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Agente optimizador de energía resiliente a fallas para un sistema de 

calentamiento de agua mediante aprendizaje reforzado profundo 

En el contexto climático actual, reducir el impacto ambiental de la humanidad es más importante 

y urgente que nunca. Esto debe lograrse sin dejar de lado las mejoras que se han conseguido durante 

las últimas décadas en la calidad de vida de la gran mayoría de la población mundial; mejoras que 

han elevado la esperanza de vida, la salud y la educación a niveles sin precedentes, y que en parte 

se deben a la industrialización. Por lo tanto, el objetivo de la humanidad no debiese ser la abolición 

de la industrialización, sino un modelo productivo que pueda mantenerse en el largo plazo, y en lo 

posible debe lograrse rápido. En este contexto, un modelo de producción energética libre de 

carbono es esencial. Una forma obvia de conseguirlo es mediante el uso de energías limpias y 

renovables. En adición a esto, se puede reducir la necesidad energética optimizando su consumo. 

El trabajo presentado en este documento intenta abordar la optimización en el control de sistemas 

que usan energía de fuentes renovables. En particular, el método conocido como “Deep 

Reinforcement Learning” (aprendizaje reforzado profundo) se usa para entrenar a agentes 

autónomos que controlan el sistema de calentamiento de agua sanitaria usado para entregar agua a 

los camarines en el área de deportes del edificio ubicado en Beauchef 851, Santiago de Chile, el 

cual pertenece a la Facultad de Ciencias Físicas y Matemáticas (FCFM) de la Univerdidad de Chile. 

“Reinforcement Learning” es un área de aprendizaje de máquinas que estudia la optimización de 

tareas de control. Un agente es entrenado para ejecutar las mejores acciones posibles sobre un 

ambiente, con el objetivo de obtener mayores “recompensas”, las cuales son una función que 

depende de los efectos que las acciones del agente producen sobre el ambiente. “Deep 

Reinforcement Learning” es la sub-área de Reinforcement Learning que estudia el uso de redes 

neuronales profundas como agentes que toman las decisiones. 

En el estudio aquí presentado, una plataforma simple para el entrenamiento de redes neuronales 

densas es desarrollada con el objetivo entrenar a agentes que controlen el sistema ya mencionado; 

luego, se define una función recompensa considerando las características del sistema y el objetivo 

del proceso de entrenamiento, que es optimizar el uso de energía mientras se provee agua caliente 

a los camarines. Además, los agentes se entrenan para controlar una versión del sistema sujeta a 

fallas de los componentes, de forma de que no se interrumpa el suministro de agua caliente en caso 

de falla. 

Los resultados muestran un claro éxito del método presentado, tanto para optimizar el uso de 

energía como para manejar el sistema cuando ocurren fallas. Sin embargo, es posible que la 

simulación tenga demasiadas simplificaciones con respecto al sistema real, lo cual podría producir 

un desempeño deficiente de los agentes si éstos se pusieran en práctica con el actual avance del 

estudio. Por lo tanto, el siguiente paso obviamente consiste en añadir más complejidades a la 

simulación, lo cual probablemente llevará a la necesidad de usar redes neuronales y métodos de 

Deep Reinforcement Learning más sofisticados. 
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Energy-Optimizing Failure-Resilient Automatic Controller for a 

Water Heating System through Deep Reinforcement Learning 

In the current climatic context, reducing the environmental impact of mankind is more important 

and urgent than ever. This must be achieved without leaving aside the important improvements that 

have been achieved in the quality of life of most people in the world during the last decades; 

improvements which have increased life expectancy, health and education to unprecedented levels, 

and which have been partly due to industrialization. Therefore, the goal of mankind should not be 

to abolish industrialization, but to find a production model that can be maintained in the long term, 

and this must be hopefully achieved quickly. In this context, a carbon-free energy production model 

is essential. An obvious way of achieving it in the short term is by the use of clean and renewable 

energy sources. In addition to this, the need for energy can be reduced by optimizing its 

consumption. 

The work presented in this document tries to address the control optimization of systems that use 

renewable energy sources. In particular, the method known as “Deep Reinforcement Learning” is 

used to train an autonomous controlling agent that optimizes the performance of a sanitary water 

heating system that is used to supply warm water to the dressing rooms in the sports area of the 

building located in Beauchef 851, Santiago de Chile, which belongs to the Faculty of Physical and 

Mathematical Sciences (FCFM) of the University of Chile. 

Reinforcement Learning is an area of Machine Learning that studies the optimization of control 

tasks. An agent is trained to execute the best possible actions on an environment, with the goal of 

obtaining the best possible “rewards”, which are a function that depends on the effects that the 

actions of the agent produce on the environment. Deep Reinforcement Learning is the sub-area of 

Reinforcement Learning that studies the use of Deep Neural Networks as the decision-making 

agent. 

In the study presented here, a simple Dense Deep Neural Network-training platform is developed 

to train agents in order to control the water heating system mentioned above; then, a reward 

function is formulated considering the characteristics of the system and the objective of the training 

process, which is to optimize the use of energy while effectively supplying warm water to the 

dressing rooms. Moreover, the agents are trained to control a failure-subject version of the same 

water heating system, so that the supply of warm water is not interrupted when a failure occurs. 

The results show a clear success of the method presented, both at optimizing the energy use, as 

well as at handling the system when failures occur. However, it is believed that the simulation that 

is used to model the water heating system has too many simplifications with respect to the actual 

system, which can lead to poor performance of the agents if they were put into practice in the 

current stage of the study. Therefore, the obvious next step would be to introduce more of the 

complexities that the actual system has into the simulation; this would probably lead to the need to 

use more sophisticated Deep Neural Networks and Deep Reinforcement Learning techniques. 
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Chapter 1: Introduction 

1.1. On our effect on the planet 

The biochemical processes that take place on Earth contribute to determine its climatic conditions. 

The carbon cycle, for example, is the process by which carbon is exchanged between living beings, 

the atmosphere, the soil, the hydrosphere and fossil reservoirs [1]. It is widely accepted that higher 

carbon dioxide (CO2) concentrations in the atmosphere can cause an increase in the Earth’s mean 

temperature due to the capacity of CO2 molecules to absorb infrared radiation that would otherwise 

be radiated by Earth into space. This is called “greenhouse effect” and is produced by CO2 and 

many other “greenhouse gases” (GHG), e.g. methane (CH4, another carbon-based gas) and water 

vapor (H2O) [2]. 

There is also great evidence that at this moment, human activity is breaking the balance of the 

carbon cycle by releasing an additional amount of fossil carbon reserves into the atmosphere; 

mankind has been doing this to power its technological development for more than 200 years since 

steam power became popular at the beginning of the 19th century. This idea is supported by studies 

conducted on ice core samples which contain atmospheric air from thousands and even millions of 

years ago; these studies allow to determine the atmospheric concentrations of CO2 in the past. 

Figure 1 [3] shows that, at least for the last 800,000 years, the atmospheric CO2 concentration has 

never been as high as today. It is also remarkable that the magnitude and rate of change produced 

in the last years is much greater than that of any previous change in the time span considered. 

 
Figure 1: Atmospheric CO2 levels during the last 800,000 years. 

Source: NASA [3]; Data from: Luthi, D. et al. 2008; Etheridge, D.M. et al. 2010; 

Vostok ice core data/J.R. Petit et al.; NOAA Mauna Loa CO2 record 

The results shown in Figure 1 are consistent with direct measurements of the Earth’s temperature. 

According to data of NASA, the years 2016 and 2020 are tied as the two warmest years on record, 

with a global mean temperature 1.02°C higher than the 1951-1980 mean baseline [4]. Figure 2 

shows a map of mean temperature differences between the 2016-2020 period and the baseline. The 

differences reach a maximum value of around 2°C in the red areas of the map. 
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Figure 2: Temperature differences between the 2016-2020 period and the 1951-1980 baseline 

Source: NASA’s Scientific Visualization Studio/Lori Perkins/Robert B. Schmunk [4] 

The global temperature rise is also believed to be causing positive feedback loops that are making 

the rate of change even faster [5]. Warmer oceans have less capacity to dissolve CO2, thus they 

release it to the atmosphere, increasing the effect. Water evaporation also increases, and a warmer 

atmosphere can hold more water vapor, which is a GHG as well. Melting ice releases trapped 

carbon dioxide and methane. Ice sheets also reflect solar radiation far better than soil, rock or liquid 

water; if the area covered by ice decreases, more energy from the sun is absorbed by Earth. 

There is uncertainty on the future of climate, mostly because it largely depends on the decisions 

that mankind makes now. A paper by O’Neill et al. [6] tries to explore different scenarios from the 

point of view of the decisions that are made on a global scale in the coming years. The most 

pessimistic scenario presents a global mean temperature 5°C higher than before the industrial 

revolution by the end of this century; this was obtained by assuming a fivefold increase in the use 

of coal. This result has been criticized [7] as unrealistic, but the authors claim that they only want 

to present several scenarios and not predict the future. The same study is also fairly optimistic in 

the good-case scenarios. 

It is certainly difficult (actually impossible) to predict and specify the exact path of decisions that 

have to be made in order to get to a global-level arrangement that leads to a systematic and orderly 

reduction of the use of fossil fuels. (If the future were so easy to predict based on current decisions, 

all the problems of the world would have already been solved. Mankind is clearly a chaotic system). 

But the fact that predicting the future is hard should not dissuade us from trying to make it better, 

and an obvious way to start is by reducing our environmental impact. 

1.2. Sustainability 

As already discussed, human activity is causing great changes on the planet, especially since the 

industrial revolution of the late 18th century. But the problems discussed above are only a tiny part 

of all the environmental problems that have been attributed to humans. Nowadays, concepts like 

global warming, ocean acidification, rising sea levels, deforestation, desertification, droughts, 

water pollution, plastic pollution, air pollution and mass extinction are widely accepted in the 

scientific community, and there is great consensus that human activity is causing, or at least 

contributing to, all of these problems. In recent years, this has caught the attention of the whole 

planet, encouraging the formation of organizations, political parties and movements that have the 

fight against climate change as their main motivation. 
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In order to understand the issue, it is fundamental to keep in mind that any human activity has an 

impact on the environment (even for the essential activity of being alive, one needs to eat, which 

produces an impact). Therefore, a straightforward solution that some people may advocate for is to 

reduce the rate of human activities in order to reduce their impact; in other words, people should 

reduce their consumption levels in order to reduce the impact of their consumption. This point of 

view could be defended by considering, as an example, the level of fashion consumption and its 

recent growth in developed countries. It could be argued that many people are consuming more 

clothes than they actually need, and due to the great impact that this industry has [8], it would be 

possible for people in rich countries to make a positive change by changing their habit of buying 

clothes. 

However, there are many other parts of the world where most people have not yet achieved the 

minimum level of consumption that is necessary to lead a good and healthy life. Given that up to 

now, there are still entire countries which have not achieved a life expectancy at birth of 60 years 

[9], it could also be argued that many people in the world actually need to increase their 

consumption up to a point where they have access to basic services like drinking water, medical 

attention, electric energy, education, reliable food, hygiene, communications, transport and 

security. 

From this, it can also be concluded that mankind cannot indefinitely reduce its consumption level. 

There is a minimum life standard that should be available for all people on Earth; therefore, 

technology needs to reach at least a way to sustainably manage that level of consumption. 

The term “sustainability” refers to the idea of a production model that could be maintained in the 

long term without shattering the fragile balance of the Earth’s biosphere; this involves, among other 

things, stopping the pollution of rivers, oceans and the atmosphere, and the loss of forests. People 

who may be affected by the presence of industrial or agricultural activities should be considered as 

well. There are different ideas that are slowly being put into practice with the aim of achieving this 

goal; some of them are renewable energy sources, better energy management, industrial wastewater 

treatment and recycling. A long-term solution for the energy production issue may be nuclear 

fusion energy, although its commercial use might not be available at time in order to avoid the 

effects of global warming. 

The task of avoiding future environmental damages and fixing already done damages is not easy 

and will require much of the human capacity during the following years to be accomplished. New 

technologies need to be developed and already existing technologies need to become more efficient 

and cheaper in order to be a viable option. The main goal of this document is to make a small 

contribution in that direction. 

1.3. Solar water heating 

The most direct way of addressing the problem of global warming is by reducing GHG emissions. 

In Section 2.1 it will be quantitatively argued that the use of solar energy to heat water (solar water 

heating, SWH) can considerably contribute to this goal. This can be done in contexts ranging from 

domestic to industrial purposes. Even if the desired water temperature cannot be reached with solar 

energy alone, this method can be used to partially heat the water flow; in this case the use of fossil 

fuels may not be totally avoided but it can be greatly reduced. In most SWH systems, this is the 

most likely situation because solar energy is intermittent; therefore, there will be moments when 

thermal energy is needed but not enough solar energy is available. 
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1.4. Policy optimization 

The limitation of solar energy just mentioned can be at least partially compensated by improving 

the control policy of the SWH system; this means, implementing an automatic controller which 

operates the system in such a way as to improve the use of sustainable energy sources, thus reducing 

GHG emissions. 

In order to achieve such a performance improvement, thermal energy storage (TES) is a minimum 

requirement. In the case of water heating, a TES system consists of storage tanks which, because 

of good thermal isolation properties, are able to hold warm water for long periods of time. A basic 

policy could be to store warm water at moments of high solar energy availability, in order to use it 

at moments of low energy availability and high demand. 

However, many heating systems require a more complex policy because their performance is 

subject to many variables; in such cases, the optimal control policy may be not so easy to determine, 

and Machine Learning algorithms become a good option. The area of Machine Learning that 

focuses on control tasks and optimal decision making is called “Reinforcement Learning”; the basic 

concepts of this topic are discussed in the next section. 

1.5. Reinforcement Learning and Deep Reinforcement Learning 

The concept of Reinforcement Learning (RL) is quite simple, although the objective can be very 

hard to achieve, and the algorithms to do it are still under development ([10], [11], [12] and [13]). 

RL is an independent area of Machine Learning that is intimately related to optimal control and 

decision making. In contrast to supervised learning, which is based on learning from labels, RL is 

based on learning from trial and error. 

The objective of RL is to train an agent to interact with an environment. The environment is usually 

a time-dependent simulation that can be influenced by the agent; i.e., the agent has some degree of 

control over the environment. In order to achieve this agent-environment interaction, the 

environment simulation is divided into time steps; on each time step, the agent is allowed to execute 

an action on the environment. The actions are chosen by the agent from a pre-established set of 

possibilities. The objective of the RL process is that the agent, without prior knowledge about the 

environment or about the effect of the actions that it executes, learns the best action to execute on 

each time step, only by interacting with the environment. To define how good the actions are, a 

reward function is defined (it must be a real number). For every executed action, the agent gets a 

reward on the next time step. The final goal of the training process is that the agent maximizes the 

rewards it receives. This is the core concept of RL. 

To make a decision about which action is the best, on every time step the agent receives a certain 

amount of information from the environment which is called observation. Observations may 

contain all kinds of information about the current, past, or future conditions of the environment; 

however, they might not contain all the information that is necessary to define the internal state of 

the environment. As already discussed, the goal is that the agent learns what action to execute on 

each interaction (or time step) in order to maximize the rewards it receives, basing the decision on 

the information that it has about the environment. The agent does not have to base the decision 

only on the current observation, but it may also take advantage of the history of previous actions, 

rewards and observations. The basic interaction process is shown in Figure 3. 
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Figure 3: Interaction between the agent and the environment in RL 

Training a smart artificial agent to play a videogame is a good example of a concrete situation 

where RL may be needed (actually, many important breakthroughs in RL have been done by 

experimenting on videogames; the paper by Mnih et al. [14] is a good example that will be detailed 

in Section 3.2). In that particular case, the observation would be the current screen image. The 

possible actions obviously depend on the game, but they could be for example: going forward, 

turning left, turning right, jumping, shooting, etc. (in the case of this study, only discrete and finite 

action sets will be considered). Depending on what the goal of the game is, the agent may take 

advantage of “remembering” previous screen images or actions that it has previously executed, i.e. 

the history of previous interactions. The reward function could be the points received while playing. 

What is important about the reward function is that the agent will always try to increase it; 

therefore, the reward function should completely represent what the agent is supposed to do. In 

other words, one has to formulate a reward function that satisfies the condition: “the higher the 

reward, the better”. 

Deep Reinforcement Learning (DRL) is a family of methods to train a deep neural network (DNN) 

as the controlling agent. Here is why this may be necessary: in the case of a very simple 

environment, namely, an environment with few possible observations and for which the last 

observation is enough to determine the best action, it may be feasible to learn the best action for 

every possible observation, and then to store this information in a table. However, in practice, most 

environments have continuous observation spaces defined by several variables, thus this is not 

possible [14]. In this case, a feasible method to determine a good policy is to use a DNN, which 

evaluates the useful information as input and determines which action is the best as output. The 

algorithms used to train the agents (DNNs) shall be detailed in Section 3.2. 

1.6. Objectives 

The study presented in this document aims to create an autonomous controlling agent for a water 

heating system with availability of solar energy and other low-consuming heating devices. 

The heating system used for the study was inspired by the system which heats the water for the 

dressing rooms of the sports area of the building located in Beauchef 851, Santiago, Chile. The 

building belongs to the Faculty of Physical and Mathematical Sciences (FCFM) of the University 

of Chile. In addition to solar power and thermal energy storage, the system uses heat recovery from 

a water chiller and air-water heat pumps. 

Roughly speaking, the controlling agent controls the system by deciding which heating devices to 

turn on and which to turn off, in order to reduce the electric consumption of the system while 

fulfilling the task of delivering warm water to the dressing rooms. The agent has some instances to 

make this decision during each day, and the heating devices remain at the states decided by the 

agent until a new action is required. 

The system is simulated with the TRNSYS software (Transient System Simulation Tool) [15], 

which is a widely used software for the simulation of all kinds of transient systems, and it is 
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especially demanded to simulate thermal systems and other energy-related systems. For this reason, 

it is also popular for the implementation of projects related to renewable energy sources. 

To train the controlling agent, DRL is used; therefore, the control policy is determined by a DNN. 

In order to create the training platform, a connection between the TRNSYS software and the Python 

programming language must be established. As will be explained in Section 4.5, the connection 

between both programs made it unfeasible to use regular deep learning libraries for the 

development of the controlling agents; for this reason, the DNNs were programmed by using basic 

features of Python. 

In addition to the basic task of controlling the system to deliver warm water while using less energy, 

it will be studied whether the controlling agent is able to cope with failures of the system. In this 

case, the objective is to train the agent to fulfill its task of delivering warm water when some of the 

heating devices are forcibly taken out of operation at random moments. 

1.6.1. General objective 

The main objective is to develop a platform that, by the use of DRL techniques, is able to train 

smart agents to control a water heating system, even at moments when parts of the system are out 

of operation due to a failure. 

1.6.2. Specific objectives 

The specific objectives of this study are: 

1. Establishing a connection between the TRNSYS software and the Python programming 

language. The Python code has to be able to transmit decisions to the TRNSYS simulation, 

regarding which devices are used. In addition to this, the code must receive results from the 

simulation, use them to make decisions and impose these decisions on the simulation. 

2. Showing that an effective training process of the DNNs can be achieved in a basic 

programming language, without the use of specialized Deep Learning libraries. 

3. Defining a reward function that fulfills the condition of producing a desirable behavior of 

the smart agents as they try to maximize it. 

4. Analyzing the training results when the hyperparameters of the training algorithm are 

changed. Different neural network architectures are tested as well. 

5. Analyzing how the behavior of the controlling agents changes as the reward function is 

modified. Modifying the reward function is equivalent to changing what the agents are 

supposed to achieve. 

6. Training agents to fulfill their task when the devices of the system are subject to random 

failures. 

1.7. Structure of the Thesis 

This thesis is structured as follows: 

On Chapter 2, a review of related studies is made with the aim of analyzing the potentials and 

opportunities of the study that is being proposed. 

On Chapter 3, the theoretical framework is discussed. Here, the mathematical foundations of the 

methods used to train the autonomous agents are presented, along with other concepts that are 

necessary to understand the study. 

On Chapter 4, the characteristics of the water heating system that is used for the study are detailed, 

and then a step-by-step development of the training platform is presented. 
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On Chapter 5, the experimental methodology is presented. First, the stages of the study are detailed, 

and then the methods to analyze the results are explained. 

On Chapter 6, the results of the conducted simulations are presented and discussed. 

On Chapter 7, the conclusions that can be inferred from the results and from the study in general 

are mentioned, and the opportunities for future work on the subject are mentioned. 
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Chapter 2: Literature Review 

2.1. Literature on solar water heating 

According to data of the agency “Our World in Data”, 84.33% of the global amount of energy 

consumed in the year 2019 was produced by fossil fuels (oil, coal and gas) [16]. On the other hand, 

energy production accounts for around 75% of the GHG emissions produced by human activities 

[16]. 

Avoiding current and future GHG emissions makes it necessary to reduce the energy consumption 

as well as to increase the use of sustainable energy sources. In this context, the use of SWH is an 

important topic to take into account. Artur et al. [17] (2020) conducted a study in Maputo, 

Mozambique, concluding that the use of SWH can lead to more than 65% reduction on the 

electricity demand for domestic water heating (DWH). The study considered 700 households in 28 

neighborhoods within the city of Maputo. The two main energy sources used for DWH were 

electricity and biomass, with 46% and 41% of the total energy demand for DWH respectively. The 

study also notes that the total electricity demand has increased an average of 9% annually during 

the last 15 years, due to the movement of people from rural areas into cities, leading to electricity 

shortages and big efforts to build new power plants. Therefore, the development of renewable 

energy sources could be even more important in developing countries because it can lead to 

reductions on environmental impact by slowing down the necessity of new power plants, and it can 

improve the availability of electricity. 

In the case of Canada, Aguilar et al. [18] concluded through simulations that DWH represents the 

second-largest energy end-use by Canadian households, after space heating, with 21.7% of the 

domestic energy demand. Despite the fact that more than 78% of the electricity in Canada is 

produced with low carbon technologies (Dolter, Rivers [19]), 59% of the energy used for DWH is 

produced by natural gas [18], so there is potential of reducing GHG emissions by implementing 

domestic SWH systems. However, it is important to consider that the levels of solar radiation in 

Canada are considerably lower than in Maputo, so the benefits in equal conditions are lower. 

Jahangiri et al. [20] found that it was feasible to reduce 35% of the annual energy demand for space 

heating and DWH with solar collectors in the city of Regina, Canada. For the study, a flat plate 

collector with an area of 40m2 was considered to heat a space of 80m2 and to supply 110L of water 

at 60°C per day. The study was conducted in other Canadian cities as well, with lower results in 

terms of the percentage of energy supplied by solar energy. 

2.2. Literature on policy optimization 

One of the disadvantages of solar energy (and wind energy as well) is its intermittence, which leads 

to serious difficulties if one wants to not only reduce their energy consumption but to fully depend 

on renewable energy sources. If mankind wants to achieve a carbon-free future based on renewable 

energy sources, this has to be the final goal. 

In this context, a step towards that goal could be trying to optimize the use of renewable energy 

and to maximize its exploitation. In the case of SWH, this can be achieved by the use of thermal 

energy systems (TES) and a good system policy. The “policy” is the set of “rules” that the 

automatic controller follows in order to achieve certain goals like reducing the energy cost, 

reducing GHG emissions or increasing the use of renewable energy sources. 
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Saloux and Candanedo [21] presented a rule-based control strategy in a Canadian district with 

SWH and TES systems, in which 34% reduction in energy costs and 29% reduction in GHG 

emissions were achieved in comparison with the traditional control strategy. Another study 

published by Tian et al. [22] also argues for the potential of solar district heating systems with 

smart thermal grids in Denmark. Although the levels of solar radiation in Denmark are relatively 

low, the study concluded that the integration of solar energy with smart control systems is 

competitive because of different factors: the low price of the land used for the collectors, high 

efficiency and high reliability of the collectors and high taxes on natural gas. Besides, 64% of 

Danish households are already part of district heating systems, which makes it easier to integrate 

solar energy into the systems. 

With complex thermal systems, it may be difficult to determine an optimal strategy; in this case, 

RL and DRL become good options. RL and DRL algorithms have proved to be effective in different 

kinds of complex control tasks. Mullapudi et al. [23] presented a study where smart agents were 

trained to control stormwater systems by using DRL. In the study, the controlling agent gets 

information about flows in the system and is able to control valves in order to deviate the flows. 

The study argues that the DRL-trained agent significantly outperforms the uncontrolled systems. 

This could bring benefits like avoiding floods and reducing the need for building new drain 

systems. In many places, the cost of building new infrastructures is prohibitive and occasional 

floods are unavoidable, so these smart-controlled systems become an option to take into account. 

The paper of Yang et al. [24] presents a smart controlling agent for a wind energy farm, trained by 

using DRL. The main goal of the study was to enhance the economic viability of this type of energy, 

with an energy storage system that is part of the farm, and the option of purchasing energy from 

external reserves. By using energy price predictions and wind availability predictions, which are 

generated by recurrent neural networks, the agent has to decide on the charge/discharge schedule 

of the energy storage system, in order to optimize the revenues of the farm. The advantage of the 

DRL method is that no assumptions on the probability distributions of energy price and wind 

availability had to be made. 

In the study of Nakabi and Toivanen [25], DRL methods were used to train agents in order to 

optimize the performance of a microgrid that includes a wind turbine and an energy storage system. 

Different DRL algorithms were tested, and remarkable differences between the performances of 

the training methods were found. On the other hand, Lu et al. [26], presented a DRL approach to 

optimize the performance of microgrids by including the option of trading energy between different 

microgrids. Based on projections of future energy generation and future demand, the agent 

determined the optimal energy trading policy, reducing the overall dependence on external power 

plants. 

In the field of optimal operation of thermal systems, Du et al. [27], Gupta et al. [28] and Brandi et 

al. [29] present DRL approaches to optimize the performance of Heating, Ventilation and Air-

Conditioning (HVAC) systems. In the study of Lissa et al. [30], an agent that controls an integrated 

system of HVAC and DWH was presented. The heat source for both purposes is a heat pump, 

which has the option of using solar energy form photovoltaic panels; for this reason, the availability 

of solar energy had to be taken into account as well. 

In the paper of Gao et al. [31] a Deep Reinforcement Learning technique is applied to optimize the 

control of an HVAC system, prioritizing the comfort of the occupants of the building and the energy 

consume of the system. Like this thesis, Gao et al. [31] used the TRNSYS software for the 

simulation of the system and the Python programming language for the development of the neural 

networks, but they also used the MySQL software as an interface between both programs; this 
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enabled them to use the Pytorch library for the development of the neural networks. The results 

show that the comfort level of the occupants can be enhanced along with the energy efficiency of 

the system by the use of DRL-trained agents. 

The study on RL made by Correa et al. [32] was conducted on the same system that is used for the 

study presented in this document. In the study of Correa et al., the agent is able to control the 

operation of two heating systems: heat recovery from a water chiller and solar thermal collectors. 

The agent is allowed to take actions on the system three times a day. With other assumptions, a 

total number of 20 possible paths that the agent can follow each day are obtained. In addition to 

this, 5 KPIs are created based on indicators like the use of clean energy and energy consumption 

of the system. With this, the reward function is defined by giving different “weights” to each KPI. 

Then, the optimal paths, i.e. the paths which yielded the highest rewards, were determined as the 

weights of the KPIs were modified. 

In the field of failure resilience, Dooraki and Lee [33] developed an autonomous controller for a 

quadcopter which was also capable of controlling the quadcopter when one or two of the rotors 

fail. No more than one neural network was necessary to achieve the objective; this means that the 

same controlling agent was capable of fulfilling the task on normal conditions as well as adapting 

to abnormal conditions. 

2.3. Summary 

The aforementioned studies were cited in order to show the potentials as well as the opportunities 

of the topics that are addressed in this thesis. 

By taking the sources [16], [17], [18], [19] and [20] into account, it is possible to argue for both 

the economic viability of SWH systems and their potential of reducing greenhouse gas emissions. 

Studies [21] to [32] show the capacity of policy optimization methods to enhance the performance 

of different types of systems, including SWH. [23] to [32], in particular, show the potential of 

Reinforcement Learning and Deep Reinforcement Learning methods to achieve this objective. The 

source [33] also shows the ability of these methods to operate systems which are subject to failures. 

The paper of Gao et al. [31] is similar to the study presented in this thesis because the same software 

was used for the simulation of the controlled system, and Deep Reinforcement Learning was used 

to enhance the energy efficiency of a system as well. However, Gao et al. used the MySQL software 

as an interface between TRNSYS and Python. One of the goals of this thesis is to show that an 

effective training platform for deep neural networks can be achieved without the use of specialized 

Deep Learning libraries, and therefore, the use of an interface between TRNSYS and Python is not 

necessary. This result could be useful for the later development of DRL-trained agents in 

environments where the access to Deep Learning platforms is not possible. 

Another field that is very under-developed is the application of DRL techniques for the training of 

failure-resilient agents. Dooraki and Lee [33] make a great contribution in that direction, but none 

of the studies that were found does something similar with thermal systems. 

In the last years, Machine Learning methods have become more and more popular in industrial 

applications, but Reinforcement Learning remains largely unknown, and as has been shown, it has 

the potential of largely increasing the efficiency of many different kinds of processes. For this goal 

to become a reality, more academic research should concentrate in this topic. This thesis aims to 

be a small contribution to the development of Reinforcement Learning techniques, especially in 

Chile and in the Faculty of Physical and Mathematical Sciences of the University of Chile. 
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Chapter 3: Theoretical framework 

3.1. Dense Deep Neural Networks 

Deep Neural Networks (DNNs) are mathematical functions that evaluate their inputs and generate 

outputs through successive operations, which gives them the ability to use several “levels of 

abstraction”, one over the other. Their name is due to the fact that in some ways they resemble the 

functioning of the human brain; they have even been used to better understand how the brain 

processes the information that it receives (Yamins, DiCarlo 2016 [34]; Walker et al. 2019 [35]). 

Their popularity comes from the fact that they can be “trained” by large amounts of data to find 

trends and correlations which are hard or impossible to find by humans. 

Even though there are various types of DNNs (e.g. Dense, Convolutional, Recurrent), only Dense 

DNNs are used in this study, so only they will be discussed (from now on, “DNN” or simply 

“network” will be used to denote a Dense DNN). A common way of illustrating these networks is 

by diagrams like the one shown in Figure 4, which shows how the weights (lines) connect the 

neurons (circles) of the network. Note that the network is constructed with “layers” (input, hidden 

and output; the network can be made “deeper” by adding more hidden layers) which give the 

network its “levels of abstraction” mentioned above. Each layer can “discover” features in the 

results yielded by the previous one. In the specific case of Dense DNNs, all neurons of one layer 

are connected to all neurons of the next layer by the weights, as shown in Figure 4. 

 
Figure 4: Visual illustration of a Dense Deep Neural Network 

In the coming sections, a detailed description of the mathematical foundations of Dense DNNs will 

be made. This is because, as will be discussed in Section 4.5, no regular Deep Learning libraries 

are used for the study; therefore, the DNN training platform have to be developed with basic Python 

features. For these explanations, the representation and nomenclature shown in Figure 5 will be 

considered, where a DNN is modeled as a sequence of matrix-vector operations. The figure shows 

a network with three layers, but this can be generalized for more layers by adding layers at the right 

side. 
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Figure 5: Dense DNN as a sequence of matrix-vector operations 

In the representation of Figure 5, the 𝑖-th layer is defined by a weight matrix 𝐰𝑖, a bias vector 𝐛𝑖 

and an activation function 𝜎𝑖. Note that the numbers over the letters indicate the number of the 

layer and not an exponent. In this representation, unlike the one of Figure 4, the weights are not 

connecting layers but they are part of the layers. Because of this, there is no need for an input layer; 

instead, the first layer receives the input as a vector 𝐚0. 

Under this representation, a DNN works as follows: the 𝑖-th layer receives an activation 

vector 𝐚𝑖−1, either from the input or from a previous layer; then the activation vector is multiplied 

by the weight matrix of the respective layer 𝐰𝑖 and then the bias vector 𝐛𝑖 is added, obtaining a 

vector that here is denoted as 𝐳𝑖. Finally, the activation function of the 𝑖-th layer 𝜎𝑖 is applied to 𝐳𝑖, 

obtaining the activation vector of that layer 𝐚𝑖. That vector is either passed to the next layer or 

delivered as output of the DNN. It will be assumed that the vectors 𝐳𝑖 and 𝐚𝑖 have the same number 

of components, i.e. the function 𝜎𝑖  does not change the number of components of the vector. From 

this, it is easy to conclude that the dimensions of the matrix 𝐰𝑖 are defined as follows: the number 

of columns of 𝐰𝑖 is equal to the size of the vector 𝐚𝑖−1 (this vector can be the output of a previous 

layer or the input of the DNN if 𝑖 = 1) and the number of rows of 𝐰𝑖  is equal to the number of 

neurons of the layer 𝑖, i.e. the size of the vector 𝐚𝑖. 

The term “parameter” will be used to refer to any component of a weight matrix 𝑤𝑗𝑘
𝑖  or a component 

of a bias vector 𝑏𝑗
𝑖. The term “hyperparameter” will be used for values which are external to the 

network and have to be set by the programmer before the training process, like the learning rate, 

the momentum factor, etc. The concepts just mentioned will be clarified in the coming sections. 

3.1.1. Gradient Descent 

The DNN is initialized with random values in its weight matrices, and in the case of this study, the 

biases are initialized as zeros, so in order for the network to make precise predictions, these values 

must be corrected; namely, the DNN must be trained. “Gradient Descent” is the name given to the 

algorithm that achieves this. The weights and biases can be modified, whereas the activation 

functions are defined before the training process and remain fixed. 

A vector which contains all the parameters of the network will be denoted as 𝜽. All parameters are 

arranged in this vector, regardless of the role they play as part of a bias vector or a weight matrix. 

To generalize the representation shown in Figure 5, a DNN with 𝐿 layers will be assumed 

(considering the number of layers as equal to the number of weight matrices). The network receives 

an input 𝐚0 and produces an output 𝐚𝐿. The input has an associated label or target 𝐚𝑇, which is the 

output that the network should have delivered in a perfect scenario. The output of the DNN, 𝐚𝐿, is 

a function of the input and the parameters of the network: 

 𝐚𝐿 = 𝐚𝐿(𝐚0, 𝜽) (1) 
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The error between 𝐚𝐿 and 𝐚𝑇 is measured by a cost function 𝐶. 

 Error = 𝐶(𝐚𝐿 , 𝐚𝑇) = 𝐶(𝐚𝐿(𝐚0, 𝜽) , 𝐚𝑇) (2) 

Now, it would be desirable to reduce the cost function by adjusting the network parameters. The 

input 𝐚0 and the target 𝐚𝑇 are external data, thus they cannot be modified. However, by modifying 

the parameters of the DNN, it is possible to modify the output 𝐚𝐿. 

The gradient of the cost function with respect to the network parameters will be defined as: 

 [ ∇𝜽𝐶(𝐚𝐿 , 𝐚𝑇) ]𝑖 =
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝜃𝑖
 (3) 

In Equation 3, 𝐚𝐿(𝐚0, 𝜽) as been simplified to 𝐚𝐿; however, it is important to understand that 

changing the parameters of the network produces a change in the cost function by changing the 

output 𝐚𝐿. For this reason, it is important that the cost function is differentiable with respect to the 

output of the network. 

The gradient of a function is the direction of steepest increase in that function; therefore, the best 

way to modify the parameters of the network in order to reduce the cost function is by taking a 

small step in the opposite direction to the gradient of the cost; hence the name of the algorithm: 

 𝜽 ← 𝜽 − 𝜂 ⋅ 𝛻𝜽𝐶(𝐚𝐿 , 𝐚𝑇) (4) 

The symbol ← indicates that 𝜽 is updated to what is at the right side of the arrow. 𝜂 is a small 

number known as learning rate. 

Equation 4 shows a single training step when only one sample (i.e. a pair of an input vector 𝐚0 and 

its corresponding target vector 𝐚𝑇) is taken into account. However, the goal is to reduce the cost 

function 𝐶 with respect to the whole data-set (i.e. the set of all samples that are being used for 

training). Given that using all samples of the data-set for every single training step may be 

computationally too expensive, a faster technique is to take a random subset of the data-set for each 

training step. This technique is known as “mini-batch gradient descent” and the subsets of 

experiences that are used for each training step are known as “batches”. With a batch size 𝑁 (i.e. 

