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Resumen 

Modelamiento Del Agua Barro En La Mina El Teniente En La Planificación A Largo Plazo 

La minería de Caving representa actualmente una opción de explotación masiva y de bajo costo en 

minería subterránea. Sin embargo, este método se ve afectado por desafíos operacionales tales 

como los eventos de agua barro. Las principales consecuencias de los eventos de agua barro son 

accidentes que afectan a trabajadores, infraestructuras mineras y equipos, generando exceso de 

dilución, retrasos en la producción, pérdidas de reservas e incluso cierres parcial o permanente de 

las faenas mineras. Por lo anterior, se han implementado modelos de riesgo de ingreso de agua-

barro que permiten evaluar planes mineros. En este trabajo son desarrollados cuatro nuevos 

modelos de declaración de barro para la planificación de largo plazo en la minería de Block Caving, 

con el objetivo de representar las diversas condiciones de los sectores productivos de la mina El 

Teniente (DET). 

Esta tesis contempla una estructura de trabajo de 5 etapas. En primer lugar, se estableció el estado 

del arte del barro en minería de caving, considerando como se forma, de donde proviene, los tipos 

de barro, como afecta este en las operaciones subterráneas y los modelos realizados hasta la fecha. 

En segundo lugar, del estado del arte se determinaron las variables criticas para las declaraciones 

de barro y se construyeron las bases de datos. En tercer lugar, se llevó a cabo el análisis univariable, 

con el fin de ver la correlación de cada variable por si sola. En cuarto lugar, se realizó el análisis 

multivariable para determinar los modelos multivariables, calibrando en base a KPIs de 

rendimiento, como la precisión, sensibilidad y especificidad, y también considerando el error del 

tonelaje (diferencia de tonelaje entre el dato real y el estimado). Finalmente, en la última etapa, se 

realiza la aplicación del modelo en sectores productivos con planes a largo plazo, prediciendo las 

declaraciones de barro. 

Entre los modelos desarrollados, las siguientes variables fueron utilizadas: razón de extracción (%), 

material quebrado extraído (%), precipitación anual y mensual (mm), primario extraído (%), 

fragmentación d50 (m) y vecinos barro (0 a 6). Las variables relacionadas con la litología y 

fragmentación fueron estimadas con el software FlowSim BC 6.3, un simulador de flujo 

gravitacional, calibrado para este estudio con datos mina de los sectores de DET: Sur Andes Pipa 

y Pipa Norte (Cuenca Norte), Reservas Norte y Dacita (Cuenca Reno), Esmeralda (Cuenca Centro) 

y Diablo Regimiento (Cuenca Sur). 

Los mejores modelos calibrados incorporaron las variables críticas de riesgo antes mencionadas, 

logrando precisiones aceptables de 69%, 71%, 72% y 75%, con errores de tonelaje promedio por 

punto de extracción de 6%, 10%, 9% y 15%, para las cuencas Sur, Reno, Norte y Centro, 

respectivamente. De esta manera, se generan modelos con cualidades de predicción conservadoras, 

la cual entrega confianza a la hora de realizar una planificación a largo plazo. Adicionalmente, los 

modelos se pueden utilizar para evaluar planes a largo plazo en sus propias “cuencas” o sectores 

productivos y también en sectores que estén en cotas inferiores, permitiendo contribuir en la 

planificación y toma de decisiones que puedan minimizar los riesgos causados por el barro.  
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Abstract 

Caving mining currently represents a massive and low-cost exploitation option in underground 

minig. However, this method is affected by operational challenges such as wet muck events. The 

main consequences of wet muck events are accidents that affect workers, mining infrastructure and 

equipment, generating excess dilution, production delays, loss of reserves and even partial or 

permanent closure of mining operations. Due to the above, wet muck entry risk models have been 

implemented to allow the evaluation of mining plans. In this study, four new wet muck entry risk 

models are developed for long-term planning in Block Caving mining, with the objective of 

representing the various conditions of the productive sectors of the El Teniente mine (DET). 

This thesis contemplates a 5-stage work structure, In the first place, the literature review of mud in 

caving mining was established, considering how it is formed, where it comes from, the types of 

mud, how it affects underground operations and the models made up to the date. Secondly, from 

the literature review, the critical variables for the wet muck declarations were determined and the 

databases were built. Third, the univariate analysis was carried out, in order to see the correlation 

of each variable by itself. Fourth, multivariate analysis was performed to determine multivariate 

models, calibrating based on performance KPIs such as accuracy, sensitivity, and specificity, and 

also considering tonnage error (tonnage difference between actual and estimated data). Finally, in 

the last stage, the application of the model is carried out in productive sectors with long-term plans, 

predicting the wet muck declarations. 

Among the models developed, the following variables were used: extraction ratio (%), broken 

material extracted (%), annual and monthly precipitation (mm), primary extracted (%), 

fragmentation d50 (m) and drawpoint neighbor wet muck (0 to 6). The variables related to lithology 

and fragmentation were estimated with the FlowSim BC 6.3 software, a gravitational flow 

simulator, calibrated for this study with mine data from the DET sectors: Sur Andes Pipa and Pipa 

Norte (North Basin), Reservas Norte and Dacita (Reno Basin), Esmeralda (Center Basin) and 

Diablo Regimento (South Basin). 

The best calibrated models incorporated the aforementioned critical risk variables, achieving 

acceptable accuracies of 69%, 71%, 72% and 75%, with average tonnage errors per drawpoint of 

6%, 10%, 9% and 15%, for the South, Reno, North and Center basins, respectively. In this way, 

models have conservative prediction qualities are generated, which provides confidence when 

carrying out long-term planning. Additionally, the models can be used to evaluate long-term plans 

in their own "basins" or productive sectors and also in sectors that are at lower levels, allowing 

them to contribute to planning and decision-making that can minimize the risks caused by wet 

muck entry.   
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1 Introduction  

Over the years, mining deposits are deeper and deeper, and the associated costs and problems are 

more and more relevant. These conditions involve great challenges to carry out sustainable and 

profitable caving mining since mine activities take place in a much more challenging environment 

(Araneda, 2020). 

Caving mining currently represents a low-cost and massive exploitation option (Flores 2014, 

Skrzypkowski et al. 2022). However, its productive and economic attractiveness is affected by 

some challenges that operations must overcome, such as mud events (or also called wet muck 

events), which generate numerous problems in underground mining, causing accidents that have 

affected workers, mining infrastructure, equipment, in addition to excess dilution, production 

delays, loss of reserves, and even partial or permanent closures. of mining operations (Butcher, et 

al, 2005; Jakubec & Clayton, 2012; Navia et. al, 2014). 

In particular, mud is the main cause of the wet muck events and is generated by fine particles that 

mix with aqueous substances in different types of conditions, such as mountain melting, tailings 

seepage, aquifers, and meteorological conditions (snow and rain). This mixture travels through the 

column of broken material and generates problems at the drawpoints, causing wet muck events, 

such as landslides, runoff, and mudrush, in addition to the constant filtering of water in the drifts 

and drawpoints (Jakubec, et al., 2012; Ginting & Pascoe, 2020). 

Wet muck declarations have been reported in different underground mines around the world, such 

as El Teniente in Chile (Ferrada, 2011), IOZ and DOZ in Indonesia (Huber, et al., 2000; Widijanto, 

et al., 2012; Edgar, et al., 2020; Ginting & Pascoe, 2020). Some mitigation and control tools used 

in the operation range from drainage tunnels that allow the transfer of mud to lower levels or to the 

outside of the mine, remote-controlled equipment and risk and criticality classification matrices for 

drawpoints, considering moisture (qualitative and quantitative) and the amount of fine material, 

which is a preventive way of closing drawpoints to avoid the risk of accidents to people (Samosir, 

2008; Edgar, et al., 2020). 

There are also tools to model wet muck declarations, at the "El Teniente" mine, wet muck entry 

risk models have been implemented that allow mining plans to be evaluated (Garcés, et al., 2016; 

Castro, et al., 2018; Pérez, 2021; Navia, 2021). Most of these models are used for long-term 

planning, which has presented good results based on real information from wet muck declarations. 

However, the majority of these models do not consider variables related to the fragmentation or 

lithology present in the broken column, variables that are closely related to the formation of mud. 

Therefore, there is an opportunity for improvement the current models by including these new 

variables focused on the material as it is secondary fragmentation,  
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1.1 Objectives & Hypothesis  

1.1.1 General Objective: 

Generate new knowledge about risk models of wet muck entry in long-term mine planning, 

including new variables such as fragmentation and/or lithologies present at the drawpoint. 

1.1.2 Specifics objectives 

• Define the literature review of mud and the effect it has on operations. 

• Analyze and determine the critical variables that influence in wet muck declarations. 

• Develop an algorithm that allows prediction of wet muck declarations at a drawpoint. 

• Propose wet muck entry risk models considering new variables and new data. 

• Calibrate and validate wet muck entry risk models. 

• Assess or apply wet muck entry risk models. 

1.1.3 Hypothesis  

Including new variables such as lithologies and fragmentation present during the extraction, 

generate robust, accurate term models with low tonnage error. 

1.2 Thesis structure 

Chapter 2 establishes the literature review of the thesis, carrying out a review of the bibliographical 

background of mud, beginning with its formation, where it comes from, types of mud, mud in 

underground operations, and the models that have been developed to date. At the end of the chapter 

are the respective conclusions of the literature review. 

Chapter 3 contains the research articles with the results, discussion, and conclusions of the thesis. 

The first paper focuses on the model developed for the Reservas Norte basin and its application to 

a plan for the sector. The second paper presents the rest of the models developed for the North, 

Center, and South basins, and the application of the North basin model for the Invariant Panel 

sector. The first paper was presented at the Caving 2022 conference, the second paper was 

submitted to the International Journal of Mining Science and Technology. Finally, in Chapter 4, 

the conclusions and general recommendations of the thesis are presented. 
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2 Literature review 
This chapter covers the review of the information available in the literature regarding wet muck 

declarations, how mud is formed, types of mud, their input in caving mining operations, control 

and mitigation tools and the models that have been presented by different authors so far. 

2.1 Mud in mining and Wet muck events 
Mud events or also called wet muck events are formed by a mixture of four elements: fine 

granulometry material, water, a disturbance and a discharge point, which can generate a sudden 

event within a drawpoint (Butcher, et al., 2005). In particular, mudruhes can occur when more than 

30% of the material is smaller than 5 [cm] and humidity is greater than 8.5% (Samosir, 2008). 

2.1.1 Types of mud 

Due to variations in the percentage of moisture that the mud has, it is possible to classify it into 

two main categories that stand out in the consistency of this material in the mine (Jakubec & 

Clayton, 2012): 

According to the percentage of moisture: 

• Fluid mud 

• Slimy Mud 

Depending on where the mud comes from: 

• Internal mud 

• External mud 

• Mix of Internal and External 

2.1.2 Fluid mud 

Fluid mud has a high water content (up to 50%), includes large rocks up to 3 m, capable of flowing 

easily on horizontal surfaces of great lengths. The mud in this case resembles a fine suspension and 

generally looks more like a discharge of water than a mudflow, the latter having a higher viscosity 

and therefore a higher percentage of mass with respect to water. An example of the fluid mud is 

shown in Figure 1(a). 

2.1.3 Viscous mud 

Viscous Mud has a low moisture content (17–23%), generally exhibits properties that show a 

change in its viscosity over time, and tends to be stiff. This material would not flow freely under 

gravity, but if stress is added to it, under certain conditions, it could be mobilized and forced out 

of the drawpoint and, despite its high viscosity, can be destructive. Figure 1(b) shows the extreme 

case of rigid viscous mud coming out of the drawpoint. 
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Figure 1: (a) Example of a fluid mud at Cullinan, De Beers. (b) Example of a very stiff-surfaced mud 

bulge from the drawpoint at the Northparkes mine, Rio Tinto (Jakubec & Clayton, 2012). 

2.1.4 Internal mud 

They come from the formation of mud produced by the reduction in the size of shale or other clay-

forming rocks and clay-rich minerals, located in the column of broken ore within the caving zone. 

Also included are fines that accumulate as a result of secondary fragmentation processes. In figure 

2 and 3 two mud generating scenarios can be seen. 

 

Figure 2: Primary scenario for the occurrence of internal mudrush (Butcher, et al., 2005). 
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Figure 3: Mud discharge resulting from the compaction of the fragmented material column (Butcher, et 

al., 2005). 

2.1.5 External mud 

They come from the formation of mud in external conditions to those presented in the underground 

environment of the rock mass, they are produced by three sources tailings deposition, fills with 

failure material, and slope failures (Brown, 2003). Figure 4 shows an example of mud formation 

due to slope failure. 

 

Figure 4: Mechanism of mud formation due to slope failure (Butcher, et al., 2005). 

2.2 Definitions of mud events according to the distance affected 
El Teniente Division has classified the mud events into mudrush, runoff and mud slides, 

considering key characteristics of their behavior such as: the magnitude of their force and speed, 
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the linear distance that they travel in the drifts and infrastructure and/or work personnel. Below are 

the definitions according to the El Teniente Division (SGC-GRL-DET, 2017). 

2.2.1 Mudrush 

Violent discharge of mud that occurs in the zone of influence of an extraction area, through the 

existing infrastructure inside the underground mine, such as production drifts and drawpoints. The 

displacement of the mud covers a significant surface of the works involved (on the gradient for 

distances greater than 20 linear meters, interrupting the operational process, and may cause damage 

to infrastructure and/or people. 

2.2.2 Runoff 

Sliding of muddy material infiltrated from the upper levels through the existing infrastructure 

inside the underground mine, such as production drifts, drawpoints, haulage drifts, ventilation drifts 

and others. The sliding of this muddy material occurs slowly and in a limited manner, reaching 

distances of less than 20 linear meters, and does not affect the infrastructure of the sector. 

2.2.3 Mud slide 

Displacement of material from the slope at the drawpoint or inside the ore pass, product of 

saturation by moisture or water, which does not involve a relevant movement of the ore column. 

The displacement of this material may or may not be projected into the drifts, without exceeding 

the gradient, its influence is less than runoff and it does not cause significant interference to the 

production process. 

2.3 Mud in cave mining operations 
Caving mines are operations susceptible to mudrush because they present the four forming 

elements mentioned by Butcher (2005), fine mineral generated by secondary fragmentation present 

in the column of broken material, water accumulation (infiltration of groundwater), the disturbance 

generated by the constant extraction and the discharge point (drawpoint). Below are case studies 

of mining operations with mud event problems. 

