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Abstract: We study some inverse problems involving elasticity models by assuming the knowledge of mea-
surements of a function of the displaced field. In the first case, we have a linear model of elasticity with
a semi-linear type forcing term in the solution. Under the hypothesis the fluid is incompressible, we recover
the displaced field and the second Lamé parameter from power density measurements in two dimensions.
A stability estimate is shown to hold for small displacement fields, under some natural hypotheses on the
direction of the displacement, with the background pressure fixed. On the other hand, we prove in dimen-
sions two and three a stability result for the second Lamé parameter when the displacement field follows the
(nonlinear) Saint-Venant model when we add the knowledge of displaced field solution measurements. The
Saint-Venant model is the most basic model of a hyperelastic material. The use of over-determined elliptic
systems is new in the analysis of linearization of nonlinear inverse elasticity problems.

Keywords: Stability analysis, shear modulus reconstruction, magnetic resonance elastography, biological
tissues, optimal control
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1 Introduction
We consider models of isotropic elastic wave equations in a bounded domain Ω. The stress the material is
undergoing is described by the Lamé parameters λ, μ and ρ. We study the following problem: is it possible
to determine the Lamé parameters λ, μ and ρ from the knowledge of Neumann data of the solution on the
boundary? We are interested in the global recovery problem of the displacement of the parameters.

Our main motivation is twofold. In the case of external forcing terms, the current models for linear elas-
ticity are not equipped to cope with any type of power nonlinearity. Moreover, the structure of hyperelastic
materials are not accurately described by linear elastic models. A hyperelastic model is one for an ideally
elastic material in which the stress-strain relationship is derived from the strain energy density function.
This type of model is often known as Green’s model which was made rigorous by Ogden [28], in the case of
constant coefficients. Hyperelastic models accurately describe the stress-strain behavior of materials such as
rubber [26].Unfilled vulcanized elastomers almost always conform to thehyperelastic ideal. Filled elastomers
and biological tissues are alsomodelled via the hyperelastic idealization [13]. In the linear elasticity case, for
reconstruction of the Lamé coefficients concerning biological tissues, one can see [2] for example. Our focus
is on some nonlinear mathematical models, and the reduction of the amount of required data to recover the
coefficients uniquely. Of the three parameters required to recover the material structure, it is often the most
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natural to recover the parameter μ which encodes more about possible disease in patients than the other
parameters. Several diseases involve changes in the mechanical properties of tissue and normal function of
tissue, for example in skeletal muscle, heart, lungs and gut [15, 17, 24].

We will consider nonlinear partial differential equations coming from elasticity coupled with the equa-
tion of themeasurement in the interior of a domain, andwewill equip these systemswith appropriate bound-
ary conditions. Linearization of the differential operator seen as acting on μ, λ and u creates a linear (sys-
tem of) PDE(s) in the variables δμ, δλ and δu. This creates some confusion in the nomenclature since the
unknowns now are δμ, δλ and δu, where finding δμ, δλ solves the well-known inverse problem of recovery
of elastic parameters, and finding δu solves the direct problem. Of course, we assume the point of lineariza-
tion as given, and it provides an estimate of the true values. The linearized problem can then be solved by
using the theory of over-determined elliptic systems, a technique which has been used to successfully ana-
lyze linear models of elasticity after linearization in the sense described above. This comes at the caveat of
having to use multiple sets of boundary excitations. The first model we consider consists of a linear elasticity
operator plus a semi-linear forcing term in the solution u. From power density measurements, we are able to
prove a stability estimate for the linearized problem bounding both the displacement δu and the displace-
ment parameter δμ in terms of the change in power density measurements. Even in the model case of linear
elasticity without the addition of a forcing term, this has not been shown before in the literature.

For each of the corresponding elasticity models, the closest works in two and three dimensions are for
the anisotropic conductivity problem [9] and for full solution measurements in [6, 10, 34]. However, this
list is not exhaustive as there are numerous results on recovering the parameters μ and sometimes λ from
knowledge of the solution u in a domain for the linear problem [20, 21, 27, 30, 32]. As such, the significant
contribution of this article is the extension to nonlinear mathematical models involving elasticity.

For the latter part of the article, in Section 8, we consider the Saint-Venant model of hyperelasticity
with solution measurements. The Saint-Venant model provides a nonlinear PDE with appropriate boundary
conditions written as

∇(λ∇ ⋅ u) + 2∇ ⋅ μ(∇Su + cτ∇u⊺∇u) + ∇(λ|∇u|2) + ω2u = 0 in Ω,
u = g on ∂Ω,

(1.1)

where cτ is a constant in x. Regularity and existence and uniqueness results are discussed in the next section.
This model (in specific the PDE) contains the Lamé coefficients (μ, λ), and they induce the solution u when
equipped with appropriate boundary conditions g on a domain. When the curl operator is applied to the
model, the λ terms disappear. Because the (nonlinear) Saint-Venant model depends on the parameter λ and
this in practice is large, we also prove convergence of the linearized Saint-Venant model in two and three
dimensions using a differential operator (the curl) which removes the parameter λ. The size of the parameter
λ adversely affects the size of the class of solutions which can be considered in the linearized Saint-Venant
model, unless we apply the curl. Furthermore, if we linearize equation (1.1), we will have the extra terms
containing λ complicating the symbol computations.

The outline of this article is as follows. We remind the reader of some technical notation in Section 2. We
present the main theorems in Section 3, which is followed by a subsection on their relationship to inverse
problems. In Section 4, we present necessary preliminaries on over-determined systems. In Section 5, we use
these over-determined systems to recover δμ and δu from power density measurements in the case of the
linear elasticity without a forcing term. In Section 6, we add forcing terms f (u) to the model, which are semi-
linear in the solution variable u and also recover δμ and δu from power density measurements. We provide
uniqueness in the recovery of anunknown μwhich is a perturbation of the background for the linear elasticity
model with a nonlinear forcing term in the process of proving iterative algorithms and convergence results in
Sections 6.4 and 6.5 for the two cases mentioned above. This solves the inverse problem.

The latter parts of the paper switch to elasticity and hyperelasticity models with solution measurements.
In Section 7, we prove stability for δμ from measurement of δu, which represents a simplification of the
symbol computations in the literature. We give a brief derivation of the Saint-Venant model for hyperelastic
materials in Section 8 and then use Section 7 along with some difficult symbol computations to expand the
stability results for the corresponding δμ in this case. We also provide local uniqueness results for the lin-
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earized problem of the Saint-Venant model in Section 8.2. Main tools in this article come from the theory of
over-determined elliptic boundary-value problems. The displacement terms δu are treated explicitly both in
the theorems are not just considered perturbations.

2 Notation
In this paper, we use the Einstein summation convention. For two vectors a and b, the exterior product is
denoted by a ⊗ b = ab⊺, i.e., a ⊗ b is amatrixwith entries (a ⊗ b)ij = aibj. More generally, the exterior product
between a tensor A of order m and B a tensor of order n is a new tensor A ⊗ B of order m + n with entries
(A ⊗ B)i1 ...im j1 ...jn = Ai1 ...imBj1 ...jn . For two matrices A and B of the same size, the inner product is denoted by
A : B = aijbji, and we write |A|2 = A : A. Let Ω ⊂ ℝd be a simply connected bounded domain in ℝd which
is C5. For vector-valued functions

f (x) = (f1(x), f2(x), . . . , fd(x)) : Ω → ℝd ,

the Hilbert space Hm(Ω)d, m ∈ ℕ, is defined as the completion of the space C∞c (Ω)d with respect to the norm
‖f ‖2m = ‖f ‖2m,Ω =

m
∑|i|=1∫Ω |∇i f (x)|2 + |f (x)|2 dx,

where we write ∇i = ∂i1 . . . ∂id for i = (i1, . . . , id) for the higher-order derivative. Let E be the symmetric
gradient acting on u ∈ H1

0(Ω)d as
Eu = 12 (∇u + (∇u)

⊺) = ∇Su.
In general, we assume the Lamé coefficients are C3(Ω), where Ω denotes the closure of Ω, and that they

satisfy the following conditions:

λ(x) ≥ λmin = min{λ(x) : x ∈ Ω} > 0, (2.1)

μ(x) ≥ μmin = min{μ(x) : x ∈ Ω} > 0,

We consider the density ρ(x) to be fixed for this article, and as such, we remove it from the symbol computa-
tions. We will also need the following lemma.

Lemma 1 (Korn’s inequality). Let Ω be as above. Let u ∈ H1
0(Ω)d. Then

∫
Ω

|∇u|2 dx ≤ 2∫
Ω

|∇Su|2 dx;

cf. for instance [3].

We now review the existence and uniqueness results for the elasticity system. We consider the following
boundary-value problem for the elasticity equations:

{
∇(λ(x)∇ ⋅ uλ) + ω2uλ(x) + 2∇ ⋅ μ(x)∇Suλ(x) = 0 in Ω,

uλ(x) = g(x) on ∂Ω,
(2.2)

with μ(x), λ(x) ∈ C1(Ω) the Lamé coefficients.
The solution uλ(x) is such that uλ(x) : Ω → ℝd. It is known that the solution uλ(x) exists and is unique.

In particular, ∇Suλ(x) ∈ L2(Ω)d if g(x) ∈ H
1
2 (∂Ω), λ, μ ∈ L∞(Ω) satisfy (2.1) and ∇Suλ(x) ∈ H4(Ω)d under the

additional assumptions that μ(x), λ(x) ∈ C4(Ω), g ∈ H 9
2 (∂Ω)d. We need the latter regularity assumption for

later stability estimates.
The Poisson ratio σ of the anomaly is given in terms of the Lamé coefficients by

σ = λ/μ
1 + 2λ/μ .
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It is known in soft tissues σ ≈ 1
2 or equivalently λ ≫ μ. This makes it difficult to reconstruct both parameters

μ and λ simultaneously [16, 23]. Therefore, we first construct asymptotic solutions to problem (2.2) when
λmin →∞. We recall that, in the limit, the elasticity equations (2.2) reduce to the following Stokes system:

{{{{{{{{
{{{{{{{{
{

ω2u(x) + 2∇ ⋅ μ(x)∇Su(x) + ∇p(x) = 0 in Ω,
∇ ⋅ u(x) = 0 in Ω,
u(x) = g(x) on ∂Ω,

∫
Ω

p(x) dx = 0.

