnitudes, rather than directly in photo-e−. The corresponding standard deviation is
computed as [Mendez et al., 2014]:

σm =
2.5

2
·
(
log (F̃ + σF̃ )− log (F̃ − σF̃ )

)
. (4.15)

One key difference between the Cramér-Rao Lower Bound for a parameter vector θ = (θ1, . . . , θm)
and the bound for the one-dimensional problem of estimating just one of these parameters, is that
the former takes into account how the uncertainty on each parameter shall impact on the others
[Kay, 1993]. For the joint estimation problem adressed here, if the determination of B̃ is complete,
the corresponding CRLB for F̃ , denoted here as σ2

F̃ ,1D
, is:

σ2
F̃ ,1D

=
1

I1,1

, (4.16)

where I1,1 is just the Fisher information matrix element described in equation (4.12)45. The sta-
tistical interaction between components is captured (to some extent) by the off-diagonal elements
of the Fisher Information matrix, and therefore the "optimal" covariance matrix, I−1

θ . With the
problem of jointly estimating F̃ and B̃ as example, if I1,2 = 0 it follows that:

σ2
F̃
=

I2,2

I1,1 · I2,2 − 0
=

1

I1,1

= σ2
F̃ ,1D

, (4.17)

σ2
B̃
=

I1,1

I1,1 · I2,2 − 0
=

1

I2,2

= σ2
B̃,1D

, (4.18)

and, for the covariances:

[I−1
θ ]1,2 = [I−1

θ ]2,1 =
−I1,2

I1,1 · I2,2 − I2
1,2

= 0. (4.19)

Therefore I1,2 captures codependency among the estimators and in case that I1,2 = 0, these
become uncorrelated6. If that were the case, one could consider that the estimation problems can

4Analogously, the bound for B̃ when F̃ and all the other parameters are assumed known corresponds to σ2
B̃,1D

=
1

I2,2
.

5Precisely because of this interaction and the definition of the Fisher information matrix it happens that the
term I1,1 appears in other related problems and analyses [Mendez et al., 2014, Lobos et al., 2015].

6Though not necessarily independent.
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be decoupled and treated separately, since the two-dimensional problem and the one-dimensional
problems behave the same in terms of MSE. Therefore, the fractional difference or discrepancy
between the corresponding bounds for the joint and one-dimensional problems (defined in equations
(4.20) and (4.21)) measure how much the bounds deteriorate as dimensionality of the estimation
problem increases or less information is available.

∆1Dσm ≡ σm − σm,1D

σm

× 100, (4.20)

∆1DσB̃ ≡
σB̃ − σB̃,1D

σB̃

× 100. (4.21)

This two quantities are dimensionless and non-negative.

That said, Figure 4.3 shows the corresponding performance bounds obtained through the de-
picted selection schemes. The top graphics show both the bounds for the joint case and their
one-dimensional counterpart, while the bottom graphics display those results in the form of dis-
crepancies.
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Figure 4.3: Performance bounds for joint source flux and background estimation under different
pixel selection schemes. For the upper-left and -right graphics, a solid line is used for the bounds for
the joint estimation problem, σ2

m and σ2
B̃
, and a dashed line for the corresponding one-dimensional

bounds, σ2
m,1D and σB̃,1D. The black dashed line on the lower-left and -right graphics indicates a

5% discrepancy.

The way each selection scheme affects the bounds behave as expected:

• For the sequential scheme, very high uncertainty for F̃ is expected at first since no source flux
is measured, followed by a rapid decrease that ends up stabilizing as only background pixels
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are added. For σB̃, as no source is measured at first, the sequential scheme outperforms the
other two, and decrease continuously as more pixel information is considered.

• The aperture scheme allows σm and σm,1D to decrease earlier, in comparison with the se-
quential one. However, this scheme requires much more pixels to yield an estimation for B̃
that is as precise as the sequential scheme.

• The random scheme can be thought to be a intermediate case between the other two schemes,
in the sense that it attains relatively good precision with less information by means of taking
into account both pixels that contain a significant proportion of flux and pixels that measure
only background.

It is remarkable that as more information (pixels) is added, the bounds decrease further, just
as predicted from the analysis of the elements of the Fisher matrix. This is observed in any of the
selection schemes and for both the joint estimation and the one-dimensional estimators.

It should be kept in mind however, that the results for the random scheme and discrepancy
may be misleading. Though that scheme seems to offer relatively low discrepancies and yet good
performance bounds, it’s not a "good" scheme in the sense that as more pixels are added it ends
up behaving as other simpler schemes. This behavior is attributed to the fact that apparent per-
formance gains with respect to other schemes rely mostly on the randomness of the selection.
Furthermore, performing some stochastic optimization mechanism to ensure a good balance be-
tween both parameters’ uncertainties would require knowing the parameters themselves to optimize
the bounds (i.e., calculation of Iθ) and to restrict the problem, since it is already evidenced that
using every pixel available leads to optimality over Npix. On the other hand, the discrepancy
obtained through the random scheme shows itself going even below the 5% discrepancy level, even
for small values of Npix. If the one-dimensional bound were constant, it would be an indicator
that better precision is achieved, but this is not the case, since discrepancy shows convergence to
a constantly-decreasing value. For example, the precision attained with the random scheme at
Npix = 10 is clearly worse than that obtained with Npix = 41, though discrepancy is deteriorated
in that latter case.

Further evidence on that considering all the pixels available for inference is preferable is shown
in Figure 4.4. It illustrates how the best attainable estimators become less correlated as Npix

increases. It also proves that ˆ̃F and ˆ̃B are negatively correlated, implying that there’s a trade-off
when estimating both parameters, which emerges as a consequence of fitting the PSF into noisy
data.

This behavior can be explained in a natural manner when inspecting the covariance term [I−1
θ ]1,2.

Resorting to the approximation I1,2 ∝ I2,2 (for some Npix sufficiently large) it follows that:

[I−1
θ ]1,2 ≈

−I1,2

I1,1 · c · I1,2 − I2
1,2

=
−1

c · I1,1 − I1,2

, (4.22)

with c some proportionality constant. For c · I1,1 sufficiently large, the denominator in equation
(4.22) decreases and the covariance increases as consequence. Therefore, as estimations become
less correlated, the more the joint estimation problem resembles the two decoupled problems. As
a consequence of this resemblance between problems discrepancies reduce.
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Figure 4.4: Off-diagonal element of I−1
θ for different selections schemes.

One can contrast these findings with the SNR calculated for each of the selection schemes
proposed, which are shown in Figure 4.5. It is shown that for any of the selection schemes the
SNR dampens though Figure 4.3 exhibits that minimal bounds have been reached and discrepancies
converged to 5%. What’s most interesting is the fact that at Npix ∼ 10 the bounds given by
the aperture and random scheme are shown to reach approximately the same value, while the
discrepancies differ significantly, and so does the SNR, since the aperture for the former is near its
maximum while the random scheme goes below 20. This figure exemplifies that the SNR may not
be a good predictor of the best achievable performance for an unbiased estimator, since it depends
mostly on the selection scheme rather than the observed object or device themselves.
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Figure 4.5: SNR for different selection schemes as more pixels are included.

To illustrate that these findings do apply further for other seeing conditions Figures 4.6, 4.7
and 4.8 resemble Figures 4.3, 4.4 and 4.5, respectively, where each curve shown differs from the
already discussed base case in only one parameter (specified in the curve’s label). Note that an
aperture selection scheme was employed for all curves in Figures 4.6, 4.7 and 4.8. As can be seen,
these Figures do not present substantial differences with respect to the base case discussed above,
leading to the same conclusions.
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Figure 4.6: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different observational scenarios, under an aperture pixel selection scheme.
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Figure 4.7: Off-diagonal element of I−1
θ for different observational scenarios, under an aperture

pixel selection scheme.

4.2 Effect of Device Resolution on Cramér-Rao Lower Bounds

Up to this point it has been discussed mostly the effects of source’s parameters, sky conditions and
information selection on the behavior of the fundamental bounds given by Theorem 2.1. In this
section, the interaction between some of these parameters and the resolution of the device, ∆x, is
explored and how these interactions translates to the Cramér-Rao bounds.

Though source’s position has been assumed known, it becomes interesting to study whether or
not the findings on the effects of dithering seen on previous work [Mendez et al., 2014] do apply
to the problem posed here.
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Figure 4.8: SNR for different observational scenarios, under an aperture pixel selection scheme.

The parameters considered for this analysis are the same employed in Section 4.1, but with
∆x ∈ (0, 2] and an observation dither ranging from 0 pixel offset and 0.9 pixel offset; and the
bounds are computed using each one of the n = 41 pixels of the array. It is important then to
note that, since the total amount of pixels in the array is considered fixed, as ∆x grows the source
becomes covered by fewer pixels and sky coverage increases.

Then again, Figure 4.9 shows the performance bounds as the resolution decreases, for differ-
ent values of dithering; and the corresponding discrepancies with respect to the one-dimensional
bounds. For the case of source flux (top-left and bottom-left in the figure), it seems that as long
as ∆x < FWHM the Cramér-Rao bounds are not significantly hindered by the lowering resolu-
tion of the device. Beyond that value emerges some sort of symmetry, which translates into that
photometry is better done near pixel centers than pixel boundaries [Mendez et al., 2014]. Said
symmetry does apply both for the bound for flux itself and for discrepancy, which reinforces the
idea of good centering for photometry.

For background estimation (top-right and bottom-right in Figure 4.9), the CRLB is more re-
silient to dithering than source flux estimation, as the different curves show negligible differences
among them. It is worth noting that this is not the case for discrepancy, as it shows the same
symmetry effect that source brightness exhibits. This behavior is probably due to the correlation
that emerges when simultaneously estimating F̃ and B̃. Some insight into this behavior is provided
by Figure 4.10, which shows how dithering affects the covariance given by the matrix I−1

θ . As can
be seen, when a source is positioned near the boundaries of a pixel, the covariance tends to grow
larger in magnitude, thus the two-dimensional bound grows apart from the one-dimensional one
and increasing discrepancy.

One final remark on what is observed in Figure 4.9 is that, after a rapid decrease of σB̃, it
behaves like a square-root. This can be explained simply by noting the linear relation between B̃
and ∆x of equation (4.4), meaning that the contribution of B̃ to the variance of each observation
Ii also grows linearly with ∆x, since larger pixels are prone to measure more noise coming from
the sky.

The discussion and observations made for Figures 4.9 and 4.10 do apply for other source’s
profiles, as can be seen from Figures 4.11 and 4.12, which resemble Figure 4.9 but considering
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Figure 4.9: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different centering configurations, as functions of pixel size ∆x.
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Figure 4.10: Off-diagonal element of I−1
θ for different centering configurations, as a function of

pixel size ∆x.

FWHM = 0.5′′ and FWHM = 1.5′′, respectively.

Going further on this analysis, this time varying ∆x for different values of total flux (fixing
again FWHM = 1.0′′), Figure 4.13 shows the bounds obtained and their corresponding discrep-
ancies for F̃ ∈ {1080, 3324, 20004, 60160}. In the figure’s top-left graphic it is shown that, for
reasonable resolutions, photometry is quite robust in the sense that the bound remains practically
constant (though, more precisely, it tends to become less precise as ∆x increases). It may seem
counterintuitive that brighter sources lead to lower bounds, following the same argument said
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Figure 4.11: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different centering configurations, as functions of pixel size ∆x, FWHM =
0.5′′.

above that increasing the variance of the observations Ii, given by λi(xc, F̃ ) = F̃ · gi(xc)+ B̃, turns
into an increase of the estimator’s (expected) variance. The reasoninng behind this seemingly odd
behavior is the logarithmic transformation given by equation (4.15) when parsing photo-e− into
magnitudes.

On the other hand, the discrepancy between σm and σm,1D behaves differently, as it is shown
almost as a decreasing function of ∆x, specially for fainter sources. The reasoning behind this is
that of the one-dimensional bound gets worsen more rapidly than the two-dimensional one as pixel
size increases. As an alternative explanation of this behavior, it could be stated that, if correlation
decreased in magnitude, it would be expected that discrepancy did it as well. But, as Figure 4.14
shows, this is not the case. Therefore, the fainting discrepancy is a consequence of the decreasing
precision, both for the one- and two-dimensional cases.

It should also be remarked that brighter sources tend to exhibit more anticorrelation between
the optimal estimators, compared to fainter sources.

For the case of σB̃, Figure 4.13 shows no significant effect of F̃ on said bound. Its behavior is
mostly explained by the same arguments presented above.

Fixing F̃ = 10002 photo-e−, Figures 4.15 and 4.16 show that similar explanations as the afore-
mentioned do apply under different sky conditions. It is worth noting that, as could be expected,
when the sky brightness is higher the problem becomes more complex, in the sense that both the
covariance and the bounds, hence the attainable MSE, increase in magnitude.
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Figure 4.12: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different centering configurations, as functions of pixel size ∆x, FWHM =
1.5′′.
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Figure 4.13: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different source brightness, as functions of pixel size ∆x.

4.3 MVUE and its Achievability

After studying the fundamental properties of the posed joint estimation problem and having stated
the theoretical benefits of employing as much pixel information as possible, the question of how to

30



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x [arcsec]

1000

800

600

400

200

0

[
1 ]

1,
2 

[p
ho

to
-e

2 ]

F = 1080
F = 3224
F = 20004
F = 60160

Figure 4.14: Off-diagonal element of I−1
θ for different source brightness, as a function of pixel size

∆x.
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Figure 4.15: Performance bounds (top) and discrepancies (bottom) for joint source flux and back-
ground estimation for different sky conditions, as functions of pixel size ∆x.

implement such an estimation scheme arises.

The natural first attempt to answer that question is to draw upon Theorem 2.1, more specifically
its equation (2.13), since if such a function h is found, it is the optimal decision rule under the
minimal MSE criterion.

Unfortunately, such a function could not be found, at least not in a vectorial form. To show
that, it suffices to write equation (2.13) for this problem:

[∑n
i=1

gi(xc)

λi(xc,F̃ )
· Ii − 1∑n

i=1
1

λi(xc,F̃ )
· Ii − n

]
= Iθ

[
h1(I)− F̃

h2(I)− B̃

]
, (4.23)
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Figure 4.16: Off-diagonal element of I−1
θ for different sky conditions, as a function of pixel size

∆x.

where Iθ is the Fisher Information matrix presented in equation (4.12) and the coverage assumption
has been considered when calculating the LHS. If I−1

θ does exists, then

h(I) =

[
h1(I)
h2(I)

]
= I−1

θ

[∑n
i=1

gi(xc)

λi(xc,F̃ )
· Ii − 1∑n

i=1
1

λi(xc,F̃ )
· Ii − n

]
+

[
F̃

B̃

]
, (4.24)

which explicitly depends on the parameters to be estimated, leading to a contradiction. Therefore,
the CRLBs cannot be achieved and the theory depicted in Section 2.3 poses as a possibility to find
the decision rule that leads to the MVUE, specially when recalling that the Poisson distribution
belongs to the exponential family of probability distributions.

In order to find a candidate for sufficient statistic for (F̃ , B̃) Theorem 2.2 must be recalled. In
other words, the likelihood described in equation (2.7) must be factorized in the form of equation
(2.16). The likelihood can be written as:

p(I|xc, F̃ , B̃) =
n∏

i=1

eF̃ ·gi(xc)+B̃ ·
n∏

i=1

(
F̃ · gi(xc) + B̃

)Ii
·

n∏
i=1

1

Ii!
. (4.25)

Therefore, h(·) can be identified as h(I) =
∏n

i=1 1/Ii!. Additionally, since the leftmost product
in the RHS of equation (4.25) does not depend on the observation vector I, the statistic T (I) must
be found from

∏n
i=1(F̃ · gi(xc) + B̃)Ii .

Unfortunately, the observations I1, . . . , In could not be arithmetically separated from the pa-
rameters F̃ and B̃. Therefore the MVUE could not be found here with the framework provided
by Theorems 2.2 and 2.3.

