
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

SAMPLE-DRIVEN ONLINE SELECTION

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN SISTEMAS DE INGENIERÍA

ANDRÉS IGNACIO CRISTI ESPINOSA

PROFESOR GUÍA:
JOSÉ CORREA HAEUSSLER

PROFESOR CO-GUÍA:
PAUL DÜTTING

MIEMBROS DE LA COMISIÓN:
JUAN ESCOBAR CASTRO

BRUNO ZILIOTTO

SANTIAGO DE CHILE
2023

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN SISTEMAS DE INGENIERÍA
POR: ANDRÉS IGNACIO CRISTI ESPINOSA
AÑO: 2023
PROF. GUÍA: JOSÉ CORREA HAEUSSLER
PROF. CO-GUÍA: PAUL DÜTTING

SELECCIÓN EN LÍNEA BASADA EN MUESTREO

En esta tesis, estudiamos desde una perspectiva basada en muestreo cuatro problemas de
selección en línea que generalizan dos modelos clásicos: el problema del secretario y la de-
sigualdad del profeta.

En el primer capítulo, proponemos un modelo llamado p-DOS, que generaliza tanto el
problema del secretario como la desigualdad del profeta i.i.d. En este problema, un adver-
sario elige un conjunto de números y cada uno de ellos es muestreado independientemente
con probabilidad p y se nos revela de antemano. Los números restantes se revelan secuencial-
mente y tomamos decisiones irrevocables de parar/continuar, con el objetivo de maximizar
la esperanza del número seleccionado. Caracterizamos el algoritmo óptimo para todos los
valores de p, y mostramos que su garantía de rendimiento interpola continuamente entre 1/e
y 0.745, las garantías óptimas en el problema del secretario y la desigualdad del profeta i.i.d.

En el segundo capítulo proponemos un modelo similar, llamado ROSp, donde el objetivo
es maximizar la probabilidad de seleccionar el mejor número de los números no muestreados.
Nuevamente, encontramos el rendimiento óptimo y mostramos que interpola suavemente
entre 1/e y 0.5801, las garantías óptimas en el problema del secretario y el problema del
secretario i.i.d.

El tercer capítulo estudia equidad y sesgo en el contexto del problema del secretario. In-
troducimos una nueva variante donde cada candidato pertenece a un cierto grupo. Asumimos
que las comparaciones entre candidatos de diferentes grupos son sesgadas de manera arbi-
traria, así que analizamos el algoritmo óptimo que solo compara candidatos cuando son del
mismo grupo. Mostramos que esta política óptima es equitativa en un sentido fundamental,
logrando un equilibrio entre diferentes grupos. También proponemos una variante de este
problema basada en muestreo, inspirada en el modelo ROSp.

En el cuarto capítulo estudiamos las subastas combinatoriales en línea, una importante
generalización a selección múltiple de la desigualdad del profeta. En este problema, tenemos
m elementos y establecemos un precio para cada uno de ellos. Luego, una secuencia de
agentes que llegan uno a la vez compran su conjunto preferido de los elementos restantes,
a los precios dados. Asumimos que conocemos las distribuciones a partir de las cuales se
extraen las valoraciones de los compradores. Mostramos a través de un novedoso argumento
de punto fijo que los precios óptimos logran una (d + 1)-aproximación al bienestar social
óptimo a posteriori, donde d es el tamaño del conjunto más grande que cualquier comprador
quisiera comprar. Probamos además que si solo tenemos muestras de los valores, en lugar de
las distribuciones, todavía podemos calcular precios que logran una aproximación (d+1+ ε)
y, además, podemos hacerlo en tiempo polinomial.

i

ABSTRACT OF THE THESIS FOR THE DEGREE OF
DOCTOR EN SISTEMAS DE INGENIERÍA
BY: ANDRÉS IGNACIO CRISTI ESPINOSA
YEAR: 2023
ADVISOR: JOSÉ CORREA HAEUSSLER
CO-ADVISOR: PAUL DÜTTING

SAMPLE-DRIVEN ONLINE SELECTION

In this thesis, we study from a sample-based perspective four online selection problems that
generalize two classic models: the secretary problem and the prophet inequality.

In the first chapter, we propose a model we call p-DOS, that generalizes both the secre-
tary problem and the i.i.d. prophet inequality. In this problem, an adversary chooses a set
of numbers, and each of them is sampled independently with probability p and revealed to
us beforehand. The remaining numbers are revealed sequentially and we make irrevocable
stop/continue decisions, with the objective of maximizing the expectation of the selected
number. We characterize the optimal algorithm for all values of p, and show that its perfor-
mance guarantee continuously interpolates between 1/e and 0.745, the optimal performances
in the secretary problem and the i.i.d. prophet inequality.

In the second chapter we propose a similar model, called ROSp, where the objective is to
maximize the probability of selecting the best number of the non-sampled numbers. Again,
we find the optimal performance and show it gracefully interpolates between 1/e and 0.5801,
the optimal guarantees in the secretary problem and the i.i.d. secretary problem.

The third chapter studies fairness and bias in the context of the secretary problem. We
introduce a new variant where each candidate belongs to a certain group. We assume compar-
isons between candidates of different groups are arbitrarily biased, so we analyze the optimal
algorithm that only compares candidates of the same group. We show that this optimal
policy is fair in a fundamental sense, achieving a balance between different groups. We also
propose a sample-based variant of this problem, inspired in the ROSp model.

In the fourth chapter we study Online Combinatorial Auctions, an important generaliza-
tion of the prophet inequality to multiple selection. We are given m items and we set a price
for each of them. Then, a sequence of agents that arrive one by one buy their preferred set
from the remaining items at the given prices. We assume we know the distributions from
which the valuations of the buyers are drawn. We show via a novel fixed-point argument
that the optimal prices achieve a (d+1)-approximation to the optimal social welfare in hind-
sight, where d is the size of the largest set any buyer would like to buy. We show that if we
have only samples of the values instead of the distributions, we still can compute prices that
achieve a (d + 1 + ε)-approximation, and moreover, we can do this in polynomial time.

ii

Acknowledgments
I am deeply grateful to my advisors, José Correa and Paul Dütting, for their continued
support and encouragement during my PhD. With their help, not only in the form of col-
laboration and advice, but also by making me feel confident of myself and my abilities, I
managed to accomplish so many great things I never even imagined. I thank José, in par-
ticular, for believing in me, for pushing me to improve, and for dedicating so many hours to
patiently work with me and teach me how to do research since my Masters. I definitely owe
to his optimistic and passionate approach to research that I had such a great time all these
years. I am also grateful for his great advice in all aspects of academic life, and even beyond
it. I thank Paul for inviting me to London, and then to work at Google, and for making me
feel welcome there; these were amazing and enriching experiences. I also want to thank Paul
for our motivating discussions about sample-based prophet inequalities, and for introducing
me to online combinatorial auctions.

I thank all the great people I had the pleasure to meet and share a space together in the
office, Kevin, Marc, Ruben, Víctor, Pato, Tim, Andy T., Fabio, Laura, Bastián, Natalie,
Boris, Chino, Dana, Carlos, Martín, Raimundo, Krzysztof, Bastián, Benjamín, Gonzalo,
Antoine, Alexandros, Andrew, Laurent. All the fun conversations, the jokes, the coffee,
the lunches and dinners shared together, all the non-work activities, they were essential to
enjoying the actual work (and I missed them so much during the pandemic!!).

A special thank to all my collaborators, in particular to those whose work is part of this
thesis. Thanks to José Correa, Boris Epstein, José Soto, Laurent Feuilloley, Tim Oosterwijk,
Alexandros Tsigonias-Dimitriadis, Paul Dütting, Ashkan Norouzi-Fard, Andrés Fielbaum,
Tristan Pollner, and Matthew Weinberg. For me, research is a fundamentally collaborative
activity, it’s a conversation, and I become inspired about a problem when I talk with other
people about it. So I owe them not only the effort they put on these projects, but also my
own inspiration to work.

I also thank my friends outside academia, Simón, Ariel, Palama, Dani, Pablo, Celgadis,
Bárbara, Degre. For being there to laugh, to talk, to have fun, and spend time together.

I thank my mother, for her love and support, and for always believing in me. I thank
my father for transmitting to me the desire to learn, understand and discover. I thank my
brother José Manuel for his peace and simplicity. I thank my brother Tomás and my aunt
Monica for being there in the hardest moments.

I thank my wife Nicol for her tremendous love and support. For listening to me, for
believing in me, for being my best friend and my partner. At the end of a long day, I feel
happy and safe with her and our cats. Without her, I’m pretty sure this thesis wouldn’t exist
at all.

iii

Table of Content

Introduction 1
Summary of the Chapters . 3

1 Sample-Driven Optimal Stopping: From the Secretary Problem to the
i.i.d. Prophet Inequality 5
1.1 Summary of Results and Overview of the Chapter 7
1.2 Preliminaries . 10

1.2.1 p-DOS with Known Values. 10
1.2.2 p-DOS with Adversarial Values. 11
1.2.3 Dependent Sampling . 12

1.3 Known Values . 12
1.3.1 Linear Programming Formulation . 13
1.3.2 Limit Problem . 17
1.3.3 Structure of Optimal Solution . 18
1.3.4 Finding the Optimal Thresholds . 21

1.4 Adversarial Values . 24
1.4.1 Factor Revealing LP . 24
1.4.2 The Limit Problem and its Solution 26
1.4.3 Solving for Different Values of p . 27
1.4.4 Connection Between the Sampling Models 36

1.5 On Multiple-Choice p-DOS Problems . 38
1.5.1 Relation Among Guarantees for Different p on a Given Independence

System (S, I) . 40
1.5.2 Better Guarantees for p-DOS on Special Types of Independence Systems 41
1.5.3 Limiting Problem as p → 1 and Consequences for the Matroid Secre-

tary Problem (MSP) . 43
1.6 Proofs of Section 1.3 . 45

1.6.1 Coupling Argument for Monotonicity 45
1.6.2 Convergence of E(ALG∗

N(Y)) to CLPp 45
1.6.3 Monotonicity of

∑k
j=ℓ

(
j−1
ℓ−1

)
(1− t)j−ℓtℓ 46

1.6.4 Concavity of Fk(t) in Each Variable 47
1.7 Proofs of Section 1.4 . 48

1.7.1 Derivation of SDLPh,N . 48
1.7.2 Solution of SDRPp for p < 1/e . 49
1.7.3 Details on Numerical Bounds . 50

iv

1.7.4 Proof of Theorem 1.13 . 51

2 Selecting the Best with Samples 56
2.1 Summary of Results . 58
2.2 Further related literature . 60
2.3 Model and definitions . 61
2.4 The Optimal Algorithm . 62
2.5 Computation of the time thresholds . 73
2.6 Numerical experiments . 74

2.6.1 Experimental setup . 76
2.6.2 Experimental results . 76

3 Fairness in Online Selection: The Multi-Color Secretary Problem 78
3.1 Summary of Results . 79
3.2 Illustrative Example . 80
3.3 Related Work . 80
3.4 Preliminaries . 82
3.5 Optimal Online Algorithm . 83

3.5.1 The Algorithm . 83
3.5.2 Competitive Ratio . 84

3.6 Fairness . 90
3.7 Empirical Evaluation . 93
3.8 Sample-Driven Multi-Color Secretary Problem 94
3.9 Conclusion and Open Problems . 96

4 Optimal Item Pricing in Online Combinatorial Auctions 99
4.1 Context and Related Work . 100
4.2 A Technical Highlight and Additional Results 101
4.3 Model . 102
4.4 Main Result: A 1/(d + 1)-approximation for Random Valuations 103
4.5 Efficient and Sample-Based Computation . 107

4.5.1 Proof of Theorem 4.7 . 108
4.6 Deterministic Single-minded Valuations . 113

4.6.1 Matching in Graphs: d = 2 . 113
4.6.2 Hypergraph Matching: d > 2 . 115

4.7 Conclusion and Future Directions . 117
4.8 Bounds Using an Optimal Solution of LP . 118

Bibliography 121

v

Introduction

Take the viewpoint of a seller that has a single item on sale and faces a sequence of customers
that arrive one by one. For simplicity, imagine each customer makes a take-it-or-leave-it offer
for the item. What would be a good strategy for the seller to maximize profit? It’s probably
not a good idea to sell too early, because there might be better offers later; but it’s also not
good to wait for too long. A similar problem is faced by a company interviewing candidates for
an open position. Good candidates are likely to get other offers, so the company should make
an offer soon after interviewing a good candidate and, crucially, before seeing all candidates.
Again, we have a trade-off between accepting candidates that look good early but might
not be the best, and waiting for better candidates and risking missing a good opportunity.
The main challenge then in both problems is to decide when to stop the sequence. Two
basic models capture the essence of this challenge: the secretary problem and the prophet
inequality.

The secretary problem, the prophet inequality, and variants of them have been intensively
studied in the last six decades. First studied by probabilists, more recently they have drawn
the attention of economists and computer scientists because of their connections with prob-
lems faced by modern platforms, such as online advertisers and e-commerce marketplaces.
Despite their importance, a drawback of these two models is that they take two extreme
perspectives on prior information. On the one hand, in the secretary problem, we take a
worst-case perspective and assume we have zero knowledge about the sequence. On the
other hand, in the prophet inequality, we assume we have full distributional knowledge of the
process that generates the sequence. In this thesis we take the perspective of a recent line
of work that attempts to bridge these two extreme points by assuming we do not have full
distributional knowledge, but we have access to a few independent samples of the process
beforehand. In the first two chapters of the thesis we formulate and analyze two problems
that model this intermediate form of prior knowledge, and interpolate between the secretary
problem and the prophet inequality. While still taking a sample-based perspective, in the
last two chapters we investigate two online selection problems that extend the classic models
in two directions, fairness, and multi-item selection.

In what follows we describe the three basic models we consider in this thesis, the sec-
retary problem, the prophet inequality, and a generalization of the latter, known as online
combinatorial auctions. Then, we describe the specific problems and results of each chapter.

The Secretary Problem. In this problem, an adversary designs a collection of numbers
x1, . . . , xn, all different from each other, which are revealed one by one to a decision maker

1

(DM) according to a random permutation. The DM doesn’t know which numbers were
selected by the adversary until the moment they are revealed. At that time, she has to make
an irrevocable continue/stop decision. Should she stop, she keeps the last revealed number
and never observes the following ones. The goal of the DM is to maximize the probability of
stopping when the largest of the n numbers is revealed.

The Secretary Problem is one of the most important problems in online decision-making [99,
54, 67, 69]. For large n, the optimal algorithm for this problem is to not stop at any of the
first n/e numbers, and afterward stop at the first number which is larger than all of the
numbers observed so far. This algorithm stops at the largest number in the sequence with a
probability of at least 1/e, which is the best achievable probability in general. The optimal
solution is the same if our objective is to maximize the expectation of the selected value.

The Prophet Inequality. In the Prophet Inequality, a sequence of non-negative, indepen-
dent random variables X1, . . . , Xn are presented one by one to a DM in a fixed order. The
DM has full distributional knowledge about the random variables, but does not know their
realizations in advance. The DM observes the realizations of the random variables one by
one, and must make irrevocable continue/stop decisions before moving on to the next one.
The goal of the DM is to maximize the expected value of the realized random variable in
which she stops.

For this problem, there exist stopping rules that achieve a competitive ratio of 1/2 against
a prophet that knows the realization of all the random variables and always stops at the
maximum, and 1/2 is actually optimal [93, 94]. Plentiful variants of this problem have been
studied and are being studied. Among them, an important special case is the i.i.d. prophet
inequality, where the random variablesX1, . . . , Xn are sampled independently from a common
distribution. In this setting, the optimal competitive ratio improves to α∗ ≈ 0.745 [80, 84,
43, 101].

Online Combinatorial Auctions. If we think of the Prophet Inequality as the problem
of selling an item to a sequence of agents with random valuations, a natural generalization
is to assume we have multiple items on sale. In an Online Combinatorial Auction, we have
a set M of items and a sequence of agents with independent random valuations v1, . . . , vn
arrive one by one. Each valuation is a function vi : 2

M → R+ that represents how much
agent i is willing to pay for each subset of M . The DM has full distributional knowledge
about the valuations but does not know the realizations in advance. After the arrival of an
agent, the DM must irrevocably decide which items to allocate her (if any). The goal of the
DM is to maximize the expected social welfare, i.e., the expectation of the sum over agents
of the valuation of the agent for the set she receives.

In the general case poor approximation guarantees are possible, so most work on this
problem focuses on special classes of valuation functions. One type of assumptions relates to
the structure of complementarities of the valuations. For a class known as complement-free
valuations, that satisfy that v(A) + v(B) ≤ v(A ∪ B), an O(log log |M |)-approximation is
possible [51]. For a special case known as fractionally subadditive valuations, the approxima-
tion factor can be improved to 2 [60]. In this work we take the approach of parameterizing
the valuations by a number d, defined as the maximum size of a bundle any buyer might

2

want to buy. Prior to our results, the best known factor in terms of d was 1/(4d− 2) [49].

Summary of the Chapters
In Chapter 1 we study the sample-based version of the i.i.d. Prophet Inequality. We take a
unifying approach to single selection optimal stopping problems with random arrival order
and independent sampling of items. In the problem we consider, a decision maker (DM)
initially gets to sample each of N items independently with probability p, and can observe
the relative rankings of these sampled items. Then, the DM faces the remaining items in
an online fashion, observing the relative rankings of all revealed items. While scanning the
sequence the DM makes irrevocable stop/continue decisions and her reward for stopping
the sequence facing the item with rank i is Yi. The goal of the DM is to maximize her
reward. We start by studying the case in which the values Yi are known to the DM, and then
move to the case in which these values are adversarial. For the former case we are able to
recover several classic results in the area, thus giving a unifying framework for single selection
optimal stopping. For the latter, we pin down the optimal algorithm, obtaining the optimal
competitive ratios for all values of p. The material in this chapter is based on joint work
with José Correa, Boris Epstein, and José Soto [36].

In Chapter 2 we study the problem of selecting the maximum value of a sequence when
we can observe beforehand some samples drawn from the same distribution. While in the
classic secretary problem the values of upcoming elements are entirely unknown, in many
realistic situations the decision-maker has access to some information, for example from past
data. Here we take a sampling approach and assume that before starting the sequence each
element is sampled independently with probability p. Our main result is to obtain the best
possible algorithms for all values of p. As p grows to 1, the obtained guarantee converges to
the optimal guarantee in the full information case. Notably, we characterize the best possible
algorithm by a sequence of thresholds, dictating at which point in time we should accept
a value. Surprisingly, this sequence is independent of p. We complement our theoretical
results with numerical experiments on data from [70] of people playing the secretary problem
repeatedly. Our results help explain some behavioral issues they raised and indicate that
people play a strategy similar to our optimal algorithms from the start onwards, albeit
slightly suboptimally. The material in this chapter is based on joint work with José Correa,
Laurent Feuilloley, Tim Oosterwijk, and Alexandros Tsigonias-Dimitriadis [38].

In Chapter 3 we attempt to address the issues of fairness and bias in online selection by
introducing the Multi-Color Secretary Problem. There is growing awareness and concern
about fairness in machine learning and algorithm design. This is particularly true in online
selection problems where decisions are often biased, for example, when assessing credit risks
or hiring staff. In the Multi-Color Secretary Problem, candidates are partitioned into different
groups or colors. The candidates arrive sequentially and upon arrival of a candidate we have
to irrevocably decide whether we want to select the candidate or not. Candidates arrive in
uniform random order and we can rank candidates within a group, but we cannot compare
candidates across groups. There is also a prior probability that the best candidate from
a group is the best candidate overall. The problem models situations in which different
qualities of the candidates make them largely incomparable (this could arise in some form
due to gender, race, social origin, type of education, etc.). The goal is to maximize the

3

probability with which we stop at the best overall candidate and compare it with that for the
offline optimum. Note that here the offline optimum simply picks the best candidate from
the group of largest prior probability. Thus, it is extremely unfair. One may think that the
best possible online algorithm is to mimick the offline optimum; namely to select the group
of largest prior probability and then run the classic secretary algorithm on that group. We
prove that this is not the case and indeed our main result is to obtain the best possible online
algorithm for the problem and to establish that it satisfies very desirable fairness properties.
Hence, for this variant on online selection, fairness follows as a consequence of being online
optimal. Finally, we formulate a sample-driven version of our model and analyze a large class
of online algorithms for the problem. The material in this chapter is based on joint work
with José Correa, Paul Dütting, and Ashkan Norouzi-Fard [35].

In Chapter 4 we study online combinatorial auctions, focusing on posted prices mecha-
nisms. We are given a set of indivisible items and a set of buyers with randomly drawn
monotone valuations over subsets of items. The DM sets item prices and then the buyers
make sequential purchasing decisions, taking their favorite set among the remaining items.
We parametrize an instance by d, the size of the largest set a buyer may want. Our main
result asserts that there exist prices such that the expected (over the random valuations)
welfare of the allocation they induce is at least a factor 1/(d+1) times the expected optimal
welfare in hindsight. Moreover, we prove that this bound is tight. Thus, our result not only
improves upon the 1/(4d−2) bound of Dütting et al., but also settles the approximation that
can be achieved by using item prices. The existence of these prices follows from the existence
of a fixed point of a related mapping, and therefore, it is non-constructive. However, we show
how to compute such a fixed point in polynomial time, even if we only have sample access
to the valuation distributions. The material in this chapter is based on joint work with José
Correa, Andrés Fielbaum, Tristan Pollner, and Matthew Weinberg [39].

4

Chapter 1

Sample-Driven Optimal Stopping: From
the Secretary Problem to the
i.i.d. Prophet Inequality

Two fundamental models in online decision making are that of competitive analysis and that
of optimal stopping. In the former, the input is produced by an adversary whose goal is
to make the algorithm perform poorly with respect to a certain benchmark. In the latter,
the algorithm has full distributional knowledge of the input, making it much easier for the
algorithm to achieve good approximation ratios. The area of optimal stopping has been
very active in the last decade since many real-world situations, including several e-commerce
platforms, often do not behave adversarially, and the distributional model of optimal stopping
seems appropriate. Furthermore, the activity in the area has been boosted by the close
connection between posted price mechanisms, attractive for their usability and simplicity,
and prophet inequalities, a classic topic in optimal stopping theory [77, 27].

One of the most important problems in online decision making is the secretary problem
[99, 54, 67, 69]. In this problem, an adversary designs a collection of numbers x1, . . . , xn, all
different from each other, which are revealed one by one to a decision maker (DM) according
to a random permutation. The DM doesn’t know which numbers were selected by the
adversary until the moment they are revealed. At that time, she has to make an irrevocable
continue/stop decision. Should she stop, she keeps the last revealed number and never
observes the following ones. The goal of the DM is to maximize the probability of stopping
when the largest of the n numbers is revealed. For large n, the optimal algorithm for this
problem is to not stop at any of the first n/e numbers, and afterward stop at the first
number which is larger than all of the numbers observed so far. This algorithm stops at the
largest number in the sequence with a probability of at least 1/e, which is the best achievable
probability in general.

A staple problem in optimal stopping is the classic prophet inequality. In this problem,
a sequence of non-negative, independent random variables X1, . . . , Xn are presented one by
one to a DM in a fixed order. The DM has full distributional knowledge about the random
variables, but does not know their realizations in advance. The DM observes the realizations

5

of the random variables one by one, and must make irrevocable continue/stop decisions
before moving on to the next one. The goal of the DM is to maximize the expected value
of the realized random variable in which she stops. For this problem there exist stopping
rules that achieve a competitive ratio of 1/2 against a prophet that knows the realization
of all the random variables and always stops at the maximum, and 1/2 is actually optimal
[93, 94]. Plentiful variants of this problem have been studied and are being studied. Among
them, an important special case is the i.i.d. prophet inequality, where the random variables
X1, . . . , Xn are sampled independently from a common distribution. In this setting, the
optimal competitive ratio improves to α∗ ≈ 0.745 [80, 84, 43, 101].

Recently, data-driven versions of optimal stopping problems have been successfully stud-
ied. These constitute a bridge between the worst case model and the distributional model. A
standard model, first described in Azar et al.’s [5] pioneering work, consists in replacing the
full distributional knowledge with having access to one or more samples from each distribu-
tion. The model is very attractive both from a practical and theoretical perspective. On the
one hand, full distributional knowledge is a strong assumption, while access to historical data
is usually straightforward. And this historical data can be thought of as being samples from
certain underlying distributions. On the other hand, the model gains back the combinato-
rial flavor of competitive analysis and thus becomes much more prone to be analyzed using
standard algorithmic tools. A notable example of this is the recent result of Rubinstein et
al. [110] for the classic prophet inequality. They study the setting in which the DM doesn’t
know the underlying distributions of the random variables, but instead has access to a single
sample for each of them, and show that this amount of information is enough to guarantee
the best possible factor in the full information case (with adversarial order), namely 1/2.
Inspired by Azar et al.’s model, Correa et al. [40] considered the variant of the i.i.d prophet
inequality problem where the underlying distribution from which the random variables are
sampled from is unknown to the DM. They establish that when the DM has no additional
information the best she can do is to basically apply the classic algorithm for the secretary
problem and thus obtain, in expectation, a fraction 1/e of the expected maximum value. On
the other hand, if she has access to O(n2/ε) samples of the underlying distribution, then she
can essentially learn the distribution and guarantee a factor of α∗ −O(ε); where α∗ ≈ 0.745
is the optimal factor for the i.i.d. prophet inequality with full distributional knowledge. This
latter result was improved by Rubinstein et al. [110], who showed that O(n/ε6) samples are
enough to guarantee a factor of α∗−O(ε). The sampling model from i.i.d. random variables
[40] shares some aspects with the classic secretary problem, in which arbitrary non-negative
numbers are presented to the DM in uniform random order. The former can be thought
of as generating several i.i.d. samples from a common distribution, and shuffling them in a
random order (as in the secretary problem). Given the random order, we can say that the
first numbers are the ‘samples’ that can be observed but cannot be selected, and the re-
maining numbers are the actual instance of the optimal stopping problem. Along these lines,
a particularly clean model [21, 82] is the dependent sampling model in which the instance,
consisting of N items, is designed by an adversary. Then, the DM gets to sample a random
subset of size h = pN of these and scans the remaining items in random order. This model is
very robust since it generalizes the sampling model from i.i.d. random variables while making
no distributional assumptions. The name dependent sampling comes from the fact that the
sampled set has a fixed size h. Thus, there is correlation between the events of each item
being sampled. A closely related sampling model, and essentially equivalent for large values

6

of N , is that with independent sampling [38]. Here, rather than sampling exactly h = pN
items, the DM samples each item independently with probability p.

In this chapter, we study a generic version of the classic single selection optimal stopping
problem with sampling, which we call p-sample-driven optimal stopping problem (p-DOS).
In this problem a collection of N items is shuffled in uniform random order. The decision
maker gets to observe each item independently with probability p ∈ [0, 1) and these items
conform the information set or history set. The remaining items, conforming the online set
are revealed sequentially to the DM. At any point, the DM observes the relative rankings
of the items that have been revealed, and upon seeing an item, she must decide whether to
take it and stop the sequence, or to drop it and continue with the next item. If the DM
stops with the i-th ranked item she gets a reward of Yi and her goal is to maximize the
expected value with which she stops. While we do assume that the values are monotone,
i.e., Y1 ≥ · · · ≥ YN , we do not assume that they are non-negative. The natural benchmark
to measure the performance of an algorithm here is the expected (over the permutations)
maximum value in the online set.

We study both, the cases when the values Y are fixed, (p-DOS with known values), and
that when they are adversarial (p-DOS with adversarial values). The former, and already
when p=0, models the most well known single selection optimal stopping problems. Indeed
the classic secretary problem [99, 54] appears when Y1 = 1 and the remaining values are 0, the
1-choice K-best secretary problem [76, 26] is recovered by Y1 = · · · = YK = 1 and filling zeros
in the remaining values, while the problem of selecting an item of minimum ranking [32] is
obtained by setting Yi = −i. Still in the case p = 0, the problem with non-negative values was
studied by Mucci [104]. By analyzing the underlying recursion he obtains a limiting ODE and
established that the optimal algorithm takes the form of a sequence of thresholds such that
starting at time ti the DM should stop with an item currently ranked i or better. Bearden
et al. [13] also consider this problem from an experimental viewpoint, while Mucci [105]
studies the case in which all Y ’s are negative. The latter problem, p-DOS with adversarial
values, generalizes the i.i.d. prophet inequality problem with samples. Indeed, a valid strategy
for the adversary is to set the values of all items by generating i.i.d samples from a single
distribution. This way, the problem for the adversary is not harder than selecting a worst
case distribution to sample from. Specifically, for given p and N , p-DOS with adversarial
values models the case when we play with n = (1 − p)N i.i.d. values and we have access to
np/(1− p) independent samples.1

1.1 Summary of Results and Overview of the Chapter
We derive the optimal algorithms for problem p-DOS with known values and for p-DOS with
adversarial values, for all p ∈ [0, 1).

After some preliminary definitions in Section 1.2, we start with the case in which Y
is known to the DM. Here we take the, by now classic, linear programming approach of

1In p-DOS, the number of samples and the number of online values are random, while in the usual
formulation of the prophet inequality these quantities are fixed. Thus, this reduction holds for large values
of N to achieve concentration. We also examine the version of p-DOS with dependent sampling, where this
quantities are fixed, and we show it is essentially equivalent to the independent model when N is large.

7

Buchbinder, Jain, and Singh [18] though slightly extending it to make it able to deal with
arbitrary Y values and sampling probability p, and adding a term that forces the algorithm to
stop.2 We note that this LP exactly encodes the best possible algorithm for the problem and
that its objective function value decreases with the number of items N (Section 1.3.1). This
allows us to deduce that the hardest instances appear as N →∞. Thus, in Section 1.3.2, we
derive the limit LP which shares some aspects with that of Chan, Chen, and Jiang [26]. In
uncovering the structure of this limit LP, we provide our first main technical contribution in
Section 1.3.3. By understanding monotonicity properties of the LP coefficients and by using
mass moving arguments from the theory of optimal transport, we can deduce exactly which
inequalities, and in what ranges, are tight in an optimal solution. This permits to bring
down the problem of finding the optimal algorithm to that of solving certain, very simple,
ODEs3. We find the explicit solution of these ODEs and thus bring the problem to a real
optimization problem in which the variables are some ti’s determining the ranges where the
solutions of the different ODEs should be used. These ti’s also have a natural algorithmic
interpretation. They represent the times at which the DM should start accepting an item
of rank i or higher (among the items seen son far). With this we can conclude that Mucci’s
structural result holds even if some (or all) Y values are negative and for arbitrary p.

In Section 1.3.4, pushing things a bit further, we prove that this optimization problem
over ti’s is concave in each variable and relatively easy to solve, at least approximately. In
particular we exemplify that its first order conditions quickly allow us to recover the known
results for the secretary problem [99], the 1-choice 2-best secretary problem [26], and the
minimum rank problem [32].

Then we move to our main contribution; the study of p-DOS with adversarial values,
which we require to be non-negative. This essentially consists in adding a minimization over
Y to the linear program for p-DOS with known values. However, to make the problem well
posed we first need to normalize the objective function. This is done dividing the objective
by the expected value of the optimal choice in the online set, namely

∑∞
i=1 Yi(1 − p)pi−1.4

Equivalently, we may add a constraint to the LP imposing that this value is 1. In either way
the resulting objective function represents the performance guarantee of an optimal online
algorithm. With this formulation, von Neumann’s Minmax Theorem allows us to rewrite
the minmax problem as a new linear program in which the constraints take a stochastic
dominance flavor (Section 1.4.1). We deal with this problem in an analogous way as in the
case of known values and thus take the limit on N and apply our main structural theorem
in Section 1.4.2. As the objective function of our problem encodes the ratio between the
expected value the optimal algorithm gets and the expected maximum on the hindsight,
we end up obtaining the best possible approximation guarantee for p-DOS with adversarial
values, α(p), as a function of p, and for all values of N (Section 1.4.3). To this end we
note that the optimal algorithm, which takes the form of a sequence of thresholds, can
easily be implemented for finite values of N without losing in the approximation guarantee
(Section 1.4.4).

The value α(p) we obtain in Section 1.4.3 improves upon the recent work of Kaplan et

2This is needed since some Yi’s may be negative.
3Which are very different to that of Mucci [104].
4Note that for p = 0 this is just Y1.

8

al. [82] and that of Correa et al [42], for large values of N .5 More importantly, it allows to
draw interesting consequences as p varies. Before describing some of these let us note that by
the Minmax Theorem p-DOS with adversarial values is equally hard (from an approximation
guarantee perspective) if (1) the adversary chooses the Y values and then the DM picks the
algorithm or if (2) the adversary chooses the Y values knowing the algorithm of the DM. In
other words, for every value of p there is a sequence Y such that no algorithm for the p-DOS
with independent sampling on this sequence can achieve an approximation better than α(p).
Interestingly, for p ≤ 1/e we prove that α(p) = 1/(e(1−p)). This result closes a small gap left
by Kaplan et al. [82] in the dependent sampling model and matches the tight bound in the
more restricted setting in which the values are i.i.d. samples from an unknown distribution
[40]. Moreover, the minmax perspective above implies that for p ≤ 1/e the secretary problem
is the hardest single selection optimal stopping problem.

On the other end of the spectrum, as p → 1, the optimal performance guarantee α(1) =
limp→1 α(p) equals α∗ ≈ 0.745.6 This is interesting since the model admits values that are
not possible to capture by any instance of the i.i.d. prophet inequality7 [82, Theorem 3.4] (so
α(p) ≤ α∗), where only recently it was proved that with an amount of samples linear in n
one can approach α∗.8 Indeed we can show that the approximation ratio of our algorithm,
α(p), not only converges to 0.745 but also satisfies α(p) ≥ p · 0.745, for all p ∈ [0, 1). This
in particular can be applied to improve upon the state of the art of the sampling complexity
of the sample based i.i.d prophet inequality. Specifically, if we sample a fraction (1 − ε) of
the values our algorithms guarantees a value that is at least (1− ε)0.745 times the expected
maximum value of the last εN values. In other words, to guarantee an approximation factor
of α∗ − O(ε) we need O(n/ε) samples, making a significant improvement in the dependence
on ε when compared to the best known bound of O(n/ε6) by Rubinstein et al. [110].

Besides the extreme values of p = 0 and p → 1, we obtain the best possible guarantee
for all intermediate values of p. An interesting special case is that of p = 1/2, i.e., when
the information set and the online set are of roughly the same size. For this special case
(though with dependent sampling), Kaplan et al. [82] prove that a relatively simple algorithm,
achieves a performance guarantee of 1− 1/e, while the current best bound evaluates to 0.649
[42]. Here, we prove that the optimal algorithm for 1/2-DOS with adversarial values has an
approximation guarantee of α(1/2) ≈ 0.671, thus improving upon the state of the art.

5Since the sampling models are only equivalent in the limit.
6Note that of course our problem is ill defined if p = 1 so the right way of thinking about p close to 1 is

to first fix a value p and then make N grow large.
7Consider for instance the following particular case of our model where the values are correlated. With

probability 1/2 the values are i.i.d. samples of Uniform[0, 1] and with probability 1/2 they are i.i.d. samples
of Uniform[1, 2].

8Depending on the objective function, it is not always true that with a linear number of samples one can
approximate the full information case, even in the i.i.d. model. A prominent case that has been extensively
studied is revenue maximization [34, 74]. Consider the objective of maximizing the revenue using a single
price, i.e., setting a threshold (or price) T in order to maximize T times the probability that at least one
value is above T . If the variables are i.i.d. and equal to n2/(1 − p) w.p. 1/n2, and U [0, 1] w.p. 1 − 1/n2, a
revenue of Ω(n) can be achieved in a set of (1− p)n variables, taking T = n2/(1− p)− ε. But if we have only
access to pn samples, only with probability O(1/n2) we will see a high value in both sets. And most of the
time we see only realizations of U [0, 1], in which case we cannot differentiate the instance from only U [0, 1]
variables, where T > 1 gives 0 revenue, so the most we can get is O(1).

9

To make the comparison between the dependent and independent sampling models more
precise we prove, in Section 1.4.4, that the underlying optimal approximation factors in both
models differ in an additive factor of at most O(1/

√
N), for fixed p < 1. In particular this

says that the limit approximation factor α(p) applies to both settings. This connection is
important since in much of our analysis we use the linear program for the dependent sampling
model but then apply our results in the independent sampling model. It is worth mentioning
here that although both models are very similar and essentially equivalent for large N , the
independent sampling model is somewhat smoother than the dependent one. In particular,
one can immediately define it for all values of p ∈ [0, 1) and not just those for which pN is
integral. Furthermore, as we prove in the chapter, the optimal approximation factor for the
independent sampling model (and any Y) decreases with N so that the limit bounds apply
for a finite number of items. On the contrary, monotonicity on the dependent sampling model
seems very challenging.

We wrap up the chapter in Section 1.5 by considering versions of p-DOS under combina-
torial constraints. In particular we consider the extension of the so called matroid secretary
problem [10] to the case in which the DM has sampling capabilities. Using our machinery
from the single selection case as a black box we are able to get a number of constant compet-
itive algorithms for several special cases of matroids. Additionally, for general matroids, we
observe that the existence of a constant competitive algorithm for p-DOS (for any p) implies
the existence of a constant competitive algorithm for the matroid secretary problem, which
is a notoriously hard open problem. In particular we note that if the optimal competitive
ratio of p-DOS in this setting would converge to that in some variant of the i.i.d. case (as it
does in the single selection case) then we could solve this open problem.

1.2 Preliminaries

1.2.1 p-DOS with Known Values.

We consider the following problem, which we call p-sample driven optimal stopping (p-DOS,
for short). A decision maker (DM) is given list of N items with associated values Y1 ≥ · · · ≥
YN . Initially each item is independently sampled with probability p and conform the DM’s
information set (which we denote by H). The remaining items, which we call online set, are
presented to the DM in an online fashion in random order. We call this way of conforming
the information set independent or binomial sampling. Although the values Y1 ≥ · · · ≥ YN
are known to the DM from the beginning, upon seeing an item the DM only knows its relative
ranking within the items revealed so far.9 Thus, only after observing the last item the DM
can certainly know which item is associated to each value. The DM has to select a single
item with the goal of maximizing its expected value. To allow comparison between different
values of N , we think about an infinite sequence Y . For instances of size N , the values are
given by the first N components of Y , which we denote by Y[N].10 In the unlikely event that
the online set is empty (i.e., all N items are sampled), we give the DM a default reward of

9We are not assuming that all values Yi are different, but we assume that there is an arbitrary tie-breaking
rule that is consistent with the relative ranks revealed and selected before the process starts.

10This problem, with non-negative values, and without the sampling phase, was introduced by Mucci [104].

10

YN+1, the next value in the infinite sequence Y .11 This is also the reward obtained if the
decision maker selects no item, and since YN ≥ YN+1 the decision maker is always better off
selecting an item before the end of the process. When it is clear that we are working with
an instance of N items, we drop the subscript [N] for ease of notation.

Note that we do not assume that the values are non-negative, and the sequence may even
diverge to −∞. This model, as simple as it is, turns out to be quite general. Indeed, even
when p = 0, it manages to capture several problems that have been exhaustively studied in
the literature, including:

• Secretary problem [99]. In this classic problem, a decision maker is presented N values
in an online fashion. The goal of the DM is to maximize the probability of selecting the
item with the highest value. This is obtained by setting Y1 = 1 and Yi = 0 for i ≥ 2.

• (1, K)-secretary problem [76]. In this variant of the standard secretary problem, the
goal of the decision maker is to maximize the probability of selecting one of the top K
valued items. This is captured by the model by setting Yi = 1 for i = 1, . . . , K and
Yi = 0 for i ≥ k + 1.

• Rank minimization problem [32]. In this problem, the goal of the decision maker is to
minimize the expected rank of the selected item among the N items. This is captured
by setting Yi = −i for i ≥ 1.

For any given p, we use ALG to refer to a specific (possibly randomized) algorithm or
stopping rule. We use ALG(Y[N]) to denote the random variable that equals value of the the
item selected by ALG on instance Y[N]. For a given sequence Y and number of items N ,
our objective is to find an algorithm that maximizes E(ALG(Y[N])), where the expectation
is taken over the randomness of the process and the inner randomness of the algorithm. A
consequence of our results is that (for fixed Y) the decision to stop should only rely on the
relative ranking of an item among those that have been revealed. Thus, whenever we see
an item which is ranked ℓ among the i items seen so far, we say that that item is an ℓ-local
maximum.

1.2.2 p-DOS with Adversarial Values.

We also study the the variant of p-DOS where the values Yj are chosen by an adversary and
are unknown to the decision maker. In this variant, our goal is to maximize the ratio of
the reward obtained by the algorithm and the expected maximum in the online set. On an
instance Y[N] we denote the expected maximum in the online set by E(OPT(Y[N])). As we
are maximizing over a competitive ratio, we will restrict the adversary to select only non-
negative values for the items. For instances of N items, we want to maximize βN,p, defined
as

βN,p = sup
ALG∈AN

inf
Y decreasing

E(ALG(Y[N]))

E(OPT(Y[N]))
,

where AN is the set of algorithms for p-DOS. A simple coupling argument verifies that for
any 0 ≤ p < 1, βN,p is decreasing in N , so for any p the worst case will be when N is large.

11This is not very relevant, as it does not change our optimization problem: there is no decision to be made
when the online set is empty. Also, we will focus primarily on the case where N is large, making this event
highly unlikely.

11

With this in mind, we wish to find the value of

β(p) = lim
N→∞

βN,p. (1.1)

The guarantee of βN,p for p-DOS translates directly to the same guarantee for the i.i.d. prophet
inequality with samples12. Indeed, for this purpose we can simply use an algorithm for p-
DOS that relies only on relative rankings. Note that if we condition on the realizations of the
values we obtain an instance of p-DOS and, since the algorithm does not change its behavior
depending on the actual values, the guarantee holds realization by realization.