(2.3)

The relation between the pressure p in (2.3) and uλ in (2.2) is that p is the limit of λ∇ ⋅ uλ as λmin →∞. This
is a result of [6]. We also consider the associated nonlinear problem

{{{{{{{{
{{{{{{{{
{

ω2u(x) + 2∇ ⋅ μ(x)∇Su(x) + ∇p(x) + f (u) = 0 in Ω,
∇ ⋅ u(x) = 0 in Ω,
u(x) = g(x) on ∂Ω,

∫
Ω

p(x) dx = 0,

(2.4)

with f ∈ C3(H3(Ω)d , L2(Ω)d). This corresponds to a large λ limit of (2.3)with anonlinear forcing termdepend-
ing on u. The second half of the paper focuses on the nonlinear Saint-Venant model in two and three dimen-
sions

∇(λ∇ ⋅ u) + 2∇ ⋅ μ(∇Su + cτ∇u⊺∇u) + ∇(λ|∇u|2) + ω2u = 0 in Ω,
u = g on ∂Ω,

(1.1)

where cτ is a constant in x coming from the fact that we cannot obtain a time-independent equation by apply-
ing a periodic force in time. As mentioned in the introduction, this model is arguably the simplest nonlinear
model for hyperelastic materials. It is a result of [19] for the same regularity coefficients and ‖g‖H 9

2 (Ω) < ε
that the corresponding time-dependent equations are well posed on bounded domains for short times T
proportional to |log(ε−1)| (cf. also [33, Appendix] for a more modern formulation). Since these are the time
stationary versions of those found in [19], we therefore assume when analyzing the nonlinear problem that
this additional assumption on g holds.

3 Statement of the main theorems
Let f ∈ C3(H3(ℝd)d , L2(ℝd)d)be a functionwhose symbol contains atmost one power of ξ . Themodel studied
in the first half of this article is

{{{{{{
{{{{{{
{

2∇ ⋅ μ∇Suj + ω2uj − f (uj) = −∇pj in Ω,
μ
2 |∇

Suj|2 − f (uj) ⋅ uj = Hj in Ω,
∇ ⋅ uj = 0 in Ω,
uj = gj on ∂Ω,

(3.1)

where j = 1, . . . , J. The various subscripts j correspond to different measurement functionals Hj with a fixed
μ and p, with different boundary excitations gj. Themotivation for considering the term f (uj) is to have a first
intuition onmore general nonlinear elasticitymodels in dimension d = 2. In [33], a simplified nonlinear elas-
ticitymodel is studied in dimension d = 3with scalar-valued functions. If f = 0, this corresponds to (2.3), and
if f ̸= 0, this corresponds to (2.4), respectively, with power density measurements, and as such, we assume
that the functions uj, μj and gj have the regularity properties assumed in the previous section for all j. We
consider the background pressure∇p to be fixed. The stability estimates given here thenwould allow us to go
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back and solve for p as soon as u and μ are known since, by applying divergence, we can determine ∆p and
then obtain an elliptic equation in p. We do not perform this calculation here, but it is the motivation behind
our choice of model in the earlier sections.

For each j, we consider a problem with a different μ which we denote as μ1 and μ2. As such, we let
δuj = u1j − u2j and δμ = μ1 − μ2. We analyze the following linearized version of linear or nonlinear elasticity:

{{{{{{{
{{{{{{{
{

2∇ ⋅ δμ∇Suj + 2∇ ⋅ μ∇Sδuj + ω2δuj + Df (uj)δuj = 0 in Ω,
δμ
2 |∇

Suj|2 + μ∇Suj : ∇Sδuj + f (uj) ⋅ uj : ∇Sδuj = δHj in Ω,
∇ ⋅ δuj = 0 in Ω,
δuj = δgj on ∂Ω.

(3.2)

Naturally, for linearization of linear elasticity, Df (uj) ≡ 0. We provide a general criterion on system (3.2) for
arbitrary J to be elliptic; however, we focus on the case J = 2.

Theorem 1. Assume we have that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇Su1j
|∇Su1j|

:
∇Su2j
|∇Su2j|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
̸= 1, j = 1, 2.

Let d = 2. Then there exists constants C1 and C2 depending on ‖f ‖C3 , ‖μ2‖C2(Ω) (C2 may also depend on ω) such
that

‖δμ‖H3(Ω) + 2
∑
j=1‖δuj‖H4(Ω)2 ≤ C1 2

∑
j=1(‖δHj‖H3(Ω) + ‖δgj‖H 5

2 (Ω)2 ) + C2(‖δμ‖L2(Ω) + 2
∑
j=1‖δuj‖L2(Ω)2) (3.3)

Corollary 1. For all ω sufficiently large, the linearized system is injective, that is, we can find a C1 such that
C2 = 0 in Theorem 1, provided δgj is zero.

Using the stability estimates, we develop an iteration scheme which is convergent. The result of this scheme
which is interesting in its own right is the following existence and uniqueness theorem.

Theorem 2. The solution w = (δμ, {δuj}2j=1) to (3.2) exists as a limit of an explicit sequence of Duhamel iterates
and is unique in H3(Ω) × (H4(Ω)2)2 for all ω sufficiently large and δgj = 0.

The second half of the paper focuses on the model

∇(λ ⋅ ∇uj) + 2∇ ⋅ μ(∇Suj + acτ∇u⊺j ∇uj) + a∇(λ|∇uj|2) + ω2uj = 0 in Ω,

δuj = Hj in Ω,
uj = gj on ∂Ω,

(3.4)

where j = 1, . . . , J and cτ is a constant in x coming from the fact that we cannot obtain a time-independent
equation by applying a periodic force in time. The model is derived in the text. The number a = 0, 1 corre-
sponding to the linear elasticity problem or the Saint-Venant model (first-order nonlinear elasticity model),
respectively.

We assume the background (μ1, λ1, u1) is known and solves (1.1) so that, for the Saint-Venant model
operator with the curl applied to it, we have, say for shorthand, P(μ1, u1) = 0. Then we consider δu which is
a solution to the linearized nonlinear model. The displaced field, which we measure as u2 = δu + u1 for the
same boundary conditions corresponds to a μ2 = μ1 + δμ which is unknown and λ1 which is fixed and large.
The linearized operator corresponding to P(μ1, u1), say L(μ1, u1), acts on (δμ, δu) and can be split into two
parts L1 and L2 acting on δμ and δu, respectively (given explicitly in (3.6)). By Fréchet differentiability, we
then have

P(μ1, u1) = P(μ2, u2) + L(μ1, u1)(δμ, δu) + o((δμ), (δu)). (3.5)

Then, assuming μ1, u1 and μ2, u2 are actually solutions to the original equation, we also have

L1(μ1, u1)δμ + L2(μ1, u1)δu ≈ 0.



526 | H. Carrillo and A. Waters, Lamé parameter recovery in nonlinear elasticity

The operator L1 is invertible using the theory of over-determined elliptic systems, provided we repeat this
process to add extra boundary conditions and corresponding measurements. Then we use elliptic regularity
to provide a stability estimate in terms of a finite collection of δu for δμ. This stability estimate in Theo-
rem 3 holds up to the order terms (3.5). When the nonlinear terms in the Saint-Venant model are set to zero
(cτ = 0, λ|∇u|2 = 0), we cover a case in the linearization of linear elasticitywhich is not covered in [18], where
the λ parameter must not be too large, and their algorithm has a possibly infinite-dimensional kernel.

In the case of power density measurements, the perturbation of the local energy density is known, and
we consider the background pressure fixed. A similar procedure is used to find a stability result for instead
(δu, δμ) in terms of power densitymeasurements; see Theorem1. In the case of power densitymeasurements,
we also give a fixed-point algorithm including the lower-order terms from the linearization which allows for
unique and stable reconstruction of δμ (and hence μ2), a more powerful result in this case where the non-
linearity does not affect the symbol computation. Furthermore, the stability estimates in Theorem 1 have no
kernel (they are injective) for all ω sufficiently large on the entirety of the domain with two measurements.
This is the first time global injectivity with a single fixed ω has been shown under any conditions. The only
known theorems similar, involving a similar contraction argument principle for the linearized linear elastic-
ity model, is in [18] (the terms f (u) = 0 in their model, and they use solution measurements). Power density
measurements are different as they are a measure of local energy density.

It is important to emphasize that we linearize the genuinely nonlinear Saint-Venant model and prove sta-
bility of perturbations of the Lamé parameter in terms of a difference of the solutions δu. The Saint-Venant
model is perhaps the most simple of the hyperelastic models. For variable coefficients, it has not been dis-
cussed in the inverse problems literature. It is very difficult due to the symbol computations involved. We use
solutionmeasurements in the linearized Saint-Venant model since power density measurements do not work
well when using the annihilation (curl) operator.

In the case a = 0, we proved a more relaxed criterion than in [6] for the properties of over-determined
elliptic systems to hold; however, this is not the main theorem. The main theorem is more difficult because
the derivatives on u when a = 1 change the properties of the principal symbol when linearized. Briefly sup-
pressing the subscript j, after applying the curl operator to remove the λ terms, the linearized system from
(3.4) with internal measurements is

{{{
{{{
{

DL̃(μj , uj)[δμj , δuj] + DÑ(μj , uj)[δμj , δuj] + ω2∇ × δuj = 0 in Ω,
δuj = δHj in Ω,
δuj = δgj on ∂Ω.

(3.6)

where DL̃ and DÑ are the Fréchet derivatives of L̃ and Ñ, respectively, given by

DL̃(μ, u)[δμ, δu] = 2∇ × ∇ ⋅ δμ∇Su + 2∇ × ∇ ⋅ μ∇Sδu,
DÑ(μ, u)[δμ, δu] = a(2cτ∇ × ∇ ⋅ (δμ∇u⊺∇u) + 2∇ × ∇ ⋅ (μ∇δu⊺∇u) + 2∇ × ∇ ⋅ (μ∇u⊺∇δu)).

For the theorem below, the case a = 0was essentially established in [6], and local injectivity in [14] in dimen-
sion 3; the small error in dimension 2 in these articles we correct. The case a = 1 is not considered anywhere
in the literature for variable coefficients.

Theorem 3. Let a = 1, d = 2, 3. Assume, for j = 1, 2,

|((∇Su1j + cτ∇u⊺1j∇u1j)ξ ) × ξ | + |((∇Su2j + cτ∇u⊺2j∇u2j)ξ ) × ξ | ̸= 0 for all ξ ̸= 0.

