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DOS CONTRIBUCIONES AL ML PROBABILÍSTICO: ESTIMACIÓN
ESPECTRAL BAYESIANA & EXTENSIÓN DEL NTK

En las áreas de procesamiento de datos y aprendizaje de máquinas, dos ramas importantes
son procesamiento de señales y aprendizaje profundo, respectivamente. Procesamiento de
señales se centra en el análisis, modificación y sintetización de señales. Por otra parte,
aprendizaje profundo es un conjunto de métodos basados en el uso de redes neuronales
multicapa.

Una de las áreas más antiguas en procesamiento de señales es la estimación espectral
(SE), la cuál estima la densidad espectral (PSD) de una señal a partir de un conjunto de
observaciones ruidosas de la señal. Uno de los métodos clásicos es la estimación espectral
Autoregresiva (ASE), la cuál impone que la señal estudiada proviene de la familia de procesos
Autoregresivos, y luego encuentra el proceso Autoregresivo que más se le asemeja mediante
técnicas de optimización. Comunmente, los procecsos usados son máxima verosimilitud o
mínimos cuadrados, por lo que esta estimación no toma en cuenta la incertidumbre derivada
del hecho de ajustar una señal completa a partir de un conjunto finito de observaciones.

Hace unos años, Arthur Jacot probó que las redes neuronales Bayesianas entrenadas con
descenso del gradiente tenían una correspondencia con los procesos Gaussianos, y que los
cambios experimentados por la red durante el procecso de entrenamiento estaban fuertemente
ligados al kernel de este proceso Gaussiano[1]. A pesar de los grandes avances que este campo
ha visto, ha existido poca investigación que utilize otras configuraciones, dado que la mayoría
de trabajos usan redes neuronales profundas entrenadas con descenso del gradiente y utilizan
el error cuadrático medio como función de costo.

Para tomar en cuenta la incertidumbre derivada del proceso de ajuste en la estimación
espectral Autoregresiva, proponemos un acercamiento Bayesiano al problema, usando una
distribución a priori en los parámetros del proceso Autoregresivo, así podemos obtener en
última instancia una distribución posterior en la densidad espectral de la señal, y así obtener
una medida de la incertidumbre de nuestra predicción simplemente mirando la varianza de
la distribución. Para expandir la investigación en redes neuronales Bayesianas y su corre-
spondencia con procesos Gaussianos, probaremos que esta correspondencia se mantiene para
redes neuronales entrenadas utilizando la entropía cruzada como función de costo, la cuál
es común en problemas de clasificación. Esto se hará primero, probando que la entropia
cruzada tiene todas las propiedades requeridas para que exista la correspondencia, y luego
comprobandolo con experimentos apropiados.
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In the data processing and machine learning field, two important branches are signal
processing and deep learning, respectively. Signal processing focuses on analysing, modifying
and synthesizing signals. On the other hand, deep learning is a set of methods that are based
on the use of neural networks with multiple layers.

One of the oldest fields in signal processing is spectral estimation (SE), which is concerned
with estimating the Power spectral density (PSD) of a signal from a set of noisy observations
of this signal. One of the classic methods is Autoregressive spectral estimation (ASE), which
imposes that the signal belongs to the family of Autoregressive processes, and then finds
the best fitting autoregressive process through an optimization procedure. Commonly, the
procedures used are maximum likelihood or least squares, so this method does not take
into account the uncertainty derived from fitting an entire signal only from a finite set of
observations.

In recent years, Arthur Jacot proved that Bayesian networks trained with gradient descent
have a correspondence with Gaussian Process, and that the changes in the network during the
training procedure were deeply related to the kernel of this Gaussian process[1]. Nevertheless,
despite the great advances this field has seen, there has been little research in using other
configurations, since most of the research uses deep neural networks trained with gradient
descent and mean squared error cost.

To take into account the uncertainty derived from the fitting process in the Autoregressive
spectral estimation, we propose a Bayesian approach to this problem, by using a prior distri-
bution on the parameters of the Autoregressive process, we can ultimately obtain a posterior
distribution on the Power spectral density of the signal. Since we have a distribution, we can
easily obtain a measure of the uncertainty of our prediction by looking at the variation of this
distribution. To extend the research on Bayesian deep networks and their correspondence
with Gaussian processes, we will prove that this correspondence holds for networks trained
using the cross entropy cost, usually used in classification problems. This will be done first
by proving that the cross entropy cost has all the required properties for the correspondence
to exist, and then by testing it out with appropriate experiments.
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“Alea iacta est”
— Julio César
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Chapter 1

What is Machine Learning and why it
is important.

Machine Learning (ML) is a branch of Artificial Intelligence (AI) and Computer Science
(CS), devoted to the theory, understanding, construction and implementation of methods
and algorithms that can find patterns among historical data, and "learn" from it, in order to
improve its performance on a given set of tasks.

The most prominent characteristic of this methods and algorithms, is that they are not ex-
plicitly programmed to complete their tasks in a certain explicit or specific way, but rather we
let the algorithm itself discover the best approach to complete such task, by identifying any
correlation, similarity, patterns or important features present in the given data, and use the
collected information in the future, when trying to complete the task in new and unseen data.

The term "Machine Learning" was first used in 1959, by an IBM employee named Arthur
Samuel, who was a pioneer in the field of artificial intelligence, specifically in computer gam-
ing. Since then, the methods, algorithms, techniques and objectives of the machine learning
field have evolved dramatically, thanks to the interest that the scientific community has put
in developing this field, specially in the most recent years, but also thanks to the incredible
increase on computational power, which was a major barrier on how much the algorithms
could learn from data during the last century.

These methods and algorithms are used in a wide variety of tasks, such as classifica-
tion, regression, clustering, anomaly detection, association finding, dimensionality reduction,
machine translation, fraud detection, data labelling, robotics, gaming bots, resource man-
agement, image segmentation, speech recognition and computer vision, among many others
tasks. Most importantly, solving these tasks in an efficient way is important in many areas
and applications such as medical diagnosis, tumor segmentation, recommendation engine,
self-driving vehicles, virtual assistants, business intelligence, human resource management,
and many others that impact the daily routines of people.

Machine learning has become a corner stone in many areas because it brought a huge
improvement in many of the tasks previously mentioned. For example, using image pro-
cessing algorithms, we can improve the image resolution of medical resonances or X-ray, or
automatically detect cellular anomalies during an exam, thus making it easier and faster for

1



the medical teams to diagnose diseases and treat them accordingly. This is why many of
the medical equipment nowadays, such as MRI and X-ray scanners, include in their software
machine learning algorithms to improve the quality of the images. Recommendation engines,
such as the ones used by Youtube and Netflix, analyze the patterns of an user, in order to give
more accurate recommendations, suited for each user likings. This have been revolutionary
in business models, which now can be customized for each individual user, instead of making
general business models aimed for generic group of costumers.

Machine learning, as a field, has many sub-fields, which focus on different and specific
tasks. For example, two prominent areas are Signal Processing and Deep Learning.

Signal processing refers to the methods and algorithms that are used for analysing, mod-
ifying and synthesizing signals. These signals can come from various sources, such as music,
speech, medical exams, electronic components, telluric movements, and many other. The
techniques used focus on optimizing the acquisition and transmission of these signals, to
make the storage of the signals more space efficient, to correct distortion on such signals, or
to detect any component of interest or anomaly in the signals. This is one of the first and
classical sub-fields, which existed from before, but received a new and renovated approach
when the Machine learning techniques appeared.

On the other hand, Deep learning is a relatively new sub-field compared to Signal pro-
cessing, which refer to algorithms, typically artificial neural networks, that posses multiple
layers to extract information and process the data, in order to learn how to represent more
complex functions, that other kind of algorithms cannot learn due to the simplicity of their
architectures. For example, when processing an image, the first layers of a deep neural net-
work tend to focus on the fine details of the mages, such as edges or borders, meanwhile the
latter layers tend to focus on more general concepts of the image, such as recognizing what
the image represents: an animal, a digit, a letter, a face, among others concepts.