1.2.3 Dependent Sampling

In order to obtain our results for our independent sampling problem, we study the dependent
sampling variant of p-DOS. This model was first introduced by Kaplan et al. [82]. In this
problem, the information set consists of h = ⌊p ·N⌋ items with probability 1, with each item
being equally likely to be sampled. An equivalent way to think of this problem is that the
N items are shuffled according to a random permutation, and the first h items belong to the
information set. In addition, the order of the remaining N − h items is determined by the
permutation. For fixed p, we will focus on the limit of the problem as N →∞. Formally, we
study

αN,p = sup
ALG∈ĀN

inf
Y decreasing

E(ALG(Y[N]))

E(OPT(Y[N]))
,

where ĀN is the set of algorithms for the dependent sampling variant of p-DOS. Analogously
as before, we define

α(p) = lim
N→∞

αN,p

As we establish in Section 1.4.4, for all 0 ≤ p < 1 we have that α(p) = β(p).

1.3 Known Values

In this section we find the optimal algorithm for the p-DOS problem with known Y . In
order to do this we present, for any amount of items in the information set, a linear program
formulation whose optimal solution maps to an optimal algorithm. We then proceed to take
the limit of this linear program as N goes to infinity, and reveal the structure of the limit
problem. This structure allows us to rewrite the problem as that of optimizing a relatively
simple real function. We conclude by showing that our approach is able to easily handle a
number of classic optimal stopping problems.

12In the i.i.d. prophet inequality with samples we initially observe m independent samples from an unknown
distribution. Then, we are given, one by one, a sequence of n values drawn independently from the same
unknown distribution. After seeing each value, we must irrevocably decide whether to stop or continue. We
say a stopping rule is a c-approximation if the expectation of the value it stops with is at least c times the
expectation of the maximum value in the sequence.

12

1.3.1 Linear Programming Formulation

We present here a linear program formulation for our problem, inspired by Buchbinder et al.
[18]. This linear program depends on the input instance Y and we denote it by LPh,N(Y).
Its objective function equals the expected value of an optimal algorithm for our problem,
given that the information set H contains exactly h items. In the linear program, variable
xi,ℓ should be interpreted as the probability that the corresponding algorithm stops at step i
and the item revealed at step i is ranked ℓ highest among the i items observed so far.

(LPh,N(Y)) max
x

YN+1 ·

(
1−

N∑
i=h+1

i∑
ℓ=1

xi,ℓ

)
+

N∑
j=1

Yj

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

)
s.t. ixi,ℓ +

i−1∑
j=h+1

j∑
s=1

xj,s ≤ 1 ∀i ∈ [N] \ [h],∀ℓ ∈ [i], (1.2)

xi,ℓ ≥ 0 ∀i ∈ [N] \ [h],∀ℓ ∈ [i].

The idea behind this linear program is that constraint (1.2) forms a polyhedron rich
enough to contain all relevant algorithms for the problem, and we can express the reward of
the algorithm in terms of the LP variables. We call constraint (1.2) the feasibility constraint.
This linear program presents three main differences with respect to that of Buchbinder et
al. [18]. The first is that the objective function includes arbitrary values Yi. In particular we
include the additional term YN+1 ·

(
1−

∑N
i=h+1

∑i
ℓ=1 xi,ℓ

)
which forces the algorithm to stop,

since in the event of not stopping an algorithm gets YN+1 which is not better than having
stopped in the last item. This additional term is important because values may be negative.
The second is that linear program variables xi,ℓ start at index i = h + 1. This difference
reflects the fact that the first h items will conform the information set, and thus can not be
selected. The third difference is that in Buchbinder et al.’s linear program, variables have
the form xi|ℓ, which represent instead the probability that the algorithm selects the i-th item
given than the i-th item is ranked ℓ among the i items seen so far. This difference does
not change the linear program as there exists a bijection between the solutions13 given by
xi|ℓ = ixi,ℓ.

The equivalence between solving the LP and finding an optimal algorithm is roughly as
follows. Let us start by the inclusion of optimizing over algorithms in solving the LP. For
any algorithm ALG, given that the information set contains h items, we can compute xi,ℓ:
the probability that the algorithm stops at step i and the i-th item is ranked ℓ among the
items seen so far. As the algorithm will only see ranks, this does not depend on the values
Yj. These probabilities xi,ℓ will be feasible in the polyhedron. Moreover, we can write

P(ALG(Y) = Yj) =
N∑

i=h+1

i∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) .

13This relation is obtained by simply conditioning on the event that the i-th item is ranked ℓ among the i
items seen so far, which has probability 1/i.

13

This way, we can express the expected reward of the algorithm as a linear function of prob-
abilities xi,ℓ.

For the other inclusion, we see that any feasible solution x can be converted into an
algorithm that can be applied when the information set consists of h items. We call this
algorithm ALGx, and it works as follows. Let the first step be h + 1 (representing that at
the first step we have already seen h items from the history set). At each step i, stop with
probability ixi,ℓ/(1−

∑i−1
j=1

∑j
ℓ=1 xj,s) if the current item is ranked ℓ among the items seen so

far. The probability that ALGx stops at the i-th item and the i-th item is ranked ℓ among
the i items seen so far is precisely xi,ℓ, which concludes the inclusion of solving the LP in
finding an optimal algorithm.

Lemma 1.1 formalizes the previous discussion. The proof is essentially the same as the
proofs in Buchbinder et al. [18], but for the sake of completeness we provide it here as well.
This result says that the optimal algorithm for sequence Y with N items is to observe h and
respond using ALGx with x being the optimal solution of LPh,N .

Lemma 1.1. Conditional on the information set containing exactly h items

1. For any algorithm ALG, denote by xi,ℓ the probability that ALG stops at step i and the
i-th item is ranked ℓ among the i items seen so far. Then x is feasible in LPh,N and the
objective function evaluated at x equals the expected reward of ALG.

2. The probability that ALGx stops at the i-th item and the i-th item is ranked ℓ among
the i items observed so far is given by xi,ℓ. The expected reward of ALGx is equal to
the objective value of x.

Proof. If we condition on the information set containing exactly h items, then we can inter-
pret the process as follows. At the beginning, values Yj are shuffled according to a random
permutation σ. That is, σ(i) = j means that the i-th item in the permutation has value Yj.
The items in the information set will be the first h items according to the permutation (i.e.,
Yσ(1), . . . , Yσ(h)). The online set will consist of the remaining items, which will be revealed
according to the order of the permutation. That is, the order is Yσ(h+1), Yσ(h+2),...,Yσ(N)

.

For proving the first statement of the lemma, note that

xiℓ = P(ALG stops at step i ∧ Yσ(i) is ℓ− local maximum)

= P(ALG stops at step i| Yσ(i) is ℓ− local maximum)P(Yσ(i) is ℓ− local maximum)

≤ P(ALG does not stop before step i| Yσ(i) is ℓ− local maximum)P(Yσ(i) is ℓ− local maximum)

= P(ALG does not stop before step i)P(Yσ(i) is ℓ− local maximum)

=

(
1−

i−1∑
j=h+1

j∑
s=1

xj,s

)
1

i
.

14

Now, for any 1 ≤ j ≤ N , we can write

P(ALG = Yj) =
N∑

i=h+1

P(ALG = Yj ∧ALG stops at step i)

=
N∑

i=h+1

P(Yσ(i) = Yj ∧ALG stops at step i)

=
N∑

i=h+1

P(ALGx stops at step i|Yσ(i) = Yj)P(Yσ(i) = Yj).

Since σ is a uniform random permutation, we have that P(Yσ(i) = Yj) = 1/N . For
computing P(ALG stops at step i|Yσ(i) = Yj) we rename the following events:

• Ai = {ALG stops at step i},
• Biℓ = {Yσ(i) is ℓ−local maximum}, and
• Cij = {Yσ(i) = Yj},

and write

P(Ai|Cij) =
i∑

ℓ=1

P(Ai|Cij ∧Biℓ)P(Biℓ|Cij) =
i∑

ℓ=1

P(Ai|Biℓ)P(Biℓ|Cij) =
i∑

ℓ=1

ixi,ℓP(Biℓ|Cij),

where the second equality holds because ALGx decides whether to stop at step i based
only on the relative order within the first i items. The third equality comes from the fact
that P(Ai|Biℓ) = P(Ai∧Biℓ)

P(Biℓ)
= ixALG

i,ℓ , where P(Biℓ) = 1/i because σ is a uniform random
permutation.

To compute P(Biℓ|Cij), notice this is the probability that Yj is ℓ-local maximum conditional
on σ(j) = i. Now, this happens if out of the j − 1 values that are larger than Yj, exactly
ℓ arrive within the first i − 1 positions. Since, conditional on σ(j) = i, σ is a random
permutation of the other N − 1 items, we have that

P(Biℓ|Cij) =

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) .

Putting together the computed probabilities we conclude that

P(ALG = Yj) =
N∑

i=h+1

i∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) , (1.3)

so the first statement follows.

To prove the second statement, first notice that as x satisfies the feasibility constraint,
then ALGx is well defined in the sense that ixi,ℓ

1−
∑i−1

j=1

∑j
s=1 xj,s

will always be between 0 and 1.
We need to prove that the probability that ALGx stops at step i and Yσ(i) is ℓ-local maximum
is precisely xi,ℓ. This will be done by induction on i, defining the following events:

15

• Ai = {ALGx stops at stage i},

• Bi,ℓ = {Yσ(i) is ℓ−local maximum}, and

• Ri = {ALGx reaches stage i} = {ALGx does not stop in steps h+ 1, . . . , i− 1}.

The base case is i = h+ 1 and any 1 ≤ ℓ ≤ h+ 1. Here, we have that P(Rh+1) = 1, so

(h+ 1)xh+1,ℓ = P(Ah+1|Rh+1 ∧Bh+1,ℓ)

= P(Ah+1|Bh+1,ℓ) = P(Ah+1 ∧Bh+1,ℓ)/P(Bh+1,ℓ)

= (h+ 1)P(Ah+1 ∧Bh+1,ℓ)

and we obtain the result by cancelling the (h+ 1). For i > h+ 1 and 1 ≤ ℓ ≤ i we have that

P(Ai ∧Bi,ℓ) = P(Ai ∧Bi,ℓ ∧Ri)

= P(Ai|Bi,ℓ ∧Ri)P(Bi,ℓ ∧Ri)

= P(Ai|Bi,ℓ ∧Ri)P(Bi,ℓ)P(Ri),

where the first equality comes from the fact that Ai is contained in Ri and the last equality
comes from the fact that ALGx cannot use the ranking of Yσ(i) to stop in a stage before i.
By the construction of ALGx, we have that P(Ai|Bi,ℓ ∧ Ri) = ixiℓ

1−
∑i−1

j=h+1

∑h
s=1 xj,s

. As σ is a

random and uniform permutation, we have that P(Bi,ℓ) = 1/i for any 1 ≤ ℓ ≤ i. The only
thing left to conclude is computing P(Ri). For this we compute

P(Ri) = 1−
i−1∑

j=h+1

P(Stop at step j)

= 1−
i−1∑

j=h+1

j∑
s=1

P(Stop at step j ∧ Yσ(j) is ℓ− local maximum) = 1−
i−1∑

j=h+1

j∑
s=1

xj,s

where the last equality holds because of our inductive hypothesis. It follows that the proba-
bility that ALGx stops at step i and Yσ(i) is ℓ-local maximum is xi,ℓ. The second statement
follows, as equation (1.3) holds for any algorithm, in particular for ALGx.

We have seen that in the objective function, coefficients accompanying Yj are equal to the
probability that the ALGx selects the item with value Yj. The following equivalent expression

16

of the objective function is useful for establishing our results:

E
(
ALGx(Y)

∣∣ |H| = h
)
=

N+1∑
k=1

YkP
(
ALGx(Y) = Yk

∣∣ |H| = h
)

=
N∑
k=1

(Yk − Yk+1)P
(
ALGx(Y) ≥ Yk

∣∣ |H| = h
)

+ YN+1P
(
ALGx(Y) ≥ YN+1

∣∣ |H| = h
)

=
N∑
k=1

(Yk − Yk+1)
k∑

j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) + YN+1

=Y1 −
N∑
k=1

(Yk − Yk+1)

(
1−

k∑
j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

))

=Y1 −
N∑
k=1

(Yk − Yk+1)

(
1−

k∑
ℓ=1

N∑
i=h+1

xi,ℓ

k∑
j=ℓ

i

N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

))
,

(1.4)

where we use the fact that P
(
ALGx ≥ YN+1

∣∣ |H| = h
)
= 1, and that YN+1 = Y1 −∑N

k=1(Yk − Yk+1).

1.3.2 Limit Problem

Consider an infinite sequence Y , a number of items N + 1, and an algorithm ALG. This
same algorithm can be implemented on the same infinite sequence Y with the only first N
items by inserting a dummy item, ranked worst among all items, and running ALG on this
artificial instance. If ALG would choose the dummy item, it simply does not stop in the real
instance. The reward collected by applying this tweaked algorithm to Y[N] is not less than
what ALG collects from Y[N+1]. This simple coupling argument, formalized in Section 1.6.1,
implies that

max
ALG∈AN

E
(
ALG

(
Y[N]

))
≥ max

ALG∈AN+1

E
(
ALG

(
Y[N+1]

))
.

This means that as N → ∞ the sequence of these maxima either converges or diverges to
−∞. We obtain the limit of the sequence analyzing the limit of the linear programs LP⌊pN⌋,N .
This can be done by performing a Riemann sum analysis, which captures the cases where the
limit value exists. Denote by L1([p, 1]×N) the space of measurable functions q : [p, 1]×N→ R
such that

∑∞
ℓ=1

∫ 1

p
|q(t, ℓ)|dt <∞. If for q ∈ L1([p, 1]× N), we define the function

Fk(q) =
k∑

ℓ=1

∫ 1

p

q(t, ℓ)
k∑

j=ℓ

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt, (1.5)

17

we can write the following limit problem, CLPp, where we have dropped the dependency on
Y for ease of notation.

(CLPp) sup
q∈L1([p,1]×N)

Y1 −
∑
k≥1

(Yk − Yk+1) (1− Fk(q))

s.t. tq(t, ℓ) +

t∫
p

∑
s≥1

q(τ, s)dτ ≤ 1 ∀t ∈ [p, 1],∀ℓ ≥ 1

q(t, ℓ) ≥ 0 ∀t ∈ [p, 1],∀ℓ ≥ 1

By standard arguments (see Section 1.6.2), for every p ∈ [0, 1) we can show that the limit
of maxALG∈AN

E
(
ALG

(
Y[N]

))
, when N → ∞, exists if and only if the optimal value of

CLPp is finite, and they are equal.

This limit problem has a natural interpretation as a continuous-time version of p-DOS.
In this problem there are countably many items, each item has a uniform arrival time in the
interval [0, 1], and each item is in the history set H if it arrives before time p and in the
online set otherwise. We observe the items in H, then we scan the interval [p, 1] and when
we reach the arrival time of an item, we irrevocably decide whether we should stop. The
decision variables in CLPp can be interpreted as encoding this decision. For a time τ and an
integer s, q(τ, s)dτ is the probability that we stop with an s-local maximum in the interval
[τ, τ + dτ]. In the objective function, Fk(q) is the probability that we select an item with
global rank k or better.

1.3.3 Structure of Optimal Solution

We show that CLPp can be restricted to solutions with a very special structure. If we interpret
CLPp as the problem of selecting an item from an infinite set with uniform arrival times in
[0, 1], we essentially prove that an optimal solution can be attained in the following class of
algorithms. Given a non-decreasing sequence {ti}i∈N ⊆ [p, 1], if at time τ we receive an item
that is an ℓ-local maximum, we accept it if tℓ ≤ τ . Thus, we reject everything arriving in
[p, t1), then in [t1, t2) we only accept a value that is the best so far, in [t2, t3) we only accept
a value that is best or second best, and so on. Formally we prove the following theorem.

Theorem 1.2. For a fixed p ∈ [0, 1) and a given feasible solution q for CLPp, there exists
another feasible solution q∗ such that Fk(q

∗) ≥ Fk(q) for all k ≥ 1, and there is a non-
decreasing sequence of numbers {ti}i∈N ⊆ [p, 1], with t0 = p, that satisfies that for all ℓ ∈
N, t ∈ [p, 1],

tq∗(t, ℓ) +

∫ t

p

∑
s≥1

q∗(τ, s)dτ = 1, if t ≥ tℓ (1.6)

q∗(t, ℓ) = 0, if t < tℓ. (1.7)

Moreover, for all t ∈ [p, 1], we have that

q∗(t, ℓ) =

Ti
ti+1

if t ∈ [ti, ti+1), ℓ ≤ i

0 else,
(1.8)

18

where Ti =
∏i

j=1 tj.

Proof. The proof is done in two steps. The first is to show that we can modify q without
decreasing Fk(q) to obtain a solution that satisfies Equations (1.6) and (1.7). The second
is to prove that if a solution satisfies Equations (1.6) and (1.7), then it is actually as in
Equation (1.8).

A key ingredient is to study the term accompanying q(t, ℓ) in Fk(q). Note that the term
is either 0, if ℓ > k, or it is

k∑
j=ℓ

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ ,

if ℓ ≤ k. The property that we will extensively use is that this term is increasing in t
and decreasing in ℓ. This is implied by the fact that it corresponds to the probability that a
NegativeBinomial(ℓ, t)14 random variable is at most k. For completeness, an arithmetic proof
of this fact can be found in Section 1.6.3. Then, we use these facts to argue that if we take
a solution that is not as in the Theorem, we can modify it without reducing the objective
value.

We recursively define a sequence of solutions (qn)n≥0 as follows. We start with an arbitrary
feasible solution q0 = q for CLPp. If qn−1 is a feasible solution, we have that

qn−1(t, ℓ) ≤
1

t

(
1−

∫ t

p

∑
s≥1

qn−1(τ, s) dτ

)
, ∀t ∈ [p, 1], ℓ ≥ 1.

Note also that 1
t

(
1−

∫ t

p

∑
s≥1 qn−1(τ, s) dτ

)
is non-negative for all t, ℓ so there must exist a

value tℓ(n) ∈ [p, 1] such that∫ 1

p

qn−1(t, ℓ) dt =

∫ 1

tℓ(n)

1

t

(
1−

∫ t

p

∑
s≥1

qn−1(τ, s) dτ

)
dt.

Thus, we define qn as

qn(t, ℓ) =

{
1
t

(
1−

∫ t

p

∑
s≥1 qn−1(τ, s) dτ

)
if t ≥ tℓ(n)

0 if t < tℓ(n).

Now we prove a few facts about qn. First, note that for all ℓ ≥ 1,
∫ 1

p
qn(t, ℓ)dt =

∫ 1

p
qn−1(t, ℓ)dt.

Also note that we are only moving mass to the right, and therefore,

1

t

(
1−

∫ t

p

∑
s≥1

qn−1(τ, s) dτ

)
≤ 1

t

(
1−

∫ t

p

∑
s≥1

qn(τ, s) dτ

)
, ∀t ∈ [p, 1]. (1.9)

This implies that if qn−1 is feasible, qn is also feasible. Also since we are only moving mass
to the right, and since the term accompanying q(t, ℓ) in Fk(q) is increasing in t, necessarily

14The number of coin tosses necessary to obtain ℓ heads, if the coin lands heads with probability t.

19

Fk(qn−1) ≤ Fk(qn) for all k ≥ 1. Moreover, notice Equation (1.9) also implies that tℓ(n) ≤
tℓ(n + 1) for all ℓ ≥ 1, n ≥ 1. Since these numbers are upper bounded by 1, they must
converge to some values tℓ(∞) ∈ [p, 1].

We now prove that for each ℓ ≥ 1 the sequence (qn(·, ℓ))n≥1 has a pointwise limit q∞(·, ℓ),
to which it also converges under the L1 norm. Note first that if q0 = q1, the sequence is
constant and therefore it trivially converges. If q0 ̸= q1, then Equation (1.9) for n = 1 holds
with strict inequality in some interval [τ1, τ2] ⊆ [p, 1], and then, if tℓ(1) < τ2 for some ℓ ≥ 1,
necessarily tℓ(1) < tℓ(2). By evaluating the feasibility constraint in t = 1, we have that∑

s≥1

∫ 1

p
q0(τ, s)dτ ≤ 1, so there is some s∗ such that

∫ 1

p
q0(τ, s

∗)dτ = maxs≥1

∫ 1

p
q0(τ, s)dτ .

By the definition of tℓ(n), we have that ts∗(n) = mins≥1 ts(n) for all n ≥ 1. Then, if q0 ̸= q1,
0 ≤ ts∗(1) < ts∗(2) ≤ tℓ(n) for all ℓ ≥ 1, n ≥ 2. Now, the sequence of functions

Gn(t) =
1

t

(
1−

∫ t

p

∑
s≥1

qn(τ, s) dτ

)

is monotone in n, so it has a pointwise limit. Now, from the definition of qn(t, ℓ), this also
implies that qn(t, ℓ) has a pointwise limit q∞(t, ℓ) when n → ∞. Indeed, for t < tℓ(∞),
eventually t < tℓ(n) because tℓ(n)↗ tℓ(∞), and then qn(t, ℓ) becomes 0; and for t ≥ tℓ(∞),
qn(t, ℓ) = Gn(t), which has a pointwise limit. Since tℓ(∞) ≥ ts∗(2) > 0, there is some n0 such
that tℓ(n) ≥ ts∗(2)/2 for all n ≥ n0 and then qn(t, ℓ) is dominated by the constant function
equal to 2/ts∗(2), which is integrable, so by the dominated convergence theorem, it converges
to q∞(t, ℓ) in L1([p, 1]). This is sufficient to conclude that Fk(q∞) ≥ Fk(q0) for all k ≥ 1,
because Fk is a continuous function of q and involves only the first k components of q.

We have now that

q∞(t, ℓ) =

{
1
t

(
1−

∫ t

p

∑
s≥1 q∞(τ, s) dτ

)
if t ≥ tℓ(∞)

0 if t < tℓ(∞).

The only missing piece is the monotonicity of tℓ(∞). In fact, they are not necessarily mono-
tone. However, note that swapping components of q∞ does not affect its feasibility. Since
the term accompanying q(t, ℓ) in Fk(q) is decreasing in ℓ, for all k ≥ 1, we can swap compo-
nents of q∞ to obtain a function q∗ and a sequence (tℓ)ℓ≥1 such that tℓ ≤ tℓ+1, that satisfies
Equations (1.6) and (1.7).

For the second part of the proof of the theorem we first prove that, given the sequence
(tℓ)ℓ≥1, Equations (1.6) and (1.7) admit a unique solution. Then we prove that they are
satisfied by the one given in Equation (1.8). In fact, notice that for any ℓ, in the interval
[tℓ, tℓ+1] all functions q(t, ℓ′) with ℓ′ ≤ ℓ are equal, and the rest are 0. Thus, denoting this
function by yℓ(t), we can rewrite Equation (1.6) as follows.

y′ℓ(t) = −
(i + 1)

t
· yℓ(t), ∀t ∈ [tℓ, tℓ+1]. (1.10)

Again by Equation (1.6), we have that the function has to satisfy a continuity constraint
yℓ(tℓ) =

1
tℓ

(
1−

∫ tℓ
p

∑
s≥1 q

∗(τ, s)dτ
)
, which depends only on previous intervals, and for ℓ = 1

20

it evaluates as 0. This determines the initial value in the interval. Therefore, by the Cauchy-
Lipschitz theorem, Equations (1.6) and (1.7) admit a unique solution.

We are ready now to check that the function defined by Equation (1.8) satisfies our
equations. In fact, it is easy to check the continuity, by noticing that Ti/ti+1

i+1 = Ti+1/t
i+2
i+1.

Replacing in Equation (1.10) we obtain

−(ℓ+ 1)
Tℓ
tℓ+2

= −ℓ+ 1

t
· Tℓ
tℓ+1

∀t ∈ [tℓ, tℓ+1],

which clearly holds.

Let us now apply Theorem 1.2 to simplify problem CLPp. Noting that the differences
Yk−Yk+1 are non-negative we can reduce the feasible set in CLPp to just solutions satisfying
Equation (1.8). These solutions automatically satisfy the constraints in CLPp and therefore
the problem reduces to one in which the optimization is done only over the ti’s for i ≥ 1. To
explicitly write this reduced problem, and slightly abusing notation, consider the functions
Fk : [0, 1]

N → R given by

Fk(t) =
k∑

j=1

∞∑
i=1

ti+1∫
ti

j∧i∑
ℓ=1

Ti
τ i+1

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓdτ.

Note that Fk(t) = Fk(q
∗) where q∗ satisfies (1.8). We obtain that the value of CLPp equals

that of the reduced problem:

(RPp) sup
t=(ti)i∈N

Y1 −
∑
k≥1

(Yk − Yk+1) (1− Fk(t))

s.t. p ≤ ti ≤ ti+1 ≤ 1 ∀i ≥ 1.

Straightforward (but tedious) calculations show that Fk(t) is increasing in ti for all i > k,
and also concave in each ti (see Section 1.6.4). Unfortunately though, these Fk(·) are not
jointly concave. Therefore, the reduced problem RPp is a real optimization problem, which
is concave on each ti.

1.3.4 Finding the Optimal Thresholds

As mentioned earlier, RPp can be interpreted as the problem of finding the optimal algo-
rithm for a continuous version of p-DOS with an infinite sequence known values that arrive
continuously in the interval [0, 1]. A solution {ti}i∈N corresponds to the algorithm that, upon
receiving at time τ an item that is an ℓ-local maximum, stops if tℓ ≤ τ . The implementation
of this algorithm for p-DOS with known values and N items is standard. After solving the
corresponding RPp and finding the implied optimal thresholds {ti}i∈N, we sample one arrival
time, i.e., a uniform random variable in [0, 1], for each of the N items. The items corre-
sponding to arrival times that landed in [0, p] are included in the information set while the
remaining form the online set.15 These are inspected in increasing order of their arrival times

15If the information set is already sampled and contains h items, then the procedure would be to sample
N − h arrival times uniform in (p, 1) for the items in the online set.

21

and the sequence {ti}i∈N dictates the stopping time as before. In Section 1.4.4 we prove that
the expected reward is at least as large and converges to the objective value of RPp as N
tends to infinity. One last thing to notice is that the algorithm we just described might not
stop, although this can be easily fixed by selecting the last item if no item was to be selected.

Note that this formulation RPp already establishes a number of facts. The first interesting
consequence is that, quite naturally, the optimal algorithm for p-DOS with known values is
given by a sequence of thresholds t1 ≤ t2 ≤ . . . so that after time ti we accept any item whose
current ranking is i or better. This fact was previously shown in some special cases by Mucci
[104] and Chan et al [26]. Moreover, by exploiting properties of the objective function we can
show how it leads to relatively simple real optimization problems that solve various classic
single selection optimal stopping problems.

Note first that if only finitely many Y ’s are different –as often happens in classic optimal
stopping problems– then RPp is a finite dimensional real optimization problem. Indeed, let
us assume Y1 ≥ · · · ≥ Ym > Ym+1 = Thus the objective function in RPp becomes∑m

k=1(Yk − Yk+1)Fk(t) − Ym+1. Additionally, since the Fk(t) are increasing in ti for i > k,
all terms in the objective function are increasing in ti for i > m, so that we may set these
variables to be 1. With this RPp becomes the finite dimensional optimization problem of
maximizing, over t ∈ [p, 1]m the function

m∑
k=1

(Yk − Yk+1)
k∑

j=1

m∑
i=1

j∧i∑
ℓ=1

Ti

(
j − 1

ℓ− 1

)∫ ti+1

ti

(1− τ)j−ℓτ ℓ−i−1dτ.

This problem is concave in each variable ti, since it is a non-negative linear combination of
concave functions. For the problem of maximizing the probability of selecting the best item,
Correa et al. [38] establish a similar characterization as a continuous optimization problem,
which they prove is concave. We suspect our problem also has a unique local maximizer, so
we expect that it can be solved using gradient descent methods. 16 In particular, this holds
in the following examples that recover some classical results in optimal stopping.

• Secretary problem. Recall that the secretary problem is recovered by setting Y1 = 1
and Yi = 0 for i > 1. With this, the problem simplifies to

max
0≤ti<1

∞∑
i=1

∫ ti+1

ti

Ti
τ i
dτ = max

0≤t1<1

∫ 1

t1

t1
τ
dτ = max

0≤t1≤1
−t1 ln(t1),

where the first equality follows since, by the monotonicity property of Fk(t), t2, t3, . . .
approach 1 in the supremum. The problem to the right is easily solved by taking first
order conditions, so we recover the classic result that t1 = 1/e and that the optimal
value is 1/e.

16A consequence of this discussion is that given an instance of p-DOS with its corresponding Y one can,
in time O(1), find an sequence of thresholds leading to an arbitrarily close to optimal online algorithm. To
see this first note that restricting to the first K = O(1) terms in the sequence of Y ’s is enough. Then we
can restrict to the finite version of RPp in which only the variables t1, . . . , tk are present. Now, for these
variables we evaluate the objective function in all values belonging to a fine grid of [0, 1]K and keep the best
value found.

22

• (1,2)-Secretary. Here, we have that Y1 = Y2 = 1 and Yi = 0 for i > 2. So the problem
is

max
0≤t1≤t2≤1

t21 + 2t1(ln(t2/t1) + 1)− 3t1t2.

First order conditions give that t1 ≈ 0.347 and t2 = 2/3.17 The optimal value is
approximately 0.5737, which matches the bound of Gusein-Zade and Chan et al. [76,
26].

• Minimum rank. In this problem we seek to minimize the expected rank of the selected
value, which is modeled by taking Yk = −k, so that Yk−Yk+1 = 1. Thus RPp becomes18

sup
0≤ti≤1, i≥1

−1 +
∞∑
k=1

(Fk(t)− 1) = sup
0≤ti≤1, i≥1

−
∞∑
i=1

Ti
i

2

(
1

ti+1
i

− 1

ti+1
i+1

)
,

where the equality follows by using the identity
∑∞

j=ℓ

(
j
ℓ

)
(1 − t)j = (1 − t)ℓt−(ℓ+1).

Again the first order optimality conditions are enough to solve the problem. In-
deed, they solve for ti =

∏∞
m=i

(
m

m+2

)1/(m+1), which evaluates for an expected rank

of
∏∞

m=1

(
m+2
m

)1/(m+1) ≈ 3.8695, recovering the result of Chow et al. [32].

The case of p > 0

Although the examples we have recovered are all for the case p = 0 we note that our results
hold for general p. The "right" way of taking this limit is by first normalizing the objective
function value. To see this note that in RPp (and also in p-DOS with known values) the
values of Y can be scaled without affecting the optimization problem. Thus, for instance, if
p = 0 we could scale these values to have Y1 = 1 (so long as Y1 > 0). This makes sense since
in this situation an optimal clairvoyant algorithm will always pick Y1 so that the objective of
RPp after this normalization represents the relative performance of the best online algorithm
when compared to the optimal offline algorithm. For p > 0 the expected value of the optimal
offline algorithm is given by

∑∞
i=1 Yip

i−1(1 − p). Therefore, when all Y ’s are non-negative,
the right normalization of the objective in RPp is to divide it by this quantity. This leads
to measuring the performance of the algorithm as the ratio between the expectation of the
selected value and the expectation of the highest eligible value (the maximum value among
the items in the online set). For instance, in the case of the secretary problem, for p > 1/e,
the ratio equals p ln(1/p)/(1− p).

An important remark is that this normalization does not change the optimization problem,
as the denominator in the ratio depends solely on the values of Yi and p. However, in the next
section, we consider p-DOS with adversarial values and therefore the Yi’s become variables
selected by an adversary. In this setting, the normalization is needed to appropriately measure
the competitive ratio of an algorithm.

17t1 is the only solution of equation x− ln(x) = 1 + ln(3/2) in (0,1).
18To interpret the expression on the left, recall that Fk(t) is the probability that the algorithm stops with

an item whose rank is k or better. Thus the objective simply represents the negative of the expected rank.

23

1.4 Adversarial Values
Up to this point we have considered that the vector of values Y is known to the decision maker
from the beginning. In what follows we will relax this assumption, and instead we will let the
values to be chosen by an adversary. Our objective function will thus become a competitive
ratio, as suggested at the end of the previous section. Consequently, we will restrict the
adversary to select a decreasing sequence of non-negative values for the items. The analysis
in this section will initially rely on the dependent sampling variant, where the information set
is conformed of h items with probability 1, and each item has equal probability of belonging
to it. This model leads to a cleaner linear program and its limit naturally coincides with that
for the independent sampling variant.

We start by presenting the adversary’s optimization problem and use von Neumann’s
Minmax Theorem to derive a factor revealing LP. We take the limit of this problem as
N →∞ and find that our structural results of Section 1.3.3 also hold for this limit problem.
Using this structural result we reduce the limit problem to finding an optimal sequence of
optimal time thresholds (ti)i∈N. We solve this reduced problem, putting special emphasis on
values of p within 0 and 1/e, on p = 1/2, and on the limit as p → 1. We close the section
by connecting the dependent and independent sampling models. In particular, we show that
our obtained guarantees also hold for finite N in the independent sampling model, while in
the dependent sampling model they hold approximately with an error Õ(1/

√
N) (for fixed

p < 1).

1.4.1 Factor Revealing LP

In this subsection we present a factor-revealing linear program, whose optimal value equals
the optimal competitive ratio for instances with N items and history set of size h. We start
by stating our objective function, which consists of the competitive ratio just mentioned. The
benchmark we will be comparing the performance of our algorithms will be the highest value
among the items of the online set. Formally, our benchmark is the expectation of random
variable OPT(Y[N]), defined as the highest value among the items in the online set. This
way, for given integers 0 ≤ h < N , we want to find the largest ratio between E(ALG(Y[N]))
and E(OPT(Y[N])), for all instances Y[N] of N items.

The following lemma establishes the distribution of OPT(Y[N]), which will be useful for
formulating SDLPh,N .

Lemma 1.3. Consider an instance Y[N]. Then:

P(OPT(Y[N]) = Yj) =

 N−h
N−j+1

j−2∏
s=0

h−s
N−s

1 ≤ j ≤ h+ 1

0 otherwise.

Proof. For OPT (Y) = Yj we need that all Yi with i < j belong to the history set. The first
observation is that numbers smaller than Yh+1 cannot be the optimum, because we would
need the largest h+ 1 numbers to be in the history set, which has only h items.

For j ≤ h, as the construction of the history and the online sets are based on a random

24

permutation, we can simulate it by sequentially inserting the numbers in N slots of which
h will correspond to the history set and the remaining N − h correspond to the online set.
The probability that OPT = Y1 is simply the probability that Y1 lands on the online slots,
i.e., N−h

N
= 1− p. For Yj with 1 < j ≤ h, we need that the largest j − 1 values appear in H.

Conditional on the largest s values are in H, the probability that Ys+1 is also in H is that it
lands on the h− s slots of H remaining among the N − s remaining slots: h−s

N−s
. Once all the

j − 1 largest values landed on H, then we need Yj to land on the N − h slots of O, which
happens with probability N−h

N−j+1
.

We proceed to present a factor revealing linear program for p-DOS with adversarial values
and dependent sampling. For a given N , let YN = {Y[N] ∈ RN : Y1 ≥ Y2 ≥ · · · ≥ YN ≥ 0}
be the set of relevant feasible values that the adversary may choose.19 The problem for the
adversary can be stated as follows:

min
Y[N]∈YN

max
x

E(ALGx(Y[N]))

E(OPT(Y[N]))

s.t. ixi,ℓ +
i−1∑
j=1

j∑
s=1

xj,s ≤ 1 ∀i ∈ [N] \ [h+ 1], ∀ℓ ∈ [i]

xi,ℓ ≥ 0 ∀i ∈ [N] \ [h+ 1], ∀ℓ ∈ [i].

Since we may assume YN+1 = 0, the expression in Section 1.3 for E(ALGx(Y[N])) becomes

E(ALGx(Y[N])) =
N∑
j=1

Yj

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) ,

and for the dependent sampling variant we have E(OPT(Y[N])) =
∑N

j=1 YjP(OPT(Y[N]) =
Yj). This problem is not linear, as the denominator of the objective function, E(OPT(Y[N])),
depends on variables Yj. However, note that we can arbitrarily scale Y since the scaling
will cancel out in the ratio E(ALGx(Y[N]))/E(OPT(Y[N])). Thus, without loss of generality,
we can restrict the adversary to select values such that E(OPT(Y[N])) = 1. Now the
objective function is linear in x and linear in Y[N], and also the corresponding feasible sets
are convex and compact. The compactness follows from the fact that every coordinate of
x must be in [0, 1]; and that 0 ≤ Yj ≤ Y1 for all j ∈ [N], and by Lemma 1.3 N−h

N
· Y1 ≤

E(OPT(Y[N])) = 1. Therefore, we can use von Neumann’s Minmax Theorem to change the
order of the minimization and the maximization. We obtain the following problem:

max
ixi,ℓ+

∑i−1
j=1

∑j
s=1 xj,s≤1, ∀i∈[N]\[h],ℓ∈[i],

x≥0

min
Y ∈YN

E(OPT(Y[N]))=1

E(ALGx(Y[N])),

19We say relevant because for N items, only the first N + 1 of sequence Y will affect the outcome for
instances of N items (recall YN+1 is the reward obtained if the DM makes no selection). Now the online set
cannot be empty, so OPT(Y[N]) is independent of YN+1. This way, setting YN+1 = 0 will always be optimal
for an adversary minimizing the competitive ratio.

25

Through a stochastic dominance argument (presented in Section 1.7.1) we finally derive our
factor revealing linear program which we denote by SDLPh,N , short for “Stochastic Dominance
Linear Program”:

(SDLPh,N) max
x,α

α

s.t. ixi,ℓ +
i−1∑

j=h+1

j∑
s=1

xj,s ≤ 1 ∀i ∈ [N] \ [h],∀ℓ ∈ [i]

α−

k∑
j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

)
k∑

j=1

N−h
N−j+1

j−2∏
s=0

h−s
N−s

≤ 0 ∀k ∈ [h+ 1]

xi,ℓ ≥ 0 ∀i ∈ [N] \ [h],∀ℓ ∈ [I].

The stochastic dominance argument says that for a given x, in the inner minimization problem
we can focus our attention on instances of the form Y1 = · · · = Yk = 1, Yj = 0 for j ≥ k + 1,
for all k ∈ [N] (each one of them normalized so that E(OPT(Y)) = 1).20

The first step is to see the second set of constraints as stochastic dominance constraints
of the form

α−
P(ALGx(Y[N]) ≥ Yj)

P(OPT(Y[N]) ≥ Yj)
≤ 0 ∀j ∈ [h+ 1].

Consequently, if α is feasible we can write the inequality as P(ALGx(Y[N]) ≥ Yj) ≥ αP(OPT(Y[N]) ≥
Yj), integrate both sides and obtain the same bound but for the expectations instead of the
probabilities. The bound in the expectations will be tight if α is feasible and the stochastic
dominance constraint is binding for some index k. To see this, consider an instance Y k with
Y k
i = 1 for i ≤ k and Y k

i = 0 for i > k. This way E(ALGx(Y
k
[N])) = P(ALGx(Y

k
[N]) ≥ Yk)

and E(OPT(Y k
[N])) = P(OPT(Y k

[N]) ≥ Yk). With this analysis, we conclude that the optimal
value of SDLPh,N equals the optimal worst case competitive ratio for the dependent sampling
variant of p-DOS with fixed h and N . Moreover, we can recover an optimal algorithm from
its optimal solution.

1.4.2 The Limit Problem and its Solution

Similarly as in Section 1.3.2, we obtain the limit problem of SDLP⌊pN⌋,N :

(SDCLPp) sup
q∈L1([p,1]×N), α∈[0,1]

α

s.t. tq(t, ℓ) +

t∫
p

∑
s≥1

q(τ, s)dτ ≤ 1 ∀t ∈ [p, 1],∀ℓ ≥ 1 (1.11)

α ≤ Fk(q)

1− pk
∀k ≥ 1 (1.12)

q(t, ℓ) ≥ 0 ∀t ∈ [p, 1],∀ℓ ≥ 1.

20Perhaps the easiest way to see this is that every feasible instance for the adversary is a convex combination
of these instances.

26

Now we can directly apply Theorem 1.2 to SDCLPp. For a solution q, consider a solution
q∗ as in the theorem. By definition, q∗ satisfies Equation (1.11); and from the fact that
Fk(q) ≤ Fk(q

∗) for all k ≥ 1, q∗ also satisfies Equation (1.12) for the same α as q. We obtain
the following reduced problem analogous to RPp, by noticing that for the thresholds (ti)i∈N
that correspond to q∗ we have that Fk(t) = Fk(q

∗).

(SDRPp) sup
t=(ti)i∈N

min
k≥1

Fk(t)

1− pk

s.t. p ≤ ti ≤ ti+1 ≤ 1 ∀i ≥ 1.

Recall that we defined α(p) as the limit of ratios αN,p, whose values correspond to the optimal
value of SDLP⌊pN⌋,N . Consequently, α(p) equals the optimal value of SDRPp.

1.4.3 Solving for Different Values of p

We proceed to obtain values of α(p) for p ∈ [0, 1). We start by briefly discussing the case
where 0 ≤ p < 1/e and then study the limit as p → 1. For intermediate values of p, we
present (almost) matching numerical bounds. Note that α(p) is an increasing function, as
we establish, in a more general setting, with Lemma 1.14 in Section 1.5. As a consequence,
the limit of α(p) as p tends to 1 is well-defined.