2.3.1 Kimberley Mine 

The Kimberley Mine is an underground operation that is located in Kimberley, South Africa and 

is made up of three mines Dutoitspan, Bultfontein and Wesselton. The mud events in this mine are 

due to the breaking of the kimberlite and the water infiltrated by the rains in the extraction column. 

These mud events at Dutoitspan have caused severe damage to the mine infrastructure, and the 

death of a worker (Holder, et al., 2013). From operational experiences, ways to combat a mudrush 

have been determined (Butcher, et al., 2005): 

• Maintain a controlled uniform extraction, avoiding over-extraction of drawpoints. 

• Install drainage, close to where water accumulates (generally on the surface). 

Also, a risk rating for mud events was adopted, where all the key factors that contribute to the 

risk of mud events at drawpoints are evaluated, as set out below (Holder et al, 2013): 
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• • Surface water infiltration 

• • Groundwater infiltration 

• • Moisture condition of the drawpoint 

• • Percentage of dilution at the drawpoint 

• • Mine drainage 

• • Extraction uniformity 

• • Structural condition of the drawpoint 

• • Extraction from the drawpoint 

• • Drawpoint hang-up 

Each of the above variables is assigned a score based on the characteristics of the drawpoint to then 

calculate the total score for risk classification and determine mitigation measures as appropriate, 

as shown in the Table 1. 

Table 1: Mud event risk matrix (Modified from Holder et al, 2013) 

Total Score and 

Risk Color 
Risk Rating Risk Tolerance Mitigation 

0 - 30 Low n/a None, unless conditions change.. 

30 - 45 Moderate Acceptable 

Review strategies to extraction control and 

drainage of affected areas and increase 

monitoring.. 

45 -60 High Unwanted 

Restrict access to danger zones, reduce 

extraction in affected drawpoints, guarantee that 

mitigation measures are complied with. 

>60 (Red Zone) Very High Unacceptable 

Immediate evacuation from Red Zone, urgent 

management intervention to ensure 

implementation of necessary mitigation 

measures. 

 

2.3.2 PT Freeport 

One of them is the Freeport Indonesia mines (Widodo, 2018). The place where the Freeport mining 

operation is located has high rainfall events reaching 5,500 mm/year (Samosir, et al., 2008). The 

water inflow in to the cave comes from two sources, wsurface runoff from the abandoned pit and 

groundwater (Ginting & Pascoe, 2020). Freeport Indonesia considers a group of various mines in 

operation. The extraction at Freeport Indonesia began through open pit mining, and later it has had 

mineral extraction through underground mining, with mines such as GBT, IOZ (Intermediate Ore 
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Zone), DOZ (Deep Ore Zone) (Figure 5). Today, a couple of mines like GBC (Grasberg Block 

Cave) and DMLZ (Deep Mill Level Zone) are ramping up. 

 

Figure 5: Freeport Indonesia Underground Mines (Casten, et al., 2020) 

The IOZ mud contains a large amount of fine material, between 25-50% (< 2 mm), for this type of 

material it has been determined that 8% moisture is needed for the mud to flow (Huber, et al. al., 

2000; Widijanto, et al., 2012). The sudden wet muck entry in this mine can be due to blasting, 

equipment movements, increased pore pressure, changes in stress, or falling material (Huber, et al., 

2000). For the above and the safety of people in Freeport, they have chosen to use remote 

equipment. 

As mining deepened, an increase in fines was seen at the DOZ mine, and with a high extraction 

rate, it created a high risk of mud. In DOZ it was determined that the main sources of water were 

surface water that infiltrated through subsidence due to high rainfall, but there are also sources of 

groundwater, which is water trapped in the old sectors, and water that infiltrates through the faults, 

since these act as preferential routes for water (Widijanto, et al., 2012). In DOZ, as in IOZ, the 

mudrush are recorded with a quantity of fines greater than 20% (<2mm) and a water content greater 

than 8.5% or more, with 80% saturation. Based on this, Freeport evaluates each drawpoint based 

on its moisture and quantity of fines, to see if the extraction is manual or remotely controlled, using 

the matrix shown in the Table 2: 
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Table 2: Matrix to classify the status of drawpoints in Freeport Indonesia (Samosir, et al., 2008; 

Edgar, et al., 2020; Ginting & Pascoe, 2020) 

Level of wetness/ water 

content 

Material size ≥ 5 cm (M) 

M > 70% 

(dominated by coarse 

material) 

30% < M ≤ 70% 

(mixture of coarse and 

fine / medium material) 

M ≤ 30% (dominated by 

fine material) 

< 8.5% (dry) A1 B1 C1 

8.5 – 11% (moist) A2 B2 C2 

≥11% (wet) A3 B3 C3 

Green – any loader; yellow – any loader close supervision; red – remote loader 

At Freeport, it has been shown that non-uniform extraction causes differences in porosity, which 

can increase water in the extraction column. They have also determined that a continuous extraction 

must be carried out, if this is not the case and a drawpoint is closed due to mud, the water migrates 

towards neighboring drawpoints. As long as the mud is in a dynamic state and the material is 

constantly extracted, the risk of mudrush is low. The latter is due to the constant movement of the 

reservoir facilitates drainage. Other measures that have been implemented are: 

• Drainage through perforations 

• Automate processes so as not to put people at risk 

• Supervision of drawpoints with qualified personnel 

• Rain monitoring, with alerts if they exceed expectations. 

The classification system was update in 2018, due to the increase in mudrush at the mine. As part 

of the classification system update, the mine start using the historical information of drawpoints 

and the probability of a mudrush (Edgar, et al., 2020). For this classification, the following Table 

3 shows the factors are used to obtain a final risk score: 

Table 3: Parameters included in the Freeport Risk Matrix Update (Edgar, et al., 2020) 

Factor Low Medium High Factor weight 

Classification A1,A2,B1,C1 A3 B2,B3,C2,C3 30 % 

Isolated draw 0-1 DP 2-5 DP 6-9 DP 20 % 

Extraction height 0 m-100 m 100 m-200 m >200 m 10 % 

Mudrush frequency <10 10-20 >20 20 % 

Mudrush volume <500 m3 500 m3-100 m3 >100 m3 10 % 

Mudrush distance <75 m 75 m-100 m >150 m 10 % 

Punctuation 1 2 3 n/a 

When obtaining the final score, the risk of the drawpoint is classified based on the Table 4: 
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Table 4: Updated Risk Matrix (Edgar, et al., 2020) 

Colour Category Risk score 

Green Low Risk 0 – 1.5 

Yellow Medium Risk 1.6 – 2.0 

Red High Risk 2.1 – 3.0 

 

In this way, new security measures were included: 

• Increase exclusion distance after a mudrush 

• Mud drawpoints are reinforced with shotcrete. 

• Exclusion time of 24 hr after mudrush 

• Haulage level trucks load in reverse 

• Remote equipment 

 

2.3.3 El Teniente, CODELCO 

The El Teniente mine is located in the city of Rancagua, O’Higgins region in the central part of 

Chile. The El Teniente mine, has had wet muck events in several of its mines, some of which are: 

Diablo Regimiento, Reservas Norte, Pipa Norte, Pipa Andes sur, Esmeralda, among others. The 

mud in El Teniente mine is mainly due to rainwater or snow accumulated on the surface that 

infiltrates the mine and the fine ore formed due to the caving mining process. 

 

Initially, long-term planning at El Teniente mine was deterministic, based on controlled extraction 

(Castro, et al., 2018) using the risk map shown in Figure 6. The use of this risk map is based on 

define the extraction of the drawpoints based on the area in which they are located, with 130% of 

the column being in situ for high-risk areas (red on the map), which are those drawpoints with a 

topography height of less than 500 m. An extraction between 160%-180% is allowed for the 

medium risk zone (drawpoints in yellow), these points have a topography height greater than 500 

m and less than 600 m. The low-risk areas do not have an extraction limitation due to the risk wet 

muck entry, because these points have a distance from the topography greater than 600 m (Castro, 

et al., 2018). 
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Figure 6: Risk zone in DET, image extracted from (Castro, et al., 2018)  

Based on the risk of mudrush in El Teniente, it has been determined that constant monitoring, 

controlled extraction and favorable mining design are needed. Preventive measures have been 

taken for the wet muck entry, such as monitoring the extraction column, fragmentation and 

moisture. A criticality matrix has been implemented, as shown in Figure 7, which has visual 

moisture and the amount of fine mineral as input data, which is complemented by the criteria of 

the experts. 

 

Figure 7: Classification Matrix for the Criticality, DET (Salazar, et al., 2016)  

Different extraction strategies have been implemented according to the moisture and the quantity 

of fines at the drawpoint, restricting the extraction of the drawpoints with wet muck and limiting 

the extraction of its neighboring drawpoints (Figure 8). (Ferrada, 2011). 
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Figure 8: Extraction strategy at El Teniente mine (Ferrada, 2011) 

As some sectors have been abandoned due to the wet muck entry, leaving unextracted reserves, 

industrial mud extraction tests have been carried out at the El Teniente mine to assess the feasibility 

of recovering these reserves (Soto, 2018). Within the long-term planning of mines under wet muck 

entry risk, different models have been developed to assess this risk in mining plans, which have 

begun to be used in the El Teniente mine. 

2.4 Wet muck entry modeling 

2.4.1 The Navia model (2014) 

The declarations of mud or also called wet muck entry have been modeled by different authors, 

Navia et al., (2014) analyzed the drawpoints in the state of mud in the Diablo Regimiento mine. 

Based on the model proposed by Navia et al., (2014) it is possible to determine that the drawpoints 

declared with mud correspond in the first instance to those drawpoints that are connected to an old 

sector. Therefore, he determines that the connection of the Caving with old sectors or with the 

topography, creates favorable channels for the entry of fine material and water. For this reason, it 

is important to identify possible areas where water can accumulate or to study the old sectors. On 

the other hand, he attributes that an irregular extraction from a drawpoint favors the wet muck 

entry. 

The Navia model makes a first approximation to determine the wet muck entry through a 

multivariate logistic regression model. According to the model, the variables that should be 

included are: 

i) Amount of fine material contained in the drawpoint 

ii) Height of the extracted column 

iii) Time of year (because the occurrence of wet muck entry is higher in spring, compared to 

with another season of the year, due to the snow melting) 

iv) Speed of extraction.  
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The accuracy of the model developed by Navia et al., (2014) is 74%. 

Equation 1: Wet muck risk model proposed by (Navia, et al., 2014) 

𝑙𝑛
𝑝

1−𝑝
= 14 − 15 ∗ 𝐷𝑅 − 0.142 ∗ 𝐹𝑁 + 0.014 ∗ 𝐷𝐻 + 0.174 ∗ 𝑆    (1) 

Where: 

DR:  Draw rate (ton/m2 día) 

FN:  Fine material contained in the drawpoint (%) 

DH:  Height of draw (HOD) (m) 

S: Season of the year (Winter, Summer, Autumn and Spring) 

For the implementation of variables such as the quantity of fines in risk models, it is necessary to 

predict this for the long term. One way of doing this is associated with the broken that exists in old 

sectors, being able to determine when this material enters a drawpoint can provide information on 

the wet muck entry. One way to do this in long-term planning may be through gravitational flow 

simulators, which allow inferring when the broken from the old sector enters a mine located below. 

On the other hand, to determine the fineness and size of this material, it would be necessary to 

implement a model that can predict secondary fragmentation in a long-term plan.  

2.4.2 Garcés model (2016) 

The Garcés model (Garcés, et al., 2016) continues with the quantifications of the wet muck risk 

through multivariate models. His work is based on a mine located in the Pacific sector, called 

Quebrada Teniente. This mine is located under old mines and is composed of a primary and 

secondary rock column. 

When analyzing the historical data of wet muck declarations and its occurrence, two wet muck 

entry mechanisms are visualized, one vertical, to later continue with a lateral mechanism, as shown 

in the Figure 9. 
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Figure 9: Mechanisms of vertical and lateral wet muck entry, observed by Garcés, et al., 2016. 

 

The data used for the elaboration of this model is from the year 2004 to 2015. In this period, 93 

drawpoints were registered in a mud state and the following variables were analyzed: 

• Extraction 

• In-situ column height 

• Primary column height 

• Distance to topography 

• Number of neighbors in mud state 

• Season of the year (summer-winter) 

A multivariable model is made by using logistic regression, this model is formed by two wet muck 

entry classifiers, one is for vertical entry and the other for lateral entry. 

For the elaboration of the model, the databases are balanced, both for vertical and lateral mud entry. 

The balance consists of forming a database composed of ¼ data with mud input and ¾ with records 

of drawpoints without being declared in a mud state. 

In this study, it was determined that the variables that govern the vertical wet muck entry are the 

height of primary rock and extraction. On the other hand, for the lateral wet muck entry mechanism, 

the influencing variables are extraction, season of year, the number of neighbors of the drawpoint 

in the mud state and the height of the primary rock, the model can be observed in the next equation: 

Equation 2 Wet muck entry risk model 
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𝑃(𝑥) =  

{
 

 𝑃𝑉(𝑥)   =
𝑒−0.415−0.008∗ℎ𝑝𝑟+0.384∗𝐸

1+𝑒−0.415−0.008∗ℎ𝑝𝑟+0.384∗𝐸
                              𝐼𝑓 𝑀𝑁 = 0,   𝑓𝑜𝑟 𝐶𝑃𝑉

𝑃𝐿(𝑥)   =
𝑒−2.03+1.39∗𝐸+0.79∗𝑆+0.65∗𝑀𝑁−0.009∗ℎ𝑝𝑟

1+𝑒−2.03+1.39∗𝐸+0.79∗𝑆+0.65∗𝑀𝑁−0.009∗ℎ𝑝𝑟
       𝐼𝑓 𝑀𝑁 = 0,   𝑓𝑜𝑟 𝐶𝑃𝐿

 

Given the variables used in this model, it is difficult to generalize or implement it in other mines 

to assess the wet muck entry risk. The latter, due to the use of physical variables typical of the mine 

such as the height of primary rock. 

The model is calibrated, for which it is determined that the cutoff probability for the vertical model 

is 40% and for the lateral model it is 45%. The associated tonnage error is of -24Kt. In other words, 

declares a drawpoint in mud state 24Kt before what is declared in the mine. 

In order to determine a better fit of the model, it is necessary to evaluate its error by means of the 

number of mud drawpoints declared by the model i.e. both real mud and false mud, and estimate 

the non-mud drawpoints in the same way. 

2.4.3 Castro model (2018) 

The study areas to carry out the model of wet muck entry by Castro et al., (2018) were North Pipa 

and South Andes Pipa. Both sectors are under the topographic gutter and whose shape on the 

surface has influenced the accumulation of water and its subsequent infiltration into the mine to 

form wet muck. 

