
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

PATH PLANNING FOR A MARS ROVER: A PROGNOSTIC BASED
OFFLINE DECISION-MAKING APPROACH

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN ELÉCTRICA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL ELÉCTRICA

MARIANA IGNACIA SALINAS CAMUS

PROFESOR GUÍA:
MARCOS ORCHARD CONCHA

MIEMBROS DE LA COMISIÓN:
CONSTANZA AHUMADA SANHUEZA

CHETAN KULKARNI

SANTIAGO DE CHILE
2022

RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN ELÉCTRICA Y MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERA CIVIL ELÉCTRICA
POR: MARIANA IGNACIA SALINAS CAMUS
FECHA: 2022
PROF.GUÍA: MARCOS ORCHARD CONCHA

PLANIFICACIÓN DE RUTA PARA UN ROVER EN MARTE: UN SISTEMA
DE TOMA DE DECISIONES FUERA DE LÍNEA BASADO EN

PRONÓSTICO

Un rover en Marte debe visitar puntos de ruta para tomar muestras científicas. Debido
a la falta de fiabilidad de las telecomunicaciones, el rover necesita un sistema de toma de
decisiones autónomo. La planificación de ruta se puede separar en dos etapas, en línea y
fuera de línea, para reducir el costo computacional. En esta tesis, se describe un sistema
de toma de decisiones de pronósticas (PDM) fuera de línea. El sistema PDM se formuló
como un problema de optimización, utilizando un algoritmo genético (GA) para encontrar
soluciones factibles. El sistema considera el estado de carga de las baterías, el número de
puntos de ruta visitados y el perfil del terreno. El GA decide el número de puntos de ruta
a visitar, en qué orden se visitan y cuándo recargar las baterías. Se implementó y probó el
sistema PDM bajo diferentes mapas de terreno, realizando un estudio de sensibilidad de los
parámetros. El sistema encuentra soluciones factibles eficientemente, evita la sobrecarga de
consumo energético y planifica la recarga de la batería para satisfacer la política de SoC. El
análisis del impacto de fuentes de incertidumbre del modelo muestra que el enfoque adoptado
da un grado de holgura para operar.

i

RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN ELÉCTRICA Y MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERA CIVIL ELÉCTRICA
POR: MARIANA IGNACIA SALINAS CAMUS
FECHA: 2022
PROF.GUÍA: MARCOS ORCHARD CONCHA

PATH PLANNING FOR A MARS ROVER: A PROGNOSTIC BASED
OFFLINE DECISION-MAKING APPROACH

A rover mission consists of visiting waypoints to take scientific samples. Due to telecom-
munication unreliability, the rover must have an autonomous decision-making system. The
path-planning problem can be separated into two stages — online and offline — to redu-
ce computational cost. In this thesis, an offline prognostic decision-making (PDM) system is
described. The PDM problem was formulated from an optimization point of view that, unlike
previous approaches, uses a genetic algorithm (GA) to find feasible solutions. The optimi-
zation problem is mathematically developed and accounts for the battery state of charge,
the number of waypoints visited, and the terrain profile. The GA decides the number of
waypoints to visit, in which order the rover will visit them, and when it needs to recharge
batteries. The PDM system was implemented and tested through simulations under diffe-
rent terrain maps and a study of the parameters sensitivity was performed. Results showed
that the system can efficiently find feasible solutions in different scenarios, prevents energy
consumption overload and plans battery recharge to satisfy the SoC policy. An analysis of
the impact of different sources of uncertainty in the model is performed, which demonstrates
that the approach taken gives a degree of slack to operate.

ii

Dedicado a la memoria de
Ximena Camus Ortega

iii

Agradecimientos

Me gustaría agradecer a la vida, a todas las personas que de alguna u otra forma han sido
parte de mi camino universitario y a las instituciones en donde me he educado. Me considero
una persona muy afortunada por haber tenido la oportunidad de explorar distintas áreas del
conocimiento, por poder estudiar y trabajar en lo que me apasiona.

Quiero agradecer a mi familia por su apoyo durante todos los años en la etapa escolar
y universitaria. A Luis, mi papá, por enseñarme la importancia de la determinación y la
responsabilidad. A Macarena, mi hermana, por su apoyo y por ser mi eterna profesora. A
Ximena, mi mamá, por enseñarme a ser una persona bondadosa y por el inmenso cariño que
siempre me entregó; se que estaría muy feliz por este logro.

A mis amigos, algunas quienes me acompañan desde el liceo y otros ya en la universidad,
les agradezco enormemente por todos los buenos momentos que hemos pasado, por el apoyo
en los momentos díficiles y por tantas risas que hemos compartido durante estos años; no
lo habría podido lograr sin ustedes. Quiero mencionar especialmente aquí a Pablo y a Kay,
quienes me han apoyado mucho durante la realización de esta tesis con consejos de progra-
mación y redacción.

Quiero agradecer también a mis compañeros de universidad y a los miembros del SPEL,
donde empecé a conocer y a encantarme con el mundo de la investigación. En especial a
Gustavo Díaz, de quien aprendí mucho realizando mi práctica y otros proyectos.

Por supuesto también agradezco al profesor Marcos Orchard, por la confianza que ha depo-
sitado en mí, por abrirme puertas y porque su apoyo ha sido fundamental para la realización
de esta tesis.

Finalmente, quiero agradecer al departamento de Ingeniería Eléctrica por financiar el
arancel de mis estudios de magíster al otorgarme la beca Luz Chuaqui. Espero que con
los años estos espacios de investigación e ingeniería sean lugares mas diversos, con mayor
participación de mujeres y disidencias.

iv

Table of Content

1. Introduction 1
1.1. Context and Motivation . 1
1.2. Hypothesis . 2
1.3. Objectives . 3

1.3.1. Main Objective . 3
1.3.2. Specific Objectives . 3
1.3.3. Thesis Outline . 3

2. Theoretical Framework 4
2.1. General Aspects of a Rover . 4

2.1.1. Power System . 5
2.1.2. Thermal Control . 6
2.1.3. Telecommunication . 6
2.1.4. Mobility System . 7
2.1.5. Flight Software . 9
2.1.6. Autonomous Navigation . 10

2.2. Energy Storage . 12
2.2.1. Basic Concepts and Considerations 12
2.2.2. Requirements for a Rover . 13
2.2.3. State-Space Model . 14

2.3. Terrain Classification . 15
2.4. Path Planning . 17

2.4.1. Traveling Salesman Problem . 18
2.4.2. The Shortest Path Problem . 18

2.5. Genetic Algorithms . 19
2.5.1. Selection . 21
2.5.2. Crossover . 21
2.5.3. Mutation . 22
2.5.4. Additional Operators . 22
2.5.5. Penalty Functions . 23
2.5.6. Termination Criteria . 24

3. Decision-Making System 26
3.1. Architecture . 26
3.2. Problem Formulation . 26

3.2.1. GA-1 . 28
3.2.2. GA-2 . 29

v

3.3. Map Generation . 30
3.4. GA Programming . 31

3.4.1. GA-1 . 31
3.4.2. GA-2 . 35

4. Simulation Tests 39
4.1. Experimental Setting . 39
4.2. GA-1 Analysis . 41
4.3. GA-2 Analysis . 46
4.4. Decision-Making System Analysis . 49

5. Conclusions and Future Work 56

Bibliography 58

Annex 62

vi

List of Tables

2.1. State-Space Model nomenclature . 14
2.2. Terrain classification of Columbia Hills . 16
3.1. Speed used for each terrain in Decision-Maker System 31
4.1. Terrain probabilities in maps generation . 39
4.2. Waypoint set . 40
4.3. Parameters of the battery . 40
4.4. Parameters for state-space model . 40
4.5. Hyperparameters of GA-1 . 41
4.6. Weight combination . 41
4.7. Hyperparameters of GA-2 . 46
4.8. GA-2 experiments results grouped by map. 46
4.9. GA-1 route selected . 49

vii

List of Figures

2.1. Perseverance was developed by NASA JPL and landed on Mars on February of
2021 [51]. 5

2.2. Multi-Mission Radioisotope Generator (MMRTG) [52]. 6
2.3. Scheme of connection between the rover and the Earth [53]. 7
2.4. Diagram of the Rocker-Bogie suspension system. 8
2.5. Sherpa testing its active suspension system [16]. 9
2.6. Location of the ’brain’ of Perseverance [51]. 10
2.7. Energy capacity degradation for different operational policies [30]. 13
2.8. Example of Li-ion cell discharge open circuit voltage as a function of SoC [33]. 15
2.9. Example of terrain classification using SPOC [35]. 16
2.10. Example of a diagram for TSP [36]. 18
2.11. Example of a path in graph theory. 19
2.12. Diagram of a generic GA. 20
2.13. Crossover operator [47]. 21
2.14. Mutation operator [47]. 22
2.15. Additional operators [47]. 23
3.1. System architecture. 27
3.2. Example of paths between two waypoints. 33
3.3. Crossover operation for GA-2. 36
4.1. Accumulated reward analyzed by time constraint. 42
4.2. Travel time analyzed by time constraint. 43
4.3. Fitness percentage change analyzed by time constraint. 44
4.4. Waypoints chosen to be visited. 45
4.5. Energy consumption, travel time and fitness percentage change. 47
4.6. Energy consumption, total travel time and charging time distributions. 50
4.7. Relative frequency of each terrain category. 51
4.8. Example of two paths generated by the Decision-Making System during first

generation. 52
4.9. Example of two paths generated by the Decision-Making System at the last

generation. 52
4.10. Parameter ω1 influence on battery recharging time. 53
4.11. Parameter ω2 influence on battery recharging time. 54
4.12. Energy consumption and total travel time distribution when testing the same

individual. 55
5.1. Map #1 with 1 % of obstacles. 62
5.2. Map #2 with 3 % of obstacles. 63
5.3. Map #3 with 5 % of obstacles. 63

viii

Chapter 1

Introduction

1.1. Context and Motivation
One of the most frequently asked question is: When and how did life began on Earth?.

This question has fueled missions that seek to explore the universe and find life in other
remote places, to understand our own planet. One of the most accepted theories is that life
can develop in a planet with water, carbon dioxide, and an adequate temperature. In this
way, scientists have laid the foundations for exploration on Mars, the planet closest to Earth
that seems to meet these characteristics and that may even be an incubator for microbial life
[1].

Mars has characteristics similar to Earth. It is a rocky planet, with a rotational speed
on its axis almost equal to that of Earth. A Martian day, which is called sol, is 40 minutes
longer than an Earth day, but a Martian year is equivalent to 687 Earth days. Although it is
about half the diameter of the Earth, its surfaces are similar to the continents of our planet.
The Red Planet currently has a thin atmosphere of carbon dioxide and cannot support life
as we know it. However, from the studies that have been done since the last century, there
is evidence that suggests that billions of years ago there were rivers and streams of water
flowing on the Martian surface, which leads one to think that Mars did have an atmosphere
capable of keeping the water in a liquid state. This leads us to ask ourselves, what happened
during the evolution of Mars so that it is now a dry and dusty planet?. The study of the red
planet allows scientists to understand that drastic changes in climate can alter all life on a
planet and of course, the possibility that one day humans may inhabit Mars.

The exploration of Mars began in 1960, when two probes where sent but exploded before
reaching Earth’s orbit. During the following decades there were different missions of space-
craft and probes that orbited the red planet in order to be able to photograph the Martian
surface, learn about the topography, analyze characteristics of the atmosphere, among others.

In 1997, NASA’s first rover landed, Sojourner. This was an experimental vehicle inten-
ded to prove that unmanned technology could be used to explore another planet. Sojourner
managed to complete the planned scientific tests and remained operational on Mars for 85
Earth days [2]. NASA has subsequently sent four more rovers: Spirit and Opportunity (2004),
Curiosity (2012) and Perseverance (2021). Although they share some similarities, their tech-
nologies and designs have been adapted to carry out increasingly complex missions [3].

1

In general terms, a rover is made up of 8 subsystems: traction and mobility, autonomous
control and navigation, mechanical structure, data and command handling, communications,
energy generation and storage, thermal control, and scientific experiments. These subsys-
tems are constrained by power, time, computational capacity and weight limitations, as well
as the communication delays involved in sending signals between Earth and Mars [4]. These
communication delays make autonomous navigation a critical subsystem because Earth-Mars
communication takes from 8 to 42 minutes and is only possible during communication win-
dows. Hence, when an unexpected situation occurs, the rover enters safe mode and stops its
movements until it receives instructions from Earth. Engineers must then analyze the data
and determine new instructions. This entire process can take days, delaying the mission,
incurring further economic costs, and risking the lifespan of the rover [5].

One of the challenges in developing an autonomous navigation system is that rovers have li-
mited computational capacity. The computational cost has been reduced in some frameworks
by separating the system into two stages: offline and online. The first is the offline stage, so it
has no computational restrictions and consists of calculating the “best path” given the already
known information about the terrain, the rover’s health status and the waypoints it needs to
visit to complete its scientific experiments. The second stage is online and is responsible for
making corrections to the path in case an unexpected obstacle or terrain is encountered [6][7].

One approach to tackle the offline autonomous navigation stage is Prognostic Decision-
Making (PDM) [8]. This approach includes modules for fault diagnosis and prognosis of the
power and system health to make decisions and plan a route based on this information.
With this approach, decision making becomes a complex optimization problem to determine
the set of actions that the rover must follow. This optimization problem can be solved by
different methods, such as gradient descent, dynamic programming or stochastic methods.
Although some of these methods have been implemented in the past, more efficient and ro-
bust methods to preserve the health of rover’s components would be useful. One candidate
is the evolutionary or genetic algorithm (GA), which is based on natural selection obtained
through iterations of the individuals or solutions that solve the problem efficiently [9].

In this thesis, we describe the design, implementation and testing of a Decision-Making
System to solve the rover’s offline path planning problem on Mars. The path planning is
formulated as an optimization problem, which is divided into two sub-problems, GA-1 and
GA-2. Therefore, the Decision-Making System consists of two GA. The first GA decides the
number of waypoints and the order to visit them and, the second GA uses that information
to plan a path between a pair of subsequent waypoints.

1.2. Hypothesis
This thesis is focused on the study and design of a Prognostic Decision-Making system

(PDM). The PDM system’s goal is to obtain an strategy to allow a Mars rover, which is
an explorer vehicle, to move autonomously. Therefore, the hypothesis of this work are the
following.

2

1. The path planning of locations that a rover needs to visit, without communications
delay between Earth and Mars, can be solved through a offline PDM system that takes
into account waypoints, terrain characterization and state of charge of the batteries.

2. A genetic algorithm (GA) can solve the optimization problem formulated by the offline
PDM system to plan the route.

1.3. Objectives
1.3.1. Main Objective

The main objective of this thesis is to design, implement and test an offline strategy to
solve the problem of planning of autonomous movement for an explorer rover on Mars, based
on the approach of PDM, using a GA that can solve the optimization problem.

1.3.2. Specific Objectives
1. To design a decision-making system that takes into account state of charge of the bat-

teries, probabilistic characterization of the terrain and waypoints.

2. To design and implement a GA to solve the optimization problem

3. To test and compare the performance of the PDM system in different simulated scena-
rios.

1.3.3. Thesis Outline
The thesis structure is as follows. Chapter 2 provides a theoretical framework of general

aspects of a Mars rover’s and documentation on the terrain characterization for Mars. It also
provides a description of a state-space model for the state of charge estimation of batteries,
describes the mathematical approach of the path planning problem and reviews GAs and their
principal operators and considerations. Chapter 3 states the offline Decision-Making System
and the implementation as a GA. Chapter 4 conducts three set of experiment to analyze the
performance and the parameters sensitivity. Finally, Chapter 5 presents the conclusions and
future work.