Finally, the nonachievability of the CRLBs and the absence of an explicit MVUE, at least
by means of a sufficient statistic, support the adoption of alternative criteria to tackle the joint
estimation problem. Further justification is that the nonachievability of the Cramér-Rao Lower
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Bounds does not exclude the possibility that they can be approximated arbitrarily close by prac-
tical estimators. The following sections focus on assessing the optimality (or non-optimality)
of two well adopted and popular estimation schemes: the Weighted Least-Squares (WLS) and
the Maximum Likelihood (ML) estimators. This follows previous works by [Lobos et al., 2015,
Espinosa et al., 2018].
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Chapter 5

WLS Estimator for Joint Source Flux and
Background Estimation

Let J ⊆ {1, . . . , n} be a set of indices and {wi}ni=1 be a set of weights which defines a cost function
given by

JWLS(α, I) =
∑
i∈J

wi(Ii − α1 · gi(xc)− α2)
2, (5.1)

where α ∈ Θ. Such function implicitly defines the Weighted Least-Squares estimator τWLS(I) just
as in equation (3.1), i.e.,

τWLS(I) = argmin
α∈Θ

JWLS(α, I). (5.2)

Fortunately, the minimization problem of equation (5.2) can be algebraically solved into the
form of a linear estimator. Therefore, the WLS estimator τWLS(I) is given by

τWLS(I) =

[∑
i∈J wi · g2i (xc)

∑
i∈J wi · gi(xc)∑

i∈J wi · gi(xc)
∑

i∈J wi

]−1

·
[
wi1 · gi1(xc) . . . wi|J | · gi|J |(xc)

wi1 . . . wi|J |

]
· I

= −[∇20JWLS(τWLS(Ī), Ī)]
−1 · ∇11JWLS(τWLS(Ī), Ī) · I.

(5.3)

As τWLS(I) is a linear estimator, its mean vector τ̄WLS and covariance matrix CτWLS
can also

be expressed in closed-form. Those moments are given by:

τ̄WLS = −[∇20JWLS(τWLS(Ī), Ī)]
−1 · ∇11JWLS(τWLS(Ī), Ī) · Ī

= τ ′WLS(Ī) · Ī.
(5.4)
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CτWLS
= τ ′WLS(Ī) · Cov(I) ·

[
τ ′WLS(Ī)

]⊺
. (5.5)

5.1 Numerical Analysis

Since the estimator τWLS(·) can be found in an explicit form, it is possible to directly compute in an
experimental setting both its expectation and its covariance matrix, therefore the variances for ˆ̃F

and ˆ̃B. For that matter, some useful definitions can be introduced: the performance discrepancies
of an explicit estimator τJ(I), ∆σm, ∆σB̃, and its relative biases, εF̃ , εB̃, are defined as follows:

∆σm =

2.5
2
·
(
log (F̃ +

√
V ar(τJ,1(I)))− log (F̃ −

√
V ar(τJ,1(I)))

)
− σm

σm

× 100

=

2.5
2
·
(
log (F̃ +

√
[CτJ ]1,1)− log (F̃ −

√
[CτJ ]1,1)

)
− σm

σm

× 100,

(5.6)

∆σB̃ =

√
V ar(τJ,2(I))− σB̃

σB̃

× 100

=

√
[CτJ ]2,2 − σB̃

σB̃

× 100,

(5.7)

εF̃ =
|EI∼p(I|θ){τJ,1(I)} − F̃ |

F̃
× 100, (5.8)

εB̃ =
|EI∼p(I|θ){τJ,2(I)} − B̃|

B̃
× 100, (5.9)

where both the moments of τJ(I) and the Cramér-Rao Bounds, σm and σB̃, are computed over
the same set of indices J . It is also worth noting that for the WLS estimator, τWLS(·), the set of
weights {wi}ni=1 is fixed when calculating these quantities.

Unless specified otherwise, the parameters to be considered for the following simulations are
D = 0, RON = 5 photo-e−, G = 2 photo-e−/ADU, ∆x = 0.2 arcsec, n = 41 pixels, fs = 1502.5
ADUs/arcsec, nxc = 21, dither = 0, FWHM = 1.0 arcsec, F̃ ∈ {1080, 3224, 20004, 60160} photo-
e− and J = {1, . . . , n}. This last choice for J is due to the results presented in the previous
section, as more information may allow to more precise and less correlated estimations ˆ̃F and ˆ̃B.

5.1.1 Effect of Weight Selection

A key element of the Weighted Least-Squares estimator, and one that may considerably hinder
the estimator’s performance, is the weight set {wi}i=1n employed for estimation. Therefore, it
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is important to study how the estimator’s statistical behavior is affected by the weight selection,
which can lead to a guidance on how to properly choose the weights.

For example, it can be shown that if the weights are chosen such that:

wi =
K

λi(xc, F̃ )
, ∀i ∈ {1, . . . , n}, (5.10)

where K > 0 is an arbitrary constant, then the covariance matrix of τWLS(I) equals the inverse
of the Fisher Information matrix of equation (4.12). Adding up the fact that the WLS estimator
with the weights of equation (5.10) is unbiased, it can be concluded that the resulting estimator
is in fact optimal in the Cramér-Rao sense. However, this selection requires knowledge of the
parameters to be estimated, which contradicts the objective of the inference task. Therefore, in
practice an alternative weight design must be considered.

The simplest weight selection approach is that of the plain Least-Squares (LS) estimator, where
wi = 1,∀i = 1, . . . , n. In this case, the weight selection does not take into account any bias about
the problem (such as the shape and position of the PSF), nor assign more relevance to any of
the observations Ii. Such an estimator behaves as shown in Figures 5.1 and 5.2. Two of the most
prominent results are: the Least-Squares estimator is unbiased, no matter the resolution ∆x or the
brightness of the source; and for very weak sources the estimator can be considered optimal, which
is consistent with the analysis presented in [Perryman et al., 1989] when assuming the background
B̃ is known.

Further analysis on the shape of the curves observed, specially for brighter sources, and the
convenience of less resolution (larger pixel sizes) shall benefit from more experimental evidence
and shall therefore be discussed later.
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Figure 5.1: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and back-
ground estimation corresponding to the Least-Squares estimator for different source brightness.

In the following, an exploration of the weight-space is presented in order to study how close to the
optimal parameters the weight set should be chosen to outperform the LS estimator. Reasonably,
the considered weight-space comprises a structure of the form:
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Figure 5.2: Relative biases, as functions of pixel size ∆x, for joint source flux and background
estimation corresponding to the Least-Squares estimator for different source brightness.

wi =
1

f̃ · gi(xc) + b̃
, ∀i ∈ {1, . . . , n}, (5.11)

where f̃ and b̃ can be interpreted as a prior belief regarding the source’s flux and pixel background,
respectively. For that matter, Figures 5.3 and 5.4 show the performance discrepancies for two point
sources with F̃ = 1080 and F̃ = 20004 photo-e−, respectively. For each of these study cases, the
weights are defined as in equation (5.11), with f̃ taking values over a grid GF̃ and b̃ = B̃. For each
value of F̃ , said grid is defined as:

GF̃ = {f̃ = F̃ + c ·
√

F̃ : c ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}}. (5.12)
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Figure 5.3: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
over the grid GF̃ , for F̃ = 1080 photo-e−.

It can be appreciated that the shape of the curves is preserved up to some extent, in comparison
with the curves seen in Figure 5.1. As f̃ becomes farther from F̃ , new and more prominent valleys
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Figure 5.4: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
over the grid GF̃ , for F̃ = 20004 photo-e−.

and peaks appear. Moreover, the last one of those peaks becomes more tilted as f̃ draws away
from F̃ . This last behavior becomes even clearer when looking at Figures 5.5 and 5.6.

Despite that it is clear that the chosen grid is not a feasible option for a practical estimation
problem, it reveals an interesting behavior of the discrepancies over weight design: both discrep-
ancies exhibit some kind of symmetry around the optimal election f̃ = F̃ . Taking that into
consideration, it is interesting to explore how far from the optimal value can f̃ without excessively
hindering the overall performance of the WLS estimator. Figures 5.5 and 5.6 illustrate the effect
of choosing f̃ far away from the value of F̃ on the estimator’s performance.

The tilting effect mentioned before is shown even clearer, and so does the emergence of distor-
tions on the curve’s shape. More remarkable is the fact that the estimator is shown to be quite
robust, in the sense that in order to raise ∆σm and ∆σB̃ well beyond 5% requires f̃ to be chosen
about 10 times larger than the optimal value.
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Figure 5.5: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
such that f̃ = c · F̃ , c > 0., for F̃ = 1080 photo-e−.
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Figure 5.6: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
such that f̃ = c · F̃ , c > 0., for F̃ = 20004 photo-e−.

The analysis on the effect of b̃ on the weight design proposed in equation (5.11) proceeds
similarly. For that matter a grid GB̃ is defined as follows:

GB̃ = {b̃ = B̃ + c ·
√
B̃ : c ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}}, (5.13)

and, consequently, the weights are chosen as in equation (5.11), with f̃ = F̃ and b̃ ∈ GB̃.
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Figure 5.7: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
over the grid GB̃, for F̃ = 1080 photo-e−.

From Figures 5.7, 5.8, 5.9 and 5.10 it follows a discussion that mostly resembles the one for
previous analysis on f̃ , and similar conclusions do apply, that is the emergence of symetry around
the optimal b̃ = B̃ and robustness in the same sense depicted above.

It is worth noting however that the estimator’s performance seems to be more resilient to poorly
chosen values of b̃, specially for weaker sources.
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Figure 5.8: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
over the grid GB̃, for F̃ = 20004 photo-e−.
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Figure 5.9: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
such that b̃ = c · B̃, c > 0., for F̃ = 1080 photo-e−.

Given these results, it is possible to come up with an alternative "worst-case scenario", other
than the LS estimator, that takes into consideration the assumed information about the PSF of
the object and the detector, without any prior belief on F̃ and B̃, that is a set of weights given
by equation (5.11) with f̃ = 1 and b̃ = D + RON2. Such an estimator will be referred here as
"Uninformed" Weighted Least-Squares (UWLS) since it considers no initial guess on the parame-
ters to be estimated, other than the bare minimum values possible without losing information on
the PSF by means of gi(xc). In other words, the estimator becomes clueless (a priori) about the
brightness of the source and sky.

Figures 5.11 and 5.12 show how both the LS estimator and UWLS estimator compare to each
other in terms of their respective discrepancies with the Cramér-Rao bounds, for different source
brightness. Figure 5.11 corresponds to scenarios whose FWHM is 0.5 arcsec whilst Figure 5.12
comprises the similar scenarios whose FWHM is 1.5 arcsec.
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Figure 5.10: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to the Weighted Least-Squares estimator with weights chosen
such that b̃ = c · B̃, c > 0., for F̃ = 20004 photo-e−.
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Figure 5.11: Performance comparison between LS estimator and UWLS estimator for different
source brightness. FWHM = 0.5 arcsec.
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Figure 5.12: Performance comparison between LS estimator and UWLS estimator for different
source brightness. FWHM = 1.5 arcsec.

For both Figures it has been considered ∆x ranging from 0 up to 3 × FWHM . Provided
this range, an interesting behavior emerges: the local minimum before the last peak of ∆σm (for
any of the studied scenarios) lies around ∆x = 0.4 × FWHM . This finding supports (to some
extent) typical pixel size values, as under that range of resolutions the expected discrepancy shall be
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minimal, even for poorly chosen weight sets. Note that beyond the mentioned peak, which appears
around 0.75 × FWHM − 0.8 × FWHM , even though performance discrepancy diminishes such
low resolutions aren’t desirable because for such an instrument the Cramér-Rao bound deteriorates
(see Section 4.2), thus lower discrepancy shall be equivalent to less precise estimations.

Up to this point, the worst-case scenarios for the WLS estimator have been characterized,
verifying that for most practical cases the performance discrepancy on the flux, ∆σm, shall lie
between 0% and 10%1. On the other hand, achievability of the Cramér-Rao bounds requires
knowledge of the desired parameters, making the weight selection of equation (5.10) unfeasible
in practice. However, evidence shown so far suggest that by proper weight tweaking (and not
necessarily optimal) huge improvements can be done, even to the point of near-optimality (see for
example how the discrepancies shown in Figure 5.4 outperform by many orders of magnitude that
from Figure 5.1 for the same observational scenario).

This motivates the introduction of a data-dependent version, ŵi(I). WLS estimators defined
through such a weight setting can be encompassed as Adaptive Weighted Least-Squares (AWLS).

Two different AWLS estimators can be introduced: on one hand, as Ii can be interpreted as a
noisy version of λi(xc, F̃ ), this justifies the following weight design:

ŵi(I) = ŵi(Ii) =
1

Ii
, ∀i = 1, . . . , n, (5.14)

which can be interpreted as a noisy version of the optimal weight of equation (5.10). This data-
driven weighting scheme shall here be referred to as Stochastic Weighted Least-Squares (SWLS))
as it relies on the random sample vector I.

The second approach for an AWLS estimator, which is referred as Iterative Weighted Least-
Squares (IWLS), is defined iteratively through an update rule: let {w0

i }ni=1 be an initialization
weight set arbitrarily chosen. Given a measurement vector I and a set of indices J , {wk

i }ni=1, k > 0
can be iteratively updated as:

wk
i =

1

τ k−1
IWLS,1(I) · gi(xc) + τ k−1

IWLS,2(I)
, ∀i = 1, . . . , n,

τ k−1
IWLS(I) = argmin

α∈Θ

∑
i∈J

wk−1
i (Ii − α1 · gi(xc)− α2)

2.
(5.15)

Simply put, the IWLS estimator requires sequentially solving k WLS problems: k− 1 problems
in order to update the weight set and one last time to get the final estimation ( ˆ̃F, ˆ̃B) ≡ τ kIWLS(I).

Figure 5.13 displays the performance discrepancies obtained through both adaptive estimation
schemes, as functions of the pixel size for various sources. Figure 5.14 shows that both estimators
hold the unbiasedness property, therefore comparison with previous results is admissible. As can

1Note that every weight setting studied until this moment has preserved the unbiasedness property of the WLS
estimator.
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be seen from Figure 5.13, both schemes overcome the struggles that previous estimators had when
dealing with brighter sources, and for any practical effect they both achieve optimality, even though
no prior belief or guess is required.

The weights employed in both adaptive estimation approaches are random variables. Therefore,
the expectations by which the biases and discrepancies (more preciselly the estimator’s covariance
matrix) are calculated need to consider that both w1, . . . , wn and I are random vectors. Since the
probability distribution of w1, . . . , wn is not at hand, the mentioned expectations can be estimated
trough empirical conditional expectations, taking samples of the random vector I to set the values
for w1, . . . , wn, which allows us to use the closed-form expectations given above.
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Figure 5.13: Performance discrepancies, as functions of pixel size ∆x, for joint source flux and
background estimation corresponding to adaptive versions of the WLS estimator for different source
brightness.
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Figure 5.14: Relative biases, as functions of pixel size ∆x, for joint source flux and background
estimation corresponding to adaptive versions of the WLS estimator for different source brightness.

5.1.2 Aperture Analysis

Previous results assumed that all n pixels where employed during estimation. In this section,
the effect of information usage is studied. For the sake of simplicity, the pixel selection scheme
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considered along the following analysis is the aperture one described in Section 4.1, i.e., (Jk) =
{{nxc}, {nxc − 1, nxc , nxc + 1}, {nxc − 2, nxc − 1, nxc , nxc + 1, nxc + 2}, . . . }. The objective here
is to study if and how the AWLS estimators depicted above benefit from the addition of more
information for estimation.