𝑁 samples per batch), Equation 4 can be re-written as: 

 𝜽 ← 𝜽 −
𝜂

𝑁
⋅ ∑ 𝛻𝜽𝐶(𝐚𝑖

𝐿 , 𝐚𝑖
𝑇) 

𝑁

𝑖=1

 (5) 

3.1.2. Momentum 

The training process of the DNN is an optimization problem, because what is being looked for is 

the combination of DNN parameters that minimizes the cost function with respect to the data-set 

as a whole; this can be thought of as the minimization process of a function (cost) in the multi-

dimensional space of the parameters of the network. In order to avoid local optima and to achieve 

a faster training process, Momentum (Géron [36], page 361) is a useful tool. In intuitive words, 

Momentum is a vector the same size as the parameter vector 𝜽 that stores the “update speed” 

accumulated in previous iterations. When combined with the mini-bath gradient descent, the 

training iterations are as follows: 
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 𝐦 ←  𝛽 ⋅ 𝐦 − 
𝜂

𝑁
 ∑𝛻𝜽𝐶(𝐚𝑖

𝐿 , 𝐚𝑖
𝑇)

𝑁

𝑖=1

 (6) 

   

 𝜽 ← 𝜽 + 𝐦 (7) 

Here, 𝐦 is the momentum vector and 𝛽 is a number in [0,1) that can be thought of as a “friction” 

that does not allow speed to accumulate when 𝛽 = 0. From now on it will be called “momentum 

factor”. 𝑁 is the size of the batches used to train the network and 𝜂 is the learning rate. There are 

other proposed ways of defining momentum, all with the same goal, but this is the one that is going 

to be considered for the study. 

3.1.3. Backpropagation 

Now, the problem that still remains is: how to compute the derivatives of the cost function with 

respect to the parameters of the network as shown in Equation 3? Backpropagation [37] is the 

algorithm that solves this issue. It was first presented by Rumelhart et al. [38] in the year 1986. 

For this section it is important to understand the nomenclature shown in Figure 5 (Section 3.1). 

Like in previous sections, a DNN with 𝐿 layers is assumed. It receives an input 𝐚0 and produces an 

output 𝐚𝐿. The input is associated to a target vector 𝐚𝑇 which is the desired output. 

Let 𝑝 be any parameter of the DNN, namely a weight or a bias, from any layer (i.e., 𝑝 is any 

component of the vector 𝛉). Reducing Equation 4 to a single parameter would look like: 

 𝑝 ← 𝑝 − 𝜂 ⋅
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑝
 (8) 

This means that the derivative of the cost function with respect to each parameter of the network 

must be computed in order to update the corresponding parameter. As already discussed, the cost 

function is reduced by modifying the output of the DNN, which can be achieved by modifying its 

parameters. Therefore, it is useful to use the chain rule in the form: 

 
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑝
= ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝜕𝑎𝑖
𝐿

𝜕𝑝
𝑖

 (9) 

Here, 𝑎𝑖
𝐿 are the components of the output of the DNN. (Remember that 𝐚𝑇 is not modifiable). The 

derivative 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝐿 depends on what cost function is being used. The quadratic cost (𝑄𝐶) 

function is a popular example, in which case: 

 𝑄𝐶(𝐚𝐿 , 𝐚𝑇) =
1

2
∑(𝑎𝑖

𝐿 − 𝑎𝑖
𝑇)2

𝑖

       ⇒         
𝜕 𝑄𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 = 𝑎𝑖

𝐿 − 𝑎𝑖
𝑇 (10) 

In the coming sections, the derivative 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝐿 in its general form will be used. 

Now, all that is missing is to find the derivative 𝜕𝑎𝑖
𝐿/𝜕𝑝, that is, how modifying a parameter 𝑝 

changes the output vector 𝐚𝐿. 
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Case 1: 𝑝 is a parameter of the output layer 

The simplest problem is to find the derivative 𝜕𝑎𝑖
𝐿/𝜕𝑝 when the parameter 𝑝 is a weight or a bias 

of the output layer. Given that the vector 𝐚𝐿 is defined as the result of the activation function 𝜎𝐿 

when applied to the 𝐳𝐿 vector, and by using the chain rule, this derivative is equal to: 

 
𝜕𝑎𝑖

𝐿

𝜕𝑝
= ∑

𝜕𝑎𝑖
𝐿

𝜕𝑧𝑗
𝐿 ⋅

𝜕𝑧𝑗
𝐿

𝜕𝑝
𝑗

 (11) 

From now on, it will be assumed that the activation function of the output layer, 𝜎𝐿, is an element-

wise function; this means that every component of the 𝐳𝐿 vector determines one component of the 

𝐚𝐿 vector: 

 𝑎𝑖
𝐿 = 𝜎𝐿(𝑧𝑖

𝐿) (12) 

This assumption is valid for nearly all activation functions; only the Softmax function is an 

important exception that will be discussed in the next section. For deeper layers (other than the 

output layer), it will be assumed that the activation function is always element-wise. With this, the 

derivative shown in Equation 11 becomes: 

 
𝜕𝑎𝑖

𝐿

𝜕𝑝
=

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑝
 (13) 

The 𝐳𝐿 vector is defined as: 

 𝐳𝐿 = 𝐰𝐿 ⋅ 𝐚𝐿−1 + 𝐛𝐿 (14) 

Therefore: 

 𝑧𝑖
𝐿 = ∑𝑤𝑖𝑗

𝐿 ⋅ 𝑎𝑗
𝐿−1

𝑗

+ 𝑏𝑖
𝐿 (15) 

From Equation 15, it can be directly concluded that the derivatives 𝜕𝑧𝑖
𝐿/𝜕𝑤𝑖𝑗

𝐿  and 𝜕𝑧𝑖
𝐿/𝜕𝑏𝑖

𝐿 are: 

 
𝜕𝑧𝑖

𝐿

𝜕𝑤𝑖𝑗
𝐿 = 𝑎𝑗

𝐿−1 (16) 

   

 
𝜕𝑧𝑖

𝐿

𝜕𝑏𝑖
𝐿 = 1 (17) 

By combining Equation 13 with Equations 16 and 17, it is possible to get expressions for the 

derivatives of 𝑎𝑖
𝐿, i.e. the outputs of the DNN, with respect to the parameters (weights and biases) 

of the output layer: 

 
𝜕𝑎𝑖

𝐿

𝜕𝑤𝑖𝑗
𝐿 =

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑎𝑗

𝐿−1 (18) 

   

 
𝜕𝑎𝑖

𝐿

𝜕𝑏𝑖
𝐿 =

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿  (19) 
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Case 2: 𝑝 is a parameter of a hidden layer 

Now the problem becomes: how to get deeper into the other layers? This is where the real 

backpropagation property is used. It can be understood by noting that, unlike the input of the first 

layer, 𝐚0, the input of the last layer, 𝐚𝐿−1, can be modified since it is produced by previous layers; 

and this would modify the output of the DNN. Now the question becomes: how to modify the 

parameters of previous layers (i.e. 𝐿 − 1 , 𝐿 − 2 , …) so that 𝐚𝐿−1 gets modified in the right way in 

order to reduce the cost function? This will be done with the layer (𝐿 − 1) first and then a 

generalization for deeper layers will be inferred. 

It is useful to note that the relations shown in Equations 18 and 19 are valid for the layer (𝐿 − 1) 

as well, only by changing the number of the layer: 

 
𝜕𝑎𝑖

𝐿−1

𝜕𝑤𝑖𝑗
𝐿−1 =

𝑑 [ 𝜎𝐿−1(𝑧𝑖
𝐿−1) ]

𝑑 𝑧𝑖
𝐿−1 ⋅ 𝑎𝑗

𝐿−2 (20) 

   

 
𝜕𝑎𝑖

𝐿−1

𝜕𝑏𝑖
𝐿−1 =

𝑑 [ 𝜎𝐿−1(𝑧𝑖
𝐿−1) ]

𝑑 𝑧𝑖
𝐿−1  (21) 

As already discussed, for Equations 20 and 21 it has been assumed that the activation function 𝜎𝐿−1 

is element-wise. 

To determine how to modify the activation vector 𝐚𝐿−1, the derivative of the cost function with 

respect to its components is computed: 

 
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝜕𝑎𝑖
𝐿

𝜕𝑎𝑗
𝐿−1

𝑖

 (22) 

The derivative 𝜕𝑎𝑖
𝐿/𝜕𝑎𝑗

𝐿−1 can be solved by applying the chain rule and Equations 12 and 15: 

 
𝜕𝑎𝑖

𝐿

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕𝑎𝑖
𝐿

𝜕𝑧𝑚
𝐿

⋅
𝜕𝑧𝑚

𝐿

𝜕𝑎𝑗
𝐿−1

𝑚

=
𝜕 𝑎𝑖

𝐿

𝜕 𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑎𝑗
𝐿−1 =

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿  (23) 

Finally, by applying the chain rule and Equations 20, 21, 22 and 23, it is possible to obtain 

expressions for the derivatives of the cost function with respect to the parameters of the layer (𝐿 −
1). In the case of the weights: 

 
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑤𝑗𝑘
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑚
𝐿−1

⋅
𝜕𝑎𝑚

𝐿−1

𝜕𝑤𝑗𝑘
𝐿−1

𝑚

=
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 ⋅

𝜕𝑎𝑗
𝐿−1

𝜕𝑤𝑗𝑘
𝐿−1  

   

 = ∑
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿 ⋅
𝑑 [ 𝜎𝐿−1(𝑧𝑗

𝐿−1) ]

𝑑 𝑧𝑗
𝐿−1 ⋅ 𝑎𝑘

𝐿−2

𝑖

 (24) 

For the biases the process is almost the same: 

 
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑏𝑗
𝐿−1 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑚
𝐿−1

⋅
𝜕𝑎𝑚

𝐿−1

𝜕𝑏𝑗
𝐿−1

𝑚

=
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 ⋅

𝜕𝑎𝑗
𝐿−1

𝜕𝑏𝑗
𝐿−1  
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 = ∑
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝐿 ⋅

𝑑 [ 𝜎𝐿(𝑧𝑖
𝐿) ]

𝑑 𝑧𝑖
𝐿 ⋅ 𝑤𝑖𝑗

𝐿 ⋅
𝑑 [ 𝜎𝐿−1(𝑧𝑗

𝐿−1) ]

𝑑 𝑧𝑗
𝐿−1

𝑖

 (25) 

Conclusion 

It might seem that the calculations are getting more complicated for the hidden layers, but there is 

a simple way to generalize the method for any number of layers: 

1. The derivative of the cost function with respect to an activation of any hidden layer 𝑙 can 

be known by knowing derivatives of the cost function with respect to all activations of the 

next layer (the one which is closer to the output layer): 

 
𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝑙 = ∑

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑖
𝑙+1 ⋅

𝑑 [ 𝜎𝑙+1(𝑧𝑖
𝑙+1) ]

𝑑 𝑧𝑖
𝑙+1 ⋅ 𝑤𝑖𝑗

𝑙+1

𝑖

 (26) 

When the layer (𝑙 + 1) happens to be the output layer 𝐿, then the derivative 

𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑎𝑖
𝑙+1 can be computed directly from the definition of the cost function. 

This rule can be applied backwards from the output layer until reaching the first layer. This 

is the core of backpropagation. 

2. The derivative of the activations of any hidden layer 𝑙 with respect to the parameters of the 

same layer can be determined with the following formulas: 

 
𝜕𝑎𝑖

𝑙

𝜕𝑤𝑖𝑗
𝑙 =

𝑑 [ 𝜎𝑙(𝑧𝑖
𝑙) ]

𝑑 𝑧𝑖
𝑙 ⋅ 𝑎𝑗

𝑙−1 (27) 

   

 
𝜕𝑎𝑖

𝑙

𝜕𝑏𝑖
𝑙 =

𝑑 [ 𝜎𝑙(𝑧𝑖
𝑙) ]

𝑑 𝑧𝑖
𝑙  (28) 

These two rules allow to determine the derivative of the cost function with respect to any parameter 

of the DNN by applying the chain rule. 

3.1.4. Softmax activation 

As already discussed, for the previous section it has been assumed that the activation functions of 

all layers are element-wise. The only exception that will be discussed is the case of the Softmax 

activation, which is used as the activation function of the output layer when the DNN is used to 

generate a set of probabilities that together should add up to one. 

An example of when to use this function is when the DNN has to categorize the data samples into 

a finite number of classes, each sample only belonging to one class. The DNN delivers a vector of 

values which are greater than zero and add up to one; therefore, this values can be interpreted as 

the probabilities that a sample belongs to each class. 

Like other activation functions, the Softmax is applied to the 𝐳𝐿 vector as discussed in Section 3.1; 

its formula is (Géron [36], page 164): 

 𝑎𝑖
𝐿 = [ 𝜎𝐿(𝐳𝐿) ]𝑖 =

exp(𝑧𝑖
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

 (29) 
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The number 𝑗 takes the indices of all the components of the 𝐳𝐿 vector. The Softmax function, as 

defined in Equation 29, is not element-wise because every component of the 𝐚𝐿 vector depends on 

all components of the 𝐳𝐿 vector. In this case, the target vector will be defined as: 

 𝑎𝑖
𝑇 = {

1         if                         𝑖 is the class that the sample belongs to
0         if                𝑖 is NOT the class that the sample belongs to

 (30) 

This way to define the target is intuitive because it shows that the sample has a probability equal 

to one of belonging to the class that it actually belongs to. 

In this case, the cost function will be the categorical cross-entropy (CCE) function: 

 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇) = −∑𝑎𝑖
𝑇 ⋅ ln(𝑎𝑖

𝐿)

𝑖

 (31) 

Given that 𝑎𝑖
𝑇 is equal to zero except when 𝑖 is the real class of the sample, this can be reduced to: 

 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇) = − ln(𝑎𝑘
𝐿)                    𝑘 = real class of the sample (32) 

In this case, it is simpler to (directly) compute the derivatives 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑧𝑖
𝐿. 

When 𝑖 is not the target class, i.e.  𝑖 ≠ 𝑘: 

 𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 = −

𝜕 ln(𝑎𝑘
𝐿)

𝜕𝑧𝑖
𝐿 = −

𝜕

𝜕𝑧𝑖
𝐿 ln (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

) 
 

   

 
= −(

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

−1

⋅
𝜕

𝜕𝑧𝑖
𝐿 (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)  

   

 
= − (

∑ exp(𝑧𝑗
𝐿)𝑗

exp(𝑧𝑘
𝐿)

) ⋅
− exp(𝑧𝑘

𝐿) ⋅ exp(𝑧𝑖
𝐿)

(∑ exp(𝑧𝑗
𝐿)𝑗 )

2 =
exp(𝑧𝑖

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

= 𝑎𝑖
𝐿 (33) 

When 𝑖 is the target class, i.e.  𝑖 = 𝑘: 

 
𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑘
𝐿 = −

𝜕 ln(𝑎𝑘
𝐿)

𝜕𝑧𝑘
𝐿 = −

𝜕

𝜕𝑧𝑘
𝐿 ln (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)  

   

 = −(
exp(𝑧𝑘

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)

−1

⋅
𝜕

𝜕𝑧𝑘
𝐿 (

exp(𝑧𝑘
𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

)  

   

 = −
∑ exp(𝑧𝑗

𝐿)𝑗

exp(𝑧𝑘
𝐿)

⋅ (
exp(𝑧𝑘

𝐿) ⋅ (∑ exp(𝑧𝑗
𝐿)𝑗 ) − (exp(𝑧𝑘

𝐿))2

(∑ exp(𝑧𝑗
𝐿)𝑗 )

2 )  

   

 = −(1 −
exp(𝑧𝑘

𝐿)

∑ exp(𝑧𝑗
𝐿)𝑗

) = 𝑎𝑘
𝐿 − 1 (34) 
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In summary, let 𝑘 be the index of the real class of a sample: 

 
𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 = 𝑎𝑖

𝐿 − 𝛿𝑖𝑘 (35) 

𝛿𝑖𝑘 is the Kronecker Delta. 

Only for the parameters (weights and biases) of the output layer, there is a slight difference in the 

computation of the gradient vector, in contrast with the element-wise case shown in the previous 

section: since in this case the derivatives 𝜕𝐶(𝐚𝐿 , 𝐚𝑇)/𝜕𝑧𝑖
𝐿 have been computed, the derivatives 

shown in Equations 16 and 17 have to be used in order to apply the chain rule. 

Also, Equation 22 must be replaced with the formula shown in Equation 36. After this, the 

backpropagation algorithm is the same for the parameters of hidden layers. 

 
𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑎𝑗
𝐿−1 = ∑

𝜕 𝐶𝐶𝐸(𝐚𝐿 , 𝐚𝑇)

𝜕𝑧𝑖
𝐿 ⋅

𝜕𝑧𝑖
𝐿

𝜕𝑎𝑗
𝐿−1

𝑖

 (36) 

3.1.5. DNN initialization 

Before the training process, the DNN is created without previous knowledge about the information 

that it is going to learn. The question of how to set the initial parameters has been studied and it 

was found that the initialization method can greatly influence the performance of the network and 

its convergence time [39]. 

For this study, the default initialization method for the dense layers of Keras is used [40]. Keras is 

a widely used Deep Learning library for Python. 

In Keras, by default, the bias vectors are initialized as zeros. This means that all components of the 

bias vectors of all layers are equal to zero at the beginning. For the weight matrices, the Glorot 

Uniform method is used. This method, which was presented by Glorot and Bengio in 2010 [41], 

implies that the initial weights of the layers (i.e. the components of the weight matrices) follow a 

uniform distribution: 

 𝑤𝑖𝑗
𝑙  ~ 𝑈 (−√

6

𝐼𝑙 + 𝐽𝑙
  , √

6

𝐼𝑙 + 𝐽𝑙
 ) (37) 

The arguments of the uniform distribution 𝑈 are the limits for the random variable 𝑤𝑖𝑗
𝑙 . 𝐼𝑙 and 𝐽𝑙 

are the output size and the input size of the layer 𝑙, respectively. In other words, the matrix 𝐰𝑙 

has 𝐼𝑙 rows and  𝐽𝑙 columns. 

3.2. Deep Reinforcement Learning Algorithms 

In the coming sections, the Deep Reinforcement Learning (DRL) algorithms that are tested during 

the study will be explained. However, it is necessary to clarify a few more basic concepts first. For 

this section it is also necessary to understand the introduction given in Section 1.5. 
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3.2.1. Basic Concepts 

Environment state 

It has been said that the agent may base its decisions on the history of previous interactions with 

the environment. Therefore, the history at time step 𝑡 is defined as (David Silver [42]): 

 𝐻𝑡 = { 𝑂1, 𝐴1, 𝑅1, 𝑂2, 𝐴2, 𝑅2, … , 𝐴𝑡−1, 𝑅𝑡−1, 𝑂𝑡 } (38) 

Here, 𝑂 are observations, 𝐴 are actions and 𝑅 are rewards. The numbers indicate the time step to 

which they belong. The information that the agent uses to make a decision on time step 𝑡 will be 

called “state”, and it is any convenient function of the history 𝐻𝑡 [42]: 

 𝑆𝑡 = 𝑓(𝐻𝑡) (39) 

It is important to note that this “state” is the information that the agent has about the environment; 

however, it may not define the full internal state of the environment; this will depend on how the 

observations are defined. The term “state” or “environment state” are used interchangeably in this 

document to refer to the definition of Equation 39. 

Moreover, from Chapter 4 onwards, the word “state” is used as equivalent to “observation” 

because, as will be discussed in that section, the agents of this study only use the latest observation 

as information to make a decision. Mathematically written: 

 𝑆𝑡 = 𝑓(𝐻𝑡) = 𝑂𝑡 (40) 

In this theoretical section, the term “state” is used in its general sense as any function of the 

interaction history, as shown in Equation 39. 

Terminal states 

An environment is defined as episodic if it can reach states in which the agent does not have to 

continue executing actions; these are called terminal states. When a terminal state is reached, the 

interaction between the agent and the environment finishes and another episode must begin in order 

to continue the training process [43]. 

On the convention 

As already shown in Equation 38, in the next sections, 𝑆𝑡 is used to denote the state of the 

environment at time step 𝑡; therefore, 𝑂𝑡 is the observation received from the environment at 𝑡. 𝐴𝑡 

is used to denote the action that is executed immediately after the observation 𝑂𝑡 is received and 

𝑅𝑡 is the reward received immediately after the action 𝐴𝑡 is executed. It is important to note this 

because, under this convention, the reward 𝑅𝑡 is received along with the observation 𝑂𝑡+1. 

Long Term Rewards (Returns) 

This concept is one of the most important ones in RL, and it is key to understanding the 

mathematics behind the training algorithms. 

With most environments, one has to consider that an action not only has an effect on the reward 

that is received immediately after that action is executed; instead, it may affect the rewards that are 

received many time steps later as well. This makes it necessary for the agent to take future rewards 

into account at the moment of deciding what action to choose. To achieve this consideration of 

future rewards, long term rewards, also called returns [43], are defined as: 
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 𝐺𝑡 = ∑𝛾𝑖−𝑡 ⋅ 𝑅𝑖

𝑁

𝑖=𝑡

= 𝑅𝑡 + 𝛾 ⋅ 𝑅𝑡+1 + 𝛾2 ⋅ 𝑅𝑡+2 + 𝛾3 ⋅ 𝑅𝑡+3 + ⋯ (41) 

𝐺𝑡 is the return of the action 𝐴𝑡, executed at the instant 𝑡. 𝑁 is the number of time steps in the 

corresponding episode; therefore 𝑖 takes the numbers of the time steps that happened since action 

𝐴𝑡 until the end of the episode. 𝛾 is a training hyperparameter in the interval [0,1] that is supposed 

to approximate the level of influence of an action on future rewards. Although this “level of 

influence” depends mainly on the features of the environment, the value of 𝛾 must be set by the 

user and its optimal value must be found through exploration. If its optimal value is close to one, 

actions greatly influence future rewards; if its optimal value is close to zero, only the immediate 

reward is being influenced by the action. 

Policy and expected returns 

The term “policy” will be used to summarize the whole set of rules that are followed in order to 

make decisions as the environment simulation progresses. The policy could be, for example, that 

sometimes a completely random action is selected and sometimes the action that the agent predicts 

to be the best is selected. If the parameters of the DNN are modified, the policy is being modified 

as well. 

The rewards (and therefore the returns) that the agent gets obviously depend on its policy (if they 

do not, then the rewards are independent from what the agent does, so the training process is 

pointless). Nonetheless, the agent may not have complete knowledge about the internal state of the 

environment; therefore, the rewards may not be deterministic from the point of view of the agent 

when a certain action is executed on a certain environment state, because the state that the agent is 

seeing may have partial information. 

A property that is assumed to justify the algorithms discussed below is called “markovian 

property”; it implies that the pair (𝑅𝑡 , 𝑆𝑡+1), as a random variable, follows a probability 

distribution (discrete or continuous) that only depends on the previous state 𝑆𝑡 and action 𝐴𝑡 

(although the state 𝑆𝑡 can consider previous observations, actions and rewards). More details on 

the markovian property are discussed in Section 3.4, although in that case no actions or rewards 

are involved in the process. 

What can be concluded from the markovian property is that, given the policy that the agent is 

following, each environment state is associated to a certain expected return. The fact that this 

“expected return” can actually be very hard to determine is what makes the use of machine learning 

methods a very useful tool. Therefore, in the mathematical argumentations to come, the expected 

return is a very important concept, and the policy is what determines it. In the coming equations, 

the letter 𝜋 will be used to denote policies in general (with all the rules that they may have), and 

𝐴𝑡  ~ 𝜋 will be used to denote that the action 𝐴𝑡 was chosen by following the policy 𝜋. 

3.2.2. Policy gradient methods and value methods 

There are two big families of methods used in Deep Reinforcement Learning: policy gradient 

methods and value methods [43]. With all methods, the input which is given to the DNN is the 

state of the environment. 

With policy gradient methods, the output of the DNN consists of probabilities of executing each 

possible action. The agent chooses an action by following these probabilities, and the training 
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process consists of increasing the probabilities of executing actions which turn out to yield high 

returns, thus decreasing the probability of executing actions that yield low returns. 

With value methods, the DNN seeks to predict the return that the agent will get with future rewards 

given the current state of the environment. In methods purely based on values, the DNN has to 

predict the expected return for each possible action, and then the best action to take will be the one 

which has the largest expected return. 

3.2.3. REINFORCE algorithm 

The REINFORCE algorithm (Géron [36], page 617) is a policy gradient method. This means that 

the actions are chosen by following probabilities delivered by the agent; therefore, the Softmax 

activation function is used in the output layer of the DNN (see Section 3.1.4). The algorithm works 

roughly the following way: 

1. Execute multiple episodes without making any change to the DNN. 

2. Compute the return for every executed action of every episode, with the formula given by 

Equation 41. 

3. Compute the average and the standard deviation of the returns. Normalize the returns by 

subtracting the average to every return and then dividing the result by the standard 

deviation. 

4. For every state-action pair (𝑆𝑡 , 𝐴𝑡) of every episode, compute how the parameters of the 

network should be modified in order to increase the probability of executing 𝐴𝑡 in the 

state 𝑆𝑡. This is done as follows: given that the activation function of the output layer is a 

Softmax function, a gradient is computed by using the categorical cross-entropy cost 

function and considering the action 𝐴𝑡 as “target class” (as defined in Section 3.1.4). 

5. Multiply each gradient by the normalized return of the corresponding action. Average all 

resulting vectors and use the result to update the network. Note that, if the return of an 

action is below the average, the parameter update will actually result in decreasing the 

probability of executing that action because the normalized return is negative. 

6. Repeat this process several times until a good performance is reached. The parameters of 

the DNN must be updated in “small” steps defined by a learning rate, just like in supervised 

learning. 

The intuition behind this method is that the agent starts its training process by executing totally 

random actions, and then it can look at them “in retrospect” to analyze which of them where good 

and which were bad; and then the network is updated with these results. 

3.2.4. Actor-Critic Algorithm 

The Actor-Critic algorithm (Sutton, Barto [43], page 331) combines the concepts of policy 

gradients and values. In order to understand it, some concepts must be discussed before. First, the 

concept of “state value” is defined as the expected return given the current state of the environment 

and the policy that the agent is using: 

 𝑣𝜋(𝑠) = 𝔼 [  𝐺𝑡    |     𝑆𝑡 = 𝑠 ,  𝐴𝑖  ~ 𝜋   for  𝑖 ≥ 𝑡  ] (42) 

As already discussed, 𝜋 represents the policy that is being applied, and 𝐴𝑖  ~ 𝜋 expresses that the 

action 𝐴𝑖 is chosen by following that policy. Because of the definition of returns given by Equation 

41, and also by taking the markovian property into account (see “Policy and expected returns” in 

Section 3.2.1 for markovian property), the state value of state 𝑠 can also be expressed as: 
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 𝑣𝜋(𝑠) = 𝔼 [  𝑅𝑡  +  𝛾 ⋅ 𝑣𝜋(𝑆𝑡+1)    |     𝑆𝑡 = 𝑠 ,  𝐴𝑡  ~ 𝜋  ] (43) 

This “splitting” of the state value into the immediate reward and the state value of the next state is 

the key of the Actor-Critic algorithm. In this method two neural networks are used: 

- The “actor” is a DNN that evaluates the current state of the environment and delivers 

probabilities of executing each possible action. 

- The “critic” is a DNN that evaluates the state of the environment and predicts its state value. 

The training procedure is as follows: 

1. Begin an episode. 

2. The actor evaluates the state 𝑆𝑡 and delivers the probabilities of executing each action. An 

action 𝐴𝑡 is executed by following the probabilities. 

3. A reward 𝑅𝑡 and a new state 𝑆𝑡+1 are received. For the next steps it is assumed that 𝑆𝑡+1 is 

not a terminal state; the exception will be discussed in the last point. 

4. Compute predictions for the state values 𝑣𝜋(𝑆𝑡) and 𝑣𝜋(𝑆𝑡+1) using the critic DNN; these 

predictions will be denoted as 𝑣(𝑆𝑡) and 𝑣(𝑆𝑡+1). If the result 𝑅𝑡 +  𝛾 ⋅ 𝑣(𝑆𝑡+1) is greater 

than 𝑣(𝑆𝑡), the action 𝐴𝑡 is considered to be better than expected; if the opposite happens, 

the action is considered to be worse than expected. 

5. Update the actor DNN so that if the action 𝐴𝑡 was better than expected, the probability of 

executing that action on state 𝑆𝑡 is increased, and if the action was worse than expected, the 

probability of executing it is decreased. This is done as follows: given that the activation 

function of the output layer is a Softmax function, a gradient is computed with the 

categorical cross-entropy cost function and considering the action 𝐴𝑡 as “target class” (as 

defined in Section 3.1.4). In order to take the “quality” of the action 𝐴𝑡 into account, the 

gradient vector is multiplied by the factor 𝛿 = 𝑅𝑡 +  𝛾 ⋅ 𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡) and the obtained 

vector is used to update the actor DNN. Note that if the value of 𝛿 is negative, the network 

update will result in decreasing the probability of executing the action 𝐴𝑡, as desired. 

6. Update the critic DNN so that the prediction 𝑣(𝑆𝑡) gets closer to 𝑅𝑡 +  𝛾 ⋅ 𝑣(𝑆𝑡+1). This is 

done as follows: compute the gradient using the quadratic error as cost function, and the 

value 𝑅𝑡 +  𝛾 ⋅ 𝑣(𝑆𝑡+1) as target. Update the network with the obtained gradient. 

7. Repeat the process until the episode is finished. In the terminal state, the state value is zero 

by definition, i.e. 𝑣(𝑆𝑡+1) = 0, so the critic only has to compute a prediction for 𝑣𝜋(𝑆𝑡). 

The whole process can be repeated for multiple episodes until a good performance is 

reached. 

The intuition behind this process is that the actor learns which actions are good and which are bad 

based on the predictions of the critic, and the probabilities of executing those actions are increased 

or decreased according to the results obtained. This is achieved by multiplying the gradient vector 

by the scalar 𝛿 expressed above. In this way, the difference between how good the action was 

expected to be and how good it actually was is taken into account as well. Meanwhile, the critic 

learns to make better predictions of the state values based on the rewards that the agent gets from 

the environment. 

Clearly, the parameter updates for both networks must be “small” steps defined by learning rates. 

Each DNN can have its own associated learning rate. In another variant of this method, the training 

steps are not executed at every time step; instead the gradients are stored and averaged every certain 

number of time steps. However, this was not tested in this study. 
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3.2.5. Q-Learning and Deep Q-Learning 

3.2.5.1. Q-Values 

Q-Values (Géron [36], page 623) are defined as the expected return that the agent will get after 

taking the action a on state s: 

 𝑄𝜋(𝑠, 𝑎) = 𝔼 [  𝐺𝑡      |     𝑆𝑡 = 𝑠 ,  𝐴𝑡 = 𝑎 ,   𝐴𝑖  ~ 𝜋   for  𝑖 > 𝑡  ] (44) 

As in previous sections, 𝐴𝑖  ~ 𝜋 expresses that the action 𝐴𝑖 is chosen by following the policy 𝜋. 

With this definition, the best action to take on state 𝑠 would be the one that has the largest Q-Value. 

Unlike the state value function discussed above, which only takes the state as argument and 

determines the expected return, the Q-Value function determines the expected return for a state-

action pair (𝑠, 𝑎). This is necessary in order for the agent to know which action is the best. 

The Q-Value of a state-action pair depends on the policy that is being applied because the return 

depends on future rewards, which are dependent on the policy. The maximum possible Q-Value of 

a state action pair (𝑠, 𝑎) is obtained when the best possible policy is applied in the next time steps. 

Clearly, since the goal of the agent is to find that policy, it is desirable to find the largest possible 

Q-Value for every state-action pair. 

3.2.5.2. Q-Learning 

Let 𝑄∗(𝑠, 𝑎) be the optimal (or largest possible) Q-Value for the state-action pair (𝑠, 𝑎). Note that 

this Q-Value does not depend on the policy anymore, because it is being assumed that the best 

possible policy is followed after executing the action 𝑎. This value may also be expressed as: 

 𝑄∗(𝑠, 𝑎) = 𝔼 [  𝑅𝑡 + 𝛾 ⋅ max
𝑎′

 { 𝑄∗(𝑆𝑡+1 , 𝑎
′) }   |    𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎  ] (45) 

This transformation, which is analogous to the one discussed for the actor-critic algorithm 

(Equation 43), consists of “splitting” the Q-Value into the immediate reward and the maximum Q-

Value of the next state. This transformation also assumes the markovian property as true. With this 

in mind, an iterative way of converging to the optimal Q-Values of the environment is to update 

the Q-Value approximation �̂� after every experienced transition with a learning rate 𝜂 and the 

formula (Géron [36], page 626): 

�̂�(𝑆𝑡 ,  𝐴𝑡)  ⟵ �̂�(𝑆𝑡 ,  𝐴𝑡)  +  𝜂 ⋅ ( 𝑅𝑡  + 𝛾 ⋅ max
𝑎′

 { �̂�(𝑆𝑡+1 ,  𝑎
′) }  −  �̂�(𝑆𝑡 ,  𝐴𝑡) ) (46) 

Up to now, no neural networks have been introduced into the algorithm. The approximations 

�̂�(𝑠, 𝑎)  can simply be recorded in a table if the state space and the action space are discrete and 

finite (and not very large). Then, the entries of the table could be updated according to Equation 

46 until achieving convergence for every pair (𝑠, 𝑎). One detail is that, when 𝑆𝑡+1 is a terminal 

state, the Q-Values of all actions are equal to zero; therefore, no predictions from the agent are 

needed. This method is known as “Tabular Q-Learning”. 

The benefit of this method is that, after executing an action, one only has to wait until the reward 

𝑅𝑡 and the next state 𝑆𝑡+1 are received, in order to update the Q-Value approximation of the 

previous state-action pair (𝑆𝑡 ,  𝐴𝑡). However, the update is based on the Q-Value approximations 

for the state 𝑆𝑡+1, so several iterations are normally needed to achieve convergence. 

 



25 

 

3.2.5.3. Deep Q-Learning algorithm 

In the study presented here, the action-space is discrete and finite but the state-space is continuous 

and multi-dimensional; therefore, the tabular method just mentioned becomes unfeasible. Deep Q-

Learning is a method for training a DNN, also known as Deep Q-Network (DQN), to evaluate the 

environment states and to predict the optimal Q-Values. It is inspired by the “standard” Q-Learning 

method discussed above. This method was shown to be very powerful by researchers of DeepMind, 

one of the leading companies in the area of Machine Learning and specifically in Reinforcement 

Learning as well. In 2015, Mnih et al. published a paper in the Nature magazine [14] where this 

algorithm obtained state-of-the-art results at various Atari games, surpassing all other previous 

training methods and achieving the level of professional human players. 

The output vector of the DNN, denoted here as 𝐚𝐿 to follow the same nomenclature from previous 

sections, must contain as many values as possible actions the agent can choose. Each component 

of 𝐚𝐿 is the Q-Value prediction of one action, as a function of the state that was given to the DNN 

as input: 

 [ 𝐚𝐿(𝑆𝑡) ]𝑖 = �̂�(𝑆𝑡 ,  𝑎𝑖) (47) 

In Equation 10, 𝑖 is not representing a time step like the letter 𝑡; instead, it represents the index of 

an action within the set of possible actions. That is why 𝑖 also represents the components of the 

vector 𝐚𝐿. �̂� is a Q-Value prediction of the DNN. 

