

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA MECÁNICA

ENERGY-OPTIMIZING FAILURE-RESILIENT

AUTOMATIC CONTROLLER FOR A WATER HEATING

SYSTEM THROUGH DEEP REINFORCEMENT LEARNING

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN

CIENCIAS DE LA INGENIERÍA, MENCIÓN MECÁNICA

ADRIÁN FELIPE RIEBEL BRUMMER

PROFESOR GUÍA:

ENRIQUE LÓPEZ DROGUETT

PROFESOR CO-GUÍA:

JOSÉ CARDEMIL IGLESIAS

COMISIÓN:

RODRIGO PASCUAL JIMÉNEZ

SANTIAGO DE CHILE

2022

ii

RESUMEN DE LA TESIS PARA OPTAR AL

GRADO DE: Magíster en Ciencias de la Ingeniería,

Mención Mecánica

POR: Adrián Felipe Riebel Brummer

FECHA: 2022

PROFESOR GUÍA: Enrique López Droguett

Agente optimizador de energía resiliente a fallas para un sistema de

calentamiento de agua mediante aprendizaje reforzado profundo

En el contexto climático actual, reducir el impacto ambiental de la humanidad es más importante

y urgente que nunca. Esto debe lograrse sin dejar de lado las mejoras que se han conseguido durante

las últimas décadas en la calidad de vida de la gran mayoría de la población mundial; mejoras que

han elevado la esperanza de vida, la salud y la educación a niveles sin precedentes, y que en parte

se deben a la industrialización. Por lo tanto, el objetivo de la humanidad no debiese ser la abolición

de la industrialización, sino un modelo productivo que pueda mantenerse en el largo plazo, y en lo

posible debe lograrse rápido. En este contexto, un modelo de producción energética libre de

carbono es esencial. Una forma obvia de conseguirlo es mediante el uso de energías limpias y

renovables. En adición a esto, se puede reducir la necesidad energética optimizando su consumo.

El trabajo presentado en este documento intenta abordar la optimización en el control de sistemas

que usan energía de fuentes renovables. En particular, el método conocido como “Deep

Reinforcement Learning” (aprendizaje reforzado profundo) se usa para entrenar a agentes

autónomos que controlan el sistema de calentamiento de agua sanitaria usado para entregar agua a

los camarines en el área de deportes del edificio ubicado en Beauchef 851, Santiago de Chile, el

cual pertenece a la Facultad de Ciencias Físicas y Matemáticas (FCFM) de la Univerdidad de Chile.

“Reinforcement Learning” es un área de aprendizaje de máquinas que estudia la optimización de

tareas de control. Un agente es entrenado para ejecutar las mejores acciones posibles sobre un

ambiente, con el objetivo de obtener mayores “recompensas”, las cuales son una función que

depende de los efectos que las acciones del agente producen sobre el ambiente. “Deep

Reinforcement Learning” es la sub-área de Reinforcement Learning que estudia el uso de redes

neuronales profundas como agentes que toman las decisiones.

En el estudio aquí presentado, una plataforma simple para el entrenamiento de redes neuronales

densas es desarrollada con el objetivo entrenar a agentes que controlen el sistema ya mencionado;

luego, se define una función recompensa considerando las características del sistema y el objetivo

del proceso de entrenamiento, que es optimizar el uso de energía mientras se provee agua caliente

a los camarines. Además, los agentes se entrenan para controlar una versión del sistema sujeta a

fallas de los componentes, de forma de que no se interrumpa el suministro de agua caliente en caso

de falla.

Los resultados muestran un claro éxito del método presentado, tanto para optimizar el uso de

energía como para manejar el sistema cuando ocurren fallas. Sin embargo, es posible que la

simulación tenga demasiadas simplificaciones con respecto al sistema real, lo cual podría producir

un desempeño deficiente de los agentes si éstos se pusieran en práctica con el actual avance del

estudio. Por lo tanto, el siguiente paso obviamente consiste en añadir más complejidades a la

simulación, lo cual probablemente llevará a la necesidad de usar redes neuronales y métodos de

Deep Reinforcement Learning más sofisticados.

iii

RESUMEN DE LA TESIS PARA OPTAR AL

GRADO DE: Magíster en Ciencias de la Ingeniería,

Mención Mecánica

POR: Adrián Felipe Riebel Brummer

FECHA: 2022

PROFESOR GUÍA: Enrique López Droguett

Energy-Optimizing Failure-Resilient Automatic Controller for a

Water Heating System through Deep Reinforcement Learning

In the current climatic context, reducing the environmental impact of mankind is more important

and urgent than ever. This must be achieved without leaving aside the important improvements that

have been achieved in the quality of life of most people in the world during the last decades;

improvements which have increased life expectancy, health and education to unprecedented levels,

and which have been partly due to industrialization. Therefore, the goal of mankind should not be

to abolish industrialization, but to find a production model that can be maintained in the long term,

and this must be hopefully achieved quickly. In this context, a carbon-free energy production model

is essential. An obvious way of achieving it in the short term is by the use of clean and renewable

energy sources. In addition to this, the need for energy can be reduced by optimizing its

consumption.

The work presented in this document tries to address the control optimization of systems that use

renewable energy sources. In particular, the method known as “Deep Reinforcement Learning” is

used to train an autonomous controlling agent that optimizes the performance of a sanitary water

heating system that is used to supply warm water to the dressing rooms in the sports area of the

building located in Beauchef 851, Santiago de Chile, which belongs to the Faculty of Physical and

Mathematical Sciences (FCFM) of the University of Chile.

Reinforcement Learning is an area of Machine Learning that studies the optimization of control

tasks. An agent is trained to execute the best possible actions on an environment, with the goal of

obtaining the best possible “rewards”, which are a function that depends on the effects that the

actions of the agent produce on the environment. Deep Reinforcement Learning is the sub-area of

Reinforcement Learning that studies the use of Deep Neural Networks as the decision-making

agent.

In the study presented here, a simple Dense Deep Neural Network-training platform is developed

to train agents in order to control the water heating system mentioned above; then, a reward

function is formulated considering the characteristics of the system and the objective of the training

process, which is to optimize the use of energy while effectively supplying warm water to the

dressing rooms. Moreover, the agents are trained to control a failure-subject version of the same

water heating system, so that the supply of warm water is not interrupted when a failure occurs.

The results show a clear success of the method presented, both at optimizing the energy use, as

well as at handling the system when failures occur. However, it is believed that the simulation that

is used to model the water heating system has too many simplifications with respect to the actual

system, which can lead to poor performance of the agents if they were put into practice in the

current stage of the study. Therefore, the obvious next step would be to introduce more of the

complexities that the actual system has into the simulation; this would probably lead to the need to

use more sophisticated Deep Neural Networks and Deep Reinforcement Learning techniques.

iv

A mi familia

v

Agradecimientos

Estando en la etapa final de este proceso, no puedo dejar de mencionar los importantes aportes que

diferentes personas han hecho para que hoy pueda estar entregando esta tesis. Agradezco

sinceramente:

A mi profesor guía, Doctor Enrique López Droguett, por haber confiado en mí y por todo el tiempo

dedicado a darme consejos y a conversar los contenidos que finalmente han quedado plasmados en

este trabajo. Gracias además por haberme motivado a ir más allá de lo que en un principio pensé

que era posible.

A mi profesor co-guía, Doctor José Miguel Cardemil Iglesias, quien siempre tuvo la disponibilidad

para evaluar mi trabajo y para hacer detallados análisis que finalmente se tradujeron en importantes

aportes a esta tesis.

Al profesor Dr. Rodrigo Pascual Jiménez, miembro de la comisión evaluadora, por el tiempo

dedicado a escuchar mi propuesta y por sus valiosos consejos; y al profesor Ramón Frederick

González, coordinador del programa de Magíster, por su constante disponibilidad para resolver

cada una de mis dudas.

A toda mi familia, especialmente a mi círculo más cercano: mis hermanos Andrea, Alex y Tito;

mis padres Ricardo y Ellen; y Mariela. Ustedes son por lejos las personas más importantes en mi

vida, quienes más han aportado a que hoy yo sea quien soy. Esta tesis va dedicada a ustedes.

A todas las personas que, a lo largo de mi vida, han formado parte de ella. Entre otros, me gustaría

mencionar a mis compañeros y amigos del colegio, a mis amigos de la Universidad, y obviamente

a la gente de la Andinia. Comenzar a mencionar nombres en este punto sería imposible, ya que

indudablemente caería en el error de omitir nombres de forma involuntaria; además, una lista

completa ocuparía varias páginas. Sin embargo, confío en que cada persona, sabiendo lo que ha

significado para mí, sepa que es parte de esta mención.

vi

Table of content

Chapter 1: Introduction .. 1

1.1. On our effect on the planet ... 1

1.2. Sustainability .. 2

1.3. Solar water heating ... 3

1.4. Policy optimization ... 4

1.5. Reinforcement Learning and Deep Reinforcement Learning ... 4

1.6. Objectives ... 5

1.6.1. General objective ... 6

1.6.2. Specific objectives ... 6

1.7. Structure of the Thesis .. 6

Chapter 2: Literature Review .. 8

2.1. Literature on solar water heating .. 8

2.2. Literature on policy optimization ... 8

2.3. Summary ... 10

Chapter 3: Theoretical framework ... 11

3.1. Dense Deep Neural Networks .. 11

3.1.1. Gradient Descent ... 12

3.1.2. Momentum .. 13

3.1.3. Backpropagation .. 14

3.1.4. Softmax activation ... 17

3.1.5. DNN initialization ... 19

3.2. Deep Reinforcement Learning Algorithms .. 19

3.2.1. Basic Concepts .. 20

3.2.2. Policy gradient methods and value methods ... 21

3.2.3. REINFORCE algorithm .. 22

3.2.4. Actor-Critic Algorithm .. 22

3.2.5. Q-Learning and Deep Q-Learning ... 24

3.2.5.1. Q-Values ... 24

3.2.5.2. Q-Learning ... 24

3.2.5.3. Deep Q-Learning algorithm ... 25

3.2.5.4. Double DQN ... 27

3.2.5.5. Prioritized Experience Replay .. 27

vii

3.3. Reliability theory .. 28

3.3.1. Hazard rate ... 30

3.3.2. Exponential distribution .. 31

3.3.3. Series system ... 31

3.3.4. Parallel system ... 32

3.4. Discrete-time Markov chains.. 32

3.4.1. Geometric distribution ... 33

3.4.2. Steady-state probabilities ... 34

3.5. Heat pipe evacuated tube solar collectors... 37

3.6. Heat pumps and refrigeration systems.. 38

3.7. TRNSYS ... 40

Chapter 4: Development of the training platform ... 42

4.1. System under study ... 42

4.2. Actions .. 44

4.3. Rewards .. 46

4.4. Environment state ... 48

4.5. TRNSYS-Python connection .. 49

4.6. Introducing stochastic failures .. 53

4.6.1. Failure rates of individual devices ... 54

4.6.2. Construction of the Markov chains ... 56

4.7. Pseudo-code versions of the Python Scripts ... 60

4.7.1. Initializer .. 60

4.7.2. Code to train the network .. 61

4.7.2.1. Main code ... 61

4.7.2.2. Interaction at 8.00 AM.. 62

4.7.2.3. Interaction from 10.00 AM to 8.00 PM .. 62

4.7.2.4. Interaction at 10.00 PM .. 63

Chapter 5: Methodology .. 64

5.1. Stages of the study .. 64

5.2. Result Analysis ... 64

Chapter 6: Results and Discussion .. 68

6.1. Comparison of DRL algorithms ... 68

6.2. Comparison to a non-smart-controlled baseline ... 74

6.2.1. Testing method .. 75

viii

6.2.2. Results ... 76

6.3. Comparison of different network architectures and training hyperparameters 77

6.3.1. Comparing Different Architectures ... 79

6.3.2. Comparing Different Discount Factors ... 81

6.3.3. Comparing traditional DQN to Double DQN.. 84

6.3.4. Effect of momentum .. 85

6.4. Behavior comparison under different reward parameters .. 86

6.4.1. Changing the value of α1 .. 87

6.4.2. Changing the value of α2 .. 94

6.4.3. Changing the value of α3 .. 97

6.4.4. Effect of the α4 parameter ... 98

6.5. System subject to failures ... 99

6.5.1. Training is carried out with the Markov chains of the real system 101

6.5.2. Training is carried out with planned failure cycles ... 108

6.5.3. Alternative Markov chains .. 114

6.5.4. Effect of momentum for failure-subject agents ... 117

6.5.5. Agent selection and final testing ... 119

Chapter 7: Conclusions .. 126

7.1. Accomplishment of objectives ... 126

7.2. Future work .. 127

8. Glossary ... 129

9. Bibliography .. 130

Annexes ... 134

Annexed A. Further details about the water heating system simulation 134

Annexed A.1. Detailed flow diagrams .. 134

Annexed A.2. Parameters of the elements in the system simulation (Types) 135

Annexed A.3. Elements (Types) with external files .. 138

Annexed A.4. Imposed Temperatures ... 142

Annexed B. All results of Section 6.5. .. 143

ix

Figure Index

Figure 1 1

Figure 2 2

Figure 3 5

Figure 4 11

Figure 5 12

Figure 6 33

Figure 7 38

Figure 8 38

Figure 9 39

Figure 10 40

Figure 11 41

Figure 12 41

Figure 13 42

Figure 14 43

Figure 15 44

Figure 16 45

Figure 17 49

Figure 18 50

Figure 19 51

Figure 20 52

Figure 21 53

Figure 22 58

Figure 23 59

Figure 24 59

Figure 25 65

Figure 26 66

Figure 27 66

Figure 28 67

Figure 29 71

Figure 30 71

Figure 31 72

Figure 32 73

Figure 33 73

Figure 34 74

Figure 35 76

Figure 36 77

Figure 37 77

Figure 38 78

Figure 39 79

Figure 40 80

Figure 41 80

Figure 42 81

Figure 43 82

Figure 44 82

Figure 45 83

Figure 46 83

Figure 47 84

Figure 48 84

Figure 49 85

Figure 50 87

Figure 51 88

Figure 52 89

Figure 53 90

Figure 54 90

Figure 55 91

Figure 56 91

Figure 57 92

Figure 58 92

Figure 59 93

Figure 60 94

Figure 61 95

Figure 62 96

Figure 63 96

Figure 64 97

Figure 65 98

Figure 66 99

Figure 67 102

Figure 68 103

Figure 69 104

Figure 70 105

Figure 71 106

Figure 72 106

Figure 73 107

Figure 74 107

Figure 75 108

Figure 76 108

Figure 77 109

Figure 78 111

Figure 79 111

Figure 80 111

Figure 81 112

Figure 82 112

Figure 83 113

Figure 84 113

Figure 85 114

Figure 86 115

Figure 87 116

Figure 88 116

Figure 89 117

Figure 90 118

Figure 91 119

Figure 92 121

Figure 93 121

Figure 94 123

Figure 95 124

Figure 96 124

Figure 97 125

Figure 98 125

Figure 99 134

Figure 100 134

Figure 101 135

Figure 102 141

Figure 103 143

Figure 104 143

Figure 105 144

Figure 106 144

Figure 107 145

Figure 108 146

Figure 109 147

Figure 110 147

Figure 111 148

Figure 112 148

Figure 113 149

Figure 114 149

Figure 115 150

Figure 116 151

Figure 117 152

Figure 118 153

Figure 119 153

x

Table Index

Table 1 ... 46

Table 2 ... 56

Table 3 ... 56

Table 4 ... 57

Table 5 ... 59

Table 6 ... 59

Table 7 ... 59

Table 8 ... 68

Table 9 ... 69

Table 10 ... 69

Table 11 ... 70

Table 12 ... 75

Table 13 ... 78

Table 14 ... 79

Table 15 ... 81

Table 16 ... 83

Table 17 ... 84

Table 18 ... 86

Table 19 ... 87

Table 20 ... 94

Table 21 ... 98

Table 22 ... 99

Table 23 ... 100

Table 24 ... 101

Table 25 ... 109

Table 26 ... 110

Table 27 ... 118

Table 28 ... 120

Table 29 ... 120

Table 30 ... 122

Table 31 ... 123

Table 32 ... 135

Table 33 ... 135

Table 34 ... 136

Table 35 ... 137

Table 36 ... 138

Table 37 ... 139

Table 38 ... 139

Table 39 ... 139

Table 40 ... 140

Table 41 ... 140

Table 42 ... 140

Table 43 ... 142

Table 44 ... 142

Table 45 ... 142

xi

Equation Index

Equation 1 12

Equation 2 13

Equation 3 13

Equation 4 13

Equation 5 13

Equation 6 14

Equation 7 14

Equation 8 14

Equation 9 14

Equation 10 14

Equation 11 15

Equation 12 15

Equation 13 15

Equation 14 15

Equation 15 15

Equation 16 15

Equation 17 15

Equation 18 15

Equation 19 15

Equation 20 16

Equation 21 16

Equation 22 16

Equation 23 16

Equation 24 16

Equation 25 17

Equation 26 17

Equation 27 17

Equation 28 17

Equation 29 17

Equation 30 18

Equation 31 18

Equation 32 18

Equation 33 18

Equation 34 18

Equation 35 19

Equation 36 19

Equation 37 19

Equation 38 20

Equation 39 20

Equation 40 20

Equation 41 21

Equation 42 22

Equation 43 23

Equation 44 24

Equation 45 24

Equation 46 24

Equation 47 25

Equation 48 25

Equation 49 25

Equation 50 25

Equation 51 25

Equation 52 26

Equation 53 26

Equation 54 26

Equation 55 27

Equation 56 27

Equation 57 27

Equation 58 28

Equation 59 28

Equation 60 28

Equation 61 28

Equation 62 29

Equation 63 29

Equation 64 29

Equation 65 29

Equation 66 29

Equation 67 29

Equation 68 30

Equation 69 30

Equation 70 30

Equation 71 30

Equation 72 30

Equation 73 30

Equation 74 31

Equation 75 31

Equation 76 31

Equation 77 31

Equation 78 31

Equation 79 32

Equation 80 32

Equation 81 32

Equation 82 33

Equation 83 33

Equation 84 33

Equation 85 34

Equation 86 34

Equation 87 34

Equation 88 34

Equation 89 34

Equation 90 35

Equation 91 35

Equation 92 36

Equation 93 36

Equation 94 36

Equation 95 36

Equation 96 36

Equation 97 36

Equation 98 37

Equation 99 39

Equation 100 ... 39

Equation 101 ... 39

Equation 102 ... 39

Equation 103 ... 40

Equation 104 ... 40

Equation 105 ... 46

Equation 106 ... 47

Equation 107 ... 47

Equation 108 ... 47

Equation 109 ... 47

Equation 110 ... 47

Equation 111 ... 48

Equation 112 ... 48

Equation 113 ... 68

1

Chapter 1: Introduction

1.1. On our effect on the planet

The biochemical processes that take place on Earth contribute to determine its climatic conditions.

The carbon cycle, for example, is the process by which carbon is exchanged between living beings,

the atmosphere, the soil, the hydrosphere and fossil reservoirs [1]. It is widely accepted that higher

carbon dioxide (CO2) concentrations in the atmosphere can cause an increase in the Earth’s mean

temperature due to the capacity of CO2 molecules to absorb infrared radiation that would otherwise

be radiated by Earth into space. This is called “greenhouse effect” and is produced by CO2 and

many other “greenhouse gases” (GHG), e.g. methane (CH4, another carbon-based gas) and water

vapor (H2O) [2].

There is also great evidence that at this moment, human activity is breaking the balance of the

carbon cycle by releasing an additional amount of fossil carbon reserves into the atmosphere;

mankind has been doing this to power its technological development for more than 200 years since

steam power became popular at the beginning of the 19th century. This idea is supported by studies

conducted on ice core samples which contain atmospheric air from thousands and even millions of

years ago; these studies allow to determine the atmospheric concentrations of CO2 in the past.

Figure 1 [3] shows that, at least for the last 800,000 years, the atmospheric CO2 concentration has

never been as high as today. It is also remarkable that the magnitude and rate of change produced

in the last years is much greater than that of any previous change in the time span considered.

Figure 1: Atmospheric CO2 levels during the last 800,000 years.

Source: NASA [3]; Data from: Luthi, D. et al. 2008; Etheridge, D.M. et al. 2010;

Vostok ice core data/J.R. Petit et al.; NOAA Mauna Loa CO2 record

The results shown in Figure 1 are consistent with direct measurements of the Earth’s temperature.

According to data of NASA, the years 2016 and 2020 are tied as the two warmest years on record,

with a global mean temperature 1.02°C higher than the 1951-1980 mean baseline [4]. Figure 2

shows a map of mean temperature differences between the 2016-2020 period and the baseline. The

differences reach a maximum value of around 2°C in the red areas of the map.

2

Figure 2: Temperature differences between the 2016-2020 period and the 1951-1980 baseline

Source: NASA’s Scientific Visualization Studio/Lori Perkins/Robert B. Schmunk [4]

The global temperature rise is also believed to be causing positive feedback loops that are making

the rate of change even faster [5]. Warmer oceans have less capacity to dissolve CO2, thus they

release it to the atmosphere, increasing the effect. Water evaporation also increases, and a warmer

atmosphere can hold more water vapor, which is a GHG as well. Melting ice releases trapped

carbon dioxide and methane. Ice sheets also reflect solar radiation far better than soil, rock or liquid

water; if the area covered by ice decreases, more energy from the sun is absorbed by Earth.

There is uncertainty on the future of climate, mostly because it largely depends on the decisions

that mankind makes now. A paper by O’Neill et al. [6] tries to explore different scenarios from the

point of view of the decisions that are made on a global scale in the coming years. The most

pessimistic scenario presents a global mean temperature 5°C higher than before the industrial

revolution by the end of this century; this was obtained by assuming a fivefold increase in the use

of coal. This result has been criticized [7] as unrealistic, but the authors claim that they only want

to present several scenarios and not predict the future. The same study is also fairly optimistic in

the good-case scenarios.

It is certainly difficult (actually impossible) to predict and specify the exact path of decisions that

have to be made in order to get to a global-level arrangement that leads to a systematic and orderly

reduction of the use of fossil fuels. (If the future were so easy to predict based on current decisions,

all the problems of the world would have already been solved. Mankind is clearly a chaotic system).

But the fact that predicting the future is hard should not dissuade us from trying to make it better,

and an obvious way to start is by reducing our environmental impact.

1.2. Sustainability

As already discussed, human activity is causing great changes on the planet, especially since the

industrial revolution of the late 18th century. But the problems discussed above are only a tiny part

of all the environmental problems that have been attributed to humans. Nowadays, concepts like

global warming, ocean acidification, rising sea levels, deforestation, desertification, droughts,

water pollution, plastic pollution, air pollution and mass extinction are widely accepted in the

scientific community, and there is great consensus that human activity is causing, or at least

contributing to, all of these problems. In recent years, this has caught the attention of the whole

planet, encouraging the formation of organizations, political parties and movements that have the

fight against climate change as their main motivation.

3

In order to understand the issue, it is fundamental to keep in mind that any human activity has an

impact on the environment (even for the essential activity of being alive, one needs to eat, which

produces an impact). Therefore, a straightforward solution that some people may advocate for is to

reduce the rate of human activities in order to reduce their impact; in other words, people should

reduce their consumption levels in order to reduce the impact of their consumption. This point of

view could be defended by considering, as an example, the level of fashion consumption and its

recent growth in developed countries. It could be argued that many people are consuming more

clothes than they actually need, and due to the great impact that this industry has [8], it would be

possible for people in rich countries to make a positive change by changing their habit of buying

clothes.

However, there are many other parts of the world where most people have not yet achieved the

minimum level of consumption that is necessary to lead a good and healthy life. Given that up to

now, there are still entire countries which have not achieved a life expectancy at birth of 60 years

[9], it could also be argued that many people in the world actually need to increase their

consumption up to a point where they have access to basic services like drinking water, medical

attention, electric energy, education, reliable food, hygiene, communications, transport and

security.

From this, it can also be concluded that mankind cannot indefinitely reduce its consumption level.

There is a minimum life standard that should be available for all people on Earth; therefore,

technology needs to reach at least a way to sustainably manage that level of consumption.

The term “sustainability” refers to the idea of a production model that could be maintained in the

long term without shattering the fragile balance of the Earth’s biosphere; this involves, among other

things, stopping the pollution of rivers, oceans and the atmosphere, and the loss of forests. People

who may be affected by the presence of industrial or agricultural activities should be considered as

well. There are different ideas that are slowly being put into practice with the aim of achieving this

goal; some of them are renewable energy sources, better energy management, industrial wastewater

treatment and recycling. A long-term solution for the energy production issue may be nuclear

fusion energy, although its commercial use might not be available at time in order to avoid the

effects of global warming.

The task of avoiding future environmental damages and fixing already done damages is not easy

and will require much of the human capacity during the following years to be accomplished. New

technologies need to be developed and already existing technologies need to become more efficient

and cheaper in order to be a viable option. The main goal of this document is to make a small

contribution in that direction.

1.3. Solar water heating

The most direct way of addressing the problem of global warming is by reducing GHG emissions.

In Section 2.1 it will be quantitatively argued that the use of solar energy to heat water (solar water

heating, SWH) can considerably contribute to this goal. This can be done in contexts ranging from

domestic to industrial purposes. Even if the desired water temperature cannot be reached with solar

energy alone, this method can be used to partially heat the water flow; in this case the use of fossil

fuels may not be totally avoided but it can be greatly reduced. In most SWH systems, this is the

most likely situation because solar energy is intermittent; therefore, there will be moments when

thermal energy is needed but not enough solar energy is available.

4

1.4. Policy optimization

The limitation of solar energy just mentioned can be at least partially compensated by improving

the control policy of the SWH system; this means, implementing an automatic controller which

operates the system in such a way as to improve the use of sustainable energy sources, thus reducing

GHG emissions.

In order to achieve such a performance improvement, thermal energy storage (TES) is a minimum

requirement. In the case of water heating, a TES system consists of storage tanks which, because

of good thermal isolation properties, are able to hold warm water for long periods of time. A basic

policy could be to store warm water at moments of high solar energy availability, in order to use it

at moments of low energy availability and high demand.

However, many heating systems require a more complex policy because their performance is

subject to many variables; in such cases, the optimal control policy may be not so easy to determine,

and Machine Learning algorithms become a good option. The area of Machine Learning that

focuses on control tasks and optimal decision making is called “Reinforcement Learning”; the basic

concepts of this topic are discussed in the next section.

1.5. Reinforcement Learning and Deep Reinforcement Learning

The concept of Reinforcement Learning (RL) is quite simple, although the objective can be very

hard to achieve, and the algorithms to do it are still under development ([10], [11], [12] and [13]).

RL is an independent area of Machine Learning that is intimately related to optimal control and

decision making. In contrast to supervised learning, which is based on learning from labels, RL is

based on learning from trial and error.

The objective of RL is to train an agent to interact with an environment. The environment is usually

a time-dependent simulation that can be influenced by the agent; i.e., the agent has some degree of

control over the environment. In order to achieve this agent-environment interaction, the

environment simulation is divided into time steps; on each time step, the agent is allowed to execute

an action on the environment. The actions are chosen by the agent from a pre-established set of

possibilities. The objective of the RL process is that the agent, without prior knowledge about the

environment or about the effect of the actions that it executes, learns the best action to execute on

each time step, only by interacting with the environment. To define how good the actions are, a

reward function is defined (it must be a real number). For every executed action, the agent gets a

reward on the next time step. The final goal of the training process is that the agent maximizes the

rewards it receives. This is the core concept of RL.

To make a decision about which action is the best, on every time step the agent receives a certain

amount of information from the environment which is called observation. Observations may

contain all kinds of information about the current, past, or future conditions of the environment;

however, they might not contain all the information that is necessary to define the internal state of

the environment. As already discussed, the goal is that the agent learns what action to execute on

each interaction (or time step) in order to maximize the rewards it receives, basing the decision on

the information that it has about the environment. The agent does not have to base the decision

only on the current observation, but it may also take advantage of the history of previous actions,

rewards and observations. The basic interaction process is shown in Figure 3.

5

Figure 3: Interaction between the agent and the environment in RL

Training a smart artificial agent to play a videogame is a good example of a concrete situation

where RL may be needed (actually, many important breakthroughs in RL have been done by

experimenting on videogames; the paper by Mnih et al. [14] is a good example that will be detailed

in Section 3.2). In that particular case, the observation would be the current screen image. The

possible actions obviously depend on the game, but they could be for example: going forward,

turning left, turning right, jumping, shooting, etc. (in the case of this study, only discrete and finite

action sets will be considered). Depending on what the goal of the game is, the agent may take

advantage of “remembering” previous screen images or actions that it has previously executed, i.e.

the history of previous interactions. The reward function could be the points received while playing.

What is important about the reward function is that the agent will always try to increase it;

therefore, the reward function should completely represent what the agent is supposed to do. In

other words, one has to formulate a reward function that satisfies the condition: “the higher the

reward, the better”.

Deep Reinforcement Learning (DRL) is a family of methods to train a deep neural network (DNN)

as the controlling agent. Here is why this may be necessary: in the case of a very simple

environment, namely, an environment with few possible observations and for which the last

observation is enough to determine the best action, it may be feasible to learn the best action for

every possible observation, and then to store this information in a table. However, in practice, most

environments have continuous observation spaces defined by several variables, thus this is not

possible [14]. In this case, a feasible method to determine a good policy is to use a DNN, which

evaluates the useful information as input and determines which action is the best as output. The

algorithms used to train the agents (DNNs) shall be detailed in Section 3.2.

1.6. Objectives

The study presented in this document aims to create an autonomous controlling agent for a water

heating system with availability of solar energy and other low-consuming heating devices.

The heating system used for the study was inspired by the system which heats the water for the

dressing rooms of the sports area of the building located in Beauchef 851, Santiago, Chile. The

building belongs to the Faculty of Physical and Mathematical Sciences (FCFM) of the University

of Chile. In addition to solar power and thermal energy storage, the system uses heat recovery from

a water chiller and air-water heat pumps.

Roughly speaking, the controlling agent controls the system by deciding which heating devices to

turn on and which to turn off, in order to reduce the electric consumption of the system while

fulfilling the task of delivering warm water to the dressing rooms. The agent has some instances to

make this decision during each day, and the heating devices remain at the states decided by the

agent until a new action is required.

The system is simulated with the TRNSYS software (Transient System Simulation Tool) [15],

which is a widely used software for the simulation of all kinds of transient systems, and it is

6

especially demanded to simulate thermal systems and other energy-related systems. For this reason,

it is also popular for the implementation of projects related to renewable energy sources.

To train the controlling agent, DRL is used; therefore, the control policy is determined by a DNN.

In order to create the training platform, a connection between the TRNSYS software and the Python

programming language must be established. As will be explained in Section 4.5, the connection

between both programs made it unfeasible to use regular deep learning libraries for the

development of the controlling agents; for this reason, the DNNs were programmed by using basic

features of Python.

In addition to the basic task of controlling the system to deliver warm water while using less energy,

it will be studied whether the controlling agent is able to cope with failures of the system. In this

case, the objective is to train the agent to fulfill its task of delivering warm water when some of the

heating devices are forcibly taken out of operation at random moments.

1.6.1. General objective

The main objective is to develop a platform that, by the use of DRL techniques, is able to train

smart agents to control a water heating system, even at moments when parts of the system are out

of operation due to a failure.

1.6.2. Specific objectives

The specific objectives of this study are:

1. Establishing a connection between the TRNSYS software and the Python programming

language. The Python code has to be able to transmit decisions to the TRNSYS simulation,

regarding which devices are used. In addition to this, the code must receive results from the

simulation, use them to make decisions and impose these decisions on the simulation.

2. Showing that an effective training process of the DNNs can be achieved in a basic

programming language, without the use of specialized Deep Learning libraries.

3. Defining a reward function that fulfills the condition of producing a desirable behavior of

the smart agents as they try to maximize it.

4. Analyzing the training results when the hyperparameters of the training algorithm are

changed. Different neural network architectures are tested as well.

5. Analyzing how the behavior of the controlling agents changes as the reward function is

modified. Modifying the reward function is equivalent to changing what the agents are

supposed to achieve.

6. Training agents to fulfill their task when the devices of the system are subject to random

failures.

1.7. Structure of the Thesis

This thesis is structured as follows:

On Chapter 2, a review of related studies is made with the aim of analyzing the potentials and

opportunities of the study that is being proposed.

On Chapter 3, the theoretical framework is discussed. Here, the mathematical foundations of the

methods used to train the autonomous agents are presented, along with other concepts that are

necessary to understand the study.

On Chapter 4, the characteristics of the water heating system that is used for the study are detailed,

and then a step-by-step development of the training platform is presented.

7

On Chapter 5, the experimental methodology is presented. First, the stages of the study are detailed,

and then the methods to analyze the results are explained.

On Chapter 6, the results of the conducted simulations are presented and discussed.

On Chapter 7, the conclusions that can be inferred from the results and from the study in general

are mentioned, and the opportunities for future work on the subject are mentioned.

8

Chapter 2: Literature Review

2.1. Literature on solar water heating

According to data of the agency “Our World in Data”, 84.33% of the global amount of energy

consumed in the year 2019 was produced by fossil fuels (oil, coal and gas) [16]. On the other hand,

energy production accounts for around 75% of the GHG emissions produced by human activities

[16].

Avoiding current and future GHG emissions makes it necessary to reduce the energy consumption

as well as to increase the use of sustainable energy sources. In this context, the use of SWH is an

important topic to take into account. Artur et al. [17] (2020) conducted a study in Maputo,

Mozambique, concluding that the use of SWH can lead to more than 65% reduction on the

electricity demand for domestic water heating (DWH). The study considered 700 households in 28

neighborhoods within the city of Maputo. The two main energy sources used for DWH were

electricity and biomass, with 46% and 41% of the total energy demand for DWH respectively. The

study also notes that the total electricity demand has increased an average of 9% annually during

the last 15 years, due to the movement of people from rural areas into cities, leading to electricity

shortages and big efforts to build new power plants. Therefore, the development of renewable

energy sources could be even more important in developing countries because it can lead to

reductions on environmental impact by slowing down the necessity of new power plants, and it can

improve the availability of electricity.

In the case of Canada, Aguilar et al. [18] concluded through simulations that DWH represents the

second-largest energy end-use by Canadian households, after space heating, with 21.7% of the

domestic energy demand. Despite the fact that more than 78% of the electricity in Canada is

produced with low carbon technologies (Dolter, Rivers [19]), 59% of the energy used for DWH is

produced by natural gas [18], so there is potential of reducing GHG emissions by implementing

domestic SWH systems. However, it is important to consider that the levels of solar radiation in

Canada are considerably lower than in Maputo, so the benefits in equal conditions are lower.

Jahangiri et al. [20] found that it was feasible to reduce 35% of the annual energy demand for space

heating and DWH with solar collectors in the city of Regina, Canada. For the study, a flat plate

collector with an area of 40m2 was considered to heat a space of 80m2 and to supply 110L of water

at 60°C per day. The study was conducted in other Canadian cities as well, with lower results in

terms of the percentage of energy supplied by solar energy.

2.2. Literature on policy optimization

One of the disadvantages of solar energy (and wind energy as well) is its intermittence, which leads

to serious difficulties if one wants to not only reduce their energy consumption but to fully depend

on renewable energy sources. If mankind wants to achieve a carbon-free future based on renewable

energy sources, this has to be the final goal.

In this context, a step towards that goal could be trying to optimize the use of renewable energy

and to maximize its exploitation. In the case of SWH, this can be achieved by the use of thermal

energy systems (TES) and a good system policy. The “policy” is the set of “rules” that the

automatic controller follows in order to achieve certain goals like reducing the energy cost,

reducing GHG emissions or increasing the use of renewable energy sources.

9

Saloux and Candanedo [21] presented a rule-based control strategy in a Canadian district with

SWH and TES systems, in which 34% reduction in energy costs and 29% reduction in GHG

emissions were achieved in comparison with the traditional control strategy. Another study

published by Tian et al. [22] also argues for the potential of solar district heating systems with

smart thermal grids in Denmark. Although the levels of solar radiation in Denmark are relatively

low, the study concluded that the integration of solar energy with smart control systems is

competitive because of different factors: the low price of the land used for the collectors, high

efficiency and high reliability of the collectors and high taxes on natural gas. Besides, 64% of

Danish households are already part of district heating systems, which makes it easier to integrate

solar energy into the systems.

With complex thermal systems, it may be difficult to determine an optimal strategy; in this case,

RL and DRL become good options. RL and DRL algorithms have proved to be effective in different

kinds of complex control tasks. Mullapudi et al. [23] presented a study where smart agents were

trained to control stormwater systems by using DRL. In the study, the controlling agent gets

information about flows in the system and is able to control valves in order to deviate the flows.

The study argues that the DRL-trained agent significantly outperforms the uncontrolled systems.

This could bring benefits like avoiding floods and reducing the need for building new drain

systems. In many places, the cost of building new infrastructures is prohibitive and occasional

floods are unavoidable, so these smart-controlled systems become an option to take into account.

The paper of Yang et al. [24] presents a smart controlling agent for a wind energy farm, trained by

using DRL. The main goal of the study was to enhance the economic viability of this type of energy,

with an energy storage system that is part of the farm, and the option of purchasing energy from

external reserves. By using energy price predictions and wind availability predictions, which are

generated by recurrent neural networks, the agent has to decide on the charge/discharge schedule

of the energy storage system, in order to optimize the revenues of the farm. The advantage of the

DRL method is that no assumptions on the probability distributions of energy price and wind

availability had to be made.

In the study of Nakabi and Toivanen [25], DRL methods were used to train agents in order to

optimize the performance of a microgrid that includes a wind turbine and an energy storage system.