The case 0 ≤ p < 1/e

For this range of p, we establish that α(p) = (e(1 − p))−1. This closes the gap in Kaplan
et al. [82], where they obtain the same upper bound but a slightly weaker lower bound.21

Our upper bound, which works for any p ∈ [0, 1) is shown in Lemma 1.16 on a more general
setting and with a simpler analysis than the one presented in Kaplan et al [82]. We obtain
the lower bound by evaluating t1 = 1/e and ti = 1 for i ≥ 2 in SDRPp (i.e., the classic
secretary problem algorithm). This means that the optimal algorithm will wait until seeing
in total (counting both the online set and the history set) a fraction 1/e of N , and from that
point on it will stop whenever we find an item whose value is larger than what has been
observed so far. Our results also reveal that the hardest single selection optimal stopping
problem for this range of p is the secretary problem (Y1 = 1 and the remaining values are
0). Indeed, the fact that the optimal value of SDRPp is (e(1 − p))−1, together with von
Neumann’s Minmax Theorem tells us that for any sequence Y , we can obtain a competitive
ratio of at least (e(1− p))−1. Details about this case are presented in Section 1.7.2.

Limit as p goes to 1

We now turn our attention to the case where p is close to 1. In order to show that
limp→1 α(p) = α∗, we will explicitly construct for each p ∈ (0, 1), a feasible solution (q̃, α̃(p))
for SDCLPp, and then we will show that limp→1 α̃(p) = α∗. Since for every p, α̃(p) ≤ α(p) ≤
α∗, this would prove the result.

21This value of α(p) was essentially known in a more restricted model with i.i.d. samples from an unknown
distribution [42].

27

Fix p ∈ (0, 1) for now and recall from equation (1.8) that we can restrict to solutions q for
SDCLPp with the form

q(t, ℓ) =

{
Ti

ti+1 if t ∈ [ti, ti+1], ℓ ≤ i

0 otherwise,
(1.13)

where p ≤ t1 ≤ t2 ≤ · · · , and Ti =
∏i

j=1 tj. Note that for fixed i and t ∈ [ti, ti+1], the function
f(ℓ) = q(t, ℓ) is positive and constant for ℓ ≤ i, and 0 for ℓ > i. In particular, the function
q(t, ℓ) is non-decreasing in ℓ. The last property is important because of the following lemma.

Lemma 1.4. Let (q, α) be a feasible solution for SDCLPp with q(t, ℓ) non-increasing in ℓ,
for all t ∈ [p, 1] and α maximal (i.e., such that (q, c) is infeasible for any c > α). Then we
must have:

α ≥ inf
k≥1

1

1− pk
k∑

j=1

∫ 1

p

tq(t, j)dt . (1.14)

Proof. By the maximality of α,

α = inf
k≥1

1

1− pk
k∑

j=1

∫ 1

p

j∑
ℓ=1

q(t, ℓ)

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt .

Since q(t, ℓ) is non-increasing in ℓ we can replace q(t, ℓ) by q(t, j) in the inner sum to obtain

α ≥ inf
k≥1

1

1− pk
k∑

j=1

∫ 1

p

j∑
ℓ=1

q(t, j)

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt ≥ inf

k≥1

1

1− pk
k∑

j=1

∫ 1

p

tq(t, j) dt ,

where we have used that for all j ≥ 1 and t ∈ [0, 1],
∑j

ℓ=1

(
j−1
ℓ−1

)
(1− t)j−ℓtℓ = t.

The idea behind the construction of our explicit feasible solution for SDCLPp is to enforce
that the infimum in the lower bound of Lemma 1.4 is attained for every k simultaneously.
The following lemma gives us a characterization for all such solutions.

Lemma 1.5. Let q be a function of the form (1.13) for some parameters p = t1 ≤ t2 ≤ · · · ≤
1. The system of equations

α =
1

1− pk
k∑

j=1

∫ 1

p

tq(t, j)dt, ∀k ≥ 1 (1.15)

is equivalent to

α(1− p) = p ln
t2
p
+ p− µ3 (1.16)

α(1− p)pk−1 =
1

k − 1
· Tk
tk−1
k

− µk+1, ∀k ≥ 2, (1.17)

where µk =
∞∑
i=k

Ti

ti−1
i

· 1

(i− 2)(i− 1)
.

28

Proof. Observe that (1.15) is equivalent to (i)
∫ 1

p
tq(t, 1)dt = α(1 − p) and (ii) for k ≥ 2,∫ 1

p
tq(t, k)dt = α(1 − pk) − α(1 − pk−1) = α(1 − p)pk−1. So, we only need to check that the

right hand side of (1.16) and (1.17) are
∫ 1

p
tq(t, 1)dt and

∫ 1

p
tq(t, k)dt respectively. Indeed,

for k ≥ 2:

∫ 1

p

tq(t, k)dt =
∞∑
i=k

∫ ti+1

ti

Ti
ti
dt =

∞∑
i=k

1

i− 1

(
Ti

ti−1
i

− Ti

ti−1
i+1

)
=

∞∑
i=k

1

i− 1

(
Ti

ti−1
i

− Ti+1

tii+1

)
=

1

k − 1
· Tk
tk−1
k

+
∞∑

i=k+1

Ti

ti−1
i

(
1

i− 1
− 1

i− 2

)
=

1

k − 1
· Tk
tk−1
k

− µk+1 .

Similarly, for k = 1 we have∫ 1

p

tq(t, 1)dt =
∞∑
i=1

∫ ti+1

ti

tq(t, 1)dt =

∫ t2

t1

t1
t
dt+

∞∑
i=2

∫ ti+1

ti

Ti
ti
dt

= t1 ln
t2
t1

+
T2
t2
− µ3 = p ln

t2
p
+ p− µ3 .

Thanks to the previous lemma, we can restrict our search to pairs (q, α) satisfying (1.13),
(1.16) and (1.17). The following lemma gives us one such solution.

Lemma 1.6. Let p, α ∈ (0, 1) be arbitrary numbers. Define for each k ≥ 1, the quantity

γk = 1− α + α[kpk−1 − (k − 1)pk].

Define also the sequence of times t1 = p, t2 = p exp(α(1− p)2/p), and inductively for k ≥ 2
define tk+1 as the real number satisfying(

tk
tk+1

)k−1

=
γk
γk−1

. (1.18)

This sequence has the following properties.

(i) (tk)k≥1 is increasing.
(ii) limk→∞ tk ≤ 1 if and only if

ln p+
α(1− p)2

p
≤

∞∑
i=1

ln(γi+1)

i(i + 1)
. (1.19)

and limk→∞ tk = 1 when equality holds in (1.19).
(iii) Let q be the function defined from the sequence (tk)k≥1 as in (1.13). Then (q, α) is

feasible in SDCLPp.

Proof. We clearly have t1 ≤ t2. Furthermore, the denominator minus the numerator of the
right hand side of (1.18) is (k − 1)αpk−2(p − 1)2 ≥ 0, implying that tk+1 ≥ tk for all k ≥ 2.
This proves (i).

29

Since the sequence (tk) is increasing, it has a (possibly unbounded) limit. To compute it,
we first take logarithm on both sides of (1.18) and rearrange terms to obtain that for k ≥ 2,

ln(tk+1) = ln(tk)− ln(γ
1/(k−1)
k) + ln(γ

1/(k−1)
k−1)

iterating this formula we obtain

ln(tk+1) = ln(t2)−
k−1∑
i=1

ln(γ
1/i
i+1) +

k−1∑
i=1

ln(γ
1/i
i) = ln(t2)−

k−1∑
i=1

ln(γ
1/i
i+1) +

k−2∑
i=0

ln(γ
1/(i+1)
i+1)

and since ln(γ1) = ln(1) = 0, and ln(t2) = ln p+ α(1− p)2/p, we get

ln(tk+1) = ln p+
α(1− p)2

p
− 1

k + 1
ln(γk)−

k−1∑
i=1

ln(γi+1)

i(i + 1)
.

Observe that limk→∞ γk = 1− α. Thus, taking the limit on the previous expression we have

lim
k→∞

ln(tk) = ln p+
α(1− p)2

p
−

∞∑
i=1

ln(γi+1)

i(i + 1)

Note that (ii) follows directly from here.

To finish the proof we use Lemma 1.5, and so we only need to show (1.16) and (1.17). For
all i ≥ 2, we have

Ti

ti−1
i

= t1

i∏
j=2

tj
ti

= t1

i∏
j=2

i−1∏
ℓ=j

tℓ
tℓ+1

= p
i−1∏
ℓ=2

γℓ
γℓ−1

= pγi−1.

Therefore, using formulas for geometric series we get that for k ≥ 3

µk :=
∞∑
i=k

Ti

ti−1
i

· 1

(i− 2)(i− 1)
= p

∞∑
i=k

1− α + α[(i− 1)pi−2 − (i− 2)pi−1]

(i− 1)(i− 2)

= p(1− α)
∞∑
i=k

(
1

i− 2
− 1

i− 1
) + α

∞∑
i=k

pi−2

(i− 2)
− α

∞∑
i=k

pi−1

(i− 1)

=
p(1− α + αpk−2)

k − 2
.

To see (1.16), we write

p ln
t2
p
+ p− µ3 = α(1− p)2 + p− p(1− α + αp) = α(1− p).

And to get (1.17) we let k ≥ 2 and write

1

k − 1

Tk

tk−1
k

− µk+1 =
pγk−1 − p(1− α + αpk−1)

k − 1

=
p(1− α + α[(k − 1)pk−2 − (k − 2)pk−1]− p(1− α + αpk−1)

k − 1

= pα(pk−2 − pk−1).

30

Thanks to the previous lemma, as long as (1.19) holds for values p, α ∈ (0, 1), we obtain
a solution for CLPp of value α. The following lemma shows that such pair of values always
exists.

Lemma 1.7. For p ∈ (0, 1), there is a unique α̃ ∈ (0, 1) that satisfies

ln p+
α̃(1− p)2

p
=

∞∑
i=1

ln(1− α̃ + α̃[(i + 1)pi − ipi+1])

i(i + 1)
. (1.20)

Furthermore, the map p 7→ α̃(p) is continuous.

Proof. Define the following functions as the left and right hand sides of the previous expres-
sion

f(p, α) = ln p+
α(1− p)2

p

g(p, α) =
∞∑
i=1

ln(1 + α(pi(1 + i(1− p))− 1))

i(i + 1)
.

Both f and g are continuous functions of their domains. Furthermore, f(p, α) is increasing
in α. On the other hand, by Bernoulli inequality, p−i = (1−(1−p))−i ≥ 1+i(1−p). Therefore
pi(1 + i(1− p))− 1 ≤ 0. From here it is easy to see that g(p, α) is decreasing in α. We now
evaluate these two functions in α = 0

f(p, 0) = ln p < 0 and g(p, 0) = 0 .

For the case α = 1, observe that f(p, 1) = ln p+ (1−p)2

p
is a convex function in p ∈ (0, 1) and

it is minimized on p = (
√
5 − 1)/2. Therefore, there exists a universal constant c such that

f(p, 1) ≥ c for all p ∈ (0, 1).

On the other hand, we have that as α increases, there is a vertical asymptote on some
α0 ≤ 1 in which the function g(p, α) decreases to −∞. Indeed if this was not the case, the
formula for g(p, 1) would be well-defined, but simply replacing 1 on its expression yields

g(p, 1) =
∞∑
i=1

ln (pi(1 + i(1− p)))
i(i + 1)

=
∞∑
i=1

i ln p+ ln(1 + i(1− p)
i(i + 1))

≤
∞∑
i=1

i ln p+ i(1− p)
i(i + 1))

= (ln p+ 1− p)
∞∑
i=1

1

i + 1
= −∞.

Summarizing, for every fixed value p ∈ (0, 1), the functions f(p, α) and g(p, α) are continuous,
the former is increasing in α, and the latter is decreasing in α, and we also have that f(p, 0) <
g(p, 0) and there exists some value α′ ∈ (0, 1) such that f(p, α′) > c > g(p, α′). By the
intermediate value theorem there must be some value α̃(p) for which f(p, α̃) = g(p, α̃), and
by monotonicity and continuity of both functions, this value is unique and the map p 7→ α̃(p)
is continuous.

31

We are now ready to prove the main theorem of this section. In the next statement,
α̃(p) is the map defined in the previous lemma, α(p) is the optimal value of SDCLPp and
α∗(≈ 0.745) is the unique solution of

∫ 1

0
1

y(1−ln y)+1/α∗−1
dy = 1.

Theorem 1.8. For every p ∈ (0, 1), 0 ≤ α̃(p) ≤ α(p) ≤ α∗. Furthermore, if we define by
continuity α̃(1) := limp→1 α̃(p), then α̃(1) = α(1) = α∗.

Proof. By Lemmas 1.6 and 1.7, we conclude that there is a feasible solution of SDCLPp

with value α̃(p). Therefore, 0 ≤ α̃(p) ≤ α(p). From Theorem 3.4 in [82] we know that
α(p) ≤ α∗.22Thus, we only need to show that α̃(1) = α∗, for that, define the function

h(p, η) =

∑∞
i=1

ln(1−η+η[(i+1)pi−ipi+1])
i(i+1)

ln p+ η(1−p)2

p

. (1.21)

and note that by definition of α̃(p), h(p, α̃(p)) = 1

Let us study h(p, η) as p → 1. As both the numerator and the denominator go to 0 as
p→ 1, we use l’Hôpital’s rule to find the limit

lim
p→1

h(p, η) = lim
p→1

∑∞
i=1

η(pi−1−pi)
η((i+1)pi−ipi+1)+1−η̃

1
p
+ η−2p(1−p)−(1−p)2

p2

= lim
p→1

∑∞
i=1

pi−1−pi

(i+1)pi−ipi+1+ 1
η
−1

1
p
+ η

(
1− 1

p2

) .

As p → 1, the denominator in the last expression goes to 1. For the numerator, we will
analyze the limit through a Riemann’s integral analysis. For this we define xi = pi (therefore
i = ln xi/ ln p), so that intervals (xi+1, xi] for i ≥ 1 form a partition of the interval (0, 1],
resulting in

lim
p→1

∞∑
i=1

pi−1 − pi

(i + 1)pi − ipi+1 + 1
η
− 1

= lim
p→1

∞∑
i=1

xi−1 − xi
(i + 1)xi − ixip+

1
η
− 1

= lim
p→1

∞∑
i=1

xi−1 − xi
xi(1− lnxi

p−1
ln p

) + 1
η
− 1

=

∫ 1

0

1

y(1− ln y) + 1
η
− 1

dy.

In the last equality we first replaced limp→1
p−1
ln p

= 1 and then the limit of the Riemann
sum. This can be justified by the fact that the sum is monotone in the term p−1

ln p
. So, for p

close enough to 1 we can bound by replacing with 1− ε ≤ p−1
ln p
≤ 1 + ε. Since the integral is

continuous in the factor that accompanies ln y, both bounds converge when ε→ 0. Replacing
η by α∗ finishes the proof.

22The idea behind this result is that any algorithm for adversarial p-DOS with dependent sampling can
be applied to the i.i.d. prophet inequality without loss in performance. If the result was not true it would
contradict the fact that α∗ is the optimal competitive ratio for the latter problem.

32

Linear lower bound for p close to 1

For p ∈ (0, 1), we have just designed a stopping rule q̃ that has a competitive ratio of at least
α̃(p). We proceed to prove that α̃(p) lies above the line that connects 0 and α∗, which has
implications for problems related to p−DOS. Numerically, it appears that α̃(p) is actually
concave, which would suffice for this purpose. Unfortunately, we have not been able to prove
this so we rely on the following result.

Theorem 1.9. For p ∈ (0, 1), α̃(p) ≥ α∗p.

Proof. To prove this result we define f(p) = α̃(p)/p. What we would like to prove is that
f(p) ≥ α∗. For this, we replace α̃(p) = f(p)p in equation (1.20):

ln p+ f(p)(1− p)2 =
∞∑
i=1

ln(1− f(p)p+ f(p)p[(i + 1)pi − ipi+1])

i(i + 1)
.

Note that the left-hand side of the equation is increasing in f(p) and the right-hand side
of the equation is decreasing in f(p). Thus, to prove that f(p) ≥ α∗, we need to prove that

ln p+ α∗(1− p)2 ≤
∞∑
i=1

ln(1− α∗p+ α∗p[(i + 1)pi − ipi+1])

i(i + 1)
.

By subtracting ln p the latter is equivalent to proving

α∗ ≤
∞∑
i=1

ln(1
p
− α∗(1− pi(1 + i(1− p))))

i(i + 1)
+ α∗(2p− p2) .

To prove the inequality let us call its right hand side a(p) and note that by definition of
α̃(1), a(1) = α∗, i.e., the inequality is tight for p = 1. Therefore, to conclude we show that
a(p) is decreasing in p, so that the inequality holds for all p ∈ (0, 1). Indeed,

d

dp
a(p) =

∞∑
i=1

− 1
p2

+ i(i + 1)α∗(pi−1 − pi)
i(i + 1)(1

p
− α∗(1− pi(1 + i(1− p)))

+ 2α∗(1− p) .

Letting

b(p) =
1

p2

∞∑
i=1

1

i(i + 1)(1
p
− α∗(1− pi(1 + i(1− p)))

and c(p) =
∞∑
i=1

pi−1 − pi
1

pα∗ − 1 + pi(1 + i(1− p))
,

we have d
dp
a(p) = 2α∗(1− p)− b(p) + c(p) . Now, as as α∗(1− pi(1 + i(1− p))) lies between 0

and α∗ < 1, we have that

b(p) ≥ 1

p2

∞∑
i=1

1

i(i + 1)1
p

=
1

p
.

33

We now show that c(p) ≤ 1/p− α∗(1− p)− α∗ 1−p
p

. For this define xi = pi and note that

c(p) =
1

p

∞∑
i=1

xi − xi+1

1
pα∗ − 1 + xi(1 + i(1− p))

=
1

p

∞∑
i=1

xi − xi+1

1
pα∗ − 1 + xi

(
1 + ln xi

(1−p)
ln p

)
≤ 1

p

∞∑
i=1

xi − xi+1

1
pα∗ − 1 + xi (1− p lnxi)

≤ 1

p

∫ p

0

1
1

pα∗ − 1 + y(1− p ln y)
dy

=
1

p

∫ 1

0

1
1

pα∗ − 1 + y(1− p ln y)
dy − 1

p

∫ 1

p

1
1

pα∗ − 1 + y(1− p ln y)
dy

≤ 1

p

∫ 1

0

1
1

pα∗ − 1 + y(1− p ln y)
dy − α∗(1− p) .

The first inequality comes from (1 − p)/ ln p ≤ −p. The second inequality follows because
xi > xi+1 and the function ((1/(pα∗) − 1 + y(1 − p ln y)))−1 is decreasing in y. The last
inequality comes from the fact that 1 − y(1 − p ln(y)) ∈ [0, 1] when y, p ∈ [0, 1]. Now, the
integral in the last step can be rewritten as

1

p

∫ 1

0

1
1
α∗ − 1 + y(1− ln y)

dy − 1− p
p

∫ 1

0

1
pα∗ + y ln y(

1
α∗ − 1 + y(1− ln y)

) (
1

pα∗ − 1 + y(1− p ln y)
)dy

≤ 1

p
− 1− p

p

∫ 1

0

1
1
α∗ − 1 + y(1− ln y)

·
1

pα∗ − 1
e

1
pα∗ − 1 + y + p

e

dy

≤ 1

p
− 1− p

p

∫ 1

0

1
pα∗ − 1

e

1
pα∗ − 1 + y + p

e

dy =
1

p
− 1− p

p

(
1

pα∗ −
1

e

)
ln

(
1

pα∗ +
p
e

1
pα∗ +

p
e
− 1

)
.

Here, the first inequality follows from the definition of α∗ and fact that −y ln y ∈ [0, 1/e]
when y ∈ (0, 1). The second inequality comes from observing that 1/

(
1
α∗ − 1 + y(1− ln y

)
is

decreasing, non-negative and integrates 1, and
(

1
pα∗ − 1

e

)
/
(

1
pα∗ − 1 + y + p

e

)
is non-negative

and decreasing. Finally, it can be checked numerically that if α∗ ∈ [0.74, 0.75], the term(
1

pα∗ − 1
e

)
ln

(
1

pα∗+
p
e

1
pα∗+

p
e
−1

)
is at least 0.8 for all p ∈ (0, 1). Then, since we know that α∗ ≈ 0.745,

we can conclude that c(p) ≥ 1
p
− α∗(1− p)

(
1 + 1

p

)
. Therefore,

d

dp
a(p) = 2α∗(1− p)− b(p) + c(p) ≤ 2α∗(1− p)− 1

p
+

1

p
− α∗(1− p)

(
1 +

1

p

)
≤ 0 .

The result follows.

34

Figure 1.1: Plot of the numerical values of UBPp,N,kmax (black triangles) and LBPp,kmax (red
circles). The blue line is α̃(p), the lower bound on α(p) given by Theorem 1.8, while the
orange line is α∗p, the lower bound given by Theorem 1.9.

It is worth contrasting the latter result with recent results of Correa et al. [40] and Ru-
binstein et al. [110]. They consider a more restricted model than p-DOS with dependent
sampling, in which the decision maker sequentially observes i.i.d. values taken from a distri-
bution F . Furthermore, the decision maker has, beforehand, access to a number of samples
from F . Correa et al. [40] show that if she has access to O(n2/ε) samples then she can
essentially learn F and guarantee a factor of α∗ −O(ε). Rubinstein et al. [110] improve this
result by showing that O(n/ε6) samples are enough to guarantee a factor of α∗−O(ε). Since
p-DOS is more general than the latter setting, Theorem 1.9 can be interpreted as a further
improvement in this direction.23 Indeed if we take p = 1 − ε in Theorem 1.9 the online set
is of size n = εN so that our information set is of size (1 − ε)N = n(1 − ε)/ε. Thus with
O(n/ε) samples we guarantee a factor of α∗ −O(ε).

Numerical bounds for 0 ≤ p < 1

To close this subsection we present numerical bounds for SDCLPp for different values of p.
For the upper bound we solve an optimization problem based on SDCLPp, which we call
UBPp,N,kmax . For the lower bound we solve a truncation of SDRPp, which we call LBPp.
Details about these optimization problems can be found in Section 1.7.3.

In Figure 1.1 we plot the obtained upper and lower bounds together with the lower bound
α̃(p) and the linear lower bound α∗p. It is worth noting that α̃(p) is apparently concave but
unfortunately we have not been able to prove this.

We pay special attention to the case when p = 1/2, which corresponds to one sample for
each item in the online set. In this case we obtain a lower bound of 0.671, improving upon
0.649, the best known bound [42]. The thresholds for the algorithm are shown in Table 1.1.

23Certainly, our improvement only holds when n is large compared to 1/ε, as we are analyzing the value
of the limit problem.

35

Table 1.1: Best found solution for p = 1/2, rounded to the third decimal.

i 1 2 3 4 5 6 7 8 9 10
ti 0.500 0.836 0.903 0.941 0.957 0.985 0.994 0.994 0.994 0.994

1.4.4 Connection Between the Sampling Models

Recall that we have defined α(p) and β(p) as the limit optimal competitive ratios in the
dependent and independent sampling models, respectively. So far, we have established that
for any p ∈ [0, 1), α(p) equals SDRPp, which describes an algorithm parameterized by time
thresholds t. We now proceed to show that β(p) also equals to the value of SDRPp, and that
this value is actually a lower bound of βN,p when N is finite.

We start by relating solutions of SDRPp with algorithms. As in Section 1.3.4, given an
increasing sequence (ti)i∈N, we interpret the arrival order as uniform in [0, 1] arrival times,
and accept any ℓ-local maximum from tℓ onwards. Let us denote this algorithm by ALGt

and its competitive ratio by

βN,p(t) = inf
Y decreasing

E(ALGt(Y[N]))

E(OPT(Y[N]))
.

Certainly, βN,p ≥ βN,p(t), for any sequence t = (ti)i∈N. In the following two lemmas, we
establish that in fact, for any feasible solution t for SDRPp, βN,p(t) is decreasing and converges
to the corresponding value of the objective function in SDRPp.

Lemma 1.10. For all N ≥ 1, βN,p(t) ≥ βN+1,p(t).

Proof. For an instance Y[N] of size N , denote by Y +0
[N] the instance of size N + 1 that results

from appending a 0 to Y[N]. We prove that for all instances Y[N] it holds that

E
(
ALGt(Y[N])

)
E(OPT(Y[N]))

≥
E
(
ALGt

(
Y +0
[N]

))
E
(
OPT

(
Y +0
[N]

)) ,
which immediately implies the result. Clearly, E(OPT(Y[N])) = E(OPT(Y +0

[N])), as the arrival
time of the added 0 is independent of the other arrival times. We conclude by proving that
E
(
ALGt

(
Y[N]

))
≥ E

(
ALGt

(
Y +0
[N]

))
. In fact, we can couple the arrival times of the values

of Y[N] with the corresponding ones in Y +0
[N] , and for the latter, add an independent arrival

time for 0. Since the 0 is the smallest element, the relative rank of all other values is the same
in both instances. Therefore, every time ALGt selects a positive element in Y +0

[N] , it selects
the same element in Y[N]. When ALGt selects the 0 in Y +0

[N] , it may select a positive element in

Y[N] or not stop at all. Thus, with this coupling we get that ALGt(Y[N]) ≥ ALGt

(
Y +0
[N]

)
.

Lemma 1.11. Fix vector t of non-decreasing time thresholds. For any instance Y , it holds
that

lim
N→∞

P(ALGt(Y[N]) = Yj) =
∞∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

Ti
τ i

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓ−1 dτ.

36

Proof. For ease of notation, in what follows we write ALGt instead of ALGt(Y[N]). We have
that

P(ALGt = Yj) =

∫ 1

p

P(ALGt = Yj |Yj arrives at time τ) dτ

=
∞∑
i=1

∫ ti+1

ti

P(ALGt = Yj |Yj arrives at time τ) dτ

=
∞∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

P(ALGt does not stop before τ |Yj is ℓ-local and arrives at τ)

· P(Yj is ℓ-local |Yj arrives at τ) dτ

=
∞∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

P(ALGt does not stop before τ |Yj is ℓ-local and arrives at τ)

·
(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓ−1 dτ.

The last equality comes from the fact that Yj is ℓ-local if exactly ℓ− 1 items from Y1, ..., Yj−1

arrive before Yj. Now, note that the event that ALGt stops before τ does not depend on
what elements arrive after τ and what are their relative rankings, but only on the relative
rankings of the items that arrive before τ . Also, note that when N is large, the probability
that at least i items arrive before a given time τ > 0 tends to 1. Therefore,

P(ALGt does not stop before τ |Yj is ℓ-local and arrives at τ)
= P(ALGt does not stop before τ | at least i items arrive before τ) + o(N)

=
i∏

r=1

P(r-th largest item before τ arrives before tr) + o(N)

=
i∏

r=1

tr
τ
+ o(N) =

Ti
τ i

+ o(N).

Taking limit when N tends to infinity we conclude the proof of the lemma.

Lemma 1.11 implies that limN→∞ P(ALGt(Y[N]) ≥ Yj) = Fk(t). This, together with the
fact that the guarantee of ALGt in instances of size N , as for any algorithm, is given by

βN,p(t) = min
1≤j≤N

P(ALGt(Y[N]) ≥ Yj)

P(OPT(Y[N]) ≥ Yj)
= min

1≤j≤N

P(ALGt(Y[N]) ≥ Yj)

1− pj
,

implies that the limit guarantee is the one given by SDRPp. This means that taking t∗ as
the optimal solution of SDRPp, βN,p ≥ βN,p(t

∗) ≥ α(p), and therefore β(p) ≥ α(p).

To prove that β(p) ≤ α(p), assume there is p ∈ [0, 1) such that β(p) ≥ α(p) + ε, for
some ε > 0. Fix N , and consider the viewpoint where each item has an independent U [0, 1]
arrival time and is in H if it arrives before p. Since βN,p ≥ β(p), it is clear that there is a
sufficiently small δ > 0 such that there is an algorithm A that does not stop in [p, p+ δ], that
obtains at least an (α(p) + ε/2) fraction of the optimal offline algorithm in the independent

37

sampling model for any instance with N elements24. We derive from A an algorithm for the
dependent sampling model in the following way: let H be the history set for the dependent
sampling model, which always has size |H| = pN . We draw N independent U [0, 1] arrival
times, randomly assign the smallest pN times to the items of H, and the rest to the items
of the online set, so that the order of arrival and order of the uniform times agree (notice
that we can always do this on the fly). We obtain a new history set H ′ defined as the items
with arrival time in [0, p]. The set H ′ has a random size, and when |H ′| < pN , H ′ ⊊ H,
and otherwise H ⊆ H ′. We run A as if we were in the independent sampling model with
history set H ′, i.e., we pass it the elements not in H ′ one by one. If A stops with an item in
H, we declare failure and do not stop. Otherwise, we stop whenever A stops. Note that by
the definition of A, failure can only occur when we assign to an element of H an arrival time
larger than p + δ; or equivalently, when out of the N arrival times, less than pN arrive in
the interval [0, p + δ]. By increasing N we can make this event occur with arbitrarily small
probability, say smaller than (1−p)ε/4. Thus, if we upper bound by Y1 the value of the item
A selects when we fail, since (1 − p)Y1 ≤ E(OPT), our new algorithm gets in expectation
at least E(A) − ε

4
E(OPT). Therefore, for large enough N , we have an algorithm for the

dependent sampling model with a guarantee of at least α(p) + ε/4, which is a contradiction.
We conclude the following theorem.

Theorem 1.12. Let t∗ be an optimal solution for SDRPp. We have that as N tends to
infinity, βN,p(t

∗)↘ β(p) = α(p).

The situation for dependent sampling is a bit trickier, and it is unclear whether αN,p is a
decreasing sequence. However, we can establish that αN,p is still close to α(p).

Theorem 1.13. For any p ∈ [0, 1) we have that

αN,p = α(p) +O

(
(logN)2

(1− p)2
√
N

)
.

Summarizing the previous discussion, we obtain that for any fixed value ofN the guarantee
obtained by our algorithm ALGt∗ , α(p) applies to both sampling models. In particular, for
independent sampling we have that βN,p ≥ α(p), while for dependent sampling we have that
αN,p ≥ α(p)− Õ(1/((1− p)2

√
N)).

1.5 On Multiple-Choice p-DOS Problems
Until now we have focused on single selection problems. It is natural to ask whether our
techniques can be used for selecting multiple items from a list subject to some combinatorial
constraints, such as cardinality constraints, knapsack constraints or selecting edges that form
a matching in a graph. It is possible to extend some of the linear programming machinery to
tackle simple constraints such as cardinality bounds using quotas (see, [18, 26] for particular
examples), but adding more complex constraints seems difficult. Nevertheless, our resulting

24A simple way of obtaining such an algorithm is by simply ignoring elements that arrive in [p, p+ δ], and
act as if we skipped a uniformly random interval [x, x + δ] ⊆ [p, 1]. Since the arrival times are uniformly
distributed, the set of items that arrive in [p + δ, 1] and their ordering have the same distribution as those
that arrive in [p, 1] \ [x, x+ δ].

38

algorithms can be used as black boxes to obtain new results for certain multiple selection
problems.

To cast the problem more precisely, we consider the following version of p-DOS with
adversarial values. A DM is given a value p ∈ [0, 1) and an independence system (S, I).25 An
adversary assigns a non-negative weight Y (e) to every element e of S. Every element is then
independently placed on the information set with probability p and in the online set otherwise.
As in the single selection case, the DM observes all the elements in the information set and
the relative rankings of their Y -weights (assuming a universal tie-breaking rule). Then, the
online set is revealed one by one in uniform random order. Every time an element is revealed
the DM needs to irrevocably decide whether to add it or not to the solution set, while making
sure that the solution set is at all times independent in (S, I). An algorithm for this problem
is ρ-competitive if the expected weight of the elements in the solution set is at least ρ times the
expected weight of a maximum weight independent subset of the online set. An alternative
way to state this is the following: for any q, let S[q] be a random subset of S obtained
by adding each element of S to it with probability q independently. The online set of our
problem behaves like S[1 − p]. Let also OPT(I, q, Y) be the expectation of the maximum
Y -weight independent subset of S[q] in I. An algorithm for p-DOS on (S, I) is ρ-competitive
if for any instance the expected Y -weight of its output is at least ρOPT(I, 1− p, Y).

Denote by βS,I(p) to the maximum competitive ratio ρ achievable by an algorithm for
p-DOS on (S, I). In general, we need to analyze entire classes of independence system at
once. We tackle this in the following way. If C is a collection of independence systems, we
define βC(p) as the infimum over all (S, I) in C of βS,I(p). For instance, by setting C to be
the class of all matroids of rank 1 (where S can have any number of elements), we recover
the single-selection p-DOS problem and we get βC(p) = β(p) = α(p).

When p = 0 the p-DOS problem just described coincides with the generalized secretary
problem by Babaioff et al. [10]. There is a long line of work for that problem for different
independence systems, most notably for knapsack [7, 88], matchings [91, 86] and many classes
of matroids (see [115] for a recent comprehensive list). Optimal competitive ratios, again for
p = 0, are only known for the classes of uniform and transversal matroids [86], and constant
competitive ratios are known for several other cases. An important open question, known
as the matroid secretary conjecture, [10, 8] is to decide whether the classM of all matroids
admits an constant competitive algorithm (in our notation, whether βM(0) > 0). The best
ratio so far is parameterized on the rank r of the matroid. In our notation, ifMr is the class
of matroids of rank r, then βMr(0) = Ω(1/ log log r) [97, 64].

The problem on general independence systems has not been studied yet for the case
p > 0, however we show in the next sections that the lower bounds on the guarantees for
p = 0 transfer directly to any p < 1. In fact, we show that for a certain natural class of
independence systems, we can further improve the guarantees for large p via a reduction to
the single selection case p-DOS problem.

25An independence system is a pair (S, I), where S is a finite ground set, and I is a family of subsets of S,
called the independent sets of the system. The system must satisfy that the empty set is independent and
that every subset of an independent set is independent.

39

1.5.1 Relation Among Guarantees for Different p on a Given Inde-
pendence System (S, I)

The following lemma shows that for any class C of independence systems, βC(p) is increasing
in p.

Lemma 1.14. Let p1, p2 ∈ [0, 1) with p1 < p2. For any ρ-competitive algorithm for p1-DOS
on (S, I) we can construct a ρ-competitive algorithm for p2-DOS. Therefore, for any class C
of independence systems, βC(p1) ≤ βC(p2).

Proof. Fix (S, I), p1 and p2 and let A1 be any ρ-competitive algorithm for p1-DOS on (S, I).
Let Y be any instance (that is, a map Y : S → R+). To simplify the exposition, we assume
that every e in S selects an arrival time t(e) uniformly on [0, 1] at random, that the elements
arrive in that order and furthermore, that the arrival times are also revealed to the algorithm
A1 upon arrival. Consider the algorithm A2 that does the following on the instance I. Let X
be the set of elements e with arrival time t(e) < f := (p2−p1)/(1−p1). Note that f ≤ p2, so
X is a subset of A2’s history set. The algorithm will create a new instance Y ′, on the same
system, with weight assignment Y ′(e) = 0 for all e ∈ X and Y ′(e) = Y (e) for the elements
outside X. Now, it simulates A1 on Y ′ in the following way. The simulation receives all
elements of S \ X in their arrival order as before, but all elements in X will be inserted
at random times uniformly. More precisely, for every e ∈ X, the algorithm selects t′(e)
uniformly at random on the interval [f, 1], and for every e ∈ S \X, it sets t′(e) = t(e). The
simulation will consider every element that has t′(e) ≤ p2 as its history set and the rest as the
online set (note that some elements from X may fall in the history set and some may fall in
the online set, but every element in A2’s online set will also be in the simulation’s online set),
using Y ′ as their values. Whenever the simulation accepts an element e ∈ S \X, it puts e on
the solution set ALG. The elements from X that the simulation accepts are discarded. The
solution set ALG is independent in (S, I) because it is a subset of the simulation’s answer.

To analyze the algorithm, from this point onward let us condition on the set X. Observe
that the simulated A1 receives the elements of the instance given by Y ′ in a uniform random
order. Furthermore, every element e is in the simulation’s history set as long as t′(e) < p2,
which happens with probability (p2−f)/(1−f) = p1, so for all purposes, the instance behaves
in the same way as in the p1-DOS problem. For any realization of the times t′, let OPTt′ be
an optimum Y ′-weight set of {e ∈ S : t′(e) ≥ p2}, and and let OPTt be an optimum Y -weight
set of {e ∈ S : t(e) ≥ p2}. Since the elements of X have Y ′-weight 0, both OPTt′ and OPTt

have the same Y -weight.

Now, since A1 is ρ-competitive for p1-DOS, the total Y ′-weight of the simulation solution
(which is equal to the Y -weight of ALG) is at least ρ times the expected Y ′-weight of OPTt′ ,
which in turn equals the expected Y -weight of OPTt. Removing the condition on X, we
obtain that A2 is ρ-competitive for p2-DOS.

From here we deduce that βS,I(p1) ≤ βS,I(p2). Taking the infimum over all systems (S, I)
in C we conclude that βC(p1) ≤ βC(p2).

The previous lemma has some nice consequences. If we apply it to the class M1 of unit

40

rank matroids we recover that for the single-selection p-DOS problem α(p) is increasing in p.
Furthermore, it shows that any ρ-competitive algorithm for the generalized secretary problem
(the 0-DOS) on a particular class C can be adapted to the p-DOS problem without decreasing
its competitive ratio. To name a few examples: for any p, we get a 1−Θ(1/

√
k)-algorithm for

p-DOS on k-uniform matroids (adapting Kleinberg’s multiple choice secretary algorithm), we
get a 1/e-competitive algorithm for p-DOS on transversal matroids (adapting Kesselheim’s
et al.’s algorithm [86]) and a 1/4-competitive for p-DOS on graphical matroids (adapting
Soto et al.’s algorithm [115]), and these are the current best algorithms for all three classes.

1.5.2 Better Guarantees for p-DOS on Special Types of Indepen-
dence Systems

Babaioff et al. [6] introduced a powerful technique to obtain algorithms for generalized secre-
tary problems by randomly reducing them to a collection of independent parallel single-choice
secretary problems. This works on any independence system satisfying a property known as
the γ-partition property. 26 If an independence system has the γ-partition property it is
easy to create an algorithm for the associated secretary problem (the 0-DOS case) that has
competitive ratio γ/e.

Below, we extend this construction to the p-DOS case using a stronger property that
we call the γ-sample partition property. We will show that if a system has this particular
property then one can easily obtain a γα(p)-competitive algorithm for the associated p-DOS
problem for every p (Babaioff et al.’s reduction is the special case for p = 0). Here α(p) is
the optimal guarantee for single-selection p-DOS.

Sample partition property

A unitary partition matroid (S,P) is an independence system whose ground set is partitioned
into color classes (S0, S1, . . . , Sm), where only S0 may be empty, so that a set X ⊆ S is
independent if and only if X does not contain elements from S0, and X contains at most 1
element restricted from each other color class. We say that an independence system (S, I)
has the γ sample partition property if we can (randomly) define a unitary partition matroid
(S,P) on the same ground set so that

1. Every set X independent in P is also independent in I
2. For any q ∈ [0, 1], and any assignment of nonnegative weights to S.

EP [OPT(P , q)] ≥ γOPT(I, q).

The notion of γ-partition property of Babaioff et al. [6] is recovered if we only require
property (2) to hold for q = 1.

Algorithm for p-DOS on a system (S, I) with the γ sample partition property.

On a given instance Y our algorithm does the following:

26Rigorously, Babaioff et al. use 1/γ instead off γ to define this notion, but we prefer to use values smaller
than one to be consistent with the presentation of the rest of this chapter.

41

• Construct the random unit partition matroid P given by the γ sample partition prop-
erty, and let S1, . . . , Sm be the parts that have allowed size 1.

• Let H = S[p] be the information set of S.
• Run in parallel m instances of the optimal asymptotic algorithm ALGt∗ for single-

selection p-DOS, one for each part Si. Use Si ∩ H and Si \ H as the history set and
online set respectively on the i-th instance. Use the arrival times defined above on
each online element. Whenever a copy of ALGt∗ selects an element, our algorithm also
selects it.

Let ALG be the output set of our algorithm and Y (ALG) be its weight. By construction
ALG is independent in the unit partition matroid P and therefore also in the original inde-
pendence system. So, our algorithm is correct. The following theorem gives us a bound on
its competitive ratio.

Theorem 1.15. The expected weight of ALG is at least α(p) · γ times OPT(I, 1 − p, Y).
Therefore our algorithm for p-DOS on an independence system with γ sample partition prop-
erty is α(p) · γ-competitive, where α(p) is the optimal guarantee for single-selection p-DOS.

Proof. Let us fix P (recall that it is allowed to be random). Since ALGt∗ is α(p)-competitive
for single-selection, the expected weight of ALG ∩ Si is at least α(p) times the expected
maximum weight of Si \ H. Summing over all i we get that the expected weight of ALG
(given P) is at least α(p) times OPT(P , 1− p, Y). Taking the expectation over P and using
the γ-unit partition property, we obtain

EP [Y (ALG)] ≥ α(p) · EP [OPT(P , 1− p, Y)] ≥ α(p) · γ ·OPT(I, 1− p, Y).

We can use Theorem 1.15 above to obtain better guarantees for some classes of inde-
pendence systems. First of all we observe that our notion of γ sample partition property,
although stronger than the γ partition property, is not really that restrictive. In fact, most
(if not all) proofs that a particular system satisfy the weaker notion of γ partition, can be
adapted to the stronger version directly.

We mentioned that this theorem can be used to get lower bounds for βC(p) that are
strictly larger than the ones available for βC(0) for certain classes C. A particularly interesting
example is the class G of all graphic matroids. Babaioff et al. [6] showed that graphic matroids
have the partition property for γ = 1/3, and thus they got a 1/(3e)-competitive algorithm
for graphic matroids. Korula and Pál [91] improved this by showing that this class admits
the partition property for γ = 1/2, obtaining a 1/(2e)-competitive algorithm. The current
best algorithm by Soto et al. [115] is 1/4-competitive and uses a different technique that does
not reduce to the single-choice secretary problem. Using the monotonicity of βG, we know
that βG(p) is at least 1/4 for every p. However, it is quite simple to modify Korula and Pál’s
proof to show that graphic matroids have the stronger 1/2 sample partition property. Using
the algorithm given by Theorem 1.15 we obtain that βG(p) ≥ α(p)/2. We note that α(p)/2
grows from 1/(2e) when p = 0 to α∗/2 ≈ 0.3725, when p = 1. So, for sufficiently large p,
α(p)/2 beats 1/4.

