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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MATEMÁTICAS APLICADAS
POR: JUAN JOSÉ D’ETIGNY SUSAETA
FECHA: 2022
PROF. GUÍA: ANDRÉS ESCALA ASTORQUIZA

EFECTOS DEL FEEDBACK DE RADIACIÓN EN LAS PROPIEDADES DE BINARIAS
DE AGUJEROS NEGROS SUPERMASIVOS

Dado el paradigma de formación jerárquica de estructuras, las colisiones son eventos que
conforman la historia evolutiva de las galaxias. En estas colisiones se espera que las zonas
nucleares de las respectivas galaxias se fusionen en un núcleo virializado común que va ahora a
albergar los respectivos agujeros negros supermasivos (SMBH) de cada galaxia. Eventualmete
se espera que por fricción dinámica, estos agujeros negros sigan migrando y conformen un
sistema binario ligado gravitacionalmente. Esta regimen intermedio de separación entre post-
emparejamiento y pre-ondas gravitacionales es donde se lleva a cabo nuestra investigación,
donde estudiamos el comportamiento de sistemas binarios de agujeros negros y como este
interactúa con el feedback de tipo AGN que aparece como resultado de acreción.

En este contexto se efectuaron tanto simulaciones puramente hidrodinámicas/gravitacionales
con el código de grilla adaptativa RAMSES, y también simulaciones en la versión del código
RAMSES-RT que acopla la evolución de radiación en forma de fotones dentro de los procesos
dinámicos que avanzan en el tiempo al material del sistema. De esta manera se aislaron
los efectos del feedback de AGN, con especial énfasis en el feedback de modo radiativo (que
será el modo en que los agujeros negros afectan más el ambiente para casos con suficiente
acreción). Con esta inclusión de la radiación como una variable de modelo implementamos
una receta detallada de feedback, para luego explorar el impacto que se ve en la evolución
orbital de la binaria, la estructura del disco, las propiedades de estabilidad, y la evolución
del spin de los agujeros negros. La exploración anterior se hizo para sistemas en los que
se forma una cavidad por efectos hidrodinámicos y sistemas en los que esto no ocurre, en
efecto separando nuestro análisis entre sistemas de migración rápida y de migración lenta
respectivamente.

Nuestras simulaciones muestran que la inclusión de feedback no afecta la evolución orbital
de sistemas que forman un gap hidrodinámico pero afectan la estructura del disco ejerciendo
fotoevaporación a través de radiación incidente en el borde interno de la zona de baja
incidencia. Por otra parte las simulaciones de migración rápida inicialmente muestran la
formación de una zona de baja densidad, pero el disco gradualmente se estabiliza a través de
difusión, mientras gradualmente la radiación pierde eficiencia de acoplaje energético por la
ionización del gas.
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EFFECTS OF RADIATION FEEDBACK ON SMBH INSPIRAL PROPERTIES

In the paradigm of hierarchical structure formation, mergers are major players in the evolution
history of galaxies. For galactic mergers, the respective nuclear regions are expected to
stabilize as a new virialized common nucleus that will now host both of the original nuclear
supermassive black holes (SMBHs). Eventually it is expected that the dynamical friction
enforced by the common host’s stellar and gaseous background will bring the black holes
together until they are gravitationally bound conforming a new binary system. This intermediate
regime of separation (sometimes referred as the hardening phase) that occurs after the
black holes pair, and before gravitational wave emission becomes important, is where our
investigation takes place, where we study the behaviour of SMBH binary systems and how
these are affected the AGN-mode feedback that will appear as a byproduct of accretion.

It is in this context where we ran both purely hydrodynamical+gravitational simulations on
the AMR code RAMSES, and radiation coupled hydrodynamical+gravitational simulations
on the RAMSES-RT version of the code, where photons are now included as a new variable
that affects the dynamical evolution of the system. In this way we isolated the effects of AGN
feedback, with special emphasis on radiative mode feedback (which will be the energetically
dominant feedback process when accretion is high enough to sustain it). With this inclusion
of radiation as a model variable we implemented a detailed feedback recipe through which
we explored its impact on the binary’s orbital evolution, on disk structure, on disk stability
properties, and the evolution of SMBH spin. This mentioned exploration was done for systems
in which a tidal cavity will form purely by hydrodynamical effects, and systems in which a
cavity will not form, thus effectively partitioning our analysis between systems that show fast
migration and systems that exhibit slow migration respectively.

Our simulations show how the inclusion of our feedback model do not strongly affect the
orbital evolution for systems that already formed tidal gaps, although the environment
structure is affected in the form of disk photoevaporation through strong radiation that
collides with the inner boundary of the cleared low density regions. On the other hand for
fast migration simulations, initial orbital decay is stalled as a low density bubble is cleared
by feedback, but this is not a permanent feature as the disk is stabilized by diffusion wins
out against a coupling efficiency of radiated energy that will lower in inverse proportion of
the gas’s raising ionization fraction.
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Introduction

Since the introduction of black holes as a prediction of Einstein’s framework of general
relativity (GR), they have captured the interest of the scientific community, and as of today
they comprehend a necessity when trying to explain several astrophysical behaviours. Black
holes are regions in space where densities are extremely high, giving rise to gravitational
fields so strong, that it establishes an ”event horizon” where light cannot escape.

Black holes (BHs) are found in two mass regimes: Stellar mass BHs which range from
∼ 2−5M� to ∼ 40−65M� (the upper limit is not well constrained, as it depends on the onset
of pair instability, which is still an active discussion subject, see Woosley, 2017). The other
mass regime we have significant observational evidence of, is the one of supermassive BHs
(SMBHs), which are usually quoted as black holes in the broad mass range of ∼ 106−109M�.
Between this two classes, there is an observational gap (as of today, only one strong candidate
has been detected, via gravitational waves in Abbott et al., 2020) of what is referred to as
intermediate mass BHs (IMBHs), which are presently considered one of the main missing links
for understanding the history black hole evolution, and the evolution of galactic structure
(see eg: Volonteri, 2010).

Super massive black holes gained strong astrophysical relevance when they were introduced
as main candidates for explaining the luminosity observed in active galactic nuclei (AGNs)
by authors like Salpeter, 1964 and Zel’dovich and Novikov, 1967, who introduced the idea
of AGNs being powered by big amounts of accretion onto this dense compact objects. As
of today it is accepted that this compact objects are found in the overwhelming majority
of galaxies (Richstone et al., 1998, Gültekin et al., 2009), and a pairing of this SMBHs is
predicted to occur when galaxies merge (many studies point to this result initially suggested
by Begelman et al., 1980, see eg: Chapon et al., 2013 for a more updated exploration). The
main topic of this thesis is the modelling of SMBH binaries embedded in the gas-rich nuclear
regions that are expected to form when galaxies coalesce. The main aspect we are aiming
to tackle inside this topic, is the capacity for merging this binary systems have and how
feedback mechanisms affect this process and their environment as a whole.
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SMBHs, AGNs and mergers

An active galactic nucleus is what we call abnormally bright galaxy nuclei, these can show
bolometric luminosity in the excess of Lbol = 1047 erg

s
, with a broad spectrum that may cover

from x-rays to radio frequencies (Sazonov et al., 2004). The high lumonisities AGNs exhibit,
together with the fact that they show very broad emission lines (which are consistent with
Doppler broadening, predicting very high velocities) and the short variability that is seen in
some systems, are the main arguments that made the case for highly massive central black
holes as the only possible culprits.

After achieving a general consensus in that the majority galaxies host SMBHs in their
cores, it became apparent that this is not a necessarily passive feature, as tight correlations
between the black hole and larger-scale galactic properties have been found. Two particularly
important examples of this, are how BH mass appears to grow proportionally to the nuclear
stellar bulge mass Mb, in the form of

MBH ∼ 10−3Mb (1)

Häring and Rix, 2004. One other remarkable scaling property is the ”M − σ” relation
(presented originally in Ferrarese and Merritt, 2000, see Kormendy and Ho, 2013 for a more
recent review), which can be written in the following way

MBH ' 3× 108M�σ
α
200 (2)

Linking the central black hole’s mass to the host galaxy’s central bulge velocity dispersion
σ = 200σ200 km s−1, where α ' 4.4± 0.3 an empirically fitted factor.

If we consider the dynamical sphere of influence of a BH (interchangeably named Hill’s
radius) embedded on a stellar system as

Rinf =
GMBH

σ2
(3)

The resulting radius is always too small to explain the large-scale influence that could be
inferred from relations like 1-2. By Soltan’s argument (Soltan, 1982) we may establish that
present day black holes grew largely as a result of luminous accretion of gas (although not
exclusively!), meaning that the feedback from this accretion should be intimately linked with
the large scale influence seen from the BHs. A review on how AGN feedback and how it links
with the galactic nucleus’ environment can be found in King and Pounds, 2015.

When thinking about galaxy evolution as a whole, galactic mergers have to be considered, as
in today’s understanding of the hierarchical Λ Cold Dark Matter (ΛCDM) paradigm, these
are considered as naturally occurring events (White and Rees, 1978, White and Frenk, 1991).
This merger events trigger several effects, such as AGN activity (eg Treister et al., 2012), the
pairing of central BHs (eg Begelman et al., 1980) and redistribution of gas to the resulting
central regions (eg Barnes and Hernquist, 1991). In this context, it is that understanding
how the central SMBHs that reside in the original isolated galaxies, may come to coalesce,
specially if the presence of nuclear gas is assumed, and the feedback from AGNs is considered.
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The road towards SMBH coalescence

Begelman et al., 1980 set a framework that traces the possible SMBH coalescence of merging
galaxies to three different stages, and even though this analysis is set in the context of
binaries embedded in stellar environments, and before going into the case where the presence
and influence of gas is relevant, it is instructional to begin by understanding this first case.

In this three stage paradigm, the first step would be the pairing phase, where after the
merger system is settling, the nuclear region of this system relaxes and places both SMBHs
coexisting in a nuclear bulge. This nuclear bulge provides a stellar background that brings
both black holes towards the center through dynamical friction Binney and Tremaine, 2008.
The dynamical friction exerted from stars is approximated by the analytic formula from
Chandrasekhar, 1943

F ∗DF = −4πρ

(
GMBH

cs

)2

× fs(M) (4)

WhereM = vBH/cs and fs(M) is a dimensionless analytical expression stemming from the
integration of the maxwellian distribution of the velocity field from the background, taking
the form

fs(M) = ln(Λ)M−2

[
erf
(
M√

2

)
−
√

2

π
Me−M

2/2

]
(5)

Intuitively this star-induced dynamical friction operates by dragging a perturbing object
(the BHs) through the enhanced density of the wake created by the deflection of stars. This
analytical formula produces a drag that is nearly proportional to vBH at lowM values, which
falls to a proportionality of ∝ v−2

BH at higher velocities, meaning that the dynamical friction
mechanism will become progressively less effective at removing energy from the pair, and
thus will lose importance as a shrinking mechanism as the binary approaches (and reaches) a
Keplerian regime. This stage has a characteristic ’dynamical friction’ timescale (sometimes
referred as Chandrasekhar timescale) of

τdf ∼
4× 106

ln(N)

( σc

200 km s−1

)( rc
100 pc

)2(
108M�
mi

)
yr ; (i = 1, 2) (6)

Where the formula assumes our core of stars has a one dimensional velocity dispersion σc,
a radius rc and N particles Yu, 2002 (this timescale may be found with other equivalent
definitions depending on literature). The removal of orbital energy by dynamic friction is
efficient even after we say the system may be identified as a Keplerian binary which happens
approximately when the mass enclosed in their orbit falls below twice the black hole pair
mass, and for a singular isothermal sphere, when their hill spheres intersect (getting to
separations comparable to ab ∼ GMbin

2σ2 ). This regime is maintained down to what we define
as the hardening length scale ah.

This hardening length is defined as the point at which the specific kinetic energy of the binary
equals the specific kinetic energy of the stars, or equivalently, when the binding energy per
unit of mass of the binary exceeds 3

2
σ2 (the average kinetic energy of a star in the stellar
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system). ah is characterized by

ah = ab
µ

3Mbin
∼ Gµ

3σ2
∼ 0.1

q

(q + 1)2

(
Mbin

106M�

)(
100 km s−1

σ

)
(7)

Where µ = m1m2

m1+m2
is the reduced mass and q = m1

m2
(we can write µ = Mbin

q
(q+1)2

, which
leaves at times a cleaner notation). This second phase, often called the hardening phase
(Quinlan, 1996, Merritt and Milosavljević, 2005), sees the angular momentum of the binary
reduced by the scattering of stars which have close encounters with the binary, most of which
will be expelled with an energy gain after one or more encounters with it. Independently
of the binary’s binding energy E, the average relative energy change by stellar encounter
δE/E = δa/a ∝ m∗/Mbin. The stellar mass that is needed to be ejected in order to reduce
the orbital separation of the system importantly is big, of the order ofMbin/m∗. If the binary
has a cross section for collisions with stars of A ∼ πaGMbin/σ

2 and we assume a steady flux
of stars F ∼ σn∗ (n∗ being the stellar number density and ρ∗ = n∗m∗), we could calculate
the orbital separation decrease rate δa/a ∼ (m∗/Mbin)F∗Aδt, which may be integrated to
define the hardening timescale:

τhard ∼
σ

πGn∗m∗a
∼ 70

( σ

100 km s−1

)(104M�pc−3

ρ∗

)(
10−3 pc

a

)
Myr (8)

With this naive estimation, we get that the hardening timescale, in opposite to the dynamical
friction timescale, is inversely proportional to binary separation, and as such, hardening
becomes more difficult as orbital decay advances. We say this is a naive calculation because
the assumption of a steady energy-reducing stellar flux is too strong, and it may severely
underestimate the hardening decaying timescale, in the sense that the centrophilic star budget
(the stars that will interact with our binary) decays as the shrinking of the binary advances.
The region of the phase space of the system that contains such low angular momentum
(J2 . 2GMbina) budget is called the loss cone. In order to reach an orbital separation of a,
the amount of ejected stellar mass may be expressed as

Meject(a) ∼ µ ln
(ah
a

)
(9)

In practice if we set a = aGW as the separation at which orbital decay from gravitational
waves becomes efficient, the amount of ejected mass Meject(aGW ) cannot be reached if loss
cone depletion is considered, causing in principle a stalling of the binary if no further physical
considerations are made (this is sometimes called the ”last parsec problem” Merritt and
Milosavljević, 2005). The refilling of the loss cone by two-body relaxation may sometimes
solve this stalling in sensible timescales, and as of today mechanisms such as non axisymmetric
potentials or three body perturbations (from a third BH for instance), have been proposed
as ways to cope with the last parsec problem, but no definite solution has been found
to surmount this major bottleneck in the theory of SMBH binaries embedded in stellar
environments.

As it was hinted, when BHs become close enough, we enter the third stage of coalescence,
where gravitational radiation becomes quite efficient at extracting angular momentum and
thus driving the later stages of the merger. Gravitational radiation comes from the time-space
excitation derived from the changing gravitational multipole structure the binary exhibits
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(the ideal case being only quadrupole induced radiation from a circular orbit, but further
multipole radiation may be induced by eccentricity in the binary’s orbit). The gravitational
radiation timescale that comes from this context is commonly quoted from Peters, 1964, and
takes the form of

τGW =

(
ȧ

a

)
∼ 5

64

c5a4

G3M3
bin

(1 + q)2

q
F (e) (10)

With F (e) a dimensionless analytic function that quantifies the effect of eccentricity e in the
gravitational radiation regime:

F (e) =
(1− e2)7/2

1 + (73/24)e2 + (37/96)e4
(11)

We can readily appreciate that the timescale for gravitational wave emission is strongly
proportional to binary separation, in opposite to the hardening timescale, and we define
the the length at which the phase or regime transition occurs, as the point aGW at which
τGW (aGW ) = τhard(aGW ) (Colpi, 2014),

aGW =

(
G2

c5

256

5π

)1/5(
σ

ρ∗

)1/5

F (e)−1/5

(
q

(1 + q)2

)1/5

M
3/5
bin (12)

Sometimes aGW is set as the length in which τGW < τhubble (which would reduce to aGW =
1.4 × 104(Mbin/106M�)−1/4rS, with rS = 2GMbin/c

2 the Schwartzschild radius). If aGW <
aGW coalescence will happen if the binary surpasses the hardening phase, as our system will
reach a point in which gravitational waves will remove angular momentum efficiently enough
for the merger to shrink rapidly enough.

Withing the paradigm set by Begelman et al., 1980, the presence and influence of gas as
a factor that could affect binary shrinking, was barely considered (gas was only proposed to
affect the merger process indirectly through the feeding of the SMBHs). This is a problem,
as the coalescence of SMBHs is relevant in the environment resulting from galactic mergers,
which are predicted to host highly gas-enriched central regions both from simulations (see
eg: the already already mentioned Barnes and Hernquist, 1991 or Barnes and Hernquist,
1996) and in observations (Sanders and Mirabel, 1996, Ueda et al., 2014). This expected
gas rich environment is predicted even in relatively dry mergers, and as such it is relevant
to consider a gaseous medium’s influence over the dynamical evolution of the binary. At
first approximation, if a stable gas rich environment (a non trivial assumption which we will
further expand on) can be maintained, the first and second phases of coalescence we explored
in the stellar case, may be accelerated by a factor ∼ 102− 103 (eg: Escala et al., 2005, Dotti
et al., 2007, Cuadra et al., 2009).

When the black holes are still in their pairing phase, the role of stellar induced dynamical
friction will be aided by the friction exerted by the gas background (Escala et al., 2004),
and just as how equation 4 operated, the couple induced by the gaseous dynamical friction
retains the same form, but with a different dimensionless function:

F g
DF = −4πρ

(
GMBH

cs

)2

× fg(M) (13)
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Where the dimensionless factor fg was determined by Ostriker, 1999 by integrating the
contribution from the surrounding fluid elements of the density enhanced wake, separating
the cases of subsonic/supersonic perturbers:

fg(M) =


1

2M2 ln
(

1+M
1−M

)
− 1
M , M < 1

1
2M2

[
ln
(M+1
M−1

)
− 2 ln(Λ)] , M > 1

(14)

Where Coulomb’s logarithm is actually corrected by Escala et al., 2004 in order to correct
for an overestimation found in Ostriker’s formula to

ln(Λ)→ g(M) =


4.7 , M≥ 0.8

1.5 , M < 0.8
(15)

This gas induced friction has an influence comparable with that of the stellar background,
and further facilitates angular momentum removal at the first stages of binary pairing up to
the point where the BHs dominate the dynamics of their immediate environment.

After the pairing phase, instead of three body scattering as the main proposed mechanism
for removing angular momentum, when the black holes pair up and there is an important
gaseous reservoir, the setup will usually take the form of a binary embedded in a gas
disk (circumnuclear disk), and the binary’s dynamics will be dominated by the interactions
between said binary+disk system. If the system is able to maintain the binary+disk structure
robustly, besides mechanisms like Lindblad and corotation resonances, Escala et al., 2004 and
Escala et al., 2005 showed that the system naturally forms an ellipsoidal density enhancement
that lags behind the binary’s gravitational potential, this axis misalignment creates strong
torques that remove orbital momentum very efficiently. The relatively self-similar evolution
of this configuration means that this torque production can be maintained for long enough
to bring the SMBHs close enough for the gravitational radiation regime to begin.

We have mentioned that the preceding analysis depends on the disk being able to preserve
healthy amounts of available gas surrounding the binary, which is not always the case. To
first approximation, cases like the ones explored in Escala et al., 2004 where the disk mass
is very high in proportion to the binary, the coupling of the dynamics does not perturb the
disk too strongly and allows this smooth binary migration, which is sometimes referred as
Type I migration. When the binary-disk mass ratio is on the other end, by being extremely
low, the binary is too strong of a perturber for the disk to be able to maintain its structure
(this is common in other binary+disks astrophysical contexts, such as in the evolution of
stellar binaries). This perturbation manifests as a low density gap is carved outwards from
the central pair, by the deposition of angular momentum through the coupling of the binary
with the medium. This gap formation reduces the gas budget that could extract angular
momentum from the SMBHs, and thus the problem evolves much slowly and is known as
Type II migration. Beyond the Mbin/Mdisk, things such as the binary mass ratio or the
orbit’s eccentricity could affect the propensity that the system has of forming this tidal
cavities, which does play a role in our work, specially when consideration the setups from
our problem, the gap-forming criterion from del Valle and Escala, 2012, del Valle and Escala,
2013 (hereafter VE12) will be used as a tool for predicting how our initial conditions will

6



evolve in this matter.

Our work

Already having established that SMBH binaries may not be unexpected to be found in large
gas reservoirs at the center of our merging (post merger) system, it is possible that this
massive BHs which are embedded in such gas-rich environments may have the capacity to
accrete at high-rates and therefore feed a lot of quasar-mode energy back to the system. The
interplay between this AGN feedback, the structure of the surrounding circumnuclear disk,
and the rate of orbital shrinking, are what motivates the need to explore adhoc simulations
that have the capacity to address this questions.

This work was originally motivated by the analysis done in del Valle and Volonteri, 2018
(hereafter VV18), where they simulated by the use of the SPH code GADGET Springel,
2005, different binary+disk setups both with and without the energetic feedback that the
BHs may impart in their environments, and tried to isolate the effects the inclusion of this
phenomenon has. This feedback was modelled by an implementation of a direct heating
method to emulate radiative output and a depositing of material by vertical ejection to
emulate jets. They find, in broad terms, that in setups where no tidal cavity opens naturally
by the dynamics of the system, AGN feedback is able to quickly open what they denominate
as ”feedback cavity” which stalls the orbital evolution.

In this thesis we will perform simulations that start from the same initial conditions from
VV18, but this time they will be done with the AMR code RAMSES (Teyssier, 2002). The
main improvement over the original simulation runs, will be the fact that we will employ
a radiation coupled hydrodynamical code that follows the interaction between photons in a
multi wave band capacity, and the medium, allowing for a more consistent and better resolved
radiative feedback from the central binary. With this result we want to be able to measure
more accurately the impact that AGN-mode feedback potentially has as a facilitator/inhibitor
for BH coalescence, and the overall effect that this feedback may have on the surrounding
medium.

Additionally, beyond doing analysis of the simulation state by looking only at outputted
information, we do a post processed approximation of the behaviour we would see in terms of
the BH’s spin evolution in our context and how it relates to AGN feedback. Specifically we
translate the accreted angular momentum and mass, to their actual impact in the spin of our
BHs by modelling the Bardeen-Peterson effect (through artificially generated inner accretion
disks) and its effect in angular momentum alignment and magnitude.

Projecting towards the future, the general understanding of binary coalescence ties in directly
with the expectations the scientific community may have towards missions like the Laser
Interferometer Space Antenna project (LISA, see eg: Amaro-Seoane et al., 2012) or future
upgrades to the LIGO/Virgo collaboration, where improving theoretical constraints of mergers
will work in concert with the understanding of gravitational wave emission sources, and
viceversa.

7



Thesis outline

After this relatively brief introduction to the context of our work, the overall document is
organized as follows:

In Chapter 1, as the core work of this document is focused in the running and analysis
of simulations, we start off giving an in-depth overview of all the main numerical algorithms
used in the course of this work. The chapter is mostly focused on understanding the core
components of the RAMSES code and the methods used to couple the main hydrodynamical
code with radiation. Furthermore we give an additional recounting of the sink particle
formalism used in RAMSES, of the DICE galaxy code and of the methods we employ in
order to generate the emission spectra of the SMBHs.

Next, in Chapter 2, we account for all the specific details of the ingredients that come
into play when setting up our simulation suite. Specifically we give the motivation for our
physical initial conditions, we specify the subgrid recipes employed, and the actual numerical
values and parameters that define our systems. The motivation for this chapter is that an
interested reader would have all the necessary information to reproduce our simulations on
their own.

Having already laid all the groundwork for the setting up of our experiments, Chapter
3 details all the analysis and results we obtained. We first perform a preliminary analysis of
the radiative and non-radiative feedback runs separately, and we then combine them both in
a comparative effort. We top off the analysis of our simulations at 4 with the post processing
of our simulations and doing the analysis of how the spin of our BHs evolve in relation with
the accretion flow.

In order to tie up the work done, we formally end this thesis with conclusions section,
where we sum up our findings, discuss their possible implications and mention possible
improvements and/or future avenues for work.

Finally we include the appendix A where the spectrum grid values are showcased, presenting
the 10× 10 different grid geometries along with their associated values for energy deposition
fractions and weighted ionizing cross sections. At B, we link to repositories where some of
the codes and routines used for our work are located.
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Chapter 1

Numerical methods

The fact that most processes in astronomy are observed statically or partially, leads to the
use of numerical simulations to fill in the gaps of our understanding of astrophysics in general,
allowing researchers to observe the dynamical evolution of astronomical processes in time.
Observations and simulations usually work hand in hand, with the latter used in general as
the testing grounds of different theories that arise from observations, where model constraints
and testing is harder and far more limited.

The approaches for detailed numerical simulations have historically been split between two
competing methods, namely Adaptive Mesh refinement or AMR (Berger and Colella, 1989,
and for more recent developments Plewa et al., 2005) and Smoothed Particle Hydrodynamics
or SPH (Lucy, 1977; Gingold and Monaghan, 1977, and Springel, 2010 for a more updated
review on the subject). It is generally accepted that both have their advantages and fallings
depending on the context: In one hand SPH-type codes have Galilean invariance (which
AMR methods do not have), their spatial resolution is not fixed by minimum grid lengths,
and are well equipped for problems with big dynamic range or when the objects are rapidly
traversing across the computational volume (Tasker et al., 2008). On the other side grid-
based codes can resolve low-density field regions as accurately as high density regions (at a
computational cost, which ties with the last advantage of SPH methods mentioned), physical
pehonema that can be specified as hyperbolic systems (integral conservation laws) can be
implemented seamlessly and are a much better option for problems where the interesting
processes are in places of rapidly changing density (rather than in high-density regions) such
as shocks.

More recently, a new class of codes have gained importance, these are based in moving mesh
methods (eg: GIZMO Hopkins, 2015; AREPO Weinberger et al., 2019), where the spirit lies
in trying to combine AMR and SPH methods by using finite element discretization of space
through Voronoi tesselation and particle-tree gravitational interaction, this would eliminate
problems such as the artificial dealing of shocks and viscosity for SPH, and grid alignment
noise or lack of physical invariances for AMR methods. Of course nothing is perfect, and the
moving mesh philosphy has its fallings, such as the lack of clear selection of scales for CFL
condition fulfillment, or the potential appearance of strong stiff expressions for numerical
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integration (points mentioned in Tang, 2005) .

1.1 RAMSES
For the work in this thesis we will work with an AMR-based, N-body and hydrodynamical
code: specifically we will be using RAMSES1 (Teyssier, 2002). RAMSES was originally
created as a code that implemented a tree-based data structure adaptive mesh refinement
(Khokhlov, 1998) with a second-order Godunov hydrodynamical solver, coupled to a N-body
solver heavily inspired by the ART code (Kravtsov et al., 1997).

In its purest form, the original framework of the code can be divided into the routines
that deal with the grid construction and modification (AMR service routines), the particle
mesh routines, the gravity solver routines, and the routines that deal with solving the overall
hydrodynamics of the system. All this, as mentioned, is in the spirit of simplifying the codes’
overall functioning, omitting details of additional physics, cosmology and new features that
deal with more specific routines (which will be eventually addressed as necessary in the course
of this work). For an idea of the general flow diagram of RAMSES execution you can see
(1.1), where details are ignored, but the task order is consistent with the code




Poisson solver

AMR building

Hydro solver

Additional physics

Load balancing 
CPU communication 

Time loop

MHDRHD

N-body solver

Figure 1.1: General flowchart for the RAMSES code execution

1https://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html

10

https://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html


1.1.1 Adaptive Mesh Refinement
The already mentioned adaptive mesh refinement method was originally described by Berger
and Oliger, 1984 and Berger and Colella, 1989. The original method referred to an Eulerian
hydrdynamical scheme with a structure made of a hierarchical nested grid that has different
levels of coarseness, adjusting its resolution in a user defined ways that make it easier to
resolve certain phenomena in simulations. This is opposed to what one is used to when
integrating equations numerically, which is usually done in a grid which is fixed in time (and
most of the time it has homogeneous geometry). In this original form, the grid was comprised
of rectangular blocks, whose positions and aspect ratios are meant to optimize and follow the
flow geometry, values, speed and memory constraints (this kind of data structuring is used
in other AMR codes such as ENZO Bryan et al., 2014).