Different DRL algorithms were tested, and remarkable differences between the performances of

the training methods were found. On the other hand, Lu et al. [26], presented a DRL approach to

optimize the performance of microgrids by including the option of trading energy between different

microgrids. Based on projections of future energy generation and future demand, the agent

determined the optimal energy trading policy, reducing the overall dependence on external power

plants.

In the field of optimal operation of thermal systems, Du et al. [27], Gupta et al. [28] and Brandi et

al. [29] present DRL approaches to optimize the performance of Heating, Ventilation and Air-

Conditioning (HVAC) systems. In the study of Lissa et al. [30], an agent that controls an integrated

system of HVAC and DWH was presented. The heat source for both purposes is a heat pump,

which has the option of using solar energy form photovoltaic panels; for this reason, the availability

of solar energy had to be taken into account as well.

In the paper of Gao et al. [31] a Deep Reinforcement Learning technique is applied to optimize the

control of an HVAC system, prioritizing the comfort of the occupants of the building and the energy

consume of the system. Like this thesis, Gao et al. [31] used the TRNSYS software for the

simulation of the system and the Python programming language for the development of the neural

networks, but they also used the MySQL software as an interface between both programs; this

10

enabled them to use the Pytorch library for the development of the neural networks. The results

show that the comfort level of the occupants can be enhanced along with the energy efficiency of

the system by the use of DRL-trained agents.

The study on RL made by Correa et al. [32] was conducted on the same system that is used for the

study presented in this document. In the study of Correa et al., the agent is able to control the

operation of two heating systems: heat recovery from a water chiller and solar thermal collectors.

The agent is allowed to take actions on the system three times a day. With other assumptions, a

total number of 20 possible paths that the agent can follow each day are obtained. In addition to

this, 5 KPIs are created based on indicators like the use of clean energy and energy consumption

of the system. With this, the reward function is defined by giving different “weights” to each KPI.

Then, the optimal paths, i.e. the paths which yielded the highest rewards, were determined as the

weights of the KPIs were modified.

In the field of failure resilience, Dooraki and Lee [33] developed an autonomous controller for a

quadcopter which was also capable of controlling the quadcopter when one or two of the rotors

fail. No more than one neural network was necessary to achieve the objective; this means that the

same controlling agent was capable of fulfilling the task on normal conditions as well as adapting

to abnormal conditions.

2.3. Summary

The aforementioned studies were cited in order to show the potentials as well as the opportunities

of the topics that are addressed in this thesis.

By taking the sources [16], [17], [18], [19] and [20] into account, it is possible to argue for both

the economic viability of SWH systems and their potential of reducing greenhouse gas emissions.

Studies [21] to [32] show the capacity of policy optimization methods to enhance the performance

of different types of systems, including SWH. [23] to [32], in particular, show the potential of

Reinforcement Learning and Deep Reinforcement Learning methods to achieve this objective. The

source [33] also shows the ability of these methods to operate systems which are subject to failures.

The paper of Gao et al. [31] is similar to the study presented in this thesis because the same software

was used for the simulation of the controlled system, and Deep Reinforcement Learning was used

to enhance the energy efficiency of a system as well. However, Gao et al. used the MySQL software

as an interface between TRNSYS and Python. One of the goals of this thesis is to show that an

effective training platform for deep neural networks can be achieved without the use of specialized

Deep Learning libraries, and therefore, the use of an interface between TRNSYS and Python is not

necessary. This result could be useful for the later development of DRL-trained agents in

environments where the access to Deep Learning platforms is not possible.

Another field that is very under-developed is the application of DRL techniques for the training of

failure-resilient agents. Dooraki and Lee [33] make a great contribution in that direction, but none

of the studies that were found does something similar with thermal systems.

In the last years, Machine Learning methods have become more and more popular in industrial

applications, but Reinforcement Learning remains largely unknown, and as has been shown, it has

the potential of largely increasing the efficiency of many different kinds of processes. For this goal

to become a reality, more academic research should concentrate in this topic. This thesis aims to

be a small contribution to the development of Reinforcement Learning techniques, especially in

Chile and in the Faculty of Physical and Mathematical Sciences of the University of Chile.

11

Chapter 3: Theoretical framework

3.1. Dense Deep Neural Networks

Deep Neural Networks (DNNs) are mathematical functions that evaluate their inputs and generate

outputs through successive operations, which gives them the ability to use several “levels of

abstraction”, one over the other. Their name is due to the fact that in some ways they resemble the

functioning of the human brain; they have even been used to better understand how the brain

processes the information that it receives (Yamins, DiCarlo 2016 [34]; Walker et al. 2019 [35]).

Their popularity comes from the fact that they can be “trained” by large amounts of data to find

trends and correlations which are hard or impossible to find by humans.

Even though there are various types of DNNs (e.g. Dense, Convolutional, Recurrent), only Dense

DNNs are used in this study, so only they will be discussed (from now on, “DNN” or simply

“network” will be used to denote a Dense DNN). A common way of illustrating these networks is

by diagrams like the one shown in Figure 4, which shows how the weights (lines) connect the

neurons (circles) of the network. Note that the network is constructed with “layers” (input, hidden

and output; the network can be made “deeper” by adding more hidden layers) which give the

network its “levels of abstraction” mentioned above. Each layer can “discover” features in the

results yielded by the previous one. In the specific case of Dense DNNs, all neurons of one layer

are connected to all neurons of the next layer by the weights, as shown in Figure 4.

Figure 4: Visual illustration of a Dense Deep Neural Network

In the coming sections, a detailed description of the mathematical foundations of Dense DNNs will

be made. This is because, as will be discussed in Section 4.5, no regular Deep Learning libraries

are used for the study; therefore, the DNN training platform have to be developed with basic Python

features. For these explanations, the representation and nomenclature shown in Figure 5 will be

considered, where a DNN is modeled as a sequence of matrix-vector operations. The figure shows

a network with three layers, but this can be generalized for more layers by adding layers at the right

side.

12

Figure 5: Dense DNN as a sequence of matrix-vector operations

In the representation of Figure 5, the 𝑖-th layer is defined by a weight matrix 𝐰𝑖, a bias vector 𝐛𝑖

and an activation function 𝜎𝑖. Note that the numbers over the letters indicate the number of the

layer and not an exponent. In this representation, unlike the one of Figure 4, the weights are not

connecting layers but they are part of the layers. Because of this, there is no need for an input layer;

instead, the first layer receives the input as a vector 𝐚0.

Under this representation, a DNN works as follows: the 𝑖-th layer receives an activation

vector 𝐚𝑖−1, either from the input or from a previous layer; then the activation vector is multiplied

by the weight matrix of the respective layer 𝐰𝑖 and then the bias vector 𝐛𝑖 is added, obtaining a

vector that here is denoted as 𝐳𝑖. Finally, the activation function of the 𝑖-th layer 𝜎𝑖 is applied to 𝐳𝑖,

obtaining the activation vector of that layer 𝐚𝑖. That vector is either passed to the next layer or

delivered as output of the DNN. It will be assumed that the vectors 𝐳𝑖 and 𝐚𝑖 have the same number

of components, i.e. the function 𝜎𝑖 does not change the number of components of the vector. From

this, it is easy to conclude that the dimensions of the matrix 𝐰𝑖 are defined as follows: the number

of columns of 𝐰𝑖 is equal to the size of the vector 𝐚𝑖−1 (this vector can be the output of a previous

layer or the input of the DNN if 𝑖 = 1) and the number of rows of 𝐰𝑖 is equal to the number of

neurons of the layer 𝑖, i.e. the size of the vector 𝐚𝑖.

The term “parameter” will be used to refer to any component of a weight matrix 𝑤𝑗𝑘
𝑖 or a component

of a bias vector 𝑏𝑗
𝑖. The term “hyperparameter” will be used for values which are external to the

network and have to be set by the programmer before the training process, like the learning rate,

the momentum factor, etc. The concepts just mentioned will be clarified in the coming sections.

3.1.1. Gradient Descent

The DNN is initialized with random values in its weight matrices, and in the case of this study, the

biases are initialized as zeros, so in order for the network to make precise predictions, these values

must be corrected; namely, the DNN must be trained. “Gradient Descent” is the name given to the

algorithm that achieves this. The weights and biases can be modified, whereas the activation

functions are defined before the training process and remain fixed.

A vector which contains all the parameters of the network will be denoted as 𝜽. All parameters are

arranged in this vector, regardless of the role they play as part of a bias vector or a weight matrix.

To generalize the representation shown in Figure 5, a DNN with 𝐿 layers will be assumed

(considering the number of layers as equal to the number of weight matrices). The network receives

an input 𝐚0 and produces an output 𝐚𝐿. The input has an associated label or target 𝐚𝑇, which is the

output that the network should have delivered in a perfect scenario. The output of the DNN, 𝐚𝐿, is

a function of the input and the parameters of the network:

 𝐚𝐿 = 𝐚𝐿(𝐚0, 𝜽) (1)

13

The error between 𝐚𝐿 and 𝐚𝑇 is measured by a cost function 𝐶.

 Error = 𝐶(𝐚𝐿 , 𝐚𝑇) = 𝐶(𝐚𝐿(𝐚0, 𝜽) , 𝐚𝑇) (2)

Now, it would be desirable to reduce the cost function by adjusting the network parameters. The

input 𝐚0 and the target 𝐚𝑇 are external data, thus they cannot be modified. However, by modifying

the parameters of the DNN, it is possible to modify the output 𝐚𝐿.

The gradient of the cost function with respect to the network parameters will be defined as:

 [∇𝜽𝐶(𝐚𝐿 , 𝐚𝑇)]𝑖 =
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝜃𝑖
 (3)

In Equation 3, 𝐚𝐿(𝐚0, 𝜽) as been simplified to 𝐚𝐿; however, it is important to understand that

changing the parameters of the network produces a change in the cost function by changing the

output 𝐚𝐿. For this reason, it is important that the cost function is differentiable with respect to the

output of the network.

The gradient of a function is the direction of steepest increase in that function; therefore, the best

way to modify the parameters of the network in order to reduce the cost function is by taking a

small step in the opposite direction to the gradient of the cost; hence the name of the algorithm:

 𝜽 ← 𝜽 − 𝜂 ⋅ 𝛻𝜽𝐶(𝐚𝐿 , 𝐚𝑇) (4)

The symbol ← indicates that 𝜽 is updated to what is at the right side of the arrow. 𝜂 is a small

number known as learning rate.

Equation 4 shows a single training step when only one sample (i.e. a pair of an input vector 𝐚0 and

its corresponding target vector 𝐚𝑇) is taken into account. However, the goal is to reduce the cost

function 𝐶 with respect to the whole data-set (i.e. the set of all samples that are being used for

training). Given that using all samples of the data-set for every single training step may be

computationally too expensive, a faster technique is to take a random subset of the data-set for each

training step. This technique is known as “mini-batch gradient descent” and the subsets of

experiences that are used for each training step are known as “batches”. With a batch size 𝑁 (i.e.

𝑁 samples per batch), Equation 4 can be re-written as:

 𝜽 ← 𝜽 −
𝜂

𝑁
⋅ ∑ 𝛻𝜽𝐶(𝐚𝑖

𝐿 , 𝐚𝑖
𝑇)

𝑁

𝑖=1

 (5)

3.1.2. Momentum

The training process of the DNN is an optimization problem, because what is being looked for is

the combination of DNN parameters that minimizes the cost function with respect to the data-set

as a whole; this can be thought of as the minimization process of a function (cost) in the multi-

dimensional space of the parameters of the network. In order to avoid local optima and to achieve

a faster training process, Momentum (Géron [36], page 361) is a useful tool. In intuitive words,

Momentum is a vector the same size as the parameter vector 𝜽 that stores the “update speed”

accumulated in previous iterations. When combined with the mini-bath gradient descent, the

training iterations are as follows:

14

 𝐦 ← 𝛽 ⋅ 𝐦 −
𝜂

𝑁
 ∑𝛻𝜽𝐶(𝐚𝑖

𝐿 , 𝐚𝑖
𝑇)

𝑁

𝑖=1

 (6)

 𝜽 ← 𝜽 + 𝐦 (7)

Here, 𝐦 is the momentum vector and 𝛽 is a number in [0,1) that can be thought of as a “friction”

that does not allow speed to accumulate when 𝛽 = 0. From now on it will be called “momentum

factor”. 𝑁 is the size of the batches used to train the network and 𝜂 is the learning rate. There are

other proposed ways of defining momentum, all with the same goal, but this is the one that is going

to be considered for the study.

3.1.3. Backpropagation

Now, the problem that still remains is: how to compute the derivatives of the cost function with

respect to the parameters of the network as shown in Equation 3? Backpropagation [37] is the

algorithm that solves this issue. It was first presented by Rumelhart et al. [38] in the year 1986.

For this section it is important to understand the nomenclature shown in Figure 5 (Section 3.1).

Like in previous sections, a DNN with 𝐿 layers is assumed. It receives an input 𝐚0 and produces an

output 𝐚𝐿. The input is associated to a target vector 𝐚𝑇 which is the desired output.

Let 𝑝 be any parameter of the DNN, namely a weight or a bias, from any layer (i.e., 𝑝 is any

component of the vector 𝛉). Reducing Equation 4 to a single parameter would look like:

 𝑝 ← 𝑝 − 𝜂 ⋅
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑝
 (8)

This means that the derivative of the cost function with respect to each parameter of the network

must be computed in order to update the corresponding parameter. As already discussed, the cost

function is reduced by modifying the output of the DNN, which can be achieved by modifying its

parameters. Therefore, it is useful to use the chain rule in the form:

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑝
= ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝜕𝑎𝑖
𝐿

𝜕𝑝
𝑖

 (9)

Here, 𝑎𝑖
𝐿 are the components of the output of the DNN. (Remember that 𝐚𝑇 is not modifiable). The

derivative 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝐿 depends on what cost function is being used. The quadratic cost (𝑄𝐶)

function is a popular example, in which case:

 𝑄𝐶(𝐚𝐿 , 𝐚𝑇) =
1

2
∑(𝑎𝑖

𝐿 − 𝑎𝑖
𝑇)2

𝑖

 ⇒
𝜕 𝑄𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 = 𝑎𝑖

𝐿 − 𝑎𝑖
𝑇 (10)

In the coming sections, the derivative 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝐿 in its general form will be used.

Now, all that is missing is to find the derivative 𝜕𝑎𝑖
𝐿/𝜕𝑝, that is, how modifying a parameter 𝑝

changes the output vector 𝐚𝐿.

15

Case 1: 𝑝 is a parameter of the output layer

The simplest problem is to find the derivative 𝜕𝑎𝑖
𝐿/𝜕𝑝 when the parameter 𝑝 is a weight or a bias

of the output layer. Given that the vector 𝐚𝐿 is defined as the result of the activation function 𝜎𝐿

when applied to the 𝐳𝐿 vector, and by using the chain rule, this derivative is equal to:

𝜕𝑎𝑖

𝐿

𝜕𝑝
= ∑

𝜕𝑎𝑖
𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑝
𝑗

 (11)

From now on, it will be assumed that the activation function of the output layer, 𝜎𝐿, is an element-

wise function; this means that every component of the 𝐳𝐿 vector determines one component of the

𝐚𝐿 vector:

 𝑎𝑖
𝐿 = 𝜎𝐿(𝑧𝑖

𝐿) (12)

This assumption is valid for nearly all activation functions; only the Softmax function is an

important exception that will be discussed in the next section. For deeper layers (other than the

output layer), it will be assumed that the activation function is always element-wise. With this, the

derivative shown in Equation 11 becomes:

𝜕𝑎𝑖

𝐿

𝜕𝑝
=

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑝
 (13)

The 𝐳𝐿 vector is defined as:

 𝐳𝐿 = 𝐰𝐿 ⋅ 𝐚𝐿−1 + 𝐛𝐿 (14)

Therefore:

 𝑧𝑖
𝐿 = ∑𝑤𝑖𝑗

𝐿 ⋅ 𝑎𝑗
𝐿−1

𝑗

+ 𝑏𝑖
𝐿 (15)

From Equation 15, it can be directly concluded that the derivatives 𝜕𝑧𝑖
𝐿/𝜕𝑤𝑖𝑗

𝐿 and 𝜕𝑧𝑖
𝐿/𝜕𝑏𝑖

𝐿 are:

𝜕𝑧𝑖

𝐿

𝜕𝑤𝑖𝑗
𝐿 = 𝑎𝑗

𝐿−1 (16)

𝜕𝑧𝑖

𝐿

𝜕𝑏𝑖
𝐿 = 1 (17)

By combining Equation 13 with Equations 16 and 17, it is possible to get expressions for the

derivatives of 𝑎𝑖
𝐿, i.e. the outputs of the DNN, with respect to the parameters (weights and biases)

of the output layer:

𝜕𝑎𝑖

𝐿

𝜕𝑤𝑖𝑗
𝐿 =

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑎𝑗

𝐿−1 (18)

𝜕𝑎𝑖

𝐿

𝜕𝑏𝑖
𝐿 =

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 (19)

16

Case 2: 𝑝 is a parameter of a hidden layer

Now the problem becomes: how to get deeper into the other layers? This is where the real

backpropagation property is used. It can be understood by noting that, unlike the input of the first

layer, 𝐚0, the input of the last layer, 𝐚𝐿−1, can be modified since it is produced by previous layers;

and this would modify the output of the DNN. Now the question becomes: how to modify the

parameters of previous layers (i.e. 𝐿 − 1 , 𝐿 − 2 , …) so that 𝐚𝐿−1 gets modified in the right way in

order to reduce the cost function? This will be done with the layer (𝐿 − 1) first and then a

generalization for deeper layers will be inferred.

It is useful to note that the relations shown in Equations 18 and 19 are valid for the layer (𝐿 − 1)

as well, only by changing the number of the layer:

𝜕𝑎𝑖

𝐿−1

𝜕𝑤𝑖𝑗
𝐿−1 =

𝑑 [𝜎𝐿−1(𝑧𝑖
𝐿−1)]

𝑑 𝑧𝑖
𝐿−1 ⋅ 𝑎𝑗

𝐿−2 (20)

𝜕𝑎𝑖

𝐿−1

𝜕𝑏𝑖
𝐿−1 =

𝑑 [𝜎𝐿−1(𝑧𝑖
𝐿−1)]

𝑑 𝑧𝑖
𝐿−1 (21)

As already discussed, for Equations 20 and 21 it has been assumed that the activation function 𝜎𝐿−1

is element-wise.

To determine how to modify the activation vector 𝐚𝐿−1, the derivative of the cost function with

respect to its components is computed:

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝜕𝑎𝑖
𝐿

𝜕𝑎𝑗
𝐿−1

𝑖

 (22)

The derivative 𝜕𝑎𝑖
𝐿/𝜕𝑎𝑗

𝐿−1 can be solved by applying the chain rule and Equations 12 and 15:

𝜕𝑎𝑖

𝐿

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕𝑎𝑖
𝐿

𝜕𝑧𝑚
𝐿

⋅
𝜕𝑧𝑚

𝐿

𝜕𝑎𝑗
𝐿−1

𝑚

=
𝜕 𝑎𝑖

𝐿

𝜕 𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑎𝑗
𝐿−1 =

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿 (23)

Finally, by applying the chain rule and Equations 20, 21, 22 and 23, it is possible to obtain

expressions for the derivatives of the cost function with respect to the parameters of the layer (𝐿 −
1). In the case of the weights:

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑤𝑗𝑘
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑚
𝐿−1

⋅
𝜕𝑎𝑚

𝐿−1

𝜕𝑤𝑗𝑘
𝐿−1

𝑚

=
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 ⋅

𝜕𝑎𝑗
𝐿−1

𝜕𝑤𝑗𝑘
𝐿−1

 = ∑
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿 ⋅
𝑑 [𝜎𝐿−1(𝑧𝑗

𝐿−1)]

𝑑 𝑧𝑗
𝐿−1 ⋅ 𝑎𝑘

𝐿−2

𝑖

 (24)

For the biases the process is almost the same:

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑏𝑗
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑚
𝐿−1

⋅
𝜕𝑎𝑚

𝐿−1

𝜕𝑏𝑗
𝐿−1

𝑚

=
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 ⋅

𝜕𝑎𝑗
𝐿−1

𝜕𝑏𝑗
𝐿−1

17

 = ∑
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝑑 [𝜎𝐿(𝑧𝑖
𝐿)]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿 ⋅
𝑑 [𝜎𝐿−1(𝑧𝑗

𝐿−1)]

𝑑 𝑧𝑗
𝐿−1

𝑖

 (25)

Conclusion

It might seem that the calculations are getting more complicated for the hidden layers, but there is

a simple way to generalize the method for any number of layers:

1. The derivative of the cost function with respect to an activation of any hidden layer 𝑙 can

be known by knowing derivatives of the cost function with respect to all activations of the

next layer (the one which is closer to the output layer):

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝑙 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝑙+1 ⋅

𝑑 [𝜎𝑙+1(𝑧𝑖
𝑙+1)]

𝑑 𝑧𝑖
𝑙+1 ⋅ 𝑤𝑖𝑗

𝑙+1

𝑖

 (26)

When the layer (𝑙 + 1) happens to be the output layer 𝐿, then the derivative

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝑙+1 can be computed directly from the definition of the cost function.

This rule can be applied backwards from the output layer until reaching the first layer. This

is the core of backpropagation.

2. The derivative of the activations of any hidden layer 𝑙 with respect to the parameters of the

same layer can be determined with the following formulas:

𝜕𝑎𝑖

𝑙

𝜕𝑤𝑖𝑗
𝑙 =

𝑑 [𝜎𝑙(𝑧𝑖
𝑙)]

𝑑 𝑧𝑖
𝑙 ⋅ 𝑎𝑗

𝑙−1 (27)

𝜕𝑎𝑖

𝑙

𝜕𝑏𝑖
𝑙 =

𝑑 [𝜎𝑙(𝑧𝑖
𝑙)]

𝑑 𝑧𝑖
𝑙 (28)

These two rules allow to determine the derivative of the cost function with respect to any parameter

of the DNN by applying the chain rule.

3.1.4. Softmax activation

As already discussed, for the previous section it has been assumed that the activation functions of

all layers are element-wise. The only exception that will be discussed is the case of the Softmax

activation, which is used as the activation function of the output layer when the DNN is used to

generate a set of probabilities that together should add up to one.

An example of when to use this function is when the DNN has to categorize the data samples into

a finite number of classes, each sample only belonging to one class. The DNN delivers a vector of

values which are greater than zero and add up to one; therefore, this values can be interpreted as

the probabilities that a sample belongs to each class.

Like other activation functions, the Softmax is applied to the 𝐳𝐿 vector as discussed in Section 3.1;

its formula is (Géron [36], page 164):

 𝑎𝑖
𝐿 = [𝜎𝐿(𝐳𝐿)]𝑖 =

exp(𝑧𝑖
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

 (29)

18

The number 𝑗 takes the indices of all the components of the 𝐳𝐿 vector. The Softmax function, as

defined in Equation 29, is not element-wise because every component of the 𝐚𝐿 vector depends on

all components of the 𝐳𝐿 vector. In this case, the target vector will be defined as:

 𝑎𝑖
𝑇 = {

1 if 𝑖 is the class that the sample belongs to
0 if 𝑖 is NOT the class that the sample belongs to

 (30)

This way to define the target is intuitive because it shows that the sample has a probability equal

to one of belonging to the class that it actually belongs to.

In this case, the cost function will be the categorical cross-entropy (CCE) function:

 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇) = −∑𝑎𝑖
𝑇 ⋅ ln(𝑎𝑖

𝐿)

𝑖

 (31)

Given that 𝑎𝑖
𝑇 is equal to zero except when 𝑖 is the real class of the sample, this can be reduced to:

 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇) = − ln(𝑎𝑘
𝐿) 𝑘 = real class of the sample (32)

In this case, it is simpler to (directly) compute the derivatives 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑧𝑖
𝐿.

When 𝑖 is not the target class, i.e. 𝑖 ≠ 𝑘:

 𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 = −

𝜕 ln(𝑎𝑘
𝐿)

𝜕𝑧𝑖
𝐿 = −

𝜕

𝜕𝑧𝑖
𝐿 ln (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

= −(

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

−1

⋅
𝜕

𝜕𝑧𝑖
𝐿 (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

= − (

∑ exp(𝑧𝑗
𝐿)𝑗

exp(𝑧𝑘
𝐿)

) ⋅
− exp(𝑧𝑘

𝐿) ⋅ exp(𝑧𝑖
𝐿)

(∑ exp(𝑧𝑗
𝐿)𝑗)

2 =
exp(𝑧𝑖

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

= 𝑎𝑖
𝐿 (33)

When 𝑖 is the target class, i.e. 𝑖 = 𝑘:

𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑘
𝐿 = −

𝜕 ln(𝑎𝑘
𝐿)

𝜕𝑧𝑘
𝐿 = −

𝜕

𝜕𝑧𝑘
𝐿 ln (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

 = −(
exp(𝑧𝑘

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

−1

⋅
𝜕

𝜕𝑧𝑘
𝐿 (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

 = −
∑ exp(𝑧𝑗

𝐿)𝑗

exp(𝑧𝑘
𝐿)

⋅ (
exp(𝑧𝑘

𝐿) ⋅ (∑ exp(𝑧𝑗
𝐿)𝑗) − (exp(𝑧𝑘

𝐿))2

(∑ exp(𝑧𝑗
𝐿)𝑗)

2)

 = −(1 −
exp(𝑧𝑘

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

) = 𝑎𝑘
𝐿 − 1 (34)

19

In summary, let 𝑘 be the index of the real class of a sample:

𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 = 𝑎𝑖

𝐿 − 𝛿𝑖𝑘 (35)

𝛿𝑖𝑘 is the Kronecker Delta.

Only for the parameters (weights and biases) of the output layer, there is a slight difference in the

computation of the gradient vector, in contrast with the element-wise case shown in the previous

section: since in this case the derivatives 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑧𝑖
𝐿 have been computed, the derivatives

shown in Equations 16 and 17 have to be used in order to apply the chain rule.

Also, Equation 22 must be replaced with the formula shown in Equation 36. After this, the

backpropagation algorithm is the same for the parameters of hidden layers.

𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑎𝑗
𝐿−1

𝑖

 (36)

3.1.5. DNN initialization

Before the training process, the DNN is created without previous knowledge about the information

that it is going to learn. The question of how to set the initial parameters has been studied and it

was found that the initialization method can greatly influence the performance of the network and

its convergence time [39].

For this study, the default initialization method for the dense layers of Keras is used [40]. Keras is

a widely used Deep Learning library for Python.

In Keras, by default, the bias vectors are initialized as zeros. This means that all components of the

bias vectors of all layers are equal to zero at the beginning. For the weight matrices, the Glorot

Uniform method is used. This method, which was presented by Glorot and Bengio in 2010 [41],

implies that the initial weights of the layers (i.e. the components of the weight matrices) follow a

uniform distribution:

 𝑤𝑖𝑗
𝑙 ~ 𝑈 (−√

6

𝐼𝑙 + 𝐽𝑙
 , √

6

𝐼𝑙 + 𝐽𝑙
) (37)

The arguments of the uniform distribution 𝑈 are the limits for the random variable 𝑤𝑖𝑗
𝑙 . 𝐼𝑙 and 𝐽𝑙

are the output size and the input size of the layer 𝑙, respectively. In other words, the matrix 𝐰𝑙

has 𝐼𝑙 rows and 𝐽𝑙 columns.

3.2. Deep Reinforcement Learning Algorithms

In the coming sections, the Deep Reinforcement Learning (DRL) algorithms that are tested during

the study will be explained. However, it is necessary to clarify a few more basic concepts first. For

this section it is also necessary to understand the introduction given in Section 1.5.

20

3.2.1. Basic Concepts

Environment state

It has been said that the agent may base its decisions on the history of previous interactions with

the environment. Therefore, the history at time step 𝑡 is defined as (David Silver [42]):

 𝐻𝑡 = { 𝑂1, 𝐴1, 𝑅1, 𝑂2, 𝐴2, 𝑅2, … , 𝐴𝑡−1, 𝑅𝑡−1, 𝑂𝑡 } (38)

Here, 𝑂 are observations, 𝐴 are actions and 𝑅 are rewards. The numbers indicate the time step to

which they belong. The information that the agent uses to make a decision on time step 𝑡 will be

called “state”, and it is any convenient function of the history 𝐻𝑡 [42]:

 𝑆𝑡 = 𝑓(𝐻𝑡) (39)

It is important to note that this “state” is the information that the agent has about the environment;

however, it may not define the full internal state of the environment; this will depend on how the

observations are defined. The term “state” or “environment state” are used interchangeably in this

document to refer to the definition of Equation 39.

Moreover, from Chapter 4 onwards, the word “state” is used as equivalent to “observation”

because, as will be discussed in that section, the agents of this study only use the latest observation

as information to make a decision. Mathematically written:

 𝑆𝑡 = 𝑓(𝐻𝑡) = 𝑂𝑡 (40)

In this theoretical section, the term “state” is used in its general sense as any function of the

interaction history, as shown in Equation 39.

Terminal states

An environment is defined as episodic if it can reach states in which the agent does not have to

continue executing actions; these are called terminal states. When a terminal state is reached, the

interaction between the agent and the environment finishes and another episode must begin in order

to continue the training process [43].

On the convention

As already shown in Equation 38, in the next sections, 𝑆𝑡 is used to denote the state of the

environment at time step 𝑡; therefore, 𝑂𝑡 is the observation received from the environment at 𝑡. 𝐴𝑡

is used to denote the action that is executed immediately after the observation 𝑂𝑡 is received and

𝑅𝑡 is the reward received immediately after the action 𝐴𝑡 is executed. It is important to note this

because, under this convention, the reward 𝑅𝑡 is received along with the observation 𝑂𝑡+1.

Long Term Rewards (Returns)

This concept is one of the most important ones in RL, and it is key to understanding the

mathematics behind the training algorithms.

With most environments, one has to consider that an action not only has an effect on the reward

that is received immediately after that action is executed; instead, it may affect the rewards that are

received many time steps later as well. This makes it necessary for the agent to take future rewards

into account at the moment of deciding what action to choose. To achieve this consideration of

future rewards, long term rewards, also called returns [43], are defined as:

21

 𝐺𝑡 = ∑𝛾𝑖−𝑡 ⋅ 𝑅𝑖

𝑁

𝑖=𝑡

= 𝑅𝑡 + 𝛾 ⋅ 𝑅𝑡+1 + 𝛾2 ⋅ 𝑅𝑡+2 + 𝛾3 ⋅ 𝑅𝑡+3 + ⋯ (41)

𝐺𝑡 is the return of the action 𝐴𝑡, executed at the instant 𝑡. 𝑁 is the number of time steps in the

corresponding episode; therefore 𝑖 takes the numbers of the time steps that happened since action

𝐴𝑡 until the end of the episode. 𝛾 is a training hyperparameter in the interval [0,1] that is supposed

to approximate the level of influence of an action on future rewards. Although this “level of

influence” depends mainly on the features of the environment, the value of 𝛾 must be set by the

user and its optimal value must be found through exploration. If its optimal value is close to one,

actions greatly influence future rewards; if its optimal value is close to zero, only the immediate

reward is being influenced by the action.

Policy and expected returns

The term “policy” will be used to summarize the whole set of rules that are followed in order to

make decisions as the environment simulation progresses. The policy could be, for example, that

sometimes a completely random action is selected and sometimes the action that the agent predicts

to be the best is selected. If the parameters of the DNN are modified, the policy is being modified

as well.

The rewards (and therefore the returns) that the agent gets obviously depend on its policy (if they

do not, then the rewards are independent from what the agent does, so the training process is

pointless). Nonetheless, the agent may not have complete knowledge about the internal state of the

environment; therefore, the rewards may not be deterministic from the point of view of the agent

when a certain action is executed on a certain environment state, because the state that the agent is

seeing may have partial information.

A property that is assumed to justify the algorithms discussed below is called “markovian

property”; it implies that the pair (𝑅𝑡 , 𝑆𝑡+1), as a random variable, follows a probability

distribution (discrete or continuous) that only depends on the previous state 𝑆𝑡 and action 𝐴𝑡

(although the state 𝑆𝑡 can consider previous observations, actions and rewards). More details on

the markovian property are discussed in Section 3.4, although in that case no actions or rewards

are involved in the process.

What can be concluded from the markovian property is that, given the policy that the agent is

following, each environment state is associated to a certain expected return. The fact that this

“expected return” can actually be very hard to determine is what makes the use of machine learning

methods a very useful tool. Therefore, in the mathematical argumentations to come, the expected

return is a very important concept, and the policy is what determines it. In the coming equations,

the letter 𝜋 will be used to denote policies in general (with all the rules that they may have), and

𝐴𝑡 ~ 𝜋 will be used to denote that the action 𝐴𝑡 was chosen by following the policy 𝜋.

3.2.2. Policy gradient methods and value methods

There are two big families of methods used in Deep Reinforcement Learning: policy gradient

methods and value methods [43]. With all methods, the input which is given to the DNN is the

state of the environment.

With policy gradient methods, the output of the DNN consists of probabilities of executing each

possible action. The agent chooses an action by following these probabilities, and the training

22

process consists of increasing the probabilities of executing actions which turn out to yield high

returns, thus decreasing the probability of executing actions that yield low returns.

With value methods, the DNN seeks to predict the return that the agent will get with future rewards

given the current state of the environment. In methods purely based on values, the DNN has to

predict the expected return for each possible action, and then the best action to take will be the one

which has the largest expected return.

3.2.3. REINFORCE algorithm

The REINFORCE algorithm (Géron [36], page 617) is a policy gradient method. This means that

the actions are chosen by following probabilities delivered by the agent; therefore, the Softmax

activation function is used in the output layer of the DNN (see Section 3.1.4). The algorithm works

roughly the following way:

1. Execute multiple episodes without making any change to the DNN.

2. Compute the return for every executed action of every episode, with the formula given by

Equation 41.

3. Compute the average and the standard deviation of the returns. Normalize the returns by

subtracting the average to every return and then dividing the result by the standard

deviation.

4. For every state-action pair (𝑆𝑡 , 𝐴𝑡) of every episode, compute how the parameters of the

network should be modified in order to increase the probability of executing 𝐴𝑡 in the

state 𝑆𝑡. This is done as follows: given that the activation function of the output layer is a

Softmax function, a gradient is computed by using the categorical cross-entropy cost

function and considering the action 𝐴𝑡 as “target class” (as defined in Section 3.1.4).

5. Multiply each gradient by the normalized return of the corresponding action. Average all

resulting vectors and use the result to update the network. Note that, if the return of an

action is below the average, the parameter update will actually result in decreasing the

probability of executing that action because the normalized return is negative.

6. Repeat this process several times until a good performance is reached. The parameters of

the DNN must be updated in “small” steps defined by a learning rate, just like in supervised

learning.

The intuition behind this method is that the agent starts its training process by executing totally

random actions, and then it can look at them “in retrospect” to analyze which of them where good

and which were bad; and then the network is updated with these results.

3.2.4. Actor-Critic Algorithm

The Actor-Critic algorithm (Sutton, Barto [43], page 331) combines the concepts of policy

gradients and values. In order to understand it, some concepts must be discussed before. First, the

concept of “state value” is defined as the expected return given the current state of the environment

and the policy that the agent is using:

 𝑣𝜋(𝑠) = 𝔼 [𝐺𝑡 | 𝑆𝑡 = 𝑠 , 𝐴𝑖 ~ 𝜋 for 𝑖 ≥ 𝑡] (42)

As already discussed, 𝜋 represents the policy that is being applied, and 𝐴𝑖 ~ 𝜋 expresses that the

action 𝐴𝑖 is chosen by following that policy. Because of the definition of returns given by Equation

41, and also by taking the markovian property into account (see “Policy and expected returns” in

Section 3.2.1 for markovian property), the state value of state 𝑠 can also be expressed as:

23

 𝑣𝜋(𝑠) = 𝔼 [𝑅𝑡 + 𝛾 ⋅ 𝑣𝜋(𝑆𝑡+1) | 𝑆𝑡 = 𝑠 , 𝐴𝑡 ~ 𝜋] (43)

This “splitting” of the state value into the immediate reward and the state value of the next state is

the key of the Actor-Critic algorithm. In this method two neural networks are used:

- The “actor” is a DNN that evaluates the current state of the environment and delivers

probabilities of executing each possible action.

- The “critic” is a DNN that evaluates the state of the environment and predicts its state value.

The training procedure is as follows:

1. Begin an episode.

2. The actor evaluates the state 𝑆𝑡 and delivers the probabilities of executing each action. An

action 𝐴𝑡 is executed by following the probabilities.

3. A reward 𝑅𝑡 and a new state 𝑆𝑡+1 are received. For the next steps it is assumed that 𝑆𝑡+1 is

not a terminal state; the exception will be discussed in the last point.

4. Compute predictions for the state values 𝑣𝜋(𝑆𝑡) and 𝑣𝜋(𝑆𝑡+1) using the critic DNN; these

predictions will be denoted as 𝑣(𝑆𝑡) and 𝑣(𝑆𝑡+1). If the result 𝑅𝑡 + 𝛾 ⋅ 𝑣(𝑆𝑡+1) is greater

than 𝑣(𝑆𝑡), the action 𝐴𝑡 is considered to be better than expected; if the opposite happens,

the action is considered to be worse than expected.

5. Update the actor DNN so that if the action 𝐴𝑡 was better than expected, the probability of

executing that action on state 𝑆𝑡 is increased, and if the action was worse than expected, the

probability of executing it is decreased. This is done as follows: given that the activation

function of the output layer is a Softmax function, a gradient is computed with the

categorical cross-entropy cost function and considering the action 𝐴𝑡 as “target class” (as

defined in Section 3.1.4). In order to take the “quality” of the action 𝐴𝑡 into account, the

gradient vector is multiplied by the factor 𝛿 = 𝑅𝑡 + 𝛾 ⋅ 𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡) and the obtained

vector is used to update the actor DNN. Note that if the value of 𝛿 is negative, the network

update will result in decreasing the probability of executing the action 𝐴𝑡, as desired.