By adapting the proofs in [6] and [114] we get a few other classes of matroids with constant

42

γ sample partition property such as uniform matroids with γ = 1− 1/e, cographic matroids
(γ = 1/3), k-column sparse matroids (γ = 1/k) and matroids of density d (γ = 1/d).

1.5.3 Limiting Problem as p→ 1 and Consequences for the Matroid
Secretary Problem (MSP)

In Lemma 1.14 we showed that for any class C, the function αC(p) is increasing, our next
lemma shows that this function cannot grow extremely fast.

Lemma 1.16. Let p1, p2 ∈ [0, 1) with p1 < p2. For any ρ-competitive algorithm for p2-
DOS on (S, I) we can construct a ρ(1 − p2)/(1 − p1)-competitive algorithm for p1-DOS. As
a corollary, for any class C of independence systems, βC(p1) ≥ βC(p2) · (1 − p2)/(1 − p1).
Applying this to the single-selection problem we conclude that α(0) ≥ α(p)(1− p).

Proof. Fix (S, I), p1 and p2 and let A2 be any ρ-competitive algorithm for p2-DOS on
(S, I). We will use the same random arrival time interpretation of the elements of the
system. Consider a new algorithm A1 that on any instance Y for p1-DOS it simply mimics
what A2 would do on the same instance and arrival times (note that all the elements that
A2 accepts arrive after time p2 so they also belong to the online set of A1). The set ALG
that A1 returns is independent in (S, I). To analyze its performance, we need a simple
observation. Let S[t1, t2] denote the elements arriving between times t1 and t2. If X is the
maximum weight independent set of S[p1, 1] then because of the random arrival, X ∩S[p2, 1]
has expected weight Y (X) · (1 − p2)/(1 − p1), therefore, the maximum weight independent
set of S[p2, 1] has at least that expected weight. Using that A2 is ρ-competitive for p2-DOS

ρ(1− p2)/(1− p1)OPT(I, 1− p1, Y) ≤ ρOPT(I, 1− p2, Y) ≤ Y (ALG).

From here we conclude that A1 is ρ(1− p2)/(1− p1) competitive for p1-DOS, and we deduce
that βS,I(p1) ≥ (1−p2)/(1−p1)βS,I(p2). We finish the proof taking infimum on the previous
inequality over all systems (S, I) in C.

Recall now that for the single-selection p-DOS problem the limit limp→1 α(p) coincides
with the factor α∗ associated to the single-selection i.i.d. prophet inequality with known
distribution. An interesting question is whether something similar occurs for other classes
of independence systems different than matroids of rank 1. For example, denote again M
andMr to denote the classes of all matroids and that of all matroids of rank r respectively.
Let L = limp→1 βM(p) and Lr = limp→1 βMr(p) so that L1 = α∗. It would be natural to
ask whether there is an analog of the i.i.d. prophet inequality on matroids whose optimal
competitive ratio equals L.

There are many candidates one could study, for example in the i.i.d. MSP, every element
of a known matroid is assigned independently a value from a known distribution, and the
values are later revealed to the DM. Soto [114] studied a generalization of the i.i.d. case
known as the random-assignment MSP in which an adversary selects a list of non-negative
values which are then randomly assigned to the elements to the matroid, which in turn is
presented in random order to the DM. Another alternative is the prophet secretary model
on matroids, studied by Ehsani et al. [56] in which every element from the matroid receives
independently a value from a known distribution, which may be different for every element.

43

Proving that any of this problems behaves like the limit of p-DOS as p → 1 on all
matroids may be, in fact, a very difficult task. For if we are able to show that then we
would have, indirectly, solved the matroid secretary conjecture. Indeed, for all the i.i.d., the
random-assignment and the prophet secretary problem on matroids, constant competitive
algorithms are known [114, 56], so if any of those cases holds then L > 0. However, since
L = limp→1 βM(p), then there exists a sufficiently small ε > 0, so that βM(1− ε) ≥ L/2. But
then, by Lemma 1.14, βM(0) ≥ εL/2 > 0, meaning that every matroid admits a constant
competitive algorithm for the matroid secretary problem.

In any case, it is likely that neither the random-assignment nor the prophet secretary
problem are the correct candidates, because if one restricts the former problem to the class
M1 we recover the classic secretary problem whose optimal competitive ratio is 1/e ̸= α∗, and
the latter becomes the single-selection prophet secretary problem with known distribution
for which an upper bound of 0.732 < α∗ is known [45].

44

1.6 Proofs of Section 1.3

1.6.1 Coupling Argument for Monotonicity

We take an algorithm ALG for Y[N+1] and obtain an algorithm for Y[N] with at least as much
reward as for Y[N+1]. Indeed, we define ALG′ for Y[N] in the following way. We insert a
dummy item with the smallest rank in a random position, and run ALG on the sequence
of N + 1 resulting items. If ALG attempts to select the dummy item, ALG′ simply does
not stop and obtains a reward of YN+1. We couple both algorithms by taking the position of
the dummy item to be the same as YN+1. Then, every time ALG selects an item in Y[N+1]

greater than YN+1, ALG′ selects the same item in Y[N]. When ALG selects YN+1, ALG′ does
not stop, in which case the reward is defined as YN+1. If ALG does not stop, its reward is
YN+2 ≤ YN+1. In all cases ALG′ obtains more than ALG.

1.6.2 Convergence of E(ALG∗N(Y)) to CLPp

Denote by E(ALG∗
N(Y)) the expected reward of the optimal algorithm for a given sequence

Y , and N ≥ 1. We start by relaxing the problem. Given a value Z ∈ (−∞, Y1), we consider
the problem where we get a reward of Z if the algorithm does not stop. This means we
replace with Z in the sequence Y all values Yj < Z. We denote this modified sequence by
Y Z . We then proceed in three main steps. First, we prove that for fixed Z, when p = h/N
the difference between the optimal values of LPh,N(Y

Z) and CLPp(Y
Z)27 tends to 0 when

N → ∞. Second, we prove that the optimal value of CLPp(Y
Z) is a continuous function

of p and use a concentration bound to show that the expectation of the optimal algorithm
E(ALG∗

N(Y
Z)) tends to the optimal value of CLPp(Y

Z) when N tends to∞. And third, we
conclude by making Z tend to limi→∞ Yi.

For the first step, notice that for any Z > limi→∞ Yi, we only care about finitely many Yj,
so we can argue about the convergence of each element in the summations of the objective
functions. Note also that for any k ≥ ℓ, if i/N = t,

k∑
j=ℓ

i

N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) −→
N→∞

k∑
j=ℓ

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ, (1.22)

simply because they represent the probabilities of drawing samples with or without replace-
ment. Indeed, they correspond to the probability that we need to draw at most k random
elements from a total of N to get at least ℓ from a given subset of i elements. Now, for an
optimal solution q of CLPp(Y

Z), we define a solution for LPh,N(Y
Z) given by

xi,ℓ =

∫ i
N

i−1
N

q(t, ℓ)dt.

From the feasibility of q one can easily show that x is feasible for LPh,N(Y
Z). This, together

with Equation (1.22), implies that the limit of the optimal value of LPh,N(Y
Z) is at least

the optimal value of CLPp(Y
Z). For the opposite inequality, from an optimal solution x∗ of

27Here we make explicit the dependence of CLPp on the sequence Y .

45

LPh,N(Y
Z) and a given ε > 0, define

q(t, ℓ) =

{
Nx∗i,ℓ(1− ε) if ℓ ≤ i and i = ⌈t ·N⌉
0 otherwise.

For a certain ε that tends to 0 with N , q is feasible for CLPp(Y
Z). This, together with

Equation (1.22) implies that the optimal value of CLPp is at least the limit optimal value of
LPh,N(Y

Z).

Now, we show the optimal value of CLPp(Y
Z) is continuous. In fact, note on the one

hand it is decreasing, since we can take a solution q for a given p ∈ (0, 1) and extend it to
[p′, 1] for p′ < p setting it equal to 0 for t ∈ [p′, p]. On the other hand, from a solution for
p′ we can obtain a solution for p by simply truncating it. Since Fk(q) is continuous in p,
if p′ is close to p, then the truncated solution is close to the solution for p′. Although the
number of items in H is random, when N →∞, |H|/N converges to p, so the continuity of
the value of CLPp(Y

Z) implies that if we use the optimal solution of LP|H|,N , the expected
reward converges to CLPp(Y

Z).

Finally, when we make Z tend to limi→∞ Yi, the optimal value of CLPp(Y
Z) tends to the

optimal solution of CLP(Y), and the limit (when N tends to infinity) of E(ALG∗(Y Z)) tends
to E(ALG∗(Y)), so we conclude that if they exist they must be equal.

1.6.3 Monotonicity of
∑k

j=ℓ

(
j−1
ℓ−1
)
(1− t)j−ℓtℓ

Lemma 1.17. For any fixed k ≥ 1,ℓ ≤ k, the term
∑k

j=ℓ

(
j−1
ℓ−1

)
(1 − t)j−ℓtℓ as a function of

t ∈ [0, 1] is increasing.

Proof. The derivative of the function with respect to t is

k∑
j=ℓ

(
j − 1

ℓ− 1

)(
ℓ(1− t)j−ℓtℓ−1 − (j − ℓ)(1− t)j−ℓ−1tℓ

)

=
k∑

j=ℓ

(
j − 1

ℓ− 1

)(
ℓ(1− t)− (j − ℓ)t

)
· (1− t)j−ℓ−1tℓ−1

=
k∑

j=ℓ

(
j − 1

ℓ− 1

)(
j(1− t)− (j − ℓ)

)
· (1− t)j−ℓ−1tℓ−1

= tℓ−1

k∑
j=ℓ

((
j

ℓ− 1

)
(j − ℓ+ 1)(1− t)j−ℓ −

(
j − 1

ℓ− 1

)
(j − ℓ)(1− t)j−ℓ−1

)
= tℓ−1

(
k

ℓ− 1

)
(k − ℓ+ 1)(1− t)k−ℓ ≥ 0 ,

where in the second last equality we used the identity
(
j−1
ℓ−1

)
j =

(
j

ℓ−1

)
(j − ℓ + 1), and in the

last equality we reduced the telescopic sum.

46

Lemma 1.18. For any fixed k ≥ 1 and t ∈ [0, 1], the term
∑k

j=ℓ

(
j−1
ℓ−1

)
(1−t)j−ℓtℓ as a function

of ℓ is decreasing.

Proof. We want to prove that for ℓ ≤ k − 1,

k∑
j=ℓ

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ ≥

k∑
j=ℓ+1

(
j − 1

ℓ

)
(1− t)j−ℓ−1tℓ+1 . (1.23)

If we compare term by term in the sum (with the same value for j), we have that(
j−1
ℓ−1

)
(1− t)j−ℓtℓ(

j−1
ℓ

)
(1− t)j−ℓ−1tℓ+1

=
ℓ(1− t)
(j − ℓ)t

=
ℓ− tℓ
tj − tℓ

,

which is larger than 1 whenever j ≤ ℓ/t. Thus, we can safely conclude that Equation (1.23)
is true when k ≤ ℓ/t.

On the other hand, we make use of the fact that for any y ∈ (−1, 1) and ℓ ∈ N, the
identity

∑∞
j=ℓ

(
j
ℓ

)
yj = yℓ

(1−y)ℓ+1 holds true. From this it is easy to see that when k tends to
∞, the term tends to 1, so we can rewrite it as

k∑
j=ℓ

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ = 1−

∞∑
j=k+1

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ . (1.24)

Therefore, we can rewrite Equation (1.23) as

∞∑
j=k+1

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓ ≤

∞∑
j=k+1

(
j − 1

ℓ

)
(1− t)j−ℓ−1tℓ+1 ,

and then, whenever k > ℓ/t we can conclude that the inequality is true by comparing term
by term here.

1.6.4 Concavity of Fk(t) in Each Variable

Proof. We start by rearranging the sums in the definition of Fk(t):

Fk(t) =
k∑

j=1

∞∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

Ti
τ i+1

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓdτ.

=
k∑

ℓ=1

∞∑
i=ℓ

∫ ti+1

ti

Ti
τ i+1

k∑
j=ℓ

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓ dτ.

We now calculate the second derivative with respect to ts, for some s ≥ 1. Recall that we
defined Ti =

∏i
j=1 tj. Observe that in the sum indexed by i the terms with i < s− 1 do not

47

depend of ts, and the terms with i > s are linear in ts, so neither of them affect the second
derivative. Thus, if we denote H(τ, ℓ, k) =

∑k
j=ℓ

(
j−1
ℓ−1

)
(1− τ)j−ℓτ ℓ, we have that

∂2

∂t2s
Fk(t) =

k∑
ℓ=1

∂2

∂t2s

(
1s−1≥ℓ

∫ ts

ts−1

Ts−1

τ s
H(τ, ℓ, k) dτ + 1s≥ℓ

∫ ts+1

ts

Ts
τ s+1

H(τ, ℓ, k) dτ

)

=
k∑

ℓ=1

∂

∂ts

(
1s−1≥ℓ

Ts−1

tss
H(ts, ℓ, k)− 1s≥ℓ

Ts
ts+1
s

H(ts, ℓ, k) + 1s≥ℓ

∫ ts+1

ts

Ts−1

τ s+1
H(τ, ℓ, k)dτ

)
.

Now, notice that Ts−1

tss
= Ts

ts+1
s

, so,

∂2

∂t2s
Fk(t) = − 1s≤k

∂

∂ts

Ts−1

tss
H(ts, s, k) +

min{k,s}∑
ℓ=1

∂

∂ts

∫ ts+1

ts

Ts−1

τ s+1
H(τ, ℓ, k)dτ

= − 1s≤k
∂

∂ts

Ts−1

tss
H(ts, s, k)−

min{k,s}∑
ℓ=1

Ts−1

ts+1
s

H(ts, ℓ, k).

At this point it is already clear that for s > k the second derivative is negative. So from now
on we assume s ≤ k. Let us expand H(ts, s, k) to calculate the last derivative.

∂2

∂t2s
Fk(t) = −

∂

∂ts

Ts−1

tss

k∑
j=s

(
j − 1

s− 1

)
(1− ts)j−stss −

s∑
ℓ=1

Ts−1

ts+1
s

H(ts, ℓ, k)

= Ts−1

(
k∑

j=s+1

(
j − 1

s− 1

)
(j − s)(1− ts)j−s−1 −

s∑
ℓ=1

1

ts+1
s

H(ts, ℓ, k)

)

= Ts−1

(
k∑

j=s+1

(
j − 1

s

)
s(1− ts)j−s−1 −

s∑
ℓ=1

1

ts+1
s

H(ts, ℓ, k)

)

= Ts−1

(
s

ts+1
s

H(ts, s+ 1, k)−
s∑

ℓ=1

1

ts+1
s

H(ts, ℓ, k)

)

= s
Ts−1

ts+1
s

(
H(ts, s+ 1, k)−

s∑
ℓ=1

1

s
H(ts, ℓ, k)

)
.

To conclude, note that H(τ, ℓ, k) is the probability that a NegativeBinomial(τ, ℓ) is at
most k, i.e., the probability that at most k independent coin tosses are necessary to obtain ℓ
heads, if the coin comes up head with probability τ . Therefore, H(ts, ℓ, k) ≥ H(ts, s + 1, k)
for all ℓ ≤ s, so we get that ∂2

∂t2s
Fk(t) ≤ 0. This implies that Fk(t) is concave as a function of

ts, for all s ≥ 1.

1.7 Proofs of Section 1.4

1.7.1 Derivation of SDLPh,N
To establish the equivalence between both problems we show that for any x feasible in the
maximization problem, the optimal values of inner problems

(A) min
Y ∈YN

E(OPT(Y))=1

E(ALGx(Y))

48

and

(B) max
α

α

s.t. α−

k∑
j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

)
k∑

j=1

N−h
N−j+1

j−2∏
s=0

h−s
N−s

≤ 0 ∀k ∈ [h+ 1]. (1.25)

are equal. From Lemma 1.1 we know that

P(ALGx(Y) = Yj) =
N∑

i=h+1

i∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

) .

From Lemma 1.3 we know that

P(OPT(Y) = Yj) =

 N−h
N−j+1

j−2∏
s=0

h−s
N−s

1 ≤ j ≤ h+ 1

0 otherwise.

That way, constraint (1.25) can be read as

P(ALGx(Y) ≥ Yk) ≥ αP(OPT(Y) ≥ Yk) ∀k ∈ [h+ 1]. (1.26)

If α is feasible, it will hold that E(ALGx(Y)) ≥ αE(OPT(Y)) for any instance Y of N items.
Indeed, we can integrate P(ALGx(Y) ≥ z) and P(OPT(Y) ≥ z) at both sides of (1.26) to
obtain the bound, as both random variables can only equal values of items. Restricting the
first h + 1 items is enough, as P(OPT(Y) ≥ Yh+1) = 1, and P(ALGx(Y) ≥ Yk) is non-
decreasing in k. In particular, if we restrict to Y such that E(OPT(Y)) = 1, we get that
E(ALGx(Y)) ≥ α. This holds for feasible α, so it holds for the optimal solution α∗ and we
get the optimal value of problem A is at least α∗.

Now consider an optimal solution for problem B, α∗. It must be the case that constraint
(1.25) is binding for some k∗. Consider the following instance Y k∗ , where we set Y1 = · · · =
Yk∗ = λk∗ , and Yj = 0 if j > k∗. Here, λk∗ > 0 is such that E(OPT(Y k∗)) = 1. We have that
k∗ is binding, so

E(ALGx(Yk∗)) =
E(ALGx(Y

k∗))

E(OPT(Y k∗))
=
λk∗P(ALGx(Y

k∗) ≥ Y k∗)

λk∗P(OPT(Y k∗) ≥ Y k∗)
= α∗.

Now, Y k∗ is feasible in problem (A), concluding that the optimal value of problem A is at
most E(ALGx(Y

k∗)) = α∗. The equivalence between the two problems follows by replacing
the inner problems.

1.7.2 Solution of SDRPp for p < 1/e

Proof. The upper bound follows immediately from Lemma 1.16 (see also, Kaplan et al. [82,
Theorem 3.8], [40]). To prove that the bound is tight we find a feasible solution of SDRPp

49

attaining this value. Take then t1 = 1/e, ti = 1 for i ≥ 2, we prove that the objective value
of this solution is at least 1/(e(1− p))

To this end first observe that the following inequalities hold for all 0 ≤ p ≤ 1/e.∫ 1

1/e

(1− τ)j−1

τ
dτ ≥ 1

ej−1
≥ pj−1 .

Indeed the second inequality is direct. Note that the first is actually an equality for j = 1
and j = 2. Also for j ≥ 5 the inequality follows since

∫ 1

1/e
(1−τ)j−1/τdτ ≥

∫ 1

1/e
(1−τ)j−1dτ =

(1− 1/e)j/j ≥ 1/ej−1. Finally, for j = 3, 4 it follows from a straightforward calculation.

Replacing our solution in Fk(t) and using the previous inequalities we get

Fk(t) =
1

e

k∑
j=1

∫ 1

1/e

(1− τ)j−1

τ
dτ ≥ 1

e

k∑
j=1

pj−1 =
1− pk

e(1− p)
.

If we replace these values of Fk(t) in the inner minimization of SDRPp, we get that all ratios
equal 1/(e(1− p)), as 1− pk cancel out. We conclude that the considered solution is feasible
and therefore the optimal value of SDRPp (which is α(p)) is at least 1/(e(1− p)).

1.7.3 Details on Numerical Bounds

We now develop the optimization problems used for obtaining upper and lower bounds of α(p)
when p ∈ (0, 1). For the upper bound, we construct a linear program based on SDCLPp. In
this linear program we partition interval (p, 1) into N(1− p) intervals of equal length. Inside
of interval (i−1

N
, i
N
] we restrict variables q(t, ℓ) to be constant for every ℓ ≥ 1 and rename

them xi,ℓ. We modify the feasibility constraints for making them slightly less restrictive (and
equivalent as N →∞). In the minmax constraint we replace the term (1−t)j−ℓtℓ by its upper
bound

(
1− i−1

N

)j−ℓ (i
N

)ℓ. To deal with the infinite number of variables and constraints, we
introduce the parameter kmax, which indicates that only the first kmax terms of the stochastic
dominance constraint will be considered in the maximization. As only the first kmax amount
of variables are considered in the objective function, we can consider only variables xi,ℓ with
ℓ ≤ kmax. We call this problem UBPp,N,kmax (for Upper Bound Problem).

(UBPp,N,kmax) max
x,α

α

s.t. ixi,ℓ +
i−1∑

j=h+1

kmax∑
s=1

xj,s ≤ 1 ∀i ∈ [N] \ [h],∀ℓ ∈ [kmax]

α−

∑k
j=1

∑N
i=h+1

∑j
ℓ=1 xi,ℓ

(j−1
ℓ−1)(

i
N)

ℓ

(1− i−1
N)

ℓ−j

1− pk
≤ 0 ∀k ∈ [kmax]

xi,ℓ ≥ 0 ∀i ∈ [N] \ [h],∀ℓ ∈ [kmax]

For the lower bound, we numerically solve a truncated version of SDRPp, in which we
use the parameter kmax to limit the amount of terms to be considered in the stochastic

50

Table 1.2: Upper and lower bounds obtained for multiples of 0.1. Parameters used for
UBPp,N,kmax were N = 1000 and kmax = ln(N/(1 − p)). For LBPp,kmax , kmax = ln 0.001/ ln p
was used. For values of p up to 1/e the bounds are exact and thus the difference simply
comes from rounding.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Lower bound 0.408 0.459 0.525 0.609 0.671 0.702 0.718 0.728 0.730
Upper bound 0.409 0.460 0.526 0.610 0.672 0.704 0.721 0.733 0.744

dominance constraint. As the solution must be a lower bound, we replace the denominator
of the last term of the min-max problem by 1. This makes the objective function to be lower
than SDRPp by at most pkmax . As in the upper bound, reducing the number of stochastic
dominance constraints also reduces the amount of variables to be considered, only needing
to consider ti with i ≤ kmax. For simplicity, we fix tkmax+1 = 1 as a parameter. We call this
problem LBPp,kmax (for Lower Bound Problem).

(LBPp) max
t, α∈[0,1]

α

s.t. α ≤ 1

1− pk
k∑

j=1

kmax∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

Ti
τ i+1

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓdτ ∀k ∈ [kmax − 1]

α ≤
kmax∑
j=1

kmax∑
i=1

∫ ti+1

ti

j∧i∑
ℓ=1

Ti
τ i+1

(
j − 1

ℓ− 1

)
(1− τ)j−ℓτ ℓdτ

p ≤ ti ≤ ti+1 ≤ 1 ∀i ∈ [kmax]

The bounds obtained for some values of p are shown in Table 1.2. Note that as p gets
closer to 1 we need more variables and therefore our upper and lower bounds are slightly off.
This can definitely be improved by just considering more variables when solving UBPp,N,kmax

and LBPp,kmax since they converge to each other.

1.7.4 Proof of Theorem 1.13

We first introduce two lemmas that bound the ratio between the coefficients of the linear
programs. Then, to bound the difference between the values, we produce a solution for one
problem from a solution to the other, and vice versa.

Lemma 1.19. For integers N, h, k, such that p = h
N
∈ (0, 1), N ≥ 1

(1−p)
+ 1, and 1 ≤ k ≤

h+ 1, we have that

1 ≤

k∑
j=1

N−h
N−j+1

j−2∏
s=0

h−s
N−s

1− pk
≤ 1 +

e

(1− p)(N − 1)
. (1.27)

Proof. Denote Aj =
N−h

N−j+1

j−2∏
s=0

h−s
N−s

and Bj = (1−p)pj−1. In order to bound the ratio
∑k

j=1 Aj∑k
j=1 Bj

for 1 ≤ k ≤ h+ 1, we find a uniform bound on Aj

Bj
for 1 ≤ j ≤ h+ 1.

51

Recall that by definition h = p·N . It is easy to see that A1

B1
= 1, and that Aj+1

Bj+1
=

Aj

Bj
· h−j+1
(N−j)·p .

Therefore, Aj+1

Bj+1
≥ Aj

Bj
if and only if h− j + 1 ≥ h− pj, which is equivalent to j ≤ 1

1−p
. Then

we can conclude that for all j ≤ h+ 1,

Aj

Bj

=
A1

B1

·
j−1∏
i=1

(
h− i + 1

h− pi

)

≤
⌊1/(1−p)⌋∏

i=1

(
h− i + 1

h− pi

)

≤
(

h

h− p

)⌊1/(1−p)⌋

=

(
1 +

1

N − 1

)⌊1/(1−p)⌋

≤ 1 +
1

N − 1
· 1

1− p

(
1 +

1

1/(1− p)

)1/(1−p)

≤ 1 +
e

(1− p)(N − 1)
,

where the second last inequality comes from doing a first-order approximation of a convex
function.

For the lower bound of 1, it is enough to note that
∑h+1

j=1 Aj = 1 and that
∑h+1

j=1 Bj ≤∑∞
j=1Bj = 1, together with the already mentioned fact that Aj ≥ Bj if and only if j ≤

1
1−p

.

Lemma 1.20. For positive integers N, i, j, ℓ such that N ≥ 32,
√
N logN
1−p

≤ i ≤ N −
√
N logN
1−p

,
j ≤ logN

1−p
, and ℓ ≤ j, and for a real t ∈

[
i−1
N
, i
N

]
, we have that

1− 3 logN

(1− p)
√
N
≤

i
N

(j−1
ℓ−1)(

N−j
i−ℓ)

(N−1
i−1)(

j−1
ℓ−1

)
(1− t)j−ℓtℓ

≤ 1 +
5 logN

(1− p)
√
N

(1.28)

Proof. We start by rewriting the expression in the middle of Equation (1.28).

i
N

(j−1
ℓ−1)(

N−j
i−ℓ)

(N−1
i−1)(

j−1
ℓ−1

)
(1− t)j−ℓtℓ

=

i
N
· (N−i)!
(N−i−j+ℓ)!

· (i−1)!
(i−ℓ)!

· (N−j)!
(N−1)!

(1− t)j−ℓtℓ
(1.29)

=

∏j−ℓ−1
k=0

N−i−k
N−k

·
∏ℓ−1

k=0
i−k

N−j+ℓ−k

(1− t)j−ℓtℓ
. (1.30)

Now, the expression in Equation (1.30) is clearly at most

52

∏j−ℓ−1
k=0

N−i−k
N−k

·
∏ℓ−1

k=0
i−k

N−j+ℓ−k(
N−i
N

)j−ℓ (i−1
N

)ℓ =

j−ℓ−1∏
k=0

(
N − i− k
N − i

· N

N − k

)
·
ℓ−1∏
k=0

(
i− k
i− 1

· N

N − j + ℓ− k

)
≤ i

i− 1
·
(

N

N − j

)j

=

(
1 +

1

i− 1

)
·
(
1 +

j

N − j

)j

≤
(
1 +

1√
N log2N − 1

)
·
(
1 +

j2e

N − j

)
≤ 1 +

5 logN

(1− p)
√
N

And is also at least

(N − i− j + ℓ)j−ℓ(i− ℓ)ℓ 1
Nj(

N−i+1
N

)j−ℓ (i
N

)ℓ =
(N − i− j + ℓ)j−ℓ(i− ℓ)ℓ

(N − i + 1)j−ℓiℓ

=

(
1− j − ℓ+ 1

N − i + 1

)j−ℓ(
1− ℓ

i

)ℓ

≥ 1− (j − ℓ)(j − ℓ+ 1)

N − i + 1
− ℓ2

i

≥ 1− 3
log2N

(1− p)
√
N
.

Proof of Theorem 1.13. To prove the theorem we take a solution to one problem and trans-
form it into a solution of the other. Let N, h be integers and 0 < p < 1 a scalar such that
h = p · N . We start with an optimal solution (q∗, α(p)) for SDCLPp, and define for a given
N ≥ 1 a solution (x, α′) as follows.

xi,ℓ =

∫ i
N

i−1
N

q∗(t, ℓ)dt, for i ∈ [N] \ [h], ℓ ∈ [i]

α′ = min
k∈[h+1]

k∑
j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

)
k∑

j=1

N−h
N−j+1

j−2∏
s=0

h−s
N−s

We prove first that (x, α′) is a feasible solution for SDLPpN,N). Note that for given i ∈ [N]\[h],

53

ℓ ∈ [i], and t ∈ [i−1
N
, i
N
] we have from the feasibility of q∗ that

tq∗(t, ℓ) +

∫ t

i−1
N

q∗(τ, ℓ)dτ ≤ 1−
∫ i−1

N

p

∑
s≥1

q∗(τ, s)dτ

≤ 1−
i−1∑

j=h+1

j∑
s=1

xj,s .

Integrating on both sides we obtain that

∫ i
N

i−1
N

(
tq∗(t, ℓ) +

∫ t

i−1
N

q∗(τ, ℓ)dτ

)
dt ≤

∫ i
N

i−1
N

(
1−

i−1∑
j=h+1

j∑
s=1

xj,s

)
dt

⇔ t

∫ t

i−1
N

q∗(τ, ℓ)dτ

∣∣∣∣∣
t= i

N

t= i−1
N

≤ 1

N

(
1−

i−1∑
j=h+1

j∑
s=1

xj,s

)

⇔ i · xi,ℓ ≤ 1−
i−1∑

j=h+1

j∑
s=1

xj,s ,

where in the second inequality we applied integration by parts on the left-hand side. There-
fore, x is a feasible solution. We now give an upper bound for α(p)−α′. From the definition
of α′ and Lemma 1.19, together with the fact that 1/(1 + y) ≥ 1− y for all y ≥ 0, we obtain
that

α′ ≥ min
k∈[h+1]

k∑
j=1

N∑
i=h+1

j∑
ℓ=1

ixi,ℓ
N

(
j−1
ℓ−1

)(
N−j
i−ℓ

)(
N−1
i−1

)
1− pk

·
(
1− e

(1− p)(N − 1)

)
.

Now, if k > logN
1−p
≥ logp(1/N), then pk ≤ 1/N , so we can take in the minimization k ≤ logN

1−p

and lose a factor (1 − 1/N). Denote i∗ =
√
N logN
1−p

. Since j ≤ k, after replacing xi,ℓ with the
integral that defines it, we can apply Lemma 1.20 to obtain that

α′ ≥ min
1≤k≤ logN

1−p

k∑
j=1

N−i∗∑
i=(h+1)∨i∗

j∑
ℓ=1

∫ i
N

i−1
N

q∗(t, ℓ)

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt

1− pk
·
(
1− 7 logN

(1− p)
√
N

)

= min
1≤k≤ logN

1−p

k∑
j=1

∫ 1− i∗
N

p∨ i∗
N

j∑
ℓ=1

q∗(t, ℓ)

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt

1− pk
·
(
1− 7 logN

(1− p)
√
N

)
.

54

Now, since t · q∗(t, ℓ) ≤ 1 for all ℓ, t and
∑j

ℓ=1

(
j−1
ℓ−1

)
(1− t)j−ℓtℓ−1 = 1 for all j ≥ 1, we get that

α′ ≥ min
1≤k≤ logN

1−p

k∑
j=1

∫ 1

p

j∑
ℓ=1

q∗(t, ℓ)

(
j − 1

ℓ− 1

)
(1− t)j−ℓtℓdt

1− pk
·
(
1− 7 logN

(1− p)
√
N
− 2i∗k

N

)
≥ α(p) ·

(
1− 9(logN)2

(1− p)2
√
N

)
≥ α(p)− 9(logN)2

(1− p)2
√
N
.

We prove now the other side of the inequality. Let (x∗, αN,p) be an optimal solution for
SDLPpN,N . We construct a solution (q, α′′) as follows.

q(t, ℓ) =

{
Nx∗i,ℓ ·

(
1− logN

(1−p)
√
N

)
, for t ∈ [p, 1], if i = ⌈t ·N⌉ ≥

√
N and ℓ ≤ i ∧ logN

1−p

0 for t ∈ [p, 1], if i = ⌈t ·N⌉ <
√
N or ℓ > i ∧ logN

1−p

α′′ = min
k≥1

∑k
j=1

∫ 1

p

∑j
ℓ=1 q(t, ℓ)

(
j−1
ℓ−1

)
(1− t)j−ℓtℓdt

1− pk
.

Now, we can check this solution is feasible in the continuous problem. In fact, for t < 1√
N

, it
is trivially satisfied because q(t, ℓ) = 0 for all ℓ. For t ≥ p ∨ 1√

N
, i = ⌈t ·N⌉, and any ℓ ≥ 1,

tq(t, ℓ) +

∫ t

p

∑
s≥1

q(τ, s)dτ ≤

ix∗i,ℓ +
i−1∑

j=h+1

j∑
s=1

x∗j,s +

∫ t

i−1
N

logN
1−p∑
s=1

Nx∗i,sdτ

 · (1− logN

(1− p)
√
N

)

≤
(
1 +

logN

i(1− p)

)
·
(
1− logN

(1− p)
√
N

)
≤
(
1 +

logN

(1− p)
√
N

)
·
(
1− logN

(1− p)
√
N

)
≤ 1 ,

where the first inequality comes from replacing with the definition of q, and the third one
comes from the fact that i ≥

√
N .

We argue similarly to the lower bound for α′, using lemmas 1.19 and 1.20, together with
the extra factor

(
1− logN

(1−p)
√
N

)
that was necessary for the feasibility constraint. This yields

the inequality

α′′ ≥ αN,p −
5(logN)2

(1− p)2
√
N
− logN

(1− p)
√
N

≥ αN,p −
6(logN)2

(1− p)2
√
N
.

55

Chapter 2

Selecting the Best with Samples

In the same spirit as in the previous chapter, we study optimal stopping with samples. We
now consider the objective of maximizing the probability of selecting the best element, which
is the objective in the classic formulation of the secretary problem.

Mathematically, in the secretary problem, we are faced with a randomly permuted se-
quence of n elements with arbitrary values. The elements’ values are revealed one at a time.
Upon receiving an element, we need to make an irrevocable decision of whether we keep the
value and stop the sequence or drop the value forever and continue observing the next. The
goal is to maximize the probability of stopping with the largest value. For this problem the
best possible success guarantee has long been known to be 1/e. The optimal algorithm is
remarkably simple: Look at the first n/e values without taking any of them, and then stop
with the first value larger than all values seen so far [54, 99, 67]. In the last decades, the sec-
retary problem, its variants, and related basic optimal stopping problems such as the prophet
inequality and the Pandora’s box problem have been considered fundamental building blocks
of online selection problems [93, 94, 118, 48, 14].

An essential limitation of the secretary problem for modeling real-world situations is the
assumption that the values of the elements that have not yet been revealed are completely
unknown. This is a very pessimistic assumption, as in realistic situations one would expect
to have some available information, coming, for instance, from the context or past data. As
a consequence, the best possible 1/e success probability for the secretary problem can be
substantially improved in many settings. This gives rise to the following natural question:
what is a reasonable model to take into account this additional available information? A
first approach is to assume that the numbers originate from a distribution that is known
to the algorithm. This assumption is relevant when the process at hand has been repeated
many times, and past data can be aggregated into a distribution. Along these lines, already
in the sixties, [69] considered the so-called full information secretary problem in which we
additionally know that the elements’ values are i.i.d. random variables from a known distri-
bution. For this variant, they showed how to compute the optimal stopping rule by dynamic
programming and were able to conclude, numerically, that the best possible success proba-
bility is γ ≈ 0.5801. In subsequent work, [113] finds an explicit expression for this quantity.
[57] relaxed the i.i.d.-ness assumption, considering the problem when the elements’ values

56

are arbitrary independent random variables. They show that one can guarantee a success
probability of 0.517, which, quite surprisingly, was very recently improved to γ by [107].
Interestingly, in this full information model with independent but not necessarily identical
values, [1] showed that if the order is not random but adversarial, the optimal stopping rule
guarantees a success probability of 1/e.1

While assuming no knowledge about the values seems too pessimistic, assuming that the
full distribution is known might be too optimistic for most scenarios. Indeed, a typical
situation would be that we have access to past data, but not enough to safely reconstruct
a distribution. These informational issues in optimal stopping have given rise to a stream
of research aiming at understanding the relationship between the amount of information
available and the success probabilities that can be derived. In this context, [5] pioneered
the study of data-driven versions of optimal stopping problems. Recently, [110] established
a notable result in this direction for the classic prophet inequality.2 They prove that a
single sample from each distribution, rather than its full knowledge, is enough to achieve
the optimal guarantee. Also, for the prophet secretary problem, the variant of the prophet
inequality when the elements come in random order, one sample has been proved to be quite
effective [37, 108].

However, this sampling approach still assumes that there is an underlying distribution
from which we can effectively sample. In many situations this assumption may be strong,
and ideally we would like to combine the idea of having samples representing past data with
having arbitrary values chosen adversarially, to ensure maximum robustness while requiring
no distributional assumption. Recently, [82] study such a model.3 In their model, there are
n arbitrary values, and they sample a fraction p of them at random. Then the non-sampled
values are presented to the decision maker in either random order or adversarial order. [82]
design algorithms for maximizing the expectation, rather than the probability of picking the
maximum, that translate into algorithms for data-driven versions of prophet inequalities.

In this chapter, we consider an alternative sampling model, inspired by that of [21] and
[82]. The main difference is that in our model, the sampling of each element is performed
independently with the same fixed probability p. In other words, roughly a p-fraction of
the elements are considered to be samples and revealed to the player upfront, before the
non-sampled elements are revealed one by one, whose maximum value the player aims to
obtain. Such data-driven versions are well-motivated from several perspectives. First, in
many applications, the decision maker has access to historical data that give some insight
into the distribution of future values. In our model, this information is captured in the form
of samples that the decision maker knows a priori. Second, the model is robust in the sense
that only minimal knowledge of the involved data is needed. And, third, the general idea
is closely related to machine learning methods that use predictors to learn the distribution
(see e.g. [71]). The insight here is that for problems that can be modeled as data-driven
versions of the secretary problem, these learning procedures are overly complicated: The

1[57] also obtained this result.
2The classic prophet inequality asserts that when faced with a sequence of n independent random variables,

X1, . . . , Xn, a decision maker who knows their distributions and is allowed to stop the sequence at any time,
can obtain, in expectation, at least half the reward of a prophet who knows the values of each realization.

3Interestingly, the model was proposed much earlier by [21] and recently rediscovered.

57

simple combinatorial model presented in this paper already makes it possible to increase the
solution quality even with modest sampling.

Of course, for large n our model is essentially equivalent to the model of [21] and [82].
However, our independent sampling has two crucial advantages. On the one hand, inde-
pendence makes many mathematical calculations a lot simpler and thus allows to obtain
simpler expressions. it allows dealing with instances of unknown size, which is often the case
in practical applications. In particular, several of our results hold if we do not know n. A
slight disadvantage of the independent sampling model is that we may end up sampling all
n elements. For consistency in this case, we assume, by vacuity, that we win (i.e., pick the
maximum). However, this is not very restrictive since, as we will see, the difficult instances
involve large values of n for a fixed value of p.

We call our model the random order secretary problem with p-sampling (ROSp). In ROSp,
we are given n elements with values α1, . . . , αn, which are unknown to us, and a uniformly
random order σ : [n]→ [n] is drawn. Each element is sampled independently with probability
p. Let S be the (random) set of sampled elements and V be the remaining elements, also
referred to as the online set or the set of online elements. First, the set S of sampled elements
are revealed to us. Then the elements in V are presented to us in the order dictated by σ.
Once an element is revealed we either pick it and stop the sequence or drop it forever and
continue. The goal is to maximize the probability of picking the maximum valued element
in V . In particular, it is not allowed to pick an element of S, which is justified by the fact
that we consider S to represent past data.

Given n and an algorithm we define its success probability as the infimum over all values
α1, . . . , αn of the probability that the algorithm stops with the maximum αi ∈ V . More-
over, the success guarantee of an algorithm is the infimum over all values of n of its success
probability.

All algorithms considered in this paper are ordinal, i.e., algorithms whose decision to stop
at a given point depend only on the relative rankings of the values seen so far, and not
on the actual values that have been observed, plus, possibly, on some external randomness.
We observe that this is without loss of generality general algorithms cannot perform better
than ordinal algorithms. Indeed, as noted by [82, Theorem 2.3], a result of [102] implies the
existence of an infinite subset of the natural numbers where general algorithms behave like
ordinal algorithms (for single selection ordinal objective functions such as ours). Therefore,
and because the worst-case performance of our algorithms is attained as n→∞, our bounds
apply to general algorithms; see also Theorem 2.2.

2.1 Summary of Results

For ROSp we obtain a randomized algorithm with best possible success guarantee that works
as follows. First, we assign to each of the n elements a uniformly random arrival time in the
interval [0, 1], which implies that the elements arrive in uniform random order. All elements
whose arrival time is less than p are placed in the sample set S. Then we find a sequence of
time thresholds 0 < t1 < t2 < · · · < 1, dictating that if an element’s arrival time is between ti
and ti+1, the algorithm stops if its value is the maximum among elements arriving after p and

58

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

γ

1

Figure 2.1: The best possible success guarantee for ROSp as a function of p.

it is among the i largest values of all elements seen so far. To obtain the success guarantee
of this algorithm we first prove that for a fixed sequence 0 < t1 < t2 < · · · < 1, the success
guarantee of the algorithm decreases with n. Then we write the optimization problem over
the time thresholds, and interestingly, this turns out to be a separable concave optimization
problem with a fairly simple solution. Moreover, the solution is universal in the sense that it
does not depend on p. The resulting guarantee is thus easily computed and grows from 1/e
when p = 0 to γ ≈ 0.58 as p→ 1.4 We also prove that this is a best possible algorithm. To
this end we first argue that ordinal algorithms in our model are essentially equivalent to a
ranking function that determines what global ranking an element, which is a local maximum,
should have in order to accept it. Here, by global ranking we mean the ranking an element
has among all samples and values revealed so far, and local ranking refers only to the values
revealed and not to the samples. Finally, as n grows, this ranking function converges to a
sequence of time thresholds as we defined them.