For that matter, let’s introduce a second measure of discrepancy in order to assess optimality
of the adaptive estimators, get a better understanding of it and develop comparisons. Let σm

and σB̃ denote the Cramér-Rao bounds just as before, for any set Jk ̸= {1, . . . , n}, and let σmax
m

and σmax
B̃

the corresponding Cramér-Rao Lower Bounds for Jk = {1, . . . , n}, i.e., the bounds
obtained by taking into consideration all the n pixels. Consequently, for any set Jk ̸= {1, . . . , n}
in the selection scheme and the corresponding estimates’ variances V ar(τJ,1(I)), V ar(τJ,2(I)), the
discrepancies with respect to σm and σB̃ are given just as in equations (5.6) and (5.7), and the
ones calculated with respect to σmax

m and σmax
B̃

are given by:

∆σmax
m =

2.5
2
·
(
log (F̃ +

√
V ar(τJ,1(I)))− log (F̃ −

√
V ar(τJ,1(I)))

)
− σmax

m

σmax
m

× 100

=

2.5
2
·
(
log (F̃ +

√
[CτJ ]1,1)− log (F̃ −

√
[CτJ ]1,1)

)
− σmax

m

σmax
m

× 100,

(5.16)

∆σmax
B̃

=

√
V ar(τJ,2(I))− σmax

B̃

σmax
B̃

× 100

=

√
[CτJ ]2,2 − σmax

B̃

σmax
B̃

× 100.

(5.17)

In other words, ∆σmax
m and ∆σmax

B̃
denote discrepancy between any estimator τJ(·) got over any

set Jk ⊆ {1, . . . , n} and the maximal achievable precision attainable with an instrument equipped
with the n pixels. With such a distinction it is possible to discern how much of all the information
available in I is obtained along the pixel selection scheme (Jk).

Before going deeper on the performance analysis for the SWLS and IWLS estimators, it is worth
noting that the aperture scheme does not break the unbiasedness property of the estimators, as
seen on Figure 5.15, validating comparisons with the CRLBs.

Looking at Figure 5.16, it may seem that there’s some sort of sufficient aperture. After approx-
imately half the pixels on the CCD are incorporated into the inference process the discrepancies
stabilize. This statement applies for both estimators, even though the iterative scheme shows to
be more precise than the SWLS estimator. Nevertheless, the value of σm and σB̃ is not static as
the aperture increases. In fact, these quantities approaches σmax

m and σmax
B̃

, respectively, as more
pixels are added in the analysis, just as seen in Section 4.1. If the discrepancies with respect to
σmax
m and σmax

B̃
are observed instead, the scene drastically changes, as seen on Figure 5.17.

It becomes evident that as the aperture increases both discrepancies shown in Figure 5.17
decrease monotonically. However, the rate at which ∆σmax

m decreases also diminishes with aperture,
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Figure 5.15: Relative biases for different apertures corresponding to the adaptive WLS estimators
for different source brightness.
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Figure 5.16: Performance discrepancies for different apertures corresponding to the adaptive WLS
estimators for different source brightness.
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Figure 5.17: Performance discrepancies with respect to σmax
m (left) and σmax

B̃
(right) for different

apertures corresponding to the adaptive WLS estimators for different source brightness.
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specially for brighter sources. Therefore, as the main objective of this joint estimation problem is
to characterize the source (i.e., its flux F̃ ) and the estimation of B̃ takes a secondary role, it may
seem reasonable to state that for an aperture diameter of around three to five times2 the source’s
FWHM the estimator’s precision shall be good enough in most cases. This could be the case if ˆ̃F

and ˆ̃B, as random variables, were independent or very weakly correlated. However, this is not the
case, as illustrated by Figure 5.18.
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Figure 5.18: Covariances of the SWLS and IWLS estimators and their comparison with their
Cramér-Rao counterpart, under different apertures and source brightness.

The decreasing magnitude of the correlation between both estimates ˆ̃F and ˆ̃B can be statistically
interpreted as a reduction in the error of one estimate, as an outcome of the other one’s error. In
other words, it is expected that as one estimate deviates from its mean value (hopefully the true
value), the other one shall do that as well.

Consequently, Figures 5.17 and 5.18 may indicate that as the estimates become less correlated
to each other, the errors are less likely to propagate from one to another, and such errors also
diminish as aperture increases. This may serve as further justification to adopt larger apertures
for joint inference, this time from a practical standpoint.

Furthermore, stepping back to Figure 5.16, we note that for the case of the SWLS flux estimate
two phases can be recognized, one where discrepancy slightly increases with aperture, followed
by a much smoother steady decrease. This change of phase precisely at around three times the
FWHM coincides with a decrease on the rate at which ∆σmax

m approaches 0, suggesting once
more the existence of a sufficient, if not minimal, aperture that ensures precision above a desired
prescription. This principle seems to be independent of the flux’s magnitude, as the ratio between
the aperture and the FWHM seems to play a much prominent role, which can be recognized when
looking at Figures 5.17, 5.19 and 5.20.

2See for example Figures 5.19 and 5.20, which show similar results for sources whose FWHM is 0.5 and 1.5
arcsec, respectively.
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Figure 5.19: Performance discrepancies with respect to σmax
m (left) and σmax

B̃
(right) for different

apertures corresponding to the adaptive WLS estimators for different sources with FWHM = 0.5
[arcsec].
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Figure 5.20: Performance discrepancies with respect to σmax
m (left) and σmax

B̃
(right) for different

apertures corresponding to the adaptive WLS estimators for different sources with FWHM = 1.5
[arcsec].

5.1.3 Further Remarks

Under the light of the analysis performed so far in this section, we stress on the relevance of the
hypothesis of other parameters’ knowledge (the shape, position and width of the source’s PSF).
This feature is of key importance, not only because it is part of the estimator’s design (see equation
(5.1)) and weight tweaking (see equations (5.11) or (5.15) for example), in any of its studied flavors,
but also because it can hinder or mislead the estimator’s output, resulting in less precise or even
biased results.

As an example of reduced precision lays the case of plain LS estimator, which is the case of not
tweaking the weights with any information on shape, mode or width and have demonstrated to
show discrepancies to the Cramér-Rao bounds slightly greater than the UWLS estimator and up
to two orders of magnitude greater that some more data-driven approaches.
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However, erroneous information about the PSF can propagate through weight adjustment and
induce bias. From the optimization functional of equation (5.1), we note that information on the
luminous profile of the object may or may not be included in wi, but forms a substantial part of the
squared error terms by gi(xc), by outlining the shape perceived through I. If improperly set, gi(xc)
increases the overall error measured when evaluating any set of solutions near the actual parameter
vector α⋆, leading in fact to biased solutions once the algorithm is performed, despite weight
adjustment. To illustrate this effect see Figure 5.21, which shows the relative bias exhibited by
the SWLS and IWLS estimators for different sources with narrow PSFs (FWHM = 0.5 [arcsec]).
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Figure 5.21: Relative biases obtained by adaptive WLS estimators for different sources with
FWHM = 0.5 [arcsec].

We note that the x-axis varies between −0.2 and 0.2 arcseconds, which corresponds solely to ±1
pixel. Such an error in the xc parameter, though relatively large due to the narrow PSF, can lead to
a flux bias of at least 20% for fainter sources, cases on which the estimators tend to be more robust.
Naturally, as the error in xc increases, so does the bias, both for flux- and backgroud-estimates.

It can be expected already that this bias effect is less significant the lesser the relative magnitude
between the error in xc and the width of the object’s PSF is, as adjacent PRF values gi(xc) are
more similar for widely spread (Gaussian) light profiles. The results for such scenarios are shown
in Figures 5.22 and 5.23. For a given source, the same position error of ±1 pixel translates into
less and less relative bias as the light received from the source spreads wider. This is because
the overlap between the light profiles outlined by the measurements I (or the actual PSF for that
matter) and the miss-identified values of gi(xc) increases with width, as long as we are provided
with accurate values of the FWHM. This overlap helps the estimation process by “masking“ the
shift on these profiles induced by the error in position.

One last remark on behalf of the role of the PSF’s width and the biases induced by a miss-
identification of the source’s position is the fact that the biases showed by our two forms of adaptive
estimators flip as the FWHM of a given source increases. That is, while the IWLS estimator tends
to outperform (bias-wise) the SWLS estimator when the light of a given source spreads narrower
(see Figure 5.21), the opposite happens when the same brightness is spread along a wider area (see
Figure 5.23).

However, what’s more relevant to this work is the effect of miss-information on the estimator’s
variance and its behavior relative to the performance metrics established by the Cramér-Rao
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Figure 5.22: Relative biases obtained by adaptive WLS estimators for different sources with
FWHM = 1.0 [arcsec].
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Figure 5.23: Relative biases obtained by adaptive WLS estimators for different sources with
FWHM = 1.5 [arcsec].

bounds. As bias is induced due to a mismatch between the position provided to the inference
algorithm and the actual position of the object, performance comparison with the bounds stated
in Theorem 2.1 can not hold anymore.

We illustrate this in Figure 5.24, where it is shown that the performance of ˆ̃F is usually better
(variance-wise) than that given by the respective CRLB in a wide range of position error. If we
refer back to Figure 5.21, we note a clear relation between bias and variance, a trade-off due to the
error in the location: the more bias is to be expected, the lower variance the estimate provides.

The case for background estimates is different, nevertheless: the figure shows curves of shapes
other than the concave parabolae seen for flux, and though the Cramér-Rao bound still holds,
Theorem 2.1 itself doesn’t. What’s to be kept in mind is the fact that both estimates become
biased as a consequence of erroneous information.

This apparent gain in performance is a clear example of the bias-variance trade-off. The
study of biased estimation goes beyond the scope of this work and will be not further discussed
here. However, there’s plenty of literature on this field (see for example Eldar’s works such as
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Figure 5.24: Performance discrepancies obtained by adaptive WLS estimators for different sources
with FWHM = 0.5 [arcsec].

[Kay and Eldar, 2008, Eldar, 2008] and references therein) which could serve as a baseline for
future works on the problem of joint estimation of flux and background under this standpoint.

5.2 Bounding the Performance of the SWLS Estimator

The introduction of the Stochastic Weighted Least-Squares (SWLS) estimator serves a second
purpose, which is to be studied in this subsection. By replacing its respective set of weigths
{ŵi(Ii)}i∈J into equations (5.1) and (5.3) it is possible to define the correspondent optimization
problem and to find its closed-form solution as a non-linear (over the observation space) vector
function, i.e.,

JSWLS(α, I) =
∑
i∈J

1

Ii
(Ii − α1 · gi(xc)− α2)

2, (5.18)

τSWLS(I) = argmin
α∈Θ

JSWLS(α, I)

=

[∑
i∈J

1
Ii
· g2i (xc)

∑
i∈J

1
Ii
· gi(xc)∑

i∈J
1
Ii
· gi(xc)

∑
i∈J

1
Ii

]−1

·

[ 1
Ii1

· gi1(xc) . . . 1
Ii|J |

· gi|J |(xc)
1
Ii1

. . . 1
Ii|J |

]
· I.

(5.19)

The non-linearity property of τSWLS(·) observed in equation (5.19) allows us to approximate the
estimates from their Taylor expansion and, consequently, study the bounds given by the formula-
tion presented in Section 3. Indeed, we can guarantee that the actual solution of the optimization
problem is available for calculating its performance bounds, and the approximation of the vec-
tor τSWLS(·) relies on a non-trivial Taylor polynomial, unlike the more standard WLS estimator
already analysed. Therefore, the following analysis serves as an experimental validation of the
theoretical results deduced earlier in this work.
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5.2.1 SWLS as a non-linear Estimator

From the formulation depicted in equations (5.18) and (5.19) the performance bounds of the SWLS
estimator can be obtained through a straightforward application of the equations presented in Sec-
tion 3. For that matter, it suffices to calculate the expressions corresponding to the application of
the different ∇ij operators on the cost function JSWLS(·) (the detailed derivation of such expres-
sions can be found in Appendix D). For the case of the two-dimensional arrays ∇11JSWLS(α, I)
and ∇20JSWLS(α, I) we have that:

∇11JSWLS(α, I) =

−2gi1 (xc)

I2i1
(α1gi1(xc) + α2) · · · −

2gi|J | (xc)

I2i|J |
(α1gi|J |(xc) + α2)

− 2
I2i1

(α1gi1(xc) + α2) · · · − 2
I2i|J |

(α1gi|J |(xc) + α2)

 , (5.20)

∇20JSWLS(α, I) = 2

[∑
i∈J

g2i (xc)

Ii

∑
i∈J

gi(xc)
Ii∑

i∈J
gi(xc)
Ii

∑
i∈J

1
Ii

]
. (5.21)

Now let’s focus our attention on the three-dimensional arrays resulting from applying ∇12, ∇21

and ∇30. For the former array, it follows that it can be described as two stacked diagonal matrices,
which are

[
∇12JSWLS(α, I)

]
(1,·,·) =


4gi1 (xc)

I3i1
(α1gi1(xc) + α2)

. . .
4gi|J | (xc)

I3i|J |
(α1gi|J |(xc) + α2)

 , (5.22)

and

[
∇12JSWLS(α, I)

]
(2,·,·) =


4
I3i1

(α1gi1(xc) + α2)

. . .
4

I3i|J |
(α1gi|J |(xc) + α2)

 . (5.23)

Then, ∇21JSWLS(α, I) can be written by means of the indices i ∈ J as

[
∇21JSWLS(α, I)

]
(·,·,i) =

−2g2i (xc)

I2i
−2gi(xc)

I2i

−2g2i (xc)

I2i
− 2

I2i

 . (5.24)

Lastly, ∇30JSWLS(α, I) corresponds to a 2× 2× 2 zero-valued array, i.e.,
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∇30JSWLS(α, I) = 0. (5.25)

With these expressions at hand, the computation of the bias and variance bounds can be
straightforwardly performed by plugging them in into the equations presented in Section 3.

5.2.2 Numerical Analysis

As already stated, the aim of this subsection is to experimentally validate to some extent the
bounds obtained through the Taylor expansion of a multidimensional estimator defined by some
optimization objective shown in Section 3. To do so, we recall on the scenarios studied in Section
4.1, and an additional case corresponding to an extremely faint source in which the total flux
corresponds to F = 500 ADU while maintaining the rest of the parameters equal to those of the
base case.

We start our analysis by reviewing the bias bounds obtained through our methodology, which
are shown in Figure 5.25.
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Figure 5.25: Bias bounds for joint source flux (left) and background (right) estimation under
different observational scenarios, for an aperture selection scheme.

Though it may appear that some bias is to be expected when performing estimation with this
method (as even for large aperture diameters values around 0.2% are achieved), our previous
analysis (see Section 5.1) shows evidence that the estimator is unbiased for both parameters. For
that matter, the values for ε′SWLS,1 and ε′SWLS,2 displayed in the figure do indeed bound the bias
in any of the studied cases, even for the small radii scenario for which the bounds become looser,
yet still valid.

Last but not least is the analysis of the variance bounds obtained through our methodology, as
they are to some extent the cornerstone of this work. Let us focus briefly on the base case, whose
results are displayed in Figure 5.26. The figure shows the corresponding Cramér-Rao bound for
both parameters as reference, since it allows to assess the optimality of the estimator; the lower,
central and upper values of the interval that defines the variance bounds (see equation (3.8)), and
an empirical estimate of the variance obtained from simulated samples. All these values are shown
as the squared root of the variance.
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Figure 5.26: Variance bounds for joint source flux (left) and background (right) estimation for the
considered base case, under an aperture selection scheme.

As can be seen in the figures, in the scale and units employed for the y axis (mag for F̃ and
photo-e− for B̃) the bounds are tightly close to the CRLB, and so are the central values σ2

SWLS,·
and the variance’s empirical proxy, to the point where the curves become indistinguishable from
each other. This overall behavior is a constant in each one of the scenarios studied and is the
reason to show the curves correspondent to the base case only. What is to be kept from these
results, beyond the relative tightness, is the fact that the curves are monotonous on the aperture,
thus recovering the main argument of this work of improving performance by jointly estimating
the parameters with increasing aperture, even from our approximation and bounds.