The first step of the training process consists of executing random actions on the environment and 

storing these “experiences” of the agent in a “Replay Memory”, which will be used as data-set to 

train the DNN. When the maximum length of the Replay Memory has been reached, the oldest 

experiences are erased. An experience 𝐸𝑡 is composed of:  

 𝐸𝑡 = { 𝑆𝑡 , 𝐴𝑡  , 𝑅𝑡 , 𝑆𝑡+1 } (48) 

From experience 𝐸𝑡, a target vector will be defined so that the training method based on Gradient 

Descent, discussed in Section 3.1.1, can be used. The target vector 𝐚𝑇 is defined as: 

 [ 𝐚𝑇(𝐸𝑡) ]𝑖 = {
�̂�(𝑆𝑡 ,  𝑎𝑖)               if    𝑖 is NOT the index of the action 𝐴𝑡

𝑄Target(𝑆𝑡,  𝐴𝑡)      if              𝑖 is the index of the action 𝐴𝑡
 (49) 

In Equation 49, 𝑄Target(𝑆𝑡,  𝐴𝑡) is defined as: 

𝑄Target(𝑆𝑡,  𝐴𝑡) = {
𝑅𝑡 + 𝛾 ⋅ max

𝑎′
 { �̂�(𝑆𝑡+1, 𝑎

′) }     if   𝑆𝑡+1   is not a terminal state

𝑅𝑡                                             if   𝑆𝑡+1   is a terminal state
 (50) 

Note that the target vector 𝐚𝑇, which is a function of the experience 𝐸𝑡, is defined so that it only 

differs from the prediction of the network in the component that corresponds to the action 𝐴𝑡 

executed at that time step. Therefore, the quadratic cost function (defined in Equation 10) of the 

prediction vector 𝐚𝐿 and the target vector 𝐚𝑇 can be reduced to: 

𝑄𝐶(𝐚𝐿(𝑆𝑡) , 𝐚
𝑇(𝐸𝑡)) =

1

2
⋅ ∑(𝑎𝑖

𝐿 − 𝑎𝑖
𝑇)2

𝐻

𝑖=1

=
1

2
⋅ ( �̂�(𝑆𝑡 ,  𝐴𝑡) − 𝑄Target(𝑆𝑡 ,  𝐴𝑡) )

2
 (51) 
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In Equation 51, 𝐻 is the number of possible actions, and 𝑎𝑖
𝐿 , 𝑎𝑖

𝑇 are the components of the 

prediction vector and the target vector, respectively. The cost function is reduced to a single squared 

difference because all other components of the aforementioned vectors are equal. With this 

simplification, the gradient vector, defined in Equation 3, can be expressed as: 

[ ∇𝜽𝑄𝐶(𝐚𝐿(𝑆𝑡) , 𝐚
𝑇(𝐸𝑡)) ]𝑖 = ( �̂�(𝑆𝑡 ,  𝐴𝑡) − 𝑄Target(𝑆𝑡 ,  𝐴𝑡) ) ⋅

𝜕 �̂�(𝑆𝑡 ,  𝐴𝑡)

𝜕𝜃𝑖
 (52) 

In Equation 52, 𝜃𝑖 represents any parameter of the DNN, just as in Equation 3. With this, Equation 

4, which is the heart of the Gradient Descent algorithm, can be re-written as: 

 𝜽 ← 𝜽 + 𝜂 ⋅ ( 𝑄Target(𝑆𝑡 ,  𝐴𝑡) − �̂�(𝑆𝑡 ,  𝐴𝑡) ) ⋅ 𝛻𝜽�̂�(𝑆𝑡 ,  𝐴𝑡) (53) 

In Equation 53, the gradient with respect to the Q-Value prediction is defined as:  

[ 𝛻𝜽�̂�(𝑆𝑡 ,  𝐴𝑡) ]𝑖 = 𝜕�̂�(𝑆𝑡 ,  𝐴𝑡)/𝜕𝜃𝑖. Equation 53 shows that, by using the quadratic cost function, 

the training step is proportional to the difference between the target and the prediction, which is 

analogous to the tabular Q-Learning method (see Equation 46). Given that a data-set (the Replay 

Memory) is being used, the mini-batch method and momentum method can be used as well. 

Target Network 

One problem of Deep Q-Learning, as discussed up to now, is that the network has to set its own 

targets, because it has to estimate the Q-Values for the state 𝑆𝑡+1 (see Equation 50). The fact that 

the targets change as the network is trained can destabilize training. To solve this, Mnih et al. [14] 

used a target Network to calculate these Q-Values. The target network is a copy of the trained 

network that is not updated in every iteration; instead, it remains fixed for a certain number of 

iterations and then it is updated by copying the parameters of the trained network. Its task is to 

evaluate the state 𝑆𝑡+1 and to predict its Q-Values in order to set the target Q-Value at 𝑆𝑡, according 

to Equation 50. With the concept of “target network”, Equation 50 could be re-written as: 

𝑄Target(𝑆𝑡,  𝐴𝑡) = {
𝑅𝑡 + 𝛾 ⋅ max

𝑎′
 { �̂�(𝑆𝑡+1, 𝑎

′ , 𝜽∗) }    if   𝑆𝑡+1   is not a terminal state

𝑅𝑡                                                   if   𝑆𝑡+1   is a terminal state
 (54) 

Here, the third argument of the Q-Value prediction �̂� specifies that that prediction is made by the 

target network, here denoted as 𝜽∗. 

𝜖-greedy method 

As already discussed, training begins by executing random actions in order to fill the Replay 

Memory with experiences. At this moment, it does not make sense to execute the actions that the 

agent predicts to be the best because, before the DNN is trained, being right about what action is 

the best is merely luck. But as the agent begins to make better predictions about the Q-Values of 

the environment states, it would be desirable to “exploit” this knowledge by taking the actions that 

are predicted to be the best. This “exploitation” of knowledge is known as “greedy behavior”. 

However, one must always expect that the agent has something new to learn (if the agent knows 

the best action for all possible environment states, then it is pointless to continue the training 

process). Therefore, it is always good to take some random actions, in the hope that some of them 

happen to be unexpectedly good; if that happens, the agent has discovered a better strategy that it 

would not have discovered if it had behaved “greedily”. Taking random actions in the hope of 
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discovering better options is known as “exploration”. The issue of how to behave (greedy or 

exploratory) is known as “exploration-exploitation trade-off”. 

The 𝜖-greedy method (Géron [36], page 628) is meant to solve this issue. It consists of defining a 

probability of executing a random action; this probability is normally denoted as 𝜖 (hence the name 

of the method). When the agent does not select a random action, it selects the action that it predicts 

to be the best. The probability 𝜖 is usually equal to one at the beginning (because the agent does 

not know anything about the environment) and then it starts to decrease linearly, until it reaches a 

constant and small value. Although the final value of 𝜖 is small, it should not be equal to zero, 

because it is always good to have at least a small proportion of “exploratory behavior”. 

The concepts discussed up to this point regarding Deep Q-Learning were included in the paper of 

Mnih et al. [14] in 2015. In the next two sections (3.2.5.4 and 3.2.5.5), two techniques that were 

introduced to the Deep Q-Learning method in later papers are explained. 

3.2.5.4. Double DQN 

It has been shown that the traditional DQN algorithm, with the target network as defined in the 

previous section, tends to overestimate the Q-Values of the environment sates. Given that the 

network updates are based on Q-Value estimations, these overestimations tend to grow as the 

training process progresses. To solve this, van Hasselt et al. [44] created a method that they called 

“Double DQN”; this method is a variant of traditional DQN, with a subtle difference regarding the 

task that the target network fulfills and the way the Q-Value targets are set. In this algorithm, the 

“online network”, i.e. the DNN that is updated in every iteration, estimates the Q-Values of all 

actions for the state 𝑆𝑡+1, and decides which the best action to take is; then, the target network 

estimates the Q-Value of that action, and that estimation is used for the target. 

In the traditional DQN method, by contrast, the target network decides both things: which action 

has the maximal Q-Value and its Q-Value. Both methods are tested and compared in this study: 

the traditional target network method and Double DQN. 

3.2.5.5. Prioritized Experience Replay 

Prioritized experience replay is a method presented by Schaul et al. [45] that is based on the 

following reasoning: if an experience has a surprisingly high or low target Q-Value in comparison 

with the prediction of the DNN, it is possible that the agent has much to learn from that particular 

experience, thus it will be assigned a higher probability of being sampled from the Replay Memory 

again. To do this, a prediction error is defined as: 

𝛿𝑡   =   �̂�(𝑆𝑡,  𝐴𝑡) − 𝑄Target(𝑆𝑡,  𝐴𝑡) = �̂�(𝑆𝑡,  𝐴𝑡)  −  𝑅𝑡  −  𝛾 ⋅ max
𝑎′

 { �̂�(𝑆𝑡+1, 𝑎
′)} (55) 

With this definition, Schaul et al. [45] presented two different ways of calculating a priority number 

𝑝𝑡 for the experience associated to time-step 𝑡: 

 1. 𝑝𝑡 = |𝛿𝑡| + 𝜙 (56) 
   

 2. 𝑝𝑡 = 
1

rank(𝑡)
 (57) 

On the first definition, 𝜙 is a small value (larger than zero) which assures that no experience has 

zero probability of being sampled (this parameter is called 𝜖 in the original paper). This prioritizing 

method is known as “proportional prioritization” (although it is not exactly proportional to the 

absolute value of 𝛿𝑡 because of the use of 𝜙). On the second definition, rank(𝑡) is the position of 
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the 𝑡-th experience when the absolute values of the prediction errors (as defined in Equation 55) of 

all experiences in the Replay Memory are ordered from largest to smallest. This is known as “rank-

based prioritization”. 

After obtaining the priority number of each experience, the probability of adding the 𝑡-th 

experience to the training batch is computed as: 

 𝑃(𝑡) =
𝑝𝑡

𝛼

∑ 𝑝𝑗
𝛼𝐽

𝑗=1

 (58) 

Here, 𝐽 is the total number of experiences stored in the Replay Memory. 𝛼 is a hyperparameter to 

measure the importance given to priorities. When 𝛼 is zero, the effect of prioritizing disappears. 

Due to the fact that the sampling probabilities are not equal for all experiences, a bias is being 

introduced into the training process. To correct this, the authors of the paper (Schaul et al, 2016 

[45]) propose to give a different weight 𝑤𝑡 to each experience: 

 𝑤𝑡 = (
1

𝐽
⋅

1

𝑃(𝑡)
)
𝜓

 (59) 

The parameter 𝜓  is another training hyperparameter that must be tuned (it is called 𝛽 in the original 

paper). The weight 𝑤𝑡 is used to scale the gradient associated to the 𝑡-th experience at the moment 

of updating the network. However, before being applied, the weights are normalized by using the 

maximum weight of the Replay Memory, as shown in Equation 60. This is done so that no weight 

has an increasing effect in the training steps. With this, the “mini-batch gradient descent” method 

becomes as shown in Equation 61. 

 
𝑤𝑡,norm =

𝑤𝑡

max
𝑗

 {𝑤𝑗}𝑗=1
𝐽  

(60) 

   

 𝐦 ←  𝛽 ⋅ 𝐦 − 
𝜂

𝑁
 ∑𝑤𝑖,norm ⋅ 𝛻𝜽 𝑄𝐶(𝐸𝑖)

𝑁

𝑖=1

 (61) 

In the case when 𝜓 = 1, the effect of the non-uniform probabilities is completely compensated by 

the non-uniform weights [45]. In the case of the study presented here, the 𝜓 parameter was always 

equal to zero, which means that the weights of all experiences are equal to one (in other words, the 

weights defined in Equation 59 are not used). 

3.3. Reliability theory 

Let 𝑇 be a random variable that measures the moment at which a certain device stops operating 

properly, provided that the device started its operation at the instant  𝑡 = 0. In other words, 𝑇 

represents the moment of failure of the device, and it is a random variable because in most cases 

the failure of any device or machine cannot be predicted with certainty. It is also being assumed 

that the device is not maintained during the operation (see Modarres, Kaminskiy, Krivtsov 2016 

[46] for further information on reliability theory). 

The most elemental function in reliability theory is the reliability function, which is defined as the 

probability that the failure of an item occurs after a certain instant 𝑡: 
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 𝑅(𝑡) = 𝑃(𝑇 > 𝑡) (62) 

In other words, 𝑅(𝑡) is the probability that the device under study operates until 𝑡 without failing 

(in this Section, 𝑡 represents an instant in a continuous time spectrum, not the index of an 

experience like in the previous section. Given that the device starts to operate at 𝑡 = 0, the domain 

of 𝑅(𝑡) are all values equal to or greater than zero). 

The function 𝑅(𝑡) must meet certain conditions: its value at 𝑡 = 0 must be one, since the device is 

put into operation at that moment. Its value must tend to zero (or simply be zero) as 𝑡 tends to 

infinity. This is because no machine operating without maintenance can operate for an infinite 

amount of time. 𝑅(𝑡) must also be a decreasing function, i.e.: 

 
𝑑 𝑅(𝑡)

𝑑𝑡
≤ 0           ∀ 𝑡 > 0 (63) 

The reliability function can never increase for the following reason: let 𝑡1 and 𝑡2 be two instants 

with 𝑡2 > 𝑡1. If the device operates until 𝑡2, this means that it has also operated until 𝑡1 without 

failing. Therefore, operating until 𝑡2 implies having operated until 𝑡1 as well. On the other hand, 

the device could operate until 𝑡1 but fail before 𝑡2. Consequently, the probability of operating until 

𝑡1 must be greater than the probability of operating until 𝑡2. In an extreme case, the reliability at 

both instants could be the same (with 𝑑𝑅(𝑡)/𝑑𝑡 being equal to zero between the two instants), but 

this would mean that the probability of failure between both instants is zero, which in practice does 

not happen if 𝑅(𝑡1) and 𝑅(𝑡2) are greater than zero. 

The probability that the failure occurs between two instants 𝑡 and 𝑡 + ∆𝑡, with ∆𝑡 > 0, can be 

known by subtracting the reliabilities at those instants: 

 𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡) = 𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡) (64) 

If the probability given by Equation 64 is divided by the time lapse between both instants, ∆𝑡, then 

the result can be interpreted as a mean “probability per time unit” of failing between 𝑡 and 𝑡 + ∆𝑡. 

This probability density can be defined “locally” for a specific instant in time by taking the limit 

as ∆𝑡 tends to zero: 

 lim
∆𝑡→0

𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

∆𝑡
= −

𝑑 𝑅(𝑡)

𝑑𝑡
 (65) 

Therefore, the negative derivative of the reliability function is commonly known as “probability 

density function” (PDF). Here it will be designated as 𝑓(𝑡): 

 𝑓(𝑡) = −
𝑑 𝑅(𝑡)

𝑑𝑡
 (66) 

This function can be intuitively thought of as the local density of probability (per time unit) of the 

device failing at the instant 𝑡. Nevertheless, the probability of failing at an exact instant is 

mathematically equal to zero, and in order to obtain a failure probability, the PDF must be 

integrated between two different instants: 

 𝑃(𝑡1 < 𝑇 < 𝑡2) = ∫ 𝑓(𝑡) 𝑑𝑡
𝑡2

𝑡1

 (67) 
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Some properties of the function 𝑓(𝑡) are: it is always larger than or equal to zero. This is a 

consequence of Equations 63 and 66. The integral of 𝑓(𝑡) from zero to infinity is always equal to 

one. This is because of the property expressed in Equation 67, and because of the fact that the 

device under study must fail sometime between 𝑡 = 0 and 𝑡 = ∞. 

The Mean Time to Failure (MTTF) is an important indicator that is defined as the expected failure 

time: 

 𝑀𝑇𝑇𝐹 = 𝔼 [ 𝑇 ] = ∫ 𝑡 ⋅ 𝑓(𝑡) 𝑑𝑡
∞

0

 (68) 

3.3.1. Hazard rate 

Suppose that a machine has been operating for a while without failing. A question worth asking is: 

“what is the probability that it will fail in the near future?” One might think that the answer can be 

calculated by integrating the PDF as expressed in Equation 67, with 𝑡1 being the current time and 

𝑡2 some instant in the future. This would be wrong because now there is an extra information 

available: the device has been operating until 𝑡1 without failing; thus, the chance of failure before 

𝑡1 can be “discarded”. Integrating the PDF, as expressed above, would yield the probability of 

failure between 𝑡1 and 𝑡2 without knowing whether the device has survived until 𝑡1, which in the 

present case is known to be true. 

Formally said, the question that is being asked now is a conditional probability, the condition being 

that the device has operated during a certain amount of time without failing. Consequently, the 

probability that is being looked for is: 

 𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡      |      𝑇 > 𝑡 ) (69) 

In a general case, a conditional probability is computed with the formula: 

 𝑃(𝐴   |   𝐵) =  
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (70) 

Here, 𝐴 ∩ 𝐵 is the intersection of the events 𝐴 and 𝐵. Therefore, for Equation 69:  

 𝑃( 𝑡 < 𝑇 < 𝑡 + ∆𝑡      |      𝑇 > 𝑡 ) =
𝑃( 𝑡 < 𝑇 < 𝑡 + ∆𝑡   ∩   𝑇 > 𝑡 )

𝑃(𝑇 > 𝑡)
 (71) 

The event 𝑡 < 𝑇 < 𝑡 + ∆𝑡 is completely contained in the event 𝑇 > 𝑡, thus the intersection of both 

events is simply 𝑡 < 𝑇 < 𝑡 + ∆𝑡. Therefore: 

𝑃( 𝑡 < 𝑇 < 𝑡 + ∆𝑡      |      𝑇 > 𝑡 ) =
𝑃( 𝑡 < 𝑇 < 𝑡 + ∆𝑡 )

𝑃( 𝑇 > 𝑡 )
=

𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

𝑅(𝑡)
 (72) 

Now, just as in the case of 𝑓(𝑡), an instantaneous density of conditional probability can be defined 

by dividing the result by ∆𝑡 and taking the limit as ∆𝑡 tends to zero: 

 ℎ(𝑡) = lim
∆𝑡→0

 
1

𝑅(𝑡)
⋅
𝑅(𝑡) − 𝑅(𝑡 + ∆𝑡)

∆𝑡
= −

1

𝑅(𝑡)
⋅
𝑑 𝑅(𝑡)

𝑑𝑡
=

𝑓(𝑡)

𝑅(𝑡)
 (73) 

The function ℎ(𝑡) that has just been defined is known as “hazard rate” and it is an instantaneous 

density of conditional failure probability, the condition being that the device is still operating at 𝑡. 
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The probability of failure during a time lapse ∆𝑡 in the near future can be estimated by using the 

hazard rate: 

 𝑃( failure in the near future  |  device is still operating at 𝑡 ) ≈ ℎ(𝑡) ⋅ ∆𝑡 (74) 

“Near future” means that the value of ∆𝑡 in Equation 74 must be small, so that the resulting 

probability is much less than one. For large values of ∆𝑡, it can even happen that the resulting 

“probability” is larger than one, which clearly does not make sense. 

3.3.2. Exponential distribution 

The simplest case that can be imagined with the concepts just mentioned is that where the hazard 

rate is constant. This means that, while the device is operating, the chance of failure is always the 

same. In other words: provided that the device is still operating, the chance that it will fail within 

the next day is the same regardless of whether it was put into operation yesterday or a year ago. 

Let 𝜆 be the constant hazard rate of the device under study. This value is also called “failure rate”. 

Because of Equation 73, it is possible to develop the following differential equation: 

 −
1

𝑅(𝑡)
⋅
𝑑 𝑅(𝑡)

𝑑𝑡
= 𝜆 (75) 

By considering the ODE in Equation 75, and by imposing the condition 𝑅(𝑡 = 0) = 1, it is possible 

to get the solution: 

 𝑅(𝑡) = exp (−𝜆 ⋅ 𝑡) (76) 

When a device has this kind of reliability function, the failure time is said to follow an “exponential 

distribution”. The expected (mean) time to failure, defined in Equation 68, is in this case: 

 𝑀𝑇𝑇𝐹 = ∫ 𝑡 ⋅ 𝜆 ⋅ exp(−𝜆 ⋅ 𝑡) 𝑑𝑡
∞

0

=
1

𝜆
 (77) 

For the integration shown in Equation 77 it has been assumed that 𝜆 is greater than zero, which is 

true because 𝜆 is a failure rate. 

3.3.3. Series system 

Now, suppose that there is a system that is composed of many items, all of which could probably 

fail within some operation time. The system will be considered a “series system” if it depends on 

all the items of which it is composed in order to operate; i.e., if only one of the items of the system 

fails, the whole system fails. Therefore, in this case the term “series” has nothing to do with the 

spatial configuration of the items in the machine; it only means that all the items have to be 

operating in order for the machine to work. 

Let 𝑅𝑖(𝑡) be the reliability function of the 𝑖-th item, with a total number of 𝑁 items in the system 

or machine. The reliability of the system, 𝑅𝑠(𝑡), can be determined as: 

 𝑅𝑠(𝑡) = ∏𝑅𝑖(𝑡)

𝑁

𝑖=1

 (78) 
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(For this case it is not necessary to have independence between the functional states of the items in 

the system, “independence” meaning that the functional state of any item does not affect the 

reliability of the others. If there were dependence, then the function 𝑅𝑖(𝑡) of each component must 

be considered only in the case where all other components of the system work. When any of them 

fails, then the value of the random variable 𝑇 has been measured and the experiment is concluded; 

therefore, the case in which other items of the system have failed must not be taken into account.) 

If all items have a constant failure rate (i.e. their failure times follow exponential distributions), the 

reliability of the system is equal to: 

 𝑅𝑠(𝑡) = ∏exp (−𝜆𝑖 ⋅ 𝑡)

𝑁

𝑖=1

= exp(−(∑𝜆𝑖

𝑁

𝑖=1

) ⋅ 𝑡) (79) 

Here, 𝜆𝑖 is the individual constant failure rate of each component of the system. This result shows 

that, in the case of a series system that is composed only of components with constant failure rates, 

the whole system has a constant failure rate that is equal to the sum of the failure rates of its 

components. 

3.3.4. Parallel system 

From a certain point of view, a parallel system can be considered as the “opposite” of a series 

system. Its definition is: from all the components of the system, it is only necessary that one of 

them operates in order for the system to be operative. In other words, the only way that a parallel 

system fails is that all its components fail. Its reliability, assuming that all components are operative 

at 𝑡 = 0, and that the components are independent, can be calculated as one minus the probability 

that all components fail. For a system with 𝑁 components: 

 𝑅𝑠(𝑡) = 1 − ∏(1 − 𝑅𝑖(𝑡))

𝑁

𝑖=1

 (80) 

(Here independence is needed, in contrast to the previous section, because in this case many 

combinations of operative and non-operative items are possible while the system operates. Thus, 

if the reliability of an item is affected by the states of the others, the reliability function becomes 

much more complex than Equation 80.) In the case of a parallel system where all the components 

have a constant and identical failure rate 𝜆, the reliability function has the formula: 

 𝑅𝑠(𝑡) = 1 − (1 − exp(−𝜆 ⋅ 𝑡))𝑁 (81) 

This formula does not have the form of an exponential reliability; therefore, a parallel system that 

is composed of identical components with a constant failure rate does not have a constant failure 

rate itself. 

3.4. Discrete-time Markov chains 

A Markov process [47] (named after Andrey Andreyevich Markov, a Russian mathematician who 

lived from 1856 to 1922 [48]) is a mathematical model for a system that changes its state 

stochastically. The most important assumption is called “markovian property”, which implies that 

the probability of reaching a certain state at a certain moment only depends on the state in which 

the system was immediately before, and not on the history of previous states. In this study, only 

Markov processes with discrete and finite sets of possible states are considered. When a Markov 
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process has a discrete state space, it is commonly known as “Markov chain”. (The “states” 

discussed in this section, Section 3.4, are different from the “states” discussed in Section 3.2 

regarding the Deep Reinforcement Learning process. As already discussed, states here are discrete 

and finite, and also the process does not involve executing actions and receiving rewards). 

In discrete-time Markov chains, time is divided into discrete instants. The instants are identified as 

𝑡𝑖, with 𝑖 showing the number of the corresponding time step (𝑖 can take entire numbers equal to 

or larger than zero). At a certain instant 𝑡𝑖, given the current state of the system, there are certain 

probabilities of reaching a new state or staying in the same state at the next instant 𝑡𝑖+1. A way of 

visualizing a discrete-time Markov chain is shown in Figure 6, where a system with three possible 

states is considered. 

 
Figure 6: Illustration of a discrete-time Markov chain with three states 

In Figure 6, the transition probabilities just mentioned are represented by arrows connecting the 

possible states of the system. 𝜌𝑖𝑗 is the probability of transiting from state 𝑖 to state 𝑗 between two 

consecutive instants. Although it is theoretically possible that the transition probabilities depend 

on time, for this study they will be assumed to be constant. A Markov process with this property is 

known as “time-homogeneous Markov process”. 

Let 𝑋(𝑡𝑖) be the state of the system at 𝑡𝑖, with 𝑖 ∈ ℕ representing the number (in time steps, since 

the beginning of the process) of the instant 𝑡𝑖. Also, let 𝑆 be the set of possible states of the system. 

At every moment, the system must be in one of its possible states, thus: 

 ∑ 𝑃[ 𝑋(𝑡𝑖) = 𝑗 ]

𝑗 ∈ 𝑆

= 1           ∀𝑖 ≥ 0 (82) 

Between two instants, the system must either stay in the same state or transit to another one, thus: 

 ∑ 𝜌𝑖𝑗

𝑗 ∈ 𝑆

= 1           ∀𝑖 ∈ 𝑆 (83) 

A way of mathematically illustrating the markovian property mentioned above is: 

𝑃[ 𝑋(𝑡𝑖+1) = 𝑠  |  𝑋(𝑡𝑖) = 𝑠𝑖 ] = 𝑃[ 𝑋(𝑡𝑖+1) = 𝑠  |  𝑋(𝑡0) = 𝑠0 , 𝑋(𝑡1) = 𝑠1 , … , 𝑋(𝑡𝑖) = 𝑠𝑖 ] (84) 

3.4.1. Geometric distribution 

The geometric distribution is a probability distribution that is very useful for time-discrete Markov 

chains. A random variable 𝑌 follows the geometric distribution if it measures the number of 

independent repetitions of an experiment that are needed until a certain result of the experiment, 
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defined as “success”, is obtained; all repetitions of the experiment have the same success 

probability 𝑝 [49]. Therefore, the possible values for 𝑌 are all entire numbers equal to or greater 

than one. (There is a very similar version of the distribution that counts the number of failed 

repetitions until a success is obtained, “failure” meaning that any result other than success is 

obtained. In this case, the only difference is that the random variable takes values equal to or greater 

than zero. However, the version explained above will be used.) 

The probability that the random variable 𝑌 takes a certain value 𝑘 is given by [49]: 

 𝑃(𝑌 = 𝑘) = (1 − 𝑝)𝑘−1 ⋅ 𝑝         𝑘 ∈ ℤ ,   𝑘 ≥ 1  ,   𝑝 ∈ [0 , 1] (85) 

The expected value for 𝑌 is [49]: 

 𝔼(𝑌) =
1

𝑝
 (86) 

An example of how to use this distribution is to determine the expected permanence time of the 

system in a certain state. This follows a geometric distribution because one is counting the number 

of time steps (repetitions of the experiment) until the system leaves the initial state (success). 

Let 𝑗 be the state of the system at 𝑡𝑖. The probability of changing state in the next instant is: 

 𝑃[ 𝑋(𝑡𝑖+1) ≠ 𝑗       |       𝑋(𝑡𝑖) = 𝑗  ] = 1 − 𝜌𝑗𝑗 = ∑𝜌𝑗𝑘

𝑘≠𝑗

    𝑗, 𝑘 ∈ 𝑆 ; 𝑖 ∈ ℕ (87) 

If the number of time steps of permanence in a certain state 𝑗 is the random variable that is being 

measured, then the event “leaving state 𝑗” can be considered as a “success” and thus the parameter 

𝑝 defined in Equation 85 would be equal to 1 − 𝜌𝑗𝑗 (the geometric distribution can only be used if 

the Markov chain is time-homogeneous; otherwise, the value of 𝑝 could not be defined). The 

convention on the number of time steps will be that, if the system leaves state 𝑗 in the first possible 

transition, it has spent one time step in state 𝑗. The expected value for that random variable is: 

 𝔼(time steps of permanence in 𝑗) =
1

1 − 𝜌𝑗𝑗
=

1

∑ 𝜌𝑗𝑘𝑘≠𝑗
      𝑗, 𝑘 ∈ 𝑆  (88) 

3.4.2. Steady-state probabilities 

First, it is necessary to clarify the concept of “absorbing states”: a state is called “absorbing” if the 

probability of leaving it is zero; therefore, once the system has reached an absorbing state, it will 

stay in that state forever. 

For the Markov chains considered during this study, and also for this theoretical part, it is assumed 

that all states are reachable by the system regardless of the state where the Markov chain started. 

However, not all states need to be directly connected to each other by a nonzero transition 

probability. For this condition to be true, the system cannot have absorbing states. 

Let 𝑃𝑖𝑗(𝑚, 𝑛), with 𝑛 > 𝑚, be the probability that the system is in the state 𝑗 at the instant 𝑡𝑛, 

assuming that at 𝑡𝑚 it was in the state 𝑖: 

 𝑃𝑖𝑗(𝑚, 𝑛) = 𝑃[ 𝑋(𝑡𝑛) = 𝑗   |    𝑋(𝑡𝑚) = 𝑖 ]         𝑖, 𝑗 ∈ 𝑆 ;  𝑚, 𝑛 ∈ ℕ ;  𝑛 > 𝑚 (89) 
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The probability 𝑃𝑖𝑗(𝑚, 𝑛) does not depend on both values 𝑚, 𝑛 but only on their difference 𝑛 − 𝑚, 

because the process is time-homogeneous (the experiment does not depend on when it is initiated). 

Therefore, the result only depends on the number of time steps between 𝑡𝑚 and 𝑡𝑛. 

For simplicity, let 𝑃𝑖𝑗
∗ (𝑛) = 𝑃𝑖𝑗(𝑚 ,𝑚 + 𝑛) for any natural number 𝑚. The function 𝑃∗ yields the 

same result as 𝑃 but only takes the number of time steps between the instants into account. If the 

Markov chain meets the condition that all states are reachable by starting in any other state, then 

the value of 𝑃𝑖𝑗
∗ (𝑛) tends to become independent of the initial state 𝑖 when the number of time steps 

𝑛 becomes large enough: 

 lim
𝑛→∞

𝑃𝑖𝑗
∗ (𝑛) = lim

𝑛→∞
𝑃𝑘𝑗

∗ (𝑛)      ∀𝑖, 𝑘, 𝑗 ∈ 𝑆 (90) 

That same value will be designated simply as 𝑃𝑗, because it does not depend on the initial state: 

 lim
𝑛→∞

𝑃𝑖𝑗
∗ (𝑛) = lim

𝑛→∞
𝑃𝑘𝑗

∗ (𝑛) = 𝑃𝑗       ∀𝑖, 𝑘, 𝑗 ∈ 𝑆 (91) 

The number 𝑃𝑗 is the steady-state probability that the system is in the state 𝑗. This number can be 

interpreted as the percentage of time that the system will spend in the state 𝑗 when enough time has 

passed so that the initial state has no effect on the future state of the system. This is called “steady-

state regime”. 

As discussed above, it is being assumed that all states of the system are reachable from any other 

state. A few examples of systems where that does not happen are: 

1. If the system has an absorbing state, 𝑃𝑗 is equal to 1 only if 𝑗 is the absorbing state. Else, 𝑃𝑗 

is equal to 0. 

2. If the system has several absorbing states, the system will reach one of them and stay there 

forever. However, that final state of the system is not determined beforehand and, most 

importantly, is dependent on the initial state. Thus, the probability of reaching a certain 

absorbing state will change depending on which the initial state was. One could propose an 

“analog” to 𝑃𝑗 for this case, where 𝑃𝑗 represents the probability of reaching the state 𝑗 as 

final absorbing state. However, there will be several possible sets of “𝑃𝑗’s”, one for each 

possible initial state. This is not what is being looked for here. 

3. If the system has a state (or more than one) from which the system can “get out” but never 

“get in” again (because there are no transitions conducing to that state), then the value of 𝑃𝑗 

for that state will be zero. The other states, where the system can get in and out repeatedly, 

would have 𝑃𝑗’s larger than zero. 

4. If the system has a completely isolated state or a group of states which is disconnected from 

the rest of the states (i.e. with no transition probabilities entering or leaving the isolated 

group), then the final regime of the system will depend on the initial state. Therefore, it 

would not be possible to define a single set of “𝑃𝑗’s”. 

The idea of imposing that all states are reachable from any other state is that the system eventually 

reaches all of them repeatedly, so that none of the cases named above happens. If this is true, then 

the value of 𝑃𝑗 is greater than zero for all states; i.e. 𝑃𝑗 > 0   ∀𝑗. 

At any moment, not necessarily at steady-state regime, the probability that the system is in state 𝑗 
at 𝑡𝑖 can be calculated with the probabilities of the previous instant 𝑡𝑖−1: 
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 𝑃[  𝑋(𝑡𝑖) = 𝑗  ] = ∑ 𝜌𝑘𝑗 ⋅ 𝑃[  𝑋(𝑡𝑖−1) = 𝑘  ]

𝑘 ∈ 𝑆

            𝑗 ∈  𝑆 ;  𝑖 ∈ ℕ (92) 

In the steady-state regime, the probability of being in any state is constant in time, thus it does not 

depend on the instant. Therefore, Equation 92 becomes: 

 𝑃𝑗 = ∑ 𝜌𝑘𝑗 ⋅ 𝑃𝑘

𝑘 ∈ 𝑆

             𝑗 ∈  𝑆  (93) 

If the transition probabilities 𝜌𝑘𝑗 are known and one wants to know the probabilities of being in 

each state at steady regime, a system of equations can be imposed: 

 ∑(𝜌𝑘𝑗 − 𝛿𝑘𝑗) ⋅ 𝑃𝑘

𝑘 ∈ 𝑆

= 0           𝑗 ∈ 𝑆 (94) 

𝛿𝑘𝑗 is the Kronecker Delta. Now, assuming that each state of the set 𝑆 can be numbered with a 

natural number from 1 to 𝑁, Equation 94 can be re-written as a matrix equation: 

 

[
 
 
 
 

 

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

𝜌1,𝑁 𝜌2,𝑁 ⋯ 𝜌𝑁−1,𝑁 𝜌𝑁𝑁 − 1

 

]
 
 
 
 

 ⋅  

[
 
 
 
 

 

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

 

]
 
 
 
 

 =  

[
 
 
 
 

   

0
0
⋮
0
0

   

]
 
 
 
 

 (95) 

Note that all columns of the matrix add up to zero, because of the property expressed in Equation 

83. Therefore, the matrix is singular. Here is a small proof: Let 𝑨 be the matrix of Equation 95 (the 

one that is multiplying the vector of probabilities) and 𝑨𝑇 be the transpose of 𝑨. Given that the 

columns of 𝑨 add up to zero, the rows of 𝑨𝑇 add up to zero as well. Therefore, 𝑨𝑇 has the eigenvalue 

0 associated to the eigenvector  [1,1, … ,1,1]𝑇. Given that the determinant is the product of the 

eigenvalues, the determinant of 𝑨𝑇 is zero. Therefore, 𝑨𝑇 is singular and 𝑨 is singular as well (since 

transposed matrices have the same determinant). If the matrix 𝑨 were not singular, then the only 

solution to Equation 95 would be 𝑃𝑖 = 0  ∀𝑖. 

To correct the redundancy of the equations in the matrix, it is possible to replace one of them with 

the known condition: 

 ∑ 𝑃𝑘

𝑘 ∈ 𝑆

= 1 (96) 

By replacing the last row of the matrix with the condition shown in Equation 96, the matrix 

equation becomes: 

 

[
 
 
 
 

 

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

1 1 ⋯ 1 1

 

]
 
 
 
 

 ⋅  

[
 
 
 
 

 

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

 

]
 
 
 
 

 =  

[
 
 
 
 

   

0
0
⋮
0
1

   

]
 
 
 
 

 (97) 
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Therefore, the steady-state probabilities can be obtained with: 

 

[
 
 
 
 

 

𝑃1

𝑃2

⋮
𝑃𝑁−1

𝑃𝑁

 

]
 
 
 
 

 =  

[
 
 
 
 

 

𝜌11 − 1 𝜌21 ⋯ 𝜌𝑁−1,1 𝜌𝑁,1

𝜌12 𝜌22 − 1 ⋯ 𝜌𝑁−1,2 𝜌𝑁,2

⋮ ⋮ ⋱ ⋮ ⋮
𝜌1,𝑁−1 𝜌2,𝑁−1 ⋯ 𝜌𝑁−1,𝑁−1 − 1 𝜌𝑁,𝑁−1

1 1 ⋯ 1 1

 

]
 
 
 
 
−1

⋅  

[
 
 
 
 

   

0
0
⋮
0
1

   

]
 
 
 
 

 (98) 

The result would be the same regardless of which row of the matrix is replaced by the condition of 

Equation 96. 