We demonstrate some of the strengths of our algorithm in practice, by evaluating it on
the real-world data set of [70]. We show that our algorithm for ROSp can help explain some
behavioral issues raised by [70]. [70] set up an experiment in which people play repeated
secretary problems. The values come from any of three possible distributions, unknown to
the players (the distribution is fixed for all games played by a person). They analyze a total
of 48,336 games played by 6,537 players. Among other issues, [70] study how close to optimal
people play. However, they find difficulty in establishing what optimal means in their context,
since for the first game that players played optimal means simply the secretary algorithm,
while after playing many games optimal should mean something close to the dynamic program
of [69]. They thus consider several candidate models for the players’ behavior and conclude
that the closest to actual play is a multi-threshold algorithm that is very much in the spirit
of that of [69]. Interestingly, they find that by the fifth game, players have essentially learned

4We should note that we recently became aware of the work of [21] who obtain very similar results. Indeed
they consider the dependent sampling version described earlier and obtain that the optimal success guarantee
converges to γ as the fraction sampled grows to 1. Their methods however are very different from ours and
are significantly more complicated.

59

the optimal thresholds [70, Figure 9]. However, they also find an apparent dichotomy between
the strategy players use in the first few games and that used later on. Indeed they state that:
“One possible explanation for the apparent change in strategy is that players spent the first
few games primarily collecting information about the distribution and then switched to trying
to actually win the game only in later games: that is, they spent the first few games exploring
and then switched to exploiting only later.”

Our results for ROSp, being optimal in a closely related model, sheds more light on the
players’ strategies and strengthens existing insights in the work of [70]. To see this, observe
that the first game the players face is just the normal secretary problem, or ROS0, the
second closely corresponds to ROS1

2
, the third to ROS2

3
, and so on. With this observation

we are able to directly compare the performance of the players’ strategies with that of our
algorithms. Our experimental evaluation leads to two main conclusions: (a) the players’
strategies are strongly correlated with our algorithm (i.e., players use similar, suboptimal
series of thresholds) and (b) a good fraction plays near-optimally from the start; the players
in any case improve their performance in the first few games by learning how to optimally
use the information they gain (as [70] also observe) and at some point their success rate
stabilizes.

2.2 Further related literature

An interesting connection arises between our model and results when p is close to 1, and
the so-called full information case. First, recall that [69] obtained the optimal algorithm
with worst case performance γ (see also [112, 113]), in the secretary problem where the
elements’ values are taken as i.i.d. random variables from a known distribution. It may thus
seem natural that our guarantee matches this quantity as p → 1. However, this is far from
obvious. Indeed, for the prophet inequality with i.i.d. values from an unknown distribution (a
model that arguably gives more information than ours) [41] proved that with O(n2) samples,
one can achieve the best possible performance guarantee of the case with known distribution,
and only very recently [110] improved this to O(n) samples. This is in line with our result
here since for p close to, but strictly less than 1, the size of the sample set is linear in the
size of V .

Still in the random order case, [36] study the same sampling model we discuss in this
paper but with the objective of maximizing the expected value of the chosen element. They
obtain best possible ordinal algorithms for all values of p and the implied guarantees grow
from 1/e when p = 0 to 0.745 when p tends to 1, which is the optimal guarantee for the i.i.d.
prophet inequality ([80, 44]), since in both cases the optimal guarantees converge to those of
the full information case.

The line of research exploring the use of data to improve solutions to problems has gained
momentum over the past years. Our sampling approach can be considered in this setting as
a case of the secretary problem with advice based on past data. [52] study this problem from
a more general perspective and use a factor revealing LP to gain structural insight into the
optimal policy, depending on the type of advice the algorithm is given.

Another very recent line of work studies robust or semi-random versions of the classical

60

secretary problem [85, 16]. The main idea is that the problem input should be a mix of
stochastic and adversarial parts. More specifically, in their (similar) models, some of the
elements arrive at adversarially chosen times, and the rest at times uniformly randomly
drawn from [0, 1]. Their objective functions (and in some cases also the benchmarks) are
quite different from ours. [85] consider the knapsack secretary problem in this mixed model,
while [16] design algorithms for selecting k items or maximizing the expectation under various
matroid or knapsack constraints.

2.3 Model and definitions
Let p ∈ [0, 1]. We consider the following game between a player and an adversary. The game
takes place in several phases.

• Phase 1: The adversary chooses an integer n and a set U of n integers.
• Phase 2: U is ordered according to a uniformly random permutation σ.
• Phase 3: Every element of U is added to the sample set S independently with probability
p, and otherwise it is added to the set U \ S of online elements.

• Phase 4: The sample set is revealed to the player.
• Phase 5: The elements of the online set are presented to the player one after the other,

according to the order σ. The player chooses at each step to continue or to stop the
game. If the player continues, the next element is presented to her.

An instance of the game can be denoted as (U, σ, S), where U is the set of n values, σ is
the permutation and S is the result of the sampling process. In particular, it is a sequence of
values from U , presented in order σ, where the first |S| values are considered to be sampled
elements. We will identify an instance of the problem with such a sequence of values.

We say that a player wins or an algorithm succeeds in an instance of the problem if it
stops on the largest element of the online set U \ S. This allows us to formally define the
success guarantee of an algorithm.

Definition 2.1. The success guarantee of a deterministic algorithm A for ROSp it is defined
as

inf
n
min
U

PS,σ(A succeeds on (U, σ, S)) ,

where PS,σ takes the probability over the sampling phase as well as the permutation.

Observe that the success probability is unconditional on the sample set S.

Note that we use a minimum for U, σ even if there is potentially an infinite number of
possible sets U . This is because of the following result. This theorem is the analogue of
Theorem 2.3 in [82], and the proof is essentially the same. For completeness, and because
this statement is central to the paper, we sketch the approach below.

Theorem 2.2. For negative results, we can restrict the study to algorithms that are ordinal,
that is, that do not use the values of the numbers, but only their relative ordering.

61

Proof. Any algorithm ALG for ROSp can be described as a series of n functions ft : N2n 7→
{0, 1}. Indeed, we can encode both the sample set and revealed values of the online set as sets
of at most n reals (completing with zeros for example), and the decision (stop or continue)
as a bit. Then ft represents the function used for the decision at the t-th step. Ramsey
theory (in particular Corollary 3.4 in [102]) ensures that there exists an infinite set V ⊆ N
such that the functions ft are all ordinal on V . As a consequence, negative results on ordinal
algorithms also apply to general algorithms.

We will see that our positive results are actually also ordinal, and that they match the
negative bounds. In particular, once we restrict to ordinal algorithms, we can assume that
the input sequence is a permutation of {1, . . . , n}.

2.4 The Optimal Algorithm

In this section we derive the optimal strategy for ROSp, for any p ∈ [0, 1). For the analysis
it is useful to have the following equivalent setting.

Continuous time arrival model. We are given the values α1, . . . , αn, and nature samples
n uniformly random and independent arrival times (τi)ni=1 in the interval [0, 1]. Now S contains
all elements αi such that τi < p and V contains all other elements. We get to observe all
elements in S beforehand. Then, we observe one by one the elements in V in the order
given by the τi’s. We show equivalence between ROSp and the continuous time arrival model
by showing that any algorithm A for the original setting can be applied to the continuous
time model, obtaining the same success guarantee, and vice versa. Consider an algorithm for
ROSp. It is easy to see that in the continuous time model each element is in S independently
with probability p, and that the elements in V are revealed in uniformly random order, as in
ROSp. Therefore, we can use the algorithm A and simply ignore the arrival times. Consider
now an algorithm A′ for the continuous time model. There are no arrival times in ROSp,
but we can simulate them: we can sample |S| uniform arrival times in the interval [0, p] and
assign them to the elements of S in an arbitrary way, and sample |V | = n−|S| uniform arrival
times in [p, 1] and assign them to each observed element in V . Notice that since in ROSp
each element is in S independently with probability p and the elements in V are revealed in
uniformly random order, the simulated arrival times distribute exactly as n uniform arrival
times in [0, 1]. Thus, if the algorithm A′ requires observing the arrival times, we can simply
pass it the simulated arrival times and we obtain a randomized algorithm for ROSp with the
same success probability as if we were applying it to the continuous time model.

From now on, we consider the continuous time arrival model. Consider the family of
algorithms ALGt, described in Algorithm 1. The algorithm is parameterized by a sequence
t = (ti)i∈N such that 0 ≤ t1 < t2 < · · · < 1. The algorithm ALGt accepts an element αi if
it is the largest element of V seen so far and it is larger than the k-th largest element in S,
where k is such that tk ≤ τi < tk+1. In other words, for each k, between times tk and tk+1 the
algorithm sets as threshold the k-th largest element of S. We prove that the best possible
success guarantee is attained in this family of decreasing threshold algorithms. Notice that
even though these algorithms are designed for the continuous time model, because of the
aforementioned equivalence they are also optimal in the original setting.

62

Algorithm 1 Time-threshold algorithm ALGt for ROSp.

for i = 1, . . . , |S| do
si ← the i-th largest element in S.

end for
si ← −∞ if i > |S|.
for j = 1, . . . , |V | do

σ(j)← the index of the j-th observed element of V .
if τσ(j) < t1 then

Discard the value
else

ℓ← max{ℓ′ : tℓ′ ≤ τσ(j)}.
if ασ(j) > sℓ and ασ(j) is the largest element of V seen so far then

Accept the value and stop the game
else

Discard the value
end if

end if
end for

Theorem 2.3. There exists a universal sequence t, independent of p and n, such that ALGt

obtains the best possible success guarantee for ROSp. Furthermore, when p = 0 this guarantee
is equal to 1/e, and when p tends to 1, the guarantee tends to γ ≈ 0.58, the optimal success
guarantee in the full-information secretary problem.5

We prove this theorem in two main steps. First, we find the sequence t∗ that maximizes the
success guarantee of ALGt. Then, we find an expression for the optimal success probability
when p and n are given, and prove that for fixed p it converges to the success guarantee of
ALGt∗ when n tends to infinity.

In order to find the optimal sequence t∗ we start by studying the success probability of
algorithm ALGt, for any sequence t, sample rate p and instance size n. We prove that in
fact the worst case for this class of algorithms is when n is very large. The approach of
approximating the problem when n is large by a continuous time problem was pioneered by
[17] and has been used for different optimal stopping problems (see e.g. [26, 81]).

Lemma 2.4. For any sequence t and sampling probability p, the success probability of ALGt

in ROSp decreases with n.

Proof. Fix a sequence t and a sampling probability p. We use a coupling argument between
realizations of the arrival times in instances with n and n+1 values. We start with an instance
α1, . . . , αn+1, and assume the values are indexed in decreasing order. Consider a realization
of the arrival times τ1 = τ ′1, . . . , τn+1 = τ ′n+1 and couple it with the corresponding realization
τ1 = τ ′1, . . . , τn = τ ′n in the instance α1, . . . , αn. Assume that in the instance with n values and

5The optimal guarantee γ ≈ 0.58 was first obtained numerically by [69]. An explicit formula for γ was
later found by [112, 113].

63

for this particular realization of the arrival times, ALGt fails. This means that V \ {αn+1}
is non-empty and either ALGt never stops or it accepts a value that is not the maximum
of V \ {αn+1}. Note that regardless of τ ′n+1, the rankings of the values in V \ {αn+1} are
the same in both instances because αn+1 is smaller than all other values. Thus, if τ ′n+1 < p,
ALGt does not succeed either when applied in the instance of n + 1 values. On the other
hand, if τ ′n+1 > p, we have to distinguish between two cases. If ALGt accepts αn+1, it fails,
because V \ {αn+1} is non-empty and then αn+1 cannot be the largest in V . If ALGt does
not accept αn+1, then the behavior of ALGt in the rest of the variables is the same as in the
instance with n values and then it fails.

Since the distribution of τ1, . . . , τn is the same in both instances, we conclude with this
argument that the probability that ALGt fails in the instance with n + 1 values is at least
as large as in the instance with n values.

By Lemma 2.4 the success guarantee of ALGt is simply the limit of its success probability
when n grows to infinity. We calculate these probabilities and obtain an explicit formula for
the limit in the following lemma. Interestingly, the formula turns out to be fairly simple.

Lemma 2.5. Fix a sequence t and a sampling probability p. The success guarantee of ALGt

in ROSp is given by
∞∑
i=1

pi−1

(
1−max{p, ti} −

∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

dt

)
. (2.1)

Proof. We first calculate the success probability of ALGt for fixed p and n and then take
the limit when n tends to infinity.

We say a value αi is acceptable for ALGt (for a particular realization of the arrival times)
if p < τi, for some j ∈ N we have that tj ≤ τi < tj+1, and αi is larger than the j-th largest
value in S. Now, note that if maxV is not acceptable for ALGt, then ALGt does not stop.
This is because we restricted the sequence t to be increasing, so values that arrive before
maxV are not acceptable, and values arriving after maxV will not be the best seen so far
from V . We use this to decompose the success probability as follows.

P(ALGt succeeds) = P(maxV is acceptable)− P(ALGt stops before seeing maxV) . (2.2)

In this definition, if V is empty we also say maxV is acceptable. We first calculate the
probability that maxV is acceptable. Assume that the values are indexed in decreasing
order, i.e., that α1 > · · · > αn.

P(maxV is acceptable) = P(V = ∅) +
n∑

i=1

P(maxV = αi) · P(ti ≤ τi | maxV = αi)

= pn +
n∑

i=1

pi−1(1− p) · 1−max{p, ti}
1− p

= pn +
n∑

i=1

pi−1 (1−max {p, ti}) . (2.3)

64

By the same argument, ALGt stops before seeing maxV if and only if at least one value
arrives after p and before the arrival time of maxV , and the maximum such value is accept-
able.

P(ALGt stops before seeing maxV)

=
n∑

j=1

P(maxV = αj) · P(maximum before maxV is acceptable | maxV = αj)

=
n∑

j=1

P(maxV = αi)
n−1∑
i=j

P
(
max. in [p, τj) has rank i among elements that arrive in [0, τj),

and arrives in [ti, τj)
∣∣∣ maxV = αj

)
=

n∑
j=1

pj−1(1− p)
n−1∑
i=j

1

1− p

∫ 1

p

P
(
max. in [p, t) has rank i among elements that arrive in

[0, t), and arrives in [ti, t)
∣∣∣ maxV = αj, τj = t

)
dt

=
n∑

j=1

pj−1(1− p)
n−1∑
i=j

1

1− p

∫ 1

max{p,ti}

(p
t

)i−j

· (t−max{p, ti})
t

· P(at least i values arrive before t | maxV = αj, τj = t) dt

=
n∑

j=1

pj−1

n−1∑
i=j

∫ 1

max{p,ti}

(p
t

)i−j

· (t−max{p, ti})
t

(
1−Bt,n−j(i− j + 1)

)
dt

=
n−1∑
i=1

pi−1

∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

(
1−Bt,n−j(i− j + 1)

)
dt , (2.4)

where Bp,n(x) =
∑x

i=0

(
n
i

)
pi(1− p)n−i is the CDF of a Binomial distribution of parameters p

and n. Note that for any fixed integers i and j, and time t ∈ (0, 1), Bt,n−j(i− j+1) converges
to 0 when n tends to infinty. Therefore, replacing Equation (2.3) and Equation (2.4) in
Equation (2.2), and taking the limit when n tends to infinity, we conclude the proof of the
lemma.

We then focus our attention on optimizing this success guarantee. Surprisingly, it turns
out the problem of maximizing Equation (2.1) is separable and concave, so we can simply
impose the first-order conditions to obtain the optimum. Perhaps even more surprising is
that these first-order conditions are independent of p, and therefore, the optimal sequence t∗
is also independent of p, as the following lemma shows.

Lemma 2.6. Fix a sampling probability p. The sequence t∗ defined as the unique solution of
the equations

ln

(
1

t∗i

)
+

i−1∑
j=1

(1/t∗i)
j − 1

j
= 1, for all i ∈ N , (2.5)

maximizes Equation (2.1). In particular, t∗ does not depend on p.

65

Proof. First, we relax the monotonicity constraint on the sequence of ti’s. The resulting re-
laxed optimization problem is separable, i.e., optimizing over the entire sequence is equivalent
to optimizing over each variable independently. For each ti we get the following equivalent
problem.

max
ti∈[0,1]

pi−1

(
1−max{p, ti} −

∫ 1

max{p,ti}

i∑
j=1

t−max{p, ti}
tj

dt

)
.

Equivalently, we can remove the factor pi−1 and restrict ti to be in [p, 1], obtaining

max
ti∈[p,1]

1− ti −
∫ 1

ti

i∑
j=1

t− ti
tj

dt .

Denoting by Gi(ti) this objective function, we get that

d

dti
Gi(ti) = −1 +

∫ 1

ti

i∑
j=1

1

tj
dt , and

d2

dt2i
Gi(ti) = −

i∑
j=1

1

tji
.

Therefore, Gi(ti) is a concave function and then the optimum is max{p, t∗i }, where t∗i is the
solution of d

dti
Gi(ti) = 0. In the original objective function ti appears always as max{p, ti} so

there we can simply take t∗i as the solution. Now we prove that t∗i is actually increasing in i,
so it is also the optimal solution before doing the relaxation. In fact, t∗i satisfies∫ 1

t∗i

i∑
j=1

1

tj
dt = 1 .

Note that the left-hand side of this equation is decreasing in t∗i , and is increasing in i. Thus,
necesarily t∗i ≤ t∗i+1, for all i ≥ 1. We conclude that t∗i satisfies Equation (2.5) by simply
integrating on the left-hand side of the last equation.

Now that we have the best algorithm in the family, we prove that its success guarantee is
actually the best possible. To do this, we first characterize the algorithm that achieves the
highest success probability for fixed sampling probability p and instance size n.

For a non-decreasing function ℓ : [n] → [n], we define the sequential-ℓ-max algorithm in
the following way.

Definition 2.7. Let ℓ : [n]→ [n]. The sequential-ℓ-max algorithm accepts the i-th observed
value (considering the values from S and the ones that have been revealed from V) if it is
the largest seen so far from V and it is larger that the ℓ(i)-th largest value from S.

We prove that the optimal algorithm is in this class.

Lemma 2.8. Fix a sampling probability p and an instance size n. There is a function ℓ such
that the sequential-ℓ-max algorithm obtains the best possible success probability for instances
of size n of ROSp.

66

Proof. We study the optimal ordinal policy obtained with backward induction, and prove
that it is in fact a sequential-ℓ-max algorithm for certain ℓ. Recall that we can assume the
optimal policy is ordinal, so this algorithm will be optimal not only among ordinal algorithms.

Denote by Xi = απ(i) the i-th value, in the order of increasing arrival times. Denote by
R(X1, . . . , Xj) the relative ranks of values X1, . . . , Xj. In what comes, we use the notation
R(X1, . . . , Xj) = x to condition on a particular realization x of the relative ranks. Let x
be a realization of the ranks such that Xj is the maximum in V so far, i.e., Xj = maxV ∩
{X1, · · · , Xj}, and has rank r among X1, · · · , Xj. Then,

P
(
Xj = maxV

∣∣∣ R(X1, . . . , Xj) = x
)

= P
(
Xj+1, . . . , Xn have overall rank at most r + 1

∣∣∣ R(X1, . . . , Xj) = x
)

= P
(
Xj+1, . . . , Xn have overall rank at most r + 1

)
=

r−1∏
s=0

j − s
n− s

.

The optimal policy is to accept Xj if this probability is larger or equal than the probability of
picking maxV after rejecting Xj if from j+1 onwards we use the optimal policy, conditional
on R(X1, . . . , Xj) = x.

Let now x′ be a realization of R(X1, . . . , Xj+1) such that the relative rank of the best of
V up to step j+1 is r. Suppose that conditional on R(X1, . . . , Xj+1) = x′, the probability of
winning if we use the optimal strategy from j+2 onwards depends solely of n, j +1 and the
relative rank r, for all possible ranks r. Denote this conditional probability by W (n, j+1, r).
We want to inductively prove that this is in fact true for all n, j and r. It is of course
true in the last step, when j + 1 = n, so we do induction on j. Let x′′ be a realization of
R(X1, . . . , Xj) such that the relative rank of the best of V up to step j is r. We have that

P
(
win after j

∣∣∣ R(X1, . . . , Xj) = x′′
)

= P
(
Xj+1 has relative rank ≥ r + 1

∣∣∣ R(X1, . . . , Xj) = x′′
)
·W (n, j + 1, r)

+
r∑

r′=1

P
(
Xj+1 has relative rank r′

∣∣∣ R(X1, . . . , Xj) = x′′
)

·max

{
W (n, j + 1, r′),

r′−1∏
s=0

j + 1− s
n− s

}
. (2.6)

But for all x,

P
(
Xj+1 has relative rank r′

∣∣∣ R(X1, . . . , Xj) = x
)
=

1

j + 1
.

This proves the inductive step. Therefore, W (n, j, r) is well defined for all n, j and r, and
the optimal policy accepts Xj that has relative rank r and is the maximum so far in V if and
only if

r−1∏
s=0

j − s
n− s

≥ W (n, j, r) .

67

From Equation (2.6) it is easy to check that W (n, j, r) is decreasing in j for fixed n, r and
increasing in r for fixed n, j.6 Therefore the optimal policy is the sequential-ℓ-max algorithm,
for ℓ defined as

ℓ(j) = max

{
r :

r−1∏
s=0

j − s
n− s

≥ W (n, j, r)

}
.

This concludes the proof of the lemma.

To conclude the optimality of ALGt∗ we show that the success probability of the best
sequential-ℓ-max algorithm for each n converges to Equation (2.1) for some sequence t, when
n grows to infinity. To this end we first calculate the success probability of a sequential-ℓ-max
algorithm.

Lemma 2.9. Fix n, p and a non-decreasing function ℓ. Consider an integer h such that
0 ≤ h < n, and define ℓ̂(i) = min {ℓ(i), h+ 1} for all i ∈ [n]. The success probability of the
sequential-ℓ-max algorithm, conditional on |S| = h, is given by

1

n− h

1−
ℓ̂(h+1)−1∏

j=0

h− j
n− j

+

n−1∑
i=h+1

 i∑
r=h+1

1

n− i

 1

i− h

ℓ̂(r)−1∏
j=0

h− j
i− j

− 1

n− h

ℓ̂(r)−1∏
j=0

h− j
n− j

− 1

n− h

ℓ̂(i+1)−1∏
j=0

h− j
n− j

 .

(2.7)

Proof. We calculate first the probability of some events. For i ∈ {h + 1, . . . , n}, denote by
Ai the event that the i-th element is the largest of V and the algorithm never stops. Notice
that Ai is equivalent to the event that the overall largest ℓ̂(i) elements are in S, and the
i-th element is the largest of V (for this equivalence it is necessary that ℓ is non-decreasing).
Therefore, we have that

P(Ai) =
1

n− h

ˆℓ(i)−1∏
j=0

h− j
n− j

.

Note that this is 0 if ℓ̂(i) = h + 1. Now, for h + 1 ≤ r ≤ i ≤ n, define Br,i the event that
the r-th element is the largest among positions {h+ 1, . . . , i} and the algorithm does not
stop before i + 1. This is equivalent to the event that the r-th element is the largest among
positions {h+ 1, . . . , i} and the largest ℓ̂(r) elements among positions {1, . . . , i} are in S.
Thus,

P(Br,i) =
1

i− h

ℓ̂(r)−1∏
j=0

h− j
i− j

.

6At an intuitive level it is also easy to be convinced of this: as time passes it is harder to win, and if only
low values (with large rank) have appeared, it is easier to win in the future.

68

Now, note that Br,i \ Ar is the event that the r-th element is the largest among positions
{h+ 1, . . . , i}, but not of V , and the algorithm does not stop before i + 1. Note also that
Ar ⊆ Br,i. Therefore, the probability that the algorithm does not stop before i + 1 and the
maximum of V is among positions {i + 1, . . . , n} is

i∑
r=h+1

P(Br,i)− P(Ar) =
i∑

r=h+1

1

i− h

ℓ̂(r)−1∏
j=0

h− j
i− j

− 1

n− h

ℓ̂(r)−1∏
j=0

h− j
n− j

.

Conditional on this event, the probability that the number in the i+1-th position is the largest
of V is 1/(n− i), because the relative order within positions {i + 1, . . . , n} is independent of
this event. Thus, we obtained the probability that the i + 1-th element is the largest of V
and the algorithm does not stop before i + 1. To obtain the probability of winning in step
i + 1, we have to subtract the probability that the i + 1-th element is the largest of V , but
the algorithm never stops, i.e., P(Ai+1). Therefore, the probability of winning at step i + 1 is

1

n− i

i∑
r=h+1

 1

i− h

ℓ̂(r)−1∏
j=0

h− j
i− j

− 1

n− h

ℓ̂(r)−1∏
j=0

h− j
n− j

− 1

n− h

ℓ̂(i+1)−1∏
j=0

h− j
n− j

.

The probability of winning at step h + 1 is slightly different, because the algorithm never
stops before it. In that case the probability of winning is

1

n− h

1−
ℓ̂(h+1)−1∏

j=0

h− j
n− j

 .

Adding these expressions concludes the proof of the lemma.

We then show that there is a limit for the optimal ℓ in a continuous space, and use a
Riemann sum analysis to obtain Equation (2.1) in the limit, proving Theorem 2.3.

Lemma 2.10. Fix a sampling probability p. For each n ∈ N, choose ℓp,n so that the
sequential-ℓp,n-max algorithm achieves the best possible success probability for fixed p and n.
There exists a sequence t such that the success probability of the sequential-ℓp,n-max algorithm
converges to Equation (2.1) when n grows to infinity.

Proof. First we show that the function ℓ that maximizes Equation (2.7), in a certain sense
converges to a function ℓ̃ : (0, 1) → N. Then, we do a Riemann sum analysis to show that
the success probability of the sequential-ℓ-max algorithm converges to an expression in terms
of ℓ̃, and then we show that this can be equivalently expressed as Equation (2.1) for some
sequence t.

Except for terms that vanish when n tends to infinity, Equation (2.7) can be rewritten as

n∑
r=h+1

 n∑
i=r

1

n− i

 1

i− h

ℓ̂(r)−1∏
j=0

h− j
i− j

− 1

n− h

ℓ̂(r)−1∏
j=0

h− j
n− j

− 1

n− h

ℓ̂(r)−1∏
j=0

h− j
n− j

 . (2.8)

69

To find the optimal ℓ(r) we simply maximize the following term as a function of s.

Fn(r, s) =
n∑
i=r

1

n− i

(
1

i− h

s−1∏
j=0

h− j
i− j

− 1

n− h

s−1∏
j=0

h− j
n− j

)
− 1

n− h

s−1∏
j=0

h− j
n− j

.

Between s and s+ 1 the change is

Fn(r, s+ 1)− Fn(r, s)

=
n∑
i=r

1

n− i

(
h−s
i−s
− 1

i− h

s−1∏
j=0

h− j
i− j

−
h−s
n−s
− 1

n− h

s−1∏
j=0

h− j
n− j

)
−

h−s
n−s
− 1

n− h

s−1∏
j=0

h− j
n− j

=
n∑
i=r

1

n− i

(
− 1

i− s

s−1∏
j=0

h− j
i− j

+
1

n− s

s−1∏
j=0

h− j
n− j

)
+

1

n− s

s−1∏
j=0

h− j
n− j

= β(n, s, h)

(
n∑
i=r

1

n− i

(
1− n− s

i− s

s−1∏
j=0

n− j
i− j

)
+ 1

)
,

where β(n, s, h) is a positive term, so the sign of this difference is not affected by it. The
other term is decreasing in s, so Fn(r, s) is maximized when this differences changes sign. In
other words, it is maximized in

ℓ∗n(i) = min

{
s ∈ [n] :

n∑
i=r

1

n− i

(
1−

s∏
j=0

n− j
i− j

)
+ 1 ≤ 0

}
.

Now, doing a Riemann sum analysis, we have that ℓ̃(τ) = limn→∞ ℓ∗n(⌊τn⌋) satisfies

ℓ̃(τ) = min

{
s ∈ N :

∫ 1

τ

(
1

1− t

(
1− 1

ts+1

)
+ 1

)
dt ≤ 0

}
. (2.9)

Thus, interpreting Equation (2.8) as a Riemann sum, and noting that |S|/n converges to p
almost surely, we have that the success guarantee of the optimal policy converges to∫ 1

p

∫ 1

τ

1

1− t

(
1

t− p

(p
t

)ℓ̃(τ)
− 1

1− p
pℓ̃(τ)

)
dt− 1

1− p
pℓ̃(τ) dτ .

From Equation (2.9) it is clear that ℓ̃ is non-decreasing, so we can define the sequence
ti = inf

{
τ ∈ [p, 1] : ℓ̃(τ) ≥ i

}
and rewrite the limiting success guarantee in terms of it. Thus,

we obtain

∞∑
i=0

(∫ ti+1

ti

∫ 1

τ

1

1− t

(
1

t− p

(p
t

)i
− 1

1− p
pi
)

dt dτ −
tii+1 − tii
1− p

)
.

If we rearrange the terms, turning the integral from ti to ti+1 into the difference between the

70

integral from ti to 1 and the integral from ti+1 to 1, we obtain∫ 1

p

∫ 1

τ

1

(t− p)(1− p)
dt dτ − p

1− p

+
∞∑
i=1

(∫ 1

ti

∫ 1

τ

1

1− t

((
p
t

)i − (p
t

)i−1

t− p
− pi − pi−1

1− p

)
dt dτ +

ti
(
pi − pi−1

)
1− p

)

=
1

1− p
−

∞∑
i=1

pi−1

(∫ 1

ti

∫ 1

τ

1

1− t

(
t− p

ti(t− p)
− 1− p

1− p

)
dt dτ + ti

1− p
1− p

)
=

1

1− p
−

∞∑
i=1

pi−1

(∫ 1

ti

∫ 1

τ

1

ti(1− t)
(
1− ti

)
dt dτ + ti

)

=
1

1− p
−

∞∑
i=1

pi−1

(∫ 1

ti

∫ 1

τ

i−1∑
j=0

tj

ti
dt dτ + ti

)

=
∞∑
i=1

pi−1

(
1− ti −

∫ 1

ti

∫ 1

τ

i∑
j=1

1

tj
dt dτ

)

=
∞∑
i=1

pi−1

(
1− ti −

∫ 1

ti

i∑
j=1

t− ti
tj

dt

)
.

This concludes the proof, since we defined the ti’s in a way that they satisfy ti = max {p, ti}.

Finally, we study the success guarantee of ALGt∗ in the border values of p, and show
that it actually becomes equal to the best possible among all algorithms. It is easy to see
that the success guarantee is 1/e when p = 0. Note that when p = 0, Equation (2.1)
simplifies to t1 ln(1/t1), and that Equation (2.5) yields t∗1 = 1/e. Substitution gives the
success guarantee of 1/e. The case when p tends to 1 is a bit more involved and requires
some tedious calculations. We evaluate Equation (2.1) with the first order approximation
t∗i ≈ t′i := 1− c/i, where c is a constant. To fix c we impose that (t′i) satisfies Equation (2.5)
in the limit when i→∞. More precisely, we take c such that

1 = lim
i→∞

ln

(
1

1− c/i

)
+

i−1∑
j=1

(1− c/i)−j − 1

j

=

∫ 1

0

ecx − 1

x
dx .

With this in hand we use a Riemann sum analysis to show the next lemma, which states that
when p tends to 1, this approximation converges to the explicit expression of [112, 113] for
γ.

Lemma 2.11. Let t′i = 1 − c/i, where c is the solution of
∫ 1

0
ecx−1

x
dx = 1. When evaluated

in t′, Equation (2.1) tends to

γ = e−c + (e−c − 1− c)
∫ ∞

1

x−1e−cx dx ≈ 0.5801 , (2.10)

71

when p tends to 1.

Proof. We analyze separately the sum when p = max{p, t′i} and when t′i = {p, t′i}. We call
the first part V1, which includes the terms up to i = ⌊ c

1−p
⌋, and V2 the rest.

V1 = lim
p→1

⌊ c
1−p⌋∑
i=1

pi−1

(
1− p−

∫ 1

p

i∑
j=1

t− p
tj

dt

)

= lim
p→1

⌊ c
1−p⌋∑
i=1

pi−1

(
1− p−

∫ 1

p

dt+

∫ 1

p

dt

ti
−
∫ 1

p

i∑
j=1

1− p
tj

dt

)

= lim
p→1

⌊ c
1−p⌋∑
i=1

pi−1

(
p−(i−1) − 1

i− 1
− (1− p) ln(1/p)− (1− p)

i∑
j=2

p−(j−1) − 1

j − 1

)

= lim
p→1

⌊ c
1−p⌋∑
i=1

1− pi−1

i− 1
− lim

p→1

⌊ c
1−p⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e−(j−1) ln p − 1

j − 1

= lim
p→1

⌊ c
1−p⌋∑
i=1

1− (p
1

1−p)(i−1)(1−p)

(i− 1)(1− p)
(1− p)− lim

p→1

⌊ c
1−p⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e−
(j−1)

i
i ln p − 1

(j − 1)/i
· 1
i

Interpreting these two sums as Riemann sums, we obtain

V1 =

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ 1

0

e−x ln y − 1

x
dx dy

=

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ 1

0

e−x ln y − 1

−x ln y
(− ln y) dx dy

=

∫ c

0

1− e−x

x
dx−

∫ 1

e−c

∫ − ln y

0

ex − 1

x
dx dy

=

∫ c

0

1− e−x

x
dx−

∫ c

0

∫ e−x

e−c

ex − 1

x
dy dx

=

∫ c

0

1− e−x − (e−x − e−c)(ex − 1)

x
dx

= e−c

∫ c

0

ex − 1

x
dx

= e−c

∫ 1

0

ecx − 1

x
dx

= e−c ,

72

where the last step comes from the definition of c. On the other hand, we have that

V2 = lim
p→1

∞∑
i=⌊ c

1−p⌋+1

pi−1

(
c

i
−
∫ 1

1− c
i

i∑
j=1

t− 1 + c/i

tj
dt

)

= lim
p→1

∞∑
i=⌊ c

1−p⌋+1

pi−1

(
c

i
−
∫ 1

1−c/i

dt+

∫ 1

1−c/i

1

ti
dt−

∫ 1

1−c/i

i∑
j=1

c/i

tj
dt

)

= lim
p→1

∞∑
i=⌊ c

1−p⌋+1

pi−1

(
(1− c/i)−(i−1) − 1

i− 1
+
c

i
ln(1− c/i)−

i∑
j=2

c
(1− c/i)−(j−1) − 1

i(j − 1)

)

= lim
p→1

∞∑
i=⌊ c

1−p⌋+1

(pi−1 − pi) (1− c/i)
−(i−1) − 1

1−p
− ln p

(i− 1)(− ln p)

− lim
p→1

∞∑
i=⌊ c

1−p⌋+1

pi−1 − pi
1−p
− ln p

i(− ln p)

i∑
j=2

c
(
(1− c/i)−i j−1

i − 1
)

j/i
· 1
i
,

where in the last equality we omitted a term that vanishes when p tends to 1. We again
interpret the sums as Riemann sums.

V2 =

∫ e−c

0

ec − 1

ln(1/x)
dx− c

∫ e−c

0

1

ln(1/x)

∫ 1

0

ecy − 1

y
dy dx

= (ec − 1− c)
∫ e−c

0

1

ln(1/x)
dx

= (e−c − 1− c)
∫ ∞

1

x−1e−cx dx .

In the second equality we used the definition of c and in the third one we performed a change
of variables. Summing V1 and V2 we get Equation (2.10).

2.5 Computation of the time thresholds
In this section we discuss how to compute the optimal time thresholds t∗. Notice that by
Lemma 2.6, t∗ does not depend on p, nor in n, and therefore it is enough to compute them
once. However, since t∗ is an infinite sequence, a reasonable question is how well we can do
if we compute only finitely many of these thresholds.

Denote by γ(p) the optimal success guarantee for a given p ∈ [0, 1). To achieve a success
guarantee of γ(p)−ε for a given ε > 0, it is sufficient to compute O

(
1

ε·(1−p)

)
many thresholds

within an O(ε2(1−p)2) margin of error each. The reason for this is that our algorithm can fail
(compared to ALGt∗) if the best element of the interval [p, 1] falls too close to the thresholds
(closer than the margin of error), or after the last threshold we computed, which by the
first-order approximation is 1− O(ε(1− p)). But the best element of the interval [p, 1] falls
in a set of measure ε(1− p) with probability ε and therefore we can ignore this event while

73

Table 2.1: Approximation of the first 10 optimal time thresholds within an error of 10−7.

t∗1 ≈ 0.3678794 t∗6 ≈ 0.8709762
t∗2 ≈ 0.6422006 t∗7 ≈ 0.8887973
t∗3 ≈ 0.7518116 t∗8 ≈ 0.9022956
t∗4 ≈ 0.8101810 t∗9 ≈ 0.9128731
t∗5 ≈ 0.8463645 t∗10 ≈ 0.9213851

only losing ε in the success probability. Since the thresholds satisfy Equation (2.5), and the
left-hand side is monotone, we can compute them using binary search in the interval [0, 1].
If we assume that the left-hand side of Equation (2.5) can be computed in O(i) time for a
given i (because it has i terms), we obtain the following.

Lemma 2.12. For any given p ∈ [0, 1], instance size n, and ε > 0, we can compute thresholds
t̃ that approximate t∗ and such that ALGt̃ has a success probability of at least γ(p) − ε in
time O

(
1

ε2(1−p)2
log
(

1
ε(1−p)

))
.

Table 2.1 provides the first ten optimal time thresholds.

2.6 Numerical experiments

In this section, we implement our algorithms and evaluate them on the data set of [70]. In
their paper, they design a large-scale online experiment in which people repeatedly play a
secretary problem. The values each player faces are drawn i.i.d. from a distribution unknown
to them and their total number is the same in every game. The main goal is to study exper-
imentally the evolution of the players’ stopping behavior. In particular, the main research
question posed is whether the players progressively learn a near-optimal stopping strategy as
they gain more experience. [70] use a Bayesian comparison framework to model the players’
behavior and conclude that the estimated thresholds are indeed very close to the ones of [69]
(i.e., the optimal ones for i.i.d. values from a known distribution) after only a few games.

We start by observing that our independent sampling model can be applied to their
repeated secretary problem in a straightforward way; the first game is precisely the classic
secretary problem or ROS0. Now, note that the second game closely corresponds to ROS1

2
;

we can imagine the values of the first game as our samples and the values of the second game
as the online values. All values are i.i.d. and the two sets have equal sizes. Our independent
sampling model with p = 1

2
and the values of both games as the n input values α1, α2, · · · , αn,

would also result in splitting them into two sets of roughly equal size. Applying the same
reasoning, the third game closely corresponds to ROS2

3
, and so on; the i-th game corresponds

to ROS i−1
i

. In general, our model and this repeated secretary problem would be equivalent
in the limit as n → ∞, but for small values of n, we essentially ignore the variance of the
independent sampling process. Since our algorithms are guaranteed to be optimal in a very
similar model, they can serve as a meaningful benchmark for studying the players’ strategies
across games. By doing so, we hope to provide new insights and strengthen the existing
ones regarding the players’ behavior. In particular, and as mentioned in Section 2.2, our new

74

comparison can help explain up to which extent players optimally use the information they
have at each game and, as a result, resolve some behavioral issues raised by [70]. Since the
values are i.i.d. (thus, closer to random order than adversarial) and players could choose the
order of inspecting the elements (of course without knowing their values or the distribution
over them), ALGt is the natural candidate to use as the main benchmark, especially since
its guarantee converges to the algorithm of [69].

First, we describe in more detail the behavioral experiment, the methodology, and the
results obtained in [70]. The participants of the online experiment were directed to a simple
interface, in which they were presented with a number of boxes containing money (i.e., hidden
values). They could open the boxes in any order they wanted and decide when to stop. The
interface would not let them terminate the game if the value with which they stopped was
not a local maximum. After the end of each game, they were told if they won, how far away
they were from the maximum value, and they would observe all the values of that game.
They were also incentivized to play at least six games. The values for each player were
drawn independently from an identical unknown distribution across all games. Each player
was randomly assigned to one of three candidate distributions with the same support but
with very different density functions; the first had high negative skew, the second was the
uniform distribution, and the third had high positive skew. Each player was also randomly
assigned to play games of 7 boxes or 15 boxes (recall that the game becomes harder as the
number of boxes increases). In the end, 6,637 people participated and were distributed across
the aforementioned random choices. They played a total of 48,836 games, for an average of
7.39 games per player.

The data set of the experiments contains the following information for each player: in
which distribution and to which number of boxes they were assigned, how many games they
played, the number of each game (if it was the first game, the second, and so on), the value
and the rank of the box with which they stopped at each game, and the values of all opened
boxes. What is not included in the data set of [70], although the players observed them
at the end of each game, are the values of the remaining closed boxes. Nevertheless, this
is not a major issue; since we know the distribution from which the values were drawn, we
can complement each instance with random values that would be very similar to the realized
ones.