3

Chapter 2

Theoretical Framework

2.1. General Aspects of a Rover
A rover is a motorized exploration vehicle. Generally, a rover has 4, 6, or 8 wheels and

can vary in size and weight. In 1997 the first rover landed on Mars, Sojourner, and sub-
sequently, diverse missions have been performed by different agencies and research centers.
NASA Jet Propulsion Laboratory (JPL) has sent rovers Spirit, Opportunity, Curiosity, and
Perseverance. The European Space Agency (ESA), in collaboration with Roscosmos (Rus-
sian Space Agency), is developing the rover ExoMars, which was expected to be launched in
2022, however, due to the Russo-Ukrainian War the mission was postponed indefinitely. The
launch of the explorer robot MELOS (Mars Exploration of Life and Organism Search) made
by JAXA (Japan Aerospace Exploration Agency) is expected to be in 2022 but the agency
has not published updates.

Therefore, the leadership of NASA in terms of space exploration on the Martian surface
is clear. NASA has not only successfully sent rovers, but also they have been in operation for
years. For example, Opportunity was active for nearly 15 years [10]. Thus, in this thesis, the
analysis of systems and technologies of rovers is based on NASA’s documentation. In Figure
2.1 Perseverance rover is shown, which has an almost identical design and characteristics to
the rover Curiosity. In the same way, Curiosity looks superficially similar to the twin rovers
Spirit and Opportunity, but it has many improvements regarding the internal systems that
allow its operation.

The main systems necessary for the operation of the rover will be detailed in the follo-
wing subsections. It is worth to have a general knowledge of each system to understand the
requirements and limitations when developing the PDM system. The information presented
is primarily based on the engineering of Curiosity [3].

4

Figure 2.1: Perseverance was developed by NASA JPL and landed on Mars
on February of 2021 [51].

2.1.1. Power System
Rovers Curiosity and Perseverance obtain energy from the Multi-Mission Radioisotope

Generator (MMRTG), which can be visualized in Figure 2.2. Previous rovers used solar pa-
nels, but that technology is less reliable on Mars. It is unviable to charge batteries nor to
continue the operation during the night, during sand storms, and in places where sunlight
does not reach.

The MMRTG can reach a weight of 40[kg] and generates electrical energy using the heat
produced by the radioactive decay of plutonium dioxide. The plutonium has a mean lifetime
of 87.7 years, so the energy production will decay with time and, eventually, will cause a re-
duction in the rover’s activity. MMRTG was designed to survive accidents that might occur
in the launch; therefore, it does not release radioactive material to Earth.
As was stated before, this generator provides a more stable energy source; however, it is not
the most efficient in transforming heat into electricity. It converts around 114[W] to electri-
city while the rover’s heat rejection system uses the remaining 1900[W] of heat to maintain
the electrical components to an adequate temperature, which can range from −40◦C to 50◦C.
The rest of the heat is released into the Martian atmosphere.

A rover needs 45 to 70[W] when on sleep mode. Once is awake it needs a minimum of
150[W], with a peak of 500[W], when the rover is moving. Since the MMRTG only converts
around 114[W] of electricity, the rover relies heavily on the energy stored in its batteries to
perform its operations, which is why the robot is awake for only 6 hours of the day and the
rest of the time is in sleep mode to charge its batteries [11].

The last four rovers developed by NASA have utilized Lithium-ion batteries due to the
advantages that this technology offers in regards of mass, volume, and temperature range
[12]. In the power system, an array of two Lithium-ion batteries are used, with a capacity of
1200[Wh]. The batteries used in these missions have a good performance, during charge and
discharge, even in a wide range of temperatures (from 30◦C to −25◦C). The batteries can
also provide sufficient energy during launch and operations on the Martian surface, tolerate
altitude changes during the trip, and have adequate characteristics regarding the batteries’
life cycle. [13].

5

Figure 2.2: Multi-Mission Radioisotope Generator (MMRTG) [52].

2.1.2. Thermal Control
The thermal control system is critical due to the wide fluctuations of temperature pre-

sented on the Martian surface, which is a consequence of the planet’s thin atmosphere. The
Rover Environmental Monitoring Station (REMS) measures the temperature in the air just
above the floor. According to REMS data, during the night, the temperature varies from
−85◦C to −65◦C, with an average of −75◦C. During the day, the average temperature is
−10◦C, within a range of −30◦C to 5◦C.

Each external part of the rover was designed to endure the previously mentioned tempera-
tures; however, each internal part has different thermal requirements. For example, the Warm
Electronics Box (WEB), which holds the internal electronics of the rover, keeps the tempe-
rature between −40◦C to 50◦C so the components do not fail. The remaining heat of the
MMRTG is used to maintain the temperature within this range, as mentioned in subsection
2.1.1. This process is in charge of the Rover Heat Rejection System (RHRS), which pumps
Freon (a liquid commonly used as a refrigerant) through a tube that passes near the MMRTG
to obtain the residual heat and finally use it to heat the internal parts of the rover. When
necessary to cool the vehicle, the fluid is pumped from the rover’s avionics mounting plate
to the cold plates in the exterior of the heat exchangers and just below the rover’s upper deck.

Therefore, it is clear that the RHRS is essential to avoid component wear and failure of the
whole robot. To ensure the system’s continuous operation, RHRS has two redundant pumps,
two mixing valves, and two redundant divider valves. The valves allow the RHRS to cool or
heat the Freon as necessary.

2.1.3. Telecommunication
One of the most limiting aspects of a space mission is the broadband to send data. The

operations performed by the rover are determined by the windows through which the com-

6

munication can occur between Mars-Earth. The telecommunication system of the rover has
a Small Deep-Space Transponder (SDST) that is a transponder designed by JPL for space
missions and operates in the X-band, a Solid-State Power Amplifier (SSPA), and a UHF
transceiver, which allocates in WEB.

The downlink is performed by the UHF transceiver and orbiters Odyssey and Mars Re-
connaissance Orbiter, as shown in Figure 2.3. The telecommunication link is defined to send
data that is not critical to telemetry, so 60 % of the data goes through this channel. On
average, 1.8 potential communications can be performed during a sol (martian day), with a
data rate from the rover to the orbiters of 128 kbps [14]. The uplink has a data rate of 1 to 2
kbps; thus, sending a series of commands, which usually means sending around 225 kilobits,
needs to be planned with 15 minutes of anticipation.

Figure 2.3: Scheme of connection between the rover and the Earth [53].

A known communication problem is when the Sun is between Earth and Mars, also known
as solar conjunction. When solar conjunction occurs, the uplink communication channel is
not reliable. During this situation, the rover (and all the other spacecraft on Mars) enter
a ’low activity’ mode because if the rover gets in a risky situation, the engineers on Earth
cannot send commands to solve the problem. However, the solar conjunction only occurs
every 26 months, and when it happens, the blockage lasts between 2 to 5 weeks.
Another problem, although infrequent, is that the weather on Earth can affect both the
uplink and the downlink communication channels. Nevertheless, the Deep Space Network
(DSN), which is composed of 3 ground stations, works satisfactorily 95 % of the time.

2.1.4. Mobility System
The last four rovers sent by NASA utilize a mechanical architecture called Rocker-Bogie,

which connects six wheels to the robot’s body. This system has three principal components
[17], as shown in Figure 2.4.

• Differential: Connects rockers from the left and right side to the vehicle’s body with
the axis located in the rover’s upper part. The differential is inside WEB, which is the
principal structure of the rover’s body.

7

• Rocker: Rocker: One is on the left side, and another is on the rover’s right side. These
connect the wheels with the differential and the bogie.

• Bogie: Connects the middle and rear wheels with the rocker.

The rocker-bogie suspension system is used for these types of vehicles because it allows
the rover to traverse obstacles (rocks or ditches) of 25[cm]. It is worth noting that, with this
system, the rover has mobility stability even with a tilt of 45◦. The design can absorb much
of the impact loads the rover experiences during lander departure.

Figure 2.4: Diagram of the Rocker-Bogie suspension system.

As shown in Figure 2.4, the rocker-bogie system keeps all wheels in touch with the surfa-
ce, even when facing obstacles or bumpy terrain. The latter is a fundamental characteristic
because the rover’s weight is always distributed between all the wheels and is not overload
one of them when the vehicle is on soft terrain, like sand, causing the rover to sink. Another
situation where all wheels must be in contact with the soil is when it needs to ’climb’ through
an extremely irregular surface [15].

The rocker-bogie system is considered a passive suspension system; therefore, it has a low
complexity when it comes to controlling the rover because the mechanical structure is the
one that adapts to the changes of the external loads and the terrain. However, there are
configurations of active suspension systems. One example is the active suspension system of
the rover Sherpa [16]. The active suspension system has a higher cost regarding the control
adaptive system that they require but has more benefits than a passive suspension. The ac-
tive suspension can get involved in the rover’s movements and increment the traction on the
soil. For rovers with wheels mounted on structures similar to legs, it is possible to have a
configuration that allows the rover to change from driving to walking mode.

Figure 2.5 shows an example of the benefits of an active suspension system. In this case,
the robot has four independent legs; each leg has a wheel. When Sherpa encounters larger
obstacles, it utilizes its manipulator arm as support while lifting its wheels to overcome the
obstacle.

Other important parts of the mobility system are the wheels and the actuators. The wheels
are made of aluminum and have a spiral pattern on the surface which helps the suspension
system absorb the energy and reduce the impact of the load. As mentioned above, each wheel

8

has its motor, and each motor has an encoder. The encoder is used to control the velocity
and is used to determine the steering angle and the wheel’s odometry. If the vehicle has a
very low load, the velocity is 4.6[cm/sec]. If the vehicle has a maximum load, the drivers will
have a current of 2[A] with 28[V], resulting in a velocity of 2.6[cm/sec]. The whole mobility
system must be able to operate on Mars at a minimum temperature of −55◦C.

Figure 2.5: Sherpa testing its active suspension system [16].

2.1.5. Flight Software
The Flight Software (FS) is responsible for most of the rover’s functionalities during all

the mission phases. The infrastructure of the FS includes control and maintenance of the
processor, more than a thousand bus and devices, command processing, sequence execution,
telemetry processing, data compression, and time management of the spacecraft, among other
functionalities. It is worth mentioning that FS controls, practically, all the activities during
the phases of Entry, Descent, and Landing.

This subsection details the FS functionalities only needed during the operation phase on
the Martian surface. Specifically, the FS developed for the rovers Spirit and Opportunity
serves as a reference [18]. The above is because the characteristics of the rovers sent subse-
quently are similar; at the end of this subsection, their peculiarities are detailed.

The FS is written mainly in C, with some aspects programmed in C++. The FS, in addi-
tion to the operative system, has an executable image of approximately 11 MB. The onboard
memory consists of 128 MB of Dynamic Random-Access Memory (DRAM) and 3 MB of
Electrically Erasable Programmable Read-Only Memory (EEPROM) [17]. Perseverance and
Curiosity have a RAD750 processor [19].

The FS controls the rover’s mobility through the execution of basic commands. If the ro-
ver is in autonomous mode, the FS is in charge of processing images to identify the obstacle
and calculate the safest path to reach the goal location. Another important activity that FS
performs is handling the scientific equipment to capture the data required later for research.

One of the requirements of the FS is to coordinate activities because the hardware that
controls the motor can only execute a certain amount of tasks simultaneously. For onboard

9

activities, there is an arbitrariness mechanism that prioritizes the requests and allows the use
of computational resources according to the task’s priority.

Perseverance has an FS with a substantial difference from its predecessors because the
FS can be updated with improvements during the mission. Another unique feature is that
it has two computer modules called Rover Compute Element (RCE). One of these modules
is usually turned off and is turned on only when the other RCE is facing problems. Because
the two RCEs are identical, both represent the rover’s ’brain’. Figure 2.6 shows the location
of the ’brain’ of the rover.

Figure 2.6: Location of the ’brain’ of Perseverance [51].

2.1.6. Autonomous Navigation
As mentioned several times, the communication instability between Mars and Earth is an

important issue; therefore, it is critical to have an autonomous navigation system to plan the
route for each sol. During each sol, the rover navigates between 30 and 70 meters. A team
of 3 engineers plans the path, which takes around 8 to 10 hours of work for each sol; this
reflects the complexity of the task and the system integrated into the rover [20].

Spirit, Opportunity and Curiosity have three main navigation modes: blind-drive, hazard
avoidance, and hazard avoidance and full-time visual odometry [21].

• Blind-drive: In this mode, there are a sufficient amount of terrain images of its current
location to determine if there is a safe path. It can also use a series of commands to
traverse a few meters. Due to the low computational cost of this mode, it is the one that
allows the rover to move at a greater velocity in comparison to the other modes.

• Hazard avoidance: In this mode, the rover can choose the path, but it has to stop
frequently to analyze if there is an obstacle nearby; however, this mode is for longer
distances. The algorithm used for this mode is called GESTALT, which is described
later in this section.

• Hazard avoidance and full-time visual odometry: This mode is used when the task re-
quires high precision to reach the goal position or when the rover is on a slippery or

10

steep path. It is similar to the hazard avoidance mode, but the difference is that the
rover stops every half-length of the vehicle to carry out a visual odometry analysis. Con-
trary to the blind-drive, hazard avoidance and full-time visual odometry has a massive
computational cost due to their complexity, which is why in this mode is when the rover
moves at the slowest velocity.

Spirit and Opportunity were the first rovers to use stereo vision, local map-based obstacle
avoidance, and visual odometry in their navigation system. They were also the first to use
computer vision in a real-time autonomous navigation system during landing [22]. Below,
there is a detailed explanation of these techniques.

Both rovers have three pairs of stereo cameras: a pair of “hazcams” (hazard cameras)
looking forward, another pair of hazcams looking backward, and a pair of “navcams” (na-
vigation cameras) on the mast. The hazcams have a wide field of view (FOV) that allows
seeing more than the width of the rover at a short distance of roughly four meters. That is
the reason why hazcams are convenient for obstacle avoidance. On the other hand, navcams
have a narrower FOV and a wider baseline; however, their FOV is enough to analyze the
traversability of a candidate path many meters beyond the vehicle [22].

The information gathered from the cameras is used in the GESTALT algorithm [23],
which aims to avoid obstacles in the rover’s path. GESTALT transforms stereo images into
grid maps of traversability. The algorithm generates a set of allowed turns and movements by
the traversability map for each driving-cycle. Once the driving-cycle is over, the rover stops
to take new images and starts a new driving cycle. Each cycle considers a distance between
35 [cm] to 1 [m], and it takes around 70 seconds to calculate.

The visual odometry, which maintains the local navigation map, is executed by using dead
reckoning based on the wheels encoders and the IMU, along with the updates made by the
sun sensors. A significant challenge for visual odometry in Mars terrains is the slippage. The
slippage makes it difficult for the encoders and the IMU to estimate the rover’s position effec-
tively; thus, these sensors are not enough. Therefore, the images from the stereo cameras are
used to update the position. However, due to its high computational cost, visual odometry
is used only when necessary [21].

Perseverance uses a new software for autonomous navigation, which is called Enhanced
Navigation (ENav) [24]. ENav uses 2D generated heightmaps, which includes: base height-
map, ground undulations, constant slope and rock distributions. These heightmaps are based
on the orbital data and are representative of the environments that Perseverance faces in
Mars. ENav is constantly being updated by the stereo images collected by the rover when its
moving, therefore, the main source of error in the heightmap is the error in stereo matching
which results in elevation error.