3.5. Heat pipe evacuated tube solar collectors 

Solar collectors are devices meant to heat a liquid flow (in this case water) by absorbing radiation 

from the sun. 

One of the most popular types of solar collectors is called “evacuated tube” solar collectors [50]. 

This name comes from the fact that the radiation-absorbing device is inside a vacuum environment 

provided by a glass tube. The transparency of the glass allows the radiative energy to reach the 

absorbing device, and the vacuum prevents heat losses produced by direct contact with the 

atmosphere (through conduction and convection). 

A way of heating the water flow is by directly letting water pass through a radiation-absorbing tube 

inside the evacuated tube. Another way is by using a device called “heat pipe”. A heat pipe is a 

closed metal tube with a fluid restricted to its interior. The tube is usually made of copper and the 

inner fluid is usually a type of alcohol. The fluid receives the thermal energy through the walls of 

the tube and evaporates; then the vapor flows to a heat exchanger where it transfers heat to the 

water flow and condenses. The liquid then goes back to the heating part of the pipe and repeats the 

cycle. The movement of vapor and liquid is usually accomplished by putting the condenser in the 

highest part of the heat pipe; in this way, the movement of vapor and liquid is induced by gravity. 

A popular design of evacuated tube solar collectors uses a double-walled glass tube; the vacuum is 

kept between the two walls. The outer face of the inner wall is covered with an absorbing coating, 

as Figure 7 shows. This coating is commonly known as “selective coating” and it must meet two 

basic requirements: high absorptance and low emissivity. This allows the device to receive high 

amounts of radiative energy and to lose a low amount of it due to emissions. 

The heat pipe is located in the center of the double-walled tube. The thermal energy is transferred 

from the inner tube to the heat pipe by conduction through aluminum fins, which also fulfill the 

task of mechanically holding the heat pipe at the center of the tube. At the right part of Figure 7, 

the aluminum fins are drawn with grey lines. A small separation between the fins and the other 

parts has been left in the drawing in order to better differentiate the components, although in reality, 

the fins must be in direct contact with the inner tube and the heat pipe. 
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Figure 7: Basic components of a heat pipe evacuated tube solar collector. 

In order to increase the absorbing area without needing to build a tube with a very large diameter, 

a solar collector is built by arranging several tubes in series, as shown at the left of Figure 8. Given 

that a fraction of the radiation will pass between the absorbing (internal) tubes, it is useful to install 

a reflector under the tube arrangement, in order to reflect the energy back into the tubes. This can 

increase the total amount of energy received by more than 25% [50]. 

As already discussed, the flow inside the heat pipe is normally induced by gravity. For this reason, 

and also to optimize the absorption of solar radiation, the solar collector is given a small inclination 

with respect to the ground, as shown in the right part of Figure 8. 

 
Figure 8. Left: Arrangement of tubes in a solar collector. 

Right: Inclination of the collector with respect to the ground. 

3.6. Heat pumps and refrigeration systems 

Heat pumps and refrigeration systems work basically the same way; the only difference is the task 

they are meant to perform. Heat pumps are meant to deliver heat to a hot environment by extracting 

heat from a cold environment, whereas refrigeration systems are meant to cool a cold environment 

by transferring the extracted heat to a hotter environment. Thus, they do exactly the same, but 

receive different names depending on what the goal of the process is. Many air-conditioning 

systems are capable of fulfilling both tasks; i.e., they act as cooling machines during summer and 

as heating machines during winter. 
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To achieve this, a fluid goes through the following cycle (illustrated in Figure 9): in a heat 

exchanger called “evaporator”, the fluid extracts heat from the cold environment (or cold region) 

and evaporates. To achieve this, the fluid must be colder than the cold region. Then, a compressor 

compresses the gas with energy from an external source; this process increases the temperature of 

the gas. Due to this temperature increase, the gas is now able to transfer heat to the hot region; this 

process is carried out in a heat exchanger called a “condenser”, where the fluid releases heat by 

condensing. Finally, the fluid passes through an expansion valve back into the low-pressure zone. 

Due to this pressure drop, part of the fluid evaporates and the temperature of the fluid decreases; 

with this, the fluid is able to absorb heat from the cold region again. In Figure 9, �̇�in and �̇�out are 

the heat flow absorbed by the fluid from the cold region and the heat flow transferred by the fluid 

to the hot region, respectively. �̇�in is the power (work) provided to the fluid by the compressor. 

 
Figure 9: Illustration of the operation of refrigeration systems and heat pumps. 

When steady state has been reached, the net energy exchange between the machine and the 

environment is zero, thus: 

 �̇�in + �̇�in + �̇�out = 0 (99) 

In Equation 99, �̇�in and �̇�in are considered to be positive, and �̇�out is considered to be negative. 

The efficiency of the system is measured by an indicator called Coefficient of Performance (COP). 

This coefficient can assume two definitions, depending on the purpose of the equipment. If the 

device is used as a heating device, it is defined as the ratio between the heat provided to the hot 

region and the work consumed by the compressor. On the other hand, if the device is used as a 

cooling machine, it is defined as the ratio between the heat absorbed from the cold region and the 

work consumed by the compressor. In both cases, the COP is a measure of the ratio between the 

useful energy and the consumed energy. 

 𝐶𝑂𝑃heating =
|�̇�out|

�̇�in

 (100) 

   

 𝐶𝑂𝑃cooling =
�̇�in

�̇�in

 (101) 

Because of Equation 99, it is easy to see that: 

 𝐶𝑂𝑃cooling = 𝐶𝑂𝑃heating − 1 (102) 
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This relation is not exactly true in actual equipments. For example, a fan might be used to force air 

to pass through a heat exchanger. This is power-consuming, and thus is considered as part of �̇�in 

in Equations 100 and 101, but does not add work to the compression process of the gas, thus it is 

not part of �̇�in of Equation 99 anymore. However, this ideal scenario is illustrative for 

understanding the thermodynamic principles of this type of devices. 

Let 𝑇𝐻 and 𝑇𝐶 be the temperature in the hot region and in the cold region, respectively. Because of 

the fact that �̇�in can be smaller than �̇�in and �̇�out (considering the absolute values of these energy 

flows), both indicators 𝐶𝑂𝑃heating and 𝐶𝑂𝑃cooling can be larger than one; this means that the 

“useful” energy is greater than the energy consumed. The theoretical maximum possible values for 

𝐶𝑂𝑃heating and 𝐶𝑂𝑃cooling are given by the temperatures of the hot region and the cold region when 

reversibility is imposed (Moran et al. [51]): 

 𝐶𝑂𝑃heating,max =
𝑇𝐻

𝑇𝐻 − 𝑇𝐶
 (103) 

   

 𝐶𝑂𝑃cooling,max =
𝑇𝐶

𝑇𝐻 − 𝑇𝐶
 (104) 

However, the actual values of these indicators are considerably lower in actual machines (see 

Moran et al. [51] for details). 

3.7. TRNSYS 

TRNSYS (Transient System Simulation Tool [15]) is a simulation software that allows modelling 

of transient systems. Although it is mostly used to simulate thermal energy systems, its main 

capability is the option to easily create new components depending on the needs of every user. This 

makes it extensible to a very wide range of areas. A simulation is created by adding and connecting 

the different components of the system (such as pumps, heat exchangers, storage tanks, heat pumps, 

and solar collector fields) and specifying their features. Climate data from many cities around the 

world are also available for the simulation of devices such as solar collectors and air-water heat 

pumps. 

The “components” used to build simulations are called “types” by TRNSYS. For example, there 

are types to simulate different kinds of pumps (single-speed, variable-speed), heat pumps (air to 

water, water to water, etc.), solar collectors, heat exchangers, etc. Each type is identified by a 

number, e.g., Type 114 is a single-speed pump, and Type 110 is a variable-speed pump. 

To better clarify how TRNSYS works and what it does, a very simple example is shown in Figure 

10 and is explained below. 

 
Figure 10: Example system implemented in TRNSYS 
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In the system shown in the figure, the heater is meant to heat the water stored in the storage tank. 

Pump 1 moves water through the heater, while Pump 2 recirculates the water contained in the tank. 

Both flows can exchange heat in the heat exchanger in the middle. The tank stores a constant 

volume of water and it has two inlets and two outlets: one inlet-outlet pair is used to move the water 

through the heat exchanger; the other inlet-outlet pair is used to receive water from the mains and 

to deliver it to the user. The “Demand Schedule” that can be seen at the right is simply a time-

dependent function that imposes the flow entering the storage tank. The flow leaving the tank will 

be automatically equal to this imposed flow, thus it can be interpreted as the demanded water flow. 

The “Outlet Temperature Plotter” receives the temperature of the water that leaves the tank and 

plots it. Figure 11 shows the demand profile assumed and the resulting water temperature during 

one simulation day. The initial temperature of the water in the tank was set to 20°C, as well as the 

temperature of the mains water flow that enters the tank. 

 
Figure 11. Left: Water demand profile in L/hr. Right: Temperature of the water leaving the tank. 

To connect two elements of the system (e.g., the pump and the heater), the outputs of one of them 

must be connected to the inputs of the other. Inputs are variables that an element of the system 

receives from other elements, while outputs are variables that an element delivers to other elements. 

Figure 12 shows how the connection between Pump 1 and the heater is being established. Two 

outputs of the pump (the outlet fluid temperature and the outlet flow rate) are connected to two 

inputs of the heater (the inlet fluid temperature and the inlet flow rate). The inputs that are not 

connected to any output of any other element remain at a fixed value during the simulation. 

 
Figure 12: How to edit the connection between two elements by linking outputs to inputs 

In addition to the inputs and outputs, for most types it is necessary to specify certain characteristics 

which are called “parameters”. Parameters cannot be passed to other elements as outputs, and they 

remain fixed during the simulation. Examples can be the volume of a tank, the power of a pump, 

the maximum power of a water heater, etc. 
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Chapter 4: Development of the training platform 

4.1. System under study 

The water heating system that the agents will seek to control corresponds to the installation that 

operates at the Faculty of Physical and Mathematical Sciences (FCFM) of the University of Chile, 

Santiago. The system delivers warm water to the dressing rooms in the sports area of the building, 

which is located in Beauchef 851, Santiago. Most of the data and the variables considered are based 

on previous work by Camila Correa [52] and Camila Correa et al. [32] on the same system. 

The system is composed of three heating stages: a solar thermal energy stage, a heat recovery 

system from a water chiller, and four air-water heat pumps. The three stages heat the water flow in 

the mentioned order. 

The solar stage consists of 44 heat-pipe evacuated tube solar collectors, which together have a total 

absorbing area of 105.6m2. Their brand and model code is “Hitek Solar NSC 58-30”. They are 

oriented towards north, with a tilt angle (the 𝛼 angle shown in Figure 8) of 15° (Correa, 2019 [52]). 

The collectors are located on the roof of the building; their spatial distribution is shown in Figure 

13. In the figure, North is indicated by an arrow. The image in the figure was taken from the thesis 

of Camila Correa [52] with her permission. 

 
Figure 13: Spatial configuration of the solar collectors. Source: Camila Correa [52] “Assessment of Deep 

Learning Techniques for Diagnosis in Thermal Systems through Anomaly Detection”. 2019 

As Figure 13 shows, the solar collectors are arranged in 13 parallel rows; in each row the collectors 

are arranged in series. Five rows have four collectors each, and eight rows have three collectors 

each. 

The water chiller is a cooling machine, as discussed in Section 3.6, whose main purpose is to cool 

a water flow. The cooled water is then used to control the temperature or humidity inside the 

building. The heat rejected by the machine is passed to another water flow, and in regular systems, 

it can be released to the outside with a cooling tower. However, this heat can also be used instead 

of being dropped; this is the idea behind heat recovery. Thus, the second stage of the water heating 

system consists of using the heat rejected by the chiller to heat the water for the dressing rooms. 
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The third heating stage consists of four heat pumps, each of which heats the water contained in an 

individual storage tank. The heat pumps are intended to keep the water in the tanks at 60°C. They 

are automatically turned off if the temperature in the tanks reaches 62°C and are turned on again 

when the temperature drops to 55°C. 

If the temperature of the water is above 45°C at the outlet of the third heating stage, it is mixed 

with a flow of mains water until it reaches 45°C, and then it is delivered to the dressing rooms. A 

diagram of the system is shown in Figure 14 and is explained below. 

 
Figure 14: Diagram of the water heating system. 

All explanations in the three next paragraphs are referencing the illustration shown in Figure 14. 

The mains water flow enters the system through valve V1 (bottom right); this flow is equal to the 

warm water demand in the dressing rooms. Valve V1 receives the temperature at the outlet of the 

last heating stage (green dotted arrow) and splits the entering water flow, sending part of it directly 

to the outlet of the system, in order to maintain the delivered water at 45°C. If the water leaving 

the last heating stage is below 45°C, the entire flow is sent by valve V1 to the heating system. The 

volume of water stored in the system is constant, thus the flow entering it is always equal to the 

flow leaving it. 

Preheating Tank 1 stores the water that is being heated by the solar collectors, and Preheating Tank 

2 stores the water that is being heated by the heat recovery system of the chiller. In the last heating 

stage, each heating tank (1 through 4) receives heat from a heat pump. Pumps 1, 2, 5, 6 and 9 to 12 

are permanently recirculating the water contained in their respective tanks in order to keep the heat 

exchange with the corresponding energy source regardless of the current warm water demand. The 

flows that are taken out of their tanks to be recirculated are shown with orange arrows. 

The heat recovery system of the chiller is also used to warm the pool of the building. Valve V2 

splits the flow leaving the condenser side of the chiller; 51% of the flow is used to heat the sanitary 
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water and the remaining 49% is used for the pool. The pool is not simulated in detail; instead, it is 

assumed that the water coming from the pool has a constant temperature of 44.5°C. 

The demand for warm water in the dressing rooms is estimated at 24000 L/day. The assumed 

demand curve during each day is shown in Figure 15. 

 
Figure 15: Estimated water demand during the day. Source: Camila Correa et al. [32] 

The system is turned on at 7.00 AM and turned off at 9.00 PM (this includes all electrical devices). 

In this section, only the essential details which are necessary to understand the study were given. 

Further details about the water heating system are given in Annexed A. 

4.2. Actions 

In this section, the agent-system interaction schedule and the possible actions are explained. The 

agent is allowed to execute 7 actions per simulation-day; these actions are executed at 8.00 AM, 

10.00 AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM and 8.00 PM. At every action instance, the 

agent decides which heating stages of the system (from the three heating stages discussed above) 

will be turned on and which will be turned off until a new action is required. States received by the 

agent at 10.00 PM are terminal states; this means that in this environment an “episode” is equivalent 

to one day. 

In addition to the three heating stages, there is a fourth “degree of freedom” of the system that the 

agent is able to control. Here is why: it was discovered that at moments of high solar radiation and 

medium warm water demand, the temperature in Preheating Tank 1 (which receives heat from the 

solar collectors) can reach over 70°C; this is considerably higher than the target temperature in the 

last stage of the system (60°C). For safety reasons, a control system was implemented to 

automatically turn off Pumps 3 and 4 (see Figure 14) when the temperature in Preheating Tank 1 

reaches 50°C, so that the tank stops heating up (the pumps are turned on again when the temperature 

in the tank drops to 45°C). Nevertheless, this leads to another problem which is overheating of the 

solar collectors, because thermal energy accumulates if the water is stagnant inside the collectors. 

This can lead the water in the collectors to reach temperatures over 100°C, according to the 

TRNSYS simulation. To solve this issue, the controlling agent has the option of activating an 

auxiliary flow in order to prevent Preheating Tank 1 from reaching the limit temperature of 50°C. 

This auxiliary flow is an extra flow of 3,000L/h that flows through the heating system and is not 

meant to be used in the dressing rooms, but only to extract excessive heat. This solution is not 

optimal because heat and water are being wasted, but it may be better than early failure of the solar 

collectors due to overheating. 
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Thus, the four independent systems that the agent is able to activate and deactivate are: 

- The solar energy stage 

- The heat recovery stage (chiller) 

- The heat pump state 

- The auxiliary flow to prevent the solar collectors from overheating 

The reward of an action, whose formula will be detailed in the next section, is computed as a 

function of the performance of the water heating system in the timespan between the 

aforementioned action and the next action. In the case of the last action of the day, executed at 8.00 

PM, its reward is computed at 10.00 PM, but no further actions are executed. This is considered to 

be a terminal state, as discussed in Section 3.2.1. At that time of day, the three heating stages are 

“turned on” and the auxiliary flow is turned off, but in practice everything is turned off since the 

whole heating system is turned off at 9.00 PM. On the next day, at 7.00 AM, the system is turned 

on, and therefore the three heating stages are turned on until the first action of the day is executed 

at 8.00 AM. 

Figure 16 illustrates the daily schedule for the Deep Q-Learning method (see Section 3.2.5 and 

subsections for more details about the algorithm). At 8.00 AM no reward is computed, since there 

is no previous action to compute a reward for. At 10.00 PM, no action is executed, so the agent 

does not need to process the state of the system. Also at 10.00 PM, the neural network is trained 

by sampling a random set of experiences from the Replay Memory. 

 
Figure 16: Interaction schedule between the agent and the water heating system (DQN algorithm) 

In the case of the REINFORCE method (see Section 3.2.3), the process is very similar but the DNN 

is not updated every day. Instead, every certain number of days (episodes), the parameters are 

updated at 10.00 PM. On other days, the data is just stored for the next training iteration. 

In the case of the Actor-Critic algorithm (see Section 3.2.4), the training iterations take place at 

every interaction instance except for the first interaction of the day at 8.00 AM. This is because a 

reward is needed to train the two deep neural networks. Therefore, the networks are trained at 10.00 

AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM, 8.00 PM and 10.00 PM. 

Since the agent has four degrees of freedom with two options for each one, there are 16 possible 

actions to choose from, given by all possible combinations. All actions are shown in Table 1, where 

1 means “on” and 0 means “off”. 
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Table 1: Possible actions of the agent. 

Action Solar field pumps Chiller Heat Pumps Auxiliary Flow 

0 1 1 1 0 

1 1 1 0 0 

2 1 0 1 0 

3 0 1 1 0 

4 1 0 0 0 

5 0 1 0 0 

6 0 0 1 0 

7 0 0 0 0 

8 1 1 1 1 

9 1 1 0 1 

10 1 0 1 1 

11 0 1 1 1 

12 1 0 0 1 

13 0 1 0 1 

14 0 0 1 1 

15 0 0 0 1 

4.3. Rewards 

To calculate the reward of an action, the performance of the system is measured between that action 

and the next one. In the case of the last action of a day, executed at 8.00 PM, the reward is computed 

at 10.00 PM, but no action is executed at that time because the entire heating system is already off. 

The indicators that are taken into account to compute the rewards are: 

- Whether the system is delivering warm water as it is supposed to. 

- Whether the solar collectors have reached an excessive internal temperature. 

- Whether the auxiliary flow is being used. 

- Whether the chiller is being used. 

- The ratio between the heat delivered to the water flow and the electric consumption of the 

system. 

- The ratio between the heat coming from clean sources and the total heat delivered. The concept 

of “clean sources” is discussed below. 

Now the quantitative definition of these indicators will be discussed. In the following equations, 

𝛼1 through 𝛼5 are parameters to define the importance of each indicator. 

Comfort indicator 

It is the prize for delivering warm water, and is defined as: 

 comfort = ∫ 𝟙 𝑇ℎ𝑜𝑡 > 40°𝐶(𝑡) ⋅ (1 + 𝛼2 ⋅ (
𝑇ℎ𝑜𝑡(𝑡) − 40

20
)
2

)𝑑𝑡
𝑡1

𝑡0

 (105) 

𝑇ℎ𝑜𝑡 is the temperature of the water flow leaving the third heating stage before being mixed with 

the mains water flow to be delivered to the dressing rooms (see Figure 14). Therefore, this 

temperature can have a maximum value of 62°C (at that point the heat pumps are turned off). The 

function 𝟙 is a Boolean indicator function as follows: 
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 𝟙 𝑇ℎ𝑜𝑡 > 40°𝐶(𝑡) = {
1       if    𝑇ℎ𝑜𝑡 > 40°𝐶 at 𝑡
0       if    𝑇ℎ𝑜𝑡 ≤ 40°𝐶 at 𝑡

 (106) 

The comfort factor is computed as an integral between the instants 𝑡0 and 𝑡1, which are the instant 

of the last action and the instant of the next action (or the end of the day), respectively. Note that 

the integrand will only be greater than zero if the delivered water’s temperature is higher than 40°C. 

If the water’s temperature is lower than 40°C during the whole time between an action and the next 

one, this indicator will be zero. 

The 𝛼2 parameter measures the importance of reaching temperatures remarkably higher than 40°C. 

If 𝛼2 is zero, the comfort factor will only depend on whether the temperature was higher or lower 

than 40°C; if 𝛼2 is greater than zero, then a higher temperature of the water leaving the heating 

system will yield a larger reward. The heat pumps in the last heating stage are designed to keep the 

water at 60°C, so the fraction multiplying 𝛼2 will take values between 0 and 1 (or slightly greater 

than 1). Therefore, 𝛼2 can be used as an “incentive” for the agent to use the heat pumps in order to 

deliver warmer water. 

Degradation indicator 

It is a penalization for overheating of the solar collectors. It is calculated as: 

 degradation =  𝛼3 ∫ 𝟙 𝑇𝑐𝑜𝑙 > 100°𝐶(𝑡)𝑑𝑡
𝑡1

𝑡0

 (107) 

𝑇𝑐𝑜𝑙 is the temperature at the outlet of the solar collector fields. Thus, the degradation factor is 

proportional to the time during which 𝑇𝑐𝑜𝑙 exceeded 100°C, so the agent has to prevent this from 

happening. 

Water use indicator 

It is a penalization for using the auxiliary flow because of the water and energy waste. It is defined 

as follows: 

 water use = {
𝛼4           if                the auxiliary flow is used
0             if         the auxiliary flow is not used

 (108) 

Clean heat indicator 

The term “clean heat” will be used to refer to the heat coming from the solar collectors and the 

water chiller. These sources are considered to be clean because solar energy is renewable, and the 

heat rejection from the chiller is the heat that was extracted for another purpose, which is chilling 

another water flow. Therefore: 

 Clean Heat = (Heat from Solar Collectors) + (Heat from Chiller) (109) 

Reward functions 

Two reward functions will be defined. Clearly, they cannot both be used at the same time to train 

an agent, since the agents only try to maximize one reward function. 

The first reward function is defined as: 

𝑅1 = (𝛼1 ⋅
total heat

electric consumption
+ (1 − 𝛼1) ⋅

clean heat

total heat
) ⋅

comfort

(1 + degradation) ⋅ (1 + water use)
 (110) 
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“Total heat” refers to the total amount of thermal energy delivered to the water flow. “Electric 

consumption” refers to the total consumption by all electric devices of the system. Thus, the 

fraction “total heat/electric consumption” is a prize for increasing the amount of heat delivered, 

while at the same time decreasing the consumption of electric energy. The fraction “clean heat/total 

heat” is a prize for increasing the heat coming from clean sources (solar collectors and chiller). 𝛼1 

is a parameter in the interval [0, 1] to measure the importance given to each of these two fractions. 

Note that the reward is defined so that the primary purpose of the agent is to keep a warm water 

supply in the dressing rooms. If it does not do it, the reward becomes automatically zero. 

In reward function shown by Equation 110, a small value of 𝛼1 means an “incentive” to use either 

the solar collectors or the chiller to heat the water flow. However, there is no direct incentive to 

activate the chiller, whereas in reality, it might be desirable to use the chiller for reasons which are 

external to the water heating system, like cooling the building, or heating and dehumidifying the 

pool (actually, these are the main purposes of the chiller). For this reason, a second reward function 

is proposed with a direct prize for using the chiller: 

𝑅2 = (
total heat

electric consumption
+ 𝛼5 ⋅ (Chiller Use)) ⋅

comfort

(1 + degradation) ⋅ (1 + water use)
 (111) 

Here, “Chiller Use” is defined as: 

 Chiller Use = {
1          if                the Chiller was used
0          if      the Chiller was NOT used

 (112) 

𝛼5 is a parameter to measure the “prize” that is given to the agent for using the chiller. Clearly, this 

way of encouraging the agent to activate the chiller is not very realistic, because in the actual 

system, the need for using the chiller is due to the need for cooling the chilled water flow, which 

is being heated by sources that the simulation is not modeling in detail. For this reason, in order 

accurately train the agents to use the chiller for its main task, it would be necessary to add the 

cooling loads of the chiller to the simulation. 

4.4. Environment state 

The state is the information about the environment that the agent has access to. In this study, only 

the latest observation that the environment yields is used by the agent to make a decision. For this 

reason, from this section onwards, the term “state” or “environment state” will be used 

interchangeably with “observation”. 

The state of the environment, i.e. the water heating system, is defined by 10 variables: 

1. Time of day (from 0 to 24) 

2. Time of year (from 0 to 8760) 

3. Outside dry bulb temperature 

4. Solar radiation 

5. Preheating Tank 1 Temperature (solar stage) 

6. Preheating Tank 2 Temperature (heat recovery stage) 

7. Mean Temperature of the four Heating Tanks (3rd heating stage) 

8. Mains water temperature 

9. Inlet temperature in the evaporator side of the chiller (chilled water side) 

10. Current warm water demand in the dressing rooms 
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All variables are normalized between 0 and 1. The hour of the year is also converted to a sine wave 

in order to avoid the discontinuity from 1 to 0 that would be produced when beginning a new year. 

This sine wave is equal to one at the beginning and at the end of the year, and equal to zero in the 

middle. 

4.5. TRNSYS-Python connection 

As discussed above, in order to make the training process possible, the TRNSYS software must be 

connected to the Python programming language, which is used to do all Machine Learning-related 

computations. In order to achieve this, Python has to receive certain results from TRNSYS as the 

simulation progresses, and it also has to be able to impose the decisions made by the agent, so that 

these decisions change the conditions of the simulation. Figure 17 shows a basic diagram of the 

operation of the platform. This figure can be considered as a more “detailed” version of the 

structure shown in Figure 3. It also considers the fact that only the latest observation is considered 

by the DNN in order to make decisions. The figure also shows that the Python Script should impose 

failures on the system; this is done only in Section 6.5 of this Thesis. 

 
Figure 17: Structure of the DRL algorithm 

TRNSYS has two “types” (i.e. elements which can be added to simulations) that make the 

interaction with Python possible. One of them is called Type 163 [53], and it works the following 

way: a data file (.dat), which contains all variables that will be passed to the Python script, is created 

by TRNSYS on every iteration of the simulation in the working directory. Then, Python imports 

the file with the outputs from TRNSYS and processes them following the code of the script. The 

results that Python yields are written in another data file, which is created in the working directory 

as well. This file is then imported by TRNSYS to continue the simulation (this is repeated on every 

TRNSYS-iteration; see “TRNSYS iterations” below). This method of connecting TRNSYS with 

Python has the advantage that it allows the use of Python libraries like Numpy [54], Scipy [55] and 

Tensorflow [56]. However, the process of writing the data files in the hard disk is very slow. 

The other type that enables the TRNSYS-Python link, called Type 169 [53], is considerably faster. 

As a reference, a very simple Python code was tested with both types (163 and 169); Type 163 

needed approximately 2.5 minutes to simulate a single day, whereas Type 169 made the same in 

less than 5 seconds. Type 169 achieves this by directly passing the variables to Python, instead of 

the input/output files described above. However, Type 169 only allows the use of basic Python 

libraries, i.e. the libraries that are included with the Python installation. Therefore, Numpy, Scipy 

and Deep Learning-specialized libraries cannot be used when Type 169 is being used to establish 

the connection. Considering the great difference in simulation speed when both options are 

compared, it was decided that it was unviable to use Type 163. Therefore, Type 169 was selected 
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and, for this reason, all the DNN and DRL algorithms, as well as the gradient calculations, had to 

be developed and implemented from scratch by using basic Python features like Lists [57] and the 

random [58] and bisect [59] libraries. In Section 3.1 and subsections, all details regarding DDNs 

and the backpropagation algorithm are detailed, and in Section 3.2 and subsections, the algorithms 

to carry out the training process through DRL are discussed. 

Another issue is the fact that, under the connection mode just described, the whole Python script, 

from beginning to end, is run once every TRNSYS iteration. Therefore, Python cannot store the 

variables from previous time steps while the TRNSYS simulation progresses. The proposed 

solution is to store the parameters of the DNNs and other auxiliary data necessary for training in 

text (.txt) files and to import them when they are needed. 

With all these considerations, a more detailed diagram of the structure of the training platform is 

shown in Figure 18 and discussed below. 

 
Figure 18: Structure of the training platform 

Figure 18 shows the three main components of the platform: the simulation in the TRNSYS 

software, the Python script used to develop the controlling agent and the data stored in the hard 

disk. When a control decision has to be made, the network parameters are imported from a text file 

(purple arrow). The network evaluates the environment state, which is computed by the Python 

Script, based on the results delivered by the TRNSYS simulation (blue arrow at the top). With this 

information, a decision is made by the network and imposed on the TRNSYS simulation (red 

arrow). The chosen action (one of the 16 options shown in Table 1) is given as four values to 

TRNSYS; each of these values is either zero or one, and it tells the simulation if the corresponding 

system has to be activated (1) or deactivated (0). 

In addition to this, the network has to be updated in order to improve the decisions made by the 

agent (orange arrow). The method to update the network will depend on the DRL algorithm that is 

being used (REINFORCE, Actor-Critic or Deep Q-Learning). All training algorithms depend on 

“auxiliary data” to update the DNN (in the case of the actor-critic algorithm, it depends on the 

auxiliary network that computes state values). This auxiliary data (shown in the figure as 

“Auxiliary data for training”) is imported from text files, as the brown arrow shows. When the 

network is updated, the new parameters are stored in the hard disk as the dark green arrow shows; 

this allows to import the new parameters of the DNN on future time steps. In addition to this, the 

training algorithm must update the auxiliary data with the new interaction data that is experienced 

by the agent (light green arrow). To achieve this, it registers the actions taken by the agent (red 
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dotted arrow at the top) as well as the simulation results (blue arrow in the middle). The simulation 

results delivered by TRNSYS include the quantities that must be computed as integrals over time, 

like the heat delivered to the water, the electric consumption, the “comfort” indicator (see Equation 

105) and the “degradation” indicator (see Equation 107). These integrals are computed by a 

specialized TRNSYS component, called Type 24. 

Besides, the script is used to record the agent’s performance and behavior in order to be analyzed 

once the simulation is over (this is shown by the blue arrow and the red dotted arrow at the bottom). 

This data is recorded in text files (.txt) as well. 

Reinforcement Learning time steps and simulation time steps 

Now it becomes necessary to make an important distinction. From the point of view of the RL 

process, a time step consists of a cycle of: a state, an action and a reward. From the point of view 

of TRNSYS, a time step is a short amount of time that the software uses to discretize the transient 

process that is being simulated. Therefore, a time step for the simulation software is much shorter 

than a time step for the RL algorithm, which in this case lasts two hours. 

TRNSYS calls the Python script on every simulation time step, even though the script is only 

supposed to execute actions on the simulation every two hours. The solution to this is that, in the 

timespan between two actions, the Python script keeps imposing the same “order” to the simulation 

on every simulation time step until a new action is required. This also avoids having to import the 

DNN parameters on every simulation time step, which would make the process remarkably slower. 

This process is shown in Figure 19. 

 
Figure 19: Process that must be repeated on every simulation time step 

As already discussed, the Python script is run from the beginning on every simulation time step, 

thus it cannot “remember” what the action of the previous time step was. For this reason, the 

simulation has to “remind” the Python script of what order was imposed in the last simulation time 

step. This is also shown in Figure 19. 

Although at 10.00 PM the agent does not have to execute an action on the system, at that time the 

Python script does not simply return the same action from the previous time step because there are 

other important things to do, e.g. training the DNN, storing the last reward of the day, etc., so a 

very similar process must be carried out at that time but no action is imposed on the system.  

In order to achieve that TRNSYS returns the last received “order” to Python, a feature of TRNSYS 

that is called “equation” is used. An equation is an element that can be added to simulations in 

order to make calculations; it also provides basic programming features. Like any other “type” of 

TRNSYS, equations receive inputs from other elements of the simulation and yield outputs. 
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In Figure 20, the TRNSYS equation that is used to control the chiller is shown. The inputs of the 

equation are shown in the upper left part of the window; one of these inputs is the decision that the 

Python script made regarding the use of the chiller, and it is called “NN_order” in the equation 

window. Clearly, this input is received from the Type 169 that calls the Python script. The input 

“NN_order” can have two values: one or zero. If its value is one, the chiller is supposed to be used. 

The outputs of the equation can be seen in the upper right part of the window; one of them is called 

“NN_order_chill_back”. As can be seen below, this output is defined as the same value of the 

“NN_order” input, i.e. the same value that was received from the Type 169 as the “order” of the 

Python script. This output is delivered to Type 169; in this way TRNSYS can “remind” Python of 

the last order that it delivered. 

The other input of the equation, called “op”, is equal to one during the day and it becomes zero at 

night. The “chiller_control” output is defined as op*NN_order, and it is used to control the chiller. 

Therefore, if the value of the “NN_order” input is one and it is daytime, the chiller is used. 

 
Figure 20: TRNSYS equation used to control the chiller 

TRNSYS iterations 

Up to this point, there is a very efficient way for the Python script to keep imposing the same 

decision in the time span between an action and the next one. 

Nevertheless, there is still a problem that occurs at the moment of executing a new action on the 

system, i.e. at the times of day when the agent has to evaluate the state of the system and make a 

decision. The problem is that TRNSYS not only calls the Python script on every simulation time 

step, but also on every iteration. Iterations are calculations that the software makes several times 

per time step, until the conditions for convergence are met. 

The problem that iterations generate is as follows: the condition to execute a new action on the 

system is that the current time of day must be one of the previously specified times: 8.00 AM, 

10.00 AM, 12.00 PM, 2.00 PM, 4.00 PM, 6.00 PM, 8.00 PM, 10.00 PM (at 10.00 PM no action is 

executed, but there are other things that must be carried out by the Script). This condition will be 

met in all iterations of the corresponding time step. Therefore, the agent will impose a new order 
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on every TRNSYS iteration of the time step (provided that the time of day is one of the 

aforementioned ones). Since the actions are completely random at the beginning of the simulation, 

it is almost certain that the agent will impose different actions during the same time step, which 

causes problems with the convergence of the time step. 

To solve this, the Python script has to impose a single action when the time to execute an action 

has come, and not an action for each iteration. To achieve this, a text file is created to store at what 

time the last decision was made. When it is time to make a new decision, the Python script imports 

this file; if the stored time is not equal to the current time, the Python script makes a new decision 

and updates the text file with the current time. In the next iteration of the same time step, the Python 

script imports the same file, but the stored time is now equal to the current time, so the Python 

script repeats the same decision that was decided on the previous iteration. With this method, the 

agent executes a new action only once at the corresponding time step. The process is illustrated in 

Figure 21, which is an extension of the process shown in Figure 19. 

The process explained above implies that the decision is made on the first iteration of the time step; 

this is not optimal because the values of the environment state are still being calculated; however, 

they are expected not to be far from the final values. 

 
Figure 21: Process for every TRNSYS iteration. 

At 10.00 PM no action is imposed on the system, but an analogous process must be carried out to 

store the last reward of the day, train the network, etc. At that time the “time of last action” file 

must be updated as well, in order to not repeat the process several times. 

Pseudo-code versions of the Python codes that were used to initialize the agents and to train them 

are included in Section 4.7. But first, it is necessary to discuss the introduction of stochastic failures 

into the water heating system simulation. 