Their data shows that the players rapidly improve their performance in early games, thus
exhibiting substantial learning. The effects of learning are not as strong in later games,
and the players eventually converge to a probability of success that is five to ten percentage
points below the theoretical optima (that is, the guarantee given by the optimal algorithm of
[69] with perfect knowledge of the distribution). The authors focus on modeling the players’
strategies and attempt to fit several models they define to the data. In the first game, they
observe that the thresholds belong to the class of what they call “value oblivious” strategies,
which also contains the solution to the classical secretary problem. After the first game, the
authors conclude that the players play according to a multi-threshold strategy. Therefore,
there is a switch in strategies from the first to the second game. Note that the optimal
algorithm of [69] and our optimal algorithm for ROSp also compute a series of (decreasing)
thresholds. To investigate at which rate players learn to play optimally, [70] compute the
players’ estimated thresholds for the seven box games; they show that these converge quickly

75

to the optimal ones of [69] and are very close to them already in the fourth game. Finally,
they give some potential explanations for the strategy switch from the first game to the
second (see also Section 2.2). One important takeaway from that work is that for such
fundamental optimal stopping problems, their results indicate that “the optimal procedure is
likely to give a close approximation of human behavior. This is in contrast to many other
areas of economics.”. Our experimental results, which we present next, will provide strong
further support to this insight.

2.6.1 Experimental setup

For our experiments, the first thing to do is to complete the missing data of the real-world
data set. Since for each game the rank and the value of the box the player stopped with,
the value distribution, and the values of the opened boxes are known, we generate the values
of the unopened boxes using rejection sampling. This is a necessary step for ALGt since it
uses the whole sample set to fix the thresholds. We generate 100 such complete instances
by independently generating the missing data 100 times and take the average success rate
of ALGt (i.e., the fraction of instances in which the algorithm stopped with the maximum
value) for each game as our final result. For a fair comparison with the work of [70], we
also perform no cleaning on the data by excluding, e.g., players who did not put any effort
into winning. After the end of each game, we add the values of the boxes to our sample set
S. Thus, we know that e.g., in the third game the samples are twice as many as the online
values. In this case, as we explained before, we run our algorithm with p = 2

3
. All our results

are plotted for the first 9 games. We made this choice so that, on the one hand, we are
consistent with some of the important figures of [70] (e.g., Figures 8 and 9) and, on the other
hand, because less than a quarter of the players played more than nine games.

2.6.2 Experimental results

We present in Figure 2.2 the results of evaluating ALGt on the data of [70] complemented with
the generated values of the unopened boxes. To calculate the series of decreasing thresholds
of ALGt we have to solve Equation (2.5); it is faster to search for the solution for each
threshold using binary search and stop when we are ε-close to the solution of the equation
(here, we set ε = 10−7).

As we observe from Figures 2.2a and 2.2b, the evolution of the success rates of the players
and ALGt exhibit a very strong correlation, both for seven and fifteen boxes. This suggests
that the players play according to some strategy that is similar to ALGt all along (i.e., a
series of decreasing thresholds), but (slightly) suboptimally. Moreover, the difference in the
success rates is similar across games, and in particular, it slightly decreases in the first few
games, and from game 4 onward it remains stable. These results strengthen the belief that
for this type of simple online selection problems the optimal algorithm provides good insights
into how players behave. Figure 2.2c provides additional supporting evidence to the claim
that the players quickly learn how to play strategies that are close to the optimal. The figure
shows the percentage of players that played close to optimal in the sense that the ranking
of the chosen value of a near-optimal player and that of ALGt differ by at most one. We
observe that there is a strong learning effect in the first approximately four games. Starting
at game 6 it remains relatively stable, and it even decreases slightly in the subsequent games.

76

(a) The success rate of the players and ALGt for
the first nine games and their difference for seven
boxes.

(b) The success rate of the players and ALGt for
the first nine games and their difference for fifteen
boxes.

(c) Percentage of players who picked a value with
ranking at most one away from the value ALGt

picks.

Figure 2.2: Comparison of the players’ behavior with the optimal algorithm for ROSp for
seven and fifteen boxes.

Nonetheless, around 80% of the players (and a bit less for the harder case of 15 boxes) learn
how to play close to optimal after only a few games.

77

Chapter 3

Fairness in Online Selection: The
Multi-Color Secretary Problem

The sharp growth in data availability that characterizes modern society challenges our pro-
cessing capabilities, not only because of its massiveness, but also because of the increasing
strict social norms that society seeks in the algorithms processing it. For instance, machine
learning algorithms are now used to make credit and lending decisions, to estimate the success
of a kidney transplant, to inform hiring decisions, to recommend schools to pupils, among
others. Therefore there is a founded concern over the use of algorithms that may violate
social norms. Two basic such norms, that are receiving significant attention are fairness
and privacy, and while a formalization of the latter is relatively well established through the
notion of differential privacy [53], the former is much more unexplored from an algorithmic
perspective [83].

In this chapter, we are particularly interested in the study of fairness in online selection.
Not only has the area seen many recent theoretical developments, but also it naturally en-
compasses many real-world decision-making processes where biased evaluations should be
avoided, such as those mentioned earlier.

Specifically, we consider the basic single-item selection model given by the secretary prob-
lem, in which items are classified into different groups. In our secretary model, two candidates
from different groups are incomparable. A precursor of the study of fairness in the secre-
tary problem is the work of [19], who studied, among other things, an incentive-compatible
version of the secretary problem in which the selection probability does not depend on the
arrival position of a candidate. More recently, [75] have studied machine learning algorithms
for biased versions of the secretary problem, whereas [22] studies similar issues from the
perspective of online learning. The term fairness has been used for various concepts in the
machine learning community. We adopt here the common notion used in various previous
works [78, 23, 24, 25, 31, 30], where we ask that the solution obtained is balanced with respect
to some sensitive attribute (e.g., race, gender).

78

3.1 Summary of Results

We propose a fundamental problem in fair online selection, concerned with selecting a single
candidate. Candidates are partitioned into different groups or colors. The candidates arrive
sequentially and upon arrival of a candidate we have to irrevocably decide whether we want
to select the candidate or not. In this setting, which we call multi-color secretary problem,
candidates arrive in uniform random order and we can rank candidates within a group, but
we cannot compare candidates across groups. There is also a prior probability that the best
candidate from a group is the best candidate overall. The problem models situations in which
different qualities of the candidates make them largely incomparable (this could arise in some
form due to gender, race, social origin, type of education, etc.). The goal is to maximize the
probability with which we stop at the best overall candidate and compare it with that for the
offline optimum. Note that here the offline optimum simply picks the best candidate from
the group of largest prior probability. Thus, it is extremely unfair. One may think that the
best possible online algorithm is to mimic the offline optimum; namely, to select the group
of largest prior probability and then run the classic secretary algorithm on that group. We
prove that this is not the case, and indeed our main result is to obtain the best possible online
algorithm for the problem and to establish that it satisfies very desirable fairness properties.
Hence, for this variant of online selection, fairness follows as a consequence of being online
optimal.

More specifically, our main result for the multi-color secretary problem (Theorem 3.3)
characterizes the optimal online algorithm and gives a closed formula for its competitive
ratio. In the case where there are k groups and the maximum is equally likely to come from
any of these groups, the competitive ratio is k

1
k−1 (Corollary 3.4). This is 2 for k = 2,

√
3 for

k = 3, and 1 + O(log k
k

) as k → ∞. In regard to fairness, we show that for equal priors over
k groups and arbitrary group sizes, the optimal online algorithm does not choose from all
groups with equal probability (a property we coin 1-fairness), but approaches this property
exponentially fast in the minimum group size (Theorem 3.10). For general priors over k
groups, we show that when two groups j, j′ have a similar prior pj > pj′ > (1 − ε)pj, then
the probability that the optimal online algorithm selects color j and the probability that it
selects color j′ are within ε of each other (Theorem 3.11). To exemplify this bound, consider
the case where there are two groups, men and women, and the prior is such that the top
candidate is a woman with probability 60% and a man with probability 40%. This translates
into having ε = 1/3 in the theorem statement, and thus the optimal online algorithm will
pick a woman at most 33% more often than a man.

We also present a set of experiments to illustrate the effectiveness of the proposed algo-
rithm. We consider both synthetic and real world data sets, and compare to natural bench-
mark algorithms: (a) running the secretary algorithm ignoring the colors, and (b) choosing
a color according to the prior and then running the secretary algorithm on that color. We
consider a data set from a Portuguese banking institution. The goal of this experiment is to
select a client and contact them and ask for their feedback. In order to achieve high quality
feedback, we want to maximize the phone call duration while being fair with respect to the
age of the interviewee. We consider five age groups, and that the best candidate of each
group is the best overall with equal probability. In this example, the algorithm that ignores
the colors is very unfair. It picks from the fourth age group in 80% of the runs. Both the

79

fair benchmark algorithm and our optimal online algorithm pick from the five groups with
roughly equal probability, but our algorithm selects more elements (+34.7%) and also more
often the maximum element of a color (+76%).

Finally, we propose and analyze a sample-driven version of the multi-color secretary prob-
lem, along the lines of the model presented in Chapter 2. We propose a large class of
algorithms that contains the optimal algorithms for the case of one color, and the case of
many colors and no samples; and we find a closed formula for their success probability (The-
orem 3.13).

3.2 Illustrative Example
Suppose you are hiring a professional for a position and have four candidates to fill it. Two
come from school A and two from school B. You can compare candidates coming from the
same school, but you cannot compare across schools. Suppose, in addition, that from previous
experience, you know that 60% of the time the best candidate comes from school A. If the
process is offline, and you can see all candidates simultaneously, the best strategy is to pick
the best candidate from school A. This guarantees you a probability of picking the overall best
of 0.6. On the contrary, if the process is online as in the secretary problem, and candidates
come in random order, the situation changes dramatically. A natural idea would be to simply
ignore the candidates from school B and run the secretary algorithm on the candidates from
school A. For n = 2 the secretary algorithm selects the best with probability 1/2, so you end
up selecting the overall best candidate with probability 0.3. You could do instead something
that is fairer to the candidates from school B: wait until you see the second candidate from
any of the two schools. If they are the best from their school, select them. If not, select
a candidate from the other school. One can easily show that with this policy you end up
selecting the best candidate with probability 0.375. Indeed, the probability that the second
candidate of a school arrives before the second of the other school is 1/2, and this candidate
is the best of their school with probability 1/2, so the probability of selecting the overall best
is

1

2

(
1

2
0.6 +

1

2
· 1
2
0.4

)
+

1

2

(
1

2
0.4 +

1

2
· 1
2
0.6

)
=

3

8
= 0.375.

Thus, in the online setting, we can take advantage of the fact that in some realizations we
observe both candidates from B before the second candidate from A. Our general result
leverages this idea, by skipping a fraction of the candidates of each color, where the fraction
depends continuously on the prior probability that the overall best candidate is of that color.

3.3 Related Work
An important precursor to our work is the aforementioned paper by [19]. Their starting
point is the observation that the optimal policy for the classic secretary problem introduces
incentives for candidates to arrive late. Indeed, that optimal policy skips the first 1/e fraction
of candidates, and then selects the first candidate that is best-so-far. With this in mind, [19]
look for incentive-compatible policies. That is, policies in which the acceptance probabili-
ties for each of the arrival positions have to be the same. [89] use this paradigm to study
fairness in the online allocation of tasks to workers. They model this problem through the

80

weighted secretary problem with k positions, and design incentive-compatible algorithms for
this problem.

A different approach to modeling fairness in online allocation problems is that of [98].
They consider the online allocation of a scarce resource, but not from a revenue optimization
viewpoint. Rather they study the fill rate —the ratio of the allocated amount to observed
demand— and seek algorithms maximizing the minimum fill rate.

Other works have considered different types of bias in online selection. [2] study a variant
of the classic secretary problem in which candidates are evaluated independently by two
committee members with different objectives. In their model each candidate is described
by a pair of scores (x, y), where x and y are distributed uniformly and independently on
[0, 1] and observable by both selectors. One committee member is interested in x, and the
other in y. The utility that the firm derives from a candidate is assumed to be (x + y)/2.
Unanimous hiring decisions are respected, while candidates with a split decision are hired
with probability p. A consensus cost c is deducted from the utility of a selector who has
rejected a candidate that is nevertheless hired. The main result is that each stage game has
a unique (symmetric) equilibrium which involves setting two thresholds z < v. A selector
recommends hiring if her value is at least v, or her value is at least z and the other value is
at least v. They then examine how p and c affect the utilities of the selectors and the firm
at equilibrium.

[75] study the k-secretary problem, where the goal is to maximize the sum of weights of the
candidates hired, when the algorithm observes biased evaluations, and propose algorithms for
mitigating these biases. Their first model assumes that the candidates are partitioned into
g groups G1, . . . , Gg; and that for a candidate e ∈ Gi the algorithm observes w̃(e) = w(e)/βi
where w(e) ≥ 0 is the candidate’s true value and βi ≥ 1 is a bias factor shared by all members
of that group. They seek algorithms that satisfy ranked demographic parity. This requires
that (a) candidates of different groups that share the same rank within their group should
be accepted with the same probability and (b) a candidate’s acceptance probability should
be monotonically increasing in the candidate’s rank within her group. For adversarial group
assignment and adversarial weights, they show a lower bound of Ω(g) on the competitive
ratio of any online algorithm, and give a ((g + 1)e2)-competitive algorithm. They also con-
sider a model, where the candidates are partially ordered, and adjust their notion of ranked
demographic parity to that situation. For this model they show a lower bound of Ω(ω) on
the competitive ratio of any online algorithm, where ω is the width of the poset; and they
give an online algorithm that achieves a competitive ratio of 2e3(2ω + 1)(1 + o(1)) as the
number of candidates tends to infinity.

[96] and [66] don’t take a fairness perspective, but study secretary problems which share
features of our model. [96] consider the problem of selecting a maximal secretary from a
partially ordered set of candidates. Their algorithm skips the first τ(k) elements where k
is the number of maximal secretaries. Afterwards, it takes any undominated candidate,
provided that among the candidates seen so far there are at most k undominated secretaries.
This latter condition may make them pass on undominated candidates that arrive early in the
sequence, but it will never pass on the last maximal candidate in the permutation. They show
that this algorithm succeeds wit probability at least k−k/(k−1)((1 + log k1/(k−1))k − 1). This

81

approaches 1/e as k → 1, and 1 as k grows large. For the special case where the poset consists
of k chains, they show that their algorithm succeeds with probability k−1/(k−1)−O(k/n), while
no online algorithm can achieve a better success probability than k−1/(k−1)− o(1). This final
result is also applicable to our problem, but only in the special case where the best secretary
is equally likely to come from any of the groups.

[66] study the problem of selecting candidates in parallel: each candidate is randomly
assigned to one of Q queues and candidates can only be compared with other candidates
in the same queue. Only the first D candidates in each queue can be hired. The objective
is to select k secretaries, and to hire as many of the top k secretaries as possible. For a
given parameter d ∈ N, they show that if k = 1 and D = n/d, then with Q = 1 queue
the best possible ratio is (de)−1, while with Q = d queues it is possible to achieve a ratio
of d−d/(d−1) − o(1). The connection to the poset model and our model is that the uniform
random assignment to queues can be interpreted as assigning each secretary one of Q colors
uniformly at random, with all secretaries assigned to the same color forming a chain. The
best secretary in a chain is the best secretary overall with probability 1/Q. So this model is
again restricted to the case where the best secretary overall is equally like to come from any
of the groups.

A final set of related works consider secretary and/or prophet problems with restrictions
on which information is available to the decision maker. [15], for example, consider an
optimal stopping problem where the decision maker gets imperfect information about random
variables presented to her one-by-one, such as the expected reward or some multi-dimensional
signal and the expected reward conditional on that signal.

3.4 Preliminaries

In the multi-color secretary problem n candidates arrive in uniform random order. Candidates
are partitioned into k groups C = {C1, · · · , Ck}. We write n = (n1, . . . , nk) for the vector of
group sizes, i.e., |Cj| = nj, for all 1 ≤ j ≤ k. We identify each of the groups with a distinct
color and denote by c(i) the color of candidate i. We can compare candidates of the same
color, but we cannot compare candidates across groups. We assume comparisons are strict,
and use i ≻ i′ to denote that candidate i is better than candidate i′. We write maxCj for the
best candidate of color j, and maxC for the best candidate overall. A natural assumption
is that the best candidate from a group is the best candidate overall with equal probability
1/k, but we can also consider the case where these probabilities are different. We denote the
probabilities with which the best candidate of group j is the best candidate overall by pj, and
write p = (p1, . . . , pk) for the vector of these probabilities. Since candidates are incomparable
across groups this can be modeled by tossing a coin after the fact to decide whether the best
candidate of group j is the best candidate overall. The goal is to design an online algorithm
that maximizes the probability of selecting the best candidate overall.

Competitive ratio. We evaluate online algorithms by means of their competitive ratio.
Consider some online algorithm ALG. The algorithm selects the best candidate overall, if it
selects the best candidate of a given color and this color has the best candidate overall. For
an instance of the multi-color secretary problem with group sizes n and probabilities p, we

82

denote by ALG(n,p) ∈ {1, ..., n}∪{ϕ} the random index at which the algorithm stops, where
ϕ denotes the case when the algorithm does not stop. The success probability of ALG is
E[1ALG(n,p)=maxC] = E[pc(ALG(n,p))·1ALG(n,p)=maxCc(ALG(n,p))

]. We compare this to the optimal
offline algorithm OPT, i.e., the best algorithm that can select a candidate after all candidates
have arrived. An optimal strategy is to choose a color j with maximum pj, and then, choose
the best candidate of that color. We denote by OPT(n,p) ∈ {1, ..., n} the random index
that OPT selects. The success probability of OPT is E[1OPT(n,p)=maxC] = max{p1, . . . , pk}.

Definition 3.1 (competitive ratio). Fix k and p = (p1, . . . , pk). An online algorithm ALG
is β(k,p)-competitive if for all input lengths n and partition sizes n = (n1, . . . , nk),

E[1OPT(n,p)=maxC]

E[1ALG(n,p)=maxC]
≤ β(k,p).

Note that β(k,p) ≥ 1, and the smaller β(k,p) the better the approximation guarantee.

Unbiased selection. We also examine the extent to which online or offline algorithms
are biased, where ideally selection should be unbiased. One way to measure this is by
quantifying how much the probability of selecting from any given color class j can differ from
the corresponding probability pj.

Definition 3.2 (fairness). Fix k and p = (p1, . . . , pk). An offline or online algorithm ALG
is α(n,p)-fair, where α(n,p) ≥ 1, if for all colors j ∈ [k],

pj
α(n,p)

≤ P(c(ALG(n,p)) = j | ALG(n,p) ̸= ϕ)

≤ α(n,p) · pj.

Uniform arrival times. We model uniform random arrival order through uniform random
arrival times. For this, we sample n independent realizations of the Uniform[0, 1] distribution,
and denote them by τ1 < τ2 < . . . < τn indexed in increasing order.

3.5 Optimal Online Algorithm
We derive the optimal online algorithm (without fairness considerations), and observe that—
in sharp contrast to the optimal offline algorithm—it is robustly fair and provides an “equal
treatment of equals” guarantee.

3.5.1 The Algorithm

We show that the optimal online algorithm is from the class of algorithms given by Algo-
rithm 2. Algorithms from this class receive as input a vector of thresholds t = (t1, . . . , tk), one
for each color j ∈ [k]. When a candidate i arrives the algorithm first checks if the candidate
arrived after the time threshold for its color tc(i), and if it did, then it accepts the candidate
if it is the best candidate of that color so far.

83

Algorithm 2 GroupThresholds(t)
Input: t ∈ [0, 1]k, a threshold in time for each group
Output: i ∈ [n], index of chosen candidate
assuming arrival times τ1 < . . . < τn

for i← 1 . . . n do
if τi > tc(i) then

if i ≻ max{i′ | τi′ ≤ τi, c(i
′) = c(i)} then

return i
end if

end if
end for

Notice that the time based arrival model considered in this section is equivalent to the
random order arrival model and is used for the sake of simplicity of presentation and proofs.
If we are given an algorithm in the time-based model (such as Algorithm 2), then we can
translate it into the random arrival model by having the algorithm draw n arrival times from
Uniform[0, 1], and assign the i-th smallest arrival time to the i-th candidate in the input
stream. If, on the other hand we are given an algorithm in the uniform arrival model, then
we can translate it into the time-based model by just ignoring the time component and just
using that the candidate that arrived at τi was the i-th candidate to arrive.

Therefore any algorithm in one model can be easily used in the other model with identical
properties.

3.5.2 Competitive Ratio

Surprisingly, we can show that for any probabilities p = (p1, . . . , pk) there exist optimal
thresholds t∗ = (t∗1, . . . , t

∗
k) that achieve the best competitive ratio. Later on, we show how

these thresholds can be computed explicitly (see Lemma 3.8). Using these thresholds in
Algorithm 2 results in the promised optimal online algorithm. Let us start by presenting the
success probability of our algorithm for general probabilities and then for the special case
that p = (1/k, . . . , 1/k). Afterwards we provide an overview of the proof of these results.

Theorem 3.3 (competitive ratio, general probabilities). Fix k and p = (p1, . . . , pk). Assume
wlog that pj ≥ pj+1 for all j < k. Then there exist thresholds t∗ = (t∗1, . . . , t

∗
k) such that

t∗j ≤ t∗j+1 for all j < k that depend only on the number of colors k and the probabilities
p but not on the number of candidates n or the partition sizes n = (n1, . . . , nk) such that
Algorithm 2 with thresholds t∗ succeeds with probability at least

k∑
j=1

∫ t∗j+1

t∗j

(
j∑

j′=1

pj′

)
T ∗
j

τ j
dτ ,

where T ∗
j =

∏j
j′=1 tj′. For all k and p = (p1, . . . , pk), no online algorithm can achieve a

better competitive ratio in the worst-case over all number of candidates n and partition sizes
n = (n1, . . . , nk).

84

For the special case where p = (1/k, . . . , 1/k) we obtain the following corollary. It shows
that in this case we can set a single threshold, and it also provides a simpler-to-parse formula
for the competitive ratio.

Corollary 3.4 (competitive ratio, equal probabilities). Fix k and p = (1/k, . . . , 1/k). Then
there exists a single threshold t∗ such that Algorithm 2 with thresholds t∗ = (t∗, . . . , t∗)
achieves a competitive ratio of

k
1

k−1 .

This is 2 for k = 2,
√
3 for k = 3, and 1 + O(log k

k
) as k → ∞. For all k and p =

(1/k, . . . , 1/k), no online algorithm can achieve a better competitive ratio in the worst-case
over all number of candidates n and partition sizes n = (n1, . . . , nk).

The main difficulty in proving Theorem 3.3 and Corollary 3.4 is that in the point-wise
optimal online algorithm, which can be obtained by backward induction, thresholds depend
on the number of candidates of each color that have already arrived. This dependency leads
to a blow-up in algorithm complexity, and complicates the analysis of the success probability.
Our high-level approach is to argue that in the worst-case all nj’s are large, and that in this
case the point-wise optimal online algorithm is well approximated by the optimal algorithm
from the class of algorithms desbribed in Algorithm 2, which simply sets time-dependent
thresholds. So we can optimize over these. We decompose the proof into several lemmas,
and summarize at the end of the section how they imply Theorem 3.3.

A first ingredient in our proof is Lemma 3.5, which shows that for the class of algorithms
in Algorithm 2, for any vector of thresholds t the worst-case arises when all nj’s are large .

Lemma 3.5. Fix the probabilities p = (p1, . . . , pk) and a vector of thresholds t ∈ [0, 1]k. For
all j = 1, . . . k, the success probability of GroupThresholds(t) is decreasing in nj.

Proof. By symmetry it is enough to prove the lemma for j = 1. Fix values for n1, n2, . . . , nk

and consider an instance with these sizes. We prove that the success probability of Group-
Thresholds(t) in this instance is lower than the success probability in the instance with
n1 − 1 candidates of group 1, and nj candidates of groups j > 1 that results from removing
the worst candidate of group 1. In fact, we can couple the realizations of the arrival times
of the two instances by taking the arrival times of the smaller instance and sampling the
arrival time of the worst candidate of group 1. Consider a realization for the smaller instance
where GroupThresholds(t) fails. Then, either it never accepts a candidate or it accepts
a candidate that is not the overall maximum. In any of the two cases, adding the worst
candidate of group 1 does not alter the relative ranks of other candidates, so the only possible
difference is that the algorithm now selects him. Since he cannot be the best candidate, the
algorithm also fails.

Our next pair of lemmas, Lemma 3.6 and Lemma 3.7, allow us to bound the success
probability of the point-wise optimal online algorithm by the limit success probability of the
best algorithm which sets time-dependent thresholds (Algorithm 2).

85

Lemma 3.6. Denote by GT(p, t) the limit when minj nj tends to infinity of the success
probability of GroupThresholds(t) for a given vector of probabilities p. If minj tj ≥ c > 0,
then the success probability of GroupThresholds(t) is at most GT(p, t) + k · (1 − c)z,
where z = minj nj.

Proof. Fix a vector of probabilities p. Consider a vector t such that minj tj ≥ c and two
vectors of sizes n,n′, such that nj < n′

j for all j ∈ [k]. Denote by GT (p, t,n) and GT (p, t,n′)
the success probabilities of GroupThresholds(t) when the instance is of size n and n′,
respectively.

Couple the arrival times of the two instances in the following way. For each color j, identify
the nj candidates of color j of the smaller instance with the best nj candidates of color j
in the larger instance. Now, we run in parallel GroupThresholds(t) in the two coupled
instances. This means that in the smaller instance we will be ignoring the smallest n′

j − nj

candidates of the larger instance. Note that the smallest elements do not alter the relative
rank of the largest elements. Thus, if the algorithm in the smaller instance stops, then the
algorithm running in the larger instance either stops with the same candidate, or stops earlier
with one of the smallest n′

j−nj candidates of some color j. Now, for a given color j, if one of
the best nj candidates arrives before tj, then the algorithm in the larger instance will never
select any of the smallest n′

j − nj candidates. Therefore, if for all colors j, at least one of
the largest nj candidates of color j arrives before tj, the two algorithms stop with the same
candidate. In other words, if the two algorithms stop with different candidates, necessarily
for some color j the best nj candidates arrived all after tj. Using a union bound, the latter
event happens with probability at most

∑k
j=1(1− tj)nj , which in turn is at most k · (1− c)z,

where z = minj nj. Therefore,

GT (p, t,n)− k · (1− c)z ≤ GT (p, t,n′).

Note that only the right-hand side depends on n′, so we can take limit when minj n
′
j tends

to infinity, which by Lemma 3.5 exists, and conclude the result.

Lemma 3.7. For any vector of probabilities p and sizes n, denote by ON(n,p) the optimal
success guarantee of an online algorithm. Then for every p,n there exists a vector t such
that On(n,p) ≤ GT(p, t) + o(1), where minj tj ≥ 1/(2e).

Proof. Consider the optimal online algorithm obtained doing backward induction. This
is, when facing a candidate i that is the best seen so far of color c(i), and having seen rj
candidates of color j, for j ∈ [k], accept candidate i if the probability that i is the overall
best is larger or equal to the probability that we select the best overall if we do not stop with
i and continue using the optimal policy. Denote by b(c(i), r) the former probability, and by
B(r) the latter probability. Thus, the optimal algorithm stops if b(c(i), r) ≥ B(r).

On the one hand we can calculate exactly b(c(i), r). Let j = c(i). It is the probability
that the best of the first rj candidates of color j is the best candidate overall. Now, the best
of the first rj candidates of color j is the best of color j with probability rj/nj, and the best
of color j is the best overall with probability pj. Therefore, b(c(i), r) = b(j, r) = pj · rj/nj,

86

which is an increasing function of rj. On the other hand, B(r) is not as easy to calculate,
but it is easy to see that it is a decreasing function of rj, for all j ∈ [k].

Suppose we are considering a candidate arriving at time t. If minj′ nj′ is large, we have
that rj/nj ≈ t. Taking advantage of this fact, we approximate the optimal online algorithm
with the following that we denote by ON′(n,p). We accept a candidate of color j that
arrives at time t if he is the best of color j seen so far, and b(j, ⌊tn⌋) ≥ B(⌊tn⌋), where
⌊tn⌋ := (⌊tr1⌋, . . . , ⌊trk⌋). By the monotonicity of b and B, for each color j there is a value
t′j such that b(j, ⌊tn⌋) ≥ B(⌊tn⌋) if and only if t ≥ t′j. Thus, it turns out that for t′ defined
this way, ON′(n,p) is actually GroupThresholds(t′).

We prove first that minj t
′
j ≥ 1/(2e). In fact, note that the success probability of the

optimal algorithm must be at least 1
e
maxj pj, because we can always apply the regular

secretary algorithm in the color with highest pj. Also, the probability that the optimal
online algorithm selects the overall best candidate before time 1/(2e) is at most 1

2e
maxj pj,

since the best of a color arrives before time 1/(2e) with probability 1/(2e). Therefore, the
probability that the optimal algorithm finds the overall best candidate after time 1/(2e) is
at least 1

2e
maxj pj, and therefore, B(⌊n/(2e)⌋) ≥ 1

2e
maxj pj. Recall that b(j, r) = pjrj/nj,

so b(j, ⌊n/(2e)⌋) ≤ pj/(2e). Thus, we conclude that t′j ≥ 1/(2e) for every j ∈ [k]. Using
Lemma 3.6 we have that ON′(n,p) ≤ GT(p, t′) + k · (1− 1

2e
)minj nj .

Now we prove that ON′(n,p) approximates well ON(p,n). Consider some small ε > 0.
We show that (1) for large minj nj, the probability that either of the two algorithms stops
with a color j in [t′j − ε, t′j + ε] is small, and (2) that outside that interval the two algorithms
make the same decisions with high probability.

For the first fact, note that both algorithms stop only with a candidate that is the best
seen so far of the same color. Now, if the best candidate of color j in the interval [0, t′j + ε]
arrives in [0, t′j − ε], the algorithm will not stop with a candidate of color j in [t′j − ε, t′j + ε].
Thus, either of the two algorithms stops in [t′j− ε, t′j + ε] with a candidate of color j for some
j ∈ [k], with probability at most

∑k
j=1

2ε
t′j
≤ 4eεk.

For the second fact, we prove that with high probability, for each j ∈ [k], at time t = t′j−ε,
r ≤ t′jn and at time t = t′j + ε, r ≥ t′jn, where the comparisons are element-wise. We use the
following standard Chernoff bounds. If X is a binomial random variable and 0 < δ < 1, then

P(X ≥ (1 + δ)E(X)) ≤ e−
1
3
δ2E(X), and

P(X ≤ (1− δ)E(X)) ≤ e−
1
3
δ2E(X).

Since rj at time t distributes as a Binomial(nj, t), we can use these bounds to get that at
time t = t′j − ε,

P(rj ≥ t′jnj) ≤ exp

(
−1

3
ε2nj(t

′
j − ε)

)
,

and at time t = t′j + ε,

P(rj ≤ t′jnj) ≤ exp

(
−1

2
ε2nj(t

′
j + ε)

)
.

87

Since t′j ≥ 1/(2e) for all j, we can take ε = 20
lognj√

nj
and use a union bound to obtain that with

probability 1−O(k
minj′ nj′

), for each j ∈ [k], at time t = t′j− ε, r ≤ t′jn and at time t = t′j + ε,
r ≥ t′jn. From the monotonicity of b and B, we have that with probability 1 − O(k

minj′ nj′
),

for all j ∈ [k], before time t′j − ε it holds that b(j, r) < B(r), and after time t′j + ε it holds
that b(j, r) > B(r).

Putting together facts (1) and (2), we get that with probability 1 − O

(
k
log(minj nj)√

minj nj

)
,

ON′(n,p) and ON(n,p) select the same candidate. Thus, when minj nj tends to infinity,

ON(n,p) ≤ ON′(n,p) + o(1) ≤ GT(p, t′) + o(1).

This concludes the proof of the lemma.

The final ingredient is the following pair of lemmas, Lemma 3.8 and Lemma 3.9, which
solve for the optimal time-dependent thresholds and give a formula for evaluating the limit
success probability in terms of these thresholds.

Lemma 3.8. Consider a vector p such that pj ≥ pj+1 for all j < k. The optimal thresholds
t∗ are given by

t∗k = (1− (k − 1)pk)
1

k−1 ,

t∗j = t∗j+1 ·

(∑j
r=1

pr
j−1
− pj∑j

r=1
pr
j−1
− pj+1

) 1
j−1

, for 2 ≤ j ≤ k − 1

t∗1 = t∗2 · e
p2
p1

−1
.

Proof. From the formula in Lemma 3.9 we can check that in the optimal vector t∗, it holds
that t∗j ≤ t∗j′ if pj ≥ pj′ , by simply interchanging consecutive tj’s. With this in hand, we
can assume w.l.o.g. that p1 ≥ p2 ≥ · · · ≥ pk and t∗1 ≤ t∗2 ≤ · · · ≤ t∗k. We impose first order
conditions to obtain the recursive formula.

Consider 1 ≤ j ≤ k. We have that

∂

∂tj
GT(p, t) =

1

tj

k∑
ℓ=j

∫ tℓ+1

tℓ

(
ℓ∑

r=1

pr

)
Tℓ
τ ℓ

dτ − pj
Tj

tjj
.

Setting this derivative equal to zero we obtain the equation

pj
T ∗
j

t∗j−1
j

=
k∑

ℓ=j

∫ t∗ℓ+1

t∗ℓ

(
ℓ∑

r=1

pr

)
T ∗
ℓ

τ ℓ
dτ, (3.1)

for all 1 ≤ j ≤ k.

88

For the case of j = k, note that
∑k

r=1 pr = 1, so we obtain the following formula for t∗k.

pk

t∗k−1
k

=
1

k − 1

(
1

t∗k−1
k

− 1

)
⇔ t∗k = (1− (k − 1)pk)

1
k−1 .

For 1 ≤ j ≤ k − 1 we can substract Equation (3.1) for two consecutive indices, obtaining

pj
T ∗
j

t∗j−1
j

− pj+1

T ∗
j+1

t∗jj+1

=

∫ t∗j+1

t∗j

(
j∑

r=1

pr

)
T ∗
j

τ j
dτ

⇔ pj

t∗j−1
j

− pj+1

t∗j−1
j+1

=

∫ t∗j+1

t∗j

(
j∑

r=1

pr

)
1

τ j
dτ. (3.2)

For i ≥ 2, this is equivalent to

pj

t∗j−1
j

− pj+1

t∗j−1
j+1

=
1

j − 1

(
j∑

r=1

pr

)(
1

t∗j−1
j

− 1

t∗j−1
j+1

)

⇔ t∗j = t∗j+1

(∑j
r=1

pr
j−1
− pj∑j

r=1
pr
j−1
− pj+1

) 1
j−1

.

For j = 1 Equation (3.2) becomes

p1 − p2 = p1

∫ t∗2

t∗1

1

τ
dτ

⇔ p1 − p2 = p1 log(t
∗
2/t

∗
1)

⇔ t∗1 = t∗2 exp

(
p2
p1
− 1

)
.

This concludes the proof of the lemma.

Lemma 3.9. Consider vectors of probabilities p and thresholds t, and assume ti ≤ ti+1 for
all i < k. The limit success probability of GroupThresholds(t) is given by

GT(p, t) =
k∑

j=1

∫ tj+1

tj

(
j∑

j′=1

pj′

)
Tj
τ j

dτ ,

where Tj =
∏j

j′=1 tj′.

Proof. Since we are interested in the limit probability, we can assume that in every interval
at least one candidate of each color arrives. First, note that the algorithm does not stop

89

before time τ if and only if for every color j, the best candidate that arrives in [0, τ] arrives
before tj. This happens with probability

k∏
j=1

min{τ, tj}
τ

.

Now, the algorithm stops with the best candidate of color j′ if this candidate arrives at a
time τ ≥ tj′ and the algorithm does not stop before time τ . Therefore, conditioning on τ ,
the probability that the algorithm selects the best candidate of color j′ is∫ 1

tj′

k∏
j=1

min{τ, tj}
τ

dτ.

If the algorithm stops with the best candidate of color j′, the algorithm succeeds with prob-
ability pj′ . Therefore, in total the algorithm succeeds with probability

k∑
j′=1

pj′

∫ 1

tj′

k∏
j=1

min{τ, tj}
τ

dτ

=
k∑

j′=1

pj′
k∑

j=j′

∫ tj+1

tj

Tj
τ j

dτ

=
k∑

j=1

∫ tj+1

tj

(
j∑

j′=1

pj′

)
Tj
τ j

dτ,

where tj+1 := 1 and Tj =
∏j

r=1 tr.

Putting together these lemmas yields Theorem 3.3.

Proof of Theorem 3.3. From Lemma 3.5 we have that the success probability of the al-
gorithm is at least its limit. Lemma 3.8 characterizes the optimal thresholds, and from
Lemma 3.7 we have that in the limit the optimal online algorithm has the same success
guarantee as GroupThresholds(t∗), so no other algorithm can have a better worst-case
guarantee.

3.6 Fairness
The optimal offline algorithm is 1-fair for p = (1/k, . . . , 1/k), but as soon as probabilities
are unbalanced it will choose only from the colors which have maximum pj. In the worst
case, |pj − pj′ | < ε for all j, j′, but the optimal offline algorithm is forced to choose from the
unique color j which has maximum pj. We show that in the case where pj = 1/k for all j,
the optimal online algorithm is not exactly 1-fair, but approaches 1-fairness exponentially
fast in the minimum group size minj nj.

90

Theorem 3.10 (fairness result, equal probabilities). For any k and p = (1/k, . . . , 1/k),
Algorithm 2 with the optimal single threshold t∗ is 1 +O(k2(1− 1

e
)minj nj)-fair.

Proof. From the first order conditions, we have that

∂

∂t1
GT(p, t∗) = 0

⇔ 1

t∗1
GT(p, t∗)− p1 = 0

⇔ GT(p, t∗) = p1 · t∗1.

Since the optimal success probability is at least p1/e, we have that t∗1 ≥ 1/e.

To see that the algorithm is 1 + O(k2(1 − 1/e)minj nj)-fair, consider an instance of sizes
n′
1 = n′

2 = · · · = n′
k = maxj nj. Certainly in this other instance the algorithm is 1-fair,

because all the thresholds are equal. We couple the two instances by identifying the best
nj candidates of color j of the larger instance with the candidates of color j of the smaller
instance, and run the algorithm in both, in parallel. In color j, the worst n′

j − nj candidates
do not alter the relative rank of the best nj candidates, and if one of the best nj candidates
arrives before time t∗j , then the algorithm in the larger instance will not select one of the worst
n′
j − nj candidates. Therefore, in order for the two algorithms to select a different candidate

we need that for some color j all the best nj candidates arrive after t∗j . This happens with
probability at most

∑k
j=1(1−t∗j)nj ≤ k(1− 1

e
)minj nj . In the larger instance the algorithm stops

with each color with probability Θ(1/k), so k(1− 1
e
)minj nj is an O(k2(1− 1

e
)minj nj) fraction

of it, and therefore the algorithm in the smaller instance is 1 +O(k2(1− 1
e
)minj nj)-fair.

Moreover, we show that the optimal online algorithm is robust and degrades gracefully as
we move away from perfectly balanced probabilities.

Theorem 3.11 (fairness result, general probabilities). Fix k and p = (p1, . . . , pk). Algo-
rithm 2 with the optimal choice of thresholds t∗ = (t∗1, . . . , t

∗
k) ensures that if pj = pj′ then

t∗j = t∗j′. Moreover, t∗ is a continuous function of p. So if pj and pj′ are close so are t∗j
and t∗j′ and so is the probability of selection. More precisely, if pj > pj′ > (1 − ε)pj, then
t∗j′ > t∗j > (1− ε)t∗j′, and furthermore,

0 < P(GroupThresholds(t∗) selects color j)
−P(GroupThresholds(t∗) selects color j′) < ε.

Proof. The facts that pj = pj′ implies t∗j = t∗j′ and that t∗ is continuous in p follow directly
from the formulas in Lemma 3.8.

We prove now the more precise bound. Assume p1 ≥ p2 ≥ · · · ≥ pk, and that pj+1 ≥
(1− ε)pj. We will prove first that t∗j ≥ e−εt∗j+1. From Lemma 3.8, it holds trivially for j = 1.

91

For j ≥ 2 we have that t∗j/t∗j+1 equals(∑j
r=1

pr
j−1
− pj∑j

r=1
pr
j−1
− pj+1

) 1
j−1

≥

(∑j
r=1

pj
j−1
− pj∑j

r=1
pj
j−1
− pj+1

) 1
j−1

≥

(
j

j−1
− 1

j
j−1
− (1− ε)

) 1
j−1

=

(
1

1 + (j − 1)ε

) 1
j−1

= exp

(
− log(1 + (j − 1)ε)

j − 1

)
≥ e−ε.

Consider now non-consecutive j < j′. Assume pj′ = (1− ε)pj, and for j ≤ r ≤ j′ − 1 define
εr such that (1− εr) = pr+1

pr
. This means that (1− ε) =

∏j′−1
r=j (1− εr). Now, we have that

t∗j
t∗j′

=

j′−1∏
r=j

t∗r
t∗r+1

≥ exp

(
−

j′−1∑
r=j

εr

)
≥

j′−1∏
r=j

(1− εr) = (1− ε).

To bound the difference between the probabilities of selecting colors j and j′ when pj ≥ pj′ ≥
(1− ε)pj, note first that conditional on that the algorithm does not stop before t∗j′ , it stops
with either of the two colors with equal probability. Thus, the difference is the probability
that the algorithm stops with color j in the interval [t∗j , t∗j′]. Now, this is upper bounded by
the probability that the best candidate of color j from those that arrive in [0, t∗j′] arrives in
[t∗j , t

∗
j′], which is at most

t∗j′ − t∗j
t∗j′

= 1−
t∗j
t∗j′
≤ 1− (1− ε) = ε,

Concluding the proof of the theorem.

To exemplify the conclusion of the last theorem consider that we have two colors, say men
and women, and that the prior is such that the top candidate is a woman with probability
60% and a man with probability 40%. This translates into having ε = 1/3 in the statement
of the theorem, which implies that the algorithm will pick a woman at most 33% more often
than a man. See Section 3.7 for more examples and empirical validations of these results.

