
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

DIVIDE AND CONQUER: AN EXTREME MULTI-LABEL CLASSIFICATION
APPROACH FOR CODING DISEASES AND PROCEDURES IN SPANISH

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIA DE DATOS

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN COMPUTACIÓN

JOSÉ MIGUEL BARROS SANFUENTES

PROFESORA GUÍA:
JOCELYN DUNSTAN ESCUDERO

PROFESOR CO-GUÍA:
ANDRÉS ABELIUK KIMELMAN

MIEMBROS DE LA COMISIÓN:
BENJAMÍN BUSTOS CÁRDENAS

DENIS PARRA SANTANDER
MATÍAS TORO IPINZA

SANTIAGO DE CHILE
2023

Resumen

Divide y conquista: Un enfoque basado en extreme multi-label classification
para codificar procedimientos y enfermedades en Español

La codificación cĺınica es la tarea de transformar documentos médicos en códigos estructura-
dos siguiendo una ontoloǵıa estándar. Dado que estas terminoloǵıas están compuestas por
miles de códigos, este problema puede considerarse una tarea de clasificación extrema de
etiquetas múltiples. Esta tesis propone una nueva arquitectura basada en redes neuronales
para la codificación cĺınica.

Primero, aprovechamos al máximo la naturaleza jerárquica de las ontoloǵıas para crear
clústeres basados en relaciones semánticas. Luego, usamos un módulo Matcher para asignar la
probabilidad de que los documentos pertenezcan a cada grupo. Finalmente, el Ranker calcula
la probabilidad de cada código considerando solo los documentos en el clúster. Esta división
permite una diferenciación detallada dentro del grupo, que no puede abordarse utilizando un
único clasificador.

Además, dado que la mayor parte del trabajo anterior se ha centrado en resolver esta
tarea en inglés, realizamos nuestros experimentos en cuatro corpus de codificación cĺınica
en español. Los resultados experimentales demuestran la efectividad de nuestro modelo, lo-
grando resultados de vanguardia en tres de los cuatro conjuntos de datos. Espećıficamente,
superamos a los modelos anteriores en dos subtareas de la tarea compartida CodiEsp: CodiEsp-
D y CodiEsp-P. También superamos a los modelos anteriores en el corpus FALP.

I

Abstract

Clinical coding is the task of transforming medical documents into structured codes following
a standard ontology. Since these terminologies are composed of thousands of codes, this
problem can be considered an Extreme Multi-label Classification task. This thesis proposes
a novel neural network-based architecture for clinical coding.

First, we take full advantage of the hierarchical nature of ontologies to create clusters
based on semantic relations. Then, we use a Matcher module to assign the probability of
documents belonging to each cluster. Finally, the Ranker calculates the probability of each
code considering only the documents within the cluster. This division allows a fine-grained
differentiation within the cluster, which cannot be addressed using a single classifier.

In addition, since most of the previous work has focused on solving this task in English,
we conducted our experiments on four clinical coding corpora in Spanish. The experimental
results demonstrate the effectiveness of our model, achieving state-of-the-art results on three
of the four datasets. Specifically, we outperformed previous models on two subtasks of the
CodiEsp shared task: CodiEsp-D and CodiEsp-P. Also we obtained state-of-the-art results
in the FALP corpus.

II

Dedicado especialmente a mi familia y amigos. En segundo plano también a toda persona
que sienta que me ayudó para lograr hacer esto posible.

III

Acknowledgments

Primero que nada, le agradezco a mi familia que me han apoyado durante toda mi vida sin
pedir nada a cambio y me aguantaron a lo largo de los vaivenes que significaron 6 años de
estudiar ingenieŕıa. Sin la fuerza que me dan, las risas y los descargos nada de esto habŕıa
sido posible.

En segundo lugar, me gustaŕıa agradecer especialmente a mi profesora gúıa, Jocelyn, por
todo el apoyo y ayuda que me ha brindado a lo largo del tiempo que estuve haciendo la tesis
e incluso después de este. Incluso teniendo en cuenta de mis errores continuos y tardanzas en
temas administrativos estuvo ah́ı siempre con paciencia empujándome, sin ella es imposible
que hubiera conseguido la motivación para terminar esta etapa. Además su gúıa en todo lo
que fue mi iniciación en la academia fue impecable y me ayudó a aprender mucho más de lo
que imaginaba.