In opposition to this original form which had this mentioned rectangular blocks as the data
structure, in RAMSES the fundamental structure of the grid comes in the form of a ’Fully
Threaded Tree’ (FTT) (Khokhlov, 1998). The basic element are groups of 2d sibling cells
called octs (with d ∈ {1, 2, 3}, standing for the spatial dimensions of the problem), each and
any of these octs belong to a corresponding level of grid refinement l (see image 1.22).

Figure 1.2: 2D representation of the oct-tree structure of ramses. Each oct (here on Level 2)
points to it’s mother cell (red arrow) and the neighbouring mother cells (blue arrows), and
to its children octs (green arrows).

For any given simulation one starts with a regular cartesian grid that defines the base level of
refinement, it is called the coarse grid, it sets the first level of the tree structure at l = 0 and its
resolution. At a refinement level, each oct is assigned a place in a linked list, with every such
oct pointing to the next and previous one in the list. Additionally every oct has a pointer to
its parent and its 2d neighboring cells at level l−1 and to the 2d child octs that would appear
at refinement level l+1 (when an oct has children, its called a split cell, and if not, a leaf cell).

On the practical side, if the coarse grid at l = 0 is set at a base refinement level of i,
for a simulation box of side length L, an oct at level l would then be related to a resolution
(cell size) of L

2(i+l)
. Now, the fact that one deals with an structured mesh gives the opportunity

2credit for image https://tel.archives-ouvertes.fr/tel-01496864/document
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to work with different time-step resolutions for different spatial resolution regions, and hence
making it easier to evolve in a detailed way regions that bear more physical significance.
The adaptive time step algorithm implemented in RAMSES goes back and forth different
refinement levels in a way akin to a W cycle.

Figure 1.3: Time-stepping order for three refinement level system. Red arrows represent
actual time-step execution

The time-step for evolution is estimated recursively through refinement levels with their
associated CFL restrictions and then used in the mentioned W cycle, with the additional
condition of simultaneity set by finer levels through coarser ones when the instant of time
advancing comes (the necessary condition of ∆ti = ∆t2i+1 +∆t2i+1, with i the refinement level).
If one abuses notation a little and calls lmin, lmax the respective minimum and maximum
levels of refinement, then the sequence of instructions for time multi-stepping would be the
following:

• The coarse time-step length ∆tlmin
is calculated through its Courant-Friedrichs-Levy

conditions in all cells (this will be further explained later)
• Before time integration is executed, the next level at lmin + 1 makes its own time-step

estimation, in two substeps (as the CFL condition should scale linearly with spatial
resolution)
• This in turn makes a recursion of nested estimations going down to the finest level

which only contains leaf cells
• Here the first two timesteps are finally executed with a length restricted both by the

CFL condition and ∆tlmax ≤ ∆tlmin
/2lmax−lmin

• After this advancement the algorithm goes back a level, and after synchronizing the
time step to the sum of the two finer ones already executed, it is executed.
• This is a recursion that starts going up and end the hierarchical advancement once it

reaches the coarsest level cells
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1.1.1.1 Mapping of cell refinement and modification of the tree

The process of refinement in the code depends on the marking of certain cells as they meet
criteria defined by the user and the problems context. This basically proceeds for every level
l in the following steps:

• If a split cell contains a children cell that is marked or already refined, then mark it for
refinement
• Mark the 3d − 1 neighbouring cells
• If any cell satisfies the user-defined refinement criteria, then mark it for refinement

The second instruction is given for the purpose of making the transition of refined to coarse
regions, more smooth. Another smoothing procedure is used to reduce the ’noise’ that can
appear over refinement maps in areas where flows fluctuate over thresholds that define the
refinement criteria. This mentioned additional procedure consists of defining a cubic buffer
volume around marked cells for a smoother transition, which is basically an expansion of the
area of refinement.

After the refinement selection is ready, for every level l, the next step is to create a child oct
for every leaf cell that has been marked for refinement, and destroying the child oct for any
split cell that was not marked. Even though this process is not necessarily fast (as it involves
modifying the linked list structure of the FFT), it is not very time consuming, due to the
operations being done only on a reduced number of octs at a time for every time step.

1.1.2 N-body solver
As already mentioned, RAMSES deal with the collisionless portion of simulations through
an N-body solver, this is modeled as a system of p−particles that obey the Vlasov-Poisson
equations:

dxp
dt

= vp,
dvp
dt

= −∇xφ ; ∆xφ = 4πGρ (1.1)

The scheme can be decomposed in a series of steps:

• Compute the density ρ on the mesh using a Cloud-In-Cell (CIC) interpolation scheme
• Solving for the potential φ from the Poisson equation
• Compute the acceleration through a numerical approximation for the gradient of φ
• Determining the acceleration for each particle after using an inverse CIC interpolation

scheme
• Update the velocity of each particle using the acceleration, and then the position using

said velocity.
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1.1.2.1 The density field

In order to compute the gravity, one needs the density field across all the simulation, and
where the gas density field is easily taken account for thanks to the fact that the grid stores
the gas mass deposited in every cell, the particle portion of the density field does not have
such a direct treatment. The density field for the particles in a simulation is computed using
the CIC interpolation scheme (Hockney and Eastwood, 1981)

Figure 1.4: Graphic representation of how Cloud-In-Cell deposit particle fields onto the grid

This method defines relies in defining a ”cloud” attached to every particle in the simulation
(see 2.7), which distributes its mass across the cells it overlaps with. Formally this spreading
out of the particle density, if for instance we consider a cell of volume Vc with Np particles
inside its boundaries, would give a description of the field like this:

ρ(x) =
1

Vc

Np∑
p=1

miW (|x− xi|)

Where W (·) is the interpolation function or smoothing kernel defining the cloud geometry
that distributes the weight, and mi is the individual particle mass. The information of which
octs (and at which level) a particle cloud is overlapping, is contained in a hierarchical linked
list which stores and links particles that share similar oct boundaries.

1.1.2.2 Solving for φ

The Poisson equation is solved using a one directional scheme that passes information from
the coarse grid to the finer levels (Jessop et al., 1994; Kravtsov et al., 1997), which means
that the lower resolution levels will not see any effective improvement of the gravity field
determination in contrast to if it was solved as an isolated grid, and errors will be propagated
through finer levels. In order to start the general method, the Poisson equation is solved for
the coarse level using the standard Fast Fourier Transform (FFT) technique (Hockney and
Eastwood, 1981) with a green function defined to solve the fourier transform from the central
finite approximation of the Laplacian. This transformation in 1D, in continuous form, would
transform the problem like:∫ ∞

∞

∂2φ

∂x2
eikxdx =

∫ ∞
∞

Aρ(x)eikxdx = Aρ̃(k)⇒ φ̃(k) = A
ρ̃(k)

k2
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After the first estimation of the Poisson solution, the finite difference method used here, relies
in a central approximation of the Laplacian for 2dim+1 points, with boundary conditions
which are passed down to finer levels using linear interpolation and are defined in ghost
regions surrounding the involved computation domain. With these conditions the algorithm
for determining the potential is a form of the Gauss-Seidel (GS) method with Red/Black
ordering and Successive over relaxation (SOR, Press et al., 1992), in which for dim= 2, the
GS iteration writes as (with the initial guess φ0 is defined through a linear reconstruction of
the potential from the coarser level l − 1):

φn+1
i,j =

1

4

(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
− h2

4
ρi,j

The converge of the Gauss-Seidel algorithm can be improved by different methods, like
performing differentiated sequencial updating of indexes (Red/Black ordering) and the freedom
to ”over-correct” with previous estimates using parameter ω ∈ (1, 2):

φn+1
i,j = ωφni,j+(1−ω)φn+1

i,j ⇒ φn+1
i,j =

1− ω
4

(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1

)
−(1− ω)h2

4
ρi,j+ωφ

n
i,j

Where the choice of the parameter ω makes it so iterations lose estimation power as they
advance by making them weight less in proportion to the grid resolution, ie: with bad
resolution power, the relaxation parameter ω will be closer to 1, as we want low resolution
to mean that GS iterations will be less valuable. The explicit form of the optimal parameter
selection for a regular N ×N grid is known to be (Press et al., 1992):

ω ' 2

1 + α π
N

Where α being a parameter set by the boundary condition type (eg: α = 1 for Dirichlet
conditions). For an irregular grid, the value of w does not have an analytic expression, but
in practice the use of the average mesh patch size 〈L〉 (in number of cells) works very well in
replacement of N . In order to test the methods convergence, residuals are defined:

Rn
i,j =

1

h2

(
φni+1,j + φni−1,j + φni,j+1 + φni,j−1 − 4φni,j

)
− ρi,j

Convergence of the estimation for a given level is then decided based on a comparison between
the residuals with the scales that come from CIC induced errors, which are the dominant
source of error in the force calculation.

1.1.2.3 Acceleration Computation

The acceleration is computed using the potential through a 5−point finite difference approximation
of the gradient. The particles on the simulation recieve their acceleration through an inverse
CIC scheme for mass deposition, and they are only passed their acceleration through an
interpolation of the mesh if their cloud is completely contained in the cell considered (in
other words, if a particle cloud is contained in different cells for level l, then level l − 1 is
considered for the acceleration computation, and so on). This implementation is the same
for the ART code (Kravtsov et al., 1997).
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1.1.3 Hydrodrynamical solver
The base hydrodynamical set of equations that are to be solved by the code are in their
conservative form:

∂ρ

∂t
+∇ · (ρu) = 0 (1.2)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = −ρ∇φ (1.3)

∂

∂t
(ρe) +∇ · [ρu(e + p/ρ)] = −ρu · ∇φ (1.4)

Where ⊗ is the outer vector product, u is the fluid velocity, e is the specific total energy, and
p is the thermal pressure given by (at least without RHD):

p = (γ − 1)ρ

(
e− u2

2

)
The energy equation 1.4 is not explicitly conservative due to the non-stiff source term that
arises from gravity, and the total energy level is conserved at percent level. If Un

i is the the cell
averaged value of the vector (ρ, ρu, ρe) at time tn for cell i, and if F n+1

i+1/2 (F n−1
i−1/2 respectively)

refers to the time centered fluxes across cell interfaces, then the numerical discretization of
the Euler equation with gravitational source terms is:

Un+1
i − Un

i

∆t
+
F n+1

i+1/2 − F
n−1
i−1/2

∆x
= Sn+1

i (1.5)

Where the gravitational source terms are included using a time centered, fractional step
approach, and get the form:

S
n+1/2
i =

(
0,
ρni ∇φni + ρn+1

i ∇φn+1
i

2
,

(ρu)ni ∇φni + (ρu)n+1
i ∇φn+1

i

2

)
As is usual for the numerical solving of hyperbolic PDE systems, the problem is advanced
using a second-order Godunov scheme where the intercell fluxes will be approximated through
a Riemann solver (the native RAMSES implementation is based on the work of Colella, 1990
and Saltzman, 1994). A general overview of Godunov methods can be found in Toro, 2001.
As briefly mentioned before, in order to integrate Euler’s equations, we need to compute the
time-centered fluxes at cell interfaces, which is done with a Riemann solver, and in practice
we choose to use RAMSES implementation of the HLLC solver. Instead of going in depth
with the workings of such solver, we reference Toro, 2019 for an updated review on the
subject. The HLLC (Harten–Lax–van Leer contact) solver is chosen over other approximate
Riemann solvers that have been implemented in the RAMSES framework, as its known to
have good capabilites in capturing contact discontinuities (in contrast to LLF, roe,the original
HLL, etc.) and is therefore better equiped for modelling shocks. Even though one would
expect a strong trade-off in simulation time attached to this improved capabilites, the HLLC
solver performance has been positively tested in Lu et al., 2010, where the slight increase
in simulation time is validated by the difference in numerical viscosity with the comparable
methods. In practice, for our simulations, even without RHD, the simulation time taken up
by the Godunov solver falls below 10%.
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1.1.4 Time integration and step control
1.1.4.1 Time integration

For a coupled N-body and hydrodynamical AMR code one needs to deal with the possibility
of variable time-steps. The solvers’ stability with respect on time-step length is given by a
(variable in time) CFL condition. We need to establish how we integrate the hydrodynamics
of the system and the dynamics from particles. For particles RAMSES has an implementation
of a second-order midpoint scheme. We know the acceleration −∇φn at time tn from particle
positions xnp , positions and velocities are first updated by a predictor step:

vn+1/2
p = vnp −∇φn∆tn/2 ; xn+1

p = xnp + vn+1/2
p ∆tn (1.6)

This is then updated through a corrector step that is updated using the acceleration at tn+1,
which means the operation is done in the next time step:

vn+1
p = vn+1/2

p −∇φn+1∆tn/2 (1.7)

When a particle exits level l with time step ∆tl, the corrector step is applied at level l − 1
with ∆tl instead of ∆l−1. This means that ”past history” of all particles has to be known to
apply this procedure.

In the case of time integration for Hydrodynamics, we now present the steps (which are
recursive by the second step) for level l in the involved AMR methodology:

1. Generate refinements at level l+1 through interpolation of level l variables and compute
∆tl length

2. Advance the solution in time for level l + 1

3. Compute boundary conditions in a temporary buffer by conservative interpolation of
level l − 1 variables

4. Compute fluxes using the single grid Godunov solver
5. Replace the fluxes at the coarse-fine interface by averaging the fluxes computed at level
l + 1

6. For leaf cells, update variables using these fluxes
7. For split cells, update variables by averaging down the updated variables of level l + 1

8. Build the new refinement map

1.1.4.2 Time step restriction

In order to integrate the numerical methods in RAMSES, the time step length has to be
determined for each level independently (as is was somewhat implicitly mentioned at 1.3)
and we now enumerate all the criteria for this determination (outside of any RHD imposed
criteria that would be mentioned in the next section). The firs constraint come from the
gravitational evolution of the system, where we want to impose that ∆tl should be smaller
than a fraction C1 < 1 of the minimum free-fall time:

∆tl1 = C1 ×min
l

(tff)

The second time step restriction comes from particle dynamics in the grid, where we impose
that they should move in fractions C2 < 1 of the local cell size. This is a standard measure
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set in order to correctly follow kinematics along a grid:

∆tl2 = C2 ×∆xl/max
l

(vp)

Since our simulations will not be cosmological, no time restrictions regarding the expansion
factor aexp are needed, leaving only the Courant-Friedrichs-Lewy (CFL) condition:

∆tl3 = C̃ ×∆xl/max
l

(|ux|+ c, |uy|+ c, |uy|+ c)

Just as the second condition, the CFL condition uses the Courant factor C̃ to put a restriction
on how characteristic simulation speeds should not travel faster than how physical information
can travel through the grid. With all this in hand the actual time step will be restricted to
be

∆tl = min(∆tl1, ∆tl2, ∆tl3)
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1.2 RAMSES-RT: Radiation hydrodynamics (RHD)
The spirit of our work is ultimately explore consistently the effects of radiation in black hole
mergers, and the belief that this will be done correctly then relies strongly on the methods
used to model such processes in a simulation. Luckily, RAMSES has a very sophisticated state
of the art package written for the modelling of non-equilibrium thermochemistry, ionization
and radiation hydrodynamics as a whole, namely RAMSES-RT. This deep radiative transfer
model was introduced in Rosdahl et al., 2013 and was then finished and coupled to hydrodynamics
in Rosdahl and Teyssier, 2015, which methods are of such relevance to this work that we now
give an accounting for.

Radiation hydrodynamics have usually been treated as second-order processes in many astrophysical
contexts, and if studied altogether, they are frequently relegated to being modelled in a post-
processing fashion where radiation is decoupled to the dynamics and structure formation of
the system or they strongly rely on subgrid recipes. This stems from fact that the inclusion
of coupled radiative transfer is hard because of the big constraints in computation time and
memory that the high dimensionality and physical complexities put in simulations, alongside
with the inherent difference of timescales between radiative processes with dynamical ones. It
is worth mentioning here that the efforts in modelling radiation here, are focused on capturing
continuum radiative transfer in opposition to line-driven radiative transfer.

Just how hydrodynamical codes are traditionally split between SPH and AMR, RT schemes
also present a dichotomy between ray-tracing codes and moment-based codes. Comparisons
between both methods have been carried out (eg Iliev et al., 2006; Petkova and Springel, 2011;
Wise and Abel, 2011), and while each of them has its own advantages and disadvantages,
we are going to deal with a moment method in RAMSES. It is to be noted that the quoted
comparative studies, do not deal with coupled RHD codes, but with pure RT codes.

1.2.1 Moment-Based Radiative Transfer with the M1 Closure
The idea behind moment based methods for treating radiation is to reduce the angular
component of the radiative transfer equations taking its angular moments and then closing
the equations by adding information with a proposed form of the physical behaviour of the
system (in our case it falls into proposing a form for the radiative pressure tensor Pν). In the
end this reduces to replacing beam direction of radiation, with bulk directions that represent
their average behaviour. If we call Iν(x,n, t) the specific radiation intensity at coordinate x
and time t, such that

Eν = Iν dν dΩ dA dt (1.8)

is the energy of radiation with frequency in [ν, ν+ dν] propagating through the area dA in a
solid angle dΩ around the direction n. The equation of radiative transfer describes the local
change in specific intensity in relation to photon propagation, absorption and emission

1

c

∂Iν
∂t

+ n · ∇Iν = −κνIν + ην (1.9)

With c being the speed of light, κν(x,n, t) the absorption coefficient and ην(x,n, t) a function
that models sources of radiation. When one takes the first two moments of equation 1.9 and
defining the species S = {HI,HeI,HeII} (these are used as they are the main contributors on
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radiative transfer for most regimes, potentially other species could be added), we recover the
evolution of the photon number density Nν and the flux Fν :

∂Nν

∂t
+∇ · Fν = Ṅ∗ν + Ṅ rec

ν −
∑
j∈S

njσνjcNν (1.10)

∂Fν
∂t

+ c2∇ · Pν = −
∑
j∈S

njσνjcFν (1.11)

Where as we mentioned Pν is the pressure tensor that remains to be determined in order to
close the equations. Absorption has been split into njσνj, with nj is the number density of one
of the given photo-absorbing species we are working with in S, and σνj is the corresponding
ionization cross-section for photons at frequency ν. Emission sources now have also been
split into injection sources Ṅ∗ν (e.g. in our case these will correspond to quasar radiation
emission), and also recombination radiation from gas Ṅ rec

ν . It is worth noting here that in
Rosdahl and Teyssier, 2015, this system of equations is expanded to include explicitly the
isolated handling of dust absorption and rescattering of radiation into the infrared band (see
section 1.2.2.4 for more details, albeit not all, as it is not necessarily a main feature in our
context).

The first necessary simplification that arises at this point, is the need to reduce the load
from assuming a continuous dependency on ν for the RT equations 1.10-1.11, which leads to a
discretization of frequencies into bins that makes it so groups of photons roughly approximate
relevant quantities for frequency ranges. This multifrequency approach defines quantities
through averages:

Ni =

∫ νi1

νi0

Nν dν , Fi =

∫ νi1

νi0

Fν ν

Where for i ∈ {1, ...,M} the frequency groups are defined so that every interval is (νi0, νi1),
they are mutually exclusive and cover the whole H-ionizing range (meaning that [ν00, ν01 :
ν10, ν11 : ... : νM0, νM1] = [νHI ,∞[ ). With this definition in hand, when integrating the RT
equations we get:

∂Ni

∂t
+∇ · Fi = Ṅ∗i + Ṅ rec

i −
∑
j∈S

njσ
N
ij cNi (1.12)

∂Fi

∂t
+ c2∇ · Pi = −

∑
j∈S

njσ
N
ij cFi (1.13)

Thus yielding a set of 4×M equations, where we define the average cross sections σNij between
group i and species j, as:

σNij =

∫ νi1
νi0

σνjNν dν∫ νi1
νi0

Nν dν
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The model is simplified by defining group cross sections as global quantities, assuming a
given spectral distribution of energy J(ν) = Nν · hν (this is a user given parameter, and in
our case is of great importance for depositing radiation energy in the simulation from the
AGN feedback, see 2.3.2). The cross sections are then evaluated by using the expression from
Verner et al., 1996 for σνHI , σνHeI and σνHeII and then doing

σNij =

∫ νi1
νi0

σνjJ(ν)/hν dν∫ νi1
νi0

J(ν)/hν dν
(1.14)

At the same time average photon energies within each group are of course evaluated as

εi =

∫ νi1
νi0

J(ν) dν∫ νi1
νi0

J(ν)/hν dν
(1.15)

As of now, equations 1.12 and 1.13 are to be closed with an adopted expression for the
radiative pressure tensor. This is usually done by calling Pi = DiNi, with Di the Eddington
tensor, through which one will try to capture the most meaningful physical behaviours.
Different expressions have been proposed for Di, such as the original Eddington approximation
Di = (1/3)I which would correspond to a model for isotropic intensity, or the optically thin
Eddington tensor formalism OTVET (see eg: Gnedin and Abel, 2001). The choice of tensor
expression in the case of our work, as we previously mentioned, is the M1 closure relation
(Levermore, 1984).

The M1 closure relation is derived by doing analytic approximations on radiative transfer
moment equations assuming rotational invariance of intensity sources, the work can get quite
technical, and we now give a very brief intuition of where the formulas come from. To
understand the intuition of the adopted relation, we first remember that from taking the
angular moments of 1.9, the actual expressions we got were:

cNν =

∫
4π

Iν(x,n(Ω), t) dΩ , Fν =

∫
4π

n(Ω) · Iν(x,n(Ω), t) dΩ (1.16)

Pν =

∫
4π

n(Ω)n(Ω)T · Iν(x,n(Ω), t) dΩ (1.17)

As is clear from the definition of Fν in 1.16, we have |Fν | ≤ cNν , and thus define the
reduced flux fν = |Fν |

cNν
, which in practice serves as an index of directionality for the radiation

flow in each point (low values point to predominantly isotropic flows, and conversely, values
nearing unity means that flow is mainly one-directional). Intensity can also be normalized
by expressing it through the field Φ so that Iν = cNνΦ. One can further prove that the
pressure tensor is to have positive matrix trace and that the operator D − f ⊗ f is semi-
positive definite. By lastly making the assumption of Φ having a symmetry axis around
the flux direction nν := Fν

|Fν | , it can be proven that this direction is an eigenvector with an
associated eigenvalue χν typically referred to as the Eddington factor. After some linear
algebra (Levermore, 1984) one arrives at the closing expressions for the pressure tensor:

Dν =
1− χν

2
I +

3χν − 1

2
nν ⊗ nν ; χν =

3 + 4f 2
i

5 + 2
√

4− 3f 2
i

(1.18)
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This effectively closes the radiation transfer equations by defining bulk flux directionality in
a consistent way that can be calculated locally for each grid.

1.2.2 Numerical implementation of radiative transfer
To understand the radiation-hydrodynamics as done in RAMSES, it is best to first understand
the radiative transfer implementation without its coupling to the hydrodynamics of the
system. For the basic hydrodynamical variable vector (ρ, ρu, E, Z) we will first need to
add 4 ×M variables that describe the photon densities Ni and fluxes Fi for i ∈ [M ], and
secondly we will track the evolution of hydrogen and helium ionization through ion density
fractions:

xHII =
nHII

nH
, xHeII =

nHeII
nHe

, xHeIII =
nHeIII
nHe

In order to solve the system 1.12-1.13 numerically, instead of trying to discretize the whole
set of equations simultaneously, the code splits the equations in sequentially solvable systems,
that are treated over the same time-step ∆t. This is called the operator splitting strategy, and
it consists of three steps, the photon injection, the photon transport and the thermochemistry
step (the step scheme can be seen in 1.5).

Figure 1.5: Overall operator splitting strategy for the RT formalism, with its different steps

1.2.2.1 The injection step

This is a simple step where energy from radiative sources is introduced in the grid, which
means the equations to solve are of the form:

∂Ni

∂t
= Ṅ∗i (1.19)

Where as we have already mentioned, Ṅ∗i is the rate of injection for photons from group i in
a given cell (the way this value is determined is explained in depth at sections 1.4.3 and 2.3).
The numerical solution of this equation is done by a straightfoward numerical approximation
of the time derivative

Nn+1
i = Nn

i + ∆tṄ∗i
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1.2.2.2 The transport step

This part of the operator splitting strategy refers to the propagation of free-flowing photons
through the physical system. This means we want to look at the RT equations with the
assumption that there is no absorption, recombination radiation or emission from radiative
forces, all of which reduces to solving 1.12-1.13 with the RHS set to = 0:

∂N

∂t
+∇ · F = 0 (1.20)

∂F

∂t
+ c2∇ · P = 0 (1.21)

If one introduces U = [N, F ], F(U) = [F, c2P], as in the case of the hydrodynamical
equations, the system can be written in conservative form:

∂U
∂t

+∇F(U) = 0

And if we now consider the problem in one dimension (as to make the notation simpler
reducing the number of subindices), and using n as the time index and l as the spatial index,
we can define Unl and

Fnl±1/2

just as we did in the past for the Godunov scheme philosophy, meaning that the time
advancing scheme will equate to solving

Un+1
l = Unl +

∆t

∆x
(Fnl−1/2 −Fnl+1/2) (1.22)

The Riemann solver used in this case for the intercell flux expressions is the GLF (Global
Lax Friedrich):

(FGLF )nl+1/2 =
Fnl + Fnl+1

2
− c

2
(Unl+1 − Unl )

This is usually the preferred option over a HLL-type solution, as in practice it captures
isotropic sources better and suffers less of grid-alignment radiation errors (it does have the
downfall of being a bit overly diffusive, which would present a problem in contexts where
radiation beaming and shadows are actually something of interest).

1.2.2.3 Thermochemistry step

This phase of the RT loop deals with the interaction that photons have with gas. Absorption
and emission of photons, heats and cools gas, which means that the thermal energy density
fluctuates, and the abundances of the species we consider in the model have to be tracked,
which is done through the three ionization fractions xHII , xHeII and xHeIII . The set of the
non-equilibrium thermochemistry equations to be evolved is big, and it is done sequentially,
first starting with the photon density and flux equations:

∂Ni

∂t
=−

∑
j∈S

njcσ
N
ijNi +

∑
j∈S

brecij [αAj − αBj ]njne (1.23)

∂Fi

∂t
=−

∑
j∈S

njcσ
N
ij Fi (1.24)
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Where the Ṅ rec
i in the original equations is replaced by the full expression of recombinative

emissions. In this expression αAj (T ), αBj (T ) reperesent caseA and caseB rates of recombination
between electrons and the species in S, brecij is a boolean matrix that determines into which
photon group the species j emits into, and as for the rest of this work ne is the electron
number density. This two equations are the first solved, and it is done with a purely explicit
numerical scheme, using the backwards in time values of the variables in the RHS.

The next equation we have on the step is for the thermal evolution:

∂ε

∂t
= H−L (1.25)

Where in the RHS we have the photoheating rate, which is a sum of all the heating contribution
that photoionization makes

H =
∑
j∈S

nj

M∑
i=1

crNi(εiσ
E
ij − εjσNij ) (1.26)

And the primordial cooling rate L,

L = [ζHI (T ) + ψHI (T )]nenHI + ζHeI (T )nenHeI +
[
ζHeII(T ) + ψHeII(T ) + ηAHeII(T ) + ωHeII(T )

]
nenHeII

+ ηAHII
(T )nenHII + ηAHeIII(T )nenHeIII + θ(T )ne(nHII + nHeII + 4nHeIII) + ω(T )ne (1.27)

Where the cooling processes are collisional ionizations ζ, collisional excitations ψ, recombinations
η, dieletronic recombinations ω, bremsstrahlung θ and compton cooling ω. These are all
functions of temperature as defined in Rosdahl et al., 2013 appendix E (we will expand
and state these functions in section 1.3). In practice the actual values that is updated
is temperature, and it is done semi-implicitly with forward values of the Ni and Fi, and
backwards values for abundancies.

The final set of equations that are to be evolved in this thermochemical step, are the ion
abundancy balance equations:
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nH
∂xHII

∂t
= nHI

(
βHIne +

M∑
i=1

σNiHI
cNi

)
− nHIIα

A
HII
ne (1.28)

nHe
∂xHeII
∂t

= nHeI

(
βHeIne +

M∑
i=1

σNiHeIcNi

)
+nHeIIα

A
HeIIIne−nHeII

(
βHeIIne + αAHeIIne +

M∑
i=1

σNiHeIIcNi

)
(1.29)

nHe
∂xHeIII
∂t

= nHeII

(
βHeIIne +

M∑
i=1

σNiHeIIcNi

)
− nHeIIIαAHIII

ne (1.30)

These equations are solved by doing numerical discretization sequentally, using available
forward in time values, and the rest set as backwards. This means that the first equations
will once again be done semi-implicitly, and the final abundancy equation will be completely
implicit.