In this thesis, we will make advances in each of the previously mentioned sub-fields. In
Signal processing, we will take a classic but obsolete spectral estimation method, called the
Auto-regressive spectral estimation (ASE), and give it a renovated, fresh approach by adding
a Bayesian treatment to this method, thus proposing a new method called Bayesian Auto-
regressive spectral estimation (BASE). We then analyze the properties and limitations of this
new method.

In Deep learning, we will make progress in understanding the theoretical process that is
underlying when using deep neural networks. Simply put, we will investigate how the net-
work actually learns when trained on data. For this purpose, we will use the Neural Tangent
Kernel approach, and extend it to a different cost function.

We expect this work to be useful to the scientific community, and specifically to the
Machine learning community, and that it will be another small step on the march of progress,
by helping us to better understand the algorithms and methods we use, as well to generate
new ideas and applications of such algorithms.
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Chapter 2

Bayesian Autoregressive Spectral
Estimation

2.1. Introduction
In Signal Processing, spectral estimation (SE) refers to the determination of the energy

that is contributed by each component in a time series. In particular, we will focus on oscilla-
tory periodic single-frequency components, the spectral representation of which is represented
by the Fourier power spectral density (PSD). In practice, the challenge is to estimate the
PSD from a set of noisy observations of the time series; this is seen in applications such
as biomedical engineering [2] and telecommunications [3]. Classical methods for computing
the PSD can be roughly divided in two categories, parametric and nonparametric. Paramet-
ric methods impose a generative model on the data such as autoregressive moving average
(ARMA) models [4], sums of sinusoids (Lomb-Scargle [5]), Bernstein polynomials [6] or Gaus-
sian mixtures [7]. On the other hand, nonparametric methods for spectral estimation do not
assume any structure on the data and are thus more flexible, yet they do not discriminate
the signal from the noise, which critically affects the spectral estimates. Typical examples of
the nonparametric SE methods are the classic Periodogram [8] which can be considered as a
histogram of frequencies as well as recent Bayesian nonparametric approaches [9, 10, 11].

Even though the randomness conveyed by time series observations is evident, dealing
with the uncertainty related to the data-driven computation of the PSD is not a standard
practice within SE. In parametric approaches, the model is imposed on the data through an
optimisation procedure, e.g. in the least squares or maximum likelihood senses. Therefore,
the PSD is approximated deterministically, by a point estimate, and all the information about
the mismatch between the chosen model and the data, which could lead to probabilistic PSD
estimates, is unfortunately usually neglected.

To address this scenario, which is particularly detrimental in noisy data and model mis-
match, we aim to cater for uncertainty in PDS estimates finding a distribution over PSDs
rather than point estimates. This can be achieved by equipping the existing framework for
parametric spectral estimation with a Bayesian treatment. Instead of committing to a point-
estimate of parameters of the time-series model, we can find their posterior distribution, thus
constructing a posterior distribution over models for time series. Then, we can transport this
distribution via the Fourier transform to find the posterior distribution over PSDs, where
posterior in this case is in the sense of conditional to the time series observations. This ra-
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tionale becomes of particular importance for model misspecification, since, strictly speaking,
a parametric model may always be considered to be misspecified for real data and therefore
the distribution of models allows us to account for the limited capacity of the parametric
representation.

In this paper, we apply this generic idea to the particular class of autoregressive time series
models, thus our proposed method is referred to as Bayesian autoregressive spectral estima-
tion (BASE). In particular, we compute the posterior distributions over the AR parameters
via Markov chain Monte Carlo (MCMC) [12], then, we use the MCMC samples to produce a
sample version of the PSD, which is closed-form given the AR parameters. Via simulations,
we validate the proposed BASE method on two synthetic signals and a real world example,
these experiments show the advantage of the proposed BASE model in terms of robustness
to order misspecification, unbiasedness, uncertainty representation and periodicity detection.

Also, in an effort to avoid the heavier part of the computational cost, derived from the use
of the MCMC algorithm, we propose an special prior distribution, which due to the nature of
the AR process, is conjugate with the posterior distribution. This allow us to directly com-
pute the parameters by simply extracting a sample from the posterior distribution, which is
explicit upon defining the prior distribution.

The work presented in this section was done jointly with Alejandro Cuevas, Danilo Mandic
and Felipe Tobar. It was published and presented at the 2021 IEEE Latin American Confer-
ence on Computational Intelligence (LA-CCI)[13]

2.2. Background: Parametric spectral estimation using
an AR model

A discrete-time sequence {xt}t∈N is called a p-order autoregressive process, denoted AR(p),
if it is given by the relationship [8]

xt =
p∑

k=1
akxt−k + ϵt, (2.1)

where p ∈ N, [a1, . . . , ap] ∈ Rp are the (autoregressive) parameters and {ϵt}t∈N is a noise pro-
cess. We consider the noise to be Gaussian independent and identically distributed random
variables with zero mean and variance σ2.

2.2.1. Power spectral density of AR(p) processes

AR(p) processes are ubiquitous in parametric spectral estimation as they have closed-form
PSDs [14] given explicitly by the AR parameters. Specifically, using the Z-transform [4] the
PSD of AR(p) can be expressed by

Sx(ξ) = σ2

|1 −∑p
k=1 ake−i2πξk|2

. (2.2)
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The modes (or peaks) of the PSD in eq. (2.2), i.e., the frequencies where the AR process
convey more power, are given by the roots of the denominator. These roots are the poles
of the dynamical system that generates the AR(p) process {xt}t∈N. Since we can regard the
model order p as the degrees of freedom of the parametric PSD for the AR model, the larger
the p the more flexible the PSD; this is in line with the interpretation in the temporal domain,
where a model with more lags can cater for more complex time series and thus represents a
more general model.

The fact that the PSD above is directly parametrised by {a1, . . . , ap, σn} is perhaps the
main motivation for using the AR model for spectral estimation. However, even though there
have been Bayesian approaches to fit the AR parameters they have not been applied to the
SE problem. In practice, the literature shows that the use of AR parameters in SE has been
mainly deterministic, e.g., by computing the PSD in eq. (2.2) with a plug-in approximation
of the AR parameters such as those found by least squares, the method of moments, or
maximum likelihood. Such an approach, does not allow for modelling the uncertainty related
to the peaks of the resulting PSD, due to noisy data, or to account for model misspecification
(i.e., incorrect model order) which can lead to either peak splitting (over-estimation) or onto
fewer peaks (under-estimation).

2.3. Bayesian spectral estimation for the autoregres-
sive model

Our aim is to compute the posterior distribution of the PSD for the AR case, thus pro-
viding a natural account for model uncertainty, which arises from i) the consideration of a
finite dataset, ii) model mismatch, iii) noisy observations. From now on, we will refer to
the standard (deterministic) autoregressive spectral estimation approach as ASE and to the
proposed Bayesian counterpart as BASE.

2.3.1. Generic Bayesian parametric spectral estimation

The posterior distribution of the PSD of a stochastic process {x}t∈N, denoted by Sx,
conditional to a set of observations x = [x1, x2, . . . , xn], can be computed by integrating out
the model of the time series. Denoting the space of all possible time series models by , the
posterior PSD is given by

p(Sx|x) =
∫

p
(Sx, M |x)dM (2.3)

=
∫

p
(Sx|M)p(M |x)dM,

where the last expression only takes the (reasonable) assumption that the PSD, Sx, and the
observations, x, are conditionally independent given the model M . This follows from the
fact that the data cannot say more about the PSD than the model itself.

