
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

A PROGNOSTIC DECISION-MAKING APPROACH UNDER UNCERTAINTY
FOR AN ELECTRIC VEHICLE FLEET ROUTING PROBLEM

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN ELÉCTRICA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELÉCTRICO

DIEGO GUSTAVO TRONCOSO KURTOVIC

PROFESOR GUÍA:
MARCOS ORCHARD CONCHA

MIEMBROS DE LA COMISIÓN:
JORGE SILVA SÁNCHEZ

DIEGO MUÑOZ CARPINTERO

Este trabajo ha sido parcialmente financiado por:
FONDECYT Chile Grant Nr. 1210031,

and the Advanced Center for Electrical and Electronic Engineering,
AC3E, Basal Project FB0008, ANID.

SANTIAGO DE CHILE
2023

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA
RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL ELÉCTRICO
POR: DIEGO GUSTAVO TRONCOSO KURTOVIC
FECHA: 2023
PROF. GUÍA: MARCOS EDUARDO ORCHARD CONCHA

UN ENFOQUE DE TOMA DE DECISIONES DE PRONÓSTICO BAJO
INCERTIDUMBRE PARA UN PROBLEMA DE ENRUTAMIENTO DE

FLOTA DE VEHÍCULOS ELÉCTRICOS

Los Vehículos Eléctricos (EVs) han ganado popularidad durante los últimos años dada
su baja emisión de Gases de Efecto Invernadero, contribuyentes al Cambio Climático. Inves-
tigadores han trabajado en las limitaciones de los EVs, tales como capacidad y manejo de
la batería e infraestructura urbana de carga. El Problema de Ruteo de Vehículo Eléctrico
(EVRP) representa un desafío relevante dado que afecta la cadena de suministros y por su
rol en la transición a la electromovilidad. Diferentes métodos han sido usados e incorporan
elementos realistas, por ejemplo, modelos de consumo energéticos, condiciones estocásticas y
dinámicas, estaciones de carga, y otras.
En esta tesis, diseñamos, implementamos y testeamos un algoritmo basado en Monte Carlo
Tree Search para resolver el EVRP en línea. Es una metodología incipiente para resolver el
EVRP y tiene potencial dada su estructura de Árbol, funcionamiento en tiempo real, eva-
luación de escenarios futuros y procedimiento de búsqueda. Nuestra metodología soluciona
el problema en línea exitosamente y es capaz de adaptar la ruta dada nueva información.
Futuros trabajos apuntan a añadir nuevos elementos al EVRP, estudiar el alcance de esta me-
todología en áreas donde la información del futuro es valiosa, explorar diferentes estrategias
con flotas de EVs, y otros.

i

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN ELÉCTRICA
RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL ELÉCTRICO
POR: DIEGO GUSTAVO TRONCOSO KURTOVIC
FECHA: 2023
PROF. GUÍA: MARCOS EDUARDO ORCHARD CONCHA

A PROGNOSTIC DECISION-MAKING APPROACH UNDER
UNCERTAINTY FOR AN ELECTRIC VEHICLE FLEET ROUTING

PROBLEM

Electric Vehicles (EVs) have gained popularity over the past few years, given their po-
tential to reduce the emission of Greenhouse Gases, which contribute to Climate Change.
Researchers have put substantial effort into handling the limitations EVs have, for instan-
ce, battery capacity, battery management and charging infrastructure in urban areas. The
Electric Vehicle Routing Problem (EVRP) represents a relevant challenge since it directly
affects the supply chain of many businesses and could help transitioning to electromobility.
Several methods have been used to solve the EVRP incorporating realistic elements, for
example, energy consumption models, dynamic and stochastic conditions, charging stations,
and others.
In this thesis, we designed, implemented and tested a Monte Carlo Tree Search-based al-
gorithm to solve the EVRP on-line. This is an incipient methodology to solve the EVRP
and has great potential given its Tree structure, real-time functioning, evaluation of future
scenarios and search procedure. Our work shows how the proposed methodology successfully
solves the problem online and can update the route given new information. Future efforts
aim to add new elements for the EVRP, study the scope of this methodology in other areas
where uncertain prognostic information is valuable, explore different strategies in the EVs
fleet case, and others.

ii

A mi familia.

iii

Agradecimientos

Las palabras y símbolos en este documento no son más que la portada de un gran libro
de lo que fue mi caminar estos casi dos años de tesis. Durante este trabajo he vivido un va-
riopinto de emociones. Desde la amarga frustración y el cansancio hasta la genuina felicidad
y satisfacción del logro y la superación. Cada tropiezo y desafío ha significado crecimiento y
aprendizaje. Al finalizar este enriquecedor proceso, tengo más preguntas que al comenzar y
más curiosidad por el conocimiento. Espero poder responder algunas de estas interrogantes
de aquí en adelante.

En primer lugar agradezco a mi familia, cuyo amor, apoyo y cariño han sido invaluables e
inconmensurables desde que tengo memoria. Mi gratitud no conoce límites. A todos ustedes
los admiro profundamente, me enorgullecen y los amo.

A Vesna y Gustavo por sus enseñanzas, sacrificio y esfuerzo. A Iván, Nicolás y Svenka por
todas las conversaciones, anéctodas, historias, consejos y risas. A mi Tata y a mi tío Oso por
su ejemplo, resiliencia y templanza. Parte de ustedes está en mi.

Al profesor Marcos Orchard por su confianza y apoyo desde que era un plancomunero con
muchas ganas y pocos conocimientos. Su guía y consejo han sido una gran ayuda durante
todos los años que nos conocemos.

A la profesora Christ Devia, con quien he podido aprender de un nueva área desconocida
e intrigante que me cautiva y me genera reflexiones constantemente.

A mi pareja Catalina, por su amor, comprensión, apoyo, compañía y por los momentos
juntos, particularmente en este tiempo de estrés.

A mis amigos Alonso, Daniel, Kurt, Lucas y a mi amiga Francisca por las largas conver-
saciones y buenos momentos a lo largo de muchos años.

A todos ustedes, gracias.
Diego.

iv

Table of Content

1. Introduction 1
1.1. Why Electric Vehicles? . 1

1.1.1. Battery: Basic Concepts . 2
1.1.1.1. State-of-Charge . 2
1.1.1.2. Future trends . 3

1.2. Health Aware Decision Making (HADM) . 3
1.3. Electric Vehicle Routing Problem (EVRP) 4

1.3.1. Methods to solve the EVRP . 5
1.3.1.1. Exact methods . 5
1.3.1.2. Approximate methods . 6

1.3.1.2.1 Heuristic methods . 6
1.3.1.2.2 Metaheuristic methods . 6

1.3.1.3. New methods . 7
1.4. Hypotheses . 8
1.5. Objectives . 8

1.5.1. Main objective . 8
1.5.2. Specific objectives . 8

1.6. Thesis outline . 9

2. Theoretical Background 10
2.1. Markov Decision Process (MDP) . 10

2.1.1. Non-Markovian Decision Process . 11
2.2. Reinforcement Learning . 12

2.2.1. Temporal Difference Learning . 13
2.3. Monte Carlo Tree Search (MCTS) . 14

2.3.1. How does MCTS search? . 17
2.3.1.1. TD Learning in MCTS . 19

2.3.2. Other modifications . 20

3. MCTS-based Method for solving the EVRP 22
3.1. Dynamic and Stochastic EVRP . 22
3.2. MCTS implementation . 25

3.2.1. Uncertainty . 25
3.2.2. Stages . 25

3.2.2.1. Selection . 25
3.2.2.2. Expansion . 25
3.2.2.3. Simulation . 26

v

3.2.2.4. Backpropagation . 26
3.2.3. Reward . 26
3.2.4. Best Action . 28

4. Case Study: Electric Vehicle Fleet for delivery purposes 31
4.1. Map . 31
4.2. Best route and special scenarios . 34
4.3. Contingency management and different scenarios 35

4.3.1. Obsolete Planning . 36
4.3.2. Arc blocked . 36
4.3.3. Pick-up . 36
4.3.4. Initial guess . 36

4.4. Multi-agent: Fleet case . 37

5. Results 40
5.1. Best solution and hyperparameters’ selection 40
5.2. Contingency management and different scenarios 46

5.2.1. Obsolete Planning . 46
5.2.2. Arc blocked . 48
5.2.3. Pick-up . 51
5.2.4. Initial guess . 52

5.3. Multi-agent: Fleet case . 53

6. Discussion 57
6.1. Best solution . 57
6.2. Uncertainty in MCTS . 58
6.3. Charging Stations implementation . 59
6.4. Computational efficiency . 59
6.5. Contingency management and different scenarios 60
6.6. Multi-agent: Fleet case . 61
6.7. New opportunities . 62

6.7.1. New formulations . 62
6.7.2. Reduce manual tuning . 63
6.7.3. Use of voltage-based battery models 63
6.7.4. Offline stage . 63

7. Conclusion 65
7.1. Future Work . 65

Bibliography 67

Annex 77
A. Theoretical Background . 77

A.1. Temporal Difference Learning . 77
B. Results . 78

B.1. Best solution and hyperparameters’ selection 78

vi

List of Tables

3.1. Parameters used in our case study. 23
3.2. Parameters for kinematics and state-transition expressions. 24
3.3. Parameters for Reward function. 28
4.1. Parameters of each node type. The depot is represented as two nodes in the

same location for implementation purposes. 34
5.1. Parameters for Reward function in single-agent case. 40
5.2. Hyperparameters used in the sweep run for the single-agent case with different

UCT variants the best-child options. 41
5.3. Consistency results for the second set of hyperparameters. 44
5.4. Parameters for Reward function in Arc Blocked case to solve the subgraph routing. 49
5.5. Parameters for Reward function in multi-agent case. 53
5.6. Hyperparameters used in the sweep run for the multi-agent case. 53
5.7. Rewards obtained in hyperparameters sweep with 10000 simulations. Multi-

agent case. 54
B.1. Consistency results for the first set of parameters. 78

vii

List of Figures

1.1. Diagram illustrating a standard SHM design. Adapted from [22]. 3
1.2. Diagram illustrating a HADM implementation. Adapted from [22]. 4
2.1. Basic diagram of the Reinforcement Learning concept. 11
2.2. Construction of Tree. 16
2.3. Basic diagram of the MCTS functioning. The number of simulations is reset

every after every execution of the best action. 17
3.1. Diagram to illustrate which information is represented in reward R. 27
4.1. Trafficdistribution as a function of time. The shaded zone represents two standard

deviations. 32
4.2. Charging functions depending on Charging Station’s technology. 33
4.3. Graph. The blue node represents the depot, the yellow ones the clients and the

green ones the charging stations. 34
4.4. The left side represents a single-agent implementation. On the right side, the

multi-agent case, where now the actions are a tuple instead of singular elements. 38
5.1. Average reward obtained as a function of Number of Simulations with different

UCT variants the best-child criteria. The shaded area represents the standard
error. 41

5.2. Reward obtained as a function of Number of Simulations and C exp and D factors. 42
5.3. Time to compute as a function of hyperparameters, with standard error. . . . 43
5.4. Routing solution for one agent. 45
5.5. EV’s states evolution. 46
5.6. EV’s SoC evolution in an Obsolete Planning scenario. 47
5.7. Routing solution in an Obsolete Planning scenario. 48
5.8. EV’s SOC and time evolution in an Arc blocked scenario. 49
5.9. Routing solution in the subgraph case. 50
5.10. Subgraph routing. Gray edges show the arcs in the subgraph and the chosen

route is magenta. 50
5.11. EV’s SOC and time evolution in a Pick-up scenario. 51
5.12. Weight after visiting the respective nodes. 51
5.13. Routing solution with pick-up restriction. 52
5.14. Routing solution for 2 EVs. 54
5.15. EV’s SOC and time evolution in an Arc blocked scenario. 55
5.16. Rewards obtained in every step. Progress in the algorithm goes from top to

bottom and from left to right . 56

viii

Chapter 1

Introduction

1.1. Why Electric Vehicles?
Exhaust gasses from Conventional Vehicles (CV) are the primary source of air pollu-

tion, particularly in highly dense populated areas [1]. According to the International Energy
Agency, in 2021, 24 % of total CO2 emissions are caused by the subject of Transportation
[2]. This gas constituted 80.1 % of Greenhouse Gas emissions in the United States in 2019
[3], being one of the most important causes of Climate Change [1].

To overcome this problem, a transition to Hybrid Electric Vehicles (HEV) and Electric
Vehicles (EV) arises as a clear alternative in several countries [4], notwithstanding the social
effects that the use of vehicle cause in cities and urban areas. Many countries have adopted
strategies to stimulate the purchase of HEV or EV, or to restrict it for CVs [5, 6, 7, 8, 9].
Among those actions, it is possible to find tax incentives, subsidies, road priority, or access to
restricted traffic zones. According to [10], the most relevant factor to promote EV adoption
are charging stations’ density, fuel price and road priority.

There are mainly three EV categories: Battery Electric Vehicles (BEV), Plug-in Hybrid
Electric Vehicles (PHEV) and Fuel Cell Electric Vehicles (FCEV) [11, 12]. BEVs are prope-
lled only by electric motors, and their onboard battery provides their power. Some of their
benefits are the absence of tailpipe emissions, high efficiency (particularly when compared
with CV) and a simple powertrain design. PHEVs use an electric motor and an internal
combustion engine (ICE), and their specific use depends on the configuration (series, para-
llel, series-parallel and complex). PHEVs are usually understood as a transition technology
because they allow short trips to be made in electric mode and longer ones to be made
with alternative fuels. Finally, in FCEVs, electricity is generated from hydrogen. They do
not produce pollutants since electricity is obtained from chemical reactions, not burning fuel.
The most significant drawbacks are their restrictive cost and the duration of the fuel cell
that generates the electricity. This work will focus on BEVs, addressing their progress and
challenges. For simplicity, from now on, the term EV will refer to BEV.

The sales of EVs have sky-rocketed in the last few years. In the US there are 50 different
light-duty EV models, and more than 130 are projected for 2023 ([13]). According to [14], by
2035, EV and ICE will be cost-competitive, even with low oil prices, due to lower costs in
batteries’ manufacturing (which represents approximately 25 % of the total EV price [15]).
The adoption of EVs requires solving problems inherent to their use, for example, the location
of charging stations and the different technologies they use, battery management, high cost,
short driving range and long charging time [16, 5]. EVs management is also related to the

1

so-called “range anxiety”, which is the phenomenon where drivers fear that the current range
will not satisfy their needs, leading them always to charge the EV to have a minimum battery
level [17]. This action is also related to concerns about protecting the battery’s health, given
the recommendations to maintain the battery’s charge between certain boundaries and not
at the maximum capacity.

1.1.1. Battery: Basic Concepts
There are several battery technologies used in EVs. Among them, it is possible to find

Lead-acid, Nickel-Metal-Hydrite (NiMH), Nickel-Cadmium (NiCd) and Lithium-Ion (Li-Ion)
[18].

1. Lead-acid: This battery is also used in ICE vehicles for ignition, starting and other elec-
trical functions. Its main disadvantages are its weight and low range for EV application.

2. NiMH: This type of battery is used in Hybrid EVs (HEV) due to its longer life cycle and
lighter weight, compared to Lead-acid. They also can hold more energy. Its disadvantages
are a higher self-discharge rate and a reduction in its cycle life if it repeatedly experiences
rapid discharges.

3. NiCd: This technology provides a longer life cycle than NiMH because it can tolerate
deep discharges. Its main drawbacks are the existence of the “memory effect”. This is
the reduction in capacity if it is recharged without being completely discharged; and a
low relative electrical capacity.

4. Li-Ion: Most common technology due to its advantages: high energy density, lighter
package, low self-discharge rate and relatively good temperature performance (extreme
environment affects its performance).

1.1.1.1. State-of-Charge

The State-of-Charge (SOC) is usually defined as a ratio between the energy available in
the battery and the maximum nominal capacity.

SOC = Qavailable

Qnom
(1.1)

It is a critical measure since it allows us to know how much energy is left in our storage
system and decide upon it. As it looks simple to understand and conceive, it is challenging to
estimate since there is no method to measure it directly. Several factors influence its value,
such as manufacturing imperfections, mechanical damage, temperature, consumption profile
and aging [19].

Reaching both SOC limits produces extreme chemical reactions, which increase the pola-
rization impedance, which is highly related to the battery degradation [20]. As a result, the
routing task and battery management are fundamental for the proper adoption of EV tech-
nologies, as they provide guidelines and recommendations on when to charge the EV battery,
the amount of charge, the impact associated with different charging technologies and the
capacity of each charging station. The latter is critical in the case of EV fleet management.

2

1.1.1.2. Future trends

In recent years, researchers have put effort into developing new technologies, aiming at
overcoming the drawbacks of Lithium-Ion batteries, such as environmental impact and cost,
or improving their capabilities, such as energy density and safety.

Lithium metal batteries (LMB) are expected to be protagonists in the next generation
of batteries, replacing Lithium Ion batteries (LIB). This asseveration is based on the high
energy capacity of LMBs (higher than 500 W h

kg). The theoretical energy densities of Li-O2 and
Li-S are 3505 and 2600 W h

kg . The main drawback of LMBs is the Li dendrite growth, which
causes low cycle efficiency and causes safety issues. While researchers have tried different
approaches to tackle this problem, such as matrix design and electrolyte modification, it is
still an unresolved challenge.

Due to limited Lithium resources and lower costs, sodium-ion batteries (NIB) arise as
a prospective candidate. The estimated energy density of NIBs is competitive with graphi-
te/ LiMn2O4. Polyvalent ions, such as Magnesium-Ion batteries (MIB) and Aluminium-Ion
batteries (AIB), may create systems with capacities several times higher than LIBs’. Not-
withstanding the high capacity, good cycle and safety performances of MIBs, oxidation and
polarization of MG+2 are their main limitation. Al could reach twice the Mg’s capacity as
anode, as the atomic weight of Al is low and it has a high energy density [21].

1.2. Health Aware Decision Making (HADM)
In this subsection, we will briefly explain the concept of Health Aware Decision Making.

For a more detailed discussion, please refer to [22].

The concepts of System Health Management (SHM) and Decision Making (DM) have
historically been developed separately. The authors from the previous work state that the
typical functions of SHM are monitoring, fault detection, diagnosis, mitigation and recovery,
and those of DM are all the processes aimed at accomplishing operational objectives. When a
prognostic stage is incorporated in the SHM module, it is often called Prognostics and Health
Management (PHM) [23]. As a consequence, in many implementations, these processes are
separated, as illustrated in the following diagram:

PlantDM SHM
𝑎𝑡,𝐷𝑀

𝑎𝑡+1,𝑆𝐻𝑀

𝑥𝑡+1

Figure 1.1: Diagram illustrating a standard SHM design. Adapted from [22].

It is important to note that, according to [22], SHM should be unified with DM for greater
operational effectiveness and resilience, and they defined this unification. While some previous
works have considered this spirit [24, 25, 26], there needed to be a structured and detailed
discussion of this new conceptualization. In [27], the authors also encourage the research and
trends regarding the relationship between prognostics and the decision-making processes.

To create their unifying approach, they rely on two fundamental principles:

1. State-based system modeling framework.

3

2. Utility function describing operational preferences for the system (U(s)).

In simple terms, the essential concepts for the unification are a system model and a reward
function for states and actions in the future. Specifically, the critical property of the utility
function is that it allows us to map multiple variables into a single number and translate a
potentially complex DM formulation into a utility maximization problem.

In this regard, whereas prognostic algorithms cannot predict given the absence of know-
ledge about the future, the Utility function calculation process allows us to explore different
scenarios by taking sequential actions and evaluating them depending on the state they lead.
As a result, the uncertain future information is more appropriately addressed.

This proposal can be illustrated as follows:

Plant

𝑥𝑡+1

𝑎𝑡
∗𝑎𝑡

∗ = 𝜋∗(𝑥𝑡)

Figure 1.2: Diagram illustrating a HADM implementation. Adapted from
[22].

To summarize, HADM proposes that DM and SHM can be carried out within the same
process instead of two different systems exchanging information. In this regard, for example,
the fault detection stage would be incorporated within the DM process as a faulty state, and
appropriate actions could be available using the exploration of future states.

1.3. Electric Vehicle Routing Problem (EVRP)
Vehicle Routing Problem (VRP) is a problem inspired by the classic Travelling Salesperson

Problem (TSP). The TSP consists of one salesperson who must travel to several cities and
return to the starting one, restricted to visiting each city only once. The objective is to find
the shortest path that satisfies these constraints.