6. Update the critic DNN so that the prediction 𝑣(𝑆𝑡) gets closer to 𝑅𝑡 + 𝛾 ⋅ 𝑣(𝑆𝑡+1). This is

done as follows: compute the gradient using the quadratic error as cost function, and the

value 𝑅𝑡 + 𝛾 ⋅ 𝑣(𝑆𝑡+1) as target. Update the network with the obtained gradient.

7. Repeat the process until the episode is finished. In the terminal state, the state value is zero

by definition, i.e. 𝑣(𝑆𝑡+1) = 0, so the critic only has to compute a prediction for 𝑣𝜋(𝑆𝑡).

The whole process can be repeated for multiple episodes until a good performance is

reached.

The intuition behind this process is that the actor learns which actions are good and which are bad

based on the predictions of the critic, and the probabilities of executing those actions are increased

or decreased according to the results obtained. This is achieved by multiplying the gradient vector

by the scalar 𝛿 expressed above. In this way, the difference between how good the action was

expected to be and how good it actually was is taken into account as well. Meanwhile, the critic

learns to make better predictions of the state values based on the rewards that the agent gets from

the environment.

Clearly, the parameter updates for both networks must be “small” steps defined by learning rates.

Each DNN can have its own associated learning rate. In another variant of this method, the training

steps are not executed at every time step; instead the gradients are stored and averaged every certain

number of time steps. However, this was not tested in this study.

24

3.2.5. Q-Learning and Deep Q-Learning

3.2.5.1. Q-Values

Q-Values (Géron [36], page 623) are defined as the expected return that the agent will get after

taking the action a on state s:

 𝑄𝜋(𝑠, 𝑎) = 𝔼 [𝐺𝑡 | 𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎 , 𝐴𝑖 ~ 𝜋 for 𝑖 > 𝑡] (44)

As in previous sections, 𝐴𝑖 ~ 𝜋 expresses that the action 𝐴𝑖 is chosen by following the policy 𝜋.

With this definition, the best action to take on state 𝑠 would be the one that has the largest Q-Value.

Unlike the state value function discussed above, which only takes the state as argument and

determines the expected return, the Q-Value function determines the expected return for a state-

action pair (𝑠, 𝑎). This is necessary in order for the agent to know which action is the best.

The Q-Value of a state-action pair depends on the policy that is being applied because the return

depends on future rewards, which are dependent on the policy. The maximum possible Q-Value of

a state action pair (𝑠, 𝑎) is obtained when the best possible policy is applied in the next time steps.

Clearly, since the goal of the agent is to find that policy, it is desirable to find the largest possible

Q-Value for every state-action pair.

3.2.5.2. Q-Learning

Let 𝑄∗(𝑠, 𝑎) be the optimal (or largest possible) Q-Value for the state-action pair (𝑠, 𝑎). Note that

this Q-Value does not depend on the policy anymore, because it is being assumed that the best

possible policy is followed after executing the action 𝑎. This value may also be expressed as:

 𝑄∗(𝑠, 𝑎) = 𝔼 [𝑅𝑡 + 𝛾 ⋅ max
𝑎′

 { 𝑄∗(𝑆𝑡+1 , 𝑎
′) } | 𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎] (45)

This transformation, which is analogous to the one discussed for the actor-critic algorithm

(Equation 43), consists of “splitting” the Q-Value into the immediate reward and the maximum Q-

Value of the next state. This transformation also assumes the markovian property as true. With this

in mind, an iterative way of converging to the optimal Q-Values of the environment is to update

the Q-Value approximation �̂� after every experienced transition with a learning rate 𝜂 and the

formula (Géron [36], page 626):

�̂�(𝑆𝑡 , 𝐴𝑡) ⟵ �̂�(𝑆𝑡 , 𝐴𝑡) + 𝜂 ⋅ (𝑅𝑡 + 𝛾 ⋅ max
𝑎′

 { �̂�(𝑆𝑡+1 , 𝑎
′) } − �̂�(𝑆𝑡 , 𝐴𝑡)) (46)

Up to now, no neural networks have been introduced into the algorithm. The approximations

�̂�(𝑠, 𝑎) can simply be recorded in a table if the state space and the action space are discrete and

finite (and not very large). Then, the entries of the table could be updated according to Equation

46 until achieving convergence for every pair (𝑠, 𝑎). One detail is that, when 𝑆𝑡+1 is a terminal

state, the Q-Values of all actions are equal to zero; therefore, no predictions from the agent are

needed. This method is known as “Tabular Q-Learning”.

The benefit of this method is that, after executing an action, one only has to wait until the reward

𝑅𝑡 and the next state 𝑆𝑡+1 are received, in order to update the Q-Value approximation of the

previous state-action pair (𝑆𝑡 , 𝐴𝑡). However, the update is based on the Q-Value approximations

for the state 𝑆𝑡+1, so several iterations are normally needed to achieve convergence.

25

3.2.5.3. Deep Q-Learning algorithm

In the study presented here, the action-space is discrete and finite but the state-space is continuous

and multi-dimensional; therefore, the tabular method just mentioned becomes unfeasible. Deep Q-

Learning is a method for training a DNN, also known as Deep Q-Network (DQN), to evaluate the

environment states and to predict the optimal Q-Values. It is inspired by the “standard” Q-Learning

method discussed above. This method was shown to be very powerful by researchers of DeepMind,

one of the leading companies in the area of Machine Learning and specifically in Reinforcement

Learning as well. In 2015, Mnih et al. published a paper in the Nature magazine [14] where this

algorithm obtained state-of-the-art results at various Atari games, surpassing all other previous

training methods and achieving the level of professional human players.

The output vector of the DNN, denoted here as 𝐚𝐿 to follow the same nomenclature from previous

sections, must contain as many values as possible actions the agent can choose. Each component

of 𝐚𝐿 is the Q-Value prediction of one action, as a function of the state that was given to the DNN

as input:

 [𝐚𝐿(𝑆𝑡)]𝑖 = �̂�(𝑆𝑡 , 𝑎𝑖) (47)

In Equation 10, 𝑖 is not representing a time step like the letter 𝑡; instead, it represents the index of

an action within the set of possible actions. That is why 𝑖 also represents the components of the

vector 𝐚𝐿. �̂� is a Q-Value prediction of the DNN.

The first step of the training process consists of executing random actions on the environment and

storing these “experiences” of the agent in a “Replay Memory”, which will be used as data-set to

train the DNN. When the maximum length of the Replay Memory has been reached, the oldest

experiences are erased. An experience 𝐸𝑡 is composed of:

 𝐸𝑡 = { 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1 } (48)

From experience 𝐸𝑡, a target vector will be defined so that the training method based on Gradient

Descent, discussed in Section 3.1.1, can be used. The target vector 𝐚𝑇 is defined as:

 [𝐚𝑇(𝐸𝑡)]𝑖 = {
�̂�(𝑆𝑡 , 𝑎𝑖) if 𝑖 is NOT the index of the action 𝐴𝑡

𝑄Target(𝑆𝑡, 𝐴𝑡) if 𝑖 is the index of the action 𝐴𝑡
 (49)

In Equation 49, 𝑄Target(𝑆𝑡, 𝐴𝑡) is defined as:

𝑄Target(𝑆𝑡, 𝐴𝑡) = {
𝑅𝑡 + 𝛾 ⋅ max

𝑎′
 { �̂�(𝑆𝑡+1, 𝑎

′) } if 𝑆𝑡+1 is not a terminal state

𝑅𝑡 if 𝑆𝑡+1 is a terminal state
 (50)

Note that the target vector 𝐚𝑇, which is a function of the experience 𝐸𝑡, is defined so that it only

differs from the prediction of the network in the component that corresponds to the action 𝐴𝑡

executed at that time step. Therefore, the quadratic cost function (defined in Equation 10) of the

prediction vector 𝐚𝐿 and the target vector 𝐚𝑇 can be reduced to:

𝑄𝐶(𝐚𝐿(𝑆𝑡) , 𝐚
𝑇(𝐸𝑡)) =

1

2
⋅ ∑(𝑎𝑖

𝐿 − 𝑎𝑖
𝑇)2

𝐻

𝑖=1

=
1

2
⋅ (�̂�(𝑆𝑡 , 𝐴𝑡) − 𝑄Target(𝑆𝑡 , 𝐴𝑡))

2
 (51)

26

In Equation 51, 𝐻 is the number of possible actions, and 𝑎𝑖
𝐿 , 𝑎𝑖

𝑇 are the components of the

prediction vector and the target vector, respectively. The cost function is reduced to a single squared

difference because all other components of the aforementioned vectors are equal. With this

simplification, the gradient vector, defined in Equation 3, can be expressed as:

[∇𝜽𝑄𝐶(𝐚𝐿(𝑆𝑡) , 𝐚
𝑇(𝐸𝑡))]𝑖 = (�̂�(𝑆𝑡 , 𝐴𝑡) − 𝑄Target(𝑆𝑡 , 𝐴𝑡)) ⋅

𝜕 �̂�(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
 (52)

In Equation 52, 𝜃𝑖 represents any parameter of the DNN, just as in Equation 3. With this, Equation

4, which is the heart of the Gradient Descent algorithm, can be re-written as:

 𝜽 ← 𝜽 + 𝜂 ⋅ (𝑄Target(𝑆𝑡 , 𝐴𝑡) − �̂�(𝑆𝑡 , 𝐴𝑡)) ⋅ 𝛻𝜽�̂�(𝑆𝑡 , 𝐴𝑡) (53)

In Equation 53, the gradient with respect to the Q-Value prediction is defined as:

[𝛻𝜽�̂�(𝑆𝑡 , 𝐴𝑡)]𝑖 = 𝜕�̂�(𝑆𝑡 , 𝐴𝑡)/𝜕𝜃𝑖. Equation 53 shows that, by using the quadratic cost function,

the training step is proportional to the difference between the target and the prediction, which is

analogous to the tabular Q-Learning method (see Equation 46). Given that a data-set (the Replay

Memory) is being used, the mini-batch method and momentum method can be used as well.

Target Network

One problem of Deep Q-Learning, as discussed up to now, is that the network has to set its own

targets, because it has to estimate the Q-Values for the state 𝑆𝑡+1 (see Equation 50). The fact that

the targets change as the network is trained can destabilize training. To solve this, Mnih et al. [14]

used a target Network to calculate these Q-Values. The target network is a copy of the trained

network that is not updated in every iteration; instead, it remains fixed for a certain number of

iterations and then it is updated by copying the parameters of the trained network. Its task is to

evaluate the state 𝑆𝑡+1 and to predict its Q-Values in order to set the target Q-Value at 𝑆𝑡, according

to Equation 50. With the concept of “target network”, Equation 50 could be re-written as:

𝑄Target(𝑆𝑡, 𝐴𝑡) = {
𝑅𝑡 + 𝛾 ⋅ max

𝑎′
 { �̂�(𝑆𝑡+1, 𝑎

′ , 𝜽∗) } if 𝑆𝑡+1 is not a terminal state

𝑅𝑡 if 𝑆𝑡+1 is a terminal state
 (54)

Here, the third argument of the Q-Value prediction �̂� specifies that that prediction is made by the

target network, here denoted as 𝜽∗.

𝜖-greedy method

As already discussed, training begins by executing random actions in order to fill the Replay

Memory with experiences. At this moment, it does not make sense to execute the actions that the

agent predicts to be the best because, before the DNN is trained, being right about what action is

the best is merely luck. But as the agent begins to make better predictions about the Q-Values of

the environment states, it would be desirable to “exploit” this knowledge by taking the actions that

are predicted to be the best. This “exploitation” of knowledge is known as “greedy behavior”.

However, one must always expect that the agent has something new to learn (if the agent knows

the best action for all possible environment states, then it is pointless to continue the training

process). Therefore, it is always good to take some random actions, in the hope that some of them

happen to be unexpectedly good; if that happens, the agent has discovered a better strategy that it

would not have discovered if it had behaved “greedily”. Taking random actions in the hope of

27

discovering better options is known as “exploration”. The issue of how to behave (greedy or

exploratory) is known as “exploration-exploitation trade-off”.

The 𝜖-greedy method (Géron [36], page 628) is meant to solve this issue. It consists of defining a

probability of executing a random action; this probability is normally denoted as 𝜖 (hence the name

of the method). When the agent does not select a random action, it selects the action that it predicts

to be the best. The probability 𝜖 is usually equal to one at the beginning (because the agent does

not know anything about the environment) and then it starts to decrease linearly, until it reaches a

constant and small value. Although the final value of 𝜖 is small, it should not be equal to zero,

because it is always good to have at least a small proportion of “exploratory behavior”.

The concepts discussed up to this point regarding Deep Q-Learning were included in the paper of

Mnih et al. [14] in 2015. In the next two sections (3.2.5.4 and 3.2.5.5), two techniques that were

introduced to the Deep Q-Learning method in later papers are explained.

3.2.5.4. Double DQN

It has been shown that the traditional DQN algorithm, with the target network as defined in the

previous section, tends to overestimate the Q-Values of the environment sates. Given that the

network updates are based on Q-Value estimations, these overestimations tend to grow as the

training process progresses. To solve this, van Hasselt et al. [44] created a method that they called

“Double DQN”; this method is a variant of traditional DQN, with a subtle difference regarding the

task that the target network fulfills and the way the Q-Value targets are set. In this algorithm, the

“online network”, i.e. the DNN that is updated in every iteration, estimates the Q-Values of all

actions for the state 𝑆𝑡+1, and decides which the best action to take is; then, the target network

estimates the Q-Value of that action, and that estimation is used for the target.

In the traditional DQN method, by contrast, the target network decides both things: which action

has the maximal Q-Value and its Q-Value. Both methods are tested and compared in this study:

the traditional target network method and Double DQN.

3.2.5.5. Prioritized Experience Replay

Prioritized experience replay is a method presented by Schaul et al. [45] that is based on the

following reasoning: if an experience has a surprisingly high or low target Q-Value in comparison

with the prediction of the DNN, it is possible that the agent has much to learn from that particular

experience, thus it will be assigned a higher probability of being sampled from the Replay Memory

again. To do this, a prediction error is defined as:

𝛿𝑡 = �̂�(𝑆𝑡, 𝐴𝑡) − 𝑄Target(𝑆𝑡, 𝐴𝑡) = �̂�(𝑆𝑡, 𝐴𝑡) − 𝑅𝑡 − 𝛾 ⋅ max
𝑎′

 { �̂�(𝑆𝑡+1, 𝑎
′)} (55)

With this definition, Schaul et al. [45] presented two different ways of calculating a priority number

𝑝𝑡 for the experience associated to time-step 𝑡:

 1. 𝑝𝑡 = |𝛿𝑡| + 𝜙 (56)

 2. 𝑝𝑡 =
1

rank(𝑡)
 (57)

On the first definition, 𝜙 is a small value (larger than zero) which assures that no experience has

zero probability of being sampled (this parameter is called 𝜖 in the original paper). This prioritizing

method is known as “proportional prioritization” (although it is not exactly proportional to the

absolute value of 𝛿𝑡 because of the use of 𝜙). On the second definition, rank(𝑡) is the position of

28

the 𝑡-th experience when the absolute values of the prediction errors (as defined in Equation 55) of

all experiences in the Replay Memory are ordered from largest to smallest. This is known as “rank-

based prioritization”.

After obtaining the priority number of each experience, the probability of adding the 𝑡-th

experience to the training batch is computed as:

 𝑃(𝑡) =
𝑝𝑡

𝛼

∑ 𝑝𝑗
𝛼𝐽

𝑗=1

 (58)

Here, 𝐽 is the total number of experiences stored in the Replay Memory. 𝛼 is a hyperparameter to

measure the importance given to priorities. When 𝛼 is zero, the effect of prioritizing disappears.

Due to the fact that the sampling probabilities are not equal for all experiences, a bias is being

introduced into the training process. To correct this, the authors of the paper (Schaul et al, 2016

[45]) propose to give a different weight 𝑤𝑡 to each experience:

 𝑤𝑡 = (
1

𝐽
⋅

1

𝑃(𝑡)
)
𝜓

 (59)

The parameter 𝜓 is another training hyperparameter that must be tuned (it is called 𝛽 in the original

paper). The weight 𝑤𝑡 is used to scale the gradient associated to the 𝑡-th experience at the moment

of updating the network. However, before being applied, the weights are normalized by using the

maximum weight of the Replay Memory, as shown in Equation 60. This is done so that no weight

has an increasing effect in the training steps. With this, the “mini-batch gradient descent” method

becomes as shown in Equation 61.

𝑤𝑡,norm =

𝑤𝑡

max
𝑗

 {𝑤𝑗}𝑗=1
𝐽

(60)

 𝐦 ← 𝛽 ⋅ 𝐦 −
𝜂

𝑁
 ∑𝑤𝑖,norm ⋅ 𝛻𝜽 𝑄𝐶(𝐸𝑖)

𝑁

𝑖=1

 (61)

In the case when 𝜓 = 1, the effect of the non-uniform probabilities is completely compensated by

the non-uniform weights [45]. In the case of the study presented here, the 𝜓 parameter was always

equal to zero, which means that the weights of all experiences are equal to one (in other words, the

weights defined in Equation 59 are not used).

3.3. Reliability theory

Let 𝑇 be a random variable that measures the moment at which a certain device stops operating

properly, provided that the device started its operation at the instant 𝑡 = 0. In other words, 𝑇

represents the moment of failure of the device, and it is a random variable because in most cases

the failure of any device or machine cannot be predicted with certainty. It is also being assumed

that the device is not maintained during the operation (see Modarres, Kaminskiy, Krivtsov 2016

[46] for further information on reliability theory).

The most elemental function in reliability theory is the reliability function, which is defined as the

probability that the failure of an item occurs after a certain instant 𝑡:

29

 𝑅(𝑡) = 𝑃(𝑇 > 𝑡) (62)

In other words, 𝑅(𝑡) is the probability that the device under study operates until 𝑡 without failing

(in this Section, 𝑡 represents an instant in a continuous time spectrum, not the index of an

experience like in the previous section. Given that the device starts to operate at 𝑡 = 0, the domain

of 𝑅(𝑡) are all values equal to or greater than zero).

The function 𝑅(𝑡) must meet certain conditions: its value at 𝑡 = 0 must be one, since the device is

put into operation at that moment. Its value must tend to zero (or simply be zero) as 𝑡 tends to

infinity. This is because no machine operating without maintenance can operate for an infinite

amount of time. 𝑅(𝑡) must also be a decreasing function, i.e.:

𝑑 𝑅(𝑡)

𝑑𝑡
≤ 0 ∀ 𝑡 > 0 (63)

The reliability function can never increase for the following reason: let 𝑡1 and 𝑡2 be two instants

with 𝑡2 > 𝑡1. If the device operates until 𝑡2, this means that it has also operated until 𝑡1 without

failing. Therefore, operating until 𝑡2 implies having operated until 𝑡1 as well. On the other hand,

the device could operate until 𝑡1 but fail before 𝑡2. Consequently, the probability of operating until

𝑡1 must be greater than the probability of operating until 𝑡2. In an extreme case, the reliability at

both instants could be the same (with 𝑑𝑅(𝑡)/𝑑𝑡 being equal to zero between the two instants), but

this would mean that the probability of failure between both instants is zero, which in practice does

not happen if 𝑅(𝑡1) and 𝑅(𝑡2) are greater than zero.

The probability that the failure occurs between two instants 𝑡 and 𝑡 + ∆𝑡, with ∆𝑡 > 0, can be

known by subtracting the reliabilities at those instants:

 𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡) = 𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡) (64)

If the probability given by Equation 64 is divided by the time lapse between both instants, ∆𝑡, then

the result can be interpreted as a mean “probability per time unit” of failing between 𝑡 and 𝑡 + ∆𝑡.

This probability density can be defined “locally” for a specific instant in time by taking the limit

as ∆𝑡 tends to zero:

 lim
∆𝑡→0

𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

∆𝑡
= −

𝑑 𝑅(𝑡)

𝑑𝑡
 (65)

Therefore, the negative derivative of the reliability function is commonly known as “probability

density function” (PDF). Here it will be designated as 𝑓(𝑡):

 𝑓(𝑡) = −
𝑑 𝑅(𝑡)

𝑑𝑡
 (66)

This function can be intuitively thought of as the local density of probability (per time unit) of the

device failing at the instant 𝑡. Nevertheless, the probability of failing at an exact instant is

mathematically equal to zero, and in order to obtain a failure probability, the PDF must be

integrated between two different instants:

 𝑃(𝑡1 < 𝑇 < 𝑡2) = ∫ 𝑓(𝑡) 𝑑𝑡
𝑡2

𝑡1

 (67)

30

Some properties of the function 𝑓(𝑡) are: it is always larger than or equal to zero. This is a

consequence of Equations 63 and 66. The integral of 𝑓(𝑡) from zero to infinity is always equal to

one. This is because of the property expressed in Equation 67, and because of the fact that the

device under study must fail sometime between 𝑡 = 0 and 𝑡 = ∞.

The Mean Time to Failure (MTTF) is an important indicator that is defined as the expected failure

time:

 𝑀𝑇𝑇𝐹 = 𝔼 [𝑇] = ∫ 𝑡 ⋅ 𝑓(𝑡) 𝑑𝑡
∞

0

 (68)

3.3.1. Hazard rate

Suppose that a machine has been operating for a while without failing. A question worth asking is:

“what is the probability that it will fail in the near future?” One might think that the answer can be

calculated by integrating the PDF as expressed in Equation 67, with 𝑡1 being the current time and

𝑡2 some instant in the future. This would be wrong because now there is an extra information

available: the device has been operating until 𝑡1 without failing; thus, the chance of failure before

𝑡1 can be “discarded”. Integrating the PDF, as expressed above, would yield the probability of

failure between 𝑡1 and 𝑡2 without knowing whether the device has survived until 𝑡1, which in the

present case is known to be true.

Formally said, the question that is being asked now is a conditional probability, the condition being

that the device has operated during a certain amount of time without failing. Consequently, the

probability that is being looked for is:

 𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 | 𝑇 > 𝑡) (69)

In a general case, a conditional probability is computed with the formula:

 𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (70)

Here, 𝐴 ∩ 𝐵 is the intersection of the events 𝐴 and 𝐵. Therefore, for Equation 69:

 𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 | 𝑇 > 𝑡) =
𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 ∩ 𝑇 > 𝑡)

𝑃(𝑇 > 𝑡)
 (71)

The event 𝑡 < 𝑇 < 𝑡 + ∆𝑡 is completely contained in the event 𝑇 > 𝑡, thus the intersection of both

events is simply 𝑡 < 𝑇 < 𝑡 + ∆𝑡. Therefore:

𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 | 𝑇 > 𝑡) =
𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡)

𝑃(𝑇 > 𝑡)
=

𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

𝑅(𝑡)
 (72)

Now, just as in the case of 𝑓(𝑡), an instantaneous density of conditional probability can be defined

by dividing the result by ∆𝑡 and taking the limit as ∆𝑡 tends to zero:

 ℎ(𝑡) = lim
∆𝑡→0

1

𝑅(𝑡)
⋅
𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

∆𝑡
= −

1

𝑅(𝑡)
⋅
𝑑 𝑅(𝑡)

𝑑𝑡
=

𝑓(𝑡)

𝑅(𝑡)
 (73)

The function ℎ(𝑡) that has just been defined is known as “hazard rate” and it is an instantaneous

density of conditional failure probability, the condition being that the device is still operating at 𝑡.

31

The probability of failure during a time lapse ∆𝑡 in the near future can be estimated by using the

hazard rate:

 𝑃(failure in the near future | device is still operating at 𝑡) ≈ ℎ(𝑡) ⋅ ∆𝑡 (74)

“Near future” means that the value of ∆𝑡 in Equation 74 must be small, so that the resulting

probability is much less than one. For large values of ∆𝑡, it can even happen that the resulting

“probability” is larger than one, which clearly does not make sense.

3.3.2. Exponential distribution

The simplest case that can be imagined with the concepts just mentioned is that where the hazard

rate is constant. This means that, while the device is operating, the chance of failure is always the

same. In other words: provided that the device is still operating, the chance that it will fail within

the next day is the same regardless of whether it was put into operation yesterday or a year ago.

Let 𝜆 be the constant hazard rate of the device under study. This value is also called “failure rate”.

Because of Equation 73, it is possible to develop the following differential equation:

 −
1

𝑅(𝑡)
⋅
𝑑 𝑅(𝑡)

𝑑𝑡
= 𝜆 (75)

By considering the ODE in Equation 75, and by imposing the condition 𝑅(𝑡 = 0) = 1, it is possible

to get the solution:

 𝑅(𝑡) = exp (−𝜆 ⋅ 𝑡) (76)

When a device has this kind of reliability function, the failure time is said to follow an “exponential

distribution”. The expected (mean) time to failure, defined in Equation 68, is in this case:

 𝑀𝑇𝑇𝐹 = ∫ 𝑡 ⋅ 𝜆 ⋅ exp(−𝜆 ⋅ 𝑡) 𝑑𝑡
∞

0

=
1

𝜆
 (77)

For the integration shown in Equation 77 it has been assumed that 𝜆 is greater than zero, which is

true because 𝜆 is a failure rate.

3.3.3. Series system

Now, suppose that there is a system that is composed of many items, all of which could probably

fail within some operation time. The system will be considered a “series system” if it depends on

all the items of which it is composed in order to operate; i.e., if only one of the items of the system

fails, the whole system fails. Therefore, in this case the term “series” has nothing to do with the

spatial configuration of the items in the machine; it only means that all the items have to be

operating in order for the machine to work.

Let 𝑅𝑖(𝑡) be the reliability function of the 𝑖-th item, with a total number of 𝑁 items in the system

or machine. The reliability of the system, 𝑅𝑠(𝑡), can be determined as:

 𝑅𝑠(𝑡) = ∏𝑅𝑖(𝑡)

𝑁

𝑖=1

 (78)

32

(For this case it is not necessary to have independence between the functional states of the items in

the system, “independence” meaning that the functional state of any item does not affect the

reliability of the others. If there were dependence, then the function 𝑅𝑖(𝑡) of each component must

be considered only in the case where all other components of the system work. When any of them

fails, then the value of the random variable 𝑇 has been measured and the experiment is concluded;

therefore, the case in which other items of the system have failed must not be taken into account.)

If all items have a constant failure rate (i.e. their failure times follow exponential distributions), the

reliability of the system is equal to:

 𝑅𝑠(𝑡) = ∏exp (−𝜆𝑖 ⋅ 𝑡)

𝑁

𝑖=1

= exp(−(∑𝜆𝑖

𝑁

𝑖=1

) ⋅ 𝑡) (79)

Here, 𝜆𝑖 is the individual constant failure rate of each component of the system. This result shows

that, in the case of a series system that is composed only of components with constant failure rates,

the whole system has a constant failure rate that is equal to the sum of the failure rates of its

components.

3.3.4. Parallel system

From a certain point of view, a parallel system can be considered as the “opposite” of a series

system. Its definition is: from all the components of the system, it is only necessary that one of

them operates in order for the system to be operative. In other words, the only way that a parallel

system fails is that all its components fail. Its reliability, assuming that all components are operative

at 𝑡 = 0, and that the components are independent, can be calculated as one minus the probability

that all components fail. For a system with 𝑁 components:

 𝑅𝑠(𝑡) = 1 − ∏(1 − 𝑅𝑖(𝑡))

𝑁

𝑖=1

 (80)

(Here independence is needed, in contrast to the previous section, because in this case many

combinations of operative and non-operative items are possible while the system operates. Thus,

if the reliability of an item is affected by the states of the others, the reliability function becomes

much more complex than Equation 80.) In the case of a parallel system where all the components

have a constant and identical failure rate 𝜆, the reliability function has the formula:

 𝑅𝑠(𝑡) = 1 − (1 − exp(−𝜆 ⋅ 𝑡))𝑁 (81)

This formula does not have the form of an exponential reliability; therefore, a parallel system that

is composed of identical components with a constant failure rate does not have a constant failure

rate itself.

3.4. Discrete-time Markov chains

A Markov process [47] (named after Andrey Andreyevich Markov, a Russian mathematician who

lived from 1856 to 1922 [48]) is a mathematical model for a system that changes its state

stochastically. The most important assumption is called “markovian property”, which implies that

the probability of reaching a certain state at a certain moment only depends on the state in which

the system was immediately before, and not on the history of previous states. In this study, only

Markov processes with discrete and finite sets of possible states are considered. When a Markov

33

process has a discrete state space, it is commonly known as “Markov chain”. (The “states”

discussed in this section, Section 3.4, are different from the “states” discussed in Section 3.2

regarding the Deep Reinforcement Learning process. As already discussed, states here are discrete

and finite, and also the process does not involve executing actions and receiving rewards).

In discrete-time Markov chains, time is divided into discrete instants. The instants are identified as

𝑡𝑖, with 𝑖 showing the number of the corresponding time step (𝑖 can take entire numbers equal to

or larger than zero). At a certain instant 𝑡𝑖, given the current state of the system, there are certain

probabilities of reaching a new state or staying in the same state at the next instant 𝑡𝑖+1. A way of

visualizing a discrete-time Markov chain is shown in Figure 6, where a system with three possible

states is considered.

Figure 6: Illustration of a discrete-time Markov chain with three states

In Figure 6, the transition probabilities just mentioned are represented by arrows connecting the

possible states of the system. 𝜌𝑖𝑗 is the probability of transiting from state 𝑖 to state 𝑗 between two

consecutive instants. Although it is theoretically possible that the transition probabilities depend

on time, for this study they will be assumed to be constant. A Markov process with this property is

known as “time-homogeneous Markov process”.

Let 𝑋(𝑡𝑖) be the state of the system at 𝑡𝑖, with 𝑖 ∈ ℕ representing the number (in time steps, since

the beginning of the process) of the instant 𝑡𝑖. Also, let 𝑆 be the set of possible states of the system.

At every moment, the system must be in one of its possible states, thus:

 ∑ 𝑃[𝑋(𝑡𝑖) = 𝑗]

𝑗 ∈ 𝑆

= 1 ∀𝑖 ≥ 0 (82)

Between two instants, the system must either stay in the same state or transit to another one, thus:

 ∑ 𝜌𝑖𝑗

𝑗 ∈ 𝑆

= 1 ∀𝑖 ∈ 𝑆 (83)

A way of mathematically illustrating the markovian property mentioned above is:

𝑃[𝑋(𝑡𝑖+1) = 𝑠 | 𝑋(𝑡𝑖) = 𝑠𝑖] = 𝑃[𝑋(𝑡𝑖+1) = 𝑠 | 𝑋(𝑡0) = 𝑠0 , 𝑋(𝑡1) = 𝑠1 , … , 𝑋(𝑡𝑖) = 𝑠𝑖] (84)

3.4.1. Geometric distribution

The geometric distribution is a probability distribution that is very useful for time-discrete Markov

chains. A random variable 𝑌 follows the geometric distribution if it measures the number of

independent repetitions of an experiment that are needed until a certain result of the experiment,

34

defined as “success”, is obtained; all repetitions of the experiment have the same success

probability 𝑝 [49]. Therefore, the possible values for 𝑌 are all entire numbers equal to or greater

than one. (There is a very similar version of the distribution that counts the number of failed

repetitions until a success is obtained, “failure” meaning that any result other than success is

obtained. In this case, the only difference is that the random variable takes values equal to or greater

than zero. However, the version explained above will be used.)

The probability that the random variable 𝑌 takes a certain value 𝑘 is given by [49]:

 𝑃(𝑌 = 𝑘) = (1 − 𝑝)𝑘−1 ⋅ 𝑝 𝑘 ∈ ℤ , 𝑘 ≥ 1 , 𝑝 ∈ [0 , 1] (85)

The expected value for 𝑌 is [49]:

 𝔼(𝑌) =
1

𝑝
 (86)

An example of how to use this distribution is to determine the expected permanence time of the

system in a certain state. This follows a geometric distribution because one is counting the number

of time steps (repetitions of the experiment) until the system leaves the initial state (success).

Let 𝑗 be the state of the system at 𝑡𝑖. The probability of changing state in the next instant is:

 𝑃[𝑋(𝑡𝑖+1) ≠ 𝑗 | 𝑋(𝑡𝑖) = 𝑗] = 1 − 𝜌𝑗𝑗 = ∑𝜌𝑗𝑘

𝑘≠𝑗

 𝑗, 𝑘 ∈ 𝑆 ; 𝑖 ∈ ℕ (87)

If the number of time steps of permanence in a certain state 𝑗 is the random variable that is being

measured, then the event “leaving state 𝑗” can be considered as a “success” and thus the parameter

𝑝 defined in Equation 85 would be equal to 1 − 𝜌𝑗𝑗 (the geometric distribution can only be used if

the Markov chain is time-homogeneous; otherwise, the value of 𝑝 could not be defined). The

convention on the number of time steps will be that, if the system leaves state 𝑗 in the first possible

transition, it has spent one time step in state 𝑗. The expected value for that random variable is:

 𝔼(time steps of permanence in 𝑗) =
1

1 − 𝜌𝑗𝑗
=

1

∑ 𝜌𝑗𝑘𝑘≠𝑗
 𝑗, 𝑘 ∈ 𝑆 (88)

3.4.2. Steady-state probabilities

First, it is necessary to clarify the concept of “absorbing states”: a state is called “absorbing” if the

probability of leaving it is zero; therefore, once the system has reached an absorbing state, it will

stay in that state forever.

For the Markov chains considered during this study, and also for this theoretical part, it is assumed

that all states are reachable by the system regardless of the state where the Markov chain started.

However, not all states need to be directly connected to each other by a nonzero transition

probability. For this condition to be true, the system cannot have absorbing states.

Let 𝑃𝑖𝑗(𝑚, 𝑛), with 𝑛 > 𝑚, be the probability that the system is in the state 𝑗 at the instant 𝑡𝑛,

assuming that at 𝑡𝑚 it was in the state 𝑖:

 𝑃𝑖𝑗(𝑚, 𝑛) = 𝑃[𝑋(𝑡𝑛) = 𝑗 | 𝑋(𝑡𝑚) = 𝑖] 𝑖, 𝑗 ∈ 𝑆 ; 𝑚, 𝑛 ∈ ℕ ; 𝑛 > 𝑚 (89)

35

The probability 𝑃𝑖𝑗(𝑚, 𝑛) does not depend on both values 𝑚, 𝑛 but only on their difference 𝑛 − 𝑚,

because the process is time-homogeneous (the experiment does not depend on when it is initiated).

Therefore, the result only depends on the number of time steps between 𝑡𝑚 and 𝑡𝑛.

For simplicity, let 𝑃𝑖𝑗
∗ (𝑛) = 𝑃𝑖𝑗(𝑚 ,𝑚 + 𝑛) for any natural number 𝑚. The function 𝑃∗ yields the

same result as 𝑃 but only takes the number of time steps between the instants into account. If the

Markov chain meets the condition that all states are reachable by starting in any other state, then

the value of 𝑃𝑖𝑗
∗ (𝑛) tends to become independent of the initial state 𝑖 when the number of time steps

𝑛 becomes large enough:

 lim
𝑛→∞

𝑃𝑖𝑗
∗ (𝑛) = lim

𝑛→∞
𝑃𝑘𝑗

∗ (𝑛) ∀𝑖, 𝑘, 𝑗 ∈ 𝑆 (90)

That same value will be designated simply as 𝑃𝑗, because it does not depend on the initial state:

 lim
𝑛→∞

𝑃𝑖𝑗
∗ (𝑛) = lim

𝑛→∞
𝑃𝑘𝑗

∗ (𝑛) = 𝑃𝑗 ∀𝑖, 𝑘, 𝑗 ∈ 𝑆 (91)

The number 𝑃𝑗 is the steady-state probability that the system is in the state 𝑗. This number can be

interpreted as the percentage of time that the system will spend in the state 𝑗 when enough time has

passed so that the initial state has no effect on the future state of the system. This is called “steady-

state regime”.

As discussed above, it is being assumed that all states of the system are reachable from any other

state. A few examples of systems where that does not happen are:

1. If the system has an absorbing state, 𝑃𝑗 is equal to 1 only if 𝑗 is the absorbing state. Else, 𝑃𝑗

is equal to 0.

2. If the system has several absorbing states, the system will reach one of them and stay there

forever. However, that final state of the system is not determined beforehand and, most

importantly, is dependent on the initial state. Thus, the probability of reaching a certain

absorbing state will change depending on which the initial state was. One could propose an

“analog” to 𝑃𝑗 for this case, where 𝑃𝑗 represents the probability of reaching the state 𝑗 as

final absorbing state. However, there will be several possible sets of “𝑃𝑗’s”, one for each

possible initial state. This is not what is being looked for here.

3. If the system has a state (or more than one) from which the system can “get out” but never

“get in” again (because there are no transitions conducing to that state), then the value of 𝑃𝑗

for that state will be zero. The other states, where the system can get in and out repeatedly,

would have 𝑃𝑗’s larger than zero.

4. If the system has a completely isolated state or a group of states which is disconnected from

the rest of the states (i.e. with no transition probabilities entering or leaving the isolated

group), then the final regime of the system will depend on the initial state. Therefore, it

would not be possible to define a single set of “𝑃𝑗’s”.

The idea of imposing that all states are reachable from any other state is that the system eventually

reaches all of them repeatedly, so that none of the cases named above happens. If this is true, then

the value of 𝑃𝑗 is greater than zero for all states; i.e. 𝑃𝑗 > 0 ∀𝑗.