Let C1, C2 depend on ‖μ2‖C4(Ω), and C2 also depends on ω2. Then we have the following stability estimate:

‖δμ‖H5(Ω) ≤ C1( 2
∑
j=1‖δuj‖H4(Ω)d + ‖δgj‖H 5

2 (∂Ω)d) + C2(‖δμ‖L2(Ω) + 2
∑
j=1‖δuj‖L2(Ω)d).

Corollary 2. The constant C2 can be absorbed into the constant C1 if

(∇Su1j + cτ∇u⊺1j∇u1j) ̸= α(∇Su2j + cτ∇u⊺2j∇u2j)
for j = 1, 2 and all α ∈ ℝ.
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3.1 Short comparison with previous literature on nonlinear inverse problems

While there aremany knownmathematical and engineering articles on linear elasticity which arementioned
in the introduction, not so much is written about the problem of nonlinear elasticity. Some of our moti-
vation comes from the results on inverse problems in mathematical physics. The problem of local metric
recovery for general Lorentzian manifolds (M, g) in 3 + 1 dimensions and the semi-linear wave equation
∂2t u − ∆gu = |u|2 + hwas analyzed in [22]. Here h is a highly oscillatory source term, with small H 9

2 (M) norm,
and ∆g is the Laplace–Beltrami operator. In the case of general time-independent metrics g, locally, the
authors can recover metric perturbations uniquely from an infinite number of oscillatory source terms h in
the manifold, and solution measurements everywhere in a local neighborhood of the manifold. In [33], this
amount of data was reduced to codimension 1 source terms to the vector-valued Dirichlet-to-Neumann map
and a coupled system of simplemetrics. The coupled system ofmetrics in [33] is a toymodel for the nonlinear
elasticity problem. However, the issue with these articles is that the number of excitation states/source terms
required to recover the solutions is infinite. Furthermore, they are based on the boundary control method,
a purely theoretical technique, and the X-ray transform, respectively. The aim of the main theorems here is
the reduction of the number of source terms (two only!) for models of nonlinear elasticity with non-constant
coefficients. An open question is if it is possible to reduce the required solution measurements further to
just boundary data. The arguments on over-determined elliptic systems should also be applicable to other
nonlinear systems.

4 Preliminaries on over-determined elliptic
boundary-value problems

In this section, we present some basic properties about over-determined elliptic boundary-value problems
which play a key role in our stability estimates in the next sections. The presentation follows closely the ones
in [29, 34]. We present it here for the convenience of the reader.

We first recall the definition of ellipticity in the sense of Douglis–Nirenberg. Consider the (possibly)
redundant system of linear partial differential equations

L(x, ∂∂x)y = S, B(x, ∂∂x)y = ϕ (4.1)

for m unknown functions y = (y1, . . . , ym) comprising in total of M equations. Here L(x, ∂
∂x ) is a matrix dif-

ferential operator of dimensionM × mwith entries Lij(x, ∂
∂x ). For each 1 ≤ i ≤ M, 1 ≤ j ≤ m and for each point

x, the entry Lij(x, ∂
∂x ) is a polynomial in ∂

∂xi , i = 1, . . . , d. If the system is redundant, then there are possibly
more equations than unknowns, M ≥ m. The matrix B(x, ∂

∂x ) has entries Bij(x,
∂
∂x ) for 1 ≤ k ≤ Q, 1 ≤ j ≤ m

consisting of Q equations at the boundary. The operators are also polynomial in the partials of x. Naturally,
the vector S is a vector of length M, and ϕ is a vector of length Q.

Definition 1 (cf. [1, 12]). Let integers si , tj ∈ ℤ be given for each row 1 ≤ i ≤ M and column 1 ≤ j ≤ m with
the following property: for si + tj ≥ 0, the order of Lij does not exceed si + tj. For si + tj < 0, one has Lij = 0.
Furthermore, the numbers are normalized so that, for all i, one has si ≤ 0. The numbers si , tj are known as
Douglis–Nirenberg numbers.

The principal part ofL for this choice of numbers si , tj is defined as thematrix operatorL0 whose entries
are composed of those terms in Lij which are exactly of order si + tj.

The principal part B0 of B is composed of the entries which are composed of those terms in Bkj which
are exactly of order σk + tj. The numbers σk, 1 ≤ k ≤ Q, are computed as σk = max1≤j≤m(bkj − tj) with bkj
denoting theorder ofBkj. Real directionswith ξ ̸= 0and rankL0(x, iξ ) < m are called characteristic directions
of L at x. The operator L is said to be (possibly) over-determined elliptic in Ω if, for all x ∈ Ω and for all real
nonzero vectors ξ , one has rankL0(x, iξ ) = m.

We next recall the following Lopatinskii boundary condition.
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Definition 2. Fix x ∈ ∂Ω, and let ν be the inward unit normal vector at x. Let ζ be any nonzero tangential
vector to Ω at x. We consider the line {x + zν, z > 0} in the upper half plane and the following system of
ODEs:

L0(x, iζ + ν ddz)
̃y(z) = 0, z > 0, (4.2)

B0(x, iζ + ν ddz)
̃y(z) = 0, z = 0. (4.3)

We define the vector space V of all solutions to system (4.2)–(4.3) which are such that ̃y(z) → 0 as z →∞.
If V = {0}, then we say that the Lopatinskii condition is fulfilled for the pair (L,B) at x.

Now letA be the operator defined byA = (L,B). Then equations (4.1) read asAy = (S, ϕ).
Let A act on the space D(p, l) = W l+t1p (Ω) × ⋅ ⋅ ⋅ ×W l+tmp (Ω) with l ≥ 0, p > 1. Here Wα

p denotes the stan-
dard Sobolev space with order α partial derivatives in the Lp space. With some regularity assumptions on the
coefficients of L andB,A is bounded with range in the space

R(p, l) = W l−s1
p (Ω) × ⋅ ⋅ ⋅ ×W l−sm

p (Ω) ×W l−σ1− 1pp × ⋅ ⋅ ⋅ ×W l−σq− 1pp (∂Ω).

We have the following result; see [34, Theorem 1].

Theorem 4. Let the integers l ≥ 0, p > 1 be given. Let (S, ϕ) ∈ R(p, l). Let the Douglis–Nirenberg numbers si
and tj be given for L, and let σk be as in Definition 1. Let Ω be a bounded domain with boundary in Cl+max tj .
Also assume that p(l − si) > d and p(l − σk) > d for all i and k. Let the coefficients Lij be in W l−sip (Ω), and let
the coefficients of Bkj be in W l−σk− 1p . The following statements are equivalent.
(1) L is over-determined elliptic, and the Lopatinskii condition is fulfilled for (L,B) on ∂Ω.
(2) There exists a left regularizerR for the operatorA = L ×B such thatRA = I − TwithT compact from R(p, l)

to D(p, l).
(3) The following a priori estimate holds:

m
∑
j=1‖yj‖W l+tjp (Ω) ≤ C1( M∑

i=1‖Si‖W l−sip (Ω) + Q
∑
k=1‖ϕk‖W l−σj−

1
pp (∂Ω)) + C2 ∑

tj>0‖yj‖Lp(Ω),
where yj is the j-th component of the solution y.

5 Recovery of δμ and δu in dimension two from power density
measurements for the linear elasticity model

In dimension d = 2, notice that ξ ∈ ℝ2 can be written as

ξ = |ξ |(cos(θ)
sin(θ)
)

for some θ ∈ ]−π, π]. Moreover, the symmetric gradient of a incompressible vector-valued function u satisfies
∇Su = (∇Su)⊺, tr(∇Su) = 0. Then ∇Su can be written as

∇Su(x) = |∇
Su(x)|
√2
[
cos(α(x)) sin(α(x))
sin(α(x)) − cos(α(x))

]

for some α(x) ∈ ]−π, π].Wewill use these structures along the section.We also use the notation ̂F = F|F| , where
F is a vector or a matrix.

5.1 One measurement, lack of invertibility

We consider the case of dimension d = 2 only in this section. Consider the case J = 1, that is, only one mea-
surement. Let us define Fj = ∇Suj, and assume that |Fj| > 0 for all x ∈ Ω. From equation (3.1), we obtain
μ = 2Hj|Fj |2 , and then we can replace μ in equation (3.1) to obtain the following lemma.
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Lemma 2. We have

ω2|Fj|2

4Hj
uj +

1
2∇

Suj∇ ln(Hj) + (𝕀 − 2 ̂F j ⊗ ̂F j)∇ ⊗ ∇Suj = −
|Fj|2

4Hj
∇pj , (5.1)

where 𝕀 is a fourth-order tensor whose entries are defined as

𝕀ijkl =
1
2 (δikδjl + δjkδil).

Proof. Dropping the subscript j, we compute

∇(
H
|F|2
) =

1
|F|4
(|F|2∇H − H∇|F|2) with ∇|F|2 = ∂|F|

2

∂xk
̂ek = 2Fij

∂Fij
∂xk
̂ek = 2(∇ ⊗ F)F.

Therefore,
2∇ ⋅ μ∇Su = 2H

|F|2
(∆u + ∇(∇ ⋅ u)) + 4∇Su( ∇H

|F|2
−
2H(∇ ⊗ F)F
|F|4

),

and then
2H
|F|2
(∆u + ∇(∇ ⋅ u)) + 4

|F|2
∇Su∇H − 8H∇

Su
|F|4
(∇ ⊗ F)F + ω2u + ∇p = 0.

Finally, by definition of 𝕀 and ⊗, we see that

1
2 (∆u + ∇(∇ ⋅ u)) = 𝕀∇ ⊗ ∇

Su, 2 ̂F(∇ ⊗ F) ̂F = 2( ̂F ⊗ ̂F)∇ ⊗ ∇Su;

hence we obtain 1
2 (∆u + ∇(∇ ⋅ u)) − 2

̂F(∇ ⊗ F) ̂F = (𝕀 − 2 ̂F ⊗ ̂F)∇ ⊗ ∇Su,

and so we obtain (5.1). This computation of the principal symbol is fairly standard but is included for com-
pleteness since it does not appear in the literature for power density measurements.