A final detail worth mentioning on this stage of the RT step, is the fact that thermochemistry
is only allowed to be advanced in time if the update of thermal variables does not exceed
a 10% change. This is done by subcycling the thermochemical equations inside the RT
loop until the change for all relevant variables is bound to a 5% − 10% change. This is
relevant because we want equations being solved sequentially to not introduce too big of
a underestimation/overestimation caused as an effect of using backwards/forward in time
values in the semi-implicit scheme.

1.2.2.4 The addition of IR multiscattering

One last detail we have not mentioned, and in which we will not go into excessive detail
is how the RT equations 1.12-1.13, are actually going to be modified when the i−photon
group represents infra-red (IR) radiation. Dust particles can absorb photons from all over the
radiation spectrum, but only emit IR photons, which are assumed to be in local thermodynamic
equilibrium with the dust particles. This gives IR radiation its status as ’multiscattered’
radiation (instead of ’single-scattered’), which at the end means that recombination has to
work so that the density for photon groups of higher frequencies diminishes as they get
absorbed, and the IR-photon group density gets proportionally bigger.

As a first approximation, this means that for this radiation band, the ∂NIR
∂t

value needs to
have an added factor of ∑

i 6=IR

∑
j∈S

brecij α
B
j njne

The other important fact, is the need to add a coupling between IR radiation density and the
gas (dust) temperature, which means substracting a factor proportional to NIR in 1.12. This
addition is far from trivial at the time of solving for the evolution, and it adds a further thing
to be solved in the thermochemistry step as a last stage which is also solved semi-implicitly.
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It is also important to consider that when the optical depth of the local thermodynamic
equilibrium becomes unresolved (known as the diffusion limit), the numerical diffusion introduced
by the M1 solver may be bigger than the true radiation diffusion, and the numerical result
becomes inaccurate. The technique that is employed to correct this problem, is to split the
energy in IR photon groups between trapped and streaming radiation, where the former is
strictly isotropic in angular momentum and corresponds to radiation with vanishing mean
free paths (and thus flux is null). the splitting of radiation obeys the simple set of equations

Es =
2

2 + 3τc
E, Fs = F

Et =
3τc

2 + 3τc
E, Ft = 0

With which, the Godunov solver can be readily employed with the necessary modifications to
the radiation transfer equations in the two photon regimes (see Rosdahl and Teyssier, 2015).
Of course this is an extremely basic review, but all of this content is in the forementioned
work, and is not too relevant to our work, as IR radiation and dust is not central to our
astrophysical context.

1.2.3 Reduced speed of light formalism
Before the RT step is executed, the size of its timestep ∆tRT must be determined. Since the
method for solving of the equations from 1.2.2 is explicit, the size of such step is constrained
by the CFL condition, which states

∆tRT <
∆x

3c
(1.31)

This condition gives timesteps that may typically be over two orders of magnitude shorter
than those found in a non-relativistic hydrodynamical simulation. Instead of trying to
implement an implicit numerical scheme (which presents problems which are equally or
harder to deal with), the approach taken in Rosdahl et al., 2013, is to relax the Courant
condition by lowering the speed of light in 1.31 to a value cr � c. This cr is justified in the
sense that radiation propagates in a speed limited by the capacity that the ionizing front has
(which is of course, much slower in practice), given a specific context, which is what the grid
must be able to respond to.

In order to ascertain that the speed cr is kept faster than the speed of the ionizing front, or
more relevant, that changing its value will not affect the evolution of the system by lagging
the effects of radiation too much in comparison to the natural dynamics of the setup, the
authors from Rosdahl et al., 2013 decide that the speed of light may be reduced by a factor
fc (in the sense that cr = fcc), which is defined as

fc = min(1; 10× tcross/τsim) (1.32)

Here, the crossing time refers to the time that light takes in order to travel the equivalent
distance of the Strömgren radius rs estimated with values consistent to the setup. The time
τsim is a free parameter that represents the timescales in which the simulation’s relevant
processes occur. The actual numerical calculation of these parameters is done in 2.4.1
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1.2.4 Coupling radiation to hydrodynamics
In order to consistently intertwine the inherent hydrodynamical behaviour of the system,
with radiation’s capacity to impact it, we have to include the heating, absorption and overall
propagation of radiation in our basic hydrodynamical set of equations (1.2,1.3,1.4) throughout
our grid. Naturally, this only affects directly the momentum equation 1.3 and the energy
equation 1.4, but not the mass continuity equation (the presence of radiation of course does
not affect mass continuity in the, making the physically accurate assumption that photons
have negligible mass). First the energy conservation equation has to now include the RHS
of equation 1.13 (counting the contribution of all photon groups) and and additional factor
Λ that represents the cooling and heating via thermochemical processes:

∂

∂t
(ρe) +∇ · [ρu(e + p/ρ)] = −ρu · ∇φ+ Λ(ρ, e) +

M∑
i=1

∑
j∈S

njσ
N
ij cFi (1.33)

The factor Λ is just another name for the already mentioned photoheating rate (introduced
in 1.25). Having already discussed the numerical solving of these additional terms, the broad
strategy to link these, is to solve with an operator splitting strategy, solving in a decoupled
manner the radiative terms first, and then directly plugging it as part of the source term Sn+1.

In order to accurately model momentum with RHD, equation 1.3 becomes

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = −ρ∇φ+ ṗγ (1.34)

This is the same as the classical one, but with the additional term ṗγ, which describes the
total local momentum absorbed by gas from all photon groups via all radiation interactions:

ṗγ =
M∑
i=1

Fi

c

(
κiρ+

∑
j∈S

σijnj

)
(1.35)

Once again, momentum transfer is applied with an operator split approach, adding to the gas
momentum in each RHD step after the thermochemistry calculation (this is done in every∑

k ∆tk = ∆tRHD subcycling, as photon fluxes and densities may change too much over a
complete ∆tRHD timestep).
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1.3 Radiative Cooling
Although RAMSES-RT’s cooling method was somewhat described with equations 1.26-1.27,
it is a physical process which is both complex and central enough in the following work, for
us not to expand a little more on what has already been said. It is relevant to understand the
expected loss of thermal energy that stems from radiative processes as it directly affects the
disk tendency to fragment, where comparing the cooling timescale with respect to timescales
that relate to fluctuations of Toomre’s parameter value of the simulation. If ε refers to
thermal energy and ∂ε

∂t
= Λ refers to cooling/heating, then the cooling timescale takes the

value of:
ε

ε̇
=

ρkBT

mH(γ − 1)µ
· 1

Λ
(1.36)

Taking the usual value of γ = 5
3
, we need to determine the values of the mean molecular

mass µ and the cooling function Λ. Assuming a primordial gas composition, we may simply
calculate the mean molecular mass from

µ = [X(1 + xHII) +
Y

4
(1 + xHeII + 2xHeIII)]

−1 (1.37)

Which in the RAMSES-RT formalism is straightforward, as ion abundances are explicitly
calculated in the code. This only leaves the calculation of Λ = H−L remaining, which from
1.26-1.27 is clear to see that has many different components to take into account. Assuming
our gas is well approximated by primordial plasma, we have that the different processes that
cool the gas are:

• Collisional excitation, where free electrons when they approach a nucleon with bound
electrons, may move these to an excited state, which after decaying, emits a photon.
• Collisional ionization, which happens when free electrons, with an impact, ionize formerly

bound electrons, where energy from the free electrons is lost.
• Free electron recombination with ions: the binding energy and the free electron’s kinetic

energy are radiated away.
• Bremsstrahlung or also called free-free emission. Where free electron when accelerated

by ions, emit photons to compensate the energy expense.
• Compton cooling from the microwave background.

As RAMSES-RT gives the abundances of ion species nHI
, nHII

, nHeI , nHeII , nHeIII (and, of
course ne), we can use this information in addition to cooling rate recipes that correspond
to the processes mentioned (all of which only depend only on temperature). These rates are
taken from Cen, 1992 for collisional excitation/ionization, from Hui and Gnedin, 1997, Black,
1981 for recombination rates, Osterbrock and Ferland, 2006 for free-free processes and from
Haiman et al., 1996 for Compton cooling. All these cooling rates are summarized in table
1.1:
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Process Species Cooling rate [erg·s−1·cm−3]

Collisional Ionization HI 1.27× 10−21
√
T
(
1 +
√
T5

)−1
e−157 809.1/T · ne nHI

HeI 9.38 ×10−22
√
T
(
1 +
√
T5

)−1
e−285 335.4/T · ne nHeI

HeII 4.95 ×10−22
√
T
(
1 +
√
T5

)−1
e−631 515/T · ne nHeII

Collisional Excitation HI 7.5× 10−19
(
1 +
√
T5

)−1
e−118 348/T · ne nHI

HeII 5.54× 10−17 T−0.397
(
1 +
√
T5

)−1
e−473 638/T · ne nHeII

Recombination HII 1.778× 10−29 T λ1.965
HI

[1 + (λHI
/0.541)0.502]−2.697 · ne nHII

HeII 3× 10−14 kB Tλ0.654
HeI
· ne nHeII

HeIII 8× 1.778× 10−29 T λ1.965
HeII

[1 + (λHeII/0.541)0.502]−2.697 · ne nHeIII

Dielectric recombination HeII 1.24× 10−13T−1.5e−470 000/T
(
1 + 0.3e−94 000/T

)
· ne nHeII

Bremsstrahlung All 1.42× 10−27
√
T · (nHII

+ nHeII + 4nHeIII)ne

Compton None 5, 53× 10−36 (T − 2.727) · ne

Table 1.1: Cooling functions used in RAMSES-RT including all phenomenons the involve ion
and electron abundances, which can be traced explicitly in our outputs.

In table 1.13, recombination cooling implicitly depends on recombination rate coefficients,
which themselves depend on unitless functions:

λHI
(T ) =

315 614 K

T
, λHeI(T ) =

570 670 K

T
, λHeII(T ) =

1263 030 K

T

Also, the Compton cooling rate from the table, assumes we are working in local universe
and redshift is z = 0. Now, half of our simulations are not done with radiation coupling
to hydrodynamics, where ion abundancies are not modelled and other cooling approach is
taken. The main cooling module from RAMSES uses the methods described in Katz et al.,
1996, which employs the same recipes from 1.1, with a modification for (non-dielectric)
recombination cooling, free-free cooling and compton cooling:

3We employ notation Tn =T/10n K
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Process Species Cooling rate [erg·s−1·cm−3]

Recombination HII 8.7× 10−27
√
T · T−0.2

3 (1 + T 0.7
6 )−1 · nenHI

HeII 1.55× 10−26T 0.3647 · nenHeII

HeIII 3.48× 10−26
√
T · T−0.2

3 (1 + T 0.7
6 )−1 · nenHeIII

Bremsstrahlung All 1.42× 10−27gff

√
T · (nHII

+ nHeII + 4nHeIII)ne

Compton None 5.41× 10−36T · ne

Table 1.2: Cooling functions used in RAMSES that differ on the specifications from RT at
table 1.1).

While we see some significant changes in recombination cooling rates, free-free emission
differs only by a gaunt factor given by gff = 1.1 + 0.34 exp[−(5.5 − log T )2/3.0] (which is
nearly ≈ 1.1 for temperatures over 103K) and Compton cooling (which comes from Ostriker
and Ikeuchi, 1983) in our case of z = 0, is nearly equivalent as well. The major differences
come in the fact that this runs on the hydrodynamics-only version of the code, and since
there is no consistent following of ionization states or radiation flux, these have to be taken
account for artificially. For this, Katz et al., 1996 cast the following system of equations for
the different ionic abundances assuming ionization equilibrium and a specific background of
ionizing radiation:

nHI
= nHαHII

/(αHII
+ ΓeHI

+ ΓγHI
/ne) (1.38)

nHII
= nH − nHI

(1.39)
nHeII = ynH/[1 + (αHeII + αd)/(ΓeHeI + ΓγHeI/ne) + (ΓeHeII + ΓγHeII/ne)/αHeIII ] (1.40)
nHeI = nHeII(αHeII + αd)/(ΓeHeI + ΓγHeI/ne) (1.41)
nHeIII = nHeII(ΓeHeII + ΓγHeII/ne)/αHeIII (1.42)
ne = nHII

+ nHeII + 2nHeIII (1.43)

Having y = Y/(4−4Y ) (usually simply taken from the assumed values of X = 0.76, Y = 0.24
as no precise methods such as equation 1.37 are available) and Γγ• as the photoionization
rate, in this paradigm α• which are the recombination rates and Γe• which are the collisional
ionization rates, take the form of functions of temperature, listed from Katz et al., 1996 as:
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Parameter Value

αHII
8.4×10−11T−1/2T−0.2

3 (1 + T 0.7
6 )−1

αHeII 1.5×10−10T−0.6353

αHeIII 3.36×10−10T−1/2T−0.2
3 (1 + T 0.7

6 )−1

αd 1.9×10−3T−1.5e−470000/T (1 + 0.3e−94000/T )

ΓeHI
5.85× 10−11T 1/2e−157809/T (1 + T

1/2
5 )−1

ΓeHeI 2.38× 10−11T 1/2e−285335/T (1 + T
1/2
5 )−1

ΓeHeII 5.68× 10−12T 1/2e−631515/T (1 + T
1/2
5 )−1

Table 1.3: Recombination and Collisional Ionization Rates.

The photoionization rate, is as usual defined by equation

Γγi ≡
∫ ∞
νi

4πJ(ν)

hν
σi(ν) dν s−1 (1.44)

Where J(ν) is the intensity of the ionizing radiation for frequency ν, and νi, σi(ν) are the
threshold frequency and cross section for species i. If we assume there is no strong source of
photoionizing radiation near our environment (ie: Γγi = 0, ∀i), for a fixed temperature and
density in the grid, equations 1.38-1.43 take the form of

nHI
= nH · a1, nHII

= nH − nHI

nHeII = ynH · a2, nHeI = nHeII · a3

nHeIII = nHeII · a4, ne = nHII
+ nHeII + 2nHIII

Where a1, a2, a3, a4 are constants found using expressions from table 1.3 that allow us to solve
for our six variables sequentially replacing in our six equations (starting with nH = ρX

mH
). This

is true for our simulations without AGN feedback, as there are no ionizing sources/background
and cooling on a simulation level should be well approximated by the rates and methods we
mentioned.

Now, if we wanted predict the amount of cooling with the methods from Katz et al., 1996
for simulations that include AGN feedback, J(ν) becomes relevant as the AGN introduces a
strong source of ionizing radiation. This is a potentially useful thing to do, but it is not easy,
as not only photoheating has to be included and equations 1.38-1.43 become harder to solve
with the presence of J(ν) 6= 0, but one also has to make considerations on how the ionizing
flux of photons is not constant through the grid and J(ν) has to be well parametrized to
approximate the effect that the binary’s radiation has on ionizing the whole disk environment
and photoheating. This problem is further discussed in ??.
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1.4 Additional tools
1.4.1 DICE
For the setting up of our simulations we import the initial setups from runs originally made
to be run with GADGET. For this we use the initial conditions code package DICE Perret
et al., 2014. DICE was originally conceived as a dedicated library for the initialization of
astrophysical disk conditions, which are first generated with Lagrangian particles. As the code
in its original philosophy already had to convert particles from the Lagrangian framework to
the AMR grid, the code was also built so it can read conditions which are originally setup
for SPH codes (specifically GADGET) and translate them to the RAMSES grid.

In practice the downside of this ”translation”, is that initialization is far from memory efficient,
as the allocation of the Lagrangian components is not as well optimized as initializing our
runs from scratch. This means that if a subset of runs are already expected to be memory
consuming, measures such as evolving the initial disk without a binary component, and then
initializing a run in the form of a RAMSES restart will be more efficient if possible (to do
this though, one has to make sure that the disk relaxation does not perturb the outcome
of the problem). This is specially relevant when turning the RT module on, as the memory
constraints become much bigger.

1.4.2 Sink particle formalism
The sharp contrast of density and spatial scales around a black hole (or in general, regions of
gravitational collapse), means that special measures have to be taken in order to deal with
the huge dynamic range self-consistently within simulations. For this, RAMSES allows for
an approximation small-scale evolution of withing this collapsing regions, treating them as
a mixture between an isolated point mass (sink) and a cloud of interacting particles, which
are now going to be disconnected to the hydrodynamics of the overall simulation. The first
introductions of sink particles were done for SPH codes and it was Bate et al., 1995 who
implemented the original version of the algorithms upon which subsequent methods were
developed. For AMR, the first implementation came from Krumholz et al., 2004, which was
then adapted to codes like ENZO and RAMSES.

The methods RAMSES uses nowadays were refined/developed at Bleuler and Teyssier, 2014.
Since we do not create new sinks, the most important features in our treatment of black holes
as sink particles, are how trajectories are calculated and how accretion is dealt with. The
accretion recipe we are going to use is not native to the code, and it is described in 2.2.

As seen in Lupi et al., 2014, the trajectories of SMBHs are greatly affected by the the
resolution and methods in treatment for the sinks. We deal with this issue always choosing
the highest level of refinement over the surrounding region at the sink, and using the direct
force summation scheme mentioned in Bleuler and Teyssier, 2014. This involves calculating
the acceleration due to all possible pairwise interactions between sinks and gas, doing CIC
interpolation to locate grid density values that surround the black holes, and applying a
Plummer softening of the form

F (~r) = −~r GM

(|r|2 +R2
soft)

3/2
(1.45)
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Setting the softening radius to half the accretion radius (with accretion radius we talk about
the material eligible to accretion by usual sink-particle standards, not the accretion radius
defined by the thresholds we define at 2.2), this implies that sink forces have a resolution
of the order of grid spacing (which in this region is set to the maximum level of refining, as
already mentioned).

1.4.3 XSPEC and the X-ray spectrum subgrid model generation
As already mentioned, in the RAMSES-RT formalism, for radiation sources, one needs to
input an emission SED so that the decision on how to partition the emitted photon energy
fractions in different groups can be made in order to solve the binned RT equations. In our
case our energy sources are the two black holes we are studying, and the emission spectra
has to be consistent with an AGN-type SED in the resolution regime we are working at, and
hopefully in good measure, consistent with the systems conditions.

Despite the huge difference in mass, Galactic black holes in binary systems and supermassive
black holes in active galactic nuclei have similarly explained emission behaviours, where
as being highly massive compact objects, they affect their surrounding material with vast
gravitational forces, leading to accretion of large quantities of gas and consequently to the
release of large amounts of radiation, mostly in the X-ray band. In particular this X-ray
features, in many sources, stem from an emission component, which is generated by high-
energy coronal photons that are then reprocessed in an optically thick accretion disk, so
that the observer mainly sees reflected hard X-ray emission together with soft X-rays from
thermal emission by the disk. Codes that generate spectra by mainly modelling this process
(with a lot of additional, quite important factors coming into place), are usually referred as
’disk reflection models’ (see eg:Pounds et al., 1990, Ross and Fabian, 1993), models we will
be employing in our work.

XPSEC (Arnaud, 1996; we will specifically work through its port to python, PyXspec) is a
software designed for spectral-fitting, specifically in the context of X-ray spectrum generation.
It acts as a platform in which one can implement, mix and interact with different models for
specific X-ray spectrum generation. Between all the models ported to XSPEC we choose to
use a mixture between xillver (García et al., 2013) as the main tool for modelling the disk
reflection spectra, relconv (Dauser et al., 2010) to take into account relativistic components
and xstar (Kallman and Bautista, 2001) to better capture the expected photoionization
features.

As we anticipated, we mainly employ the xillver when deciding the shape of the spectrum
for the energy deposits of the AGN in the different photon bands, we now recount the main
ingredients in its functioning. In AGNs the illuminating X-ray continuum is believed to
originate through Compton upscattering of thermal photons by electrons in a hot corona or
a jet (Haardt and Maraschi, 1993), and is usually characterized by a power-law spectrum of
the form

F (E) = AEΓ+1 exp(−E/Ec) (1.46)

Where the photon index values are typically observed to lie in 1.8 . Γ . 2.2 (although this
can be either closer to 1 or larger than 3 in some extreme cases). The energy cutoff is usually
set in the 100 − 300KeV interval and the amplitude A is chosen as to be consistent with
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the value of the ionization parameter. This canonical definition of the power law spectrum
is slightly modified in xillver, where they adopt a broken power law that breaks at lower
energies to better account for potential unphysical concentration of photons that occur at
steeper spectra (Γ > 2). The reflection code has to accurately calculate the spectra and
features that arise from the irradiation of an optically thick accretion disk that is illuminated
by the aforementioned power-law continuum. We recount the main aspects of this calculation,
which are fully described in Garcia and Kallman, 2010. If u(µ,E, τ) is the energy density of
the radiation field (with respect to the normal µ, energy E, and position of the slab which is
specified in term of the total optical depth), the we start off with the equation that describes
the interaction of radiation with gas in the illuminated atmosphere:

µ2∂
2u(µ,E, τ)

τ 2
= u(µ,E, τ)− S(E, τ) (1.47)

The total optical depth is specified using the total opacity χ which includes both scattering
and absorption:

dτ = χ(E)dz ; χ(E) = αkn(E) +a (E) (1.48)

The source term S(E, τ) is given by the ratio of the total emissivity to the total opacity,
which can be written as

S(E, τ) =
αkn(E)

χ(E, τ)
Jc(E, τ) +

j(E, τ)

χ(E, τ)
(1.49)

where j(E, τ) is the continuum plus lines emissivity, and Jc(E, τ) is the Comptonized mean
intensity of the radiation field resulting from the convolution,

Jc(E, τ) =
1

σkn(E)

∫
dE ′ J(E ′, τ)σkn(E ′)P (E ′, E) (1.50)

Where J(E, τ) is the unscatterred mean intensity of the radiation field. The quantity
P (E ′, E) is the probability of a photon with energy E to be Compton scattered to an energy
E ′. In order to solve for u(µ,E, τ), Jc(E, τ) and S(E, τ), boundary conditions are needed
which are defined at the top of the slab (τ = 0) and at the inner boundary (τ = τmax), getting

µ

[
∂u(τ, µ, E)

∂τ

]
0

− u(0, µ, E) = −2Fx
µ0

δ(µ− µ0) (1.51)

.

µ

[
∂u(τ, µ, E)

∂τ

]
τmax

+ u(τmax, µ, E) = B(Tdisk) (1.52)

Where Fx is the net flux of the illuminating radiation integrated in the whole energy band.
B(T) is the blackbody radiation function which is set to B(T ) = 0 as it is sufficiently
weak compared to the power law incident to the surface. To characterize this models the
assumption of constant density allows for the use of the typcal ionization parameter (Tarter
et al., 1969) which will be

ξ =
4πFx
ne

(1.53)

The structure of the gas is determined by solving the ionization balance equations for a given
gas density and for a particular solution of the radiation field. With this in hand, it is left
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to the photoionization code xstar to solve for temperature, opacity χ and the emissivity
j(E, τ), taking into account emission lines from metals in its calculations. It is important to
note that although in our model we are not generating spectra with an angular dependence
(as this is used for reproducing the effects of observation of AGNs at an angle), the spectrum
has to consider relativistic effects. We specifically explore the effects of the resulting spectrum
when varying the BH spin parameter in 2.3.

There are many other factors beyond what we have mentioned, involved in the calculations,
but for the sake of brevity we point the reader towards the already mentioned references.
The specific list and setting of the model’s parameters are specified
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Chapter 2

Simulation Setups

2.1 Initial Conditions and Setup
2.1.1 Physical setting-up of the circumbinary disks
As it has been mentioned, the initial conditions used for this work are the same as in VV18,
both because they were originally selected as a good sampling to test the effects of radiative
feedback in binary evolution, and because it allows for direct comparison with a work done
in the same regime but with a different treatment of radiation.

Initially the circumbinary disks are described by a mestel-type density distribution:

ρ(R, z) =


Σ0

2H
1
Rc

cosh−2
(
z
H

)
, R ≤ Rc

Σ0

2H
Rc

R2 cosh−2
(
z
H
Rc

R

)
, Rc ≤ R ≤ Rdisk

(2.1)

Where we say Mestel-like, in the sense that the superficial density for R ∈ [Rc, Rdisk] gets to
be Σ(R) ∝ R−1 when integrating the vertical component out (although in the inner region
R ≤ Rc, the profile is defined in such a way that the superficial density is set to be constant).

This disks are embedded in a potential field that imitates the presence of a central stellar
bulge, which serves both to stabilize the gaseous disk and potentially to better understand
the dynamics of gas outflows from the disk. This is done by adding a fixed additional analytic
density source term to the Poisson equation 1.1 that takes the form of an usual Plummer
density profile (Plummer, 1911):

ρ(r)bulge =
3Mbulge

4a3

(
1 +

r2

a2

)−5/2

(2.2)

The actual numerical values of the parameters in these profiles are specified in 2.4. Even
though we define a strictly analytic recipe for disk initialization, the potential field of the
system including the bulge-disk-binary is strongly non-axisymmetric, which means there is
no good a-priori definition for the circular velocity of the binary-disk system. To cope with
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this, the binary is first approximated with a spherical mass distribution (of a radius equal
to the initial binary separation abin that is going to be used), and the system is relaxed for
about ∼ 30 orbits. Additional information about the selection of a homogeneous spherical
potential can be seen in VE12. After this relaxation the circular velocity is taken from the gas
average square velocity of the gas inside a cylinder of radius abin/2 and height abin/50. This
relaxation process was done previously with GADGET, and is ported to RAMSES through
DICE from the work in VV18, as to follow the initial conditions as consistently as possible.
It has to be noted that while the initial disk state is that of an analytic profile, after the
relaxation process that has been described, the memory of said profile is lost.

Before we go into the more specific details of the initial physical conditions/constraints of
our problem, it is worth mentioning that in order to isolate the influence of radiation, there
are some simplifications done, that are not going to be mentioned in the following section.
The mass ratio for the binaries will always be q = 1, the initial velocities of the binary will
not try to take into account any eccentricity, and its rotation will be prograde and coplanar
to the gas it is embedded on.

2.1.2 Selection of the binary-disk configurations
The idea behind the selection of the disk+binary setup selections, is to contrast simulations
where tidal cavities are formed by purely hydrodynamical effects and simulations where a
tidal gap is not expected to emerge naturally, and afterwards test how in this two different
regimes, the appearance of quasar feedback suppresses or facilitates orbit decay.

When asking about the tidal cavity opening tendencies of the setup, we refer to the gap
opening criterion from VE12, which is basically a parametrization of the ratio between the
timescale for opening a cavity by the angular momentum exchange between the binary and
the circumbinary disk, and the timescale in which viscous diffusion operates when filling such
gap:

∆topen
∆tclose

=
1

0.33

(
v

vbin

)2 (cs
v

)( h

abin

)
(2.3)

Here v and vbin are the binary-disk and the binary’s keplerian velocity respectively, cs is
the sound speed of the gas, abin is the binary separation and h is the scale height of the
disk. The idea is that when 2.3 has a value ≤ 1, the tendency that diffusion has of filling
space overtakes the gap opening strength that the system has, this means that in practice,
the selection process for gap generating setups will be done by seeing setups that fall in the
phase space

1

0.33

(cs
v

)( h

abin

)
≤
(vbin
v

)2

(2.4)

Another consideration taken, is to set systems which are stable to self gravity, as the disk
clumpyness could have effects on the binary dynamics which could be hard to distinguish
with the radiative feedback effects. To cope with this uncertainty we recall Toomre’s stability
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parameter Q for self gravitating rotating disks Toomre, 1964

Q =
csκ

πΣG
(2.5)

Using the usual dispersion relation for the epicyclic frequency κ2 = 4Ω2 + Ωr(dΩ/dr) at
r = abin, VV18 showed that

κ2 =
v2

a2
binπ

2
(8π + [5f − 3]− 6) ; f = 1 +

Mbulge(< abin)

Mbin

≈ 1.1 (2.6)

And with this in hand the Toomre criterion at Q = 1 can be approximated (using estimates
for Σ and Mbulge(< abin)) in parameter space

(
(vbin/v)2 , (cs/v) (h/abin)

)
=: (x, y), through

the functional form
y ≈ 2π2abin

h

(1− 1.1x)2

(4π − 3) + 1.25x
(2.7)

This parametric form of the Toomre parameter is useful for defining the analytic curve used to
somewhat-coarsely separate stable setups, but in practice when we want to profile Q for our
simulations we will evaluate directly the values for Σ and cs, and for the epicyclic frequency
we will use equation 2.6 (but evaluating f instead of using the ≈ 1.1 approximation). We
note that as the bulge follows a Plummer profile, Mbulge(< abin), has an analytic expression:

Mbulge(< abin) = 4π

∫ abin

0

r2ρplum(r) dr = Mbulge
a3
bin

(a2
bin + a2)3/2

(2.8)

The simultaneous parametrization of the gap opening and stability criterion is summarized
in the following graph from VV18:
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Figure 2.1: Initial conditions and where they figure in terms of their cavity-opening tendency
and the gas stability against gravity

The thresholds are overlaid with the four actual setups we use, where we see two conditions
which will not form gaps naturally and two that will not. Beyond these constraints, we will
elaborate more on some of the actual values (disk mass, binary mass, etc.) these conditions
take, at section 2.4.