At any moment, not necessarily at steady-state regime, the probability that the system is in state 𝑗
at 𝑡𝑖 can be calculated with the probabilities of the previous instant 𝑡𝑖−1:

36

 𝑃[𝑋(𝑡𝑖) = 𝑗] = ∑ 𝜌𝑘𝑗 ⋅ 𝑃[𝑋(𝑡𝑖−1) = 𝑘]

𝑘 ∈ 𝑆

 𝑗 ∈ 𝑆 ; 𝑖 ∈ ℕ (92)

In the steady-state regime, the probability of being in any state is constant in time, thus it does not

depend on the instant. Therefore, Equation 92 becomes:

 𝑃𝑗 = ∑ 𝜌𝑘𝑗 ⋅ 𝑃𝑘

𝑘 ∈ 𝑆

 𝑗 ∈ 𝑆 (93)

If the transition probabilities 𝜌𝑘𝑗 are known and one wants to know the probabilities of being in

each state at steady regime, a system of equations can be imposed:

 ∑(𝜌𝑘𝑗 − 𝛿𝑘𝑗) ⋅ 𝑃𝑘

𝑘 ∈ 𝑆

= 0 𝑗 ∈ 𝑆 (94)

𝛿𝑘𝑗 is the Kronecker Delta. Now, assuming that each state of the set 𝑆 can be numbered with a

natural number from 1 to 𝑁, Equation 94 can be re-written as a matrix equation:

[

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

𝜌1,𝑁 𝜌2,𝑁 ⋯ 𝜌𝑁−1,𝑁 𝜌𝑁𝑁 − 1

]

 ⋅

[

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

]

 =

[

0
0
⋮
0
0

]

 (95)

Note that all columns of the matrix add up to zero, because of the property expressed in Equation

83. Therefore, the matrix is singular. Here is a small proof: Let 𝑨 be the matrix of Equation 95 (the

one that is multiplying the vector of probabilities) and 𝑨𝑇 be the transpose of 𝑨. Given that the

columns of 𝑨 add up to zero, the rows of 𝑨𝑇 add up to zero as well. Therefore, 𝑨𝑇 has the eigenvalue

0 associated to the eigenvector [1,1, … ,1,1]𝑇. Given that the determinant is the product of the

eigenvalues, the determinant of 𝑨𝑇 is zero. Therefore, 𝑨𝑇 is singular and 𝑨 is singular as well (since

transposed matrices have the same determinant). If the matrix 𝑨 were not singular, then the only

solution to Equation 95 would be 𝑃𝑖 = 0 ∀𝑖.

To correct the redundancy of the equations in the matrix, it is possible to replace one of them with

the known condition:

 ∑ 𝑃𝑘

𝑘 ∈ 𝑆

= 1 (96)

By replacing the last row of the matrix with the condition shown in Equation 96, the matrix

equation becomes:

[

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

1 1 ⋯ 1 1

]

 ⋅

[

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

]

 =

[

0
0
⋮
0
1

]

 (97)

37

Therefore, the steady-state probabilities can be obtained with:

[

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

]

 =

[

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

1 1 ⋯ 1 1

]

−1

⋅

[

0
0
⋮
0
1

]

 (98)

The result would be the same regardless of which row of the matrix is replaced by the condition of

Equation 96.

3.5. Heat pipe evacuated tube solar collectors

Solar collectors are devices meant to heat a liquid flow (in this case water) by absorbing radiation

from the sun.

One of the most popular types of solar collectors is called “evacuated tube” solar collectors [50].

This name comes from the fact that the radiation-absorbing device is inside a vacuum environment

provided by a glass tube. The transparency of the glass allows the radiative energy to reach the

absorbing device, and the vacuum prevents heat losses produced by direct contact with the

atmosphere (through conduction and convection).

A way of heating the water flow is by directly letting water pass through a radiation-absorbing tube

inside the evacuated tube. Another way is by using a device called “heat pipe”. A heat pipe is a

closed metal tube with a fluid restricted to its interior. The tube is usually made of copper and the

inner fluid is usually a type of alcohol. The fluid receives the thermal energy through the walls of

the tube and evaporates; then the vapor flows to a heat exchanger where it transfers heat to the

water flow and condenses. The liquid then goes back to the heating part of the pipe and repeats the

cycle. The movement of vapor and liquid is usually accomplished by putting the condenser in the

highest part of the heat pipe; in this way, the movement of vapor and liquid is induced by gravity.

A popular design of evacuated tube solar collectors uses a double-walled glass tube; the vacuum is

kept between the two walls. The outer face of the inner wall is covered with an absorbing coating,

as Figure 7 shows. This coating is commonly known as “selective coating” and it must meet two

basic requirements: high absorptance and low emissivity. This allows the device to receive high

amounts of radiative energy and to lose a low amount of it due to emissions.

The heat pipe is located in the center of the double-walled tube. The thermal energy is transferred

from the inner tube to the heat pipe by conduction through aluminum fins, which also fulfill the

task of mechanically holding the heat pipe at the center of the tube. At the right part of Figure 7,

the aluminum fins are drawn with grey lines. A small separation between the fins and the other

parts has been left in the drawing in order to better differentiate the components, although in reality,

the fins must be in direct contact with the inner tube and the heat pipe.

38

Figure 7: Basic components of a heat pipe evacuated tube solar collector.

In order to increase the absorbing area without needing to build a tube with a very large diameter,

a solar collector is built by arranging several tubes in series, as shown at the left of Figure 8. Given

that a fraction of the radiation will pass between the absorbing (internal) tubes, it is useful to install

a reflector under the tube arrangement, in order to reflect the energy back into the tubes. This can

increase the total amount of energy received by more than 25% [50].

As already discussed, the flow inside the heat pipe is normally induced by gravity. For this reason,

and also to optimize the absorption of solar radiation, the solar collector is given a small inclination

with respect to the ground, as shown in the right part of Figure 8.

Figure 8. Left: Arrangement of tubes in a solar collector.

Right: Inclination of the collector with respect to the ground.

3.6. Heat pumps and refrigeration systems

Heat pumps and refrigeration systems work basically the same way; the only difference is the task

they are meant to perform. Heat pumps are meant to deliver heat to a hot environment by extracting

heat from a cold environment, whereas refrigeration systems are meant to cool a cold environment

by transferring the extracted heat to a hotter environment. Thus, they do exactly the same, but

receive different names depending on what the goal of the process is. Many air-conditioning

systems are capable of fulfilling both tasks; i.e., they act as cooling machines during summer and

as heating machines during winter.

39

To achieve this, a fluid goes through the following cycle (illustrated in Figure 9): in a heat

exchanger called “evaporator”, the fluid extracts heat from the cold environment (or cold region)

and evaporates. To achieve this, the fluid must be colder than the cold region. Then, a compressor

compresses the gas with energy from an external source; this process increases the temperature of

the gas. Due to this temperature increase, the gas is now able to transfer heat to the hot region; this

process is carried out in a heat exchanger called a “condenser”, where the fluid releases heat by

condensing. Finally, the fluid passes through an expansion valve back into the low-pressure zone.

Due to this pressure drop, part of the fluid evaporates and the temperature of the fluid decreases;

with this, the fluid is able to absorb heat from the cold region again. In Figure 9, �̇�in and �̇�out are

the heat flow absorbed by the fluid from the cold region and the heat flow transferred by the fluid

to the hot region, respectively. �̇�in is the power (work) provided to the fluid by the compressor.

Figure 9: Illustration of the operation of refrigeration systems and heat pumps.

When steady state has been reached, the net energy exchange between the machine and the

environment is zero, thus:

 �̇�in + �̇�in + �̇�out = 0 (99)

In Equation 99, �̇�in and �̇�in are considered to be positive, and �̇�out is considered to be negative.

The efficiency of the system is measured by an indicator called Coefficient of Performance (COP).

This coefficient can assume two definitions, depending on the purpose of the equipment. If the

device is used as a heating device, it is defined as the ratio between the heat provided to the hot

region and the work consumed by the compressor. On the other hand, if the device is used as a

cooling machine, it is defined as the ratio between the heat absorbed from the cold region and the

work consumed by the compressor. In both cases, the COP is a measure of the ratio between the

useful energy and the consumed energy.

 𝐶𝑂𝑃heating =
|�̇�out|

�̇�in

 (100)

 𝐶𝑂𝑃cooling =
�̇�in

�̇�in

 (101)

Because of Equation 99, it is easy to see that:

 𝐶𝑂𝑃cooling = 𝐶𝑂𝑃heating − 1 (102)

40

This relation is not exactly true in actual equipments. For example, a fan might be used to force air

to pass through a heat exchanger. This is power-consuming, and thus is considered as part of �̇�in

in Equations 100 and 101, but does not add work to the compression process of the gas, thus it is

not part of �̇�in of Equation 99 anymore. However, this ideal scenario is illustrative for

understanding the thermodynamic principles of this type of devices.

Let 𝑇𝐻 and 𝑇𝐶 be the temperature in the hot region and in the cold region, respectively. Because of

the fact that �̇�in can be smaller than �̇�in and �̇�out (considering the absolute values of these energy

flows), both indicators 𝐶𝑂𝑃heating and 𝐶𝑂𝑃cooling can be larger than one; this means that the

“useful” energy is greater than the energy consumed. The theoretical maximum possible values for

𝐶𝑂𝑃heating and 𝐶𝑂𝑃cooling are given by the temperatures of the hot region and the cold region when

reversibility is imposed (Moran et al. [51]):

 𝐶𝑂𝑃heating,max =
𝑇𝐻

𝑇𝐻 − 𝑇𝐶
 (103)

 𝐶𝑂𝑃cooling,max =
𝑇𝐶

𝑇𝐻 − 𝑇𝐶
 (104)

However, the actual values of these indicators are considerably lower in actual machines (see

Moran et al. [51] for details).

3.7. TRNSYS

TRNSYS (Transient System Simulation Tool [15]) is a simulation software that allows modelling

of transient systems. Although it is mostly used to simulate thermal energy systems, its main

capability is the option to easily create new components depending on the needs of every user. This

makes it extensible to a very wide range of areas. A simulation is created by adding and connecting

the different components of the system (such as pumps, heat exchangers, storage tanks, heat pumps,

and solar collector fields) and specifying their features. Climate data from many cities around the

world are also available for the simulation of devices such as solar collectors and air-water heat

pumps.

The “components” used to build simulations are called “types” by TRNSYS. For example, there

are types to simulate different kinds of pumps (single-speed, variable-speed), heat pumps (air to

water, water to water, etc.), solar collectors, heat exchangers, etc. Each type is identified by a

number, e.g., Type 114 is a single-speed pump, and Type 110 is a variable-speed pump.

To better clarify how TRNSYS works and what it does, a very simple example is shown in Figure

10 and is explained below.

Figure 10: Example system implemented in TRNSYS

41

In the system shown in the figure, the heater is meant to heat the water stored in the storage tank.

Pump 1 moves water through the heater, while Pump 2 recirculates the water contained in the tank.

Both flows can exchange heat in the heat exchanger in the middle. The tank stores a constant

volume of water and it has two inlets and two outlets: one inlet-outlet pair is used to move the water

through the heat exchanger; the other inlet-outlet pair is used to receive water from the mains and

to deliver it to the user. The “Demand Schedule” that can be seen at the right is simply a time-

dependent function that imposes the flow entering the storage tank. The flow leaving the tank will

be automatically equal to this imposed flow, thus it can be interpreted as the demanded water flow.

The “Outlet Temperature Plotter” receives the temperature of the water that leaves the tank and

plots it. Figure 11 shows the demand profile assumed and the resulting water temperature during

one simulation day. The initial temperature of the water in the tank was set to 20°C, as well as the

temperature of the mains water flow that enters the tank.

Figure 11. Left: Water demand profile in L/hr. Right: Temperature of the water leaving the tank.

To connect two elements of the system (e.g., the pump and the heater), the outputs of one of them

must be connected to the inputs of the other. Inputs are variables that an element of the system

receives from other elements, while outputs are variables that an element delivers to other elements.

Figure 12 shows how the connection between Pump 1 and the heater is being established. Two

outputs of the pump (the outlet fluid temperature and the outlet flow rate) are connected to two

inputs of the heater (the inlet fluid temperature and the inlet flow rate). The inputs that are not

connected to any output of any other element remain at a fixed value during the simulation.

Figure 12: How to edit the connection between two elements by linking outputs to inputs

In addition to the inputs and outputs, for most types it is necessary to specify certain characteristics

which are called “parameters”. Parameters cannot be passed to other elements as outputs, and they

remain fixed during the simulation. Examples can be the volume of a tank, the power of a pump,

the maximum power of a water heater, etc.

42

Chapter 4: Development of the training platform

4.1. System under study

The water heating system that the agents will seek to control corresponds to the installation that

operates at the Faculty of Physical and Mathematical Sciences (FCFM) of the University of Chile,

Santiago. The system delivers warm water to the dressing rooms in the sports area of the building,

which is located in Beauchef 851, Santiago. Most of the data and the variables considered are based

on previous work by Camila Correa [52] and Camila Correa et al. [32] on the same system.

The system is composed of three heating stages: a solar thermal energy stage, a heat recovery

system from a water chiller, and four air-water heat pumps. The three stages heat the water flow in

the mentioned order.

The solar stage consists of 44 heat-pipe evacuated tube solar collectors, which together have a total

absorbing area of 105.6m2. Their brand and model code is “Hitek Solar NSC 58-30”. They are

oriented towards north, with a tilt angle (the 𝛼 angle shown in Figure 8) of 15° (Correa, 2019 [52]).

The collectors are located on the roof of the building; their spatial distribution is shown in Figure

13. In the figure, North is indicated by an arrow. The image in the figure was taken from the thesis

of Camila Correa [52] with her permission.

Figure 13: Spatial configuration of the solar collectors. Source: Camila Correa [52] “Assessment of Deep

Learning Techniques for Diagnosis in Thermal Systems through Anomaly Detection”. 2019

As Figure 13 shows, the solar collectors are arranged in 13 parallel rows; in each row the collectors

are arranged in series. Five rows have four collectors each, and eight rows have three collectors

each.

The water chiller is a cooling machine, as discussed in Section 3.6, whose main purpose is to cool

a water flow. The cooled water is then used to control the temperature or humidity inside the

building. The heat rejected by the machine is passed to another water flow, and in regular systems,

it can be released to the outside with a cooling tower. However, this heat can also be used instead

of being dropped; this is the idea behind heat recovery. Thus, the second stage of the water heating

system consists of using the heat rejected by the chiller to heat the water for the dressing rooms.

43

The third heating stage consists of four heat pumps, each of which heats the water contained in an

individual storage tank. The heat pumps are intended to keep the water in the tanks at 60°C. They

are automatically turned off if the temperature in the tanks reaches 62°C and are turned on again

when the temperature drops to 55°C.

If the temperature of the water is above 45°C at the outlet of the third heating stage, it is mixed

with a flow of mains water until it reaches 45°C, and then it is delivered to the dressing rooms. A

diagram of the system is shown in Figure 14 and is explained below.

Figure 14: Diagram of the water heating system.

All explanations in the three next paragraphs are referencing the illustration shown in Figure 14.

The mains water flow enters the system through valve V1 (bottom right); this flow is equal to the

warm water demand in the dressing rooms. Valve V1 receives the temperature at the outlet of the

last heating stage (green dotted arrow) and splits the entering water flow, sending part of it directly

to the outlet of the system, in order to maintain the delivered water at 45°C. If the water leaving

the last heating stage is below 45°C, the entire flow is sent by valve V1 to the heating system. The

volume of water stored in the system is constant, thus the flow entering it is always equal to the

flow leaving it.

Preheating Tank 1 stores the water that is being heated by the solar collectors, and Preheating Tank

2 stores the water that is being heated by the heat recovery system of the chiller. In the last heating

stage, each heating tank (1 through 4) receives heat from a heat pump. Pumps 1, 2, 5, 6 and 9 to 12

are permanently recirculating the water contained in their respective tanks in order to keep the heat

exchange with the corresponding energy source regardless of the current warm water demand. The

flows that are taken out of their tanks to be recirculated are shown with orange arrows.

The heat recovery system of the chiller is also used to warm the pool of the building. Valve V2

splits the flow leaving the condenser side of the chiller; 51% of the flow is used to heat the sanitary

44

water and the remaining 49% is used for the pool. The pool is not simulated in detail; instead, it is

assumed that the water coming from the pool has a constant temperature of 44.5°C.

The demand for warm water in the dressing rooms is estimated at 24000 L/day. The assumed

demand curve during each day is shown in Figure 15.

Figure 15: Estimated water demand during the day. Source: Camila Correa et al. [32]

The system is turned on at 7.00 AM and turned off at 9.00 PM (this includes all electrical devices).

In this section, only the essential details which are necessary to understand the study were given.

Further details about the water heating system are given in Annexed A.

4.2. Actions

In this section, the agent-system interaction schedule and the possible actions are explained. The

agent is allowed to execute 7 actions per simulation-day; these actions are executed at 8.00 AM,

10.00 AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM and 8.00 PM. At every action instance, the

agent decides which heating stages of the system (from the three heating stages discussed above)

will be turned on and which will be turned off until a new action is required. States received by the

agent at 10.00 PM are terminal states; this means that in this environment an “episode” is equivalent

to one day.

In addition to the three heating stages, there is a fourth “degree of freedom” of the system that the

agent is able to control. Here is why: it was discovered that at moments of high solar radiation and

medium warm water demand, the temperature in Preheating Tank 1 (which receives heat from the

solar collectors) can reach over 70°C; this is considerably higher than the target temperature in the

last stage of the system (60°C). For safety reasons, a control system was implemented to

automatically turn off Pumps 3 and 4 (see Figure 14) when the temperature in Preheating Tank 1

reaches 50°C, so that the tank stops heating up (the pumps are turned on again when the temperature

in the tank drops to 45°C). Nevertheless, this leads to another problem which is overheating of the

solar collectors, because thermal energy accumulates if the water is stagnant inside the collectors.

This can lead the water in the collectors to reach temperatures over 100°C, according to the

TRNSYS simulation. To solve this issue, the controlling agent has the option of activating an

auxiliary flow in order to prevent Preheating Tank 1 from reaching the limit temperature of 50°C.

This auxiliary flow is an extra flow of 3,000L/h that flows through the heating system and is not

meant to be used in the dressing rooms, but only to extract excessive heat. This solution is not

optimal because heat and water are being wasted, but it may be better than early failure of the solar

collectors due to overheating.

45

Thus, the four independent systems that the agent is able to activate and deactivate are:

- The solar energy stage

- The heat recovery stage (chiller)

- The heat pump state

- The auxiliary flow to prevent the solar collectors from overheating

The reward of an action, whose formula will be detailed in the next section, is computed as a

function of the performance of the water heating system in the timespan between the

aforementioned action and the next action. In the case of the last action of the day, executed at 8.00

PM, its reward is computed at 10.00 PM, but no further actions are executed. This is considered to

be a terminal state, as discussed in Section 3.2.1. At that time of day, the three heating stages are

“turned on” and the auxiliary flow is turned off, but in practice everything is turned off since the

whole heating system is turned off at 9.00 PM. On the next day, at 7.00 AM, the system is turned

on, and therefore the three heating stages are turned on until the first action of the day is executed

at 8.00 AM.

Figure 16 illustrates the daily schedule for the Deep Q-Learning method (see Section 3.2.5 and

subsections for more details about the algorithm). At 8.00 AM no reward is computed, since there

is no previous action to compute a reward for. At 10.00 PM, no action is executed, so the agent

does not need to process the state of the system. Also at 10.00 PM, the neural network is trained

by sampling a random set of experiences from the Replay Memory.

Figure 16: Interaction schedule between the agent and the water heating system (DQN algorithm)

In the case of the REINFORCE method (see Section 3.2.3), the process is very similar but the DNN

is not updated every day. Instead, every certain number of days (episodes), the parameters are

updated at 10.00 PM. On other days, the data is just stored for the next training iteration.

In the case of the Actor-Critic algorithm (see Section 3.2.4), the training iterations take place at

every interaction instance except for the first interaction of the day at 8.00 AM. This is because a

reward is needed to train the two deep neural networks. Therefore, the networks are trained at 10.00

AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM, 8.00 PM and 10.00 PM.

Since the agent has four degrees of freedom with two options for each one, there are 16 possible

actions to choose from, given by all possible combinations. All actions are shown in Table 1, where

1 means “on” and 0 means “off”.

46

Table 1: Possible actions of the agent.

Action Solar field pumps Chiller Heat Pumps Auxiliary Flow

0 1 1 1 0

1 1 1 0 0

2 1 0 1 0

3 0 1 1 0

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 0 0 0 0

8 1 1 1 1

9 1 1 0 1

10 1 0 1 1

11 0 1 1 1

12 1 0 0 1

13 0 1 0 1

14 0 0 1 1

15 0 0 0 1

4.3. Rewards

To calculate the reward of an action, the performance of the system is measured between that action

and the next one. In the case of the last action of a day, executed at 8.00 PM, the reward is computed

at 10.00 PM, but no action is executed at that time because the entire heating system is already off.

The indicators that are taken into account to compute the rewards are:

- Whether the system is delivering warm water as it is supposed to.

- Whether the solar collectors have reached an excessive internal temperature.

- Whether the auxiliary flow is being used.

- Whether the chiller is being used.

- The ratio between the heat delivered to the water flow and the electric consumption of the

system.

- The ratio between the heat coming from clean sources and the total heat delivered. The concept

of “clean sources” is discussed below.

Now the quantitative definition of these indicators will be discussed. In the following equations,

𝛼1 through 𝛼5 are parameters to define the importance of each indicator.

Comfort indicator

It is the prize for delivering warm water, and is defined as:

 comfort = ∫ 𝟙 𝑇ℎ𝑜𝑡 > 40°𝐶(𝑡) ⋅ (1 + 𝛼2 ⋅ (
𝑇ℎ𝑜𝑡(𝑡) − 40

20
)
2

)𝑑𝑡
𝑡1

𝑡0

 (105)

𝑇ℎ𝑜𝑡 is the temperature of the water flow leaving the third heating stage before being mixed with

the mains water flow to be delivered to the dressing rooms (see Figure 14). Therefore, this

temperature can have a maximum value of 62°C (at that point the heat pumps are turned off). The

function 𝟙 is a Boolean indicator function as follows:

47

 𝟙 𝑇ℎ𝑜𝑡 > 40°𝐶(𝑡) = {
1 if 𝑇ℎ𝑜𝑡 > 40°𝐶 at 𝑡
0 if 𝑇ℎ𝑜𝑡 ≤ 40°𝐶 at 𝑡

 (106)

The comfort factor is computed as an integral between the instants 𝑡0 and 𝑡1, which are the instant

of the last action and the instant of the next action (or the end of the day), respectively. Note that

the integrand will only be greater than zero if the delivered water’s temperature is higher than 40°C.

If the water’s temperature is lower than 40°C during the whole time between an action and the next

one, this indicator will be zero.

The 𝛼2 parameter measures the importance of reaching temperatures remarkably higher than 40°C.

If 𝛼2 is zero, the comfort factor will only depend on whether the temperature was higher or lower

than 40°C; if 𝛼2 is greater than zero, then a higher temperature of the water leaving the heating

system will yield a larger reward. The heat pumps in the last heating stage are designed to keep the

water at 60°C, so the fraction multiplying 𝛼2 will take values between 0 and 1 (or slightly greater

than 1). Therefore, 𝛼2 can be used as an “incentive” for the agent to use the heat pumps in order to

deliver warmer water.

Degradation indicator

It is a penalization for overheating of the solar collectors. It is calculated as:

 degradation = 𝛼3 ∫ 𝟙 𝑇𝑐𝑜𝑙 > 100°𝐶(𝑡)𝑑𝑡
𝑡1

𝑡0

 (107)

𝑇𝑐𝑜𝑙 is the temperature at the outlet of the solar collector fields. Thus, the degradation factor is

proportional to the time during which 𝑇𝑐𝑜𝑙 exceeded 100°C, so the agent has to prevent this from

happening.

Water use indicator

It is a penalization for using the auxiliary flow because of the water and energy waste. It is defined

as follows:

 water use = {
𝛼4 if the auxiliary flow is used
0 if the auxiliary flow is not used

 (108)

Clean heat indicator

The term “clean heat” will be used to refer to the heat coming from the solar collectors and the

water chiller. These sources are considered to be clean because solar energy is renewable, and the

heat rejection from the chiller is the heat that was extracted for another purpose, which is chilling

another water flow. Therefore:

 Clean Heat = (Heat from Solar Collectors) + (Heat from Chiller) (109)

Reward functions

Two reward functions will be defined. Clearly, they cannot both be used at the same time to train

an agent, since the agents only try to maximize one reward function.

The first reward function is defined as:

𝑅1 = (𝛼1 ⋅
total heat

electric consumption
+ (1 − 𝛼1) ⋅

clean heat

total heat
) ⋅

comfort

(1 + degradation) ⋅ (1 + water use)
 (110)

48

“Total heat” refers to the total amount of thermal energy delivered to the water flow. “Electric

consumption” refers to the total consumption by all electric devices of the system. Thus, the

fraction “total heat/electric consumption” is a prize for increasing the amount of heat delivered,

while at the same time decreasing the consumption of electric energy. The fraction “clean heat/total

heat” is a prize for increasing the heat coming from clean sources (solar collectors and chiller). 𝛼1

is a parameter in the interval [0, 1] to measure the importance given to each of these two fractions.

Note that the reward is defined so that the primary purpose of the agent is to keep a warm water

supply in the dressing rooms. If it does not do it, the reward becomes automatically zero.

In reward function shown by Equation 110, a small value of 𝛼1 means an “incentive” to use either

the solar collectors or the chiller to heat the water flow. However, there is no direct incentive to

activate the chiller, whereas in reality, it might be desirable to use the chiller for reasons which are

external to the water heating system, like cooling the building, or heating and dehumidifying the

pool (actually, these are the main purposes of the chiller). For this reason, a second reward function

is proposed with a direct prize for using the chiller:

𝑅2 = (
total heat

electric consumption
+ 𝛼5 ⋅ (Chiller Use)) ⋅

comfort

(1 + degradation) ⋅ (1 + water use)
 (111)

Here, “Chiller Use” is defined as:

 Chiller Use = {
1 if the Chiller was used
0 if the Chiller was NOT used

 (112)

𝛼5 is a parameter to measure the “prize” that is given to the agent for using the chiller. Clearly, this

way of encouraging the agent to activate the chiller is not very realistic, because in the actual

system, the need for using the chiller is due to the need for cooling the chilled water flow, which

is being heated by sources that the simulation is not modeling in detail. For this reason, in order

accurately train the agents to use the chiller for its main task, it would be necessary to add the

cooling loads of the chiller to the simulation.

4.4. Environment state

The state is the information about the environment that the agent has access to. In this study, only

the latest observation that the environment yields is used by the agent to make a decision. For this

reason, from this section onwards, the term “state” or “environment state” will be used

interchangeably with “observation”.

The state of the environment, i.e. the water heating system, is defined by 10 variables:

1. Time of day (from 0 to 24)

2. Time of year (from 0 to 8760)

3. Outside dry bulb temperature

4. Solar radiation

5. Preheating Tank 1 Temperature (solar stage)

6. Preheating Tank 2 Temperature (heat recovery stage)

7. Mean Temperature of the four Heating Tanks (3rd heating stage)

8. Mains water temperature

9. Inlet temperature in the evaporator side of the chiller (chilled water side)

10. Current warm water demand in the dressing rooms

49

All variables are normalized between 0 and 1. The hour of the year is also converted to a sine wave

in order to avoid the discontinuity from 1 to 0 that would be produced when beginning a new year.

This sine wave is equal to one at the beginning and at the end of the year, and equal to zero in the

middle.

4.5. TRNSYS-Python connection

As discussed above, in order to make the training process possible, the TRNSYS software must be

connected to the Python programming language, which is used to do all Machine Learning-related

computations. In order to achieve this, Python has to receive certain results from TRNSYS as the

simulation progresses, and it also has to be able to impose the decisions made by the agent, so that

these decisions change the conditions of the simulation. Figure 17 shows a basic diagram of the

operation of the platform. This figure can be considered as a more “detailed” version of the

structure shown in Figure 3. It also considers the fact that only the latest observation is considered

by the DNN in order to make decisions. The figure also shows that the Python Script should impose

failures on the system; this is done only in Section 6.5 of this Thesis.

Figure 17: Structure of the DRL algorithm

TRNSYS has two “types” (i.e. elements which can be added to simulations) that make the

interaction with Python possible. One of them is called Type 163 [53], and it works the following

way: a data file (.dat), which contains all variables that will be passed to the Python script, is created

by TRNSYS on every iteration of the simulation in the working directory. Then, Python imports

the file with the outputs from TRNSYS and processes them following the code of the script. The

results that Python yields are written in another data file, which is created in the working directory

as well. This file is then imported by TRNSYS to continue the simulation (this is repeated on every

TRNSYS-iteration; see “TRNSYS iterations” below). This method of connecting TRNSYS with

Python has the advantage that it allows the use of Python libraries like Numpy [54], Scipy [55] and

Tensorflow [56]. However, the process of writing the data files in the hard disk is very slow.

The other type that enables the TRNSYS-Python link, called Type 169 [53], is considerably faster.

As a reference, a very simple Python code was tested with both types (163 and 169); Type 163

needed approximately 2.5 minutes to simulate a single day, whereas Type 169 made the same in

less than 5 seconds. Type 169 achieves this by directly passing the variables to Python, instead of

the input/output files described above. However, Type 169 only allows the use of basic Python

libraries, i.e. the libraries that are included with the Python installation. Therefore, Numpy, Scipy

and Deep Learning-specialized libraries cannot be used when Type 169 is being used to establish

the connection. Considering the great difference in simulation speed when both options are

compared, it was decided that it was unviable to use Type 163. Therefore, Type 169 was selected

50

and, for this reason, all the DNN and DRL algorithms, as well as the gradient calculations, had to

be developed and implemented from scratch by using basic Python features like Lists [57] and the

random [58] and bisect [59] libraries. In Section 3.1 and subsections, all details regarding DDNs

and the backpropagation algorithm are detailed, and in Section 3.2 and subsections, the algorithms

to carry out the training process through DRL are discussed.

Another issue is the fact that, under the connection mode just described, the whole Python script,

from beginning to end, is run once every TRNSYS iteration. Therefore, Python cannot store the

variables from previous time steps while the TRNSYS simulation progresses. The proposed

solution is to store the parameters of the DNNs and other auxiliary data necessary for training in

text (.txt) files and to import them when they are needed.

With all these considerations, a more detailed diagram of the structure of the training platform is

shown in Figure 18 and discussed below.

Figure 18: Structure of the training platform

Figure 18 shows the three main components of the platform: the simulation in the TRNSYS

software, the Python script used to develop the controlling agent and the data stored in the hard

disk. When a control decision has to be made, the network parameters are imported from a text file

(purple arrow). The network evaluates the environment state, which is computed by the Python

Script, based on the results delivered by the TRNSYS simulation (blue arrow at the top). With this

information, a decision is made by the network and imposed on the TRNSYS simulation (red

arrow). The chosen action (one of the 16 options shown in Table 1) is given as four values to

TRNSYS; each of these values is either zero or one, and it tells the simulation if the corresponding

system has to be activated (1) or deactivated (0).

In addition to this, the network has to be updated in order to improve the decisions made by the

agent (orange arrow). The method to update the network will depend on the DRL algorithm that is

being used (REINFORCE, Actor-Critic or Deep Q-Learning). All training algorithms depend on

“auxiliary data” to update the DNN (in the case of the actor-critic algorithm, it depends on the

auxiliary network that computes state values). This auxiliary data (shown in the figure as

“Auxiliary data for training”) is imported from text files, as the brown arrow shows. When the

network is updated, the new parameters are stored in the hard disk as the dark green arrow shows;

this allows to import the new parameters of the DNN on future time steps. In addition to this, the

training algorithm must update the auxiliary data with the new interaction data that is experienced

by the agent (light green arrow). To achieve this, it registers the actions taken by the agent (red

51

dotted arrow at the top) as well as the simulation results (blue arrow in the middle). The simulation

results delivered by TRNSYS include the quantities that must be computed as integrals over time,

like the heat delivered to the water, the electric consumption, the “comfort” indicator (see Equation

105) and the “degradation” indicator (see Equation 107). These integrals are computed by a

specialized TRNSYS component, called Type 24.

Besides, the script is used to record the agent’s performance and behavior in order to be analyzed

once the simulation is over (this is shown by the blue arrow and the red dotted arrow at the bottom).

This data is recorded in text files (.txt) as well.

Reinforcement Learning time steps and simulation time steps

Now it becomes necessary to make an important distinction. From the point of view of the RL

process, a time step consists of a cycle of: a state, an action and a reward. From the point of view

of TRNSYS, a time step is a short amount of time that the software uses to discretize the transient

process that is being simulated. Therefore, a time step for the simulation software is much shorter

than a time step for the RL algorithm, which in this case lasts two hours.

TRNSYS calls the Python script on every simulation time step, even though the script is only

supposed to execute actions on the simulation every two hours. The solution to this is that, in the

timespan between two actions, the Python script keeps imposing the same “order” to the simulation

on every simulation time step until a new action is required. This also avoids having to import the

DNN parameters on every simulation time step, which would make the process remarkably slower.

This process is shown in Figure 19.

Figure 19: Process that must be repeated on every simulation time step

As already discussed, the Python script is run from the beginning on every simulation time step,

thus it cannot “remember” what the action of the previous time step was. For this reason, the

simulation has to “remind” the Python script of what order was imposed in the last simulation time

step. This is also shown in Figure 19.

Although at 10.00 PM the agent does not have to execute an action on the system, at that time the

Python script does not simply return the same action from the previous time step because there are

other important things to do, e.g. training the DNN, storing the last reward of the day, etc., so a

very similar process must be carried out at that time but no action is imposed on the system.

In order to achieve that TRNSYS returns the last received “order” to Python, a feature of TRNSYS

that is called “equation” is used. An equation is an element that can be added to simulations in

order to make calculations; it also provides basic programming features. Like any other “type” of

TRNSYS, equations receive inputs from other elements of the simulation and yield outputs.

52

In Figure 20, the TRNSYS equation that is used to control the chiller is shown. The inputs of the

equation are shown in the upper left part of the window; one of these inputs is the decision that the

Python script made regarding the use of the chiller, and it is called “NN_order” in the equation

window. Clearly, this input is received from the Type 169 that calls the Python script. The input

“NN_order” can have two values: one or zero. If its value is one, the chiller is supposed to be used.

The outputs of the equation can be seen in the upper right part of the window; one of them is called

“NN_order_chill_back”. As can be seen below, this output is defined as the same value of the

“NN_order” input, i.e. the same value that was received from the Type 169 as the “order” of the

Python script. This output is delivered to Type 169; in this way TRNSYS can “remind” Python of

the last order that it delivered.

The other input of the equation, called “op”, is equal to one during the day and it becomes zero at

night. The “chiller_control” output is defined as op*NN_order, and it is used to control the chiller.

Therefore, if the value of the “NN_order” input is one and it is daytime, the chiller is used.

Figure 20: TRNSYS equation used to control the chiller

TRNSYS iterations

Up to this point, there is a very efficient way for the Python script to keep imposing the same

decision in the time span between an action and the next one.

Nevertheless, there is still a problem that occurs at the moment of executing a new action on the

system, i.e. at the times of day when the agent has to evaluate the state of the system and make a

decision. The problem is that TRNSYS not only calls the Python script on every simulation time

step, but also on every iteration. Iterations are calculations that the software makes several times

per time step, until the conditions for convergence are met.

The problem that iterations generate is as follows: the condition to execute a new action on the

system is that the current time of day must be one of the previously specified times: 8.00 AM,

10.00 AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM, 8.00 PM, 10.00 PM (at 10.00 PM no action is

executed, but there are other things that must be carried out by the Script). This condition will be

met in all iterations of the corresponding time step. Therefore, the agent will impose a new order

53

on every TRNSYS iteration of the time step (provided that the time of day is one of the

aforementioned ones). Since the actions are completely random at the beginning of the simulation,

it is almost certain that the agent will impose different actions during the same time step, which

causes problems with the convergence of the time step.

To solve this, the Python script has to impose a single action when the time to execute an action

has come, and not an action for each iteration. To achieve this, a text file is created to store at what

time the last decision was made. When it is time to make a new decision, the Python script imports

this file; if the stored time is not equal to the current time, the Python script makes a new decision

and updates the text file with the current time. In the next iteration of the same time step, the Python

script imports the same file, but the stored time is now equal to the current time, so the Python

script repeats the same decision that was decided on the previous iteration. With this method, the

agent executes a new action only once at the corresponding time step. The process is illustrated in

Figure 21, which is an extension of the process shown in Figure 19.

The process explained above implies that the decision is made on the first iteration of the time step;

this is not optimal because the values of the environment state are still being calculated; however,

they are expected not to be far from the final values.

Figure 21: Process for every TRNSYS iteration.

At 10.00 PM no action is imposed on the system, but an analogous process must be carried out to

store the last reward of the day, train the network, etc. At that time the “time of last action” file

must be updated as well, in order to not repeat the process several times.

Pseudo-code versions of the Python codes that were used to initialize the agents and to train them

are included in Section 4.7. But first, it is necessary to discuss the introduction of stochastic failures

into the water heating system simulation.

4.6. Introducing stochastic failures

The goal of introducing stochastic failures is that the devices of the system go through temporary

and unpredictable states of failure. The agent is expected to manage the system in such a way that

the goal of delivering hot water to the dressing rooms is achieved. The failure states are temporary

because all devices that can fail can also be repaired.

54

4.6.1. Failure rates of individual devices

The items in the system are considered to have constant failure rates. The failure rates are based on

data of OREDA (Offshore Reliability Data Handbook [60]) (see Section 3.3 for details on

reliability theory).

The repair rate is assumed to be constant as well; this means that, given that the device has failed,

the chance of being put into operation in the “near future” is constant, regardless of the time span

during which the device has been out of operation. These assumptions allow the use of discrete-

time time-homogeneous Markov chains for the simulation of stochastic failures of the devices of

the water-heating system. Repairs guarantee that all states are reachable regardless of the state

where the Markov chain starts (see Section 3.4 for details on Markov chains).