4.6. Introducing stochastic failures 

The goal of introducing stochastic failures is that the devices of the system go through temporary 

and unpredictable states of failure. The agent is expected to manage the system in such a way that 

the goal of delivering hot water to the dressing rooms is achieved. The failure states are temporary 

because all devices that can fail can also be repaired. 
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4.6.1. Failure rates of individual devices 

The items in the system are considered to have constant failure rates. The failure rates are based on 

data of OREDA (Offshore Reliability Data Handbook [60]) (see Section 3.3 for details on 

reliability theory). 

The repair rate is assumed to be constant as well; this means that, given that the device has failed, 

the chance of being put into operation in the “near future” is constant, regardless of the time span 

during which the device has been out of operation. These assumptions allow the use of discrete-

time time-homogeneous Markov chains for the simulation of stochastic failures of the devices of 

the water-heating system. Repairs guarantee that all states are reachable regardless of the state 

where the Markov chain starts (see Section 3.4 for details on Markov chains). 

Since in the OREDA book there is no specific data for heat pumps and chillers, these devices are 

split into their component parts. Since all components of the devices are necessary for the device 

to work, the total failure rate of the device is the sum of the failure rates of its components (see 

Section 3.3.3). 

Each heat pump is considered to be composed of (see Section 3.6 for theoretical information on 

heat pumps): 

- Three heat exchangers: two internal heat exchangers of the machine (evaporator and 

condenser) and one heat exchanger to transfer the heat to the water flow that goes to the 

dressing rooms (heat exchangers 5 to 8 in Figure 14). 

- A compressor. 

- Two water pumps: one pump moves the water from its respective heat pump to the heat 

exchanger (heat exchangers 5 to 8 in Figure 14); the other pump recirculates the water from 

its respective heating tank (pumps 9 to 12 in Figure 14) to extract heat from the heat pumps. 

- An expansion valve. 

- Three electric motors: one motor for the compressor and one motor for each water pump. 

The chiller is considered to have exactly the same components as the heat pumps, but a 

simplification has to be made: in the case of the chiller, there are two heat exchangers to transfer 

heat to the water flow that goes to the dressing rooms (heat exchangers 3 and 4 in Figure 14). 

Therefore, if only one of these heat exchangers works, it is possible for the chiller to partially fulfill 

its task of heating that flow. However, the heat exchangers are not in parallel either, because if only 

one of them works, the system will not be equally efficient. Besides, if the heat exchangers were 

assumed to be in parallel, the system would not have a constant failure rate anymore, and the 

markovian model could not be used. For this reason, the chiller is assumed to have three heat 

exchangers: evaporator, condenser and the “external” heat exchanger that represents the two 

aforementioned heat exchangers. Assuming four heat exchangers in series is not correct either, 

because this model would have a lower reliability than the model with three heat exchangers, and 

the real system has at least the same reliability as the latter. Hence, the model with three heat 

exchangers in series will be used. With this, the chiller has the same components as one of the heat 

pumps. Actually, the assumption that is made regarding this topic is not very important, because 

the failure rate of the heat exchangers is relatively low in comparison to that of other components, 

so their contribution to the global failure rate is not high (this will be detailed below). Like the heat 

pumps, the chiller is assumed to have two associated pumps as well, but in the case of the chiller, 

one of these pumps is the one that moves the heated flow (pump 7 in Figure 14) and the other is 

the one that moves the cooled flow (pump 8 in Figure 14). 
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The solar stage is considered to be composed of two systems that can fail independently: each 

system is composed of a water pump (pumps 3 and 4 in Figure 14), the motor of the pump and a 

heat exchanger (heat exchangers 1 and 2 in Figure 14). Each of these “pump-motor-heat exchanger 

groups” is going to be called “pump-heat exchanger pair” in the coming sections (the motor of the 

pumps is considered to be part of the pump in the name, but from the point of view of the OREDA 

book, they are different components so their failure rates have to be summed). The probability of 

failure of the solar field is neglected because many rows of solar collectors operate in parallel (see 

Figure 13); therefore, if a collector fails, the solar field can still operate partially with the other 

rows. (From a reliability point of view, the collectors are not completely parallel because they do 

not operate equally well without a row of collectors, but this is being neglected). (Actually, failure 

of the solar field can be considered as a common-cause failure, which, as shall be discussed later, 

is considered as well. Nevertheless, the failure rate of the solar field is not calculated in detail). 

The heat pumps can fail independently from each other, as well as the two pump-heat exchanger 

pairs of the solar stage (for the chiller there are no redundant items). For the heat pumps, it is 

considered that at least three of them must be operative in order for the third heating stage to operate 

(because with less heat pumps being operative, the remaining ones will require too much effort to 

keep their respective tanks at 60°C). In the case of the solar stage, at least one of the pump-heat 

exchanger pairs must be operative. The state (functional or not functional) of a heating stage does 

not influence the failure probability of the other two. 

There is also the option of common-cause failures. Common-cause failures produce the immediate 

failure of a whole system; i.e., despite several redundant devices may be operative, a common-

cause failure takes all of them out of operation. Each heating stage is independently subject to 

common-cause failures. In the case of the third heating stage (heat pump system), the rate of 

common-cause failures is 40% of the failure rate of a single heat pump; for the solar stage, the rate 

of common-cause failures is 40% of the failure rate of one pump-heat exchanger pair; and for the 

chiller, the rate of common-cause failures is 40% of the failure rate of the chiller. 

The pumps that recirculate the water that is contained in the preheating tanks (i.e. Pumps 1, 2, 5 

and 6 in Figure 14) are not subject to failures; here is why: these pumps play a fundamental role in 

supplying water to the dressing rooms. If these pumps fail, several inconsistencies occur in the 

simulation; besides, the goal of introducing failures is to test whether the controlling agent is 

capable of handling the system despite such failures. If the pumps that recirculate water fail, there 

is nothing that the agent can do to compensate that, because the water supply in the dressing rooms 

would be interrupted (see Figure 14). 

The failure rates of the components considered to calculate the failure rates of the heat pumps, the 

chiller and the pump-heat exchanger pairs of the solar stage are summarized in Tables 2 and 3. As 

already discussed, these parameters were taken from OREDA [60]. 

 

 

 

 

 

 

 

 

 



56 

 

Table 2: Failure parameters of the heat pumps and the chiller 

Failure rate of heat exchangers 16.50 ⋅ 10−6  hr−1 

Number of heat exchangers per device 3 

Failure rate of compressors 268.58 ⋅ 10−6  hr−1 

Number of compressors per device 1 

Failure rate of pumps 65.40 ⋅ 10−6  hr−1 

Number of pumps per device 2 

Failure rate of expansion valves 25.97 ⋅ 10−6  hr−1 

Number of expansion valves per device 1 

Failure rate of motors 32.75 ⋅ 10−6  hr−1 

Number of motors per device 3 

Failure rate of heat pumps and chiller 

(failure rates of all components summed) 
573.10 ⋅ 10−6  hr−1 

Mean Time to Failure of Heat Pumps and Chiller 

(computed as shown in Equation 77) 
1744.9  hr 

Table 3: Failure parameters of the pump-heat exchanger pairs in the solar stage 

Failure rate of heat exchangers 16.50 ⋅ 10−6  hr−1 

Number of heat exchangers per pair 1 

Failure rate of pumps 65.40 ⋅ 10−6  hr−1 

Number of pumps per pair 1 

Failure rate of motors 32.75 ⋅ 10−6  hr−1 

Number of motors per pair 1 

Failure rate of one pump-heat exchanger pair 

(failure rates of all components summed) 
114.65 ⋅ 10−6  hr−1 

Mean Time to Failure of one pump-heat exchanger pair 

(computed as shown in Equation 77) 
8722.2  hr 

4.6.2. Construction of the Markov chains 

The failure rates that have just been calculated for the heat pumps, the chiller and the pump-heat 

exchanger pairs correspond to the constant hazard rates of these systems (see Section 3.3.1). 

Therefore, these values are useful in a mathematical model which is continuous in time. To build 

a discrete-time Markov chain with this parameters, Equation 74 can be used to estimate the failure 

probability between two consecutive instants. In other words, the failure rates just determined can 

be multiplied by the time span between two consecutive instants in the Markov chain, and this 

would yield the probability of failure in the time span between those instants. As expressed in 

Section 3.3.1, this is an approximation, but it is acceptable if the resulting probability is small. 

As already discussed, the functional states of the different heating stages are independent; i.e. there 

must be three independent Markov chains being executed at the same time, each one to define the 

functional state of one heating stage. 

The functional states of the devices will be determined by the same Python script that trains the 

DNNs. The time steps of the Markov chains will be executed at the same times of day at which the 

actions of the agents are executed (including at 10.00 PM; see Section 4.2 for details). Between 

consecutive “Markov time steps”, the Python script will keep imposing the same functional states, 

just as done with the actions of the agents (see Section 4.5 for details). Therefore, the time span 

between consecutive instants in the Markov chains is two hours. Here, an important simplification 
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is being made: the Markov chain is time-homogeneous; this means that the transition probabilities 

do not vary in time. Since no Markov time steps are executed at night, the transition probabilities 

between 10.00 PM and 8.00 AM of the next day must be the same as in the other time steps of two 

hours. The justification for this can be that the system is turned off at night, so the failure rates of 

the items of the system can be assumed to be lower. A more important simplification is the fact 

that the failure probability of an item does not change depending on whether the item is being used. 

If this were considered, it would be impossible to estimate the percentage of time that the system 

spends in each state, at least until after the training process. 

To determine the repair probabilities between two consecutive instants, the following assumptions 

are made: a single device (heat pump, chiller or pump-heat exchanger pair) has a mean time to 

repair of two weeks. A common-cause failure has a mean time to repair of three weeks. Given that 

eight time steps are executed each day, the expected number of time steps until repair of a single 

device must be equal to 8 ⋅ 14, and the expected number of time steps until repair of a common-

cause failure must be equal to 8 ⋅ 21. The random variable “time steps until repair” follows a 

geometric distribution (see Section 3.4.1); therefore, the probability of repair of a single device 

between two consecutive instants must be equal to 1/(8 ⋅ 14) = 0.00893, and the probability of 

repair of a common-cause failure must be equal to 1/(8 ⋅ 21) = 0.00595. 

The failure rates and repair probabilities just defined are summarized in Table 4. In the same table, 

the failure rates are translated into failure probabilities between consecutive instants of the Markov 

chains, considering a time span of 2 hours between consecutive instants. 

Table 4: Failure rates and failure and repair probabilities 

Item Value 

Failure rate of a heat pump 573.10 ⋅ 10−6  hr−1 

Common-cause failure rate of the heat pump system 229.24 ⋅ 10−6  hr−1 

Failure rate of the chiller 573.10 ⋅ 10−6  hr−1 

Common-cause failure rate of the chiller 229.24 ⋅ 10−6  hr−1 

Failure rate of a pump-heat exchanger pair 114.65 ⋅ 10−6  hr−1 

Common-cause failure rate of the solar energy stage 45.86 ⋅ 10−6  hr−1 

Time span between two consecutive instants in the 

Markov chains 
2 hours 

Failure probability of a heat pump between two 

consecutive instants 
1.146 ⋅ 10−3 

Common-cause failure probability of the heat pump 

system between two consecutive instants 
4.585 ⋅ 10−4 

Failure probability of the chiller between two consecutive 

instants 
1.146 ⋅ 10−3 

Common-cause failure probability of the chiller between 

two consecutive instants 
4.585 ⋅ 10−4 

Failure probability of a pump-heat exchanger pair 

between two consecutive instants 
2.293 ⋅ 10−4 

Common-cause failure probability of the solar energy 

stage between two consecutive instants 
9.172 ⋅ 10−5 

Repair probability of individual items between two 

consecutive instants 
8.93 ⋅ 10−3 

Repair probability of common-cause failures between two 

consecutive instants 
5.95 ⋅ 10−3 
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As already discussed, it is considered that at least three of the four heat pumps of the third heating 

stage must be operative in order for the third heating stage to operate. In the case of the solar stage, 

one of the two pump-heat exchanger pairs has to be operative. 

As can be seen in Figures 22 to 24, the Markov chains of the solar stage and the heat pump stage 

are more complex than the Markov chain of the chiller. The three following assumptions concern 

only the heat pump system and the solar energy system: 

1. When two items of the same heating stage are under failure state at the same time (state 3 in 

Figures 22 and 24), the repair rate will be equal to the repair rate of one of them. This 

assumption means that only one of the items is being repaired and not both at the same time. 

2. When one of the heating stages is completely out of operation, the items which have not failed 

yet cannot fail before the corresponding heating stage is put into operation again. This is why 

in state 3 (Figures 22 and 24) it is impossible for a common-cause failure to occur; and in states 

4 and 5 (Figures 22 and 24) it is impossible for a heat pump or a pump-heat exchanger pair to 

fail. Without this assumption the Markov chains would be far more complex. This also applies 

for the chiller in the sense that, when a common-cause failure has occurred, it is not possible 

for the chiller to fail as well, and vice versa. 

3. If one of the devices has failed (state 2 in Figures 22 and 24) and then a common-cause failure 

occurs (state 5 in Figures 22 and 24), then the device which had failed before can be repaired 

while the system continues under common-cause failure (this would mean transiting from state 

5 to state 4). However, there is also the possibility that the common-cause failure is repaired 

before the device (this would mean returning from state 5 to state 2).  

Therefore, the Markov chains that will be used to model stochastic failures are as shown in Figures 

22, 23 and 24. The arrows show the probabilities of changing states between consecutive instants; 

the values of the probabilities are better explained in Table 4. The probabilities of staying in the 

same state have not been written, but they can be easily calculated as one minus the total probability 

of leaving the corresponding state. 

 
Figure 22: Markov chain of the third heating stage (heat pump system) 
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Figure 23: Markov chain of the chiller 

 
Figure 24: Markov chain of the solar stage 

Tables 5, 6 and 7 show the steady-state probabilities for the Markov chains shown in Figures 22, 

23 and 24. As already discussed in Section 3.4.2, those probabilities can be interpreted as the 

percentage of time that each markovian system will spend, on average, in each possible state. 

Table 5: Steady-state regime probabilities of the heat pump system (Figure 22) 

State Probability [%] 

1 55.4 

2 27.6 

3 10.6 

4 5.54 

5 0.850 

Table 6: Steady-state regime probabilities of the chiller (Figure 23) 

State Probability [%] 

1 83.0 

2 10.6 

3 6.39 

Table 7: Steady-state regime probabilities of the solar energy system (Figure 24) 

State Probability [%] 

1 93.6 

2 4.78 

3 0.123 

4 1.49 

5 0.0294 
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4.7. Pseudo-code versions of the Python Scripts 

In this section, the codes that are necessary to run a training simulation are detailed. The codes 

include the use of Markov chains to impose failures on the system, and they use the Deep Q-

Learning algorithm to train the network. With this characteristics, they could be interpreted as the 

codes used for Sections 6.5.1 or 6.5.3 of this thesis, depending on how the Markov chains and the 

set of possible actions are defined. 

4.7.1. Initializer 

The “initializer” is a code that must be run before beginning the TRNSYS simulation. The 

TRNSYS software does not interact with this code. It creates all text files that must be in the 

working directory in order for the simulation to work. An obvious example is the file that contains 

the parameters of the Deep Neural Network. The code is as follows: 

## the term “text file” is used for files that are stored in the working directory and are read, created and 
## modified by python 
initialize neural network parameters ##weights and biases, according to the method of Section 3.1.5 
initialize momentum, as a vector of zeroes 
create “online network” text file 
create “target network” text file 
create “momentum” text file 
store network parameters in “online network” text file 
store network parameters in “target network” text file 
store momentum in “momentum” text file 
create “Replay Memory” text files (empty files) 
create “Priority Numbers” text file (empty file) 
create “time of last action” text file 
write “0” on “time of last action” text file 
create “previous Markov states” text file 
write “1 1 1” on “previous Markov states” text file 
create “days since last target network update” text file 
write “0” on “days since last target network update” text file 
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4.7.2. Code to train the network 

The code detailed here is the one that is “called” by TRNYS on every TRNSYS iteration. As 

discussed above, on most iterations it only delivers the same action and Markov states that were 

defined in the previous “action instance”. Some parts of the code have been split from the code 

shown in Section 4.7.2.1, and are detailed in Sections 4.7.2.2, 4.7.2.3 and 4.7.2.4. 

4.7.2.1. Main code 

## “import” is used for variables imported from TRNSYS 
## “define” is used for variables specified by the user 
## the term “text file” is used for files that are stored in the working directory and are read, created and 
## modified by python 
import time   ## total simulation time in hours 
import environment state variables 
import integrated values ##energy, degradation time, warm-water-supply-time, comfort indicator, etc 
import last action 
import functional states of the heating stages 
time_of_day = time%24 
time_of_year = time%8760 
if time_of_day in [8, 10, 12, 14, 16, 18, 20, 22]: 

open “time of last action” text file 
if time_of_last_action == time_of_day: 

enter = False 
else: 

enter = True 
else: 

enter = False 
define alpha_2 value   ## parameter of the reward function, associated to comfort 
if enter == True: 

define reward parameters (other than alpha_2) 
define training hyperparameters 
define transition probabilities of the Markov chains 
open “previous Markov states” text file 
compute new functional states of heating stages by executing a time step in each Markov chain 
open “online network” text file 
compute environment state 
if time_of_day == 8:  ## first state of the day 

execute “interaction at 8.00 AM” ## see Section 4.7.2.2 
else: 

open “previous integrated values” text file 
compute variations of integrated values by subtracting previous ones from current ones  
compute reward with the variations of integrated values and the previous action 
if time_of_day == 22: ## terminal state 

execute “interaction at 10.00 PM” ## see Section 4.7.2.4 
else: 

execute “interaction from 10.00 AM to 8.00 PM” ## see Section 4.7.2.3 
create new “previous integrated values” text file 
store integrated values just received from TRNSYS in “previous integrated values” text file 
update “previous Markov states” text file 
update “time of last action” text file with current “time_of_day” 
impose selected action At on TRNSYS (as defined in Subsections 4.7.2.2, 4.7.2.3 and 4.7.2.4) 
impose new functional states of the three heating stages on TRNSYS 
impose alpha_2 (parameter of the reward function) on TRNSYS 

else: ## no interaction between Python and TRNSYS is needed 
impose the same action just received from TRNSYS 
impose the same functional states of the heating stages just received from TRNSYS 
impose alpha_2 (parameter of the reward function) on TRNSYS 
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4.7.2.2. Interaction at 8.00 AM 

compute epsilon ## (from eps-greedy) (calculation based on “time” imported from TRNSYS) 
x = random value between zero and one 
if x < epsilon: 

At = action selected randomly ## choose action to execute 
else: 

evaluate environment state with online network 
At = action considered to be the best by the agent ## choose action to execute 

create new “daily action record” text file 
create new “daily environment state record” text file 
store selected action At in “daily action record” text file 
store environment state in “daily environment state record” text file 

4.7.2.3. Interaction from 10.00 AM to 8.00 PM 

compute epsilon ## (from eps-greedy) (calculation based on “time” imported from TRNSYS) 
x = random value between zero and one 
if x < epsilon: 

At = action selected randomly ## choose action to execute 
else: 

evaluate environment state with online network 
At = action considered to be the best by the agent ## choose action to execute 

update “daily action record” text file by adding the action At just selected 
update “daily environment state record” text file by adding the current environment state 
if time_of_day == 10: 

create new “daily reward record” text file 
store reward in “daily reward record” text file 

else: 
update “daily reward record” text file by adding the reward just received 
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4.7.2.4. Interaction at 10.00 PM 

## action to execute is always the same at 10 PM (see next line) 
At = all three heating stages ON; auxiliary flow OFF ## choose action to execute  
open “daily action record” text file 
open “daily environment state record” text file 
open “daily reward record” text file 
update daily reward- and environment state-record with the last reward and state of the day  
open “Replay Memory” text files 
open “Priority Numbers” text file 
update Replay Memory with experiences of the current day 
update Priority Numbers by evaluating the new experiences with the online network 
if length of “Replay Memory” and “Priority Numbers” is more than the limit: 

erase oldest experiences until reaching the maximum allowed length 
if time-span before training is over:   ## i.e. if the agent is being trained 

open “target network” text file 
open “momentum” text file 
select random set of experiences to form the batch with the “prioritized” method 
define target vector for each experience (Normal DQN or Double DQN method) 
compute gradient for each experience (online network) 
compute new priority number for each experience of the batch 
update Priority Numbers of experiences that were added to the batch 
average gradients and update momentum 
update online network with the momentum 
update “online network” text file 
update “momentum” text file 
open “days since last target network update” text file 
if days_since_last_target_network_update == target_network_update_period - 1: 

update target network by copying online network 
update “target network” text file 
days_since_last_target_network_update = 0 

else: 
days_since_last_target_network_update = days_since_last_target_network_update + 1 

update “days since last target network update” text file with the new value 
update “Replay Memory” text files 
update “Priority Numbers” text file 
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Chapter 5: Methodology 

5.1. Stages of the study 

The experiments can be divided into five main sections. In the four first parts, all experiments 

(simulations) are conducted with systems that are not subject to failures; i.e., they are completely 

operational 100% of the time. 

In the first part, the three training algorithms (REINFORCE, Actor-Critic and Deep Reinforcement 

Learning; see Section 3.2 and subsections for details) are tested and compared. 

In the second part, DRL-trained agents are compared to a baseline (not smart-controlled) simulation 

of the system. In the baseline, all heating stages of the system are permanently used and the 

auxiliary flow is not used. Rewards are used as metric to compare the baseline to the smart agents. 

This is consistent because, independently of how a reward is defined, it is by definition what the 

agent is meant to maximize (as discussed in Section 1.5, the higher the reward, the better). The 

goal of this part is to prove that the proposed method is effective to train smart agents that can 

perform better than the baseline strategy. 

In the third part, the performance of the agents is analyzed as the training hyperparameters are 

changed. Different network architectures are also tested and compared. In this part, the main goal 

is to compare the rewards achieved by agents that were trained with different hyperparameters, and 

to determine the hyperparameters that maximize the performance of the agents. 

In the fourth part, the behavior of the agents (i.e. the actions that they choose) is analyzed as the 

parameters of the reward function are changed. Modifying the parameters of the reward function 

is equivalent to changing the goal that the agent is meant to achieve. In this part, comparing the 

rewards of different agents does not make sense, because some agents will reach larger rewards 

than others only because of the reward definition that they were trained and tested with. What 

makes sense in this part is to analyze the actions that were chosen by the agents, which are expected 

to vary as the goal that the agent is supposed to seek is modified. 

In the fifth part, the ability of the agents to operate the system under stochastic failures is analyzed. 

To do this, new agents are trained in an environment where the components can fail as well. Two 

types of agents are analyzed and compared: the first type of agent receives the same environment 

state that was defined in Section 4.4, with 10 variables. The second type of agent receives extra 

variables that define the functional state of the system; i.e. the agents of this second kind are being 

“told” which components of the system are operating and which not. In order for the agents of the 

first kind to be successful, they have to “infer” this information from the other variables of the 

system, like the temperatures of the water in the storage tanks. 

5.2. Result Analysis 

Depending on the goal of each specific test, different results need to be taken into account. One of 

the main metrics to compare different agents are the rewards received by them. To visualize the 

rewards, all rewards of each simulation day will be summed, and then they will be plotted with 

time in the horizontal axis. Hence, each point in the graph represents one simulation day and the 

total amount of rewards received on that day. 

An example of the rewards that were received during a training process is shown in Figure 25. 12 

years (4380 days) were simulated. It can be clearly seen that the rewards increase as the agent 
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learns to execute better actions on the system. There is a clear cyclical behavior in the rewards due 

to the fact that in summer there are many conditions that make it easier for the agent to get higher 

rewards: higher solar radiation availability, warmer temperature of the mains water flow and hotter 

air temperature, which increases the efficiency of the air-water heat pumps. The raw rewards, 

shown in blue, are very noisy, so for most comparisons a “moving average”, shown in orange, will 

be used to smooth the result. In the figure, a “time window” of 21 days is being used to compute 

the moving average corresponding to each day. The 21 days correspond to the ten previous days, 

the ten next days and the day itself for which the time window is being computed. This time window 

of 21 days will be used for the first four parts of the study (as defined in the previous section) with 

the exception of Figure 64 which uses a time window of 7 days. In the fifth part of the study, where 

failures are introduced, the time window will always be 7 days; i.e. the three previous days, the 

three next days and the day itself. 

 
Figure 25: Rewards of each simulation day summed. 

Another result that will be commonly shown is the actions that the agents took during one 

simulation year. This is particularly important when the parameters of the reward function are 

changed; in this case, it does not make sense to evaluate which agent got the highest rewards (since 

the rewards are defined in a different way for each agent), but it does make sense to evaluate how 

the actions of the agents change in order to achieve different goals defined by the reward parameters 

that are being modified. When the actions of the agents are evaluated, it is useful to take into 

account at what time of day and at what epoch of the year a particular action was taken. To do this, 

the number of times that a particular action (from the 16 possible actions that the agent can choose) 

was chosen at each time of day during each month of the year is counted. A visual way of 

visualizing this result is shown with an example in Figure 26. Each group of columns represents a 

moment of day at which an action has to be chosen. Within each group, each column represents a 

month (the columns are ordered from January to December). The different heights of the columns 

are due to the number days that each month has. Within each column, the colors represent the 

number of times during the corresponding month that a particular action was chosen at the 

corresponding time of day. At the right side of the figure, the actions of the agent are clarified by 

showing which systems are used. “H.P.” means “heat pumps” in the figures. 
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Figure 26: Visual illustration of the actions taken during one year 

Another way of visualizing the same result is by grouping the columns that correspond to the same 

month. This is shown in Figure 27. Within each group, each column corresponds to a time of day 

at which an action has to be chosen (the columns are ordered from 8.00 AM to 20.00 PM). Figures 

26 and 27 show exactly the same information but the information is presented in different ways in 

order to illustrate different features of the behavior of the agent. 

 
Figure 27: Alternative illustration of the actions taken during one year 

A way of visualizing each individual action of an agent is shown in Figure 28. This method 

theoretically gives more information than the two previous figures, but the trends are harder to 

visualize. Figures 26, 27 and 28 are made from the same action record. This last method of 

analyzing the actions will be especially useful when failures of the components are introduced, 

because in that case, the change in the behavior of the agent can be visualized exactly at the moment 

when a failure occurs. 
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Figure 28: Complete description of the actions visualized in Figures 26 and 27. 

Other indicators that will sometimes be considered are the ones that contribute to the calculation 

of the global reward function: the number of hours of a day during which the dressing rooms 

received water that was warmer than 40°C, the “total heat/electric consumption” indicator, the 

“clean heat/total heat” indicator, and the number of hours during which the solar collectors reached 

temperatures higher than 100°C. 
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Chapter 6: Results and Discussion 

6.1. Comparison of DRL algorithms 

In this section, the three training algorithms discussed in Section 3.2 and subsections are tested and 

compared. The training conditions, i.e. the architectures of the networks and other 

hyperparameters, are equal when it is possible to do so; however, each method has its own 

hyperparameters that have no analog in the other two, so it was not always possible to keep exactly 

the same conditions. For example, the Actor-Critic method has a second neural network that helps 

with training; this network can have its own architecture and its own learning rate. 

To begin, two agents are trained with each method and the resulting rewards are compared. Only 

the architectures of the networks are changed between the two tests. The first reward function, 𝑅1, 

as defined in Equation 110, is used with the 𝛼1 parameter being equal to one. This is equivalent to 

say that the second reward function 𝑅2 (defined by Equation 111) is used with 𝛼5 being equal to 

zero. The other parameters of the reward function are shown in Table 8 (see Section 4.3 for more 

details on the definition of the reward function). 

Table 8: Parameters of the reward function (DRL algorithm comparison) 

Parameter Value 

𝛼1 1 

𝛼2 0.5 

𝛼3 5 

𝛼4 1 

The architectures and other hyperparameters used for the REINFORCE, Actor-Critic and Deep Q-

Learning algorithms are shown in Tables 9, 10 and 11 respectively. In all neural networks, all 

hidden layers use the Rectified Linear Unit (ReLU) as their activation function, and the output 

layer has either no activation function or the Softmax activation function, depending on the case. 

The ReLU function is defined as: 

 ReLU(𝑥) = {
 𝑥        if       𝑥 > 0
 0        if       𝑥 ≤ 0

 (113) 
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Table 9: Hyperparameters and architectures for the REINFORCE method 

Total simulated time 20 years 

Discount factor 0.4  

Update period (How many episodes (days) are 

executed between the training steps?) 
10  

Learning rate 0.001  

Momentum factor 0.8  

Network architecture for Test 1 Input size: 10 

Hidden layer sizes (in order): 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: Softmax 

Network architecture for Test 2 Input size: 10 

Hidden layer sizes (in order): 48, 32, 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: Softmax 

Table 10: Hyperparameters and architectures for the Actor-Critic method 

Total simulated time 20 years 

Discount factor 0.4  

Learning rate of the actor network 0.0002  

Learning rate of the critic network 0.001  

Momentum factor of the actor network 0.8  

Momentum factor of the critic network 0.8  

Actor network architecture for Test 1 Input size: 10 

Hidden layer sizes (in order): 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: Softmax 

Critic network architecture for Test 1 Input size: 10 

Hidden layer sizes (in order): 24, 12 

Output size: 1 

Activation function of hidden layers: ReLU 

Activation function of output layer: None 

Actor network architecture for Test 2 Input size: 10 

Hidden layer sizes (in order): 48, 32, 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: Softmax 

Critic network architecture for Test 2 Input size: 10 

Hidden layer sizes (in order): 32, 24, 24, 8 

Output size: 1 

Activation function of hidden layers: ReLU 

Activation function of output layer: None 
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Table 11: Hyperparameters and architectures for the Deep Q-Learning method 

Total simulated time 20 years 

Discount factor 0.4  

Type of training (Normal DQN or 

Double DQN) 

Double DQN 

Update period of the target network 10 days 

Learning rate 0.001  

Momentum factor 0.8  

Network architecture for Test 1 Input size: 10 

Hidden layer sizes (in order): 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: None 

Network architecture for Test 2 Input size: 10 

Hidden layer sizes (in order): 48, 32, 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: None 

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is 

maintained at this value for two years, and the network is 

not updated. This period is used to fill the replay memory. 

- After two years the value of 𝜖 starts to decline linearly; 

it reaches its minimum value of 0.2 at 12 simulation years. 

When the value of 𝜖 starts to decline, the network also 

begins to be updated once at the end of each day. 

- Between 12 years and 20 years of simulation, the value 

of 𝜖 remains constant at 0.2. 

Length of the replay memory (in 

experiences) 

6000 

Batch size 100 

Prioritized experience replay - The proportional method is used to determine the 

priority number, as shown by Equation 56. 

- The value of 𝛼 is set to 1. 

- The value of 𝜙 is set to 0.2. 

- The value of 𝜓 is set to 0 

Figures 29, 30 and 31 show the results of the REINFORCE algorithm, the Actor-Critic algorithm 

and the Deep Q-Learning algorithm respectively. In each figure, the graph at the top shows the 

result of the first test and the graph at the bottom shows the result of the second test, with different 

architectures as defined in Tables 9, 10 and 11. 
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Figure 29: Results of the REINFORCE algorithm 

Top: Test 1. Bottom: Test 2 

 
Figure 30: Results of the Actor-Critic algorithm 

Top: Test 1. Bottom: Test 2 
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Figure 31: Results of the Deep Q-Learning algorithm 

Top: Test 1. Bottom: Test 2 

From the results shown in Figures 29, 30 and 31, it can be clearly seen that the Deep Q-Learning 

algorithm performs better than the other two algorithms. With the REINFORCE algorithm, the 

rewards seem to increase as the training process progresses, but this increase is not as remarkable 

as with the Deep Q-Learning method. In the first test with the REINFORCE algorithm, the rewards 

are quite high in summer, but they are also very low in winter, whereas with Deep Q-Learning the 

daily rewards rarely fall below 30 by the end of the training process. In the second test with the 

REINFORCE algorithm, it seems that the rewards start to increase consistently at the end of the 

training process. It seems that if this process is continued, the results could get better. With the 

Actor-Critic algorithm it does not seem that the rewards increase at all; instead, their behavior is 

similar during the whole training process. This could be because the hyperparameters are not 

appropriately tuned. 

It was decided to extend the training process shown at the bottom of Figure 29 (REINFORCE 

algorithm) for 20 more years, in order to see how much the rewards increase if this process is 

continued. Besides, three more tests are carried out with the REINFORCE algorithm with different 

hyperparameters in order to check if the convergence of the algorithm could be achieved faster. In 

all three tests, Architecture 2, as defined in Table 9, was used. The hyperparameters are changed 

with respect to the first tests as follows: in the first test, the learning rate was increased to 0.002; in 

the second one, the learning rate was kept at 0.001 but the update period was decreased to 5 days; 

in the third test, the learning rate was increased to 0.003 and the update period was increased to 20 

days. 

The result of the extension of the training process shown at the bottom of Figure 29 is shown in 

Figure 32. Regarding the three extra tests, the third of them (learning rate equal to 0.003 and update 

period equal to 20 days) seemed to be converging at the end of the 20 years of training, just like 

the previous case. For this reason, it was extended to 40 years as well. The resulting rewards are 

shown in Figure 33. 
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Figure 32: REINFORCE algorithm. Process shown at the bottom of Figure 29, extended to 40 years. 

 
Figure 33: REINFORCE algorithm. Learning rate was set to 0.003; update period was set to 20 days. 

As can be seen, both training processes have converged quite well, reaching acceptable and stable 

rewards. Regarding the Actor-Critic algorithm, more hyperparameter combinations were tested but 

no convergence was achieved. All results are similar to the ones shown in Figure 30. 

Considering the results shown above, it was decided to continue the study with the Deep Q-

Learning algorithm for the following reasons: 

- The convergence of Deep Q-Learning seems to be less sensitive to hyperparameter tuning. 

One of the known difficulties of Deep Reinforcement Learning in general is that 

convergence is often very hard to achieve (Géron [36], page 633), but in this case, Deep Q-

Learning seems to converge always and is not remarkably sensitive to hyperparameter 

variation. 

- Convergence of Deep Q-Learning is faster than that of the REINFORCE algorithm. As will 

be discussed in coming sections, convergence of Deep Q-Learning can be achieved in less 

than 10 years if the value of 𝜖 (from the 𝜖-greedy method, see Section 3.2.5.3 for details) 

is decreased faster. With REINFORCE, there is no direct control of the moment in which 

the training process converges, and in the case of the experiments that were conducted, 

convergence did not happen in less than approximately 20 simulation years. 

- The rewards achieved by the Deep Q-Learning training processes are higher than those of 

the REINFORCE algorithm. This can be appreciated when they are compared with more 
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precision. In Figure 34, the rewards received during the last training year of each method 

are smoothed with a moving average of 21 days. At the beginning and at the end of the 

year, the smoothed rewards are remarkably higher with both agents trained with the Deep 

Q-Learning algorithm. 

 
Figure 34: Smoothed rewards during the last simulation year. REINFORCE and Deep Q-Learning 

compared. 

For the reasons just mentioned, all the training processes in the coming sections will be made with 

the Deep Q-Learning algorithm. 

6.2. Comparison to a non-smart-controlled baseline 

In this section, the Reinforcement Learning approach to the task of controlling the studied water 

heating system will be validated by comparing the performance of a DRL-trained agent with a non-

controlled baseline. 

For the baseline, it will be considered that all heating stages are permanently used, and the 

“auxiliary flow” is never used. To evaluate the performance of both systems, their rewards will be 

compared. However, there is a problem that must be solved in order for the comparison to be “fair”: 

when the “total heat/electric consumption” indicator is used for the reward function, an easy way 

for the controlling agent to increase this indicator is to turn off the chiller, because the chiller is by 

far the most energy-consuming device of the whole system. The reason why in the baseline the 

chiller is permanently used is that in reality, the chiller is needed for purposes which are external 

to the system that is being simulated here. These purposes are heating the pool, dehumidifying the 

building and cooling it. For this reason, the second reward function was defined in Equation 111 

to take this “external motivation” to use the chiller into account. In this reward function, 𝛼5 is a 

parameter to define a “prize” that is given to the agent for using the chiller. As already discussed 

in the rewards section (Section 4.3), this is not an accurate way of modeling an “external 

motivation” to use the chiller; the only way to do that would be to model the rest of the building in 

order to quantitatively measure the cooling load of the chiller. However, the 𝛼5 parameter proposed 

here is a simple way to make the use of the chiller “desirable” in order to increase the rewards. 