2.2 Accretion
The most commonly used sub-grid recipe for accretion is the Bondi-Hoyle model (Bondi
and Hoyle, 1944, Bondi, 1952). This is proper when dealing with larger-scale dynamics or
generally in simulations where spherically-symmetric accretion is not a bad approximation
and the resolution near the sink is big compared to the Bondi radius that characterizes the
model scale.

Now going beyond the fact that in our problem disk structure is of course resolved (and
therefore a spherical flow into the sink stops being a good approximation), the quoted value
for the characteristic radius scale is given by racc = 2GM

cs(∞)
' 3× 1014

(
M
M�

)(
104K
T (∞)

)
. If we use

a Mestel distribution temperature of T = 2× 104K, and consider the range of masses for the
binaries that appear in our simulations, we would get values up to racc ∼ 50pc, which would
be above the size of the binary + disk system, and of course way over the resolution of the
simulation.

To cope with this, we define a version of threshold accretion similar to the one originally
implemented in Bleuler and Teyssier, 2014, but with additional checks that are consistent
with the relatively resolved thin-disk accretion regime we are dealing with. The gas inside the
threshold defined by the sink particle cloud will be accreted if its specific angular momentum
falls below the value that characterizes a circular orbit for the biggest Shakura Sunyaev disk
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that is stable against self-gravity. This specific angular momentum threshold is set by the
value lthr =

√
GMRd, where Rd is the size of disk we use for said threshold, where we quote

the formula from Kolykhalov and Syunyaev, 1980:

Rd = 3Rgrd ≈ 2.64Rg(αṁ
2r

1/2
0 ct/Rg)

1/4

With Rg = 2GM
c2

being the Schwarzschild radius. For ṁ we assume (at least initially) an
upper limit set by the Eddington accretion rate ṁ = θṁedd (with θ ∈ [0, 1] set depending on
how conservative one wants to be with this bound), where ṁedd is given by

ṁedd =
Ledd

εrc2
=

4πGMmp

εrcσT
=
M

ts

Where the Salpeter time would take a value of ts ' 45ε0.1 Myr = 45 Myr for a radiative
efficiency of εr = 0.1 (Shakura and Sunyaev, 1973), which is a commonly assumed nominal
value, but our simulations have lower radiative efficiency (which is more consistent with our
BH masses, see 2.3.2), bringing the Salpeter timescale down and the Eddington accretion
upwards. If we quote the values of α = 1, r0 = 9, t = 107 yr from Kolykhalov and Syunyaev,
1980, we can readily calculate Rd.

For a Msink = 5 · 103 M� the radius comes out as Rd = 1.57 × 10−7 pc, which in turn
makes for a threshold specific angular momentum value of lthr = 2.507 × 1020 cm2

s . At the
same time, for a Msink = 5× 105M�, we get Rd = 9.7× 10−3pc and its associated threshold
is lthr = 1.41× 1024 cm2

s . All the pertinent values for accretions are tabulated at table 2.3.

Now in order to get more consistency along the simulation, the rate that is used inside the
calculation for Rd, can be set to be actual accretion previously outputted by the simulation
(after the initial estimation, where no ṁ candidate has been determined). This means that
mi+1
sink = mi

sink + ∆tṁi
thr, where mi

thr depends on lithr, where the threshold instead of being a
fixed value, it will depend on

Ri
d = 2.64Ri

g(αṁi
2r

1/2
0 ct/Ri

g)
1/4 ; ṁi =


θṁedd if i = 0

ṁi−1
thr if i > 0

(2.9)

Notice here the distinction: ṁi is the rate used in 2.9 to estimate the threshold value used
for determining ṁi

thr, which is the resulting accretion rate at snapshot i.

2.3 Radiation Sources
2.3.1 Shape of the AGN spectrum
We already mentioned how RAMSES-RT deposits radiation on different photon energy bins
depending on an adopted spectrum for radiation sources. Now, in the main implementation of
the code, stellar radiation sources can have varying SEDs that will allow for a more consistent
modelling of evolving stellar populations (in practice the different SEDs are binned in age
groups and metallicity contents). Otherwise, in the main version of the code, the energy
binning of radiation is assumed to be fixed for sources that are not stars. We modified the
code in order to be able to use an AGN-type radiation source for the SMBH feedback, but
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with an evolving SED as in the case of star sources of radiation. in 1.4.3 we mentioned how we
use the xillver, relconv and xstarmodels in conjunction to generate the relevant spectra,
and how the model templates generated by these codes depend in several parameters, which
means we have the opportunity to adjust the generation of said SEDs, binning them for
different relevant values we can track in the actual simulation state. We should first begin
by specifying which parameters will be fixed for the SED template generation.

• The first fixed parameter will be the emissivity index (see equation 1.49) in the coronal
model, which is set as = 3 (for both indices), as to be consistent with a classical α−disk
model.

• Secondly we specify the inner and outer radius of the disk, the reflection model takes.
The inner radius, as is usual, is taken as the ISCO value for the given simulation, and
the outer radius is taken as R0

d from 2.9. This could be set up in such a way that the
outer radius follow the Ri

d evolution in time, but in practice the changes for the size of
the disk are not big enough to be worth the trouble that generating this new axis of
spectrum variation would entail, as the energy deposition will change very little.

• Next we adopt a black hole spin parameter of a = 0.25 or a = −0.25 for counter-rotating
black hole (notice here the slight abuse of notation, a in this context is not the binary
separation, and is momentarily employed as to be consistent with the nomenclature
at xillver, whereas in chapter 4, χ will be used instead), as per the results from
King et al., 2008. Even though in practice we will use said values, we show results of
how varying the spin parameter affect the SEDs in figure 2.2, and see how only for
very high values, the changes become really relevant, as the deposition in low energy
photons becomes quite more prominent in the spectrum, for a parameters nearing 1.
The value for spin magnitude of our black holes and how it evolves will be a major
point of discussion at chapter ??

• The metal abundancy is set to low values AF e = 0.5− 1, as to be conservative (this is
consistent with the initial set state of metallicity in the simulations variables, which is
equal to Z = 1Z� across the CMD’s). Modifying this value strengthens/weakens metal
lines from the subgrid recipe and is not a primary factor of change in the spectra.
Another ”second-order” effecting parameter would be the energy cutoff Ecut for the
power-law component of the spectrum, which is set to be Ecut = 300[Kev], value
consistent with models such as the ones from Ross and Fabian, 2005 for quasar spectrum
fittings.

• As these are models used for modelling the predicted observed spectra, there are
parameters that can be skipped, such as the redshift and angle parameters. Other
parameters like the column density for the xstar opacity calculations the limb darkening
setting and the reflection fraction, are also defaulted accordingly or have negligible
effects on the overall distribution of energy.

This would leave only the ionization parameter log(ξ) and the Γ factor, as to be parameters
to be evolved through the simulation state.
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Before moving on to see how the template spectra would look like after moving such values,
we see how the spin parameter affects the spectrum for typical values on the spectrum
calculation: Here we see indeed how only for values that near a > 0.9, relativistic effects

Figure 2.2: Electromagnetic emission spectrum for BHs with power law index Γ = 2.0,
ionization parameter log(ξ) = 1.0 and varying spin parameters in a ∈ [−0.998, 0.998]

from broadening of the spectrum become relevant. This reinforces the idea that adopting
the conservative fixed spin values already mentioned would be the correct decision, specially
considering that such high spin parameter values for our black holes would be unlikely, and
the fact that our simulation is not meant to capture relativistic effects, would mean that
trying to capture changes in the spin-parameter through, for example, the accreted angular
momentum of the SMBHs, would not be really consistent. One last detail to be addressed
would be the distinction of adopting a spectrum for a rotating/counter-rotating SMBH, which
we will now see does not really make a big difference when already assuming a ∼ 0.25

We now consider the variation of the Γ parameter for the spectrum generation. We advocate
following the evolution of the Γ parameter through asking the total x-ray luminosity LX
from the source (scaled Eddington luminosity units), which in turn is estimated through the
measured accretion from the simulation (assuming a fixed radiative efficiency εr = 0.1, which
for relatively medium-high accretion is a good approximation). For this we use the empirical
relationship from Yang et al., 2015, which reads:

Γ = (0.31± 0.01) log10(Lx/LEdd) + (2.48± 0.02), ∀
(

Lx
LEdd

)
≥ 1% (2.10)

Γ = (−0.1± 0.02) log10(Lx/LEdd) + (1.27± 0.03) ∼ (2.11)

With this relation in hand, we tabulated the binned spectra for 10 different luminosity
fractions, for both a rotating and a counter-rotating SMBH, first in energy scaled form
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Figure 2.3: Spectra in E · F (E) form. for Γ ∈ [1.76, 2.4]

And the pure spectra:

Before anything, the first takeaway is how choosing between a = ±0.25 is not relevant, as

43



the spectra look basically similar (independently of the variable parameter), so from hereafter,
we will assume the SMBHs corrotate with the accreting flow. Looking at EF (E) the spectra
(which are good for visualizing the actual energy distribution, as more energetic photons will
have a heavier weight when deciding the energy percentages when distributing) we notice
how for lower accretion, after the Compton bump (at around and above 2−10Kev) there is a
bigger fraction of energy in the hard x-ray band compared to the higher fraction of energy in
the soft x-rays for the higher accretion rates. Whilst is not the aim of the model to capture
spectral features that stem from jet geometry that would arise at lower accretion rates, a
higher rate of emission from hard x-rays is at least partially consistent with this regime (see
for instance Markoff et al., 2005). For effective measures the graphs can be taken to be
tabulated in semi-arbitrary units, as the flux geometry is what ultimately matters for the
code. The overlaid vertical lines indicate where the energy groups from 2.3.2 would be.

We next see how for a fixed Γ power-law index parameter (see section see section 1.4.3,
equation 1.46), the spectral distributions change with a varying log(ξ) (equation 1.53):

Figure 2.5: Both E · F and pure spectra for spin parameter of a = 0.25, power-law index
Γ = 2.0 and variable ionization parameter log(ξ) ∈ [0, 4]
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We see a big impact with the variation of this parameter in the overall shape of the spectrum.
Line features are more prominent with lower values of log(ξ), getting up to the point of getting
a very smooth distribution for values nearing the upper model limit of 4. To determine the
ionization index from the simulation state, we use the fact that RT -enabled simulations
track the electron number density, and as such, we only need the X-ray flux from the AGN
to recover the needed value from equation 1.53, which we do by modifying the formula to:

ξ =
4πFx
ne

=
4π

ne

Lx
4πr2

sink

=
Lx

ner2
sink

Since the cross-correlation of Γ and log(ξ) is big, we create the varying SED grid from
binning at the Γ ∈ [1.5, 2.5] and ξ ∈ [0, 4] intervals. Note that for both of these, we get the
energy fraction of the X-ray photons Lx directly from the spectrum emission we are assuming
implicitly, meaning that when going from tnn+1, we need a spectrum shape depending on
Γn, ξn to estimate Γn+1, ξn+1). Generally for quick calculations, assuming the x-ray fraction
is 50% of the total emitted feedback flux is a good approximation. We display all the graphs
for our binned template spectra at appendix 5.2, and we also (painstakingly) list all the
energy fractions for the different photon groups excluding IR (which is always 0) along with
the energy-weighted cross sections to ionization by HI, HeI, and HeII.

Before we mention how the simulation-relevant values in terms of ’which’ and ’how-many’
photons will be introduced from the simulation from feedback, we mention how in past
implementations of AGN sources in the RAMSES code, the fixed adopted SED has been
taken from the Sazonov et al., 2004 analytic description of a statistically determined quasar
characteristic spectrum (see eg: Bieri et al., 2017; Cielo et al., 2018; Trebitsch et al., 2018).
This models has its merits but is suitable for setups that do not resolve the inner parsec
scales we are dealing with (the setups have to resolve up to scales comparable to those of
the instruments used for determining the quasar sample used originally), and as such, the
spectrum has to possess the relevant features for the reprocessed radiation from the gas that
surrounds the quasar in question. Plus the statistical determination means there will be
an overestimation of spectral features from active nuclei with lower accretion setups, which
would introduce inconsistencies with our model.

2.3.2 Deposition of energy from the AGN feedback
As we already have mentioned, the sink particles used to model our black-holes will also be
used as the sources of radiation, acting as isotropic emitters that radiate in proportion to the
expected luminosity that arises from the accretion. The feedback model also incorporates a
mechanical feedback fraction characteristic from jet generation after a certain lower threshold
of accretion is violated (with a proportion of energy going to the jet generation and a
proportion going to luminosity and radiative feedback). This threshold is usually set at
accretion rates characteristic for ADAF-type regimes at ∼ 1% − 0.1% the Eddington rate
(see for example Yuan and Narayan, 2014)

Usually the selection of energy groups is done as to capture the spectrum in a well rounded
manner depending on the context, and to follow the S ion cross-sections correctly. For
instance let us look at the binning scheme of works done with Sazonovs’ template spectra
(we refer again to eg: Bieri et al., 2017):
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Figure 2.6: Sazonov’s AGN template emission spectrum separated in 5 different photon bands

As a contrast to our presented SEDs, these spectra as we advanced in the beginning of
this section, have a big optical/IR presence, which makes it more pressing to make photon
groups that capture the dynamics of that part of the spectrum radiation, and less pressing to
capture and trace the x-rays that come from the sources’ emission (even though we list here
the properties of a bin for E > 103KeV, the hard x-ray photons were not modelled in the
original work). At the same time the energy groups boundaries align with the cross-section
functions as used in the RT calculations (see equation 1.15):

Figure 2.7: Cross-sections for Hydrogen/Helium species following the formulae from Verner
et al., 1996

Now, as expected, the spectra we are going to be using are much less broad and have no
presence in lower frequency bins, this makes it so that modelling lower frequency photon
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groups has less importance, as it would only serve to capture reprocessed energy that emerges
in time from the gas interacting with the actual radiation sources. The high intensity of the x-
ray flux also makes it relevant to have a higher partition for high-energy groups. An example
of spectrum taken with typical Γ and log(ξ) parameters will look like (the complete set of
spectrums is at appendix 5.2):

Figure 2.8: Example spectrum generated with Γ = 2 ∧ log(ξ) = 1, where we delineate
explicitly the different groups and how the energy is allocated between them

Where the overlaid energy groups were chosen as a compromise between capturing the species’
cross sections, and balancing the energy fractions through the spectral features observed in
our distribution. Even though the AGN does not release energy in the lower frequency bands,
we choose to have one IR energy bin in order to capture the energy released by reprocessed
radiation, and to skip the optical band of photons (if the low energy bin was to be prolonged
to the optical portion, we would have unrealistically energetic reprocessed radiation). Beyond
this IR bin, we have two UV groups that align with the peak of the cross-section functions of
our Helium species, one energy bin that models soft x-ray radiation (E ∼ 0.28−0.53 KeV) and
one energy bin corresponding to the hard x-ray radiation Compton hump (E > 5− 10 KeV).
It is worth noting that the decision of using 5 groups, is motivated by memory/computational
restrictions. To summarize, the physical parameters that characterize our frequency bands
(and are independent of the spectrum’s shape), are the following:
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Photon Emin Emax κ κsc

group (eV) (eV) (cm2g−1) (cm2g−1)

IR 0.01 1 0 1
UV1 24.6 54.4 103 0
UV2 54.4 130 103 0
Soft X-ray 130 103 103 0
Hard X-ray 103 106 103 0

Table 2.1: Properties of the photon groups used in the simulations. Columns are name;
minimum and maximum energies; dust absorption opacity (Planck); dust scattering opacity
(Rosseland)

As already mentioned, the spectrum-dependant values that apply for our different photon
groups, which include the fraction of energy of the AGN that is outputted at said group, and
the ionization cross-sections for our three atomic species, are tabulated at 5.2.

Having the spectral distributions of the AGN energy deposition established, the code first
asks how much luminosity is generated by the usual conversion

Lbol = εfηṀc2 (2.12)

Where we use the classical value of radiative efficiency η = 0.1 and an energy coupling
efficiency of εf = 1. We choose this values as the resolution of the accretion flow is good
enough to merit using an uncorrected value of radiative efficiency, and we assume that the
coupling efficiency should be in principle taken into account for, by the RT-framework (as the
coupling of the feedback to the gas is done through the photons which are consistently evolved
in the simulation). At this point, the code injects photons from each established group at the
location of the sink particle’s cloud using the group’s energy δEi and the deposited percentage
from the spectrum χi, giving a photon injection at each subcycling timestep of

∆Ni = 0.1c2∆M · χi

δEi

(2.13)

In many cases the selection of these values is not clear cut, as it has shown inconsistencies
at worse resolutions. Models that implement direct thermal energy injection as a form of
AGN feedback, do not have an universal set value for εf · η, and suffer when trying to
reproduce scaling relations depending on the context of the simulation (see eg: Thacker
et al., 2014). Different values have been set and tried for simulations, for instance: Prieto
et al., 2021 used the same adjustable prescription as us for a galactic merger simulation and
found that the effects of feedback were overestimated. In Volonteri et al., 2015 they set
εf = 0.001 and η = 0.1 also for galactic merger simulations, but the value was calibrated
manually to reproduce the M − σ relation. In cosmological simulations Teyssier et al., 2011
used εf = 0.15, which was also M − σ calibrated. As uses of RAMSES-RT to model AGN
feedback have been limited, there is not a broad testing on how scaling relationships are
fulfilled depending on εf · η, and to the author’s knowledge, only galactic-scale simulations
have been done (Bieri et al., 2017, Cielo et al., 2018), using the canonical η = 0.1 and ignoring
any coupling efficiency parameter (εf = 1).
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2.4 Simulation parameter Specifications
All of our circumnuclear disks are initialized having a Rdisk = 45pc radius, H = 5pc and a
homogeneous distribution temperature of 2× 104 K. The external potential contribution by
the stellar bulge is modeled by the potential that arises from 2.2, with a Plummer length
scale of a = 65pc and a Mbulge consistent with the SMBH-bulge mass relation from equation
1 mentioned at the beginning of this document (Häring and Rix, 2004).

The simulation box domain for all our runs, has a 260pc length, which is chosen to be
big enough (four times the Plummer radius) to better capture the dynamics of the material
that could end up being launched from the disks. The AMR refinement is set to go from a
minimum level of lmin = 7 up to lmax = 16, which gives a minimum resolution of ∼ 4pc and
a maximum attainable resolution of ∼ 0.008pc on the highest grid partition levels.

The first grid refinement criteria we use, is the typical semi-lagrangian refinement scheme
of setting density thresholds for each level, where we focus on getting the disk in its initial
stage, at least at l = 9 − 10 in its outskirts. The following refinement criteria, is to always
maintain the sinks and their immediate environments (modelled by the sink cloud particles)
at a maximum resolution independent of gas density, as to avoid problems that may arise
when resolving the BH dynamics and gravitational influence (Lupi et al., 2014), and for
our accretion computation (this maximally resolved sink idea is already implemented from
Bleuler and Teyssier, 2014). The usual requirement from Truelove et al., 1997, of resolving
the Jeans thermal scale in order to address artificial fragmentation, is added as a safe-guard,
albeit in practice it is not too important, as our simulations always resolve such scale-length.

Our simulation suite includes 16 different physical setups, with 4 different initial conditions
which are run with or without radiative feedback, and different feedback settings. This
physical setups separate into 2 systems which are inside the dynamical cavity forming regime
from VE12, and 2 systems which are not (see figure 2.1). The initial mass and separation of
the binaries in this setups is (abin, Mbin) = (3 pc, 106M�), (2 pc, 106M�), (7 pc, 105M�), (1 pc
, 104M�). The mas of the circumbinary disk is 106M� for all setups except for one of the
cavity forming conditions. All this values are summarized below in table 2.2.
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Name Mbin Mdisk/Mbin abin Tidal Gap AGN

GAP-a3 1 0.01 3 yes no
GAP-a3-AGN 1 0.01 3 yes yes
GAP-a2 1 1 2 yes no
GAP-a2-AGN 1 1 2 yes yes
a2 0.1 10 7 no no
a2-AGN 0.1 10 7 no yes
a1 0.01 100 1 no no
a1-AGN 0.01 100 1 no yes

Table 2.2: Summary of main setup parameters. Masses are in 106M� units and lengths are
in pc units.

Next we have at table 2.3, physical quantities that are derived from these setups, which
will set the inner physical scales of each system. We list then the threshold radius R0

d, the
Schwarzschild radius Rg, the momentum threshold l0d, the orbital time torb and the pure
orbital speed vbin (which is used for the calculation of things like the real initial circular
velocity of the binary or the Toomre parameter).

Name R0
d [pc] Rg [pc] l0d [cm2/s] vbin [cm/s] torb [kyr]

GAP-a3 4.96× 10−5 4.787× 10−8 1.008× 1023 5.356× 106 54.78
GAP-a2 4.96× 10−5 4.787× 10−8 3.187× 1023 6.559× 106 29.82
a2 2.79× 10−3 4.787× 10−9 7.558× 1022 1.109× 106 617.4
a1 1.57× 10−7 4.787× 10−10 5.667× 1020 9.276× 105 105.4

Table 2.3: Tabulated values necessary for the accretion rate and physical scales

The orbital speed for a Keplerian binary with no eccentricity was calculated as

v2
bin =

2GMbin

abin
(2.14)

We also use as our orbital timescale, the value

torb =

√
a3
bin

2GMbin

(2.15)
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2.4.1 Setting the speed of light fraction
In a work where timescales are as a central as this one, the reduction of the speed of light
mentioned in section 1.2.3 might be a concern, as this reduction affects the timescales for
photon propagation, affecting the efficiency of radiation propagation, and therefore indirectly
affecting the effects over merging timescales. This is all true, but in practice, the timescales
at which radiation travels through the simulation and the dynamical timescales that are
relevant for our context work in such different regimes, that it does not affect too much the
evolution of the system.

If we define the light-crossing-time as the time that it takes at lightspeed to cross the
strömgren radius defined with the physical parameters of our system. The formula for this
ionization front bubble radius for an ionizing-photon emitting source onto a homogeneous
hydrogen medium is

rS =

(
3Ṅ

4παBn2
H

)1/3

(2.16)

When considering our circumbinary disks, αB ∼ 2.6× 10−13 [cm3/s] is a good approximation
for B type recombinations at T ∼ 104K (which is nearly the our Mestel equilibrium temperature),
we also see typical midplane densities of ∼ 10−20 [gr/cm3], which crudely translates to
nH ∼ 5 × 103 [1/cm3]. If we take typical values for AGNs (take again, for instance an
energy output from Sazonov et al., 2004), we would get a photon number production of
around Ṅ ∼ 1050 [1/s]. With all this we get an Strömgren radius of rS = 0.5 [pc] from
2.16, which itself gives a crossing timescale of tcross ≈ 1.63 [yr]. For most of our analysis,
the relevant timescale τsim we measure our simulation in, is the orbital time of the binaries,
which in its lower case scenario can be of ≈ 40 [kyr]. In Rosdahl et al., 2013 the quoted
lightspeed fraction used is of fc = min{1, 10tcross/τsim} (see equation 1.32, which in our case
amounts to fc = 4× 10−4. In practice, the gain in computational load for such a low fraction
is not really necessary and because we want to minimize any possibility of having delays on
the radiation effects over coalescence, we raise our actual lights speed approximation to a
factor of fc = 5× 10−3, which is way above the usual requirements set for the validity of this
formalism.
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Chapter 3

Results and analysis

3.1 Runs without Radiative Feedback
We first begin analyzing our runs done without radiation, where we will check for consistency
with VV18 in order to validate the subsequent comparison of the AGN radiative feedback
models. For this posterior analysis we will still need to have extracted certain amount of
information from the binary+disk dynamics/interaction in order to ascertain and quanitify
the impact that RT has.

As it has already been mentioned, the setup suite we are working with, consists of 2 systems
which are expected to open a tidal gap and 2 which are not. In VV18 the systems binary
separation evolutions were plotted against their time evolution in torb units:

Figure 3.1: Result of simulations from VV18. Normalized binary separation a/a0 plotted
against normalized time units t/t0.
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This plots exhibit how green/blue systems are stuck in a slow migration regime characteristic
of how the binary shrinking mechanisms will not be dominated by extraction of angular
momentum through interaction with the disk gas content (as the cavity has been excavated
and the available gas around the SMBHs has migrated away), and how orange/brown systems
have a rapid coalescence evolution, as the binary+disk couple is maintained by viscous
diffusion.

3.1.1 No gap opening setups without radiation coupling
Continuing now with the setups we expect no tidal gap to form, we check the results for
systems a1 and a2 specified in figure 2.1. The setup parameters can be found at table 2.2,
with corresponding values ofMbin = 105M�, Mdisk = 106M� and an initial SMBH separation
of a0 = 7pc for a2 and Mbin = 104M�, Mdisk = 106M� and an initial SMBH separation of
a0 = 1pc.

On the long run we predict no important tidal cavity formation on these setups, but there
are some contrasts: For a2, its place on the parameter space partition seen in the graph
2.1, indicates that the expected perturbation of the disk is non-trivial as it is close to the
regime-partitioning line. In contrast to a2, a1 is expected too show much less signs of disk
perturbation from the binary, as viscous diffusion will be very efficient with respect to angular
momentum distribution in the circumbinary disk. For both of this setups we expect to see fast
orbital migration, this is specially true as a1 starts out with a much lower initial separation
for the binary and a smaller fraction between the BHs and the disk. Let us look at density
maps for both setups, beginning with a2:

Figure 3.2: Density slice ρ(x, y, z = 0) map for no-gap a2 simulation at times t = 1torb, and
2torb
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Indeed in the density slices we see a perturbed disk (we see the wake of our black holes leaving
a spiral wave perturbation), but the BHs are not effectively excavating a hydrodynamical
cavity. Now, the same maps for a1 look like this:

Figure 3.3: Density slice ρ(x, y, z = 0) map for no-gap a1 simulation at times t = 1torb, and
2torb. Notice that in difference from the slices for a2, the disk is zoomed to xy ∈ (−7.5, 7.5)2

pc

Now if we see the binary separation graphs, it is apparent that the BHs in these setups
are indeed coalescing in timescales that are comparable to how much we are running our
simulations. Showing how indeed the low binary to disk mass ratio and the short initial
separations affect the disk’s structure in a low enough degree such that gas will provide
enough influence to make the black holes to merge on a short timescale:

Figure 3.4: Orbital evolution for cases a2 (left) and a1 (right). Both show an evolution where
the binary separation steadily decreases after every orbital passage

This is in general good accordance to the results seen with the runs from GADGET at
3.1. but with a less pronounced coalescence, seeing less difference in the peak separations
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between black hole passages. We see in Orbital evolution for case a2 a gradual lowering of
the distances in closeby passages, but in a1 we see a faster and abrupt merge (requiring only
two binary passes), before which we see that if the we overlay the influence radius of our BHs
in the snapshot right before the merge, it is the only time in which they intercept, which
happens at separations that go down to values of ∼ 1.5× 10−2pc:

We expect both setups with fast shrinking regimes, to be the ones most affected by the
potential impact that quasar feedback can have. This is both because we would expect
more accreting fuel surrounding SMBHs from non-gap-opening systems, and because the
this feedback would naturally have more effects at delaying than accelerating orbital decay,
which is of course more relevant towards fast shrinking binaries. Another idea supporting this,
is how accretion (and proportionally so, radiative feedback) in binaries which are coalescing
has episodic enhancements that depend on orbital passes, we see this for both no-gap-opening
systems (considering a1 only up to before the time of merging):

Figure 3.5: Mass evolution of BH pairs for setup a2 (left), and setup a1. Each separate line
on the figure represents an individual BH in its respective setup

Differences in the evolution of mass throughout the respective simulations is to be expected.
The a2 setup shows a steep initial mass accretion due to how the binary is more massive in
proportion to the disk (compared to a1), whilst the subsequent gradual decrease is due to
how the BHs perturb the disk somewhat strongly, but without forming a noticeable tidal gap
(see how it is placed near the gap forming threshold region of phase space at figure 3.1). As
mentioned, a1 does not show such a big, steady decrease in accretion, due to how little of
an impact the binary has on its medium, and at the same time shows a strong correlation
of accretion enhancement and orbital passes. It is worth mentioning that accretion rates
at all simulation times, fall comfortably over the ADAF regime and therefore radiative-
mode feedback is predicted to be a relevant mechanism (although since it is a self-regulated
mechanism, this has to be seen).
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3.1.2 Tidal gap opening setups without radiation coupling
We begin the results analysis for our setups where the initial conditions are primed for tidal
gap formation.