Since in the OREDA book there is no specific data for heat pumps and chillers, these devices are

split into their component parts. Since all components of the devices are necessary for the device

to work, the total failure rate of the device is the sum of the failure rates of its components (see

Section 3.3.3).

Each heat pump is considered to be composed of (see Section 3.6 for theoretical information on

heat pumps):

- Three heat exchangers: two internal heat exchangers of the machine (evaporator and

condenser) and one heat exchanger to transfer the heat to the water flow that goes to the

dressing rooms (heat exchangers 5 to 8 in Figure 14).

- A compressor.

- Two water pumps: one pump moves the water from its respective heat pump to the heat

exchanger (heat exchangers 5 to 8 in Figure 14); the other pump recirculates the water from

its respective heating tank (pumps 9 to 12 in Figure 14) to extract heat from the heat pumps.

- An expansion valve.

- Three electric motors: one motor for the compressor and one motor for each water pump.

The chiller is considered to have exactly the same components as the heat pumps, but a

simplification has to be made: in the case of the chiller, there are two heat exchangers to transfer

heat to the water flow that goes to the dressing rooms (heat exchangers 3 and 4 in Figure 14).

Therefore, if only one of these heat exchangers works, it is possible for the chiller to partially fulfill

its task of heating that flow. However, the heat exchangers are not in parallel either, because if only

one of them works, the system will not be equally efficient. Besides, if the heat exchangers were

assumed to be in parallel, the system would not have a constant failure rate anymore, and the

markovian model could not be used. For this reason, the chiller is assumed to have three heat

exchangers: evaporator, condenser and the “external” heat exchanger that represents the two

aforementioned heat exchangers. Assuming four heat exchangers in series is not correct either,

because this model would have a lower reliability than the model with three heat exchangers, and

the real system has at least the same reliability as the latter. Hence, the model with three heat

exchangers in series will be used. With this, the chiller has the same components as one of the heat

pumps. Actually, the assumption that is made regarding this topic is not very important, because

the failure rate of the heat exchangers is relatively low in comparison to that of other components,

so their contribution to the global failure rate is not high (this will be detailed below). Like the heat

pumps, the chiller is assumed to have two associated pumps as well, but in the case of the chiller,

one of these pumps is the one that moves the heated flow (pump 7 in Figure 14) and the other is

the one that moves the cooled flow (pump 8 in Figure 14).

55

The solar stage is considered to be composed of two systems that can fail independently: each

system is composed of a water pump (pumps 3 and 4 in Figure 14), the motor of the pump and a

heat exchanger (heat exchangers 1 and 2 in Figure 14). Each of these “pump-motor-heat exchanger

groups” is going to be called “pump-heat exchanger pair” in the coming sections (the motor of the

pumps is considered to be part of the pump in the name, but from the point of view of the OREDA

book, they are different components so their failure rates have to be summed). The probability of

failure of the solar field is neglected because many rows of solar collectors operate in parallel (see

Figure 13); therefore, if a collector fails, the solar field can still operate partially with the other

rows. (From a reliability point of view, the collectors are not completely parallel because they do

not operate equally well without a row of collectors, but this is being neglected). (Actually, failure

of the solar field can be considered as a common-cause failure, which, as shall be discussed later,

is considered as well. Nevertheless, the failure rate of the solar field is not calculated in detail).

The heat pumps can fail independently from each other, as well as the two pump-heat exchanger

pairs of the solar stage (for the chiller there are no redundant items). For the heat pumps, it is

considered that at least three of them must be operative in order for the third heating stage to operate

(because with less heat pumps being operative, the remaining ones will require too much effort to

keep their respective tanks at 60°C). In the case of the solar stage, at least one of the pump-heat

exchanger pairs must be operative. The state (functional or not functional) of a heating stage does

not influence the failure probability of the other two.

There is also the option of common-cause failures. Common-cause failures produce the immediate

failure of a whole system; i.e., despite several redundant devices may be operative, a common-

cause failure takes all of them out of operation. Each heating stage is independently subject to

common-cause failures. In the case of the third heating stage (heat pump system), the rate of

common-cause failures is 40% of the failure rate of a single heat pump; for the solar stage, the rate

of common-cause failures is 40% of the failure rate of one pump-heat exchanger pair; and for the

chiller, the rate of common-cause failures is 40% of the failure rate of the chiller.

The pumps that recirculate the water that is contained in the preheating tanks (i.e. Pumps 1, 2, 5

and 6 in Figure 14) are not subject to failures; here is why: these pumps play a fundamental role in

supplying water to the dressing rooms. If these pumps fail, several inconsistencies occur in the

simulation; besides, the goal of introducing failures is to test whether the controlling agent is

capable of handling the system despite such failures. If the pumps that recirculate water fail, there

is nothing that the agent can do to compensate that, because the water supply in the dressing rooms

would be interrupted (see Figure 14).

The failure rates of the components considered to calculate the failure rates of the heat pumps, the

chiller and the pump-heat exchanger pairs of the solar stage are summarized in Tables 2 and 3. As

already discussed, these parameters were taken from OREDA [60].

56

Table 2: Failure parameters of the heat pumps and the chiller

Failure rate of heat exchangers 16.50 ⋅ 10−6 hr−1

Number of heat exchangers per device 3

Failure rate of compressors 268.58 ⋅ 10−6 hr−1

Number of compressors per device 1

Failure rate of pumps 65.40 ⋅ 10−6 hr−1

Number of pumps per device 2

Failure rate of expansion valves 25.97 ⋅ 10−6 hr−1

Number of expansion valves per device 1

Failure rate of motors 32.75 ⋅ 10−6 hr−1

Number of motors per device 3

Failure rate of heat pumps and chiller

(failure rates of all components summed)
573.10 ⋅ 10−6 hr−1

Mean Time to Failure of Heat Pumps and Chiller

(computed as shown in Equation 77)
1744.9 hr

Table 3: Failure parameters of the pump-heat exchanger pairs in the solar stage

Failure rate of heat exchangers 16.50 ⋅ 10−6 hr−1

Number of heat exchangers per pair 1

Failure rate of pumps 65.40 ⋅ 10−6 hr−1

Number of pumps per pair 1

Failure rate of motors 32.75 ⋅ 10−6 hr−1

Number of motors per pair 1

Failure rate of one pump-heat exchanger pair

(failure rates of all components summed)
114.65 ⋅ 10−6 hr−1

Mean Time to Failure of one pump-heat exchanger pair

(computed as shown in Equation 77)
8722.2 hr

4.6.2. Construction of the Markov chains

The failure rates that have just been calculated for the heat pumps, the chiller and the pump-heat

exchanger pairs correspond to the constant hazard rates of these systems (see Section 3.3.1).

Therefore, these values are useful in a mathematical model which is continuous in time. To build

a discrete-time Markov chain with this parameters, Equation 74 can be used to estimate the failure

probability between two consecutive instants. In other words, the failure rates just determined can

be multiplied by the time span between two consecutive instants in the Markov chain, and this

would yield the probability of failure in the time span between those instants. As expressed in

Section 3.3.1, this is an approximation, but it is acceptable if the resulting probability is small.

As already discussed, the functional states of the different heating stages are independent; i.e. there

must be three independent Markov chains being executed at the same time, each one to define the

functional state of one heating stage.

The functional states of the devices will be determined by the same Python script that trains the

DNNs. The time steps of the Markov chains will be executed at the same times of day at which the

actions of the agents are executed (including at 10.00 PM; see Section 4.2 for details). Between

consecutive “Markov time steps”, the Python script will keep imposing the same functional states,

just as done with the actions of the agents (see Section 4.5 for details). Therefore, the time span

between consecutive instants in the Markov chains is two hours. Here, an important simplification

57

is being made: the Markov chain is time-homogeneous; this means that the transition probabilities

do not vary in time. Since no Markov time steps are executed at night, the transition probabilities

between 10.00 PM and 8.00 AM of the next day must be the same as in the other time steps of two

hours. The justification for this can be that the system is turned off at night, so the failure rates of

the items of the system can be assumed to be lower. A more important simplification is the fact

that the failure probability of an item does not change depending on whether the item is being used.

If this were considered, it would be impossible to estimate the percentage of time that the system

spends in each state, at least until after the training process.

To determine the repair probabilities between two consecutive instants, the following assumptions

are made: a single device (heat pump, chiller or pump-heat exchanger pair) has a mean time to

repair of two weeks. A common-cause failure has a mean time to repair of three weeks. Given that

eight time steps are executed each day, the expected number of time steps until repair of a single

device must be equal to 8 ⋅ 14, and the expected number of time steps until repair of a common-

cause failure must be equal to 8 ⋅ 21. The random variable “time steps until repair” follows a

geometric distribution (see Section 3.4.1); therefore, the probability of repair of a single device

between two consecutive instants must be equal to 1/(8 ⋅ 14) = 0.00893, and the probability of

repair of a common-cause failure must be equal to 1/(8 ⋅ 21) = 0.00595.

The failure rates and repair probabilities just defined are summarized in Table 4. In the same table,

the failure rates are translated into failure probabilities between consecutive instants of the Markov

chains, considering a time span of 2 hours between consecutive instants.

Table 4: Failure rates and failure and repair probabilities

Item Value

Failure rate of a heat pump 573.10 ⋅ 10−6 hr−1

Common-cause failure rate of the heat pump system 229.24 ⋅ 10−6 hr−1

Failure rate of the chiller 573.10 ⋅ 10−6 hr−1

Common-cause failure rate of the chiller 229.24 ⋅ 10−6 hr−1

Failure rate of a pump-heat exchanger pair 114.65 ⋅ 10−6 hr−1

Common-cause failure rate of the solar energy stage 45.86 ⋅ 10−6 hr−1

Time span between two consecutive instants in the

Markov chains
2 hours

Failure probability of a heat pump between two

consecutive instants
1.146 ⋅ 10−3

Common-cause failure probability of the heat pump

system between two consecutive instants
4.585 ⋅ 10−4

Failure probability of the chiller between two consecutive

instants
1.146 ⋅ 10−3

Common-cause failure probability of the chiller between

two consecutive instants
4.585 ⋅ 10−4

Failure probability of a pump-heat exchanger pair

between two consecutive instants
2.293 ⋅ 10−4

Common-cause failure probability of the solar energy

stage between two consecutive instants
9.172 ⋅ 10−5

Repair probability of individual items between two

consecutive instants
8.93 ⋅ 10−3

Repair probability of common-cause failures between two

consecutive instants
5.95 ⋅ 10−3

58

As already discussed, it is considered that at least three of the four heat pumps of the third heating

stage must be operative in order for the third heating stage to operate. In the case of the solar stage,

one of the two pump-heat exchanger pairs has to be operative.

As can be seen in Figures 22 to 24, the Markov chains of the solar stage and the heat pump stage

are more complex than the Markov chain of the chiller. The three following assumptions concern

only the heat pump system and the solar energy system:

1. When two items of the same heating stage are under failure state at the same time (state 3 in

Figures 22 and 24), the repair rate will be equal to the repair rate of one of them. This

assumption means that only one of the items is being repaired and not both at the same time.

2. When one of the heating stages is completely out of operation, the items which have not failed

yet cannot fail before the corresponding heating stage is put into operation again. This is why

in state 3 (Figures 22 and 24) it is impossible for a common-cause failure to occur; and in states

4 and 5 (Figures 22 and 24) it is impossible for a heat pump or a pump-heat exchanger pair to

fail. Without this assumption the Markov chains would be far more complex. This also applies

for the chiller in the sense that, when a common-cause failure has occurred, it is not possible

for the chiller to fail as well, and vice versa.

3. If one of the devices has failed (state 2 in Figures 22 and 24) and then a common-cause failure

occurs (state 5 in Figures 22 and 24), then the device which had failed before can be repaired

while the system continues under common-cause failure (this would mean transiting from state

5 to state 4). However, there is also the possibility that the common-cause failure is repaired

before the device (this would mean returning from state 5 to state 2).

Therefore, the Markov chains that will be used to model stochastic failures are as shown in Figures

22, 23 and 24. The arrows show the probabilities of changing states between consecutive instants;

the values of the probabilities are better explained in Table 4. The probabilities of staying in the

same state have not been written, but they can be easily calculated as one minus the total probability

of leaving the corresponding state.

Figure 22: Markov chain of the third heating stage (heat pump system)

59

Figure 23: Markov chain of the chiller

Figure 24: Markov chain of the solar stage

Tables 5, 6 and 7 show the steady-state probabilities for the Markov chains shown in Figures 22,

23 and 24. As already discussed in Section 3.4.2, those probabilities can be interpreted as the

percentage of time that each markovian system will spend, on average, in each possible state.

Table 5: Steady-state regime probabilities of the heat pump system (Figure 22)

State Probability [%]

1 55.4

2 27.6

3 10.6

4 5.54

5 0.850

Table 6: Steady-state regime probabilities of the chiller (Figure 23)

State Probability [%]

1 83.0

2 10.6

3 6.39

Table 7: Steady-state regime probabilities of the solar energy system (Figure 24)

State Probability [%]

1 93.6

2 4.78

3 0.123

4 1.49

5 0.0294

60

4.7. Pseudo-code versions of the Python Scripts

In this section, the codes that are necessary to run a training simulation are detailed. The codes

include the use of Markov chains to impose failures on the system, and they use the Deep Q-

Learning algorithm to train the network. With this characteristics, they could be interpreted as the

codes used for Sections 6.5.1 or 6.5.3 of this thesis, depending on how the Markov chains and the

set of possible actions are defined.

4.7.1. Initializer

The “initializer” is a code that must be run before beginning the TRNSYS simulation. The

TRNSYS software does not interact with this code. It creates all text files that must be in the

working directory in order for the simulation to work. An obvious example is the file that contains

the parameters of the Deep Neural Network. The code is as follows:

the term “text file” is used for files that are stored in the working directory and are read, created and
modified by python
initialize neural network parameters ##weights and biases, according to the method of Section 3.1.5
initialize momentum, as a vector of zeroes
create “online network” text file
create “target network” text file
create “momentum” text file
store network parameters in “online network” text file
store network parameters in “target network” text file
store momentum in “momentum” text file
create “Replay Memory” text files (empty files)
create “Priority Numbers” text file (empty file)
create “time of last action” text file
write “0” on “time of last action” text file
create “previous Markov states” text file
write “1 1 1” on “previous Markov states” text file
create “days since last target network update” text file
write “0” on “days since last target network update” text file

61

4.7.2. Code to train the network

The code detailed here is the one that is “called” by TRNYS on every TRNSYS iteration. As

discussed above, on most iterations it only delivers the same action and Markov states that were

defined in the previous “action instance”. Some parts of the code have been split from the code

shown in Section 4.7.2.1, and are detailed in Sections 4.7.2.2, 4.7.2.3 and 4.7.2.4.

4.7.2.1. Main code

“import” is used for variables imported from TRNSYS
“define” is used for variables specified by the user
the term “text file” is used for files that are stored in the working directory and are read, created and
modified by python
import time ## total simulation time in hours
import environment state variables
import integrated values ##energy, degradation time, warm-water-supply-time, comfort indicator, etc
import last action
import functional states of the heating stages
time_of_day = time%24
time_of_year = time%8760
if time_of_day in [8, 10, 12, 14, 16, 18, 20, 22]:

open “time of last action” text file
if time_of_last_action == time_of_day:

enter = False
else:

enter = True
else:

enter = False
define alpha_2 value ## parameter of the reward function, associated to comfort
if enter == True:

define reward parameters (other than alpha_2)
define training hyperparameters
define transition probabilities of the Markov chains
open “previous Markov states” text file
compute new functional states of heating stages by executing a time step in each Markov chain
open “online network” text file
compute environment state
if time_of_day == 8: ## first state of the day

execute “interaction at 8.00 AM” ## see Section 4.7.2.2
else:

open “previous integrated values” text file
compute variations of integrated values by subtracting previous ones from current ones
compute reward with the variations of integrated values and the previous action
if time_of_day == 22: ## terminal state

execute “interaction at 10.00 PM” ## see Section 4.7.2.4
else:

execute “interaction from 10.00 AM to 8.00 PM” ## see Section 4.7.2.3
create new “previous integrated values” text file
store integrated values just received from TRNSYS in “previous integrated values” text file
update “previous Markov states” text file
update “time of last action” text file with current “time_of_day”
impose selected action At on TRNSYS (as defined in Subsections 4.7.2.2, 4.7.2.3 and 4.7.2.4)
impose new functional states of the three heating stages on TRNSYS
impose alpha_2 (parameter of the reward function) on TRNSYS

else: ## no interaction between Python and TRNSYS is needed
impose the same action just received from TRNSYS
impose the same functional states of the heating stages just received from TRNSYS
impose alpha_2 (parameter of the reward function) on TRNSYS

62

4.7.2.2. Interaction at 8.00 AM

compute epsilon ## (from eps-greedy) (calculation based on “time” imported from TRNSYS)
x = random value between zero and one
if x < epsilon:

At = action selected randomly ## choose action to execute
else:

evaluate environment state with online network
At = action considered to be the best by the agent ## choose action to execute

create new “daily action record” text file
create new “daily environment state record” text file
store selected action At in “daily action record” text file
store environment state in “daily environment state record” text file

4.7.2.3. Interaction from 10.00 AM to 8.00 PM

compute epsilon ## (from eps-greedy) (calculation based on “time” imported from TRNSYS)
x = random value between zero and one
if x < epsilon:

At = action selected randomly ## choose action to execute
else:

evaluate environment state with online network
At = action considered to be the best by the agent ## choose action to execute

update “daily action record” text file by adding the action At just selected
update “daily environment state record” text file by adding the current environment state
if time_of_day == 10:

create new “daily reward record” text file
store reward in “daily reward record” text file

else:
update “daily reward record” text file by adding the reward just received

63

4.7.2.4. Interaction at 10.00 PM

action to execute is always the same at 10 PM (see next line)
At = all three heating stages ON; auxiliary flow OFF ## choose action to execute
open “daily action record” text file
open “daily environment state record” text file
open “daily reward record” text file
update daily reward- and environment state-record with the last reward and state of the day
open “Replay Memory” text files
open “Priority Numbers” text file
update Replay Memory with experiences of the current day
update Priority Numbers by evaluating the new experiences with the online network
if length of “Replay Memory” and “Priority Numbers” is more than the limit:

erase oldest experiences until reaching the maximum allowed length
if time-span before training is over: ## i.e. if the agent is being trained

open “target network” text file
open “momentum” text file
select random set of experiences to form the batch with the “prioritized” method
define target vector for each experience (Normal DQN or Double DQN method)
compute gradient for each experience (online network)
compute new priority number for each experience of the batch
update Priority Numbers of experiences that were added to the batch
average gradients and update momentum
update online network with the momentum
update “online network” text file
update “momentum” text file
open “days since last target network update” text file
if days_since_last_target_network_update == target_network_update_period - 1:

update target network by copying online network
update “target network” text file
days_since_last_target_network_update = 0

else:
days_since_last_target_network_update = days_since_last_target_network_update + 1

update “days since last target network update” text file with the new value
update “Replay Memory” text files
update “Priority Numbers” text file

64

Chapter 5: Methodology

5.1. Stages of the study

The experiments can be divided into five main sections. In the four first parts, all experiments

(simulations) are conducted with systems that are not subject to failures; i.e., they are completely

operational 100% of the time.

In the first part, the three training algorithms (REINFORCE, Actor-Critic and Deep Reinforcement

Learning; see Section 3.2 and subsections for details) are tested and compared.

In the second part, DRL-trained agents are compared to a baseline (not smart-controlled) simulation

of the system. In the baseline, all heating stages of the system are permanently used and the

auxiliary flow is not used. Rewards are used as metric to compare the baseline to the smart agents.

This is consistent because, independently of how a reward is defined, it is by definition what the

agent is meant to maximize (as discussed in Section 1.5, the higher the reward, the better). The

goal of this part is to prove that the proposed method is effective to train smart agents that can

perform better than the baseline strategy.

In the third part, the performance of the agents is analyzed as the training hyperparameters are

changed. Different network architectures are also tested and compared. In this part, the main goal

is to compare the rewards achieved by agents that were trained with different hyperparameters, and

to determine the hyperparameters that maximize the performance of the agents.

In the fourth part, the behavior of the agents (i.e. the actions that they choose) is analyzed as the

parameters of the reward function are changed. Modifying the parameters of the reward function

is equivalent to changing the goal that the agent is meant to achieve. In this part, comparing the

rewards of different agents does not make sense, because some agents will reach larger rewards

than others only because of the reward definition that they were trained and tested with. What

makes sense in this part is to analyze the actions that were chosen by the agents, which are expected

to vary as the goal that the agent is supposed to seek is modified.

In the fifth part, the ability of the agents to operate the system under stochastic failures is analyzed.

To do this, new agents are trained in an environment where the components can fail as well. Two

types of agents are analyzed and compared: the first type of agent receives the same environment

state that was defined in Section 4.4, with 10 variables. The second type of agent receives extra

variables that define the functional state of the system; i.e. the agents of this second kind are being

“told” which components of the system are operating and which not. In order for the agents of the

first kind to be successful, they have to “infer” this information from the other variables of the

system, like the temperatures of the water in the storage tanks.

5.2. Result Analysis

Depending on the goal of each specific test, different results need to be taken into account. One of

the main metrics to compare different agents are the rewards received by them. To visualize the

rewards, all rewards of each simulation day will be summed, and then they will be plotted with

time in the horizontal axis. Hence, each point in the graph represents one simulation day and the

total amount of rewards received on that day.

An example of the rewards that were received during a training process is shown in Figure 25. 12

years (4380 days) were simulated. It can be clearly seen that the rewards increase as the agent

65

learns to execute better actions on the system. There is a clear cyclical behavior in the rewards due

to the fact that in summer there are many conditions that make it easier for the agent to get higher

rewards: higher solar radiation availability, warmer temperature of the mains water flow and hotter

air temperature, which increases the efficiency of the air-water heat pumps. The raw rewards,

shown in blue, are very noisy, so for most comparisons a “moving average”, shown in orange, will

be used to smooth the result. In the figure, a “time window” of 21 days is being used to compute

the moving average corresponding to each day. The 21 days correspond to the ten previous days,

the ten next days and the day itself for which the time window is being computed. This time window

of 21 days will be used for the first four parts of the study (as defined in the previous section) with

the exception of Figure 64 which uses a time window of 7 days. In the fifth part of the study, where

failures are introduced, the time window will always be 7 days; i.e. the three previous days, the

three next days and the day itself.

Figure 25: Rewards of each simulation day summed.

Another result that will be commonly shown is the actions that the agents took during one

simulation year. This is particularly important when the parameters of the reward function are

changed; in this case, it does not make sense to evaluate which agent got the highest rewards (since

the rewards are defined in a different way for each agent), but it does make sense to evaluate how

the actions of the agents change in order to achieve different goals defined by the reward parameters

that are being modified. When the actions of the agents are evaluated, it is useful to take into

account at what time of day and at what epoch of the year a particular action was taken. To do this,

the number of times that a particular action (from the 16 possible actions that the agent can choose)

was chosen at each time of day during each month of the year is counted. A visual way of

visualizing this result is shown with an example in Figure 26. Each group of columns represents a

moment of day at which an action has to be chosen. Within each group, each column represents a

month (the columns are ordered from January to December). The different heights of the columns

are due to the number days that each month has. Within each column, the colors represent the

number of times during the corresponding month that a particular action was chosen at the

corresponding time of day. At the right side of the figure, the actions of the agent are clarified by

showing which systems are used. “H.P.” means “heat pumps” in the figures.

66

Figure 26: Visual illustration of the actions taken during one year

Another way of visualizing the same result is by grouping the columns that correspond to the same

month. This is shown in Figure 27. Within each group, each column corresponds to a time of day

at which an action has to be chosen (the columns are ordered from 8.00 AM to 20.00 PM). Figures

26 and 27 show exactly the same information but the information is presented in different ways in

order to illustrate different features of the behavior of the agent.

Figure 27: Alternative illustration of the actions taken during one year

A way of visualizing each individual action of an agent is shown in Figure 28. This method

theoretically gives more information than the two previous figures, but the trends are harder to

visualize. Figures 26, 27 and 28 are made from the same action record. This last method of

analyzing the actions will be especially useful when failures of the components are introduced,

because in that case, the change in the behavior of the agent can be visualized exactly at the moment

when a failure occurs.

67

Figure 28: Complete description of the actions visualized in Figures 26 and 27.

Other indicators that will sometimes be considered are the ones that contribute to the calculation

of the global reward function: the number of hours of a day during which the dressing rooms

received water that was warmer than 40°C, the “total heat/electric consumption” indicator, the

“clean heat/total heat” indicator, and the number of hours during which the solar collectors reached

temperatures higher than 100°C.

68

Chapter 6: Results and Discussion

6.1. Comparison of DRL algorithms

In this section, the three training algorithms discussed in Section 3.2 and subsections are tested and

compared. The training conditions, i.e. the architectures of the networks and other

hyperparameters, are equal when it is possible to do so; however, each method has its own

hyperparameters that have no analog in the other two, so it was not always possible to keep exactly

the same conditions. For example, the Actor-Critic method has a second neural network that helps

with training; this network can have its own architecture and its own learning rate.

To begin, two agents are trained with each method and the resulting rewards are compared. Only

the architectures of the networks are changed between the two tests. The first reward function, 𝑅1,

as defined in Equation 110, is used with the 𝛼1 parameter being equal to one. This is equivalent to

say that the second reward function 𝑅2 (defined by Equation 111) is used with 𝛼5 being equal to

zero. The other parameters of the reward function are shown in Table 8 (see Section 4.3 for more

details on the definition of the reward function).

Table 8: Parameters of the reward function (DRL algorithm comparison)

Parameter Value

𝛼1 1

𝛼2 0.5

𝛼3 5

𝛼4 1

The architectures and other hyperparameters used for the REINFORCE, Actor-Critic and Deep Q-

Learning algorithms are shown in Tables 9, 10 and 11 respectively. In all neural networks, all

hidden layers use the Rectified Linear Unit (ReLU) as their activation function, and the output

layer has either no activation function or the Softmax activation function, depending on the case.

The ReLU function is defined as:

 ReLU(𝑥) = {
 𝑥 if 𝑥 > 0
 0 if 𝑥 ≤ 0

 (113)

69

Table 9: Hyperparameters and architectures for the REINFORCE method

Total simulated time 20 years

Discount factor 0.4

Update period (How many episodes (days) are

executed between the training steps?)
10

Learning rate 0.001

Momentum factor 0.8

Network architecture for Test 1 Input size: 10

Hidden layer sizes (in order): 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: Softmax

Network architecture for Test 2 Input size: 10

Hidden layer sizes (in order): 48, 32, 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: Softmax

Table 10: Hyperparameters and architectures for the Actor-Critic method

Total simulated time 20 years

Discount factor 0.4

Learning rate of the actor network 0.0002

Learning rate of the critic network 0.001

Momentum factor of the actor network 0.8

Momentum factor of the critic network 0.8

Actor network architecture for Test 1 Input size: 10

Hidden layer sizes (in order): 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: Softmax

Critic network architecture for Test 1 Input size: 10

Hidden layer sizes (in order): 24, 12

Output size: 1

Activation function of hidden layers: ReLU

Activation function of output layer: None

Actor network architecture for Test 2 Input size: 10

Hidden layer sizes (in order): 48, 32, 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: Softmax

Critic network architecture for Test 2 Input size: 10

Hidden layer sizes (in order): 32, 24, 24, 8

Output size: 1

Activation function of hidden layers: ReLU

Activation function of output layer: None

70

Table 11: Hyperparameters and architectures for the Deep Q-Learning method

Total simulated time 20 years

Discount factor 0.4

Type of training (Normal DQN or

Double DQN)

Double DQN

Update period of the target network 10 days

Learning rate 0.001

Momentum factor 0.8

Network architecture for Test 1 Input size: 10

Hidden layer sizes (in order): 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: None

Network architecture for Test 2 Input size: 10

Hidden layer sizes (in order): 48, 32, 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: None

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is

maintained at this value for two years, and the network is

not updated. This period is used to fill the replay memory.

- After two years the value of 𝜖 starts to decline linearly;

it reaches its minimum value of 0.2 at 12 simulation years.

When the value of 𝜖 starts to decline, the network also

begins to be updated once at the end of each day.

- Between 12 years and 20 years of simulation, the value

of 𝜖 remains constant at 0.2.

Length of the replay memory (in

experiences)

6000

Batch size 100

Prioritized experience replay - The proportional method is used to determine the

priority number, as shown by Equation 56.

- The value of 𝛼 is set to 1.

- The value of 𝜙 is set to 0.2.

- The value of 𝜓 is set to 0

Figures 29, 30 and 31 show the results of the REINFORCE algorithm, the Actor-Critic algorithm

and the Deep Q-Learning algorithm respectively. In each figure, the graph at the top shows the

result of the first test and the graph at the bottom shows the result of the second test, with different

architectures as defined in Tables 9, 10 and 11.

71

Figure 29: Results of the REINFORCE algorithm

Top: Test 1. Bottom: Test 2

Figure 30: Results of the Actor-Critic algorithm

Top: Test 1. Bottom: Test 2

72

Figure 31: Results of the Deep Q-Learning algorithm

Top: Test 1. Bottom: Test 2

From the results shown in Figures 29, 30 and 31, it can be clearly seen that the Deep Q-Learning

algorithm performs better than the other two algorithms. With the REINFORCE algorithm, the

rewards seem to increase as the training process progresses, but this increase is not as remarkable

as with the Deep Q-Learning method. In the first test with the REINFORCE algorithm, the rewards

are quite high in summer, but they are also very low in winter, whereas with Deep Q-Learning the

daily rewards rarely fall below 30 by the end of the training process. In the second test with the

REINFORCE algorithm, it seems that the rewards start to increase consistently at the end of the

training process. It seems that if this process is continued, the results could get better. With the

Actor-Critic algorithm it does not seem that the rewards increase at all; instead, their behavior is

similar during the whole training process. This could be because the hyperparameters are not

appropriately tuned.

It was decided to extend the training process shown at the bottom of Figure 29 (REINFORCE

algorithm) for 20 more years, in order to see how much the rewards increase if this process is

continued. Besides, three more tests are carried out with the REINFORCE algorithm with different

hyperparameters in order to check if the convergence of the algorithm could be achieved faster. In

all three tests, Architecture 2, as defined in Table 9, was used. The hyperparameters are changed

with respect to the first tests as follows: in the first test, the learning rate was increased to 0.002; in

the second one, the learning rate was kept at 0.001 but the update period was decreased to 5 days;

in the third test, the learning rate was increased to 0.003 and the update period was increased to 20

days.

The result of the extension of the training process shown at the bottom of Figure 29 is shown in

Figure 32. Regarding the three extra tests, the third of them (learning rate equal to 0.003 and update

period equal to 20 days) seemed to be converging at the end of the 20 years of training, just like

the previous case. For this reason, it was extended to 40 years as well. The resulting rewards are

shown in Figure 33.

73

Figure 32: REINFORCE algorithm. Process shown at the bottom of Figure 29, extended to 40 years.

Figure 33: REINFORCE algorithm. Learning rate was set to 0.003; update period was set to 20 days.

As can be seen, both training processes have converged quite well, reaching acceptable and stable

rewards. Regarding the Actor-Critic algorithm, more hyperparameter combinations were tested but

no convergence was achieved. All results are similar to the ones shown in Figure 30.

Considering the results shown above, it was decided to continue the study with the Deep Q-

Learning algorithm for the following reasons:

- The convergence of Deep Q-Learning seems to be less sensitive to hyperparameter tuning.

One of the known difficulties of Deep Reinforcement Learning in general is that

convergence is often very hard to achieve (Géron [36], page 633), but in this case, Deep Q-

Learning seems to converge always and is not remarkably sensitive to hyperparameter

variation.

- Convergence of Deep Q-Learning is faster than that of the REINFORCE algorithm. As will

be discussed in coming sections, convergence of Deep Q-Learning can be achieved in less

than 10 years if the value of 𝜖 (from the 𝜖-greedy method, see Section 3.2.5.3 for details)

is decreased faster. With REINFORCE, there is no direct control of the moment in which

the training process converges, and in the case of the experiments that were conducted,

convergence did not happen in less than approximately 20 simulation years.

- The rewards achieved by the Deep Q-Learning training processes are higher than those of

the REINFORCE algorithm. This can be appreciated when they are compared with more

74

precision. In Figure 34, the rewards received during the last training year of each method

are smoothed with a moving average of 21 days. At the beginning and at the end of the

year, the smoothed rewards are remarkably higher with both agents trained with the Deep

Q-Learning algorithm.

Figure 34: Smoothed rewards during the last simulation year. REINFORCE and Deep Q-Learning

compared.

For the reasons just mentioned, all the training processes in the coming sections will be made with

the Deep Q-Learning algorithm.

6.2. Comparison to a non-smart-controlled baseline

In this section, the Reinforcement Learning approach to the task of controlling the studied water

heating system will be validated by comparing the performance of a DRL-trained agent with a non-

controlled baseline.

For the baseline, it will be considered that all heating stages are permanently used, and the

“auxiliary flow” is never used. To evaluate the performance of both systems, their rewards will be

compared. However, there is a problem that must be solved in order for the comparison to be “fair”:

when the “total heat/electric consumption” indicator is used for the reward function, an easy way

for the controlling agent to increase this indicator is to turn off the chiller, because the chiller is by

far the most energy-consuming device of the whole system. The reason why in the baseline the

chiller is permanently used is that in reality, the chiller is needed for purposes which are external

to the system that is being simulated here. These purposes are heating the pool, dehumidifying the

building and cooling it. For this reason, the second reward function was defined in Equation 111

to take this “external motivation” to use the chiller into account. In this reward function, 𝛼5 is a

parameter to define a “prize” that is given to the agent for using the chiller. As already discussed

in the rewards section (Section 4.3), this is not an accurate way of modeling an “external

motivation” to use the chiller; the only way to do that would be to model the rest of the building in

order to quantitatively measure the cooling load of the chiller. However, the 𝛼5 parameter proposed

here is a simple way to make the use of the chiller “desirable” in order to increase the rewards.

The parameters of the reward function and the hyperparameters of the training process are shown

in Table 12.

75

Table 12: Reward and training parameters for the comparison to the baseline.

𝑅2 as defined in Equation 111 was used

Reward Parameters

Parameter Value

𝛼2 0.5

𝛼3 5

𝛼4 1

𝛼5 { 0 , 2 , 5 , 10 }
Training Hyperparameters

Total training time 11 years

Discount factor 0.4

Type of training (Normal DQN or

Double DQN)

Double

Update period of the target network 10 days

Learning rate 0.001

Momentum factor 0.8

Network architecture Input size: 10

Hidden layer sizes (in order): 48, 32, 32, 24

Output size: 16

Activation function of hidden layers: ReLU

Activation function of output layer: None

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is

maintained at this value for one year, and the network is

not updated. This period is used to fill the replay memory.

- After one year the value of 𝜖 starts to decline linearly; it

reaches its minimum value of 0.2 at 5 simulation years.

When the value of 𝜖 starts to decline, the network also

begins to be updated once at the end of each day.

- Between 5 years and 11 years of simulation, the value of

𝜖 remains constant at 0.2.

Length of the replay memory (in

experiences)

6000

Batch size 100

Prioritized experience replay - The proportional method is used to determine the

priority number, as shown by Equation 56.

- The value of 𝛼 is set to 1.

- The value of 𝜙 is set to 0.2.

- The value of 𝜓 is set to 0

6.2.1. Testing method

To compare the smart agents to the baseline, both will be tested under conditions that are different

from those of the training process. During the test period, the smart agents are not trained (i.e. the

parameters of the neural network are not updated) and no random actions are chosen (i.e. the actions

which have the highest estimated Q-Value are always chosen). The rewards received by the smart

agents will be compared to the rewards received by the baseline system during a time period of one

year (from January 1 to December 31). It makes no sense to compare the rewards during a longer

time span because the smart agents will repeat their decisions in the next years and therefore the

76

rewards will be very similar. Only the initial conditions of the simulation could create small

differences between a year and the next one. To avoid the problem of the initial conditions, two

years and 10 days will be simulated, and the second year will be considered for the results. The

rewards will be smoothed, as discussed in Section 5.2, using a moving average of 21 days. That is

the reason for simulating two years and 10 days: the last ten days are used by the moving average

to smooth the rewards until the last day of the second year. The last ten days of the first simulation

year are also necessary to compute the moving average on the first day of the second year. The

same testing method will be used in the coming sections as well.

6.2.2. Results

Four different values of 𝛼5 were considered: 0, 2, 5 and 10. Clearly, a different agent must be

trained with each value of 𝛼5. Figure 35 shows the smoothed rewards of the smart agents and the

baseline during the test period, for the each value of 𝛼5. The white and gray stripes at the

background show the seasons of the year, starting and ending with summer. A detail worth

mentioning is that the first trained agent is being shown in each case, so there is the option that

better agents can be achieved if more attempts were executed.

Figure 35: Results of the comparisons between the smart agents and the baseline

As Figure 35 shows, with the two lower values of 𝛼5, the rewards that the smart agents got are

clearly higher than those of the baseline during the whole year. When 𝛼5 was set to five, there is a

small portion of the year during which the rewards of the baseline model are roughly equal to those

of the smart agent. When 𝛼5 was set to ten, the rewards of the smart agent are better in spring and

in summer, and they are practically equal to the rewards received by the baseline during autumn

and winter. This is because the best strategy that the smart agent found for the cold months with

that value of 𝛼5 is very similar to the strategy of the baseline. The general trend is that as the “prize”

for using the chiller increases, the smart agents have a narrower margin to outcompete the baseline.