Notice that the above integral is defined over the entire, possibly infinite-dimensional,
model space . To calculate this integral we need to assume a structure for the time-series
models to be considered; this can be achieved by choosing a finite-dimensional prior over
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the models, namely p(M). A straightforward way to choose this prior is to first assume a
parametrisation over models, say M = Mθ, θ ∈ Rd, and then choose a prior over the pa-
rameters p(θ). This construction is know as the push-forward measure [15] that transports
a distribution over the finite-parameter, θ ∈ Rd, towards the space of models through the
mapping θ → Mθ.

With this parametrisation, the posterior in eq. (2.3) can be expressed with respect to the
model parameters, θ, via the change of variable theorem as

p(Sx|x) =
∫

Θ
p(Sx|θ)p(θ|x)dθ, (2.4)

where the integration is now performed over the (finite) parameter space, that is, Θ = Rd.

Under the assumption that the process {xt}t∈N is stationary and given by a model Mθ,
its PSD is uniquely defined by the model’s parameters θ and thus the distribution p(Sx|θ)
is a Dirac measure supported on a single points on the space of PSDs. Therefore, sampling
from the posterior over PSDs, p(Sx|x), is straightforward: simply sample a parameter from
the posterior distribution over parameters θ∗ ∼ p(θ|x), and then map this parameter sample
to PSDs according to

θ∗ → Mθ∗ → Sx = PSD(Mθ∗), (2.5)

where PSD(M) denotes the PSD corresponding to the model M .

In order to perform this procedure, we need to choose a model space Mθ, a prior over the
parameters p(θ) and a sampling procedure. We refer to these in the remaining part of this
section.

2.3.2. Establishing a prior over AR models

We shall choose the model space as that of AR models owing to their appealing proper-
ties for spectral estimation outlined in Section 2.2.1. Furthermore, we will assume that all
parameters in the AR model are independent, that a1:p, p ∈ N, are Normally distributed and
the noise variance σ2 follows a half-Normal prior. Thus, the priors are

p(a1:p) = (0, σ2
ap) (2.6)

p(σ2) = half-(0, σ2
ϵ ), (2.7)

where the half-Normal distribution corresponds to the multiplication between a Normal dis-
tribution and an indicator function {σ2≥0}, and then properly renormalised (i.e., multiplied
by 2).

The choice of normality for the autoregressive parameters follows from the fact that the
Gaussian prior is conjugate to the (conditional) likelihood as verified in the next section, and
thus the posterior is also normally distributed.
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2.3.3. Model likelihood

For a given set of observations {x1:T } we focus on the conditional likelihood of the AR(p),
that is, the expression p(xp+1:T |x1:p, θ), where θ = [a1, . . . , ap, σ2]⊤ denotes all model param-
eters and we consider {x1:p} to be fixed and not part of the generative model for simplicity
of presentation.

Following eq. (2.1), the conditional likelihood of the AR(p) model is given by

p(xp+1:T |x1:p, θ) =
T∏

τ=p+1
p(xτ |xτ−1:τ−p, θ) (2.8)

=
T∏

τ=p+1

1√
2πσ2

exp
(

−(xτ −⊤ xτ−1)2

2σ2

)
,

where we have adopted the notation = [a1, . . . , ap] and xτ−1 = [xτ−1, . . . , xτ−p].

The conditional likelihood is thus Gaussian on the AR parameter vector , meaning that
the Gaussian prior on established on the previous section is conjugate to the conditional
likelihood and results on the following Gaussian posterior

p(θ|x1:p, xp+1:T ) = p(xp+1:T |x1:p, θ)p(θ)
p(xp+1:T , x1:p) (2.9)

∝ p(xp+1:T |x1:p, θ)p()p(σ2)

∝
T∏

τ=p+1

1
σ

exp
(

−(xτ −⊤ xτ−1)2

2σ2

)

· exp
(

−1
2σ2

a

aT a

)
exp

(
−σ2

2σ2
ϵ

)
.

The complete (rather than conditional) likelihood is given by

p(x1:T |, θ) = p(xp+1:T |x1:p, θ)p(x1:p|θ), (2.10)

and thus implies computing the distribution p(x1:p|θ). This quantity is, however, difficult
to calculate since it involves the infinite-order moving-average representation of the AR(p)
process. Therefore, under the assumption that the first p observations are fixed they become
independent from θ, and the density p(x1:p|θ) becomes a constant for theta in eq. (2.10).
A similar reasoning applies for the marginal distribution p(xp+1:T , x1:p). Notice that the dis-
crepancy between the conditional and complete likelihoods becomes negligible for increasing
amounts of data. For this reason, we will consider only the conditional likelihood.

With this choice, generating a sample, θ∗, from the posterior requires the evaluation of
p(xp+1:T |x1:p, θ)p()p(σ2). Then, this sample can be used to compute the PSD explicitly, ac-
cording to eq. (2.2). This procedure avoids explicit computation of the model Mθ, since it
allows us to compute the PSD directly from the parameters.

Notice that, by construction, all the posterior PSD samples will have the form as in
eq. (2.2) which means that no probability will be assigned to expressions that do not follow
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this form. Therefore, using a set of samples of PSDs constructed as explained above, we can
numerically compute the mean PSD and error bars conditional to a set of signal values x.

2.3.4. Closed form posterior

If we assume instead that the noise variance σ2 follows an Inverse-Gamma distribution,
we obtain a closed expression for the posterior distribution on the parameters, and it is a
Normal-Inverse-Gamma distribution. More specifically, let the priors be:

p(a1:p|σ2) =
(

µ0,
σ2

λ p

)
(2.11)

p(σ2) = Γ−1(α, β) (2.12)

Then the posterior distribution for θ = (a1:p, σ2) is proportional to a Normal-Inverse-Gamma:

p(θ|x1:T ) ∝ Γ−1(µ, Σ−1, α, β) (2.13)

where:

Xp+1:T = [x⊤
i−1:i−p]Ti=p+1

Σ−1 = λp + X⊤
p+1:T Xp+1:T

µ = Σ(λµ0 + X⊤
p+1:T xp+1:T )

α = α + T − p

2

β = β +
λµ⊤

0 µ0 + x⊤
p+1:T xp+1:T − µ⊤Σ−1µ

2

Using this closed-form distribution, we can obtain a sample of the parameters (a1:p, σ2)
simply by specifying the hyper-parameters (µ0, λ, α, β) and sampling from the distribution,
allowing us to avoid the process of MCMC, which can be slow in certain cases.

To get better estimations, we made an hyper-parameter tuning using a Grid search and a
cross-validation scheme with a 5-fold Time series split. The scheme consist of the following:
For each combination of hyper-parameters in the grid, we compute the Maximum a posteriori
estimator (MAP) on the train split of the fold, to then score it on the test split of the fold
using the likelihood of the data given the MAP for a1:p and σ2 as the scorer function.

The MAP estimators for the parameters (a1:p, σ2), asuming we have m observations of the
signal, are given by

aM =
(

λp +
m∑

i=1
X⊤X

)−1 (
λµ0 +

m∑
i=1

X⊤x

)

σ2
M = 2β + λ(aM − µ0)⊤(aM − µ0) +∑m

i=1(x − XaM)⊤(x − XaM)
2(α + 1) + mT + (m − 1)p

where X := Xp+1:T and x := xp+1:T . The final score assigned to the hyper-parameters is the
average of the scores obtained on each fold. The set of hyper-parameters with the best score
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will be used to compute the posterior distribution of the parameters.

The grid used for the hyper-parameters are

λ, α, β ∈ {0.1, 1, 10, 100}

µ0 ∈




−10
−10

...
−10

 ,


−8
−8
...

−8

 , . . . ,


10
10
...