However, the objective of this subsections was to validate experimentally the equations devel-
oped in Section 3, for which the scaling of Figure 5.26 is not helpful at all. For that matter,
Figure 5.27 shows the same results but in the form of performance discrepancies (∆σ·) to visualize
the bounds and the variance estimate more properly, and incorporates some of the scenarios left
behind in the previous analysis.
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Figure 5.27: Performance discrepancies of the SWLS estimator for joint source flux (left) and
background (right) estimation for different observational scenarios, under an aperture selection
scheme. Dashed-dotted-, dashed- and solid lines denote the lower bound, the upper bound and
the empirical variance estimate, respectively.
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As can be seen in the figures, the estimator’s variances lie between the upper and lower bounds,
both for ˆ̃F and ˆ̃B and in all case studied (even those not shown).

Interestingly, the bounds corresponding to τSWLS,1(·) do not vary much as aperture increases,
which suggest some robustness or predictive power of the bounds themselves. On the other hand,
the length of the interval in which V ar(τSWLS,2(·)) is expected to lie becomes greater and greater
with aperture, almost in a linear regime. Regardless, the empirical estimates tend to be closer to
zero, i.e. to the fundamental limit of the Cramér-Rao bound itself. This suggest that the predictive
power of each bound alone diminishes with aperture, but it seems to be enough evidence to expect
a good performance in practice, which could be approximated as the mean of the bounds, or simply
by σ2

SWLS,2.

Lastly, it is interesting to visualize the estimates’ distribution and the effect of aperture on it,
which is shown in Figure 5.28. The figure is obtained by sampling a set of 25000 frames from the
baseline scenario to feed the SWLS estimator using different aperture diameters.
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Figure 5.28: SWLS estimates distribution for the baseline scenario using different aperture diam-
eters. Blue markers denote the pairs ( ˆ̃F, ˆ̃B), orange marker is used for the ground truth value
and green marker denotes the sample means. On the bottom-left corner of each graph the sample
Pearson correlation coefficient is displayed. Estimates in each graph are obtained from the same
sample set.

We start the analysis of Figure 5.28 by noting its consistency with the previous results shown
in the current section: wider apertures lead to simultaneously increasing exactness and precision
(less bias and variance, respectively), which is evidenced by the difference between the orange and
green markers, and the reduction of scattering along both axes.

Another feature displayed in the figure is the relationship between correlation and aperture. As
discussed in Section 4.1, the off-diagonal elements of I−1

θ hinted a negative correlation between
both estimates and a decrease in its magnitude as more pixels are added in the inference process.
In Figure 5.28 this is empirically evidenced by the increase of ρ and how the obtained distributions
resemble a bivariate isotropic Gaussian distribution when we compare the graphs from left to right.

The reduction not only of the estimates’ variances, but also of their covariance with aperture
illustrates how important the information contained in the tails of the PSF about both parameters
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when performing joint inference is. The information in that particular region allows to some extent
to disambiguate the origin of detected photons across the whole detector. Naturally, this region
serves the same purpose of estimating the background and substracting it prior to flux inference
in more standard photometry procedures.

In light of these results, the overall outcome of the current section is the validation of the
theoretical methodology developed earlier in this work, and to a lesser extent to further stress the
gain in performance from increasing aperture in joint estimation.
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Chapter 6

ML Estimator for Joint Source Flux and
Background Estimation

Another interesting estimator to look after is the case of the Maximum Likelihood (ML) esti-
mator. Given its asymptotic optimality [Kay, 1993] it has been widely used or inspired other
works in the astronomy literature [Gai et al., 2017, Lindegren, 2008, Espinosa et al., 2018] and
other research fields which face similar image processing problems such as fluorecence microscopy
[Abraham et al., 2009, Small and Parthasarathy, 2014].

The likelihood function of some observation vector I given the source’s relative position xc and
some point in the parameter space α ∈ Θ; and a set of indices J ⊆ {1, . . . , n}, can be rewritten
as

L(I;xc,α) =
∏
i∈J

e−(α1·gi(xc)+α2) · (α1 · gi(xc) + α2)
Ii

Ii!
. (6.1)

Therefore, the cost function that implicitly defines the ML estimator τML(I) through a mini-
mization problem can be obtained by taking the negative logarithm of L(I;xc,α), that is

JML(α, I) = − lnL(I;xc,α)

=
∑
i∈J

α1 · gi(xc) + α2 − Ii ln (α1 · gi(xc) + α2) +ϖ, (6.2)

where ϖ ≡ −
∑

i∈J ln (Ii!) is a constant (with respect to α). Then,

τML(I) = argmin
α∈Θ

JML(α, I). (6.3)

As τML(I) has no closed-form expression, we resort to the results presented in Section 3 to
estimate its performance, which allows to assess its optimality relative to the Cramér-Rao bounds
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studied in Section 4. Such an analysis relies mostly on computing expressions (3.5) and (3.8). The
partial derivatives detailing such procedure can be found in Appendix E.

It is interesting however to note the following with respect to the values σ2
ML,F̃

and σ2
ML,B̃

defined as in Section 3: if we do assume1 that τ(Ī) = α⋆ it follows that

∇11JML(τ(Ī), Ī) =

 −gi1 (xc)

λi1
(xc,F̃ )

· · ·
−gi|J | (xc)

λi|J | (xc,F̃ )

−1
λi1

(xc,F̃ )
· · · −1

λi|J | (xc,F̃ )

 , (6.4)

and

∇20JML(τ(Ī), Ī) =

[∑
i∈J

g2i (xc)

λi(xc,F̃ )

∑
i∈J

gi(xc)

λi(xc,F̃ )∑
i∈J

gi(xc)

λi(xcF̃ )

∑
i∈J

1
λi(xc,F̃ )

]
= Iα⋆ , (6.5)

from which we recover the same set of matrices which allowed us to show that the WLS estimator
achieves optimality in the Cramér-Rao sense given the weights of equation (5.10) (see Appendix
C). Consequently

[
τ ′ML(Ī)

]
· Cov(I) ·

[
τ ′ML(Ī)

]⊺
= Iα⋆

⇒ σ2
ML,F̃

=
[
I−1
α⋆

]
(1,1)

∧ σ2
ML,B̃

=
[
I−1
α⋆

]
(2,2)

.
(6.6)

This last equation translates into that the interval enclosing the variance of the respective
ML estimates is centered precisely at the Cramér-Rao bound associated to each of the target
parameters.

6.1 Numerical Analysis

In this section we review the behavior of the performance bounds, as developed in Section 3, related
to the Maximum Likelihood estimator, as well as its empirical exactness and precision relative to
said bounds. For that matter we recall on the different study cases derived from the so called
"base case" from previous sections.

6.1.1 Bias Bounds

Unbiasedness is a key feature of any estimator, particularly when taking its precision relative to
the Cramér-Rao bound. Let’s begin our analysis with the bound for the estimator’s absolute bias,
described as in equation 3.5. Figure 6.1 assesses the bounds relative to the values of the target
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Figure 6.1: Bias bounds for joint source flux (left) and background (right) estimation for different
observational scenarios, under an aperture selection scheme.

parameters, i.e. they are measured as 100× ε′ML,1

F̃
and 100× ε′ML,2

B̃
, respectively, under the aperture

pixel selection scheme.

As long as (most of) the target’s PSF is not covered, the bounds seem to follow an irregular
oscillating but overall decreasing behavior, which is then followed by a clear tendency:

• The curve corresponding to the object’s flux increases slightly until it stabilizes. We note
two apparent exceptions, which correspond to the fainter cases where the source’s light is
either weaker (F = 500 ADU) or more diffuse (FWHM = 1.5 arcsec).

• After slightly increasing, the curves related to background monotonically decreases.

Despite the apparent dynamics of the bounds as aperture increases, we note that none of them
achieves values higher than a hundredth of a percent. Therefore, the mathematical bounds of
Section 3 predict that the joint ML estimator achieves 0 bias and, consequently, measuring its
precision against the Cramér-Rao bounds is feasible and meaningful.

6.1.2 Variance Bounds

As the Maximum Likelihood estimator is theoretically unbiased, we now review the two elements
that conform the interval depicted in equation (3.8). On one hand we have the central value, σ2

ML,j

and on the other we have βML,j which defines the length of the interval by 2βML,j.

For the one-dimensional case, Espinosa et al. [Espinosa et al., 2018] described σ2
ML,j as the

linear tendency of the estimator’s variance. Being the p-dimensional extension very similar (as
we are interested mostly on the diagonal components of the estimator’s covariance matrix), that
interpretation of σ2

ML,j is still applicable in our scenario and very useful, particularly when we
compare it against the fundamental limits resulting from the posed problem. For that matter,
Figure 6.2 shows the relative discrepancy between σ2

ML,1 and σ2
ML,2, and the respective Cramér-

Rao bounds.
1Which we do not do formally in this work beyond this remark, however.

58



1 2 3 4 5 6 7 8
Aperture diameter [arcsec]

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
m

 [%
]

Base Case
F = 10002 ADU
fs = 3005.0 ADU/arcsec
FWHM = 1.5 arcsec
0.125 pixel Offset
F = 500 ADU

1 2 3 4 5 6 7 8
Aperture diameter [arcsec]

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

B
 [%

]

Base Case
F = 10002 ADU
fs = 3005.0 ADU/arcsec
FWHM = 1.5 arcsec
0.125 pixel Offset
F = 500 ADU

Figure 6.2: Performance discrepancies between σ2
ML,F̃

(left), σ2
ML,B̃

(right) and their respective
Cramér-Rao bounds, for different observational scenarios, under an aperture selection scheme.

We notice some similarities between the overall tendencies of the curves in Figure 6.2 and the
behavior of the bounds shown in the previous section, as two phases can be recognized: there is
a transient stage that emerges for narrower apertures, followed by a steady smooth stage. Even
more, it is shown, again, that the cases corresponding to fainter sources (either weaker or more
diffuse) slightly deviate from the tendency of other scenarios.

The more interesting feature in these figures is that all the curves lie in a narrow area around
0%, which indicates that our bounding strategy predicts that the ML estimator is very close to be
optimal as long as the values of βML,F̃ and βML,B̃ are small enough. It is also remarkable that both
σ2
ML,F̃

and σ2
ML,B̃

resemble equation (6.6), even if we did not assume τML(Ī) = (F̃ , B̃). Conse-
quently, for those scenarios for which we have fainter sources and negative values for discrepancy,
optimality could still be achieved if the predicted interval is long enough.

The length of the bounding intervals as aperture increases is shown in Figure 6.3. As can
be observed, wider exposition areas and information availability allows the predicted intervals to
become narrower. Therefore, our methodology foretells that the Maximum Likelihood estimator is
capable of extracting both flux and background information from pixels farther from the object’s
position to allow for better precision. This added to the results obtained in Figure 6.2, indicate
that the estimator’s performance must become closer and closer to the optimal values dictated by
the Cramér-Rao bounds. Using the interpretation of Espinosa et al. [Espinosa et al., 2018], Figure
6.3 shows that the relevance of the non-linear component of the estimator’s variance diminishes as
more information is incorporated into the inference process, restricting the performance to stick
close to the linear one, which in turn lies tightly close to the Cramér-Rao bounds.

Finally, it is interesting to contrast these results with the analysis obtained for the SWLS
estimator in Section 5.2.2, which offered performance bounds that became looser with aperture,
even though empirical performance was not harmed.
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Figure 6.3: Length of the bounding intervals, 2βML,j for j ∈ {1, 2} for different observational
scenarios, under an aperture selection scheme.

6.1.3 Empirical Performance

Up to this moment, only the promising theoretical behavior of the ML estimator has been discussed,
but empirical analysis has not been addressed yet. Here, we compare the estimator’s empirical
performance both with the bias and variance bounds already discussed.

Starting with the analysis on bias, Figure 6.4 compares the bounds shown in Section 6.1.1, for
some of the study cases. The figure displays how the values for ε′

ML,F̃
and ε′

ML,B̃
successfully bound

the empirical performance of the ML estimator in terms of bias. These bias bounds are particularly
accurate once good coverage of the PSF has been achieved, particularly for background estimates,
which offer a consistent margin between the respective curves.
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Figure 6.4: Relative biases for joint source flux (left) and background (right) estimation for different
observational scenarios, under an aperture selection scheme. Solid lines denote the corresponding
bounds as given by equation (3.5) while dotted lines are employed for empirical bias estimates.

In conclusion, as the empirical bias achieved by the ML estimates goes even lower than the tight
bounds given by the methodology of Section 3, we can establish that the Maximum Likelihood
estimator is, in fact, unbiased for all practical purposes.

60



Moving into the variance estimator’s behavior, Figure 6.5 offers a first look on that behalf.
The figure shows that the curves for each one of the studied scenarios are so close to each other
that they are indistinguishable from the other, at least when we display the results in units of
magnitudes for the source’s brightness and photons for the background. These results suggest that
the Maximum Likelihood estimators follows the Cramér-Rao limits very closely, just as predicted
by the analysis of the linear component of its variance in the previous section.
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Figure 6.5: Variance bounds of the ML estimator for joint source flux (left) and background (right)
estimation for different observational scenarios, under an aperture selection scheme. Dashed-
dotted-, dashed- and solid lines denote the lower bound, the upper bound and the empirical
variance estimate, respectively.

When we re-scale the curves relative to the CRLBs by taking discrepancies, ∆σm and ∆σB̃, in
order to normalize the global tendency given by σ2

ML,·, we notice how the predicted bounds seem
to be unable to encompass the estimator’s actual performance within a certain range, as can be
observed in Figure 6.6.
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Figure 6.6: Performance discrepancies of the ML estimator for joint source flux (left) and back-
ground (right) estimation for different observational scenarios, under an aperture selection scheme.
Dashed-dotted-, dashed- and solid lines denote the lower bound, the upper bound and the empir-
ical variance estimate, respectively.

Though this results may seem unfavorable, given the erratic oscillations of the empirical curves
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around 0% and their relatively small amplitude, such behavior can be attributed to numerical ar-
tifacts resulting from computational limitations such as numerical resolution (which is particularly
critical when computing the quantified PSF, gi(xc), i ∈ J ), stopping criteria required by the opti-
mization solvers, or the very own rules of the programming languages themselves. Another possible
reason to explain this discrepancy may be the optimization over the linear interpolation parameter
t, on which the methodology heavily depends (see Section 3). However, for the particular problem
studied here it did not seem to have much of an impact on the bounds’ calculation.

Overall, the difference in terms of discrepancy tends to be around 0.5% (and from previous
evidence already discussed for other estimators such as SWLS), for which it can be established
that the proposed methodology is successful at predicting that the joint Maximum Likelihood
estimator is very close to be optimal for a wide range of scenarios and apertures.

Just as was done for the SWLS estimator in Section 5.2.2, we now show in Figure 6.7 the
distribution of a sample set of estimates obtained with the ML estimator and the effect of aperture
diameter on it. In fact, the same sample set used for Figure 5.28 was used here for inference.
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Figure 6.7: ML estimates distribution for the baseline scenario using different aperture diameters.
Blue markers denote the pairs ( ˆ̃F, ˆ̃B), orange marker is used for the ground truth value and green
marker denotes the sample means. On the bottom-left corner of each graph the sample Pearson
correlation coefficient is displayed. Estimates in each graph are obtained from the same sample
set.

In general, the same analysis and commentaries for the SWLS distributions of Figure 5.28 apply
for Figure 6.7, as not only bias and variance decrease with wider apertures (which is consistent with
previous results shown in this section), but also correlation does. Furthermore, the corresponding
distributions for the SWLS and ML estimators are almost identical, which is expected as both
estimators showed empirically to be very close to optimallity in the Cramér-Rao sense (see Figures
5.26 and 6.5 for example) and the difference between the respective calculated correlation coefficient
is at most 0.001.

However, the empirical exactness of the ML estimator in Figure 6.7 tends to outperform that of
Figure 5.28 as it consistently shows that for all tested apertures the ML estimates’ mean is closer
to the target values than the SWLS ones, even for apertures of 1.0′′ and 2.2′′ where there’s more
scattering over the flux-background space, which suggests that the ML estimator is more efficient
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in terms of pixel-information use.