También me gustaŕıa agradecer a todos mis amigos y amigas, los de la infancia, los del
colegio, los de la U, los del trabajo, por brindarme apoyo y descargo emocional continuo,
por sacarme a carretear, por acompañarme en infinitas aventuras a lo largo del tiempo. Una
mención especial para mis roomies que aguantaron la música y el humo de cigarro de las
intensas jornadas de programación y escritura.

Doy las gracias también a los integrantes de mi comisión, los profesores Benjamı́n Bustos,
Dennis Parra y Mat́ıas Toro, por todos sus comentarios y observaciones propuestas para
mejorar esta tesis.

Finalmente, quiero dar las gracias al grupo de investigación PLN CMM, y en especial
a Mat́ıas Rojas, por ayudarme a definir el tema de tesis, proveerme ideas de datasets, dar
observaciones del documento de tesis y acompañarme en el diseño de las soluciones desde las
distintas perspectivas interdisciplinarias de cada uno de ellos.

IV

Table of Content

1 Introduction 1

1.1 Problem Statement . 2

1.2 Hypothesis . 2

1.3 Objectives . 3

1.3.1 General Objective . 3

1.3.2 Specific Objectives . 3

1.4 Methodology . 4

1.5 Thesis Structure . 5

2 Background and Related Work 6

2.1 Scientific Disciplines . 6

2.1.1 Artificial Intelligence (AI) . 6

2.1.2 Machine Learning . 7

2.1.3 Natural Language Processing (NLP) 10

2.2 Text Classification . 12

2.2.1 Task Formalization . 12

2.2.2 Multi Label Text Classification . 13

2.2.3 Extreme Multi Label Text Classification (XMC) 14

2.3 Clinical coding . 15

2.3.1 Clinical coding in languages other than English 16

2.3.2 Codiesp . 16

V

2.3.3 Cantemist . 17

2.3.4 FALP . 17

3 Divide and Conquer - DaC 18

3.1 DaC Corpus Preprocessing . 18

3.2 Matcher . 20

3.2.1 Transformers . 20

3.2.2 Settings Matcher . 22

3.3 Ranker . 23

3.3.1 TF-IDF . 24

3.3.2 One Vs Rest . 25

3.3.3 Gradient Boosting Trees . 26

3.3.4 Settings XGBoost . 27

3.4 Combining results of the Matcher and Ranker 28

3.5 Ensemble . 29

3.6 Data Augmentation using Named Entities 30

3.7 Library . 31

3.7.1 Library important classes . 31

3.7.2 Library files . 37

4 DaC on multiple medical corpora 39

4.1 Corpora . 39

4.1.1 CodiEsp . 40

4.1.2 Cantemist . 40

4.1.3 FALP . 41

4.2 Ontologies and Cluster Choice . 42

4.2.1 Ontology - ICD-10-CM . 42

4.2.2 Ontology - ICD-10-PCS . 43

VI

4.2.3 Ontology - ICD-O-3 . 44

4.3 Metrics . 46

4.4 Evaluation . 47

4.5 Results . 48

4.6 Module Analysis . 50

5 Conclusions and Future Work 55

5.1 Conclusions . 55

5.2 Future Work . 55

5.3 Contributions . 56

Bibliography 66

VII

List of Tables

4.1 Statistics of the corpora. 39

4.2 Clusters defined for ICD-10-CM Ontology. 42

4.3 Clusters defined for ICD-10-PCS Ontology. 44

4.4 Clusters defined for ICD-O-3 Ontology. 44

4.5 Overall results on three clinical coding datasets. Results of Clinical Trans-
formers are taken from the author’s paper. FlatNER + Search engine results
were calculated by us using predictions provided to us by the authors. All the
other results are from the competitions overview. Some results are missing
because those approaches were not implemented for the corresponding tasks. 48

4.6 Report of metrics for each module and model trained in CodiEsp Diagnostics.
The F1 scores of both the DaC model and the Ranker use only the first three
characters of the code as the label, following the procedures of how to evaluate
the models created by the competition. The bolded results indicate the best
metric score for each module and the underline mark the worst performance. 51

4.7 Report of metrics for every module and model trained in CodiEsp Procedures.
The F1 scores of both the DaC model and the Ranker use only the first four
characters of the code as the label, following the procedures of how to evaluate
the models created by the competition. The bolded results point to the best
metric score for each module, and the underline marks the worst performance. 52

4.8 Report of metrics for every module and model trained in Cantemist. The
bolded results point to the best metric score for each module, and the underline
marks the worst performance. 53

4.9 Report of metrics for every module and model trained in FALP. The bolded
results point to the best metric score for each module, and the underline marks
the worst performance. 54