10




⊂ Rp

2.4. Simulations
We validated the proposed Bayesian autoregressive spectral estimation method, BASE,

over three case studies, two for synthetic data and one for real world data. The first one con-
sidered a synthetic AR signal, where the true and approximate model orders were different,
this simulation is aimed to show that BASE is robust to model misspecification due to the
chosen prior. The second experiment illuminates the unbiasedness and concentration proper-
ties of the approximate posterior over PSDs by applying BASE on a continuous-time signal
generated by a Gaussian process (GP) [16] with known PSD. Finally, the third experiment
validates the ability of the proposed BASE model to detect periodicities from a sub-sampled
real world astronomical time series. We also compare, over all the case studies, the perfor-
mance of the method in both versions: using MCMC and closed-form. In all experiments,
we sampled from the posterior using MCMC, specifically, we used a NUTS sampler [17] in
the PyMC3 Python toolbox [18].

2.4.1. Misspecified model order: AR-generated time series

We implemented a stable AR(4) time-series to generate data that was later processed by
BASE with the assumption of a AR(10) model. Fig. 2.1 shows the true values of the regres-
sion coefficients and their approximate posterior using MCMC; notice that these posteriors
contain the true AR(4) coefficients, and they also converge to narrow posteriors centred
around zero for higher orders coefficients. This validates the self-regularisation property, or
robustness to misspecified model order, within the proposed BASE-framework which will be
key when computing the sample PSDs.
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Estimation of AR(4) parameters

Real values

Figure 2.1: Approximate posterior distributions over AR parameters using
MCMC (NUTS) and the true AR(4) values shown in yellow stars.

Next, using the approximate posterior over the AR parameters (coefficients and variance),
we generated PSD samples according to eq. (2.2). Fig. 2.2 shows the density over PSDs using
the proposed BASE (95% error bars), the standard Autoregressive spectral estimation, the
true PSD and the Periodogram. Notice that the proposed BASE succeeded in estimating the
true PSD while remaining unbiased and concentrated around the true value.
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3
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Posterior of the Log-PSD for Synthethic AR
Periodogram ASE BASE True PSD

Figure 2.2: Log-PSD estimate for a synthetic AR(4) signal using the BASE
method; True PSD (dashed black line), Periodogram (blue line), ASE (green
line), and proposed BASE (red line, 95% error bars).

2.4.2. Continuous-time signal: Gaussian process with Laplace co-
variance

A synthetic signal was generated from a Gaussian process (GP) [16] with Laplace covari-
ance function given by

K(τ) = σ2 exp(−|τ |/l), (2.14)

10



where σ2 denotes the marginal covariance and l is known as the process lenghtscale. Further-
more, we considered zero-mean Gaussian noise added to the GP sample.

Recall that a sample from a GP can be regarded as a signal generated by an AR(∞)
model. Therefore, the proposed BASE model was implemented with an AR(4) model, the
order of which was chosen from the rate of decay of the Laplace kernel. Then, the PSD
estimate of the BASE model was compared against those of the standard ASE of the same
order and the Periodogram. Fig. 2.3 shows the PSD estimates (95% error bars for BASE)
as well as the true PSD of the signal, given by the Fourier Transform of the Laplace kernel.
Notice that the PSD posterior within BASE was concentrated around the true PSD and was
able to capture the mean of its deterministic counterpart.
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PSD posterior for GP with Laplace kernel
Periodogram ASE BASE True PSD

Figure 2.3: Spectral estimation of a GP trajectory: BASE shown in red,
true PSD in dashed black, Periodogram in blue and ASE in green. The
figure only shows the region [0, 0.05], since this is where almost all the
spectral content of the data is contained.

2.4.3. Finding the periodicity of an astronomical time series

For the third experiment, we considered a real-world time series which may not be an AR
process and therefore its PSD will not be precisely given by the expression in eq. (2.2). This
experiment was constructed to validate the Bayesian approach to handle model misspecifica-
tion by averaging over the posterior models. The signal considered was the sunspots dataset
[19], known for having a period of 11 years (frequency ≈ 0.0909[years−1]), we implemented
BASE to detect this periodicity only using 1/6 of the available data.

We first computed both the autocorrelation (ACF) and partial autocorrelation (PCF)
functions of the sunspots series. Fig. 2.4 shows the ACF and PCF, and show that due to
the slow decay of PCF, the order of the autoregressive component of the signal cannot be
specified with any certainty; this supports the evidence that the sunspot series is not an AR
process. Nevertheless, we proceeded by choosing an AR(9) model and implemented BASE
to compare against the ASE and the Periodogram, where ASE and the Preiodogram used all
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the available data. Fig. 2.5 shows the peak estimates of the PSDs using BASE, where the
main peak (colour-coded in red) is 0.09181278[years−1] and thus in line with the expected
frequency peak. Fig. 2.6 shows the PSD estimates for the three models, with the proposed
BASE model exhibiting its peak near the correct known period of the sunspots signal, as it
was expected from Fig. 2.5.

Notice that the errors bars of BASE are now larger than those of the previous experiments,
this is because the signal considered in this experiment is not coming from an AR process
and thus we are in the scenario of model mismatch. In this sense, due to the fact that BASE
averages over possible AR models, its error bars are larger but they contain other peaks of
the Periodogram. Finally, observe that despite the fact that an order p = 9 for the model was
chosen, this did not result in multiple peaks which validetes BASE’s robustness to overtiffing
arising from its Bayesian nature.

1750 1800 1850 1900 1950 2000
0

200

Sunspots Dataset

0 5 10 15 20 25 30 35
Lags

0

1
Autocorrelation

0 5 10 15 20 25 30 35
Lags

0

1
Partial Autocorrelation

Figure 2.4: Sunspots time series (top) alongside autocorrelation and partial
autocorrelation functions.
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Figure 2.5: Peaks of the PSD computed by BASE for the sunspots time
series. The red stem denotes the main peak.
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Figure 2.6: PSD estimates for the sunspots series: BASE (95% error bars),
ASE and Periodogram. The frequency of the well-known 11-year period is
illustrated by a vertical dashed black line.

2.4.4. Performance of the closed-form posterior

First, in order to compare performances, the proposed CF method was implemented on
the AR(4) synthethic data generated in experiment A, where the real parameters are known.
Fig. 2.7 shows the PSD estimate (95% error bars) along with the ASE estimation, the true
PSD and the Periodogram. Comparing this results with those shown in Fig. 2.2, we can see
the estimation of the mean is slightly better, and the variance of the estimation is slightly
reduced.
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Figure 2.7: Log-PSD estimate for a synthetic AR(4) signal using the CF
method; True PSD (dashed black line), Periodogram (blue line), ASE (green
line), and proposed CF (red line, 95% error bars).

Next, we used the same synthetic Gaussian process signal generated in experiment B, so
we can compare the performances of the MCMC method againts the closed-form posterior
method on more realistic dataset. Fig. 2.8 shows the PSD estimates (95% error bars for CF)
as well as the true PSD of the signal, given by the Fourier Transform of the Laplace kernel.
The closed-form method is very similar in performance to its MCMC counterpart, as it also
concentrates around the true PSD and its mean captures the estimation of the ASE. Notice
that the error bars are slightly better than those given by the MCMC method. This suggest
that the posterior distribution we found is actually correct.
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Figure 2.8: Spectral estimation of a GP trajectory: CF shown in red, true
PSD in dashed black, Periodogram in blue and ASE in green. The figure
only shows the region [0, 0.05], since this is where almost all the spectral
content of the data is contained.
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In order to validate the closed-form method on real data, we tested it on the sunspots
data-set [19], same as we did in experiment C. Fig. 2.9 shows the results with the closed-form
approach, which again have slightly less variance than its MCMC counterpart. Although the
peak frecuency has shifted to the left, the estimation as a whole is still precise and similar
to the one given by the MCMC approach. This suggest that the closed-form approach also
posses all the good properties the MCMC approach has.
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Figure 2.9: PSD estimates for the sunspots series: CF (95% error bars),
ASE and Periodogram. The frequency of the well-known 11-year period is
illustrated by a vertical dashed black line.