ENav has Path Planner Wrapper functions to choose the next arc that the rover will drive.
To summarize the wrapper functions do the following: (1) receives the 3D point cloud taken
by the stereo cameras, (2) updates the planner’s costmap based on the new heightmap and
rover position, (3) chooses the next arc to drive given the updated heightmap and costmap,
rover pose, and goal by using a local tree-search planner and a global planner, which uses

11

Dijkstra’s algorithm, and (4) evaluates the arcs by sorting them based on their cost and
safety.

2.2. Energy Storage
Robots sent by NASA have three types of batteries: primary, thermal, and rechargeable;

each has different functions. Primary batteries are in the Lander; they are responsible for
supporting the operations of Entry, Descent, and Landing. Thermal batteries are in charge of
pyro events during the Descent and opening of the parachute. Rechargeable batteries support
the launch, correct anomalies during the trip, and aid during the operations on the surface
[26]; therefore, rechargeable batteries are vital for the autonomous navigation system. For
that reason, this section focuses only on rechargeable batteries.

Rovers Spirit and Opportunity were the first to use an array of lithium-ion batteries for
surface operations. Initially, these robots were projected to operate for 90 sols; however,
Spirit was operative for 2623 sols and Opportunity for more than 5000 sols, far exceeding
expectations. This success can be attributed, for the most part, to the lithium-ion battery
array used [13].

2.2.1. Basic Concepts and Considerations
Many types of batteries have been developed over the years. For aerospace applications,

the most used are nickel-hydrogen batteries and lithium-ion batteries. The nickel-hydrogen
batteries stand out because of their long useful life; however, their energy density is only a
third of what a lithium-ion battery has [27]. For explorers robots, cells have a mixture of
nickel cobalt oxide cathode, MCMB graphitic anode, and a low-temperature electrolyte with
a ternary mixture of solvents [26].

Basic terminology used in the study of batteries is presented below.

• State of Charge (SoC): It measures the quantity of energy that is available E(t) in the
battery relative to its maximum capacity C. As a convention, when the battery is full,
SoC is equal to 1 (or 100 %) and is equal to 0 when it is empty [32].

SoC = E(t)
C

• End of Life (EOL): Moment in which the battery can no longer satisfy the requirements
or the desired performance [25].

• Remaining Useful Life (RUL): Remaining time until the battery falls onto the failure
threshold [25].

• Depth of Discharge (DoD): Amount of charge drawn from the battery Qd due to its
maximum available charge C [28].

DoD = Qd

C
· 100 % = 100 %− SoC

12

• State of Health (SoH): Battery’s actual condition and the capacity to meet certain
performance when comparing it to a new battery. Thus, it describes the relationship
between the current capacity of the battery Ca and the nominal capacity CN [28].

SoHa = Ca

CN

· 100 %

Batteries degrade over time; this is worth taking into account since degradation causes
power and capacity to fade, which could reduce the efficiency of the rover. Different operating
factors cause degradation, such as high/low temperature, high/low SoC, and high charge and
discharge rate [29]. The internal electronics of the rover are kept between −40°C to 50°C (as
explained in section 2.1.2); thus, a faster degradation of the battery is expected.

However, an autonomous navigation system can consider a SoC policy to reduce degra-
dation. A SoC policy constrains the SoC to operate within a certain range. For example,
according to [29], it is stated that a good SoC policy is between 20 % to 80 %. In [19], states
that for Curiosity the SoC policy chosen was between 40 % to 100 %. Figure 2.7 shows the
energy capacity degradation of the battery by using different SoC policies.

Figure 2.7: Energy capacity degradation for different operational policies
[30].

2.2.2. Requirements for a Rover
Rovers Spirit and Opportunity have batteries that meet the following requirements —

rovers subsequently sent by NASA have similar requirements — as stated in [26].

• Operation voltage from 24 to 36 V.

13

• Provide energy of 220 Wh during launch and 283 Wh/sol when temperature is at 0◦C
during surface operation.

• Have a life cycle of at least 270 cycle and 50 % of DoD at 0◦C.

• Being able to admit pulses of 30 A at 50 ms in a wide range of temperatures.

• The battery array must be compact and lightweight.

2.2.3. State-Space Model
In the context of space exploration, it is critical to have a Battery Health Monitoring

(BHM) system because a failure in the batteries could provoke the end of the mission. The
BHM system can determine SoC, RUL and EOL, while considering SoH as a constant to
simplify the mathematical problem. This is why, the BHM system is especially important for
decision-making and for path planning [31].

Table 2.1: State-Space Model nomenclature

Nomenclature Definition
ω1 Process noise (internal resistance)
ω2 Process noise (SoC)
η Measurement noise

∆t Sampling time
Ecrit Maximum nominal energy delivered by the energy storage device

i Battery discharge current
v Battery voltage

The model-based prognosis paradigm consists of 2 steps, estimation of the current state of
the system and prediction, which based on hypotheses about the future inputs of the system.
In the following, the system is presented in the state space representation based on [33] and
[34] proposal.

x1(k + 1) = x1(k) + ω1(k) (2.1)
x2(k + 1) = x2(k)− v(k) · i(k)∆tE−1

crit + ω2(k) (2.2)

v(k) = vl + (vo − vl) exp{γ(x2(k)− 1}+ αvl(x2(k)− 1)

+(1− α)vl(exp{−β} − exp
{
−β

√
x2(k)

}
− i(k) · x1 + n(k)

(2.3)

The evolution of the internal resistance of the battery is described in (2.1), where x1
represents the internal resistance of the battery and ω1 is the process noise. The evolution of
the state of charge of the battery, SoC, is described in terms of the power delivered by the
battery to the motor in equation (2.2), where x2 is the SoC value (in a range from 0 to 1), v is
the measured voltage battery in the terminals at time k, i is the current measured at time k,
Ecrit is the expected total energy delivered and ω2 is the process noise for the SoC evolution.
The observation equation is shown in equation (2.3), this expression characterizes the voltage

14

measured as a function of SoC and the internal resistance. The parameters α, β, γ, vl (y-
intercept of the curve) and vo (open circuit voltage when the battery is fully charged) are
obtained empirically and depend on the array of lithium-ion cells used in the battery pack.
These parameters characterize the open circuit voltage curve, shown in Figure 2.8, which is
divided in three zones. Zone 2 is modeled as vL + α · vL(x2(k)− 1), thus, vL · α represent the
slope of the curve. Zone 1 and Zone 3 have a different behavior which is why parameters γ
and β are added to the equation to minimize MSE for each zone respectively. Equations (2.1),
(2.2) and (2.3) are used when the battery is in the process of discharge, when the battery is
charging the sign of the current must be inverted.

Figure 2.8: Example of Li-ion cell discharge open circuit voltage as a function
of SoC [33].

2.3. Terrain Classification
Terrain identification is critical when developing an autonomous navigation system so the

robot can operate safely and minimize the risk of mission failure. For example, Spirit took
a path with deformable soil that had not been detected in orbital or terrestrial images. In
addition, Curiosity experimented with mobility difficulties when traversing a terrain of sharp
rocks that damaged its wheels.

The uncertainty about the terrain’s condition makes it difficult to plan the route that the
rover should take. An important concept is traversability. Traversability is the ability of the
terrain to hold up a vehicle without reaching the failure point, which depends on both the
terrain and the rover. Up to date, many different approaches have been used to tackle this
problem. These approaches reckon with limitations of time, energy, and computational cost.
One of the most common approaches used to determine the traversability of the terrain is
the estimation and prediction of slippage.

Due to technological advances, specifically in Artificial Intelligence, new techniques are
getting more promising results. In 2016, NASA JPL developed a new software called Soil
Property and Object Classification (SPOC) that is based on Deep Learning and can identify
the different types of terrain on the Martian surface using computer vision [35]. This model
was trained using the high-resolution images of HiRISE (High Resolution Imaging Science
Experiment). In particular, the images of Columbia Hills — candidate landing site for mission
M2020 — were used to evaluate the performance of SPOC. This site has a size of 40x40km,

15

which corresponds to 25 gigapixels. On Columbia Hills, they identified eight terrain types.
The results are detailed in Table 2.2 with their respective percentage of instances found in
the dataset.

Table 2.2: Terrain classification of Columbia Hills

Terrain type % of data
Smooth regolith (SR) 19.8 %
Smooth outcrop (SO) 5.4 %

Sparse ripples firm (SRF) 2.5 %
Rough regolith (RR) 11.8 %
Rough outcrop (RO) 9.6 %

Sparse ripples sandy (SRS) 20.8 %
Dense linear ripples (DLR) 6.0 %

Polygonal ripples (PR) 24.1 %

In [7] an algorithm for path planning is proposed. The first stage of this algorithm works
offline and generates a set of paths that can be recalculated during the second stage. This
second stage works online and recalculates the path if unforeseen obstacles are encountered.
Because this thesis aims to develop an offline decision-making system, only the first stage of
the algorithm proposed in [7] is considered.

To define a set of feasible and optimal paths, let us consider that the exploration site is
divided as a grid, where each of the cells belongs to a terrain category. Each category con-
siders the properties of the terrain; therefore, a cell can be traversed at a certain estimated
velocity.
This estimation of the velocity at which the rover can move is calculated by combining maps
of Cumulative Fractional Area (CFA), which corresponds to the fraction of the area covered
in rocks, the Digital Elevation Model (DEM), and the traversability of the terrain. The cha-
racteristics of each category and their respective estimated velocities are detailed below.

Figure 2.9: Example of terrain classification using SPOC [35].

16

• Category A consists of benign terrains (SR +SO) with a CFA between 0 and 7 % and
an elevation less than 15°. The expected velocity of the rover in this terrain is 64.8 m

hr
.

• Category B consists of benign terrains with a CFA between 0 to 7 % if the elevation
goes from 15 to 20°. If the CFA is between 7 and 15 %, the slope can range from 0 to
15°. The expected velocity is 52.5 m

hr
.

• Category C composes rough terrains (RR+RO) with a CFA from 0 to 15 % and a slope
from 0 to 20°. The range of velocities of this category is 24.2-48.5 m

hr
.

• Category D includes sandy terrains (SRF+SRS), with a CFA from 0 to 15 % and a
slope less than 10°. The expected velocity is in the range of 10.9-40.8 m

hr
.

• Category E includes benign, rough, and sandy terrains if the slope is between 20° to
25° with a CFA from 0 to 15 %. The expected velocity is 10.9 m

hr
.

• Category F composes sandy terrains with a slope from 10 to 20°, regardless of the
CFA. It also includes any category of terrain with a CFA greater than 15 % and a slope
greater than 25°. This category is untraversable, which is why any cell that belongs to
this category cannot be included in a potential path.

2.4. Path Planning
Nowadays, robots are becoming increasingly more important in our daily lives, from ro-

bots in the industry to smart home devices. An important aspect to ensure a near optimal
performance is to successfully solve the navigation challenges that a robot faces in its respec-
tive environment. Path planning, also called motion planning, refers to the task of finding a
path when the goal position is known [50]. The nature of the path planning depends on the
context in which the robot its performing the task, in the following a brief description of the
factors to consider when solving a path planning problem is shown.

• Environment nature: The problem can consider either a static or dynamic environ-
ment. In a static problem the position are fixed and obstacles do not change overtime.
On the other hand, in a dynamic problem the position of the goal position and/or
the obstacle might vary through the search problem; therefore, a dynamic environment
represents a more complex problem.

• Map knowledge: Depending on the knowledge of the map, the problem can be consi-
dered a global path planning or a local path planning problem. In a global path planning
situation, the robot has previous knowledge and the environment is modeled as a map;
thus, a path is generated before moving towards the goal position, which means that
the process is done offline. On the other hand, in a local path planning situation the
robot is uncertain about the environment and relies on its sensors to estimate a map in
real time while also performing a search process to avoid obstacles and find an optimal
path to the goal position.

17

• Completeness: A path planning algorithm can be exact, if it can find an optimal
solution or if it can prove that there is not a feasible solution, or it can be heuristic,
which means that the algorithm search for a good quality solution.

2.4.1. Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a widely known problem in optimization and

it has many applications and variations. In the field of robotics, it has gain attention due to
its use for path planning problems [36].

Lets start by giving a brief description of TSP. Assume we have a set {c1, c2, ..., cN} of
cities and each pair of cities has a given distance d(ci, cj). The goal of this problem is to find
an ordering π of the cities so each city is visited only once and finishing the path in the same
city where it started [38]. Therefore, the goal is to minimize the expression shown in (2.4), in
which d(cπ(i), cπ(i+1)) represents the distance between two subsequent cities and d(cπ(N), cπ(1))
represents the distance between the last and first city, since TSP requires that the trip must
finish where it started.

N−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1)) (2.4)

TSP is a non-trivial problem and it can be computational expensive since the number
of possible round trips is (N − 1)!. For example, if we have 11 locations that we want to
visit, then there are 3, 628, 800 possible round trips. Therefore, different strategies are used
in order to find an optimal solution to TSP, such as, greedy algorithm, ant colony, genetic
algorithms, etc [37]. Figure 2.10 shows an example of a visualization of TSP considering 7
locations to visit.

Figure 2.10: Example of a diagram for TSP [36].

2.4.2. The Shortest Path Problem
One common problem in robotics is to find the shortest path between a start point and

a target point. The shortest path problem (SPP) has many variants, one of them is to find

18

the shortest path while avoiding obstacles. In the following subsection, we present a brief
description of SPP based on the formulation of [39] from vertex to vertex.

Lets consider a directed graph G = (V, A), where V is the vertex set and A is the arc
set. The arc set corresponds to the weight to travel from vertex vi to vj, this weight can
represent energy consumption, travel time or distance, to name a few. The directed graph G
is described by the matrix D = [ci,j], where ci,j is the cost of the arc that joins vi and vj;
thus, ci,i is equal to zero. If there is no arc from i to j, then di,j =∞.

Lets remember that, by definition, a path cannot have a vertex more than once, which
means that a path does not intersect itself. A visual example of a path in a directed graph
is shown in Figure 2.11, the directed graph has 5 vertex and the path is drawn by the solid
lines. Therefore, the cost of the path Cp is the sum of all the arcs cost in the path P . In the
example this would mean that Cp = c13 + c34 + c45. Finally the SPP aims to find an optimal
path that minimizes Cp.

Figure 2.11: Example of a path in graph theory.

2.5. Genetic Algorithms
There are many current problems where it is required to optimize or improve the per-

formance of a particular system or application. For example, you can lower costs, improve
efficiency, or extend the useful life of a component. The cost function represents what is being
optimized. In this way, an optimization problem can be modeled where an optimum point is
sought that can maximize or minimize the cost function.

Metaheuristic is a group of methods focused on solving problems known as ’hard optimi-
zation’. Among the metaheuristic methods are tabu search, ant colony algorithms, simulated
annealing, and genetic algorithms, to name a few [40].

Genetic Algorithms (GA), also called Evolutionary Algorithms (EA), are inspired by bio-
logy, specifically by Darwin’s theory. A GA randomly generates several individuals that
constitute the initial population. Each individual represents a solution to the optimization
problem. The individuals that have a better performance, which means that it is a more op-
timal solution to the problem, are the ones that pass their genes to the next generation. The

19

number of n generations — also known as criteria termination — determines the number of
times the algorithm is iterated. The criteria termination defines when a satisfactory solution
has been encountered; however, there are different ways to set the criteria termination as
explained in [48] and [49], which will be discussed below. The generic GA can be visualized
in Figure 2.12. In the following, the operators are explained in detail, along with considera-
tions for this particular problem. The explanation and description of the operators are based
mainly on [40] and [43].