By comparing the actions chosen by agents that were trained with different values of 𝛼5, it can be

seen how they chose to use the chiller with different frequencies. In Figure 36, which shows the

actions chosen by the agent trained with 𝛼5 equal to zero, the chiller was turned on in the actions

77

shown in blue and in red. This happened mainly during the central months of the year at 6.00 PM

and at 8.00 PM. In Figure 37, which shows the actions chosen by the agent trained with 𝛼5 equal

to one, the chiller was turned on almost in every action, except for the actions that are shown in

magenta and in red. From April to September, it can be seen that the agent almost always chose

Action number 0, which is equivalent to the strategy that the baseline uses. Only at 8.00 PM the

solar field is turned off.

Figure 36: Actions taken by an agent trained with 𝛼5 equal to zero

Figure 37: Actions taken by an agent trained with 𝛼5 equal to ten

The 𝛼5 parameter is clearly not a good method to “encourage” the agent to use the chiller, because

when the value of that parameter is large, the agent uses the chiller more frequently in winter than

in summer, which is not realistic. However, it has been shown that the smart agent can find the way

to at least perform as good as the baseline strategy, even if it must adopt the same strategy because

there is no possible improvement. The agent only uses that strategy when it is needed, while in

warm months it finds a way to outcompete the baseline.

The reason why the rewards get smaller in summer with large values of 𝛼5 for both methods, is

that the “total heat/electric consumption” indicator loses its importance in the reward (see Equation

111). In this context of larger rewards, the “degradation” factor becomes important; this indicator

becomes zero in winter, and in summer the smart agent makes more to avoid it (actually, the

baseline strategy does nothing to avoid it); that is why the baseline performs worse than the smart

agent in summer, but in winter both are equal.

6.3. Comparison of different network architectures and training hyperparameters

The main goal of this section is to optimize the training conditions by comparing different neural

network architectures and training hyperparameters. Since the Deep Q-Learning algorithm is

78

defined by many hyperparameters, it is unfeasible to test all possible combinations with a “grid”

exploration. Instead, only some of the important hyperparameters are modified: network

architecture, discount factor, and normal DQN is compared to Double DQN. The importance of

using momentum is also put to the test.

The first reward function 𝑅1, as defined in Equation 110, is used. The parameters of the reward

function are detailed in Table 13 (see Section 4.3 for details on the reward function).

Table 13: Parameters of the reward function for Section 6.3 and subsections.

The function 𝑅1 (Equation 110) is used.

Parameter Value

𝛼1 1

𝛼2 0.5

𝛼3 5

𝛼4 1

Since many steps of the training process depend on random results, the agents resulting from

different training processes under the same conditions will be, at least, slightly different. These

“random steps” are the weight initialization of the neural network, the selection of experiences to

form the batches, the decisions on whether to execute a random action or to choose the action that

the agent considers to be the best, and the selected action when a random action is chosen. For this

reason, the performance of a single agent does not give enough information about a specific

combination of hyperparameters; the performance of other agents that were trained under the same

conditions could be very different.

Because of this, to compare different values of the same hyperparameter (or different network

architectures), several agents are trained with each value of the hyperparameter that is being varied,

and then the performances of agents that were trained with the same hyperparameter value are

averaged. Figure 38 shows an example of this. The curves shown in that figure were created

randomly and do not reflect the performances of real agents. In the figure, each color represents

one value of the hyperparameter that is being varied; three different agents were trained with each

value. It is also useful to compute the standard deviation of the performances to check how variable

the performance of agents that were trained with each hyperparameter value is.

Figure 38: Process to compare different values of the same hyperparameter. Several agents are trained

with each value (in this example 3 agents per value).

As already discussed in Section 6.2.1, the agents are tested during 2 years and 10 days. The rewards

obtained by the agents during the second year are smoothed with a moving average of 21 days.

79

6.3.1. Comparing Different Architectures

In this Section, different layer sizes and network depths are compared. In all cases, the input

dimension is 10 due to the environment state that was defined in Section 4.4, and the output layer

has 16 neurons because the network produces a Q-Value approximation for each possible action

(see Section 4.2 for details on the possible actions that the agent can choose). Figure 39 shows all

architectures that are considered. Like in previous sections, the hidden layers use the ReLU

activation function, which was defined in Section 6.1 (Equation 113). Table 14 shows the training

hyperparameters.

Figure 39: Architectures tested.

Table 14: Hyperparameters of the Deep Q-Learning algorithm for Section 6.3.1

Total training time 11 years

Discount factor 0.6

Type of training (Normal DQN or

Double DQN)

Double

Update period of the target network 10 days

Learning rate 0.001

Momentum factor 0.8

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is

maintained at this value for one year, and the network is

not updated. This period is used to fill the replay memory.

- After one year the value of 𝜖 starts to decline linearly; it

reaches its minimum value of 0.2 at 5 simulation years.

When the value of 𝜖 starts to decline, the network also

begins to be updated once at the end of each day.

- Between 5 years and 11 years of simulation, the value of

𝜖 remains constant at 0.2.

Length of the replay memory (in

experiences)

6000

Batch size 100

Prioritized experience replay - The proportional method is used to determine the

priority number, as shown by Equation 56.

- The value of 𝛼 is set to 1.

- The value of 𝜙 is set to 0.2.

- The value of 𝜓 is set to 0.

80

Each architecture is trained 5 times. As discussed above, the smoothed rewards of the agents that

have the same network architecture are averaged. Figure 40 shows the averaged results, and Figure

41 shows the standard deviations.

Figure 40: Mean smoothed rewards during the test year, considering 5 trainings for each architecture.

Figure 41: Standard deviation of smoothed rewards during the test year, considering 5 trainings for each

architecture.

Upon observing the average results, all averaged rewards are quite similar. It is clear that the

obtained rewards are considerably higher in summer (both sides of the graph) because it is easier

for the agents to obtain more energy from the sun. This is consistent with the reward definition and

it is the objective of the training process.

Now, it is possible to compute the mean values of the curves shown in both Figures 40 and 41, thus

obtaining a “mean of means” and a “mean of standard deviations” for each architecture. This is

shown in Table 15.

81

Table 15: Mean values of the curves shown in Figures 40 and 41

Architecture number Mean reward Mean standard deviation

1 81.98 2.51

2 81.84 1.79

3 81.58 1.97

4 83.21 1.65

5 82.68 2.49

6 83.17 2.61

7 82.77 3.91

It is remarkable that Architecture 7, which has the lowest performance in summer, also has the

greatest rewards in winter, when the rewards reach their minimum. As can be seen in Figure 41

and in Table 15 as well, the results of this architecture vary significantly, thus not being a good

option. Architecture 4 seems to be the best option since it has the highest mean rewards and also

the lowest variability, as shown in Table 15.

6.3.2. Comparing Different Discount Factors

The training hyperparameters shown in Table 14 are kept in this section, with the exception of the

discount factor, which is the parameter that will be analyzed. Architecture 4 of the previous section,

defined by Figure 39, is used. The 5 values considered for the discount factor are: 0.2; 0.4; 0.6; 0.8

and 1.0. Five agents are trained with each discount factor value. The averaged performances of

each value are shown in Figure 42.

Figure 42: Averaged rewards when the discount factor is varied. 5 trainings for each value of 𝛾

The most remarkable feature of the graph shown in Figure 42 is that 𝛾 equal to one got a clearly

lower average performance. By visualizing the performance of the individual agents trained with

that discount factor, it can be seen that this is because one of the training processes did not converge

at all. Figure 43 shows the performances of the individual agents that were trained with 𝛾 equal to

one.

82

Figure 43: Performances of the individual agents that were trained with 𝛾 equal to one

Although the failed training process is a legitimate result that shows that there is the possibility of

not achieving convergence with that discount factor, it would be interesting to answer the question:

is 1 the best value for the discount factor if the failed training process is not considered? The answer

is no, as shown in Figure 44. This figure shows the same results that are shown in Figure 42, but

the worst result of 𝛾 equal to one is not being considered. During a small portion of the year, in

winter, 𝛾 equal to one has the best average results, but for most of the year it is the worst of all

discount factors.

Figure 44: Average performances of the discount factors when the worst result of 𝛾 equal to one is not

considered.

Figure 45 shows the standard deviations of the rewards. All results are being considered, even the

worst result of 𝛾 equal to one. That is the reason why the standard deviation of that discount factor

value is so high. Figure 46 shows the deviations of the other discount factors, i.e. when 𝛾 equal to

one is not considered. The only reason to plot this is to better compare the deviations of the other

discount factors.

83

Figure 45: Standard deviations of rewards when the discount factor is varied.

5 trainings for each value of 𝛾

Figure 46: Standard deviations of rewards when the discount factor is varied. 𝛾 equal to one is not

considered.

Table 16 shows the average values of the curves shown in Figures 42 and 45.

Table 16: Mean values of the curves shown in Figures 42 and 45.

Discount factor Mean reward Mean standard deviation

0.2 82.25 2.27

0.4 83.54 1.38

0.6 82.87 2.35

0.8 82.96 2.27

1.0 64.68 30.31

From Table 16, and also from Figures 42 and 46, it can be concluded that 0.4 is the best value for

the discount factor, both because it maximizes the average rewards and because it minimizes the

variability of the performance of the agents.

84

6.3.3. Comparing traditional DQN to Double DQN

The discount factor is now changed to 0.4, which is the best value discovered in the previous

section. Architecture 4, as defined in Section 6.3.1, is still used in this section. All other parameters

are the same as shown in Table 14.

The two modes of DQN, traditional and double, are compared. 10 agents are trained with each

method. As before, the smoothed rewards of all tests are averaged and their standard deviations are

calculated. Figures 47 and 48 show the average rewards and their standard deviation, respectively.

Figure 47: Traditional and Double DQN average rewards (ten agents were trained with each method).

Figure 48: Traditional and Double DQN standard deviations (ten agents were trained with each method).

The average values of the curves shown in Figures 47 and 48 are shown in Table 17.

Table 17: Mean values of the curves shown in Figures 47 and 48.

Training Mode Mean reward Mean standard deviation

Traditional DQN 83.09 1.94

Double DQN 83.66 1.63

85

The averaged results of both DQN modes are very similar. Double DQN has a small advantage at

some moments of the year, but this advantage is small in comparison to the standard deviations.

Regarding the standard deviations of both algorithms, there are moments when traditional DQN

has a smaller deviation, but it also reaches maximum standard deviations which are considerably

larger than those of the Double DQN algorithm. This is reflected in the results shown in Table 17,

where the mean standard deviation of the Double DQN algorithm is smaller than that of traditional

DQN. However, these results do not show a very large difference between both methods. Does this

mean that the Double DQN algorithm is not better than traditional DQN as the creators of this

algorithm claimed? Definitely not; these Deep Reinforcement Learning methods were created and

tested in environments which are far more complex than this one, and where the convergence of

the methods is far more difficult to achieve [44]; in this context, preventing the overestimation of

Q-Values becomes fundamental, and because of this, Double DQN has shown to have a clear

advantage. However, in the environment that is being studied here, Double DQN seems to not

make such a great difference.

6.3.4. Effect of momentum

As discussed in Section 3.1.2, the technique of “momentum” is a way for the updating process of

the network to gain “velocity” in successive iterations. This can lead to a faster convergence and

also allows the training process to avoid “local optima”.

In all previous tests, the momentum factor (here denoted as 𝛽) was set to 0.8. In this section, it was

changed to 0.0; this means that momentum is not being used anymore. Ten agents were trained

with Double DQN, momentum factor equal to 0.0 and all other hyperparameters of the previous

section (Section 6.3.3).

In Figure 49, the smoothed rewards of the agents trained with 𝛽 equal to zero are compared with

the rewards of the ten agents that were trained with Double DQN in the previous section (Section

6.3.3). The rewards are not averaged; instead, the performances of the individual agents are plotted.

Figure 49: Performances when momentum is used and when it is not used

From Figure 49, it is clear that momentum plays a fundamental role in the training algorithm, since

all agents that were trained without momentum had a considerably worse performance in spring

and summer. This can be attributed to the fact that the agents got stuck in a local optimum when

momentum was not used.

86

6.4. Behavior comparison under different reward parameters

In this section, the objective is not to look for the best parameters in order to optimize the

performance of the agent, but to analyze how the behavior of the agent changes as the goal is

changed, which takes place by changing the parameters of the reward function, as defined in

Section 4.3. These parameters are meant to change the importance given to the indicators that are

considered in the global reward function. In this context, it does not make much sense to compare

the rewards that different agents get with different reward parameters, because when the parameters

of the reward function are changed, then the rewards that the agents can expect to get change as

well. Hence, it does not make sense to say “agent A got higher rewards than agent B” if agent A

and agent B were trained and tested with different reward parameters. The only thing that agent A

and agent B have in common is that they seek to maximize their respective reward function, and to

achieve it they may take different decisions.

The reward function 𝑅1, as defined in Equation 110, is used.

Table 18 shows the training hyperparameters used for all tests in this section and subsections.

Table 18: Parameters of the Deep Q-Learning algorithm for Section 6.4 and subsections

Deep Neural Network Architecture Architecture 4, as defined in Section 6.3.1.

Total training time 11 years

Total simulation time 12 years; during the last simulated year the network is not

updated and the selected actions are always the ones that

the agent considers to be the best.

Discount factor 0.4

Type of training (Normal DQN or

Double DQN)

Double

Update period of the target network 10 days

Learning rate 0.001

Momentum factor 0.8

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is

maintained at this value for one year, and the network is

not updated. This period is used to fill the replay memory.

- After one year the value of 𝜖 starts to decline linearly; it

reaches its minimum value of 0.2 at 5 simulation years.

When the value of 𝜖 starts to decline, the network also

begins to be updated once at the end of each day.

- Between 5 years and 11 years of simulation, the value of

𝜖 remains constant at 0.2.

Length of the replay memory (in

experiences)

6000

Batch size 100

Prioritized experience replay - The proportional method is used to determine the

priority number, as shown by Equation 56.

- The value of 𝛼 is set to 1.

- The value of 𝜙 is set to 0.2.

- The value of 𝜓 is set to 0

87

6.4.1. Changing the value of 𝜶𝟏

The 𝛼1 parameter measures the importance given to the indicators “total heat/electric consumption”

and “clean heat/total heat”. When it is equal to one, only the “total heat/electric consumption”

indicator is taken into account; when it is equal to zero, only the “clean heat/total heat” indicator is

taken into account. As stated before, “clean heat” refers to the heat coming from the solar collectors

and the chiller.

Table 19 shows the other parameters of the reward function that were constant while the value of

𝛼1 was changed.

Table 19: Reward parameters (other than 𝛼1) used in Section 6.4.1.

Parameter Value

𝛼2 0.5

𝛼3 5

𝛼4 1

Figure 50 shows the “total heat/electric consumption” indicator of two agents during the 12

simulated years; one of those agents was trained with 𝛼1 being equal to zero and the other one was

trained with 𝛼1 being equal to one. The first 11 years correspond to the training process; the last

year could be considered as a “testing year”, as explained in Table 18. Figure 51 does the same,

with the same two agents, but taking the “clean heat/total heat” indicator into account.

Figure 50: “Total heat/electric consumption” indicator. 𝛼1 takes the values 0 and 1.

88

Figure 51: “Clean heat/total heat” indicator. 𝛼1 takes the values 0 and 1.

It can be seen that, when training begins, both indicators are approximately equal when comparing

the two agents. This is because, in the beginning, the network does not know anything about the

environment yet, and all actions are random. When the probability of executing random actions

decreases, it becomes appreciable that the agents privilege different indicators according to the

reward that they are seeking. When 𝛼1 is set to one, the agent only looks after the “total heat/electric

consumption” indicator, and when 𝛼1 is zero, the same happens for the “clean heat/total heat”

indicator.

Note also that, when 𝛼1 is zero, the “clean heat/total heat” indicator takes the value 1.0 during the

whole last year (during no random actions are executed). This means that the water flow only

receives heat from the solar field and the chiller; hence, the agent does not activate the heat pumps

during the whole year, clearly seeking not to decrease the value of this indicator.

After the training processes shown in Figures 50 and 51, both agents were subjected to a testing

period of two years and 10 days, as explained in Section 6.2.1. Figure 52 shows two other important

indicators of the reward function that were recorded during that testing process: at the left, the daily

hours during which the water coming out of the solar collectors reached temperatures higher than

100°C; and at the right, the daily hours during which the water delivered to the dressing rooms was

warmer than 40°C (this is considered to be the minimal comfortable temperature). In the case of

the latter indicator, the expected value is 14 hours, which means that the water at the outlet of the

system was warmer than 40°C from 8.00 AM to 10.00 PM. That indicator is not smoothed in Figure

52.

89

Figure 52: Degradation indicator and comfort indicator during a test year.

Left: Daily hours during which the water temperature in the collectors reached more than 100°C

Right: Daily hours during which the temperature of the water delivered by the system was

higher than 40°C.

Although the 𝛼3 parameter of the reward function, which measures the “punishment” for reaching

high temperatures in the solar collectors, has been kept constant, the 𝛼1 parameter seems to have

an indirect effect on the amount of time that high temperatures are reached in the collectors, as can

be seen at the left of Figure 52. 𝛼1 equal to one seems to be better from this point of view. However,

with that value of 𝛼1, there were days on which the water coming out of the heating system reached

temperatures lower than 40°C; this can be seen at the right of Figure 52. The agent delivered warm

water 98.7% of the time of the whole year, but this is not a good realiability measure for the agent

since it does not take into account the water demand at the moments when the water was not

delivered at the minimum temperature of 40°C. A more accurate reliability indicator would be the

percentage of the volume of demanded water that was delivered at temperatures higher than 40°C;

nevertheless, this was not recorded. The agent trained with 𝛼1 equal to zero was able to always

deliver water that was warmer than 40°C.

Figures 53 and 54 show the “total heat/electric consumption” and “clean heat/total heat” indicators

of agents that were trained with intermediate values of 𝛼1. The values of 𝛼1 that were used to train

the agents whose results are plotted are: 0.0, 0.1, 0.2, 0.3, 0.5 and 1.0 (the values are closer to zero

because the “total heat/electric consumption” indicator reaches values significantly larger than one,

unlike the “clean heat/total heat” indicator). Each curve shows the result of only one agent (i.e. it

is not the average of various agents). The results are taken from a testing period, as explained in

Section 6.2.1.

90

Figure 53: “Total heat/electric consumption” indicator during the testing period.

Figure 54: “Clean heat/total heat” indicator during the testing period.

In Figure 53, it seems that there is an abrupt change in the behavior of the “total heat/electric

consumption” indicator when the 𝛼1 parameter is changed from 0.0 to 0.1. On the other hand, the

“clean heat/total heat” indicator (Figure 54) seems to have a more gradual change as the value of

𝛼1 varies.

Figure 55 shows the behavior of the “total heat/electric consumption” indicator when 𝛼1 takes

values between 0.0 and 0.1. The goal is to discover “intermediate” behaviors, given the abrupt

change that can be seen in Figure 53 between the values 0.0 and 0.1. The conclusion is that there

are intermediate behaviors when 𝛼1 takes the values 0.005, 0.010 and 0.020. With 𝛼1 equal to

0.030, the indicator starts to behave like it does with the greater values of 𝛼1.

91

Figure 55: “Total heat/electric consumption” indicator during the testing period. 𝛼1 between 0.0 and 0.1.

Figures 56 and 57 show the actions taken by the agents trained with 𝛼1 = 0 and 𝛼1 = 1,

respectively. Regarding the value 𝛼1 = 0, it can only be said that the behavior was very simple:

the agent always took the same action, which involved activating the chiller and the solar energy

system. This is consistent with the result shown in Figures 51 and 54, which show that all the heat

came from “clean sources”. Regarding the agent that was trained with 𝛼1 = 1, there are more

features that can be mentioned: the solar collector field was used as the only energy source with

more frequency in summer than in winter, and also with more frequency at midday than in the

morning and in the afternoon. This is what is expected from the agent, since it is taking advantage

of moments with high solar radiation to reduce the energy consumption. It can also be seen that the

agent used the auxiliary flow in warm months and at times of high solar radiation. It is curious that

at 12.00 PM the agent used the auxiliary flow with less frequency, but that can be explained because

at that moment the water demand reaches its daily maximum; thus it is not necessary to use the

auxiliary flow to avoid overheating of the solar collectors.

Figure 56: Actions taken by the agent trained with 𝛼1 = 0

92

Figure 57: Actions taken by the agent trained with 𝛼1 = 1

After analyzing the behaviors shown in Figures 56 and 57, a question may arise: how “variable”

are those behaviors if more agents are trained under the same conditions? To answer that question,

Figure 58 shows the actions taken by two additional agents that were trained with 𝛼1 = 0 and

Figure 59 shows the actions taken by two additional agents trained with 𝛼1 = 1. In other words,

more agents were trained with exactly the same conditions in order to analyze how different the

resulting actions are.

Figure 58: Two additional agents trained with 𝛼1 = 0

93

Figure 59: Two additional agents trained with 𝛼1 = 1

Unlike the agent presented in Figure 56, both additional agents that were trained with the same

hyperparameters (which are shown in Figure 58) occasionally chose to exclusively use the solar

collectors as energy source. As expected, this happened at warm months of the year and at times

of high solar radiation.

Regarding the agents trained with 𝛼1 = 1, one of the additional agents did not use Action number

3 at all, and the other one used that action with much more frequency than the original agent (shown

in Figure 57). The two additional agents did not use Action number 0 at 8.00 AM, but they did use

it in the afternoon. The agent shown in Figure 57 used the solar collectors as the only energy source

with more frequency at 10.00 AM and at 12.00 PM, also during winter.

A question that may arise now is: how different are the rewards of the agents that exhibit these

different behaviors? This comparison will be done only with the agents that were trained with 𝛼1

being equal to one, because the rewards of the agents that were trained with 𝛼1 being equal to zero

are practically equal. This comparison is shown in Figure 60. In the figure, “Agent 1” is the one

shown in Figure 57, while “Agent 2” and “Agent 3” are the ones shown at the top and at the bottom

of Figure 59, respectively.

94

Figure 60: Reward comparison of agents trained with 𝛼1 = 1

The rewards are more similar than one would expect by seeing the differences between the

behaviors of the agents. The first agent seems to use only the solar collectors at 10.00 AM and at

12.00 PM with much more frequency than the other two, during the whole year. However, the

differences between their rewards are not so large. Only at the beginning of the year there seems

to be a remarkable difference between their performances.

6.4.2. Changing the value of 𝜶𝟐

The 𝛼2 parameter is part of the “comfort” factor of the reward function, as defined by Equation

105. It defines how much the reward grows if the water coming out from the last heating stage

reaches temperatures remarkably higher than 40°C. When this factor is equal to zero, the reward

does not depend on the temperature of the water coming out of the heating system (only on whether

its temperature is higher than 40°C).

The values considered for 𝛼2 were 0, 1 and 4. These three values were combined with 𝛼1 equal to

zero and one, so six reward definitions were tested. The other reward parameters are shown in

Table 20.

Table 20: Reward parameters for Section 6.4.2

Parameter Value(s)

𝛼1 { 0 , 1 }
𝛼2 { 0 , 1 , 4 }
𝛼3 5

𝛼4 1

Figure 61 shows the actions that were executed by the three agents trained with 𝛼1 equal to zero.

95

Figure 61: Actions taken by the agents trained with 𝛼1 equal to zero.

From Figure 61, it is remarkable that with the two lower values of 𝛼2, the agents did not use the

heat pumps in the entire year, just like in Section 6.4.1 when 𝛼1 was set to zero. But when 𝛼2 was

set to four, the agent did use the heat pumps several times (all actions marked with green and purple

involve using the heat pumps). This has a clear explanation: all three agents shown in Figure 61

were trained with 𝛼1 being equal to zero; this means that the agent seeks to increase the “clean

heat/total heat” indicator. To do this, the best is to only use the chiller and/or the solar collectors.

Nevertheless, larger values of 𝛼2 entail larger rewards if higher temperatures are reached at the

outlet of the last heating stage of the system. For this reason, when the value of 𝛼2 is large enough,

the agent uses the heat pumps even though this means reducing the value of the “clean heat/total

heat” indicator. Figure 62 shows the temperature of the water flow leaving the last heating stage

(before being mixed with mains water to be delivered to the dressing rooms) during a whole year

when only the chiller and the solar collectors are used every time (i.e. the same strategy shown in

Figure 56). Considering that the heat pumps are meant to keep the water in their respective storage

tanks at around 60°C, there is great potential of increasing the water temperature by activating the

heat pumps.

96

Figure 62: Temperatures reached when only the chiller and the solar collectors are used every time

Figure 63 shows the actions taken by the three agents that were trained with 𝛼1 equal to one.

Figure 63: Actions taken by the agents trained with 𝛼1 equal to one.

Regarding the agents shown in Figure 63, it is striking that one of them chose to use Action number

13 sometimes; this action involves using the chiller and the auxiliary flow. The auxiliary flow was

97

proposed as a method to decrease the “penalization” that the agent receives when the solar

collectors reach excessive temperatures; however, in order for this goal to be achieved, the solar

collectors need to be used along with the auxiliary flow. Besides, the “excessive temperatures” are

most commonly reached during midday and not at 8.00 PM. A possible explanation for this

behavior is that the agent is trying to use the auxiliary flow to increase the “total heat/electric

consumption” indicator. Indeed, if the cold water flow entering the system increases, it can extract

more heat, and the chiller also consumes less energy because it gives off heat to a colder water

flow; both factors contribute to increase the aforementioned indicator. This is obviously an

undesired behavior, and that is the reason to penalize the use of the auxiliary flow with the 𝛼4

parameter of the reward function, so that it is only used when it is needed. Another possible

explanation for the use of Action 13 is that the agent is simply acting in a non-optimal way. If the

first proposed explanation is correct, an increase in the 𝛼4 parameter would be necessary in order

to avoid that behavior.

A way of partially answering that question is to repeat the same test, with the same sequence of

actions, but replacing all executions of Action 13 with Action 0 or Action 2, which are the two

most common actions at that time of day. This result is shown in Figure 64, where the original

rewards are compared with two new reward graphs: in one of them all “Actions 13” were replaced

by “Actions 2”; in the other, the same was done but using Action 0 instead of Action 13. The

rewards were so similar that a close-up to some regions of the graph where the differences are

larger was made. The result shows that sometimes Action 13 was better than the other two options,

but not always. It has been said above that this method “partially” answers the question because

there is still the possibility that another strategy (a combination of Action 0, Action 2 and maybe

other actions) does always better than the original agent. However, it would be very hard to find

that strategy (otherwise the use of DNNs would not be justified). An important detail is that in

Figure 64, the time window to compute the moving average has been reduced to 7 days in order to

better appreciate the details of the rewards.

Figure 64: Agent shown at the top of Figure 63, compared with two alternative strategies

6.4.3. Changing the value of 𝜶𝟑

The 𝛼3 parameter defines the importance given to the degradation factor, as expressed in Equation

107. Thus, it defines how much the agent will be penalized for excessive temperatures in the solar

collectors. The values considered for 𝛼3 in this section are: 0, 1, 3, 10 and 30. For 𝛼1, the values 0

and 1 are considered; hence, ten agents must be trained for this section. The other reward

parameters are shown in Table 21.

98

Table 21: Parameters of the reward function in Section 6.4.3

Parameter Value

𝛼1 { 0 , 1 }
𝛼2 0.5

𝛼3 { 0 , 1 , 3 , 10 , 30 }
𝛼4 1

The results obtained with both values of 𝛼1 are shown in Figure 65.

Figure 65: Daily hours with water temperature in the solar collectors higher than 100°C.

Left: 𝛼1 was set to zero. Right: 𝛼1 was set to one.

The results obtained with 𝛼1 equal to zero can be interpreted the following way: the blue curve

shows that the collector suffered from degradation (i.e. the water in their interior reached more than

100°C) during the whole year, with more daily hours in summer. This is because the agent only

used the chiller to heat the water during the whole year. Because of this, the water in the collectors

was always stagnant and reached high temperatures even on days with relatively low solar

radiation. The three other agents used another strategy: they used the chiller and the collectors

almost in every action; only sometimes they chose to use only the collectors. The curves of the

agents that were trained with 𝛼3 equal to 1, 3 and 30 are so similar that they cannot be distinguished,

even if the blue curve is taken out of the graph. That is why they are all plotted with the same color.

Regarding the results obtained with 𝛼1 equal to one, the two lower values of 𝛼3 (0 and 1) have

quite similar results. With both of these values, the number of daily degradation hours is relatively

large in comparison to the other values of 𝛼3. When 𝛼3 is changed from 1 to 3, an abrupt change

occurs, and the daily degradation hours decrease notoriously. With even larger values of 𝛼3 (10

and 30), the agents seem to care even more about degradation, but the change is more subtle.

6.4.4. Effect of the 𝜶𝟒 parameter

As already discussed, the 𝛼4 parameter is a penalization for using the auxiliary flow. In all previous

sections, this parameter was set to 1; this means that using the auxiliary flow halves the reward.

Thus, the auxiliary flow is only useful if the “gain” of using it is more than the aforementioned

penalization. Why would the auxiliary flow be useful? To avoid excessive temperatures in the solar

collectors, which also yield penalizations. As already discussed, penalizing the use of the auxiliary

flow is necessary in order to avoid indiscriminate use of it. In Figure 66, the actions taken by two

99

agents that were trained with 𝛼4 being equal to zero are shown. The other reward parameters are

specified in Table 22. Both agents were trained under exactly the same conditions.

Table 22: Reward parameters for Section 6.4.4

Parameter Value

𝛼1 1

𝛼2 0.5

𝛼3 5

𝛼4 0

Figure 66: Actions taken by two agents that were trained with 𝛼4 equal to zero.

From all the actions that are shown in Figure 66, only Action number 2 (blue) and Action number

4 (green) do not involve using the auxiliary flow. As can be seen, these agents used the auxiliary

flow much more frequently than all previous agents whose actions have been visualized. This is

because the 𝛼1 parameter has been set to one, which means that the agents seek to increase the

“total heat/electric consumption” indicator. An easy way of achieving this is by introducing the

auxiliary flow, because a larger water flow inside the system has more capacity of extracting heat

from it. Obviously, this is not the expected use of the auxiliary flow, and that is the reason why the

𝛼4 parameter is necessary in order that the agents behave in a desirable way.

6.5. System subject to failures

In this part, agents are trained and tested in environments where the heating devices of the system

can fail and be repaired. The main goal is to achieve that, when confronted with the failure of a

component, the agent is able to manage the system in order to achieve an acceptable performance.

The reward function 𝑅1, as defined in Equation 110, will be used during the whole section, and the

value of the 𝛼1 parameter will be set to one. Here is why: it has been discovered in previous sections

that when only the “total heat/electric consumption” indicator of the reward function is taken into

account (i.e. when the 𝛼1 parameter of Equation 110 is equal to one), the agents privilege the use

of the solar field and the heat pumps to heat the water flow. This makes sense because the chiller

is far more energy-consuming than the other devices. It was also discovered in Section 4.6, while

the Markov chains were being formulated, that the heat pumps have far more probability of failing

100

than the solar energy system. Therefore, the main goal for an agent that is trained to privilege the

“total heat/electric consumption” indicator (with 𝛼1 of Equation 110 equal to one) is that it learns

to replace the heat pumps with the chiller when the former fail. This is especially important during

winter, because the solar energy available is not enough for the water to reach the minimum

desirable temperature of 40°C. Therefore, the rewards would be reduced to zero if the behavior of

the agent does not change when the heat pumps fail. The other parameters of the reward function

are specified in Table 23.

Table 23: Parameters of the reward function for Section 6.5

Parameter Value

𝛼1 1

𝛼2 0.5

𝛼3 5

𝛼4 1

Two kinds of agents are going to be trained: the first kind of agent will receive the same

environment state that was defined in Section 4.4, with 10 variables. The second kind of agent will

receive five extra variables that contain information about the functional states of the three heating

stages of the system (from now on, the term “functional state” will be used quite often to describe

the operation/failure of the devices of the system, in contrast to the “environment state” that is

evaluated by the DNNs). These five extra variables work as follows:

- Two variables for the heat pump stage:

- [1,1] if the heat pump stage is completely functional.

- [1,0] if one of the heat pumps has failed.

- [0,0] if the heat pump stage is out of operation.

- One variable for the chiller:

- [1] if the chiller is working.

- [0] if the chiller has failed.

- Two variables for the solar energy system:

- [1,1] if the system is completely functional.

- [1,0] if one of the pump-heat exchanger pairs has failed.

- [0,0] if the solar energy system is out of operation.

With these extra variables, the agents can “know” what the functional state of the heating system

is. The agents that do not receive this information have to “infer” it from the other variables that

are given to them, like the temperatures in the storage tanks.

Given that the case presented now is more complex than the case without failures, a few changes

in the training hyperparameters are made with respect to what is shown in Table 18. Now the

training hyperparameters are as shown in Table 24.

101

Table 24: Training hyperparameters for Section 6.5

Training time and simulation time 12 years

Discount factor 0.4

Type of training (Normal DQN or

Double DQN)

Double

Update period of the target network 10 days

Learning rate 0.001

Momentum factor 0.8

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is

maintained at this value for two years, and the network is

not updated. This period is used to fill the replay memory.

- After two years the value of 𝜖 starts to decline linearly;

it reaches its minimum value of 0.2 at 12 simulation years.

When the value of 𝜖 starts to decline, the network also

begins to be updated once at the end of each day.

- 𝜖 reaches its minimum value of 0.2 at the same time that

the simulation finishes.

Length of the replay memory (in

experiences)

10500

Batch size 100

Prioritized experience replay - The method (Proportional/Rank-based) is going to be

varied, as well as the value of 𝛼.

- The value of 𝜙 is set to 0.2.

- The value of 𝜓 is set to 0

In summary, the changes with respect to Table 18 are:

- Now the whole simulation time is used to train the agent, with no time left at the end as a

“test period”.

- The 𝜖-greedy method is now carried out slower, so that the agent has more time to “explore”

the actions and find the best ones.

- The Replay Memory now stores 10500 experiences, which is more than before. This

number was decided so that the last four years of interaction experiences could be stored in

the memory.

- The prioritizing method is going to be varied, unlike previous sections where it was

constant.

In all subsections of Section 6.5, the results shown are being selected from a larger set of tested

agents. This clearly produces a bias, so the results must not be interpreted as statistically accurate;

they are shown only as illustrative examples of interesting results. In Annexed B, all results from

which the selected results have been taken are shown.

6.5.1. Training is carried out with the Markov chains of the real system

In this part, failures will be introduced into the training process by using the same Markov chains

that were defined in Section 4.6. This means that, on average, the agents will be exposed to the

different functional states of each heating stage during the time percentages that are shown in

Tables 5, 6 and 7. Given that the Markov chains are independent from each other, it can happen

that failures of different heating stages coincide at the same moment. If this happens with the heat

pumps and the chiller in winter, there is nothing that the agents can do to compensate this, because

102

the solar field is not able to provide enough energy to the water flow alone. Nevertheless, this will

happen during a relatively low percentage of the time. Both the heat pumps and the chiller are

expected to be under failure 17% of the time, so their failures are expected to coincide (0.17)2 =
2.89% of the time.

Due to the higher level of complexity of this new environment, a new “architecture exploration” is

carried out. In other words, new DNN architectures are proposed, trained and tested in the failure-

subject environment. The rationale behind this is that, because of the fact that the agents have to

learn to control the system under various distinct conditions, deeper DNNs may be needed in order

to find good solutions. Architecture 4, as defined in Figure 39, was the most successful in previous

sections, so it is tested in this section as well, and five new architectures are proposed. In addition

to this, the hyperparameter 𝛼 (from Prioritized Experience Replay; see Section 3.2.5.5) is given

different values, in contrast to previous sections where it was always equal to 1. This is done

because the main goal of this section is to train agents that are capable of handling failures, which

are relatively rare events in the training process. Because of this, it could be the case that a larger

prioritization of rare experiences does help the agents to find better solutions.

The new proposed architectures are numbered from eight onwards, in order not to cause confusion

with the architectures defined in Figure 39. In Figure 67 the architectures that are tested in this part

are shown.

Figure 67: Architectures considered for Section 6.5.1.

The first big discovery was that not all architectures converge to desirable results, and even the

ones that do, do not always achieve it.

This is shown in Figure 68, where eight agents that were trained with the same hyperparameters

are shown, and only one of them (agent number 3, represented with the green curve) has achieved

the goal of handling a failure of the heat pumps. All the agents in that figure have Architecture 11,

as defined in Figure 67. They are compared by their daily rewards. To understand the figure, a few

clarifications have to be made: the agents have been tested in an environment where failures occur

according to the Markov chains defined in Section 4.6. The moments of failure are the same for all

the agents. The graph shows a time span of one year that corresponds to the second simulation

103

year, just as in the testing method that was defined in Section 6.2.1. The three lines at the top, with

green, yellow and red sections, show the functional states of the three heating stages at each

moment. Green means that the corresponding heating stage is completely functional; yellow means

a degraded state (in the case of the heat pumps, one of them has failed; in the case of the solar

collectors, one of the pump-heat exchanger pairs has failed); and red means that the corresponding

heating stage is completely out of operation (in the case of the chiller, the only possible colors are

green and red).

In the case of Figure 68, the agents were trained with an environment state of 15 variables, which

means that the agents receive the functional states of the heating stages as information. The

proportional method was used to prioritize experiences, with the parameter 𝛼 being equal to 2.

Also, the time window to smooth the rewards was reduced to 7 days; this was done to better

appreciate the abrupt changes of the rewards when failures occur. The time window of 7 days will

be maintained in the coming sections.

Figure 68: Eight agents trained with the same hyperparameters. Only agent number 3 has learnt to handle

a failure of the heat pumps. The agents receive the functional states of the heating stages as information. A

time window of 7 days was used to compute the moving average (i.e. to smooth the rewards).

In Figure 68, two interesting moments are being shown by the blue ellipses. The first moment is a

long failure of the heat pumps; the rewards of most agents fall close to zero at that moment.