Now, identifying the leading term of (5.1), we define the operator

Pj(x, D) = (𝕀 − 2 ̂F j ⊗ ̂F j)∇ ⊗ ∇S , (5.2)

and it has the symbol
qj(x, ξ ) = 2(F̂jξ ) ⊗ (F̂jξ ) −

1
2 (|ξ |

2Id + (ξ ⊗ ξ )). (5.3)

By the definition of the product operation between a fourth- and a third-order tensor and the symmetry of ̂F j,
we see that 2( ̂F j ⊗ ̂F j)∇ ⊗ ∇Su and 2( ̂F j∇) ⊗ ( ̂F j∇)u have the same principal symbol. The latter is easier to
calculate as −2( ̂F jξ ⊗ ̂F jξ ).

Lemma 3. In dimension d = 2, let

ξ = |ξ |(cos(θ)
sin(θ)
), ̂F j(x) =

1
√2
[
cos(α(x)) sin(α(x))
sin(α(x)) − cos(α(x))

]. (5.4)

Computing, we have that

det(qj(x, ξ )) = −
|ξ |4

2 sin2(2θ − α(x)).

The conclusion is the operator is not elliptic for only one set of measurements given by (3.1) with J = 1.

Proof. In this case, we have

qj(x, ξ ) = −
1
2([
|ξ |2 0
0 |ξ |2

] + [
ξ21 ξ1ξ2
ξ1ξ2 ξ22

]) + 2[A
2 AB

AB B2
],

where A = ( ̂F jξ )1, B = ( ̂F jξ )2. As a result of a short computation, we have that

det(qj(x, ξ )) =
|ξ |4

2 − |ξ |
2(A2 + B2) − (Aξ2 − Bξ1)2.
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In addition, notice that, using representation (5.4), we have

A = (F11ξ1 + F12ξ2) =
|ξ |
√2
(cos(α) cos(θ) + sin(α) sin(θ)) = |ξ |

√2
cos(α − θ),

B = (F21ξ1 + F22ξ2) =
|ξ |
√2
(sin(α) cos(θ) + cos(α) sin(θ)) = |ξ |

√2
sin(α − θ),

which results in
det(qj(x, ξ )) =

|ξ |4

2 sin2(2θ − α),

andwe conclude the proof of the estimate on the principal symbol. Notice that, for all ̂F j(x)with the structure
given in equation (5.4), the operator Pj(x, D) is not elliptic since, for all x ∈ Ω and for all ̂F j(x), it is possible
to find ξ = (cos( α(x)2 ), sin( α(x)2 )) ∈ 𝕊1 such that det(qj(x, ξ )) = 0, i.e., qj(x, ξ ) is not of full rank.
Remark 5.1. Observe that, in the differential operator (5.2), ̂F j depends on the solution uj, but only on the
“direction” of∇Suj. The possible directions are described by the angle α(x) in Lemma 3, andwe see that there
is no ellipticity for all possible α(x) and so for all possible direction of ∇Suj(x).

Remark 5.2. Although this result gives us an idea about the ellipticity for the equation, this is a result of the
ellipticity for the operator Pj(x, D). Similar problems have been studied in [7, 32], where a result says that an
analogue system (in scalar case) is in fact hyperbolic. It seems natural to linearize in nonlinear models, since
the problem is reduced to a linear one, and better mathematical results are known to hold. In the remaining
part of the article, we show results concerning the linearization of the models in study.

5.2 Linearization of the model problem for J measurements

We consider the background pressure to be fixed and let d be the dimensionwhich is arbitrary for this system.
The linearized problem for j ∈ {1, . . . , J} is given by

{{{{{{{
{{{{{{{
{

2∇ ⋅ δμ∇Suj + 2∇ ⋅ μ∇Sδuj + ω2δuj + Df (uj)δuj = 0 in Ω,
δμ
2 |∇

Suj|2 + μ∇Suj : ∇Sδuj + f (uj) ⋅ uj : ∇Sδuj = δHj in Ω,
∇ ⋅ δuj = 0 in Ω,
δuj = δgj on ∂Ω.

(3.2)

We make the definition w = (δμ, {δuj}Jj=1) which allows us to re-write the system as

{
Lw = S in Ω,
Bw = g on ∂Ω.

The principal symbol associated to (3.2) is, rearranging rows, the following:

PJ(x, ξ ) =

[[[[[[[[[[[[[[[[[[[[

[

|F1|2
2 iμ(F1ξ )⊺ 0 . . . 0

2iF1ξ −μ(|ξ |2Id + (ξ ⊗ ξ )) 0 . . . 0
0 iξ⊺ 0 . . . 0|F2|2
2 0 iμ(F2ξ )⊺ . . . 0

2iF2ξ 0 −μ(|ξ |2Id + (ξ ⊗ ξ )) . . . 0
0 0 iξ⊺ . . . 0
...

...
...

. . .
...|FJ |2

2 0 0 . . . iμ(FJξ )⊺
2iFJξ 0 0 . . . −μ(|ξ |2Id + (ξ ⊗ ξ ))
0 0 0 . . . iξ⊺

]]]]]]]]]]]]]]]]]]]]

]
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which is a matrix of size J(d + 2) × (Jd + 1). We can recognize the following family of submatrices:

ρj(x, ξ ) = [
|Fj |2
2 iμ(Fjξ )⊺

2iFjξ −μ(|ξ |2Id + (ξ ⊗ ξ ))
],

andwe have from the formulas for the determinant of blockmatrices (see, for example, [25, Section 6.2]) that

det(ρj(x, ξ )) = 2d−1μd|Fj|2 det(qj(x, ξ )), (5.5)

where qj is defined in (5.3). Note that Lemma 3 now says that the linearized operator L is not elliptic.
On the other hand, if we take determinant for the submatriceswith the rows containing the highest power

of ξ in Pj, we obtain, by applying properties for determinant of block matrices, the following:

(−1)(J−1)d μJd

2(J−1)d |Fj|2 det(|ξ |2Id + ξ ⊗ ξ )J−1 det(qj(x, ξ )).
Definition 3. We say that a family {Op(ρj(x, ξ ))}Jj=1 of operators is elliptic in x ∈ Ω if ρj(x, ξ ) being invertible
for all j = 1, . . . , J implies ξ = 0. Moreover, we say that {Op(ρj(x, ξ ))}Jj=1 is elliptic in Ω if the family is elliptic
for all x ∈ Ω.

This definition is inspired by the one in [8, Definition 2.1].

Lemma 4. If {ρj} forms an elliptic family and |Fj| > 0 for all x ∈ Ω and j = 1, . . . , J, then the full linearized
operator L(x, ξ ) is elliptic.

Proof. Let C0 and {Cj}Jj=1 be the submatrices of PJ defined by

C0 =

(((((((((((((

(

|F1|2

2iF1ξ
0
|F2|2

2iF2ξ
0
...
|FJ |2

2iFJξ
0

)))))))))))))

)

, Cj =

((((((((((((

(

0
...
0

2iμ(Fjξ )⊺
−μ(|ξ |2Id + ξ ⊗ ξ )

iξ⊺
0
...
0

))))))))))))

)

,
← row ((j − 1)(d + 2) + 1)

where C0 ∈MJ(d+2)×1(ℂ) and Cj ∈MJ(d+2)×d(ℂ) for j = 1, . . . , J.
Let ξ ̸= 0. Then we can see easily that −μ(|ξ |2 + ξ ⊗ ξ ) is invertible; hence Cj has complete column rank.

In addition, if j1 ̸= j2, then Cj1 and Cj2 do not have the same nonzero rows.
IfL(x, ξ ) is not full rank, then it is clear that there exist j0 and αj0 ∈ ℝd\{0} such that, in the nonzero rows

of Cj0 , we have

(
|Fj0 |2

2iμFj0 ξ
0
) = (

2iμ(Fj0 ξ )⊺
−μ(|ξ |2Id + ξ ⊗ ξ )

iξ⊺ )(

αj01
...
αj0d

),

and then we have that ξ⊺αj0 = 0 and
(
|Fj0 |2 2iμ(Fj0 ξ )⊺
2iμFj0 ξ −μ(|ξ |2Id + ξ ⊗ ξ )

)(

−1
αj01
...
αj0d

)=(

0
...
0
).

That is, ρj0 (x, ξ ) is not invertible.
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Proposition 1. For J = 2, d = 2, if α2(x) ̸= α1(x) + kπ for all k ∈ ℤ and for all x ∈ Ω, then the differential opera-
tor corresponding to system (3.2) is elliptic.

Proof. This proof was inspired by the one in [8] for the Calderon problem. We have to prove that

det(qj(x, ξ )) = 0 for all j 󳨐⇒ ξ = 0

since equation (5.5) establishes that ρj(x, ξ ) is invertible if and only if qj(x, ξ ) is invertible.
If det(qj(x, ξ )) = 0 for j = 1, 2, then we have

sin(2θ − α1(x)) = 0 and sin(2θ − α2(x)) = 0 (5.6)

or ξ = 0, but (5.6) implies α2 = α1 + kπ for some k ∈ ℤ, which is false by hypothesis. So we conclude that
ξ = 0. That is, (q1, q2) forms an elliptic family. We conclude the proof using Lemma 4.

5.3 Lopatinskii condition

We prove now the following in dimension d = 2.

Lemma 5. Consider w = (δμ, {δuj}j=1,...,J). Let x ∈ ∂Ω, ν the outward unit normal to Ω at x, and ζ ∈ 𝕊d−1 sat-
isfying ζ ⋅ ν = 0. Define w̃(z) = w(x − νz), δũj = δuj(x − νz) and δμ̃ = δμ(x − νz). Then the only solution of the
system of ODEs

{
PJ(x, iζ + ν∂z)w̃ = 0, z > 0,

Bw̃ = 0, z = 0,
such that w̃(z) → 0 as z →∞ is w̃ ≡ 0.

Proof. The system can be seen as the following:

{{{{{{
{{{{{{
{

|Fj|2δ ̃μ + 2μ(Fj[iζ + ν∂z])⊺δ ̃uj = 0, z > 0,
Fj[iζ + ν∂z]δ ̃μ −

μ
2 ((iζ + ν∂z)

2Id + (iζ + ν∂z) ⊗ (iζ + ν∂z))δ ̃uj = 0, z > 0,
i(iη + ν∂z)⊺δ ̃uj = 0, z > 0,

δ ̃uj = 0, z = 0,

for all j = 1, . . . , J.
We can eliminate δ ̃μ using the first equation,

δ ̃μ = − 2μ
|Fj|2
(Fj[iζ + ν∂z])⊺δ ̃uj . (5.7)

Replacing it in the second equation, after some calculations, we have

qj(x, ν)∂2z δ ̃uj + irj(x, ν, ζ )∂zδ ̃uj + sj(x, ζ )δ ̃uj = 0 (5.8)

for all j = 1, . . . , J, where qj is the same matrix of previous sections and rj, sj are real matrices given by

rj(x, ν, ζ ) = 2( ̂F jν ⊗ ̂F jζ + ̂F jζ ⊗ ̂F jν) −
1
2 (ν ⊗ ζ + ζ ⊗ ν), sj(x, ζ ) = −qj(x, ζ ).