Figure 2.12: Diagram of a generic GA.

20

2.5.1. Selection
During each iteration, a group of individuals is selected for reproduction or replacement.

The individuals with a higher fitness value (in a maximization problem) are the ones with
higher probabilities of being selected. In this way, the selection operator aims to improve the
average fitness of the next generation. It is worth noting that the selection operator can keep
the diversity in the individuals to reduce the risk of a premature convergence [41]. There are
different methods to select individuals; they are described below.

• Proportional selection: Each individual has a probability pi of being selected. This
probability is calculated based on the fitness value fi of the individual.

pi = fi∑N
j=1 fj

(2.5)

• Tournament selection: A group of t individuals is selected randomly from the po-
pulation. The individuals of this group compete with each other, so the winner is one
with the highest fitness value. The advantage of this method is that it maintains a high
variability among the individuals of the population and is easier to implement when
compared to the proportional selection method.

• Truncation selection: This is the easiest method to implement because, from a sorted
list of fitness values, the best n individuals are selected.

2.5.2. Crossover
Two individuals are chosen, which are called parents. These parents will breed one or two

children who will pass to the next generation. Usually, this operator is stochastic; thus, if the
operator is used with the same pair of parents, it would produce different children.

Regarding the path planning problem, the chromosome is made from a sequence of nodes
that constitute the path. The first step is to choose a random node of the chromosome. This
node splits the path into two parts. The first child is generated by combining the first part
of the first parent with the second parent. While the second child is generated in the same
way respectively [44] [45] [46].

Figure 2.13: Crossover operator [47].

21

2.5.3. Mutation
This operator generates a random individual that replaces one of the offspring previously

generated by the crossover operator. The goal of the mutation is to maintain a minimum of
diversity in the population, which can not be guaranteed only using the crossover operator.
In general terms, the mutation strategies modify an individual, so the new one is close to
the original one. In other words, this operator executes a local search in the neighborhood
of each individual to perform the mutation. The above is critical in problems where several
local optimal exist. The crossover operator keeps looking in the neighborhood of the local
solutions, while the mutation operator searches in new regions where the global optimum
might reside.

For the path planning problem, there exist a few variations to this operator. A generic
visualization on how this operator works can be seen in Figure 2.14. In [44] a node from the
path is chosen randomly (it cannot be the start or goal node), and it is replaced with a node
that is not in the path. In [46] a similar approach is taken, but the mutation window, which
is the range of the node changes, decreases as the feasibility ratio, the percentage of feasible
paths in the population, increases.

Both approaches do not reckon with the possibility that changing a node can transform
a feasible path into an infeasible one. A common way to deal with this problem is to check
the path’s feasibility after the mutation, and if the new path is unfeasible, then apply a
new mutation until a feasible one is generated. However, in [45], a new mutation procedure
is proposed. After randomly choosing one node to mutate, a set that contains all feasible
neighbor nodes of the mutation node is defined. This set of nodes generates a set of paths, and
their fitness value is calculated. The original mutation node is replaced with the mutated node
that produces the path with the best fitness value. This method has a more fast convergence
than other mutation methods.

Figure 2.14: Mutation operator [47].

2.5.4. Additional Operators
The three operators explained above are enough to build a GA. Nevertheless, for the path

planning problem, additional operators are used as mentioned in the literature [44], [45], [46]
and [47].

• Node repair: This operator moves a node that falls on an obstacle by performing a
local search in the neighborhood around it.

22

• Line repair: It fixes an infeasible line segment. A local search is performed to insert a
suitable node between the two nodes of the segment.

• Deletion: This operator, which is also called shortcut, is applied to both feasible and
infeasible paths. If the path is infeasible and after the deletion of a randomly chosen
node, it is transformed into a feasible one, then the random is deleted. In the case of
a feasible path, if the deletion of the node increases the fitness value of the individual,
then said node is removed, as shown in Figure 2.15.a.

• Smooth: It is applied to feasible paths. The operator, shown in Figure 2.15.b, tries to
smooth sharp turns of a path to reduce the cost of the solution. The operator acts based
on the value of the angle θ of the turn, and it may insert a node to accomplish this.

(a) Shortcut operator. (b) Smooth operator.

Figure 2.15: Additional operators [47].

2.5.5. Penalty Functions
As mentioned above, GA solves a hard optimization problem. This type of problem typi-

cally has constraints that can be linear or non-linear and unequal o equal. These constraints
define the feasible region where the solution can take place. For general purposes, let us define
a non-linear programming problem as,

min
x

f(x⃗) (2.6a)
subject to gi(x⃗) ≤ 0, i = 1, ..., n (2.6b)

hj(x⃗) = 0. j = 1, ..., p (2.6c)

If you consider this, a question arises: How to handle constraints when programming a
GA? One idea is to consider penalty functions. These functions transform a constrained-
optimization problem into an unconstrained one by adding a value to the objective function,
as shown by (2.7). The most used penalty functions are the ones that use an exterior method.
The exterior method starts with an infeasible solution, and from there, it moves towards the
feasible region [42].

ϕ(x⃗) = f(x⃗)±
 n∑

i=1
ri ×Gi +

p∑
j=1

cj × Lj

 (2.7)

The expression of (2.7) is a generalization, where ϕ is the new objective function, ri and

23

cj are penalty factors, and Gi and Lj are functions of their respective constraints. The most
common functions are shown in (2.8) and (2.6c)

Gi = max[0, gi(x⃗)]β (2.8)
Lj = |hj(x⃗)|γ (2.9)

Death Penalty [43] is the most used penalty function due to its simple implementation and
computational efficiency. This penalty rejects all infeasible individuals by assigning them a
fitness equal to zero if the solution violates a constraint. Although Death Penalty is used
widely, it has some drawbacks. For example, it is limited to problems in which the feasible
search space is convex, and the feasible search space is big in the proportion of the whole
search space.

There is a great variety of types of penalty functions that are more useful depending on
the characteristics of the problem. Some of them are static penalties, dynamic penalties,
annealing penalties, adaptive penalties, and co-evolutionary penalties, to name a few. Each
type also has multiple approaches, as is well documented in [42].

We are going to focus on two types of penalty functions, static penalties, and dynamic
penalties. Static penalties are the ones where the penalty factors remain constant throughout
the process of the algorithm. Instead, dynamic penalties include in their function a parameter
that allows computing the function’s value using the number of the current generation. In
most cases, the value of the function increases with the number of generations to eliminate
all infeasible individuals at the end of the evolutionary process.

2.5.6. Termination Criteria
Since the GA is an iterative process, it is important to choose appropriate termination

criteria so that GA does not end prematurely nor compromise the computational budget
available. There are different types of termination criteria; the main ones are direct and de-
rived [48][49].

Direct termination criteria is a group of termination criteria where no further calculations
are needed, and the stop condition is predefined. The most used ones are described in the
following.

• Maximal number of generations: GA stops when a number of Nmax generations is
reached.

• Hitting a bound: This criterion is fulfilled when the best value of the fitness value is
equal to or greater than a previously defined bound. To use this criterion is necessary
to know beforehand an approximate value of the global optimum.

• K-iterations: It is satisfied if there is no improvement in the best fitness values through
a K number of iterations. This criterion requires that the user assumes that after a
number of iterations with no improvements in the fitness value, it is impossible to obtain
better results.

24

Derived termination criteria calculate auxiliary values using data obtained through the
evolutionary process. This group includes termination criteria such as running mean, standard
deviation, best-worst, phi, kappa, POP-Var, ϵ-Variance. Below, the most common criteria are
described.

• Running mean: It is fulfilled if the absolute value of the difference between the best
objective value fn

∗ of the current generation n and the average of the best objective
values of the last nl generations are equal to or less than a given ϵ.

TCmean = |fn
∗ −

1
nlast

n−1∑
i=n−nl

f i
∗| ≤ ϵ (2.10)

• Standard deviation: This criterion is satisfied when the standard deviation of all
fitness values of the current generation of µ individuals is equal to or less than a given
ϵ.

TCσ =

√√√√ 1
µ

µ∑
i=1

(fn
i −

1
µ

∑
i=1

µfn
i)2 ≤ ϵ (2.11)

25

Chapter 3

Decision-Making System

3.1. Architecture
A rover’s mission consists of visiting various waypoints to perform science tasks. A set W

of M waypoints wi is defined as {(xi, yi), ri}M
i=1, where (xi, yi) is the cartesian coordinate of

the waypoint and ri is the reward associated with the visit to the waypoint i [8] [25].

This work developed and implemented by simulation a decision-making system for a Mars
rover. The system was able to determine the path that the vehicle must follow based on the
optimization of different criteria, regarding energy, state of health of components, time, and
reward of the waypoints that need to be visited. Figure 3.1 shows the architecture of the
PDM system.

Due to the complexity of the problem, it was divided into two sub-problems. The first
sub-problem, GA-1, decides the amount of N (N ≤ M) waypoints to be visited and the
order, with the limitation of the maximum time Tend given for the mission. Therefore, M
represents the number of all the waypoints and N represents number of waypoints that the
PDM systems chooses to visit given the constraints. The second sub-problem, GA-2, receives
two subsequently waypoints, (wi, wi+1), and finds an optimal path between them; thus, the
GA-2 algorithm is iterated N − 1 times. After N − 1 iterations, all sub-routes are joined
to form the complete route that traverse the N waypoints. The complete route is used to
calculate the charging plan by estimating the SoC through the path. The charging plan is a
list of nodes where the rover stops to charge its batteries.

3.2. Problem Formulation
Consider a map gridM with length m and width n. The set A contains all the arcs that

connect each point, i.e A = (i, j) : ∀i, j ∈M, i ̸= j. The setW contains M point coordinates
(a, b) that correspond to waypoints; each waypoint has an associated reward ra,b.

ra,b =
0, if (a, b) ̸∈ W

> 0, if (a, b) ∈ W
(3.1)

The rover’s mission is to visit all the chosen waypoints in a given time Tend, which is the

26

Figure 3.1: System architecture.

expected time to fulfill a mission. Typically it has a range from 90 sols to 1 martian year. It
is important to state that is not necessary that the vehicle ends the mission where it started.
The rover’s position is denoted as pa,b.

Each arc (i, j) belongs to a certain terrain class, defined in the section 2.3. This class gives
information about the velocity with which the vehicle can move and the amount of energy
required to do so. Therefore, the arc (i, j) defines the rover’s travel time ti,j and the energy
Ei,j that the battery must provide.

Taking into account section 2.2, certain operating factors cause a faster degradation to the
battery. Thus, a SoC policy is included so the batteries operate in a range that preserves their
functionality and health. The policy is defined by the range [α−, α+], where α−, α+ ∈ [0, 1]
such that α+ > α−.

The rover can stop at any place to recharge the batteries from the energy provided by
MMRTG, since the energy that is transformed to electricity is constant. When it needs to re-
charge, the robot enters sleep mode, and all the activities are halted except for such functions
as maintaining the right temperature inside the rover, as was explained in section 2.1.1. The
SoC of each battery while recharging and the time it needs to do so is calculated using the
same expression to discharge the battery but with the opposite sign in the current. Once the
rover stops, it recharges its batteries until a SoC equal to 1 is reached. The MMRTG converts
constantly 114[W] (every hour) to electricity but the rovers electricity needs on sleep mode
can vary from 45 to 70[W]; therefore, the electricity requirement is modeled as a uniform
distribution.

27

Three variables define the entire operation of the rover: the sequence of nodes Path, which
defines the route; the visited waypoints CP , which allows us to measure the level of success
or failure of the mission; and the charging plan B, which makes the schedule for when and
where the batteries need to be charged.

The problem is to find a set of Pareto optimal routes to fulfill the mission considering
all the constraints. The criteria to choose this set of routes is to minimize the time and the
energy required and to maximize the rewards associated with each waypoint. The problem
solution must deliver the optimal sequence of nodes Path∗ and the optimal set CP ∗ of visited
waypoints. A feasible solution satisfies the following:

• A waypoint cannot be visited more than once.

• The route cannot consider traverse in the terrain of class F.

• The rover stops its operations once it fall outside the allowed SoC.

3.2.1. GA-1
GA-1 optimizes the rewards associated when visiting a waypoint and the time that it

takes to visit them. The result of GA-1 is CP = [(wa,b)0, (wa,b)1, ..., (wa,b)n]. Therefore, the
accumulated reward of the entire path is defined by (3.2).

J1 =
N∑

i=0
(ra,b)i (3.2)

To calculate the time ti,j, which is the time it takes to travel through the arc (i, j), it is
needed to know the velocity at which the rover can move through a certain cell of the map.
The velocity is estimated depending on the category of the arc (i, j). Below, the velocities
are defined for each category. Categories C and D are defined by an uniform distribution
denoted as U .

vi,j =

64.8[m
hr

], if the arc (i, j) ∈ category A
52.4[m

hr
], if the arc (i, j) ∈ category B

U(24.5, 48.5)[m
hr

], if the arc (i, j) ∈ category C
U(10.9, 40.8)[m

hr
], if the arc (i, j) ∈ category D

10.9[m
hr

], if the arc (i, j) ∈ category E
0[m

hr
], if the arc (i, j) ∈ category F

(3.3)

For each movement, the time ti,j which is the time it takes to get from position pi to
position pi+1 is stored in a vector T of length l. The total time travel also takes into account
the time of operation of each waypoint. Thus, the total time is defined by (3.4).

J2 =
l∑

k=0
(ti,j)k (3.4)

Since we want to maximize the accumulated reward J1 and minimize the total travel time
J2, the multiplicative inverse of the accumulated reward is taken into account, as shown in

28

(3.5). The weights ω1 and ω2 tune the importance of the variables.

JGA−1 = ω1

N∑
i=0

1
(ra,b)i

+ ω2

l∑
k=0

(ti,j)k (3.5)

The constraints for this sub-problem are the following.

p0 = (alanding, blanding) Rover starts the path in the landing position. (3.6)
l∑

k=0
(ti,j)k ≤ Tend Maximum allowed time of the operation. (3.7)

3.2.2. GA-2
The second problem, GA-2, only considers two adjacent waypoints in the set CP , recur-

sively until the last point. For example, it takes the first two (wa,b)0 and (wa,b)1, to solve the
path planning problem considering that (wa,b)0 as the start point and (pa,b)1 as the goal point,
without dealing with any other waypoint. This second sub-problem optimizes the energy and
time, with the constraint of the SoC of the batteries and the outcome is a fine-tuned route
between the waypoints (wa,b)i and (wa,b)i+1, which is a sub-set Pi. Accordingly, the optimal
set of nodes P ∗ is the result of the concatenation of all the sub-sets P ∗

i .

The energy Ei,j used for moving the rover through the arc (i, j) depends on the category of
the terrain and the velocity. The rover has a peak of 500[Wh] while driving and a minimum of
150[Wh]. Therefore, if the terrain is rougher then more energy will be consumed. The range
[150, 500]Wh is evenly divided into 5 categories of terrain (category F is not considered in
a feasible path). Then, a ratio is calculated between the actual velocity at which the rover
moves and the nominal velocity for that category of terrain as given by (3.3). Finally, the
energy Ei,j is the result of the linear equation Ei,j = x ·m + b, where x is the ratio previously
mentioned, m is the slope of the curve and b is the offset, which is given by each category.
The total energy consumption of each sub-path is defined in (3.8).