2.5. Conclusion
We have proposed a novel framework termed BASE, a Bayesian approach to autoregressive

spectral estimation. BASE exploits the closed-form properties of the AR model to compute
power spectral densities (PSD), and also complements it with a probabilistic treatment, thus
allowing us to quantify uncertainty in the estimates of the PSDs through the use of confidence
intervals.

The description of the proposed method follows the idea that we can sample from the pos-
terior distribution over PSDs (given a set of observations of the time series) by (i) sampling
the posterior parameters of an AR model, to then (ii) compute the corresponding PSD of
such sample parameter. Using MCMC, we have implemented the proposed BASE method
on data generated by an AR model, a Gaussian process model and a real-world astronomical
time-series. Through these simulations, we have validated BASE in terms of robustness to
model misspecification, unbiasedness, accuracy, and periodicity detection.

On the other hand, although the closed-form approach gives better results than the MCMC
approach, its main contribution is the reduction on the computation time. Since it only
requires to sample from a given posterior distribution, it takes considerably less time, specially
on large datasets. The main setback is that it requires the assumption of certain priors to
work, in order to yield a known posterior distribution.
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2.6. Future work
Future work includes considering a hierarchical prior to simultaneously identify the model

order (e.g., a Dirichlet prior) and extensions to ARMA models to cater for moving-average
spectral components and spectra with zeros.

Also, for the closed-form approach, considering other heuristics to determine the hyper-
parameters µ0, λ, α, β, that include information about the nature of said parameters, may
yield better estimations than simply using the grid search.
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Chapter 3

Neural networks trained with
Cross-entropy loss follow the NTK

3.1. Introduction
Neural Networks are models used in the area of machine learning, which have gained a lot

of popularity in recent years due to the impressive results in the multiple task they are used
in, such as image recognition, language processing, etc.

However, the number of applications of neural networks have grown much faster than our
capacity to understand them, and to this day, most of the inner works of neural networks
remains a mystery to be solved, especially in the area of deep learning, where the parameters
of the networks lack a proper interpretation.

In an attempt to improve the understanding of deep neural networks, recent works have
focused on the importance of the initialization of the parameters of the neural networks. In
line with this objective, the study of Bayesian deep neural networks (BDNN) have been
essential. BDNN are neural networks whose parameters are initialized randomly, according
to a prior distribution.

Later, thanks to an specific application of Bayesian deep networks, a new model is born:
Infinitely Wide Neural Network. These models are mostly theoretical of course, but it has
been proven that a large class of Bayesian deep networks become Gaussian Processes
(GP) when the width of their layers tends to infinity. This correspondence was first proven
for a one-layer feed-forward fully-connected network in [20], and was later extended for multi-
layer settings in [21, 22]. Since then, the correspondence between Bayesian deep networks
and Gaussian processes has been greatly expanded, proving it for a variety of non-linearities
[22, 23] and a variety of architectures, including convolution layers [24, 23, 25, 26], pooling
layers [23, 26], skip connections[25], residual networks [24]. In general, any of the usually
used architectures, including recurrent networks, or a mixture of said architectures, can be
represented by a Gaussian process in the infinite-width limit, as was shown in [27].

In addition to the correspondence of the networks as Gaussian processes, it has been
proven that Bayesian deep networks, when initialized randomly and trained using gradient
descent, follow a certain behavior described by the Neural Tangent Kernel (NTK)[1, 28],
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which is related to the Kernel of the Gaussian representation of the network.

Although there has been great advances in understanding and exploring these infinite-
width limit architectures and the correspondence with their respective Gaussian process, the
vast majority of these efforts have centered in changing the architecture of the network, either
changing the type of layers or the non-linearities used in the network. There has been little
research on the impact that changing the cost function or the training scheme used to train
the networks has on this correspondence between BDNN and GP.

Most of the previous works mentioned before only use the mean squared error (MSE) func-
tion as their cost function, and use a training scheme based on gradient descent, or stochastic
gradient descent. Based on the necessary conditions for the correspondence between BDNN
and GP to work, it is natural to think this correspondence will hold for other cost functions
and training schemes.

With the idea of proving this correspondence property, the objective of this chapter is to
present the contributions of this thesis to the theoretical understanding of fully-connected
feed-forward neural networks behavior when the width of the layers tends to infinity, when
the cross entropy function is used as the cost function and when the network is trained using
stochastic gradient descent. First, I present the necessary definitions and theorems, devel-
oped in [1]. Then, I study the properties of the cross-entropy loss, and prove that it fits
all the requirements presented in the Background section. Finally, I present a theoretical
infinite-width dynamic for the representative function of the network.

The work presented on this chapter, to the best of the author knowledge, is a novel con-
tribution in the field, developed by the author of this thesis. The work done here is based
on the theoretic frame developed in [1], but it explores the importance of the cost function,
rather than the importance of the network architecture, which is the most common direction
that subsequent works explore.

The main contributions of this chapter are:

1. Proving theoretically that the cross-entropy loss fits all the hypothesis needed to study
deep neural networks that use such loss function under the NTK scope.

2. Elucidate an equation that describes the evolution of an infinite-width deep neural
network during the training process.

3. Ascertain experimentally that deep neural networks, when trained with gradient descent
and using the cross-entropy loss, behave, asymptotically in the width, as described by
the previously mentioned equation.

3.2. Background
In this section, we will provide a quick review of the most important elements presented in

NTK paper[1], in order to have all the ingredients that we will need for our later statements.
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3.2.1. Neural Networks

In this work, we will be using the same context used in the NTK paper[1], more specif-
ically, we consider fully-connected neural networks with layers numbered from 0 (input) to
L (output), each containing n0, . . . , nL neurons, and with a Lipschitz, twice differentiable
non-linearity function σ : R → R, with bounded second derivative.

We will call F = {f : Rn0 → RnL} the function space, and for a neural network with a
fixed set of parameters θ, the function fθ will be the one representing the network. On this
space, we consider the seminorm || · ||pin

, defined by:

⟨f, g⟩pin
= Ex∼pin

[f(x)⊤g(x)] = 1
m

m∑
i=1

f(xi)⊤g(xi). (3.1)

The realization function F (L) : RP → F maps the parameters θ of the network to the
representative function fθ of the network. The parameters consist of the connection matrices
W (l) ∈ Rnl+1×nl and biases b(l) ∈ Rnl+1 for l = 0, . . . , L − 1. The parameters are initialized
as independant and identically distributed Gaussian variables. The hyperparameters of this
Gaussian distribution (mean and variance) will be defined in the Experiments section.

We consider pin as the empirical distribution on a finite dataset {x1, . . . , xm}, i.e. pin =
1
m

∑m
i=1 δxi

.

3.2.2. Kernel Gradient

The training of a neural network consist basically in optimizing fθ in the function space
F with respect to a cost functional C : F → R, which in this work, will be the cross-entropy
cost.

We define a multi-dimensional Kernel as a function K : Rn0 × Rn0 → RnL×nL with the
property K(x, x′) = K(x′, x)⊤. Using a kernel K, we can construct a bi-linear map on F :

⟨f, g⟩K := Ex,x′∼pin
[f(x)⊤K(x, x′)g(x′)] = 1

m2

m∑
i=1

m∑
j=1

f(xi)⊤K(xi, xj)g(xj). (3.2)

We will say K is positive definite with respect to || · ||pin
if ||f ||pin

> 0 ⇒ ||f ||K > 0.
We denote by F∗ the space of linear forms µ : F → R that have the form µ = ⟨d, ·⟩pin

for some d ∈ F . Using the fact that, for a fixed x ∈ Rn0 , a row of the partial application of
the kernel Ki,·(x, ·) is a function in F , we can define a map ΦK : F∗ → F mapping a dual
element µ = ⟨d, ·⟩pin

to the function fµ defined as:

fµ(x)i = µ(Ki,·(x, ·)) = ⟨d, Ki,·(x, ·)⟩pin
= 1

m

m∑
i=1

d(xi)⊤Ki,·(x, xi). (3.3)

Since the cost functional C only depends on the values of f ∈ F at the data points, the
functional derivative of C at a point f0 ∈ F can be viewed as an element of F∗. We will de-
note this element as ∂in

f C|f0 , and its dual element in F as d|f0 , such that ∂in
f C|f0 = ⟨d|f0 , ·⟩pin

.