The parameters of the reward function and the hyperparameters of the training process are shown 

in Table 12. 
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Table 12: Reward and training parameters for the comparison to the baseline. 

𝑅2 as defined in Equation 111 was used 

Reward Parameters 

Parameter Value 

𝛼2 0.5 

𝛼3 5 

𝛼4 1 

𝛼5 { 0 , 2 , 5 , 10 } 
Training Hyperparameters 

Total training time 11 years 

Discount factor 0.4 

Type of training (Normal DQN or 

Double DQN) 

Double 

Update period of the target network 10 days 

Learning rate 0.001 

Momentum factor 0.8 

Network architecture Input size: 10 

Hidden layer sizes (in order): 48, 32, 32, 24 

Output size: 16 

Activation function of hidden layers: ReLU 

Activation function of output layer: None 

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is 

maintained at this value for one year, and the network is 

not updated. This period is used to fill the replay memory. 

- After one year the value of 𝜖 starts to decline linearly; it 

reaches its minimum value of 0.2 at 5 simulation years. 

When the value of 𝜖 starts to decline, the network also 

begins to be updated once at the end of each day. 

- Between 5 years and 11 years of simulation, the value of 

𝜖 remains constant at 0.2. 

Length of the replay memory (in 

experiences) 

6000 

Batch size 100 

Prioritized experience replay - The proportional method is used to determine the 

priority number, as shown by Equation 56. 

- The value of 𝛼 is set to 1. 

- The value of 𝜙 is set to 0.2. 

- The value of 𝜓 is set to 0 

6.2.1. Testing method 

To compare the smart agents to the baseline, both will be tested under conditions that are different 

from those of the training process. During the test period, the smart agents are not trained (i.e. the 

parameters of the neural network are not updated) and no random actions are chosen (i.e. the actions 

which have the highest estimated Q-Value are always chosen). The rewards received by the smart 

agents will be compared to the rewards received by the baseline system during a time period of one 

year (from January 1 to December 31). It makes no sense to compare the rewards during a longer 

time span because the smart agents will repeat their decisions in the next years and therefore the 
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rewards will be very similar. Only the initial conditions of the simulation could create small 

differences between a year and the next one. To avoid the problem of the initial conditions, two 

years and 10 days will be simulated, and the second year will be considered for the results. The 

rewards will be smoothed, as discussed in Section 5.2, using a moving average of 21 days. That is 

the reason for simulating two years and 10 days: the last ten days are used by the moving average 

to smooth the rewards until the last day of the second year. The last ten days of the first simulation 

year are also necessary to compute the moving average on the first day of the second year. The 

same testing method will be used in the coming sections as well. 

6.2.2. Results 

Four different values of 𝛼5 were considered: 0, 2, 5 and 10. Clearly, a different agent must be 

trained with each value of 𝛼5. Figure 35 shows the smoothed rewards of the smart agents and the 

baseline during the test period, for the each value of 𝛼5. The white and gray stripes at the 

background show the seasons of the year, starting and ending with summer. A detail worth 

mentioning is that the first trained agent is being shown in each case, so there is the option that 

better agents can be achieved if more attempts were executed. 

 
Figure 35: Results of the comparisons between the smart agents and the baseline 

As Figure 35 shows, with the two lower values of 𝛼5, the rewards that the smart agents got are 

clearly higher than those of the baseline during the whole year. When 𝛼5 was set to five, there is a 

small portion of the year during which the rewards of the baseline model are roughly equal to those 

of the smart agent. When 𝛼5 was set to ten, the rewards of the smart agent are better in spring and 

in summer, and they are practically equal to the rewards received by the baseline during autumn 

and winter. This is because the best strategy that the smart agent found for the cold months with 

that value of 𝛼5 is very similar to the strategy of the baseline. The general trend is that as the “prize” 

for using the chiller increases, the smart agents have a narrower margin to outcompete the baseline. 

By comparing the actions chosen by agents that were trained with different values of 𝛼5, it can be 

seen how they chose to use the chiller with different frequencies. In Figure 36, which shows the 

actions chosen by the agent trained with 𝛼5 equal to zero, the chiller was turned on in the actions 
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shown in blue and in red. This happened mainly during the central months of the year at 6.00 PM 

and at 8.00 PM. In Figure 37, which shows the actions chosen by the agent trained with 𝛼5 equal 

to one, the chiller was turned on almost in every action, except for the actions that are shown in 

magenta and in red. From April to September, it can be seen that the agent almost always chose 

Action number 0, which is equivalent to the strategy that the baseline uses. Only at 8.00 PM the 

solar field is turned off.  

 
Figure 36: Actions taken by an agent trained with 𝛼5 equal to zero 

 
Figure 37: Actions taken by an agent trained with 𝛼5 equal to ten 

The 𝛼5 parameter is clearly not a good method to “encourage” the agent to use the chiller, because 

when the value of that parameter is large, the agent uses the chiller more frequently in winter than 

in summer, which is not realistic. However, it has been shown that the smart agent can find the way 

to at least perform as good as the baseline strategy, even if it must adopt the same strategy because 

there is no possible improvement. The agent only uses that strategy when it is needed, while in 

warm months it finds a way to outcompete the baseline. 

The reason why the rewards get smaller in summer with large values of 𝛼5 for both methods, is 

that the “total heat/electric consumption” indicator loses its importance in the reward (see Equation 

111). In this context of larger rewards, the “degradation” factor becomes important; this indicator 

becomes zero in winter, and in summer the smart agent makes more to avoid it (actually, the 

baseline strategy does nothing to avoid it); that is why the baseline performs worse than the smart 

agent in summer, but in winter both are equal.  

6.3. Comparison of different network architectures and training hyperparameters 

The main goal of this section is to optimize the training conditions by comparing different neural 

network architectures and training hyperparameters. Since the Deep Q-Learning algorithm is 
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defined by many hyperparameters, it is unfeasible to test all possible combinations with a “grid” 

exploration. Instead, only some of the important hyperparameters are modified: network 

architecture, discount factor, and normal DQN is compared to Double DQN. The importance of 

using momentum is also put to the test. 

The first reward function 𝑅1, as defined in Equation 110, is used. The parameters of the reward 

function are detailed in Table 13 (see Section 4.3 for details on the reward function). 

Table 13: Parameters of the reward function for Section 6.3 and subsections. 

The function 𝑅1 (Equation 110) is used. 

Parameter Value 

𝛼1 1 

𝛼2 0.5 

𝛼3 5 

𝛼4 1 

Since many steps of the training process depend on random results, the agents resulting from 

different training processes under the same conditions will be, at least, slightly different. These 

“random steps” are the weight initialization of the neural network, the selection of experiences to 

form the batches, the decisions on whether to execute a random action or to choose the action that 

the agent considers to be the best, and the selected action when a random action is chosen. For this 

reason, the performance of a single agent does not give enough information about a specific 

combination of hyperparameters; the performance of other agents that were trained under the same 

conditions could be very different. 

Because of this, to compare different values of the same hyperparameter (or different network 

architectures), several agents are trained with each value of the hyperparameter that is being varied, 

and then the performances of agents that were trained with the same hyperparameter value are 

averaged. Figure 38 shows an example of this. The curves shown in that figure were created 

randomly and do not reflect the performances of real agents. In the figure, each color represents 

one value of the hyperparameter that is being varied; three different agents were trained with each 

value. It is also useful to compute the standard deviation of the performances to check how variable 

the performance of agents that were trained with each hyperparameter value is. 

 
Figure 38: Process to compare different values of the same hyperparameter. Several agents are trained 

with each value (in this example 3 agents per value). 

As already discussed in Section 6.2.1, the agents are tested during 2 years and 10 days. The rewards 

obtained by the agents during the second year are smoothed with a moving average of 21 days. 
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6.3.1. Comparing Different Architectures 

In this Section, different layer sizes and network depths are compared. In all cases, the input 

dimension is 10 due to the environment state that was defined in Section 4.4, and the output layer 

has 16 neurons because the network produces a Q-Value approximation for each possible action 

(see Section 4.2 for details on the possible actions that the agent can choose). Figure 39 shows all 

architectures that are considered. Like in previous sections, the hidden layers use the ReLU 

activation function, which was defined in Section 6.1 (Equation 113). Table 14 shows the training 

hyperparameters. 

 
Figure 39: Architectures tested. 

Table 14: Hyperparameters of the Deep Q-Learning algorithm for Section 6.3.1 

Total training time 11 years 

Discount factor 0.6 

Type of training (Normal DQN or 

Double DQN) 

Double 

Update period of the target network 10 days 

Learning rate 0.001 

Momentum factor 0.8 

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is 

maintained at this value for one year, and the network is 

not updated. This period is used to fill the replay memory. 

- After one year the value of 𝜖 starts to decline linearly; it 

reaches its minimum value of 0.2 at 5 simulation years. 

When the value of 𝜖 starts to decline, the network also 

begins to be updated once at the end of each day. 

- Between 5 years and 11 years of simulation, the value of 

𝜖 remains constant at 0.2. 

Length of the replay memory (in 

experiences) 

6000 

Batch size 100 

Prioritized experience replay - The proportional method is used to determine the 

priority number, as shown by Equation 56. 

- The value of 𝛼 is set to 1. 

- The value of 𝜙 is set to 0.2. 

- The value of 𝜓 is set to 0. 



80 

 

Each architecture is trained 5 times. As discussed above, the smoothed rewards of the agents that 

have the same network architecture are averaged. Figure 40 shows the averaged results, and Figure 

41 shows the standard deviations. 

 
Figure 40: Mean smoothed rewards during the test year, considering 5 trainings for each architecture. 

 
Figure 41: Standard deviation of smoothed rewards during the test year, considering 5 trainings for each 

architecture. 

Upon observing the average results, all averaged rewards are quite similar. It is clear that the 

obtained rewards are considerably higher in summer (both sides of the graph) because it is easier 

for the agents to obtain more energy from the sun. This is consistent with the reward definition and 

it is the objective of the training process. 

Now, it is possible to compute the mean values of the curves shown in both Figures 40 and 41, thus 

obtaining a “mean of means” and a “mean of standard deviations” for each architecture. This is 

shown in Table 15.  
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Table 15: Mean values of the curves shown in Figures 40 and 41 

Architecture number Mean reward Mean standard deviation 

1 81.98 2.51 

2 81.84 1.79 

3 81.58 1.97 

4 83.21 1.65 

5 82.68 2.49 

6 83.17 2.61 

7 82.77 3.91 

It is remarkable that Architecture 7, which has the lowest performance in summer, also has the 

greatest rewards in winter, when the rewards reach their minimum. As can be seen in Figure 41 

and in Table 15 as well, the results of this architecture vary significantly, thus not being a good 

option. Architecture 4 seems to be the best option since it has the highest mean rewards and also 

the lowest variability, as shown in Table 15. 

6.3.2. Comparing Different Discount Factors 

The training hyperparameters shown in Table 14 are kept in this section, with the exception of the 

discount factor, which is the parameter that will be analyzed. Architecture 4 of the previous section, 

defined by Figure 39, is used. The 5 values considered for the discount factor are: 0.2; 0.4; 0.6; 0.8 

and 1.0. Five agents are trained with each discount factor value. The averaged performances of 

each value are shown in Figure 42. 

 
Figure 42: Averaged rewards when the discount factor is varied. 5 trainings for each value of 𝛾 

The most remarkable feature of the graph shown in Figure 42 is that 𝛾 equal to one got a clearly 

lower average performance. By visualizing the performance of the individual agents trained with 

that discount factor, it can be seen that this is because one of the training processes did not converge 

at all. Figure 43 shows the performances of the individual agents that were trained with 𝛾 equal to 

one. 



82 

 

 
Figure 43: Performances of the individual agents that were trained with 𝛾 equal to one 

Although the failed training process is a legitimate result that shows that there is the possibility of 

not achieving convergence with that discount factor, it would be interesting to answer the question: 

is 1 the best value for the discount factor if the failed training process is not considered? The answer 

is no, as shown in Figure 44. This figure shows the same results that are shown in Figure 42, but 

the worst result of 𝛾 equal to one is not being considered. During a small portion of the year, in 

winter, 𝛾 equal to one has the best average results, but for most of the year it is the worst of all 

discount factors. 

 
Figure 44: Average performances of the discount factors when the worst result of 𝛾 equal to one is not 

considered. 

Figure 45 shows the standard deviations of the rewards. All results are being considered, even the 

worst result of 𝛾 equal to one. That is the reason why the standard deviation of that discount factor 

value is so high. Figure 46 shows the deviations of the other discount factors, i.e. when 𝛾 equal to 

one is not considered. The only reason to plot this is to better compare the deviations of the other 

discount factors.  
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Figure 45: Standard deviations of rewards when the discount factor is varied. 

5 trainings for each value of 𝛾 

 
Figure 46: Standard deviations of rewards when the discount factor is varied. 𝛾 equal to one is not 

considered. 

Table 16 shows the average values of the curves shown in Figures 42 and 45. 

Table 16: Mean values of the curves shown in Figures 42 and 45. 

Discount factor Mean reward Mean standard deviation 

0.2 82.25 2.27 

0.4 83.54 1.38 

0.6 82.87 2.35 

0.8 82.96 2.27 

1.0 64.68 30.31 

From Table 16, and also from Figures 42 and 46, it can be concluded that 0.4 is the best value for 

the discount factor, both because it maximizes the average rewards and because it minimizes the 

variability of the performance of the agents. 
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6.3.3. Comparing traditional DQN to Double DQN 

The discount factor is now changed to 0.4, which is the best value discovered in the previous 

section. Architecture 4, as defined in Section 6.3.1, is still used in this section. All other parameters 

are the same as shown in Table 14. 

The two modes of DQN, traditional and double, are compared. 10 agents are trained with each 

method. As before, the smoothed rewards of all tests are averaged and their standard deviations are 

calculated. Figures 47 and 48 show the average rewards and their standard deviation, respectively. 

 
Figure 47: Traditional and Double DQN average rewards (ten agents were trained with each method). 

 
Figure 48: Traditional and Double DQN standard deviations (ten agents were trained with each method). 

The average values of the curves shown in Figures 47 and 48 are shown in Table 17. 

Table 17: Mean values of the curves shown in Figures 47 and 48. 

Training Mode Mean reward Mean standard deviation 

Traditional DQN 83.09 1.94 

Double DQN 83.66 1.63 
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The averaged results of both DQN modes are very similar. Double DQN has a small advantage at 

some moments of the year, but this advantage is small in comparison to the standard deviations. 

Regarding the standard deviations of both algorithms, there are moments when traditional DQN 

has a smaller deviation, but it also reaches maximum standard deviations which are considerably 

larger than those of the Double DQN algorithm. This is reflected in the results shown in Table 17, 

where the mean standard deviation of the Double DQN algorithm is smaller than that of traditional 

DQN. However, these results do not show a very large difference between both methods. Does this 

mean that the Double DQN algorithm is not better than traditional DQN as the creators of this 

algorithm claimed? Definitely not; these Deep Reinforcement Learning methods were created and 

tested in environments which are far more complex than this one, and where the convergence of 

the methods is far more difficult to achieve [44]; in this context, preventing the overestimation of 

Q-Values becomes fundamental, and because of this, Double DQN has shown to have a clear 

advantage. However, in the environment that is being studied here, Double DQN seems to not 

make such a great difference. 

6.3.4. Effect of momentum 

As discussed in Section 3.1.2, the technique of “momentum” is a way for the updating process of 

the network to gain “velocity” in successive iterations. This can lead to a faster convergence and 

also allows the training process to avoid “local optima”. 

In all previous tests, the momentum factor (here denoted as 𝛽) was set to 0.8. In this section, it was 

changed to 0.0; this means that momentum is not being used anymore. Ten agents were trained 

with Double DQN, momentum factor equal to 0.0 and all other hyperparameters of the previous 

section (Section 6.3.3). 

In Figure 49, the smoothed rewards of the agents trained with 𝛽 equal to zero are compared with 

the rewards of the ten agents that were trained with Double DQN in the previous section (Section 

6.3.3). The rewards are not averaged; instead, the performances of the individual agents are plotted. 

 
Figure 49: Performances when momentum is used and when it is not used 

From Figure 49, it is clear that momentum plays a fundamental role in the training algorithm, since 

all agents that were trained without momentum had a considerably worse performance in spring 

and summer. This can be attributed to the fact that the agents got stuck in a local optimum when 

momentum was not used. 
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6.4. Behavior comparison under different reward parameters 

In this section, the objective is not to look for the best parameters in order to optimize the 

performance of the agent, but to analyze how the behavior of the agent changes as the goal is 

changed, which takes place by changing the parameters of the reward function, as defined in 

Section 4.3. These parameters are meant to change the importance given to the indicators that are 

considered in the global reward function. In this context, it does not make much sense to compare 

the rewards that different agents get with different reward parameters, because when the parameters 

of the reward function are changed, then the rewards that the agents can expect to get change as 

well. Hence, it does not make sense to say “agent A got higher rewards than agent B” if agent A 

and agent B were trained and tested with different reward parameters. The only thing that agent A 

and agent B have in common is that they seek to maximize their respective reward function, and to 

achieve it they may take different decisions. 

The reward function 𝑅1, as defined in Equation 110, is used. 

Table 18 shows the training hyperparameters used for all tests in this section and subsections. 

Table 18: Parameters of the Deep Q-Learning algorithm for Section 6.4 and subsections 

Deep Neural Network Architecture Architecture 4, as defined in Section 6.3.1.  

Total training time 11 years 

Total simulation time 12 years; during the last simulated year the network is not 

updated and the selected actions are always the ones that 

the agent considers to be the best. 

Discount factor 0.4 

Type of training (Normal DQN or 

Double DQN) 

Double 

Update period of the target network 10 days 

Learning rate 0.001 

Momentum factor 0.8 

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is 

maintained at this value for one year, and the network is 

not updated. This period is used to fill the replay memory. 

- After one year the value of 𝜖 starts to decline linearly; it 

reaches its minimum value of 0.2 at 5 simulation years. 

When the value of 𝜖 starts to decline, the network also 

begins to be updated once at the end of each day. 

- Between 5 years and 11 years of simulation, the value of 

𝜖 remains constant at 0.2. 

Length of the replay memory (in 

experiences) 

6000 

Batch size 100 

Prioritized experience replay - The proportional method is used to determine the 

priority number, as shown by Equation 56. 

- The value of 𝛼 is set to 1. 

- The value of 𝜙 is set to 0.2. 

- The value of 𝜓 is set to 0 
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6.4.1. Changing the value of 𝜶𝟏 

The 𝛼1 parameter measures the importance given to the indicators “total heat/electric consumption” 

and “clean heat/total heat”. When it is equal to one, only the “total heat/electric consumption” 

indicator is taken into account; when it is equal to zero, only the “clean heat/total heat” indicator is 

taken into account. As stated before, “clean heat” refers to the heat coming from the solar collectors 

and the chiller. 

Table 19 shows the other parameters of the reward function that were constant while the value of 

𝛼1 was changed. 

Table 19: Reward parameters (other than 𝛼1) used in Section 6.4.1. 

Parameter Value 

𝛼2 0.5 

𝛼3 5 

𝛼4 1 

Figure 50 shows the “total heat/electric consumption” indicator of two agents during the 12 

simulated years; one of those agents was trained with 𝛼1 being equal to zero and the other one was 

trained with 𝛼1 being equal to one. The first 11 years correspond to the training process; the last 

year could be considered as a “testing year”, as explained in Table 18. Figure 51 does the same, 

with the same two agents, but taking the “clean heat/total heat” indicator into account.  

 
Figure 50: “Total heat/electric consumption” indicator. 𝛼1 takes the values 0 and 1. 
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Figure 51: “Clean heat/total heat” indicator. 𝛼1 takes the values 0 and 1. 

It can be seen that, when training begins, both indicators are approximately equal when comparing 

the two agents. This is because, in the beginning, the network does not know anything about the 

environment yet, and all actions are random. When the probability of executing random actions 

decreases, it becomes appreciable that the agents privilege different indicators according to the 

reward that they are seeking. When 𝛼1 is set to one, the agent only looks after the “total heat/electric 

consumption” indicator, and when 𝛼1 is zero, the same happens for the “clean heat/total heat” 

indicator. 

Note also that, when 𝛼1 is zero, the “clean heat/total heat” indicator takes the value 1.0 during the 

whole last year (during no random actions are executed). This means that the water flow only 

receives heat from the solar field and the chiller; hence, the agent does not activate the heat pumps 

during the whole year, clearly seeking not to decrease the value of this indicator. 

After the training processes shown in Figures 50 and 51, both agents were subjected to a testing 

period of two years and 10 days, as explained in Section 6.2.1. Figure 52 shows two other important 

indicators of the reward function that were recorded during that testing process: at the left, the daily 

hours during which the water coming out of the solar collectors reached temperatures higher than 

100°C; and at the right, the daily hours during which the water delivered to the dressing rooms was 

warmer than 40°C (this is considered to be the minimal comfortable temperature). In the case of 

the latter indicator, the expected value is 14 hours, which means that the water at the outlet of the 

system was warmer than 40°C from 8.00 AM to 10.00 PM. That indicator is not smoothed in Figure 

52. 



89 

 

 
Figure 52: Degradation indicator and comfort indicator during a test year. 

Left: Daily hours during which the water temperature in the collectors reached more than 100°C 

Right: Daily hours during which the temperature of the water delivered by the system was 

higher than 40°C. 

Although the 𝛼3 parameter of the reward function, which measures the “punishment” for reaching 

high temperatures in the solar collectors, has been kept constant, the 𝛼1 parameter seems to have 

an indirect effect on the amount of time that high temperatures are reached in the collectors, as can 

be seen at the left of Figure 52. 𝛼1 equal to one seems to be better from this point of view. However, 

with that value of 𝛼1, there were days on which the water coming out of the heating system reached 

temperatures lower than 40°C; this can be seen at the right of Figure 52. The agent delivered warm 

water 98.7% of the time of the whole year, but this is not a good realiability measure for the agent 

since it does not take into account the water demand at the moments when the water was not 

delivered at the minimum temperature of 40°C. A more accurate reliability indicator would be the 

percentage of the volume of demanded water that was delivered at temperatures higher than 40°C; 

nevertheless, this was not recorded. The agent trained with 𝛼1 equal to zero was able to always 

deliver water that was warmer than 40°C. 

Figures 53 and 54 show the “total heat/electric consumption” and “clean heat/total heat” indicators 

of agents that were trained with intermediate values of 𝛼1. The values of 𝛼1 that were used to train 

the agents whose results are plotted are: 0.0, 0.1, 0.2, 0.3, 0.5 and 1.0 (the values are closer to zero 

because the “total heat/electric consumption” indicator reaches values significantly larger than one, 

unlike the “clean heat/total heat” indicator). Each curve shows the result of only one agent (i.e. it 

is not the average of various agents). The results are taken from a testing period, as explained in 

Section 6.2.1. 
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Figure 53: “Total heat/electric consumption” indicator during the testing period. 

 
Figure 54: “Clean heat/total heat” indicator during the testing period. 

In Figure 53, it seems that there is an abrupt change in the behavior of the “total heat/electric 

consumption” indicator when the 𝛼1 parameter is changed from 0.0 to 0.1.  On the other hand, the 

“clean heat/total heat” indicator (Figure 54) seems to have a more gradual change as the value of 

𝛼1 varies. 

Figure 55 shows the behavior of the “total heat/electric consumption” indicator when 𝛼1 takes 

values between 0.0 and 0.1. The goal is to discover “intermediate” behaviors, given the abrupt 

change that can be seen in Figure 53 between the values 0.0 and 0.1. The conclusion is that there 

are intermediate behaviors when 𝛼1 takes the values 0.005, 0.010 and 0.020. With 𝛼1 equal to 

0.030, the indicator starts to behave like it does with the greater values of 𝛼1. 
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Figure 55: “Total heat/electric consumption” indicator during the testing period. 𝛼1 between 0.0 and 0.1. 

Figures 56 and 57 show the actions taken by the agents trained with 𝛼1 = 0 and 𝛼1 = 1, 

respectively. Regarding the value 𝛼1 = 0, it can only be said that the behavior was very simple: 

the agent always took the same action, which involved activating the chiller and the solar energy 

system. This is consistent with the result shown in Figures 51 and 54, which show that all the heat 

came from “clean sources”. Regarding the agent that was trained with 𝛼1 = 1, there are more 

features that can be mentioned: the solar collector field was used as the only energy source with 

more frequency in summer than in winter, and also with more frequency at midday than in the 

morning and in the afternoon. This is what is expected from the agent, since it is taking advantage 

of moments with high solar radiation to reduce the energy consumption. It can also be seen that the 

agent used the auxiliary flow in warm months and at times of high solar radiation. It is curious that 

at 12.00 PM the agent used the auxiliary flow with less frequency, but that can be explained because 

at that moment the water demand reaches its daily maximum; thus it is not necessary to use the 

auxiliary flow to avoid overheating of the solar collectors. 

 
Figure 56: Actions taken by the agent trained with 𝛼1 = 0 
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Figure 57: Actions taken by the agent trained with 𝛼1 = 1 

After analyzing the behaviors shown in Figures 56 and 57, a question may arise: how “variable” 

are those behaviors if more agents are trained under the same conditions? To answer that question, 

Figure 58 shows the actions taken by two additional agents that were trained with 𝛼1 = 0 and 

Figure 59 shows the actions taken by two additional agents trained with 𝛼1 = 1. In other words, 

more agents were trained with exactly the same conditions in order to analyze how different the 

resulting actions are. 

 
Figure 58: Two additional agents trained with 𝛼1 = 0 
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Figure 59: Two additional agents trained with 𝛼1 = 1 

Unlike the agent presented in Figure 56, both additional agents that were trained with the same 

hyperparameters (which are shown in Figure 58) occasionally chose to exclusively use the solar 

collectors as energy source. As expected, this happened at warm months of the year and at times 

of high solar radiation. 

Regarding the agents trained with 𝛼1 = 1, one of the additional agents did not use Action number 

3 at all, and the other one used that action with much more frequency than the original agent (shown 

in Figure 57). The two additional agents did not use Action number 0 at 8.00 AM, but they did use 

it in the afternoon. The agent shown in Figure 57 used the solar collectors as the only energy source 

with more frequency at 10.00 AM and at 12.00 PM, also during winter. 

A question that may arise now is: how different are the rewards of the agents that exhibit these 

different behaviors? This comparison will be done only with the agents that were trained with 𝛼1 

being equal to one, because the rewards of the agents that were trained with 𝛼1 being equal to zero 

are practically equal. This comparison is shown in Figure 60. In the figure, “Agent 1” is the one 

shown in Figure 57, while “Agent 2” and “Agent 3” are the ones shown at the top and at the bottom 

of Figure 59, respectively. 
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Figure 60: Reward comparison of agents trained with 𝛼1 = 1  

The rewards are more similar than one would expect by seeing the differences between the 

behaviors of the agents. The first agent seems to use only the solar collectors at 10.00 AM and at 

12.00 PM with much more frequency than the other two, during the whole year. However, the 

differences between their rewards are not so large. Only at the beginning of the year there seems 

to be a remarkable difference between their performances. 

6.4.2. Changing the value of 𝜶𝟐 

The 𝛼2 parameter is part of the “comfort” factor of the reward function, as defined by Equation 

105. It defines how much the reward grows if the water coming out from the last heating stage 

reaches temperatures remarkably higher than 40°C. When this factor is equal to zero, the reward 

does not depend on the temperature of the water coming out of the heating system (only on whether 

its temperature is higher than 40°C). 

The values considered for 𝛼2 were 0, 1 and 4. These three values were combined with 𝛼1 equal to 

zero and one, so six reward definitions were tested. The other reward parameters are shown in 

Table 20. 

Table 20: Reward parameters for Section 6.4.2 

Parameter Value(s) 

𝛼1 { 0 , 1 } 
𝛼2 { 0 , 1 , 4 } 
𝛼3 5 

𝛼4 1 

Figure 61 shows the actions that were executed by the three agents trained with 𝛼1 equal to zero. 
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Figure 61: Actions taken by the agents trained with 𝛼1 equal to zero. 

From Figure 61, it is remarkable that with the two lower values of 𝛼2, the agents did not use the 

heat pumps in the entire year, just like in Section 6.4.1 when 𝛼1 was set to zero. But when 𝛼2 was 

set to four, the agent did use the heat pumps several times (all actions marked with green and purple 

involve using the heat pumps). This has a clear explanation: all three agents shown in Figure 61 

were trained with 𝛼1 being equal to zero; this means that the agent seeks to increase the “clean 

heat/total heat” indicator. To do this, the best is to only use the chiller and/or the solar collectors. 

Nevertheless, larger values of 𝛼2 entail larger rewards if higher temperatures are reached at the 

outlet of the last heating stage of the system. For this reason, when the value of 𝛼2 is large enough, 

the agent uses the heat pumps even though this means reducing the value of the “clean heat/total 

heat” indicator. Figure 62 shows the temperature of the water flow leaving the last heating stage 

(before being mixed with mains water to be delivered to the dressing rooms) during a whole year 

when only the chiller and the solar collectors are used every time (i.e. the same strategy shown in 

Figure 56). Considering that the heat pumps are meant to keep the water in their respective storage 

tanks at around 60°C, there is great potential of increasing the water temperature by activating the 

heat pumps. 
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Figure 62: Temperatures reached when only the chiller and the solar collectors are used every time 

Figure 63 shows the actions taken by the three agents that were trained with 𝛼1 equal to one. 

 
Figure 63: Actions taken by the agents trained with 𝛼1 equal to one. 

Regarding the agents shown in Figure 63, it is striking that one of them chose to use Action number 

13 sometimes; this action involves using the chiller and the auxiliary flow. The auxiliary flow was 
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proposed as a method to decrease the “penalization” that the agent receives when the solar 

collectors reach excessive temperatures; however, in order for this goal to be achieved, the solar 

collectors need to be used along with the auxiliary flow. Besides, the “excessive temperatures” are 

most commonly reached during midday and not at 8.00 PM. A possible explanation for this 

behavior is that the agent is trying to use the auxiliary flow to increase the “total heat/electric 

consumption” indicator. Indeed, if the cold water flow entering the system increases, it can extract 

more heat, and the chiller also consumes less energy because it gives off heat to a colder water 

flow; both factors contribute to increase the aforementioned indicator. This is obviously an 

undesired behavior, and that is the reason to penalize the use of the auxiliary flow with the 𝛼4 

parameter of the reward function, so that it is only used when it is needed. Another possible 

explanation for the use of Action 13 is that the agent is simply acting in a non-optimal way. If the 

first proposed explanation is correct, an increase in the 𝛼4 parameter would be necessary in order 

to avoid that behavior. 

A way of partially answering that question is to repeat the same test, with the same sequence of 

actions, but replacing all executions of Action 13 with Action 0 or Action 2, which are the two 

most common actions at that time of day. This result is shown in Figure 64, where the original 

rewards are compared with two new reward graphs: in one of them all “Actions 13” were replaced 

by “Actions 2”; in the other, the same was done but using Action 0 instead of Action 13. The 

rewards were so similar that a close-up to some regions of the graph where the differences are 

larger was made. The result shows that sometimes Action 13 was better than the other two options, 

but not always. It has been said above that this method “partially” answers the question because 

there is still the possibility that another strategy (a combination of Action 0, Action 2 and maybe 

other actions) does always better than the original agent. However, it would be very hard to find 

that strategy (otherwise the use of DNNs would not be justified). An important detail is that in 

Figure 64, the time window to compute the moving average has been reduced to 7 days in order to 

better appreciate the details of the rewards. 

 
Figure 64: Agent shown at the top of Figure 63, compared with two alternative strategies 

6.4.3. Changing the value of 𝜶𝟑 

The 𝛼3 parameter defines the importance given to the degradation factor, as expressed in Equation 

107. Thus, it defines how much the agent will be penalized for excessive temperatures in the solar 

collectors. The values considered for 𝛼3 in this section are: 0, 1, 3, 10 and 30. For 𝛼1, the values 0 

and 1 are considered; hence, ten agents must be trained for this section. The other reward 

parameters are shown in Table 21. 
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Table 21: Parameters of the reward function in Section 6.4.3 

Parameter Value 

𝛼1 { 0 , 1 } 
𝛼2 0.5 

𝛼3 { 0 , 1 , 3 , 10 , 30 } 
𝛼4 1 

The results obtained with both values of 𝛼1 are shown in Figure 65. 

 
Figure 65: Daily hours with water temperature in the solar collectors higher than 100°C. 

Left: 𝛼1 was set to zero. Right: 𝛼1 was set to one. 

The results obtained with 𝛼1 equal to zero can be interpreted the following way: the blue curve 

shows that the collector suffered from degradation (i.e. the water in their interior reached more than 

100°C) during the whole year, with more daily hours in summer. This is because the agent only 

used the chiller to heat the water during the whole year. Because of this, the water in the collectors 

was always stagnant and reached high temperatures even on days with relatively low solar 

radiation. The three other agents used another strategy: they used the chiller and the collectors 

almost in every action; only sometimes they chose to use only the collectors. The curves of the 

agents that were trained with 𝛼3 equal to 1, 3 and 30 are so similar that they cannot be distinguished, 

even if the blue curve is taken out of the graph. That is why they are all plotted with the same color. 

Regarding the results obtained with 𝛼1 equal to one, the two lower values of 𝛼3 (0 and 1) have 

quite similar results. With both of these values, the number of daily degradation hours is relatively 

large in comparison to the other values of 𝛼3. When 𝛼3 is changed from 1 to 3, an abrupt change 

occurs, and the daily degradation hours decrease notoriously. With even larger values of 𝛼3 (10 

and 30), the agents seem to care even more about degradation, but the change is more subtle.  

6.4.4. Effect of the 𝜶𝟒 parameter 

As already discussed, the 𝛼4 parameter is a penalization for using the auxiliary flow. In all previous 

sections, this parameter was set to 1; this means that using the auxiliary flow halves the reward. 

Thus, the auxiliary flow is only useful if the “gain” of using it is more than the aforementioned 

penalization. Why would the auxiliary flow be useful? To avoid excessive temperatures in the solar 

collectors, which also yield penalizations. As already discussed, penalizing the use of the auxiliary 

flow is necessary in order to avoid indiscriminate use of it. In Figure 66, the actions taken by two 
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agents that were trained with 𝛼4 being equal to zero are shown. The other reward parameters are 

specified in Table 22. Both agents were trained under exactly the same conditions. 

Table 22: Reward parameters for Section 6.4.4 

Parameter Value 

𝛼1 1 

𝛼2 0.5 

𝛼3 5 

𝛼4 0 

 
Figure 66: Actions taken by two agents that were trained with 𝛼4 equal to zero. 

From all the actions that are shown in Figure 66, only Action number 2 (blue) and Action number 

4 (green) do not involve using the auxiliary flow. As can be seen, these agents used the auxiliary 

flow much more frequently than all previous agents whose actions have been visualized. This is 

because the 𝛼1 parameter has been set to one, which means that the agents seek to increase the 

“total heat/electric consumption” indicator. An easy way of achieving this is by introducing the 

auxiliary flow, because a larger water flow inside the system has more capacity of extracting heat 

from it. Obviously, this is not the expected use of the auxiliary flow, and that is the reason why the 

𝛼4 parameter is necessary in order that the agents behave in a desirable way. 

6.5. System subject to failures 

In this part, agents are trained and tested in environments where the heating devices of the system 

can fail and be repaired. The main goal is to achieve that, when confronted with the failure of a 

component, the agent is able to manage the system in order to achieve an acceptable performance. 

The reward function 𝑅1, as defined in Equation 110, will be used during the whole section, and the 

value of the 𝛼1 parameter will be set to one. Here is why: it has been discovered in previous sections 

that when only the “total heat/electric consumption” indicator of the reward function is taken into 

account (i.e. when the 𝛼1 parameter of Equation 110 is equal to one), the agents privilege the use 

of the solar field and the heat pumps to heat the water flow. This makes sense because the chiller 

is far more energy-consuming than the other devices. It was also discovered in Section 4.6, while 

the Markov chains were being formulated, that the heat pumps have far more probability of failing 
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than the solar energy system. Therefore, the main goal for an agent that is trained to privilege the 

“total heat/electric consumption” indicator (with 𝛼1 of Equation 110 equal to one) is that it learns 

to replace the heat pumps with the chiller when the former fail. This is especially important during 

winter, because the solar energy available is not enough for the water to reach the minimum 

desirable temperature of 40°C. Therefore, the rewards would be reduced to zero if the behavior of 

the agent does not change when the heat pumps fail. The other parameters of the reward function 

are specified in Table 23. 