To wrap up the section, observe that for the case of equal probabilities, i.e. p = (1/k, . . . , 1/k),
Corollary 3.4 and Theorem 3.10 imply that Algorithm 2 is 1+ o(1)-competitive and 1+ o(1)-
fair. Unfortunately, these two properties cannot be simultaneously achieved for a general p.
Indeed, consider an instance where p1 = 1/

√
k and pi = (1 − p1)/(k − 1) for all 2 ≤ i ≤ k.

Let ALG be an α-fair algorithm. Its success probability is
k∑

i=1

pi ·P(ALG selects the best of color i) ≤
k∑

i=1

αp2i =
α

k
+ α

(1− p1)2

k − 1
≤ 2α

k
.

92

On the other hand, the optimal offline algorithm always selects from color 1, and therefore
gets the best candidate with probability p1 = 1/

√
k. So the competitive ratio of any α-

fair algorithm is not better than
√
k/(2α). In particular, if we want an algorithm that is

β-competitive and γ-fair, then max{β, γ} ≥ k1/4/2.

3.7 Empirical Evaluation

In this section we empirically validate our results on synthetical and real-world experiments1.
We compare our algorithm (Algorithm 2) with the following two baselines, which are based
on the optimal solution to the classic secretary problem [100, 55, 68]:

1. Secretary algorithm (SA): This algorithm first computes the maximum value in the first
1/e-fraction of the stream, and then picks any element with higher value afterwards.
This algorithm does not consider the colors of elements.

2. Single-color secretary algorithm (SCSA): This algorithm first picks a color proportional
to the p values, and then runs the secretary algorithm on the elements of that color.
This algorithm does not consider the elements whose color is different from the chosen
one.

For all the experiments in this section, we run all the algorithms 20, 000 times. We report
the number of times that i) the algorithm selects an element from each of the colors, ii) the
number of times the selected element has the highest value in its color.

Synthetic dataset, equal p values. In this experiment, we create a synthetic dataset as
follows. There are four colors with 10, 100, 1000, and 10000 occurrences. The value of each
element is chosen independently and uniformly at random from [0, 1], so the p values are
the same for all the colors, i.e., p = (1/4, 1/4, 1/4, 1/4). In Figure 3.1 (a), we present the
result for this dataset. We observe that our algorithm and SCSA pick almost equal number
of times from each color,2 while SA picks almost only from the forth color. Therefore both
our algorithm and SCSA are fair while SA does not satisfy the fairness expectations. We also
observe that the number of elements picked by our algorithm is 1.305 times higher than in
SCSA (+30.5%), and it picks the maximum element of the color and hence the best element
overall 1.721 times more often than SCSA (+73.1%). Therefore the quality of the solution
of our algorithm is significantly higher than that of SCSA.

Synthetic dataset, general p values. In this experiment, we create a synthetic dataset
with four colors of sizes 10, 100, 1000, 10000 and p = (0.3, 0.25, 0.25, 0.2). The results are
presented in Figure 3.1 (b). We observe that both the distributions of the picked element
for our algorithm and SCSA is close to the p distribution while for SA it is clearly differ-
ent. Moreover, our algorithm performs significantly better than SCSA since it picks 1.309
times more elements (+30.9%) and 1.630 times more maximum element of the picked color
(+63.0%).

1An implementation of these experiments is available at https://github.com/google-research/
google-research/tree/master/fairness_and_bias_in_online_selection.

2The slight difference is due to the random nature of the algorithm.

93

https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection

Feedback maximization. We consider a dataset containing one record for each phone
call by a Portuguese banking institution [103]. The goal of this experiment is to select a
client and contact them and ask for their feedback. In order to achieve high quality feedback,
we want to maximize the length of the call while being fair with respect to the age of the
interviewee. We divide the clients into 5 colors: under 30, 31-40, 41-50, 51-60, and more that
61 years old. For the sake of being fair, we let p = (1/5, 1/5, 1/5, 1/5, 1/5). In Figure 3.1
(c), we present the obtained results (along with the number of the records in the input for
each color). Similar to the previous experiments, we observe that our algorithm and SCSA
pick almost equal number of the times from each color while SA picks mostly (80% of the
runs) from the forth color. Morevoer, we observe that our algorithm picks 1.347 times more
elements than SCSA (+34.7%), and that it picks the maximum element of the color 1.760
times more often (+76.0%).

Influence maximization. We consider a dataset containing the influence of the users of
the Pokec social network [116]. The influence is computed as the number of the followers
for each user. Selecting influencers has numerous applications, e.g., in advertising. In this
experiment we want to be fair with respect to the body mass index (BMI) of the selected in-
fluencers. Therefore we divide the users into 5 colors according to their BMI: under weighted,
normal, over weighted, obese type 1, and obese type 2. We let p = (1/5, 1/5, 1/5, 1/5, 1/5).
The results are presented in Figure 3.1 (d).3 Similar to the previous experiments our al-
gorithm and SCSA picks almost equal number of each color while the Secretary algorithm
picks only from two colors. Moreover, we observe that our algorithm picks 1.373 times more
elements than SCSA (+37.3%), and picks the maximum element of the color 1.756 time more
often than SCSA (+75.6%).

3.8 Sample-Driven Multi-Color Secretary Problem
In this section we formulate a sample-driven version of our multi-color secretary problem,
along the lines of the ROSp model of Chapter 2. In this problem, again we have n candi-
dates, partitioned into k groups C = {C1, . . . , Ck}, of sizes n = (n1, . . . , nk). Each of the n
candidates is placed in the set S independently with a given probability p, and otherwise she
is placed in the set V . We get to observe all candidates in S, this is, their colors, and their
relative ranks within their colors. Then, we observe one by one in uniformly random order
the candidates in V . For each new candidate, we observe her color, and her relative rank
within the candidates of the same color we have already observed (including those in S). We
are given prior probabilities (q1, . . . , qk), where qj is the probability that the best candidate
of V is of color j. We want to maximize the probability of selecting the best candidate of
V . In other words, if we denote by Vj the set of candidates of color j in V , then we want to
choose an algorithm ALG that maximizes

k∑
j=1

qj · P(ALG selects best of Vj),

which we call the success probability of ALG. To avoid some technical issues, when Vj = ∅
we interpret “ALG selects the best of Vj" as true. Notice that for fixed p, as nj grows, the

3For ease of representation, this experiment is ran 106 times.

94

probability that Vj = ∅ decays exponentially fast to zero.

We extend the definition of GroupThresholds, combining it with the algorithm in
Chapter 2. We take the perspective of uniform arrival times in [0, 1], where candidates
that arrive before p are in S. For thresholds t = (tj,ℓ)

k,∞
j=1,ℓ=1 in [0, 1], we define SD-

GroupThresholds(t) as the algorithm that, upon observing a candidate of color j at
time τ that is best so far in V and has relative rank ℓ, accepts her if tj,ℓ ≤ τ .

As for the regular version of the algorithm, we can show that its success probability
decreases with nj, for all j.

Lemma 3.12. For fixed p, (q1, . . . , qk), and t, the success probability of the algorithm SD-
GroupThresholds(t) is decreasing with nj, for all j = 1 . . . k.

Proof. We take an instance with sizes n = (n1, . . . , nk) and increase it in one candidate.
W.l.o.g. assume the new candidate is of color 1, so we get an instance n′ = (n1+1, n2, . . . , nk).
We couple the decisions of the algorithm in both instances by first drawing the arrival times
of the best nj candidates of each color j, and separately the arrival time of the (n1 + 1)-th
candidate of color 1. We argue that in a realization of the arrival times where the algorithm
fails with n, it also fails with n′. In fact, for such a realization, in the smaller instance Vj ̸= ∅
for all j, and for some j, the algorithm selects a candidate that is not the best of Vj, or
never stops. Adding the (n1 + 1)-th candidate of color 1 does not affect the relative ranks
of the rest, so the only different action the algorithm could do in the larger instance would
be to select the (n1 + 1)-th candidate of color 1. But V1 was nonempty before adding this
candidate, so she cannot be the best of V1. Therefore, the algorithm also fails in the larger
instance.

Now, similar to Lemmas 2.5 and 3.9, we can calculate the limit success probability of
SD-GroupThresholds(t).

Theorem 3.13. The limit success probability of SD-GroupThresholds(t) is

k∑
j=1

qj

∫ 1

p

∑
ℓ:tj,ℓ≤τ

pℓ−1 ·

1−
∑

s≥ℓ:tj,s≤τ

(p
τ

)s−ℓ
(
τ −max{p, tj,s}

τ

)
·
∏
j′ ̸=j

1−
∑

s:tj′,s≤τ

(p
τ

)s−1
(
τ −max{p, tj′,s}

τ

) dτ. (3.3)

Proof. Within this proof we refer to SD-GroupThresholds(t) be simply ALG. For a
given color j, we want to calculate P(ALG selects best of Vj). We say a candidate is acceptable
if the algorithm would accept her if it had not stopped when she arrived. For a given time
τ ∈ [p, 1], we define Nj,τ as the event that no candidate of color j that arrives in [p, τ) is
acceptable. Note that Nj,τ only depends on the arrival times of candidates of color j, so these
events are independent across colors. Now, in the limit, Vj is nonempty, so we can condition

95

on the arrival time of the best in Vj. Thus,

P(ALG selects best of Vj)

=
1

1− p

∫ 1

p

P(ALG selects best of Vj | best of Vj arrives at τ) dτ

=
1

1− p

∫ 1

p

P
(
∩kj′=1Nj′,τ and best of Vj is acceptable

∣∣ best of Vj arrives at τ
)
dτ

=
1

1− p

∫ 1

p

P (Nj,τ and best of Vj is acceptable | best of Vj arrives at τ) ·
∏
j′ ̸=j

P(Nj′,τ) dτ

=

∫ 1

p

∞∑
ℓ=1

pℓ−1 · P (Nj,τ and best of Vj is acceptable | best of Vj arrives at τ and has rank ℓ)

·
∏
j′ ̸=j

P(Nj′,τ) dτ

=

∫ 1

p

∞∑
ℓ=1

pℓ−1 · 1tj,ℓ≤τ · P (Nj,τ | best of Vj arrives at τ and has rank ℓ) ·
∏
j′ ̸=j

P(Nj′,τ) dτ

=

∫ 1

p

∞∑
ℓ=1

pℓ−1 · 1tj,ℓ≤τ ·

(
1−

∞∑
s=ℓ

1tj,s≤τ

(p
τ

)s−ℓ
(
τ −max{p, tj,s}

τ

))

·
∏
j′ ̸=j

(
1−

∞∑
s=1

1tj′,s≤τ

(p
τ

)s−1
(
τ −max{p, tj′,s}

τ

))
dτ.

Moving the indicator functions to the conditions of the sums we obtain the formula of the
lemma.

Computation of the optimal thresholds. Unfortunately, Equation (3.3) is not a sepa-
rable function, like the success probability of the analogous algorithm in Chapter 2. However,
for fixed p < 1 and given ε > 0 it is possible to approximate the optimal solution numerically,
by setting tj,ℓ = 1 for ℓ > logp(ε) = O(1/ε(1 − p)), and optimizing over the finitely-many
remaining thresholds. Doing this results in a reduction in the success probability that is not
larger than

∑
ℓ>logp(ε)

(1− p)pℓ−1 = O(ε).

3.9 Conclusion and Open Problems
In this work, we explored questions of fairness and bias in a natural multi-color variant of a
canonical problem of online selection. We designed the optimal fair online algorithm for this
problem, and validated its efficacy and fairness on synthetic and real-world data.

As in many real-world settings the online decisions go beyond the single selection model
studied here, there is ample opportunity for extending this line of work to combinatorial
settings. We expect that building on the respective lines of work in the secretary, prophet
and optimal stopping literature in general, could prove very fruitful.

96

Particularly exciting directions include an extension to matching problems [87, 58, 72],
allocation problems with matroid structure [9, 65, 90, 49], or even general combinatorial
allocation problems [61, 51].

Another interesting direction is to better understand the sample-driven variant presented
here. We believe that the class SD-GroupThresholds should contain the optimal al-
gorithm, and proving this is an open question. It would also be interesting to investigate
whether the optimal algorithm for this version also satisfies the good fairness properties
shown for GroupThresholds.

97

Input F-Pick F-Max U-Pick U-Max S-Pick S-Max
0

0.5

1

·104

N
um

be
r

of
O

cc
ur

re
nc

es

(a) Synthetic Dataset Equal p

Color 1

Color 2

Color 3

Color 4

Input F-Pick F-Max U-Pick U-Max S-Pick S-Max
0

0.2

0.4

0.6

0.8

1
·104

N
um

be
r

of
O

cc
ur

re
nc

es

(b) Synthetic Dataset General p

Color 1

Color 2

Color 3

Color 4

Input F-Pick F-Max U-Pick U-Max S-Pick S-Max
0

0.5

1

1.5

·104

N
um

be
r

of
O

cc
ur

re
nc

es

(c) Feedback Maximization

Before 30

31-40

41-50

51-60

After 60

Input F-Pick F-Max U-Pick U-Max S-Pick S-Max
0

2

4

·105

N
um

be
r

of
O

cc
ur

re
nc

es

(d) Influence Maximization

Under

Normal

Over

Obese 1

Obese 2

Figure 3.1: In this plot, we compare our fair secretary algorithm with the secretary algorithm
(SA) and the single-color secretary algorithm (SCSA) on (a) synthetic dataset, equal p values,
(b) synthetic dataset, general p values, (c) feedback maximization dataset, and (d) influence
maximization dataset. Here Input is the number of elements from each color in the input,
F-Pick and F-Max are the number of elements picked by our fair secretary algorithm and the
number of them that are the maximum among the elements of that color. Similarly, U-Pick
(S-Pick) and U-Max (S-Max) are the number of elements picked by SA and SCSA and the
number of them that are the maximum among the elements of that color.

98

Chapter 4

Optimal Item Pricing in Online
Combinatorial Auctions

In a combinatorial auction, a set of valuable items is to be allocated among a set of interested
agents. Who should get which items in order to maximize the social welfare? This is a
fundamental economic question, and a ubiquitous allocation mechanism is to simply set
a price for each item and let the agents buy their preferred subset of items under those
prices. The study of these mechanisms dates back to the investigations of Leon Walras over
a century ago, and is closely related to the notion of Walrasrian equilibrium. Understanding
the existence and approximation of Walrasrian equilibrium and related notions under pricing
mechanisms has been an active area of research in recent years [11, 60, 62, 12, 109].

In this chapter, we consider a generalization of the prophet inequality in the direction of
combinatorial auctions: instead of selling a single item to a stream of buyers, we have several
heterogeneous items on sale. We follow the approach of online combinatorial auctions and
study the welfare achieved by posted-price mechanisms in a very general setup. Specifically,
our mechanisms post a price pi on each item i. Then, buyers with randomly-drawn arbitrary
monotone valuations over the subsets of items arrive in arbitrary order, and upon arrival pick
their preferred subset among those items that are left (at the posted prices). Of course, in
this generality little can be said about the social welfare induced by posted-price mechanisms,
so it is common to parametrize the instances by d, the largest size of a set a buyer might be
interested in. This parametrization is interesting from a combinatorial perspective: finding
a socially optimal allocation is NP-hard already when d ≥ 3, and even hard to approximate
[117]. Moreover, if we restrict the buyers’ valuations to be deterministic and single-minded,1
we recover the classic hypergraph matching problem.

Our main result in this chapter is to determine the tight approximation guarantee of item
pricing as a function of d. Specifically, we prove that there always exists a posted-price
mechanism such that the expected welfare of the resulting allocation when adversarial-order
buyers iteratively purchase their preferred set (at the posted prices) is at least a 1/(d + 1)
fraction of the expected welfare of an optimal allocation (Theorem 4.1). Furthermore, we

1That is, each buyer has a fixed set T , and values a set S at a certain positive amount if T ⊆ S, and at 0
otherwise.

99

prove this bound is tight (Proposition 4.5).

Interestingly, our result generalizes and/or improves upon several results in the literature,
which we now provide context for.

As in the classic prophet inequality, a major drawback of this model in a real-world setup
is that we usually don’t have enough data to learn the distributions, and decision-makers are
reluctant to settle on specific prior distributions. We analyze the case where we only have
sample access to the distributions, and show that it is possible to compute prices that achieve
a 1/(d + 1 + ε)-approximation in polynomial time, using a polynomial number of samples.

4.1 Context and Related Work

Posted-price Mechanisms. Posted-price mechanisms are ubiquitous within economics
and computation owing to their simplicity. They are commonly used as subroutines in
truthful mechanisms that approximately maximize welfare [47, 95, 46, 4, 3]. They are also
used as subroutines in simple mechanisms to approximately maximize revenue in Bayesian
settings [28, 90, 29, 20]. Our work considers the same model initiated by [60] (welfare maxi-
mization in Bayesian settings). Other works consider restrictions on the valuations, such as
subadditive [51], while others consider the unrestricted case [50]. Our results contribute to
this line of work by providing the tight approximation guarantee of posted-price mechanisms
in this model for unrestricted valuations over sets of size at most d. In particular, our results
improve the bound of 1/(4d− 2) given in [50] to 1/(d + 1), which is tight.

Prophet Inequalities. When there is a single item (and thus d = 1) our problem is
equivalent to the single-item prophet inequality and thus our result takes the same form as the
classic result of Samuel-Cahn [111], who proved that the optimal prophet inequality (whose
factor is 1/2) can be achieved with a single threshold. A special case of our problem when
buyers are single-minded corresponds to various multiple-choice prophet inequality settings,
and our results improve upon the state-of-the-art. In particular, all prophet inequalities
deduced from our main result are non-adaptive: for each element e, a threshold Te is set at
the beginning of the algorithm. Element e is accepted if and only if we ≥ Te (and it is feasible
to accept e).

When d = 2 and buyers are single-minded, our problem translates into the matching
prophet inequality problem. Our results when d = 2 therefore extend the 1/3-approximation
of Gravin and Wang [73] from bipartite to general graphs. Note that recent work of [59]
provides a .337-approximation in this case, although it sets thresholds adaptively.

For arbitrary d when buyers are single-minded, our problem translates into the d-dimensional
hypergraph prophet inequality, which generalizes the prophet inequality problem over the in-
tersection of d partition matroids. Here, a 1/(4d− 2)-approximation was first given in [90],
and improved to 1/(e(d+1)) in [63]. A corollary of our main result improves this to 1/(d+1),
and with non-adaptive thresholds. A lower bound of [90] proves that it is not possible to
achieve an ω(1/

√
d) approximation even for this special case, but it remains an open prob-

lem to determine the tight ratio for prophet inequalities for the intersection of d partition

100

matroids (and for the d-dimensional hypergraph prophet inequality).

4.2 A Technical Highlight and Additional Results

The proof of our main result breaks down the expected welfare into the “revenue” and “utility”
achieved by setting prices, and searches for properly “balanced thresholds” as in [90, 60, 73,
50]. In particular, we target prices that are “low enough” so that a buyer with high value for
some set will choose to purchase it, yet also “high enough” so that the revenue gained when
a bidder purchases items they should not receive in the optimal allocation compensates for
the lost welfare. In comparison to prior work using a similar approach, the conditions that
guarantee such prices are more involved, and we prove their existence using Brouwer’s fixed
point theorem.

As our proof makes use of Brouwer’s fixed point theorem, it is inherently non-constructive.
We however show in Section 4.5 how to compute our prices in polynomial time. Moreover,
we show how to compute the prices when we only have access to a polynomial number of
samples of the distributions, instead of the distributions themselves. Our approach makes
use of a configuration LP relaxation to cope with the APX-hardness of optimizing welfare,
and a convex optimization formulation to find our fixed point.

In Section 4.6, we consider the special case that arises when valuations are deterministic
and buyers are single-minded. In this situation the welfare optimization problem corresponds
to matching in a hypergraph with edges of size at most d. So the problem of finding item
prices boils down to finding a set of thresholds, one for each vertex, such that the value of the
solution in which hyperedges arrive sequentially (in any order) and are greedily included in
the solution when their weight is higher that the sum of the corresponding vertex thresholds,
is as close as possible to the optimal solution. For the case of standard matching (d = 2) we
prove that there exist prices guaranteeing a factor of 1/2 of the optimal solution and that
there do not exist prices guaranteeing a factor better than 2/3. The tight factor is left as an
open problem. More generally, we prove that there are prices obtaining a fraction 1/d of the
optimal solution (thus slightly improving our general 1/(d + 1)), and that it is not possible
to do better than ∼ 1/

√
d.

Summary and Roadmap. We precisely define our model in Section 4.3. Section 4.4
presents our main result: a posted-price mechanism that achieves a 1/(d+ 1)-approximation
to the optimal expected welfare, when buyers have arbitrary monotone valuations and are
interested in sets of size at most d. Recall that this approximation guarantee is tight (we
provide a simple example witnessing this in Proposition 4.5). In Section 4.5, we show how to
compute our desired prices in polynomial time and using sample-access to the distributions.
In Section 4.6, we consider the special case where the distributions are point-masses.

101

4.3 Model
In our basic model, we have a (multi)set of items M in which there are kj ≥ 1 copies of each
item j ∈ M .2 The set of buyers, denoted by N , arrive sequentially (in arbitrary order) and
buy some of those items. Each buyer i ∈ N has a valuation function vi : 2M → R≥0, which is
randomly and independently chosen according to a given distribution Fi (defined over a set
of possible valuation functions). As it is standard, we assume that each possible realization
of each vi is monotone (i.e., A ⊆ B ⇒ vi(A) ≤ vi(B)). We parametrize an instance of the
problem by d, the size of the largest set a buyer might be interested in. Thus, if A ⊆ M is
such that |A| > d, then

v(A) = max
B⊆A,|B|=d

v(B) (4.1)

Note that while there are kj ≥ 1 copies of each item j ∈ M , no bidder achieves value from
additional copies (and therefore, without loss of generality, bidders cannot buy more than
one copy).

In this chapter, we are interested in exploring the limits of using item prices as a mechanism
to assign items to buyers. In a pricing mechanism, we set item prices p ∈ RM

≥0 and then
consider an arbitrary arrival order of the buyers (note different copies of the same item must
have the same price). Thus, buyer i buys the set of remaining items according to

max
A⊆Ri

(
vi(A)−

∑
j∈A

pj

)
, (4.2)

where Ri denotes the items for which there remains an unsold copy when i arrives. Note that
(4.2) might be solved by A = ∅, i.e., buyer i might opt not to buy anything. When there is
a tie between different sets, the buyer can choose arbitrarily, implying that our results need
to be valid even for the worst-case tiebreaking.3

More precisely, if σ is the arrival order of the buyers, so that buyer i comes at time σ(i),
then buyer i gets the set Bi(σ) = argmaxA⊆Ri(σ)

(
vi(A)−

∑
j∈A pj

)
, where Ri(σ) = {j ∈M :

kj > |{ℓ ∈ N : σ(ℓ) < σ(i) and j ∈ Bℓ(σ)}|}. With this, given an instance of the problem
(determined by M , kj for all j ∈ M , N , and Fi for all i ∈ N), the quality measure of a
price vector p ∈ RM

≥0 is the worst case (over the arrival orders) expected (over the valuations)
welfare of the allocation it induces. Denoting this quantity by ALG(p) we have that:

ALG(p) := min
σ

E

(∑
i∈N

vi(Bi(σ))

)
.

On the other hand, the benchmark we compare to throughout the chapter is the expected
value of the optimal welfare-maximizing allocation, OPT , formally defined as

OPT := E

(
max

{Ai}i∈N

{∑
i∈N

vi(Ai) : s.t. |{i ∈ N : j ∈ Ai}| ≤ kj, for all j ∈M

})
.

2Throughout the chapter M is actually a set and refers to the set of different items.
3In some of the constructions in Section 4.6 we break ties conveniently but all the results hold by slightly

tweaking the instances.

102

We denote by OPTi the random set that buyer i gets in an optimal allocation.

In Section 4.6 we consider the special case of our problem in which

(i) valuations are deterministic,
(ii) there is a single copy of each item (i.e., kj = 1 for all j ∈M), and
(iii) buyers are single-minded, i.e., each buyer i has a set Ai, with |Ai| ≤ d, such that

Ai ̸⊆ B ⇒ vi(B) = 0, Ai ⊆ B ⇒ vi(B) = vi(Ai).

Interestingly, already in this particular setup, the problem of maximizing the welfare of an
allocation corresponds to the classic NP-hard combinatorial optimization problem of hyper-
graph matching with hyperedges of size at most d. Indeed, in an optimal allocation buyer i
either gets Ai or ∅, implying that maximizing the (now deterministic) welfare of the allocation
is equivalent to finding a subset of pairwise disjoint Ai’s of maximum total valuation.

4.4 Main Result: A 1/(d + 1)-approximation for Random
Valuations

In this section we prove there exists a vector of item prices such that the resulting allocation
yields in expectation at least a 1/(d+ 1) fraction of the optimal social welfare. Additionally,
we show that this bound is tight.

Theorem 4.1. There exists a vector of prices p ∈ RM
≥0 such that

(d + 1) · ALG(p) ≥ OPT.

To prove the theorem we will make use of the following function. For each A ⊆ M and
i ∈ N , we define zi,A : RM

≥0 → R as

zi,A(p) := E

1OPTi=A ·

[
vi(A)−

∑
j∈A

pj

]
+

 ,

where [x]+ denotes max{x, 0}. The function zi,A(p) can be interpreted as follows: imagine
we calculate the optimal allocation and offer buyer i the set OPTi at the prices given by p.
Then, zi,A would be the contribution of the set A to the non-negative part of the expected
utility of buyer i.

We assume without loss of generality that |OPTi| ≤ d for all i ∈ N , so zi,A(p) = 0 if
|A| > d. We start by showing a lower bound for ALG(p) in terms of the values zi,A(p).

Lemma 4.2. For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

zi,A(p)

 .

103

Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity we denote
Bi(σ) and Ri(σ) simply by Bi and Ri. We separate the welfare of the resulting allocation
into revenue and utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑
i∈N

∑
j∈Bi

pj and Utility =
∑
i∈N

(
vi(Bi)−

∑
j∈Bi

pj

)
.

Recall that Ri is the set of items with remaining copies when i arrives. Similarly, denote by
R the set of items that have remaining copies by the end of the process. Note first that

E(Revenue) ≥ E

∑
j /∈R

kj · pj

 .

This is simply because each item j /∈ R has had all kj copies purchased. As for the utility,
for any i ∈ N , by the definition of Bi it holds that

vi(Bi)−
∑
j∈Bi

pj = max
A⊆Ri

vi(A)−
∑
j∈A

pj

Note now that vi and Ri are independent. Let (ṽi)i∈N be independent realizations of the
valuations, and ÕPT i the corresponding optimal solution. With this, and noting that R ⊆ Ri,
we can rewrite the expected utility of agent i as

E

(
max
A⊆Ri

vi(A)−
∑
j∈A

pj

)
= E

(
max
A⊆Ri

ṽi(A)−
∑
j∈A

pj

)
≥ E

(
max
A⊆R

ṽi(A)−
∑
j∈A

pj

)
. (4.3)

We replace the maximization over subsets of R with a particular choice, ÕPT i, whenever it
is contained in R and gives positive utility (otherwise we take ∅). This obtains the following
lower bound on the expected utility of agent i:

E

1{ÕPT i⊆R} ·

ṽi(ÕPT i)−
∑

j∈ÕPT i

pj

+

 = E

∑
A⊆R

1{ÕPT i=A} ·

[
ṽi(A)−

∑
j∈A

pj

]
+

= E

∑
A⊆R

E

1{ÕPT i=A} ·

[
ṽi(A)−

∑
j∈A

pj

]
+

= E

(∑
A⊆R

zi,A(p)

)
. (4.4)

Summing over all agents, we get that

E(Utility) ≥ E

(∑
i∈N

∑
A⊆R

zi,A(p)

)
.

104

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

∑
j /∈R

kj · pj +
∑
i∈N

∑
A⊆R

zi,A(p)

 .

Replacing the expectation over R with a minimization over subsets of M yields the bound
of the lemma.

Lemma 4.3. For any vector of prices p ∈ RM
≥0,

OPT ≤
∑
j∈M

kj · pj +
∑
i∈N

∑
A⊆M

zi,A(p).

Proof. We have that OPT equals

∑
i∈N

E(vi(OPTi)) = E

(∑
i∈N

∑
j∈OPTi

pj

)
+
∑
i∈N

E

(
vi(OPTi)−

∑
j∈OPTi

pj

)
.

Now we upper bound these two terms separately. Note that in the first term each item j ∈M
appears at most kj times, so

E

(∑
i∈N

∑
j∈OPTi

pj

)
≤
∑
j∈M

kj · pj.

For the second part, we upper bound with the positive part of the difference, and sum over
all possible realizations of OPTi:

∑
i∈N

E

(
vi(OPTi)−

∑
j∈OPTi

pj

)
=
∑
i∈N

∑
A⊆M

E

(
1{OPTi=A}

(
vi(A)−

∑
j∈A

pj

))
≤
∑
i∈N

∑
A⊆M

zi,A(p).

Putting together the two upper bounds we obtain the bound on OPT .

Lemmas 4.2 and 4.3 provide a similar form to lower bound ALG(p) and upper bound
OPT as a function of p. Now, we will prove the existence of a good choice of p where these
bounds differ by at most a factor of d + 1.

Lemma 4.4. There exists a vector of prices p ∈ RM
≥0 such that for every j ∈M we have

pj =
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p).

105

Proof. The proof will be an application of Brouwer’s fixed point theorem. Let K denote the
compact set K := [0, OPT]M ⊆ RM

≥0. We define a function ψ : K → K as follows: for a
vector p ∈ K and item j ∈M , the jth coordinate of ψ is

ψj(p) =
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p). (4.5)

We prove now that ψ is a well-defined continuous function, from the compact set K into
itself, and therefore it has a fixed point by Brouwer’s fixed point theorem. Note that a fixed
point of ψ is exactly the vector of prices we are looking for.

In fact, recall that we defined zi,A(p) = E(1OPTi=A · [vi(A) −
∑

j∈A pj]+), which is a
nonincreasing function of pj, for all j ∈ M . Moreover, note that since [·]+ is a convex
function, zi,A is also a convex function of pj for all j ∈ M . The monotonicity of zi,A implies
that for all p ∈ K and j ∈ M , ψj(p) ≤ ψj(0) ≤ 1

kj
OPT , and therefore ψ(p) ∈ K for all

p ∈ K. The convexity of zi,A implies it is also continuous, so ψ is a continuous function.

We’ve now argued that ψ is a continuous function from K to itself, and therefore a fixed
point exists, which proves the lemma.

Proof of Theorem 4.1. Using the vector of prices from Lemma 4.4, we apply the bound of
Lemma 4.2 and conclude

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

zi,A(p)

 .

≥ min
C⊆M

∑
j /∈C

kj ·
1

kj

∑
i∈N

∑
A⊆M :j∈A

zi,A(p) +
∑
i∈N

∑
A⊆C

zi,A(p)

= min

C⊆M

{∑
i∈N

∑
A⊆M

zi,A(p) · (|A \ C|+ 1A⊆C)

}

≥ min
C⊆M

{∑
i∈N

∑
A⊆M

zi,A(p) · (1|A\C|≥1 + 1A⊆C)

}
=
∑
i∈N

∑
A⊆M

zi,A(p).

For OPT , substituting our fixed point in the upper bound of Lemma 4.3 gives

OPT ≤
∑
j∈M

∑
i∈N

∑
A⊆M :j∈A

zi,A(p) +
∑
i∈N

∑
A⊆M

zi,A(p)

=
∑
i∈N

∑
A⊆M

(|A|+ 1) · zi,A(p)

≤ (d + 1)
∑
i∈N

∑
A⊆M

zi,A(p).

Comparing the two bounds we see that (d + 1) · ALG(p) ≥ OPT .

106

To wrap up the section, we establish that the bound of Theorem 4.1 is best possible, by
modifying a simple example of Feldman et al. [60]. The example provided by Feldman et
al. establishes a lower bound of d if we restrict to deterministic valuations. Here we add
stochasticity to match the bound of Theorem 4.1.

Proposition 4.5. For all d, and all δ > 0, there exists an instance on |N | = 2 buyers and
|M | = d items such that for all p, ALG(p) ≤ 1, yet OPT = d + 1− δ.

Proof. Consider a set M of exactly d items with a single copy of each, and a very small
ε > 0. There are two buyers. The first buyer values any nonempty subset of the items at
1. The second buyer only assigns value to getting all d items, and this value is d − ε with
probability 1 − ε and it is 1/ε with probability ε. In any instance where the first buyer
purchases a non-empty subset, the resulting social welfare is 1. Note that this is certain to
happen if we set the prices so that

∑
j∈M pj < d and the first buyer arrives before the second.

If, on the contrary,
∑

j∈M pj ≥ d and the first buyer does not purchase anything, the second
buyer will only purchase items with probability ε. In this case, the expected total welfare is
also 1. This establishes that ALG(p) = 1 for all p. Finally, it is clear that in this instance the
optimal welfare is achieved by always assigning all items to the second buyer, which results
in an expected welfare of (d− ε) · (1− ε) + ε · (1/ε) ≥ d+ 1− (d+ 1)ε. Setting ε = δ/(d+ 1)
completes the proof.

4.5 Efficient and Sample-Based Computation

So far, our main result is nonconstructive for several reasons. First, it requires a fixed-point
computation (which is PPAD-hard in general). Second, evaluating the function for which
we hope to find a fixed point requires computing the expected value of a random variable
with exponential support (which is #P-hard in general). Finally, even sampling the random
variable whose expected value defines our function requires computing the optimal allocation
(which is NP-hard in general, even to approximate).

In this section, we show how to overcome all three barriers, and efficiently (in time polyno-
mial in |M | and |N |) compute the prices, even when d is not a constant. Notice that when d
is not a constant, a complete description of the distributions, or even of a single deterministic
valuation function, might be exponentially large. Thus, we assume instead that we can draw
samples from the distributions of valuation functions, which we access in a black-box manner
via demand queries.

Definition 4.6. A demand query of a valuation function v : 2M → R≥0 accepts a price vector
p ∈ RM

≥0 and returns a subset of items A such that v(A) = maxB⊆M

(
v(B)−

∑
j∈B pj

)
.

We note that while a demand query only returns the subset A and not the associated
valuation v(A), we can compute the valuation of any subset using polynomially-many demand
queries [106, Lemma 11.22].

107

Theorem 4.7. If there is a number vmax such that vi(A) ≤ vmax for all i ∈ N,A ⊆ M
with probability 1, and such that vmax/OPT ≤ poly(|M |, |N |), then for every ε > 0 we can
calculate prices p̂ such that

(d + 1 + ε) · ALG(p̂) ≥ OPT,

with probability 1 − ε, in time poly(|M |, |N |, 1/ε), using poly(|M |, |N |, 1/ε) samples of the
valuations and poly(|M |, |N |, 1/ε) demand queries in total.

To prove this theorem we first show that under the condition vmax/OPT ≤ poly(|M |, |N |)
we can approximate the function ψ (as defined in Section 4.4) using polynomially-many
samples. This approximation in principle requires computing the optimal allocation for each
set of sampled valuations, which is in general intractable. However, as a second step, we
show it is enough to solve a linear relaxation of OPT , which can be done in polynomial time.
Finally, we show that the structure of ψ allows us to efficiently compute a fixed point through
a convex quadratic program.

Even though vmax/OPT ≤ poly(|M |, |N |) is a seemingly strong condition, the following
example illustrates its necessity in our approach. Consider an instance with one item and two
buyers. For a small δ > 0, the first buyer has a valuation of δ for the item, while the second
has a valuation of 1/δ with probability δ, and 0 otherwise. In this instance OPT = 1+δ−δ2.
Most of the time the optimal allocation gives the item to the first buyer; however, most of the
value in OPT comes from the second buyer. Thus, in order to obtain a good approximation
of OPT using samples, we need to sample the valuation functions enough times to see at least
once the 1/δ valuation of the second buyer, i.e., we require Ω(1/δ) samples. Otherwise, we
could not distinguish the instance from one where the second buyer has valuation identically
0 (in which case we should allocate the item to the first buyer, obtaining a welfare of only δ).

4.5.1 Proof of Theorem 4.7

Our strategy to find the prices has several steps. First, we use an estimate ψ̂ of ψ (recall
the definition of ψ from Section 4.4). The function ψ̂ differs from ψ in two ways: first, it re-
places the optimal integral allocation with the optimal fractional allocation (according to the
configuration LP specified below) in the definition of zi,A(p). Second, it takes polynomially-
many samples and computes the empirical average, rather than an exact expected value.
This allows us to compute ψ̂ in poly-time. Finally, we write a convex quadratic minimization
program whose solution is a fixed-point of ψ̂. Because we can minimize convex quadratic
functions in poly-time, we can then find a fixed point of ψ̂.

More precisely we proceed as follows:

1. For s ∈ {1, . . . , S}, with S = poly(|M |, |N |, 1/ε), draw independent sets of samples of
the valuations (v

(s)
i)i∈N .

2. For each set of samples (v(s)i)i∈N find an optimal fractional allocation x(s) = (x
(s)
i,A)i∈N,A⊆M ,

108

i.e., one that solves

(LP) max
x≥0

∑
i∈N

∑
A⊆M

xi,A · v(s)i (A)

s.t.
∑
A⊆M

xi,A ≤ 1, for all i ∈ N,∑
i∈N

∑
A:j∈A

xi,A ≤ kj, for all j ∈M.

3. For each s = 1, . . . , S define the functions ψ̂(s) : RM
≥0 → RM

≥0 as

ψ̂
(s)
j (p) =

1

kj

∑
i∈N

∑
A:j∈A

x
(s)
i,A ·

[
v
(s)
i (A)−

∑
j′∈A

pj′

]
+

, for each j ∈M, (4.6)

and denote their average as ψ̂ := 1
S

∑S
s=1 ψ̂

(s).

4. Find a fixed point of ψ̂, i.e., a vector p̂ such that ψ̂(p̂) = p̂.

As said before, ψ̂ does not exactly approximate ψ, but another function ψ̃ := E(ψ̂). Notice
that if we define

z̃i,A(p) = E

xi,A · [vi(A)−∑
j∈A

pj

]
+

 ,

then ψ̃ is analogous to ψ as defined in (4.5), but using z̃ instead of z, i.e.,

ψ̃j(p) =
1

kj

∑
i∈N

∑
A⊂M :j∈A

z̃i,A(p).

To prove Theorem 4.7, we show that (i) given a set of valuation functions, we can efficiently
compute an optimal solution of the linear program (LP) using demand queries; (ii) with
polynomially many samples, the function ψ̂ approximates ψ̃ sufficiently well; (iii) we can
efficiently compute a fixed point of ψ̂; and (iv) a fixed point of ψ̂ (and thus an approximate
fixed point of ψ̃) gives a (d + 1 + ε)-approximation of OPT .

Even though the linear program (LP) has exponentially many variables, its dual has only
|M |+ |N | variables. It turns out the demand queries provide a separation oracle for it, and
therefore, it can be solved using the Ellipsoid method in polynomial time. For more details
we refer to [106, Chapter 11.5.2]. This completes step (i). For each of the other three steps
we prove a separate lemma.

Lemma 4.8. Using S = poly(|M |, |N |, 1/ε) samples we can guarantee that with probability
1− ε we have that

∑
j∈M |ψ̂j(p)− ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), for all p ∈ [0, vmax]

M .

Proof. Consider the following discretization of [0, vmax]
M . In each coordinate we take multi-

ples of δ = ε ·OPT/(4 · |M |3 · |N |), i.e., we consider vectors in P = {i ·δ : i ∈ N}M ∩ [0, vmax]
M .

109

Recall that ψ̃ = E(ψ̂). For any given p ∈ P , λ > 0, j ∈ M , and number of samples S, an
additive Chernoff bound indicates that

P(|ψ̂j(p)− E(ψ̂j(p))| > λ) ≤ 2 exp

(
−2 · S · λ2

v2max

)
.

Taking a union bound over all j ∈M and all p ∈ P , we have that
∑

j∈M |ψ̂j(p)−E(ψ̂j(p))| ≤
|M | · λ for all p ∈ P with probability at least

1− |M | · |P| · 2 exp
(
−2 · S · λ2

v2max

)
= 1− |M | ·

(vmax

δ

)|M |
· 2 exp

(
−2 · S · λ2

v2max

)
= 1− ε · exp

(
log
|M |
ε

+ |M | · log vmax

δ
− S · 2 · λ

2

v2max

)
(4.7)

Now take any vector p ∈ [0, vmax]
M . By the definition of P , there is a vector p̂ ∈ P such

that ||p− p̂||1 ≤ |M | ·δ. It is easy to check from the definition of ψ̂ in (4.6) and the constraints
that x(s) satisfies in LP that for all j ∈ M , |ψ̂j(p) − ψ̂j(p̂)| ≤ ||p − p̂||1. Therefore, ψ̂ and
E(ψ̂) are |M |-lipschitz functions. By the triangle inequality, we have that

||ψ̂(p)− E(ψ̂(p))||1 ≤ ||ψ̂(p)− ψ̂(p̂)||1 + ||ψ̂(p̂)− E(ψ̂(p̂))||1 + ||E(ψ̂(p̂))− E(ψ̂(p))||1
≤ 2 · |M |2 · δ + |M | · λ. (4.8)

Now, taking λ = ε · OPT/(2 · |M |2 · |N |) and replacing in (4.8), we obtain that ||ψ̂(p) −
E(ψ̂(p))||1 is at most ε · OPT/(|M | · |N |) for all p ∈ [0, vmax]

M ; with probability at least
the expression in (4.7). Assuming vmax/OPT ≤ poly(|M |, |N |), we can make make the
probability in (4.7) larger than 1− ε by taking S = poly(|M |, |N |, |1/ε).