We will define the kernel gradient ∇KC|f0 ∈ F as ΦK

(
∂in

f C|f0

)
, and its mapping of
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x ∈ Rn0 is:
∇KC|f0(x) = 1

m

m∑
i=1

K(x, xi)d|f0(xi). (3.4)

We will say that a time dependant function ft follows the kernel gradient descent, with
respect to kernel K, if it satisfies the relation:

∂tft = −∇KC|ft . (3.5)

Therefore, during the kernel gradient descent, the cost C(ft) evolves as:

∂tC|ft = −⟨d|ft , ∇KC|ft⟩pin
= −||d|ft||2K . (3.6)

From this equation, we conclude that the convergence of C to a critical point is guaranteed if
the kernel K is positive definite with respect to pin, since the cost will be strictly decreasing,
except at points where ||d|ft ||pin

= 0. Moreover, if C is convex and lower-bounded, then ft

converges to a global minima.

3.2.3. Neural tangent kernel

Following the idea presented in [1, Section 3.1], the authors conclude that performing
gradient descent on the cost C ◦ F (L) in the parameter space is equivalent to performing
kernel gradient descent in the function space F .

This implies that, for neural networks, during training using gradient descent, the network
function ft evolves along the negative kernel gradient:

∂tft = −∇ΘL
t
C|ft , (3.7)

where Θ(L)
t is the neural tangent kernel (NTK):

Θ(L)
t =

P∑
p=1

∂θt,pF (L)(θt) ⊗ ∂θt,pF (L)(θt). (3.8)

However, F (L) is not linear, and as a consequence the NTK depends on the parameters θt.
Since the parameters are changing over time, so does the kernel, which makes the analysis of
ft more difficult.

Proposition 3.1, Theorem 3.1 and Theorem 3.2 help us to solve this problem, by showing
that in the infinite-width limit, the NTK is deterministic at initialization and stays constant
during training.

Proposition 3.1 For a network of depth L at initialization, with a Lipschitz nonlinearity
σ, and in the limit as n1, ..., nL1 → ∞, the output functions f

(k)
θ , for k = 1, . . . , L, tend in
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law to iid centered Gaussian processes of covariance Σ(k) defined by recursivity:

Σ(1)(x, x′) = 1
n0

x⊤x′ + β2 (3.9)

Σ(k+1)(x, x′) = Ef∼GP (0,Σ(k))[σ(f(x))⊤σ(f(x′))] + β2. (3.10)

Theorem 3.1 For a network of depth L at initialization, with a Lipschitz non-linearity σ,
and in the limit as n1, ..., nL1 → ∞, the NTK Θ(L)

0 converges in probability to a deterministic
kernel:

Θ(L)
0 → Θ(L) ⊗ IdnL

, (3.11)

where the scalar kernel Θ(L) : Rn0 × Rn0 → R is defined by recursion:

Θ(1)(x, x′) = Σ(1)(x, x′) (3.12)
Θ(k+1)(x, x′) = Θ(k)(x, x′)Σ′(k+1)(x, x′) + Σ(k+1)(x, x′), (3.13)

where
Σ′(k+1)(x, x′) = Ef∼GP (0,Σ(k))[σ′(f(x))⊤σ′(f(x′))], (3.14)

and σ′ denotes the derivative of the non-linearity σ.
When training the network with gradient descent, the parameters are updated according

to:
∂tθt,p =

〈
∂θt,pF (L)(θt), −d|ft

〉
pin

. (3.15)

Assuming that the integral
∫ T

0 ||d|ft||pin
dt stays stochastically bounded when the widths tend

to infinity, we have the following result:

Theorem 3.2 Assume σ is a Lipschitzt, twice differentiable non-linear function, with bounded
second derivative. For any T ∈ R+ such that

∫ T
0 ||d|ft ||pin

dt stays stochastically bounded, as
n1, ..., nL1 → ∞, we have uniformly for t ∈ [0, T ]:

Θ(L)
t → Θ(L) ⊗ IdnL

, (3.16)

and as a consequence, in this limit, the dynamics of ft is described by:

∂tft = ΦΘ(L)⊗IdnL
(⟨−d|ft , ·⟩pin

) . (3.17)

3.3. Cross entropy loss function
In this section, we will focus in a specific case, a neural network used for classification

problems, trained with gradient descent and using a cross-entropy loss. The objective is to
verify that this specific setup fulfills all the hypothesis mentioned in the Background section,
and so, can be studied and understood through the NTK approach.

Since we now consider a classification problem, any input x ∈ Rn0 of the neural network
will be associated with one of nL different classes. The true class of an input x will be one-hot
encoded through the function f ∗ : Rn0 → {0, 1}nL , ie, f ∗(x) will be a vector of 0’s, and one
1 value in the position representing the true class of x.
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As was mentioned in the Background section (3.2), the cost function C we will consider
is the cross-entropy:

C(f) = − 1
m

m∑
i=1

nL∑
j=1

(f ∗(xi))jlog(f(xi)j), (3.18)

where {(xi, f ∗(xi))}m
i=1 are the data points, used to train the network.

In this case, the network function ft : Rn0 → (0, 1)nL will be such that f(x)j represents
the probability of x belonging to class j, for j = 1, . . . , nL.

3.3.1. C is convex and non negative

First, we express the function C in a form where it is easier to understand why it is convex
and non-negative:

C(f) = − 1
m

m∑
i=1

nL∑
j=1

(f ∗(xi))jlog(f(xi)j)

= 1
m

m∑
i=1

f ∗(xi)⊤(−log(f(xi)))

= ⟨f ∗, −log(f(·))⟩pin

(3.19)

Here log(f(x)) means the logarithm is applied at each coordinate of the vector f(x).

Thus, C is defined by the inner product pin, so it is linear in −log(f) which is a convex
function on f . Therefore, by composition, C is convex in f .

To show that it is non-negative, one has to remember that f : Rn0 → (0, 1)nL and f ∗ :
Rn0 → {0, 1}nL , so −log(f) is a positive function, and the inner product between two non-
negatives functions is non-negative.

3.3.2. Direction of training dt

Suppose that we are going to train the neural network for a certain amount of epochs, then
the output function f becomes time dependant, as it is expected that it changes over time
due to the training procedure. Therefore, we are calling it ft to make this dependence explicit.

Our main goal is to describe the function ft at all times, to understand how the neural
network changes over time. To achieve this, we need to discover the training direction dt, to
understand the dynamic of ft.

To do so, we first have to look at how the cost function changes over time, since the output
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function ft is changing:

∂tC|ft = ∂t

− 1
m

m∑
i=1

nL∑
j=1

(f ∗(xi))jlog(ft(xi)j)


= − 1
m

m∑
i=1

nL∑
j=1

(f ∗(xi))j∂t(log(ft(xi)j))

= − 1
m

m∑
i=1

nL∑
j=1

(f ∗(xi))j
1

ft(xi)j

∂t(ft(xi)j)

= − 1
m

m∑
i=1

(
f ∗

ft

(xi)
)⊤

∂tft(xi)

= − 1
m

m∑
i=1

(
f ∗

ft

(xi)
)⊤

· (−∇KC|ft(xi))

= −
〈

−f ∗

ft

, ∇KC|ft

〉
pin

(3.20)

and taking into account the theory presented in the previous section, we conclude that
d|ft = −f∗

ft
. Moreover, in gradient descent, the training direction is dt = −d|ft = f∗

ft
. Notice

that the direction found makes sense with the goal of the network, since it makes ft to grow
only in the direction of the true class of the inputs.