The VRP is a similar problem, but a vehicle system and its functioning are included. In
this case, the vehicle must travel to different nodes (cities can be a particular case) subject to
its range capacity, fuel consumption, velocity restrictions, and others. These constraints have
inspired different works and methods to approach them, varying on how these elements are
incorporated and solved. One variant is the Capacitated Vehicle Routing Problem (CVRP),
where vehicles have a maximum weight to carry. Another variant is where each node has a
time window within which it must be visited. Thus, if the vehicle arrives outside this time
window, there are two options depending on the formulation of this constrain: soft time
windows, which allow the vehicle to arrive at the node outside its time window at a cost; and
hard time windows, where reaching the node is only allowable if the arriving time is within the
time window boundaries, this variation is the so-called Vehicle Routing Problem with Time
Windows (VRPTW). Naturally, the variant combining these two is the so-called Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW). Other variants include Pickup
and Delivery, Open or Closed Routes, Multiple depots (starting and ending places) and
others.

According to [28], two main factors determine the difficulty and applicability of a specific
VRP formulation. On the one hand, we must differentiate between Static and Dynamic

4

versions. On the other hand, we should differentiate between Deterministic and Stochastic
variants; Static and Deterministic are the easiest variants, whereas Dynamic and Stochastic
versions are the hardest. Static vs Dynamic refers to conditions that may change due to
unknown dynamic factors (traffic, weather, unexpected events and others). Deterministic vs
Stochastic conditions consider variables that cannot be exactly determined beforehand, such
as energy consumption, travel time, client demands, and others. In a static and deterministic
approach, a solution found would not change throughout policy execution. On the other
hand, an initial solution could change in a dynamic and stochastic variation. Reasonably,
more realistic variants are more applicable; therefore, they have caught more attention [29].

There are different ways to model the VRP, depending on the vehicle type, requirements
and the constraints of every scenario. In this regard, some works have approached and solved
this problem by trying to keep the formulation generic so that the solution can be applied
to more scenarios. Others have solved particular scenarios such as Rescue Missions, Waste
Collection, Periodic routes, Medical Tasks, UAV delivery and others [28].

The VRP can be extended to a multi-agent scenario where a fleet must be routed to fulfill
the needs, restricted to constraints inherent to the type of vehicles used.

When dealing with a fleet of vehicles, new alternatives and scenarios arise, for example, the
communication, coordination and even competition among the vehicles, the type of vehicle:
CV, hybrid scheme or EV, and the ramification each category has, as previously mentioned,
and others.

In [28], they claim that one of the emerging research directions in VRP in terms of the
formulation is to include new challenging extensions, which reflect contemporary challenges,
demands and opportunities, for instance: EVRP and last-mile delivery. They point out two
other main directions, which are not directly considered in this work: Rich VRP (whose
focus is on complex implementation-oriented attributes) and specific businesses or industry
settings, for example, autonomous air/ground delivery and bike sharing.

1.3.1. Methods to solve the EVRP
The VRP is one of the most researched problems in the Operational Research (OR) field

due to its practical relevance in the Last Mile stage of a supply chain, where the reduction of
costs and maximize service quality is of utmost importance [30, 31, 32]. This problem is also
studied because of its computational complexity. The VRP has been classified as an NP-Hard
problem due to the latter characteristic. This tag means it cannot be solved in polynomial
time. As follows, we explain the main methods used to solve the VRP [33].

1.3.1.1. Exact methods

Exact methods compute every possible outcome before they give a solution. As such,
they are computationally expensive and escalate poorly with the size of the instance. These
methods are classified in three categories: Lagrange Relaxation-based, Column Generation
(CG) and Dynamic Programming. The first methods penalize violations of inequality cons-
traints using Lagrange multipliers. CG is used to solve large Linear Programming problems.
This method consists in solving a subproblem taking only a subset of the original variables,
and adding variables to this new formulation only if they may improve the objective function
[34].

5

1.3.1.2. Approximate methods

On the other hand, the need for faster high-quality solution have led researchers to develop
heuristic and metaheuristic algorithm.

1.3.1.2.1. Heuristic methods
Heuristic algorithms can be classified into construction and local search heuristics. The

former group can be divided into sequential and parallel methods. In sequential methods,
feasible solutions are built by adding nodes sequentially to a first node. Parallel methods
work in several solutions simultaneously.

Local search algorithms modify initial solutions improving them. These modifications can
be intra-route or inter-route, depending on if the change is within the same route or between
different routes. The goal in these procedures is to minimize the number of vehicles required
or the traveled distance.

1.3.1.2.2. Metaheuristic methods
Unlike the heuristic methods, metaheuristc algorithms seek to obtain better solutions by

exploring a larger subset of the solution space. These methods are more advanced than the
previous ones. Population-based and Local Search are presented in the following paragraphs.

Population-based methods is an example of these algorithms. They obtain a new solution
by combining existing ones or by making them cooperate. Within this group, Evolutionary
Algorithms (EA) arise as an alternative [35]. Its functioning is inspired in the evolution
process in living beings. Genetic Algorithms (GA) is the more classical representative of this
class of methods. As can be inferred from the name, this proposal is inspired by a biological
process. From an initial set of solutions, two samples are selected (parents), according to a
metric, and are combined to obtain new solutions children. A mutation procedure takes place
at this stage to increase the variability of the population. This procedure is repeated starting
from the children until a criteria is met. Memetic Algorithms (MA) also belong to the EA
class. It is similar to GA, with the difference that an improvement method is applied to every
children. A third method from the population-based class is Scatter Search (SS). Unlike EA,
it needs a smaller set of good and diversified. Subsequently, local improvements methods are
applied to those solutions.

Another category in this large family of population-based metaheuristic methods are the
swarm-based algorithms. Within this group Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO) arise as the most common techniques. ACO is also inspired
in nature. Ants leave a pheromone path where they have been, as such, in computational
models, artificial ants also leave a path and the goodness of the final destination. With more
iterations, more ants will follow the best paths. PSO initiates with a group of particles, whose
individual movement is given by the best solution the particle has found and the best solution
any has found.

Apart from population-based methods, another family is the Local Search methods. The
main idea behind these algorithms is to improve the current solution by exploring a more
promising neighbourhood in the solution space. The most common technique in this family is
Tabu Search (TS). It consists on moving from an initial solution to its best neighbour even if
the objective function deteriorates. In this way, the likelihood of avoiding a local optimum is
increased. Succesive neighbours are examined and stored (and forbidden or declared tabu for
a number of iterations). This is repeated t times and then the best non-tabu move is chosen
[36].

6

Another option is the Guided Local Search (GLS), where to avoid local optimum, the so-
lution evaluation is modified to penalize more heavily undesired features. In the case of VRP,
those features are the edges [37]. Simulated Annealing is also part of the Local Search (LS)
methods. It is inspired in how atoms behave with temperature changes and based on statis-
tical mechanics. With higher temperatures, more movements occur, which translates in local
changes to an initial solutions, even if it worsens it. Changes take place while temperature is
decreasing until no new changes are allowed [38, 39].

The Large Neighbourhood Search (LNS) explores a wide search space. The initial solution
in this algorithm is destroyed and repaired according to destroy and reinsert operators.
A variant of this method is the Adaptive LNS, where the probability of choosing certain
operators depends on how good the generated solution was [40]. Variable Neighbourhood
Search (VNS) proposes a different scheme. Starting from any initial solution, a shaking step
is performed by randomly selecting a solution from the neighbourhood. Then, an improvement
algorithm is applied and the whole process is repeated until no incumbent solutions are found.
After that, it moves to a new neighbourhood and the process is repeated until a criteria is
met [41, 42].

In addition, Greedy Randomized Adaptive Search Procedure (GRASP) starts with an
initial solution x, obtained through a greedy randomized process and find a local optimum
with local search starting from x. This process is carried out iteratively until a stopping criteria
is met and best solution found is chosen [43]. Iterated Local Search (ILS) is an alternative
which starts from an initial solution and uses a LS procedure to improve it, obtaining s∗.
Afterwards this solution is perturbed and improved similarly to the initial one and gets s∗′ .
Finally, an acceptance method chooses between the s∗ and s∗′ , to obtain the next starting
point. This is repeated until a criteria is met [44].

1.3.1.3. New methods

The authors from [28] discuss how, despite the success and efficacy of the previous methods,
several new ideas and approaches from other optimization domains can contribute to the VRP
and be an alternative to existing techniques, both addressing new, specific variants or offering
innovative schemes for known VRPs. In their opinion, these Computational Intelligence (CI)
methods have potential for future development and more frequent usage in the VRP. These
emerging methods include game-theoretic and bi-level optimization methods, hyperheuristic
approaches, cognitively motivated techniques and Monte Carlo simulations.

Based on this, the Upper Confidence Bound for Trees (UCT) arise as an attractive solution
in the mentioned work. UCT is an extension of the Monte Carlo Tree Search (MCTS) algo-
rithm (both will be discussed further in the following Chapter). UCT, unlike MCTS, which
make use of uniformly distributed simulations, optimally balances the exploration and exploi-
tation of different solutions, which is particularly useful in problems with large action spaces
[45]. One of the main advantages of MCTS is its knowledge-free characteristic, which means
that only the rules of a problem or the capacity for distinguishing one result from another
are needed, although the use of heuristics could improve the performance. Furthermore, its
tree structure and search policies make its decision-making process easier to understand.

Only one work used UCT for a Capacited VRP with Traffic Jams [46] (Traffic Jams
increase the cost of traversing the specified edge) according to [28], up to that date, and
very few others have used UCT in other variants [47]. In regard to the incorporation of a
Reinforcement Learning (RL) framework to solve the problem, they mention two works: one
is a static version for VRP and the other for a version of the TSP [48, 49]. In addition, in

7

[50], several more recent efforts using RL are reviewed, however, none of them is applied to
the EVRP. Moreover, only one of those implemented UCT for a warehouse routing case.

Our work will focus on the EVRP, which means that the fleet is made up exclusively of
EVs [51]. This case brings up challenges mentioned in the previous section and constraints
such as range limit, charging stations availability, non-linear charging functions and charging
time, battery management, energy consumption models and other EV’s features.

In a survey by Erdelic et al. [52], the authors state that several real-life elements have not
been sufficiently studied in the VRP, for instance: dynamic traffic conditions, uncertainties
in demand, travel time, time windows, service time, charging time and others.

Recently, in [53], the authors discuss Monte Carlo Tree Search implementations to the
VRP. Most of them do not address the EVRP ([54, 55]). In [56], they present a survey about
the Rich VRP mentioned before and point out the inclusion of uncertainty for more realistic
implementations as a future trend. Additionally, in [57], the authors encourage the study
of robust implementations, capable of dealing with all possible scenarios, and the need for
progresses in the speed of the simulations.

1.4. Hypotheses
Based on the previous discussion, this thesis will test the following hypotheses:

1. Solving an adequately formulated Electric Vehicle Routing Problem fulfills all operatio-
nal requirements efficiently.

2. A real-time algorithm based on Monte Carlo simulations can solve the Electric Vehicle
Fleet Routing Problem.

3. It is possible to update the solution online, given new information, with the proposed
algorithm.

1.5. Objectives
1.5.1. Main objective

The main objective of this thesis is to design, implement and test a real-time algorithm
based on Monte Carlo simulations to solve a properly formulated Electric Vehicle Fleet Rou-
ting Problem. It will be able to update the solution given new measurements and information
online.

1.5.2. Specific objectives
Specific objectives are listed as follows:

• To formulate an Electric Vehicle Fleet Routing Problem that fulfills all operational
requirements with realistic features.

• To design, implement and test a real-time algorithm, based on Monte Carlo simulations,
that solves the Electric Vehicle Fleet Routing Problem, incorporating Health Aware
Decision Making guidelines.

• To study the performance of the proposed solution in an online case-study.

8

1.6. Thesis outline
The thesis is organized as follows: Chapter 2 presents the theoretical background on where

we based our work; Chapter 3 explains the methodology applied to solve this problem; Chap-
ter 4 presents a case study inspired by the operation of EV Fleet used for delivery porpoises;
Chapter 5 presents results obtained; Chapter 6 offers a discussion of the results and what
may be the advantages, restrictions, progresses, extensions and different challenges ahead
and Chapter 7 concludes our thesis giving final remarks.

9

Chapter 2

Theoretical Background

We formulated the EVRP as a Markov Decision Process within a Reinforcement Learning
framework and solved it by implementing a Monte Carlo Tree Search-based algorithm. This
Chapter briefly explains these concepts.

2.1. Markov Decision Process (MDP)
Decision Theory provides a formal framework for Decision Making under Uncertainty

(DMU), combining probability theory with utility theory [58]. One way to work with pro-
blems whose utility function is defined by a sequence of actions is by using Markov Decision
Processes (MDP).

An MDP models fully observable sequential decision problems with four main elements
[58]:

1. States: Represents the system’s state at a specific time.

2. Actions: The set of possible actions given a state. If the state is terminal, there are no
available actions.

3. Transition Model: Defines the probability of transitioning from state s to s′ after execu-
ting action a. It is defined as Pr(s,a,s′).

4. Reward function: It gives a reward after executing action a in s to reach state s′.

The Markovian property tells us that the next state and reward depend only on the current
state. An extension has been defined where full observability is not assumed. In this case, the
formulation is called Partially Observable Markov Decision Process (POMDP) and the term
state is often replaced by observation. MDPs have been used in very different areas, such as
clinical tasks [59] and cyberattacks [60].

Both formulations aim at finding an optimal policy that maps a state to action through
action-state pairs, receiving a reward depending on the state it reaches. Chosen actions
influence not only immediate rewards but also subsequent ones. As a consequence, MDPs
need to leverage between immediate and delayed rewards.

At each step, the agent (learner in the environment) receives an environment’s represen-
tation (which includes itself) and chooses and acts upon it. After executing an action a, a
new state and a reward are presented.

10

Agent Environment

𝑎𝑐𝑡𝑖𝑜𝑛

𝑟𝑒𝑤𝑎𝑟𝑑

𝑠𝑡𝑎𝑡𝑒

Figure 2.1: Basic diagram of the Reinforcement Learning concept.

Every time step can be something other than a real-time measure. For example, it may
be positions on a map. Likewise, actions range from the charge applied to a battery or to
deciding to take one road or another.

To end this Section, a quote from [61] summarizes very well the MDP:

The MDP framework is a considerable abstraction of the problem of goal-directed
learning from interaction. It proposes that whatever the details of the sensory,
memory, and control apparatus, and whatever objective one is trying to achieve, any
problem of learning goal-directed behavior can be reduced to three signals passing
back and forth between an agent and its environment: one signal to represent the
choices made by the agent (the actions), one signal to represent the basis on which
the choices are made (the states), and one signal to define the agent’s goal (the
rewards). This framework may not be sufficient to represent all decision-learning
problems usefully, but it has proved to be widely useful and applicable.

2.1.1. Non-Markovian Decision Process
There are two scenarios where the Markovian property is broken. The first is when obser-

vations are limited and partial. In that scenario, the current state must be estimated based
on past information or a latent space. In this case, rewards and dynamics are not marko-
vian. The second scenario is when only rewards are not markovian. As explained before, the
former is a POMDP, while the latter is known as Non-Markovian Reward Decision Process
(NMRDP). When both scenarios are included in a formulation, it is named Non-Markovian
Decision Process (NMDP) [62].

Markovian rewards are suited for applications when the history is not relevant to the
Reward function. Games are an excellent example of this. In chess, in simple modeling, the
final state has three possible outcomes: win, draw or loss. It is irrelevant if it took many or
few moves to reach that final state or the number of pieces a player lost. However, this is
not true for most applications, where the history and past information are relevant to the
current state.

An example is the case of an assistance robot, which has to ensure that a person takes
medication after every meal. In this example, the condition of person ate meal influences
the decision-making at the current state and the possible actions give or not the medication.
Another example is routing problems, where the reward depends not only on reaching the
depot but on having visited all clients and fulfilling other requirements. This is because the
only information of returning to the depot is not enough to account for other relevant charac-
teristics in the problem, such as visiting all clients, avoid crossing the battery’s threshold or
reaching all clients within their time-window. Other options where Non-Markovian rewards

11

are present are problems where a particular state must be met precisely once or every k steps.
In conclusion, a Non-Markovian reward needs more than the current state to deliver a value.

An advantage of Markovian rewards formulations is the use of dynamic programming
techniques to solve the problem. These techniques cannot be directly applied when the non-
markovian property is not met. Different researchers have tried transforming NMRDPs into
MDPs to use MDPs’ solvers in the problem. In [63], the authors discuss that in an initial
NMRDP Gs = (S, A, R), the objective is to obtain an MDP GES = (ES, A, RES), where
RES is the expanded Reward, which is now markovian and, thus, any off-the-shell planner
can be applied. They found strong correspondence between MDP and NMRDP. An MDP
GES = (ES, A, RES) is an expansion of an NMRDP Gs = (S, A, R) if there are functions
τ : ES → S and σ : S → ES three conditions are met:

1. For all s ∈ S, τ(σ(s)) = s.

2. For all s, s′ ∈ S and es ∈ ES if Pr(s,a,s′)= p ≥ 0 and τ(es) = s, there exists only one
es′, τ(es′) = s′, such that Pr(es,a,es′)= p.

3. For any feasible trajectories ⟨s0, . . . , sn⟩ in Gs and ⟨es0, . . . , esn⟩ in Ges, where τ(esi) =
si and σ(s0) = es0, we have R(⟨s0, . . . , sn⟩) = RES(esn).

If an MDP GES can be produced from a NMRDP Gs, then optimal policies for Gs can
be found by solving GES .

The same authors, in [64], used boolean temporal variables to save relevant information
from the current trajectory. In [65], the authors use working memory slots to save past obser-
vations and take them into account in the decision-making process. Camacho et Al. proposed
an approach to solve NMRDP using Linear Temporal Logic, a language for expressing tem-
poral properties over a sequence of states [66], and a Deterministic Finite-State Automaton
(DFA) [67].

2.2. Reinforcement Learning
There are three main areas in Machine Learning (ML): Supervised Learning (SL), Unsu-

pervised Learning (UL) and Reinforcement Learning (RL). In SL, the model learns to map
inputs to outputs from a dataset labeled by experts. After this map is created, the model
is tested by predicting labels for unseen data, and a merit metric is used to measure its
performance. The limitations of SL are the necessity of an expert to label data, which may
be costly, and errors in this labeling (caused, for example, due to noisy sensors). Besides, the
trained model could not perform better than the expert.

On the other hand, UL intends to find patterns or structures in unlabeled data, for exam-
ple, to identify operating profiles from a system’s data. UL has been mostly used for dimen-
sionality reduction, feature extraction and clustering [68]. The third area, RL, learns to map
states to actions to maximize a numeral signal called Reward. The model is not told what ac-
tions to execute; instead, it discovers which actions yield the most reward by trial-and-error.
In the most challenging cases, actions affect immediate rewards and subsequent ones. These
two characteristics distinguish RL from other areas of ML [61].

At first sight, RL may be included within the UL framework, as its functioning is not
based on labels, however, besides the two mentioned characteristics, RL tries to maximize a
reward and not find structures as the primary goal.

12

To obtain the highest reward, the agent must exploit those actions with high outcomes
in the past, however, these actions may be hidden behind unexplored scenarios and to find
them, the agent must choose “suboptimal” actions. On the other hand, exploring scenarios
without exploiting good actions would make the agent lose the highest reward. In other
words, the idea is that neither full exploitation nor exploration are the key to accomplishing
the objective. This dilemma is the Exploitation Exploration Dilemma, which will be further
discussed later.

As said before, a critical part of the RL paradigm is the reward the agents receive as it
guides the behavior and decision selection. It is also one of the most challenging elements of
an RL implementation since the designer would undoubtedly want to avoid bias in the search
for the best action and instead let the agent act to find it. A simpler scenario is where the
reward is sparse. For example, in a chess game, if the sequence of actions leads to a win, the
reward is 1; if it leads to a loss, the penalty is -1; and 0 if there is no winner. The advantage
of is kind of reward function is that it avoids a significant intervention by the designer in
the DM process, decreasing the chance of inducing a bias. However, it is uninformative for
the agent and could take significant computational resources to achieve the expected result.
Theoretically, general-purpose RL algorithms should deal with sparse rewards; in practice, it
may take prohibitively large computational resources. In [69], different approaches to improve
sparse rewards designs are discussed. Some of them are based on intrinsic reward, a concept
inspired by psychological studies, where the agent explores just for curiosity.