VIII

List of Figures

1.1 CodiEsp Electronic Health Record annotated, every diagnostic and procedure
mention has a unique code. Every code from this Electronic Health Record
is aggregated and the document is labeled with all the codes present in the
document. Each entity mention and its span is later used in the different data
augmentation techniques explained in section 3.6. Figure extracted from [77]. 3

2.1 Diagram with the main disciplines belonging to the Artificial Intelligence field.
Figure extracted from [5]. 7

2.2 A simple mathematical model for a neuron. The unit’s output activation is
aj = g(

∑n
i=0wi,jai), where ai is the output activation of unit i and wi,j is the

weight on the link from unit i to this unit. Figure extracted from [100]. . . . 9

2.3 Artificial Neural Network. Figure extracted from [2]. 10

2.4 Basic Decision Tree that decides whether to surf or not to surf. Figure ex-
tracted from [7]. 11

3.1 Overview of the DaC Architecture. 19

3.2 Overview of the Matcher module. P (Ci): probability of document having a
code in cluster i. 20

3.3 Overview of the Transformers architecture [109]. 21

3.4 Overview of the Ranker module. P (Lij): probability of document having a
mention of code i in cluster j. 23

3.5 Example of CART Tree. Figure extracted from [4] 26

3.6 Overview of the DaC Library structure. 38

IX

Chapter 1

Introduction

Mapping electronic health records into alphanumeric codes allow rapid summarization of
information, which is necessary to calculate costs, support clinical decisions, and conduct
epidemiological studies. However, manual coding is time-consuming, resource-intensive, and
error-prone, even for specialists. For this reason, developing tools to support this task is
precious. The International Classification of Diseases (ICD) is a medical glossary (or ontol-
ogy) published by the World Health Organization, which establishes specific coding rules for
healthcare procedures and diseases.

Natural Language Processing (NLP) is the area in computer science that deals with the
interaction between humans and machines through language, either by machine recognition of
text or speech, or the machine-production of text or voice responses [50]. Some contemporary
uses of NLP are machine translation, dialogue systems (voice assistants and chatbots), ex-
tracting information from social media, or machine reading (for example, to organize emails).
Like many areas of knowledge, NLP has shown tremendous advances from the use of rep-
resentation learning neural networks along with access to computing power, as well as the
availability of large bodies of texts (known as corpora, plural of the Latin word corpus) [50].

Clinical coding is an important NLP task that seeks to automatically assign codes to
medical documents following a standard terminology, such as the ICD ontology. Since each
document can be labeled with more than one code from an extensive list, this task can be
considered an Extreme Multi-label Classification task [65].

Despite the availability of clinical resources in Spanish, such as Cantemist [76] or CodiEsp
[77], the available resources are not yet comparable to those available in English. For example,
CodiEsp has 1.000 documents, while the MIMIC-III dataset [54] has 52.726 discharge sum-
maries. This scarcity of data forces models in other languages to have a different architecture
than those correctly working on the English datasets.

We introduce a novel architecture for solving clinical coding on four Spanish clinical
corpora to fill this gap. Our model is composed of two modules: the Matcher and the
Ranker. The first module calculates the probability of a document belonging to a cluster,
while the second performs the code classification task. Each cluster is created previously by
analyzing the ontology of the labels of each corpus.

1

Finally, we evaluate the architecture on four different corpora that exist for clinical cod-
ing in Spanish; CodiEsp Diagnostics (CodiEsp-D) [77], CodiEsp Procedures (CodiEsp-P)
[77], Cantemist [76] and FALP [110], achieving state-of-the-art performance on CodiEsp-D,
CodiEsp-P, and FALP corpus according to the MAP and F1 score. Also, we obtain compet-
itive results on the Cantemist corpus.

1.1 Problem Statement

Identifying which codes are mentioned in a medical document is challenging due to the highly
imbalanced distribution of disease codes and the vast number of codes present in the medical
documents. For example, the Codiesp-D corpus has 2,557 distinct disease codes in only
1,000 documents, and some of these codes are not present in the training and validation
examples. This enormous amount of classification labels characterizes this problem as an
Extreme Multi-Label Classification (XMC) task. XMC as a field of study is characterized
for various difficulties regarding the training resources needed, the amount of time that it
consumes to train a classifier, and the scarcity of examples for each label [65].