As expected these setups do in fact form tidal gaps in a few orbital times, and show slow
migration times, both for GAP-a3 (which has Mbin = 106M�, Mdisk = 104M� and an initial
SMBH separation of a0 = 3pc, see 2.2) and for GAP-a2 (Mbin = 106M�, Mdisk = 106M� and
an initial SMBH separation of a0 = 2pc). By the way the parameter space is partitioned, we
expect a slower gap clearing in GAP-a2 than the one seen in GAP-a3 (this is intuitive: the
disk’s structure is more affected for setups in which the mass of the BHs is higher relative
to the medium), as it is closer to the phase-space partitioning line from 2.1, but it may be
more noticeable as the density contrasts are bigger with the more massive disk present here.

If we now observe a density projection of these simulations on the XY axis, we see the
following for GAP-a3:

Figure 3.6: Density slices for simulation GAP-a3 at times t = 0.5torb, 1.5torb

If we plot the same density slices for GAP-a2 we see at the same evolution time (in units of
orbital timescales):
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Figure 3.7: XY density slices for simulation GAP-a2
at times t0.5torb, 1.5torb

We see there is a clear gap forming at times as soon as a couple of torb which for setup GAP-a3
corresponds to a timescale of torb ≈ 54.8kyr and torb ≈ 29.8kyr for GAP-a2. As expected,
the gap formation is less violent for GAP-a2, but still the cavity is apparent, eg: let us see
the YZ density projection of this at t = 2t

The profiles at different times show clear evidence of how mass is allocated out of the central
regions of the disk. It also shows how matter will tend to pile up between the inner limit set
by the excavated gap and the ring’s outer boundary defined by the equilibrium of pressure
against self-gravitation (and the external gravity from the stellar bulge)

A direct measure of agreement between the original runs done with GADGET is to measure
the binary separation evolution, which where we see agreement in how there is now perceivable
orbital decay (just as in VV18):
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Figure 3.9: Binary separation of tidal opening setups without AGN feedback GAP-a3 (left)
and GAP-a2 (right). Both show an evolution where the binary separation is maintained
almost constant.

As mentioned, we see that the evolution of binary separation is almost flat in our timeframe,
which is consistent for gap forming setups, as the timescale in which slow migration operates
is 1

abin

dabin
dt
∼ 103− 104 torb. It is not rare that we see how the setup that forms the gap more

quickly

It is also of interest to measure the torque exchange the binary has with its gas environment
through dynamical friction as a way to see the system coupled interaction. We recall equations
13-14 (we reiterate these equations here only to improve the readability of this document),
where quoting the formulas from Escala et al., 2004, Escala et al., 2005 the gas coupling may
be stated as:

T ≈ 4πρr

(
GMBH

vBH

)2

× f (gas)(M) (3.1)

Where M := vBH/cs, and f (gas)(M) is a dimensionless factor taken from Ostriker, 1999,
which takes a different form depending in how the binary is moving in a supersonic/subsonic
regime:

f (gas)(M) =


1

2M2 ln
(

1+M
1−M

)
− 1
M , M < 1

1
2M2

[
ln
(M+1
M−1

)
− 2 ln

(
rmax

rmin

)]
, M > 1

(3.2)

Setting the value of the Coulomb logarithm to a best fit value of ln
(
rmax

rmin

)
=

{
4.7 , M≥ 0.8
1.5 , M < 0.8

just as in Escala et al., 2004, we get from our simulations the following evolution of torque
exertion (in code/arbitrary units):
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Figure 3.10: Torque evolution for case GAP-a3 (left) and GAP-a2 (right) respectively (code
units)

In the graph a noticeable diminishing of the torque exchange is seen, which is consistent with
gas being migrated away (and therefore immediately diminishing ρ in equation 3.1). Even
though this is in code units, we can directly compare between the two disks, showing that the
torque values in the first setup are 3− 6 orders of magnitude below those of the gap opening
setup with a more massive disk. All this supports the resulting constant orbital separation
we observe at 3.9.

A synthesis for comparison of results between the orbital evolution at 3.1 and the ones that
been mentioned one-by-one in this section looks like this:

Figure 3.11: Compiled orbital evolutions for our different setup runs without AGN feedback.
We see coalescence in a few torb units for fast migration simulations, and an almost constant
orbital evolution for slow migration

Which we see, is in almost one-to-one concordance to the GADGET runs done without
feedback, this consistency bodes well because it suggests that differences between findings
in radiation-runs will be mostly induced by the AGN implementations, and as such we may
isolate the limitations of the past findings.
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3.2 Runs with AGN Feedback
3.2.1 No gap opening setups with radiation feedback and coupling
Along this section we will focus more in simulation a2-AGN, as this system in which no gap
is predicted (nor observed, in the purely hydrodynamical runs), is the setup which we chose
to run in most detail compared to the rest of our simulation suite, as working through the
rationale of no-gap forming systems are in the regime that is predicted to be affected the
most by the inclusion of feedback, by virtue of us basically adding a new disruptive factor in
the disk which could potentially make it so the system cannot sustain gas reservoir needed to
remove angular momentum and promote the binary’s merger. Now, we choose to focus our
analysis on a2-AGN over a1-AGN (take this as a soft statement: the analysis will of course
include both setups, taking care to outline differences and similarities) not only due to the
fact that the writing is clearer due to see how a-posteriori they share most of their evolving
trends, but also it is of note that we want to see a maximization of what feedback ’may’ do
on our working context, and we already saw how in 3.1.1 the former is the setup in which
the binary has a much bigger impact in its overall context.

We begin with a basic rundown of what is seen in terms of behaviour of the BHs and
the gas. The simulations start out by carving out a ’feedback bubble’ which occurs by a
combination of two things: Accretion at the instant-initial simulation stages is quite high,
and therefore the feedback’s net luminosity is high, and secondly, as we begin with gas that is
fully non-ionized, high frequency radiation couples easily to the gas thus transferring energy
very efficiently.

Now, between our two setups, this radiation bubble behaves differently, as for our less massive
setup a1-AGN, the bubble is not strong enough to perturb the medium in a disk-wide manner,
and accretion is less inhibited, whilst for a2-AGN the bubble progressively expands up to a
point where accretion starts becoming quite inhibited and at around ∼ 1torb (see the accretion
graph at 3.13 the downturn is already quite apparent. Let us see how density maps look:
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Figure 3.12: Density projection at times t = 0.1torb and 1torb for a2-AGN (top panels) and
a1-AGN (bottom panels)

We see in these maps an illustration of just how much difference the effects of AGN feedback
may have, where the feedback bubble in a1-AGN is quite small even after a whole torb has
turned, whilst in the more BH-massive setup, feedback is extremely disruptive towards its
immediate environ. Let us now see the evolution of accretion in these two setups:
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Figure 3.13: Accretion evolution for a2-AGN (left) and a1-AGN (right)

The question of why does the accretion not become immediately inhibited after the feedback
bubble is formed for setup a2-AGN, instead showing an upturn at ∼ 0.2torb, can be explained
by how, after each individual bubble forms, the expansion front does not follow the rotation
of the binary, and eventually the BHs intercept the high density forefront of this feedback
cavity, which then ’artificially’ ups accretion. Other clear feedback bubbles are created on
smaller scales during this simulation which usually correspond to accretion feedback being
able to couple more efficiently to a medium that tends to both mix with the outer non-ionized
gas from the disk and to smooth out due to diffusion (the changes of coupling efficiency due
ionization is quite relevant and covered in 3.2.1.2). The eventual sharp reignition of feeding
that occurs is due to the close passage of the BHs, which does not trigger a violently coupling
feedback event as gas is much more ionized, and there are also enough low-density channels
for radiation to be funneled (specially in the vertical direction).

3.2.1.1 Extended disk structure

If we were to see the overall mass extension of our CMB disks, for our less massive setup
we would see no large scale changes, as the feedback bubble is small enough to remain
contained onto the center of the extended disk, and it eventually starts refilling. At the same
time, for a2-AGN we can look at the density maps at 3.14, and observe how the evolution
seems to start roughly at the predicted 45pc radius that is specified in our initialization
analytical model, followed by an epoch of contraction of the disk’s radius that accompanies
the out-of-equilibrium overall state of the system that is spurred by the feedback cavity
and vertical outflows that stem from the nuclear regions nearby the BHs, and finally we see
a ’repairing’ phase of the disk, where the system begins stabilizing, once again at a disk
extension comparable to that of the initial values:
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Figure 3.14: XY density slices from upper left to lower right at times t = 0.2torb , 0.75torb,
1.8torb , 2.4torb
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The rationale derived by looking at the disk’s integrity evolution, is accompanied by looking
at the behaviour of mass concentration with respect to the z-axis over time at 3.15. We can
appreciate how mass is orderly packed at certain height intervals, then this mass concentration
is expanded to much bigger heights due to the feedback, and finally the vertical structure
becomes similar to the initial one but in a smoother more spread distribution.

This big spread of mass in the vertical axis is linked to the shortening of the outer disk
radius, as it is due to the isotropical expulsion we see by the AGN ’cavity’, which vertically
propels big quantities of material that the disk. This low density inner region of the disk
is refilled by viscous diffusion (which should be efficient, as predicted by the system initial
conditions) with material that comes from disk’s axis at the inner boundary of the cavity, and
thus a momentary contraction of the disk occurs. This is later stabilized, as the vertically
expelled material never reaches the system’s escape velocity and as it falls back into the disk
(this is a relevant issue at gap-forming systems with the inclusion of radiation, see ??), the
structure gradually restores itself back to an equilibrium akin to a more spread-out version
of the initial conditions. This can only happen of course, if no big subsequent AGN induced
bubbles form, which is what we observe, the reason for this is mentioned in the following
section 3.2.1.2.

Figure 3.15: Evolution of the vertical concentration of mass throughout time. At the
beginning, mass is vertically diffused on average, after which the disk vertical structure
is gradually regained to approximate that of the original setup

64



3.2.1.2 Feedback and radiation-medium interactions and evolution

Now, as predicted by the title of this work, the behaviour of radiation in our simulations is
central, as it is the main differentiator on how feedback is implemented. Not only AGNs are
better represented by making a much more complete modelling of the actual direct mediator
of interactions between gas and the feedback energy, but it also, in our implementation we
can follow the loss of radiation-coupling efficiency by virtue of ionization, and we can also
follow the details of energy propagation through photons (opposite to the direct heating
recipes usually used in simulations that are only hydrodynamical in nature).

Firstly, we know by construction that the net radiated energy (bolometric luminosity) will
always be proportional to radiation, but as our simulations not only deposit different fractions
of luminosity in different photon bands due to a SMBH spectrum, but also have changing
spectrums depending on the medium’s state (see 2.3 and 5.2). At simulation a2-AGN the
exact photon emission from our BHs is:

Figure 3.16: Net radiated energy and specific photon group radiated energy for a2-AGN

The first thing to look at with this graph, is to see that the absolute emitted luminosity
does not exceed L ∼ 1043 erg

s
with values staying usually closer to L ∼ 1042 erg

s
, which is close

to expected values for BHs if MBH ≤ 106, as for instance the Eddington limit, which sets
a maximum luminosity for the idealized case of spherical accretion and hydrogen medium
sets a limit of LEdd = 1.25 × 1038 ×MBH/M�

erg
s−1 . This graph also shows how in practice,

by far, the most energy inducing photon bands are the high energy UV photons and the
soft X-ray photons, with the latter edging out the former in most instances (except at the
highest radiation levels). It is important to note though, that even though both are mostly
comparable, UV rays couple more efficiently to gas (see its effective cross sections at 5.2)
and thus if the emitted values are comparable for both bands, the UV band will always have
a bigger impact on the system. Another thing to note here, is that even though IR band
is not created from the sinks, it is very much present in the simulation, as it is the form
that reprocessed radiation takes after being absorbed. We also note that this depositing of
energy in photon bands is in general terms, consistent along all our other setups, as even
though there are potentially, conditions that would have for example hard X-ray photons
as most of the energy, these are quite extreme and not really feasible in our context (eg:
log10(ξ) = 0 ∧ Γ = 1.76).
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Now with the working hypothesis of, ionized gas is much less efficient at capturing photons
and thus coupling to feedback, we can start delving more and better into how the behaviour
and impact of the AGNs evolves in the simulation. Let us see how the ion numerical density
maps change through time:

Figure 3.17: HII, HeII and HeIII number density at t = 0.2torb

Figure 3.18: HII, HeII and HeIII number density at t = 1.75torb

Figure 3.19: HII, HeII and HeIII number density at t = 2.2torb
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We see different things at play here, with the first being that evidently the ionization
concentration is focused on the low density region excavated by feedback, which is intuitive
given that this will be the region that has been most recently and most highly exposed to
radiation. At the initial stages this is extremely evident, but as the simulation keeps evolving,
we see that the ion density stays centralized but stops being a transpose of the density map,
as ionized matter is now mixing with non-ionized material, whilst radiation now does not
carve such large scale feedback bubbles as the one that appears at the beginning. Other
secondary feature we can observe is how doubly ionized Helium exhibits this features in a
more extreme manner, due to its existence stemming from either Helium interacting with
the most energetic radiation bands or through the ionization of HeII which also explains why
we sometimes can see the doubly ionized density map to be a transpose of the single ionized
Helium in certain evident regions (as this process depletes HeI). Indeed if we go a little
beyond than 3.20, as far as 3torb the centralization of ion concentration is now extremely
prevalent, with a very high density contrast:

Figure 3.20: HII, HeII and HeIII number density at t = 3torb

This Strömgren-like region, where ionization is contained is quite relevant, because it suggests
that the disk is moving towards an equilibrium in which there is an inner highly ionized
region where the effective cross section will be much lower and thus the mean free path will
be much higher and the corresponding radiation force will be small, and where at the point
where recombination is able to keep up with ionization, the outwards pressure will be much
lower as the flux field is still proportional to ∼ r−2. Just to illustrate how relevant ionization
states are in regard to coupling, let us start by seeing how the cross sections of our species
look:

σ(ε) = σ0

[
(x− 1)2 + y2

w

] y0.5P−5.5

(1 +
√
y/ya)P

· δε≥εion (3.3)

Where x ≡ ε
ε0
− y0,, y ≡

√
x2 + y2

1 and σ0, ε0, yw, P, ya, y0, y1 are fitting parameters. For
already ionized gas the cross section becomes a Thompson-like cross section σT (opacity of
the gas becomes uncorrelated to frequency of the incident radiation), and then the radiative
acceleration becomes:

grad =
σT
µe

L

4πcr2
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Where σT ≈ 6.7 × 10−29 for ionized hydrogen, which would be around 10 − 8 orders of
magnitude lower than that of neutral hydrogen (of course this depends on the spectrum
shape and frequency band, see 5.2).

Of course we can talk about the ramifications of how the ionization states should affect, but
we are still not directly quantifying how radiation is affecting the disk, which is something
we may understand by looking at the actual flowing and absorption properties of photons.
This is easier said than done, because there are different things at play here than directly
looking at density maps of photons (which is maybe a first step, but not enough), we also
want to look at how absorption maps in correlation to the system, and how density couples
to radiation absorption (and thus interacting energetically) with the gas. We will be mainly
showcasing the properties of the UV2 photons because as we explained before, it is the main
energetic contributor, and also because it behaves in the same way than groups UV1 and
X1 (this does not hold true for X2 that penetrates gas much strongly, and IR which is not
generated by feedback but through re-emission). Let us see how photons look:
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Figure 3.21: UV2 photons for a2-AGN at t = 0.2torb, t = 1.5torb and t = 3torb
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The first thing that is easy to appreciate is how photons have a very strong tendency to
stream freely from the disk in the vertical axis. We also see how even though it is known
that radiation usually prefers to transport through lower density regions, this is not majorly
evidenced in the XY slices, as radiation maps tend to have a smoother gradient than density.
This is mainly due to the already described evolution of the density/ion-density at the inner
parts of the circumbinary ring, namely the fact that it initially has a low density that is
induced by the blowback of feedback, and then as gas repopulates the center, it is highly
ionized and thus of a very low opacity. We are not explicitly going to graph the differing
two photons groups, but to reiterate the point we made before, if for instance we were to
map out IR radiation, we would see a much larger encompassing and diffuse photon presence
which softly follows the same behaviour of ionizing radiation, and if we were to map out hard
X-rays, we would basically see no absorption from the gas at all.

A good way of seeing the actual interaction of photons with the gas, is to map the mean
free path (MFP) of radiation. MFP codifies the expected value of the distance a random
abritrary photon at ~x would be able to traverse unimpeded given the information of the cross
section and number density of said targets at ~x, ie:

l =
1

σn

As this value comes from the idea of an L sided rectangular slab of thickness dx, the formula
from which the MFP comes from is the probability of collision within dx, P(colliding within dx) =
Areatargets

Areaslab
= σnL2 dx

L2 = nσ dx, where if we assume that the target areas of our different ion
species are independent and cannot intersect, this means that we can actually do a direct
ponderation, leaving l = 1∑

i∈S σini
. If we map out this field, with the information of the cross

sections from the tables at 5.2 ionization states, we get:
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Figure 3.22: Mean free path of photons for a2-AGN at t = 0.02torb, t = 1.75torb and t = 3torb

What we are seeing here, is very telling, as we are seeing a map with an easy interpretation
at all simulation times: Inner regions of the disk have MFPs that are l > 100 pc, which
means that radiation will almost definitely penetrates onto the optically thick regions which
are marked by sharp decreases to immediate values in the order of l ∼ 10−2 pc. These low
opacity regions are clearly correlated initially to the low density excavated region and then
with the repairing ionized central region we see in figures 3.17-3.20. Figure 3.22 finalizes the
confirmation on how, feedback from the BHs will effectively move with a very high mean free
path once ionized gas is funneled towards the center, which creates the configuration in which
active capture of photons will only occur at a point in which the coupling is not strong enough
as the radiative flux diminishes quadratically. This evolution towards a coherent, ionized
center suggests how the system creates a configuration in which gas may be maintained
nearby the binary, eventually moving closer back to the non-AGN version of the run.
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The concept of an ionized central gas region and an ionizing radiation vertical cone in CMBs
is consistent with literature (see eg: Krolik, 1999 or see figure 3.23 from Pogge, 1989 for
reference)

Figure 3.23: AGN schematic including photoionizing bi-cone

As a closing subsection remark, we reiterate that all the behaviour found here, is mimicked
in different scales for a1-AGN. A low-density initial feedback cavity is initially carved out by
radiation but it is much smaller, as is the ionized-gas region, which is expected due to the
binary being much less massive in proportion to its environment. Since the disk is much less
affected overall, a semblance of turning back to a stable disk appears to occur more quickly.

3.2.1.3 Evolution of binary separation

Now we remember that the final standard of impact and the overall objective of our work, is
to measure the effects that including feedback has on the coalescence of our binary, and as
such we proceed to look at the binary separation evolution

We see that as the initial orbit eccentricity is high, there is a clear demarcation of binary
passes, but the peaks/valleys of separation do not clearly evolve, which indicates that there is
no indication of a couple that would remove angular momentum of the binary. As mentioned,
since we saw that disk structure seems to start regaining integrity, a gas reservoir should be
nurtured on the short term to transition back towards fast migration. It is left as future
work, to continue our runs until we can see an appreciable return to fast orbital decay.

3.2.2 Tidal gap opening setups with radiation feedback and coupling
It is easy to see our gap opening setups as ’less interesting’ when adding feedback, as the
systems already hydrodynamically push out the available gas they have, that would usually
be able to remove angular momentum from the binary, and the addition of radiation should
not really affect coalescence properties, as gas is now moving away from the disk’s center
through additional mechanisms. As in the no-gap cases, we will guide our overall analysis
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Figure 3.24: Orbital evolution for cases a2-AGN (left) and a1-AGN (right). Due to the initial
orbit eccentricity we see a periodic fluctuation of orbital separation, but the decay is stalled

through focusing on one of the setups, namely we will be focusing mostly no GAP-a2-AGN
over GAP-a3-AGN. It is to be noted though, the evolution of these two setups is somewhat
less unified than the no-gap systems, both as the scope of this systems will be narrower and
thus more focused and contextual, and because the mass fractionMdisk/Mbin difference is very
high between them (thus leaving space for more drastic changes between the two setups).
It is also of notice, that as the system will dynamically tend to create a low density region
surrounding the binary, accretion will be naturally suppressed, which will proportionally lead
to bolometric luminosity (radiation emission) to have naturally suppressed values.

What we see happening on the course of these two setups is that indeed we see a gap forming,
but the somewhat-orderly fashion in which this feature is formed on the hydrodynamical side
of things, is not a given when including feedback. When tidal cavities form hydrodynamically,
they do so by the removal of angular momentum of the binary’s sorrounding material through
the tidal perturbation it creates due to the propagaton of spiral-wave patterned wakes from
that trail the BHs. In the context of the inclusion of feedback, one has to realize that the
initial feedback radiation (which spreads isotropically from each BH in opposite to the spiral
wake pattern that normally propagates away from the binary) that is incident onto the disk,
will operate on a much faster timescale. This means that the slower hydrodynamical process
in which the system will tend to form a tidal cavity has to work in tandem with the new,
faster, cavity formation process, which may have different ramifications. Before going into
this ramifications let us look at some XY slice density maps:
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Figure 3.25: XY density slices for GAP-a2-AGN
(upper) and GAP-a3-AGN (lower) at times t = torb and t = 2torb

From this density slices we might notice a couple of things happening. system GAP-a3-AGN
has a much more perturbed and clearly defined low density inner region compared to its non
radiative counterpart at 3.6 at the same evolution time, and it has a farther reaching gas
density front stemming from the initial feedback bubble than the GAP-a2-AGN setup, but
still they both show a subdued feedback bubble when compared to the appreciable extended
structural impact seen at 3.14. We also see, how we anticipated, how in the GAP-a2-AGN
system, wakes are not as relevant at least initially (although a semblance of spiral wave
propagation does start appearing as the system evolves).

At a cursory viewing of GAP-a2-AGN one might think that the tidal cavity formation is
not necessarily strong, as the density contrast between the outer CMB and the excavated
region is not notorious, but it is important to note that this is an artifact of mapping density
as a slice (a projection in this case, also leads to misleading viewing). To elucidate this point,
let us look at the lateral slice that would be the companion of GAP-a2-AGN at t = 2torb

from 3.2.2:
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Figure 3.26: Density slices in different projected axis for GAP-a2-AGN at t = 2torb

Here the central low density region is strongly evidenced, but now we can also observe a
new feature, which is the outflowing gas that follows a conical flow akin to what the natural
geometry to which radiation conforms in the XZ axis. There are several moving pieces here
that have to be mentioned, and a good start is to look at the actual magnitude of emitted
luminosity:

Figure 3.27: Net radiated energy and specific photon group radiated energy for GAP-a2-AGN

This shows how, the net amount of radiation is around 1− 2 orders of magnitude lower than
what is seen at 3.16, which means that on a superficial level, the impact of feedback will be
lower (as the disk has the same mass). This is directly correlated with the radiation bubble
being much smaller than in non-gap forming systems. The feedback bubble being small does
not mean that radiation does nothing, as gas is swept up from the disk by feedback.

3.2.2.1 Disk photoevaporation

This swept material is expelled from the gap’s inner limit mostly as singly ionized gas, with
a large fraction at speeds that exceed the escape velocity of the system. Some material is
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steadily expelled during all the simulation, as gas that is not strongly bound to the disk is
not maintained as highly ionized at the the cavity’s interface, both because there is mixing
between ion species at the interface where viscosity is trying to refill the low density gradient
and mostly because radiation is too spread out to ionize too deeply into the denser regions
of the disk (see 3.28), and as such, couples efficiently to the highly energetic radiation.

Figure 3.28: HII, HeII and HeIII ion number density XZ slice for GAP-a2-AGN at t = 2torb

This process in the context of protoplanetary disk theory, is known as ’disk photoevaporation’
(see eg Alexander et al., 2006) and has been widely studied in systems with highly ionizing
radiation sources in their centers. The amount of ejected mass is not high enough to pose a
structural risk to the system, and eventually will have to stabilize, as the low density region
becomes bigger, accretion decreases (see fig 3.32, this by proxy will also decrease ionizing
radiation) and the inner boundary of the gap becomes both more ionized and thinner. We
have to keep this mind, for instance when comparing density profiles of this setups with
their non-radiative counterparts, as we should not count material that is unbound from the
disk when making this comparisons. First we approximate the escape velocity (as it has no
analytic expression) by doing

vesc(R) =
√

2GM(< R)/R ; M(< R) = Mbin +Mbulge(< R) +Mdisk(< R)

Where Mbulge comes from a Plummer profile Mbulge(< R) = M0
R3

(R2+a2)3/2
, and Mbin, Mdisk(<

R) come empirically from the simulation. We then tag all gas that fulfills v(~r) · r̂ > vesc(r), as
gas that is unbound and shall not be considered as part of the disk for density/mass profiling.
Let us see how the density profiles for the times at 3.2.2 are when considering both bound
and unbound material:
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Figure 3.29: Density profiles when considering unbound material for GAP-a2-AGN at t = torb

and t = 2torb

If we were to see the same profile for the non-radiative system, also taking into account
whether there is unbound material or not, we get at t = torb:

Figure 3.30: Density profile when considering unbound material for GAP-a2 at t = torb

We see that indeed setups without radiation are not strongly affected by this elimination of
mass, and we can also see how it may be misleading to effect comparisons on density profiles
between radiation and no-radiation setups without taking into account photoevaporation, as
they might look artificially similar.

This differences will inevitably mean that the posited idea put forward in VV18, that these
setups have the same behaviour and almost the same structure that their counterpart in
simulations without AGN feedback, does not hold for this implementation of feedback. In
fact, if we were to measure the amount of net mass that is lost through time by the AGNs’
influence, we see that it boils down to:
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Figure 3.31: Net mass loss to photoevaporation in time

We see that the net amount of unbound material (at least on a 30pc height around the disk)
is lowering with time, due mainly to the fact that of accretion -and therefore feedback- is
lowered. This speaks about how at first approximation, disk evaporation in our setups is a
self-regulated process, where as the disk thins out and the gap is markedly formed, accretion
will slow down and evaporation will naturally slow down as well. This may also mean that
the eventual pseudo-equilibrium state of this self-regulated disk, will have a bigger gap and
thinner disk that we would see without the presence of feedback.

The accretion graphs for both gap-forming setups show steady decreases, specially for GAP-
a3-AGN:

Figure 3.32: Density profiles when considering unbound material for GAP-a2-AGN at t = torb

and t = 2torb

What does still hold true in terms of similarities for both setups, is the behaviour of the
orbital decay. As we had predicted, material is still being funneled away, and as such the gas
budget for angular momentum removal is effectively decreased. This means that the root
cause for slow migration stays, thus leaving us with the following binary separation graphs:
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Figure 3.33: Orbital evolution for cases GAP-a2-AGN (left) and GAP-a3-AGN (right). As
in the case without radiation, orbital separation becomes approximately flat

This confirms how indeed separations are hold almost at a constant value except for almost
negligible perturbations that can be seen after some orbital times have passed. This finalizes
our idea that, although the inclusion of AGN feedback is not something to ignore for tidal
cavity forming setups in the overall picture, it will not be a facilitator for SMBH binary
coalescence.
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3.3 Overall Trend Similarities and Changes
3.3.1 Speed of Sound and rotational velocity
Let us begin by noticing the changes in sound speed throughout our simulations both with
and without feedback, and the changes in rotational velocity:

Figure 3.34: Sound velocity cs radial profiles for all simulation setups. No-gap simulations
were profiled at times t = 0.1torb ∧ 1torb and gap simulations were profiled at times t =
1torb ∧ 5torb
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Figure 3.35: Rotational velocity vrot radial profiles for all simulation setups. No-gap
simulations were profiled at times t = 0.1torb ∧ 1torb and gap simulations were profiled
at times t = 1torb ∧ 5torb

The first thing of notice here, is that if we look at the plots in 3.36, independent of the
setup, there are no major differences in rotational velocities between the radiative feedback
and purely hydrodynamical setups except to some small degree at earlier times in the central
disk areas, which is due because the initial feedback perturbs the overall velocity field. This
point to the fact that the isotropic pressure from feedback that the SMBHs induce onto the
disk, does not remove angular momentum from the disk at large scales. At the same time it
is important to note that these profiles are all started from abin + max rhill

1 , r{hill1} on out,
as rotational velocity is not well defined as a disk concept for the regions that surround the
BHs inside their hill spheres (where material will tend to rotate around them).