We look at the imaginary part of (5.8), rj∂zδ ̃uj = 0, z > 0. After some calculations (see Lemma 6), we have
det(rj) ̸= 0, sowehave ∂zδ ̃uj = 0, and this implies δ ̃uj ≡ 0 since δ ̃u(0) = 0. Thenusing (5.7),weobtain δ ̃μ ≡ 0.
Therefore, we conclude w̃ ≡ 0.

Lemma 6. In dimension d = 2, we have det(rj(x, ν, ζ )) ̸= 0.

Proof. We have rj(x, ν, ζ ) = M + N, where

M = [ 2AC AD + BC
AD + BC 2BD

], N = −12[
2ν1ζ1 ν1ζ2 + ζ1ν2

ν1ζ2 + ζ1ν2 2ν2ζ2
]

and A = ( ̂Fν)1, B = ( ̂Fν)2, C = ( ̂Fζ )1, D = ( ̂Fζ )2.
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Since ν ⋅ ζ = 0,without loss of generality, we can take ζ1 = −ν2 and ζ2 = ν1, and using the properties of ̂F j,
we have

C = ( ̂F j)11ζ1 + ( ̂F j)12ζ2 = −( ̂F j)11ν2 + ( ̂F j)12ν1 = B,

D = ( ̂F j)21ζ1 + ( ̂F j)22ζ2 = −( ̂F j)21ν2 + ( ̂F j)22ν1 = −A.
Then

rj = [
4AB + ν1ν2 2(B2 − A2) − 1

2 (ν
2
1 − ν

2
2)

2(B2 − A2) − 1
2 (ν

2
1 − ν

2
2) −(4AB + ν1ν2)

],

and we can compute the determinant

− det(rj) = (4AB + ν1ν2)2 + (2(B2 − A2) −
1
2 (ν

2
1 − ν

2
2))

2
. (5.9)

Using the fact that ∇Suj are divergence free, we have

A = 1
√2

cos(αj − θ), B = 1
√2

sin(αj − θ),

where θ = arg(ν) so that ν = (cos(θ), sin(θ)). Then

−det(rj) =
5
4 + cos(2αj − 3θ) ̸= 0 for all x, ν, ζ.

Remark 5.3. It should be possible to show the theorem holds under weaker assumptions given the form of
the determinant (5.9).

6 Recovery of the parameters δμ and δu with the modified model
with generic forcing term f (u)

System (3.1) can be written as

{
FFTv = H in Ω,
Bv = g on ∂Ω,

where v = (μ, {uj}Jj=1) with
F(vj) = (

μ
2 |∇

Suj|2

2∇ ⋅ μ∇Suj + ω2uj
∇ ⋅ uj

), Hj = (
Hj
∇p
0
), Bvj = gj ,

FFT = F + Fadd with Faddvj = (
−f (uj) ⋅ uj
−f (uj)
0
).

The linearized problem for j ∈ {1, . . . , J} is then given by (3.2) with w = (δμ, {δuj}Jj=1) and can be re-
written as

{
LFTw = S in Ω,
Bw = g on ∂Ω,

where

Ljwj = F󸀠(v0j)wj = ( δμ
2 |∇

Su0j|2 + μ∇Su0j : ∇Sδu0j
2∇ ⋅ δμ∇Su0j + 2∇ ⋅ μ∇Sδu0j + ω2δu0j

∇ ⋅ δu0j
), Sj = (

δHj
0
0
),

Lw = {Ljwj}Jj=1, S = {Sj}
J
j=1 and LFT = L + Ladd with Lj,addvj = (

−(Df (uj)δuj) ⋅ uj − f (uj) ⋅ δuj
−Df(uj)δuj

0
).

It can be seen as the equationAFTw = (Sg).
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6.1 Stability estimates

In any dimension d with J measurements, we can see problem (3.2) in the framework of Section 4. The
Douglis–Nirenberg numbers are

si =
{
{
{

−1 if i = k󸀠 ⋅ (d + 2) + k󸀠󸀠, k󸀠 = 0, 1, . . . , J, k󸀠󸀠 = 0, 1,
0 otherwise,

tj =
{
{
{

1 if j = 1,
2 otherwise,

σk = −1, k = 1, . . . , Jd,

where i = 1, . . . , J(d + 2) and j = 1, . . . , Jd + 1. The operatorA = (L,B) is defined from

X =
Jd+1
∏
j=1 H l+tj (Ω) to Y =

J(d+2)
∏
i=1 H l−si (Ω) × Jd

∏
j=1 H l−σj− 12 (∂Ω),

where we choose l such that 2(l − si) > d, 2(l − σk) > d. In dimension d = 2, we can choose l = 2.
Moreover, if d = 2 and J = 2, then we have

X = H3(Ω) × (H4(Ω)2)2,

Y = (H3(Ω) × H2(Ω)2 × H3(Ω))2 × (H
5
2 (∂Ω)2)2.

6.2 Ellipticity and Lopatinskii condition

The principal symbol associated to (3.2) measurements is exactly PJ(x, ξ ) given in Section 5.2. That is, for
J = 2 measurements,

PJ(x, ξ ) =

[[[[[[[[[

[

|F1|2
μ iμ(F1ξ )⊺ 0

2iF1ξ −μ(|ξ |2 + (ξ ⊗ ξ )) 0
0 iξ⊺ 0|F2|2
2 0 iμ(F2ξ )⊺

2iF2ξ 0 −μ(|ξ |2 + (ξ ⊗ ξ ))
0 0 iξ⊺

]]]]]]]]]

]

,

which is a matrix of size J(d + 2) × (Jd + 1).
We finally prove the main theorem of this section, that is, Theorem 1, which we recall.

Theorem 1. Assume we have that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∇Su1j
|∇Su1j|

:
∇Su2j
|∇Su2j|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
̸= 1, j = 1, 2.

Let d = 2. Then there exists constants C1 and C2 depending on ‖f ‖C3 , ‖μ2‖C2(Ω) (C2 may also depend on ω) such
that

‖δμ‖H3(Ω) + 2
∑
j=1‖δuj‖H4(Ω)2 ≤ C1 2

∑
j=1(‖δHj‖H3(Ω) + ‖δgj‖H 5

2 (Ω)2 ) + C2(‖δμ‖L2(Ω) + 2
∑
j=1‖δuj‖L2(Ω)2) (3.3)

Proof of Theorem 1. Since (L,B) satisfies the Lopatinskii condition, by Theorem 4, we have the estimate

‖w‖X ≤ C‖(S, g)‖Y + C2‖w‖L2(Ω)d⋅J .
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We remark that, in dimension 2, we can choose l = 2. Let d = 2, J = 2. Then the operator LFT is elliptic, and
B covers LFT. Moreover, we have for w = (δμ, {δuj}2j=1) a solution to (3.2) the estimate

‖δμ‖H3(Ω) + J
∑
j=1‖δuj‖H4(Ω)2 ≤ C J

∑
j=1(‖Lec

FT,j(δμ, δuj)‖H2(Ω)2 + ‖Lpd
FT,j(δμ, δuj)‖H3(Ω)

+ ‖Ldiv
FT (δμ, δuj)‖H3(Ω) + ‖Bδuj‖H 5

2 (Ω)2)
+ C2(‖δμ‖L2(Ω)2 + 2

∑
j=1‖δuj‖L2(Ω)2), (6.1)

whereLec
FT,j ,L

pd
FT,j ,L

div
FT are the parts ofLFT coming from the elasticity equations, the power density measure-

ments and the divergence condition, respectively. In particular, we have that

L
ec
FT,j = −ω

2δuj + Df (uj)δuj , L
pd
FT,j = δHj , L

div
FT = 0.

We then remark that there exists a constant C depending only on ω such that

‖Lec
FT,j(δμ, δuj)‖H2(Ω)2 ≤ C‖δHj‖H3(Ω),

which completes the proof of inequality (3.3) and the theorem.

6.3 Injectivity

Lemma 7. Let J = 2. The following boundary problem is elliptic:

{{{
{{{
{

Lj,FT[δuj] = 0 in Ω,
∇ ⋅ δuj = 0 in Ω,
δuj = 0 on ∂Ω,

(6.2)

for j = 1, 2, d = 2, where

Lj,FT[δuj] = 2∇ ⋅ ([−
2μ
|Fj|2
(Fj : ∇Sδuj) + h(uj)δuj]Fj) + 2∇ ⋅ μ∇Sδuj + ω2δuj − Df (uj)δuj

and
h(uj) =

2
|Fj|2
(u⊺j Df (uj) − f (uj)⊺).

Furthermore, we have the following estimate:

J
∑
j=1‖δuj‖H4(Ω)2 ≤ C J

∑
j=1(‖LFTδuj‖H2(Ω)2 + ‖BFTδuj‖H 5

2 (Ω)2 ) + C2 J
∑
j=1‖δuj‖L2(Ω)2 .

Proof. In fact, since the symbol of f is a polynomial with degree atmost 1, we notice that the principal symbol
for system (6.2) is given by the principal symbol associated to (3.2). The Lopatinskii condition is satisfied
because it depends only on the principal symbol. Therefore, we conclude the ellipticity and the estimate.

We recall the following “matrix orthogonality” identities. Let F⊥j be such that Fj : F⊥j = 0 and |F⊥j | = |Fj|. Then
∇Sδuj can be expressed as

∇Sδuj = (∇Sδuj : ̂F j) ̂F j + (∇Sδuj : ̂F⊥j ) ̂F⊥j ,
and then

∫
Ω

μ|∇Sδuj|2 = ∫
Ω

μ(|∇Sδuj : ̂F j|2 + |∇Sδuj : ̂F⊥j |2) dx. (6.3)

We can use these to prove the following lemma.
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Lemma 8. Let ÃFT be the operator corresponding to the equation given in the previous lemma. In dimension
two, if {δuj} ∈ ker(ÃFT), then

∫
Ω

|δuj|2 ≤ C̃(ω2)2 ∫
Ω

|Dδuj|2 (6.4)

where

C̃(ω2) = √
1 + 2‖μ‖L∞

ω2 − (‖Df (uj)‖L(H1 ,L2) + ‖h(uj)‖L(H1 ,L2)) .
Proof. If δuj ∈ ker(ÃFT), then

{{{
{{{
{

Lj,FT[δμ, δuj] = 0 in Ω,
∇ ⋅ δuj = 0 in Ω,
δuj = 0 on ∂Ω.