The study period includes data from July 2003 to February 2017. This period covereds an amount 

of 94 drawpoints declared in a mud state. 

The variables that were used in this study to develop a model were:  

• Topographic gutter 

• Extraction 

• Drawpoint neighborhood with wet muck entry 

• Montly water flow rate 

• Distance to topography 

• Column height of in-situ material 

• Column height of primary rock 

In this study, wet muck entry is divided vertically and horizontally, for which a wet muck entry 

risk model is developed for each of these mechanisms. The database for the vertical wet muck entry 

model is composed of 24 drawpoints in the mud state and 72 drawpoints without the mud state. On 

the other hand, the case of lateral wet muck entry is composed of 70 drawpoints in the mud state 

and 210 without the mud state. The complete database was used to calibrate and validate the wet 

muck entry risk model. 

(2) 
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The univariate shows the variable that has the greatest influence or correlation with wet muck entry 

is the topographic gutter or also called risk zones. This variable indicates whether or not a 

drawpoint is below the area where water can accumulate, this can be observed by the chi square 

test and odds ratio, since they are the maximum values in this analysis, indicating its great influence 

on the wet muck entry risk (Table 5). 

For example, it is indicated that "the probability that a drawpoint under the risk zone has 7.16 times 

more probability of having wet muck entry than a drawpoint that is located outside the risk zone." 

(Castro, et al., 2018) 

Table 5: Univariate analysis of the wet muck entry risk (Castro, et al., 2018) 

Variable Statistical significance 

(p value) 

Chi-squared 

test (χ2) 

Coefficient Odds ratio 

Topographic gutter < 0.001 446.30 1.97 7.16 

Extraction < 0.001 407.01 1.16 3.19 

Drawpoint nerighborhood with wet 

muck entry 

< 0.001 387.81 0.82 2.27 

Monthly water flow rate 0.006 229.69 0.003 1.003 

Distance to topography < 0.001 148.82 -0.019 0.981 

Column height of in-situ material < 0.001 93.63 -0.007 0.993 

Column height of primary rock < 0.001 74.71 -0.006 0.994 

 

The indicated risk area refers to the entire gutter formed by mining extraction, which results in a 

conservative variable, because there are mines that are completely under this subsidence area. 

Although this entire area is susceptible to the accumulation of water, there is no discretization that 

allows to determine different places with greater or lesser probability of accumulation of water. 

The results obtained by Castro model indicate that the main conditions for a drawpoint to be 

contaminated with mud are to be under a risk zone, in an area with neighbors in a mud state, and 

to have over-extraction. The wet muck entry for the vertical mechanism is controlled by the 

variables of extraction, infiltrated water, the height of the primary column, and topographic 

depression or risk zones. It should be noted that the primary rock height and topographic depression 

variables are input data to the model that do not vary over time. Physical variables such as the 

height of the primary rock limit the generalization of the model to assess the risk of wet sludge 

entering other mines, on the other hand, the risk zones may vary over time depending on the 

extraction carried out, so considering it as a static variable, presents an opportunity for 

improvement in the evaluation of the risk of entry of wet manure. The lateral water-mud entry 

mechanism is determined by the following variables: water flow, extraction, number of neighbors 

in the mud state, and topographic depression. The wet muck entry risk model is: 

Equation 3 Mud-water ingress risk model (Castro, et al., 2018) 
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𝑃𝑤𝑚(𝑥) =  

{
 

 𝑃𝑣(𝑥)   =
𝑒−1.62+0.57∗𝐸+0.001∗𝐹𝑅−0.003∗ℎ𝑝𝑟+0.59∗𝑇𝐷

1+𝑒−1.62+0.57∗𝐸+0.001∗𝐹𝑅−0.003∗ℎ𝑝𝑟+0.59∗𝑇𝐷
 

𝑃𝑙(𝑥)   =
𝑒−4.06+1.83∗𝐸+0.001∗𝐹𝑅+1.70∗𝑇𝐷+0.53∗𝑁𝑤𝑚

1+𝑒−4.06+1.83∗𝐸+0.001∗𝐹𝑅+1.70∗𝑇𝐷+0.53∗𝑁𝑤𝑚

 

When calibrating this model, it is obtained that the cutoff probability is 0.58 for the vertical wet 

muck entry model and 0.6 for the lateral model. With these values, he obtains a sensitivity of 70%, 

a specificity of 93% and an 84% accuracy of the model when calibrated, which are very good 

results for a model. 

2.4.4 Pérez model (2021) 

In the Pérez (2021) model, data from Blocks 1 and 2 of the Esmeralda mine of the El Teniente 

Division (DET) were used. The objective of the model was to study the wet muck entry in long-

term planning. 

The Esmeralda mine is located at elevation 2,210 of the El Teniente mine, characterized by having 

upper sectors with depleted reserves, such as Teniente 5 located at elevation 2,284 and Teniente 4 

south at elevation 2,372. The data used for this study are from 2011 to early 2018. 

The variables selected in the Perez model were: 

• Estimated risk zones 

• Broken material entry 

• Infiltrated water flow 

• Height of draw (HOD) 

• Number of neighbor drawpoints in mud state 

Within the univariate analysis, all these variables have a statistical significance with the wet muck 

entry (Table 6). The most important is the number of neighbor drawpoints in mud state, the broken 

material entry, and the estimated risk zones 4 and 2. On the other hand, the risk zone of case 1 does 

not present sufficient statistical evidence to indicate a relationship with wet muck, and was verified 

through contingency tables. It is also important to note that the higher the beta, the greater the 

weight of the variable in the model. 

In this last variable, the risk zone was chosen that considers the two lowest drawpoints in the 

topography plus its neighborhood, which is the one that provided the best model according to a 

comparison of the log-likehood ratio parameter (-2logL) that measures the probability change 

between models, therefore, the model that minimizes this parameter is chosen (Castro, et al., 2018). 

  

(3) 



18 
 

Table 6: Summary of the univariate analysis, modified from (Pérez, 2021) 

Variable Beta coefficient Significance (%) 

HOD (m) 0.01 0 

Water flow (l/s) 0.0022 5 

Broken material entry (dichotomous) 3.55 0 

Neighbour drawpoints in mud state (#) 2.07 0 

Risk Zone 1 (dichotomous 22.341 99.9 

Risk Zone 2 (dichotomous 2.203 0 

Risk Zone 3 (dichotomous 1.447 6.4 

Risk Zone 4 (dichotomous 1.79 0 

Risk Zone 5(dichotomous 1.082 1.5 

The wet muck entry risk model has 81% accuracy, specificity and sensitivity, it is generally 

considered that a good prediction capacity of a model is over 80% accuracy. Next, the Pérez model 

(2021) is presented in equation 4: 

𝑃(𝑥)   =
𝑒−4.0100+0.0022∗𝐸+0.0035∗𝑄+2.3177∗𝑄𝐸+1.1674∗𝑉𝐵+0.8927∗𝑍𝑅

1 + 𝑒−4.0100+0.0022∗𝐸+0.0035∗𝑄+2.3177∗𝑄𝐸+1.1674∗𝑉𝐵+0.8927∗𝑍𝑅
 

Where: 

E:  HOD (m) 

Q:  Water flow (l/s) 

QE:  Broken material entry (dichotomous) 

VB1:  Neighbour drawpoints in mud state (#) 

ZR4:  Estimated Risk Zone 4 (dichotomous) 

2.4.5 Navia model (2021)  

The risk models presented by Navia (2021) are proposed for both the long and the short term, data 

from the Diablo Regimiento sector of the El Teniente mine were used, with historical information 

from November 2013, which corresponds to the initial date of extraction of the sector. 

In the first place, the identification of relevant variables for the wet muck entry in the Diablo 

Regimiento sector was carried out, which were: 

• Neighborhood with the mud state 

• Draw uniformity 

• Distance to topography 

• Percentage of fines 

• Cumulative height of draw 

• Moisture observed 

(4) 
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• Horizontal distance to drawpoints with mud in the old upper sector 

• Zone under drawpoints with mud in old sectors 

• Presence of mud at a drawpoint in the same drawbell 

• Belonging to the starting area. 

The second part of this work begins with the creation of predictive models for the wet muck entry, 

through logistic regression as a predictive technique for dichotomous events (Navia, 2021). Twelve 

models were developed considering the mentioned variables, of which only 3 presented high 

predictive quality. The variables that obtained a better fit in these models were: 

𝒙𝟏: Moisture at the drawpoint, according to the El Teniente classification, from 1 (dry) to 5 (wet). 

𝒙𝟐: Neighborhood with the mud state, with values from 1 to 6. 

𝒙𝟑: Draw uniformity, with a binary value where is 1 if the draw or extraction is non-uniform or 

semi-uniform and 0 if the extraction is uniform. 

𝒙𝟒: Cumulative height of draw, with a binary value, where 1 indicates that the drawpoint has 90% 

or more of the in-situ column removed, otherwise 0. 

𝒙𝟓: Horizontal distance to drawpoints with mud in the old upper sector, with a continuous value in 

meters. 

Model 6: 

𝑝(𝑥)   =
exp (−6.105+1.419∗𝑥1+0.943∗𝑥2+0.769∗𝑥3+0.521∗𝑥4−0.024∗𝑥5)

1+exp (−6.105+1.419∗𝑥1+0.943∗𝑥2+0.769∗𝑥3+0.521∗𝑥4−0.024∗𝑥5)
 

With a Specificity: of 81%; Sensitivity: of 79% and Accuracy of 81%. 

Model 5: 

𝑝(𝑥)   =
exp (−6.593+1.414∗𝑥1+0.930∗𝑥2+0.713∗𝑥3+0.892∗𝑥4)

1+exp (−6.593+1.414∗𝑥1+0.930∗𝑥2+0.713∗𝑥3+0.892∗𝑥4)
 

With a Specificity: of 81%; Sensitivity: of 79% and Accuracy of 81%. 

Model 4: 

𝑝(𝑥)   =
exp (−6.189+1.416∗𝑥1+1.049∗𝑥2+0∗𝑥3+0.803∗𝑥4)

1+exp (−6.593+1.414∗𝑥1+0.930∗𝑥2+0.713∗𝑥3+0.892∗𝑥4)
 

With a Specificity: of 84%; Sensitivity: of 71% and Accuracy of 82%. 

  

(5) 

(6) 

(7) 
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2.5 Summary of wet muck entry models 

A summary of all wet muck entry models reviewed in this study is shown in Table 7. The models are 

evaluated by KPIs such as Sensitivity, Specificity and Accuracy: 

• The Sensitivity or True Positive Rate determines the success rate of when an event actually 

occurs. 

• The Specificity or True Negatives Rate determines the success rate of when an event does 

not actually occur. 

• Precision is the combination of Sensitivity and Specificity, since it determines the success 

rate of when an event actually occurs or not. 

Table 7: Summary of wet muck entry risk models for long-term and short-term planning (after 

Pérez, 2021) 

Model 

(Author) 
Model variables 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
Comment 

Model 1 - 

(Navia, et 

al., 2014) 

Extraction rate (ton/m2 

día) 

Fine material in 

drawpoint (%) 

HOD (m) 

Season of the year 

(binary) 

NA NA 74 

A variable that provides 

information on the fine material 

extracted can be included in the 

wet muck entry risk model. 

Model 2 - 

(Garcés, 

et al., 

2016) 

-Extraction (%) 

-Primary column 

height (m) 

-Number of neighbors 

in mud state (#) 

-Season of the year 

(summer or winter - 

binary) 

NA NA NA 

The model is calibrated based on 

the actual tonnage of wet muck 

entry versus the simulated one. 

The model declares the mud 

drawpoints at -24Kt on average. 

And it can include accuracy, 

sensitivity, and specificity. 

Model 3 - 

(Castro, et 

al., 2018) 

-Extraction (%) 

-Column height of 

primary rock (m) 

-Topographic gutter 

- Montly water flow 

rate (l/s) 

- Drawpoint 

neighborhood with wet 

muck entry (#) 

70 93 84 

The mud-water ingress risk 

model is conservative in its 

definition of risk zones and can 

be complemented with variables 

that provide information 

throughout the life of mine 

(LOM). 

Model 4 

(Pérez, 

2021) 

Height of draw (m) 

Infiltrated water flow 

(l/s) 

Neighbour drawpoints 

in mud state (#) 

Broken material entry 

(binary) 

81 81 81 

The mud water ingress risk 

model presents an opportunity 

for improvement by considering 

new variables such as secondary 

fragmentation and present 

lithologies that vary throughout 

the LOM. 
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Estimated risk zones 

(binary) 

Model 5 

(Navia, 

2021) 

Moisture (1 a 5) 

Neighborhood with the 

mud state (1 a 6) 

Draw uniformity 

(binary) 

Cumulative height of 

draw (binary) 

Horizontal distance to 

drawpoints with mud 

in the old upper sector 

(m) 

89 79 81 

Navia, (2021), made 12 models 

of which the one with the best 

prediction quality is the one 

shown in the table, this is the 

only short- and long-term model. 

This model can be complemented 

by adding variables related to 

secondary fragmentation and 

lithologies, the humidity variable 

could also be considered 

quantitatively. 
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2.6 Conclusions of the literature review 

Wet muck entries have become one of the main risks of caving mining: Therefore, it is necessary 

to have a tool to be able to predict them and avoid any type of accident and/or catastrophe such as 

generating dilution or loss of reserves. Different mines in the world have developed measures to 

mitigate mud, such as drainage tunnels that reduce the amount of accumulated water, control the 

draw uniformity to allow natural drainage of the mine; implement autonomous equipment for the 

extraction of mud and reduce the exposure of workers. Water-mud risk classification systems have 

also been implemented at the drawpoints, considering variables such as the quantity of fines in the 

material, qualitative and quantitative moisture, dilution, hang-ups, state of the drawpoint, and 

variables associated with the mud events as linear distance, volume, and frequency. 