J3 =
l∑

k=0
(Ei,j)k (3.8)

The total time of each sub-path is calculated in a similar way to the GA-1 algorithm.
The only difference is that the operation time is not considered because the GA-2 aims to
optimize a path between waypoints, as shown in equation (3.9). It is worth mentioning that
the sub-paths between two waypoints are not the same as the path that GA-1 obtains because
GA-2 does a fine-tuning for each sub-path; meanwhile, GA-1 aims to find an optimal set of
waypoints to visit.

J4 =
l∑

k=0
(ti,j)k (3.9)

GA-2 goal is to minimize both the energy consumption Ei,j and the time ti,j for each
sub-path. Expression (3.11) shows the cost function for the optimization problem.

29

JGA−2 = ω3J3 + ω4J4 (3.10)

JGA−2 = ω3

l∑
k=0

(Ei,j)k + ω4

l∑
k=0

(ti,j)k (3.11)

The constraint of this problem is the SoC of the batteries, as mentioned before. The SoC
is calculated using the state space representation shown in section 2.2.3. Once the value of
SoC is equal to or below α−, the second battery is used until it falls below the policy. When
the two batteries have a SoC less than the lower bound of the policy α−, then the rover must
stop to recharge its batteries. The batteries are recharged until they reach a SoC equal to α+;
the time it takes to recharge batteries is Tcharge. Equations from (3.12) to (3.17) represent all
the constraint of the GA-2 problem.

ps = (wa,b)i The path starts at waypoint i (3.12)
pg = (wa,b)i+1 The path ends at waypoint i+1 (3.13)

SoC1(0) = α+ Battery 1 SoC at the landing position (3.14)
SoC2(0) = α+ Battery 2 SoC at the landing position (3.15)

α− ≤ SoC1(k) ≤ α+ SoC policy for battery 1 (3.16)
α− ≤ SoC2(k) ≤ α+ SoC policy for battery 2 (3.17)

3.3. Map Generation
The terrain map is a weighted matrix, which represents the cell category. Each cell re-

presents 1 square meter and can have a value from 0, which is category A (the most benign
terrain category), to 5, which is category F (an untraversable terrain in AutoNav mode that
is considered an obstacle).

The matrix is generated by taking into account the probability of each terrain category
and the set of waypoints for the mission. First, the matrix is filled with the terrain categories
of the waypoints. So when a cell is a waypoint the probability of category A is given by
1− (pB + pC + pD + pE), since is impossible that a waypoint is at the same time an obstacle
(category F). The three nearest neighbors of the waypoint cell take the same category. If a
cell is not a waypoint then the terrain category is given by randomly choosing a number ba-
sed on the probability of occurrence of each category pA, pB, pC , pD, pE, pF . The three nearest
neighbors take the same category if they are not already given a category.

As mentioned before, the rover can travel at a certain speed that is given by the terrain
category. We considered the autonomous navigation problem is stochastic; thus, we prognos-
ticate the expected velocity for each terrain category.

Categories C and D are within a range of values [24.5, 48.5] and [10.9, 40.8], respectively.
Therefore, it is assumed that a uniform distribution describes the behavior of the rover’s
speed in these terrains. However, when evaluating a path we cannot take a speed given by
a uniform distribution since the results may be misleading. For example, let us consider

30

that we have two candidate paths; each one of them is made up of three nodes. Path 1 has
two nodes that belong to category C, and one belongs to D. Path 2 has one node that be-
longs to category C, and two nodes belong to category D. It is logical to think that Path
1 is better and should be the one chosen by the GA. Nonetheless, it can occur that by ta-
king the speeds randomly sampled by the uniform distribution the nodes get the following
speeds, Path 1: 25.0, 26.7, 12.3 and Path 2: 45.3, 36.5, 40.2. In the latter example, the faster
and less energy-consuming path is Path 2, but it will not be representative if we take many
simulations of both paths. Thus, it is necessary to take a statistic of the speed for each terrain.

An option to compute the statistic may be the mean of the distribution; however, in
this context is not appropriate since we want to make a conservative estimation considering
that the cost of underestimating the time or energy that a path takes may be critical for
the mission. Taking that into account, we take the speed value that marks the 10 % lower
probability of occurrence, which is calculated using the cumulative distribution function.
Since categories A, B and E have a fixed speed value, we add Gaussian noise and take the
same statistic. Finally, the speed used in GA-1 and GA-2 to generate paths is shown in Table
3.1.

Table 3.1: Speed used for each terrain in Decision-Maker System

Terrain Speed [m
hr

]
A 62.33
B 50.01
C 26.62
D 13.57
E 8.35

3.4. GA Programming
3.4.1. GA-1

Initial Population

The proposed algorithm is implemented in Python. The GA uses the set of waypoints
that need to be visited to create a set of N individuals. To do that, a random number n is
chosen, which represents the individual’s length. Let us remember that an individual would
not necessarily consider all the waypoints of the original set because using all the waypoints
might violate a time restriction. Then, the individual is generated by taking a random sample
of size n. It is important to notice that every individual has the landing position in the first
gene.

Crossover Operator

The crossover operator takes as input two individuals, which from now on are called pa-
rents. Each parent is previously chosen by a tournament selection of size 2. It randomly
chooses two numbers representing a start position and an end position of the genes (in this
case, a gene is a tuple of cartesian coordinates of a waypoint) of the parent A. The genes of

31

parent A within the given range are chosen for the new individual, from now on called the
child. The genes of parent B, which are not present in the child, are now passed to the child
to ensure that a waypoint is only once in each individual. As mentioned before, all individuals
must have the landing position as the first gene.

One particular issue with this operator is that it diminishes the diversity of length of
the individuals, which means that usually, the entire population converges to have all the
waypoints in their genes. The latter is a problem since it often provokes a constraint violation
of the travel time. To solve this issue, each time a child is generated there is a 20 % chance
of eliminating a random number of their genes. Algorithm 1 summarizes how the crossover
operator works.

Algorithm 1 Crossover operator GA-1
Input: Parent A PA, Parent B PB
Output: Child
gene1 ← random(1, len(PA))
gene2 ← random(1, len(PA))
startGene ← min(gene1, gene2)
endGene ← max(gene1, gene2)
childPA ← PA[startGene : endGene]
childPB ← []
for gene in PB do

if gene not in childPA then
insert gene into childPB

end if
end for
child ← [landingPosition] + childPA + childPB
/* Randomly eliminate genes */
coin ← random(0, 1)
if coin < 0.2 then

nLen ← random(2, len(waypointSet))
if len(child) > nLen then

for i in range(len(child) - nLen) do
eliminate ← random(1, len(child)− 1)
del child[eliminate]

end for
end if

end if
return child

Mutation Operator

The mutation operator swaps genes within an individual according to a mutation rate.
The first step is to iterate through the genes of an individual. In each iteration, there is a
change of swapping the gene, given by the mutation rate. If the gene is chosen to be swapped,
then a random gene is chosen to be interchanged with.

32

Fitness Evaluation

The fitness of each individual is calculated by using the travel time T , the accumulated
reward R, and the number of collisions with obstacles nobstacles of the individual. The ac-
cumulated reward is the sum of all the rewards of the individual, which are given by the
waypoints wi visited.

The travel time T is calculated by extending the route, which means that a simple step-
by-step route is performed to connect all the waypoints within the route. For example, if
an individual has the following waypoints [(1, 1), (3, 5), (10, 5)] is necessary to know which
are the points that the rover will traverse when going from the waypoint (1, 1) to waypoint
(3, 5), and so on. In this example, the route that connects these two waypoints could be
(2, 2), (3, 3), (3, 4), (3, 5), where every point is only one step (horizontally, diagonally or verti-
cally) away of the previous point. Figure 3.2 shows a visualization of two different valid paths
to connect waypoints (1, 1) and (3, 5). In this way, for every individual an extended route is
calculated, which is later used to calculate the time that the rover will take to complete a
route that visits the set of waypoints given by the individual.

Figure 3.2: Example of paths between two waypoints.

The extended route mentioned before does not take into consideration if one of the points
is an obstacle or not; therefore, the amount of collisions is calculated because it is used as
penalization when evaluating the fitness of each individual. This penalization is considered
because later GA-2 may be able to avoid the obstacles encountered by making a detour;
however, this detour may take more time.

It is worth mentioning that the accumulated reward and the travel time have different
magnitude orders causing issues of sensitivity when changing the weights of the cost function.
As a consequence, it is required to perform a normalization of these variables. The normali-

33

zation is performed by the function MinMaxScaler from the library sklearn. MinMaxScaler
takes an array of values to calculate the range in which the variables are. After the scaler is
fitted, it can receive a value and transform it into the feature range.
Since the range of the travel time and accumulated reward is unknown, it is assumed that
the values of these variables calculated for the initial population are representative to fit
the MinMaxScaler. Thus, two scalers are created (one for the travel time variable and the
other for the accumulated reward variable); each one is fitted with an array that contains all
the values calculated in the initial population. It is worth mentioning that the multiplicative
inverse of the accumulated reward R is used to fit the scaler.

Taking the above into account, the fitness of an individual is calculated as shown in (3.18).
The variables R̃ and T̃ are the normalized variables accumulated reward and travel time,
respectively. This GA has a death penalty for the time constraint; hence, if the travel time T
exceeds the maximum travel time entered by the user — meaning that the time constraint
is violated — then the fitness of that individual is equal to −∞, which for purposes of
programming is equal to −1e30.

fitness = −(ω1R̃ + ω2T̃) ∗ (1 + 2 ∗ nobstacles) (3.18)

Algorithm 2 Algorithm GA-1
Input: WaypointList W0; Hyper-parameters H; Landing position L; Map M
Output: Optimal amount of waypoints ordered in a list
P ← initialPopulation-1(H[size],W0,L);
for generation ← 1 to H[max] do

Fitness Rank (fr) ← rankRoutes(P ,M)
/* crossover */
P̂ ← []
for i = 1, ...,H[max] do

parent1, parent2← tournamentSelection(P , fr)
child← crossover-1(parent1, parent2)
insert child into P̂

end for
/* mutation */
for individual in P̂ do

individual ← mutate-1(individual,H[mut_rate])
end for
insert eliteIndividuals in P̂
P ← P̂ new generation

end for
bestIndividual← Individual in P with the highest fitness
CP ← bestIndividual[CP]
return CP

34

3.4.2. GA-2

Initial Population

Each individual of the initial population must be feasible and have a fixed start and end
point. An individual consist of a random path created by the function createIndividual.
This function takes the start point and searches for the start point position in a dictionary
that has a list of feasible neighbors (meaning that it does not include obstacles as neighbors)
for each position. One neighbor is chosen randomly from the list given by the dictionary
for that position. Then the function checks if the chosen node is already in the path, which
means that the path has a loop, which would transform the path into an unfeasible one. If
this condition is fulfilled, it tries with the other neighbors on the list. If all neighbors fulfill
this condition, the function returns None. This process is repeated with each node, until the
current node is the same as the goal node, meaning that the path is complete. If a number
of maximum iterations are reached, and the last node is not the same as the goal node, then
the function returns None.

Crossover Operator

The crossover operator for the GA-2 receives two parents, which were previously chosen
by a tournament selection of size 2 since it was proved empirically that for a tournament of
that size converges faster than size 3 or 4. A random number is generated in range from 1
to int(max(len(parentA), len(parentB)))/2. The upper bound of the range was chosen from
doing several experiments, with other bounds the GA losses diversity among the individuals.
This number represents an index that splits the path of parent A and parent B into two
pieces. The first child is given by the combination of the first part of parent A and the second
part of parent B. The second child is then the combination of the first part of parent B and
the second part of parent A. Figure 3.3 shows an example of the crossover operation, in this
case, the number that splits the paths into two is equal to 3.

One issue with this operator is shown in Figure 3.3 in Child 2. The last node of the first
part of parent B is (5, 2), and the first node of the second part of parent A is (6, 4); these
two nodes are not neighbors of each other. If we want to make this path feasible, we need to
connect these two nodes by adding extra nodes. In this example, we can add (5, 3) or (6, 3) to
solve the issue. Thus, after generating a child the function adds extra genes to connect nodes
that are not neighbors. This function does not always find a feasible connection between two
nodes, which means that the function may add nodes that are obstacles.

35

Figure 3.3: Crossover operation for GA-2.

Mutation Operator

The mutation operator iterates through each node of the individual. In each iteration,
there is a chance of changing the node, given by the mutation rate. If node i is chosen to be
mutated then the neighbors of the node i− 1 are searched. The node i is then replaced with
every neighbor found, creating several candidate individuals, which is equal to the number of
feasible neighbors. The function that connects paths is used to add extra nodes if a candidate
individual requires to do so. The fitness of each one of these candidate is calculated. The final
individual is the one with the highest fitness. If the original individual has a higher fitness
than the mutated individual then mutation of that gene is not performed.

Termination Criteria

The number of generations required to encounter a near-optimal solution varies greatly
depending on the distance between the start point and the endpoint and their location of
them. Therefore, having a fixed termination criterion, such as the number of generations, may
lead to a sub-optimal solution or take extra computational resources if an optimal solution
is found before reaching the required number of generations.

A solution for this issue is using the running mean termination criteria, which was ex-
plained in section 2.5. After 10 generations, the running mean is evaluated. For this problem
is considered that an optimal solution is found when considering the average of the last 5
generations and taking ϵ = 5e − 5. The value of ϵ is chosen by testing values with different
orders of magnitude, 5e − 5 was the one that showed better performance by giving a faster
convergence but not compromising the quality of the results. If the running mean condition
is not fulfilled after 150 generations then GA-2 ends.

Fitness Evaluation

Fitness is calculated by using the path time T and the total energy consumption E. Si-
milar to GA-1, both variables are normalized using MinMaxScaler. Both scalers are fitted

36

by using the values of time and energy calculated for every individual in the initial population.

The travel time between two nodes is calculated by dividing the euclidean distance bet-
ween the two nodes by the average speed. For example, if the terrain category of node i is A
and the terrain category of node i+1 is B then the velocity for that cell is the average of 64.8
and 52.4. Thus, the total travel time is calculated by iterating through the entire path. To
obtain the path time we must calculate the time required to charge batteries. The amount
of times the rover needs to charge batteries and the hours required to do so is calculated by
using the expressions shown in section 2.2.3. Finally, the path time T is the sum of the total
travel time and the sum of the total time required to charge batteries.
The total energy consumption is calculated by multiplying the time of going from node i to
node i + 1 with the energy consumption variable E for the given terrain, which is calculated
as explained in section 3.2.2.

The fitness is then computed as shown in equation (3.19). GA-2 uses Death Penalty;
therefore, if a path has an obstacle at a node or does not end at the goal point then its fitness
is equal to −∞.

fitness = −(ω3T̃ + ω4Ẽ) (3.19)

Algorithm 3 summarizes how GA-2 is programmed and its inputs and outputs.