Another approach in reward function design is to incorporate elements in the function to
provide clues for the agent as to which directions may be beneficial. These types of reward
functions are called “dense reward functions”. In the same chess problem, a reward would be
given if the agent captures any of the opponent’s pieces. The latter option creates challenges
in balancing minor penalties with a specific global objective. For instance, how does the
designer balance the reward in a case where if the agent loses a piece, it could allow it to win
the game in the next few steps? Alternatively, in [70] where a closeness metric was added
to hint a bicycle to move towards a target. As a result, the agent learned to drive in circles
around the starting point. In brief, especially in more complex scenarios, the reward function
plays a key role.

2.2.1. Temporal Difference Learning
Temporal Difference (TD) Learning is the core idea of Reinforcement Learning algorithms

[71]. Its main idea is to update a state’s value V (st), which is defined as the total expected
reward of being in state s at time t, according to the immediate reward r t+1 and the value
of the following state at the next time V (st+1). As such, TD is a mechanism to implement
the ideas of RL in a problem, allowing to learn. As can be inferred, states with higher values
are preferred and will guide the agent’s exploration and decision-making.

TD Learning combines Monte-Carlo (MC) and Dynamic Programming (DP) ideas. As the
former, it can learn from raw experience without a known model; as the latter, it can gain
knowledge from other states’ estimates. Both methods use the experience to estimate the
value of the states, however, the main difference between MC methods and TD is the time
each of them waits until they update each state’s value. In MC, a simulation must wait until
it reaches a terminal state to obtain an outcome and update the values. A typical MC rule
to update a specific value at time t is:

V (st)← V (st) + α [Gt − V (st)] , (2.1)

13

where Gt is the outcome following time t and α is a constant step-size parameter.
On the other hand, TD methods only need to wait for one step (t + 1) to obtain a reward

and update the state’s value. The simplest update rule is as follows:

V (st)← V (st) + α [Rt+1 + γV (st+1)− V (st)] 1, (2.2)

where Rt+1 is the reward obtained at the transition to st+1. This TD method is called TD(0),
which is a specific case of TD(λ) and n-steps methods. When n= 1, it is called one-step
method.

TD is called a bootstrapping method since it updates the estimate based on an existing
value, as seen in Eq.2.2.

It has been proven that both MC methods and T(0) converge to the optimal value under
certain circumstances. A straightforward question in this regard: Which one is faster? This
question remains open, however, in practice, TD methods usually converge faster.

To generalize for n steps, it is valuable to consider that in MC methods, the updates are
in the direction of the complete return:

Gt
.= Rt + γRt+1 + γ2Rt+2 + · · ·+ γT −t−1RT , (2.3)

where T is the last time step of the sequence and Gt is defined as the target.
Both methods update their estimate state’s value V (st) based on experience. Whereas in

MC methods, the target is the return, in one-step updates, the target is the reward at time t
plus a discounted estimated value of the next state (0 ≤ γ ≤ 1). In other words, in the latter
case, the target is an estimate of the return.

Gt:t+1
.= Rt+1 + γV (St+1) (2.4)

The extension to n-steps is shown below:

Gt:t+1
.= Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVt+n−1(St+n), (2.5)

such that n ≥ 1 and 0 ≤ t ≤ T − n. If t + n ≥ T , all the missing terms are set to zero and
Gt:t+n

.= Gt.
It is important to note that values Rt+n and V t+n−1 are available only at time t + n. The

expression for the n-steps value learning algorithm is:

Vt+n(St) .= Vt+n−1(St) + α [Gt:t+n − Vt+n−1(St)] , 0 ≤ t ≤ T (2.6)

To summarize, the role of Temporal Difference Learning in Reinforcement Learning is to
be a method to estimate the state-value function V (st) based on adjusting the TD error,
which is the difference between current estimate for V (st), the discounted value estimate of
V (st+1) and the reward Rt+1. In this manner, the system can make correct decisions from
the current state, based on expected future rewards.

2.3. Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search is a best-first search algorithm based on Monte-Carlo simulations

to find optimal decisions in a given scenario, for example, planning problems. This class of
1 A detailed derivation of this expression can be found at the Appendix A.1.

14

algorithms explore by building the Tree following the most promising nodes according to a
certain metric.

MCTS has gained popularity since its success in achieving a new milestone when the
AlphaGo team defeated the World Champion of the game Go using Deep Learning and
MCTS [72, 73], and due to its applications in several areas [74, 75, 76, 77, 78]. It is an anytime
algorithm, which means that it can always offer a solution, although more computational time
usually leads to better solutions.

The MCTS has four main stages:

1. Selection: Select an action not previously selected or chooses the best children from the
current node.

2. Expansion: Expand the tree if the action does not exist in a tree node.

3. Simulation: Choose actions according to a policy from the selected node until it reaches
a terminal state.

4. Backpropagation: A reward is obtained and backpropagated to all previous nodes.

The construction of the Tree is illustrated in Fig.2.2 with a toy example. The Tree is
initialized with one node, which corresponds to the first state. Let us assume that there are
three available actions at this state: B, C and D. As there are available actions, in the first
simulation the Expansion stage takes place. One of these actions is chosen and expands the
Tree creating a new node that represents the state of the system after executing the chosen
action in the previous node. Then, in the Simulation stage, one action is chosen (according
to a policy) from the available set in Node B and is executed, reaching a new state (without
creating a new node), where new available actions are presented. This procedure is carried
out until a terminal stage is reached (this stage and the final state are represented by the gray
line and the diamond-shaped figure). Finally, in the Backpropagation stage, depending on the
terminal state, a reward R is obtained from Node B and propagated upwards (represented by
the blue arrow). In the second simulation, the first node now has two available actions (C and
D), as B was already chosen. An option is selected and the Expansion and Simulation stages
are carried out as previously explained. In the third simulation we only have one available
action and the process is carried out similarly. In the fourth simulation, however, the Node
A has no available actions as all of them have been executed to create new nodes. When
there are no more available actions in a node, the Selection stage takes place, instead of the
Expansion one. The best child is selected (represented by the red arrow) and the process is
repeated from this node. In this case, Node B is selected and the Expansion stage again takes
place, if there are available actions. If the node represents a terminal state, the Simulation
stage consists only in evaluating and state and backpropagating the reward R.

15

R R R
R

Simulation 0 Simulation 1 Simulation 2 Simulation 3 Simulation 4

AA AAA

CBBB B CC D D

E

H
H HH

Figure 2.2: Construction of Tree.

Please, do not confuse the Simulation stage with the number of simulation as it is presented
in Fig.2.2. The former refers to the stage where several actions are selected and executed until
a terminal state is reached and evaluated, while the later indicates the iterations of the Tree.

These four stages repeat until one criterion is met, usually the number of simulations or
maximum computational budget. Finally, the node that maximizes or accomplishes a metric
is selected to choose the action for the actual state-transition execution in the system. In
this step, the systems transits from the initial node to the best child node, and the search
continues until it reaches a terminal node (a node that represents a terminal state) in the
Tree.

There is no universal standard on how to choose the action to be executed after all
the simulations. Different approaches have been used, for example, selecting the node with
the highest average reward, the most visited node, using more complex expressions and
others [79, 80]. In [81], the authors tested and discussed how different criterions affected the
obtained solutions. They concluded that when each node had few visits, a max reward rule
was inappropriate since lucky nodes benefit more. On the contrary, this option is appropriate
when more visits have taken place. This idea is developed in [47]. The max-visit rule usually
takes significant computational time to converge, particularly if the difference between the
best and second best node is small [82]. In the mentioned study ([47]), the authors elaborate
how in sparse reward applications, primarily games, the outcomes of the Simulation stage
are usually uninformative: +1 if it is a win, 0 for a draw and -1 in case of a loss. In other
applications, these kinds of rewards are unsuitable since many metrics are taken into account,
and it is necessary to differentiate between wins and losses and better wins. With this in mind,
they discuss how nodes leading to good rewards on average can be chosen instead of nodes
with best rewards hidden by bad rewards (worse average reward), specifically in a routing
problem. To solve this, they proposed the two-phase method, where to choose the action to
execute, the P best nodes (in terms of average reward) are selected, and among them, the
one with the best individual reward is chosen.

This on-line procedure is carried out until the system reaches a terminal state. A diagram
illustrating this process is shown as follows:

16

MCTS

¿N° simulations > 0?

Yes

No

End

Execute best
action and reach

new node

¿Terminal state?

No

Yes

Figure 2.3: Basic diagram of the MCTS functioning. The number of simu-
lations is reset every after every execution of the best action.

There are two options in the literature on how to continue with the Tree after the actual
execution of the best action (Fig.2.3): Reset the Tree and only keep the current node and its
parents, or keeping the Tree below the node. In deterministic scenarios, keeping the structure
below would be beneficial since no new information would be obtained if the Tree is erased
and built again.

2.3.1. How does MCTS search?
MCTS is a Bandit-based method [83]. These methods are a family of sequential decision

problems where one must choose between K arms to pull to maximize a reward (for example,
a slot machine with K arms). As we initially do not know the reward distribution of each
arm, the Exploration-Exploitation Dilemma begins to take place.

The main idea behind this dilemma is that the first rewards obtained in a node may not
represent well how good it is in the long term, and the highest reward could be hidden under
low initial rewards in another node [84].

In this regard, the Regret is defined as the loss due to choosing suboptimal choices instead
of the following the globally optimal policy. To ensure that the optimal choice is not missed,
all actions must have non-zero probabilities of being chosen. Consequently, it is important to
place an upper confidence bound on the rewards observed so far.

Based on this, in [85], the authors proposed policies that associate quantities called upper
confidence index to each machine, as an estimate of the expected reward of each option, and
choose the arm with the highest index value. These policies have changed throughout the
time and currently are not always a function of the reward.

17

Moreover, the authors in [86] show policies with uniform logarithmic regret, this is, the
amount of times that the optimal action is chosen growths exponentially with more simula-
tions, at least asymptocally. In particular, the authors proposed a policy that has finite-time
regret logarithmically bounded for arbitrary sets of reward distributions, with bounded sup-
ports. This policy, named Upper Confidence Bound (UCB), has been used for several years
to choose the action. One of the simplest UCB variations is the UCB1. It states that the
chosen action should be the one that maximizes the following expression:

At = arg max
a

Qt(a) +

√√√√2ln(t)
Nt(a)

 (2.7)

For practical purposes, the authors tuned more finely the bound of Eq.2.7. They used:

Va(Nt(a)) def=
Nt(a)∑

τ=1
Qt(a)2

τ

 1
Nt(a) −Qt(a)2 +

√√√√2ln(t)
Nt(a)

(2.8)

Which is an upper confidence bound for the node’s variance. This expression means that
the variance is, at most, the variance of the sample plus the second term. Then, they replaced
the second term of Eq.2.7 with: √√√√ ln(t)

Nt(a)min(1
4 , Va(Nt(a))), (2.9)

where 1
4 is an upper bound on the variance of a Bernoulli distribution. Finally, the UCB1-

Tuned can be expressed as:

At = arg max
a

Qt(a) +

√√√√ ln(t)
Nt(a)min(1

4 , Va(Nt(a)))
 (2.10)

This expression outperformed the others significantly, however, they could not prove a
regret bound.

Years later, an Upper Confidence Bound for Trees (UCT) was developed [87], whose
expression includes an exploration factor, so the designer can leverage which parts of the
expression influence the most in the action selection:

At = arg max
a

Qt(a) + 2Cexp

√√√√2ln(t)
Nt(a)

 (2.11)

In Eq.2.11, the expression comprises two parts: The first one is the average reward the
action a has delivered historically, and the second part is a fraction between the time that
has elapsed and the number of times that action has been chosen. As the reader can notice,
if a given action has been selected on few occasions, the second term increases its influence.
This part promotes the selection of those actions which do not have the best average reward
but have been less explored, so they may lead to new scenarios, which, in turn, may produce
better rewards. As mentioned, the C exp factor is in charge of weighting these two elements
[88].

In [89], in a Go application, the authors added two new parameters. The first is a p factor
to leverage the second term in Eq.2.10, which by default is 1. This factor leads to the following

18

formula:

At = arg max
a

Qt(a) + p

√√√√ ln(t)
Nt(a)min(1

4 , Va(Nt(a)))
 (2.12)

This factor balances exploitation and exploration similarly to C exp.
The second parameter is the first-play urgency (FPU). It aims to solve the problem of

choosing actions that have yet to be explored, particularly when many actions and nodes far
from the root are rarely visited. The authors assigned an urgency value to nodes to visit them
at least once before exploiting them and updated them according to the UCB1 expression.
Small FPU values proved to increase the performance of their implementation.

It is worth mentioning that most applications of MCTS have been in games with at least
two players; thus, most of its advances and progress aim in that direction. However, some
efforts have been developing a single-player MCTS [90]. In terms of the UCT expression, in
[91], they add a third element in order to “inflate” the standard deviation of unvisited actions
and explore them sooner:

At = arg max
a

Qt(a) + c ·

√√√√ ln(t)
Nt(a) +

√
σ2(a) + D

Nt(a)

 , (2.13)

where D is a constant and σ2 is the action’s reward variance.
With a similar approach, the work in [92] proposed a Best Arm Identification for the

Selection stage for a two-player game, where the confidence on each node’s values is smaller
than a threshold.

A different and simpler option to solve the aforementioned dilemma is the ϵ-greedy rule,
where the node with highest average reward is player with probability 1 − ϵ and a random
node is chosen with probability ϵ. As ϵ is constant, this rule has a linear regret growth over
time, which differs significantly from previous policies. To fix this, a 1

n rate was introduced
to diminish this exploration rate as more plays are made. This change allowed the authors
from [86] to prove a logarithmic bound on the regret.

2.3.1.1. TD Learning in MCTS

As explained, before (Subsection 2.2.1), TD Learning uses bootstrapping to estimate the
current state-value to ultimately allow a better decision-making process. In this regard, the
structure of MCTS allows the implementation of a TD Learning strategy, since each node
represents a state of the system and node’s children can be understood as the state in time
t+1 for a specific node in time t.

Inspired by results where TD methods usually outperform MC methods, in [93] the authors
proposed a general Temporal Difference values in UCT (TD-UCT) framework and made
modifications in the Selection and Backpropagation stages to incorporate TD Learning. The
first change is in the UCT formula where the first term in Eq.2.11 is replaced, and the new
expression to choose a node is defined by:

At = arg max
a

ωT D · VT D(s, a) + (1− ωT D) ·QMC(s, a) + c ·

√√√√ ln(t)
Nt(a)

 (2.14)

19

Then, they proposed three variants that change in complexity, parameters and functiona-
lity. Two depend only on the reward obtained and the distance from the root to the node,
and the last bootstraps from previous estimates.

The first one is the TD-UCT Single Backup, where the authors simplified the TD me-
chanics and removed the estimation of V t(st+1), assuming that all nodes have converged to
the outcome obtained in the Simulation stage. As such, the expression for the estimation of
V (st) is:

V (st)← V (st) + α(λγ)dL · δ1, (2.15)

where dL is the distance to the leaf node, γ and λ lower the importance of future rewards and
δ1 is the temporal difference error, used to adjust each node’s value. In Eq.2.2, it corresponds
to the expression inside the parenthesis. In this case, the TD error is:

δ1 = γP ·Ri − V (leaf), (2.16)

where P is the number of steps in the Simulation stage and V(leaf) is the current value of
the leaf node of the tree.

A second variant is called TD-UCT Weighted Rewards, where they remove the bias V(leaf)
simplify the previous alternative reducing the number of parameters and set ωT D, α and λ
to 1. As consequence, in Eq.2.14, QM C(s, a) disappears from the expression.

Finally, the third proposal uses bootstrapping in its dynamic. After the Simulation stage,
is node’s value is updated as follows:

V (st)← V (st) + α(λγ)dL · γP · δt, (2.17)

where δt is defined as:

δt = Ri + γ · V (st+1)− V (st) (2.18)

In this last equation, it is possible to see the bootstrapping backup, which decreases its
step rate exponentially.

We combined the latter TD-UCT variant with Eq.2.13, obtaining the following expression:

At = arg max
a

ωT D · VT D(s, a) + (1− ωT D) ·QMC(s, a) + c ·

√√√√ ln(t)
Nt(a) +

√
σ2(a) + D

Nt(a)

(2.19)

The authors in the previous article did not offer a rigorous argument on why those mo-
difications performed better or worse. Moreover, most of their article focus on testing their
variants, and they pointed out in the conclusions that a better understanding of the ideas
and dynamics presented there could motivate new MCTS enhancements. In this regard, while
this expression is new and has not been tested on other scenarios, it may help add new tools
to MCTS modifications.

2.3.2. Other modifications
Recently we have discussed some variations for the first stage (Selection). Others include

adding fixed values to unexplored nodes to visit them before exploiting the known nodes.

20

Some variations take advantage of the specific knowledge to include heuristics, and others
consider the maximum value of each node instead of the average for the UCB formula. Many
of these expressions do not hold a rigorous formulation and are used based on trial and error.
The determination parameters’ values, such as C exp and D, follow the same methodology in
several works.

In the Simulation stage, a straightforward and fast implementation is randomly choosing
the actions. The advantage of this choice is that it does not require previous knowledge about
the application, however, the sequence of actions may not be realistic. In this regard, different
improvements have been implemented, such as the introduction of evaluation functions, Re-
current Neural Networks to guide the trajectories [94], pattern recognition to choose paired
actions or domain-specific policies.

Finally, some valuable strategies have been tested in the Backpropagation stage. One of
them is the proposal explained before, which applies the concept of TD in this stage. In [95],
the authors analyzed similar approaches with the idea of incorporating TD in this process.
Strategies based on RL algorithms such as SARSA and Q-Learning [61] are reviewed. Others,
inspired by the idea that rewards found later in the search are more accurate than those found
at the beginning of the process, have tried different variations [96]. In [97], they divided the
number of times N a certain node has been visited, linearly or exponentially, and weighted
each segment in the same way. For example, suppose a node has been visited 300 times,
divided into three segments, and weighted each segment linearly. In that case, the resultant
reward array is the concatenation of the first 100 values, the second 100 values repeated twice
and the last 100 repeated three times.

21

Chapter 3

MCTS-based Method for solving the
EVRP

In this Chapter, we explain how our proposal fulfills our objectives by applying the metho-
dologies in Chapter 2 and how we incorporated the different elements mentioned in Chapter
1 in the implementation.

We first modeled the map where we solved the EVRP as a directed graph D and charac-
terized each node depending on its functionality: depot, charging station and depot. Then
we introduce the energy consumption model of our EV and its parameters. At this point, we
explained how we added uncertainty in the planning by incorporating a stochastic and dyna-
mic traffic variable, which directly affects the velocity in a given edge and, hence, the energy
consumption and travel time. Following, we described the State-Space Model of our EV and
how it changes on every node. Details about the specific implementation of the MCTS are
described and explained, where the Reward function is introduced.

3.1. Dynamic and Stochastic EVRP
Consider the directed graph D = {B ∪ N ∪ CS, A}, where B = {0, 1, . . . , b} are the b

nodes representing depots, N = {b + 1, . . . , b + n} are the n clients to be visited, CS =
{b + n + 1, . . . , b + n + l} are the l charging stations, the set V = {B ∪N ∪ CS} represents
all the nodes in the graph and A all the arcs between non-identical nodes in our graph. This
graph shows one depot, ten clients and four charging stations.

Each node, independently of its category, will have a position in two dimensions (x,y),
and to calculate the distance between two nodes, we compute the euclidean distance. This
distance has an impact on both energy consumption as well as travel time.

Several parameters and variables are introduced in this Section. To facilitate their un-
derstanding and order, those related to the power consumption model are described in the
following table:

22

Table 3.1: Parameters used in our case study.