Wet muck declarations condition long-term planning, generating delays in extraction, loss of 

reserves, affecting the safety of workers, and having to upgrade their manual equipment to 

autonomous to continue extraction (for example at PT Freeport); it is for the above that it is 

necessary to build wet muck entry risk models. In the past, long-term multivariable models have 

been implemented, which have presented good results based on real information from wet muck 

declarations. However, there is an opportunity for improvement, since most of the models do not 

consider variables related to the fragmentation and/or lithology present in the extraction, variables 

that in theory and operation are strongly related to the formation of mud and could help to improve 

understanding of wet muck entry. Therefore, this study focuses on analyzing the inclusion of these 

variables in the wet muck entry models. Six groups of variables to be analyzed are presented below: 

1. Historical Extraction: 

• Extraction ratio 

• Height of draw 

2. Lithologies 

• Primary rock, Secondary rock, Broken material and Talus material 

3. Fragmentation 

• d50 

4. Water 

• Water flow rate, Precipitation and Season of the year 

5. Mud 

• Drawpoint neighbor wet muck y Historical mud sectors 

6. Topography 

• Vertical distance to surface 

 

.  
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3 Research articles 

3.1 Paper 1: Modeling of Wet muck entry at El Teniente for long-

term planning 

O Salas,  Universidad de Chile, Chile  

R Castro,  Universidad de Chile, Chile 

E Viera,  División El Teniente, CODELCO, Chile 

K Basaure,  División El Teniente, CODELCO, Chile 

F Hidalgo,  División El Teniente, CODELCO, Chile 

M Pereira,  BCTEC Engineering and Technology, Chile 

 

Caving 2022: Fifth International Conference on Block and Sublevel Caving, Australian 

Centre for Geomechanics, Perth, pp. 545-560, https://doi.org/10.36487/ACG_repo/2205_37 

 

Abstract 

The intrusion of wet muck and fines and the potential of mud rushes pose safety risks for workers, 

equipment and infrastructure at El Teniente. Wet muck can also result in the loss of reserves 

because of the need to close drawpoints when large amounts of fine materials and moisture are 

observed.  This article presents the analysis and the development of a mathematical model to 

estimate wet muck entry for long-term planning applications at El Teniente. The models have been 

imbedded in BCRisk®, which is a machine-learning software that estimates hazards associated 

with the extraction process for underground mines. Four basins of El Teniente were included in 

the study of wet muck control: North, Center, South, and Reno. Each basin has mines with different 

characteristics in each exploitation sector.  Consequently, models were built for each of the basins 

to represent its distinct reality.  

Several variables were investigated to define which determine the phenomenon. The variables 

include tonnage extracted or draw rate, amount of water entering the cave, season of the year, 

presence of mud in neighboring drawpoints or sectors that have been closed due to wet muck above, 

and changes in surface or depressions. In addition, flow variables such as fragmentation and 

lithologies have been included and estimated with FlowSim 6.3® for increased precision. Results 

indicate that the classification models can reproduce the phenomenon with an acceptable precision 

of 71% and an average tonnage error per drawpoint of 7 to 10%. These results have been useful 

for long-term planning at El Teniente mine to predict wet muck entry and define when and where 

autonomous LHD may be required for the extraction of wet muck in the future. 

Keywords: draw control, mine planning, underground mining, geotechnical hazards, large-term, 

short-term, wet muck, mud. 
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1 Introduction 

Caving mining currently represents a productive and economic option; however, it is affected by 

challenges such as wet muck entry, defined as when the operation declares wet muck in a 

drawpoint, which can cause accidents and affect workers, mining infrastructure, and equipment.  

Wet muck entry can also generate excess dilution, delays in production, loss of reserves and even 

partial or permanent closure of mining operations (Butcher et al. 2005; Jakubec & Clayton 2012; 

Navia et al. 2014). Mud entry in caving mining is generated by fine particles that mix with aqueous 

substances in different types of conditions, such as melting ice in the mountains, tailings filtration, 

aquifers, and weather conditions (snow and rain). This mixture travels through the column of 

broken material and reaches the drawpoints, causing water filtration and in some cases mud events, 

such as landslides, runoff, and mudrush (Ginting & Pascoe 2020). 

Wet muck entry has been recorded in different underground mines around the world, such as El 

Teniente in Chile (Ferrada 2011), IOZ and DOZ in Indonesia, Ekati in Canada, (Edgar et al. 2020; 

Hubert et al. 2000; Ginting & Pascoe 2020; Jakubec & Woodward 2020; Widijanto et al. 2012). 

Some mitigation and control tools used range from drainage tunnels that allow the transfer of mud 

to lower levels or to the outside of the mine, remote-controlled equipment.  Risk and criticality 

matrices for drawpoints have also been used considering humidity (qualitative and quantitative) 

and the amount of fine material; this information can help to avoid drawpoint closure and the risk 

of accidents (Samosir 2008; Edgar et al. 2020). 

There are also models that predict wet muck entry, in particular for the El Teniente Division.  Wet 

muck entry risk models have been implemented that allow evaluation of mining plans (Castro et 

al. 2018; Garcés et al. 2016; Pérez 2021; Navia 2021). Most of these models are used for long-term 

planning; however, so far some mud-forming variables such as secondary fragmentation and the 

lithology present at drawpoints have not been fully studied.  Adding the d50 fragmentation, broken 

material extracted in drawpoint, extraction ratio, and annual precipitation should improve the 

accuracy and robustness of the wet muck models to create a useful tool applicable to the El Teniente 

division. 

2 Background at El Teniente Division 

2.1 Wet muck at El Teniente Division 

Mining data was provided by the sectors or mines of the El Teniente division including Pipa Norte 

Mine (PNM), Sur Andes Pipa Mine (SPM), Reservas Norte Mine (RNM), Dacita Mine (DM), 

Esmeralda Mine (EM), Diablo Regimiento Mine (DRM), among others, from 1999 to 2021 to 

analyze mud entry in the mine. These mines are primarily located below a topographic trough 

(similar to a topographic depression) around the Pipa Braden, as shown in Figure 1.  
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Figure 1 Isometric view of the productive sectors of the El Teniente division (Codelco 2016a, 2016b) 

To understand wet muck entry in the sectors of the El Teniente Division, Butcher et al. (2005) have 

suggested that four factors are required to trigger wet muck entry. These include the holding 

capacity of water, the presence of possible mud-forming minerals, a disturbance in the ore column, 

and the mud discharge capacity at a drawpoint, Figure 2 shows a schematic representation of the 

wet muck phenomenon and some of its main variables. 

 

 

Figure 2 Conceptualization of the problem of mud entry in the El Teniente Mine 

Variables such as the secondary fragmentation that is generated along the ore column, the 

extraction ratio based on the height in situ, lithology, and the accumulated precipitation over time 

are broken down from the aforementioned factors. The old sectors with historical mud and the 

difference in height between a drawpoint and the topography are also considered. All of these 

variables are considered critical to understanding mud entry and are considered in this study. 
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2.2 Basins of the El Teniente Division 

El Teniente mine is contained within a subsidence crater, which in turn can be divided into four 

basins: North, Reno, Center, and South, as shown in Figure 3.  For the purpose of this study, mud 

entry models were constructed for each of basins, using the mine database from each of them (Table 

1). Once the model is built, it can be applied to future evaluations of the same mine or sector as 

well as to mines or sectors that are at a lower level. 

 

Figure 3 Plan view of the El Teniente Division crater, showing its division into four basins (North, 

Reno, Center, and South) 

Table 1 Classification of mud entry models according to the basin, the base mine, and the possible 

mine of application 

Models / Basins Base Mine Possible Application Mines. 

North Pipa Norte - Sur Andes Pipa 
Recursos Norte 

Andesita 

Reno Reservas Norte - Dacita 
Andes Norte 

Panel Invariante 

Center Esmeralda Bloque 1 y 2 - Esmeralda Panel Diamante 

South Diablo Regimiento 
Pacifico Superior 

Pacifico Central 

 

2.3 Study Area 

The study area includes the Reno Basin, which is made up of the productive sectors of Reservas 

Norte (NN) and Dacita (DT). The information analyzed contains the historical extraction for 1,395 
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drawpoints (DP) from January 1999 to August 2021. Figure 4 shows the wet muck entry.  To date 

there are 462 DP (33% of the database), 432 belong to Reservas Norte, and 30 to Dacite. This 

database was used to study the independent correlation that each of the variables has with mud 

entry and to choose the critical variables of the problem using a univariate analysis methodology 

of logistic regression. Subsequently, a multivariate analysis was performed, which included 

dividing the database into a training database used to generate the equations of the logistic 

regression model and another for prediction to analyze the predictive performance of the model. 

 

Figure 4  Wet muck entry from the Reservas Norte (NN) and Dacita (DT) sector 

2.4 Critical Variables for the Wet muck entry 

In the analysis, four types of information were considered: historical extraction, lithologies and 

fragmentation, water and mud, and topography. Variables that can explain the problem of mud 

entry were developed from these types of information, such as those briefly mentioned in Table 2 

and described in Table 3. 
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Table 2 Information considered in the analysis and example of the variables 

Information group Variables 

1. Historical extraction 
Height of draw [m] 

Extraction Ratio [%] 

2. Lithologies and fragmentation 

Primary rock extracted in the DP [%] 

Secondary rock extracted in the DP [%] 

Broken material extracted in the DP [%] 

Talus* material extracted in the DP [%] 

D50 [m] 

3. Water and mud 

Average water flow rate [L/s] 

Precipitation [mm] 

Historical Mud Sectors [dichotomic] 

DP Neighbor Wet muck [1 to 6] 

4. Topography Distance to the surface [m] 

*Talus: Represents fill material that occurs due to the effect of subsidence in the crater (rilling effect), this is a 

permeable material. 

Table 3 Summary of the variables analyzed in the study 

Variable Symbol Unit Type Description 

Height of draw HOD (m) Continuous 
Represents the cumulative extracted 

column height of a DP in a period 

Extraction Ratio ER (%) Continuous Percentage of in-situ column extracted. 

Primary rock extracted 

in DP  
PRIM (%) 

Continuous Percentage of primary rock extracted in 

the month, [variable estimated by 

FlowSim] 

Secondary rock 

extracted in DP 
SEC (%) 

Continuous Percentage of secondary rock extracted 

in the month [variable estimated by 

FlowSim] 

Broken material 

extracted in DP 
BM (%) 

Continuous Percentage of broken material extracted 

in the month [variable estimated by 

FlowSim] 

Talus material extracted 

in DP 
TAL (%) 

Continuous Percentage of Talus material extracted 

in the month, [variable estimated by 

FlowSim] 

D50  D50 (m) 
Continuous Fragmentation size estimated by 

FlowSim 
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Average water flow rate Q (l/s) 
Continuous Long-term representation of water 

infiltration in DP 

Precipitation at 30, 60, 

90 days, semi-annual 

and annual 

P30, P60, 

P90,Ps,Pa 
(mm) 

Continuous Long-term representation of the 

infiltration of water by precipitation in 

the DP, in various time intervals 

Historical Mud Sectors HMS - Categorical 

Composed of the mud polygons of 

productive sectors at higher levels; if a 

point is in that area (1), otherwise (0) 

DP Neighbor wet muck Nwm - 
Continuous Number of DP in the neighborhood of a 

point that have declared mud entry. 

Distance to the surface D_S (m) 
Continuous Distance between the DP and the 

surface. 

3 Methodology 

In this work, an analysis of the critical variables was carried out to determine the wet muck entry 

at a drawpoint using logistic regression as a tool to help long-term planning. First, a univariate 

analysis was performed to find the first relationship between variables and mud entry occurrence. 

Then, performing multivariate analysis, a predictive model was created to calculate the probability 

of wet muck entry. One of the advantages of the current methodology is that variables associated 

with mineral extraction, such as the lithology present in the extraction, the size of fragmentation, 

states of the drawpoint, and meteorological and topographic conditions, were incorporated in the 

modeling of wet muck for each drawpoint.  A brief summary of the methodology to construct the 

predictive models is described below. For more detailed information on logistic regression, see 

Hosmer et al. (2013). 

3.1 Univariate Logistic Regression Analysis 

Wet muck entry risk variables were independently assessed using univariate analysis. The Chi-

square Test (χ2) and the Odds Ratio (OR) were applied to analyze the relative relationship between 

the independent variables and the mud entry reports (dependent variable or interest). 

The Odds Ratio determines how likely it is that mud enters a drawpoint or not, with x = 1 (presence 

of mud) and with x = 0 (absence of mud) (Hosmer et al. 2013). For example, if a drawpoint declared 

to have mud is located below the risk zone associated with historical mud sectors, then the odds 

ratio OR = 3 means that the probability of mud entry between the drawpoints located in the risk 

zone is three times greater than the probability in the drawpoints not located in the risk zone (Castro 

et al. 2018). 

In the univariate analysis, a statistical significance (p-value) of 0.1 is used as the critical value to 

determine whether each independent variable is statistically significant with mud inlet. All the 

variables that resulted in a significantly less than or equal to 0.1 were included in the multivariate 

logistic regression analysis. Table 4 shows the influence of variables in wet muck entry. 
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Table 4 Summary of selected risk variables based on physical properties of wet muck entry and 

mine practice 

Variables Description 

Height of draw 

Indicates the permeability properties of the unexcavated materials that make 

up the ore column (composed of primary and secondary rock), which controls 

water movement and infiltration to drawpoints. 

Extraction Ratio 

Represents both the increase in rock permeability promoted by subsidence 

propagation and the formation of fine material due to secondary breakage 

through the ore column. A higher Extraction Ratio increases the probability of 

wet muck entry. 

Primary extracted in 

DP 

Represents the percentage extracted from the primary rock. This competent 

rock represents the impermeable layer; therefore, the higher the percentage of 

primary rock extracted, the lower the probability of wet muck entry. 

Secondary extracted in 

DP 

Represents the percentage extracted from the secondary rock. This rock is less 

competent than the primary rock and together with the broken, represents the 

permeable layer; therefore, the higher the percentage of secondary extracted, 

the greater the probability of wet muck entry. 

Broken material 

extracted in DP 

Represents the same as the percentage of secondary rock because the material 

is fragmented. Similarly, then, the higher the percentage of broken material 

extracted, the greater the probability of wet muck entry. 

Talus material 

extracted in DP 

Represents fill material that occurs due to the effect of subsidence in the crater 

(rilling effect).  This is a permeable material; therefore, the higher the 

percentage of talus extracted, the greater the probability of wet muck entry. 

D50  

Represents the fragmentation present in the extraction.  When the size d50 

decreases, the probability of wet muck entry increases due to the increase in 

the amount of fines in the DP. 

Average water flow 

rate 

Long-term representation of the water infiltration expected to be observed in 

the DP during extraction; therefore, if the water flow increases, the probability 

of wet muck entry also increases. 

Precipitation at 30, 60, 

90 days, semi-annual 

and annual 

Precipitation measurements at various time intervals. An increase in 

precipitation indicates that the probability of wet muck entry increases. 

Historical Mud Sectors 

DP with mud declared in old or superior sectors. This is a categorical variable 

for which if the DP is under a sector with mud, it obtains a value of 1 and 0 

otherwise. 