In opposite, for sound speed we see a big spread between the behaviour of different setups,
specially at the central regions, where this values may vary a lot with the presence of a
feedback cavity, that may rapidly heat the environ near the binary.

This two quantities paint a picture on how feedback affect the kinematics/dynamics for
different setups, kinematics that are inherently linked with the gravitational stability of the
disk through Toomre’s parameter (equation 3.3.1):

Q =
csκ

πΣG

If we plot the radial profiles to quantify the evolution of this parameter in the same way we
constructed the already seen radial plots, we get the following:

81



Figure 3.36: Toomre parameter Q radial profiles for all simulation setups. No-gap simulations
were profiled at times t = 0.1torb ∧ 1torb and gap simulations were profiled at times t =
1torb ∧ 5torb

We see here that non-gap forming setups generally lower their Q parameter specially on the
outer radial regions. We see a somewhat opposite trend for gap-forming setups where the
radiation runs exhibit a more erratic radial behaviour which stems from doing a vertical
projection and integration for the acquiring of the quantities involved in the parameter’s
calculation, as we are inadvertently taking into consideration unbound material, which as
explored in last section may introduce errors. It is also worth to remember what we mentioned
for the profiling of rotational velocities, that the parameter is not well defined for the inner
regions of the disk as gas does not have a well defined epicyclic frequency κ (the profiles
above were made ignoring this point for the inner regions, where the epicylic frequency is
just calculated using the simulation center as the reference for the rotational frame).

More important than the actual radial tendencies here, is the fact that the Toomre parameter
is kept very high above the gravitational stability threshold. This is naively consistent with
what we see, as no fragmentation is observed in any of our runs (as predicted by the selection
of the setups), but there are additional considerations to be made as the derivation of the
Toomre parameter is based only on dynamics and does not take into account the presence
of radiative cooling/heating, thus at the moment only serving as a lower threshold type of
criterion.
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3.3.2 Disk stability and Heating/Cooling
Self-gravity may be important in the cool outer regions of accretion discs, where the combined
effects of pressure and shear cannot stabilize the flow against gravitational instability. The
local linear stability of self-gravitating discs is simple (Toomre, 1964) and it depends upon
the accordingly named parameter 3.3.1, which as we mentioned, may not be enough to inform
our analysis of disk stability.

The non-linear behaviour of stability is complex, as a self-gravitating disc can either fragment
into bound objects, or attain a ‘stable’ self-gravitating state in which angular momentum
transport results in accretion and energy dissipation. In the context of our simulations, a
local description of thermal equilibrium implies that the stress, is inversely proportional to
the time-scale on which the disc can radiate its thermal energy (Gammie, 2001). Due to this
we employ a method similar to Gammie’s parameter of

tcool · Ω =: β > 3 (3.4)

Where tcool is the cooling time from 1.36. This criterion is still limited as it assumes that
the heating/cooling processes of the disk are spurred by turbulence, and just as the Toomre
parameter, it has been shown to be inadequate at predicting fragmentation in disks with
radiative transfer (Tsukamoto et al., 2015). We retain the main idea of comparing the local
heating rates to the cooling rates, where we will have the cooling time due to radiative losses,
and heating due to photons and viscous diffusion. The viscous dissipation rate is given by
Qvds ≈ rHτrφ · dΩ/dr ≈ (9/4)Ω2νΣ. With this, we will finally look at the ratio

Π =
tcool

theat

=
ε

ε̇−
· ε̇+

ε
=
ε̇+

ε̇−

There are two immediate caveats when trying to deploy this criterion directly: The first is
that we cannot apply it where Ω is not well defined (see 3.3.1), and the other problem lies in
the fact that our viscous dissipation approximation depends on the disk possessing angular
symmetry. What we do to cope with this last point, is to define regions in which assuming
disk symmetry is valid, and only applying checking the criterion where this symmetry holds.

We could try to replicate the analysis on 2D by profiling values in (R, φ), and try to quantify
viscous dissipation without symmetry-holding approximations by doing explicit calculations
of a stress tensor τrφ, but in reality the non-symmetrical perturbations come from the direct
influence of the SMBHB (through wakes, torques, resonances, etc.), and as such the analysis
becomes too contextual when trying to analyze the disk that surrounds it. With this in
hand, we separate the interval from where symmetry is a valid assumption in the disk, by
analyzing its departure from it on a binned radius basis. The exposition to radiation should
be symmetric enough in the long run, as the only important non-axisymmetric presence could
come from the binary’s self obscuration, but the sources are isotropic enough, the inner region
is not dense enough (in the presence of gaps) and radiative transport is diffusive enough for
this not to be a relevant issue when modelling β.

Like in the analysis of Galactic spiral structure (see eg: Binney and Tremaine, 2008 or
Durbala et al., 2009 for a practical example), since the perturbation of the disk comes from
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a binary excitation, we can indirectly quantify its non symmetric component by measuring
the density enhancement by trying to fit a Fourier series to the surface density at fixed R’s,
seeing how ΣR(φ) behaves and how it relates to the strength of different Fourier modes. more
explicitly we expand:

Σ(R, φ) = A0(R) +
∞∑
m=1

Acm(R) cos(mφ) + Asm(R) sin(mφ) (3.5)

In practice we define a fixed resolution buffer map for the integrated z density, partition said
map in certain R bins, and we then do a least-squares non-linear fitting of the 3.5 expression
truncated at a finite polynomial order of at least 5 − 10 for a binned φ profile at the fixed
radial interval. With this fitting we can test mode strength by observing the values

ζm(R) =
A0(R)

Am(R)
; Am(R) =

√
(Acm(R))2 + (Asm(R))2 (3.6)

Usually to ascertain that arm structure is present, a relative mode strength of at least
ζm ≥ 0.15 is used. For our cylindrical radius threshold of analysis we require that no
Fourier amplitude exceeds ζm = 0.05. This means that if we are doing a fitting with a
maximum number of M Fourier modes, we will consider a radius interval of analysis for 3.4
of r ∈ I := [R̂, Rdisk], where R̂ = min{R̃ > 0 : ζm(R) ≤ 0.05, ∀m ∈ [M ], ∀R ≥ R̃ }.

Let us consider for instance the no radiation run for the gap opening scenario GAP-a2
seen at t = 8torb in 3.1.2. Visually there is a clear evidence of a strong two-armed density
enhancement in the gap region, and since the binary has already completed several circular
periods we may also expect smaller different order density enhancements. Indeed if we plot
the evolution of the first mode amplitude for 6th-order fitting we get: Where we observe

Figure 3.37: Radial profile of ζm(R) example: GAP-a2 at t = 8torb

that after R̂ there is a clear delineation of lower oscillations in the φ variable, and where as
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expected the 2-fold perturbation is by far the most prominent due to the origin of it coming
from the rotating SMBH-binary influence. We can see that ζ1 is not an important contributor
to the Fourier fitting, implying that there is not a strong lopsided perturbation of the density
field. As expected, higher order terms are also minor contributors to the mode strength
when modelling (but will be included when performing the actual analysis of viscosity, as to
achieve as most consistency as possible).

With all this we have established the framework for a consistent mapping of fraction between
cooling and heating processes. Before checking how the cooling/heating fraction behaves, let
us first look at how cooling evolves on isolated terms. If we were to graph each cooling rate
Λ [ergs/s] associated to the formulae from tables 1.1-1.2 (we separate the rates depending on
the ion species they are associated, excluding Bremsstrahlung and Compton cooling), we get
for simulation a2-AGN:

Figure 3.38: Cooling rate radial profiles with the separated contribution of different processes
for simulation a2-AGN at times 0.2torb and 1.5torb

At the same time if we plot the same cooling contributions for GAP-a2-AGN we get:

Figure 3.39: Cooling rate radial profiles with the separated contribution of different processes
for simulation GAP-a2-AGN at times 1torb and 8torb

With these graphs in hand we may observe first how there is a clear indication of how in
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terms of strength, processes that are associated with hydrogen (specially HI) are the main
contributors to radiative cooling, whereas it is clear that Compton cooling is consistently the
least important mechanism (excepting instances where cooling ionized Helium mechanisms
on the outer regions of the disk is extremely low). We also see in the non-gap system, how
in the later stages ionization fraction pays a big role, as how between 5 − 10pc where the
’Strömgren’ area of ionization is located introduces not only overall changes to the rates, but
also to the separation between mechanisms (non-ionized associated processes increase much
more sharply than ionized associated processes). The final and probably most important
takeaway, is how cooling as an overall net physical process slows down as time progresses,
and at the same time becomes less centrally concentrated.

If we now move towards checking how cooling and heating balances out, let us see first
how radial profiles for simulation a2-AGN look:

Figure 3.40: Different radial profiles for our Π parameter for simulation a2-AGN. For these
profiles viscous heating was only considered above R̂

We may also see the accompanying maps for the parameter for times 1.6torb and 2.7torb:
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Figure 3.41: Π parameter projected XY maps for simulation a2-AGN at times 1.6torb and
2.7torb

We first notice how our heating/cooling fraction is all around, above Π > 1, in some ways
following the line set by our exploration of the Toomre parameter, which was comfortably
over the stability threshold. We see that our ionized gas region where photons flow almost
free, shows a sharp contrast to the non-ionized region in terms of Π, where the parameter
reaches values in the range of Π ∈ [1, 10]:

Figure 3.42: Different radial profiles for our Π parameter for simulation a2-AGN (same as
figure 3.43 but zoomed at R = 10pc).

The fact here that this fraction nears unity at the inner regions is consistent with how
radiation is not an efficient heating vehicle when it tries to couple with ionized material. It
is still above the threshold, which makes sense, as no fragmentation occurs, and we see an
overall lowering of the region’s values as photoheating becomes less efficient and gas begins
falling back towards the disk (at t = 0.75torb, gas at the nuclear disk regions is still in its
AGN-blown state, and as such quite hot). As threshold values are kept above unity, and
fragmentation does not occur we can only ascertain for the moment, that our criterion is
consistent with this reality, but this still opens up and avenue for future work, where we
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could simulate setups that live near the fragmentation phase space interface and then test
the consistency of using thermal energy balances to quantify the stability tendencies of a
system, and potentially calibrate an actual stability threshold through .

Although we have already established how all the Π fraction maps will point to values
comfortably above > 1, we still see very high value variances throughout simulation snapshots
(with maximum/minimum Π value differences of up to 7− 8 orders of magnitude). It is easy
to see from our criterion graphs, that most of the contrast is between central disk regions and
outer disk regions, which could naively lead us to believe that these contrasts are aided on
how viscous heating is only ’turned-on’ in our estimations outside the symmetry radius R̂. It
is easy to dismiss this idea by just looking at figure 3.43, where we may that heating/cooling
contrasts are much more prolonged than what the actual values that R̂ take (which usually
turn out to be ∼ 5pc). It is also of notice how, viscous dissipation is consistently at least 3
orders of magnitude lower than radiative heating for most our simulation cases. In reality
the criterion follows photon concentrations more closely than anything, which explains the
similarities in figure 3.43 between the initial states and the latter states, as heating will
be inexorably linked to photon mean free path. We note that although viscous heating is
indeed lower than radiative heating, it still enough to balance out cooling losses even at more
initial states where radiation is not as prevalent as in more advanced points throughout our
simulations. For instance, if we were to try to use Gammie’s criterion directly (equation 3.4),
using the cooling time as we calculated it, but making the assumption of turbulence-driven
heating, we see the following result for a scaled parameter graph (β/3) at initial times for
a2-AGN:

Figure 3.43: Gammie’s scaled stability criterion β/3 for a2-AGN at 0.1torb. The vertical
black-dotted line represents R̂, and the horizonta red-dotted line represents Gammie’s
stability threshold.

Here we see that even simplifying and underestimating gas heating, this stability criterion
does not break the fragmentation threshold, except at the edges of the disk at ∼ 45pc and at
points where the symmetry is not well established and rotational velocity is not well defined
(indeed, the threshold values line up almost perfectly with the point at which symmetry is
reached). This means that our disk may even have its stability supported even by secondary
heating mechanisms.
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Chapter 4

Post-processed analysis of BH spin
evolution

Understanding the evolution of BH angular momentum is critical for predicting and unveiling
the spin configurations with which SMBH binaries enter their gravitational wave driven
regime and become detectable by LISA/LIGO. BHs, their immediately surrounding accretion
disk, and the circumbinary disk that hosts them, do not necessarily possess immediately
aligned spins. This is to be expected, as the binary-disk assembly process up to the hardening
stage, may strongly depend on interactions with randomly oriented stellar encounters. It is
in this stage that gas accretion becomes a major player in spin orientations, where in the
long-run angular momentum misalignment is expected to correct itself through a process
known as the Bardeen-Peterson effect and is due to a combination of general relativistic
frame dragging and viscous interactions (Bardeen and Petterson, 1975, Kumar and Pringle,
1985). In our case we could potentially observe variations in the typical alignment times due
to the accretion flow being more chaotic, due to AGN feedback.

4.1 Model and postprocessing setup
Typical iterations of the Bardeen-Peterson effect involve modelling the evolution of a non-
planar disk structure, with the presence of a warp that propagates non-linearly due to
viscosity. The exchange of angular momentum between the disk and the BH is affected
by the disk’s geometry and how it deforms. A basic scheme of how this looks is illustrated
at figure 4.1:
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Figure 4.1: Scheme of how our Bardeen-Peterson setup woud look like

When this paradigm is adjusted to the presence of a binary, each BHs disk is perturbed in
a way that pushes the warp characteristic radius, and speeds up the alignment process. The
dynamics of this problem (when looking at one BH-inner disk system) are usually treated
analytically by writing the mass and momentum conservation equations in an appropriate
manner (see, eg: Papaloizou and Pringle, 1983, Ogilvie and Latter, 2013 or Gerosa et al.,
2020), which take the following form:
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Where L,L∗ are the angular momentum of the disk and the angular momentum of the binary
respectively, Σ is the surface density, J = GM2χ

c
Ĵ is the BH spin, and the viscosities ν1,2,3

model the response of the disk to azimuthal and vertical stresses, and the the stress associated
with precession. Now, this set of equations has certain approximations, which we selectively
employ as subgrid tools for approximating the shape of the accretion flow and how it interacts
with the BH.

In more concrete terms, our simulations store the value that angular momentum of the
material that is accreted onto the sink cloud that represents the black holes. Once material
is selected to be accreted to this sink though, it becomes material which we are not resolving,
which occurs at orders of 1× 10−2− 1× 10−3 pc, which is bigger than typical Lense-Thirring
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radii (warp characteristic radii) by 1 − 3 orders of magnitude. This means that from the
net angular momentum of the flow we have to employ a subgrid recipe to actually account
for the BH spin and warped accretion disk interactions. What we do, is to first make the
same assumptions done in Gerosa et al., 2020 by saying that the disks are Keplerian (angular
momentum will be described by L(R) = Σ(R)

√
GMbhR), and that this disks are in a steady

state. If we assume that the disk is flattened at first, 4.1 yields:
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But the integration constant may be found by using the magnitude of the accreted net angular
momentum (which, as mentioned, we have from the simulation):
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Where we will use the ISCO radius as Rmin, and Rmax is set over the constraint of the disk’s
mass being equal to the accreted mass,
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Σ(R) dR = Macc. If we integrate explicitly, we
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This closes out the necessary values for the profile density, where this Rmax in practice is
comparable to ∼ (0.7−1.5)Rd where Rd is the characteristic disk radius used for accretion at
2.9. With this superficial density we now write ρ(R, z), such that it has the vertical density
of an isothermal disk, respecting

∫∞
−∞ ρ(R, z)dz = Σ(R), which, using 4.3, will give us a disk

density profile of the following shape

ρ(R, z) =
Σ(R)√
2πH

e
−z2
2H2 (4.4)

In this derivation we glossed over a few definitions: We used from Gerosa et al., 2020, that

ν1 = ν0

(
R
R0

)β
α, where ν0 and R0 are constants. R0 will from now on be treated as R0 = RLT ,

where RLT is the Lense-Thirring radius, which is defined as

RLT =
4G2M2

BHχ

c3αν0ζ
; ζ =

2(1 + 7α2)

α2(4 + α2)
(4.5)

With our viscosity-defining constant ν0 =
(
HLT
RLT

)√
GMRLT . With all this set-up, parallel

to the xy−axis, we create this artificial disks around the position of our BHs, and rotate
them so L̂ becomes the normal vector to the disk’s rotation plane. So we generate the matrix
composed by the orthogonal basis which defines R3 in a way that maps the original disk’s
normal vector (k̂ = (0, 0, 1)) onto the new normal vector. If we define:

ŵ = L̂ =

l1l2
l3

 , ~u =

−l2l1
0

 , ~v = ~w × ~u

After normalizing û = ~u/u, v̂ = ~v/v, we can use the rotation matrix so that we can relocate
our disk in a way that it aligns with the accreted angular momentum by changing the vector
field’s position to: x′y′

z′

 =

û v̂ ŵ

xy
z


This is all quite important as the interaction between the BH spin and the accretion disk
angular momentum will be quantified by the integral of the Lense-Thirring term at 4.2, which
we integrate along the disk profile:

dJ
dt

= −
∫ Rmax

Rmin

2G

c2

J× L
R3

2πRdR (4.6)

We have to take into account that there is a timescale in which the warp occurs and the
integration of the Lense-Thirring term is relevant, as the misaligned disk will stop being
representative of the system as a subgrid recipe when trying to advance the BH spin at
every snapshot. We cope with this by only advancing the spin by the minimum between the
characteristic alignment and the snapshot time step:
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dt
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Where the alignment time is given by:

talign =
1

Ṁ

√
c

G
MBHχ

αν0

ζ
(4.8)

As our system is far from being at equilibrium, the accretion rate may vary in orders of
magnitude, depending on how efficiently feedback is operating, whether a gap has formed in
the disk, how close the BHs are passing each other, etc. This means that the alignment time
also may vary by orders of magnitude at different times during the simulation, which is why
it is pressing to have this variable time step for integrating the angular momentum. This
of course, entails a loss of information, as the alignment time will be averaged out for every
given snapshot (along with accretion), but it is still relevant as not to overshoot the amount
of exchanged angular momentum, possibly by orders of magnitude, at a given snapshot. We
see an example of ∆t compared with talign for one of our simulations:

Figure 4.2: Evolution of talign for a2-AGN
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We see in this example, that indeed the alignment time follows somewhat consistently a profile
that corresponds to a less pronounced inverse of accretion (see graph 3.13), and is below the
simulation’s time step of 10 Kyr, specially at the points where more angular momentum is
added to the BH’s spin, which means that the ’integration’ of the LT term will be lessened at
the points in which it would be stronger, thus ’flattening’ the angular momentum exchange
to a degree.

The only missing component at this point, are the initial values for the BH spin magnitude
and directions, which we choose to be χ = 0.25 of the maximum theoretical spin, and of
an initial misalignment direction of θ = 30◦. Our spin parameter value is set as to be
consistent with what we already used for our AGN spectrum generation at chapter 2, which
was set looking at simulations from King et al., 2008. Our initial angle was not set with
any particular rule beyond staying away of the critical obliquity angles defined at Gerosa
et al., 2020, and thus chose 30◦ as it is a high enough initial angle to show the effects of
existing misalignment between the BHs and the binary’s plane and non-problematic in terms
of analytical consistency. The variation of the initial misalignment angle and the effect it has
on spin evolution will be left as future work.

4.2 Results: Spin and Alignment Evolution
We begin with a main component in our analysis, which is the accreted angular momentum,
not only as it defines the orientation of the disks used for the Bardeen-Peterson, but also
because we want to follow how the evolution of this accreted momentum evolves in correlation
with how the BH spins evolve. For all the following figures, we are only going to use single BH
graphs (as we saw that most of the behaviour seen in BH pairs is symmetrical in behaviour),
we see first the accreted angular momentum for a2, a2-AGN, GAP-a2 and GAP-a2-AGN (we
will use these two setups as representatives for no-gap and gap simulations, while taking care
to mention relevant differences with our other two setups):
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Figure 4.3: From left to right, angular momentum magnitude of accreted gas v/s time for:
a2, a2-AGN, GAP-a2 and GAP-a2-AGN

The first, immediate takeaway from these graphs is that accreted angular momentum correlates
to accreted mass but not perfectly. Overall trends of mass accretion are respected in angular
momentum accretion but they manifest with differing impact: Take for instance a2-AGN’s
accretion graph 3.13 and we see how the two similar accretion peaks manifest with around one
whole order of magnitude difference in angular momentum (and the second accretion peak,
which has a somewhat even sustained shape, is much more ’peaked’ in angular momentum).

We also may see how the net angular momentum magnitudes that are being accreted are
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generally lower overall in setups with AGN feedback, even when accretion rates are comparable.
This property is more pronounced in setups that form gap, where the accreted angular
momentum has a breach of two more orders of magnitude when compared to gas accretion.

Now when seeing these graphs, it is hard to have an actual idea of how much this accreted
angular momentum actually affects and compares to the state of our BHs, not only because we
are not taking into account how the efficiency of translating accreted angular momentum into
spin is affected by BP, but because we are lacking the information on how the net aggregate
directions of angular momentum look like (and thus how the aggregate net accreted angular
momentum looks like). By starting out with our already mentioned ξ = 0.25 spin parameter
and an initial misalignment of 30◦, we can post-process taking into account the methods we
have discussed and see the predicted spin magnitude evolution:

Figure 4.4: From left to right, BH spin JBH1 for: a2, a2-AGN, GAP-a2 and GAP-a2-AGN

By all accounts the low percentage of effect we see in spin change is not surprising at all
when considering that the accreted gas is low compared to overall BH mass, and as we saw,
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although imperfect, gas accretion is a proxy to angular momentum accretion, which will
always be a good proxy on actual spin gain for our BHs (after processing BP effects and
such). This is expected, if not over the expected amount of spin fluctuation when looking at
relations such as the one from King et al., 2008:

χ ' A ·M0.048
8

Which although gives an order of magnitude reference of behaviour, should be taken as
anecdotally at this point, since simulations in that paper operate at completely different
timescales and resolutions as ours, where they take into account multiple BH encounters for
galactic-scale simulations, and derive this averaged black hole spin parameter relation.

In the case of the setups in which no gaps are expected, we see that the systems show
a sharp initial increase in BH spin, which in the presence of AGN feedback is effectively
flattened, and without it is not. As already predicted we also see that spin increases more in
cases where there is no suppression by feedback, but this is less pronounced when comparing
the relative direct angular momentum accretion changes between feedback and no-feedback
simulations.

It is important to remember that one of the, if not the most central property we want to
inspect, is the evolution of spin alignment in the context of our binary disk. We then measure
the angle between ĴBH and L̂∗ by following the quantity

θalign = arccos

(
〈JBH, L∗〉
|JBH||L∗|

)

If we trace this quantity by evolving through 4.7, we see that the general trend is that of
alignment for non-gap forming setups (this also holds true for our a1 and a1-AGN setups):

Figure 4.5: spin/orbit alignment θalign for a2, a2-AGN
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This follows the trend of the aggregate accreted angular momentum alignment θ̃align =

arccos
(
〈Lacc,L∗〉
|Lacc||L∗|

)
, for instance we can look at such a graph for a2-AGN:

Figure 4.6: Evolution of the alignment angle between the accreted angular momentum and
the orbital angular momentum for a2-AGN

Which although informative, it is somewhat hard to directly translate into how it relates with
θalign as the sink particles do not possess an initial spin value (outside our subgrid model),
which means that we only have the ’trend’ of alignment, but not the actual impact that
direct accretion would have on the evolution of angular differences.

This does not hold in such a clear cut fashion for gap forming simulations, where the
evolution does not follow an evidently decreasing angular separation, specifically for the
feedback including setup:

Figure 4.7: spin/orbit alignment θalign for GAP-a2 and GAP-a2-AGN

We see here that the angular difference changes for the non-feedback setup follow the decreasing
behaviour that we know to expect for non-gap setups, but in a minor scale, which is not
surprising as accretion in general is lower. At the same time, for the gap forming setup that
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includes feedback, we see that the angular momentum of the SMBH is not aligning with the
binary, although this can be taken as the angle staying almost constant, when looking at
percent changes (and comparing with other setups).

At a first approximation we would be worried that the setup is not aligning BH spin with the
orbital, because intuitively we would think that the BP paradigm aligns it by construction,
but as already mentioned, the BP effect aligns the BH spin to the aggregate accreted angular
momentum, which in the case of GAP-a2-AGN is not aligned with the binary’s plane:

Figure 4.8: Evolution of the alignment angle between the accreted angular momentum and
the orbital angular momentum for GAP-a2-AGN

Here we see that although the angular difference between the aggregate angular momentum
and the orbital plane are small, the inherent alignment trend for accreted angular momentum
is not as clear cut as in the non-gap forming setups, and thus the results we see with the BP
postprocessing are still consistent.

It is of worthwhile mention that in all our setups the percent-wise changes of angular
alignment are much bigger than the percent-wise spin parameter changes, even in gap-
forming runs where we saw that alignment trends were not evident and angular difference
stays more fixed than in no tidal cavity forming setups. This suggests that at least for our
type of accretion flows and initial conditions, the variability of orbital-BH angular momentum
alignment is potentially much higher than the variability of spin parameters. This idea of
accretion flows having an ’easier time’ of changing angular alignment values than BH spins,
is still a premature conclusion, that has to be tested for different initial conditions of spin
parameters and spin misalignment for our BP setups.
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Chapter 5

Conclusions and Outlook

5.1 Discussion of our findings
In the work presented on this thesis we have studied using numerical simulations, the effects
of AGN feedback on the context of gas rich SMBH binaries on their transition from the
binary hardening stage towards the gravitational wave regime. We also centered some of the
analysis on the impact that feedback has on how the accretion flow affects the evolution of the
black hole spins and its alignment/misalignment with the overall orbital/CMD plane. For all
this we ran simulations on the AMR-prescripted code RAMSES, with the inclusion of its RT
module in order to couple radiation interactions with the present hydrodynamical+gravitational
modelling. This radiation-hydrodinamical modelling allowed us to create a model for translating
a flux prescription of accretion onto the SMBHs, to emitted luminosity in the form of
photons that are deposited to the adaptive mesh through evolving emission spectrums.
The photon interactions will take into account and solve self-consistently, physics involving
radiative transfer, like the pressure generated by photoionization, electron-scattering or direct
modelling of cooling/heating of ionization states of excitation, collisions and recombinations,
in addition to Compton scattering.

Our simulation suite took the initial conditions from VV18, which were selected to be two
disk+binary systems in which a tidal gap is expected to happen by hydrodynamical effects
(let us call this, group 1) and two systems in which no gap is expected to form (group
2). We ran these two pairs of systems where slow and fast black hole migration is expected
to occurs respectively, with and without AGN feedback and measured the impact of this
phenomenon. The main findings of this exploration are:

• For runs without feedback, we saw an almost perfect correspondence of results with
the runs made out of the same initial conditions with GADGET-3. As mentioned in
VV18, these simulations work consistently with their expected results: Setups where
tidal cavities form (which they do), show slow migration and no orbital decay is seen
on their running time. On the other hand, where tidal gaps are not formed, migration
occurs quite quickly, shrinking the binary separations over 2 orders of magnitude in
less than ∼ 1− 10 orbital times.
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• Separating our discussion between these two groups, we begin by going over the results
involving specifically group 1 (fast migration setups). We already mentioned the
evolution of binary orbit shrinkage without AGN feedback and how it consistently
corresponds to their expected behaviour by construction. With the inclusion of feedback
the analysis is less straightforward, but where pertaining gap formation setups, we did
not see any relevant changes in their orbital evolution, as although the nature of the low-
density region is affected, this region still effectively emerges and lowers the available
gas reservoir that will be able to couple to the binary in a way that extracts angular
momentum.
The inclusion of feedback has different effects on the overall disk structure and dynamics
in our simulations. For systems in group 1, as expected there is still formation of a low
density central region around the binary, since the outwards-exerted pressure should
not complicate gap formation, and although the cavity now forms more quickly it is
now formed with less of a clear propagating spiral-wave pattern induced by the BH
wakes. Disks in this regime also now show photoevaporation, where material from the
inner edge of the tidal cavity is expelled at speeds above escape velocity due to ionizing
radiation coupling very efficiently to gas that is not strongly bound. This mechanism is
self-regulated, as its importance is mediated by accretion (and on the long term should
be inhibited by some amount of slow ionization of the overall disk by radiation that
incides edge-on, decreasing the coupling efficiency), but at least on our running time
of the simulations, appreciable thinning of the disk is seen. Some mechanical feedback
is seen in these setups, as accretion goes below the threshold which enables vertical
jet formation, but is not a major feature as the volume of sustained ejected gas is not
too high and is less than or comparable to the amounts of gas that is already being
unbounded by radiation. This effect on disk structure impact is not observed VV18,
who find that group 1 setups show no major structural changes from the inclusion of
feedback.
The tracing of evolution of photons and ionization states is crucial to understanding
how feedback mediates its interactions with the gas. In group 1, photons radially flow
quite freely through the low density cavity and flux reaches in a much lesser density onto
the inner edge of said cavity, which means the ionization is not seen too deeply (also,
as some fraction of the material is photoevaporated by incident ionizing radiation,
it is mostly singly ionized). On the vertical axis radiation escapes quite freely, as
per the disks natural geometry, creating an ionizing radiation cone structure that its
known to appear on AGNs, which does not have much importance in the context of the
disk+binary system, but may have overall ramifications for the galaxy it is in embedded
in.
• For group 2, our fast migration setups where no gap is predicted to be excavated.