37

Algorithm 3 Algorithm GA-2
Input: Start point wi; End point wi+1; Hyper-parameters H;Map M
Output: Optimal path Path; Charging plan B
P ← initialPopulation-2(wi, wi+1,H[size],M);
for generation ← 1 to H[max] do

Fitness Rank (fr) ← rankRoutes(P ,M)
/* crossover */
P̂ ← []
for i = 1, ...,H[size] do

parent1, parent2← tournamentSelection(P , fr)
child← crossover-2(parent1, parent2)
if checkContinuity(child) then

insert child into P̂
else

fixedChild← fixChild(child)
if isfeasible(fixedChild) then

insert fixedChild into P̂
end if

end if
end for
/* mutation */
for individual in P̂ do

individual ← mutate-2(individual,H[mut_rate])
end for
insert eliteIndividuals in P̂
P ← P̂ /*new generation*/
if TCmean ≤ ϵ then

break /*early convergence*/
end if

end for
bestIndividual← Individual in P with the highest fitness
Path← bestIndividual[Path]
B ← bestIndividual[B]
return Path, B

38

Chapter 4

Simulation Tests

4.1. Experimental Setting
We conducted three sets of experiments to test the performance of the decision-making

system. For all the sets of experiments we considered three maps of 100m2; these maps were
generated using the values shown in Table 4.1. It is also worth noting that we used the same
landing position, which is (3, 1), and the same set of waypoints and rewards for every expe-
riment, as shown in Table 4.2. Appendix 5 shows a visualization of the three maps used for
experiments, with waypoints and the reward of each one.

Table 4.1: Terrain probabilities in maps generation

Map % of obstacles pA pB pC pD pE pF

#1 1 % 0.3 0.19 0.15 0.15 0.2 0.01
#2 3 % 0.3 0.17 0.15 0.15 0.2 0.03
#3 5 % 0.3 0.15 0.15 0.15 0.2 0.05

The first set of experiments aimed to study the sensitivity of GA-1 to different scenarios,
different weight combinations in the fitness function, and time constraints. The second set
of experiments was similar and aimed to analyze the sensitivity of GA-2 to different maps
and weight combinations. Finally, the last set of experiments considered the whole decision-
making system and analyzed the performance, considering the number of times that the rover
needs to stop to charge its batteries, constraint violation, and timely execution of the system.

All experiments were performed on the IDS server provided by the Electrical Engineering
Department. IDS has an Intel Core i9-9900KF 3.60[GHz] processor and 32[GB] of RAM.
The GA algorithms were programmed in Python 3.8.3.

39

Table 4.2: Waypoint set

Waypoint Reward
(90, 24) 10
(15, 15) 2
(47, 59) 6
(10, 30) 1
(80, 37) 20
(8, 98) 8
(37, 60) 12
(64, 17) 7
(73, 20) 3
(53, 62) 20
(27, 3) 16
(93, 73) 40
(81, 94) 10
(87, 64) 14

Curiosity has two batteries of 43[Ah] nominal capacity and a nominal voltage between 24
to 32.8V . Since we used state-space model to evaluate SoC and the output voltage, we needed
a battery that was already studied and had the parameters α, β, γ, vl and vo empirically
calculated. In [34] a battery with similar characteristics, as shown in Table 4.3, is used in
their experiments. In the study, they evaluated the desired parameters for the state-space
model, which are detailed in Table 4.4.

Table 4.3: Parameters of the battery

Battery bank 8 Li-Ion cells (GBS-LFMP40Ah) in serial connection
Nominal capacity 40 AH
Nominal voltage 25.6 V
Nominal power 4 kW

R 1 W
L1 2.5 mH
L2 2.5 mH

Table 4.4: Parameters for state-space model

Mode vL vo γ α β

Discharging 4.971 26.792 0.556 -2.631 0.508
Charging 5.033 26.750 0.556 2.733 0.567

40

4.2. GA-1 Analysis
In this section, we analyze the performance of GA-1 in different maps, constraints, and

the sensitivity of the algorithm when changing the weights of the fitness function. In every
experiment, the hyperparameters used for GA-1 were the same and are detailed in Table 4.5,
which were chosen after running several pre-tests.

The set of experiments consisted of the following, for every map three different Tmax cons-
traints were tested with three different combinations of weights. Thus, the set of experiments
consisted of 27 tests in total. The time constraints are Tmax ≤ 20000[s], Tmax ≤ 40000[s] and
Tmax ≤ 80000[s]. It is worth mentioning that GA-1 does not include the time that it takes
to recharge the rover’s batteries; therefore, a simple approximation is used to calculate the
time that it takes to perform the entire operation. The approximation is based on the docu-
mentation of Curiosity [11], so for every 6 hours of driving it takes 18 hours of recharging.
In other words, Tmax is a constraint on the time that the rover is driving. The combination
of weights is summarized in Table 4.6. Let us remember that w1 multiples the variable of
accumulated reward and w2 multiplies the variable of travel time, as shown in equation 3.5.

Table 4.5: Hyperparameters of GA-1

Population Size 200
Generations 20

Mutation Rate 0.05
Elite Size 10

Table 4.6: Weight combination

Combination w1 w2

c1 0.9 0.1
c2 0.5 0.5
c3 0.1 0.9

Figure 4.1 summarizes the results obtained for the accumulated reward in each experiment
grouped by time constraint. As expected, when Tmax was higher, GA-1 found solutions that
had higher accumulated rewards. However, it calls the attention that in Figure 4.1.a we see
that Map #3 — the map with the highest percent of obstacles — got routes with higher
accumulated rewards. For the time constraint, Tmax ≤ 20000[s], the routes generated by Map
#1 were longer than the ones found by the algorithm for Map #2 and Map #3, yet the
waypoints chosen in Map #1 had lower rewards. This behavior may be explained because
the fitness function penalizes collisions with obstacles. So visiting more waypoints increases
the amount of encountering an obstacle; thus, GA-1 chooses shorter routes with higher re-
wards to compensate. The differences in the length of the routes are important because it
shows that the addition done in the crossover operator (the elimination of a random number
of genes) maintains a certain diversity in the population, which allows for finding optimal
solutions.

41

An important issue is that there is not a clear relationship between the weight combination
and the value of the accumulated reward. We would expect to see higher values for combina-
tion C#1 and lower for C#3. However, in the more relaxed time constraint, we see that the
accumulated rewards do not vary much between maps or weight combinations. This may be
explained by the fact that the maximum accumulated reward that any route can get, is fixed
and less fluctuating. However, the time variable has more space to be optimized and after
reaching a certain value of the accumulated reward, it is the time variable the one that plays
a bigger role in improving the fitness value, regardless of the weight combination. Further
experiments need to be performed to analyze the influence of the normalization used, the
mathematical formulation of the fitness function, and the sensitivity to other weight combi-
nations, given that the normalization is done on the multiplicative inverse of the accumulated
reward.

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

60

70

80

Ac
cu

m
ul

at
ed

 re
wa

rd

Accumulated reward by map and weight combination
 with Tmax =20000[s]

Weight combination
C#1
C#2
C#3

(a)

Map #1 Map #2 Map #3
Tests

0

20

40

60

80

100

120

140

Ac
cu

m
ul

at
ed

 re
wa

rd

Accumulated reward by map and weight combination
 with Tmax =40000[s]

Weight combination
C#1
C#2
C#3

(b)

Map #1 Map #2 Map #3
Tests

0

20

40

60

80

100

120

140

160

Ac
cu

m
ul

at
ed

 re
wa

rd

Accumulated reward by map and weight combination
 with Tmax =80000[s]

Weight combination
C#1
C#2
C#3

(c)

Figure 4.1: Accumulated reward analyzed by time constraint.

42

Figure 4.2 shows the results of the travel time for each experiment. For Tmax ≤ 20000[s] all
routes, except by one, took more than 18000[s] to complete. The solutions were close to the
time restriction because it was a strict constraint that did not allow to visit many waypoints;
thus, to maximize the fitness function the algorithm must choose routes that were near the
maximum time allowed to provide a few rewards. For Tmax ≤ 40000[s] and Tmax ≤ 80000[s]
we see more variation in the time, meaning that the algorithm tries to find a balance between
rewards and time.

For the travel time, we see a clearer relationship between the weight combination and
the value of the travel time. Results obtained with the C#1 combination show more time-
consuming routes than the ones obtained with the C#3 combination, except for the results
in Figure 4.2.b for Map #2 and Map #3. Let us remember that the GA algorithm does not
always converge to a global optimum and can get stuck in arbitrary points or local optima.
Therefore, a few outliers are expected in a limited set of 27 experiments. The results obtained
with combination C#2 were more variable, meaning that when giving the same importance to
the accumulated reward and the travel time the solutions were flexible regarding the context
and the initial population, which influences the convergence of the algorithm.

Map #1 Map #2 Map #3
Tests

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m
e
[s
]

Travel time by map and weight combination
 with Tmax=20000[s]

Weight combination
C#1
C#2
C#3

(a)

Map #1 Map #2 Map #3
Tests

0

5000

10000

15000

20000

25000

30000

35000

40000

Ti
m
e
[s
]

Travel time by map and weight combination
 with Tmax=40000[s]

Weight combination
C#1
C#2
C#3

(b)

Map #1 Map #2 Map #3
Tests

0

10000

20000

30000

40000

50000

60000

70000

80000

Ti
m
e
[s
]

Travel time by map and weight combination
 with Tmax=80000[s]

Weight combination
C#1
C#2
C#3

(c)

Figure 4.2: Travel time analyzed by time constraint.

43

Another important aspect to analyze is the improvement of the function. Figure 4.3 shows
the percentage improvement of the fitness function by calculating the percentage change
between the fitness of the best individual of the first generation with the best individual of
the last generation. As expected, in every experiment there was an improvement in the fitness
function. For Tmax ≤ 20000[s] and Tmax ≤ 40000[s] there is between 20 % to 50 % change,
with four out of six experiments showing more improvement by using combination C#2 when
comparing to other combination tested in the same respective map. For Tmax ≤ 80000[s] there
was a huge improvement in the scenario of Map #3 when using combinations C#2 and C#3.
The latter can be explained because in the first generation random routes were generated.
Therefore, several routes may have encountered many obstacles. The number of obstacles
rises more in the case of having a more relaxed constraint, which allows for visiting more
waypoints, but at the same time visiting more waypoints means more obstacles than the ones
found in cases with a more strict time constraint.

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

Pe
rc
en
ta
ge
 c
ha
ng
e

Fitness percentage change by map and
 weight combination with Tmax=20000[s]

Weight combination
C#1
C#2
C#3

(a)

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

Pe
rc
en
ta
ge
 c
ha
ng
e

Fitness percentage change by map and
 weight combination with Tmax=40000[s]

Weight combination
C#1
C#2
C#3

(b)

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 c

ha
ng

e

Fitness percentage change by map and
 weight combination with Tmax =80000[s]

Weight combination
C#1
C#2
C#3

(c)

Figure 4.3: Fitness percentage change analyzed by time constraint.

44

Finally, we analyze the frequency in which the waypoints were chosen in each result ob-
tained from the 27 experiments performed. In Figure 4.4, waypoints are sorted from the ones
with the highest reward (from the left) to the ones with lower rewards (to the right), and
they are grouped by maps. We can see that there is a relationship between the value of the
reward and the number of times in which the waypoint is chosen. The waypoint (93, 73), the
one with the highest reward, appears in 88 % of the routes generated, even though it is far
from the landing position (3, 1).

Waypoints (81, 94) and (8, 98) do not follow the trend since we would expect them to
appear more often in the routes. However, this behavior is explained because both of these
waypoints are isolated (see Figures 5.1, 5.2 and 5.3 for a visual representation); thus, the
reward for visit them does not compensate the time that it takes to reach those locations.
On the other hand, we have waypoints (47, 59), (73, 20), and (15, 15) that appear often when
considering their low rewards. The latter can be explained because these waypoints are near
waypoints with high rewards, and in the case of (15, 15), which has a reward of the value of
2, it is the closest waypoint to the landing position.

Lastly, every waypoint is chosen at least once by each map scenario. However, there is
an exception for waypoint (10, 30) when using Map #3. In Map #3 (see Figure 5.3), this
waypoint is surrounded by obstacles, and as mentioned before, it also has a low reward. Thus,
the reward value does not compensate for the penalization that occurs if a collision happens,
or in other words, the detour that GA-2 will have to take to avoid these obstacles.

(93,
 73)

(80,
 37)

(53,
 62)(27,

 3)
(87,

 64)
(37,

 60)
(81,

 94)
(90,

 24)(8, 9
8)
(64,

 17)
(47,

 59)
(73,

 20)
(15,

 15)
(10,

 30)

Waypoints

0

2

4

6

8

10

12

14

16

18

20

22

24

Fr
eq

ue
nc

y

Frequency of waypoints chosen to be visited
Map #1
Map #2
Map #3

Figure 4.4: Waypoints chosen to be visited.

45

4.3. GA-2 Analysis
In this section, we analyze the performance of GA-2 in different maps and the sensitivity

of the solutions when changing the fitness function’s weights. All experiments in GA-2 used
the hyperparameters in Table 4.7. It is worth remembering that ϵ is used as a termination
criterion, as explained in Section 3.4.2.

Similar to the experiments performed in Section 4.2, the set of experiments for GA-2 con-
sisted of three maps used before and three different combinations of weights. Therefore, nine
experiments were performed. In this case, all nine experiments used the same start position
Ps = (3, 1), which corresponds to the landing position, and end position Pe = (27, 3) to be
able to compare the performance. The weights combination were c1: w3 = 0.1, w4 = 0.9, c2:
w3 = 0.5, w4 = 0.5 and c3: w3 = 0.9, w4 = 0.1, where w3 multiplies the total travel time and
w4 multiples the energy consumption.

Table 4.7: Hyperparameters of GA-2

Population Size 100
Generations 90

Mutation Rate 0.01
Elite Size 10

ϵ 5e-5

Table 4.8 summarizes the results of the set of experiments grouped by map. The values
of energy consumption and travel time correspond to the best individual of the last genera-
tion. The last column of the table shows the number of generations needed to converge to
these solutions. It is worth noticing that all experiments needed fewer generations than the
fixed termination criterion, which is 90; therefore, all experiments were terminated because
the running mean termination criterion was fulfilled. The latter is important since it gives
flexibility to the algorithm and reduces the computational cost of running the same number
of generations for every scenario, which is especially variable for GA-2.

Table 4.8: GA-2 experiments results grouped by map.

Map Weight combination Energy [Wh] Time [sec] N° of generations

#1
c1 257.79 3089.03 45
c2 264.46 3606.11 35
c3 269.91 4370.71 18

#2
c1 232.04 2599.48 39
c2 183.26 2134.46 39
c3 278.95 3526.43 30

#3
c1 207.65 3145.9 31
c2 234.059 2457.78 44
c3 237.51 2423.99 42

46

The results of energy consumption show a clear relationship between the weight combi-
nation and the value of the variable in the study, as expected. The only exception occurs for
Map #2 with combination c2 where the energy value was less than the one obtained for com-
bination c2. This is explained because if we see the value reached for the travel time, we can
notice that there is also a great reduction in that variable. Since the energy consumption and
the total travel time are influenced by each other, we can suspect that the initial population
for that experiment allowed us to converge to a more optimal solution.

When it comes to the travel time variable there is an inverse pattern to the one expected.
We would expect to see lower travel times for combination c3 and more time-consuming for
combination c1. However, the travel time follows the same trend as the energy consumption,
and for every map, we see the worst result when reducing the weight value that multiplies the
energy consumption variable. Hence, energy consumption optimization has a greater influence
on the fitness function and overall results.

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

60

70

80

Ab
so

lu
te

 p
er

ce
nt

ag
e

ch
an

ge

Energy percentage decrease
 by map and weight combination

Weight combination
C#1
C#2
C#3

(a) Energy consumption.