6.2 Using the Bounds as an Implementation-Validation Tool

The results shown previously in this section were developed with the Stan probabilistic program-
ming language [Carpenter et al., 2017, Stan Development Team, 2019], particularly its PyStan in-
terface [Riddell et al., 2021], using as optimizer the Newton method [Nocedal and Wright, 2006].
However, the Stan language offers other quasi-Newton algorithms for optimization. For further
comparison, we present in this section the results obtained with a Maximum Likelihood estimator
implemented with the SciPy [Virtanen et al., 2020] package.

Calculation of the bounds obtained as in the procedure proposed in Section 3 is quite consis-
tent when using different implementations of the same algorithm, that is, by developing different
approaches to solve a given optimization functional, whether by employing different solvers or pro-
gramming languages. For that reason we present an alternative application of the tools developed
here, that of testing and validating those implementations of the estimator.

Evidence of the mentioned consistency is presented in Figure 6.8, where the upper bounds for the
variances’ squared root calculated from different implementations of the ML estimator, considering
both the package and the optimization solver implemented, are compared. The displayed bounds
correspond to the base scenario previously presented in Section 4, though similar results are found
for other study cases.
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Figure 6.8: Upper bounds for the ML estimates’ variances for different implementations of the
algorithm.

From the figure, it is interesting to note that for aperture diameters greater than three times
the FWHM the difference between the curves for different implementations of the ML estimator
diminishes. This trend indicates that the information gain obtained from more pixels translates
into more consistent bounds among different implementations of an estimation algorithm. This
consistent behavior strengthen the idea of using more pixel inputs when performing joint inference.

However, the fact that the bounds calculated with different implementations take very similar
values does not imply that the estimators behave the exact same way in practice.
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Having demonstrated that the ML estimator implemented by means of the Stan’s Newton opti-
mization algorithm allows for congruent results between the empirical and predicted performances,
and that the bounding strategy is itself consistent by obtaining similar bounding values from dif-
ferent languages and optimization algorithms, we can compare solely the empirical performances
of the tested ML implementations.

Figure 6.9 displays the empirical standard deviation obtained with the reviewed optimization
methods, for our baseline scenario. Therein, we notice how the Stan-implemented estimators
perform quite the same, attaining discrepancies similar to the ones seen in Section 6.1.3. On
the other hand, the estimators programmed with SciPy perform poorly2, even counteracting the
prescriptions for information use proposed in this work by showing worsening precision on the
object’s brightness as aperture increases. As for the background estimates, though the figure
shows a gain in precision with aperture, they still perform unsatisfactorily when compared with
the CRLB.
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Figure 6.9: Empirical performances for different implementations of the ML estimator.

Through this kind of analysis, the developer or end user could detect the presence of implementa-
tion issues and then make decisions such as inspecting the code searching for possible improvements
such as: parameter tweaking, better initial guesses for the algorithms; or, as could be the case in
this scenario, to straightforwardly discard those that do not match the expected behavior. This
way, the bounds developed in Section 3 offer a relevant framework for the development stages as
part of the testing and validation processes.

2Note however that SciPy offers plenty of alternative optimization algorithms which may improve the ones
reviewed here.
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Chapter 7

Conclusions and Future Work

In this work we studied both theoretical and practical implications of performing simultaneous
estimation of the brightness of a targeted point light source and the background flux that source is
embedded in. We also explored the effects of incorporating as much pixel information as possible
to this joint inference process, which should allow for better precision.

From a theoretical perspective, we show how fundamental precision limits behaves under dif-
ferent increasing-aperture schemes and observational settings. We demonstrate a decreasing trend
on the minimal variance, across a wide range of SNR regimes. This supports the idea that there
are performance benefits when adopting the principle of joint estimation with wider apertures.

Classic results on parametric inference and sufficient statistics were unable to provide closed-
form definitions for an estimator that could guarantee achievability of the Cramér-Rao bounds
thoroughly studied. For that matter, we resort to a newly formulated generalization of the results
of Fessler [Fessler, 1996] and Espinosa et al. [Espinosa et al., 2018] on implicit estimators to assess
practical strategies to approach the posed multidimensional problem of joint inference.

We tested a handful of variants of the Weighted Least-Squares (WLS) estimator to validate both
the concept of joint inference and the developed mathematical tools for performance bounding
from an experimental standpoint. For the former, the various flavors of the estimator proved to
be unbiased and displayed a performance comparable to the fundamental limits, particularly when
provided with adaptable weight-choice schemes. For the latter task, our bounding methodology
displayed consistency with the linear nature of the plain WLS estimator, posed as a border case.
For adaptive versions of the WLS estimator, our methodology successfully bound its performance
both bias- and variance-wise, achieving less than 1% discrepancy with respect to the minimal
achievable variance bounds.

For the Maximum Likelihood (ML) estimator our bounding strategy successfully predicts its
unbiasedness. Regarding the precision forecasts, the developed bounds suggest tight correspon-
dence between the Cramér-Rao bounds and the central value of interval where each of the ML
estimates’ variances belongs. Furthermore, as pixel information increases, the intervals’ length
becomes tighter, which implies closeness to the minimal possible variance. Though our bounds
weren’t capable to precisely determine the ML estimates’ variance, the relatively small gap be-
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tween empirical results and our lower and upper bound predictions (around 1% with respect to the
Cramér-Rao bounds), added to the accurate prediction of the global tendencies leads us to state
the consistent near-optimality of the ML scheme.

Finally we tested the developed performance bounding strategy as a way of validating the im-
plementation of an inference algorithm. We showed how different implementations convey similar
theoretical bounds, despite their empirical performances can broadly differ, thus allowing to discard
non-consistent versions and select those consistent with our predicted bounds.

As future work, we recognize two important branches that may expand the analyses and findings
of the current thesis.

Our general multidimensional formulations can be used to increase the dimension of the infer-
ence problem by adding the source’s relative position as a third unknown parameter. Then we
can explore the problem adressed by Gai et al. [Gai et al., 2017]. Furthermore, concurrent PSF
inference could be studied, possibly adding multiple degrees of complexity to our problem.

It may be also interesting to tackle the very same problem faced in this work but with a Bayesian
perspective. Bayesian inference also offers fundamental limits in the form of Bayesian Cramér-Rao
bounds, which could be used to study possible information gains due to prior information. Then,
the performance bounding tool proposed in this work, posed for optimization problems may be
extended to this framework too, for example for the MAP estimator.

Regarding the bounding strategy adopted in this thesis, further work can be done in order to
develop tighter bounds. Finally, on the algorithmic behalf, there’s room for studying and improving
the optimization methods which allow to calculate the bounds when maximizing over the linear
interpolation term t ∈ [0, 1].

To end this work in a more comprehensive manner, Table 7.1 summarizes the main contributions
and key points of each chapter.
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Table 7.1: Main conclusions per chapter.

Chapter N° Contributions

3
• Development of generalized bias (eqn. (3.5) and variance (eqns. (3.6)

and (3.7)) bounds for multidimensional implicit estimators.

4

• Thorough analysis of the Cramér-Rao Bounds for joint photometry
(see eqns. (4.12), (4.13) and (4.14)).

• It’s proven that as more pixels are available for inference (independent
of how they’re chosen), the lower the one-dimensional and joint CRLBs

become, and the more they resemble each other (see Figures 4.3 and 4.6).

• No estimator that achieved the CRLBs could be found
(see eqn. (4.24) for example). Therefore, the optimallity of

practical estimators must be assessed.

5

• The WLS joint estimates can be unbiased and very precise,
depending on weight setting. Adaptive versions of it

show to be near-optimal (see Figure 5.17for example).

• Results like Figure 5.17 suggest that there exists
a sufficient aperture rather than an optimal one when

performing joint photometry.

• The methodology of Chapter 3 is validated
through the adaptive SWLS estimator (see Figure 5.27).

6

• The ML joint estimates show to be unbiased, near-optimal
and less correlated as aperture increases (see Figures 6.4, 6.5 and 6.7).

• The bounds of Chapter 3 can also be used as validation tool for different
implementations of an algorithm (see Figures 6.8 and 6.9).
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Annex A

Proof: Bounding the Performance of a
high-dimensional Implicit Estimator

Let Θ ⊆ Rp be some parameter space with α ∈ Θ a p-dimensional parameter vector to be
estimated from a n-dimensional observation vector I, and let J : Θ × Rn → R be the objective
function of some optimization problem which defines a decision rule τJ(·) as

τJ(I) ≡ argmin
α∈Θ

J(α, I). (A.1)

Let’s also make the assumption that the cost function J(α, I) has a unique optimal value at
α = τJ(I) which also satisfies the following first order condition

0 = ∇J(α, I)

∣∣∣∣
α=τJ (I)

= [J ′(α, I)]
⊺

∣∣∣∣
α=τJ (I)

=



∂
∂α1

J(τJ(I), I)

...

∂
∂αp

J(τJ(I), I)


.

(A.2)

Assuming the functional J(α, I) to be (at least) twice differentiable, the estimator’s Taylor
expansion around the mean vector Ī is as follows:

τJ(I) ≈ τJ(Ī) + τ ′J(Ī) · (I− Ī) + e(Ī, I− Ī), (A.3)

where
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e(Ī, I− Ī) =
1

2

n∑
i=1

n∑
h=1

∂2

∂Ii∂Ih
τJ(Ī+ t(I− Ī))(Ii − Īi)(Ih − Īh)

=
1

2

n∑
i=1

n∑
h=1



∂2

∂Ii∂Ih
τJ,1(Ī+ t(I− Ī))

...

∂2

∂Ii∂Ih
τJ,p(Ī+ t(I− Ī))


(Ii − Īi)(Ih − Īh),

(A.4)

for some fixed but unknown value t ∈ [0, 1].

By mere properties of the covariance matrix, the Taylor expansion in equation (A.3) can also
be used to approximate the covariance matrix of the estimator τJ :

V ar(τJ(I)) ≈V ar(τJ(Ī) + τ ′J(Ī) · (I− Ī) + e(Ī, I− Ī))

=V ar(τ ′J(Ī) · (I− Ī) + e(Ī, I− Ī))

=V ar(τ ′J(Ī) · (I− Ī)) + Cov(τ ′J(Ī) · (I− Ī), e(Ī, I− Ī))

+ Cov(e(Ī, I− Ī), τ ′J(Ī) · (I− Ī)) + V ar(e(Ī, I− Ī)).

(A.5)

Noting that

EI∼L(I;α⋆)

{
τ ′J(Ī) · (I− Ī)

}
= τ ′J(Ī) · EI∼L(I;α⋆)

{
I− Ī

}
= 0,

(A.6)

the first element on the right-hand side of equation (A.5) can be expressed as

V ar(τ ′J(Ī) · (I− Ī)) =
[
τ ′J(Ī)

]
Cov(I)

[
τ ′J(Ī)

]⊺
. (A.7)

The identity in equation (A.6) also allows to simplify to some extent the p × p covariance
matrices between τ ′J(Ī) · (I− Ī) and e(Ī, I− Ī):

Cov(τ ′J(Ī) · (I− Ī), e(Ī, I− Ī)) =EI∼L(I;α⋆)

{[
τ ′J(Ī) · (I− Ī)

] [
e(Ī, I− Ī)− EI∼L(I;α⋆)

{
e(Ī, I− Ī)

}]⊺}
=EI∼L(I;α⋆)

{[
τ ′J(Ī) · (I− Ī)

]
e⊺(Ī, I− Ī)

}
− EI∼L(I;α⋆)

{
τ ′J(Ī) · (I− Ī)

}
EI∼L(I;α⋆)

{
e⊺(Ī, I− Ī)

}
=EI∼L(I;α⋆)

{[
τ ′J(Ī) · (I− Ī)

]
e⊺(Ī, I− Ī)

}
,

(A.8)
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Cov(e(Ī, I− Ī), τ ′J(Ī) · (I− Ī)) =
[
Cov(τ ′J(Ī) · (I− Ī), e(Ī, I− Ī))

]⊺
. (A.9)

Before continuing on the demonstration of the bounds themselves, it is worth noting the fol-
lowing: since the focus of this work’s section is to address the bias and variance of each individual
component of the implicit estimator given by τJ , we are not particularly interested in every compo-
nent of the matrix Cov(τJ(I)), but in its diagonal or, in other words, scalar forms of equation (A.5)
resulting from projecting τJ(I) onto the p-dimensional canonical vectors, i.e. τJ,j(I) = ⟨̂ıj, τJ(I)⟩
with j ∈ {1, . . . , p}, where ı̂j denotes the canonical vector whose only non-zero component equals
1 at the j-th coordinate. Therefore, it can be readily held that, for j ∈ {1, . . . , p}:

[V ar(τJ(I))](j,j) =ı̂⊺jV ar(τJ(I))̂ıj

=V ar(⟨̂ıj, τJ(I)⟩)
≈V ar(⟨̂ıj, τJ(Ī) + τ ′J(Ī) · (I− Ī) + e(Ī, I− Ī)⟩)

=V ar
(
τJ,j(Ī) +

[
τ ′J(Ī)

]
(j,·) · (I− Ī) + ej(Ī, I− Ī)

)
=V ar

([
τ ′J(Ī)

]
(j,·) · (I− Ī) + ej(Ī, I− Ī)

)
=
[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + Cov

([
τ ′J(Ī)

]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)
+ Cov

(
ej(Ī, I− Ī),

[
τ ′J(Ī)

]
(j,·) · (I− Ī)

)
+ V ar(ej(Ī, I− Ī))

=
[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + V ar(ej(Ī, I− Ī))

+ 2Cov
([

τ ′J(Ī)
]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)
.

(A.10)

Note that the last line in equation (A.10) follows from equation (A.9), or simply by properties
of the scalar covariance operator.

A.1 Bias Bounds

From the projection of the estimator’s Taylor expansion onto the direction of the canonical vector ı̂j
depicted briefly in equation (A.10) it is possible to bound the magnitude of the bias with respect to
the corresponding parameter α⋆

j = ⟨̂ıj,α⋆⟩ by applying the properties of the expectation operator
and the triangle inequality,
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∣∣EI∼L(I;α⋆) {τJ,j(I)} − α⋆
j

∣∣ ≈ ∣∣∣EI∼L(I;α⋆)

{
τJ,j(Ī) +

[
τ ′J(Ī)

]
(j,·) · (I− Ī) + ej(Ī, I− Ī)

}
− α⋆

j

∣∣∣
=
∣∣∣τJ,j(Ī) + [τ ′J(Ī)](j,·) · EI∼L(I;α⋆)

{
(I− Ī)

}
+ EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

}
− α⋆

j

∣∣∣
=
∣∣τJ,j(Ī) + EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

}
− α⋆

j

∣∣
≤
∣∣τJ,j(Ī)− α⋆

j

∣∣+ ∣∣EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

}∣∣
≤
∣∣τJ,j(Ī)− α⋆

j

∣∣+ max
t∈[0,1]

∣∣EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

}∣∣
≡
∣∣τJ,j(Ī)− α⋆

j

∣∣+ εJ,j,

(A.11)

which recovers the relation of equation (3.5).

A.2 Variance Bounds

The expression of equation (A.10) can be decomposed into two main elements:

V ar(τJ,j(I)) =
[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + V ar(ej(Ī, I− Ī))

+ 2Cov
([

τ ′J(Ī)
]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)
≡
[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + γJ,j,

(A.12)

being γJ,j the critical term that shall allow us to find the interval depicted in equation (3.8). From
this last equation and the reverse triangle inequality it follows that

V ar(τJ,j(I)) =
[
τ ′J(Ī)

]
(j,·)Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + γJ,j

⇒ |γJ,j| =
∣∣∣V ar(τJ,j(I))−

[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·)

∣∣∣
≥
∣∣∣|V ar(τJ,j(I))| −

∣∣∣[τ ′J(Ī)](j,·) Cov(I)
[
τ ′J(Ī)

]⊺
(j,·)

∣∣∣∣∣∣
=
∣∣∣V ar(τJ,j(I))−

[
τ ′J(Ī)

]
(j,·)Cov(I)

[
τ ′J(Ī)

]⊺
(j,·)

∣∣∣
⇒ V ar(τJ,j(I)) ∈

[[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) − |γJ,j| ,

[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + |γJ,j|

]
.