Pertaining orbital evolution, the inclusion of feedback is on the short term potentially
disruptive, but in the long term, after the ionization area is established around the
binary, and the initial feedback blown bubbles are erased and the density gradient is
’repaired’ back towards equilibrium, the gas may be maintained in order to promote BH
coalescence (this is yet to be actually observed as simulation runs have to be continued).
This means that although coalescence is indeed delayed, with the timescales in which the
disks stabilize back, a fast migration regime should still be reached. This observations
for group 2 are a direct result of how radiative feedback interacts on the long term with
its immediate environ, which will mean that just as in our following points regarding the
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feedback implementation, it shows different behaviour than the orbital evolution that is
found when implementing a ’direct-heating’ feedback recipe. One main implication of
fast migration not being the end result in this branch of setups, is that we now do not
need for additional mechanisms for BH coalescence (like the introduction of a third BH
or big gas inflows from the outside of the CMD), making coalescence a more natural
outcome in the hardening stages of binaries.
In these setups the effects on disk structure are on the short term quite pronounced
(specially for the higherMbin/Mdisk setup), as a feedback bubble created by the outwards
radiation pressure is immediately produced. Now, this feedback bubble initially lowers
the central region’s density and suppresses accretion, but as time evolves, the energetic
coupling efficiency between radiation and gas lowers, and as this occurs viscous diffusion
will start bringing the disk back to an equilibrium in which fast migration may be
fostered. This again is not what is observed in VV18, where they saw that group 2
setups become similar to tidal gap forming systems due to the AGN carving out a
’feedback-cavity’ akin to a hydrodynamical (which we show, the system ends up filling
out). We attribute both this differing result and the lack of photoevaporation to how
direct heating implementations of AGN feedback do not take into account the coupling
efficiency of radiation to gas in a consistent manner (eg: as mentioned in Prieto et al.,
2021, order of magnitude differences may be seen in how luminosity translates into
heating of gas depending on the context and resolution of different simulations), and
how ionization states may effectively swing this coupling efficiency depending on the
context.
It is in fact the case of group 2 simulations that mapping out photon behaviour is
crucially bound to our understanding of how feedback interacts with our gas. After
the initial feedback bubble is blown out, we can explain how feedback starts coupling
less efficiently with gas as the disk’s inner regions become quickly ionized and thus
lose much of its opacity towards photons, effectively increasing the mean free path of
radiation until it balances out with a decrease in radiation flux density. This eventually
means that in group 2 systems the disk eventually forms an area akin to a strömgren
sphere to which photons are radially confined and the ionization rate of neutral gas is
counterbalanced by recombination rates.

• In terms of overall trends between all simulations, we saw different behaviours arise.
In general we see that in regions where properly defined, rotational velocities do not
differ too strongly between feedback runs and non-feedback runs (one could point
at some value difference at certain points in specific setups, but at least trends, are
clearly respected). Sound speeds on the other hand do show appreciable differences
between non-feedback and feedback simulations for both groups, this differences are
mainly seen on the central simulation regions where feedback strongly affects the
thermal properties of the disk (at least initially), and tend to smooth out as one
looks radially outwards. The biggest differences that we see are in gap forming setups
between feedback/non-feedback runs, where we see somewhat-artificially perturbed
radial profiles, as the evaporating material spreads radially, and this hot unbound
material introduces an independently high component that will flatten and ’travel’
through the evolution of time if we were to plot out more profiles at different times. We
also saw very high (although quite variable) values for the Toomre stability parameter,
that indicate that at least, at first approximation our disks will be stable against
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fragmentation. We do establish though, that this parameter does not take into account
for its stability analysis, the presence of strong radiational influence, and thus only acts
as a lower bound threshold for stability. We therefore defined a criterion that should
test the gravitational stability trend of the medium by checking how cooling and heating
processes balance out. By testing this, we saw results that are consistent with the lack
of gas fragmentation, where heating processes always stay on top of cooling for our
simulations.

• A main point of this work was the description of black hole spin magnitude and
alignment evolution and how it links with the accretion flow before and after it becomes
affected by the inclusion of feedback processes. We saw how raw accreted angular
momentum directly correlates -albeit imperfectly- to mass accretion respecting overall
proportionality, and setups with the inclusion of AGN feedback show a lowering of
angular momentum accretion that is higher than the respective difference of accreted
mass between their non-feedback counterparts. If we stop talking about direct accreted
angular momentum, and put it into perspective with the postprocessed effects of the BP
framework, we see that for typical starting spin parameter values of ξ = 0.25, the net
gain of spin is quite low percentage-wise (which is consistent with order of magnitude
estimations for simulations that correlate BH mass changes to spin changes), but we also
see that the bridge between proportionality that existed in the proportion of mass v/s
accreted angular momentum between feedback/non-feedback simulations is decreased.

A point of discussion today in the findings of LIGO merger detections is the model
constraints on how BH spins align (or potentially counter-align) with respect to the
binary orbit angular momentum. Our postprocessing model assigns a constructed
accretion disk with a normal plane aligned with the accreted angular momentum’s
direction at given snapshots and then tries to quantify the alignment the BH spin suffers
by interacting with said artificial disk through the frame dragging effects that form part
of the Bardeen-Peterson effect. We saw that systems in group 2 show clear alignment
trends, where the angular difference between the orbital plane and the BH spin decreases
in a remarkably similar fashion overall between non-feedback and feedback runs. On
the other hand the alignment trends for gap forming setups (group 1) are not evident
at all, a fact that does not come from the implementation of the BP processing tools,
but from the actual simulations themselves, where cavity forming disks do not seem to
have accretion flows that necessarily show alignment trends. When seeing the overall
numbers, we saw that the impact of our accretion flows for typical initial conditions, is
much stronger percent-wise in alignment trends than magnitude trends, which seems
to suggest that alignment or counter-alignment variability is much higher overall than
BH spin variability for our type of accretion flows.
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5.2 Improvements and future work
There are several avenues for improvement in our results and for future research endeavours
related to the work presented here. As for the improvements of this work there are different
things that could be added here, we can start by the obvious almost-always improvable things
such as resolution, photon grouping resolution (more photon bands), exploring more setups
spanning the phase space that defines gap and non gap setups to get better informed statistics
of behaviour, or even manually adding stars instead of a fixed gravitational field that emulates
their presence. Most of these improvements are barred by computational resources or time
resources and their cost benefits mostly put them outside the scope of this thesis.

Beyond this aforementioned overall upgrades to our simulations, there are three different
things that should definitely be and could be improved in this work by the author’s estimation:
The first one, is running the group 2 setups with feedback for longer times, as to see the
actual behaviour of our setup on longer timescales and see if we indeed reach a point of
fast migration (and hopefully, coalescence at some point), this was not done purely because
of time constraints and the point of this writing, this is being done (for reference, every
snapshot in a2-AGN takes about ∼ 20hrs of computation time and amounts to 0.02 orbital
times). The second accessible and notorious improvement that could be made, is to run our
same simulation suite, but implementing a direct heating feedback model in order to make
a self-contained comparison between methods, which should not be too hard, as these are
already written in their simplest forms for the main RAMSES distribution (the only reference
we have, is that after running one of our group 2 simulations with no heating recipe beyond
translating accretion to an injection of heating by 0.1 proportionality, most of the CMD gas
blew up immediately). The third improvement we could expand upon, is to include setups
that go over the Toomre parameter’s threshold and see how fragmented disks interact with
feedback and radiation in practice.

Another, already mentioned possible refinement that this work may see, is in the context
of our exploration of BH spin evolution, where we have the ambition to properly explore the
phase space of initial spin parameters and misalignment angles (ξ0, θ

align
0 ). This is necessary

to draw correct conclusions and confirm whether the evolutionary trends we observed are
concrete or are just artifacts of our implementation, specially the assertion on how the
variability of alignment angles is much higher than the variability of spin parameters, given
that alignment evolution should be quite dependant on the initial state of angular difference
between the BHs and the orbital plane.

Beyond these improvements, there are some uses that could be seen for the radiative feedback
implementation we have developed here for RAMSES. One possible avenue would be for
instance, looking at common envelope setups in which the massive component of the pair is a
BH, where radiative feedback has been investigated, but as per the author’s knowledge, not
with simulations that employ detailed radiation interaction from a dynamical BH spectrum.
Other avenues of research include different contexts in which one would like to see a detailed
BH emission spectrum interact with its environment, like in high resolution simulations of
AGN evolution or TDEs.
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Annex A: ξ − Γ grid of spectra
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Figure 5: Spectrum grid graphs
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log10(ξ) Γ UV1 fraction σHI
σHeI σHeII

0.0 1.76 0.4% 1.8× 10−19 2.2× 10−18 0
0.44 1.76 0.5% 1.8× 10−19 2.2× 10−18 0
0.89 1.76 0.6% 1.8× 10−19 2.2× 10−18 0
1.33 1.76 1.3% 1.9× 10−19 2.2× 10−18 0
1.78 1.76 2.3% 1.9× 10−19 2.2× 10−18 0
2.22 1.76 2.3% 1.8× 10−19 2.2× 10−18 0
2.67 1.76 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 1.76 1.4% 1.8× 10−19 2.2× 10−18 0
3.56 1.76 1.2% 1.8× 10−19 2.2× 10−18 0
4.0 1.76 1.0% 1.8× 10−19 2.2× 10−18 0
0.0 1.83 0.6% 1.8× 10−19 2.2× 10−18 0
0.44 1.83 0.6% 1.8× 10−19 2.2× 10−18 0
0.89 1.83 0.8% 1.8× 10−19 2.2× 10−18 0
1.33 1.83 1.7% 1.9× 10−19 2.2× 10−18 0
1.78 1.83 2.4% 1.8× 10−19 2.2× 10−18 0
2.22 1.83 2.3% 1.8× 10−19 2.2× 10−18 0
2.67 1.83 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 1.83 1.4% 1.8× 10−19 2.2× 10−18 0
3.56 1.83 1.2% 1.8× 10−19 2.2× 10−18 0
4.0 1.83 1.1% 1.8× 10−19 2.2× 10−18 0
0.0 1.91 0.8% 1.8× 10−19 2.2× 10−18 0
0.44 1.91 0.8% 1.8× 10−19 2.2× 10−18 0
0.89 1.91 1.0% 1.8× 10−19 2.2× 10−18 0
1.33 1.91 2.0% 1.9× 10−19 2.2× 10−18 0
1.78 1.91 2.5% 1.8× 10−19 2.2× 10−18 0
2.22 1.91 2.2% 1.8× 10−19 2.2× 10−18 0
2.67 1.91 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 1.91 1.5% 1.8× 10−19 2.2× 10−18 0
3.56 1.91 1.3% 1.8× 10−19 2.2× 10−18 0
4.0 1.91 1.2% 1.8× 10−19 2.2× 10−18 0
0.0 1.98 1.0% 1.8× 10−19 2.2× 10−18 0
0.44 1.98 0.8% 1.8× 10−19 2.2× 10−18 0
0.89 1.98 1.1% 1.8× 10−19 2.2× 10−18 0
1.33 1.98 2.2% 1.9× 10−19 2.2× 10−18 0
1.78 1.98 2.6% 1.8× 10−19 2.2× 10−18 0
2.22 1.98 2.2% 1.8× 10−19 2.2× 10−18 0
2.67 1.98 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 1.98 1.5% 1.8× 10−19 2.2× 10−18 0
3.56 1.98 1.3% 1.8× 10−19 2.2× 10−18 0
4.0 1.98 1.2% 1.8× 10−19 2.2× 10−18 0
0.0 2.05 1.1% 1.8× 10−19 2.2× 10−18 0
0.44 2.05 1.0% 1.8× 10−19 2.2× 10−18 0
0.89 2.05 1.4% 1.8× 10−19 2.2× 10−18 0
1.33 2.05 2.4% 1.9× 10−19 2.2× 10−18 0
1.78 2.05 2.6% 1.8× 10−19 2.2× 10−18 0
2.22 2.05 2.1% 1.8× 10−19 2.2× 10−18 0
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2.67 2.05 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 2.05 1.5% 1.8× 10−19 2.2× 10−18 0
3.56 2.05 1.4% 1.8× 10−19 2.2× 10−18 0
4.0 2.05 1.3% 1.8× 10−19 2.2× 10−18 0
0.0 2.12 1.2% 1.8× 10−19 2.2× 10−18 0
0.44 2.12 1.1% 1.8× 10−19 2.2× 10−18 0
0.89 2.12 1.6% 1.9× 10−19 2.2× 10−18 0
1.33 2.12 2.6% 1.9× 10−19 2.2× 10−18 0
1.78 2.12 2.7% 1.8× 10−19 2.2× 10−18 0
2.22 2.12 2.0% 1.8× 10−19 2.2× 10−18 0
2.67 2.12 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 2.12 1.6% 1.8× 10−19 2.2× 10−18 0
3.56 2.12 1.5% 1.8× 10−19 2.2× 10−18 0
4.0 2.12 1.4% 1.8× 10−19 2.2× 10−18 0
0.0 2.19 1.3% 1.8× 10−19 2.2× 10−18 0
0.44 2.19 1.1% 1.8× 10−19 2.2× 10−18 0
0.89 2.19 1.8% 1.9× 10−19 2.2× 10−18 0
1.33 2.19 2.7% 1.9× 10−19 2.2× 10−18 0
1.78 2.19 2.7% 1.8× 10−19 2.2× 10−18 0
2.22 2.19 2.0% 1.8× 10−19 2.2× 10−18 0
2.67 2.19 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 2.19 1.6% 1.8× 10−19 2.2× 10−18 0
3.56 2.19 1.5% 1.8× 10−19 2.2× 10−18 0
4.0 2.19 1.5% 1.8× 10−19 2.2× 10−18 0
0.0 2.26 1.4% 1.8× 10−19 2.2× 10−18 0
0.44 2.26 1.2% 1.8× 10−19 2.2× 10−18 0
0.89 2.26 1.9% 1.9× 10−19 2.2× 10−18 0
1.33 2.26 2.8% 1.9× 10−19 2.2× 10−18 0
1.78 2.26 2.7% 1.8× 10−19 2.2× 10−18 0
2.22 2.26 2.0% 1.8× 10−19 2.2× 10−18 0
2.67 2.26 1.7% 1.8× 10−19 2.2× 10−18 0
3.11 2.26 1.7% 1.8× 10−19 2.2× 10−18 0
3.56 2.26 1.6% 1.8× 10−19 2.2× 10−18 0
4.0 2.26 1.5% 1.8× 10−19 2.2× 10−18 0
0.0 2.33 1.4% 1.8× 10−19 2.2× 10−18 0
0.44 2.33 1.3% 1.8× 10−19 2.2× 10−18 0
0.89 2.33 2.0% 1.9× 10−19 2.2× 10−18 0
1.33 2.33 2.9% 1.9× 10−19 2.2× 10−18 0
1.78 2.33 2.8% 1.8× 10−19 2.2× 10−18 0
2.22 2.33 2.0% 1.8× 10−19 2.2× 10−18 0
2.67 2.33 1.8% 1.8× 10−19 2.2× 10−18 0
3.11 2.33 1.7% 1.8× 10−19 2.2× 10−18 0
3.56 2.33 1.7% 1.8× 10−19 2.2× 10−18 0
4.0 2.33 1.6% 1.8× 10−19 2.2× 10−18 0
0.0 2.4 1.5% 1.8× 10−19 2.2× 10−18 0
0.44 2.4 1.4% 1.8× 10−19 2.2× 10−18 0
0.89 2.4 2.1% 1.9× 10−19 2.2× 10−18 0
1.33 2.4 2.9% 1.9× 10−19 2.2× 10−18 0
1.78 2.4 2.8% 1.8× 10−19 2.2× 10−18 0
2.22 2.4 2.0% 1.8× 10−19 2.2× 10−18 0
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2.67 2.4 1.8% 1.8× 10−19 2.2× 10−18 0
3.11 2.4 1.7% 1.8× 10−19 2.2× 10−18 0
3.56 2.4 1.7% 1.8× 10−19 2.2× 10−18 0
4.0 2.4 1.7% 1.8× 10−19 2.2× 10−18 0

Table 1: UV1 group spectrum grid information

log10(ξ) Γ UV2 fraction σHI
σHeI σHeII

0.0 1.76 8.3% 4.3× 10−20 7.4× 10−19 6.1× 10−19

0.44 1.76 13.3% 3.9× 10−20 6.8× 10−19 5.5× 10−19

0.89 1.76 16.9% 3.7× 10−20 6.5× 10−19 5.3× 10−19

1.33 1.76 26.6% 4.2× 10−20 7.2× 10−19 5.9× 10−19

1.78 1.76 40.0% 4.4× 10−20 7.5× 10−19 6.2× 10−19

2.22 1.76 54.6% 4.0× 10−20 6.9× 10−19 5.7× 10−19

2.67 1.76 58.0% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 1.76 47.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 1.76 40.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 1.76 33.9% 3.5× 10−20 6.2× 10−19 5.0× 10−19

0.0 1.83 12.6% 4.3× 10−20 7.3× 10−19 6.0× 10−19

0.44 1.83 17.4% 3.9× 10−20 6.7× 10−19 5.5× 10−19

0.89 1.83 20.8% 3.8× 10−20 6.6× 10−19 5.4× 10−19

1.33 1.83 31.2% 4.3× 10−20 7.3× 10−19 6.0× 10−19

1.78 1.83 43.4% 4.4× 10−20 7.5× 10−19 6.1× 10−19

2.22 1.83 55.3% 4.0× 10−20 6.9× 10−19 5.6× 10−19

2.67 1.83 57.3% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 1.83 48.1% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 1.83 41.9% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 1.83 36.6% 3.5× 10−20 6.2× 10−19 5.0× 10−19

0.0 1.91 17.9% 4.2× 10−20 7.1× 10−19 5.8× 10−19

0.44 1.91 21.3% 3.8× 10−20 6.6× 10−19 5.4× 10−19

0.89 1.91 24.6% 3.9× 10−20 6.8× 10−19 5.5× 10−19

1.33 1.91 35.9% 4.4× 10−20 7.4× 10−19 6.1× 10−19

1.78 1.91 46.5% 4.4× 10−20 7.4× 10−19 6.1× 10−19

2.22 1.91 55.5% 3.9× 10−20 6.8× 10−19 5.6× 10−19

2.67 1.91 56.6% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 1.91 49.3% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 1.91 43.9% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 1.91 39.5% 3.5× 10−20 6.2× 10−19 5.0× 10−19

0.0 1.98 22.1% 4.1× 10−20 7.1× 10−19 5.8× 10−19

0.44 1.98 23.7% 3.8× 10−20 6.6× 10−19 5.4× 10−19

0.89 1.98 26.9% 4.0× 10−20 6.8× 10−19 5.6× 10−19

1.33 1.98 38.8% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 1.98 48.3% 4.3× 10−20 7.4× 10−19 6.1× 10−19

2.22 1.98 55.5% 3.9× 10−20 6.8× 10−19 5.5× 10−19

2.67 1.98 56.1% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 1.98 50.0% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 1.98 45.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19
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4.0 1.98 41.5% 3.6× 10−20 6.2× 10−19 5.1× 10−19

0.0 2.05 27.1% 4.0× 10−20 6.9× 10−19 5.7× 10−19

0.44 2.05 26.7% 3.8× 10−20 6.6× 10−19 5.4× 10−19

0.89 2.05 30.1% 4.1× 10−20 7.0× 10−19 5.7× 10−19

1.33 2.05 41.4% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.05 50.1% 4.3× 10−20 7.3× 10−19 6.0× 10−19

2.22 2.05 55.5% 3.9× 10−20 6.7× 10−19 5.5× 10−19

2.67 2.05 56.0% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.05 51.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 2.05 47.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 2.05 44.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

0.0 2.12 31.1% 4.0× 10−20 6.8× 10−19 5.6× 10−19

0.44 2.12 29.0% 3.8× 10−20 6.6× 10−19 5.4× 10−19

0.89 2.12 32.9% 4.1× 10−20 7.1× 10−19 5.8× 10−19

1.33 2.12 43.6% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.12 51.6% 4.3× 10−20 7.3× 10−19 6.0× 10−19

2.22 2.12 55.4% 3.8× 10−20 6.6× 10−19 5.4× 10−19

2.67 2.12 55.9% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.12 52.4% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 2.12 49.0% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 2.12 46.5% 3.6× 10−20 6.3× 10−19 5.1× 10−19

0.0 2.19 33.9% 3.9× 10−20 6.8× 10−19 5.6× 10−19

0.44 2.19 30.6% 3.8× 10−20 6.6× 10−19 5.4× 10−19

0.89 2.19 35.0% 4.2× 10−20 7.2× 10−19 5.9× 10−19

1.33 2.19 45.2% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.19 52.6% 4.3× 10−20 7.3× 10−19 6.0× 10−19

2.22 2.19 55.4% 3.8× 10−20 6.6× 10−19 5.4× 10−19

2.67 2.19 55.9% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.19 53.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

3.56 2.19 50.4% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 2.19 48.3% 3.6× 10−20 6.3× 10−19 5.1× 10−19

0.0 2.26 36.7% 3.9× 10−20 6.7× 10−19 5.5× 10−19

0.44 2.26 32.7% 3.9× 10−20 6.7× 10−19 5.4× 10−19

0.89 2.26 36.9% 4.2× 10−20 7.2× 10−19 5.9× 10−19

1.33 2.26 47.0% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.26 54.2% 4.2× 10−20 7.2× 10−19 6.0× 10−19

2.22 2.26 55.9% 3.8× 10−20 6.6× 10−19 5.4× 10−19

2.67 2.26 56.4% 3.7× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.26 54.5% 3.6× 10−20 6.3× 10−19 5.2× 10−19

3.56 2.26 52.2% 3.6× 10−20 6.3× 10−19 5.1× 10−19

4.0 2.26 50.5% 3.6× 10−20 6.3× 10−19 5.1× 10−19

0.0 2.33 38.7% 3.9× 10−20 6.7× 10−19 5.5× 10−19

0.44 2.33 34.5% 3.9× 10−20 6.7× 10−19 5.5× 10−19

0.89 2.33 38.5% 4.2× 10−20 7.2× 10−19 5.9× 10−19

1.33 2.33 48.5% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.33 55.6% 4.2× 10−20 7.2× 10−19 5.9× 10−19

2.22 2.33 56.5% 3.8× 10−20 6.6× 10−19 5.3× 10−19

2.67 2.33 56.9% 3.7× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.33 55.6% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.56 2.33 53.8% 3.6× 10−20 6.4× 10−19 5.2× 10−19
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4.0 2.33 52.4% 3.6× 10−20 6.3× 10−19 5.2× 10−19

0.0 2.4 40.3% 3.9× 10−20 6.7× 10−19 5.4× 10−19

0.44 2.4 35.9% 3.9× 10−20 6.7× 10−19 5.5× 10−19

0.89 2.4 39.9% 4.3× 10−20 7.2× 10−19 6.0× 10−19

1.33 2.4 49.8% 4.4× 10−20 7.5× 10−19 6.2× 10−19

1.78 2.4 56.7% 4.2× 10−20 7.2× 10−19 5.9× 10−19

2.22 2.4 57.0% 3.8× 10−20 6.5× 10−19 5.3× 10−19

2.67 2.4 57.4% 3.7× 10−20 6.4× 10−19 5.2× 10−19

3.11 2.4 56.5% 3.6× 10−20 6.4× 10−19 5.2× 10−19

3.56 2.4 55.0% 3.6× 10−20 6.4× 10−19 5.2× 10−19

4.0 2.4 53.9% 3.6× 10−20 6.4× 10−19 5.2× 10−19

Table 2: UV2 group spectrum grid information

log10(ξ) Γ Soft X-ray fraction σHI
σHeI σHeII

0.0 1.76 7.6% 2.6× 10−21 6.1× 10−20 4.4× 10−20

0.44 1.76 27.3% 1.9× 10−21 4.6× 10−20 3.3× 10−20

0.89 1.76 47.1% 2.0× 10−21 4.8× 10−20 3.5× 10−20

1.33 1.76 52.0% 2.2× 10−21 5.1× 10−20 3.7× 10−20

1.78 1.76 44.7% 2.4× 10−21 5.8× 10−20 4.2× 10−20

2.22 1.76 36.5% 3.1× 10−21 7.4× 10−20 5.3× 10−20

2.67 1.76 36.9% 3.6× 10−21 8.5× 10−20 6.1× 10−20

3.11 1.76 46.0% 3.4× 10−21 8.0× 10−20 5.8× 10−20

3.56 1.76 50.5% 3.3× 10−21 7.7× 10−20 5.6× 10−20

4.0 1.76 53.8% 3.1× 10−21 7.4× 10−20 5.3× 10−20

0.0 1.83 12.9% 2.4× 10−21 5.6× 10−20 4.0× 10−20

0.44 1.83 36.4% 2.0× 10−21 4.8× 10−20 3.4× 10−20

0.89 1.83 52.7% 2.1× 10−21 5.0× 10−20 3.6× 10−20

1.33 1.83 52.2% 2.3× 10−21 5.3× 10−20 3.8× 10−20

1.78 1.83 44.3% 2.5× 10−21 6.0× 10−20 4.3× 10−20

2.22 1.83 37.4% 3.2× 10−21 7.6× 10−20 5.5× 10−20

2.67 1.83 37.9% 3.6× 10−21 8.5× 10−20 6.1× 10−20

3.11 1.83 45.7% 3.4× 10−21 8.1× 10−20 5.9× 10−20

3.56 1.83 49.9% 3.3× 10−21 7.9× 10−20 5.7× 10−20

4.0 1.83 52.9% 3.2× 10−21 7.6× 10−20 5.5× 10−20

0.0 1.91 20.1% 2.2× 10−21 5.2× 10−20 3.8× 10−20

0.44 1.91 44.9% 2.1× 10−21 4.9× 10−20 3.6× 10−20

0.89 1.91 56.4% 2.2× 10−21 5.2× 10−20 3.7× 10−20

1.33 1.91 51.2% 2.3× 10−21 5.5× 10−20 4.0× 10−20

1.78 1.91 43.6% 2.7× 10−21 6.3× 10−20 4.5× 10−20

2.22 1.91 38.5% 3.3× 10−21 7.7× 10−20 5.6× 10−20

2.67 1.91 39.0% 3.6× 10−21 8.5× 10−20 6.1× 10−20

3.11 1.91 45.2% 3.5× 10−21 8.2× 10−20 5.9× 10−20

3.56 1.91 49.1% 3.4× 10−21 8.0× 10−20 5.8× 10−20

4.0 1.91 51.6% 3.3× 10−21 7.8× 10−20 5.6× 10−20

0.0 1.98 25.9% 2.2× 10−21 5.1× 10−20 3.7× 10−20

0.44 1.98 50.4% 2.1× 10−21 5.0× 10−20 3.6× 10−20
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0.89 1.98 58.6% 2.2× 10−21 5.3× 10−20 3.8× 10−20