(6.5)

Note that 1
|Fj|2
(Df (uj)δuj) ⋅ uj =

1
|Fj|2
(u⊺j Df (uj))δuj .

From the second equation in (6.5), we obtain

δμ = − 2μ
|Fj|2
(Fj : ∇Sδuj) + h(uj)δuj .

On the other hand, multiplying the first equation of (6.5) by δuj and integrating, we obtain

ω2 ∫
Ω

|δuj|2 = ∫
Ω

(Df (uj)δuj) ⋅ δuj − 4∫
Ω

μ| ̂F j : ∇Sδuj|2 + 2∫
Ω

(h(uj)δuj)( ̂F j : ∇Sδuj) + 2∫
Ω

μ|∇Sδuj|2,

and considering the identity (6.3),

ω2 ∫
Ω

|δuj|2 = ∫
Ω

(Df (uj)δuj) ⋅ δuj + 2∫
Ω

(h(uj)δuj)( ̂F j : ∇Sδuj) + 2∫
Ω

μ| ̂F⊥j : ∇Sδuj|2 − 2∫
Ω

μ| ̂F j : ∇Sδuj|2

≤ (‖Df (uj)‖L(H1 ,L2) + ‖h(uj)‖L(H1 ,L2))‖δuj‖2L2 + (1 + 2‖μ‖L∞ ) ∫
Ω

|∇Sδuj|2.

Therefore, we obtain the desired result

∫
Ω

|δuj|2 ≤
1 + 2‖μ‖L∞

ω2 − (‖Df (uj)‖L(H3 ,L2) + ‖h(uj)‖L(H3 ,L2)) ∫
Ω

|∇uj|2.

Lemma 9. In dimension 2, there exists ω0 > 0 such that, for all ω ≥ ω0, we have ker(ÃFT) = {0}. In other words,
the operator is injective.

Proof. From Theorem 1, taking ÃFTw = (0, 0), using the previous lemma, we have

∑
j
‖δuj‖H4(Ω)2 ≤ C2∑

j
‖δuj‖L2(Ω)2 ≤ C2C̃(ω)∑

j
‖∇δuj‖L2 ,

where C̃(ω2) is given in (6.4). If we take ω large enough such that C2C̃(ω2) < 1, we can absorb the right side
of the estimate. So we conclude that δuj = 0.

The main corollary now follows.

Corollary 1. For all ω sufficiently large, the linearized system is injective, that is, we can find a C1 such that
C2 = 0 in Theorem 1, provided δgj is zero.

Proof. Considering equation (3.2) with the terms not depending on uj equal to zero, we can take the second
equation and obtain

δμ = 1
|Fj|2
[(f (uj) + u⊺j Df (uj)) ⋅ δuj − 2μ∇Suj : ∇Sδuj]. (6.6)

Then we replace δμ in the first equation, so we obtain equation (6.2). By Lemma 9, we obtain δuj = 0, and
using equation (6.6), we conclude δμ = 0. Hence, we can eliminate the termsmultiplying C2 in equation (6.1)
for sufficiently large ω2.
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6.4 Fixed-point algorithm: Preliminaries

We introduce the general fixed-point lemmas which are needed to solve nonlinear PDEs with small data. Let
J be a linear operator and N a power nonlinearity. We view the nonlinear PDE as

J(w) = N(w) in Ω,
w = f in Ω,
w = 0 on ∂Ω.

We assume that f is a generic function in a Banach spaceN. The solution then looks like w = wlin + J−1N(w).
We also have the following abstract iteration result.

Lemma 10 ([31, Proposition 1.38]). Let N, S be two Banach spaces, and suppose we are given an invertible
linear operator J : N→ Swith the bound ‖J−1F‖S ≤ C0‖F‖N for all F ∈ N and some C0 > 0. Suppose that we are
given a nonlinear operator N : S→ N which is a sum of a u-dependent part and a u-independent part. Assume
the u-dependent part Nu is such that Nu(0) = 0 and obeys the following Lipschitz bounds:

‖N(u) − N(v)‖N ≤
1
2C0
‖u − v‖S

for all u, v ∈ Bε = {u ∈ S : ‖u‖S ≤ ε} for some ε > 0. In other words, we have that ‖N‖Ċ0,1(Bε→N) ≤ 1
2C0 . Then,

for all ulin ∈ B ε
2
, there exists a unique solution u ∈ Bε with the map ulin 󳨃→ u Lipschitz with constant at most 2.

In particular, we have that ‖u‖S ≤ 2‖ulin‖S.

Remark 6.1. The proof of Lemma 10 consists in establishing the convergence of the iterative sequence

u(n) = {{
{

ulin if n = 0,
ulin + J−1N(u(n−1)) if n ≥ 1.

Therefore, Lemma 10 also establishes the convergence of this kind of sequences.

Given the abstract convergence lemma above, wewant to apply this to the linearized linear and subsequently
nonlinear elasticity problem to give a direct proof of existence and uniqueness to system (3.2).

6.5 Fixed-point algorithm for the recovery of μ

We first focus on the case of linearized linear elasticity, that is, with f (uj) = 0 in (3.2). We set the following
notation:

vj = (μ, {uj}j) and v = {vj}Jj=1, also, v = v0 + δv, where v0 = (μ0, {u0,j}Jj=1) = {vj}Jj=1,
δv = (δμ, {δuj}j) = {wj}Jj=1 = w,

F(vj) = (

μ
2 |∇

Suj|2

2∇ ⋅ μ∇Suj + ω2uj
∇ ⋅ uj

), Hj = (
Hj
∇p
0
), Bvj = gj ,

Fv = {Fvj}Jj=1, H = {Hj}
J
j=1, Bv = {Bvj}Jj=1,

Lj = F󸀠(v0j), that is, Ljwj = F󸀠(v0j)wj = ( δμ
2 |∇

Su0j|2 + μ∇Su0j : ∇Sδu0j
2∇ ⋅ δμ∇Su0j + 2∇ ⋅ μ∇Sδu0j + ω2δu0j

∇ ⋅ δu0j
),

Sj = (
δHj
0
0
), Lw = {Ljwj}Jj=1, S = {Sj}

J
j=1, H0 := F(v0j), g0 = Bv0,

and consider the nonlinear problem

{
F(v0 + w) = H in Ω,

Bw = g − g0 on ∂Ω,
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and the linear problem

{
Lw = S in Ω,
Bw = g − g0 on ∂Ω.

(6.7)

System (6.7) can be written asAw = ( S
q−q0). Note that

F(v0 + w) = F(v0) + F󸀠(v0)w + G(w; v0),
where G(w; v0) is given by

Gj(w; v0) = (
δμ∇Su0j : ∇Sδuj + (μ0+δμ)2 |∇

Sδuj|2

2∇ ⋅ δμ∇Sδuj
0

), (6.8)

is such that ‖(G(w; v0)‖Y ≤ C‖w‖2X, where the constant C depends only on the L∞(Ω) norm of |∇Suj| and μ for
j = 1, 2 so that we can write the problem as

{
Lw = H −H0 − G(w; v0) in Ω,
Bw = g − g0 on ∂Ω.

We define the following fixed-point algorithm.

Algorithm 1.
Input:
∙ a function v0 = (μ0, {u0j}), where μ0 is given and then u0,j is the solution of the system

{{{
{{{
{

2∇ ⋅ μ0∇Suj + ω2uj = −∇p in Ω,
∇ ⋅ uj = 0 in Ω,
uj = gj on ∂Ω,

∙ observationsH in Ω and boundary information g on ∂Ω, i.e.,H = F(v0 + wtrue) and g = g0 +Bwtrue,
∙ a tolerance ε > 0.
Steps:
∙ computeH0 via the formulaH0 = F(v0);
∙ define w0 = 0;
∙ iterate, from k to k + 1,

– wk+1 = I(wk) := A−1(H −H0 − G(wk; v0), g − g0),
– stop if ‖wk+1 − wk‖ < ε;

∙ define v = v0 + wk+1.
Return v.

Lemma 11. There exists a constant c1 = c1(ε) > 0 such that

‖G(w; v0) − G(w̃; v0)‖Y ≤ c1(‖δμ − δ ̃μ‖H3(Ω) +∑
j
‖δuj − δ ̃uj‖(H4(Ω))2),

provided ‖δμ‖H3(Ω), ‖δuj‖H4(Ω)2 ≤ ε for some ε > 0. Such a constant satisfies c1(ε) → 0 whenever ε → 0.

Proof. The definition of Gj(w, v0) in (6.8) implies Gj(w, v0) is a differentiable function of w. The mean value
theorem gives the result. Alternatively, using that H2(Ω)d and H3(Ω)d are Banach algebras gives a bound
for c1,

c1 ≤ CBAε(JCBAmax
j
‖u0j‖H4(Ω)d + J‖μ0‖H3(Ω) + 5ε)

with CBA > 0 the constant from the bound given by the fact that H2(Ω) and H3(Ω) are Banach algebras,
cf. [11, Theorem 6.1-4].

Proposition 2. If ε > 0 is sufficiently small so that c1(ε)‖A−1‖L(Y,X) < 1
2 , where c1(ε) is given by the previous

lemma, then the algorithm converges if in addition we have ‖(H −H0, g − g0)‖X ≤ ε2 , and we obtain ‖w‖X < ε.
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Proof. We take
J = A, N(w) = (G(w; v0), 0), wlin = (H −H0, g − g0).

Because the nonlinearity satisfies the conditions for the fixed-point iteration by Lemma 11, application of the
previous convergence lemma, Lemma 10, gives the desired result.

We note that FFT = F + Fadd and LFT = L + Ladd with F and L given in the previous case whenever f (uj) is
nonzero and

Faddvj = (
−f (uj) ⋅ uj
−f (uj)
0
), Lj,addvj = (

−(Df (uj)δuj) ⋅ uj − f (uj) ⋅ δuj
−Df(uj)δuj

0
).