Description Parameter Value Unit
Mass (EV+driver+load) m 1961 [kg]
Rolling resistance coefficients Cr 1.75 -

c1 4.575 -
c2 1.75 [s/m]

Air mass density ρair 1.2256 [kg/m3]
Frontal area of EV Af 2.3316 [m2]
Gravitational acceleration g 9.8066 [m/s2]
Aerodynamic EV drag coefficient Cd 0.28 -
Road inclination θ 0 [°]
Maximum battery capacity Q 24 [kWh]
SOC upper bound SOC+ 0.95 -
SOC lower bound SOC− 0.20 -

The energy consumption model used in this implementation was obtained from [98] (re-
commended for a detailed discussion), and its parameters were obtained from [99]:

P (t) =
[
ma(t) + mg · cos(θ) · Cr

1000(c1v(t) + c2)

+1
2ρairAf Cdv(t)2 + mg · sin(θ)

]
· v(t)

(3.1)

Table 3.2 summarizes expressions related to kinematics and state transitions.

23

Table 3.2: Parameters for kinematics and state-transition expressions.

Description Parameter Unit
Travel time from node i
to node j

tti,j [min]

Distance from node i
to node j

di,j [m]

Velocity to travel from node
i to node j

vi,j [m/s]

Reference velocity vdefault [m/s]
Trafficdistribution τx -
Trafficdistribution mean µt -
Trafficdistribution standard deviation σt -
Sample from the trafficdistribution τ -
Energy consumption when traveling
from node i to node j

ei,j [SOC]

Charge at Charging Station j cj [SOC]
Charging time at Charging Station j ctj [min]
Service time at Client j stj [min]
Waiting time before serving Client j wtj [min]
Demand at Client j dj [kg]

The estimation of travel time is much simpler as it follows the following expression:

tti,j = di,j

vi,j(t)
(3.2)

Uncertainty can be involved in several stages and be given by different aspects. For exam-
ple, there may be uncertainty in travel time due to unknown and dynamic traffic conditions or
energy consumption because of incorrect vehicle parameters, noisy sensors or other reasons.
In this case, we modeled the uncertainty as an adimensional traffic variable, affecting the
value of the velocity as follows:

vi,j(t) = vdefault

τ(t) , (3.3)

where τ(t) is a sample from τx, which is of the form Xi
iid∼ N(µt(t), σt).

We modeled traffic(t) as a gaussian random variable. If traffic≥ 1, the velocity will be
slower than the set value. This event takes place during rush hours.

Taking into account this model, in Eq. 3.2, the v(t)i,j is no longer a constant value, as
it will change every time it is instantiated. As a result, travel time and energy consumption
will also vary.

With this in mind, the new expressions for the energy consumption model and the travel
time calculation when the EV travels from node i to j are:

24

P (t) =
[
ma(t) + mg · cos(θ) · Cr

1000(c1v(t) + c2)

+1
2ρairAf Cdv(t)2 + mg · sin(θ)

]
· v(t),

(3.4)

and:

tti,j(t) = di,j

vi,j(t)
(3.5)

Our EV’s State-Space Model consists of four states: Current node, Stage-of-Charge (SOC),
time and weight. The transition formulation for the latter three, when traveling from node i
to j and from time k to k+1 is as follows:

x1[k] =x1[k − 1]− ei,j + cj

x2[k] =x2[k − 1] + tti,j + stj + ctj + wtj

x3[k] =x3[k − 1]− dj

(3.6)

3.2. MCTS implementation
3.2.1. Uncertainty

Every node in the Tree contains a state of our system, which is represented by Eq.3.6.
As explained before, the stochastic traffic variable induces stochasticity in the travel time
and energy consumption, which cannot be represented as such in a particular node in our
work. To implement the MCTS, in both Expand and Simulation stages, we took the average
value of the τx. Thus, the average tti,j and ei,j were used to expand the Tree and calculate
the reward. This decision was made in the spirit of planning with the expected value of the
available information. It is appropriate to mention that these average values in the Simulation
stage were used to calculate the reward. Details on the specific implementation of these stages
are given in the following Subsection.

3.2.2. Stages

3.2.2.1. Selection

As was discussed in the previous Chapter, there are no universal criteria for the Selection
stage, and many expressions depend on specific applications or previous knowledge. In this
research, we tested four different expressions and compared the results in terms of rewards
obtained: UCT (Eq. 2.11), Single-Agent UCT (Eq. 2.13), TD-UCT (Eq. 2.14) and Single-
Agent TD-UCT (Eq. 2.19).

3.2.2.2. Expansion

In our work, the possible actions to expand the Tree were all the nodes in the graph,
except those already visited. It is worth mentioning that even actions leading to unfeasible
states were allowed and explored, for example, returning to the depot without visiting all the
clients or reaching nodes which caused a depletion of the battery.

25

3.2.2.3. Simulation

In the Simulation stage, the depot node is available only if all clients have been visited.
The available actions are all those nodes (including charging stations) whose time windows
can be met at the next step (with a tolerance) with a uniform random chance. In other
words, all clients who would be visited late, with a certain probability, are removed. If no
more clients satisfy the first condition, all remaining clients are available to visit. Thus, if
the EV does not visit a client within its time window, it will be visited after visiting clients
within their time windows. This design prioritizes the constraint of reaching clients inside
their time windows. We also included a variation in this stage. Whereas the default strategy
to choose actions is uniformly random, we changed it to a “Nearest Neighbour” strategy. We
implemented this policy to reduce the distance traveled, which is also an important variable
in this problem.

3.2.2.4. Backpropagation

In the last stage, we tested two options to backpropagate the reward obtained at the
previous stage:

1. Updating the average reward of each node as:

Qt(r)← Qt(r) + reward−Qt(r)
Nt(r) , (3.7)

where Qt(r) is the average of all rewards seen by this node, N t is the number of times
this node has been updated and reward is the reward obtained in the specific simulation.

2. Adding to the previous rule, the expresion from Eq.2.17.

3.2.3. Reward
The reward is assigned by evaluating the sequence of actions from the current state at each

step. This is clearly a non-Markovian formulation since it considers the whole history and
not just the current state. In a Markovian setup, which is the norm in MCTS, the evaluation
function in the Simulation stage would only consider the final state to return a value. In this
situation, the Tree could bypass unfeasible nodes or client nodes where its time window has
not been respected.

An illustration of this explanation is found in Fig.3.1.

26

R

Simulation 4

A

CB D

E

H

Simulation 5 Simulation 6

R

A

CB D

E

H

F

R

A

CB D

E

H

F

G

Figure 3.1: Diagram to illustrate which information is represented in reward
R.

In the usual implementation of MCTS, the Simulation stage considers only from the
selected node onwards. For example, in Fig.3.1, continuing the same idea from Fig.2.2, in
Simulation 6, it begins from the current node at this step, which is node A since it is the
first step. Then, it selects nodes B and F, which expands the Tree to create G. In this node,
the Simulation stage would take place choosing actions until reaching a final node H, whose
state is evaluated obtaining a reward R. In this toy example, the reward R does not take into
account the information from states above node G.

To illustrate why this approach is not suitable for our work, imagine each node in this
Tree as a client, if client B was visited late, there is no way of incorporating this information
in the evaluation function, since the Simulation stage starts from node G. On the contrary,
in our Non-Markovian Reward formulation, all the sequence of states from node A is taken
into account for the evaluation. As such, relevant information from upper nodes is taken into
consideration and is reflected in reward R.

Consequently, the agent could obtain apparent higher rewards given that certain clients
have not been visited properly or the EV ran out of battery in a past node. To bring this
valuable information, an option would be to extend our state-space formulation to incorporate
a binary variable to acknowledge if the EV’s battery has crossed the threshold along the path.
While this could work for the battery restriction, it is not suitable for the time-windows
requirement since. Therefore, the whole sequence starting from the initial state in each step
is considered (in the Tree illustrated in Fig.3.1, the initial state would be in node A, in the
first step). This allowed us to consider time-windows violations as well. This formulation
meets the requirements indicated in Chapter 2, hence, an MDP formulation and solution can
be applied.

As mentioned before, the Reward function is critical and very challenging to design [100].
It encourages the agent (in this case, the EV) to pursue or avoid specific actions with the
expectation of not introducing biases. There are several metrics we want to optimize, and a
great advantage of Utility Theory is that it allows us to include all of them in the Reward
function and gives us a tool to change how we weigh each one of these metrics easily.

The terms used in our Reward function and its form can be seen as follows:

27

Table 3.3: Parameters for Reward function.

Description Parameter
Time outside client t’s time window
when the EV arrives

time out

Discount factor γ

Length of the sequence of nodes n
Time the EV returns to the facility time
Distance traveled distance
Price of energy ecost

Amount of SOC charged echarged

Probability of running out of battery risk
Auxiliar constants k
Weights c

Reward = c1 · (distance− k1)− c2 · (time− k2)

− c3 ·
n∑

t=1

√
(time outt) ∗ γt

− c4 · (ecost ∗ echarged − k3)
− c5 · risk,

(3.8)

The risk is obtained by propagating the uncertainty of the energy consumption for each
arc ahead and computing the probability that the minimum SOC threshold is met along the
path. k1, k2 and k3 are constants employed to make it easier to compare different sequences
with similar metrics.

As it is possible to notice, our function encourages the EV to meet the client’s time window
and avoid running out of battery while accomplishing the task of visiting all clients. However,
it also penalizes the distance the EV travels and how much time the EV spends along the
route. Finally, it also penalizes the risk (the probability) of crossing the lower SOC bound. It
is essential to state that all sequences of actions that lead to the violation of a hard constraint,
for example, crossing the SOC threshold, receive a constant high penalty.

It can be argued that this Reward function induces biases as it encourages avoiding long
distances trips, for example. It is not possible to formulate this problem using sparse rewards
since more than one solution can be found that satisfies all the requirements. As such, it
is necessary to include other elements to discriminate between good and best solutions. For
instance, if two solutions met all clients within their time windows and, for the sake of
argument, let us suppose the EV took the same amount of time, paid the same price and
took the same risk, the only metric to choose one solution or the other would be the distance,
which is a continuous variable. Otherwise, the weight for each metric is up to the designer,
and different solutions may arise changing those values.

3.2.4. Best Action
After the criteria to stop the MCTS has been met in a specific node, the best action must

be chosen for the action’s online execution. In other words, after exploring the Tree, an action
is selected for the EV to actually transit from one to another. We tested two criteria for this

28

purpose: max-visit and two-phase. The former is widely used and is more robust, while the
latter was tested in a routing problem, given the nature of the rewards (Chapter 2). After
the execution of this action, a new node is reached and the search continues.

To execute this chosen action, we created a Step function. This function takes place in
the second rectangular block in Fig.2.3. Unlike the Simulation stage, where the average value
from the trafficdistribution is used to calculate the reward, here a random sample from τx is
used to compute the velocity, travel time and energy consumption in the transition from one
state to the other. Consequently, executing the chosen action may lead to a different state
from what was expected. These new outcomes replace the previous states’ values in the node
and, depending on how different the execution of the action was compared to the original
values, the planning is reset, erasing all nodes onwards and recreating the Tree.

After the Step function has been executed, the EV moves from the initial node to the
best child and all the search continues from this node. For example, in Fig.3.1, if after six
simulations the decision-maker chooses node B as the best child, this would be the initial
node from that moment on. For instance, now the Simulation stage would consider all nodes
starting from node B to evaluate the sequence and obtain the reward R. As can be imagined,
nodes C and D will no longer be explored and can be erased to save computational resources.

Our implementation also includes the option to wait. If the EV arrived before a client’s
time window opened, with a tolerance, it had to wait until the time window began. Other-
wise, it delivered the package. This action is also included in the Expansion and Simulation
stages.

To summarize, the algorithm can be shown as follows:

29

Algorithm 1 Monte Carlo Tree Search
Input : Initial State, Number of simulations N sim, Maximum computation time tmax,

exploration factor C exp, standard deviation inflation factor D and TD factors ωT D, α, λ
and γ.

Output: Best action.
1: create r0 from state s0
2: while r0 is not terminal state do
3: A0 ← BestAction(r0)
4: s0 ← Step(s0, A0)
5: create r0 from state s0
6: function BestAction(s0)
7: while Ns ≥ 0 AND computational time ≤ tmax do
8: rl ← TreePolicy(r0)
9: reward← Simulation(rl)

10: Backpropagation(rl, reward)
11: return BestChild(r0, c, D)
12: function TreePolicy(r)
13: while r is not terminal do
14: if r not fully expanded then
15: return Expand(r)
16: else
17: r ← BestChild(r, c, D)
18: return r
19: function Expand(r)
20: choose a ∈ untried actions
21: add a new child r′ to r
22: return r′

23: function BestChild(r, c, D, ωT D)
24: At = UCT-variant(s)
25: return At

26: function Simulation(s)
27: while s is not terminal do
28: choose a ∈ untried actions to get the nearest node.
29: s = Move(s,a)
30: Reward← reward for chosen sequence
31: return Reward
32: function Backpropagation(r, reward, α, γ, λ, d, l)
33: while r has a parent do
34: Nt(r)← Nt(r) + 1
35: Qt(r)← Qt(r) + reward−Qt(r)

Nt(r)
36: δ = reward + γ · Vt+1(r)− Vt(r)
37: Vt(r)← V (r) + α((γ · λ)d) · (γl) · δ
38: r ← parent of r

30

Chapter 4

Case Study: Electric Vehicle Fleet for
delivery purposes

In this Chapter, we explain the specific case study in which we tested the methodology
explained in the previous Chapter. In the first part, specific details about the environment
and the map are presented, such as the traffic and the characteristics of each type of node.
Then, we present and discuss which results are valuable for our purposes and how they were
obtained.

4.1. Map
As mentioned earlier in this research, we aim to solve the EVRP with a stochastic and

dynamic map. Stochasticity was introduced by including a traffic variable, whose effects
on travel time, energy consumption and velocity are explained in the previous Chapter. To
account for dynamism, in this work, the µtraffic(t) depends on the hour of the day, and its
value is pictured in Fig. 4.1 with σtraffic value equal to 0.1. As a result, particularly in rush
hours, it can be very sensitive to which hours the EV departs from the depot and travels to
each node. In this case, the EV departs from the depot at 8 am.

The traffic values were calculated to obtain the same velocity dynamic from [35]. These
values are obtained from real data from a busy traffic area in Santiago, Chile.

31

0 200 400 600 800 1000 1200 1400
Time of the day [min]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Tr
af

fic

Figure 4.1: Trafficdistribution as a function of time. The shaded zone repre-
sents two standard deviations.

In the case of the velocity, the velocitydefault was set to 40
[

km
h

]
. This value was divided

by the traffic value accordingly.

Besides the location, nodes have different characteristics depending on their type. Depots
and Path nodes only have a location. Client nodes have these:

1. Demand: Weight of the package the client must receive.

2. Time Window: Range of time when the client must be visited.

3. Service time: Amount of time each EV will remain in the node to deliver the package.

Charging Stations have:

1. Capacity: It restricts how many EVs can charge simultaneously.

2. Technology: It can be slow, normal or fast. Each has a specific price and affects the time
the EV remains in the node.

In this regard, some works implement a full charge every time an EV goes to a charging
station [101], which is suboptimal if, for example, there is only one client left to be visited and
is near to both the EV current position and the final depot. In this work, we calculated the
amount of charge as a function of the number of remaining clients and the energy consumption
among those.

For example, let us suppose there are three clients yet to be visited (A,B and C), and let
us assume a deterministic energy consumption for every pair: ec(A,B) = 1 [kWh], ec(A,C) =
2 [kWh] and ec(B,C) = 3 [kWh]. The average energy consumption among clients is 2 [kWh].
Finally, the charge the EV will get is:

charge = (nclients) · eclients (4.1)

32

In this example, the EV would get a charge of 8 [kWh]. In our implementation, the sampling
to calculate this energy consumption is uniformly random. Now, this expression could lead to
charges of 0.15 or 0.1 [SOC], which is unrealistic if we consider the time it takes to arrive at
a charging station and the whole procedure in real life. Consequently, to solve this issue, we
set 0.3 [SOC] as a minimum amount to charge every time an EV goes to a Charging Station.
If the Charging Station’s technology is slow, the EV charges up to 0.95 [SOC].

We used the same non-linear charging time curve as [35].

0 20 40 60 80 100 120
Time [min]

0

20

40

60

80

100
So

C

Slow
Normal
Fast

Figure 4.2: Charging functions depending on Charging Station’s technology.

The price for charging is $ 0.169 per [kWh] [102] multiplied by a factor depending on the
type of technology: 1 for slow, 2 for normal and 3 for fast. Slow charging stations always
charge the battery up to 95 %.

Also, in the battery, as previously said, it is recommended to avoid extreme charge levels.
As our work solves the problem for “one run” (thus, the battery’s State-of-Health is not
affected significantly), it is pertinent to discuss concerns about our decision policy in the
long run. Considering this information and previous works, we have set an upper and lower
boundary for the maximum and minimum charge allowed in each EV, being 95 % and 20 %,
respectively.

In Fig. 4.3, we show the map where we tested our methodology:

33

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

Figure 4.3: Graph. The blue node represents the depot, the yellow ones the
clients and the green ones the charging stations.

The parameters of each node are in Table 4.1.

Table 4.1: Parameters of each node type. The depot is represented as two
nodes in the same location for implementation purposes.

Node Pos X [km] Pos Y [km] Type Demand [kg] Time Window [min] Service Time [min] Technology
a 0.0 0.0 Depot - - - -
b -13.67 6.0 Client 10 [636.17 - 793.61] 12.64 -
c -1.91 -11.57 Client 60 [707.78 - 875.44] 11.2 -
d 4.55 -11.46 Client 80 [621.2 - 804.27] 12.06 -
e 11.46 5.42 Client 30 [690.58 - 891.09] 8.57 -
f -5.78 5.75 Client 50 [543.33 - 727.99] 11.0 -
g -9.73 -3.3 Client 40 [861.48 - 1039.28] 9.35 -
h 0.0 0.0 Depot - - - -
i 9.48 12.32 Client 30 [812.19 - 991.02] 12.62 -
j -14.85 2.44 Client 30 [626.22 - 785.13] 11.3 -
k -4.12 -6.89 Client 50 [959.79 - 1143.95] 11.32 -
l 13.68 -11.48 Client 60 [742.99 - 899.4] 10.59

CS1 13.31 -2.86 CS - - - Slow
CS2 1.72 2.47 CS - - - Normal
CS3 -8.85 4.21 CS - - - Fast
CS4 -13.57 -12.74 CS - - - Normal

4.2. Best route and special scenarios
To choose the best route, we ran simulations doing a parameter sweep with a fixed reward

function. These parameters influence the UCT formula (Eq.2.13) and, therefore, change the

34

obtained sequence. We defined the best route as achieving the maximum reward obtained
among all the rewards obtained in the simulation stage, this sweep.

As discussed in Chapter 2, different UCT variants may improve the search and results
depending on the application, and there are no universal methods. With this in mind, we
ran this parameter sweep for the four different UCT expressions and with the two criteria to
select the action to execute, i.e., eight different configurations were tested to find which was
more suited to our work in terms of convergence and rewards.

MCTS is a real-time algorithm, and since this work does not aim to research the effi-
ciency of our implementation, computational time is of the essence. Thus, after choosing the
best route, we studied which parameters allowed us to reach this solution minimizing the
computational effort.

As every iteration has stochasticity, different results may arise even with the same pa-
rameters. To study the consistency of the results, we ran our implementation with fixed
parameters several times and chose those which consistently achieved the best sequence.

Then, we tested our algorithm to know if it could adapt the planned route to unexpected
and different scenarios: obsolete planning, arc blocked, different initial guess and pick-up.

Finally, we tested our algorithm in a multi-agent case, a scenario where there is a fleet
of EVs (instead of one) to fulfill EVRP’s requirements. Particularly, we implemented our
method with two EVs, however, it can be scaled to n.

As the computational cost increases exponentially with more EVs (since the search space
rises exponentially), we tested the different scenarios and carried out a detailed analysis of
our approach in the single-agent case (one EV). Notwithstanding this, the functionality can
be extended to the multi-agent case, as will be discussed later.

4.3. Contingency management and different scenarios
After choosing the best route and selecting those parameters which minimize the compu-

tational cost, we wanted to test how this method deals with unexpected scenarios and new
information changes the route, given its relevance in real applications where contingency
management is of utmost importance.

If the difference between the planned and actual states is significant, the whole schedule
is obsolete since its roots are no longer comparable. In this case, the initial plan is removed
and the search is reset.