Table 23: Parameters of the reward function for Section 6.5 

Parameter Value 

𝛼1 1 

𝛼2 0.5 

𝛼3 5 

𝛼4 1 

Two kinds of agents are going to be trained: the first kind of agent will receive the same 

environment state that was defined in Section 4.4, with 10 variables. The second kind of agent will 

receive five extra variables that contain information about the functional states of the three heating 

stages of the system (from now on, the term “functional state” will be used quite often to describe 

the operation/failure of the devices of the system, in contrast to the “environment state” that is 

evaluated by the DNNs). These five extra variables work as follows: 

- Two variables for the heat pump stage: 

- [1,1] if the heat pump stage is completely functional. 

- [1,0] if one of the heat pumps has failed. 

- [0,0] if the heat pump stage is out of operation. 
 

- One variable for the chiller: 

- [1] if the chiller is working. 

- [0] if the chiller has failed. 
 

- Two variables for the solar energy system: 

- [1,1] if the system is completely functional. 

- [1,0] if one of the pump-heat exchanger pairs has failed. 

- [0,0] if the solar energy system is out of operation. 

With these extra variables, the agents can “know” what the functional state of the heating system 

is. The agents that do not receive this information have to “infer” it from the other variables that 

are given to them, like the temperatures in the storage tanks. 

Given that the case presented now is more complex than the case without failures, a few changes 

in the training hyperparameters are made with respect to what is shown in Table 18. Now the 

training hyperparameters are as shown in Table 24. 
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Table 24: Training hyperparameters for Section 6.5 

Training time and simulation time 12 years 

Discount factor 0.4 

Type of training (Normal DQN or 

Double DQN) 

Double 

Update period of the target network 10 days 

Learning rate 0.001 

Momentum factor 0.8 

𝜖-greedy method - The value of 𝜖 is equal to one at the beginning. It is 

maintained at this value for two years, and the network is 

not updated. This period is used to fill the replay memory. 

- After two years the value of 𝜖 starts to decline linearly; 

it reaches its minimum value of 0.2 at 12 simulation years. 

When the value of 𝜖 starts to decline, the network also 

begins to be updated once at the end of each day. 

- 𝜖 reaches its minimum value of 0.2 at the same time that 

the simulation finishes. 

Length of the replay memory (in 

experiences) 

10500 

Batch size 100 

Prioritized experience replay - The method (Proportional/Rank-based) is going to be 

varied, as well as the value of 𝛼. 

- The value of 𝜙 is set to 0.2. 

- The value of 𝜓 is set to 0 

In summary, the changes with respect to Table 18 are: 

- Now the whole simulation time is used to train the agent, with no time left at the end as a 

“test period”. 

- The 𝜖-greedy method is now carried out slower, so that the agent has more time to “explore” 

the actions and find the best ones. 

- The Replay Memory now stores 10500 experiences, which is more than before. This 

number was decided so that the last four years of interaction experiences could be stored in 

the memory. 

- The prioritizing method is going to be varied, unlike previous sections where it was 

constant. 

In all subsections of Section 6.5, the results shown are being selected from a larger set of tested 

agents. This clearly produces a bias, so the results must not be interpreted as statistically accurate; 

they are shown only as illustrative examples of interesting results. In Annexed B, all results from 

which the selected results have been taken are shown. 

6.5.1. Training is carried out with the Markov chains of the real system 

In this part, failures will be introduced into the training process by using the same Markov chains 

that were defined in Section 4.6. This means that, on average, the agents will be exposed to the 

different functional states of each heating stage during the time percentages that are shown in 

Tables 5, 6 and 7. Given that the Markov chains are independent from each other, it can happen 

that failures of different heating stages coincide at the same moment. If this happens with the heat 

pumps and the chiller in winter, there is nothing that the agents can do to compensate this, because 
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the solar field is not able to provide enough energy to the water flow alone. Nevertheless, this will 

happen during a relatively low percentage of the time. Both the heat pumps and the chiller are 

expected to be under failure 17% of the time, so their failures are expected to coincide (0.17)2 =
2.89% of the time. 

Due to the higher level of complexity of this new environment, a new “architecture exploration” is 

carried out. In other words, new DNN architectures are proposed, trained and tested in the failure-

subject environment. The rationale behind this is that, because of the fact that the agents have to 

learn to control the system under various distinct conditions, deeper DNNs may be needed in order 

to find good solutions. Architecture 4, as defined in Figure 39, was the most successful in previous 

sections, so it is tested in this section as well, and five new architectures are proposed. In addition 

to this, the hyperparameter 𝛼 (from Prioritized Experience Replay; see Section 3.2.5.5) is given 

different values, in contrast to previous sections where it was always equal to 1. This is done 

because the main goal of this section is to train agents that are capable of handling failures, which 

are relatively rare events in the training process. Because of this, it could be the case that a larger 

prioritization of rare experiences does help the agents to find better solutions. 

The new proposed architectures are numbered from eight onwards, in order not to cause confusion 

with the architectures defined in Figure 39. In Figure 67 the architectures that are tested in this part 

are shown. 

 
Figure 67: Architectures considered for Section 6.5.1. 

The first big discovery was that not all architectures converge to desirable results, and even the 

ones that do, do not always achieve it.  

This is shown in Figure 68, where eight agents that were trained with the same hyperparameters 

are shown, and only one of them (agent number 3, represented with the green curve) has achieved 

the goal of handling a failure of the heat pumps. All the agents in that figure have Architecture 11, 

as defined in Figure 67. They are compared by their daily rewards. To understand the figure, a few 

clarifications have to be made: the agents have been tested in an environment where failures occur 

according to the Markov chains defined in Section 4.6. The moments of failure are the same for all 

the agents. The graph shows a time span of one year that corresponds to the second simulation 
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year, just as in the testing method that was defined in Section 6.2.1. The three lines at the top, with 

green, yellow and red sections, show the functional states of the three heating stages at each 

moment. Green means that the corresponding heating stage is completely functional; yellow means 

a degraded state (in the case of the heat pumps, one of them has failed; in the case of the solar 

collectors, one of the pump-heat exchanger pairs has failed); and red means that the corresponding 

heating stage is completely out of operation (in the case of the chiller, the only possible colors are 

green and red). 

In the case of Figure 68, the agents were trained with an environment state of 15 variables, which 

means that the agents receive the functional states of the heating stages as information. The 

proportional method was used to prioritize experiences, with the parameter 𝛼 being equal to 2. 

Also, the time window to smooth the rewards was reduced to 7 days; this was done to better 

appreciate the abrupt changes of the rewards when failures occur. The time window of 7 days will 

be maintained in the coming sections. 

 
Figure 68: Eight agents trained with the same hyperparameters. Only agent number 3 has learnt to handle 

a failure of the heat pumps. The agents receive the functional states of the heating stages as information. A 

time window of 7 days was used to compute the moving average (i.e. to smooth the rewards). 

In Figure 68, two interesting moments are being shown by the blue ellipses. The first moment is a 

long failure of the heat pumps; the rewards of most agents fall close to zero at that moment. 

Nevertheless, one agent (number 3; green curve) has rewards which are remarkably better. The 

second moment (ellipse two) is a moment at which failures of the chiller and the heat pumps 

coincide; this makes the rewards of all agents fall to zero, because there is no possibility of heating 

up the water up to 40°C. What is remarkable about Agent 3 is that it also performs quiet well in 

moments when the system has no failures. At the beginning and at the end of the year, it reaches 

rewards above 100, which is similar to what the agents got in previous sections. 

Figure 69 shows the actions taken by Agent 3 of Figure 68. The graph shows that the behavior of 

the agent drastically changes when failures of the heat pumps occur. The agent starts to use actions 

0 and 3. The former involves using all three heating stages; the latter involves using the chiller and 

the heat pumps. Given that the heat pumps have failed, Action 0 is equivalent to Action 1 (Solar + 

Chiller) and Action 3 is equivalent to Action 5 (only the Chiller is used). The fact that the agent 

“prefers” actions 0 and 3 over actions 1 and 5 could be because it is “expecting” the heat pumps to 

be repaired, so it permanently tries to activate them. However, this agent receives the functional 
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state of the system as information, thus it should have no trouble at finding out when the functional 

state of the system changes. In the case of an agent that does not receive the functional state of the 

system as input, this hypothesis makes complete sense. Other reason why this specific agent 

chooses actions 0 and 3 could be simply because it converged to that solution, and it could have 

found the solution of using actions 1 and 5 with equal probability. 

 
Figure 69: Actions executed by agent number 3 of Figure 68 

There are two remarkable curiosities regarding the behavior of the agent in Figure 69 and the use 

of the auxiliary flow: 

1. The agent uses Action 8 (which involves using all available systems, including the auxiliary 

flow) when the heat pumps and the chiller fail at the same time. At that moment, only the 

solar collectors are operating, and the rewards are reduced to zero; this is clearly because 

the water flow does not reach 40°C (see Equation 110). A question worth asking is: would 

the water flow reach temperatures higher than 40°C if the agent did not introduce the extra 

flow? If this were the case, the agent would receive larger rewards by not using the auxiliary 

flow, thus its behavior is not being optimal (i.e. the best possible). This would be easily 

explained by the fact that this combination of failures only occurs 2.89% of the time, thus 

the agent has no opportunities of learning to deal with it (the agent is struggling to learn to 

deal with a failure that occurs 17% of the time, so no wonder). Another option is that the 

agent would get zero rewards by using only the solar fields as well (because the temperature 

does not reach 40°C either), so it is using Action 8 just by accident, because no option is 

better. (Given that 𝛼4 is equal to one, the reward gets cut in half if the auxiliary flow is 

used, but if all options yield zero reward, then using the auxiliary flow does not make it 

worse). 

2. Another curiosity is the use of Action 13 in the late afternoon while the heat pumps have 

failed. That action involves using the chiller and the auxiliary flow. Given that the 𝛼4 

parameter of the reward function is equal to 1, the reward is cut in half if the auxiliary flow 

is used. This action is clearly not used to reduce the temperature in the solar collectors, 

since they are not being used. Two possible explanations are: 1. this action is simply not 

the best option, and the agent is acting sub-optimally; and 2. the water flow extracts more 

heat from the chiller, and the chiller also reduces its consumption when the auxiliary flow 

is used, thus the “total heat/electric consumption” indicator is increased enough so that the 

penalization for using the auxiliary flow is compensated. 
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The two questions above can be answered by comparing the rewards received by the agent just 

mentioned with the hypothetical rewards that it would have got if it used Action 0 instead of Action 

8 and Action 5 instead of Action 13. This is shown in Figure 70. The “new strategy” (with actions 

0 and 5) clearly surpasses the original agent during a small portion of the year. However, the 

performances are almost the same during most of the year. When both the heat pumps and the 

chiller fail, the rewards virtually do not increase by using Action 0; this confirms that any action 

would yield the same result at that moment (actually, the rewards do increase marginally by using 

Action 0, but the change is considered to be too small). It is also remarkable that replacing Action 

13 by Action 5 barely changes the reward, although in this case, the action of taking out the 

auxiliary flow (if all other variables remained the same) would double the reward. This appears to 

show that using the auxiliary flow changes the other variables of the reward function in such a way 

that the penalization for the use of the flow is almost perfectly compensated. 

 
Figure 70: Original agent vs the result of replacing actions 8 and 13 with actions 0 and 5 

The same sequence of failures is going to be used for future tests. At the end, some agents will be 

selected and tested with different moments of failure of the items. 

A fairly good result with an environment state of ten variables (i.e. without telling the agent which 

components are working) is shown in Figure 71. Again, eight agents were trained but one of them 

(number 2, shown with the yellow curve) was able to manage the failures of the heat pumps without 

the rewards falling to zero. The architecture of the agents is the same as in Figure 68, i.e. 

Architecture 11, only with a difference in the size of the input. Again, the proportional prioritizing 

method with 𝛼 = 2 was used. 
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Figure 71: Eight agents with Architecture 11, with an environment state of 10 variables as input 

The result shown in Figure 71 is clearly not as good as the best result shown in Figure 68. The 

agent with the yellow curve in Figure 71 also has smaller rewards at moments when it should not 

be affected by failures of the system, such as at the beginning of the year. This is not positive since 

the agents should be able to manage the failures without sacrificing the rewards when the system 

is operating well. 

Regarding the other architectures, Architecture 4 (the same that was used in previous sections) was 

quite successful when trained with an environment state of 15 variables. 6 agents were initially 

trained with that architecture, but after detecting that the results with the proportional prioritizing 

method and 𝛼 = 1 were quite good, 6 more agents were trained with the same conditions to see if 

better results were achieved. The results of the 12 agents are shown in Figure 72. 

 
Figure 72: 12 agents with Architecture 4, trained with the proportional prioritizing method and 𝛼 = 1 

Architecture 4 seems to produce more “stable” results than Architecture 11 in the following sense: 

in Figure 68, one agent greatly outperforms the other ones; in Figure 72, more agents have reached 

“intermediate” performances. 

Architectures 8 and 9, as defined in Figure 67, have remarkably worse results; examples of these 

results are shown in Figures 73 (Architecture 8) and 74 (Architecture 9). In both images, the agents 
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were trained with and environment state of 15 variables (i.e. they are told the functional state of 

the system) and the proportional prioritization method with 𝛼 = 1. More trainings were executed 

with 𝛼 = 2 and with an environment state of 10 variables, but the results are very similar to those 

shown here. 

 
Figure 73: Six agents with Architecture 8, as defined in Figure 67 

 
Figure 74: Six agents with Architecture 9, as defined in Figure 67 

The results shown in Figures 73 and 74 can be explained as follows: some of the agents did not 

converge at all (agents 4, 5 and 6 in Figure 74) and others converged to a strategy that involves 

permanently using the chiller, which prevents them from getting larger rewards when the chiller is 

not needed (agents 1, 2 and 3 in Figure 74). That is the reason why, when the chiller fails, the 

rewards of the latter agents remarkably increase: at that moment the chiller stops consuming 

electricity and thus the “total heat/electric consumption” indicator of the reward function increases. 

Although the agents just shown do not represent good results, they confirm the importance of the 

architecture of the DNN. In the case without failures, although there were differences between 

architectures, there was much less variability than in the case shown here (see Figures 40 and 41, 

where the mean rewards and the variabilities of each architecture are shown for an environment 

without failures). 
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Regarding Architectures 10 and 12, both of them achieved acceptable results as well. Figure 75 

shows 6 agents trained with Architecture 10; Figure 76 does the same with Architecture 12. In the 

case of Figure 75, all agents were trained with proportional prioritization and 𝛼 = 1. In Figure 76, 

the agents were trained with proportional prioritization and 𝛼 = 2. In both cases the agents receive 

15-variable environment states. 

 
Figure 75: Six agents with Architecture 10, as defined in Figure 67 

 
Figure 76: Six agents with Architecture 12, as defined in Figure 67 

6.5.2. Training is carried out with planned failure cycles 

It was discovered in Section 6.5.1 that some of the tested architectures have the potential of 

achieving very good results, but from many training processes carried out with the same conditions, 

only few of them converged to a desirable behavior. 

In this section, the following changes to the training method are introduced in order to make the 

convergence of the training processes easier: 

1. The set of possible actions is reduced by taking out actions that clearly do not make sense 

to use. The rationale of this is that the agents have to discover the “best actions” for the 
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different states of the system by executing random actions and, only by pure chance, 

discovering the best option after several trials. If the set of actions is reduced, it becomes 

easier for the agents to find the “good actions” by chance. The actions that will be taken out 

are all actions that involve using the auxiliary flow without using the solar collectors 

(actions 11, 13, 14 and 15 in Table 1) and the action that involves turning off all devices of 

the system (action 7 in Table 1). With this, the action set is reduced to 11 possible actions, 

which are shown in Table 25. The same architectures shown in 66 will be used, with the 

only change that their output layers will be reduced from 16 neurons to 11 (because the set 

of possible actions has been reduced). 

2. Instead of training the agents with the same Markov chains with which the tests are carried 

out, the agents will be trained with failures of a fixed duration. This means that the state of 

the system during training is not stochastic anymore; however, the testing will be made 

with the same Markov chains as before. The cycles are shown in Figure 77. For each 

training process, only one of the cycles must be chosen so that the agent experiences that 

cycle during training. In Figure 77, the word “degradation” means that one of the heat 

pumps have failed or that one of the pump-heat exchanger pairs of the solar field has failed 

(as already  discussed, the solar field itself does not fail, but the solar-heat exchanger pairs 

do). Cycle 1 takes into account that the agent must privilege dealing with failures of the 

heat pumps. 

Table 25: New set of possible actions of the agent. 

Action Solar field pumps Chiller Heat Pumps Auxiliary Flow 

0 1 1 1 0 

1 1 1 0 0 

2 1 0 1 0 

3 0 1 1 0 

4 1 0 0 0 

5 0 1 0 0 

6 0 0 1 0 

7 1 1 1 1 

8 1 1 0 1 

9 1 0 1 1 

10 1 0 0 1 

 
Figure 77: Cycles of failures considered 
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Architectures 11 and 12 were tested in this section with the proportional prioritization method and 

𝛼 taking the values 1 and 2. The results that are not shown here are shown in Annexed B. 

The results seem to show that the cycles tend to benefit the performance of agents that receive 

environment states of 10 variables, because they are exposed more time to the states of the system 

that they have to diagnose by themselves. 

However, the agents that receive 15 variables get “confused” when they experience a failure that 

they have never seen, or a combination of failures that did not overlap in the training process (with 

the cycles no overlaps are produced between failures or degradation of different heating stages) 

(see the definition of the 5 extra variables for the environment state in the introduction of Section 

6.5). An example may be more clarifying: if the agent has always estimated the Q-Values of a 

given environment state by assuming that certain input variable is 1, the result could change 

dramatically when that input is changed to zero (this happens when a device fails). This may happen 

even if the device that has failed is not necessary to deliver warm water. However, this was not 

always the case; some agents reached good results despite the problems just mentioned. 

Maybe, this problem of the agents that receive 15-variable states could be solved by using the 𝑙1-

regularizer or Lasso regression (see Géron [36], page 155) since this method sets the less important 

weights of the DNN to zero. The weights that always receive the same value of some variable 

during training would therefore be set to zero, and when this variable changes its value during the 

testing process, the predicted Q-Values would not be affected. This was not tested during this study; 

instead, a reformulation of the Markov processes is proposed in the next section. The solution of 

using the regularizer is left for future work on this topic. 

Some remarkable results obtained with this “failure-cycle” method are shown in Figures 78 to 84. 

Table 26 shows the architecture, the failure cycle (1, 2 or 3), the number of environment state 

variables (10 or 15) and the experience prioritizing method used in each result shown. In all cases, 

the figures show 6 agents that were trained under exactly the same conditions; some of them 

achieved good results and others did not. 

Table 26: Training conditions 

Figure 

number 

Cycle 

number 

Environment 

state variables 

Architecture 

number 

Prioritizing method 

78 1 10 11 Proportional prioritization 

with 𝛼 = 1 

79 1 10 12 Proportional prioritization 

with 𝛼 = 1 

80 1 15 11 Proportional prioritization 

with 𝛼 = 1 

81 1 15 12 Proportional prioritization 

with 𝛼 = 1 

82 2 15 12 Proportional prioritization 

with 𝛼 = 1 

83 3 10 11 Proportional prioritization 

with 𝛼 = 2 

84 3 15 11 Proportional prioritization 

with 𝛼 = 1 
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Figure 78: Arch. 11; Cycle 1; environment state has 10 variables. 

 
Figure 79: Arch. 12; Cycle 1; environment state has 10 variables. 

 
Figure 80: Arch. 11; Cycle 1; environment state has 15 variables. 
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Figure 81: Arch. 12; Cycle 1; environment state has 15 variables. 

Figures 78 to 81 show quite clearly what was discussed regarding the benefits for the agents that 

receive 10 variables and the problems experienced by the agents that receive 15 variables. All 

agents in the four figures were trained by using Cycle 1; i.e. the system is completely functional 

50% of the time, and the heat pumps fail during the remaining 50%. The agents that receive 10 

variables, shown in Figures 78 and 79, have clearly improved their performance in comparison 

with the results of the previous section, where from dozens of agents, only one of them seems to 

have learnt something about handling failures (the agent 2 in Figure 71). 

On the other hand, the agents that receive 15 variables seem to be handling the failure of the heat 

pumps quite well until one of the pump-heat exchanger pairs of the solar field fails. That moment 

is highlighted with a blue ellipse in Figures 80 and 81. Figures 68 and 70 show that that moment 

can theoretically be handled without major problems (in the sense that it is possible to continue 

receiving rewards while the solar field is degraded). However, the rewards of all agents in Figures 

80 and 81 drop to zero at that moment. This is most likely because an environment state variable 

that did not change during the whole training process is changing at that moment. 

 
Figure 82: Arch. 12; Cycle 2; environment state has 15 variables. 
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Figure 83: Arch. 11; Cycle 3; environment state has 10 variables. 

 
Figure 84: Arch. 11; Cycle 3; environment state has 15 variables. 

Figure 82 shows that, by using Cycle 2, most agents that receive 15 variables suffer the same 

problem that is explained above; however, one of them (agent number 5) continues receiving 

rewards when the solar field degrades. This may happen because the exposition to failures of the 

solar field indeed does help the agent to operate under that condition, even when no combination 

of failures occurs during training; or it may happen because, only by chance, that particular agent 

does not depend on the variable that becomes zero when the solar field degrades, and it continues 

choosing the right actions. In the case of Figure 82, all agents were trained with proportional 

prioritization and 𝛼 = 1. 

Figure 83 is interesting because agent number 3 receives remarkably large rewards (considering 

that it receives environment states of 10 variables) while the heat pumps fail; however, the rewards 

of that agent are not as large as they could be at other moments of the year. At the beginning of the 

year, for example, its daily rewards are approximately 80, while other agents receive rewards above 

100 at that same time. In the same figure, agent 1 received zero rewards most of the year, which 

could indicate that this combination of hyperparameters yields very variable results. Maybe, this 

could be attributed to the value of 𝛼 (2) in that figure. 
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In Figure 84, the agents are trained with Cycle 3; this cycle involves degradation and failures of 

the heat pumps and the solar field. This cycle seems to help some agents to overcome the 

combination of the failure of the heat pumps and the degradation of the solar field; however, the 

rewards of agent 4 drop to zero like in previous cases; this is probably because these two conditions 

(failure of the heat pumps and degradation of the solar field) never overlapped during training; 

hence, the agent learns to deal with the conditions separately, but not when they are combined. In 

that figure, the proportional prioritization is used with 𝛼 = 1. 

6.5.3. Alternative Markov chains 

Good and bad things can be concluded from the method proposed in the previous section (Section 

6.5.2). Figures 80 and 81 show that the agents actually do perform better than the agents trained 

with Markov chains while facing the failure of the heat pumps (in the sense that more agents 

achieve good and intermediate results) until the degradation of the solar field occurs. At that 

moment, as already discussed, the previously remarkable rewards of the agents drop to zero. From 

this, two things can be concluded: 1. reducing the number of possible actions and increasing the 

amount of time that the agents face failures of the items can improve their performance; and 2. the 

Markov processes have the clear advantage that they automatically let combinations of failures 

happen. 

For this reason, this section will once more make use of Markov chains for the training processes. 

However, the Markov chains that will be used for training will not be the same that are used for 

testing. For the testing process, the same Markov chains that represent the “real” system will be 

used (the ones created in Section 4.6.2); for the training process, other Markov chains will be 

proposed in order that more of the trained agents actually learn to cope with failures. The “reduced 

action space” of 11 possible actions will be maintained in this section. 

The Markov chains that will be used in this section are shown in Figure 85. The same Markov 

chain is used for the heat pumps and the solar energy stage; nevertheless, the states of these two 

heating stages is still independent; this means that each heating stage follows its own Markov chain, 

although the transition probabilities of both Markov chains are identical. The arrows between the 

states show the transition probabilities between consecutive instants (the probabilities of staying in 

the same state are not shown but they can be determined as one minus the total probability of 

leaving the corresponding state). For the heat pumps and the solar field, three states are considered. 

These states are: “functional”, “degraded” and “failure”. In the case of the solar field, the 

“degraded” state means that a pump-heat exchanger pair has failed; in the case of the heat pumps, 

the “degraded” state means that one of the four heat pumps has failed. For the chiller there are only 

two possible states: “functional” and “failure”. The rationale behind the transition probabilities is 

explained below. 

 
Figure 85: Markov chains used in Section 6.5.3. 
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In the Markov chain at the left side of Figure 85, the transition probabilities are imposed as follows: 

first it is imposed that the mean time of permanence in the “degraded” and “failure” states is equal 

to two weeks; by using the geometric distribution (Section 3.4.1), it is possible to determine that 

the probability of leaving those states must be equal to 1/(8 ⋅ 14) = 8.92857e − 3 (also, the fact 

that 8 time steps are executed each day is being taken into account as well). In the number just 

mentioned, “e” is used to indicate the exponent of 10 when the number is written in scientific 

notation; e.g. 1.5e − 3 = 1.5 ⋅ 10−3. 

The second assumption is that the system has to spend 18% of the time in the “failure” state and 

6% of the time in the “degraded” state. By knowing the probability of getting out of those states, 

it is possible to determine the probabilities of entering them by imposing the ratios of their mean 

times of permanence. By using the method to determine the steady-state probabilities discussed in 

Section 3.4.2, it can be verified that the probabilities for the “functional”, “degraded” and “failure” 

states are 76%, 6% and 18% respectively. 

For the Markov chain at the right side of Figure 85, corresponding to the chiller, the same transition 

probabilities between the “functional” state and the “failure” state of the Markov chain at the left 

are imposed. With this, the steady-state probabilities for the Markov chain at the right are 80.9% 

for the “functional” state and 19.1% for the “failure” state. 

This section is focused on agents which receive 15-variable states, because the method proposed 

in Section 6.5.2 seems to have worked well with agents that receive 10-variable states. 

Architectures 4, 11 and 12 are tested with both proportional and ranked-based prioritization 

methods and several values of 𝛼. All results are included in Annexed B. 

In Figures 86, 87 and 88, some remarkable results of each of the tested architectures are shown. 

Something worth mentioning is that all of these results come from training processes where the 

proportional prioritization method was used. The rank-based method was tested with 𝛼-values 

ranging form 0.0 to 0.8 but none of the results obtained was so good (actually, 𝛼 = 0 implies that 

no prioritization is used so the proportional and rank-based method are equivalent with that value 

of 𝛼). 

 
Figure 86: Architecture 4; proportional prioritization; 𝛼 = 1.0  
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Figure 87: Architecture 11; proportional prioritization; 𝛼 = 2.0 

 
Figure 88: Architecture 12; proportional prioritization; 𝛼 = 1.0 

Another important conclusion is that the rank-based prioritization method has to be implemented 

with lower values of 𝛼 than the proportional prioritization method. As shown in this section and in 

previous ones, many architectures reached their best results with the proportional prioritization 

method and with 𝛼 being equal to 2. 𝛼 = 3 was also tested, as shown in Annexed B, but with that 

value the agents did not converge to good solutions at all. With the rank-based method, this problem 

of not achieving convergence occurred with 𝛼 being equal to 0.8; in other words, the same problem 

occurred with a remarkably lower value for the rank-based method than for the proportional 

method. This has a clear explanation: with a Replay Memory of 10500 experiences and the rank-

based prioritization method, 𝛼 = 1 implies that the experience with the largest priority number has 

10.16% probability of being selected (see Equations 57 and 58 in Section 3.2.5.5); 𝛼 = 1.5 implies 

that the experience with the largest priority number has 38.57% probability of being selected; and 

𝛼 = 2 implies that the experience with the largest priority number has 60.80% probability of being 

selected. In the latter case, the probability of selecting any of the last 9500 experiences in the 

ranking is equal to 5.4976e − 4; i.e. 1000 from the 10500 experiences of the Replay Memory 

(9.524%) are being used 99.945% of the time. Something that could compensate this huge 

inequality of probabilities is the fact that the order in the ranking varies in time; in this way, an 
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experience that is used many times to train the network will be lower in the ranking in the future. 

Nevertheless, it is to be expected that this “compensation” does not work for arbitrarily large values 

of 𝛼, because as 𝛼 approaches infitiny, the algorithm will tend to select a single experience for each 

training step.  

Figure 89 shows the results of 6 agents with Architecture 12 that were trained with rank-based 

prioritization and 𝛼 = 0.8. This is an example of the effect of the 𝛼 parameter explained above. 

Four of the six agents are shown with the same color because their curves cover each other, because 

they obtained exactly the same rewards. 

 
Figure 89: Six agents with Architecture 12, rank-based prioritization and 𝛼 = 0.8 

6.5.4. Effect of momentum for failure-subject agents 

It was shown in Section 6.3.4 that momentum (see Section 3.1.2 for details on the algorithm) has 

an important role to play in the training process of the agents that are not subject to failures. In this 

section, a possible improvement of the training hyperparameters regarding the use of momentum 

will be discussed, in this case for the agents that are trained to cope with failures of the system. 

All the previous results of Section 6.5 and its subsections were produced with the momentum factor 

(𝛽) being equal to 0.8. Figure 90 shows the results of six agents with Architecture 12 (as defined 

in Figure 67) when the momentum factor was increased from 0.8 to 0.9. The agents in shown 

Figure 90 were trained with the conditions of Section 6.5.1; i.e. they were trained with the Markov 

chains of the real system (as defined in Section 4.6) and have an action space of 16 possible actions, 

unlike the agents of Sections 6.5.2 and 6.5.3 which have an action space of 11 actions. Moreover, 

the agents in Figure 90 receive 15-variable environment states (i.e. they receive the functional state 

of the system as information) and were trained with the proportional prioritization method and 𝛼 =
1. 

One of the agents in Figure 90 (Agent 5) performs quite well; in fact, it performs better than all the 

previous results of the same architecture (Arch. 12). Why is this so important? Because in previous 

sections a selection of the best results was made after multiple training processes; in the case shown 

here, only twelve agents were trained with 𝛽 being equal to 0.9: six agents were trained with 𝛼 =
1 and six more were trained with 𝛼 = 2. The results with 𝛼 = 2 are not good, as shown in Annexed 

B. The fact that an agent outperforms all previous results of the same architecture with so few 
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attempts could be showing that the new value of 𝛽 considerably increases the probability of getting 

good results. 

 
Figure 90: Architecture 12 being trained with momentum factor equal to 0.9 

To support the claim made above that Agent 5 of Figure 90 outperforms all previous agents with 

the same architecture, Table 27 makes a comparison with agents shown in previous figures 

considering two indicators: the mean smoothed rewards of the whole year (i.e. averaging all values 

of the smoothed reward curves) and the number of days of the year that each agent has the 

maximum smoothed daily rewards among the four agents considered for the comparison. Agent 5 

of Figure 90 reaches the maximum value for both indicators. 

Table 27: Comparison of the best results of Architecture 12 

Agent Mean smoothed daily 

rewards 

Number of days of the year having the 

maximum smoothed daily rewards 

among the four agents 

Agent 2 of Figure 76 53.19 9 

Agent 5 of Figure 82 55.21 33 

Agent 3 of Figure 88 62.00 151 

Agent 5 of Figure 90 62.37 172 

After obtaining the aforementioned results, Architecture 12 was maintained and the 𝛽 

hyperparameter was set to 0.9 while using the method presented in Section 6.5.3, i.e. training the 

agent with the Markov chains shown in Figure 85 and with an action space of 11 actions. The 

proportional prioritization method was used with 𝛼 taking the values 0.5, 0.8 and 1.0. Figure 91 

shows the six agents that were trained with 𝛼 = 0.8. 
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Figure 91: Arch.12; 𝛽 = 0.9; 𝛼 = 0.8 

6.5.5. Agent selection and final testing 

In this section, agents which performed well in the previous subsections of Section 6.5 are selected 

and tested in a new sequence of failures. This is important because all agents that have been trained 

to handle failures have been tested with the same failure sequence; this can obviously create a bias 

towards selecting agents that are good for that particular failure sequence, but they might perform 

poorly in other conditions. 

Table 28 shows the agents that were selected to be tested in this section. The first column of the 

table shows the new number by which each agent will be referred to from now on; the second and 

the third column show the figure that originally shows the performance of the agent and the number 

of the agent in that figure, respectively (recall that each figure shows several agents that have been 

trained under the same conditions but they usually have quite different performances). The fourth 

column shows the method by which the agent has been trained. “Real” refers to the method 

presented in Section 6.5.1, where the agents are trained with the Markov chains of the real system; 

“Cycle” refers to the method presented in Section 6.5.2, where that agents are trained with planned 

failure cycles; and “Alter.” refers to the method presented in Section 6.5.3, where the agents are 

trained with alternative Markov chains. The fifth column shows the number of possible actions that 

the agent can choose; these “action spaces” can have either 16 or 11 actions. The sixth column 

shows the architecture of the agent; the seventh column shows the number of state variables that 

the agent receives; the eighth column shows the value of 𝛼 from the experience prioritization 

method (all selected agents were trained with the proportional prioritization method) and the nineth 

column shows the value of the momentum factor. For most agents, the momentum factor is 0.8, 

except for the last two that were trained with momentum factor equal to 0.9. 
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Table 28: Selected agents 

New 

Agent 

Number 

Figure 

Number 

Agent 

Number 

in the 

Figure 

Training 

Regime 

Action 

space 

size 

Arch. 

Number 

State 

Variables 

Value 

of 𝛼 

Momentum 

Factor 

1 68 3 Real 16 11 15 2 0.8 
2 72 8 Real 16 4 15 1 0.8 

3 75 2 Real 16 10 15 1 0.8 

4 82 5 Cycle 2 11 12 15 1 0.8 

5 83 3 Cycle 3 11 11 10 2 0.8 

6 84 1 Cycle 3 11 11 15 1 0.8 

7 86 1 Alter. 11 4 15 1 0.8 

8 86 5 Alter. 11 4 15 1 0.8 

9 87 5 Alter. 11 11 15 2 0.8 

10 88 3 Alter. 11 12 15 1 0.8 

11 90 5 Real 16 12 15 1 0.9 

12 91 4 Alter. 11 12 15 0.8 0.9 

In order to test the agents in the most objective way possible, a 12-year-long test will be established 

with the Markov chains of the real system, i.e. the Markov chains that are shown in Figures 22, 23 

and 24. “Establishing a test” means that the sequence of failures will be produced before testing 

the agents, and then all agents will be tested under the same failure sequence. The duration of the 

test is increased to 12 years so that the percentage of the time that the system spends in each state 

of the Markov chains approaches the expected percentages shown in Tables 5, 6 and 7. In this way, 

there is no “bias” towards selecting a particular failure sequence because it looks “convenient” for 

the agents. 

Table 29 shows the 12 agents ranked according to two indicators: their rewards and the daily hours 

during which they supplied warm water. Both indicators have been smoothed with a moving 

average of 7 days and then the values of the smoothed indicators have been averaged considering 

the whole 12-year-long test. 

Table 29: Agents ranked according to the results of the whole 12-year-long test 

Ranking 
Smoothed rewards  Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪 

Agent Mean Value  Agent Mean Value 

1 Agent 1 72.322  Agent 2 13.247 

2 Agent 12 72.316  Agent 12 13.231 

3 Agent 10 71.667  Agent 1 13.201 

4 Agent 6 71.596  Agent 5 13.128 

5 Agent 11 71.521  Agent 10 12.965 

6 Agent 3 70.500  Agent 11 12.833 

7 Agent 8 69.316  Agent 9 12.803 

8 Agent 2 69.210  Agent 7 12.800 

9 Agent 9 68.841  Agent 8 12.730 

10 Agent 7 68.662  Agent 6 12.657 

11 Agent 4 62.645  Agent 4 12.465 

12 Agent 5 60.477  Agent 3 12.388 
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The results shown in Table 29 correspond to the average results of the 12-year testing process. 