In addition, we define GFT(w; v) = F(v + w) − Fv − Lw. It is clear that GFT(w; v) = G(w; v) + Gadd(w; v) with G

defined as before and

Gj,add(w; v) = (
o(δuj) ⋅ (uj + δuj) − (Df (uj)δuj) ⋅ uj

o(δuj)
0

),

where
o(δuj) =

1

∫
0

(1 − t)D2f (u + tδuj)[δuj , δuj] dt

comes from Taylor’s formula

f (uj + δuj) = f(uj) + Df (uj)δuj +
1

∫
0

(1 − t)D2f (u + tδuj)[δuj , δuj] dt.

The fixed-point algorithm for the case of linearized nonlinear elasticity is the same as Algorithm 1, with
the following changes:
∙ instead of F,L, G,A, we use FFT,LFT, GFT,AFT;
∙ in the step of solving equation, we solve

{{{
{{{
{

2∇ ⋅ μ0∇Suj + ω2uj − f (uj) = −∇p in Ω,
∇ ⋅ uj = 0 in Ω,
uj = gj on ∂Ω.

Lemma 12. There exists a constant c2 = c2(ε) > 0 such that

‖GFT(w; v0) − GFT(w̃; v0)‖Y ≤ c2(‖δμ − δ ̃μ‖H3(Ω) +∑
j
‖δuj − δ ̃uj‖(H4(Ω))2),

provided ‖δμ‖H3(Ω), ‖δuj‖H4(Ω)2 ≤ ε for some ε > 0.
Proof. Let

ψ(δuj , δ ̃uj) = D2f (u + tδuj)[δuj , δuj] − D2f (u + tδ ̃uj)[δ ̃uj , δ ̃uj]
= D2f (uj + tδuj)[δuj − δ ̃uj , δuj] + D2f (uj + tδuj)[δ ̃uj , δuj − δ ̃uj]
+ (D2f (uj + tδuj) − D2f(uj + tδ ̃uj))[δ ̃uj , δ ̃uj];

hence
‖ψ(δuj , δ ̃uj)‖L2(Ω)2 ≤ c3ε‖δuj − δ ̃uj‖H1(Ω)2 ,

with c3 being the maximum between

2 sup{‖D2f (h)‖L(H4(Ω)2 ,L(H4(Ω)2 ,L2(Ω)2)); ‖uj − h‖H3(Ω)2 ≤ ε},
2ε2 sup{‖D3f (h)‖L(H4(Ω)2 ,L(H4(Ω)2 ,L(H4(Ω)2 ,L2(Ω)2))); ‖uj − h‖H4(Ω)2 ≤ ε}

given by the mean value theorem over D2f . Then

‖o(δuj) − o(δ ̃uj)‖L2(Ω)2 = 1

∫
0

|1 − t|c3ε‖δuj − δ ̃uj‖H4(Ω)2 dt ≤ c3ε‖δuj − δ ̃uj‖H4(Ω)2 .
Then the conclusion is direct from Lemma 11 and the definition of Gadd.
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Corollary 4. If ε > 0 is sufficiently small so that c2(ε)‖A−1FT‖L(Y,X) < 1
2 , then the linearization for the nonlinear

elasticity problem converges if in addition we have ‖(H −H0, g − g0)‖X ≤ ε2 , and we obtain ‖w‖X < ε.

Finally, we can conclude the proof of the main theorem of this section.

Theorem 2. The solution w = (δμ, {δuj}2j=1) to (3.2) exists as a limit of an explicit sequence of Duhamel iterates
and is unique in H3(Ω) × (H4(Ω)2)2 for all ω sufficiently large and δgj = 0.

Proof. The proof of Theorem 2 follows from the algorithms themselves combined with Proposition 2 and
Corollary 4.

7 Simplification of recovery of δμ for linear elasticity with internal
measurements

The model considered in this section is given by

{{{{{{
{{{{{{
{

2∇ ⋅ μ∇Suj + ω2uj − f (uj) = −∇pj in Ω,
μ
2 |∇

Suj|2 − f (uj) ⋅ uj = Hj in Ω,
∇ ⋅ uj = 0 in Ω,
uj = gj on ∂Ω,

(3.1)

with fj = 0, but with internal measurements of uj, i.e., uj = Hj in Ω. In [34, Proposition 1 c)], the authors
proved that there is no ellipticity for the joint recovery of μ and p. Therefore, we must either apply the curl
to the operator to remove ∇p or we must hold ∇p fixed. This last case is studied in [34], establishing the
ellipticity and Lopatinskii condition with at least one measurement, but null kernel with twomeasurements.
If we are to use themodelwith∇p fixed, thenwe know that λ is large. This causes some convergence problems
when considering the Saint-Venant model of nonlinear elasticity, for example with results like in Sections 5
and 6, where we need to have a contraction map, so we choose to apply the curl operator, which eliminates
the λ terms.

Hence, we consider the model

{{{{{{
{{{{{{
{

ω2∇ × uj + 2∇ × ∇ ⋅ μ∇Suj = 0 in Ω,
uj = Hj in Ω,
∇ ⋅ uj = 0 in Ω,
uj = gj on ∂Ω.

(7.1)

The linearization of (7.1) gives

{{{{{{
{{{{{{
{

ω2∇ × δuj + 2∇ × ∇ ⋅ μ∇Sδuj + 2∇ × ∇ ⋅ δμ∇Suj = 0 in Ω,
δuj = δHj in Ω,
∇ ⋅ δuj = 0 in Ω,
δuj = 0 on ∂Ω.

(7.2)

7.1 Ellipticity

Let Σcurl(ξ ) be the symbol of the curl operator, that is Σcurl(ξ ) = i(−ξ2 ξ1) in dimension two, and

Σcurl(ξ ) = i[[
[

0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

]]

]
in dimension three. Note that if b ∈ ℝd, then Σcurl(ξ )b = ib × ξ .
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The linearized system then has the following principal symbol:

P(x, ξ ) = [[
[

2(∇Suξ ) × ξ −2μΣcurl(ξ )(|ξ |2Id + ξ ⊗ ξ )
0 Id
0 iξ⊺ ]]

]

which is a matrix with size (2d + 1) × (d + 1). Let ξ ̸= 0, and let C1, . . . , Cd+1 be the columns of that matrix.
Let α1, . . . , αd+1 ∈ ℂ be such that

d+1
∑
i=1 αiCi = 0.

We see that, because of the identity matrix, necessarily, α2 = ⋅ ⋅ ⋅ = αd+1 = 0, so we have to analyze the equa-
tion α1C1 = 0. This last equation can be reduced to the case studied in [6], giving the nonellipticity for one
measurement. If we consider the augmented system for two measurements, we obtain the ellipticity as in [6]
for three dimensions. Notice that this computation in two dimensions corrects a mistake in the original com-
putations presented there. In particular, the curl in two dimensions is defined as

f : Ω → ℝd , ∇ × f : ∂1f2 − ∂2f1,

and the computations in [6] flip the order of the partial derivatives. The results there then only hold for
symmetric pressure gradients, those for which ∇p(x1, x2) = ∇p(x2, x1).

The symbol for the augmented system is

P2(x, ξ ) =

[[[[[[[[[

[

2(∇Su1 ξ ) × ξ P(ξ ) 0
0 Id 0
0 iξ⊺ 0

2(∇Su2 ξ ) × ξ 0 P(ξ )
0 0 Id
0 0 iξ⊺

]]]]]]]]]

]

,

where P(ξ ) = −2μΣcurl(ξ )(|ξ |2Id + ξ ⊗ ξ ).

Lemma 13. For ellipticity of system (7.2), in other words, for P2(x, ξ ) being column rank, we need that he
following condition holds:

|(∇Su1ξ ) × ξ | + |(∇Su2ξ ) × ξ | ̸= 0 for all |ξ | ̸= 0. (7.3)

This is slightly different to the case in [6] where the following is considered:

|(∇Su1ξ ) × ξ | + |(∇Su2ξ ) × ξ | ≥ |ξ |2. (7.4)

The first condition is more relaxed and does not require ellipticity of the added symbols, only that they be
nonzero simultaneously.

Proof. Condition (7.3) is equivalent to the following: let A(j) = ∇Suj, and let the matrices B(j) be defined in
two dimensions by

B(j) = (a(j)11 − a(j)22 2(a(j)12 + a(j)21)) (7.5)

and in three dimensions by

B(j) = (a(j)23 0 0 a(j)22 − a(j)33 a(j)12 −a(j)13
0 −a(j)13 0 −a(j)12 a(j)33 − a(j)11 a(j)23
0 0 a(j)12 a(j)13 −a(j)23 a(j)11 − a(j)22). (7.6)

A condition in dimension d = 2, 3 for having ellipticity is that the d × d matrix

(
B(1)
B(2)) must be invertible. (7.7)
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The equivalence between (7.3) and (7.7) comes from the equality

(
((A(1)ξ ) × ξ )⊺
((A(1)ξ ) × ξ )⊺) = (B(1)B(2))(ξ22 − ξ21ξ1ξ2

)

in dimension two and

(
((A(1)ξ ) × ξ )⊺
((A(1)ξ ) × ξ )⊺) = (B(1)B(2))(((

(

ξ23 − ξ
2
2

ξ23 − ξ
2
1

ξ22 − ξ
2
1

ξ2ξ3
ξ1ξ3
ξ1ξ2

)))

)
in dimension three. Note that condition (7.7) is ensured when ∇Su1 ̸= α∇Su2 for all α ∈ ℝ.

7.2 Lopatinskii condition

The Lopatinskii conditionwe show is based on [6]. The analysis is the same, but in a certain step, we consider
condition (7.3) instead of (7.4).

Lemma 14. The Lopatinskii condition holds for (7.2) under assumption (7.3).

Proof. If P2(x, iη + ν∂z)( ̃μ, ̃u) = 0, then we easily see that ̃u ≡ 0, due to the identity blocks. Then consider
A(j) = ∇Suj. Then we have the equation

(A(j)ν × ν)∂2z ̃μ + i(A(j)η × ν + A(j)ν × η)∂z ̃μ − (A(j)η × η) ̃μ = 0, j = 1, 2.