At this point, it is important to make clear the difference between update and reset the
route. As explained in the previous Chapter, after the best action’s execution, the new current
node in the Tree (the one that represents the actual state) updates the EV states’ values
according to the outcome of the transition (which depends on the sample obtained from the
trafficdistribution). It is worth to recall that all nodes are created using the expected value of
the trafficdistribution. After the actual execution of the action, the obtained sample could be
different from the one used to create the node, and it is with this new sample that the EV’s
states are changed, which changes the nodes too as consequence (as the node includes the
EV’s states).

It is also relevant to remember that the Simulation stage considers from the current node
onwards (which has been updated according to the action’s execution outcome).

With this in mind, update refers to new simulations that consider now the new updated
state. On the other hand, reset refers to an option where the Tree below the specified node
is erased and built again. The difference between choosing an option the other relies on the

35

discrepancy between the expected states’ values and the actual ones, after the best action’s
execution.

Besides, in this Section the effect of an initial guess of the solution is presented, as this
implementation can help to study the robustness of our work. In the following, these scenarios
will be explained.

4.3.1. Obsolete Planning
The first scenario occurs when the execution of an action to travel to the next node

results in a very different outcome from the initial plan in terms of travel time or energy
consumption.

We provoked a 20 % drop in the EV’s battery SOC to induce this scenario. As a result,
the difference between the planned SOC at the destination node is significantly (arbitrarily)
different from the current SOC, and the update is triggered.

4.3.2. Arc blocked
The second scenario was a variant of the Canadian Traveler Problem [103]. It takes place

when the EV has decided on the next node to visit, but it is impossible to reach it along the
planned arc and must choose an alternative route, simulating a blocked road. To model this,
we created a subgraph between the initial and the destination node.

To create this subgraph, we placed eight new Path nodes. The purpose was to force the
EV to visit these nodes before reaching the next client. The coordinates of these nodes were
calculated using the central point between the two nodes and sampling a value from a uniform
distribution with limits [central pointx±radio] and [central pointy±radio], where radio was
the euclidian distance from the central point to one the planned node to visit. A trivial
solution could be to visit one node and then the next client. To prevent this, we restricted
the edges in this subgraph, so that each node is connected to at most two other nodes.

This subgraph offers different routes between these two nodes and represents a higher
energy consumption and time traveling than the original blocked path. As a result, the EV
arrives at the destination node significantly later and with less energy than expected. Similar
to the previous case, this also triggers an update.

4.3.3. Pick-up
A third scenario to test our approach aims to break the best solution found early by adding

a new hard restriction. Given the best route and the order in which each client is visited,
the EV must visit a specific node 2 before node 1, whereas in the best solution found,
the order would be 1-2. We set this new hard restriction and studied how the algorithm
adapted. With this new restriction, any sequence which broke the constraint was awarded
the maximum penalty. Therefore, the number of unfeasible sequences increases significantly,
and a trajectory with a wrong order is penalized as much as running out of battery.

4.3.4. Initial guess
We studied how an initial guess changes the final solution regarding computational time

and the reward obtained. We provided three initial guesses for a deeper analysis: best route,
unfeasible route and near-to-best route. These options were chosen to study convergence and
how it can correct the search when it starts with an unfeasible initial guess and a near-to-best

36

one.
To initialize these guesses, an entire branch in the Tree was created, where each node was

initialized with the following values:

1. Number of visits = 1

2. Average reward = -0.2

3. Value = 0

4. Standard deviation = 0.5

We ran 30 iterations per initial guess and studied how the final outcome and the compu-
tational time changed with every guess. Finally, we implemented a Wilcoxon Signed-Rank
Test to find significant differences in computational time and a Proportion Test to conclude
differences in the outcome.

4.4. Multi-agent: Fleet case
When there is more than one EV, different issues appear not only on the routing side but

also in the algorithm’s architecture. For the sake of an example, let us suppose that in the
single-agent scenario (one EV) if we are at the depot, we have four nodes available to choose
from: A, B, C, and D. When we have two or more EVs, the possible states are not only those
four options but a combination of those, and in the case of two EVs, the number of possible
states rises to 12. When both EVs are in the depot, there are duplicated actions, which were
removed to reduce the computational effort of the algorithm. For example, if both have the
same past (in this case, both are in the depot), an action tuple (Node 1,Node 2) is equivalent
to (Node 2,Node 1).

New constraints arise in this case: EVs cannot visit the same client at any moment, the
charging station capacity must not be exceeded and all EVs must visit at least one client.

There are some strategies to implement the multi-agent case in MCTS. One of them states
that each agent should find a route without communication with the other agent [104]. While
this strategy may fit zero-sum games, it would not be helpful in our case since both agents
(EVs) should cooperate to avoid interfering with one another. The former approach would
suit a competitive scenario where, for example, delivery trucks compete with each other to
visit more clients or the most profitable. Another method was shown in [105], where they
implemented a cooperative approach. In our case, we will prefer the latter.

A procedure presented in [106] was implemented, where the multi-agent actions are trans-
formed into a single-agent structure, allowing a more straightforward implementation and
treatment. Each agent executes independent actions, satisfying the new constraints, and all
agents fully know the information.

In our work, now each node will include the states of all the EVs. As consequence, after
the computational budget has been met, the best action will not be a single one but a tuple
of actions, each one to be executed by each EV, respectively. As such, each node will now
have 2 or more EVs and their respective states. A simple diagram to illustrate this approach
with 2 EVs can be seen as follows:

37

Single-agent MCTS

A

CB D

E

Multi-agent MCTS

A|A

C|DB|C B|D

D|E E|D

Figure 4.4: The left side represents a single-agent implementation. On the
right side, the multi-agent case, where now the actions are a tuple instead
of singular elements.

With this formulation, the decision-making process is similar to the single-agent case,
ultimately, the node which maximizes a certain metric will be chosen and its associated tuple
of actions will be executed with the Step function for each EV.

In this formulation, the Expand stage include all the tuples of combinations of actions
except those tuples where both EVs visit the same client. In the Simulation one, the idea of
visiting those clients whose time window can be met, as described earlier, changes, as now
one EV can visit a client that would make some other clients be visited late if the other EV
visits these last clients. In this regard, the number of possible actions increases and, thus, the
computational effort. In other words, in the multi-agent case, the available nodes are those
combinations of actions whose execution does not leave any client with its time window to
be met (with a tolerance) with uniformly random chance. To choose the action-tuple, the
first EV will select an action similarly to the single-agent case, and this action will not be
available to the remaining EVs if it reaches a client. Then the second EV chooses an action
an so on until all EVs select the action to return to the depot.

The Reward function changes as we now have more EVs. The time, distance and echarged

are now the sum of these metrics for each EV. The penalties due to time outt are calculated
separately for each EV and then added, and the risk is the maximum risk among all the EVs,
computed as explained before. These changes are expressed in Eq. 4.2. The Backpropagation
stage remains just like before as its structure does not change with the number of EVs.

Reward = −c1 · ((
nEV∑

EV =1
distance(EV))− k1)

− c2 · ((
nEV∑

EV =1
time(EV))− k2)

− c3 ·
nEV∑

EV =1

n∑
t=1

√
(time outt(EV)) ∗ γt

− c4 · (ecost ∗ ((
nEV∑

EV =1
echarged(EV))− k3))

− c5 · max
EV ∈EV s

risk(EV)

(4.2)

38

Due to computational resources, and as the features of this work have been satisfactorily
implemented in the single-agent (whose extension to multi-agent is discussed in the following
Chapters), the multi-agent scenario will not be tested as detailed as the single-agent.

39

Chapter 5

Results

In this Chapter we present the results obtained from applying our methodology to the
described EVRP. They are product of an implementation in Python 3.7.11 running on a Dell
Latitude 5490 with Windows 10 Pro and Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 2112
Mhz, 4 Core(s), 8 Logical Processor(s) with 8GB RAM.

5.1. Best solution and hyperparameters’ selection
In this Section are shown the results from testing different Selection’s strategies and a

combination hyperparameters, to obtain a variety of solutions (and their associated rewards).
Among these, the best solution was the one that elicited the highest reward. Finally, the
hyperparameters that allowed the algorithm to consistently find the solution minimizing the
computational time, were selected as the best setup for this case.

The reward function’s parameters can be seen in Table 5.1.

Table 5.1: Parameters for Reward function in single-agent case.

Description Parameter Value
Initial Reward for accomplishing the objective High Reward 0
Penalty for violating hard constraints High Penalty -1
Distance penalty c1 0.000002
Time penalty c2 0.0001
Out of window penalty c3 0.005
Energy penalty (cost and charge) c4 0.015
Risk penalty c5 0.15
Auxiliar constant 1 k1 100000
Auxiliar constant 2 k2 1000
Auxiliar constant 3 k3 2.5
Discount factor γ 0.95

The constants k are minimum boundaries obtained experimentally and help differentiate
sequences with metrics.

We first made a sweep of hyperparameters’ values with four different UCT variants and
two best-child criterions using the values in Table 5.2. The values for ωT D, λ, γ and α were

40

0.5, 0.5, 0.5, and 0.01, respectively.

Table 5.2: Hyperparameters used in the sweep run for the single-agent case
with different UCT variants the best-child options.

Hyperparameter Values
Nsim 50, 100, 200, 300, 400, 500, 1000, 2000
Cexp 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.65, 0.75, 0.85, 1.0

D 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 2.5

The result as a function of the number of simulations can be seen as follows:

50 100 200 300 400 500 1000 2000
Nsim

0.6

0.5

0.4

0.3

0.2

0.1

Av
er

ag
e

re
wa

rd

Maximum reward
UCT TD Single-Agent Two-Phase
UCT TD Single-Agent Max-Visit
UCT Single-Agent Two-Phase
UCT Single-Agent Max-Visit
UCT Two-Phase
UCT Max-Visit
UCT TD Two-Phase
UCT TD Max-Visit

Figure 5.1: Average reward obtained as a function of Number of Simulations
with different UCT variants the best-child criteria. The shaded area repre-
sents the standard error.

It can be appreciated in Fig.5.1 how the average reward obtained increases with more
simulations. This effect is particularly notorious with the UCT with both best-child options.
All UCT variations with the Two-Phase standard performed better than those with Max-
Visit.

The proposed UCT TD Single-Agent Two-Phase approach performed better than any
other with 2000 simulations, slightly better than UCT Single-Agent Two-Phase. Interes-
tingly, it can be noted how with few simulations, higher rewards, on average, were obtained
(compared to rewards obtained with 400 simulations). Then it drops, and from 500 simula-
tions onwards, it consistently improves. Also, UCT TD outperformed UCT Single-Agent in
all cases. Therefore, from now on, we used the best setting based on Fig.5.1 to obtain the
following results: UCT TD Single-Agent with the Two-Phase criterion.

To have a first impression of how the implementation’s performance changed depending
on values C exp and D, we present the following figure:

41

Figure 5.2: Reward obtained as a function of Number of Simulations and
C exp and D factors.

From Fig.5.2, it is possible to observe a tendency in the results. Higher rewards were
obtained as the number of simulations increased in one axis, decreasing as the value of C exp

and D increased.
The highest reward was obtained with different combinations of hyperparameters. With

a similar idea of obtaining the best UCT expression to maximize the reward, now we looked
for the best set of hyperparameters that minimized the computational effort.

The following figures present how the different hyperparameters affected the computatio-
nal time.

42

50 100 200 300 400 500 1000 2000
Nsim

0

50

100

150

200

250

Ti
m

e
[s

]

(a) Time to compute as a function of the Number of
Simulations.

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.650.750.85 1.0
Cexp

0

50

100

150

200

250

Ti
m

e
[s

]

(b) Time to compute as a function of C exp.

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1.0 2.5
D

0

50

100

150

200

250

Ti
m

e
[s

]

(c) Time to compute as a function of D

Figure 5.3: Time to compute as a function of hyperparameters, with stan-
dard error.

Then, based on Fig. 5.3, it is clear that N sim has the most significant influence in compu-
tational time.

Although the highest reward (-0.063308) was obtained even with 100 simulations, it could
have been luck. Consequently, we restricted N sim to 500, as is the number of simulations
where the search consistently started to improve with more simulations. The first set of
hyperparameters for this consistency test were the lowest values which found the optimal
sequence: 0.025 for C exp and (0.75;1) for D. As 0.75 is near the top of our values with the
D hyperparameter, and it was shown how higher values increased the computational time
(Fig.5.3), we continued for the next set of values that elicitated the highest reward, with lower
hyperparameters’ values. These were: 0.05 for C exp and (0.05;0.1;0.15;0.2;0.25;0.3;0.4;0.5) for
D.

Notwithstanding the above, we tested the consistency on both setups and included more
values in between to consider the sensibility of the search hyperparameters. We ran each
configuration ten times and highlighted those hyperparameters-pairs that allowed us to find
the best solution all the times, which can be seen in the following Table. In the name of
completeness, the results for the first set of hyperparameters can be found in the Appendix
(B.1).

43

Table 5.3: Consistency results for the second set of hyperparameters.

CexpHyperparameters
0.025 0.05 0.075

0.075 -0.215161 -0.222943 -0.075961
0.1 -0.208501 -0.089738 -0.063308

0.125 -0.212821 -0.069656 -0.063308
0.15 -0.162526 -0.063308 -0.063308

0.175 -0.126787 -0.063308 -0.063308
0.2 -0.145417 -0.076004 -0.063308

0.225 -0.126787 -0.063308 -0.063308
0.25 -0.126787 -0.063308 -0.063308

0.275 -0.126787 -0.063308 -0.063308
0.3 -0.126787 -0.063308 -0.063308

0.325 -0.126787 -0.063308 -0.063308
0.375 -0.088699 -0.063308 -0.063308

0.4 -0.063308 -0.063308 -0.063308
0.425 -0.063308 -0.063308 -0.063308
0.475 -0.063308 -0.063308 -0.063308

0.5 -0.063308 -0.063308 -0.063308
0.525 -0.063308 -0.063308 -0.063308
0.725 -0.063308 -0.18484 -0.200348
0.75 -0.063308 -0.139063 -0.155168

D

0.775 -0.063308 -0.167501 -0.20397

From these tables and the figures showing the computational effort, we used 500 N sim,
0.05 for C exp and 0.15 for D as the best combination setup.

Finally, the nominal sequence of actions is:
a,f,CS3,b,j,c,d,l,CS1,e,i,g,k,h, whose routing, SOC, time and weight evolution can be repre-
sented in Figures 5.4 and 5.5:

44

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

Figure 5.4: Routing solution for one agent.

45

a f CS3 b j c d l CS1 e i g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(a) SOC at the arrival to each node. The SOC dis-
tribution refers to the distribution of SOC with two
standard deviations, given the SOC before departing
from the last node. The light blue dots represent the
SOC when the EV arrives at the node.

a f CS3 b j c d l CS1 e i g k h
Nodes

500

600

700

800

900

1000

1100

1200

Ti
m

e
[m

in
]

Arrival time
Nodes time window

(b) Time at the arrival to each node.

a f CS3 b j c d l CS1 e i g k h
Nodes

1500

1600

1700

1800

1900

To
ta

l E
V

we
ig

ht
 [k

g]

(c) Weight at the exit of each node.

Figure 5.5: EV’s states evolution.

This solution took 48.37 [s], which includes the online execution of the best action en-
countered in every state.

5.2. Contingency management and different scenarios
This section shows the results when an unexpected event in the route forces the agent to

change the initial plan. We arbitrarily set the threshold to trigger the reset in the Tree if
the state after the best action’s execution was 5 % different or more from the expected one
(before the execution). In other words, if the difference between the EV’s SOC or time was
5 % or more different to what was expected, the Tree was reset.

It is also shown in this Section the results when a client must be visited before another
in order to fulfill the requirements (Pick-up variation), and the effect of initializing the Tree
with different initial guesses.

5.2.1. Obsolete Planning
As explained in the previous Chapter, in this case there is a sudden drop in the battery’s

remaining energy, which may force the EV to change the route. A first case is when the EV

46

does not update the initial planning, which leads to a violation of the battery’s threshold
condition and the operational requirements are not met, nor exists the possibility to follow
a suboptimal route. On the contrary, if the agent changes the initial planning (by resetting
the Tree), acknowledging the new information, the EV includes a new charging station in the
schedule. The SOC evolution for each case is represented in the following figures:

a f CS3 b j c d l CS1 e CS2 i g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(a) SOC at the arrival to each node. When the plan
is obsolete and the agent did not reset the route, the
EV goes to charge right after node e.

a f CS3 b j c d l CS1 e i CS2 g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(b) SOC at the arrival to each node. When the plan
is obsolete and the agent resets the route, the EV
goes to another Charging Station after node i and
accomplishes the mission.

a f CS3 b j c d l CS1 e i g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(c) SOC at the arrival to each node. When the origi-
nal plan was obsolete and the agent followed it, the
EV violated the hard constraint on the battery’s lo-
wer threshold.

Figure 5.6: EV’s SoC evolution in an Obsolete Planning scenario.

The reward for each of these cases was -0.138553, -0.092388 and -1 (the EV crosses the
battery’s lower threshold, violating a hard constraint), respectively.

The route found in the second case can be seen as follows:

47

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

Figure 5.7: Routing solution in an Obsolete Planning scenario.

5.2.2. Arc blocked
An alternative route requires more time and energy than the original route demands. In

terms of SOC, the final result is similar to the previous case, where the difference between
the planned SOC and the actual SOC is significantly different and may trigger a reset in the
Tree. However, the Arc blocked scenario also affects the time’s state. In conclusion, a reset
in the Tree may also be triggered by a significant difference between the planned time and
EV’s current time after the action’s execution.

In this subgraph, a routing problem is also carried out. Although much simpler, it also
required Reward function’s values. Those are detailed as follows:

48

Table 5.4: Parameters for Reward function in Arc Blocked case to solve the
subgraph routing.

Description Parameter Value
Initial Reward for accomplishing the objective High Reward 0
Penalty for violating hard constraints High Penalty -1
Distance penalty c1 0.0001
Time penalty c2 0.01
Out of window penalty c3 0.0045
Energy penalty (cost and charge) c4 0.001
Risk penalty c5 0.15
Auxiliar constant 1 k1 24000
Auxiliar constant 2 k2 670
Auxiliar constant 3 k3 0
Discount factor γ 0.95

The following figures show how this alternative route increases the time and energy the
EV spent traveling from node CS1 to node e. The final time and energy remaining are
significantly lower and higher, respectively, from the initial plan.

a f CS3 b j c d l CS1 e i CS2 g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(a) SOC at the arrival to each node. The expected
remaining SOC is approximately 9 % higher than the
actual one.

a f CS3 b j c d l CS1 e i CS2 g k h
Nodes

500

600

700

800

900

1000

1100

1200

Ti
m

e
[m

in
]

Arrival time
Nodes time window

(b) Time at the arrival to each node. The expected
arrival time to node e is approximately 10 minutes
less than the actual one.

Figure 5.8: EV’s SOC and time evolution in an Arc blocked scenario.

In this scenario, all clients remaining are still visited within their time windows.
Similarly to the previous event, the EV went to charge one more time after charging

in CS1, instead of following nodes i, g and k, as the initial best solution guided. This was
caused by the change in the energy consumption due to the subgraph between nodes e and
i. Among the possible solutions, three alternative routes could have been followed: charging
in CS2 after node e, charging in CS2 after node i or following the original best solution.
Unlike the previous scenario, where the best plan is unfeasible, in this case it can be followed,
however, its associated reward is -0.131768, whereas charging in node CS2 after node i, as
shown in Fig.5.8.b, leads to a reward of -0.09406. Finally, the reward for charging in CS2
after node e is -0.140966.

49

The routing for this case is shown below:

a

b

c d

ef

g

h

i

j

k

l

CS1

c1

c2

c3

c4
c5

c6c7
c8

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

c1

c2

c3

c4
c5

c6c7
c8

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

c1

c2

c3

c4
c5

c6c7
c8

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

c1

c2

c3

c4
c5

c6c7
c8

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

c1

c2

c3

c4
c5

c6c7
c8

CS2
CS3

CS4

Figure 5.9: Routing solution in the subgraph case.