DP Neighbor wet 

muck 

Corresponds to the risk that the mud could spread to the surrounding areas 

(neighboring drawpoints) 

Distance to the surface Considers the distance to surface water sources (snow melt and rainwater) 
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3.2 Multivariate logistic regression analysis 

The correlation between different variables with the occurrence of wet muck entry was tested using 

multivariable logistic regression, which delineates the association between the dichotomous 

response variable, 𝑌 (the occurrence or not of wet muck entry), and 𝑥 the collection of variables of 

risk.  The purpose of this analysis was to estimate the coefficient of each risk variable and test its 

statistical significance. Multivariate logistic regression depends on the probability of the response 

variable, considering a set of n independent risk variables designated by the vector 𝑥 =

 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛). Therefore, the conditional probability of mud entry (i.e., 𝑌 =  1) would be 

given by the equation 1 according to Hosmer et al. (2013): 

𝑃(𝑌 = 1|𝑥) = 𝑝(𝑥) =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3+⋯+𝛽𝑛𝑥𝑛

1+ 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3+⋯+𝛽𝑛𝑥𝑛
    (1) 

The coefficients of the logistic regression model are  𝛽 =  𝛽0, 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑛 , which can be 

determined through methods based on the maximum likelihood methodology (Geng and 

Sakhanenko 2015). In this analysis, the criterion of statistical significance (p-value) was adopted. 

For a risk variable to remain in the multivariate logistic regression model, statistical significance 

was set at 0.05 (Hosmer et al. 2013). 

3.3 Calibration and validation of the predictive model 

The calibration of the fitted model was evaluated by comparing the actual mud data from the mine 

with the data obtained from the model based on the value of a cutoff probability. The cutoff 

probability allows the drawpoints to be ranked on one of the response values (i.e., 1 or 0) using 

different probability levels. The cutoff probability is defined as the minimum probability value for 

a drawpoint to be classified as mud; therefore, drawpoints with a probability value greater than the 

cut-off value were classified as having mud entry. An algorithm was created to obtain a probability 

value that delivers the most adjusted predictive models, using the variables that were ranked as 

significant to determine wet muck entry.  

With the results of the cutoff probability, a contingency table (Table 5) was built that allowed the 

calculation of four possible outcomes. For example, if the actual value is positive and is classified 

as positive, then it is counted as a true positive (TP); otherwise, it is counted as a false negative 

(FN). The symbology used in the confusion matrix is as follows (Witten et al. 2017): 

Table 5 Confusion matrix or contingency table 

Confusion matrix Prediction 
 

Positives Negatives 

Real 
Positives True Positives (TP) False Negatives (FN) 

Negatives False Positives (FP) True Negatives (TN) 
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To evaluate the contingency table, the cutoff probability allows three main performance KPIs to 

be calculated, with the aim of maximizing these leading indicators described by Witten et al. 

(2017): 

Sensibility = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100     (2) 

Specificity = 𝑇𝐹𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
∗ 100     (3) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100     (4) 

Where: 

• Sensitivity is the ability to predict mud entry (or the true positive rate). 

• Specificity is the ability to predict non-mud entry (or false positive rate). 

• Accuracy is the ability to predict mud and non-mud entry. 

After calibrating the predictive model, validation of the cutoff probability was performed by 

comparing actual mine data and data predicted by the model with respect to ore tonnage mined 

prior to wet muck entry. This stage aims to minimize the mined ore tonnage error, which is defined 

as the difference between the actual and modeled mined ore tonnage. The validity of the predictive 

model is graphically represented in a scatter plot, where the correlation between the modeled ore 

tonnage extracted (Y-Axis, Vertical) and the ore tonnage extracted from the mine data (X-Axis, 

Horizontal) is observed. In addition, a heat map was presented for the tonnage error on which the 

points with the greatest error can be observed. The calibrated model is validated if the defined 

cutoff probability results in a scatterplot with a high degree of correlation between the model and 

mine data and if the error distribution is close to zero. The evaluation of the model follows the logic 

shown in Figure 5. 
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Figure 5 Schematic diagram of the algorithm used to calibrate the wet muck entry risk model, based 

on a monthly estimate of wet muck entry, modified from (Castro et al. 2018). Nwm 

represents the number of drawpoints in the neighborhood with mud 

4 Result and Discussion 

4.1 Univariate Analysis 

Univariate analysis was performed for 16 critical variables, of which only 11 were statistically 

significant (p-value ⩽ 0.1). Table 6 shows a summary associated with the metrics obtained in this 

analysis.  In particular, the variables Extraction Ratio, Historical Mud Sectors, and DP Neighbor 

wet muck are those with the highest Odds Ratio values. Firstly, if the Extraction Ratio increases 

by 50%, the probability of wet muck entry into a DP would increase by 57%. Secondly, if the 

Historical Mud Sectors variable is 1 or if a drawpoint is within the Historical Mud Sectors, the 

probability that mud enters the DP increases by 112%. Finally, if the DP has 1 DP Neighbor with 

wet muck, the probability that a mud entry will occur rises to 33%. The rest of the variables have 

a lower degree of statistical association with wet muck entry due to the low values of the Chi-

squared test and the Odds Ratio. 

Table 6 Risk variables and their correlation with wet muck entry, ordered by statistical significance 

(p-value) 

Variable Coefficient 
Chi-squared test 

(χ2) 

Odds 

Ratio 

Statistical 

significance 

(p value) 

Height of draw 0.004 361.34 1.004 <0.001 

Extraction Ratio 0.898 405.56 2.456 <0.001 

Primary rock extracted in DP -0.029 621.56 0.972 <0.001 

Secondary rock extracted in 

DP 
0.032 827.29 1.033 

<0.001 

DP Neighbor with wet muck 0.286 167.69 1.331 <0.001 

Historical Mud Sectors 0.753 64.59 2.124 <0.001 

Broken material extracted in 

DP 
0.010 22.08 1.010 

<0.001 

Annual precipitation 0.001 23.11 1.001 <0.001 

Semi-annual precipitation 0.000 9.80 1.000 0.001 

D50 0.020 21.09 1.020 0.002 

Distance to the surface 0.001 4.12 1.001 0.042 

Precipitation at 90 days 0.000 3.68 1.000 0.051 

Average water flow rate -0.001 1.73 0.999 0.203 
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Precipitation at 60 days <0.001 0.37 1.000 0.542 

Precipitation at 30 days <0.001 0.08 1.000 0.781 

Talus material extracted in 

DP 
-150.150 46.42 0.000 0.953 

The above analysis indicates that mud inflow generally occurs under conditions of over-extraction 

(with high extraction ratio) for those drawpoints located below a Historical Mud Sector and with 

DP Neighboring wet muck. Therefore, as a preliminary conclusion based on the univariate analysis, 

the daily tonnage extracted should be taken into account during the long-term planning process 

considering the areas where there is wet muck. This analysis was useful to identify the main 

variables related to wet muck entry. However, it does not consider the correlation between the 

variables, which is evaluated in the multivariate analysis. 

4.2 Multivariate Analysis 

In the Multivariate Analysis, more than 30 mud entry models were analyzed.  As an example in 

Table 7, fifteen models are shown, of which model Nº 15 was the one that gave the best results. 

Although the univariate analysis showed that the variables of Average water flow rate, Talus 

material extracted in DP, and Precipitation at 30, 60 and 90 days were not statistically significant, 

they were also included in the analysis. In this way it was verified that these variables were not 

contributing to the models. 

Table 7 Summary of Models made for the Reno Basin 

Variable \ Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Height of draw            X   X  

Extraction Ratio X X X X X X X X X X  X X  X 

Primary rock extracted in DP            X    

Secondary rock extracted in 

DP 
   

       X   X  

DP Neighbour wet muck X X X X X      X  X X  

Historical Mud Sectors X X X X X X      X    

Broken material extracted in 

DP 
   

  X X X X X X   X X 

Annual precipitation     X          X 

Semi-annual precipitation    X      X    X  

D50 X X X X X X X X X X  X   X 

Distance to the surface         X       

Precipitation at 90 days   X        X     
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Average water flow rate             X   

Precipitation at 60 days  X      X    X    

Precipitation at 30 days X      X         

Talus material extracted in DP             X   

Table 8 below shows the results of the best wet mud input model for the Reno Basin, which is 

represented by the following formula: 

𝑃𝑤𝑚(𝑥) =
𝑒−1.768+0.214𝐸𝑅+0.031𝐵𝑀−2.104𝑑50+0.0005𝐴𝑃

1+𝑒−1.768+0.214𝐸𝑅+0.031𝐵𝑀−2.104𝑑50+0.0005𝐴𝑃
    (5) 

Where: 

𝑃𝑤𝑚(𝑥):  Indicates the probability of wet muck entry, given a CP (Cutoff Probability) 

ER:  Extraction Ratio [%], defined as the ratio between the height of draw (HOD) and 

the in-situ primary rock height  

BM:  Broken material extracted in DP [%] 

D50:  d50 fragmentation [m] 

AP:  Annual Precipitation [mm] 

 

Table 8: Wet muck entry model for the Reno Basin 

Variable Coefficient 
Odds 

Ratio 
Description 

Extraction Ratio [%] 0.214 1.239 
A 50% increase in Extraction ratio increases wet 

muck entry probability by 11%. 

Broken material 

extracted in DP [%] 
0.031 1.031 

An 11% increase in the Percentage of Broken material 

extracted in the DP increases wet muck entry 

probability by 59%. 

d50 fragmentation [m] -2.104 0.122 
A decrease in fragmentation size d50 of -0.05[m] in 

DP increases wet muck entry probability by 11%. 

Annual Precipitation 

[mm] 
0.0005 1.000 

An increase of 600 [mm] in Annual Precipitation 

[mm] increases wet muck entry probability by 35%. 

Constant -1.768 - - 

4.3 Calibration and Validation of the Reno Basin Model 

In the calibration stage, several cutoff probabilities were tested to build contingency tables, with 

the aim of finding a multivariable predictive model that would maximize the performance KPIs of 

the model.  After evaluating several cutoff probabilities, the optimal cutoff value to correctly 

identify mud entry was 0.7725. The modeled wet muck entry is presented in Figure 6. In this, the 
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black polygon area is the real wet muck observed at August 2021, date on which the main 

performance KPIs are calculated. 

 

Figure 6 Wet muck entry modeled in the Reno Basin for August 2021. In red are the DPs with high 

wet muck entry risk and in green the DPs with low wet muck entry risk 

The model obtained the following results for the main performance KPIs: 

• True Positive Rate of 73% 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

337

337+125
= 73%     (6) 

• True Negative Rate of 70% 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

655

655+278
= 70%     (7) 

• Model accuracy of 71% 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

337+655

337+655+278+125
= 71%     (8) 

Continuing with the model results for the Reno Basin, the average tonnage per drawpoint for the 

Reno Basin is approximately 162kt, and the average tonnage error was -16.4kt (10% error) with a 

deviation of ±6.5kt. The comparison between the real and modeled wet muck entry is represented 

in the dispersion diagram of Figure 7, an acceptable adjustable R2 of 0.72 was obtained. 
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Figure 7 Dispersion plot between the mine tonnage data and the modeled 

4.4 Application of the Reno Basin Model 

Once the model was calibrated, it was used to evaluate the future plan of the Reno Basin from 

September 2021 to June 2037 (Figure 8). The Plan contemplates a total of 53.1 planned tons, 

considering the Dacita and Reservas Norte sector. FlowSim software was used to estimate the flow 

variables such as: the percentage of broken material and the D50 fragmentation. On the other hand, 

to construct the annual precipitation variable, an annual precipitation variation of -5.1% was 

obtained, estimated by the Center for Climate and Resilience Research (CR2.cl) from an extensive 

database. In addition, actual data from the last 5 years (2017 -2021) were used to predict through 

June 2037 the estimated rainfall that would occur applying the annual variation of 5.1%. The annual 

precipitation variable obtained based on this information is represented in Figure 9: 
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Figure 8 Long-term mining planning for the Reno Basin from September 2021 to June 2037 

 

Figure 9 Actual Annual precipitation until 2021.  Estimated Precipitation from 2021 onwards 

constructed from data based on CR2.cl information 

Finally, Figure 10 and Table 8 show the results obtained for the application of the Reno-Dacite 

Sector until the year 2037. From 2021 to 2037, 267 drawpoints were modeled to have wet muck 

entry (approximately 20% of the total planned extraction).  This indicates a total of 42.3 M dry tons 

can be expected, representing approximately 80% of the planned extraction.   

 

Figure 10 Application of the Reno Basin Model, for the initial period: September 2021 and final 

period: June 2037 

Table 8 Reno Basin 2037 plan dry and wet tons result 
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Parameters Values Percentage 

Number of DP with wet muck 

entry 
267 63% 

Plan tons [Mt] 53.1 100% 

Dry tons [Mt] 42.3 80% 

Wet tons [Mt] 10.8 20% 

Average height of draw[m] 183 - 

Average extraction ratio [%] 131 - 

In Figure 11, the extraction plan is shown considering the results of the application of the Reno 

basin model. According to our models, wet muck enters the plan from the first month and continues 

gradually decreasing until 2030, with approximately 50% entering in 2025. 

 

Figure 11 Results of the application of the Reno Basin model, considering dry and wet tons 

5 Conclusions 

In this study, the quantification of wet muck entry risk for the long-term evaluation and planning 

for the El Teniente Reno Basin was analyzed and evaluated. Multivariate logistic regression was 

used, which incorporated variables associated with extraction, such as the extraction ratio. One of 

its advantages is the applicability of this variable to other sectors. Variables were also added 
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associated with fragmentation such as D50 and the lithology present in the extraction as the 

percentage of Broken material at the drawpoint, which were simulated with the FlowSim software 

and calibrated with mine data. In addition, a variable directly related to water — the annual 

precipitation variable — was considered, which is one of the main factors that generates wet muck 

entry. The best calibrated model incorporated the aforementioned critical risk variables, achieving 

an acceptable accuracy of 71% for the final date in August 2021. This precision is accompanied by 

the low average tonnage error for PE -16.4 kt (10% of the average total per PE), generating a wet 

muck entry risk model with conservative prediction qualities, which generates confidence when 

carrying out long-term planning. The extensive data that was included in the models (from 1999 to 

2021) has to be considered in the same way. By applying the Reno Basin model, it was determined 

that the dry tons correspond to 80% of the Plan with a value of 42.3 Mt and a HOD of 183 m. As 

shown, wet muck enters from the first month in a limited way and is expected to reaching 20% of 

the Plan by the year 2030.  This information can be used to plan safer extraction using autonomous 

vehicles in those places most likely to have wet muck entry or use other strategies to mitigate the 

risks involved in the expected hazards of wet muck. 