3.3.3. ∫ T
0 ||dt||pin

dt stays stochastically bounded.

One last requirement is that the training direction is well defined over all the training
procedure. Notice that ||dt||pin

= ||f∗

ft
||pin

is strictly decreasing over training, due to the fact
that ft becomes more similar to f ∗ thanks to the training direction. Therefore, the integral
is bounded by T ||d0||pin

.

As a consequence of all the previous results exposed, and following Theorem (3.2), we
conclude that in the infinite-width limit of the neural network, the dynamics of ft is described
by:

∂tft = ΦΘ(L)⊗IdnL

〈f ∗

ft

, ·
〉

pin

 . (3.21)

Expanding the terms in the equation, we obtain a new expression that is easier to analyze:

∂tft(x) =
m∑

j=1
Θ(L) ⊗ IdnL

(x, xj) · f ∗

ft

(xj). (3.22)

And looking at it coordinate-wise:

∂tft(x)i =
m∑

j=1

nL∑
s=1

(Θ(L) ⊗ IdnL
)i,s(x, xj)

f ∗(xj)s

ft(xj)s

, ∀i ∈ {1, . . . , nL}. (3.23)
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Since the NTK Θ(L)⊗IdnL
is a diagonal matrix, there is only one term in the inner summation.

∂tft(x)i =
m∑

j=1
(Θ(L) ⊗ IdnL

)i,i(x, xj)
f ∗(xj)i

ft(xj)i

, ∀i ∈ {1, . . . , nL}. (3.24)

Recall that f ∗ is the true class function, therefore f ∗(xj)i = 1 if xj belong to the i class,
otherwise it is equal to 0.

Looking at the previous equation, we can see that during training, the network decides
the class of a given input x by looking at the class of the data points and their correlation
with x. More specifically, the probability of assigning x to a class i, will only depend on the
data points that belong to the class i, and their correlation to x.

3.4. Experiments
The following numerical experiments will compare fully-connected neural networks of var-

ious widths to their theoretical infinite-width limit.

For a fixed-width neural network, we will look at the empirical NTK’s of the network at
two different time stamps: t0 = 0, ie, at initialization; and tf = 1000, ie, at the end of the
training process. The respective empirical NTK’s at these timestamps will be Θ(L)

0 and Θ(L)
tf

,
where L is the depth of the network. These empirical NTK’s are calculated following the
formula in equation (3.8).

Simultaneously, we will calculate the infinite-width limiting NTK Θ(L) ⊗ IdnL
of the net-

work, according to the formulas given by Theorem (3.1).

Following the statements in Theorem 3.1 and Theorem 3.2, the expected behavior is that
these empirical NTK’s, at both timestamps t0 and tf , will tend to the infinite-width limiting
NTK as the width of the hidden layers of the network increases. The similarity or agreement
between the empirical NTK’s and the infinite-width limiting NTK will be measured with the
Euclidean distance.

For two matrices A, B with the same dimensions n × m, the Euclidean distance between
them is calculated as:

D(A, B) =
√√√√ n∑

i=1

m∑
j=1

(Ai,j − Bi,j)2. (3.25)

Also, sice Theorem (3.2) states that the infinite-width limiting NTK is time invariant, we
are also expecting that the empirical NTK’s of the network vary less as the width of the
hidden layers increases.

We will make 2 experiments, and in both of them we will construct 4 fully-connected
neural networks with 2 hidden layers of the same width, so the depth of the networks will
be L = 3. The width of the hidden layers will be equal to 2w, with w ∈ {2, 5, 7, 9} in both
experiments, and to identify which of the neural networks are we talking about, we will name
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them by referencing their width hyper-parameter w. So, for example, the neural network
NN2 will be the network in which w = 2; NN5 will be the network in which w = 5, and so
on. The non-linear activation function σ will be the error function for both experiments, so
σ(x) = Erf(x).

Recalling the parameters of the network W, b are initialized as i.i.d. Gaussians, the mean
of this distribution will be µ = 0 for both W and b in all the L layers. The standard devia-
tions for the networks parameters W, b are chosen as σW = 1 for the weights, and σb = 0.05
for the biases, in all the layers of the networks.

The first experiment, which we will refer to as SIMPLE, is a rather simple classification
problem, that consist on classifying real numbers according to their sign. More specifically,
the inputs x will be real numbers in the [−π, π] interval, and the classes f ∗(x) ∈ Z2 are (1, 0)
if x is negative, and (0, 1) if it is non-negative. Therefore, the input dimension n0 = 1, and
the output dimension nL = 2. The data will be divided in 10 training points and 5 test points.

The second experiment, which we will refer to as MNIST, is the famous MNIST classifi-
cation problem, which consists on classifying a set of 28 × 28 pixels, white and black images
of handwritten digits, therefore, there are 10 different classes for the input images. Thus,
the input dimension is n0 = 28 · 28 and the output dimension is nL = 10. We will take 50
training points and 50 test points.

The neural networks will be trained with stochastic gradient descent, over 1000 steps with
a learning rate equal to 1.

3.4.1. Convergence of the empirical NTK of the neural network
to a fixed limiting kernel

First, we will check the behavior of the Neural Tangent Kernel, as described in equations
(3.11) and (3.16).

Figure (3.1) and Figure (3.2) shows the values of the Neural Tangent Kernel for the SIM-
PLE experiment and the MNIST experiment respectively, on the training data points, at
initialization and at the end of the stochastic gradient descent training process. As we can
see, as the hidden layers width grows, the empirical NTK at initialization converges to the
theoretical infinite-width limiting NTK, as expected from equation (3.11). Moreover, over
the course of the training process, the empirical NTK changes over time and drifts away
from the infinite-width limiting NTK. This effect is most notorious for the two most narrow
networks in both experiments, and is also noticeable that the empirical NTK of the two wider
networks remains almost constant, and very similar to the theoretical infinite-width limiting
NTK.

The dependence in time of the empirical NTK was stated in the Background section (3.8),
so the behavior of the empirical NTK in the experiments was expected. What is more sur-
prising is the fact that this dependence over time is gradually lost when the width of the
hidden layers tends to infinity. Theorem (3.2) only states that the infinite-width limiting
NTK is time independent, but does not refer to finite-width NTK’s. The experiments show
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Figure 3.1: Values of the empirical NTK for different layer widths for the
SIMPLE experiment. Left: Empirical NTK of the network at training time
t=0. Right: Empirical NTK at training time t=1000. Last: Infinite-width
limiting NTK, which is independent from time.
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Figure 3.2: Values of the empirical NTK for different layer widths for the
MNIST experiment. Left: Empirical NTK of the network at training time
t=0. Right: Empirical NTK at training time t=1000. Last: Infinite-width
limiting NTK, which is independent from time.
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that the empirical NTK of wider networks varies less in time, which means that the evolution
of the training direction for wider networks is less time dependant.

In Figure (3.3), for the MNIST experiment, the Euclidean distance between the empir-
ical NTK and the infinite-width limiting NTK is calculated for each training step. Notice
that the scale on each graph is different, which is important for the interpretation of the
results. As we can see, as a general result, the distance between the empirical NTK and the
infinite-width limiting NTK is smaller for wider neural networks, which further supports the
convergence stated in equation (3.16).