The subgraph and the routing can be seen in Fig. 5.10.

a

b

c d

e
f

g

h

i

j

k

l

CS1

c1

c2

c3

c4

c5

c6
c7

c8

CS2

CS3

CS4

a

b

c d

e
f

g

h

i

j

k

l

CS1

c1

c2

c3

c4

c5

c6
c7

c8

CS2

CS3

CS4

a

b

c d

e
f

g

h

i

j

k

l

CS1

c1

c2

c3

c4

c5

c6
c7

c8

CS2

CS3

CS4

a

b

c d

e
f

g

h

i

j

k

l

CS1

c1

c2

c3

c4

c5

c6
c7

c8

CS2

CS3

CS4

a

b

c d

e
f

g

h

i

j

k

l

CS1

c1

c2

c3

c4

c5

c6
c7

c8

CS2

CS3

CS4

Figure 5.10: Subgraph routing. Gray edges show the arcs in the subgraph
and the chosen route is magenta.

50

5.2.3. Pick-up
This scenario demands the EV to visit a client in a different order than what the best stra-

tegy dictates. This changes the structure of the problem since this new restriction influences
the planning. The search is significantly more complex because of the new hard constraint.
As such, previous exploration values obtained from the consistency run cannot be directly
applied here. With this in mind, we ran 10000 simulations with the highest values used before
to explore: 1.0 and 2.5 for C exp and D, respectively.

In this scenario, the obtained reward is strictly below the maximum reward obtained
before since this new restriction directly affects the original schedule and the previous optimal
solution is no longer feasible. In particular, it increases the distance traveled and time spent.
This results are presented in Fig.5.11:

In this case, we set the node j to be visited before node b. The results can be seen in the
following figures:

a f j b CS3 c d l CS1 e i g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(a) SOC at the arrival to each node.

a f j b CS3 c d l CS1 e i g k h
Nodes

500

600

700

800

900

1000

1100

1200

Ti
m

e
[m

in
]

Arrival time
Nodes time window

(b) Time at the arrival to each node.

Figure 5.11: EV’s SOC and time evolution in a Pick-up scenario.

It can be seen in these two figures how the constraints are satisfied: visiting clients within
the time windows and battery charge above the minimum threshold.

As the pick-up implies picking up a load, the weight increases at the node instead of
diminishing. This situation is illustrated in the following figure:

a f j b CS3 c d l CS1 e i g k h
Nodes

1600

1650

1700

1750

1800

1850

1900

1950

To
ta

l E
V

we
ig

ht
 [k

g]

Figure 5.12: Weight after visiting the respective nodes.

The routing with pick-up restriction is shown below:

51

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

Figure 5.13: Routing solution with pick-up restriction.

5.2.4. Initial guess
We ran 30 executions with the hyperparameters mentioned above (0.05 and 0.15 for C exp

and D, respectively) with four different initial solutions: no solution, best solution, unfeasible
solution and near to best solution. The unfeasible led to crossing the battery threshold, thus,
it is tagged as unfeasible (and the reward is the highest penalty). The near to best solution
swapped the last two clients (g and k).

With 500 simulations, out of these 30 executions, 30 converged to the best solution in the
no initial solution case. The same result was obtained when the best solution was given as
input. The median time to compute each execution was 49.55 [s] and 36.52 [s] for each case. A
Wilcoxon Signed-Rank Test showed a significant difference in this condition (p ≤ 0.000174),
i.e., the best solution as input significantly reduces the computational time necessary. Com-
paring the computational time in near to best solution with both no initial solution and
best solution, results show a significative time reduction for both cases (p ≤ 0.000174 and
p ≤ 0.0023, respectively).

When an unfeasible solution was the input, 0 out of 30 executions converged to the best
solution, however, it converged to a feasible solution in 30 out of 30 executions, visiting a
near Charging Station to avoid running out of battery.

Another result is the reduction in the number of simulations required with the same
exploration hyperparameters. With 400 simulations, when no initial guess was given, 5 out
of 30 executions converged to the best sequence. On the contrary, when the best solution
is the input, 30 out of 30 converged to the best answer. A proportion test showed that this
difference is significant (p ≤ 0.001).

Finally, when the near to best solution was the input, 30 out of 30 executions converged
to the best solution. When comparing proportions with the 500 simulations case in near to

52

best solution and no solution, the proportion test showed (p ≥ 0.999), i.e., no significant
difference was found.

5.3. Multi-agent: Fleet case
This section shows the results of applying our methodology to a case where two EVs are

available to fulfill the mission.
Due to the computational cost of this formulation, the results are less detailed than the

single agent, where other considerations and capabilities of our algorithm were tested.
In this case, the reward function’s parameters and their values are in table 5.5.

Table 5.5: Parameters for Reward function in multi-agent case.

Description Parameter Value
Initial Reward for accomplishing the objective High Reward 0
Penalty for violating hard constraints High Penalty -1
Distance penalty c1 0.000001
Time penalty c2 0.0001
Out of window penalty c3 0.004
Energy penalty (cost and charge) c4 0.0012
Risk penalty c5 0.15
Auxiliar constant 1 k1 105000
Auxiliar constant 2 k2 1650
Auxiliar constant 3 k3 0
Discount factor γ 0.95

We also ran a sweep in hyperparameters for this case. However, we fixed the number of
simulations to 10000. The hyperparameters’ values are summarized in Table 5.6:

Table 5.6: Hyperparameters used in the sweep run for the multi-agent case.

Hyperparameter Values
Cexp 0.0, 0.25, 0.5, 0.75, 1.0

D 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

The rewards obtained for each configuration are presented in the following table:

53

Table 5.7: Rewards obtained in hyperparameters sweep with 10000 simula-
tions. Multi-agent case.

CexpHyperparameters
0 0.25 0.5 0.75 1.0

0 -0.1524693 -0.0554803 -0.0732026 -0.0732026 -0.0827991
0.5 -0.1463156 -0.0554803 -0.0732026 -0.0732026 -0.0732026
1.0 -0.0554803 -0.0554803 -0.0732026 -0.0732026 -0.0732026
1.5 -0.0912375 -0.0554803 -0.0732026 -0.0732026 -0.0732026
2.0 -0.0784002 -0.0732026 -0.0732026 -0.0732026 -0.0732026

D

2.5 -0.0554803 -0.0732026 -0.0732026 -0.0732026 -0.0732026

The following figures and results were obtained using values 0.25 and 0.5 for C exp and D,
respectively.

Similar to the single-agent case, a graphical solution for the multi-agent case is shown in
the following figure:

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

a

b

c d

ef

g

h

i

j

k

l

CS1

CS2
CS3

CS4

Figure 5.14: Routing solution for 2 EVs.

The evolution of the battery’s energy, time and weight for both EVs can be seen as follows:

54

a c d l CS1 e i g k h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(a) SOC at the arrival to each node for EV1.

a c d l CS1 e i g k h
Nodes

500

600

700

800

900

1000

1100

1200

Ti
m

e
[m

in
]

Arrival time
Nodes time window

(b) Time at the arrival to each node for EV1.

a f b j h h h h h h
Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
m

ai
ni

ng
 c

ap
ac

ity
 [S

oC
]

SoC
Threshold
SoC distribution

(c) SOC at the arrival to each node for EV2

a f b j h h h h h h
Nodes

500

600

700

800

900

1000

1100

1200

Ti
m

e
[m

in
]

Arrival time
Nodes time window

(d) Time at the arrival to each node for EV2.

Figure 5.15: EV’s SOC and time evolution in an Arc blocked scenario.

In both cases, it is possible to see that this solution fulfills the operational constraints.
In Figs.5.15.a and 5.15.b, the last two points are equal because they represent the EV that

has already arrived at the depot. Thus, the energy consumption, travel time and uncertainty
are 0.

As every simulation returns a reward, it is expected to see that the reward should converge
as long as the algorithm progresses. Now, it is relevant to study at which stage the algorithm
has already converged to a reward and thus, it is no longer necessary to run more simulations.

The reward evolution for every step can be seen in Fig. 5.16.

55

Figure 5.16: Rewards obtained in every step. Progress in the algorithm goes
from top to bottom and from left to right

As shown in Fig.5.16, the algorithm converges to the solution approximately after the
third step. Consequently, running all of the simulations from that stage onward is unneces-
sary. In order to have a reference of the savings in computational time, with the specified
hyperparameters, one execution took 16.91 [min] to run. If we only run the first three steps
and then choose the best child, it took 12.05 [min]. The first steps account for most of the
algorithm’s computation time to find the solution.

Another option is early stopping. If there are 3000 simulations left to run and the best
action so far has an advantage of more than 3000 simulations, it could be reasonable to think
there is not much gain in running more simulations since the chosen action for this step will
not change. One execution took 13.7 [min] to complete with this method, being faster than
the usual method but slower than running only the first three steps and then choosing the
best child. This idea is not rigorous since more computations may change the chosen action
two or more steps ahead, but it did not in this case.

56

Chapter 6

Discussion

As can be seen in Chapter 5, our implementation solves on-line the Electric Vehicle Routing
Problem described in Chapter 1.3. In this work, we have successfully incorporated valuable
elements to increase the relevance and applicability of our approach, such as soft time win-
dows, partial charge at charging stations, non-linear charging function, battery management,
treatment of uncertainty, dynamic and stochastic map, contingency management, different
scenarios and the multi-agent case. Most of these features have been pointed out as important
elements to incorporate into the EVRP problem for a more realistic study. In addition, an
incipient study in the effect of different UCT expressions and hyperparameters is carried out
to show how they affect the performance of MCTS. In this Chapter, several aspects of this
thesis are analyzed and discussed, concluding with items that were not directly addressed in
this work but represent interesting ideas to discuss and take into account in future efforts.

6.1. Best solution
The best route was defined as the route that maximizes the reward function. In this case,

the algorithm consistently converged, with a variety of setups, to a sequence which is the route
with the highest reward found. Although the solution was found with as few as 100 simulations
per step, it was probably luck for most setups, as discussed in [81], since, on average, with
more simulations, the reward decreased for the first hundredths. Notwithstanding this, some
setups could have found and converged to the optimal solution with just 100 simulations. For
example, values 0.05 and 0.4 for C exp and D, respectively, found the best solution consistently
with 100, 200, 300, 400, 500, 1000 and 2000 simulations. With different UCT variants, it was
possible to find similar results. We could have chosen those values to run our tests, and
savings in computational effort would have been huge, however, we decided to guide our
tests according to Fig.5.1, to be based on a more consistent option. With 100 simulations, it
took 13.72 [s] to solved the problem on-line.

The inclusion of MCTS’ variants and testing more modifications arise as an interesting
field for research. For instance, new expression in the Selection stage could be tested to
improve the search, and a more in-depth analysis could be carried out to study which hy-
perparameters’ values can elicit better rewards with less computational resources. Moreover,
changing the values of the parameters in the Backpropagation stage could also affect enor-
mously the performance of the algorithm. The idea of creating a map to study the sensitivity
of our method as these values change is an open field to put efforts.

In other works, for instance, in [107] the authors implemented three algorithms combined

57

with UCT and tested their success in the Go game. They included Rapid Action Value
Estimation (RAVE) to estimate each action value quickly. The RAVE is based on all-moves-
as-first (AMAF) heuristic [108]. It updates an action-value every time it is chosen in any
simulation, not only in the respective node. It is beneficial when the action-space is large,
which causes slow learning. This algorithm significantly improved their winning rate. A study
on this technique with MCTS is presented in [109]. Another modification is proposed in [110],
where they used maximum entropy to obtain faster convergence.

6.2. Uncertainty in MCTS
One valuable issue is how the Reward information is calculated and backpropagated up-

wards. In this research, the sequence obtained in the Simulation stage was executed using
the average value of the trafficdistribution, thus, average energy consumption and time values
were also obtained. With this methodology, it was possible to propagate the uncertainty in
the EV’s energy consumption along the sequence to calculate and penalize the risk of cros-
sing the battery’s lower threshold with those actions. By doing so, we are acknowledging the
uncertainty in the state-transition. The reward value represents the expected value of this
sequence, which is the best guess as we modeled the energy consumption and travel time in
arcs as gaussian distributions.

It is up to the designer the probability used to simulate the sequence and obtain the
reward. While we used p=0.5 as the best guess given our assumptions, it could be changed to
allow a riskier search or a more conservative implementation, for example, p=0.05 or p=0.95,
respectively.

This work incorporates the uncertainty in three ways:

1. It incorporates the risk of running out of battery in the reward function, penalizing
this probability. If this penalty is high, the agent will avoid sequences with a significant
chance of reaching the lower bound of SOC. This risk had an impact on the Arc Blocked
scenario. The initial plan had a 44 % chance of running out of battery after the detour.
Therefore, the agent chose to charge after node i to avoid this risk. The chosen policy has
a higher reward because of this penalization. The selected sequence of actions led to a
longer trip, it took more time and spent more money, however, the risk is approximately
zero. At this point, it is relevant to state that the agent would have preferred the first
plan in a deterministic scenario, i.e., where there is no notion of risk (it is equivalent
to removing the penalty on the risk). The risk penalty is also a designer’s choice; if the
penalty had been lower than our choice, the agent would have probably followed the
initial plan.

2. Secondly, there is uncertainty in the execution stage when the agent executes the planned
action. In this stage, a random traffic sample is instantiated, and its associated energy
consumption, travel time and velocity change the EV’s states. As explained before, the
nodes are created with an average traffic value, which could be significantly different from
the actual execution. This difference may trigger an update in the planning, affecting
future nodes. This scenario was shown to be within our algorithm’s capabilities.

3. In the Simulation stage, the available actions are chosen with random probability, thus,
it allows finding actions that otherwise would not appear, within an arbitrary criterion,
in this case, tolerance to arrive late.

58

A more straightforward way to incorporate uncertainty in the planning would be to expand
and simulate with a random sample of the trafficdistribution, not the average. This option
would undoubtedly add more uncertainty to the modeling and make this implementation
significantly faster on the computational side. The cost of this option would be the bias
in the Expand stage because it would initialize a new node in the Tree with a random
sample, which could be very different from the average; thus creating a false idea of what is
coming, and finally disturbing the decision-making process. On the other hand, our option
provides better planning information for the decision maker since it is the best guess of
an unknown future outcome modeled as a gaussian distribution. Our method also more
rigorously incorporates the risk in the reward function as it propagates the uncertainty in
energy consumption along the sequence, which allowed us to calculate the risk with a formal
distribution and not an empirical one. The latter could be as good as the former, as the
number of simulations increases for the same sequence, however, our approach requires far
fewer resources to estimate the risk.

6.3. Charging Stations implementation
The decision to fix the charging amounts leads to sub-optimal decisions, not in terms of

this implementation, however, generally speaking, it is possible to see in Fig. 5.5.a that the
EV could have charged less energy and still accomplished the mission without increasing the
risk significantly, and reducing the time and money spent on charging, at the same time. An
a-posteriori modification could reduce the amount of charge if the route is known. Albeit this
approach could work and would reduce the amount of charge and time spent in the route, it
would also reduce the amount of money spent and the time the EV spends in the charging
station. This change could ultimately affect the whole search if the planning is sensible in
that stage, particularly when a full charge is modified, and another sequence could be the new
best route. This question remains open, and a continuous charge decision-making approach
would be valuable to research, as in [111], where the authors discretize a continuous space
and explore each segment, discretizing more as the exploration goes on.

A different solution to include continuous charging quantities would be to solve the pro-
blem without the hard restriction on SOC and introduce the Charging Stations a-posteriori
along the path to avoid violating the threshold as a second and different optimization pro-
blem. An advantage of this solution is that it could allow us to charge what the EV would
require, with a certain probability; thus, it would not spend more time and money than
needed. However, as said before, introducing these methods as a second stage can ultimately
change the best solution.

6.4. Computational efficiency
In terms of computational cost, it is worth discussing it in relative terms since it depends

on the efficiency of the implemented code and the hardware it runs on. Whereas this work
was written in Python, it could run several orders of magnitude faster by only translating
it to the C language or improving the coding efficiency. Furthermore, the bottleneck in our
implementation was not associated with the exploration of scenarios but with code efficiency
elements. Therefore, it is relevant to talk about relative performances when the parameters
and cases change, not absolute ones. Moreover, it is very likely that our results represent an
upper bound on the computational resources needed to solve the problem in both single-agent

59

and multi-agent cases.
In Fig.5.3, it is possible to see how the computational time increases with the value N sim,

C exp and D, and how the Number of Simulations is the factor that affects the most. This
behavior makes sense since if we encourage the algorithm to search more before it converges,
it will run more simulations and create more branches, using more memory too. Since no new
branches are created when the algorithm converges, the computational cost is low.

As was explained, MCTS is an anytime algorithm, which makes it very useful, particularly
in real-time scenarios. In this case (Fig. 4.3), it took about 48.37 [s] to obtain the solution,
running 500 simulations per step. Only the first step took about 12.87 [s]. In the multi-agent
case, it took several minutes. This result is expected as the number of branches to explore
increased significantly with 2 EVs. However, it also tells us that a more powerful platform and
better code efficiency could be used in real-time situations where thousands of simulations
can be run per second. As the fleet EV case tests were not as detailed as the single-agent,
other setups can probably converge to the best solution with fewer simulations.

Memory budget and time management have also been studied, such as in [112], where they
studied various time-management strategies in different games. In [113], a bounded MCTS is
implemented to play Spades, Hearts and LOTR:C in mobiles and computers. The authors in
[114] reduced the branching factor by removing superfluous actions, limiting the search depth,
introducing specific values to nodes and detecting dead ends. Finally, in [115], they pruned
bad nodes to more precisely focus on good moves; similarly, in [116], the authors pruned nodes
with statistically low values. Another example is [117], where they pruned random moves at
the beginning hoping that enough good actions would remain available. As this issue was not
in the scope of this work, no major effort was dedicated.

In a related discussion, we put effort into testing our approach without removing too
many actions to know how we managed the entire action space. In other words, as mentioned
before, many actions can be removed to reduce the branching factor. While we could have
removed nodes causing delays in the delivery or returning to the Depot without visiting all
clients, they were kept to study how our method dealt with them.

6.5. Contingency management and different scenarios
Contingency management is also of utmost importance since real-life situations are fre-

quently very different from what was planned due to various situations such as, but not
restricted to: battery failure, traffic jams, blocked roads, new missions, fleet emergencies and
others. In Chapter 5, we showed how our algorithm could handle these situations in scena-
rios where keeping with the original plan would have led to unfeasible states (running out
of battery) or risky situations. These tests were carried out only for the single-agent case,
however, their extension to the multi-agent is straightforward since each one of these events
affects the vehicle individually. In conclusion, there was no need to test it in the scenarios
with two or more EVs.

In addition, while the application of our approach to a pick-up scenario is not studied in
depth, it would be interesting to direct efforts in this variation due to its relevance in several
applications and problem complexity, since it adds a new hard constraint.

At this point, it is valuable to point out how, as the Reward function evaluates all actions
from the initial state at each step, the most current information (after the Step function
execution) is always taken into account in this implementation. This can be seen in Fig.5.6.a,
where the EV goes to charge acknowledging the current SOC value, however, given that the

60

Tree is already built and the nodes’ values have probably converged prior to this state, it
is not able to correct the route as shown in Fig.5.6.b, where that sequence obtains a higher
reward than the latter, after the Tree has been reset.

It is also necessary to notice how an initial guess influences the search in this kind of
algorithm, not only which sequence of actions but also how this initial guess is initialized
in the algorithm. We initialized the algorithm with the initial guess as if it were a Tree
branch that has been visited once and has a high reward and uncertainty. This procedure
gives the initial guess an advantage over the other actions at the beginning of the search
because it will be visited immediately due to its reward and standard deviation. An exciting
discussion arises based on the following question: How does the designer introduce an initial
guess? What is the optimal value to reduce computational effort? We need to balance its
priority (thinking that the initial guess is a good solution) but not biasing too much the
search towards this initial guess (in case it is a wrong sequence of actions). If the reward is
too high, it will converge quickly, although it could lose time correcting it if the case is the
opposite (if it does at all); if the reward is not enough, it will not signify any guidance to the
search. In this implementation, it is clear how the initial solution reduced the computational
effort significantly and was able to correct an unfeasible initial guess and converged to a
feasible solution. Possibly more simulations were required to converge to the best solution.
When a near to best solution was introduced, it did not require more simulations to correct
it to a point where there was no significant difference with the base case. The distance each
sequence represented was the main difference between the two solutions (near to best solution
and best solution). One solution to reduce the computational resources to correct this initial
guess would be to penalize more the distance or decrease the C exp parameters, so it sticks
to the best node so far. Future efforts could dive into this topic.