This predictive model successfully determines zones prone to wet muck entry and, as 

demonstrated, can be used to evaluate long-term plans in the same Reno Basin of the El Teniente 

Division contributing to planning and decision-making that can minimize the risks caused by wet 

muck entry. Furthermore, the models developed here could be applied to sectors below the 

currently modeled sectors in the future.  
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Abstract 

Wet muck is a problem in underground mines due to the consequences it brings to the safety of 

workers, equipment, mining infrastructure, drawpoints, production drifts, and productive sectors 

generating a loss in reserves. The wet muck phenomena are associated with a large quantity of 

fine materials and moisture present in drawpoints. This study presents an analysis and development 

of a mathematical model to estimate wet muck entry for long-term planning applications at El 

Teniente. Four basins of El Teniente were included in the study of wet muck control: North, Center, 

South, and Reno. Each basin has mines with different characteristics in each exploitation sector.  

Consequently, models were built for each of the basins to represent its distinct reality. In particular, 

the results include models of the North, Center, and South basins. The models have been imbedded 

in a machine-learning software that estimates hazards associated with the extraction process for 

underground mines. To understand the phenomenon were investigated several variables were 

associated with historical extraction as extraction ratio and HOD, amount of water entering the 

cave, season of the year, presence of mud in neighboring drawpoints or sectors that have been 

closed due to wet muck above, and changes in surface or depressions. Also, this study includes 

granular flow variables and lithologies. Also, the fragmentation has been included and estimated 

with a granular flow simulator, the information was validated and calibrated with data of El 

Teniente mine. Results indicate that the classification models can reproduce the phenomenon with 

an acceptable precision between 69% and 75% and an average tonnage error per drawpoint of 6 

to 15%. These results have been useful for long-term planning at El Teniente mine to predict wet 

muck entry and define when and where autonomous LHD may be required for the extraction of wet 

muck in the future. 

Keywords: draw control, geotechnical hazards, mine planning, mudrush, underground mining, 

wet muck. 

1 Introduction 
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Block caving is a high productive and low operational cost, underground method (Hartman & 

Mutmansky, 2002; Brown, 2007; Araneda, 2020). However, there are different risk such as wet 

muck entry, which can cause serious accidents and affecting workers, mining infrastructure and 

equipment. Additionally, wet muck entry can occasion excessive dilution, slow production rates, 

loss of reserves and even partial or permanent closure of mining operations (Butcher, et al, 2000; 

Heslop, 2000; Syaifullah, 2006; Butcher, et al, 2005; Jakubec & Clayton, 2012; Navia et al., 2014; 

Ginting & Pascoe, 2020).  

Wet muck entry in caving mines is produced by fine materials less than 2 mm in size (Call & 

Nicholas Inc. 1998), that accumulate under a variety of conditions, for example: filtration of 

tailings, aquifers, weather conditions such as snow and rain, mixing with aqueous substances. 

Therefore, as a cave matures, more fine materials are generated within the cave (Laubscher, 2000). 

Fine materials have been shown to rapidly percolate down through the draw columns, accumulating 

in drawbells and filling the voids between larger blocks (Pierce, 2010). When a significant amount 

of fine material is accumulated, cushioning may occur, where larger blocks are found to be floating 

in a matrix of fines (Dorador, 2016). This mixture reaches the drawpoints, resulting in water 

filtration and possibly mud events such as landslides, spills, and mud rushes (Ginting & Pascoe, 

2020). In fact, the wet muck intrusion has been recorded in various underground mines around the 

world, such as El Teniente in Chile (Ferrada, 2011), IOZ and DOZ in Indonesia, Ekati in Canada, 

(Edgar et al., 2020; Hubert, et al., 2000; Ginting and Pascoe, 2020; Jakubec & Woodward, 2020; 

Widijanto, et al., 2012). 

In some Block caving mines some of the control and mitigation tools used to manage wet muck 

entry risk are (Butcher et al., 2005; Ginting & Pascoe, 2020, Salazar et al., 2016; Castro et al., 

2018; Saepulloh et al., 2022): Drawpoint classification and inspection (Monitoring the extraction 

column, fragmentation, moisture, rain and critically matrix for the drawpoints). Automate 

processes (full tele-remotes in high-risk areas). Exclusion zones (tele-remote loading exclusion 

zones, exclusion zone on back-to-back drawpoint: sister drawpoint on the same drawbell and 

exclusion zone under sudden inflow of TARP: Trigger Action Response Plans, uses trigger levels 

for rainfall amounts over set time periods, 25 mm in one hour, 40 mm in two hours or 50 mm in 

three hours, when the trigger points are exceeded, all underground personnel are evacuated to 

surface). Drawpoint bunding and stabilization (bund height of 1.5 or 2 m, wall to wall). Draw 

control (bogging wet muck drawpoints, tele-remote plan, hang-up remediation and uniformity 

draw). Dewatering (Drainage tunnels and in-pit pump system to ensure no water presented into the 

underground workings). Training and communication (supervision of drawpoints with qualified 

personnel) 

Different tools are commonly used to quantify the risk, such as the one mentioned above, the 

critical matrix for drawpoints, which is used taking into account the moisture content (qualitative 

and quantitative) and the amount of fine material. All this information can help to avoid the closure 

of drawpoints and the risk of accidents (Samosir, 2008; Edgar, et al., 2020).  There are also models 

that predict wet muck entry, such as the models developed of “El Teniente mine” (DET). These 
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wet muck entry risk models were performed to allow mining plans to be evaluated (Navia et al., 

2014; Garcés, et al., 2016; Castro et al., 2018; Navia, 2021; Castro et al., 2022).  

The wet muck risk models included variables related to the ore extraction, the season of the year, 

the distance to surface, the distance to historical sectors with mud, the risk zone associated with 

surface, the flow of water, the observed moisture, and, the neighbor drawpoint with mud. The 

accuracy of the models ranges between 74% and 84%, and they consider different time scales and 

productive sectors (e.g. Diablo Regimiento, Quebrada Blanca, Suapi y Pipa, Esmeralda (Navia, 

2021; Garces et al., 2016; Castro et al., 2018; Castro et al., 2022). 

Most of these models have been applied for long-term planning; however, some wet muck 

formation variables such as the secondary fragmentation and the lithology have not been fully 

investigated. Thus, this study improves the accuracy and robustness of wet mud risk models 

including these variables. Also, most models use the risk zone variable provided by the DET. 

However, risk area is related as a variable for comparison of the results of the models (risk areas 

for the entry of wet manure) and not as a variable that is part of them. 

2 Background at El Teniente Mine 

2.1 El Teniente Mine 

El Teniente Mine (DET), is one of the bigger underground mining operations in the world and 

currently produces 145ktpd, with a copper grade of 0.88% in 7 Panel Caving mines: Esmeralda, 

Dacita, Reservas Norte, Diablo Regimiento, Pilar Norte and Pacífico Superior (Cornejo et al. 

2020). DET is located 50 km from the city of Rancagua, began to be exploited in 1905 and currently 

has more than 4,500 km of underground gallery built.  

DET has provided mining data by the productive sectors including Pipa Norte (PN), Sur Andes 

Pipa (SP), Reservas Norte (RN), Dacita (DT), Esmeralda (ES), Diablo Regimiento (DR), among 

others, from 1999 to 2021 with the aim of analyze wet muck entry in mine. These mines are 

primarily located below a topographic trough (similar to a topographic depression) around the Pipa 

Braden, as shown in Figure 1. 
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Figure 1: Isometric view of El Teniente Mine (Codelco 2016a, 2016b) 

2.2 Wet muck conceptualization at El Teniente Mine 

To understand wet muck entry in drawpoints, Butcher et al. (2005) studied the factors required to 

trigger wet muck entry, these include the holding capacity of water, the presence of possible mud-

forming minerals, a disturbance in the ore column, and the mud discharge capacity at a drawpoint.  

Figure 2 shows schematic representation of the wet muck phenomenon and some of its main 

variables. Here, the wet muck entry is represented in three stages: Initial Stage, First Drawpoint 

with wet muck and Drawpoint neighbor with wet muck. In every stage, exist four steps for the wet 

muck entry at El Teniente Mine, these starts with the water accumulation, later this water infiltrates 

the mine through preferential flows causing the formation of wet muck and reaching the productive 

sectors. Below is a brief explanation of each of these steps. 

Steps for the wet muck entry at El Teniente Mine: 

1. Water accumulation:  

Mainly generated by precipitation and melting ice. 

2. Preferential flows:  

Preferential flow paths for fine material and water. 

3. Wet muck formation:  

Due to the combination of fine material, water and a disturbance (mining or subsidence). 

4.  Production sector:  

As a consequence of the extraction, the wet muck enters the drawpoints, arriving first at the 

drawpoint with the highest extraction rate or extraction ratio. 

 

 

Figure 2: Conceptual map of wet muck phenomenon in the “El Teniente” mine  
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2.3 Basins of the El Teniente Mine 

El Teniente mine has a subsidence crater, which can be divided into four basins: North, Reno, 

Center, and South, as shown in Figure 3. In this study, mud entry models were constructed for each 

of basins, using the mine database summary in Table 1.  

 

Figure 3: Plan view of the El Teniente crater of subsidence divided into four basins (North, 

Reno, Center, and South). 
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Table 1: Classification of mud entry models according to the basin, the base mine, and the 

possible mine of application. 

Models / Basins Base Mine Possible Application Mines. 

North Pipa Norte - Sur Andes Pipa 
Recursos Norte 

Andesita 

Reno Reservas Norte - Dacita 
Andes Norte 

Panel Invariante 

Center 
Esmeralda Bloque 1 y 2 - Esmeralda 

Convencional 
Diamante 

South Diablo Regimiento 
Pacífico Superior 

Pacífico Central 

2.4 Study Area 

This article presents the study of wet muck entry in the North, Center, and South Basin. North 

Basin includes the productive sectors of Pipa Norte (PN) and Sur Andes Pipa (SP), Center Basin 

corresponds to the sectors of Esmeralda Bloque 1 y 2 (B1 & B2), and Esmeralda Convencional 

(ES) and the South Basin the productive sector is Diablo Regimiento (DR). The information 

analyzed contains the historical extraction for each drawpoints (DP) from January 1999 to August 

2021, for the three basins. Table 2 shows the wet muck reported for each basin. 

Table 2: Wet muck declarations in North, Reno, Center and South Basins 

Basin DP analyzed DP declared wet muck  Wet muck in productive sectors 

North 361 114 
- 63 DP declared in Pipa Norte 

- 51 DP declared in Sur Andes Pipa 

Center 1330 229 

- 153 DP declared in Esmeralda Convencional 

- 74 DP declared in B1 

- 2 DP declared in B2 

South 590 194 - 194 DP declared in Diablo Regimiento 

Figure 4 shows the wet muck reported. This database was used to study the independent correlation 

that each variable has with the mud entry and to select the critical variables. Here, a univariate 

analysis methodology of logistic regression was used. Subsequently, a multivariate analysis was 

performed, dividing the database into a training database used to generate the equations of the 

logistic regression model and another to analyze the predictive performance of the model. 
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Figure 4: Wet muck declarations from the Sur Andes Pipa (SP), Pipa Norte (PN), Esmeralda 

Convencional (ES), Esmeralda Bloque 1 (B1) & Bloque 2 (B2) and Diablo Regimiento (DR) 

sector. 

3 Methodology 

In this work, an analysis of the critical variables was carried out to determine the wet muck entry 

at a drawpoint using logistic regression (Hosmer et al. 2013) as a tool to help long-term planning. 

This tool has shown good result to study mud entry problem (Navia et al., 2014; Garcés et al., 2016; 

Castro et al., 2018; Navia, 2021; Castro et al., 2022). First, a univariate analysis was performed to 

find the relationship between variables and mud entry occurrence. Then, a predictive model was 

created to calculate the probability of wet muck entry (𝑃𝑤𝑚) by performing a multivariate analysis. 

One of the advantages of the current methodology is that the variables associated with ore 

extraction were incorporated, such as the lithology present in the extraction, the size of 

fragmentation, states of the drawpoint, and meteorological and topographic conditions, these 

variables were incorporated in the modeling of wet muck for each drawpoint.  From this type of 

information, risk variables were developed that can explain the wet muck entry, such as those 

mentioned and described in Table 3. 
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Table 3: Summary of selected risk variables based on physical properties of mud inlet and 

mine practice 

Information 

Group 
Variables Description 

Historical 

extraction 

Height of draw (HOD) [m] 

Indicates the permeability properties of the unexcavated 

materials that make up the ore column (composed of primary and 

secondary rock), which controls water movement and infiltration 

to drawpoints. 

Extraction Ratio (ER) [%] 

Represents both the increase in rock permeability promoted by 

subsidence propagation and the formation of fine material due to 

secondary breakage through the ore column. A higher Extraction 

Ratio increases the probability of wet muck entry. 

Lithology 

Primary extracted in DP 

(PRIM) [%] 

Represents the percentage extracted from the primary rock. This 

competent rock represents the impermeable layer; therefore, the 

higher the percentage of primary rock extracted, the lower the 

probability of wet muck entry. 

Secondary extracted in DP 

(SEC) [%] 

Represents the percentage extracted from the secondary rock. 

This rock is less competent than the primary rock and together 

with the broken, represents the permeable layer; therefore, the 

higher the percentage of secondary extracted, the greater the 

probability of wet muck entry. 

Broken material extracted 

in DP (BM) [%] 

Represents the same as the percentage of secondary rock because 

the material is fragmented.  Similarly, the higher the percentage 

of broken material extracted, the greater the probability of wet 

muck entry. 

Talus material extracted in 

DP (TAL) [%] 

Represents fill material that occurs due to the effect of 

subsidence in the crater (rilling effect).  This is a permeable 

material; therefore, the higher the percentage of talus extracted, 

the greater the probability of wet muck entry. 

Fragmentation d50 [m] 

Represents the rock fragmentation present in the extraction. 

When the size d50 decreases, the probability of wet muck entry 

increases due to the increase in the amount of fine material in the 

DP. 

Water 

Average water flow rate 

(Q) [L/s] 

Long-term representation of the water infiltration expected to be 

observed in the DP during extraction; therefore, if the water flow 

increases, the probability of wet muck entry also increases. 

Precipitation at 30, 60, 90 

days, semi-annual and 

annual (P30, P60, 

P90,Ps,Pa) [mm] 

Precipitation measurements at various time intervals. An 

increase in precipitation indicates that the probability of wet 

muck entry increases. 