Even more, if we fixate in a single time stamp t∗ ∈ [t0, tf ], for example we could take
t∗ = 600, we can see that as the width of the network increases, the Euclidean distance
between the empirical NTK and the infinite-width limiting NTK decreases for that singular
time stamp. This same effect occurs for every t∗ ∈ [t0, tf ], which further supports the second
statement given in Theorem (3.2), that is, that the convergence of the NTK is occurring
uniformly for every t∗ ∈ [t0, tf ].

A new interesting phenomena that can be seen in the graphs, is the fact that the empirical
NTK remains almost constant for the first steps of the training, independent of the width of
the network. In general, we can see that for all the studied networks, previous to the step
70 of training, the distance between the empirical NTK and the limiting NTK suffer minor
changes, which indicates that the empirical NTK is not changing too much. After that, and
specially after the step 100 of training, we can see an important increase on the distance
between the empirical NTK and the limiting NTK, due to the fact that the empirical NTK
suffer major changes, as was seen in Figure (3.2).

Recalling that the time dependence of the empirical NTK is inherited from the time de-
pendence of the parameters θt of the neural network, as was stated in equation (3.8), allows
us to conclude that if the empirical NTK is not changing on the first steps of the training,
then the parameters of the neural network are not changing either. This result suggest that
the learning process does not occur immediately as we start training the network, but takes
some warm-up steps to actually start making some changes on the network.

3.4.2. Convergence of the finite neural network to the infinite-
width limit

We will now study the empirical behavior of the neural network itself against the theoret-
ical behavior proposed in equation (3.22). We will compare the values of the cross entropy
loss for each one of the constructed finite-width neural networks against the values of the
cross entropy loss for a theoretical infinite-width neural network. Recall that, since our in-
terest is to examine the impact of the layer width on the behavior of the neural network, the
only architectural difference between the different finite neural networks and, of course, their
infinite counterpart, is the width of their hidden layers.

Since we cannot construct an infinite-width neural network, we will simulate one using
the ODE (3.22) that describes the evolution of the network function ft. More specifically,
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we can construct the NTK of the network since we know its architecture, and therefore, we
can simulate numerically the ODE to obtain the predictions of the network at a given time
t, on the training and test data points, and with these predictions, we can calculate the
cross-entropy loss of the network at the given time t.

For the finite-width neural networks, the process is very simple, we construct the neural
network, train it using gradient descent, and at each step t of the training procedure, we will
output the predictions of the network on the training and the test data points. Using these
predictions, we can calculate the cross-entropy loss of the neural network at time t.

To make the process simpler, the calculation of the NTK’s and the numerical solving of
the network’s ODE were done using the Neural Tangents package ([29], [30]), a specialized
package design to work with infinite-width neural networks and also their finite counterparts.

Figure (3.4) and Figure (3.5) shows the evolution of the values of the cross-entropy loss
during the training process, for the four neural networks constructed, in the SIMPLE ex-
periment and the MNIST experiment respectively. As we can see, in the narrowest network
(NN2), the evolution of the cross-entropy loss of the network is very dissimilar to the be-
havior of the infinite-width limiting network. But as the width of the network increases, the
evolution of the networks start to look alike the evolution of their infinite-width counterpart.
This is an expected behavior, due to the fact that the empirical NTK is changing over time
for the narrow networks, and even more, is moving away from the infinite-width limiting
NTK, as we saw in the previous Figure (3.2). For the two widest networks (NN7, NN9),
the NTK remains almost constant and similar to the infinite-width limiting NTK, as we
stated in the previous Figure (3.2), so the dynamic of the representative function ft is well
described by the equation (3.22), and therefore, the losses of these finite-width networks and
their infinite-width counterpart are quite similar.

An interesting observation, is the fact that the finite-width neural networks have worse
performance than their infinite-width counterpart, in terms of their cross-entropy loss, for
all finite hidden layer width sizes; and always have better performance on the training data
than on the test data. This phenomena was observed in other related works ([21]), but using
different network architectures and a different loss function.

This arises the possibility of using the infinite-width limiting neural networks as benchmark
for performance in the field of deep learning, when working with finite neural networks.
Although, one must be careful, since the mentioned phenomena is sensitive to architectural
choices, as was seen in ([21]), so is important to remember the configuration that we are using
for these experiments: fully-connected feed-forward neural networks, trained using gradient
descent and cross-entropy loss.

3.5. Conclusion
We developed an equation (3.22) that describes the evolution dynamic of the network

function f when the loss functions is the cross entropy loss, when the network is trained us-
ing gradient descent. Moreover, we were able to interpret this equation, and have an insight
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Figure 3.4: Values of the cross-entropy loss of the neural network over the
gradient descent training process for the SIMPLE experiment, in logarith-
mic scale. From top to bottom, the networks are ordered in increasing layer
width size. The curves show the losses for the corresponding finite width
network, and their infinite-width limiting counterpart, for the training and
test data points.
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of how the data, and their correlations are used in the training process.

We also checked that for neural networks with finite hidden layers width, the Neural Tan-
gent Kernel is time dependant, as was stated in [1], and that as the width of the hidden
layers of the network grows, it reaches an infinite-width limiting kernel, which is independent
from time. This convergence is uniformly for each step t of the training process.

One of the observations made in the last experiment was the fact that the infinite-width
limit network always had better training and test score than his finite counterpart, indepen-
dent of the width of the network layers. This result creates an interesting and more practical
application, the infinite-width limit of neural networks can be used as a benchmark for test
or training score, at least in the case studied here, which is a feed-forward fully-connected
deep neural network. This observation is made in similar works [21] but only for the mean
squared error loss, which is different from the case studied here.

3.6. Future work
Following the work made in this thesis, some novel contributions would be:

• To see if other networks, with richer architectures, follow a similar pattern when trained
with gradient descent under the cross-entropy loss.

• Experimenting with other loss functions, other than cross-entropy and mean squared
error, could be of value, since it could open up the possibility of interpreting other type
of problems under the infinite-width limit scope.

Both ideas are a natural follow up to the work done in this thesis, and both of them are
reasonable, given the necessary hypothesis for the NTK to converge.

First, lets notice from Theorem (3.1) that the result stated in the theorem does not de-
pend on the cost function, but on the activation function. Although that result only holds
for the architecture studied in the paper, which is a feed-forward fully-connected deep neural
network, more recent works have proved the convergence at initialization for more richer ar-
chitectures, including convolution layers, pooling layers, residual connections and recurrent
networks.

The more interesting question is whether the convergence of the NTK holds even during
the training process or not, as stated in Theorem (3.2). Notice this result now depends also
on the direction of training dt, which in turn depends on the cost function C, so in this case,
the decision of which cost function will be used is important.

Since we already proved that the cross-entropy loss function is convex, lower-bounded
and defines a training direction dt that is stochastically bounded, and this properties are
independent of the architecture choice, then is reasonable to assume that the equation (3.21)
will hold even for other architectures. The only element that should change is the limiting
NTK Θ(L) × IdnL

, since it is architecture dependent.
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This last statement is crucial, since depending on the limiting NTK Θ(L) ×IdnL
, the equa-

tion (3.21) describing the evolution of ft could be infeasible.

On the other hand, in order to try a different cost function, we will have to prove the 3
properties that we proved for the cross-entropy:

1. Convexity.

2. Lower-bounded.

3. Defines a training direction dt that is stochastically bounded in time.

Of the 3 properties, the most important is the third one, since it is needed for the equation
that describes the evolution of ft (3.21) to be well defined for every t ∈ [0, T ].

The other 2 properties (convexity and lower-bound) are actually not strictly necessary.
They are required for the neural network to converge to a critical point of minimal cost
during training. This is important if we want to use this theory on real world applications,
since even if we can define the equation for the evolution of ft, it will not be useful if during
the training process the loss is not descending, ie, the network is not improving. Or even if
the network is improving, if the cost function C is not bounded, we could be training the
network for an infinite amount of time without ever reaching a final optimal state.
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