Nevertheless, one agent (number 3; green curve) has rewards which are remarkably better. The

second moment (ellipse two) is a moment at which failures of the chiller and the heat pumps

coincide; this makes the rewards of all agents fall to zero, because there is no possibility of heating

up the water up to 40°C. What is remarkable about Agent 3 is that it also performs quiet well in

moments when the system has no failures. At the beginning and at the end of the year, it reaches

rewards above 100, which is similar to what the agents got in previous sections.

Figure 69 shows the actions taken by Agent 3 of Figure 68. The graph shows that the behavior of

the agent drastically changes when failures of the heat pumps occur. The agent starts to use actions

0 and 3. The former involves using all three heating stages; the latter involves using the chiller and

the heat pumps. Given that the heat pumps have failed, Action 0 is equivalent to Action 1 (Solar +

Chiller) and Action 3 is equivalent to Action 5 (only the Chiller is used). The fact that the agent

“prefers” actions 0 and 3 over actions 1 and 5 could be because it is “expecting” the heat pumps to

be repaired, so it permanently tries to activate them. However, this agent receives the functional

104

state of the system as information, thus it should have no trouble at finding out when the functional

state of the system changes. In the case of an agent that does not receive the functional state of the

system as input, this hypothesis makes complete sense. Other reason why this specific agent

chooses actions 0 and 3 could be simply because it converged to that solution, and it could have

found the solution of using actions 1 and 5 with equal probability.

Figure 69: Actions executed by agent number 3 of Figure 68

There are two remarkable curiosities regarding the behavior of the agent in Figure 69 and the use

of the auxiliary flow:

1. The agent uses Action 8 (which involves using all available systems, including the auxiliary

flow) when the heat pumps and the chiller fail at the same time. At that moment, only the

solar collectors are operating, and the rewards are reduced to zero; this is clearly because

the water flow does not reach 40°C (see Equation 110). A question worth asking is: would

the water flow reach temperatures higher than 40°C if the agent did not introduce the extra

flow? If this were the case, the agent would receive larger rewards by not using the auxiliary

flow, thus its behavior is not being optimal (i.e. the best possible). This would be easily

explained by the fact that this combination of failures only occurs 2.89% of the time, thus

the agent has no opportunities of learning to deal with it (the agent is struggling to learn to

deal with a failure that occurs 17% of the time, so no wonder). Another option is that the

agent would get zero rewards by using only the solar fields as well (because the temperature

does not reach 40°C either), so it is using Action 8 just by accident, because no option is

better. (Given that 𝛼4 is equal to one, the reward gets cut in half if the auxiliary flow is

used, but if all options yield zero reward, then using the auxiliary flow does not make it

worse).

2. Another curiosity is the use of Action 13 in the late afternoon while the heat pumps have

failed. That action involves using the chiller and the auxiliary flow. Given that the 𝛼4

parameter of the reward function is equal to 1, the reward is cut in half if the auxiliary flow

is used. This action is clearly not used to reduce the temperature in the solar collectors,

since they are not being used. Two possible explanations are: 1. this action is simply not

the best option, and the agent is acting sub-optimally; and 2. the water flow extracts more

heat from the chiller, and the chiller also reduces its consumption when the auxiliary flow

is used, thus the “total heat/electric consumption” indicator is increased enough so that the

penalization for using the auxiliary flow is compensated.

105

The two questions above can be answered by comparing the rewards received by the agent just

mentioned with the hypothetical rewards that it would have got if it used Action 0 instead of Action

8 and Action 5 instead of Action 13. This is shown in Figure 70. The “new strategy” (with actions

0 and 5) clearly surpasses the original agent during a small portion of the year. However, the

performances are almost the same during most of the year. When both the heat pumps and the

chiller fail, the rewards virtually do not increase by using Action 0; this confirms that any action

would yield the same result at that moment (actually, the rewards do increase marginally by using

Action 0, but the change is considered to be too small). It is also remarkable that replacing Action

13 by Action 5 barely changes the reward, although in this case, the action of taking out the

auxiliary flow (if all other variables remained the same) would double the reward. This appears to

show that using the auxiliary flow changes the other variables of the reward function in such a way

that the penalization for the use of the flow is almost perfectly compensated.

Figure 70: Original agent vs the result of replacing actions 8 and 13 with actions 0 and 5

The same sequence of failures is going to be used for future tests. At the end, some agents will be

selected and tested with different moments of failure of the items.

A fairly good result with an environment state of ten variables (i.e. without telling the agent which

components are working) is shown in Figure 71. Again, eight agents were trained but one of them

(number 2, shown with the yellow curve) was able to manage the failures of the heat pumps without

the rewards falling to zero. The architecture of the agents is the same as in Figure 68, i.e.

Architecture 11, only with a difference in the size of the input. Again, the proportional prioritizing

method with 𝛼 = 2 was used.

106

Figure 71: Eight agents with Architecture 11, with an environment state of 10 variables as input

The result shown in Figure 71 is clearly not as good as the best result shown in Figure 68. The

agent with the yellow curve in Figure 71 also has smaller rewards at moments when it should not

be affected by failures of the system, such as at the beginning of the year. This is not positive since

the agents should be able to manage the failures without sacrificing the rewards when the system

is operating well.

Regarding the other architectures, Architecture 4 (the same that was used in previous sections) was

quite successful when trained with an environment state of 15 variables. 6 agents were initially

trained with that architecture, but after detecting that the results with the proportional prioritizing

method and 𝛼 = 1 were quite good, 6 more agents were trained with the same conditions to see if

better results were achieved. The results of the 12 agents are shown in Figure 72.

Figure 72: 12 agents with Architecture 4, trained with the proportional prioritizing method and 𝛼 = 1

Architecture 4 seems to produce more “stable” results than Architecture 11 in the following sense:

in Figure 68, one agent greatly outperforms the other ones; in Figure 72, more agents have reached

“intermediate” performances.

Architectures 8 and 9, as defined in Figure 67, have remarkably worse results; examples of these

results are shown in Figures 73 (Architecture 8) and 74 (Architecture 9). In both images, the agents

107

were trained with and environment state of 15 variables (i.e. they are told the functional state of

the system) and the proportional prioritization method with 𝛼 = 1. More trainings were executed

with 𝛼 = 2 and with an environment state of 10 variables, but the results are very similar to those

shown here.

Figure 73: Six agents with Architecture 8, as defined in Figure 67

Figure 74: Six agents with Architecture 9, as defined in Figure 67

The results shown in Figures 73 and 74 can be explained as follows: some of the agents did not

converge at all (agents 4, 5 and 6 in Figure 74) and others converged to a strategy that involves

permanently using the chiller, which prevents them from getting larger rewards when the chiller is

not needed (agents 1, 2 and 3 in Figure 74). That is the reason why, when the chiller fails, the

rewards of the latter agents remarkably increase: at that moment the chiller stops consuming

electricity and thus the “total heat/electric consumption” indicator of the reward function increases.

Although the agents just shown do not represent good results, they confirm the importance of the

architecture of the DNN. In the case without failures, although there were differences between

architectures, there was much less variability than in the case shown here (see Figures 40 and 41,

where the mean rewards and the variabilities of each architecture are shown for an environment

without failures).

108

Regarding Architectures 10 and 12, both of them achieved acceptable results as well. Figure 75

shows 6 agents trained with Architecture 10; Figure 76 does the same with Architecture 12. In the

case of Figure 75, all agents were trained with proportional prioritization and 𝛼 = 1. In Figure 76,

the agents were trained with proportional prioritization and 𝛼 = 2. In both cases the agents receive

15-variable environment states.

Figure 75: Six agents with Architecture 10, as defined in Figure 67

Figure 76: Six agents with Architecture 12, as defined in Figure 67

6.5.2. Training is carried out with planned failure cycles

It was discovered in Section 6.5.1 that some of the tested architectures have the potential of

achieving very good results, but from many training processes carried out with the same conditions,

only few of them converged to a desirable behavior.

In this section, the following changes to the training method are introduced in order to make the

convergence of the training processes easier:

1. The set of possible actions is reduced by taking out actions that clearly do not make sense

to use. The rationale of this is that the agents have to discover the “best actions” for the

109

different states of the system by executing random actions and, only by pure chance,

discovering the best option after several trials. If the set of actions is reduced, it becomes

easier for the agents to find the “good actions” by chance. The actions that will be taken out

are all actions that involve using the auxiliary flow without using the solar collectors

(actions 11, 13, 14 and 15 in Table 1) and the action that involves turning off all devices of

the system (action 7 in Table 1). With this, the action set is reduced to 11 possible actions,

which are shown in Table 25. The same architectures shown in 66 will be used, with the

only change that their output layers will be reduced from 16 neurons to 11 (because the set

of possible actions has been reduced).

2. Instead of training the agents with the same Markov chains with which the tests are carried

out, the agents will be trained with failures of a fixed duration. This means that the state of

the system during training is not stochastic anymore; however, the testing will be made

with the same Markov chains as before. The cycles are shown in Figure 77. For each

training process, only one of the cycles must be chosen so that the agent experiences that

cycle during training. In Figure 77, the word “degradation” means that one of the heat

pumps have failed or that one of the pump-heat exchanger pairs of the solar field has failed

(as already discussed, the solar field itself does not fail, but the solar-heat exchanger pairs

do). Cycle 1 takes into account that the agent must privilege dealing with failures of the

heat pumps.

Table 25: New set of possible actions of the agent.

Action Solar field pumps Chiller Heat Pumps Auxiliary Flow

0 1 1 1 0

1 1 1 0 0

2 1 0 1 0

3 0 1 1 0

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 1 1 1 1

8 1 1 0 1

9 1 0 1 1

10 1 0 0 1

Figure 77: Cycles of failures considered

110

Architectures 11 and 12 were tested in this section with the proportional prioritization method and

𝛼 taking the values 1 and 2. The results that are not shown here are shown in Annexed B.

The results seem to show that the cycles tend to benefit the performance of agents that receive

environment states of 10 variables, because they are exposed more time to the states of the system

that they have to diagnose by themselves.

However, the agents that receive 15 variables get “confused” when they experience a failure that

they have never seen, or a combination of failures that did not overlap in the training process (with

the cycles no overlaps are produced between failures or degradation of different heating stages)

(see the definition of the 5 extra variables for the environment state in the introduction of Section

6.5). An example may be more clarifying: if the agent has always estimated the Q-Values of a

given environment state by assuming that certain input variable is 1, the result could change

dramatically when that input is changed to zero (this happens when a device fails). This may happen

even if the device that has failed is not necessary to deliver warm water. However, this was not

always the case; some agents reached good results despite the problems just mentioned.

Maybe, this problem of the agents that receive 15-variable states could be solved by using the 𝑙1-

regularizer or Lasso regression (see Géron [36], page 155) since this method sets the less important

weights of the DNN to zero. The weights that always receive the same value of some variable

during training would therefore be set to zero, and when this variable changes its value during the

testing process, the predicted Q-Values would not be affected. This was not tested during this study;

instead, a reformulation of the Markov processes is proposed in the next section. The solution of

using the regularizer is left for future work on this topic.

Some remarkable results obtained with this “failure-cycle” method are shown in Figures 78 to 84.

Table 26 shows the architecture, the failure cycle (1, 2 or 3), the number of environment state

variables (10 or 15) and the experience prioritizing method used in each result shown. In all cases,

the figures show 6 agents that were trained under exactly the same conditions; some of them

achieved good results and others did not.

Table 26: Training conditions

Figure

number

Cycle

number

Environment

state variables

Architecture

number

Prioritizing method

78 1 10 11 Proportional prioritization

with 𝛼 = 1

79 1 10 12 Proportional prioritization

with 𝛼 = 1

80 1 15 11 Proportional prioritization

with 𝛼 = 1

81 1 15 12 Proportional prioritization

with 𝛼 = 1

82 2 15 12 Proportional prioritization

with 𝛼 = 1

83 3 10 11 Proportional prioritization

with 𝛼 = 2

84 3 15 11 Proportional prioritization

with 𝛼 = 1

111

Figure 78: Arch. 11; Cycle 1; environment state has 10 variables.

Figure 79: Arch. 12; Cycle 1; environment state has 10 variables.

Figure 80: Arch. 11; Cycle 1; environment state has 15 variables.

112

Figure 81: Arch. 12; Cycle 1; environment state has 15 variables.

Figures 78 to 81 show quite clearly what was discussed regarding the benefits for the agents that

receive 10 variables and the problems experienced by the agents that receive 15 variables. All

agents in the four figures were trained by using Cycle 1; i.e. the system is completely functional

50% of the time, and the heat pumps fail during the remaining 50%. The agents that receive 10

variables, shown in Figures 78 and 79, have clearly improved their performance in comparison

with the results of the previous section, where from dozens of agents, only one of them seems to

have learnt something about handling failures (the agent 2 in Figure 71).

On the other hand, the agents that receive 15 variables seem to be handling the failure of the heat

pumps quite well until one of the pump-heat exchanger pairs of the solar field fails. That moment

is highlighted with a blue ellipse in Figures 80 and 81. Figures 68 and 70 show that that moment

can theoretically be handled without major problems (in the sense that it is possible to continue

receiving rewards while the solar field is degraded). However, the rewards of all agents in Figures

80 and 81 drop to zero at that moment. This is most likely because an environment state variable

that did not change during the whole training process is changing at that moment.

Figure 82: Arch. 12; Cycle 2; environment state has 15 variables.

113

Figure 83: Arch. 11; Cycle 3; environment state has 10 variables.

Figure 84: Arch. 11; Cycle 3; environment state has 15 variables.

Figure 82 shows that, by using Cycle 2, most agents that receive 15 variables suffer the same

problem that is explained above; however, one of them (agent number 5) continues receiving

rewards when the solar field degrades. This may happen because the exposition to failures of the

solar field indeed does help the agent to operate under that condition, even when no combination

of failures occurs during training; or it may happen because, only by chance, that particular agent

does not depend on the variable that becomes zero when the solar field degrades, and it continues

choosing the right actions. In the case of Figure 82, all agents were trained with proportional

prioritization and 𝛼 = 1.

Figure 83 is interesting because agent number 3 receives remarkably large rewards (considering

that it receives environment states of 10 variables) while the heat pumps fail; however, the rewards

of that agent are not as large as they could be at other moments of the year. At the beginning of the

year, for example, its daily rewards are approximately 80, while other agents receive rewards above

100 at that same time. In the same figure, agent 1 received zero rewards most of the year, which

could indicate that this combination of hyperparameters yields very variable results. Maybe, this

could be attributed to the value of 𝛼 (2) in that figure.

114

In Figure 84, the agents are trained with Cycle 3; this cycle involves degradation and failures of

the heat pumps and the solar field. This cycle seems to help some agents to overcome the

combination of the failure of the heat pumps and the degradation of the solar field; however, the

rewards of agent 4 drop to zero like in previous cases; this is probably because these two conditions

(failure of the heat pumps and degradation of the solar field) never overlapped during training;

hence, the agent learns to deal with the conditions separately, but not when they are combined. In

that figure, the proportional prioritization is used with 𝛼 = 1.

6.5.3. Alternative Markov chains

Good and bad things can be concluded from the method proposed in the previous section (Section

6.5.2). Figures 80 and 81 show that the agents actually do perform better than the agents trained

with Markov chains while facing the failure of the heat pumps (in the sense that more agents

achieve good and intermediate results) until the degradation of the solar field occurs. At that

moment, as already discussed, the previously remarkable rewards of the agents drop to zero. From

this, two things can be concluded: 1. reducing the number of possible actions and increasing the

amount of time that the agents face failures of the items can improve their performance; and 2. the

Markov processes have the clear advantage that they automatically let combinations of failures

happen.

For this reason, this section will once more make use of Markov chains for the training processes.

However, the Markov chains that will be used for training will not be the same that are used for

testing. For the testing process, the same Markov chains that represent the “real” system will be

used (the ones created in Section 4.6.2); for the training process, other Markov chains will be

proposed in order that more of the trained agents actually learn to cope with failures. The “reduced

action space” of 11 possible actions will be maintained in this section.

The Markov chains that will be used in this section are shown in Figure 85. The same Markov

chain is used for the heat pumps and the solar energy stage; nevertheless, the states of these two

heating stages is still independent; this means that each heating stage follows its own Markov chain,

although the transition probabilities of both Markov chains are identical. The arrows between the

states show the transition probabilities between consecutive instants (the probabilities of staying in

the same state are not shown but they can be determined as one minus the total probability of

leaving the corresponding state). For the heat pumps and the solar field, three states are considered.

These states are: “functional”, “degraded” and “failure”. In the case of the solar field, the

“degraded” state means that a pump-heat exchanger pair has failed; in the case of the heat pumps,

the “degraded” state means that one of the four heat pumps has failed. For the chiller there are only

two possible states: “functional” and “failure”. The rationale behind the transition probabilities is

explained below.

Figure 85: Markov chains used in Section 6.5.3.

115

In the Markov chain at the left side of Figure 85, the transition probabilities are imposed as follows:

first it is imposed that the mean time of permanence in the “degraded” and “failure” states is equal

to two weeks; by using the geometric distribution (Section 3.4.1), it is possible to determine that

the probability of leaving those states must be equal to 1/(8 ⋅ 14) = 8.92857e − 3 (also, the fact

that 8 time steps are executed each day is being taken into account as well). In the number just

mentioned, “e” is used to indicate the exponent of 10 when the number is written in scientific

notation; e.g. 1.5e − 3 = 1.5 ⋅ 10−3.

The second assumption is that the system has to spend 18% of the time in the “failure” state and

6% of the time in the “degraded” state. By knowing the probability of getting out of those states,

it is possible to determine the probabilities of entering them by imposing the ratios of their mean

times of permanence. By using the method to determine the steady-state probabilities discussed in

Section 3.4.2, it can be verified that the probabilities for the “functional”, “degraded” and “failure”

states are 76%, 6% and 18% respectively.

For the Markov chain at the right side of Figure 85, corresponding to the chiller, the same transition

probabilities between the “functional” state and the “failure” state of the Markov chain at the left

are imposed. With this, the steady-state probabilities for the Markov chain at the right are 80.9%

for the “functional” state and 19.1% for the “failure” state.

This section is focused on agents which receive 15-variable states, because the method proposed

in Section 6.5.2 seems to have worked well with agents that receive 10-variable states.

Architectures 4, 11 and 12 are tested with both proportional and ranked-based prioritization

methods and several values of 𝛼. All results are included in Annexed B.

In Figures 86, 87 and 88, some remarkable results of each of the tested architectures are shown.

Something worth mentioning is that all of these results come from training processes where the

proportional prioritization method was used. The rank-based method was tested with 𝛼-values

ranging form 0.0 to 0.8 but none of the results obtained was so good (actually, 𝛼 = 0 implies that

no prioritization is used so the proportional and rank-based method are equivalent with that value

of 𝛼).

Figure 86: Architecture 4; proportional prioritization; 𝛼 = 1.0

116

Figure 87: Architecture 11; proportional prioritization; 𝛼 = 2.0

Figure 88: Architecture 12; proportional prioritization; 𝛼 = 1.0

Another important conclusion is that the rank-based prioritization method has to be implemented

with lower values of 𝛼 than the proportional prioritization method. As shown in this section and in

previous ones, many architectures reached their best results with the proportional prioritization

method and with 𝛼 being equal to 2. 𝛼 = 3 was also tested, as shown in Annexed B, but with that

value the agents did not converge to good solutions at all. With the rank-based method, this problem

of not achieving convergence occurred with 𝛼 being equal to 0.8; in other words, the same problem

occurred with a remarkably lower value for the rank-based method than for the proportional

method. This has a clear explanation: with a Replay Memory of 10500 experiences and the rank-

based prioritization method, 𝛼 = 1 implies that the experience with the largest priority number has

10.16% probability of being selected (see Equations 57 and 58 in Section 3.2.5.5); 𝛼 = 1.5 implies

that the experience with the largest priority number has 38.57% probability of being selected; and

𝛼 = 2 implies that the experience with the largest priority number has 60.80% probability of being

selected. In the latter case, the probability of selecting any of the last 9500 experiences in the

ranking is equal to 5.4976e − 4; i.e. 1000 from the 10500 experiences of the Replay Memory

(9.524%) are being used 99.945% of the time. Something that could compensate this huge

inequality of probabilities is the fact that the order in the ranking varies in time; in this way, an

117

experience that is used many times to train the network will be lower in the ranking in the future.

Nevertheless, it is to be expected that this “compensation” does not work for arbitrarily large values

of 𝛼, because as 𝛼 approaches infitiny, the algorithm will tend to select a single experience for each

training step.

Figure 89 shows the results of 6 agents with Architecture 12 that were trained with rank-based

prioritization and 𝛼 = 0.8. This is an example of the effect of the 𝛼 parameter explained above.

Four of the six agents are shown with the same color because their curves cover each other, because

they obtained exactly the same rewards.

Figure 89: Six agents with Architecture 12, rank-based prioritization and 𝛼 = 0.8

6.5.4. Effect of momentum for failure-subject agents

It was shown in Section 6.3.4 that momentum (see Section 3.1.2 for details on the algorithm) has

an important role to play in the training process of the agents that are not subject to failures. In this

section, a possible improvement of the training hyperparameters regarding the use of momentum

will be discussed, in this case for the agents that are trained to cope with failures of the system.

All the previous results of Section 6.5 and its subsections were produced with the momentum factor

(𝛽) being equal to 0.8. Figure 90 shows the results of six agents with Architecture 12 (as defined

in Figure 67) when the momentum factor was increased from 0.8 to 0.9. The agents in shown

Figure 90 were trained with the conditions of Section 6.5.1; i.e. they were trained with the Markov

chains of the real system (as defined in Section 4.6) and have an action space of 16 possible actions,

unlike the agents of Sections 6.5.2 and 6.5.3 which have an action space of 11 actions. Moreover,

the agents in Figure 90 receive 15-variable environment states (i.e. they receive the functional state

of the system as information) and were trained with the proportional prioritization method and 𝛼 =
1.

One of the agents in Figure 90 (Agent 5) performs quite well; in fact, it performs better than all the

previous results of the same architecture (Arch. 12). Why is this so important? Because in previous

sections a selection of the best results was made after multiple training processes; in the case shown

here, only twelve agents were trained with 𝛽 being equal to 0.9: six agents were trained with 𝛼 =
1 and six more were trained with 𝛼 = 2. The results with 𝛼 = 2 are not good, as shown in Annexed

B. The fact that an agent outperforms all previous results of the same architecture with so few

118

attempts could be showing that the new value of 𝛽 considerably increases the probability of getting

good results.

Figure 90: Architecture 12 being trained with momentum factor equal to 0.9

To support the claim made above that Agent 5 of Figure 90 outperforms all previous agents with

the same architecture, Table 27 makes a comparison with agents shown in previous figures

considering two indicators: the mean smoothed rewards of the whole year (i.e. averaging all values

of the smoothed reward curves) and the number of days of the year that each agent has the

maximum smoothed daily rewards among the four agents considered for the comparison. Agent 5

of Figure 90 reaches the maximum value for both indicators.

Table 27: Comparison of the best results of Architecture 12

Agent Mean smoothed daily

rewards

Number of days of the year having the

maximum smoothed daily rewards

among the four agents

Agent 2 of Figure 76 53.19 9

Agent 5 of Figure 82 55.21 33

Agent 3 of Figure 88 62.00 151

Agent 5 of Figure 90 62.37 172

After obtaining the aforementioned results, Architecture 12 was maintained and the 𝛽

hyperparameter was set to 0.9 while using the method presented in Section 6.5.3, i.e. training the

agent with the Markov chains shown in Figure 85 and with an action space of 11 actions. The

proportional prioritization method was used with 𝛼 taking the values 0.5, 0.8 and 1.0. Figure 91

shows the six agents that were trained with 𝛼 = 0.8.

119

Figure 91: Arch.12; 𝛽 = 0.9; 𝛼 = 0.8

6.5.5. Agent selection and final testing

In this section, agents which performed well in the previous subsections of Section 6.5 are selected

and tested in a new sequence of failures. This is important because all agents that have been trained

to handle failures have been tested with the same failure sequence; this can obviously create a bias

towards selecting agents that are good for that particular failure sequence, but they might perform

poorly in other conditions.

Table 28 shows the agents that were selected to be tested in this section. The first column of the

table shows the new number by which each agent will be referred to from now on; the second and

the third column show the figure that originally shows the performance of the agent and the number

of the agent in that figure, respectively (recall that each figure shows several agents that have been

trained under the same conditions but they usually have quite different performances). The fourth

column shows the method by which the agent has been trained. “Real” refers to the method

presented in Section 6.5.1, where the agents are trained with the Markov chains of the real system;

“Cycle” refers to the method presented in Section 6.5.2, where that agents are trained with planned

failure cycles; and “Alter.” refers to the method presented in Section 6.5.3, where the agents are

trained with alternative Markov chains. The fifth column shows the number of possible actions that

the agent can choose; these “action spaces” can have either 16 or 11 actions. The sixth column

shows the architecture of the agent; the seventh column shows the number of state variables that

the agent receives; the eighth column shows the value of 𝛼 from the experience prioritization

method (all selected agents were trained with the proportional prioritization method) and the nineth

column shows the value of the momentum factor. For most agents, the momentum factor is 0.8,

except for the last two that were trained with momentum factor equal to 0.9.

120

Table 28: Selected agents

New

Agent

Number

Figure

Number

Agent

Number

in the

Figure

Training

Regime

Action

space

size

Arch.

Number

State

Variables

Value

of 𝛼

Momentum

Factor

1 68 3 Real 16 11 15 2 0.8
2 72 8 Real 16 4 15 1 0.8

3 75 2 Real 16 10 15 1 0.8

4 82 5 Cycle 2 11 12 15 1 0.8

5 83 3 Cycle 3 11 11 10 2 0.8

6 84 1 Cycle 3 11 11 15 1 0.8

7 86 1 Alter. 11 4 15 1 0.8

8 86 5 Alter. 11 4 15 1 0.8

9 87 5 Alter. 11 11 15 2 0.8

10 88 3 Alter. 11 12 15 1 0.8

11 90 5 Real 16 12 15 1 0.9

12 91 4 Alter. 11 12 15 0.8 0.9

In order to test the agents in the most objective way possible, a 12-year-long test will be established

with the Markov chains of the real system, i.e. the Markov chains that are shown in Figures 22, 23

and 24. “Establishing a test” means that the sequence of failures will be produced before testing

the agents, and then all agents will be tested under the same failure sequence. The duration of the

test is increased to 12 years so that the percentage of the time that the system spends in each state

of the Markov chains approaches the expected percentages shown in Tables 5, 6 and 7. In this way,

there is no “bias” towards selecting a particular failure sequence because it looks “convenient” for

the agents.

Table 29 shows the 12 agents ranked according to two indicators: their rewards and the daily hours

during which they supplied warm water. Both indicators have been smoothed with a moving

average of 7 days and then the values of the smoothed indicators have been averaged considering

the whole 12-year-long test.

Table 29: Agents ranked according to the results of the whole 12-year-long test

Ranking
Smoothed rewards Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪

Agent Mean Value Agent Mean Value

1 Agent 1 72.322 Agent 2 13.247

2 Agent 12 72.316 Agent 12 13.231

3 Agent 10 71.667 Agent 1 13.201

4 Agent 6 71.596 Agent 5 13.128

5 Agent 11 71.521 Agent 10 12.965

6 Agent 3 70.500 Agent 11 12.833

7 Agent 8 69.316 Agent 9 12.803

8 Agent 2 69.210 Agent 7 12.800

9 Agent 9 68.841 Agent 8 12.730

10 Agent 7 68.662 Agent 6 12.657

11 Agent 4 62.645 Agent 4 12.465

12 Agent 5 60.477 Agent 3 12.388

121

The results shown in Table 29 correspond to the average results of the 12-year testing process.

Apart from this, it is useful to analyze particular moments when the differences between the

performances of distinct agents become more appreciable; this normally happens at moments when

failures of the devices of the system occur. As an example, Figure 92 shows a time-span during

which the capacity of the agents to deliver hot water is not largely affected by failures. On the other

hand, Figure 93 shows a shorter time-span when the “warm-water-supply-time” of several agents

is greatly affected by a failure of the heat pumps. In that figure, only some of the agents, which

were selected according to the results presented in Table 30, are shown.

Figure 92: A period without major problems due to failures

Figure 93: A moment that shows a drop of the rewards of some agents.

Table 30 has the same format as Table 29, but it only considers the time-lapse from day 325 to day

355. The agents presented in Figure 93 were selected because they were among the best three or

the worst three according to some of the indicators shown in Table 30.

122

Table 30: Agent comparison from day 325 to day 355

Ranking
Smoothed rewards Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪

Agent Mean Value Agent Mean Value

1 Agent 6 81.44 Agent 12 13.06

2 Agent 1 79.35 Agent 1 13.04

3 Agent 12 78.73 Agent 6 12.70

4 Agent 5 74.69 Agent 2 12.29

5 Agent 8 73.56 Agent 5 12.18

6 Agent 9 72.52 Agent 8 11.62

7 Agent 7 67.93 Agent 9 10.58

8 Agent 10 67.34 Agent 10 10.41

9 Agent 2 66.56 Agent 11 9.42

10 Agent 3 64.22 Agent 7 9.38

11 Agent 4 62.69 Agent 3 9.21

12 Agent 11 60.99 Agent 4 9.08

In Figure 93 and in Table 30, the three agents that have the largest rewards are also the ones that

supplied warm water most time, but they are not ranked in the same order. This is not surprising

because the agents can privilege other factors that contribute to the reward function, thus decreasing

the time of warm water supply while actually increasing the reward function. This is not a desirable

behavior, but in order to fix it, the reward function would have to be modified. The new reward

function must depend on the energy efficiency as well; otherwise, the agents would make no efforts

to reduce the energy consumption which is one of the important goals of the study. What is

important about the reward function is that there must be no way for the agents to increase it by

reducing the time they supply warm water. In other words: the reward function must be such that

the agent which has the largest rewards also supplies warm water more time.

Table 31 shows the results of another time-span of the same 12-year-long test, from day 2500 to

2580. In that case, Agent 5 presents a more extreme case of the problem mentioned above about

the reward function: it is the best agent when considering the mean daily hours with warm water

supply, but it is also the worst one according to the rewards. From a strict “Reinforcement

Learning” point of view, this would mean that Agent 5 is the worst of all, but common sense would

say that it is not actually that bad because it has the maximum mean value of the most important

indicator of the reward function. This is telling that, although the reward function has worked

acceptably well in order to train the agents, it can be improved. This is confirmed by Figure 94,

which shows the (smoothed) rewards and daily hours with warm water supply of the same time-

lapse presented in Table 31, for Agents 1, 2, 5, and 7 (because they are the best according to Table

31). Agent 5 is clearly the best at the right and the worst at the left. Another thing worth mentioning

about Agent 5 is that it is the only “selected agent” (from the list shown in Table 28) which receives

10-variable environment states; i.e. it does not receive the functional state of the system as direct

information. It was trained with “Cycle 3” as defined in Section 6.5.2, where planned failure cycles

are used (see Table 28 for details); this shows that the cycles do improve the performance of agents

that receive 10-variable states (though only in comparison with other agents that receive 10

variables, because in comparison with the other selected agents, the result is only good from a

subjective, not RL-centered point of view).

123

Table 31: Agent comparison from day 2500 to day 2580

Ranking
Smoothed rewards Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪

Agent Mean Value Agent Mean Value

1 Agent 2 100.66 Agent 5 13.83

2 Agent 1 100.38 Agent 7 13.52

3 Agent 10 100.01 Agent 4 13.45

4 Agent 7 99.85 Agent 8 13.42

5 Agent 11 99.55 Agent 1 13.41

6 Agent 12 99.41 Agent 2 13.39

7 Agent 8 98.63 Agent 9 13.35

8 Agent 6 98.18 Agent 12 13.34

9 Agent 3 97.80 Agent 10 12.97

10 Agent 9 96.90 Agent 11 12.88

11 Agent 4 86.39 Agent 6 12.81

12 Agent 5 80.02 Agent 3 12.78

Figure 94: Performance of 4 agents (best two of both indicators) in the time-span shown in Table 31

Another interesting moment is presented in Figure 95, when a failure of the heat pumps overlaps

with a degradation of the solar energy system. In the time-span presented, from day 385 to day 410,

it was clearly agent 10 that supplied warm water more time than the rest. It also has the maximum

rewards some of the time, yet not all of it. In this case Agent 1 draws attention because in the

previous comparisons it was always one of the best agents; in this case, both its rewards and its

“warm-water-supply-time” are remarkably low. Recall that the agents receive the functional states

of the heating stages as five extra variables in the environment state (except for agent 5), thus, as

already discussed, combinations of these variables that the agents did not experience enough during

training could make the agents “get confused”. This could be what is happening to Agent 1. Agent

5, which does not receive the functional states of the heating stages, is affected by the combination

of failures as well, yet not as much as Agent 1.

124

Figure 95: Rewards and warm water supply time from day 385 to day 410

Another “bad moment” for Agent 1 is shown in Figure 96. This moment is interesting because it

shows something that rarely happens according to the Markov chains shown in Figures 22, 23 and

24 and in Tables 5, 6 and 7: a complete failure of the solar energy system. At that moment, Agent

1 is one of the “bad ones” according to the rewards and definitely the worst one according to the

“worm-water-supply-time”. In fact, 10 of the 12 agents did not reduce their “warm-water-supply-

time” at all due to the failure of the solar collectors. This could be because Agent 1 was trained

with the Markov chains of the real system (the ones shown in Figures 22, 23 and 24), and in these

Markov chains failures of the solar energy system happen only during 1.64% of the time.

Figure 96: A failure of the solar energy system

Figure 96 shows a failure of the solar energy stage that occurs in winter (mid-July); this is the

moment when the solar collectors are least important for the heating process. More interesting

would be to analyze a failure of the solar collectors that occurs in summer. This did not happen in

the 12-year test without overlapping with failures or degradations of the other heating stages.

125

Therefore, the result shown in Figure 97 was taken from a test like the one used for Sections 6.2.1

through 6.5.4, i.e. two years and ten days long. The result shown in the figure corresponds to the

beginning of the second test year. In this case, more agents delivered warm water during less than

14 hours daily; Agent 1 is still the minimum according to that indicator. A close-up to the rewards

in Figure 98 shows that it is one of the agents with low rewards as well. Moreover, the three agents

with the worst results in terms of their “warm-water-supply-time” were all trained with the Markov

chains of Section 6.5.1 (i.e. with failures of the solar energy system happening only 1.64% of the

time). Most agents have no trouble to continue providing warm water in the same time-span.

Figure 97: Rewards and “warm-water-supply-time” under a failure of the solar energy system in summer

Figure 98: Close-up to the rewards of Figure 97

It would be possible to extract more “interesting” moments from the 12-year-long test; however,

the conclusions would probably be the same that can be inferred from the current results: not all

agents perform equally well when confronting failures of the system, and some agents that perform

quite well with some failures perform worse with other failures or combinations of failures.

Also, the reward function can be improved because the agents do not always have what would be,

from a common-sense point of view, the best possible behavior as they try to maximize it. An

example of this, as already discussed, is shown in Figure 94.

126

Chapter 7: Conclusions

7.1. Accomplishment of objectives

In the following paragraphs, the same specific objectives that were set on Section 1.6.2 are repeated

and analyzed considering the results of the study (the specific objectives are written in italics).

1. Establishing a connection between the TRNSYS software and the Python programming

language. The Python code has to be able to transmit decisions to the TRNSYS simulation,

regarding which devices are used. In addition to this, the code must receive results from

the simulation, use them to make decisions and impose these decisions on the simulation.

This objective was accomplished as detailed in Section 4.5. In order to achieve it, a standard

TRNSYS feature that makes it possible to connect this software to Python (i.e. Type 169) was used.

As already discussed, this mode of connection made it necessary to store information of previous

moments in text files, and also to develop the training algorithm without the use of specialized

Deep Learning libraries.

2. Showing that an effective training process of the DNNs can be achieved in a basic

programming language, without the use of specialized Deep Learning libraries.

By using the theoretical concepts discussed in Sections 3.1 and 3.2, it was possible to develop the

training platform without Numpy and other specialized Deep Learning libraries. The entire DNN-

training algorithm was developed by using custom functions mainly based on Python lists. This,

together with the ability of Python to create and read text files, made it possible for the Python code

to interact with the TRNSYS simulation and to train smart controlling agents. As shown in Section

6.2, these agents clearly learn to outperform a baseline strategy, or at least to do as good the baseline

when no margin of improvement seems to be possible. This result is encouraging because it shows

that the same agent-training techniques can be applied to environments (real or simulated) where

access to Deep Learning platforms is not possible.

3. Defining a reward function that fulfills the condition of producing a desirable behavior of

the smart agents as they try to maximize it.

A reward function has been developed considering the most basic indicators that can be extracted

from the simulation during the time-span after the previous action, such as energy- and

temperature-related indicators, and the previous action itself. In Section 4.3, these indicators are

introduced in a “global” reward function by using different parameters to set their contributions.

Although this reward function seems to be effective to encourage the agents to deliver warm water

while sparing energy, it has a big flaw: it is possible for the agents to increase the total rewards

while delivering warm water less time. Therefore, the reward function does not completely meet a

condition that is assumed in RL: “the higher the reward, the better". This was discussed in Section

6.5.5.

4. Analyzing the training results when the hyperparameters of the training algorithm are

changed. Different neural network architectures are tested as well.

As shown in Section 6.3, some hyperparameters do not seem to produce a highly significant

performance variation, like for example, the use of Double DQN (this was not tested in a failure-

subject environment, so the results may vary there). On the other hand, some hyperparameters

produce highly different performances as they are varied, like the use of momentum. This was

127

discussed in Section 6.3.4, showing that momentum is highly beneficial for the performance of the

agents. This also leads to think that better results could be obtained with better optimization

algorithms (such as Adam, RMSprop, etc.).