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

60

70

Ab
so
lu
te
 p
er
ce
nt
ag
e
ch
an
ge

Time percentage decrease
 by map and weight combination

Weight combination
C#1
C#2
C#3

(b) Travel time.

Map #1 Map #2 Map #3
Tests

0

10

20

30

40

50

60

70

80

Pe
rc
en
ta
ge
 c
ha
ng
e

Fitness percentage change
 by map and weight combination

Weight combination
C#1
C#2
C#3

(c) Fitness.

Figure 4.5: Energy consumption, travel time and fitness percentage change.

47

Figure 4.5 shows the percentage change between the best individual of the first generation
and the best individual of the last generation. Since both energy consumption and travel time
experimented with a decrease we would expect to see the percentage change with negative
values, but for purposes of visualization, the absolute value is shown.

By looking at the graphs in Figure 4.5 we can first notice that, as mentioned before,
the experiment that used combination c2 and Map #2 does not follow the trend and is
outstandingly better. There is also a greater improvement (on average) in the experiments
performed using Map #3 when compared to other maps since the first generation usually
takes longer detours to avoid obstacles, which means more time and energy-consuming paths.

48

4.4. Decision-Making System Analysis
In this section, we analyze the entire operation of the Decision-Making System. To achieve

this we selected one of the outputs generated by GA-1 in section 4.2. Later, we used GA-2 to
find the path between waypoint i to waypoint i + 1 — meaning that GA-2 was performed 8
times to produce one entire path — and we finally evaluated the number of times the rover
had to stop in order to fulfill the SoC policy. The route selected is shown in Table 4.9 with
its respective characteristics.

Table 4.9: GA-1 route selected

Route (3,1), (15,15), (10,30), (80,37), (93,73), (90,24), (73,20), (37,60), (53,62)
Travel time 37640.7900 [s]

Travel time w/ recharging 46.5 [h]
Accumulated reward 108

Since the Decision-Making System is stochastic, we ran 50 simulations for the same route
shown above to obtain a realistic representation using Map #2. The hyperparameters used
for GA-2 are the same as the ones shown previously in Table 4.7 for every pair of waypoints.
The weight combination used is c1 due to the better results obtained in general with this
combination. It is worth mentioning that running the entire Decision-Making System has a
huge computational cost, especially when generating the initial population. An approach to
reduce the execution time of the 50 simulations was to create 200 individuals for every GA-2
iteration, meaning that there was 8 initial population that consisted of 200 individuals. Thus,
when GA-2 started, it selected a random sample of 100 individuals from the 200 individuals
previously created for the corresponding pair of waypoints.

Figure 4.6 shows boxplots summarizing the results obtained for the time that it took to
recharge the rover, and the total travel time (which includes the recharging time), and the
energy consumption. Regarding the total travel time, we can notice that the median, which
is 43.68[h], is lower than the approximation of the total travel time obtained from GA-1. The
results show that 30 % of the simulations surpass the travel time estimated by GA-1, which
surpasses from 10 to 20 hours and the main source of this extended time is the recharging time.

By looking at the charging time distribution we can see that most of the time that it took
to complete the path was spent recharging the batteries, as expected from the documentation
on the last rovers sent by NASA [3], [10] and [22]. The median of time spent recharging the
batteries is 32.31[h].

When it comes to energy consumption, there are two outliers one on the lower extreme
and one on the higher side. The median energy consumption distribution is 298.89[Wh]. It
is worth noticing that none of the simulations had an energy consumption near the peak of
the rover consumption energy, which is 500[Wh]. Therefore, the Decision-Maker system was
able to generate paths that optimize the energy, avoiding a possible failure due to operating
constantly at the peak value allowed.

49

(a) Charging time. (b) Travel time.

(c) Energy.

Figure 4.6: Energy consumption, total travel time and charging time distri-
butions.

One important aspect to analyze is the terrain types chosen in a path. For every path, we
calculated the number of occurrences of each terrain and normalized it by the length of the
corresponding path. Figure 4.7 shows the results for the 5 terrains. We can see that terrain
A makes the majority of a path, which was expected given that it allows us to drive faster
and consume less energy due to the smoothness of the terrain. Overall, the Decision-Making
System was able to generate paths that favor more benign terrains, which is beneficial for
the rover’s component’s health.

The distribution of terrain E has a higher median, 0.1, than the one of terrain D, 0.08. This
behavior is explained on one side because in Map #2 there is a 20 % chance of encountering
terrain E versus a 15 % chance for terrain D. On the other side, terrain D has a range of
speeds that the rover can drive at. However, the Decision-Making System has a prognostic
approach, meaning that we are taking the speed value that marks the 10 % lower probability
of occurrence causing that the speed value for terrain D and E are not too far apart, with
13.57 and 8.35 respectively.

50

Figure 4.7: Relative frequency of each terrain category.

Figure 4.8 and 4.9 shows the first and last generation of paths generated by the Decision-
Making System, at the right it shows the worst path, which is an outlier in terms of energy,
and at the left, it shows the best paths in terms of time and energy consumption. If we
compare the two paths we can see that Figure 4.9.a has few sharp curves to traverse terrains
that are more benign. The sharp curves do not represent a problem for the rover since the
size of the grid is 1m2, which means that it has space to take these curves more smoothly if
the locomotion control takes into account a strategy to prevent drastic turns and twists. On
the other hand, Figure 4.9.b has loops inside and redundant curves that show that for that
particular simulation the solution was exceptionally sub-optimal. Another criterion can be
added to prevent and diminish the chances of getting sub-optimal solutions.

One particular aspect that is important to analyze is the impact that uncertainty sources
have on the decisions made by the system. The uncertainty sources are represented by the
process noise in equations (2.1) and (2.2) of the state-space model of the batteries. The para-
meters ω1 and ω2 indicate the amount of noise we are considering for the internal resistance
and the SoC evolution, respectively.

To analyze the impact of these parameters, one path generated by the PDM system is
selected and the performance is studied by changing the parameters ω1 and ω2. It is important
to remember, that the time it takes to recharge the batteries fluctuates since the power
provided by the MMRTG is modeled as a uniform distribution. Therefore, the performance
of the path with the original parameters is simulated 50 times, and the same is done when
testing different values for ω1 and ω2. The baseline case is using ω1 equal to 5 · 10−8 and ω2
equal to 1 · 10−6.

51

(a) Best path during first generation. (b) Worst path during first generation.

Figure 4.8: Example of two paths generated by the Decision-Making System
during first generation.

(a) Best path. (b) Worst path.

Figure 4.9: Example of two paths generated by the Decision-Making System
at the last generation.

Figure 4.10 shows the recharging time distributions of the entire path for different values
on the process noise of the internal resistance equation while maintaining the same value for
the process noise of the SoC evolution equation. It is worth noticing that regardless of the
value of ω1, the PDM system indicates that the rover must stop two times to satisfy the SoC
policy, and the locations chosen to stop are near the locations chosen by the baseline case,
within an area of approximately 20[m2] for each stop. Results show that increasing the noise
value decreases the recharging time of the batteries. However, for values ω1 = 5 · 10−1 and
ω1 = 5 · 10−4 the simulations show more dispersion and the median value is far from the
experimental expected value indicated by the documentation for rovers Curiosity and Perse-
verance, which is approximately 18 hours per recharge. On the other side, values ω1 = 5·10−12

52

and ω1 = 5 ·10−16 have a similar median value to the baseline case but have a higher standard
deviation, which can be detrimental for the PDM system.

The same experiment was performed, but on this occasion, we vary the ω2, which is the
process noise of the evolution of SoC. In this experiment we tested ω2 with the following
values, 1 · 10−2, 1 · 10−4, 1 · 10−6 (baseline case), 1 · 10−8 and 1 · 10−10. For values, 1 · 10−2 and
1 · 10−4, the PDM system indicates that the rover must stop only once, and the recharging
times do not have physical sense because it shows that the rover can recharge the two batte-
ries in a range from 30 minutes to 2 hours. Therefore, Figure 4.11 only shows the results of
the baseline case and two test cases.

From the visualization, we can notice that the baseline case has a lower median value;
however, this value is only 2 to 3 hours less than the median of other cases. The baseline
case has also a slightly smaller standard deviation, which is 2.2393[h], when compared to the
test cases, which is 2.6552[h] for ω2 = 1 · 10−8 and 2.5738[h] for ω2 = 1 · 10−10. For the three
cases shown in Figure 4.11, the PDM system determines that the rover must stop two times.
The exact coordinates of the locations vary, but for all three cases, they are within an area
of 7.5[m2].

The study of the influence of the uncertainty sources demonstrates the importance of
choosing the parameters ω1 and ω2 correctly since it has a great impact on the standard
deviation of the simulation’s distribution. If the parameters have greater values than the
baseline case then the PDM system estimates lower recharging time, to the point where it
does not have physical sense according to real data on Mars rovers. However, the PDM system
is more sensitive to changes in ω2 because it reduces the number of stops and produces errors
in a few simulations.

Figure 4.10: Parameter ω1 influence on battery recharging time.

53

As mentioned before, the Decision-Making System considers a statistic for the speed at
which the rover can drive at a certain terrain category. Thus, one question arises, how much
does the performance of one path change if we consider the real ranges of speed for each
terrain? Does that performance change represents a problem for the rover’s mission?.

To answer those questions, we took the path that had the best performance, which is the
one shown in Figure 4.9.a, and had an energy consumption of 264[Wh] and a total travel
time of 94410[s]. The path in the study was simulated 50 times but for each terrain, the
speed considered the original ranges as uniform distributions, as stated before in (3.3). The
simulation results are summarized in Figure 4.12. The results for the total travel time show
that the median of the distribution is equal to 89728.9[s], which is less than the predicted
value when using a conservative approach, and 70 % of the simulations have a shorter total
travel time than the predicted. When it comes to energy consumption, all simulations needed
less energy than predicted.

Figure 4.11: Parameter ω2 influence on battery recharging time.

In this sense, it is worth carrying out the base modeling considering a conservative speed
scenario because when facing a real situation (or close to a real context), there is a degree
of slackness concerning the robot’s performance along the way. Having this level of slack
is beneficial, mainly in situations involving a significant degree of uncertainty associated
with factors, such as terrain irregularities, component failure, command delay sent by the
flight software, and encountering big or sharp rocks, among others. All of the above is more
difficult to handle when considering the context of a Mars rover, where the robot operates in
an extremely isolated and hostile environment.

54

(a) Travel time. (b) Energy.

Figure 4.12: Energy consumption and total travel time distribution when
testing the same individual.

55

Chapter 5

Conclusions and Future Work

In this thesis work, an offline Decision-Making System for path planning in the context
of a Mars rover was developed. The Decision-Making System consists of two GA, GA-1 and
GA-2, and uses a state-space model to evaluate the SoC of the rover’s batteries. GA-1 works
with a set of waypoints and rewards and evaluates the number of waypoints to visit and in
which order to do so, given a maximum driving time constraint. GA-2 finds a path between
a start point and an end point while avoiding untraversable terrains and taking into account
a SoC policy. Therefore, GA-2 is iterated for each pair of subsequent waypoints to generate
a path that considers all waypoints selected by GA-1.

The Decision-Making System was designed by stating a mathematical formulation as an
optimization problem. It uses a state-space model as proposed in [33] to estimate the SoC,
internal resistance, and output voltage of the batteries. The system has a SoC policy because
it helps to reduce the effects of battery degradation, according to the last rover’s missions on
Mars. Following the proposal made in [7], the problem is formulated as a map grid with each
cell belonging to a certain terrain category. Each terrain category defines the speed, either as
the range or value at which the rover can drive. Since the problem has a stochastic approach
to considering the uncertainty of the rover’s mission, the speed values have noise added and
the speed ranges are modeled as probability distributions. The waypoints are generated ran-
domly and each of them has a reward associated.

As mentioned before, the Decision-Making System was divided into two parts to solving
the problem. GA-1 maximizes the accumulated reward of the waypoints visited and minimi-
zes the travel time that it takes to drive through the route while considering a time cons-
traint. However, the travel time is an approximation since GA-2 is in charge of performing
a fine-tuning of the path between a pair of waypoints. A function to eliminate some genes
was added in the initial population and crossover operator to help maintain the diversity of
the population to satisfy the time constraint. GA-1 considers a Death Penalty when it comes
to the time constraint and a static penalty for the number of obstacles encountered in a route.

GA-2 minimizes the energy consumption and the total travel time. The energy consum-
ption is given by the terrain type and a linear function, which depends on the ratio between
the actual velocity and the nominal velocity. The total travel considers the time needed to
recharge batteries. Since the velocity of terrain may vary even if they belong to the same
category, a statistic of the probability distribution is taken when planning a path. The statis-

56

tic is the speed value that marks the 10 % of the cumulative probability distribution of each
terrain. Therefore, GA-2 has a conservative approach to preventing mission failures.

The implementation of GA-2 considers a function to connect paths after the crossover
operator, since this operator may generate paths where the nodes are not neighbors of each
other. The mutation operator is inspired by the procedure proposal made in [45], which allows
for faster convergence. The running mean termination criterion is added since it reduces the
computational cost of performing extra generations and gives flexibility to the GA. The latter
is important considering that depending on the location of the waypoints, the generations
needed for convergence fluctuate. GA-2 considers a Death Penalty if an individual considers
an untraversable terrain cell in the path.

Three sets of experiments were performed to analyze the performance of the Decision-
Making System. The first set of an experiment aimed to study GA-1 by testing the algorithm
to different weight combinations in the fitness function and time constraints. Results sho-
wed that GA-1 can find feasible solutions and can favor waypoints with higher rewards while
taking into consideration their location and the travel time of the entire route. Further impro-
vement is needed for tuning the weights to give more importance to the accumulated reward
since the experiments show that GA-1 is not sensitive enough when it comes to benefiting
the reward variable during the optimization.

With similar factors tested, the second set of experiments analyzed the performance of
GA-2. Results showed that the running mean termination criterion was successful in reducing
the number of generations when given different conditions to the algorithm. GA-2 was able
to plan an optimal path between two points and take detours when an obstacle was encoun-
tered. The tests demonstrated that the energy consumption variable has a greater influence
on the overall improvement of the fitness function.

Finally, the last set of experiments consisted of running 50 simulations of the Decision-
Making System taking one route generated by GA-1. Results showed that the system can
generate paths that optimize the energy and the total travel time while preventing an over-
load consumption of energy and plans when the rover must stop to satisfy the SoC policy.
Since the paths were generated by considering the prognosticated speed value, an evaluation
of the performance of a path is done when taking the uncertainty of the real speed values.
The latter showed that the prognosis approach gives us a degree of slackness to operate,
which is beneficial when considering the hostility and uncertainty in an extraplanetary mis-
sion. Another important aspect is the study of the influence of the uncertainty sources in
the state-space model of the batteries, since results show that higher values of noise cause
estimations of batteries recharging times that do not correspond to real data. On the other
hand, lower values of these parameter cause a greater standard deviation on the simulations.

Further improvements can be made to the system. One of them is to add the slippage
predicted for a terrain category. This addition allows us to calculate the energy from the
velocity of the wheels rather than from the velocity at which the rover is moving. Another
addition that could be made to the system is a locomotion control module. The locomotion
module could provide a set of commands for the motor that controls the wheels based on the
movements planned by the decision-maker system.

57

Bibliography

[1] D. Rapp, “Why Explore Mars?,” in Human Missions to Mars, Cham: Springer Interna-
tional Publishing, 2016, pp. 1–15. doi: 10.1007/978-3-319-22249-3_1.