Seasons: Summer, 

Autumn, Winter and 

Spring 

Correspond to the season of the year in which a DP is found. This 

is a categorical variable for which if the DP is found in the season 

of the year, it obtains a value of 1 and 0 otherwise. 

Mud 

Historical Mud Sectors 

(HMS) 

DP with mud declared in old or superior sectors. This is a 

categorical variable for which if the DP is under a sector with 

mud, it obtains a value of 1 and 0 otherwise. 

DP Neighbor wet muck 

(Nwm) 

Corresponds to the risk that the mud could spread to the 

surrounding areas (neighbor drawpoints) 
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Topography 
Distance to surface (DS) 

[m] 

Considers the distance to surface water sources (snow melt and 

rainwater) 

 

3.1 Univariate Logistic Regression Analysis 

Wet muck entry risk variables were independently assessed using univariate analysis. The Chi-

square Test (χ2) and the Odds Ratio (OR) were applied to determine the relative relationship 

between the independent variables and the mud entry reports (dependent or interest variable). 

The Odds Ratio determines how likely it is that mud enters a drawpoint or not, with x = 1 (presence 

of mud) and with x = 0 (absence of mud) (Hosmer et al. 2013). For example, if a drawpoint declared 

to have mud is located below the risk zone associated with historical mud sectors, then the odds 

ratio OR = 3 means that the probability of mud entry between the drawpoints located in the risk 

zone is three times greater than the probability in the drawpoints not located in the risk zone (Castro 

et al. 2018). 

In the univariate analysis, a statistical significance (p-value) of 0.1 is used as the critical value to 

determine whether each independent variable is statistically significant with mud inlet. All the 

variables that resulted in a significantly less than or equal to 0.1 were included in the multivariate 

logistic regression analysis.  

3.2 Multivariate logistic regression analysis 

The correlation between different variables with the occurrence of wet muck entry was tested using 

multivariable logistic regression, which delineates the association between the dichotomous 

response variable, 𝑌 (the occurrence or not of wet muck entry), and 𝑥 the collection of variables of 

risk. The purpose of this analysis was to estimate the coefficient of each risk variable and test its 

statistical significance. Multivariate logistic regression depends on the probability of the response 

variable, considering a set of n independent risk variables designated by the vector 𝑥 =

 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛). Therefore, the conditional probability of wet muck entry (i.e., 𝑌 =  1) would 

be given by equation (1) according to Hosmer et al. (2013). 

𝑃(𝑌 = 1|𝑥) = 𝑝(𝑥) =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3+⋯+𝛽𝑛𝑥𝑛

1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3+⋯+𝛽𝑛𝑥𝑛
 (1) 

 

In equation (1), the coefficients of the logistic regression model are 𝛽 =  𝛽0, 𝛽1, 𝛽2, 𝛽3, … , 𝛽𝑛 , 

which can be determined through methods based on the maximum likelihood methodology (Geng 

and Sakhanenko 2015). In this analysis, the criterion of statistical significance (p-value) was 

adopted. For a risk variable to remain in the multivariate logistic regression model, statistical 

significance was set at 0.05 (Hosmer et al. 2013). 
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3.3 Calibration and validation of the predictive model 

The calibration of the fitted model was evaluated by comparing the actual mud data from the mine 

with the data obtained from the model based on the value of a cutoff probability (CP). The cutoff 

probability allows the drawpoints to be ranked on one of the response values (i.e., 1 or 0) using 

different probability levels. The cutoff probability is defined as the minimum probability value for 

a drawpoint to be classified as mud; therefore, drawpoints with a probability value greater than the 

cut-off value were classified as having mud entry. An algorithm was created to obtain a probability 

value that delivers the most adjusted predictive models, using the variables that were ranked as 

significant to determine wet muck entry.  

With the results of the cutoff probability, a contingency table was built that allowed the calculation 

of four possible outcomes. For example, if the actual value is positive and is classified as positive, 

then it is counted as a true positive (TP); otherwise, it is counted as a false negative (FN). The 

symbology used in the confusion matrix is as follows (Witten, et al., 2017): 

Table 4: Confusion matrix or contingency table. 

Confusion matrix 
Prediction 

Positives Negatives 

Real 
Positives True Positives (TP) False Negatives (FN) 

Negatives False Positives (FP) True Negatives (TN) 

To evaluate the contingency table, the cutoff probability allows three main performance KPIs to 

be calculated, with the aim of maximizing these leading indicators described by Witten, et al., 2017 

(equations 2, 3 and 4), 

Sensibility = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 (2) 

 

Specificity = 𝑇𝐹𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 (3) 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 (4) 

where the sensitivity is the ability to predict mud entry (or the true positive rate), the specificity is 

the ability to predict non-mud entry (or false positive rate), the accuracy is the ability to predict 

mud and non-mud entry. 
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After calibrating the predictive model, validation of the cutoff probability was performed by 

comparing actual mine data and data predicted by the model with respect to ore tonnage mined 

prior to wet muck entry. This stage aims to minimize the mined ore tonnage error, which is defined 

as the difference between the actual and modeled mined ore tonnage. The validity of the predictive 

model is graphically represented in a scatter plot, where the correlation between the modeled ore 

tonnage extracted (Y-Axis, Vertical) and the ore tonnage extracted from the mine data (X-Axis, 

Horizontal) is observed. In addition, a heat map was presented for the tonnage error on which the 

points with the greatest error can be observed. The calibrated model is validated if the defined 

cutoff probability results in a scatterplot with a high degree of correlation between the model and 

mine data and if the error distribution is close to zero. The evaluation of the model follows the logic 

shown in Figure 5. 

 

Figure 5: Schematic diagram of the algorithm used to calibrate the wet muck entry risk 

model, based on a monthly estimate of wet muck entry, (after Castro, et al., 2018). Nwm 

represents the number of drawpoints in the neighborhood with mud, 𝐏𝐰𝐦 represents the 

probability of wet muck entry and CP is the cutoff probability. 

4 Result and Analysis. 

4.1 Univariate Analysis 

Univariate analysis was performed for the three models, in North basin was analyzed for 24 critical 

variables, of which only 20 were statistically significant (p-value ⩽ 0.1), in Center basin 34 critical 

variables and 21 were statistically significant, and in South basin 33 critical variables and 18 were 

statistically significant. Table 5, 6 and 7 show a summary associated with the metrics obtained in 

this analysis. In general, the variables Primary Rock extracted in drawpoint, d50, semi-annual 

precipitation, broken material extracted in drawpoint, Extraction Ratio, Drawpoint Neighbor with 

wet muck, Distance to surface, among others. The rest of the variables have a lower degree of 

statistical association with wet muck entry due to the low values of the Chi-squared test and the 

Odds Ratio. 
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The above analysis indicates that mud inflow generally occurs under conditions of over-extraction 

(with high extraction ratio), with the presence of broken material (with a low d50 sizes and no 

primary rock) at drawpoint for those drawpoints with neighbors with wet muck. Therefore, as a 

preliminary conclusion based on the univariate analysis, the daily tonnage extracted should be 

taken into account during the long-term planning process considering the areas where there is wet 

muck. This analysis was useful to identify the main variables related to wet muck entry. However, 

it does not consider the correlation between the variables, which is evaluated in the multivariate 

analysis. 

Table 5: Risk variables and their correlation with wet muck entry, ordered by statistical 

significance (p-value) for North Basin. 

Variable Coefficient 
Chi-squared 

test (χ2) 

Odds 

Ratio 

Statistical 

significance 

(p value) 

Primary rock extracted in DP [%] -0.023 83.87 0.977 <0.001 

d50 [m] -4.050 68.90 0.017 <0.001 

Semi-annual precipitation [mm] 0.002 55.94 1.002 <0.001 

DP Neighbor with wet muck 0.315 46.62 1.370 <0.001 

Broken material extracted in DP 

[%] 
0.018 44.18 

1.018 
<0.001 

Talus material extracted in DP 0.144 23.06 1.155 <0.001 

Extraction Ratio [%] 0.704 32.66 2.022 <0.001 

Precipitation at 90 days [mm] 0.002 27.22 1.002 <0.001 

Precipitation at 60 days [mm] 1.436 19.70 4.204 <0.001 

Secondary rock extracted in DP [%] 0.002 19.90 1.002 <0.001 

Winter-Spring 0.012 23.08 1.012 <0.001 

Height of draw [m] 0.956 16.47 2.601 <0.001 

Summer 0.003 30.88 1.003 <0.001 

Winter-Spring-Autumn  1.773 30.88 5.888 <0.001 

Spring -1.773 9.61 0.170 0.001 

Annual precipitation [mm] 0.619 7.68 1.857 0.005 

Height in-situ [m] 0.001 8.28 1.001 0.006 

Winter -0.007 4.43 0.993 0.031 

Precipitation at 30 days [mm] 0.424 3.55 1.528 0.047 

Average water flow rate [L/s] 0.002 2.47 1.002 0.090 

Winter- Autumn  0.001 1.79 1.001 0.183 

Autumn 0.252 0.46 1.287 0.506 

Distance to surface [m] -0.151 0.15 0.860 0.699 

Historical Mud Sectors -0.001 88.46 0.999 0.959 

 

Table 6: Risk variables and their correlation with wet muck entry, ordered by statistical 

significance (p-value) for Center Basin. 

Variable Coefficient 
Chi-squared test 

(χ2) 

Odds 

Ratio 

Statistical 

significance 

(p value) 
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d50 [m] -3.024 243.01 0.049 <0.001 

Broken material extracted in DP [%] 0.023 241.4 1.023 <0.001 

Primary rock extracted in DP [%] -0.023 238.8 0.977 <0.001 

Distance to surface [m] -0.013 188.02 0.987 <0.001 

Topographic depression [m] 0.102 162.98 1.107 <0.001 

Delta distance to surface [m] -0.096 158.52 0.908 <0.001 

Height of draw [m] 0.003 106.99 1.003 <0.001 

Historical Mud Sectors 1.851 105.43 6.366 <0.001 

Extraction Ratio [%] 0.376 100.87 1.456 <0.001 

DP Neighbor with wet muck 0.317 67.64 1.373 <0.001 

Maximum delta of HOD with its 

neighbors [m] 
0.053 49.73 1.054 <0.001 

Delta of HOD [m] 0.053 45.75 1.054 <0.001 

Annual precipitation [mm] 0.001 39.25 1.001 <0.001 

In-situ Height [m] -0.001 20.82 0.999 <0.001 

Average water flow rate [L/s] 0.002 17.24 1.002 <0.001 

Semi-annual precipitation [mm] 0.001 11.95 1.001 <0.001 

Winter- Autumn -0.45 11.31 0.638 0.001 

Winter -0.395 5.8 0.674 0.021 

Spring 0.318 4.7 1.374 0.027 

Summer 0.238 2.64 1.269 0.098 

Winter-Spring-Autumn -0.238 2.64 0.788 0.098 

Autumn -0.248 2.45 0.78 0.126 

Depression Zone 5 (100 m) 0.324 1 1.383 0.295 

Precipitation at 30 days [mm] -0.001 0.58 0.999 0.455 

Precipitation at 60 days [mm] 0 0.56 1 0.461 

Cumulative distance delta to surface 

[m] 
-0.001 0.22 0.999 0.638 

Secondary rock extracted in DP [%] 0.004 0.11 1.004 0.732 

Cumulative topographic depression 

[m] 
0 0.03 1 0.859 

Winter-Spring -0.014 0.01 0.986 0.914 

Precipitation at 90 days [mm] 0 0 1 0.952 

Depression Zone 4 (80 m) -11.203 0.68 0 0.968 

Table 7: Risk variables and their correlation with wet muck entry, ordered by statistical 

significance (p-value) for South Basin. 

Variable Coefficient 
Chi-squared test 

(χ2) 

Odds 

Ratio 

Statistical 

significance 

(p value) 

Broken material extracted in DP [%] 0.026 226.99 1.026 <0.001 

Primary rock extracted in DP [%] -0.026 225.58 0.974 <0.001 

Height of draw [m] 0.009 223.97 1.009 <0.001 

Extraction Ratio [%] 1.238 203.66 3.449 <0.001 

DP Neighbor with wet muck 0.325 106.28 1.384 <0.001 

Depression Zone 5 (100 m) 1.681 101.1 5.371 <0.001 
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Maximum delta of HOD with its 

neighbors [m] 
0.008 76.84 1.008 <0.001 

Cumulative distance delta to surface 

[m] 
-0.011 73.04 0.989 <0.001 

Cumulative topographic depression 

[m] 
0.011 72.61 1.011 <0.001 

Delta HOD [m] 0.009 69.43 1.009 <0.001 

Distance to surface [m] -0.01 65.21 0.99 <0.001 

d50 [m] -1.792 54.59 0.167 <0.001 

In-situ Height [m] -0.003 51.66 0.997 <0.001 

Historical Mud Sectors 0.98 38.82 2.664 <0.001 

Depression Zone 4 (80 m) 0.896 38.38 2.45 <0.001 

Depression Zone 3 (60 m) 0.397 4.69 1.487 0.024 

Topographic depression [m] 0.014 3.82 1.014 0.041 

Average water flow rate [L/s] -0.001 4.75 0.999 0.049 

Spring -0.228 1.68 0.796 0.204 

Winter 0.172 1.13 1.188 0.281 

Precipitation at 90 days [mm] 0 0.91 1 0.332 

Winter-Autumn 0.125 0.75 1.133 0.386 

Delta distance to surface [m] -0.004 0.36 0.996 0.543 

Annual precipitation [mm] 0 0.19 1 0.659 

Secondary rock extracted in DP [%] -0.013 0.23 0.987 0.662 

Precipitation at 60 days [mm] 0 0.15 1 0.702 

Precipitation at 30 days [mm] 0 0.08 1 0.773 

Summer 0.041 0.06 1.042 0.801 

Winter-Spring-Autumn -0.041 0.06 0.96 0.801 

Winter-Spring -0.022 0.02 0.978 0.879 

Depression Zone 2 0.028 0.01 1.028 0.919 

Autumn -0.013 0.01 0.987 0.938 

Semi-annual precipitation [mm] 0 0.002 1 0.965 

4.2 Multivariate Analysis 

In the Multivariate Analysis, more than 30 mud entry models were analyzed for each basin. As 

example, tables 8, 9 and 10 show the variables considered for each model, fifteen models for each 

basin, of which model Nº 15 given the best results.  

Table 8: Summary of Models made for the North Basin. 