If, in each equation, we apply the dot product with A(j)ν × ν and then we sum both equations, we obtain

a∂2z ̃μ + b∂z ̃μ + c ̃μ = 0 (7.8)

with a = ∑j|A(j)ν × ν|2, which is nonzero by (7.3). Then let
λ1,2 =
−ib ± √−b2 − 4ac

2a
be the roots of the characteristic polynomial related to equation (7.8). The solutions have the structure

̃μ(z) = α(exp(λ1z) − exp(λ2z))

since ̃μ(0) = 0. If λ1,2 is purely imaginary, the only option for ̃μ going to 0 when z →∞ is when α = 0. If λ1,2
has a real part, then one of the exponentials goes to infinity and the other goes to zero when z →∞, so the
only option we have is α = 0. That is, we have the Lopatinskii condition.

The Douglis numbers are

si =
{
{
{

0 if i ∈ {1, . . . , d + 1, 2d + 2, . . . , 3d + 1},
−2 otherwise,

tj =
{
{
{

2 if i = 1,
3 otherwise,

σk = −1, k = 1, . . . , 2d.

Then the operator over (δμ, {δuj}Jj=1) given by equation (7.2) with two measurements is defined from

X = H l+2(Ω) × H l+3(Ω)d × H l+3(Ω)d to Y = (H l(Ω)d × H l+2(Ω)d × H l+2(Ω) × H l+ 12 (Ω)d)2,
where we can take l = 2 in dimension two and dimension three.
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Proposition 3. We have the following stability estimate:

‖δμ‖H l+2(Ω) + 2
∑
j=1‖δuj‖H l+3(Ω)d ≤ C 2

∑
j=1(‖Lec

j (δμ, δuj)‖H l(Ω)d + ‖Lint
j (δμ, δuj)‖H l+2(Ω)d

+ ‖Ldiv
j δuj‖H l+2(Ω) + ‖δuj‖H l+ 1

2 (∂Ω)d )
+ C2(‖δμ‖L2(Ω) + 2

∑
j=1‖δuj‖L2(Ω)d).

HereLec,Lint
j andLdiv are coming from the elasticity, the solution measurements and the divergence condition,

respectively.

The proof follows directly from Theorem 4 and the verification of the Lopatanskii condition.

7.3 Local injectivity

The results in [14] prove local injectivity and the convergence of an algorithm for the recovery of μ. They
use unique continuation properties assuming δμ|∂Ω = 0 (in our notation). In this section, we show another
injectivity argument, based on [8].

If we consider the right-hand side of (7.1) being 0, then we have ∇ × ∇ ⋅ (δμA(j)) = 0, j = 1, 2. Let ρ(x, ξ )
be the principal symbol for this last equation. Then

ρ(x, ξ ) = ((A
(1)ξ ) × ξ
(A(2)ξ ) × ξ).

In dimension two,we need to assume that A(j)12 ̸= 0 to obtain that (0, 1) is non-characteristic at the origin since
A(j)(0

1
) × (

0
1
) = A(j)12.

In dimension three, we need to assume that a(j)13, a(j)23 ̸= 0 to obtain that (0, 0, 1) is non-characteristic at the
origin since

A(j)(0, 0, 1) × (0, 0, 1) = (a(j)23, −a(j)13, 0).
Condition (7.3) provides the hypothesis for [8, Theorem3.6] since there are not real roots, and then, due to the
fundamental algebra theorem,wehave twodifferent complex roots. Therefore,wehave aunique continuation
principle for μ, and we can take C2 = 0 in the last estimate above.

8 Nonlinear elasticity (Saint-Venant model) with internal
measurements

The Saint-Venant model is the first nonlinear model in elasticity that is studied in the literature. It is a gener-
alization of the linear model studied before, and it comes from the simplification of the Green strain tensor

Eu = ∇Su + 12∇u
⊺∇u. (8.1)

In linear elasticity, it is assumed that the displacements are sufficiently small for neglecting the term ∇u⊺∇u,
considering the small strain tensor

εu = ∇Su, (8.2)

cf. [28] for the constant coefficient calculations. The Saint-Venant–Kirchhoff model considers (8.1) instead
of (8.2), since it is assumed that the deformations are not so small, and Eu plays the role of εu in the consti-
tutive equations of linear elasticity.
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In this section, we consider the Saint-Venant model under a periodic force with frequency ω, which can
be written as a “steady state” equation by

{
(Lμ,λ + Nμ,λ)u + ω2u = 0 in Ω,

u = g on ∂Ω,
(8.3)

where
Lμ,λu = 2∇ ⋅ μ∇Su + ∇(λ∇ ⋅ u), Nμ,λu = 2cτ∇ ⋅ (μ∇u⊺∇u) + ∇(λ|∇u|2),

and cτ is a constant in x coming from the fact that we cannot obtain a time-independent equation by applying
a periodic force in time, as in the previous cases, since they are linear in u. So our model is considered for
a fixed time τ. For two sets of measurements and boundary conditions, this is system (3.4), which we recall:

∇(λ ⋅ ∇uj) + 2∇ ⋅ μ(∇Suj + acτ∇u⊺j ∇uj) + a∇(λ|∇uj|2) + ω2uj = 0 in Ω,

δuj = Hj in Ω,
uj = gj on ∂Ω,

(3.4)

when the measurements are uj = Hj in Ω for j = 1, 2. Applying the curl operator to (8.3), we obtain

{
(L̃μ + Ñμ)uj + ω2∇ × uj = 0 in Ω,

uj = 0 on ∂Ω,
(8.4)

where
L̃μuj = 2∇ × ∇ ⋅ μ∇Suj , Ñμuj = 2cτ∇ × ∇ ⋅ (μ∇u⊺j ∇uj).

The linearized system from (8.4) with two internal measurements is then equation (3.6), which we recall:

{{{
{{{
{

DL̃(μj , uj)[δμj , δuj] + DÑ(μj , uj)[δμj , δuj] + ω2∇ × δuj = 0 in Ω,
δuj = δHj in Ω,
δuj = δgj on ∂Ω.

(3.6)

8.1 Ellipticity

Lemma 15. System (3.6) has elliptic principal symbol if

|((∇Su1 + cτ∇u⊺1∇u1)ξ ) × ξ | + |((∇Su2 + cτ∇u⊺2∇u2)ξ ) × ξ | ̸= 0 for all ξ ̸= 0. (8.5)

Proof. The symbol of the linearized operator is

P(x, ξ ) = [2((∇
Su + cτ∇u⊺∇u)ξ ) × ξ P(ξ )

0 Id
],

where
P(ξ ) = −2μΣcurl(ξ )(|ξ |2Id + ξ ⊗ ξ )(Id + ∇u⊺).

We see that Op(P(x, ξ )) is not elliptic. If we add a measurement, we will have the symbol

P2(x, ξ ) =
[[[[

[

2((∇Su1 + cτ∇u⊺1∇u1)ξ ) × ξ P(ξ ) 0
0 Id 0

2((∇Su2 + cτ∇u⊺2∇u2)ξ ) × ξ 0 P(ξ )
0 0 Id

]]]]

]

,

and we see that the linearized operator is elliptic if (8.5) holds.

Let A(j) = ∇Suj + cτ∇u⊺j ∇uj, and let the matrices B(j) be defined as in (7.5)–(7.6). Then a condition for having
ellipticity is (7.7). Notice if this fails, we can simply add more measurements.
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8.2 Lopatinskii condition and local injectivity

The deduction of the Lopatinskii condition (Lemma 14) and local injectivity are the same as the ones pre-
sented in Section 7, with the change

A(j) = ∇Suj + cτ∇u⊺j ∇uj , j = 1, 2.

The Douglis numbers are

si =
{
{
{

0 if i ∈ {1, . . . , d, 2d + 1, . . . , 3d},
−2 otherwise,

tj =
{
{
{

2 if i = 1,
3 otherwise,

σk = −1, k = 1, . . . , 2d.

Then the operator over (δμ, {δuj}Jj=1) given by equation (3.6) with two measurements is defined from

X = H l+2(Ω) × H l+3(Ω)d × H l+3(Ω)d to Y = (H l(Ω)d × H l+2(Ω)d × H l+ 12 (Ω)d)2
with l = 2 in dimensions two and three.

Now we can prove the main theorem and corollary of this section.

Theorem 3. Let a = 1, d = 2, 3. Assume, for j = 1, 2,

|((∇Su1j + cτ∇u⊺1j∇u1j)ξ ) × ξ | + |((∇Su2j + cτ∇u⊺2j∇u2j)ξ ) × ξ | ̸= 0 for all ξ ̸= 0.

Let C1, C2 depend on ‖μ2‖C4(Ω), and C2 also depends on ω2. Then we have the following stability estimate:

‖δμ‖H5(Ω) ≤ C1( 2
∑
j=1‖δuj‖H4(Ω)d + ‖δgj‖H 5

2 (∂Ω)d) + C2(‖δμ‖L2(Ω) + 2
∑
j=1‖δuj‖L2(Ω)d).

Proof. We have the following estimate after applying Theorem 4 and condition (8.5):

‖δμ‖H l+2(Ω) + 2
∑
j=1‖δuj‖H l+3(Ω)d ≤ C 2

∑
j=1(‖Lec

j (δμ, δuj)‖H l(Ω)d + ‖Lint
j (δμ, δuj)‖H l+2(Ω)d + ‖δuj‖H l+ 1

2 (∂Ω)d )
+ C2(‖δμ‖L2(Ω) + 2

∑
j=1‖δuj‖L2(Ω)d), (8.6)

where Lec
j ,L

int
j are the parts of the linearization coming from the elasticity equations and the solution mea-

surements, respectively. These are as follows:

Lec
j (δμ, δuj) = (DL̃ + DÑ)(μ, uj)[δμ, δuj] + ω

2∇ × δuj , Lec
j (δμ, δuj) = δuj .

Rearranging, we have the desired result.

Corollary 2. The constant C2 can be absorbed into the constant C1 if

(∇Su1j + cτ∇u⊺1j∇u1j) ̸= α(∇Su2j + cτ∇u⊺2j∇u2j)
for j = 1, 2 and all α ∈ ℝ.

Proof. Since we have local injectivity by Section 8.1, we can take C2 = 0 in inequality (8.6). That is, we have

‖δμ‖H l+2(Ω) + 2
∑
j=1‖δuj‖H l+3(Ω)d ≤ C 2

∑
j=1(‖Lec

j (δμ, δuj)‖H l(Ω)d + ‖Lint
j (δμ, δuj)‖H l+2(Ω)d + ‖δuj‖H l+ 1

2 (∂Ω)d ).
Re-arranging using the definitions of Lec

j and Lint
j in the previous theorem gives the desired result.
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