[2] D. Shayler, A. Salmon, and M. D. Shayler, Marswalk One: first steps on a new planet.
Berlin; New York: Chichester, UK: Springer; In association with Praxis Publishing, 2005.

[3] E. Lakdawalla, The Design and Engineering of Curiosity: How the Mars Rover Performs
Its Job, 1st ed. 2018. Cham: Springer International Publishing: Imprint: Springer, 2018.
doi: 10.1007/978-3-319-68146-7.

[4] A. Ellery, Planetary Rovers: Robotic Exploration of the Solar System, 1st ed. 2016. Berlin,
Heidelberg: Springer Berlin Heidelberg: Imprint: Springer, 2016. doi: 10.1007/978-3-642-
03259-2.

[5] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for Mars Rovers:
Past, Present, and Future,” Computer, vol. 41, no. 12, pp. 44–50, Dec. 2008, doi:
10.1109/MC.2008.479.

[6] M. Ono, T. J. Fuchs, A. Steffy, M. Maimone, and Jeng Yen, “Risk-aware planetary rover
operation: Autonomous terrain classification and path planning,” in 2015 IEEE Aerospace
Conference, Big Sky, MT, Mar. 2015, pp. 1–10. doi: 10.1109/AERO.2015.7119022.

[7] G. Hedrick, N. Ohi, and Y. Gu, “Terrain-Aware Path Planning and Map Update for Mars
Sample Return Mission,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5181–5188, Oct.
2020, doi: 10.1109/LRA.2020.3005123.

[8] S. Narasimhan et al., “Autonomous Decision Making for Planetary Rovers Using Diagnos-
tic and Prognostic Information,” IFAC Proceedings Volumes, vol. 45, no. 20, pp. 289–294,
Jan. 2012, doi: 10.3182/20120829-3-MX-2028.00243.

[9] E. Balaban, J. J. Alonso, and K. F. Goebel, “An Approach to Prognostic Decision Making
in the Aerospace Domain,” p. 19, 2012.

[10] T. de J. Mateo Sanguino, “50 years of rovers for planetary exploration: A retrospective
review for future directions,” Robotics and Autonomous Systems, vol. 94, pp. 172–185,
Aug. 2017, doi: 10.1016/j.robot.2017.04.020.

[11] M. A. Gross and G. Cardell, “An overview of Nasa’s mars science laboratory,” Nasa.gov.
[Online]. Available: https://trs.jpl.nasa.gov/bitstream/handle/2014/42086/11-1313.pdf?se
quence=1&isAllowed=y. [Accessed: 01-Dec-2021]

[12] R. Bugga, M. Smart, J. Whitacre, and W. West, “Lithium Ion Batteries for Space
Applications,” in 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 2007, pp. 1–7.
doi: 10.1109/AERO.2007.352728.

58

https://trs.jpl.nasa.gov/bitstream/handle/2014/42086/11-1313.pdf?sequence=1&isAllowed=y
https://trs.jpl.nasa.gov/bitstream/handle/2014/42086/11-1313.pdf?sequence=1&isAllowed=y

[13] M. C. Smart, B. V. Ratnakumar, R. C. Ewell, S. Surampudi, F. J. Puglia, and R.
Gitzendanner, “The use of lithium-ion batteries for JPL’s Mars missions,” Electrochimica
Acta, vol. 268, pp. 27–40, Apr. 2018, doi: 10.1016/j.electacta.2018.02.020.

[14] J. Taylor, A. Makovsky, A. Barbieri, R. Tung, P. Estabrook, and A. G. Thomas,
“Mars Exploration Rover Telecommunications,” in Deep Space Communications, J.
Taylor, Ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016, pp. 251–358. doi:
10.1002/9781119169079.ch7.

[15] R. A. Lindemann and C. J. Voorhees, “Mars Exploration Rover Mobility As-
sembly Design, Test and Performance,” in 2005 IEEE International Conference on
Systems, Man and Cybernetics, Waikoloa, HI, USA, 2005, vol. 1, pp. 450–455. doi:
10.1109/ICSMC.2005.1571187.

[16] G. Reina and M. Foglia, “An Adaptive Suspension System for Planetary Rovers,” IFAC
Proceedings Volumes, vol. 43, no. 16, pp. 199–204, 2010, doi: 10.3182/20100906-3-IT-
2019.00036.

[17] M. von Ehrenfried, Perseverance and the Mars 2020 mission: follow the science to Jezero
Crater. 2022. Accessed: Mar. 28, 2022. [Online]. Available: https://doi.org/10.1007/978-3-
030-92118-7

[18] G. E. Reeves and J. F. Snyder, “An Overview of the Mars Exploration Rovers’ Flight
Software,” in 2005 IEEE International Conference on Systems, Man and Cybernetics, Wai-
koloa, HI, USA, 2005, vol. 1, pp. 1–7. doi: 10.1109/ICSMC.2005.1571113.

[19] R. Welch, D. Limonadi, and R. Manning, “Systems engineering the Curiosity Rover: A
retrospective,” in 2013 8th International Conference on System of Systems Engineering,
Maui, HI, USA, Jun. 2013, pp. 70–75. doi: 10.1109/SYSoSE.2013.6575245.

[20] M. Ono, T. J. Fuchs, A. Steffy, M. Maimone, and Jeng Yen, “Risk-aware planetary rover
operation: Autonomous terrain classification and path planning,” 2015 IEEE Aerospace
Conference. IEEE, Mar. 2015. doi: 10.1109/aero.2015.7119022.

[21] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for Mars Rovers: Past,
Present, and Future,” Computer, vol. 41, no. 12. Institute of Electrical and Electronics
Engineers (IEEE), pp. 44–50, Dec. 2008. doi: 10.1109/mc.2008.479.

[22] M. Maimone, A. Johnson, Y. Cheng, R. Willson, and L. Matthies, “Autonomous Na-
vigation Results from the Mars Exploration Rover (MER) Mission,” Springer Tracts in
Advanced Robotics. Springer Berlin Heidelberg, pp. 3–13, 2006. doi: 10.1007/11552246_1.

[23] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation
software for planetary exploration,” Proceedings, IEEE Aerospace Conference. IEEE. doi:
10.1109/aero.2002.1035370.

[24] O. Toupet, T. Del Sesto, M. Ono, S. Myint, J. vander Hook, and M. McHenry, “A
ROS-based Simulator for Testing the Enhanced Autonomous Navigation of the Mars 2020
Rover,” in 2020 IEEE Aerospace Conference, Big Sky, MT, USA, Mar. 2020, pp. 1–11. doi:
10.1109/AERO47225.2020.9172345.

[25] E. Balaban et al., “Development of a Mobile Robot Test Platform and Methods for
Validation of Prognostics-Enabled Decision Making Algorithms,” IJPHM, vol. 4, no. 1,
Oct. 2020, doi: 10.36001/ijphm.2013.v4i1.1449.

59

[26] B. V. Ratnakumar, M. C. Smart, A. Kindler, H. Frank, R. Ewell, and S. Surampudi,
“Lithium batteries for aerospace applications: 2003 Mars Exploration Rover,” Journal of
Power Sources, vol. 119–121. Elsevier BV, pp. 906–910, Jun. 2003. doi: 10.1016/s0378-
7753(03)00220-9.

[27] M. Morris and S Tosunoglu, "Survey of rechargeable batteries for robotic applica-
tions,"Florida Conf. Recent Adv. Robot., May. 2012.

[28] W. Waag and D. U. Sauer, “SECONDARY BATTERIES – LEAD– ACID SYSTEMS
| State-of-Charge/Health,” Encyclopedia of Electrochemical Power Sources. Elsevier, pp.
793–804, 2009. doi: 10.1016/b978-044452745-5.00149-0.

[29] X. Han et al., “A review on the key issues of the lithium ion battery degradation among
the whole life cycle,” eTransportation, vol. 1, no. 100005, p. 100005, 2019.

[30] A. Perez, R. Moreno, R. Moreira, M. Orchard, and G. Strbac, “Effect of Battery Degra-
dation on Multi-Service Portfolios of Energy Storage,” IEEE Trans. Sustain. Energy, vol.
7, no. 4, pp. 1718–1729, Oct. 2016, doi: 10.1109/TSTE.2016.2589943.

[31] M. Daigle and C. S. Kulkarni, “A battery health monitoring framework for planetary
rovers,” in 2014 IEEE Aerospace Conference, 2014.

[32] M. Daigle and C. S. Kulkarni, “Electrochemistry-based Battery Modeling for Prognos-
tics,” p. 13, 2013.

[33] D. A. Pola et al., “Particle-Filtering-Based Discharge Time Prognosis for Lithium-Ion
Batteries With a Statistical Characterization of Use Profiles,” IEEE Trans. Rel., vol. 64,
no. 2, pp. 710–720, Jun. 2015, doi: 10.1109/TR.2014.2385069.

[34] C. Burgos-Mellado, M. E. Orchard, M. Kazerani, R. Cárdenas, and D. Sáez, “Particle-
filtering-based estimation of maximum available power state in Lithium-Ion batteries,”
Applied Energy, vol. 161, pp. 349–363, Jan. 2016, doi: 10.1016/j.apenergy.2015.09.092.

[35] B. Rothrock, R. Kennedy, C. Cunningham, J. Papon, M. Heverly, and M. Ono, “SPOC:
Deep Learning-based Terrain Classification for Mars Rover Missions,” presented at the
AIAA SPACE 2016, Long Beach, California, Sep. 2016. doi: 10.2514/6.2016-5539.

[36] A. Nedjatia and B. Vizvárib, “Robot Path Planning by Traveling Salesman Problem with
Circle Neighborhood: modeling, algorithm, and applications,” 2020, doi: 10.48550/AR-
XIV.2003.06712.

[37] J. M. Wiener, N. N. Ehbauer, H. A. Mallot, "Path planning and optimization in the
traveling salesman problem: nearest neighbor vs. region-based strategies,"Dagstuhl Seminar
Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Nov. 2006.

[38] D. S. Johnson, “Local optimization and the Traveling Salesman Problem,” in Automata,
Languages and Programming, vol. 443, M. S. Paterson, Ed. Berlin/Heidelberg: Springer-
Verlag, 1990, pp. 446–461. doi: 10.1007/BFb0032050.

[39] N. Deo, Graph theory with applications to engineering computer science, Dover edition.
Mineola, New York: Dover Publications, Inc, 2016.

[40] J. Dréo, Ed., Metaheuristics for hard optimization: methods and case studies. Berlin:
Springer, 2006.

[41] T. Blickle and L. Thiele, “A Comparison of Selection Schemes Used in Evolutionary Algo-

60

rithms,” Evolutionary Computation, vol. 4, no. 4, pp. 361–394, Dec. 1996, doi: 10.1162/ev-
co.1996.4.4.361.

[42] C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art,” Computer Methods in
Applied Mechanics and Engineering, vol. 191, no. 11–12, pp. 1245–1287, Jan. 2002, doi:
10.1016/S0045-7825(01)00323-1.

[43] O. Kramer, Genetic Algorithm Essentials, vol. 679. Cham: Springer International Pu-
blishing, 2017. doi: 10.1007/978-3-319-52156-5.

[44] Yanrong Hu and S. X. Yang, “A knowledge based genetic algorithm for path planning
of a mobile robot,” in IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, New Orleans, LA, USA, 2004, pp. 4350-4355 Vol.5. doi:
10.1109/ROBOT.2004.1302402.

[45] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with improved
genetic algorithm,” Computers Electrical Engineering, vol. 38, no. 6, pp. 1564–1572, Nov.
2012, doi: 10.1016/j.compeleceng.2012.06.016.

[46] A. Ghorbani, S. Shiry, and A. Nodehi, “Using Genetic Algorithm for a Mobile Robot Path
Planning,” in 2009 International Conference on Future Computer and Communication,
Kuala Lumpar, Malaysia, Apr. 2009, pp. 164–166. doi: 10.1109/ICFCC.2009.28.

[47] M. Naderan-Tahan and M. T. Manzuri-Shalmani, “Efficient and safe path planning for
a Mobile Robot using genetic algorithm,” in 2009 IEEE Congress on Evolutionary Compu-
tation, Trondheim, Norway, May 2009, pp. 2091–2097. doi: 10.1109/CEC.2009.4983199.

[48] S. N. Ghoreishi, A. Clausen, and B. N. Joergensen, “Termination Criteria in Evolu-
tionary Algorithms: A Survey:,” in Proceedings of the 9th International Joint Conferen-
ce on Computational Intelligence, Funchal, Madeira, Portugal, 2017, pp. 373–384. doi:
10.5220/0006577903730384.

[49] B. Jain, H. Pohlheim, and J. Wegener, “On termination criteria of evolutionary algo-
rithms,” 2001, pp. 768–768.

[50] A. Koubaa et al., Ïntroduction to Mobile Robot Path Planning", Robot path planning
and cooperation. New York, NY: Springer Berlin Heidelberg, 2018, pp 3-13.

[51] “Mars 2020 perseverance rover,” NASA. [Online]. Available:
https://mars.nasa.gov/mars2020/. [Accessed: 07-Nov-2022].

[52] “Archival content: Enhanced Multi-Mission Radioisotope Thermoelectric Generator
(eMMRTG) concept – NASA RPS: Radioisotope Power Systems,” NASA, 20-Jan-
2022. [Online]. Available: https://rps.nasa.gov/resources/56/archival-content-enhanced-
multi-mission-radioisotope-thermoelectric-generator-emmrtg-concept/. [Accessed: 07-Nov-
2022].

[53] “Communications with Earth,” NASA. [Online]. Available:
https://mars.nasa.gov/msl/mission/communications/. [Accessed: 07-Nov-2022].

61

Annex

Map Generation

Figure 5.1: Map #1 with 1 % of obstacles.

62

Figure 5.2: Map #2 with 3 % of obstacles.

Figure 5.3: Map #3 with 5 % of obstacles.

63

	Resumen
	Resumen
	Agradecimientos
	Table of Content
	List of Tables
	List of Figures

	1 Introduction
	1.1 Context and Motivation
	1.2 Hypothesis
	1.3 Objectives
	1.3.1 Main Objective
	1.3.2 Specific Objectives
	1.3.3 Thesis Outline

	2 Theoretical Framework
	2.1 General Aspects of a Rover
	2.1.1 Power System
	2.1.2 Thermal Control
	2.1.3 Telecommunication
	2.1.4 Mobility System
	2.1.5 Flight Software
	2.1.6 Autonomous Navigation

	2.2 Energy Storage
	2.2.1 Basic Concepts and Considerations
	2.2.2 Requirements for a Rover
	2.2.3 State-Space Model

	2.3 Terrain Classification
	2.4 Path Planning
	2.4.1 Traveling Salesman Problem
	2.4.2 The Shortest Path Problem

	2.5 Genetic Algorithms
	2.5.1 Selection
	2.5.2 Crossover
	2.5.3 Mutation
	2.5.4 Additional Operators
	2.5.5 Penalty Functions
	2.5.6 Termination Criteria

	3 Decision-Making System
	3.1 Architecture
	3.2 Problem Formulation
	3.2.1 GA-1
	3.2.2 GA-2

	3.3 Map Generation
	3.4 GA Programming
	3.4.1 GA-1
	3.4.2 GA-2

	4 Simulation Tests
	4.1 Experimental Setting
	4.2 GA-1 Analysis
	4.3 GA-2 Analysis
	4.4 Decision-Making System Analysis

	5 Conclusions and Future Work
	Bibliography
	Annex