(A.13)

Note that the line after the triangle inequality application comes from the non-negativity of
V ar(τJ,j(I)) and Cov(I) being a positive semidefinite matrix.

The interval shown in equation (A.13) resembles that of equation (3.8), but with one key
difference: in Section 3 the bounding interval was stated in terms of βJ,j from equation (3.7)
instead of γJ,j. In what follows it is proven that
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|γJ,j| ≤ βJ,j. (A.14)

Note that this inequality conveys looser bounds for V ar(τJ,j(I)), which comes from γJ,j being
itself a function of the unknown variable t ∈ [0, 1] and by following similar steps of those proposed
by [Espinosa et al., 2018].

For that matter, let’s consider each one of the terms that define γJ,j independently. Firstly, we
have that

V ar(ej(Ī, I− Ī)) = EI∼L(I;α⋆)

{(
ej(Ī, I− Ī)− EI∼L(I;α⋆)

{
ej(Ī, I− Ī)

})2}
≤ EI∼L(I;α⋆)

{(
ej(Ī, I− Ī)

)2}
≤ max

t∈[0,1]
EI∼L(I;α⋆)

{(
ej(Ī, I− Ī)

)2}
.

(A.15)

On the other hand, by taking absolute value of the second term and considering again equations
(A.6) and (A.8), we obtain that

∣∣∣Cov
([

τ ′J(Ī)
]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)∣∣∣ = ∣∣∣EI∼L(I;α⋆)

{[[
τ ′J(Ī)

]
(j,·) · (I− Ī)

]
ej(Ī, I− Ī)

}∣∣∣
≤ max

t∈[0,1]

∣∣∣EI∼L(I;α⋆)

{[[
τ ′J(Ī)

]
(j,·) · (I− Ī)

]
ej(Ī, I− Ī)

}∣∣∣ .
(A.16)

Finally, combining equations (A.15) and (A.16) both the desired bound and the definition for
βJ,j are recovered, concluding the demonstration.

|γJ,j| =
∣∣∣V ar(ej(Ī, I− Ī)) + 2Cov

([
τ ′J(Ī)

]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)∣∣∣
≤
∣∣V ar(ej(Ī, I− Ī))

∣∣+ 2
∣∣∣Cov

([
τ ′J(Ī)

]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)∣∣∣
= V ar(ej(Ī, I− Ī)) + 2

∣∣∣Cov
([

τ ′J(Ī)
]
(j,·) · (I− Ī), ej(Ī, I− Ī)

)∣∣∣
≤ max

t∈[0,1]
EI∼L(I;α⋆)

{(
ej(Ī, I− Ī)

)2}
+ 2max

t∈[0,1]

∣∣∣EI∼L(I;α⋆)

{[[
τ ′J(Ī)

]
(j,·) · (I− Ī)

]
ej(Ī, I− Ī)

}∣∣∣
≡ βJ,j

⇒ V ar(τJ,j(I)) ∈
[[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) − |βJ,j| ,

[
τ ′J(Ī)

]
(j,·) Cov(I)

[
τ ′J(Ī)

]⊺
(j,·) + |βJ,j|

]
.

(A.17)

A.3 First- and Second-Order Derivatives for τJ

The condition in equation (A.2) can be represented as a function Ψ : Rn → Rp
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Ψ(I) =



∂
∂α1

J(τJ(I), I)

...

∂
∂αp

J(τJ(I), I)


, (A.18)

whose zero is α = τJ(I).

In order to find the Taylor expansion depicted in equations (3.3) and (3.4) one can draw upon
the chain rule to take the partial derivative ∂

∂Ii
on both sides of equation (A.2), resulting in one of

the n sets of p equations on p unknowns of the form

0 =
∂

∂Ii
Ψ(I)

=



∑p
k=1

∂2

∂α1∂αk
J(τJ(I), I) · ∂

∂Ii
τJ,k(I) +

∂2

∂α1∂Ii
J(τJ(I), I)

...

∑p
k=1

∂2

∂αp∂αk
J(τJ(I), I) · ∂

∂Ii
τJ,k(I) +

∂2

∂αp∂Ii
J(τJ(I), I)


.

(A.19)

For ease of notation, this last expression can be rewritten in matrix form as follows

0 =



∂2

∂α1∂α1
J(τJ(I), I) . . . ∂2

∂α1∂αp
J(τJ(I), I)

... . . . ...

∂2

∂αp∂α1
J(τJ(I), I) . . . ∂2

∂αp∂αp
J(τJ(I), I)





∂
∂Ii

τJ,1(I)

...

∂
∂Ii

τJ,p(I)


+



∂2

∂α1∂Ii
J(τJ(I), I)

...

∂2

∂αp∂Ii
J(τJ(I), I)



=
[
∇20J(τJ(I), I)

]


∂
∂Ii

τJ,1(I)

...

∂
∂Ii

τJ,p(I)


+
[
∇11J(τJ(I), I)

]
(·,i) .

(A.20)
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Noting that the total derivatives of Ψ and τJ can be written, respectively, as

Ψ′(I) =

[
∂
∂I1

Ψ(I) . . . ∂
∂In

Ψ(I)

]
∈ Rp×n, (A.21)

τ ′J(I) =



∂
∂I1

τJ,1(I) . . . ∂
∂In

τJ,1(I)

... . . . ...

∂
∂I1

τJ,p(I) . . . ∂
∂In

τJ,p(I)


∈ Rp×n, (A.22)

the n sets of linear systems depicted in equation (A.20) can be merged into1

0 = Ψ′(I)

=
[
∇20J(τJ(I), I)

]


∂
∂I1

τJ,1(I) . . . ∂
∂In

τJ,1(I)

... . . . ...

∂
∂I1

τJ,p(I) . . . ∂
∂In

τJ,p(I)


+
[
∇11J(τJ(I), I)

]

=
[
∇20J(τJ(I), I)

]
τ ′J(I) +

[
∇11J(τJ(I), I)

]
.

(A.23)

Finally, equation (3.11) is recovered, conditional on ∇20J(τJ(I), I) being an invertible matrix.

τ ′J(I) = −
[
∇20J(τJ(I), I)

]−1 [∇11J(τJ(I), I)
]
. (A.24)

Employing the chain rule once again to take the partial derivative ∂
∂Ih

on both sides of equation
(A.19) (more precisely on each one of the components of said equation), Fessler’s equation (15)
[Fessler, 1996] is recovered for each j ∈ {1, . . . , p}:

1Note the abuse of notation, where the left-hand side of equation (A.23) represents a p× n null matrix.
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0 =

p∑
k=1

[(
p∑

l=1

[
∂3

∂αj∂αk∂αl

J(τJ(I), I) ·
∂

∂Ih
τJ,l(I)

]
+

∂3

∂αj∂αk∂Ih
J(τJ(I), I)

)
· ∂

∂Ii
τJ,k(I)

]

+

p∑
k=1

[
∂2

∂αj∂αk

J(τJ(I), I) ·
∂2

∂Ih∂Ii
τJ,k(I)

]

+

p∑
k=1

[
∂3

∂αj∂αk∂Ii
J(τJ(I), I) ·

∂

∂Ih
τJ,k(I)

]
+

∂3

∂αj∂Ih∂Ii
J(τJ(I), I).

(A.25)

Let us then denote the following

P i,h
J,j (I) =

p∑
k=1

[(
p∑

l=1

[
∂3

∂αj∂αk∂αl

J(τJ(I), I) ·
∂

∂Ih
τJ,l(I)

]
+

∂3

∂αj∂αk∂Ih
J(τJ(I), I)

)
· ∂

∂Ii
τJ,k(I)

]
,

(A.26)

Qi,h
J,j(I) =

p∑
k=1

[
∂3

∂αj∂αk∂Ii
J(τJ(I), I) ·

∂

∂Ih
τJ,k(I)

]
+

∂3

∂αj∂Ih∂Ii
J(τJ(I), I). (A.27)

Therefore, equation (A.25) can be rewritten as

0 = P i,h
J,j (I) +

p∑
k=1

[
∂2

∂αj∂αk

J(τJ(I), I) ·
∂2

∂Ih∂Ii
τJ,k(I)

]
+Qi,h

J,j(I)

= P i,h
J,j (I) +

[
∇20J(τJ(I), I)

]
(j,·) ·

[
∂2

∂Ii∂Ih
τJ,1(I) . . . ∂2

∂Ii∂Ih
τJ,p(I)

]⊺
+Qi,h

J,j(I)

= P i,h
J,j (I) +

[
∇20J(τJ(I), I)

]
(j,·) ·

∂2

∂Ii∂Ih
τJ(I) +Qi,h

J,j(I).

(A.28)

Written in that form, we can stack the p equations and get the matrix form that allows to find
equation (3.13):
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0 =



P i,h
J,1(I)

...

P i,h
J,p(I)


+



[∇20J(τJ(I), I)](1,·)

...

[∇20J(τJ(I), I)](p,·)


· ∂2

∂Ii∂Ih
τJ(I) +



Qi,h
J,1(I)

...

Qi,h
J,p(I)


≡ P i,h

J (I) +∇20J(τJ(I), I) ·
∂2

∂Ii∂Ih
τJ(I) +Qi,h

J (I)

⇒ ∂2

∂Ii∂Ih
τJ(I) = −

[
∇20J(τJ(I), I)

]−1
[
P i,h
J (I) +Qi,h

J (I)
]
.

(A.29)

In order to complete the demonstration, it suffices to describe P i,h(I) and Qi,h(I) as in equa-
tions (3.14) and (3.15), respectively. For that matter it serves to treat said vectors’ individual
components, depicted in equations (A.26) and (A.27). Let’s take then the latter, which can be
easily rewritten as:

Qi,h
J,j(I) =

p∑
k=1

[
∂3

∂αj∂αk∂Ii
J(τJ(I), I) ·

∂

∂Ih
τJ,k(I)

]
+

∂3

∂αj∂Ih∂Ii
J(τJ(I), I)

=

[
∂3

∂αj∂α1∂Ii
J(τJ(I), I) . . . ∂3

∂αj∂αp∂Ii
J(τJ(I), I)

]


∂
∂Ih

τJ,1(I)

...

∂
∂Ih

τJ,p(I)


+
[
∇12J(τJ(I), I)

]
(j,i,h)

=
[
∇21J(τJ(I), I)

]
(j,·,i) [τ

′
J(I)](·,h) +

[
∇12J(τJ(I), I)

]
(j,i,h)

.

(A.30)

Following similar steps, i.e. identifying matrix forms, operations and considering the notation
introduced by (3.9), equation (3.14) can be recovered:
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P i,h
J,j (I) =

p∑
k=1

[(
p∑

l=1

[
∂3

∂αj∂αk∂αl

J(τJ(I), I) ·
∂

∂Ih
τJ,l(I)

]
+

∂3

∂αj∂αk∂Ih
J(τJ(I), I)

)
· ∂

∂Ii
τJ,k(I)

]

=

p∑
k=1

[
p∑

l=1

[
∂3

∂αj∂αk∂αl

J(τJ(I), I) ·
∂

∂Ih
τJ,l(I) ·

∂

∂Ii
τJ,k(I)

]]

+

p∑
k=1

[
∂3

∂αj∂αk∂Ih
J(τJ(I), I) ·

∂

∂Ii
τJ,k(I)

]

=

[
∂
∂Ii

τJ,1(I) . . . ∂
∂Ii

τJ,p(I)

]


∂3

∂αj∂α1∂α1
J(τJ(I), I) · · · ∂3

∂αj∂α1∂αp
J(τJ(I), I)

... . . . ...

∂3

∂αj∂αp∂α1
J(τJ(I), I) · · · ∂3

∂αj∂αp∂αp
J(τJ(I), I)





∂
∂Ih

τJ,1(I)

...

∂
∂Ih

τJ,p(I)



+

[
∂3

∂αj∂α1∂Ih
J(τJ(I), I) . . . ∂3

∂αj∂αp∂Ih
J(τJ(I), I)

]


∂
∂Ii

τJ,1(I)

...

∂
∂Ii

τJ,p(I)


= [τ ′J(I)]

⊺
(·,i)
[
∇30J(τJ(I), I)

]
(j,·,·) [τ

′
J(I)](·,h) +

[
∇21J(τJ(I), I)

]
(j,·,h) [τ

′
J(I)](·,i) ,

(A.31)

which concludes the demonstration.
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Annex B

Proof: Cramér-Rao Lower Bounds for the
Joint Estimation Problem of Flux and
Background

For ease of notation, since the source’s relative position is assumed to be known and fixed we’ll sim-
ply denote the likelihood function of equation (2.7) as L(I; F̃ , B̃). This is done solely to emphasize
that F̃ and B̃ are the parameters of interest posed in this problem.

As stated in Theorem 2.1, the first necessary step to characterize the fundamental precision
limits of the joint estimation problem is to check the regularity condition in equation (2.10) for
each of the target parameters. This is verified as follows:

EI∼L(I;F̃ ,B̃)

{
∂

∂F̃
lnL(I; F̃ , B̃)

}
= EI∼L(I;F̃ ,B̃)

{
∂

∂F̃

∑
i∈J

Ii lnλi(xc, F̃ )− λi(xc, F̃ )− ln Ii!

}

= EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
∂

∂F̃
lnλi(xc, F̃ )− ∂

∂F̃
λi(xc, F̃ )

}

= EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
gi(xc)

λi(xc, F̃ )
− gi(xc)

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
gi(xc)

λi(xc, F̃ )
− gi(xc)

=
∑
i∈J

λi(xc, F̃ )
gi(xc)

λi(xc, F̃ )
− gi(xc)

= 0,

(B.1)
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EI∼L(I;F̃ ,B̃)

{
∂

∂B̃
lnL(I; F̃ , B̃)

}
= EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
∂

∂B̃
lnλi(xc, F̃ )− ∂

∂B̃
λi(xc, F̃ )

}

= EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
1

λi(xc, F̃ )
− 1

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
1

λi(xc, F̃ )
− 1

=
∑
i∈J

λi(xc, F̃ )
1

λi(xc, F̃ )
− 1

= 0.

(B.2)

Therefore, the necessary conditions stated in Theorem 2.1 are satisfied. The second step is
to find the Fisher Information Matrix by taking the negative of the expectation on the second
derivatives, as in equation (2.12). In what follows, the different components of said matrix are
calculated:

I1,1 ≡ [Iθ](1,1)

= −EI∼L(I;F̃ ,B̃)

{
∂2

∂F̃ 2
lnL(I; F̃ , B̃)

}
= −EI∼L(I;F̃ ,B̃)

{
∂

∂F̃

(∑
i∈J

Ii
gi(xc)

λi(xc, F̃ )
− gi(xc)

)}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Iigi(xc)
∂

∂F̃

1

λi(xc, F̃ )

}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Iigi(xc) ·
−gi(xc)

λ2
i (xc, F̃ )

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
g2i (xc)

λ2
i (xc, F̃ )

=
∑
i∈J

g2i (xc)

λi(xc, F̃ )
,

(B.3)
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I2,1 ≡ [Iθ](2,1)

= −EI∼L(I;F̃ ,B̃)

{
∂2

∂B̃∂F̃
lnL(I; F̃ , B̃)

}
= −EI∼L(I;F̃ ,B̃)

{
∂

∂B̃

(∑
i∈J

Ii
gi(xc)

λi(xc, F̃ )
− gi(xc)

)}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Iigi(xc)
∂

∂B̃

1

λi(xc, F̃ )

}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Iigi(xc) ·
−1

λ2
i (xc, F̃ )

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
gi(xc)

λ2
i (xc, F̃ )

=
∑
i∈J

gi(xc)

λi(xc, F̃ )
,

(B.4)

I1,2 ≡ [Iθ](1,2)

= −EI∼L(I;F̃ ,B̃)

{
∂2

∂F̃∂B̃
lnL(I; F̃ , B̃)

}
= −EI∼L(I;F̃ ,B̃)

{
∂

∂F̃

(∑
i∈J

Ii
1

λi(xc, F̃ )
− 1

)}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
∂

∂F̃

1

λi(xc, F̃ )

}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii ·
−gi(xc)

λ2
i (xc, F̃ )

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
gi(xc)

λ2
i (xc, F̃ )

=
∑
i∈J

gi(xc)

λi(xc, F̃ )
,

(B.5)
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I2,2 ≡ [Iθ](2,2)

= −EI∼L(I;F̃ ,B̃)

{
∂2

∂B̃2
lnL(I; F̃ , B̃)

}
= −EI∼L(I;F̃ ,B̃)

{
∂

∂B̃

(∑
i∈J

Ii
1

λi(xc, F̃ )
− 1

)}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii
∂

∂B̃

1

λi(xc, F̃ )

}

= −EI∼L(I;F̃ ,B̃)

{∑
i∈J

Ii ·
−1

λ2
i (xc, F̃ )

}

=
∑
i∈J

EI∼L(I;F̃ ,B̃) {Ii}
1

λ2
i (xc, F̃ )

=
∑
i∈J

1

λi(xc, F̃ )
.