Models 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Primary rock extracted in DP [%]  X     X         

Semi-annual precipitation [mm]   X X        X    

DP Neighbor wet muck X X X X   X X X X  X X X X 

Broken material extracted in DP [%] X    X      X  X X X 

Talus material extracted in DP [%] X   X            

d50 [m]     X X    X X  X X  

Extraction Ratio [%]      X X X X X  X   X 

Secondary rock extracted in DP [%]   X  X X  X  X X X X X X 
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Winter-Autumn X       X    X   X 

Height of draw [m] X X X X X        X X  

Winter-Spring-Autumn         X X      

Annual precipitation [mm]  X       X       

Distance to surface [m]   X             

Precipitation at 30 days [mm]      X X    X   X X 

Historical Mud Sectors    X            

Table 9: Summary of Models made for the Center Basin. 

Models 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Topographic depression [m]        X  X   X   

Delta Distance to Surface [m]            X    

Broken material extracted in DP [%] X X X X  X  X    X X X X 

Primary rock extracted in DP [%]  X     X         

Height of draw [m]  X X       X  X    

Extraction Ratio [%] X   X X X X X X  X  X X X 

d50 [m]    X X X X X X X X   X X 

Distance to surface [m] X    X X   X  X   X X 

Delta HOD [m]           X     

DP Neighbor wet muck X X    X X X    X X   

Historical Mud Sectors      X   X  X   X  

Annual precipitation [mm]    X X X X X X   X  X X 

Average water flow rate [L/s]             X   

In-situ Height [m]          X      

Semi-annual precipitation [mm]  X        X      

Winter-Autumn  X              

Precipitation at 30 days [mm]   X             

Secondary rock extracted in DP [%]   X             

Table 10: Summary of Models made for the South Basin. 

Models 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Extraction Ratio [%] X X     X X X X X  X X X 

Height of draw [m]   X X X X      X   X 

Broken material extracted in DP [%] X X X X X X X X  X X  X  X 

Primary rock extracted in DP [%]  X  X X X X  X       

DP Neighbor wet muck         X X X X    

Delta Distance to Surface [m]      X       X X  

Cumulative topographic depression [m]       X         

Depression Zone 5 (100 m)    X X     X X     

Distance to Surface [m]  X X     X        

d50 [m]        X    X  X  

In-situ height [m]   X         X    

Depression Zone 4 (80 m)            X    

Historical Mud Sectors  X           X   

Topographic depression [m] X               
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Average water flow rate [L/s]     X      X     

Annual precipitation [mm] X X X X  X X X    X X X X 

Precipitation at 90 days [mm]         X X      

Table 11, 12 and 13 below show the results of the best wet mud input model for the North, Center 

and South basin, which is represented by the equations 5, 6 and 7. 

𝑁𝑜𝑟𝑡ℎ 𝐵𝑎𝑠𝑖𝑛: 𝑃𝑤𝑚(𝑥)

=
𝑒−3.282+0.178𝐸𝑅+0.014𝐵𝑀+0.01𝑆𝑅+0.262𝑁𝑤𝑚+1.333𝑊𝑆+0.001𝑃30

1 + 𝑒−3.282+0.178𝐸𝑅+0.014𝐵𝑀+0.01𝑆𝑅+0.262𝑁𝑤𝑚+1.333𝑊𝑆+0.001𝑃30
 

(5) 

 

𝐶𝑒𝑛𝑡𝑒𝑟 𝐵𝑎𝑠𝑖𝑛: 𝑃𝑤𝑚(𝑥) =
𝑒8.07+0.144𝐸𝑅+0.014𝐵𝑀−1.03𝑑50−0.017𝐷𝑆+0.001𝐴𝑃

1 + 𝑒8.07+0.144𝐸𝑅+0.014𝐵𝑀−1.03𝑑50−0.017𝐷𝑆+0.001𝐴𝑃
 (6) 

 

𝑆𝑜𝑢𝑡ℎ 𝐵𝑎𝑠𝑖𝑛: 𝑃𝑤𝑚(𝑥) =
𝑒−1.768+0.141𝐸𝑅+0.004𝐵𝑀−0.031𝑃𝑅+0.0005𝐴𝑃

1 + 𝑒−1.768+0.141𝐸𝑅+0.004𝐵𝑀−0.031𝑃𝑅+0.0005𝐴𝑃
 (7) 

Here, 𝑃𝑤𝑚(𝑥) 𝑖ndicates the probability of wet muck entry, given a CP (Cutoff Probability), ER is the 

extraction ratio [%], BM is the broken material extracted in DP [%], SR is the secondary rock extracted in 

DP [%], NWM is the Neighbor DP with wet muck [1 to 6], AP is the Annual Precipitation [mm], P30 is the 

precipitation at 30 days [mm], and d50 is the mean fragment size[m]. 

 

Table 11: Wet muck entry model for the North Basin. 

Variable Coefficient 
Odds 

Ratio 
Observation 

Extraction Ratio [%] 0.178 1.195 
A 10% increase in Extraction Ratio increases wet muck entry 

probability by 2%. 

Broken material 

extracted in DP [%] 
0.014 1.014 

A 10% increase in the Percentage of Broken material 

extracted in the DP increases wet muck entry probability by 

15%. 

Secondary rock 

extracted in DP [%] 
0.010 1.010 

A 10% increase in the Percentage of Secondary rock 

extracted in the DP increases wet muck entry probability by 

11%. 

DP Neighboring wet 

muck [ 1 to 6] 
0.262 1.300 

If a DP increase by 1 DP Neighboring wet muck increases 

wet muck entry probability by 30%  

Winter-Spring 

[Boolean] 
1.333 3.792 

If a DP is found in Winter or Spring increases wet muck entry 

probability by 2.79 times. 
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Precipitation at 30 days 

[mm] 
0.001 1.001 

A 100 [mm] increase in the Precipitation at 30 days increases 

wet muck entry probability by 11% 

Constant -3.282 - - 

Table 12: Wet muck entry model for the Center Basin. 

Variable Coefficient 
Odds 

Ratio 
Observation 

Extraction Ratio [%] 0.144 1.154 
A 10% increase in Extraction Ratio increases wet muck entry 

probability by 2%. 

Broken material 

extracted in DP [%] 
0.014 1.014 

A 10% increase in the Percentage of Broken material extracted 

in the DP increases wet muck entry probability by 15%. 

d50 fragmentation [m] -1.030 0.357 
A 0.1 [m] decrease in d50 fragmentation size in the DP 

increases wet muck probability by 11% 

Distance to surface -0.017 0.984 
A 10 [m] decrease in the Distance to surface in the DP 

increases wet muck probability by 19% 

Annual Precipitation 

[mm] 
0.001 1.001 

A 100 [mm] increase in the Annual Precipitation increases wet 

muck probability by 11% 

Constant 8.070 - - 

Table 13: Wet muck entry model for the South Basin. 

Variable Coefficient 
Odds 

Ratio 
Observation 

Extraction Ratio [%] 0.141 1.239 
A 10% increase in Extraction Ratio increases wet muck entry 

probability by 1.4%. 

Broken material 

extracted in DP [%] 
0.004 1.031 

An 10% increase in the Percentage of Broken material 

extracted in the DP increases wet muck entry probability by 

4%. 

Primary rock extracted 

in DP [%] 
-0.031 1.031 

A 10% decrease in the Percentage of Primary rock extracted 

in the DP increases wet muck entry probability by 36%. 

Annual Precipitation 

[mm] 
0.0005 1.000 

A 100 [mm] increase in Annual Precipitation increases wet 

muck entry probability by 5%. 

Constant -1.768 - - 

4.3 Calibration and Validation models 

In the calibration stage, several cutoff probabilities were tested to build contingency tables. These 

tables are developed to find a multivariable predictive model that maximize the model performance 

of the KPIs. Table 14 shows the main performance of KPIs for the builted models: 

Table 14: Results of the main performance KPIs for North, Center and South Basin. 

Model or Basin True Positive Rate True Negative Rate Accuracy 

North 74% 71% 72% 

Center 70% 76% 75% 



58 
 

South 68% 70% 69% 

In Figure 6, actual wet muck entries are shown in gray for each basin. The mud entry that are 

incorrectly estimated are indicated in red circles.  Dark-red circles show the correctly estimated 

wet mud entry points. 

 

 

Figure 6: Wet muck entry modeled and actual for August 2021 in A: North, B: South and C: 

Center Basin.  

In terms of extracted tonnage, Table 15 shows tonnage results of North, Center and South basins. 

The comparison between the real and estimated wet muck entry is illustrated in the dispersion 

diagram of Figure 7, where acceptable adjustable R2 of 0.71, 0.73 and 0.77 were obtained, 

respectively. 

Table 15: Model tonnage results for North, Center and South basin. 

Model or Basin Average tonnage per DP Average tonnage error Adjustable R2 

North 146kt -13.4kt (9%) ±6.9kt 0.71 

Center 160kt -24.0kt (15%) ±12.4kt 0.73 

A B 

C 
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South 196kt -12.3kt (6%) ±8.3kt 0.77 

 

Figure 7: Dispersion plot between the mine tonnage data and the modeled for North, South 

and Center Basin 

A comparison was made with the results of the Castro et al. (2022) and Navia (2021) models, in 

the same period of time. First, the Castro et al. model (2022), used a database (DB) from July 2011 

to February 2018, with 458 DP and 52 with wet muck entry, achieving an accuracy of 81%. On the 

other hand, in the model of this study, 1330 DP and 200 DP with wet muck entry were used, 

reaching an accuracy of 77%. Regarding the comparison with the Navia model (2021), it uses a 

DB from August 2009 to November 2015, with 576 DP and 96 with wet muck entry, reporting an 

accuracy of 81%. In contrast, the model in this study achieved an accuracy of 84% and considered 

590 PE and 123 PE mud. 

In the first comparison, the precision of the proposed model was close but lower than the reported 

by Castro et al. (2022). However, the data used in this study is more extensive than that used by 

other authors (more DP and time scale), accomplishing built models that represent the whole 

extraction history of DET. In addition, the risk zone variable provided by the DET is omitted, since 

it is related as a variable for comparing the results of the wet muck entry risk zones and not as a 

variable that is part of the model. Despite of that greater precisions are achieved compared to Navia 

(2021). The comparison of the models reveals that the models must update their databases year 

after year, to build more realistic models, because the critical variables for mud formation can 

behave differently over the years, for example, rainfall in a drought year. 

5 Conclusions 

This article presents the risk quantification of wet muck entry for long term evaluation and planning 

for El Teniente Mine (DET). The models of North, Reno, Center and South basin were built through 
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a multivariate logistic regression, these have several variables in common associated to the tonnage 

planned such as extraction ratio, granting an advantage of applicability of these variables in other 

productive sectors. Also, variables associated with rock fragmentation and lithology drawpoints, 

were included through gravity simulation in FlowSim BC 6.3 and calibrated with Database from 

DET. Additionally, precipitation variables were included, which provides a direct relation to water, 

which is one of the main factors that generates wet muck entry. 

The best calibrated models for North, Center and South incorporated the aforementioned critical 

risk variables, achieving an acceptable accuracy of 72%, 75% and 69% respectively. This precision 

is accompanied by the low average tonnage error for DP -13.4 kt, -24.0kt and -12.3kt (9%, 15% 

and 6% of the average total per DP) for North, Center and South basin, resulting in wet muck entry 

risk models with conservative prediction qualities, giving confidence when carrying out the 

planning long-term. Also, these predictive models successfully determine zones prone to wet muck 

entry and, as demonstrated, can be used to evaluate long-term plans in the basins of the El Teniente 

mine contributing to planning and decision-making that can minimize the risks caused by wet muck 

entry. Furthermore, the models developed here could be applied to sectors below the currently 

modeled sectors in the future. 
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4 General Conclusions 

In this study, the quantification of the risk of wet muck entries in long-term planning was analyzed 

and evaluated. The study area included the El Teniente mine, which is divided into four basins: 

North, Reno, Center, and South. For the construction of the models, univariate and multivariate 

logistic regression was used. 

The long-term models built in this study have in common variables associated with the planned 

tonnage such as the extraction ratio, giving an advantage of applicability of this variable in other 

sectors. In addition, variables associated with the fragmentation and lithology present in the 

extraction were simulated with the FlowSim BC 6.3 software and calibrated with mine data. 

Precipitation variables were also added, which are directly related to water, which is one of the 

main factors that generate mud. All these variables are not included in previous models and were 

relevant in the statistical evaluation, demonstrating a correlation with the wet muck declarations. 

Long-term models achieve acceptable accuracies of 69%, 71%, 72%, and 75% with average 

tonnage errors per drawpoint of 6%, 10%, 9%, and 15%, for the South, Reno, North, and Center, 

respectively. Continuing with the application in Reno-Dacita's future (2021 to 2037) delivers as a 

result 42.5 Mt of dry material, representing 80% of what was planned. The average HOD was 183 

m, with 267 (63%) drawpoints with wet muck entry. 

The results of the wet muck entry risk models indicate conservative prediction qualities (due to 

their negative tonnage error), generating confidence when carrying out long-term planning. The 

existing information on the wet muck declarations and the low existing error of the study makes it 

possible to consider predictive models as a tool to determine zones prone to wet muck entry, and, 

as demonstrated, can be used to evaluate long-term plans in their respective basins of the El 

Teniente Division contributing to planning decisions-making can minimize the risks caused by wet 

muck entry. Furthermore, the models developed here could be applied to sectors below the 

currently modeled sectors in the future. 

The comparison of the models reveals that the models must update their databases year after year, 

to build more realistic models, because the critical variables for wet muck formation can behave 

differently over the years, for example, rainfall in a drought year. 
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5 Recommendations & future work 

Based on the critical variables analyzed, it is recommended to take special care at the drawpoints 

that have extraction over 100% of the in-situ column, with the presence of broken material and fine 

fragmentation (d50 < 25 cm), and abundant accumulated precipitation. This is because all these 

variables turned out to be the most critical to determining the wet muck entry in the long term. 

Search and group all the necessary information to evaluate the models in their respective basins or 

lower levels of the El Teniente Division, determining dry tonnage and the dry height of draw, as 

shown in the following table: 

Table 8: Applications of the long-term models of the El Teniente mine. 

Model – Basin Application 

North 
Andesita 

Recursos Norte 

Reno Andes Norte 

Center 
Esmeralda Bloque 1 y Bloque 2 

Diamante 

South 
Pacifico Superior 

Pacifico Central 

An opportunity for improvement is obtained by unifying the models, this leads to the challenge of 

grouping the extensive information of all the basins, determining the critical variables to group 

them in a single model and be able to carry out applications in any mine or productive sector of 

DET. 
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