5. Analyzing how the behavior of the controlling agents changes as the reward function is

modified. Modifying the reward function is equivalent to changing what the agents are

supposed to achieve.

As shown in Section 6.4, the behavior of the agents seems to change as expected when the

parameters of the reward function are changed, considering how these parameters are justified in

Section 4.3. This means that the rationale behind the definition of the reward function was right

(despite the problem just mentioned in Objective 3); therefore, the reward function presented here

could be adapted to other environments where Reinforcement Learning is being applied,

considering the specific goals of the training process in those environments.

6. Training agents to fulfill their task when the devices of the system are subject to random

failures.

Section 4.5 proposes three methods of training agents that are resilient to certain failures of the

system. Although not all results are positive, it has been proven that it is possible to train a single

neural network that can handle the system under different scenarios. An obvious and very simple

alternative way to address the failure-resilience issue would be to train a different DNN for each

possible functional state of the system, i.e. exposing each DNN to a unique functional state of the

system during training, and then using each DNN only when the state of the system is the one for

which that DNN has been trained. This method would clearly outperform all agents presented here

(at least from the point of view of the rewards), but part of the motivation of the study presented

here was to have a single DNN that could handle all possible states of the system. Moreover, the

system presented here has 18 possible functional states (considering all combinations of states of

the heating stages), thus 18 DNNs would have to be trained and used (some of them can be

discarded because the agents would get zero rewards anyway, e.g. the combination of all heating

stages having failed).

7.2. Future work

Regarding the possibility of putting this project into practice, it is clear that the simulation used to

train the agents has many simplifications with respect to the actual water heating system, located

in the building of Beauchef 851, Santiago. An obvious example is the fact that in the simulation

the warm water demand profile is the same every day. Because of this, the agents developed here

are prepared for a system that is much simpler than the actual system; this could lead them to

perform poorly were they put into practice. Therefore, the obvious next step of this project would

be to improve the simulated system by making more things stochastic (like the warm water

demand) and to enhance many simplifications that the simulation has (like not simulating the pool).

As already discussed in Section 6.2, there is a clear simplification being made in this study: the

main task of the chiller is to cool a cooling load that is not being modeled in detail. Therefore, it is

hard to consider the cooling function of the chiller for the computation of the reward function. This

motivation for using the chiller was rudimentarily introduced into the reward function in the same

section, but the method proposed would not allow the agents to be put into practice. In order to

really take the cooling load of the chiller into account, it would have to be simulated as part of the

system.

Introducing all these extra complexities into the simulation would clearly make the training process

much more difficult, and the agents would have a hard time even in an environment without

128

failures. This can be concluded from the fact that, even with a simple complexification of the

system like adding failures to the devices, the agents struggle to find a good solution. Thus, one of

the first things to do is to make more powerful neural networks. The introduction of recurrent neural

networks would be the obvious next step, as well as introducing regularization methods (e.g. 𝑙1

regularization, 𝑙2 regularization and dropout). Adding predictions of the future (like weather-,

demand- and failure predictions which are subject to errors) would also make the result more

interesting and more likely to be put into practice.

Another change which could improve the results, even with more complexities being considered

in the simulation, could be reducing the time-span between consecutive actions of the agent. The

following example will clarify why: if the water demand in the dressing rooms were stochastic

instead of a fixed function that is the same every day, then the agent would have to choose which

devices to turn on without actually knowing how large the future demand will be. In this context,

it is possible that the agent makes the mistake of turning on devices that are enough to supply warm

water for a low demand, and then the demand turns out to be quite high. If the time-span between

the actions of the agent were shorter, then the agent might have time to rectify its error in the next

action before the temperature of the water drops below the comfort threshold.

One must also keep in mind that in Reinforcement Learning good results are never easy to get.

Getting good results is hard even in environments that one would consider “simple”. That is why

this area of Machine Learning took off only a few years ago. However, for the same reason there

are new techniques permanently being discovered and published. For future developments of this

platform, it may be necessary to add recently discovered methods in order to improve the

convergence of the algorithms.

129

8. Glossary

CH4 methane

CO2 carbon dioxide

DWH domestic water heating

DNN deep neural network (in this case Dense unless specified)

DQN Deep Q-Network, method to train a DNN to predict Q-Values (see 3.2.5)

DRL Deep Reinforcement Learning

FCFM Faculty of Physical and Mathematical Sciences of the University of Chile

GHG greenhouse gas

H2O water molecule

HVAC heating, ventilation, and air conditioning

KPI key performance indicator

NASA National Aeronautics and Space Administration

ODE ordinary differential equation

PDF probability density function

RL Reinforcement Learning

SWH solar water heating

TES thermal energy storage

TRNSYS Transient System Simulation Tool

130

9. Bibliography

[1] National Ocean Service, National Oceanic and Atmospheric Administration: What is the

Carbon Cycle? February 26, 2021. https://oceanservice.noaa.gov/facts/carbon-cycle.html

[2] Melissa Denchak: Greenhouse Effect 101, Natural Resources Defense Council. July 16, 2019

https://www.nrdc.org/stories/greenhouse-effect-101

[3] NASA: Graphic: The relentless rise of carbon dioxide. August 2, 2021. Data from: Luthi, D.

et al. 2008; Etheridge, D.M. et al. 2010; Vostok ice core data/J.R. Petit et al.; NOAA Mauna

Loa CO2 record.

https://climate.nasa.gov/climate_resources/24/graphic-the-relentless-rise-of-carbon-dioxide/

[4] NASA Scientific Visualization Studio: Global Temperature Anomalies from 1880 to 2020.

January 14, 2021. Visualization by Lori Perkins; data provided by Robert B. Schmunk

https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4882

[5] Climate Reality Project: How feedback loops are making the climate crisis worse. January 7,

2020

https://www.climaterealityproject.org/blog/how-feedback-loops-are-making-climate-crisis-

worse

[6] Brian C. O’Neill; Elmar Kriegler; Kristie L. Ebi; Eric Kemp-Benedict, Keywan Riahi; Dale

S. Rothman; Bas J. van Ruijven; Detlef P. van Vuuren; Joern Birkmann; Kasper Kok; Marc

Levy; William Solecki: The roads ahead: Narratives for shared socioeconomic pathways

describing world futures in the 21st century. Global Environmental Change, Vol. 40, Pages

169-180. 2017

[7] Jeff Tollefson: How hot will Earth get by 2100? Nature 580, 443-445 (2020)

[8] Ngan Le: The impact of fast fashion on the environment. Princeton Student Climate Initiative.

July 20, 2020.

https://psci.princeton.edu/tips/2020/7/20/the-impact-of-fast-fashion-on-the-environment

[9] The World Bank: Life expectancy at birth, total (years).

 https://data.worldbank.org/indicator/SP.DYN.LE00.IN

[10] Junhyuk Oh; Matteo Hessel; Wojciech M. Czarnecki; Zhongwen Xu; Hado van Hasselt;

Satinder Sigh; David Silver: Discovering Reinforcement Learning Algorithms. DeepMind,

January 5, 2021

[11] Pierre Ménard; Omer Darwiche Domingues; Anders Jonsson; Emilie Kaufmann; Edouard

Leurent; Michal Valko: Fast active learning for pure exploration in reinforcement learning.

DeepMind, October 10, 2020

[12] Markus Wulfmeier; Dushyant Rao; Roland Hafner; Thomas Lampe; Abbas Abdolmaleki;

Tim Hertweck; Michael Neunert; Dhruva Tirumala; Noah Siegel; Nicolas Heess; Martin

Riedmiller: Data-efficient Hindsight Off-policy Option Learning. DeepMind, June 15, 2021

[13] Roland Hafner; Tim Hertweck; Philpp Klöppner; Michael Bloesch; Michael Neunert Markus

Wulfmeier; Saran Tunyasuvunakool; Nicolas Heess; Martin Riedmiller: Towards General

and Autonomous Learning of Core Skills: A Case Study in Locomotion. DeepMind, August

6, 2020

https://oceanservice.noaa.gov/facts/carbon-cycle.html
https://www.nrdc.org/stories/greenhouse-effect-101
https://climate.nasa.gov/climate_resources/24/graphic-the-relentless-rise-of-carbon-dioxide/
https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4882
https://www.climaterealityproject.org/blog/how-feedback-loops-are-making-climate-crisis-worse
https://www.climaterealityproject.org/blog/how-feedback-loops-are-making-climate-crisis-worse
https://psci.princeton.edu/tips/2020/7/20/the-impact-of-fast-fashion-on-the-environment
https://data.worldbank.org/indicator/SP.DYN.LE00.IN

131

[14] Volodymyr Mnih; Koray Kavukcuoglu; David Silver; Andrei A. Rusu; Joel Veness; Marc

G. Bellemare; Alex Graves; Martin Riedmiller; Andreas K. Fidjeland; Georg Ostrovski; Stig

Petersen; Charles Beattie; Amir Sadik; Ioannis Antonoglou; Helen King; Dharshan

Kumaran; Daan Wierstra; Shane Legg; Demis Hassabis: Human-level control through deep

reinforcement learning. Nature 518, 529-533 (2015).

[15] What is TRNSYS? http://www.trnsys.com

[16] Hannah Ritchie and Max Roser (2020): Energy mix. Published online at

OurWorldInData.org. Retrieved from: https://ourworldindata.org/energy-mix

[17] Célia Artur; Diana Neves; Boaventura C. Cuamba; António J. Leão: Domestic hot water

technology transition for solar thermal systems: An assessment for the urban areas of

Maputo city, Mozambique. Journal of Cleaner production 260 (2020) 121043

[18] Carolina Aguilar; D. J. White; David L. Ryan: Domestic Water Heating and Water Heater

Energy Consumption in Canada. CBEEDAC, 2005

[19] Brett Dolter; Nicholas Rivers. The cost of decarbonizing the Canadian electricity system.

Energy Policy 113 (2018) 135-148

[20] Mehdi Jahangiri; Akbar Alidadi Shamsabadi; Hamed Saghaei: Comprehensive Evaluation of

Using Solar Water Heater on a Household Scale in Canada. Journal of Renewable Energy

and Environment, Vol. 5, No. 1 (Winter 2018) 35-42

[21] E. Saloux; J.A. Candanedo. Optimal rule-based control for the management of thermal

energy storage in a Canadian solar district heating system. Solar Energy 207 (2020) 1191-

1201

[22] Zhiyong Tian; Shicong Zhang; Jie Deng; Jianhua Fan; Junpeng Huang; Weiqiang Kong;

Bengt Perers; Simon Furbo: Large-scale solar district heating plants in Danish smart

thermal grid: Developments and recent trends. Energy Conversion and Management 189

(2019) 67-80

[23] Abhiram Mullapudi; Matthew J. Lewis; Cyndee L. Gruden; Branko Kerkez: Deep

reinforcement learning for the real time control of stormwater systems. Advances in Water

Resources 140 (2020) 103600

[24] J.J. Yang; M. Yang; M.X. Wang; P.J. Du; Y.X. Yu: A deep reinforcement learning method

for managing wind farm uncertainties through energy storage system control and external

reserve purchasing. Electrical Power and Energy Systems 119 (2020) 105928

[25] Taha Abdelhalim Nakabi; Pekka Toivanen: Deep reinforcement learning for energy

management in a microgrid with flexible demand. Sustainable Energy, Grids and Networks

25 (2021) 100413

[26] Xiaozhen Lu; Xingyu Xiao; Liang Xiao; Canhuang Dai; Mugen Peng; H. Vincent Poor:

Reinforcement Learning-Based Microgrid Energy Trading With a Reduced Power Plant

Schedule. IEEE Internet of Things Journal, Vol 6, No. 6, December 2019

[27] Yan Du; Fangxing Li; Jeffrey Munk; Kuldeep Kurte; Olivera Kotevska; Kadir Amasyali;

Helia Zandi: Multi-task deep reinforcement learning for intelligent multi-zone residential

HVAC control. Electric Power Systems Research 192 (2021) 106959

http://www.trnsys.com/
https://ourworldindata.org/energy-mix

132

[28] Anchal Gupta; Youakim Badr; Ashkan Negahban; Robin G. Qiu: Energy-efficient heating

control for smart buildings with deep reinforcement learning. Journal of Building

Engineering 34 (2021) 101739

[29] Silvio Brandi; Marco Savino Piscitelli; Marco Martellacci; Alfonso Capozzoli: Deep

reinforcement learning to optimise indoor temperature control and heating energy

consumption in buildings. Energy & Buildings 224 (2020) 110225

[30] Paulo Lissa; Conor Deane; Michael Schukat; Federico Seri; Marcus Keane; Enda Barrett:

Deep reinforcement learning for home energy management system control. Energy and AI 3

(2021) 100043

[31] Guanyu Gao; Jie Li; Yonggang Wen: Energy-Efficient Thermal Comfort Control in Smart

Buildings via Deep Reinforcement Learning. IEEE Internet of Things Journal, Volume 7,

Issue 9. 2019

[32] Camila Correa-Jullian; Enrique López Droguett; José Miguel Cardemil: Operation

scheduling in a solar thermal system: A reinforcement learning-based framework. Applied

Energy vol. 268 (June 15, 2020) 114943

[33] Amir Ramezani Dooraki; Deok-Jin Lee: Reinforcement learning based flight controller

capable of controlling a quadcopter with four, three and two working motors. 20th

International Conference on Control Automation and Systems (ICCAS) (2020). Busan,

Korea.

[34] Daniel L. K. Yamins; James J. DiCarlo: Using goal-driven deep learning models to

understand sensory cortex. Nature Neuroscience 19, 356-365 (2016).

[35] Edgar Y. Walker; Fabian H. Sinz; Erick Cobos; Taliah Muhammad; Emmanouil Froudarakis;

Paul G. Fahey; Alexander S. Ecker; Jacob Reimer; Xaq Pitkow; Andreas S. Tolias: Inception

loops discover what excites neurons most using deep predictive models. Nature Neuroscience

22, 2060-2065 (2019).

[36] Aurélien Géron: Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow.

Concepts, Tools and Techniques to Build Intelligent Systems. 2nd Edition. O’Reilly Media,

2019

[37] Michael A. Nielsen: Neural Networks and Deep Learning, Determination Press, 2015.

Chapter 2: How the backpropagation algorithm works

[38] David E. Rumelhart; Geoffrey E. Hinton; Ronald J. Williams: Learning representations by

back-propagating errors. Nature 323, 533-536 (1986).

[39] Kian Katanforoosh; Daniel Kunin, Initializing neural networks, deeplearning.ai, 2019.

[40] Keras: Dense layer. https://keras.io/api/layers/core_layers/dense/

[41] Xavier Glorot; Joshua Bengio: Understanding the difficulty of training deep feedforward

neural networks. 2010

[42] RL Course by David Silver - Lecture 1: Introduction to Reinforcement Learning. Lecture in

DeepMind’s Youtube Channel. https://www.youtube.com/watch?v=2pWv7GOvuf0

[43] Richard S. Sutton; Andrew G. Barto: Reinforcement Learning: An introduction. Second

edition. MIT Press, 2018

https://keras.io/api/layers/core_layers/dense/
https://www.youtube.com/watch?v=2pWv7GOvuf0

133

[44] Hado van Hasselt; Arthur Guez; David Silver (Google DeepMind): Deep Reinforcement

Learning with Double Q-Learning. Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence. February 2016

[45] Tom Schaul; John Quan; Ioannis Antonoglou; David Silver (Deep Mind): Prioritized

Experience Replay. International Conference on Learning Representations, May 2016

[46] Mohammad Modarres; Mark P. Kaminskiy; Vasiliy Krivtsov: Reliability Engineering and

Risk Analysis; a Practical Guide. Third Edition, 2016

[47] Oliver C. Ibe: Markov Processes for Stochastic Modeling. Second Edition (2013), Chapter 4

[48] Andrey Andreyevich Markov. Encyclopaedia Britannica

 https://www.britannica.com/biography/Andrey-Andreyevich-Markov

[49] Alexander Holmes; Barbara Illowsky; Susan Dean. Introductory Business Statistics, 2017

 https://openstax.org/details/books/introductory-business-statistics

[50] Francesco Asdrubali; Umberto Desideri: Handbook of Energy Efficiency in Buildings: A Life

Cycle Approach (2018). Page 516

[51] Michael J. Moran; Howard N. Shapiro; Daisie D. Boettner; Margaret B. Bailey:

Fundamentals of Engineering Thermodynamics. Eighth Edition (2014)

[52] Camila Asunción Correa Jullian: Assessment of Deep Learning Techniques for Diagnosis in

Thermal Systems through Anomaly Detection. Thesis, University of Chile, 2019

[53] TRNSYS 18: A Transient System Simulation Program. Chapter 4: Mathematical Reference

[54] What is NumPy? https://numpy.org/doc/stable/user/whatisnumpy.html

[55] SciPy library. https://www.scipy.org/scipylib/index.html

[56] Introduction to Tensorflow. https://www.tensorflow.org/learn

[57] The Python Tutorial, Section 3.1.3: Lists

https://docs.python.org/3.7/tutorial/introduction.html#lists

[58] random — Generate pseudo-random numbers

https://docs.python.org/3/library/random.html

[59] bisect — Array bisection algorithm. https://docs.python.org/3/library/bisect.html

[60] ENI S.p.A./AGIP Exploration & Production; BP Exploration Operating Company Ltd;

ExxonMobil International Ltd.; Norsk Hydro ASA; Phillips Petroleum Company Norway;

Statoil ASA; Shell Exploration & Production; TotalFinalElf: Oreda. Offshore Reliability

Data Handbook. 4th Edition. 2002

[61] Meteonorm Software – Worldwide irradiation data. https://meteonorm.com/en/

[62] Jay Burch; Craig Christensen: Towards Development of an Algorithm for Mains Water

Temperature.

https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://openstax.org/details/books/introductory-business-statistics
https://numpy.org/doc/stable/user/whatisnumpy.html
https://www.scipy.org/scipylib/index.html
https://www.tensorflow.org/learn
https://docs.python.org/3.7/tutorial/introduction.html#lists
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/bisect.html
https://meteonorm.com/en/

134

Annexes

Annexed A. Further details about the water heating system simulation

Details about the heating system which were considered not to be essential for understanding the

study were left out of the main part of the thesis. Here, those details are explained, so that a similar

model of the same water heating system can be created by the reader. The model is based on the

previous work of Camila Correa [49] and Camila Correa et al. [32].

The simulations were carried out in a Toshiba notebook which was acquired at the end of the year

2013 and has the following characteristics:

 - Notebook model: Toshiba Satellite P55t – ASP5303SL

 - CPU: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz

 - RAM: 12.0 GB

 - Disc: HGST HTS541010A9E680 (Hard Disc, 1 TB capacity)

The time steps of the simulation are one minute long.

Annexed A.1. Detailed flow diagrams

Here, some items which have been grouped in Figure 14 will be detailed. Figures 99 through 101

correspond to the solar stage, the chiller and the heat pump stage respectively. It is necessary to

understand Figure 14 in order to understand the three figures below.

Figure 99: Detailed flow diagram of the solar stage

Figure 100: Detailed flow diagram of the heat recovery stage (chiller)

135

Figure 101: Detailed flow diagram of the heat pump system. It is considered that each heat pump has an

integrated water pump in order to move the water flow to the heat exchangers.

Annexed A.2. Parameters of the elements in the system simulation (Types)

Heat exchangers

All heat exchangers in the system are modeled using the Type 91 (Constant Effectiveness Heat

Exchanger) and they have the same parameters, which are detailed in Table 32.

Table 32: Parameters of the heat exchangers

Parameter Value

Heat exchanger effectiveness 0.6

Specific heat of source side fluid 4.19 kJ/kg.K

Specific heat of load size fluid 4.19 kJ/kg.K

Water pumps

All pumps are single-speed pumps (Type 114); in all of them, the “Motor heat loss fraction” is set

to zero, and the “Fluid specific heat” is set to 4.19 kJ/kg.K. The other parameters are specified in

Table 33. The “internal” pumps of the heat pumps are separate items in the TRNSYS software, so

they are specified in the last row of the table.

Table 33: Parameters of the water pumps

Pump Number Rated Flow Rate Rated Power

1 and 2 5300 kg/hr 2520 kJ/hr

3 and 4 5300 kg/hr 3960 kJ/hr

5 and 6 13500 kg/hr 2520 kJ/hr

7 52390.8 kg/hr 13422.82 kJ/hr

8 29937.6 kg/hr 8053.5 kJ/hr

9 to 12 5300 kg/hr 1440 kJ/hr

Pumps of the heat pumps 1 to 4 5300 kg/hr 1260 kJ/hr

Weather Data

Weather data is necessary to provide the solar radiation to the solar collectors and the external dry

bulb temperature to the heat pumps of the third heating stage. Weather data from many cities around

the world is available from various sources; in the case of this study, weather data of Meteonorm

136

[61] which is included in TRNSYS was used to get the weather data of Santiago. In order to do

this, Type 15-3 was used.

Storage tanks

Preheating Tanks 1 and 2, which are part of the first and second heating stage respectively, are

modeled with the Type 39. The “Excess Flow” is recirculated through the respective heat

exchanger to permanently extract heat from the respective source, as shown in Figure 14. The

“Flow Rate To Load”, which is an input to “tell” the tank the demanded water flow, is by definition

the same flow that is entering in the system; in this way, the volume inside these tanks never varies.

Both tanks have exactly the same parameters, which are specified in Table 34. The difference

between them is, clearly, the other elements (types) in the simulation with which they are

connected.

Table 34: Parameters of Preheating Tanks 1 and 2

Parameter Value

Tank operation mode 1

Overall tank volume 2 m^3

Minimum fluid volume 1.0 m^3

Maximum fluid volume 2 m^3

Tank circumference 4.89 m

Cross-sectional area 1.9 m^2

Wetted loss coefficient 6.0 kJ/hr.m^2.K

Dry loss coefficient 4.0 kJ/hr.m^2.K

Fluid specific heat 4.19 kJ/kg.K

Fluid density 1000 kg/m^3

Initial fluid temperature 35 °C

Initial fluid volume 2 m^3

The storage tanks of the third heating stage, i.e. the Heating Tanks 1 to 4, are modeled by using

Type 534. The inlet-outlet pair number 1 is used to receive the water flow from the previous heating

stages and to deliver water to the outlet of the system, while the inlet-outlet pair number 2 is used

to recirculate the fluid inside the tanks to extract heat from the heat pumps. All the tanks have the

same parameters, which are listed in Table 35.

137

Table 35: Parameters of Heating Tanks 1 to 4

Parameter Value

LU for Data File -1

Number of Tank Nodes 10

Number of Ports 2

Number of Immersed Heat Exchangers 0

Number of Miscellaneous Heat Flows 0

Tank Volume 4 m^3

Tank Height 2.1 m

Tank Fluid 0

Fluid Specific Heat 4.19 kJ/kg.K

Fluid Density 1000 kg/m^3

Fluid Thermal Conductivity 2.14 kJ/hr.m.K

Fluid Viscosity 3.21 kg/m.hr

Fluid Thermal Expansion Coefficient 0.00026 /K

Top Loss Coefficient 5.0 kJ/hr.m^2.K

Edge Loss Coefficient for all Nodes 5.0 kJ/hr.m^2.K

Bottom Loss Coefficient 5.0 kJ/hr.m^2.K

Inlet Flow Mode-1 1

Entry Node-1 10

Exit Node-1 1

Inlet Flow Mode-2 1

Entry Node-2 1

Exit Node-2 10

Flue Overall Loss Coefficient for all Nodes 3.0 kJ/hr.K

Valve V1

As Figure 14 shows, valve V1 deviates part of the entering water directly to the outlet of the system.

It does this so that the water leaving the system does not surpass a temperature of 45°C. To

accomplish this task, the valve V1 has to receive the temperature of the water that is leaving the

third heating stage, so that it can calculate the amount of water that it has to send directly to the

outlet.

To do this in TRNSYS, valve V1 has to be modeled with Type 11b (Tempering Valve). The

“Setpoint Temperature”, which is an input and not a parameter, is given a constant value of 45°C.

The flow mixer in the outlet, which mixes the flow coming out of the third heating stage with the

mains water flow in order to keep the water at 45°C, is modeled with a normal flow mixer (Type

11h). The flow mixer at the outlet of the heat pumps, which mixes the flows coming out of the four

heat pumps and is illustrated in Figure 101, sends its outlet temperature to valve V1 (Type 11b) in

order to regulate the temperature of the water that leaves the system, as already discussed.

Valve V2 and Pool

Valve V2 is configured to always send 51% of the flow coming out of the chiller to the heat

exchangers where it gives off heat to the water for the dressing rooms. The remaining 49% is sent

to the pool. The pool is not being modeled in the simulation; it is simply assumed that the water

flow coming out of the pool has a temperature of 44.5°C. This is assumed following the original

design of the thermal system of the building.

138

Automatic Control Systems

The heat pumps and the pumps of the solar field (pumps 3 and 4 in Figure 14) have automatic

control systems that turn them on and off depending on the temperature of the water in their

respective storage tanks. This is only done when the smart controlling agent (neural network) has

previously decided to turn on the corresponding stage of the heating system. Type 911 (Differential

Controller with Lock-Outs) is used to control de devices. Table 36 shows the parameters and inputs

of the controllers. In the case of the heat pumps, each heat pump has its own controller which bases

its decision on the temperature of the storage tank of the corresponding heat pump.

Table 36: Parameters and inputs of the automatic controllers

Parameter or input Controller of the pumps of

the solar field

Controllers of the heat

pumps (each heat pump has

its individual controller)

of Oscillations 5 5

Minimum Run-Time 0.25 0.5

Minimum Reset Time 0.25 0.5

Upper input temperature Th 47 60

Lower input Temperature Tl Equal to the temperature of

Preheating Tank 1

Equal to the average

temperature of the

corresponding storage tank

Monitoring Temperature Tin 60 60

High Limit Cut-Out 75 75

Upper Dead Band dT 2 5

Lower Dead Band dT -3 -2

Lock-Out Control Signal 0 0

Annexed A.3. Elements (Types) with external files

Solar fields

In the simulation, the solar field is divided in two Types 71, one of them representing the part of

the filed where there are four collectors per row, and the other representing the part of the field

where there are three collectors per row (see Figure 13).

The parameters of both types are shown in Table 37.

139

Table 37: Parameters of the solar fields

Parameter Solar Field 1 Solar Field 2

Number in series 4 3

Collector area 48 m^2 58 m^2

Fluid specific heat 4.19 kJ/kg.K 4.19 kJ/kg.K

Efficiency mode 2 2

Flow rate at test conditions 68.4 kg/hr.m^2 68.4 kg/hr.m^2

Intercept efficiency 0.618 0.618

Negative of first order efficiency coeficient 1.3767 W/m^2.K 1.3767 W/m^2.K

Negative of second order efficiency coeficient 0.0184 W/m^2.K^2 0.0184 W/m^2.K^2

Logical unit of file containing biaxial IAM data 31 32

Number of longitudinal angles for which IAMs

are provided

10 10

Number of transverse angles for which IAMs

are provided

10 10

The solar fields are associated to a data file that provides the incidence angle modifier (IAM) for

each combination of transverse and longitudinal angles of the sun. The data is shown in Tables 38

and 39. It was obtained from the previous work by Camila Correa [52].

Table 38: IAM values of the solar collectors; transverse angles from 0° to 40°

Longitudinal

Angle

Transverse Angle

0° 10° 20° 30° 40°

0° 1.0000 1.0200 1.0800 1.1800 1.3700

10° 1.0000 1.0090 1.0180 1.0549 1.1498

20° 0.9900 1.0039 1.0129 1.0497 1.1441

30° 0.9800 1.0282 1.0373 1.0750 1.1717

40° 0.9600 0.9837 0.9925 1.0285 1.1211

50° 0.9300 0.9615 0.9701 1.0053 1.0958

60° 0.8700 0.9221 0.9303 0.9641 1.0509

70° 0.7400 0.8413 0.8488 0.8796 0.9588

80° 0.3800 0.3876 0.4104 0.4484 0.5206

90° 0.0000 0.0000 0.0000 0.0000 0.0000

Table 39: IAM values of the solar collectors; transverse angles from 50° to 90°

Longitudinal

Angle

Transverse Angle

50° 60° 70° 80° 90°

0° 1.4000 1.3400 1.2400 0.9500 0.0000

10° 1.4505 1.4605 1.2597 0.9500 0.0000

20° 1.4433 1.4532 1.2534 0.9405 0.0000

30° 1.4781 1.4883 1.2837 0.9310 0.0000

40° 1.4142 1.4240 1.2282 0.9120 0.0000

50° 1.3823 1.3918 1.2005 0.8835 0.0000

60° 1.3257 1.3348 1.1513 0.8265 0.0000

70° 1.2095 1.2178 1.0504 0.7030 0.0000

80° 0.5320 0.5092 0.4712 0.3610 0.0000

90° 0.0000 0.0000 0.0000 0.0000 0.0000

140

Chiller

The chiller is modeled with Type 666. The parameters and the chilled water set point, which is

actually an input but is left constant, are shown in Table 40.

Table 40: Parameters and chilled water set point of the chiller

Parameter or input Value

Rated Capacity 1080000 kJ/hr

Rated C.O.P. 4.5

Logical Unit – Performance Data 46

Logical Unit – PLR Data 47

CHW Fluid Specific Heat 4.19 kJ/kg.K

CW Fluid Specific Heat 4.19 kJ/kg.K

Number of CW Points 6

Number of CHW Points 6

Number of PLRs 5

CHW Set Point Temperature 10 C

The chiller uses two external files to specify its performance. One of the files specifies the cooling

capacity and the C.O.P. of the machine operating at full load, as functions of the temperature of the

chilled water leaving the machine and the temperature of the cooling water entering the machine.

In that file, the capacity and the COP have to be specified as ratios of the rated capacity and rated

C.O.P. which were specified in Table 40. The performance data is detailed in Tables 41 and 42; it

is based on the work of Camila Correa [52].

Table 41: Capacity ratios of the chiller at full load

Cooling water

inlet temperature

Chilled water leaving temperature

5°C 6°C 7°C 8°C 9°C 10°C

30°C 1.031 1.063 1.096 1.130 1.165 1.200

35°C 0.978 1.009 1.041 1.073 1.106 1.140

40°C 0.922 0.952 0.981 1.012 1.043 1.075

45°C 0.863 0.890 0.918 0.947 0.976 1.007

50°C 0.803 0.828 0.854 0.881 0.909 0.937

55°C 0.738 0.761 0.786 0.811 0.836 0.862

Table 42: COP ratios of the chiller at full load

Cooling water

inlet temperature

Chilled water leaving temperature

5°C 6°C 7°C 8°C 9°C 10°C

30°C 1.204 1.238 1.271 1.309 1.342 1.380

35°C 1.040 1.071 1.102 1.131 1.164 1.196

40°C 0.889 0.918 0.944 0.971 1.000 1.027

45°C 0.753 0.776 0.800 0.822 0.847 0.871

50°C 0.631 0.651 0.671 0.691 0.711 0.733

55°C 0.522 0.538 0.556 0.571 0.589 0.607

The second file specifies how the performance of the chiller is modified when it is operating at

part-load. This can happen because the chiller is meant to cool the chilled water flow up to a certain

temperature. If the chiller does not have to use all its capacity to do it, it will operate at part-load.

141

Although there is the option of providing a customized part-load data file, in this case the

“standard” file that is provided by TRNSYS is used.

Heat Pumps

The air-water heat pumps were the only component of the system that had to be added during the

course of this study. All other elements were part of the previous studies by Correa [52] and Correa

et al. [32] (in those works the heat pumps were modeled as traditional electric heaters). The heat

pumps are modeled with Type 941. The performance data was obtained from the datasheet shown

in Figure 102. The heat pumps of the system correspond to Model 117 shown in the table of the

figure. However, the maximum external air temperature in the data was 10°C (15°C is also in the

table, but the values are wrong). Thus, a linear regression was made to estimate the performance at

temperatures over 30°C which are commonly reached in Santiago during summer.

Figure 102: Performance data of the heat pumps. Model 117 is the one used for the study

The parameters used for Type 941 are shown in Table 43. Many of the parameters are meant to

define the cooling performance of the heat pumps. They will be specified although they have no

importance for the simulation, because the heat pumps are always used in “heating mode”.

142

Table 43: Parameters of the heat pumps

Parameter Value

Humidity Mode 2

Logical Unit for Cooling Data 49

Logical Unit for Heating Data 50

Number of Water Temperatures – Cooling 6

Number of Water Temperatures – Heating 5

Number of Dry Bulb Temperatures – Cooling 6

Number of Dry Bulb Temperatures – Heating 5

Specific Heat of Liquid Stream 4.19 kJ/kg.K

Specific Heat of DHW Stream 4.19 kJ/kg.K

Blower Power 662 kJ/hr

Total Air Flowrate 1500 L/s

Rated Cooling Capacity 40301kJ/hr

Rated Cooling Power 7722 kJ/hr

Rated Heating Capacity 72000 kJ/hr

Rated Heating Power 18000 kJ/hr

Capacity of Auxiliary 0.0 kJ/hr

The performance data that is needed for the heat pumps is very similar to the data of the chiller. In

the case of the heat pumps, the normalized capacity and normalized consumption (power) are

needed as functions of the temperatures of the water and the outside air that are entering the heat

pump (“normalized” with respect to the “rated” values of Table 43). Unlike the chiller, the heat

pumps only need one performance data file because they always operate at full-load. The file is as

follows:

Table 44: Normalized capacity of each heat pump

Entering Air

Temperature

Entering Water Temperature

35°C 40°C 45°C 55°C 65°C

-5°C 0.7819 0.7819 0.7814 0.7887 0.7894

5°C 1.0162 1.0162 1.0106 1.0011 0.9926

15°C 1.2506 1.2506 1.2397 1.2136 1.1958

25°C 1.4849 1.4849 1.4688 1.4260 1.3990

35°C 1.7193 1.7193 1.6980 1.6385 1.6022

Table 45: Normalized consumption (power) of each heat pump

Entering Air

Temperature

Entering Water Temperature

35°C 40°C 45°C 55°C 65°C

-5°C 0.7921 0.9008 0.9561 1.1652 1.4352

5°C 0.8157 0.9429 1.0135 1.2231 1.4931

15°C 0.8393 0.9851 1.0709 1.2809 1.5509

25°C 0.8630 1.0273 1.1283 1.3387 1.6087

35°C 0.8866 1.0695 1.1857 1.3965 1.6665

Annexed A.4. Imposed Temperatures

Two temperatures are imposed to the simulation by data-files: the temperature coming from the

cooling load of the chiller (i.e. the temperature of the chilled water flow when it is entering the

chiller) and the mains water temperature.

143

The temperature coming from the cooling load of the chiller repeats itself every 24 hours; it is

shown in Figure 103. The chiller is meant to cool this water to 10°C.

Figure 103: Daily temperature of the chilled water flow when entering the chiller

The mains water temperature was calculated by Correa et al. [32] based on the method presented

by Burch and Christensen [62]. This temperature repeats itself each year; it is shown in Figure 104.

Figure 104: Yearly temperature of the mains water

Annexed B. All results of Section 6.5.

The results shown in Figures 68 and 71 were taken from a parameter exploration that was done

only by using Architecture 11, as defined in figure 67. Only the proportional prioritization method

was used, and the value of 𝜶 was varied as shown in Figures 105 and 106. Figure 105 shows the

results of the agents that receive 10-variable environment states, and Figure 106 shows the results

of the agents that receive 15-variable environment states. The agents shown in the same graph were

trained with equal conditions; eight were trained with each hyperparameter combination.

144

Figure 105: 10-variable states

Figure 106: 15-variable states

Figures 72, 73, 74, 75 and 76 were taken from an exploration that was done with Architectures 4,

8, 9, 10 and 12. Six agents were trained with each hyperparameter combination. In the case of

Figure 72, only that hyperparameter combination was extended to 12 agents, as shown in that

figure. Here, 6 agents are shown in all cases (in the case of Figure 72 the six agents that were

originally trained are shown here). Figures 107 and 108 show the results of the exploration.

145

Figure 107: 10-variable states

146

Figure 108: 15-variable states

Figures 78 through 84 were taken from an exploration that was done only with Architectures 11

and 12. The proportional prioritization method was used with 𝜶 taking the values 1 and 2. 10-

variables states as well as 15-variable states were tested. Six agents were trained with each

147

hyperparameter combination. Figures 109 through 114 show all the results of the exploration

process.

Figure 109: Cycle 1; Architecture 11.

Figure 110: Cycle 1; Architecture 12.

148

Figure 111: Cycle 2; Architecture 11.

Figure 112: Cycle 2; Architecture 12.

149

Figure 113: Cycle 3; Architecture 11.

Figure 114: Cycle 3; Architecture 12.

In Section 6.5.3 the alternative Markov chains were proposed and used to train the agents.

Architectures 4, 11 and 12 were tested. Both proportional and ranked-based prioritization methods

were used. For the proportional method, 𝜶 took the values 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0. With the

rank-based method, 𝜶 took the values 0.2, 0.5 and 0.8. The value 𝜶 = 𝟎 was tested as well; this

implies not using any prioritization method. Six agents were trained with each hyperparameter

combination. Figures 115 through 117 show all the results of Section 6.5.3.

150

Figure 115: Architecture 4

151

Figure 116: Architecture 11

152

Figure 117: Architecture 12

In section 6.5.4, as already discussed, the momentum factor was increased to 0.9 while using

Architecture 12. The experiment of decreasing the learning rate to 0.0005 was also carried out, but

the results were not good like in the case of the momentum factor. In both cases, the training method

153

used in Section 6.5.1 was used (i.e. with the Markov chains of the real system and with 16 possible

actions). Figures 118 and 119 show the results.

Figure 118: Learning rate = 0.0005; Momentum factor = 0.8

Figure 119: Learning rate = 0.001; Momentum factor = 0.9