(B.6)

These equations recover the Fisher Matrix of described in equation (4.12) and, as a consequence
of Theorem 2.1, also imply the bounds of (4.13) and (4.14).

It is also worth noting, but not surprising, that the identity I1,2 = I2,1 is verified, i.e. Iθ is
symmetric.
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Annex C

Proof: WLS Estimator for the Joint
Estimation Problem of Flux and
Background

As stated in Section 5, the Weighted Least-Squares (WLS) estimator for the posed joint estimation
problem is the solution of an optimization problem

τWLS(I) = argmin
α∈Θ

JWLS(α, I), (C.1)

where

JWLS(α, I) =
∑
i∈J

wi(Ii − α1 · gi(xc)− α2)
2, (C.2)

and {wi}i∈J is a predefined set of weights. This estimator can be described in a closed (linear)
form. In order to show that, it is first required to demonstrate the convexity of JWLS(·) over Θ.

Let’s consider then, for some fixed I and a real value t ∈ [0, 1], two vectors on the parameter
space αA = (α1, α2),αB = (α′

1, α
′
2) ∈ Θ. Under this setup it follows that
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JWLS(tαA + (1− t)αB, I) =
∑
i∈J

wi (Ii − (tα1 + (1− t)α′
1) · gi(xc)− (tα2 + (1− t)α′

2))
2

=
∑
i∈J

wi

(
Ii − t(α1 · gi(xc) + α2)− (1− t)(α′

1 · gi(xc) + α′
2)
)2

=
∑
i∈J

wi

(
t(Ii − α1 · gi(xc) − α2) + (1− t)(Ii − α′

1 · gi(xc) − α′
2)
)2

≤
∑
i∈J

wi

(
t
(
Ii − α1 · gi(xc) − α2

)2
+ (1− t)

(
Ii − α′

1 · gi(xc) − α′
2

)2)
= t
∑
i∈J

wi

(
Ii − α1 · gi(xc) − α2

)2
+ (1− t)

∑
i∈J

wi

(
Ii − α′

1 · gi(xc) − α′
2

)2
= tJWLS(αA, I) + (1− t)JWLS(αB, I)■

(C.3)

Since the cost function JWLS is convex on Θ given an observation vector I, the same first order
condition of equation (3.2) is assumed, from which the closed form of the estimator can be found,
that is
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∂

∂α1
JWLS(α, I)

∂
∂α2

JWLS(α, I)


∣∣∣∣
α=τWLS(I)

= 0

⇒


−2
∑

i∈J wigi(xc) (Ii − α1gi(xc)− α2)

−2
∑

i∈J wi (Ii − α1gi(xc)− α2)


∣∣∣∣
α=τWLS(I)

= 0

⇒


∑

i∈J wigi(xc) (α1gi(xc) + α2)

∑
i∈J wi (α1gi(xc) + α2)


∣∣∣∣
α=τWLS(I)

=


∑

i∈J wigi(xc)Ii

∑
i∈J wiIi



⇒


wi1gi1(xc) . . . wi|J |gi|J |(xc)

wi1 . . . wi|J |





gi1(xc) 1

...
...

gi|J |(xc) 1




α1

α2


∣∣∣∣
α=τWLS(I)

=


∑

i∈J wigi(xc)Ii

∑
i∈J wiIi



⇒


∑

i∈J wig
2
i (xc)

∑
i∈J wigi(xc)

∑
i∈J wigi(xc)

∑
i∈J wi



α1

α2


∣∣∣∣
α=τWLS(I)

=


wi1gi1(xc) . . . wi|J |gi|J |(xc)

wi1 . . . wi|J |

 ·



I1

...

In



⇒


∑

i∈J wig
2
i (xc)

∑
i∈J wigi(xc)

∑
i∈J wigi(xc)

∑
i∈J wi

 τWLS(I) =


wi1gi1(xc) . . . wi|J |gi|J |(xc)

wi1 . . . wi|J |

 · I.

(C.4)

Finally, assuming that the square matrix at the left-hand side of this equation is invertible, the
estimator presented in Section 5 is recovered:
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τWLS(I) =


∑

i∈J wi · g2i (xc)
∑

i∈J wi · gi(xc)

∑
i∈J wi · gi(xc)

∑
i∈J wi


−1

·


wi1 · gi1(xc) . . . wi|J | · gi|J |(xc)

wi1 . . . wi|J |

 · I. (C.5)

Note, however, that the matrix inverted in this last step is in fact invertible since it can be
recognized that

∇20JWLS(τWLS(I), I) = 2


∑

i∈J wi · g2i (xc)
∑

i∈J wi · gi(xc)

∑
i∈J wi · gi(xc)

∑
i∈J wi

 , (C.6)

and the invertibility of ∇20JWLS(τWLS(I), I) comes from JWLS(·, I) being convex on Θ. Further-
more, it can also be recognized that

∇11JWLS(τWLS(I), I) = −2


wi1 · gi1(xc) . . . wi|J | · gi|J |(xc)

wi1 . . . wi|J |

 . (C.7)

Therefore, τWLS(I) can be noted just as in the second line of equation (5.3). Even more, from
the linearity of the estimator and −[∇20JWLS(τWLS(Ī), Ī)]

−1 ·∇11JWLS(τWLS(Ī), Ī) being a constant
matrix with respect to I, τWLS(I) can be further reduced into

τWLS(I) = τ ′WLS(I) · I. (C.8)

It may be interesting to note that the same form for τWLS(·) can be found by means of the
methodology of Section 3. Briefly put, it can be verified that the third-order derivatives that
comprise ∇12JWLS(α, I), ∇21JWLS(α, I) and ∇30JWLS(α, I) are equal to zero, i.e. ∀j, k, l ∈
{1, 2},∀i, h ∈ J

∂3

∂αj∂Ii∂Ih
JWLS(α, I) = 0,

∂3

∂αj∂αk∂Ih
JWLS(α, I) = 0,

∂3

∂αj∂αk∂αl

JWLS(α, I) = 0, (C.9)

which implies, from equations (3.13), (3.14) and (3.15) that τ ′′WLS(I) = 0 and, consequently,
e(Ī, I− Ī) = 0. On that account, the corresponding Taylor approximation around Ī reduces to
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τWLS(Ī) + τ ′WLS(Ī) · (I− Ī) = τ ′WLS(Ī) · I+ τWLS(Ī)− τ ′WLS(Ī) · Ī
= τ ′WLS(Ī) · I+ τ ′WLS(Ī) · Ī− τ ′WLS(Ī) · Ī
= τ ′WLS(Ī) · I
= τWLS(I).

(C.10)

This equivalence between τWLS and its Taylor expansion is indeed evident from the linear
nature of τWLS, but the importance of this analysis is to show some level of consistency between
this particular case and the general estimator studied in Section 3.

For the sake of completeness, recalling that τ ′WLS(I) = −[∇20JWLS(τWLS(I), I)]
−1·∇11JWLS(τWLS(I), I)

is a constant matrix given a set of weights {wi}i∈J , we now show that the weight selection given
by equation (5.10), i.e.

wi =
K

λi(xc, F̃ )
, ∀i ∈ {1, . . . , n}, K > 0, (C.11)

allows the WLS estimator to achieve optimality in the Cramér-Rao sense.

For that matter, it suffices to evaluate said weight set in τ ′WLS(I):

τ ′WLS(I) =
1

K


∑

i∈J
g2i (xc)

λi(xc,F̃ )

∑
i∈J

gi(xc)

λi(xc,F̃ )∑
i∈J

gi(xc)

λi(xc,F̃ )

∑
i∈J

1
λi(xc,F̃ )


−1

·K


gi1 (xc)

λi1
(xc,F̃ )

. . .
gi|J | (xc)

λi|J | (xc,F̃ )

1
λi1

(xc,F̃ )
. . . 1

λi|J | (xc,F̃ )



= I−1
α⋆ ·


gi1 (xc)

λi1
(xc,F̃ )

. . .
gi|J | (xc)

λi|J | (xc,F̃ )

1
λi1

(xc,F̃ )
. . . 1

λi|J | (xc,F̃ )

 ,

(C.12)

where the structure of the estimation problem’s Fisher matrix can be identified. Therefore,
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V ar(τWLS(I)) = τ ′WLS(I) · Cov(I) · τ ′WLS(I)
⊺

= I−1
α⋆ ·


gi1 (xc)

λi1
(xc,F̃ )

. . .
gi|J | (xc)

λi|J | (xc,F̃ )

1
λi1

(xc,F̃ )
. . . 1

λi|J | (xc,F̃ )

 · Cov(I) ·



gi1 (xc)

λi1
(xc,F̃ )

1
λi1

(xc,F̃ )

...
...

gi|J | (xc)

λi|J | (xc,F̃ )
1

λi|J | (xc,F̃ )


· I−1

α⋆

= I−1
α⋆ ·


gi1 (xc)

λi1
(xc,F̃ )

. . .
gi|J | (xc)

λi|J | (xc,F̃ )

1
λi1

(xc,F̃ )
. . . 1

λi|J | (xc,F̃ )

 ·



gi1(xc) 1

...
...

gi|J |(xc) 1


· I−1

α⋆

= I−1
α⋆ ·


∑

i∈J
g2i (xc)

λi(xc,F̃ )

∑
i∈J

gi(xc)

λi(xc,F̃ )∑
i∈J

gi(xc)

λi(xc,F̃ )

∑
i∈J

1
λi(xc,F̃ )

 · I−1
α⋆

= I−1
α⋆ · Iα⋆ · I−1

α⋆

= I−1
α⋆ ,

(C.13)

which concludes the result. However, it is worth noting again that this estimator’s configuration
requires to know α⋆ beforehand, which contradicts the aim and very essence of the posed problem.
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Annex D

Proof: Theoretic Bounds for the SWLS
Estimator in the Joint Estimation of Flux
and Background

Let J ⊆ {1, . . . , n} be a set of indices which defines a cost function given by

JSWLS(α, I) =
∑
i∈J

1

Ii
(Ii − α1 · gi(xc)− α2)

2, (D.1)

where α ∈ Θ. Such function defines the so-called Stochastic Weighted Least-Squares (SWLS)
estimator τSWLS(I) as an optimization problem just like equation (3.1), i.e.,

τSWLS(I) = argmin
α∈Θ

JSWLS(α, I). (D.2)

Just as the general WLS estimator, the optimization problem posed in equation (D.2) has a
closed-form, though non-linear on I, solution; which can be readily1 formulated as

τSWLS(I) =


∑

i∈J
1
Ii
· g2i (xc)

∑
i∈J

1
Ii
· gi(xc)

∑
i∈J

1
Ii
· gi(xc)

∑
i∈J

1
Ii


−1

·


1
Ii1

· gi1(xc) . . . 1
Ii|J |

· gi|J |(xc)

1
Ii1

. . . 1
Ii|J |

 · I. (D.3)

In order to evaluate the performance bounds developed in Section 3 for this particular for-
mulation, let’s consider firstly the derivatives of JSWLS(α, I) with respect to α, which define the

1Note that this new optimization problem is also convex on Θ, which can be easily demonstrated by simply
replacing wi with 1

Ii
into equation (C.3). Such evaluation can be carried further into the derivation of the closed-form

expression for the WLS estimator.
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first-order condition of equation (3.2):

∂

∂α1

JSWLS(α, I) =
∑
i∈J

−2gi(xc)

Ii
(Ii − α1gi(xc)− α2) , (D.4)

∂

∂α2

JSWLS(α, I) =
∑
i∈J

−2

Ii
(Ii − α1gi(xc)− α2) . (D.5)

Taking derivatives of these expressions with respect to α and Ii for some i ∈ J leads into the
elements of ∇20JSWLS(α, I) and ∇11JSWLS(α, I), respectively. The former second-order derivative
corresponds to

∇20JSWLS(α, I) =


∂2

∂α2
1
JSWLS(α, I) ∂2

∂α1∂α2
JSWLS(α, I)

∂2

∂α2∂α1
JSWLS(α, I) ∂2

∂α2
2
JSWLS(α, I)



=


∑

i∈J
2g2i (xc)

Ii

∑
i∈J

2gi(xc)
Ii∑

i∈J
2gi(xc)

Ii

∑
i∈J

2
Ii



= 2


∑

i∈J
g2i (xc)

Ii

∑
i∈J

gi(xc)
Ii∑

i∈J
gi(xc)
Ii

∑
i∈J

1
Ii

 .

(D.6)

From this last line, it stands out that ∇20JSWLS(α, I) and ∇20JWLS(α, I) (see equation (C.6))
share the same structure, which is evident by emphasizing the fact that the difference between
both cost functions falls solely to the evaluation of wi =

1
Ii

for i ∈ J .

However, what’s more interesting is the fact that precisely this weight configuration conveys
to (apparently) different structures after applying the ∇11 operator, as wi is also derivable with
respect to Ii, not just its adjacent squared-error term. Then,

∂2

∂α1∂Ii
JSWLS(α, I) =

∂

∂Ii

(∑
i∈J

−2gi(xc)

Ii
(Ii − α1gi(xc)− α2)

)

=
−2gi(xc)

I2i
(α1gi(xc) + α2) ,

(D.7)
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∂2

∂α2∂Ii
JSWLS(α, I) =

∂

∂Ii

(∑
i∈J

−2

Ii
(Ii − α1gi(xc)− α2)

)

=
−2

I2i
(α1gi(xc) + α2) ,

(D.8)

⇒ ∇11JSWLS(α, I) =


∂2

∂α1∂Ii1
JSWLS(α, I) · · · ∂2

∂α1∂Ii|J |
JSWLS(α, I)

∂2

∂α2∂Ii1
JSWLS(α, I) · · · ∂2

∂α2∂Ii|J |
JSWLS(α, I)



=


−2gi1 (xc)

I2i1
(α1gi1(xc) + α2) · · · −

2gi|J | (xc)

I2i|J |
(α1gi|J |(xc) + α2)

− 2
I2i1

(α1gi1(xc) + α2) · · · − 2
I2i|J |

(α1gi|J |(xc) + α2)

 .