Apart from this, it is useful to analyze particular moments when the differences between the 

performances of distinct agents become more appreciable; this normally happens at moments when 

failures of the devices of the system occur. As an example, Figure 92 shows a time-span during 

which the capacity of the agents to deliver hot water is not largely affected by failures. On the other 

hand, Figure 93 shows a shorter time-span when the “warm-water-supply-time” of several agents 

is greatly affected by a failure of the heat pumps. In that figure, only some of the agents, which 

were selected according to the results presented in Table 30, are shown. 

 
Figure 92: A period without major problems due to failures 

 
Figure 93: A moment that shows a drop of the rewards of some agents. 

Table 30 has the same format as Table 29, but it only considers the time-lapse from day 325 to day 

355. The agents presented in Figure 93 were selected because they were among the best three or 

the worst three according to some of the indicators shown in Table 30. 

 

 



122 

 

Table 30: Agent comparison from day 325 to day 355 

Ranking 
Smoothed rewards  Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪 

Agent Mean Value  Agent Mean Value 

1 Agent 6 81.44  Agent 12 13.06 

2 Agent 1 79.35  Agent 1 13.04 

3 Agent 12 78.73  Agent 6 12.70 

4 Agent 5 74.69  Agent 2 12.29 

5 Agent 8 73.56  Agent 5 12.18 

6 Agent 9 72.52  Agent 8 11.62 

7 Agent 7 67.93  Agent 9 10.58 

8 Agent 10 67.34  Agent 10 10.41 

9 Agent 2 66.56  Agent 11 9.42 

10 Agent 3 64.22  Agent 7 9.38 

11 Agent 4 62.69  Agent 3 9.21 

12 Agent 11 60.99  Agent 4 9.08 

In Figure 93 and in Table 30, the three agents that have the largest rewards are also the ones that 

supplied warm water most time, but they are not ranked in the same order. This is not surprising 

because the agents can privilege other factors that contribute to the reward function, thus decreasing 

the time of warm water supply while actually increasing the reward function. This is not a desirable 

behavior, but in order to fix it, the reward function would have to be modified. The new reward 

function must depend on the energy efficiency as well; otherwise, the agents would make no efforts 

to reduce the energy consumption which is one of the important goals of the study. What is 

important about the reward function is that there must be no way for the agents to increase it by 

reducing the time they supply warm water. In other words: the reward function must be such that 

the agent which has the largest rewards also supplies warm water more time.  

Table 31 shows the results of another time-span of the same 12-year-long test, from day 2500 to 

2580. In that case, Agent 5 presents a more extreme case of the problem mentioned above about 

the reward function: it is the best agent when considering the mean daily hours with warm water 

supply, but it is also the worst one according to the rewards. From a strict “Reinforcement 

Learning” point of view, this would mean that Agent 5 is the worst of all, but common sense would 

say that it is not actually that bad because it has the maximum mean value of the most important 

indicator of the reward function. This is telling that, although the reward function has worked 

acceptably well in order to train the agents, it can be improved. This is confirmed by Figure 94, 

which shows the (smoothed) rewards and daily hours with warm water supply of the same time-

lapse presented in Table 31, for Agents 1, 2, 5, and 7 (because they are the best according to Table 

31). Agent 5 is clearly the best at the right and the worst at the left. Another thing worth mentioning 

about Agent 5 is that it is the only “selected agent” (from the list shown in Table 28) which receives 

10-variable environment states; i.e. it does not receive the functional state of the system as direct 

information. It was trained with “Cycle 3” as defined in Section 6.5.2, where planned failure cycles 

are used (see Table 28 for details); this shows that the cycles do improve the performance of agents 

that receive 10-variable states (though only in comparison with other agents that receive 10 

variables, because in comparison with the other selected agents, the result is only good from a 

subjective, not RL-centered point of view). 
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Table 31: Agent comparison from day 2500 to day 2580 

Ranking 
Smoothed rewards  Smoothed daily hours with 𝑻𝒉𝒐𝒕 > 𝟒𝟎°𝑪 

Agent Mean Value  Agent Mean Value 

1 Agent 2 100.66  Agent 5 13.83 

2 Agent 1 100.38  Agent 7 13.52 

3 Agent 10 100.01  Agent 4 13.45 

4 Agent 7 99.85  Agent 8 13.42 

5 Agent 11 99.55  Agent 1 13.41 

6 Agent 12 99.41  Agent 2 13.39 

7 Agent 8 98.63  Agent 9 13.35 

8 Agent 6 98.18  Agent 12 13.34 

9 Agent 3 97.80  Agent 10 12.97 

10 Agent 9 96.90  Agent 11 12.88 

11 Agent 4 86.39  Agent 6 12.81 

12 Agent 5 80.02  Agent 3 12.78 

 
Figure 94: Performance of 4 agents (best two of both indicators) in the time-span shown in Table 31 

Another interesting moment is presented in Figure 95, when a failure of the heat pumps overlaps 

with a degradation of the solar energy system. In the time-span presented, from day 385 to day 410, 

it was clearly agent 10 that supplied warm water more time than the rest. It also has the maximum 

rewards some of the time, yet not all of it. In this case Agent 1 draws attention because in the 

previous comparisons it was always one of the best agents; in this case, both its rewards and its 

“warm-water-supply-time” are remarkably low. Recall that the agents receive the functional states 

of the heating stages as five extra variables in the environment state (except for agent 5), thus, as 

already discussed, combinations of these variables that the agents did not experience enough during 

training could make the agents “get confused”. This could be what is happening to Agent 1. Agent 

5, which does not receive the functional states of the heating stages, is affected by the combination 

of failures as well, yet not as much as Agent 1. 
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Figure 95: Rewards and warm water supply time from day 385 to day 410 

Another “bad moment” for Agent 1 is shown in Figure 96. This moment is interesting because it 

shows something that rarely happens according to the Markov chains shown in Figures 22, 23 and 

24 and in Tables 5, 6 and 7: a complete failure of the solar energy system. At that moment, Agent 

1 is one of the “bad ones” according to the rewards and definitely the worst one according to the 

“worm-water-supply-time”. In fact, 10 of the 12 agents did not reduce their “warm-water-supply-

time” at all due to the failure of the solar collectors. This could be because Agent 1 was trained 

with the Markov chains of the real system (the ones shown in Figures 22, 23 and 24), and in these 

Markov chains failures of the solar energy system happen only during 1.64% of the time. 

 
Figure 96: A failure of the solar energy system 

Figure 96 shows a failure of the solar energy stage that occurs in winter (mid-July); this is the 

moment when the solar collectors are least important for the heating process. More interesting 

would be to analyze a failure of the solar collectors that occurs in summer. This did not happen in 

the 12-year test without overlapping with failures or degradations of the other heating stages. 
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Therefore, the result shown in Figure 97 was taken from a test like the one used for Sections 6.2.1 

through 6.5.4, i.e. two years and ten days long. The result shown in the figure corresponds to the 

beginning of the second test year. In this case, more agents delivered warm water during less than 

14 hours daily; Agent 1 is still the minimum according to that indicator. A close-up to the rewards 

in Figure 98 shows that it is one of the agents with low rewards as well. Moreover, the three agents 

with the worst results in terms of their “warm-water-supply-time” were all trained with the Markov 

chains of Section 6.5.1 (i.e. with failures of the solar energy system happening only 1.64% of the 

time). Most agents have no trouble to continue providing warm water in the same time-span. 

 
Figure 97: Rewards and “warm-water-supply-time” under a failure of the solar energy system in summer 

 
Figure 98: Close-up to the rewards of Figure 97 

It would be possible to extract more “interesting” moments from the 12-year-long test; however, 

the conclusions would probably be the same that can be inferred from the current results: not all 

agents perform equally well when confronting failures of the system, and some agents that perform 

quite well with some failures perform worse with other failures or combinations of failures. 

Also, the reward function can be improved because the agents do not always have what would be, 

from a common-sense point of view, the best possible behavior as they try to maximize it. An 

example of this, as already discussed, is shown in Figure 94. 
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Chapter 7: Conclusions 

7.1. Accomplishment of objectives 

In the following paragraphs, the same specific objectives that were set on Section 1.6.2 are repeated 

and analyzed considering the results of the study (the specific objectives are written in italics). 

1. Establishing a connection between the TRNSYS software and the Python programming 

language. The Python code has to be able to transmit decisions to the TRNSYS simulation, 

regarding which devices are used. In addition to this, the code must receive results from 

the simulation, use them to make decisions and impose these decisions on the simulation. 

This objective was accomplished as detailed in Section 4.5. In order to achieve it, a standard 

TRNSYS feature that makes it possible to connect this software to Python (i.e. Type 169) was used. 

As already discussed, this mode of connection made it necessary to store information of previous 

moments in text files, and also to develop the training algorithm without the use of specialized 

Deep Learning libraries. 

2. Showing that an effective training process of the DNNs can be achieved in a basic 

programming language, without the use of specialized Deep Learning libraries. 

By using the theoretical concepts discussed in Sections 3.1 and 3.2, it was possible to develop the 

training platform without Numpy and other specialized Deep Learning libraries. The entire DNN-

training algorithm was developed by using custom functions mainly based on Python lists. This, 

together with the ability of Python to create and read text files, made it possible for the Python code 

to interact with the TRNSYS simulation and to train smart controlling agents. As shown in Section 

6.2, these agents clearly learn to outperform a baseline strategy, or at least to do as good the baseline 

when no margin of improvement seems to be possible. This result is encouraging because it shows 

that the same agent-training techniques can be applied to environments (real or simulated) where 

access to Deep Learning platforms is not possible. 

3. Defining a reward function that fulfills the condition of producing a desirable behavior of 

the smart agents as they try to maximize it. 

A reward function has been developed considering the most basic indicators that can be extracted 

from the simulation during the time-span after the previous action, such as energy- and 

temperature-related indicators, and the previous action itself. In Section 4.3, these indicators are 

introduced in a “global” reward function by using different parameters to set their contributions. 

Although this reward function seems to be effective to encourage the agents to deliver warm water 

while sparing energy, it has a big flaw: it is possible for the agents to increase the total rewards 

while delivering warm water less time. Therefore, the reward function does not completely meet a 

condition that is assumed in RL: “the higher the reward, the better". This was discussed in Section 

6.5.5. 

4. Analyzing the training results when the hyperparameters of the training algorithm are 

changed. Different neural network architectures are tested as well. 

As shown in Section 6.3, some hyperparameters do not seem to produce a highly significant 

performance variation, like for example, the use of Double DQN (this was not tested in a failure-

subject environment, so the results may vary there). On the other hand, some hyperparameters 

produce highly different performances as they are varied, like the use of momentum. This was 
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discussed in Section 6.3.4, showing that momentum is highly beneficial for the performance of the 

agents. This also leads to think that better results could be obtained with better optimization 

algorithms (such as Adam, RMSprop, etc.). 

5. Analyzing how the behavior of the controlling agents changes as the reward function is 

modified. Modifying the reward function is equivalent to changing what the agents are 

supposed to achieve. 

As shown in Section 6.4, the behavior of the agents seems to change as expected when the 

parameters of the reward function are changed, considering how these parameters are justified in 

Section 4.3. This means that the rationale behind the definition of the reward function was right 

(despite the problem just mentioned in Objective 3); therefore, the reward function presented here 

could be adapted to other environments where Reinforcement Learning is being applied, 

considering the specific goals of the training process in those environments. 

6. Training agents to fulfill their task when the devices of the system are subject to random 

failures. 

Section 4.5 proposes three methods of training agents that are resilient to certain failures of the 

system. Although not all results are positive, it has been proven that it is possible to train a single 

neural network that can handle the system under different scenarios. An obvious and very simple 

alternative way to address the failure-resilience issue would be to train a different DNN for each 

possible functional state of the system, i.e. exposing each DNN to a unique functional state of the 

system during training, and then using each DNN only when the state of the system is the one for 

which that DNN has been trained. This method would clearly outperform all agents presented here 

(at least from the point of view of the rewards), but part of the motivation of the study presented 

here was to have a single DNN that could handle all possible states of the system. Moreover, the 

system presented here has 18 possible functional states (considering all combinations of states of 

the heating stages), thus 18 DNNs would have to be trained and used (some of them can be 

discarded because the agents would get zero rewards anyway, e.g. the combination of all heating 

stages having failed). 

7.2. Future work 

Regarding the possibility of putting this project into practice, it is clear that the simulation used to 

train the agents has many simplifications with respect to the actual water heating system, located 

in the building of Beauchef 851, Santiago. An obvious example is the fact that in the simulation 

the warm water demand profile is the same every day. Because of this, the agents developed here 

are prepared for a system that is much simpler than the actual system; this could lead them to 

perform poorly were they put into practice. Therefore, the obvious next step of this project would 

be to improve the simulated system by making more things stochastic (like the warm water 

demand) and to enhance many simplifications that the simulation has (like not simulating the pool). 

As already discussed in Section 6.2, there is a clear simplification being made in this study: the 

main task of the chiller is to cool a cooling load that is not being modeled in detail. Therefore, it is 

hard to consider the cooling function of the chiller for the computation of the reward function. This 

motivation for using the chiller was rudimentarily introduced into the reward function in the same 

section, but the method proposed would not allow the agents to be put into practice. In order to 

really take the cooling load of the chiller into account, it would have to be simulated as part of the 

system. 

Introducing all these extra complexities into the simulation would clearly make the training process 

much more difficult, and the agents would have a hard time even in an environment without 
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failures. This can be concluded from the fact that, even with a simple complexification of the 

system like adding failures to the devices, the agents struggle to find a good solution. Thus, one of 

the first things to do is to make more powerful neural networks. The introduction of recurrent neural 

networks would be the obvious next step, as well as introducing regularization methods (e.g. 𝑙1 

regularization, 𝑙2 regularization and dropout). Adding predictions of the future (like weather-, 

demand- and failure predictions which are subject to errors) would also make the result more 

interesting and more likely to be put into practice. 

Another change which could improve the results, even with more complexities being considered 

in the simulation, could be reducing the time-span between consecutive actions of the agent. The 

following example will clarify why: if the water demand in the dressing rooms were stochastic 

instead of a fixed function that is the same every day, then the agent would have to choose which 

devices to turn on without actually knowing how large the future demand will be. In this context, 

it is possible that the agent makes the mistake of turning on devices that are enough to supply warm 

water for a low demand, and then the demand turns out to be quite high. If the time-span between 

the actions of the agent were shorter, then the agent might have time to rectify its error in the next 

action before the temperature of the water drops below the comfort threshold. 

One must also keep in mind that in Reinforcement Learning good results are never easy to get. 

Getting good results is hard even in environments that one would consider “simple”. That is why 

this area of Machine Learning took off only a few years ago. However, for the same reason there 

are new techniques permanently being discovered and published. For future developments of this 

platform, it may be necessary to add recently discovered methods in order to improve the 

convergence of the algorithms. 
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8. Glossary 

CH4 methane 

CO2 carbon dioxide 

DWH domestic water heating 

DNN deep neural network (in this case Dense unless specified) 

DQN Deep Q-Network, method to train a DNN to predict Q-Values (see 3.2.5) 

DRL Deep Reinforcement Learning 

FCFM Faculty of Physical and Mathematical Sciences of the University of Chile 

GHG greenhouse gas 

H2O water molecule 

HVAC heating, ventilation, and air conditioning 

KPI key performance indicator 

NASA National Aeronautics and Space Administration 

ODE ordinary differential equation 

PDF probability density function 

RL Reinforcement Learning 

SWH solar water heating 

TES thermal energy storage 

TRNSYS Transient System Simulation Tool 
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Annexes 

Annexed A. Further details about the water heating system simulation 

Details about the heating system which were considered not to be essential for understanding the 

study were left out of the main part of the thesis. Here, those details are explained, so that a similar 

model of the same water heating system can be created by the reader. The model is based on the 

previous work of Camila Correa [49] and Camila Correa et al. [32]. 

The simulations were carried out in a Toshiba notebook which was acquired at the end of the year 

2013 and has the following characteristics: 

 - Notebook model: Toshiba Satellite P55t – ASP5303SL 

 - CPU: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz 

 - RAM: 12.0 GB 

 - Disc: HGST HTS541010A9E680 (Hard Disc, 1 TB capacity) 

The time steps of the simulation are one minute long. 

Annexed A.1. Detailed flow diagrams 

Here, some items which have been grouped in Figure 14 will be detailed. Figures 99 through 101 

correspond to the solar stage, the chiller and the heat pump stage respectively. It is necessary to 

understand Figure 14 in order to understand the three figures below. 

 
Figure 99: Detailed flow diagram of the solar stage 

 
Figure 100: Detailed flow diagram of the heat recovery stage (chiller) 
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Figure 101: Detailed flow diagram of the heat pump system. It is considered that each heat pump has an 

integrated water pump in order to move the water flow to the heat exchangers. 

Annexed A.2. Parameters of the elements in the system simulation (Types) 

Heat exchangers 

All heat exchangers in the system are modeled using the Type 91 (Constant Effectiveness Heat 

Exchanger) and they have the same parameters, which are detailed in Table 32. 

Table 32: Parameters of the heat exchangers 

Parameter Value 

Heat exchanger effectiveness 0.6 

Specific heat of source side fluid 4.19 kJ/kg.K 

Specific heat of load size fluid 4.19 kJ/kg.K 

Water pumps 

All pumps are single-speed pumps (Type 114); in all of them, the “Motor heat loss fraction” is set 

to zero, and the “Fluid specific heat” is set to 4.19 kJ/kg.K. The other parameters are specified in 

Table 33. The “internal” pumps of the heat pumps are separate items in the TRNSYS software, so 

they are specified in the last row of the table. 

Table 33: Parameters of the water pumps 

Pump Number Rated Flow Rate Rated Power 

1 and 2 5300 kg/hr 2520 kJ/hr 

3 and 4 5300 kg/hr 3960 kJ/hr 

5 and 6 13500 kg/hr 2520 kJ/hr 

7 52390.8 kg/hr 13422.82 kJ/hr 

8 29937.6 kg/hr 8053.5 kJ/hr 

9 to 12 5300 kg/hr 1440 kJ/hr 

Pumps of the heat pumps 1 to 4 5300 kg/hr 1260 kJ/hr 

Weather Data 

Weather data is necessary to provide the solar radiation to the solar collectors and the external dry 

bulb temperature to the heat pumps of the third heating stage. Weather data from many cities around 

the world is available from various sources; in the case of this study, weather data of Meteonorm 
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[61] which is included in TRNSYS was used to get the weather data of Santiago. In order to do 

this, Type 15-3 was used.  

Storage tanks 

Preheating Tanks 1 and 2, which are part of the first and second heating stage respectively, are 

modeled with the Type 39. The “Excess Flow” is recirculated through the respective heat 

exchanger to permanently extract heat from the respective source, as shown in Figure 14. The 

“Flow Rate To Load”, which is an input to “tell” the tank the demanded water flow, is by definition 

the same flow that is entering in the system; in this way, the volume inside these tanks never varies. 

Both tanks have exactly the same parameters, which are specified in Table 34. The difference 

between them is, clearly, the other elements (types) in the simulation with which they are 

connected. 

Table 34: Parameters of Preheating Tanks 1 and 2 

Parameter Value 

Tank operation mode 1 

Overall tank volume 2 m^3 

Minimum fluid volume 1.0 m^3 

Maximum fluid volume 2 m^3 

Tank circumference 4.89 m 

Cross-sectional area 1.9 m^2 

Wetted loss coefficient 6.0 kJ/hr.m^2.K 

Dry loss coefficient 4.0 kJ/hr.m^2.K 

Fluid specific heat 4.19 kJ/kg.K 

Fluid density 1000 kg/m^3 

Initial fluid temperature 35 °C 

Initial fluid volume 2 m^3 

The storage tanks of the third heating stage, i.e. the Heating Tanks 1 to 4, are modeled by using 

Type 534. The inlet-outlet pair number 1 is used to receive the water flow from the previous heating 

stages and to deliver water to the outlet of the system, while the inlet-outlet pair number 2 is used 

to recirculate the fluid inside the tanks to extract heat from the heat pumps. All the tanks have the 

same parameters, which are listed in Table 35. 
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Table 35: Parameters of Heating Tanks 1 to 4 

Parameter Value 

LU for Data File -1 

Number of Tank Nodes 10 

Number of Ports 2 

Number of Immersed Heat Exchangers 0 

Number of Miscellaneous Heat Flows 0 

Tank Volume 4 m^3 

Tank Height 2.1 m 

Tank Fluid  0 

Fluid Specific Heat 4.19 kJ/kg.K 

Fluid Density 1000 kg/m^3 

Fluid Thermal Conductivity 2.14 kJ/hr.m.K 

Fluid Viscosity 3.21 kg/m.hr 

Fluid Thermal Expansion Coefficient 0.00026 /K 

Top Loss Coefficient 5.0 kJ/hr.m^2.K 

Edge Loss Coefficient for all Nodes 5.0 kJ/hr.m^2.K 

Bottom Loss Coefficient 5.0 kJ/hr.m^2.K 

Inlet Flow Mode-1 1 

Entry Node-1 10 

Exit Node-1 1 

Inlet Flow Mode-2 1 

Entry Node-2 1 

Exit Node-2 10 

Flue Overall Loss Coefficient for all Nodes 3.0 kJ/hr.K 

Valve V1 

As Figure 14 shows, valve V1 deviates part of the entering water directly to the outlet of the system. 

It does this so that the water leaving the system does not surpass a temperature of 45°C. To 

accomplish this task, the valve V1 has to receive the temperature of the water that is leaving the 

third heating stage, so that it can calculate the amount of water that it has to send directly to the 

outlet. 

To do this in TRNSYS, valve V1 has to be modeled with Type 11b (Tempering Valve). The 

“Setpoint Temperature”, which is an input and not a parameter, is given a constant value of 45°C. 

The flow mixer in the outlet, which mixes the flow coming out of the third heating stage with the 

mains water flow in order to keep the water at 45°C, is modeled with a normal flow mixer (Type 

11h). The flow mixer at the outlet of the heat pumps, which mixes the flows coming out of the four 

heat pumps and is illustrated in Figure 101, sends its outlet temperature to valve V1 (Type 11b) in 

order to regulate the temperature of the water that leaves the system, as already discussed. 

Valve V2 and Pool 

Valve V2 is configured to always send 51% of the flow coming out of the chiller to the heat 

exchangers where it gives off heat to the water for the dressing rooms. The remaining 49% is sent 

to the pool. The pool is not being modeled in the simulation; it is simply assumed that the water 

flow coming out of the pool has a temperature of 44.5°C. This is assumed following the original 

design of the thermal system of the building. 



138 

 

Automatic Control Systems 

The heat pumps and the pumps of the solar field (pumps 3 and 4 in Figure 14) have automatic 

control systems that turn them on and off depending on the temperature of the water in their 

respective storage tanks. This is only done when the smart controlling agent (neural network) has 

previously decided to turn on the corresponding stage of the heating system. Type 911 (Differential 

Controller with Lock-Outs) is used to control de devices. Table 36 shows the parameters and inputs 

of the controllers. In the case of the heat pumps, each heat pump has its own controller which bases 

its decision on the temperature of the storage tank of the corresponding heat pump. 

Table 36: Parameters and inputs of the automatic controllers 

Parameter or input  Controller of the pumps of 

the solar field 

Controllers of the heat 

pumps (each heat pump has 

its individual controller) 

# of Oscillations 5 5 

Minimum Run-Time 0.25 0.5 

Minimum Reset Time 0.25 0.5 

Upper input temperature Th 47 60 

Lower input Temperature Tl Equal to the temperature of 

Preheating Tank 1 

Equal to the average 

temperature of the 

corresponding storage tank 

Monitoring Temperature Tin 60 60 

High Limit Cut-Out 75 75 

Upper Dead Band dT 2 5 

Lower Dead Band dT -3 -2 

Lock-Out Control Signal 0 0 

Annexed A.3. Elements (Types) with external files 

Solar fields 

In the simulation, the solar field is divided in two Types 71, one of them representing the part of 

the filed where there are four collectors per row, and the other representing the part of the field 

where there are three collectors per row (see Figure 13). 

The parameters of both types are shown in Table 37. 
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Table 37: Parameters of the solar fields 

Parameter Solar Field 1 Solar Field 2 

Number in series 4 3 

Collector area 48 m^2 58 m^2 

Fluid specific heat 4.19 kJ/kg.K 4.19 kJ/kg.K 

Efficiency mode 2 2 

Flow rate at test conditions 68.4 kg/hr.m^2 68.4 kg/hr.m^2 

Intercept efficiency 0.618 0.618 

Negative of first order efficiency coeficient 1.3767 W/m^2.K 1.3767 W/m^2.K 

Negative of second order efficiency coeficient 0.0184 W/m^2.K^2 0.0184 W/m^2.K^2 

Logical unit of file containing biaxial IAM data 31 32 

Number of longitudinal angles for which IAMs 

are provided 

10 10 

Number of transverse angles for which IAMs 

are provided 

10 10 

The solar fields are associated to a data file that provides the incidence angle modifier (IAM) for 

each combination of transverse and longitudinal angles of the sun. The data is shown in Tables 38 

and 39. It was obtained from the previous work by Camila Correa [52]. 

Table 38: IAM values of the solar collectors; transverse angles from 0° to 40° 

Longitudinal 

Angle 

Transverse Angle 

0° 10° 20° 30° 40° 

0° 1.0000 1.0200 1.0800 1.1800 1.3700 

10° 1.0000 1.0090 1.0180 1.0549 1.1498 

20° 0.9900 1.0039 1.0129 1.0497 1.1441 

30° 0.9800 1.0282 1.0373 1.0750 1.1717 

40° 0.9600 0.9837 0.9925 1.0285 1.1211 

50° 0.9300 0.9615 0.9701 1.0053 1.0958 

60° 0.8700 0.9221 0.9303 0.9641 1.0509 

70° 0.7400 0.8413 0.8488 0.8796 0.9588 

80° 0.3800 0.3876 0.4104 0.4484 0.5206 

90° 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 39: IAM values of the solar collectors; transverse angles from 50° to 90° 

Longitudinal 

Angle 

Transverse Angle 

50° 60° 70° 80° 90° 

0° 1.4000 1.3400 1.2400 0.9500 0.0000 

10° 1.4505 1.4605 1.2597 0.9500 0.0000 

20° 1.4433 1.4532 1.2534 0.9405 0.0000 

30° 1.4781 1.4883 1.2837 0.9310 0.0000 

40° 1.4142 1.4240 1.2282 0.9120 0.0000 

50° 1.3823 1.3918 1.2005 0.8835 0.0000 

60° 1.3257 1.3348 1.1513 0.8265 0.0000 

70° 1.2095 1.2178 1.0504 0.7030 0.0000 

80° 0.5320 0.5092 0.4712 0.3610 0.0000 

90° 0.0000 0.0000 0.0000 0.0000 0.0000 
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Chiller 

The chiller is modeled with Type 666. The parameters and the chilled water set point, which is 

actually an input but is left constant, are shown in Table 40. 

Table 40: Parameters and chilled water set point of the chiller 

Parameter or input Value 

Rated Capacity 1080000 kJ/hr 

Rated C.O.P. 4.5 

Logical Unit – Performance Data 46 

Logical Unit – PLR Data 47 

CHW Fluid Specific Heat 4.19 kJ/kg.K 

CW Fluid Specific Heat 4.19 kJ/kg.K 

Number of CW Points 6 

Number of CHW Points 6 

Number of PLRs 5 

CHW Set Point Temperature 10 C 

The chiller uses two external files to specify its performance. One of the files specifies the cooling 

capacity and the C.O.P. of the machine operating at full load, as functions of the temperature of the 

chilled water leaving the machine and the temperature of the cooling water entering the machine. 

In that file, the capacity and the COP have to be specified as ratios of the rated capacity and rated 

C.O.P. which were specified in Table 40. The performance data is detailed in Tables 41 and 42; it 

is based on the work of Camila Correa [52]. 

Table 41: Capacity ratios of the chiller at full load 

Cooling water 

inlet temperature 

Chilled water leaving temperature 

5°C 6°C 7°C 8°C 9°C 10°C 

30°C 1.031 1.063 1.096 1.130 1.165 1.200 

35°C 0.978 1.009 1.041 1.073 1.106 1.140 

40°C 0.922 0.952 0.981 1.012 1.043 1.075 

45°C 0.863 0.890 0.918 0.947 0.976 1.007 

50°C 0.803 0.828 0.854 0.881 0.909 0.937 

55°C 0.738 0.761 0.786 0.811 0.836 0.862 

Table 42: COP ratios of the chiller at full load 

Cooling water 

inlet temperature 

Chilled water leaving temperature 

5°C 6°C 7°C 8°C 9°C 10°C 

30°C 1.204 1.238 1.271 1.309 1.342 1.380 

35°C 1.040 1.071 1.102 1.131 1.164 1.196 

40°C 0.889 0.918 0.944 0.971 1.000 1.027 

45°C 0.753 0.776 0.800 0.822 0.847 0.871 

50°C 0.631 0.651 0.671 0.691 0.711 0.733 

55°C 0.522 0.538 0.556 0.571 0.589 0.607 

The second file specifies how the performance of the chiller is modified when it is operating at 

part-load. This can happen because the chiller is meant to cool the chilled water flow up to a certain 

temperature. If the chiller does not have to use all its capacity to do it, it will operate at part-load. 
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Although there is the option of providing a customized part-load data file, in this case the 

“standard” file that is provided by TRNSYS is used. 

Heat Pumps 

The air-water heat pumps were the only component of the system that had to be added during the 

course of this study. All other elements were part of the previous studies by Correa [52] and Correa 

et al. [32] (in those works the heat pumps were modeled as traditional electric heaters). The heat 

pumps are modeled with Type 941. The performance data was obtained from the datasheet shown 

in Figure 102. The heat pumps of the system correspond to Model 117 shown in the table of the 

figure. However, the maximum external air temperature in the data was 10°C (15°C is also in the 

table, but the values are wrong). Thus, a linear regression was made to estimate the performance at 

temperatures over 30°C which are commonly reached in Santiago during summer. 

 
Figure 102: Performance data of the heat pumps. Model 117 is the one used for the study 

The parameters used for Type 941 are shown in Table 43. Many of the parameters are meant to 

define the cooling performance of the heat pumps. They will be specified although they have no 

importance for the simulation, because the heat pumps are always used in “heating mode”. 
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Table 43: Parameters of the heat pumps 

Parameter Value 

Humidity Mode 2 

Logical Unit for Cooling Data 49 

Logical Unit for Heating Data 50 

Number of Water Temperatures – Cooling  6 

Number of Water Temperatures – Heating  5 

Number of Dry Bulb Temperatures – Cooling 6 

Number of Dry Bulb Temperatures – Heating 5 

Specific Heat of Liquid Stream 4.19 kJ/kg.K 

Specific Heat of DHW Stream 4.19 kJ/kg.K 

Blower Power 662 kJ/hr 

Total Air Flowrate 1500 L/s 

Rated Cooling Capacity 40301kJ/hr 

Rated Cooling Power 7722 kJ/hr 

Rated Heating Capacity 72000 kJ/hr 

Rated Heating Power 18000 kJ/hr 

Capacity of Auxiliary 0.0 kJ/hr 

The performance data that is needed for the heat pumps is very similar to the data of the chiller. In 

the case of the heat pumps, the normalized capacity and normalized consumption (power) are 

needed as functions of the temperatures of the water and the outside air that are entering the heat 

pump (“normalized” with respect to the “rated” values of Table 43). Unlike the chiller, the heat 

pumps only need one performance data file because they always operate at full-load. The file is as 

follows: 

Table 44: Normalized capacity of each heat pump 

Entering Air 

Temperature 

Entering Water Temperature 

35°C 40°C 45°C 55°C 65°C 

-5°C 0.7819 0.7819 0.7814 0.7887 0.7894 

5°C 1.0162 1.0162 1.0106 1.0011 0.9926 

15°C 1.2506 1.2506 1.2397 1.2136 1.1958 

25°C 1.4849 1.4849 1.4688 1.4260 1.3990 

35°C 1.7193 1.7193 1.6980 1.6385 1.6022 

Table 45: Normalized consumption (power) of each heat pump 

Entering Air 

Temperature 

Entering Water Temperature 

35°C 40°C 45°C 55°C 65°C 

-5°C 0.7921 0.9008 0.9561 1.1652 1.4352 

5°C 0.8157 0.9429 1.0135 1.2231 1.4931 

15°C 0.8393 0.9851 1.0709 1.2809 1.5509 

25°C 0.8630 1.0273 1.1283 1.3387 1.6087 

35°C 0.8866 1.0695 1.1857 1.3965 1.6665 

Annexed A.4. Imposed Temperatures 

Two temperatures are imposed to the simulation by data-files: the temperature coming from the 

cooling load of the chiller (i.e. the temperature of the chilled water flow when it is entering the 

chiller) and the mains water temperature. 
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The temperature coming from the cooling load of the chiller repeats itself every 24 hours; it is 

shown in Figure 103. The chiller is meant to cool this water to 10°C. 

 
Figure 103: Daily temperature of the chilled water flow when entering the chiller 

The mains water temperature was calculated by Correa et al. [32] based on the method presented 

by Burch and Christensen [62]. This temperature repeats itself each year; it is shown in Figure 104. 

 
Figure 104: Yearly temperature of the mains water 

Annexed B. All results of Section 6.5. 

The results shown in Figures 68 and 71 were taken from a parameter exploration that was done 

only by using Architecture 11, as defined in figure 67. Only the proportional prioritization method 

was used, and the value of 𝜶 was varied as shown in Figures 105 and 106. Figure 105 shows the 

results of the agents that receive 10-variable environment states, and Figure 106 shows the results 

of the agents that receive 15-variable environment states. The agents shown in the same graph were 

trained with equal conditions; eight were trained with each hyperparameter combination. 
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Figure 105: 10-variable states 

 
Figure 106: 15-variable states 

Figures 72, 73, 74, 75 and 76 were taken from an exploration that was done with Architectures 4, 

8, 9, 10 and 12. Six agents were trained with each hyperparameter combination. In the case of 

Figure 72, only that hyperparameter combination was extended to 12 agents, as shown in that 

figure. Here, 6 agents are shown in all cases (in the case of Figure 72 the six agents that were 

originally trained are shown here). Figures 107 and 108 show the results of the exploration. 
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Figure 107: 10-variable states 
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Figure 108: 15-variable states 

Figures 78 through 84 were taken from an exploration that was done only with Architectures 11 

and 12. The proportional prioritization method was used with 𝜶 taking the values 1 and 2. 10-

variables states as well as 15-variable states were tested. Six agents were trained with each 
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hyperparameter combination. Figures 109 through 114 show all the results of the exploration 

process. 

 
Figure 109: Cycle 1; Architecture 11. 

 
Figure 110: Cycle 1; Architecture 12. 
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Figure 111: Cycle 2; Architecture 11. 

 
Figure 112: Cycle 2; Architecture 12. 
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Figure 113: Cycle 3; Architecture 11. 

 
Figure 114: Cycle 3; Architecture 12.  

In Section 6.5.3 the alternative Markov chains were proposed and used to train the agents. 

Architectures 4, 11 and 12 were tested. Both proportional and ranked-based prioritization methods 

were used. For the proportional method, 𝜶 took the values 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0. With the 

rank-based method, 𝜶 took the values 0.2, 0.5 and 0.8. The value 𝜶 = 𝟎 was tested as well; this 

implies not using any prioritization method. Six agents were trained with each hyperparameter 

combination. Figures 115 through 117 show all the results of Section 6.5.3. 
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Figure 115: Architecture 4 
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Figure 116: Architecture 11 
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Figure 117: Architecture 12 

In section 6.5.4, as already discussed, the momentum factor was increased to 0.9 while using 

Architecture 12. The experiment of decreasing the learning rate to 0.0005 was also carried out, but 

the results were not good like in the case of the momentum factor. In both cases, the training method 
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used in Section 6.5.1 was used (i.e. with the Markov chains of the real system and with 16 possible 

actions). Figures 118 and 119 show the results. 

 
Figure 118: Learning rate = 0.0005; Momentum factor = 0.8 

 
Figure 119: Learning rate = 0.001; Momentum factor = 0.9 