1.33 1.98 50.5% 2.4× 10−21 5.6× 10−20 4.1× 10−20

1.78 1.98 43.2% 2.7× 10−21 6.4× 10−20 4.6× 10−20

2.22 1.98 39.1% 3.3× 10−21 7.8× 10−20 5.6× 10−20

2.67 1.98 39.8% 3.6× 10−21 8.5× 10−20 6.1× 10−20

3.11 1.98 44.9% 3.5× 10−21 8.3× 10−20 6.0× 10−20

3.56 1.98 48.5% 3.4× 10−21 8.1× 10−20 5.9× 10−20

4.0 1.98 50.8% 3.4× 10−21 7.9× 10−20 5.7× 10−20

0.0 2.05 33.3% 2.2× 10−21 5.2× 10−20 3.8× 10−20

0.44 2.05 54.3% 2.2× 10−21 5.3× 10−20 3.8× 10−20

0.89 2.05 58.6% 2.3× 10−21 5.4× 10−20 3.9× 10−20

1.33 2.05 49.6% 2.5× 10−21 5.9× 10−20 4.3× 10−20

1.78 2.05 42.6% 2.8× 10−21 6.7× 10−20 4.8× 10−20

2.22 2.05 39.9% 3.4× 10−21 8.1× 10−20 5.8× 10−20

2.67 2.05 40.3% 3.6× 10−21 8.6× 10−20 6.2× 10−20

3.11 2.05 44.3% 3.6× 10−21 8.4× 10−20 6.1× 10−20

3.56 2.05 47.3% 3.5× 10−21 8.3× 10−20 6.0× 10−20

4.0 2.05 49.2% 3.4× 10−21 8.1× 10−20 5.9× 10−20

0.0 2.12 39.3% 2.3× 10−21 5.3× 10−20 3.9× 10−20

0.44 2.12 56.8% 2.3× 10−21 5.4× 10−20 3.9× 10−20

0.89 2.12 58.0% 2.4× 10−21 5.6× 10−20 4.0× 10−20

1.33 2.12 48.8% 2.6× 10−21 6.2× 10−20 4.5× 10−20

1.78 2.12 42.2% 2.9× 10−21 6.8× 10−20 4.9× 10−20

2.22 2.12 40.5% 3.5× 10−21 8.3× 10−20 6.0× 10−20

2.67 2.12 40.6% 3.7× 10−21 8.7× 10−20 6.2× 10−20

3.11 2.12 43.6% 3.6× 10−21 8.5× 10−20 6.2× 10−20

3.56 2.12 46.1% 3.6× 10−21 8.4× 10−20 6.1× 10−20

4.0 2.12 47.7% 3.5× 10−21 8.3× 10−20 6.0× 10−20

0.0 2.19 43.6% 2.3× 10−21 5.4× 10−20 3.9× 10−20

0.44 2.19 58.6% 2.4× 10−21 5.5× 10−20 4.0× 10−20

0.89 2.19 57.6% 2.4× 10−21 5.7× 10−20 4.1× 10−20

1.33 2.19 48.1% 2.7× 10−21 6.4× 10−20 4.6× 10−20

1.78 2.19 41.8% 3.0× 10−21 7.0× 10−20 5.0× 10−20

2.22 2.19 41.0% 3.6× 10−21 8.4× 10−20 6.1× 10−20

2.67 2.19 40.9% 3.7× 10−21 8.7× 10−20 6.3× 10−20

3.11 2.19 43.1% 3.7× 10−21 8.6× 10−20 6.2× 10−20

3.56 2.19 45.2% 3.6× 10−21 8.5× 10−20 6.1× 10−20

4.0 2.19 46.6% 3.6× 10−21 8.4× 10−20 6.1× 10−20

0.0 2.26 46.5% 2.4× 10−21 5.6× 10−20 4.1× 10−20

0.44 2.26 58.8% 2.4× 10−21 5.7× 10−20 4.1× 10−20

0.89 2.26 56.8% 2.5× 10−21 5.9× 10−20 4.3× 10−20

1.33 2.26 47.0% 2.8× 10−21 6.6× 10−20 4.8× 10−20

1.78 2.26 40.8% 3.1× 10−21 7.2× 10−20 5.2× 10−20

2.22 2.26 40.7% 3.7× 10−21 8.6× 10−20 6.2× 10−20

2.67 2.26 40.6% 3.7× 10−21 8.8× 10−20 6.4× 10−20

3.11 2.26 42.1% 3.7× 10−21 8.7× 10−20 6.3× 10−20

3.56 2.26 43.8% 3.7× 10−21 8.7× 10−20 6.2× 10−20

4.0 2.26 45.0% 3.6× 10−21 8.6× 10−20 6.2× 10−20

0.0 2.33 48.6% 2.5× 10−21 5.8× 10−20 4.2× 10−20

0.44 2.33 58.7% 2.5× 10−21 5.9× 10−20 4.2× 10−20
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0.89 2.33 56.0% 2.6× 10−21 6.1× 10−20 4.4× 10−20

1.33 2.33 46.1% 2.9× 10−21 6.8× 10−20 4.9× 10−20

1.78 2.33 39.8% 3.1× 10−21 7.4× 10−20 5.4× 10−20

2.22 2.33 40.4% 3.7× 10−21 8.8× 10−20 6.3× 10−20

2.67 2.33 40.3% 3.8× 10−21 8.9× 10−20 6.4× 10−20

3.11 2.33 41.3% 3.8× 10−21 8.9× 10−20 6.4× 10−20

3.56 2.33 42.7% 3.7× 10−21 8.8× 10−20 6.3× 10−20

4.0 2.33 43.6% 3.7× 10−21 8.7× 10−20 6.3× 10−20

0.0 2.4 50.1% 2.6× 10−21 6.0× 10−20 4.3× 10−20

0.44 2.4 58.6% 2.6× 10−21 6.0× 10−20 4.3× 10−20

0.89 2.4 55.3% 2.7× 10−21 6.3× 10−20 4.6× 10−20

1.33 2.4 45.2% 3.0× 10−21 7.0× 10−20 5.0× 10−20

1.78 2.4 39.1% 3.2× 10−21 7.6× 10−20 5.5× 10−20

2.22 2.4 40.1% 3.8× 10−21 8.9× 10−20 6.4× 10−20

2.67 2.4 40.0% 3.8× 10−21 9.0× 10−20 6.5× 10−20

3.11 2.4 40.6% 3.8× 10−21 9.0× 10−20 6.5× 10−20

3.56 2.4 41.7% 3.8× 10−21 8.9× 10−20 6.4× 10−20

4.0 2.4 42.4% 3.8× 10−21 8.8× 10−20 6.4× 10−20

Table 3: Soft X-ray group spectrum grid information

log10(ξ) Γ Hard X-ray fraction σHI
σHeI σHeII

0.0 1.76 83.6% 6.4× 10−25 1.9× 10−23 1.6× 10−23

0.44 1.76 58.9% 6.6× 10−25 2.0× 10−23 1.6× 10−23

0.89 1.76 35.4% 7.6× 10−25 2.3× 10−23 1.9× 10−23

1.33 1.76 20.1% 1.4× 10−24 4.2× 10−23 3.4× 10−23

1.78 1.76 13.1% 2.6× 10−24 7.8× 10−23 6.4× 10−23

2.22 1.76 6.5% 3.6× 10−24 1.1× 10−22 8.8× 10−23

2.67 1.76 3.4% 4.2× 10−24 1.2× 10−22 1.0× 10−22

3.11 1.76 5.4% 4.1× 10−24 1.2× 10−22 9.9× 10−23

3.56 1.76 8.1% 4.1× 10−24 1.2× 10−22 9.9× 10−23

4.0 1.76 11.4% 4.1× 10−24 1.2× 10−22 9.9× 10−23

0.0 1.83 73.9% 7.1× 10−25 2.1× 10−23 1.7× 10−23

0.44 1.83 45.5% 7.4× 10−25 2.2× 10−23 1.8× 10−23

0.89 1.83 25.7% 9.0× 10−25 2.7× 10−23 2.2× 10−23

1.33 1.83 14.9% 1.7× 10−24 5.1× 10−23 4.2× 10−23

1.78 1.83 9.8% 2.9× 10−24 8.7× 10−23 7.1× 10−23

2.22 1.83 5.0% 3.8× 10−24 1.1× 10−22 9.2× 10−23

2.67 1.83 3.0% 4.3× 10−24 1.3× 10−22 1.0× 10−22

3.11 1.83 4.8% 4.2× 10−24 1.2× 10−22 1.0× 10−22

3.56 1.83 6.9% 4.2× 10−24 1.2× 10−22 1.0× 10−22

4.0 1.83 9.4% 4.2× 10−24 1.2× 10−22 1.0× 10−22

0.0 1.91 61.2% 7.8× 10−25 2.3× 10−23 1.9× 10−23

0.44 1.91 33.0% 8.4× 10−25 2.5× 10−23 2.1× 10−23

0.89 1.91 18.0% 1.1× 10−24 3.2× 10−23 2.7× 10−23

1.33 1.91 10.9% 2.1× 10−24 6.2× 10−23 5.1× 10−23

1.78 1.91 7.4% 3.2× 10−24 9.5× 10−23 7.8× 10−23
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2.22 1.91 3.9% 3.9× 10−24 1.2× 10−22 9.5× 10−23

2.67 1.91 2.6% 4.4× 10−24 1.3× 10−22 1.1× 10−22

3.11 1.91 4.0% 4.3× 10−24 1.3× 10−22 1.0× 10−22

3.56 1.91 5.8% 4.3× 10−24 1.3× 10−22 1.0× 10−22

4.0 1.91 7.7% 4.3× 10−24 1.3× 10−22 1.0× 10−22

0.0 1.98 51.0% 8.6× 10−25 2.6× 10−23 2.1× 10−23

0.44 1.98 25.1% 9.3× 10−25 2.8× 10−23 2.3× 10−23

0.89 1.98 13.4% 1.3× 10−24 3.8× 10−23 3.1× 10−23

1.33 1.98 8.4% 2.4× 10−24 7.1× 10−23 5.8× 10−23

1.78 1.98 5.9% 3.4× 10−24 1.0× 10−22 8.3× 10−23

2.22 1.98 3.2% 4.1× 10−24 1.2× 10−22 9.8× 10−23

2.67 1.98 2.4% 4.5× 10−24 1.3× 10−22 1.1× 10−22

3.11 1.98 3.5% 4.4× 10−24 1.3× 10−22 1.1× 10−22

3.56 1.98 5.0% 4.3× 10−24 1.3× 10−22 1.1× 10−22

4.0 1.98 6.5% 4.4× 10−24 1.3× 10−22 1.1× 10−22

0.0 2.05 38.5% 9.4× 10−25 2.8× 10−23 2.3× 10−23

0.44 2.05 18.1% 1.0× 10−24 3.1× 10−23 2.5× 10−23

0.89 2.05 9.9% 1.5× 10−24 4.4× 10−23 3.6× 10−23

1.33 2.05 6.5% 2.6× 10−24 7.9× 10−23 6.4× 10−23

1.78 2.05 4.6% 3.6× 10−24 1.1× 10−22 8.6× 10−23

2.22 2.05 2.5% 4.2× 10−24 1.2× 10−22 1.0× 10−22

2.67 2.05 2.0% 4.6× 10−24 1.4× 10−22 1.1× 10−22

3.11 2.05 3.0% 4.5× 10−24 1.3× 10−22 1.1× 10−22

3.56 2.05 4.1% 4.4× 10−24 1.3× 10−22 1.1× 10−22

4.0 2.05 5.3% 4.4× 10−24 1.3× 10−22 1.1× 10−22

0.0 2.12 28.3% 1.0× 10−24 3.1× 10−23 2.5× 10−23

0.44 2.12 13.1% 1.2× 10−24 3.4× 10−23 2.8× 10−23

0.89 2.12 7.4% 1.7× 10−24 5.0× 10−23 4.1× 10−23

1.33 2.12 5.1% 2.9× 10−24 8.5× 10−23 7.0× 10−23

1.78 2.12 3.6% 3.7× 10−24 1.1× 10−22 9.0× 10−23

2.22 2.12 2.0% 4.3× 10−24 1.3× 10−22 1.0× 10−22

2.67 2.12 1.7% 4.7× 10−24 1.4× 10−22 1.1× 10−22

3.11 2.12 2.5% 4.7× 10−24 1.4× 10−22 1.1× 10−22

3.56 2.12 3.4% 4.5× 10−24 1.3× 10−22 1.1× 10−22

4.0 2.12 4.3% 4.5× 10−24 1.3× 10−22 1.1× 10−22

0.0 2.19 21.1% 1.1× 10−24 3.3× 10−23 2.8× 10−23

0.44 2.19 9.6% 1.3× 10−24 3.8× 10−23 3.1× 10−23

0.89 2.19 5.6% 1.9× 10−24 5.7× 10−23 4.7× 10−23

1.33 2.19 4.0% 3.1× 10−24 9.2× 10−23 7.5× 10−23

1.78 2.19 2.9% 3.8× 10−24 1.1× 10−22 9.3× 10−23

2.22 2.19 1.7% 4.4× 10−24 1.3× 10−22 1.1× 10−22

2.67 2.19 1.5% 4.8× 10−24 1.4× 10−22 1.2× 10−22

3.11 2.19 2.1% 4.8× 10−24 1.4× 10−22 1.2× 10−22

3.56 2.19 2.9% 4.6× 10−24 1.4× 10−22 1.1× 10−22

4.0 2.19 3.6% 4.6× 10−24 1.4× 10−22 1.1× 10−22

0.0 2.26 15.5% 1.2× 10−24 3.6× 10−23 3.0× 10−23

0.44 2.26 7.3% 1.4× 10−24 4.1× 10−23 3.4× 10−23

0.89 2.26 4.4% 2.1× 10−24 6.2× 10−23 5.1× 10−23

1.33 2.26 3.2% 3.2× 10−24 9.6× 10−23 7.9× 10−23

1.78 2.26 2.3% 3.9× 10−24 1.2× 10−22 9.5× 10−23
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2.22 2.26 1.4% 4.4× 10−24 1.3× 10−22 1.1× 10−22

2.67 2.26 1.2% 4.8× 10−24 1.4× 10−22 1.2× 10−22

3.11 2.26 1.7% 4.9× 10−24 1.4× 10−22 1.2× 10−22

3.56 2.26 2.4% 4.7× 10−24 1.4× 10−22 1.1× 10−22

4.0 2.26 3.0% 4.7× 10−24 1.4× 10−22 1.1× 10−22

0.0 2.33 11.3% 1.3× 10−24 3.9× 10−23 3.2× 10−23

0.44 2.33 5.5% 1.5× 10−24 4.5× 10−23 3.7× 10−23

0.89 2.33 3.5% 2.3× 10−24 6.8× 10−23 5.5× 10−23

1.33 2.33 2.6% 3.4× 10−24 1.0× 10−22 8.2× 10−23

1.78 2.33 1.8% 4.0× 10−24 1.2× 10−22 9.8× 10−23

2.22 2.33 1.1% 4.5× 10−24 1.3× 10−22 1.1× 10−22

2.67 2.33 1.0% 4.9× 10−24 1.5× 10−22 1.2× 10−22

3.11 2.33 1.4% 5.0× 10−24 1.5× 10−22 1.2× 10−22

3.56 2.33 1.9% 4.8× 10−24 1.4× 10−22 1.2× 10−22

4.0 2.33 2.4% 4.8× 10−24 1.4× 10−22 1.2× 10−22

0.0 2.4 8.2% 1.4× 10−24 4.2× 10−23 3.5× 10−23

0.44 2.4 4.1% 1.7× 10−24 4.9× 10−23 4.1× 10−23

0.89 2.4 2.7% 2.5× 10−24 7.4× 10−23 6.0× 10−23

1.33 2.4 2.0% 3.5× 10−24 1.0× 10−22 8.6× 10−23

1.78 2.4 1.4% 4.1× 10−24 1.2× 10−22 1.0× 10−22

2.22 2.4 0.9% 4.6× 10−24 1.4× 10−22 1.1× 10−22

2.67 2.4 0.8% 5.0× 10−24 1.5× 10−22 1.2× 10−22

3.11 2.4 1.1% 5.1× 10−24 1.5× 10−22 1.2× 10−22

3.56 2.4 1.6% 4.9× 10−24 1.5× 10−22 1.2× 10−22

4.0 2.4 2.0% 4.9× 10−24 1.4× 10−22 1.2× 10−22

Table 4: Hard X-ray group spectrum grid information
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Annex B: Custom code for analysis

Throughout our work, we wrote many different routines for interacting between the raw
outputs of our simulations and the display of fields of interest and such. We reference here
only some of our main original routines, specifically the techniques and codes that are not
too context specific or too long-winded. For instance, we will not make explicit, the code for
generating the disk models used for the Bardeen-Peterson effect post processing as the code
is too long and non-modular, nor will we make explicit the code for spectrum generation as
it is mostly some ingenious uses of the relxill module. This codes may be given by the author
on request.

Let us start by seeing how the actual scripts are run on our accessed high performance
computing resources:

NLHPC running scripts
Throughout this work, we ran all of our relevant simulations on the high performance
computational resources of the ’Laboratorio Nacional de Computación de Alto Rendimiento’
(NLHPC). We specifically ran most of our simulations on the Guacolda CPU partition.
The general template of our jobscripts obey usual SLURM nomenclature .sh scripts, such a
template for our case would look like:

1 #!/bin /bash
2 #SBATCH −−job−name=job_ex_tesis_j
3 #SBATCH −−pa r t i t i o n=gene ra l
4 #SBATCH −n 132
5 #SBATCH −−mem−per−cpu=4363
6 #SBATCH −−ntasks−per−node=44
7 #SBATCH −−output=dice_new . out
8 #SBATCH −−e r r o r=dice_new . e r r
9 #SBATCH −D /home/ j e t i g ny /path/ to /data_output

10

11 module purge
12 ml i n t e l /2018.04
13

14 srun −−pa r t i t i o n=gene ra l /home/ j e t i g ny /path/ to / compi la t ion / s c r i p t /ramses_comp
15 /home/ j e t i g ny /path/ to / s imu la t i on /parameters / setup . nml > /home/ j e t i g ny /path/ to /

s imu la t i on / l o g s / job . l og
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Python object for SMBH pairs
We begin by mentioning the only piece of python code that does not make use of the .yt
library (although it does still use the numpy, matplotlib and scipy suites), which is the isolated
binary analysis package, which deals only with the information from the sink particles, this
information may be handled directly as it comes codified in simple .csv files instead of raw
fortran output files. We wrote a package that handles the binary’s properties (the isolated
SMBH pair), through python’s object-oriented programming. This code may be accessed
and used from https://github.com/detigny/misc-ramses/blob/master/SMBH.py, or by
asking the author directly (you may download it in your working directory and load it as a
regular import).

The routines of this objects allows for three main functionalities: Looking at the ’spatial’
evolution of BHs, the ’angular’ evolution and the ’feeding’ evolution. By calling different
methods in our class, we can immediately graph things like accretion (which may be switched
to be scaled by Eddington units), binary separation, accreted angular momentum, Lacc−Lbin
alignment, etc.

Accessing and handling fields directly in equipartitioned
grids
As the AMR paradigm gives information in unstructured grids. This is a problem for
consistently mapping the evolution of fields in the form f(x, y, z, t). For this we use three main
routines from .yt to create different ’fixed resolution buffers’ (FRB), which are just arrays
that specify data emulating an equispaced grid of customizable resolution. This three routines
generate projected fields in 2D, a slice of a field in 2D, and a generalized 3D equispaced data
grid of a field inside a region of simulation space. This three routines obey the following
scripts:

• For a projection over axis=’paxis’ FRB of a field:
1 ytpro j = ds . p ro j ( f i e l d , pax i s )
2 f r b = ytpro j . to_frb ( width , r e s o l u t i o n )

• For a slice FRB, if we instantiate the yt.load as ds, the following code creates a slice
centered at cn:

1 ytxyz = yt . S l i c eP l o t ( ds , paxis , f i e l d , width , c en t e r=cn )
2 f r b = ytxyz . data_source . to_frb ( width , r e s o l u t i o n )

• The code for the general 3D field array, is just as simple:
1 s l ab = ds . a rb i t ra ry_gr id ( l e f t c o , r i ghtco , dims=re s )
2 f r b = s l ab [ ’ dens i ty ’ ] . in_units ( ’ g/cm∗∗3 ’ ) . va lue

This is specially important for handling non trivial quantities that are not on the default
(derived) fields that can be handled direclty by .yt. One example would be the Toomre
parameter: If we were to map Q(x, y), we need to at least combine the integrated density
field (to get surface density Σ(x, y)), the projected sound velocity field cs and the angular
velocity Ω(x, y), which is also a field that is not listed by the software (which means we need
to map the tangential velocity and get vt × r).
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Cooling/Heating calculation over the grid
We showcase the code employed for the calculation of the thermal timescale over the simulation
grid:

The first block of code is that of cooling by primordial gas methods, which include recombination
processes, collisional cooling, excitation cooling and Compton cooling. In the code we
separated the cooling functions that group processes by each ion/particle species involved.

1

2 de f lmbda ( spe c i e s ,T) :
3 i f s p e c i e s == ’HI ’ :
4 re turn 315614/T
5 e l i f s p e c i e s == ’HeI ’ :
6 re turn 570670/T
7 e l i f s p e c i e s == ’ HeII ’ :
8 re turn 1263030/T
9 e l s e :

10 re turn ’No i n f o f o r such spe c i e s ’
11

12 de f f a c t o r (T) :
13 re turn 1/(1+np . sq r t (T/10∗∗5) )
14

15 de f cool_ne_nHI (T, ne , nHI ) :
16 f 1 = 1 .27 e−21∗np . sq r t (T) ∗np . exp (−1.58 e5/T)
17 f 2 = 7 .5 e−19∗np . exp (−1.18 e5/T)
18 re turn f a c t o r (T) ∗( f 1+f2 ) ∗ne∗nHI
19

20 de f cool_ne_nHeI (T, ne , nHeI ) :
21 re turn 9 .38 e−22∗ f a c t o r (T) ∗np . exp (−2.85 e5/T) ∗ne∗nHeI
22

23 de f cool_ne_nHeII (T, ne , nHeII ) :
24 kb = sp . cons tant s . Boltzmann∗1 e7
25 f 1 = 4 .95 e−22∗ f a c t o r (T) ∗np . exp (−6.32 e5/T)
26 f 2 = 5 .54 e−17∗ f a c t o r (T) ∗np . exp (−4.74 e5/T) ∗T∗∗(−0.397)
27 f 3 = kb∗T∗3e−14∗lmbda ( ’ HeI ’ ) ∗∗0.654
28 f 4 = 1 .24 e−13∗(T∗∗−1.5)∗np . exp (−4.7 e5/T) ∗(1+0.3∗np . exp (−9.4 e4/T) )
29 re turn ( f1+f2+f3+f4 ) ∗ne∗nHeII
30

31 de f cool_ne_nHII (T, ne , nHII ) :
32 l = ( lmbda ( ’HI ’ ) ∗∗1 .965) /((1+( lmbda ( ’HI ’ ) /0 .541) ∗∗0 .502) ∗∗2 .697)
33 re turn 1 .778 e−29∗T∗ l ∗ne∗nHII
34

35 de f cool_ne_nHeIII (T, ne , nHeIII ) :
36 l = ( lmbda ( ’ HeII ’ ) ∗∗1 .965) /((1+( lmbda ( ’ HeII ’ ) /0 .541) ∗∗0 .502) ∗∗2 .697)
37 re turn 8∗1.778 e−29∗T∗ l ∗ne∗nHeIII
38

39 de f brems (T, ne , nHII , nHeII , nHeIII ) :
40 theta = 1.42 e−27∗np . sq r t (T)
41 re turn theta ∗ne ∗( nHII + nHeII + 4∗ nHeIII )
42

43 de f compton (T, ne ) :
44 re turn 1 .017 e−37∗(2.727∗∗4) ∗(T−2.727)∗ne

This is of course, then followed by the photoheating block that depends on ionization:
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1 de f ph_heat_HI(N, nHI , sigE_HI , sigN_HI , eps1 , e p s i ) :
2

3 i f np . s i z e ( sigN_HI ) != np . s i z e ( sigE_HI ) :
4 re turn ’ Something i s wrong with the c r o s s s e c t i on s ’
5 M = np . s i z e ( sigN_HI )
6 obj = 0
7

8 f o r i in range (M) :
9 obj = obj + N[ i ] ∗ ( ep s i [ i ]∗ sigE_HI [ i ] − eps1 ∗sigN_HI )

10

11 re turn nHI∗ obj
12

13 de f ph_heat_HeI (N, nHeI , sigE_HeI , sigN_HeI , eps2 , e p s i ) :
14

15 i f np . s i z e ( sigN_HeI ) != np . s i z e ( sigE_HeI ) :
16 re turn ’ Something i s wrong with the c r o s s s e c t i on s ’
17 M = np . s i z e ( sigN_HeI )
18 obj = 0
19

20 f o r i in range (M) :
21 obj = obj + N[ i ] ∗ ( ep s i [ i ]∗ sigE_HeI [ i ] − eps2 ∗sigN_HeI )
22

23 re turn nHeI∗ obj
24

25 de f ph_heat_HeII (N, nHeII , sigE_HeII , sigN_HeII , eps3 , e p s i ) :
26

27 i f np . s i z e ( sigN_HeII ) != np . s i z e ( sigE_HeII ) :
28 re turn ’ Something i s wrong with the c r o s s s e c t i on s ’
29 M = np . s i z e ( sigN_HeII )
30 obj = 0
31

32 f o r i in range (M) :
33 obj = obj + N[ i ] ∗ ( ep s i [ i ]∗ sigE_HeII [ i ] − eps3 ∗ sigN_HeII )
34

35 re turn nHeII∗ obj
36

37 de f f inal_ph_heat (N, cr , nHI , nHeI , nHeII , sigE_HI , sigE_HeI , sigE_HeII , sigN_HI ,
38 sigN_HeI , sigN_HeII , eps j , e p s i ) :
39

40 f 1 = ph_heat_HI(N, nHI , sigE_HI , sigN_HI , ep s j [ 0 ] , e p s i )
41 f 2 = ph_heat_HeI (N, nHeI , sigE_HeI , sigN_HeI , ep s j [ 1 ] , e p s i )
42 f 3 = ph_heat_HeII (N, nHeII , sigE_HeII , sigN_HeII , ep s j [ 2 ] , e p s i )
43

44 re turn cr ∗( f 1+f2+f3 )

With this we can calculate the net heating/cooling rate by subtracting all the cooling
contributions to the heating rate, and then we may determine the thermal timescale. It is of
notice that this code uses the abundancies of ion species/electrons and their corresponding
cross sections, which means that the thermal timescale is only calculable with this method,
if the output is that of an -RT simulation.

For the purely hydrodynamical+gravitational simulations, the methods differ: We have to
estimate the photoionization rates, and solve a system of equations recursively for the ion
species abundancies. We did this by solving the six-variable system of equations using a fixed

128



point method that employs Anderson mixing, and by assuming that the photionization flux
is ∝ Ṁ at a fixed rate. We will not add this code here in honor of space, but it may be asked
from the author of this work.

129


	Introduction
	SMBHs, AGNs and mergers
	The road towards SMBH coalescence
	Our work
	Thesis outline

	Numerical methods
	RAMSES
	Adaptive Mesh Refinement
	N-body solver
	Hydrodrynamical solver
	Time integration and step control

	RAMSES-RT: Radiation hydrodynamics (RHD)
	Moment-Based Radiative Transfer with the M1 Closure
	Numerical implementation of radiative transfer
	Reduced speed of light formalism
	Coupling radiation to hydrodynamics

	Radiative Cooling
	Additional tools
	DICE
	Sink particle formalism
	XSPEC and the X-ray spectrum subgrid model generation


	Simulation Setups
	Initial Conditions and Setup
	Physical setting-up of the circumbinary disks
	Selection of the binary-disk configurations

	Accretion
	Radiation Sources
	Shape of the AGN spectrum
	Deposition of energy from the AGN feedback

	Simulation parameter Specifications
	Setting the speed of light fraction


	Results and analysis
	Runs without Radiative Feedback
	No gap opening setups without radiation coupling
	Tidal gap opening setups without radiation coupling

	Runs with AGN Feedback
	No gap opening setups with radiation feedback and coupling
	Tidal gap opening setups with radiation feedback and coupling

	Overall Trend Similarities and Changes
	Speed of Sound and rotational velocity
	Disk stability and Heating/Cooling


	Post-processed analysis of BH spin evolution
	Model and postprocessing setup
	Results: Spin and Alignment Evolution

	Conclusions and Outlook
	Discussion of our findings
	Improvements and future work

	Bibliography
	Annexed
	Annex A
	Annex B