(D.9)

At first glance, it may appear that the expressions for ∇11JSWLS(α, I) and ∇11JWLS(α, I) (see
equation (C.7), for example) do not share much of a structure in common, there’s however a
regimen where both equations become similar under the assumption that the SWLS estimator
achieves zero error when evaluated at Ī and the standard WLS estimator is equipped with the
optimal set of weights (see Appendix C), that is τSWLS(Ī) = α⋆2 and wi =

1
λi(xc,F̃ )

. Under such
circumstances it follows that:

2Which is in fact a consequence of the convexity of JSWLS(·, I) over Θ when fixing I = Ī.
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∇11JSWLS(α
⋆, Ī) = −2


gi1 (xc)

λ2
i1
(xc,F̃ )

(α⋆
1gi1(xc) + α⋆

2) . . .
gi|J | (xc)

λ2
i|J |

(xc,F̃ )

(
α⋆
1gi|J |(xc) + α⋆

2

)
1

λ2
i1
(xc,F̃ )

(α⋆
1gi1(xc) + α⋆

2) . . . 1
λ2
i|J |

(xc,F̃ )

(
α⋆
1gi|J |(xc) + α⋆

2

)


= −2


gi1 (xc)

λ2
i1
(xc,F̃ )

λi1(xc, F̃ ) . . .
gi|J | (xc)

λ2
i|J |

(xc,F̃ )
λi|J |(xc, F̃ )

1
λ2
i1
(xc,F̃ )

λi1(xc, F̃ ) . . . 1
λ2
i|J |

(xc,F̃ )
λi|J |(xc, F̃ )



= −2


gi1 (xc)

λi1
(xc,F̃ )

. . .
gi|J | (xc)

λi|J | (xc,F̃ )

1
λi1

(xc,F̃ )
. . . 1

λi|J | (xc,F̃ )



= −2


wi1 · gi1(xc) . . . wi|J | · gi|J |(xc)

wi1 . . . wi|J |


= ∇11JWLS(·, Ī).

(D.10)

Having the expressions for ∇11JSWLS(α, I) and ∇20JSWLS(α, I) at hand, the first-order deriva-
tive of the estimator, τ ′SWLS(I), can be straightforwarly computed just as depicted in equation
(3.11):

τ ′SWLS(I) = −
[
∇20JSWLS(τSWLS(I), I)

]−1 [∇11JSWLS(τSWLS(I), I)
]
. (D.11)

The next step towards finding the bounds on the estimator’s performance is to elaborate on
the expressions for the third-order derivatives of JSWLS(α, I). On this task, the simplest of these
arrays corresponds to the application of the ∇30 operator since it can be readily verified (from
equation (D.6)) that, ∀j, k, l ∈ {1, 2}, and for any pair (α, I) on the parameter-observation space,

∂3

∂αj∂αk∂αl

JSWLS(α, I) = 0. (D.12)

Therefore, the full 2× 2× 2 array ∇30JSWLS(α, I) corresponds to a null-array, i.e.,

∇30JSWLS(α, I) = 0. (D.13)
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Recalling on equations (D.7) and (D.8) we can develop on the applications of the ∇21 and ∇12

operators. For the former case, considering an arbitrary index i ∈ J we can take derivatives of
said equations with respect to α, which leads to:

∂3

∂α2
1∂Ii

JSWLS(α, I) =
∂

∂α1

(
−2gi(xc)

I2i
(α1gi(xc) + α2)

)
= −2g2i (xc)

I2i
,

(D.14)

∂

∂α1∂α2∂Ii
JSWLS(α, I) =

∂

∂α2∂α1∂Ii
JSWLS(α, I) =

∂

∂α2

(
−2gi(xc)

I2i
(α1gi(xc) + α2)

)
= −2gi(xc)

I2i
,

(D.15)

∂3

∂α2
2∂Ii

JSWLS(α, I) =
∂

∂α2

(
−2

I2i
(α1gi(xc) + α2)

)
= − 2

I2i
.

(D.16)

Combining these last three equations the full 2×2×|J | array ∇21JSWLS(α, I) can be summarized
as

[
∇21JSWLS(α, I)

]
(·,·,i) =


−2g2i (xc)

I2i
−2gi(xc)

I2i

−2g2i (xc)

I2i
− 2

I2i

 . (D.17)

On the other hand, taking derivatives of equations (D.7) and (D.8) with respect to some Ih, h ∈
J it follows that both respective expressions become case-dependent, in other words, both third-
order derivatives take different values depending on whether i = h or not. For that matter:

∂3

∂α1∂Ii∂Ih
JSWLS(α, I) =

{
4gi(xc)

I3i
(α1gi(xc) + α2) , h = i

0, h ̸= i
, (D.18)

∂3

∂α2∂Ii∂Ih
JSWLS(α, I) =

{
4
I3i
(α1gi(xc) + α2) , h = i

0, h ̸= i
. (D.19)
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Consequently, the full 2× |J | × |J | array ∇12JSWLS(α, I) can be interpreted as two |J | × |J |
stacked diagonal matrices, which can be expressed, respectively, as follows:

[
∇12JSWLS(α, I)

]
(1,·,·) =



4gi1 (xc)

I3i1
(α1gi1(xc) + α2)

. . .

4gi|J | (xc)

I3i|J |
(α1gi|J |(xc) + α2)


, (D.20)

[
∇12JSWLS(α, I)

]
(2,·,·) =



4
I3i1

(α1gi1(xc) + α2)

. . .

4
I3i|J |

(α1gi|J |(xc) + α2)


. (D.21)

Finally, we can draw upon equations (3.14), (3.15) and (3.13) to ensemble the last building
blocks to formulate the second-order derivatives of τSWLS(I) and to subsequently applying the
bounds depicted in Section 3.

P i,h
SWLS(I) =

[[
∇21JSWLS(τSWLS(I), I)

]
(j,·,h) [τ

′
SWLS(I)](·,i)

]2
j=1

, (D.22)

Qi,h
SWLS(I) =

[[
∇21JSWLS(τSWLS(I), I)

]
(j,·,i) [τ

′
SWLS(I)](·,h) +

[
∇12JSWLS(τSWLS(I), I)

]
(j,i,h)

]2
j=1

,

(D.23)

∂2

∂Ii∂Ih
τSWLS(I) = −

[
∇20JSWLS(τML(I), I)

]−1
[
P i,h
SWLS(I) +Qi,h

SWLS(I)
]
. (D.24)

The expressions derived so far represent the cornerstone from which the performance bounds
for the SWLS estimator are formulated and straightforward implemented, concluding the proof.
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Annex E

Proof: Theoretic Bounds for the ML
Estimator in the Joint Estimation of Flux
and Background

As previously stated, the different derivatives required to bound both the bias and variance of the
components of the estimator τML(I) for the joint estimation of flux and background presented in
equation (6.3) are here specified. Remind that, for some set of indices J ⊆ {1, . . . , n}, we define
the cost function associated to the Maximum Likelihood (ML) estimator as

JML(α, I) =
∑
i∈J

α1 · gi(xc) + α2 − Ii ln (α1 · gi(xc) + α2), (E.1)

where α = (α1, α2) ∈ Θ. Such function implicitly defines τML(I) as an optimization problem just
like equation (3.1), i.e.,

τML(I) = argmin
α∈Θ

JML(α, I). (E.2)

In order to apply the methodology proposed in Section 3, we must show before that the ML
functional has a unique optimal solution. To do so, we study its convexity. Let αA = (α1, α2),αB =
(α′

1, α
′
2) ∈ Θ two vectors on the parameter space and t ∈ [0, 1]. For some fixed observation vector

I we have that
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JML(tαA + (1− t)αB, I) =
∑
i∈J

(tα1 + (1− t)α′
1) · gi(xc) + (tα2 + (1− t)α′

2)

− Ii ln ((tα1 + (1− t)α′
1) · gi(xc) + (tα2 + (1− t)α′

2))

=
∑
i∈J

t (α1 · gi(xc) + α2) + (1− t) (α′
1 · gi(xc) + α′

2)

− Ii ln (t (α1 · gi(xc) + α2) + (1− t) (α′
1 · gi(xc) + α′

2))

≤
∑
i∈J

t (α1 · gi(xc) + α2) + (1− t) (α′
1 · gi(xc) + α′

2)

− Ii [t ln (α1 · gi(xc) + α2) + (1− t) ln (α′
1 · gi(xc) + α′

2)]

=
∑
i∈J

t (α1 · gi(xc) + α2 − Ii ln (α1 · gi(xc) + α2))

+ (1− t) (α′
1 · gi(xc) + α′

2 − Ii ln (α
′
1 · gi(xc) + α′

2))

= t
∑
i∈J

α1 · gi(xc) + α2 − Ii ln (α1 · gi(xc) + α2)

+ (1− t)
∑
i∈J

α′
1 · gi(xc) + α′

2 − Ii ln (α
′
1 · gi(xc) + α′

2)

= tJML(αA, I) + (1− t)JML(αB, I)■

(E.3)

where the inequality appears as a consequence of the concavity of the natural logarithm.

Since JML(α, I) is convex on Θ when I is fixed, we can proceed with the formulation of the
bounds.

As a starting point, let’s consider firstly the derivatives of JML(α, I) with respect to α, which
define the first-order condition of equation (3.2):

∂

∂α1

JML(α, I) =
∑
i∈J

gi(xc)−
Iigi(xc)

α1gi(xc) + α2

, (E.4)

∂

∂α2

JML(α, I) =
∑
i∈J

1− Ii
α1gi(xc) + α2

. (E.5)

Taking derivatives of these expressions with respect to α and Ii for some i ∈ J results in the
elements of ∇20JML(α, I) and ∇11JML(α, I), respectively. For the former matrix that is
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∇20JML(α, I) =


∂2

∂α2
1
JML(α, I) ∂2

∂α1∂α2
JML(α, I)

∂2

∂α2∂α1
JML(α, I) ∂2

∂α2
2
JML(α, I)



=


∑

i∈J
Iig

2
i (xc)

(α1gi(xc)+α2)2

∑
i∈J

Iigi(xc)
(α1gi(xc)+α2)2∑

i∈J
Iigi(xc)

(α1gi(xc)+α2)2

∑
i∈J

Ii
(α1gi(xc)+α2)2

 .

(E.6)

It may be interesting to note that ∇20JML(α, I) heavily resembles the structure of the Fisher
matrix depicted in equation (4.12), which is natural from the very definition of the Fisher Infor-
mation Matrix and the Maximum Likelihood estimator.

On the other hand, the elements of the latter matrix ∇11JML(α, I), take the following forms:

∂2

∂α1∂Ii
JML(α, I) =

−gi(xc)

α1gi(xc) + α2

, (E.7)

∂2

∂α2∂Ii
JML(α, I) =

−1

α1gi(xc) + α2

, (E.8)

where i ∈ J . Therefore, applying the ∇11 operator on the ML cost function results in

∇11JML(α, I) =


∂2

∂α1∂Ii1
JML(α, I) · · · ∂2

∂α1∂Ii|J |
JML(α, I)

∂2

∂α2∂Ii1
JML(α, I) · · · ∂2

∂α2∂Ii|J |
JML(α, I)



=


−gi1 (xc)

α1gi1 (xc)+α2
· · ·

−gi|J | (xc)

α1gi|J | (xc)+α2

−1
α1gi1 (xc)+α2

· · · −1
α1gi|J | (xc)+α2

 .

(E.9)

With both these matrices, the first-order derivative of τML(I) is directly obtained from equation
(3.11) as

τ ′ML(I) = −
[
∇20JML(τML(I), I)

]−1 [∇11JML(τML(I), I)
]
. (E.10)
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In a similar fashion, the estimator’s second-order derivative can be determined by means of
evaluating equations (3.14), (3.15) and (3.13). In order to do so, it suffices to calculate the appli-
cation of third-order operators ∇12, ∇21 and ∇30 on JML(α, I) and then evaluating the resulting
expressions on α = τML(I).

For that matter, let i, h ∈ J be two indices, not necessarily distinct. Then:

[
∇12JML(α, I)

]
(1,h,i)

=
∂

∂Ih

(
∂2

∂α1∂Ii
JML(α, I)

)
=

∂

∂Ih

(
−gi(xc)

α1gi(xc) + α2

)
= 0,

(E.11)

[
∇12JML(α, I)

]
(2,h,i)

=
∂

∂Ih

(
∂2

∂α2∂Ii
JML(α, I)

)
=

∂

∂Ih

(
−1

α1gi(xc) + α2

)
= 0.

(E.12)

Therefore,

∇12JML(α, I) = 0, (E.13)

remarking once again the abuse of notation, where 0 denotes a null array.

On the other hand, the i-th "slice" of ∇21JML(α, I) is readily calculated as

[
∇21JML(α, I)

]
(·,·,i) =


∂
∂Ii

(
∂2

∂α2
1
JML(α, I)

)
∂
∂Ii

(
∂2

∂α1∂α2
JML(α, I)

)
∂
∂Ii

(
∂2

∂α2∂α1
JML(α, I)

)
∂
∂Ii

(
∂2

∂α2
2
JML(α, I)

)


=


∂
∂Ii

(∑
j∈J

Iig
2
i (xc)

(α1gi(xc)+α2)2

)
∂
∂Ii

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂
∂Ii

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂
∂Ii

(∑
j∈J

Ii
(α1gi(xc)+α2)2

)


=


g2i (xc)

(α1gi(xc)+α2)2
gi(xc)

(α1gi(xc)+α2)2

gi(xc)
(α1gi(xc)+α2)2

1
(α1gi(xc)+α2)2

 .

(E.14)
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Lastly, for ∇30JML(α, I) it follows that:

[
∇30JML(α, I)

]
(1,·,·) =


∂

∂α1

(
∂2

∂α2
1
JML(α, I)

)
∂

∂α1

(
∂2

∂α1∂α2
JML(α, I)

)
∂

∂α1

(
∂2

∂α2∂α1
JML(α, I)

)
∂

∂α1

(
∂2

∂α2
2
JML(α, I)

)


=


∂

∂α1

(∑
j∈J

Iig
2
i (xc)

(α1gi(xc)+α2)2

)
∂

∂α1

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂

∂α1

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂

∂α1

(∑
j∈J

Ii
(α1gi(xc)+α2)2

)


=


∑

i∈J
−2Iig

3
i (xc)

(α1gi(xc)+α2)3

∑
i∈J

−2Iig
2
i (xc)

(α1gi(xc)+α2)3∑
i∈J

−2Iig
2
i (xc)

(α1gi(xc)+α2)3

∑
i∈J

−2Iigi(xc)
(α1gi(xc)+α2)3

 ,

(E.15)

[
∇30JML(α, I)

]
(2,·,·) =


∂

∂α2

(
∂2

∂α2
1
JML(α, I)

)
∂

∂α2

(
∂2

∂α1∂α2
JML(α, I)

)
∂

∂α2

(
∂2

∂α2∂α1
JML(α, I)

)
∂

∂α2

(
∂2

∂α2
2
JML(α, I)

)


=


∂

∂α2

(∑
j∈J

Iig
2
i (xc)

(α1gi(xc)+α2)2

)
∂

∂α2

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂

∂α2

(∑
j∈J

Iigi(xc)
(α1gi(xc)+α2)2

)
∂

∂α2

(∑
j∈J

Ii
(α1gi(xc)+α2)2

)


=


∑

i∈J
−2Iig

2
i (xc)

(α1gi(xc)+α2)3

∑
i∈J

−2Iigi(xc)
(α1gi(xc)+α2)3∑

i∈J
−2Iigi(xc)

(α1gi(xc)+α2)3

∑
i∈J

−2Ii
(α1gi(xc)+α2)3

 .

(E.16)

Having these three tensors at hand and considering the matrices previously calculated (i.e.,
∇20JML(τML(I), I) and τ ′ML(I)), equations (3.14), (3.15) and (3.13) can be directly applied to,
finally, get the second-order derivative τ ′′ML(I). In other words:

P i,h
ML(I) =

[
[τ ′ML(I)]

⊺
(·,i)
[
∇30JML(τML(I), I)

]
(j,·,·) [τ

′
ML(I)](·,h) +

[
∇21JML(τML(I), I)

]
(j,·,h) [τ

′
ML(I)](·,i)

]2
j=1

,

(E.17)
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Qi,h
ML(I) =

[[
∇21JML(τML(I), I)

]
(j,·,i) [τ

′
ML(I)](·,h) +

[
∇12JML(τML(I), I)

]
(j,i,h)

]2
j=1

=
[[
∇21JML(τML(I), I)

]
(j,·,i) [τ

′
ML(I)](·,h)

]2
j=1

,
(E.18)

∂2

∂Ii∂Ih
τML(I) = −

[
∇20JML(τML(I), I)

]−1
[
P i,h
ML(I) +Qi,h

ML(I)
]
. (E.19)

The expressions derived so far represent the cornerstone from which the performance bounds
for the ML estimator are formulated and straightforward implemented, concluding the proof.
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