In regard to using an initial guess as input to guide the search at the beginning, another
way to introduce previous information is related to action-pairs. We can notice how some
actions are usually together in different obtained solutions. In this regard, clients e and i are
usually visited sequentially (in the single-agent case). This information could be relevant to
awarding some sequences with this combination of actions. This idea has been used in other
areas, such as the Go game, where AlphaGo designers introduce some sequence of actions
known to produce good moves in their algorithm [118, 119].

6.6. Multi-agent: Fleet case
In our case, we implemented a cooperative approach, penalizing the total distance traveled

by the EVs, however, another approach could be to minimize the maximum distance an EV
travels or the amount of charge it takes in the charging station. A very different case is when
EVs compete, for instance, if each vehicle is from a different company and both want to visit
clients.

Due to the computational effort, few hyperparameters’ values were used in this case,
however, they were enough to converge to the best solution with 2 EVs and a more sensitive
analysis on these values can yield better set of parameters to achieve the best solution faster
and\or more consistently.

As the computational effort is of the essence, it is highly desirable to explore strategies to
reduce improve the time performance. In this regard, we applied an early stopping criteria to
avoid “unnecessary” simulations. This method is not rigorously studied, and while the idea is
to stop searching when the best action to be executed will not change, we know little about

61

how more simulations can affect the search in subsequent and deeper nodes. In consequence,
while the reduction in computational is significant (~25 %), more effort should be put to
study the losses associated to this kind of strategy.

Another new opportunities to explore and investigate are found in [120], where the authors
point out four grand challenges for the multi-agent case: the combinatorial complexity, the
multi-dimensional learning objectives, the non-stationarity issue and scalability when there
are numerous agents [121]. Different strategies and approaches could be tested and studied.
For instance, how the EVs communicate and fulfill the requirements. Another case is in [122],
where Thakoor et al. proposed a multi-agent scenario where UAVs must surveil an area with
limited communications capabilities.

An interesting research can focus on how different levels of cooperation affect the mission.
A formulation for this approach can be found in [123], where they added a λ factor to balance
how much each vehicle cooperates in an autonomous driving scenario, where 0 means a greedy
behavior and 1 a cooperative strategy.

Ji,coop = Ji +
∑
j ̸=i

λ · Jj , (6.1)

where J i is the reward individually computed for vehicle i and j represents the other vehicles.
Contingency Management in this case also opens new opportunities, such as: How would

the fleet react if an EV suddenly needs to return to base? Do the other EVs visit the remaining
clients or pick up the load? Alternatively, the case where an EV has planned to visit a charging
station, but another EV needs to recharge unexpectedly and, as a result, the Charging Station
is full. Does it wait? Does it have enough energy to go to another Charging Station?

With our design, in this case-study, it is not relevant which EV visits each client. However,
this is not always the case. Suppose each EV is loaded with specific packages. In that case, it
will matter which clients it will visit, and it will also affect the contingency case mentioned
above, where the remaining EVs must visit the affected EV’s clients. How does the troubled
EV transfer its load to the other EVs? Do they meet at a central point? Are there warehouses
on the map? Contingency management involving two or more EVs is an open and exciting
field, and future efforts could aim in that direction.

6.7. New opportunities
In addition to new directions, fields and opportunities mentioned before in each section,

there are others questions and ideas which were not directly incorporated in our work, however
they arise as attractive areas and are worth dedicating a few words to.

6.7.1. New formulations
As mentioned earlier, there are other scenarios with more specific tasks, such as routing

industrial trucks, waste management, regular routes and more. These cases present new cons-
traints and objectives, and different approaches can also be tried, given the new priorities.
All these questions and practical problems are worth future research efforts with this metho-
dology. Another direction in the area of specific formulations and problems is to incorporate
the knowledge of specific roads in our map, for instance, highways, low-speed roads, avenues,
car-free zones, and others.

62

6.7.2. Reduce manual tuning
The Reward function considers different relevant variables, such as arriving to the client

on time (with a tolerance), avoiding running out of battery and minimizing the risk of run-
ning out of charge, the distance the EV travels, the amount of money it spends and the
time it takes. As this work was not focused on implementing the best algorithm or MCTS
architecture, the reward function design is not unique and is open to discussion. From our
perspective, it is also valuable to point out that we did not award the remaining SOC, given
that it could encourage the EV to go to a charging station to increase its SOC and obtain a
higher reward. To avoid this, we penalized running out of battery and kept indifferent to the
remaining SOC (indirectly, since we penalized the risk of running out of battery). In this re-
gard, it is important to point out that many values were empirically obtained. A possible line
of work is to design a reward function using Inverse RL (IRL) [124] with expert knowledge
or historical data.

In this same topic, it is important to remember the use of auxiliary variables to improve
the efficiency of the search. The use of these tools is usually manually tuned and therefore
require the user to spend time finding their values. A very attractive field is to automate this
process or switching to auxiliar variables-free implementations, to eliminate the need of an
expert to handle these parameters and facilitar the extension of this methodology to other
instances and domains. This idea is also applicable to the values of the Reward function’s
parameters.

6.7.3. Use of voltage-based battery models
In battery-powered systems, a cutoff voltage is set as a safety measure to protect the asset

from overdischarges, which could cause severe damage [125]. Researchers have studied how,
when a significant amount of power is required by the system, the voltage drops enough to
trigger the cutoff procedure and disconnects the battery, even though there is still latent
energy [126, 127]. This phenomenon has been modeled and represents the battery’s behavior
more accurately, but it comes at a price: computational cost and a specific application.

1. Computational cost: In early versions of this work, we included a battery model from
[126], and it increased the computational effort hugely, mainly caused by the prognostic
stage where a particle filter-based algorithm was used. It caused this implementation to
be unable to run thousands of simulations fast enough on our hardware.

2. Specific application: The model used in this research for energy consumption can be
found in several works. Thus, it allows the reader to make an easier comparison with
other results in the literature. In this same direction, our work does not aim to represent
a specific problem but to show how the EVRP can be solved with several relevant
characteristics in a real-time algorithm. Notwithstanding this, in applications or case
studies where a specific battery model is used, it would be of great interest to incorporate
it in this algorithm design.

6.7.4. Offline stage
Finally, there could also be an offline stage where extensive computational resources could

be available and used to solve the problem with several features and variations. This sta-
ge’s output could serve as an initial guess in an online stage, particularly in contingencies

63

situations, or several initial solutions from the offline stage could be provided to reduce
the search-space. This possibility could significantly reduce the computational cost of this
implementation.

64

Chapter 7

Conclusion

This thesis presents a Prognostic Decision-Making approach to solving the Electric Vehicle
Fleet Routing Problem. The problem formulation includes several features to increase appli-
cability in real-life scenarios, such as time-windows for clients, stochasticity and dynamism
in travel time and energy consumption, non-linear charging function and partial recharges.

A real-time algorithm based on Monte Carlo simulations was developed and successfully
solved the Fleet EVRP. Different settings and parameters were tested to study their perfor-
mance and convergence to the optimal solution. The computational cost was also addressed
in relative terms since our implementation did not aim to be efficient, and better coding and
other practices could reduce the computational effort several orders of magnitude. Due to
computational resources, the fleet case was less deeply analyzed than the case with one EV,
however, results can be straightforwardly extended.

It is possible to notice how Monte Carlo Tree Search can effortlessly include the Health
Aware Decision Making guidelines in its design, and how they are also incorporated into
the solution formulation. For example, through the exploration and simulation capabilities
of future trajectories in the MCTS, and the heavy penalties on undesired states (such as
violating the SOC threshold) in the formulation. We hope this pushes the use of these tools
in this family of problems.

Our proposed solution was tested online and was able to manage contingency scenarios
that directly affected the initial planning. Due to the algorithm’s design, new information
was immediately incorporated in the Reward function after every step execution, allowing a
better decision-making procedure.

7.1. Future Work
Many elements can still be included in some aspects of this work. In the architecture

dimension of this work, such as variants of the MCTS algorithm, parallelization [128, 129,
130], continuous MCTS [131, 132] and others. In uncertainty treatment, future efforts could
focus on characterizing events or backpropagating a more informative metric. Finally, on
the EVRP side, setting maximum hours allowed per tour; specific loads for each client;
multiple depots; uncertainty in clients’ demands or charging stations; different vehicles, power
consumption and road models; backhauls cases; a detailed multi-agent analysis; and specific
routing scenarios such as waste management, rescue missions, surveillance tasks and other
applications, would be of great interest to study.

In terms of methods, the use of Neural-based models is also very scarce in approaches

65

for this problem [28]. As an extension of this work, we could implement a Deep Reinforce-
ment Learning algorithm to handle larger maps, include more EVs and extract additional
information from each simulation.

Extensions of this work could involve different routing problems whose particular cons-
traints should modify those employed here. An example is the incipient problem of Urban
Air Mobility (UAM) [133]. The proper use of future information goes beyond routing plan-
ning. Many problems with a Prognostic Decision-Making procedure can be in the scope of
future efforts from this work, such as those mentioned earlier in biomedical fields, industrial
problems, cybersecurity, logistics and others.

66

Bibliography

[1] J. Wang, Q. Wu, J. Liu, H. Yang, M. Yin, S. Chen, P. Guo, J. Ren, X. Luo, W. Linghu,
and Q. Huang, “Vehicle emission and atmospheric pollution in China: Problems, pro-
gress, and prospects,” PeerJ, vol. 7, pp. 1–22, 2019.

[2] International Energy Agency, “Global Energy Review 2021,” Global Energy Review
2020, pp. 1–36, 2021.

[3] U. Epa and C. Change Division, “Inventory of U.S. Greenhouse Gas Emissions and
Sinks: 1990-2019 – Main Text - Corrected Per Corrigenda, Updated 05/2021,” 1990.

[4] Z. Li, A. Khajepour, and J. Song, “A comprehensive review of the key technologies for
pure electric vehicles,” Energy, vol. 182, pp. 824–839, 2019.

[5] C. Li, M. Negnevitsky, X. Wang, W. L. Yue, and X. Zou, “Multi-criteria analysis of
policies for implementing clean energy vehicles in China,” Energy Policy, vol. 129,
no. February 2019, pp. 826–840, 2019.

[6] P. Jochem, E. Szimba, and M. Reuter-Oppermann, “How many fast-charging stations
do we need along European highways?,” Transportation Research Part D: Transport
and Environment, vol. 73, no. May, pp. 120–129, 2019.

[7] Z. Guo, J. Deride, and Y. Fan, “Infrastructure planning for fast charging stations in a
competitive market,” Transportation Research Part C: Emerging Technologies, vol. 68,
pp. 215–227, 2016.

[8] M. Günther, C. Kacperski, and J. F. Krems, “Can electric vehicle drivers be persuaded
to eco-drive? A field study of feedback, gamification and financial rewards in Germany,”
Energy Research and Social Science, vol. 63, no. May 2019, p. 101407, 2020.

[9] S. Á. Funke, F. Sprei, T. Gnann, and P. Plötz, “How much charging infrastructu-
re do electric vehicles need. A review of the evidence and international comparison,”
Transportation Research Part D: Transport and Environment, vol. 77, no. October,
pp. 224–242, 2019.

[10] N. Wang, L. Tang, and H. Pan, “A global comparison and assessment of incentive policy
on electric vehicle promotion,” Sustainable Cities and Society, vol. 44, no. November
2018, pp. 597–603, 2019.

[11] S. Pelletier, O. Jabali, and G. Laporte, “Goods distribution with electric vehicles: Re-
view and research perspectives,” Transportation Science, vol. 50, pp. 3–22, Feb. 2016.

[12] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proceedings
of the IEEE, vol. 95, no. 4, pp. 704–718, 2007.

[13] J. Moore and N. Bullard, “Bnef executive factbook—power, transport, buildings and
industry, commodities, food and agriculture, capital,” London: BloombergNEF, 2021.

67

[14] N. O. Kapustin and D. A. Grushevenko, “Long-term electric vehicles outlook and their
potential impact on electric grid,” Energy Policy, vol. 137, p. 111103, 2020.

[15] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric vehicles,”
Nature Climate Change 2014 5:4, vol. 5, pp. 329–332, 3 2015.

[16] K. Liu, K. Li, Q. Peng, and C. Zhang, “A brief review on key technologies in the battery
management system of electric vehicles,” Frontiers of Mechanical Engineering, vol. 14,
no. 1, pp. 47–64, 2019.

[17] D. Pevec, J. Babic, A. Carvalho, Y. Ghiassi-Farrokhfal, W. Ketter, and V. Podobnik, “A
survey-based assessment of how existing and potential electric vehicle owners perceive
range anxiety,” Journal of Cleaner Production, vol. 276, p. 122779, 2020.

[18] R. A. Hanifah, S. F. Toha, and S. Ahmad, “Electric vehicle battery modelling and per-
formance comparison in relation to range anxiety,” Procedia Computer Science, vol. 76,
pp. 250–256, 2015.

[19] D. N. T. How, M. A. Hannan, M. S. Hossain Lipu, and P. J. Ker, “State of charge
estimation for lithium-ion batteries using model-based and data-driven methods: A
review,” IEEE Access, vol. 7, pp. 136116–136136, 2019.

[20] J. Jiang, W. Shi, J. Zheng, P. Zuo, J. Xiao, X. Chen, W. Xu, and J.-G. Zhang, “
Optimized Operating Range for Large-Format LiFePO 4 /Graphite Batteries ,” Journal
of The Electrochemical Society, vol. 161, no. 3, pp. A336–A341, 2014.

[21] E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, R. Chen, and F. Wu, “Sustainable
recycling technology for li-ion batteries and beyond: Challenges and future prospects,”
Chemical Reviews, vol. 120, no. 14, pp. 7020–7063, 2020. PMID: 31990183.

[22] E. Balaban, S. B. Johnson, and M. J. Kochenderfer, “Unifying system health mana-
gement and automated decision making,” Journal of Artificial Intelligence Research,
vol. 65, pp. 487–518, 2019.

[23] B. L. Ferrell, “Air vehicle prognostics & health management,” IEEE Aerospace Confe-
rence Proceedings, vol. 6, pp. 145–146, 2000.

[24] E. Balaban and J. J. Alonso, “An approach to prognostic decision making in the ae-
rospace domain,” Proceedings of the Annual Conference of the Prognostics and Health
Management Society 2012, PHM 2012, pp. 396–415, 2012.

[25] E. Balaban, S. Narasimhan, M. J. Daigle, I. Roychoudhury, A. Sweet, C. Bond, J. R.
Celaya, and G. Gorospe, “Development of a mobile robot test platform and methods for
validation of prognostics-enabled decision making algorithms,” International Journal of
Prognostics and Health Management, vol. 4, no. 1, pp. 1–19, 2013.

[26] E. Balaban, S. Narasimhan, M. Daigle, J. Celaya, I. Roychoudhury, B. Saha, S. Saha,
and K. Goebel, “A mobile robot testbed for prognostics-enabled autonomous decision
making,” in Annual Conference of the PHM Society, vol. 3, 2011.

[27] O. Bougacha, C. Varnier, and N. Zerhouni, “A Review of Post-Prognostics Decision-
Making in Prognostics and Health Management,” International Journal of Prognostics
and Health Management, vol. 11, no. 15, p. 31, 2020.

[28] J. Mańdziuk, “New Shades of the Vehicle Routing Problem: Emerging Problem For-
mulations and Computational Intelligence Solution Methods,” IEEE Transactions on

68

Emerging Topics in Computational Intelligence, vol. 3, no. 3, pp. 230–244, 2019.
[29] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle routing problem:

State of the art classification and review,” Computers and Industrial Engineering,
vol. 99, pp. 300–313, 2016.

[30] S. Gholipour, A. Ashoftehfard, and H. Mina, “Green supply chain network design con-
sidering inventory-location-routing problem: a fuzzy solution approach,” International
Journal of Logistics Systems and Management, vol. 35, no. 4, pp. 436–452, 2020.

[31] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the Multiple Traveling Sa-
lesman Problem: Applications, approaches and taxonomy,” Computer Science Review,
vol. 40, may 2021.

[32] J. J. Yoon, “The traveling salesman problem with multiple drones: an optimization
model for last-mile delivery,” Master’s thesis, Massachusetts Institute of Technology,
2018.

[33] G. D. Konstantakopoulos, Optimization Methods Applied in a Class of Vehicle Routing
and Scheduling Problems. PhD thesis, National Technical University of Athens, Athens,
Greece, 2022.

[34] D. Feillet, “A tutorial on column generation and branch-and-price for vehicle routing
problems,” 4OR, vol. 8, pp. 407–424, 2010.

[35] J. P. Futalef, D. Munoz-Carpintero, H. Rozas, and M. Orchard, “An evolutionary algo-
rithm for the electric vehicle routing problem with battery degradation and capacitated
charging stations,” Proceedings of the Annual Conference of the Prognostics and Health
Management Society, PHM, vol. 12, no. 1, 2020.

[36] G. Barbarosoglu and D. Ozgur, “A tabu search algorithm for the vehicle routing pro-
blem,” Computers & Operations Research, vol. 26, no. 3, pp. 255–270, 1999.

[37] F. Arnold and K. Sörensen, “Knowledge-guided local search for the vehicle routing
problem,” Computers & Operations Research, vol. 105, pp. 32–46, 2019.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[39] Á. Felipe, M. T. Ortuño, G. Righini, and G. Tirado, “A heuristic approach for the
green vehicle routing problem with multiple technologies and partial recharges,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 71, pp. 111–128,
2014.

[40] A. Gunawan, A. T. Widjaja, P. Vansteenwegen, and V. F. Yu, “Adaptive large neigh-
borhood search for vehicle routing problem with cross-docking,” in 2020 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8, 2020.

[41] V. C. Hemmelmayr, K. F. Doerner, and R. F. Hartl, “A variable neighborhood search
heuristic for periodic routing problems,” European Journal of Operational Research,
vol. 195, no. 3, pp. 791–802, 2009.

[42] M. Bruglieri, F. Pezzella, O. Pisacane, and S. Suraci, “A variable neighborhood search
branching for the electric vehicle routing problem with time windows,” Electronic Notes
in Discrete Mathematics, vol. 47, pp. 221–228, 2 2015.

[43] M. G. Resende and C. C. Ribeiro, Greedy Randomized Adaptive Search Procedures:

69

Advances, Hybridizations, and Applications, pp. 283–319. Boston, MA: Springer US,
2010.

[44] P. H. V. Penna, A. Subramanian, and L. S. Ochi, “An iterated local search heuristic
for the heterogeneous fleet vehicle routing problem,” Journal of Heuristics, vol. 19,
pp. 201–232, 2013.

[45] C. Barletta, W. Garn, C. Turner, and S. Fallah, “Hybrid fleet capacitated vehicle rou-
ting problem with flexible monte–carlo tree search,” International Journal of Systems
Science: Operations & Logistics, vol. 0, no. 0, pp. 1–17, 2022.

[46] J. Mańdziuk and M. Świechowski, “UCT in Capacitated Vehicle Routing Problem with
traffic jams,” Information Sciences, vol. 406-407, no. April 2017, pp. 42–56, 2017.

[47] J. Mańdziuk and C. Nejman, “Uct-based approach to capacitated vehicle routing pro-
blem,” Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer
Science), vol. 9120, pp. 679–690, 2015.

[48] M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder, “RL for Solving the Vehicle
Routing Problem,” Nips, no. NeurIPS, pp. 9861–9871, 2018.

[49] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial opti-
mization with reinforcement learning,” 5th International Conference on Learning Re-
presentations, ICLR 2017 - Workshop Track Proceedings, pp. 1–15, 2017.

[50] S. M. Raza, M. Sajid, and J. Singh, “Vehicle routing problem using reinforcement lear-
ning: Recent advancements,” in Advanced Machine Intelligence and Signal Processing
(D. Gupta, K. Sambyo, M. Prasad, and S. Agarwal, eds.), (Singapore), pp. 269–280,
Springer Nature Singapore, 2022.

[51] C. Lin, K. L. Choy, G. T. Ho, S. H. Chung, and H. Y. Lam, “Survey of Green Vehicle
Routing Problem: Past and future trends,” Expert Systems with Applications, vol. 41,
no. 4 PART 1, pp. 1118–1138, 2014.

[52] T. Erdelic, T. Carić, and E. Lalla-Ruiz, “A Survey on the Electric Vehicle Routing
Problem: Variants and Solution Approaches,” Journal of Advanced Transportation,
vol. 2019, 2019.