Lemma 4.9. If S = poly(|M |, |N |, 1/ε) we can compute a fixed point of ψ̂ in time poly(|M |, |N |, 1/ε).

Proof. Recall that p is a fixed point of ψ̂ if for all j ∈M ,

pj = ψ̂j(p) =
1

S

S∑
s=1

∑
i∈N

∑
A:j∈A

1

kj
· x(s)i,A ·

[
v
(s)
i (A)−

∑
j′∈A

pj′

]
+

.

Note that in this sum, the only non-zero terms are those such that x(s)i,A > 0. A basic solution
for the LP has at most |M |+ |N | non-zero variables, so there are at most S · (|M |+ |N |) =
poly(|M |, |N |, 1/ε) combinations of indices such that x(s)i,A > 0. Denote by E the set of such
indices, i.e., E = {(i, A, s) : i ∈ N,A ⊆M, 1 ≤ s ≤ S, and x(s)i,A > 0}.

Now, for a vector p, define

ye :=

√
x
(s)
i,A ·

[
v
(s)
i (A)−

∑
j∈A

pj

]
+

, for all e = (i, A, s) ∈ E. (4.9)

110

If p is a fixed point, then it satisfies

pj =
∑

(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′ . (4.10)

By replacing pj back in (4.9), we have that p is a fixed point if and only if y = (ye)e∈E satisfies

ye =

√
x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′

+

, for all e = (i, A, s) ∈ E. (4.11)

We write a quadratic program with variables (ye)e∈E whose optimal solutions correspond
to solutions of (4.11).

(QP) min
y

∑
e=(i,A,s)∈E

ye ·

ye −√x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′

s.t.

ye ≥
√
x
(s)
i,A ·

v(s)i (A)−
∑
j∈A

∑
(i′,A′,s′)=e′:
e′∈E,j∈A′

√
x
(s′)
i′,A′

S · kj
· ye′

 , e = (i, A, s) ∈ E (4.12)

ye ≥ 0, e ∈ E. (4.13)

To see that it suffices to optimize this quadratic program, take first a vector y that
satisfies (4.11) (note that such a vector must exist, by Brouwer’s fixed-point theorem). It
is immediately implied by (4.11) that y satisfies both (4.12) and (4.13). Moreover, it is
also evident that for all e ∈ E one of the two constraints must be tight, implying that the
objective function must take a value of 0. Notice that the objective function is necessarily
non-negative for feasible solutions, so y is an optimal solution. Observe also that for any
optimal solution y′ to the quadratic program, because the objective function takes a value of
zero it must be the case that for every e ∈ E, at least one of (4.12) and (4.13) is tight. This
directly shows that y′ satisfies (4.11).

We finally argue that the quadratic program is convex and hence can be solved in poly-
nomial time [92]. To do so, it suffices to argue that the objective function can be written in
the form bTy + yT (BTB + I)y for some vector b and matrix B. We define B ∈ RM×E by

Bj,e=(i,A,s) :=

√
x
(s)
i,A

S · kj
· 1j∈A.

Now, for e = (i, A, s) and e′ = (i′, A′, s′) observe that

111

(BTB)e,e′ =
∑
j∈M

√
x
(s)
i,A · x

(s′)
i′,A′

S · kj
· 1j∈A,j∈A′ =

√
x
(s)
i,A ·

 ∑
j∈A∩A′

√
x
(s′)
i′,A′

S · kj

 .

From this is is straightforward to see that all the nonlinear terms in the objective of QP
can be written as yT (BTB + I)y as we wanted to show.

Lemma 4.10. If p̂ ∈ [0, vmax]
M is such that

∑
j∈M |p̂j − ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), then

(d + 1 +O(ε)) · ALG(p̂) ≥ OPT.

Proof. We simply re-do the proof of Theorem 4.1, but replacing with the approximate fixed
point. Thus, we take p̂ ∈ [0, vmax]

M such that
∑

j∈M |p̂j − ψ̃j(p)| ≤ ε ·OPT/(|M | · |N |), and
replace in the bound of Lemma 4.2.4 We obtain that

ALG(p̂) ≥ min
C⊆M

∑
j∈C

kj · p̂j +
∑
i∈N

∑
A⊆C̄

z̃i,A(p̂)

≥
∑
i∈N

∑
A⊆M

z̃i,A(p̂)−
ε ·OPT
|M | · |N |

·max
j∈M

kj

≥
∑
i∈N

∑
A⊆M

z̃i,A(p̂)−
ε ·OPT
|M |

.

The last inequality comes from the fact that we can assume without loss of generality that
maxj∈M kj ≤ |N |, since a buyer buys at most one copy of each item. Then, we use the upper
bound of Lemma 4.3.

OPT ≤
∑
j∈M

kj · p̂j +
∑
i∈N

∑
A⊆M

z̃i,A(p̂)

≤ (d + 1)
∑
i∈N

∑
A⊆M

z̃i,A(p̂) +
ε ·OPT
|M | · |N |

·max
j∈M

kj.

Noting that d ≤ |M |, this implies that

(1− ε) ·OPT ≤ (d + 1) ·
∑
i∈N

∑
A⊆M

z̃i,A(p̂).

Putting together the lower bound on ALG(p̂) and the upper bound on OPT we conclude
that

(d + 1 +O(ε))ALG(p̂) ≥ OPT.

4Here we use z̃i,A(p) instead of zi,A(p), as we take an approximate fixed point of ψ̃ instead of ψ. Using
almost identical arguments we can show the corresponding versions of Lemmas 4.2 and 4.3. For completeness,
we include them in Appendix 4.8.

112

The proof of the theorem is straightforward from the lemmas: we take S = poly(|M |, |N |, ε)
samples of the valuations, as required by Lemma 4.8 so that ψ̂ is a good approximation of
ψ̃. For each sample, we solve (LP) in polynomial time, so we can calculate ψ̂ in polynomial
time. Then, by Lemma 4.9, we can compute a fixed point of ψ̂. Finally, taking the computed
fixed point as prices, we get a (d + 1 +O(ε))-approximation of OPT , by Lemma 4.10.

4.6 Deterministic Single-minded Valuations
In this section, we consider the special case where there is a single copy of each item (i.e.,
ki = 1 for all i ∈ M), buyers’ valuations are deterministic, and buyers are single-minded.
The latter means each buyer i has a set Ai, with |Ai| ≤ d, such that Ai ̸⊆ B ⇒ vi(B) =
0, Ai ⊆ B ⇒ vi(B) = vi(Ai). The problem of maximizing the welfare of an allocation in
this context can be seen as the classic combinatorial problem of hypergraph matching with
hyperedges of size at most d, where the buyers correspond to the hyperedges and the items
are the vertices. Indeed, in an optimal allocation for this setting buyer i either gets Ai or
∅, implying that maximizing the welfare of the allocation is equivalent to finding a subset
of pairwise disjoint Ai’s of maximum total valuation. As this is a traditional problem, in
the rest of this section we will refer to hypergraphs, hyperedges and vertices, rather than
buyers and items, using the usual notation G = (V,E) and denoting by w(e) the valuation
(or weight) of the hyperedge e.

4.6.1 Matching in Graphs: d = 2

We first focus on the traditional matching problems, showing that using prices has limits
even for this scenario. A similar discussion appears in [33], though not for single-minded
valuations. While our results are simple (and similar to those in [33]), we describe them
here is full since we believe it helps completing the picture of the single-minded case. In
particular, we show in Lemmas 4.11 and 4.13, there are instances in which no pricing scheme
can guarantee recovering more than 2/3 of the optimal solution. This is true even if the graph
is bipartite or if there is a unique optimal matching; on the other hand, if both conditions
are fulfilled — the graph is bipartite and there is a unique optimal matching — using the
dual prices leads precisely to such optimal solution.

Lemma 4.11. Prices cannot guarantee obtaining more than 2/3 of the optimal matching,
even if the graph is bipartite.

Proof. Consider the graph depicted in Fig. 4.1, in which all edges have unit weight. There
are two optimal solutions, given by the black and the red perfect matchings; no perfect
matching can be constructed using arcs of different colors. Assume we have prices that are
able to build an optimal solution (i.e., include three edges) regardless of the order in which
the edges arrive. This implies that for at least one of the optimal solutions, all the edges will
be included if their vertices are available when they arrive. Without loss assume this is the
case for the black matching, i.e. for i = 1, 2, 3, pLi

+ pRi
≤ 1.

On the other hand, we need to prevent the red edges to be included if they appear; to
see why this is necessary, consider for instance the case in which the edge (L1, R2) is not

113

L1

L2

L3

R1

R2

R3

Figure 4.1: Example of a bipartite graph in which, when all edges have the same weight, no
pricing scheme can guarantee obtaining more than 2/3 of the optimal solution.

discarded when appearing first. Then, if the edge (L3, R3) appears second, no more edges
could be added. To preclude this, we need to impose that for i = 1, 2, 3, pLi

+ pR(i+1)mod 3
> 1.

A contradiction follows by adding these and the previous three inequalities.

Finally, if, for instance, all vertex prices are 1/2, two edges will be added regardless of the
order in which they appear.

In the case of bipartite graphs, it is natural to consider the usual linear programming
formulation, since it has integer optimal solutions. The following lemma shows that when we
require the additional hypothesis that there is a unique optimal matching. the prices given
by the optimal solution of the dual problem lead to that optimal assignment.

Lemma 4.12. If the graph G = (V,E) is bipartite and has a unique optimal matching, then
such a matching is obtained using the dual prices.

Proof. Because the graph is bipartite, the problem reduces to solving the following linear
program: max{

∑
e∈E xew(e) :

∑
e∈δ(v) xe ≤ 1 for all v ∈ V, x ≥ 0}; which has an integral

optimal solution. Because there is only one optimal matching, the LP has a unique optimal
solution (x∗e)e∈E. Consider the prices (p∗u)u∈V corresponding to an optimal dual solution,
satisfying strict complementary slackness.

Consider an edge e = (u, v) that is not part of the optimal matching. Hence, the corre-
sponding primal variable takes the value x∗e = 0. By complementary slackness, the corre-
sponding dual constraint is not tight, i.e. p∗u + p∗v > w(e). This last condition implies that
buyer e will not buy the edge upon arrival. On the other hand, if e is part of the optimal
solution, the corresponding dual constraint must be tight (again due to strict complementary
slackness), so that those buyers will choose to buy.

The assumption of a unique solution is crucial for the dual prices to be useful. Indeed,
when there is more than one solution, using the dual prices can be arbitrarily inefficient.
Indeed, consider the same example depicted in Figure 4.1, but modify the weight of the
edges f = (L1, R1) and g = (L2, R3) to be ε, so that that the optimal solution has value
2 + ε. On the other hand, consider an edge e = (u, v) and the resulting dual prices pu, pv:
complementary slackness now states that we have pu + pv = w(e) iff e is part of any optimal
solution. Edge f is part of the black optimal solution, and edge g is part of the red, hence

114

those edges will be bought if the corresponding vertices are available when they appear.
In particular, if they are the first two edges to appear, then they will both be in the final
solution, and no other edge can be added, leading to a final weight of 2ε.

However, in general graphs, even the uniqueness assumption is not enough. Indeed we
have the following result.

Lemma 4.13. Prices cannot guarantee obtaining more than 2/3 of the optimal matching in
a general graph, even if there is only one optimal matching.

A

B

C D

E

F

Figure 4.2: Example of a graph in which, when all edges have the same weight, there is a
unique optimal matching but no pricing scheme can guarantee obtaining more than 2/3 of
its weight.

Proof. Consider the graph depicted in Fig. 4.2, where every edge has unit weight. The
optimal matching is given by the three black edges with total value of 3. On the other hand,
if any red edge enters the solution, the resulting total weight will be at most 2. We now show
that any pricing scheme in which every black edge is willing to buy will also include at least
one red edge if it comes first. Let (pi)i=A,...,F prices such that for every black edge, the sum
of the involved vertices is lower than 1. In particular, we have that pC + pD ≤ 1, so without
loss of generality we assume that pC ≤ 1/2. If pB ≤ 1/2 as well, then the red edge (B,C)
will want to buy and the proof is complete. Otherwise, if pB > 1/2, it implies that pA ≤ 1/2
because the black edge (A,B) wants to buy. But this implies that the red edge (A,C) will
buy if appearing first.

Finally, if all vertex prices are 1/2, then it is straightforward to see that at least two edges
will be added regardless of the order in which they appear.

In general, there are item prices that guarantee obtaining at least half of the optimal
welfare. This is achieved by splitting the weight of the edges of an optimal matching uniformly
between the two corresponding vertices. We present this result in Lemma 4.15 for general d.

4.6.2 Hypergraph Matching: d > 2

We begin this section proving two negative results. First we show an upper bound of ∼
√

1
d

on the fraction of the optimal solution that can be guaranteed with prices. We then show a
specific bound for the case d = 3, in which we cannot guarantee obtaining more than 1/2 of
the optimal welfare. Finally, we provide a pricing scheme that always obtains at least 1/d of
the optimal welfare.

115

Lemma 4.14. Prices cannot guarantee welfare more than an ∼
√

1
d

fraction of the optimal
welfare, even if the arrival order is known.

Proof. Our example is based on constructions for finite projective planes; namely, we will
use the fact that if q − 1 is a prime power there exists a hypergraph on q2 − q + 1 vertices
with q2 − q + 1 hyperedges that are q-regular, q-uniform and intersecting, i.e. every pair of
hyperedges has at least one shared vertex (see, e.g., [79, Chapter 12] for a reference).

To build our example, we will assume that for each hyperedge there exists a corresponding
buyer interested in exclusively that subset of items with a total valuation of q. We will also
add one buyer whose only subset of interest is the entire set of items, with a valuation of
d = q2 − q + 1. Note that clearly the optimal welfare attainable is q2 − q + 1.

It hence suffices to show that prices cannot achieve welfare greater than q. Assume the
buyer interested in the entire set of items arrives last. Note that if there is any edge e such
that the sum of the prices of the vertices in e is at most than q, we are guaranteed welfare
at most q. However, if every the sum of the prices of the vertices in every hyperedge is more
than q, because our graph is q-uniform that means the sum of the prices of all vertices is
more than q2 − q + 1, meaning the final buyer would not select anything and the welfare
attained is zero. Hence, the total welfare attainable by prices is at most a

q

q2 − q + 1
∼ 1√

q2 − q + 1

fraction of the optimum.

Finally, if d cannot be written as q2 − q + 1, we replicate the same construction for the
largest d′ < d that can, and the result holds.

When d = 3, we show that no prices exist obtaining a better than 1/2-approximation
(tightening the 2/3 bound that can be obtained via Lemma 4.14). Such a bound is obtained
using a hypergraph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and the following hyperedges with
unit weight:

{1, 2, 3}, {4, 5, 6}, {1, 2, 4}, {1, 3, 5}, {2, 5, 6}, {3, 4, 6}

First, note that there is a perfect matching (of weight 2), given by the two first hyperedges.
Also note that each of the remaining hyperedges intersect all other hyperedges, thus only
one of them could be included in a feasible solution. Therefore, it suffices to prove that there
is no pricing scheme in which the first two edges ({1, 2, 3}, {4, 5, 6}) want to buy but all the
others do not.

Let us assume that there are prices p1, . . . , p6 that achieve the aforementioned property.
For the first two edges to be taken when they appear, we need p1+p2+p3 ≤ 1 and p4+p5+p6 ≤
1. To prevent the other edges to buy when they appear, we need the sum of the corresponding
vertices to be strictly greater than 1, hence we obtain four additional inequalities. Adding
up all the six inequalities, we obtain

∑6
i=1 pi > 2. And the exact opposite result is obtained

adding the first two inequalities.

116

We now provide our positive result. Consider a hypergraph G = (V,E), with weights
(w(e))e∈E. To define the prices, take an optimal matching given by the hyperedgesOPT1, . . . , OPTℓ.
For each a ∈ OPTj, define pa = w(OPTj)/d. The prices of the items not covered by the
optimal solution are set to ∞. The following simple result shows that these prices obtain at
least a fraction 1/d of the optimal welfare.

Lemma 4.15. Consider prices defined as above, and hyperedges arriving in an arbitrary
order. Denote Q the set of edges that are bought. Then

∑
e∈Q

w(e) ≥ 1

d

ℓ∑
j=1

w(OPTj)

Proof. First note that for each e ∈ Q, it must hold that

w(e) ≥
∑
i∈e

pi (4.14)

As otherwise the buyer associated to e would have decided not to buy. Therefore:∑
e∈Q

w(e) ≥
∑
e∈Q

∑
i∈e

pi (4.15)

On the other hand, for each OPTj in the optimal solution, there must be at least one
vertex, with its corresponding price w(OPTj)/d that is covered by the edges in Q. To see
this, note that there are two possible cases: either OPTj ∈ Q and all its vertices are covered,
or OPTj /∈ Q, meaning that when OPTj arrived, at least one of its vertices was not available,
i.e., it was covered by an edge previously bought. The result follows directly, noting that in
the right side of (4.15), we are summing at least once w(OPTj)/d for each j = 1 . . . , ℓ.

4.7 Conclusion and Future Directions

In this chapter, we provided an efficiently computable 1/(d+1)-approximate pricing algorithm
for maximizing social welfare when buyers have arbitrary and random monotone valuations
on subsets of at most d items. Although this approximation factor is tight in the worst case,
numerous interesting directions for future work remain. In the special case where buyers
are single-minded and have deterministic valuations, for d = 2 we have bounded the best
attainable ratio of pricing algorithms in [1/2, 2/3], so the exact value is yet to be found. It
would furthermore be relevant to understand the asympotics of the optimal ratio for general
d, which our results place in [∼ 1/

√
d, 1/d]. When buyers are single-minded but could

have random valuations, our problem is closely related to the design of thresholding prophet
inequalities. Many open problems remain in this area; we gave an upper bound for prophet
inequalities for bipartite matching and note that there remain large gaps in known bounds
for the optimal competitive ratio for matching in bipartite (and general) graphs.

117

4.8 Bounds Using an Optimal Solution of LP
We prove here that Lemmas 4.2 and 4.3 also hold when in the definition of zi,A(p) we replace
1OPTi=A with xi,A, an optimal solution of LP, the linear relaxation of the optimal allocation
problem. This means we replace zi,A(p) with

z̃i,A(p) = E

xi,A · [vi(A)−∑
j∈A

pj

]
+

 .

The proofs are almost identical to the original ones in Section 4.4.

Lemma 4.16. For any vector of prices p ∈ RM
≥0,

ALG(p) ≥ min
C⊆M

∑
j /∈C

kj · pj +
∑
i∈N

∑
A⊆C

z̃i,A(p)

 .

Proof. In this proof we assume the arrival order σ is arbitrary, and for simplicity we denote
Bi(σ) and Ri(σ) simply by Bi and Ri. We separate the welfare of the resulting allocation
into revenue and utility, i.e., we separate

∑
i∈N vi(Bi) into

Revenue =
∑
i∈N

∑
j∈Bi

pj and Utility =
∑
i∈N

(
vi(Bi)−

∑
j∈Bi

pj

)
.

Recall that Ri is the set of items with remaining copies when i arrives. Similarly, denote by
R the set of items that have remaining copies by the end of the process. Note first that

E(Revenue) ≥ E

∑
j /∈R

kj · pj

 .

This is simply because all items j /∈ R have sold all kj copies. For the utility, for any
i ∈ N , by the definition of Bi it holds that

vi(Bi)−
∑
j∈Bi

pj = max
A⊆Ri

vi(A)−
∑
j∈A

pj

Note now that vi and Ri are independent. Let (ṽi)i∈N be independent realizations of the
valuations. With this and noting that R ⊆ Ri, we can rewrite the expected utility of agent i
as

E

(
max
A⊆Ri

vi(A)−
∑
j∈A

pj

)
= E

(
max
A⊆Ri

ṽi(A)−
∑
j∈A

pj

)
≥ E

(
max
A⊆R

ṽi(A)−
∑
j∈A

pj

)
. (4.16)

Let x̃ denote an optimal solution of LP when the values are (ṽi)i∈N . Since (ṽi)i∈N is inde-
pendent of R, x̃ is also independent of R. Since x̃ is feasible for LP, for any given i ∈ N ,∑

A⊆R x̃i,A ≤
∑

A⊆M x̃i,A ≤ 1. We can replace the maximization over subsets of R in (4.16)

118

with the convex combination of particular choices given by (x̃i,A)A⊆R. Thus, we obtain the
following lower bound.

E

(
max
A⊆R

ṽi(A)−
∑
j∈A

pj

)
≥ E

∑
A⊆R

x̃i,A ·

[
ṽi(A)−

∑
j∈A

pj

]
+

= E

∑
A⊆R

E

x̃i,A · [ṽi(A)−∑
j∈A

pj

]
+

= E

(∑
A⊆R

z̃i,A(p)

)
. (4.17)

The positive part [·]+ comes from the fact that we can always choose ∅ ⊆ R in the maxi-
mization in (4.16). Summing over all agents, we get that

E(Utility) ≥ E

(∑
i∈N

∑
A⊆R

z̃i,A(p)

)
.

Therefore, adding the revenue and the utility we get that

ALG(p) ≥ E

∑
j /∈R

kj · pj +
∑
i∈N

∑
A⊆R

z̃i,A(p)

 .

Replacing the expectation over R with a minimization over subsets of M we obtain the bound
of the lemma.

Lemma 4.17. For any vector of prices p ∈ RM
≥0,

OPT ≤
∑
j∈M

kj · pj +
∑
i∈N

∑
A⊆M

z̃i,A(p).

Proof. Let x be an optimal solution of LP. We have that

OPT ≤ E

(∑
i∈N

∑
A⊆M

xi,A · vi(A)

)

= E

(∑
i∈N

∑
A⊆M

xi,A ·
∑
j∈A

pj

)
+ E

(∑
i∈N

∑
A⊆M

xi,A ·

(
vi(A)−

∑
j∈A

pj

))
.

Now we upper bound these two terms separately. Since x is feasible for LP, for all j ∈M we
have that

∑
i∈N
∑

A:j∈A xi,A ≤ kj, so the first term satisfies

E

(∑
i∈N

∑
A⊆M

xi,A ·
∑
j∈A

pj

)
≤
∑
j∈M

kj · pj.

119

For the second term we simply upper bound the difference with its positive part.

E

(∑
i∈N

∑
A⊆M

xi,A ·

(
vi(A)−

∑
j∈A

pj

))

≤
∑
i∈N

∑
A⊆M

E

xi,A · [vi(A)−∑
j∈A

pj

]
+

≤
∑
i∈N

∑
A⊆M

z̃i,A(p).

Putting together the two upper bounds we obtain the bound on OPT .

120

Bibliography

[1] Allaart, P., and Islas, J. A sharp lower bound for choosing the maximum of an
independent sequence. Journal of Applied Probability 53 (2015), 1041–1051.

[2] Alpern, S., and Baston, V. The secretary problem with a selection committee:
Do conformist committees hire better secretaries? Management Science 63, 4 (2017),
901–1269.

[3] Assadi, S., Kesselheim, T., and Singla, S. Improved truthful mechanisms for
subadditive combinatorial auctions: Breaking the logarithmic barrier. In SODA (2021).

[4] Assadi, S., and Singla, S. Improved truthful mechanisms for combinatorial auctions
with submodular bidders. In FOCS (2019).

[5] Azar, P. D., Kleinberg, R., and Weinberg, S. M. Prophet inequalities with
limited information. In SODA (2014).

[6] Babaioff, M., Dinitz, M., Gupta, A., Immorlica, N., and Talwar, K. Secre-
tary problems: weights and discounts. In SODA (2009).

[7] Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. A knapsack
secretary problem with applications. In APPROX-RANDOM (2007).

[8] Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. Matroid secretary
problems. Journal of the ACM (JACM) 65, 6 (2018), 1–26.

[9] Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. Matroid secretary
problems. Journal of the ACM 65, 6 (2018), 35:1–35:26.

[10] Babaioff, M., Immorlica, N., and Kleinberg, R. Matroids, secretary problems,
and online mechanisms. In SODA (2007).

[11] Babaioff, M., Lucier, B., Nisan, N., and Paes Leme, R. On the efficiency of
the walrasian mechanism. In EC (2014).

[12] Baldwin, E., and Klemperer, P. Understanding preferences:“demand types”, and
the existence of equilibrium with indivisibilities. Econometrica 87, 3 (2019), 867–932.

[13] Bearden, J. N., Rapoport, A., and Murphy, R. O. Sequential observation

121

and and selection with rank-dependent payoffs: An experimental study. Management
Science 52, 9 (2006), 1437–1449.

[14] Beyhaghi, H., and Kleinberg, R. Pandora’s problem with nonobligatory inspec-
tion. In EC (2019).

[15] Bhattacharjya, D., and Deleris, L. A. The value of information in some varia-
tions of the stopping problem. Decision Analysis 11, 3 (2014), 189–203.

[16] Bradac, D., Gupta, A., Singla, S., and Zuzic, G. Robust algorithms for the
secretary problem. In ITCS (2020).

[17] Bruss, F. T. A unified approach to a class of best choice problems with an unknown
number of options. Annals of Probability 12, 3 (1984), 882–889.

[18] Buchbinder, N., Jain, K., and Singh, M. Secretary problems via linear program-
ming. Mathematics of Operations Research 39, 1 (2014), 190–206.

[19] Buchbinder, N., Jain, K., and Singh, M. Secretary problems via linear program-
ming. Mathematics of Operations Research 39, 1 (2014), 190–206.

[20] Cai, Y., and Zhao, M. Simple mechanisms for subadditive buyers via duality. In
STOC (2017).

[21] Campbell, G., and Samuels, S. M. Choosing the best of the current crop. Advances
in Applied Probability 13, 3 (1981), 510–532.

[22] Cayci, S., Gupta, S., and Eryilmaz, A. Group-fair online allocation in continuous
time. In NeurIPS (2020).

[23] Celis, E., Keswani, V., Straszak, D., Deshpande, A., Kathuria, T., and
Vishnoi, N. Fair and diverse DPP-based data summarization. In ICML (2018).

[24] Celis, L. E., Huang, L., and Vishnoi, N. K. Multiwinner voting with fairness
constraints. In IJCAI (2018).

[25] Celis, L. E., Straszak, D., and Vishnoi, N. K. Ranking with fairness constraints.
In ICALP (2018).

[26] Chan, T. H., Chen, F., and Jiang, S. H.-C. Revealing optimal thresholds for
generalized secretary problem via continuous lp: Impacts on online k-item auction and
bipartite k-matching with random arrival order. In SODA (2015).

[27] Chawla, S., Hartline, J. D., Malec, D. L., and Sivan, B. Multi-parameter
mechanism design and sequential posted pricing. In STOC (2010).

[28] Chawla, S., Hartline, J. D., Malec, D. L., and Sivan, B. Multi-parameter
mechanism design and sequential posted pricing. In STOC (2010).

[29] Chawla, S., and Miller, J. B. Mechanism design for subadditive agents via an ex

122

ante relaxation. In EC (2016).

[30] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. Fair clustering
through fairlets. In NeurIPS (2017).

[31] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvtiskii, S. Matroids,
matchings, and fairness. In AISTATS (2019).

[32] Chow, Y., Moriguti, S., Robbins, H., and Samuels, S. Optimal selection based
on relative rank. Israel Journal of Mathematics 2, 2 (1964), 81–90.

[33] Cohen-Addad, V., Eden, A., Feldman, M., and Fiat, A. The invisible hand of
dynamic market pricing. In EC (2016).

[34] Cole, R., and Roughgarden, T. The sample complexity of revenue maximization.
In STOC (2014).

[35] Correa, J., Cristi, A., Duetting, P., and Norouzi-Fard, A. Fairness and bias
in online selection. In ICML (2021).

[36] Correa, J., Cristi, A., Epstein, B., and Soto, J. Sample-driven optimal
stopping: From the secretary problem to the iid prophet inequality. arXiv preprint
arXiv:2011.06516 (2021).

[37] Correa, J., Cristi, A., Epstein, B., and Soto, J. A. The two-sided game of
googol and sample-based prophet inequalities. In SODA (2020).

[38] Correa, J., Cristi, A., Feuilloley, L., Oosterwijk, T., and Tsigonias-
Dimitriadis, A. The secretary problem with independent sampling. In SODA (2021).

[39] Correa, J., Cristi, A., Fielbaum, A., Pollner, T., and Weinberg, S. M.
Optimal item pricing in online combinatorial auctions. In IPCO (2022).

[40] Correa, J., Dütting, P., Fischer, F., and Schewior, K. Prophet inequalities
for i.i.d. random variables from an unknown distribution. In EC (2019).

[41] Correa, J., Dutting, P., Fischer, F., and Schewior, K. Prophet inequalities
for iid random variables from an unknown distribution. In EC (2019).

[42] Correa, J., Dütting, P., Fischer, F., Schewior, K., and Ziliotto, B. Un-
known i. i. d. prophets: Better bounds and streaming algorithms and and a new im-
possibility. In ITCS (2021).

[43] Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., and Vredeveld, T.
Posted price mechanisms for a random stream of customers. In EC (2017).

[44] Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., and Vredeveld,
T. Posted price mechanisms and optimal threshold strategies for random arrivals.
Mathematics of Operations Research 46, 4 (2021), 1452–1478.

123

[45] Correa, J., Saona, R., and Ziliotto, B. Prophet secretary through blind strate-
gies. In SODA (2019).

[46] Dobzinski, S. Breaking the logarithmic barrier for truthful combinatorial auctions
with submodular bidders. In STOC (2016).

[47] Dobzinski, S., Nisan, N., and Schapira, M. Approximation algorithms for com-
binatorial auctions with complement-free bidders. In STOC (2005).

[48] Doval, L. Whether or not to open pandora’s box. Journal of Economic Theory 175
(2018), 127–158.

[49] Dütting, P., Feldman, M., Kesselheim, T., and Lucier, B. Prophet inequal-
ities made easy: Stochastic optimization by pricing nonstochastic inputs. SIAM J.
Comput 49, 3 (2020), 540–582.

[50] Dutting, P., Feldman, M., Kesselheim, T., and Lucier, B. Prophet inequali-
ties made easy: Stochastic optimization by pricing nonstochastic inputs. SIAM Journal
on Computing 49, 3 (2020), 540–582.

[51] Dütting, P., Kesselheim, T., and Lucier, B. An O(log log m) prophet inequality
for subadditive combinatorial auctions. In FOCS (2020).

[52] Dütting, P., Lattanzi, S., Paes Leme, R., and Vassilvitskii, S. Secretaries
with advice. In EC (2021).

[53] Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to
sensitivity in private data analysis. In TCC (2006).

[54] Dynkin, E. B. The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl 4 (1963), 627–629.

[55] Dynkin, E. B. The optimum choice of the instant for stopping a markov process.
Soviet Mathematics Doklady 4 (1963), 627–629.

[56] Ehsani, S., Hajiaghayi, M., Kesselheim, T., and Singla, S. Prophet secretary
for combinatorial auctions and matroids. In SODA (2018).

[57] Esfandiari, H., HajiAghayi, M., Lucier, B., and Mitzenmacher, M. Prophets,
secretaries, and maximizing the probability of choosing the best. In AISTATS (2020).

[58] Ezra, T., Feldman, M., Gravin, N., and Tang, Z. G. Online stochastic max-
weight matching: Prophet inequality for vertex and edge arrival models. In EC (2020).

[59] Ezra, T., Feldman, M., Gravin, N., and Tang, Z. G. Online stochastic max-
weight matching: prophet inequality for vertex and edge arrival models. In EC (2020).

[60] Feldman, M., Gravin, N., and Lucier, B. Combinatorial auctions via posted
prices. In SODA (2014).

124

[61] Feldman, M., Gravin, N., and Lucier, B. Combinatorial auctions via posted
prices. In SODA (2015).

[62] Feldman, M., Gravin, N., and Lucier, B. Combinatorial walrasian equilibrium.
SIAM Journal on Computing 45, 1 (2016), 29–48.

[63] Feldman, M., Svensson, O., and Zenklusen, R. Online contention resolution
schemes. In SODA (2016).

[64] Feldman, M., Svensson, O., and Zenklusen, R. Simple O(log log(rank))-
competitive algorithm for the matroid secretary problem. Math. Oper. Res 43, 2 (2018),
638–650.

[65] Feldman, M., Svensson, O., and Zenklusen, R. A. A simple O(log log(rank))-
competitive algorithm for the matroid secretary problem. In SODA (2015).

[66] Feldman, M., and Tennenholtz, M. Interviewing secretaries in parallel. In EC
(2012).

[67] Ferguson, T. S. Who solved the secretary problem? Statistical Science 4, 3 (1989),
282–296.

[68] Ferguson, T. S. Who solved the secretary problem? Statistical Science 4 (1989),
282–289.

[69] Gilbert, J., and Mosteller, F. Recognizing the maximum of a sequence. J. Am.
Statist. Assoc 61 (1966), 35–73.

[70] Goldstein, D. G., McAfee, P. R., Suri, S., and Wright, J. R. Learning when
to stop searching. Management Science 66, 3 (2020), 1375–1394.

[71] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press,
2016.

[72] Gravin, N., and Wang, H. Prophet inequality for bipartite matching: Merits of
being simple and non adaptive. In EC (2019).

[73] Gravin, N., and Wang, H. Prophet inequality for bipartite matching: merits of
being simple and non adaptive. In EC (2019).

[74] Guo, C., Huang, Z., and Zhang, X. Settling the sample complexity of single-
parameter revenue maximization. In STOC (2019).

[75] Gupta, S., and Salem, J. Closing the gap: Mitigating bias in online resume-filtering.
In WINE (2020).

[76] Gusein-Zade, S. M. The problem of choice and the optimal stopping rule for a
sequence of in trials. Theory of Probability and Applications 11, 3 (1966), 472–476.

[77] Hajiaghayi, M. T., Kleinberg, R., and Sandholm, T. Automated online mech-

125

anism design and prophet inequalities. In AAAI (2007).

[78] Halabi, M. E., Mitrovic, S., Norouzi-Fard, A., Tardos, J., and Tarnawski,
J. Fairness in streaming submodular maximization: Algorithms and hardness. In
NeurIPS (2020).

[79] Hall, M. Combinatorial theory, vol. 71. John Wiley & Sons, 1998.

[80] Hill, T. P., and Kertz, R. P. Comparisons of stop rule and supremum expectations
of i.i.d. random variables. The Annals of Probability 10, 2 (1982), 336–345.

[81] Immorlica, N., Kleinberg, R. D., and Mahdian, M. Secretary problems with
competing employers. In WINE (2006).

[82] Kaplan, H., Naori, D., and Raz, D. Competitive analysis with a sample and the
secretary problem. In SODA (2020).

[83] Kearns, M., and Roth, A. The Ethical Algorithm: The Science of Socially Aware
Algorithm Design. Oxford University Press, 2019.

[84] Kertz, R. P. Stop rule and supremum expectations of iid random variables: a com-
plete comparison by conjugate duality. Journal of Multivariate Analysis 19 (1986),
88–112.

[85] Kesselheim, T., and Molinaro, M. Knapsack secretary with bursty adversary. In
ICALP (2020).

[86] Kesselheim, T., Radke, K., Tönnis, A., and Vöcking, B. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In ESA (2013).

[87] Kesselheim, T., Radke, K., Tönnis, A., and Vöcking, B. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In ESA (2013).

[88] Kesselheim, T., Tönnis, A., Radke, K., and Vöcking, B. Primal beats dual on
online packing lps in the random-order model. In STOC (2014).

[89] Khatibi, A., and Jacobson, S. Generalized sequential stochastic assignment prob-
lem. Stochastic Systems 8, 4 (2018), 293–306.

[90] Kleinberg, R., and Weinberg, S. M. Matroid prophet inequalities. In STOC
(2012).

[91] Korula, N., and Pál, M. Algorithms for secretary problems on graphs and hyper-
graphs. In ICALP (2009).

[92] Kozlov, M. K., Tarasov, S. P., and Khachiyan, L. G. Polynomial solvability of
convex quadratic programming. In Doklady Akademii Nauk (1979), vol. 248, Russian

126

Academy of Sciences, pp. 1049–1051.

[93] Krengel, U., and Sucheston, L. Semiamarts and finite values. Bulletin of the
American Mathematical Society 83, 4 (1977), 745–747.

[94] Krengel, U., and Sucheston, L. On semiamarts, amarts, and processes with finite
value. Adv. in Probability 4 (1978), 197–266.

[95] Krysta, P., and Vöcking, B. Online mechanism design (randomized rounding on
the fly). In ICALP (2012).

[96] Kumar, R., Lattanzi, S., Vassilvitskii, S., and Vattani, A. Hiring a secretary
from a poset. In EC (2011).

[97] Lachish, O. O(log log rank) competitive ratio for the matroid secretary problem. In
FOCS (2014).

[98] Lien, R. W., Iravani, S. M. R., and R., K. Smilowitz sequential resource allocation
for nonprofit operations. Operations Research 62, 2 (2014), 301–317.

[99] Lindley, D. V. and decision theory. Journal of the Royal Statistical Society: Series
C (Applied Statistics) 10 (1961), 39–51.

[100] Lindley, D. V. Dynamic programming andand decision theory. Applied Statistics 10
(1961), 39–51.

[101] Liu, A., Leme, R. P., Pál, M., Schneider, J., and Sivan, B. Variable decompo-
sition for prophet inequalities and optimal ordering. In EC (2021).

[102] Moran, S., Snir, M., and Manber, U. Applications of ramsey’s theorem to decision
tree complexity. Journal of the ACM 32, 4 (1985), 938–949.

[103] Moro, S., Cortez, P., and Rita, P. A data-driven approach to predict the success
of bank telemarketing. Decision Support Systems 62 (2014), 22–31.

[104] Mucci, A. G. Differential equations and optimal choice problems. The Annals of
Statistics 1 (1973), 104–113.

[105] Mucci, A. G. On a class of secretary problems. The Annals of Probability 1, 3 (1973),
417–427.

[106] Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V. V., Eds. Algorith-
mic Game Theory. Cambridge University Press, 2007.

[107] Nuti, P. The secretary problem with distributions. In IPCO (2022).

[108] Nuti, P., and Vondrák, J. Secretary problems: The power of a single sample.
Manuscript (2022).

[109] Paes Leme, R., and Wong, S. C.-w. Computing walrasian equilibria: Fast algo-

127

rithms and structural properties. Mathematical Programming 179, 1 (2020), 343–384.

[110] Rubinstein, A., Wang, J. Z., and Weinberg, S. M. Optimal single-choice prophet
inequalities from samples. In ITCS (2020).

[111] Samuel-Cahn, E. Comparison of threshold stop rules and maximum for independent
nonnegative random variables. The Annals of Probability 12, 4 (1984), 1213–1216.

[112] Samuels, S. Exact solutions for the full information best choice problem. Purdue
Univ. Stat. Dept. Mimeo Series (1982), 82–17.

[113] Samuels, S. S. P. Secretary problems. In Handbook of Sequential Analysis. CRC
Press, 1991.

[114] Soto, J. A. Matroid secretary problem in the random-assignment model. SIAM J.
Comput 42, 1 (2013), 178–211.

[115] Soto, J. A., Turkieltaub, A., and Verdugo, V. Strong algorithms for the ordinal
matroid secretary problem. In SODA (2018).

[116] Takac, L., and Zábovský, M. Data analysis in public social networks. In Proceed-
ings of the International Scientific Conference and International Workshop Present Day
Trends of Innovations (2012).

[117] Trevisan, L. Non-approximability results for optimization problems on bounded
degree instances. In STOC (2001).

[118] Weitzman, M. Optimal search for the best alternative. Econometrica 47, 3 (1979),
641–654.

128

	 Introduction
	Summary of the Chapters

	Sample-Driven Optimal Stopping: From the Secretary Problem to the i.i.d. Prophet Inequality
	Summary of Results and Overview of the Chapter
	Preliminaries
	p-DOS with Known Values.
	p-DOS with Adversarial Values.
	Dependent Sampling

	Known Values
	Linear Programming Formulation
	Limit Problem
	Structure of Optimal Solution
	Finding the Optimal Thresholds

	Adversarial Values
	Factor Revealing LP
	The Limit Problem and its Solution
	Solving for Different Values of p
	Connection Between the Sampling Models

	On Multiple-Choice p-DOS Problems
	Relation Among Guarantees for Different p on a Given Independence System (S,I)
	Better Guarantees for p-DOS on Special Types of Independence Systems
	Limiting Problem as p1 and Consequences for the Matroid Secretary Problem (MSP)

	Proofs of Section 1.3
	Coupling Argument for Monotonicity
	Convergence of E(ALG_N*(Y)) to CLP_p
	Monotonicity of _j=k 1()j-1-1(1-t)j-t
	Concavity of F_k(t) in Each Variable

	Proofs of Section 1.4
	Derivation of SDLP_h,N
	Solution of SDRP_p for p<1/e
	Details on Numerical Bounds
	Proof of Theorem 1.13

	Selecting the Best with Samples
	Summary of Results
	Further related literature
	Model and definitions
	The Optimal Algorithm
	Computation of the time thresholds
	Numerical experiments
	Experimental setup
	Experimental results

	Fairness in Online Selection: The Multi-Color Secretary Problem
	Summary of Results
	Illustrative Example
	Related Work
	Preliminaries
	Optimal Online Algorithm
	The Algorithm
	Competitive Ratio

	Fairness
	Empirical Evaluation
	Sample-Driven Multi-Color Secretary Problem
	Conclusion and Open Problems

	Optimal Item Pricing in Online Combinatorial Auctions
	Context and Related Work
	A Technical Highlight and Additional Results
	Model
	Main Result: A 1/(d+1)-approximation for Random Valuations
	Efficient and Sample-Based Computation
	Proof of Theorem 4.7

	Deterministic Single-minded Valuations
	Matching in Graphs: d=2
	Hypergraph Matching: d>2

	Conclusion and Future Directions
	Bounds Using an Optimal Solution of LP

	Bibliography