[53] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte carlo tree search:
a review of recent modifications and applications,” Artificial Intelligence Review, 2022.

[54] J. Oxenstierna, Warehouse Vehicle Routing using Deep Reinforcement Learning. PhD
thesis, Department of Information Technology, Uppsala University, 2019.

[55] J. Mańdziuk and M. Świechowski, “Simulation-based approach to vehicle routing pro-
blem with traffic jams,” in 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, 2016.

[56] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan, “Rich vehicle
routing problem: Survey,” ACM Computing Surveys, vol. 47, 12 2014.

[57] R. Bai, X. Chen, Z.-L. Chen, T. Cui, S. Gong, W. He, X. Jiang, H. Jin, J. Jin, G. Ken-
dall, J. Li, Z. Lu, J. Ren, P. Weng, N. Xue, and H. Zhang, “Analytics and machine
learning in vehicle routing research,” International Journal of Production Research,
vol. 61, no. 1, pp. 4–30, 2023.

[58] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,

70

3 ed., 2010.
[59] C. C. Bennett and K. Hauser, “Artificial intelligence framework for simulating clini-

cal decision-making: A Markov decision process approach,” Artificial Intelligence in
Medicine, vol. 57, no. 1, pp. 9–19, 2013.

[60] C. Lee, S. M. Han, Y. H. Chae, and P. H. Seong, “Development of a cyberattack response
planning method for nuclear power plants by using the Markov decision process model,”
Annals of Nuclear Energy, vol. 166, p. 108725, 2022.

[61] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[62] T. Morimura, K. Ota, K. Abe, and P. Zhang, “Policy gradient algorithms with monte-
carlo tree search for non-markov decision processes,” 2022.

[63] F. Bacchus, C. Boutilier, and A. J. Grove, “Rewarding behaviors,” in Proceedings of the
13th AAAI Conference on Artificial Intelligence (AAAI-1996), pp. 1160–1167, 1996.

[64] F. Bacchus, C. Boutilier, and A. J. Grove, “Structured solution methods for non-
markovian decision processes,” in AAAI/IAAI, 1997.

[65] A. Ez-Zizi, S. Farrell, and D. Leslie, “Bayesian reinforcement learning in markovian and
non-markovian tasks,” in 2015 IEEE Symposium Series on Computational Intelligence,
pp. 579–586, 2015.

[66] E. A. EMERSON, “Chapter 16 - temporal and modal logic,” in Formal Models and
Semantics (J. VAN LEEUWEN, ed.), Handbook of Theoretical Computer Science,
pp. 995–1072, Amsterdam: Elsevier, 1990.

[67] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith, “Decision-making with non-
markovian rewards: From LTL to automata-based reward shaping,” in Proceedings
of the Multi-disciplinary Conference on Reinforcement Learning and Decision Making
(RLDM-17), pp. 279–283, 2017. See also University of Toronto Technical Report CSRG-
632.

[68] R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning: Introduction
and applications in industrial process control,” Computers & Chemical Engineering,
vol. 139, p. 106886, 8 2020.

[69] M. Hensel, “Exploration methods in sparse reward environments,” Studies in Compu-
tational Intelligence, vol. 883, pp. 35–45, 2021.

[70] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using reinforcement learning
and shaping,” in Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, (San Francisco, CA, USA), p. 463–471, Morgan Kaufmann Pu-
blishers Inc., 1998.

[71] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning 1988 3:1, vol. 3, pp. 9–44, 8 1988.

[72] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Gre-
we, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

71

[73] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A
general reinforcement learning algorithm that masters chess, shogi, and go through
self-play,” Science, vol. 362, pp. 1140–1144, 12 2018.

[74] O. Trunda and R. Barták, “Using monte carlo tree search to solve planning problems
in transportation domains,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8266
LNAI, pp. 435–449, 2013.

[75] J. V. Eyck, J. Ramon, F. Guiza, G. MeyFroidt, M. Bruynooghe, and G. V. d. Berghe,
“Guided monte carlo tree search for planning in learned environments,” in Proceedings
of the 5th Asian Conference on Machine Learning (C. S. Ong and T. B. Ho, eds.),
vol. 29 of Proceedings of Machine Learning Research, (Australian National University,
Canberra, Australia), pp. 33–47, PMLR, 13–15 Nov 2013.

[76] X. Liu and A. Fotouhi, “Formula-e race strategy development using artificial neural
networks and monte carlo tree search,” Neural Computing and Applications, vol. 32,
pp. 15191–15207, 9 2020.

[77] X. Guo, S. Singh, H. Lee, R. Lewis, and X. Wang, “Deep learning for real-time atari
game play using offline monte-carlo tree search planning,” in Proceedings of the 27th In-
ternational Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
(Cambridge, MA, USA), p. 3338–3346, MIT Press, 2014.

[78] J.-M. Horcas, J. A. Galindo, R. Heradio, D. Fernandez-Amoros, and D. Benavides,
“Monte carlo tree search for feature model analyses: A general framework for decision-
making,” in Proceedings of the 25th ACM International Systems and Software Product
Line Conference - Volume A, SPLC ’21, (New York, NY, USA), p. 190–201, Association
for Computing Machinery, 2021.

[79] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search: A new fra-
mework for game ai,” in Proceedings of the Fourth AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, AIIDE’08, p. 216–217, AAAI Press,
2008.

[80] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. V. den Herik, J. W. H. M. Uiterwijk,
and B. Bouzy, “Progressive strategies for monte-carlo tree search,” New Mathematics
and Natural Computation, vol. 04, pp. 343–357, 11 2008.

[81] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 4630 LNCS, pp. 72–83, 2007.

[82] T. Vodopivec, S. Samothrakis, and B. Ŝter, “On monte carlo tree search and reinforce-
ment learning,” Journal of Artificial Intelligence Research, vol. 60, pp. 881–936, 2017.

[83] J. C. Gittins and D. M. Jones, “A dynamic allocation index for the discounted multi-
armed bandit problem,” Biometrika, vol. 66, no. 3, pp. 561–565, 1979.

[84] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “Gambling in a rigged casino:
The adversarial multi-armed bandit problem,” in Proceedings of IEEE 36th Annual
Foundations of Computer Science, pp. 322–331, 1995.

[85] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances

72

in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.
[86] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit

problem,” Machine Learning, vol. 47, p. 235–256, May 2002.
[87] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Machine Lear-

ning: ECML 2006 (J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, eds.), (Berlin, Hei-
delberg), pp. 282–293, Springer Berlin Heidelberg, 2006.

[88] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo Search,” White
paper, no. 1, p. 22, 2006.

[89] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for Monte-Carlo Go,” in
NIPS: Neural Information Processing Systems Conference On-line trading of Explora-
tion and Exploitation Workshop, (Canada), Dec. 2006.

[90] M. P. Schadd, M. H. Winands, M. J. Tak, and J. W. Uiterwijk, “Single-player Monte-
Carlo tree search for SameGame,” Knowledge-Based Systems, vol. 34, pp. 3–11, 2012.

[91] M. P. D. Schadd, Selective Search in Games of Different Complexity. PhD thesis, De-
partment of Knowledge Engineering, Maastricht University, Maastricht, The Nether-
lands, 2011.

[92] E. Kaufmann and W. M. Koolen, “Monte-carlo tree search by best arm identification,”
in Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, (Red Hook, NY, USA), p. 4904–4913, Curran Associates Inc., 2017.

[93] T. Vodopivec and B. Šter, “Enhancing upper confidence bounds for trees with temporal
difference values,” in 2014 IEEE Conference on Computational Intelligence and Games,
pp. 1–8, 2014.

[94] Y. Shen, J. Chen, P.-S. Huang, Y. Guo, and J. Gao, “M-walk: Learning to walk over
graphs using monte carlo tree search,” in NeurIPS, 2018.

[95] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone, “On the analysis of complex
backup strategies in monte carlo tree search,” in Proceedings of The 33rd International
Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.), vol. 48
of Proceedings of Machine Learning Research, (New York, New York, USA), pp. 1319–
1328, PMLR, 20–22 Jun 2016.

[96] T. Vodopivec and B. Brankoˇbrankošter, “Forgetting early estimates in monte car-
lo control methods,” ELEKTROTEHNIŠKIELEKTROTEHNIˇELEKTROTEHNIŠKI
VESTNIK, vol. 82, pp. 85–92, 2015.

[97] F. Xie and Z. Liu, “Backpropagation modification in monte-carlo game tree search,”
in 2009 Third International Symposium on Intelligent Information Technology Appli-
cation, vol. 2, pp. 125–128, 2009.

[98] C. Fiori, K. Ahn, and H. A. Rakha, “Power-based electric vehicle energy consumption
model: Model development and validation,” Applied Energy, vol. 168, pp. 257–268, 2016.

[99] W. Edwardes and H. Rakha, “Virginia tech comprehensive power-based fuel consum-
ption model,” Transportation Research Record, vol. 2428, no. 312, pp. 1–9, 2014.

[100] J. Eschmann, “Reward function design in reinforcement learning,” Studies in Compu-
tational Intelligence, vol. 883, pp. 25–33, 2021.

[101] M. Schneider, A. Stenger, and D. Goeke, “The electric vehicle-routing problem with

73

time windows and recharging stations,” Transportation Science, vol. 48, pp. 500–520,
11 2014.

[102] B. Alves, “Electricity prices worldwide 2021.” https://www.statista.com/statistics/26
3492/electricity-prices-in-selected-countries/ last accessed 10 Nov. 2022.

[103] Z. Bnaya, A. Felner, D. Fried, O. Maksin, and S. E. Shimony, “Repeated-task canadian
traveler problem,” AI Communications, vol. 28, pp. 453–477, 1 2015.

[104] N. Zerbel and L. Yliniemi, “Multiagent monte carlo tree search,” in Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’19, (Richland, SC), p. 2309–2311, International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

[105] E. Galván-López, R. Li, C. Patsakis, S. Clarke, and V. Cahill, “Heuristic-based multi-
agent monte carlo tree search,” in IISA 2014, The 5th International Conference on
Information, Intelligence, Systems and Applications, pp. 177–182, 2014.

[106] M. Crosby, A. Jonsson, and M. Rovatsos, “A single-agent approach to multiagent plan-
ning,” in Proceedings of the Twenty-First European Conference on Artificial Intelligen-
ce, ECAI’14, (NLD), p. 237–242, IOS Press, 2014.

[107] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in UCT,” in Inter-
national Conference of Machine Learning, (Corvallis, United States), June 2007.

[108] B. B. Max-Planck, “Monte carlo go.” Unpublished, 1993.
[109] S. Gelly and D. Silver, “Monte-carlo tree search and rapid action value estimation in

computer go,” Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875, 2011.
[110] C. Xiao, R. Huang, J. Mei, D. Schuurmans, and M. Müller, “Maximum entropy monte-

carlo planning,” in Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32,
Curran Associates, Inc., 2019.

[111] W. Mao, K. Zhang, Q. Xie, and T. Basar, “POLY-HOOT: monte-carlo planning in
continuous space mdps with non-asymptotic analysis,” CoRR, vol. abs/2006.04672,
2020.

[112] H. Baier and M. H. M. Winands, “Time management for monte carlo tree search,”
IEEE Transactions on Computational Intelligence and AI in Games, vol. 8, no. 3,
pp. 301–314, 2016.

[113] E. J. Powley, P. I. Cowling, and D. Whitehouse, “Memory bounded monte carlo tree
search,” in Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, AIIDE’17, AAAI Press, 2017.

[114] T. Keller and P. Eyerich, “Prost: Probabilistic planning based on uct,” Proceedings of
the International Conference on Automated Planning and Scheduling, vol. 22, pp. 119–
127, May 2012.

[115] J. Duguépéroux, A. Mazyad, F. Teytaud, and J. Dehos, “Pruning playouts in monte-
carlo tree search for the game of havannah,” in Computers and Games (A. Plaat,
W. Kosters, and J. van den Herik, eds.), (Cham), pp. 47–57, Springer International
Publishing, 2016.

[116] B. Bouzy, “Move-pruning techniques for monte-carlo go,” in Advances in Computer

74

https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/
https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/

Games (H. J. van den Herik, S.-C. Hsu, T.-s. Hsu, and H. H. L. M. J. Donkers, eds.),
(Berlin, Heidelberg), pp. 104–119, Springer Berlin Heidelberg, 2006.

[117] Y. Zhuang, S. Li, T. V. Peters, and C. Zhang, “Improving monte-carlo tree search for
dots-and-boxes with a novel board representation and artificial neural networks,” in
2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 314–321,
2015.

[118] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT with Patterns in
Monte-Carlo Go,” Research Report RR-6062, INRIA, 2006.

[119] J. Keller, Improving MCTS and Neural Network Communication in Computer Go. PhD
thesis, Worcester Polytechnic Institute, 2016.

[120] Y. Yang and J. Wang, “An overview of multi-agent reinforcement learning from game
theoretical perspective,” ArXiv, vol. abs/2011.00583, 2020.

[121] L. Canese, G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spa-
nò, “Multi-agent reinforcement learning: A review of challenges and applications,” Ap-
plied Sciences 2021, Vol. 11, Page 4948, vol. 11, p. 4948, 5 2021.

[122] O. Thakoor, J. Garg, and R. Nagi, “Multiagent uav routing: A game theory analysis
with tight price of anarchy bounds,” IEEE Transactions on Automation Science and
Engineering, vol. 17, pp. 100–116, 1 2020.

[123] D. Lenz, T. Kessler, and A. Knoll, “Tactical cooperative planning for autonomous high-
way driving using monte-carlo tree search,” in 2016 IEEE Intelligent Vehicles Sympo-
sium (IV), pp. 447–453, 2016.

[124] S. Arora and P. Doshi, “A survey of inverse reinforcement learning: Challenges, methods
and progress,” Artificial Intelligence, vol. 297, p. 103500, 8 2021.

[125] H. Maleki and J. N. Howard, “Effects of overdischarge on performance and thermal
stability of a li-ion cell,” Journal of Power Sources, vol. 160, pp. 1395–1402, 10 2006.

[126] C. Díaz, V. Quintero, A. Pérez, F. Jaramillo, C. Burgos-Mellado, H. Rozas, M. E.
Orchard, D. Sáez, and R. Cárdenas, “Particle-filtering-based prognostics for the state
of maximum power available in lithium-ion batteries at electromobility applications,”
IEEE Transactions on Vehicular Technology, vol. 69, pp. 7187–7200, 7 2020.

[127] H. Rozas, D. Troncoso-Kurtovic, C. P. Ley, and M. E. Orchard, “Lithium-ion battery
state-of-latent-energy (sole): A fresh new look to the problem of energy autonomy
prognostics in storage systems,” Journal of Energy Storage, vol. 40, p. 102735, 8 2021.

[128] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,” in Computer Games
Workshop, (Amsterdam, Netherlands), June 2007.

[129] T. Cazenave and N. Jouandeau, “A parallel monte-carlo tree search algorithm,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5131 LNCS, pp. 72–80, 2008.

[130] G. M. Chaslot, M. H. Winands, and H. J. V. D. Herik, “Parallel monte-carlo tree
search,” Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 5131 LNCS, pp. 60–71,
2008.

[131] M. H. Lim, C. J. Tomlin, and Z. N. Sunberg, “Sparse tree search optimality guarantees

75

in pomdps with continuous observation spaces,” IJCAI International Joint Conference
on Artificial Intelligence, vol. 4, pp. 4135–4142, 7 2020.

[132] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “A0c: Alpha zero in conti-
nuous action space,” ArXiv, vol. abs/1805.09613, 2018.

[133] W. N. Chan, B. E. Barmore, J. L. Kibler, P. U. Lee, C. J. O’Connor, K. Palopo, D. P.
Thipphavong, and S. J. Zelinski, “Overview of nasa’s air traffic management-exploration
(atm-x) project,” in AIAA Aviation Forum 2018, no. ARC-E-DAA-TN57276, 2018.

76

Annex

Annex A. Theoretical Background
A.1. Temporal Difference Learning

Eq.2.2 is derived as follows:
The TD update is based on the TD error, which is the difference between the ultimate

correct reward V (s∗
t) and the current prediction V (st).

δt = V (s∗
t)− V (st), (A.1)

We also know that the reward at time t is the sum of discounted reward from t+1 onwards.

Gt =
∞∑

k=0
γkRt+k+1 (A.2)

As such, and taking into account that V (s∗
t) = Gt, Eq.A.1 can be expressed and developed

as follows:

δt = V (s∗
t)− V (st)

=
∞∑

k=0
γkRt+k+1 − V (st)

= Rt+1 +
∞∑

k=1
γkRt+k+1 − V (st)

= Rt+1 + γ

 ∞∑
k=1

γk−1Rt+k+1

− V (st)

= Rt+1 + γ

 ∞∑
k=0

γkR(t+1)+k+1

− V (st)

= Rt+1 + γV (st+1)− V (st)

(A.3)

Finally, the update rule can be written as follows:

V (st)← V (st) + αδt

← V (st) + α [Rt+1 + γV (st+1)− V (st)] ,
(A.4)

which is Eq.2.2.

77

Annex B. Results
B.1. Best solution and hyperparameters’ selection

The average reward obtained after running ten iterations with each setup can be seen in
the following table:

Table B.1: Consistency results for the first set of parameters.

CexpParameters
0 0.025

0.725 -0.063308 -0.063308
0.75 -0.063308 -0.063308

0.775 -0.063308 -0.063308
0.975 -0.063308 -0.17057

1 -0.063308 -0.158068

D

1.025 -0.104403 -0.202498

78

	Resumen
	Resumen
	Agradecimientos
	Table of Content
	List of Tables
	List of Figures

	1 Introduction
	1.1 Why Electric Vehicles?
	1.1.1 Battery: Basic Concepts
	1.1.1.1 State-of-Charge
	1.1.1.2 Future trends

	1.2 Health Aware Decision Making (HADM)
	1.3 Electric Vehicle Routing Problem (EVRP)
	1.3.1 Methods to solve the EVRP
	1.3.1.1 Exact methods
	1.3.1.2 Approximate methods
	1.3.1.2.1 Heuristic methods
	1.3.1.2.2 Metaheuristic methods

	1.3.1.3 New methods

	1.4 Hypotheses
	1.5 Objectives
	1.5.1 Main objective
	1.5.2 Specific objectives

	1.6 Thesis outline

	2 Theoretical Background
	2.1 Markov Decision Process (MDP)
	2.1.1 Non-Markovian Decision Process

	2.2 Reinforcement Learning
	2.2.1 Temporal Difference Learning

	2.3 Monte Carlo Tree Search (MCTS)
	2.3.1 How does MCTS search?
	2.3.1.1 TD Learning in MCTS

	2.3.2 Other modifications

	3 MCTS-based Method for solving the EVRP
	3.1 Dynamic and Stochastic EVRP
	3.2 MCTS implementation
	3.2.1 Uncertainty
	3.2.2 Stages
	3.2.2.1 Selection
	3.2.2.2 Expansion
	3.2.2.3 Simulation
	3.2.2.4 Backpropagation

	3.2.3 Reward
	3.2.4 Best Action

	4 Case Study: Electric Vehicle Fleet for delivery purposes
	4.1 Map
	4.2 Best route and special scenarios
	4.3 Contingency management and different scenarios
	4.3.1 Obsolete Planning
	4.3.2 Arc blocked
	4.3.3 Pick-up
	4.3.4 Initial guess

	4.4 Multi-agent: Fleet case

	5 Results
	5.1 Best solution and hyperparameters' selection
	5.2 Contingency management and different scenarios
	5.2.1 Obsolete Planning
	5.2.2 Arc blocked
	5.2.3 Pick-up
	5.2.4 Initial guess

	5.3 Multi-agent: Fleet case

	6 Discussion
	6.1 Best solution
	6.2 Uncertainty in MCTS
	6.3 Charging Stations implementation
	6.4 Computational efficiency
	6.5 Contingency management and different scenarios
	6.6 Multi-agent: Fleet case
	6.7 New opportunities
	6.7.1 New formulations
	6.7.2 Reduce manual tuning
	6.7.3 Use of voltage-based battery models
	6.7.4 Offline stage

	7 Conclusion
	7.1 Future Work

	Bibliography
	Annex
	A Theoretical Background
	A.1 Temporal Difference Learning

	B Results
	B.1 Best solution and hyperparameters' selection