These difficulties and requirements force the creation of different architectures than those
used for more straightforward classification tasks. One characteristic that helps with the
design of architectures for this task is that because there are a vast amount of labels, these
labels have to be related in some way. For example, the labels on these corpora are paired to
their dictionary definition, so some definitions are semantically close to others while others
are more apart. Another example would be if the labels are part of categories of labels, so
labels in the same category are closer to each other than labels in another category. This
relation can be easily obtained for the clinical domain by using the code structure. Each
code is part of an ontology that was created for grouping similar entities with each other, so
the use of these ontologies can help us group semantically similar labels.

In Figure 1.1 we can see an example of an annotated Electronic Health Record with
diagnostic and procedure mentions. Each one of these mentions is associated with a unique
disease or procedure code. For the clinical coding task, the goal is to predict the list of codes
in each electronic health record.

1.2 Hypothesis

The work hypothesizes that it is possible to leverage semantic relations systematized by health
organizations to build an extreme multi-label text classifier that can obtain state-of-the-art
performance in Spanish clinical coding corpora. We believe that a successful clusterization
of medical entity codes, recent advances in representation learning algorithms, and gradient
boosting trees will give us an edge compared to other approaches to the same task.

2

Figure 1.1: CodiEsp Electronic Health Record annotated, every diagnostic and procedure
mention has a unique code. Every code from this Electronic Health Record is aggregated
and the document is labeled with all the codes present in the document. Each entity mention
and its span is later used in the different data augmentation techniques explained in section
3.6. Figure extracted from [77].

1.3 Objectives

1.3.1 General Objective

The main objective of this thesis is to develop an extreme multi-label classifier that can
obtain state-of-the-art performance in one of the most relevant shared tasks in the Spanish
language for clinical coding, Codiesp-D. We expect to prove that our architecture approaches
the task in a way that optimizes the Mean Average Precision (MAP), surpassing previous
work in the same evaluation conditions. Applying this architecture to other corpora and
establishing competitive performance is also a relevant part of this work.

1.3.2 Specific Objectives

1. Design and implement an architecture that can leverage the semantic relations between
clinical codes and obtain state-of-the-art performance on clinical coding corpora in
Spanish.

2. Evaluate this architecture on relevant and available clinical coding corpora in Span-
ish. Choose only corpora with prior work that can be compared to the architecture
performance in a straightforward manner.

3

3. Create a library that allows the architecture to be easily extended to other extreme
multi-label corpora.

1.4 Methodology

In order to accomplish the specific objectives described above, this section presents the
methodology proposed for our research. Precisely, our work mainly consists of the following
steps:

1. Clusterize ICD-10-CM (diseases), ICD-10-PCS (procedures), and ICD-O-3 (oncology
diseases) codes in a way that maximizes the semantic relation of codes in the same
cluster. The ontologies and the choice of clusters are detailed in section 4.2.

2. Build a module, the Matcher, that can correctly predict to what clusters each document
belongs to. This module is built using transformers [109], and we test different pre-
trained transformers alternatives. The module description can be found in section 3.2.

3. Build a module, the Ranker, that can correctly predict a document’s labels if we already
know to what cluster it belongs. This module is built by creating one classifier for each
label following a one-vs-rest (OvR) approach. The medical documents are encoded
using TF-IDF, and every classifier is an XGBoost model [30]. The module description
can be found in section 3.3.

4. Combine the predictions of both modules, giving light to the architecture proposed,
the Divide and Conquer (DaC) model. The approach taken to combine the output of
the two models is explained in section 3.4.

5. Design a method to combine the output of different instances of the architecture, thus
creating an ensemble of strong learners. The ensemble voting system is described in
section 3.5.

6. Provide methods for doing data augmentation on the corpora, given the scarce resources
available for each corpus. This data augmentation methods come in two forms: one
using the named entities of the corpus and another one using the dictionary definitions
of the ontology codes. The data augmentation techniques are described in section 3.6.

7. Create a library that simplifies the reproducibility of experiments performed using the
architecture and allows for implementing the model on other corpora in a straightfor-
ward manner. The library implementation is explained in section 3.7

8. Evaluate this architecture on Codiesp-D, Codiesp-P, Cantemist, and FALP corpora on
the standard metrics used by the Codiesp and Cantemist shared tasks, which are F1

score and Mean Average Precision (MAP) of the ranked codes. The results are reported
in section 4.5.

9. Provide general insights as to when the DaC architecture thrives and do a brief analysis
of the performance of each module. The analysis of the modules performance is executed
in section 4.6.

4

1.5 Thesis Structure

The rest of the thesis is organized as follows: in Chapter 2, we give a brief overview of
the theoretical background needed to understand our research and review the related work
in clinical coding tasks. Chapter 3 explains the architecture and all its modules, giving
theoretical insights and arguments for every design decision and parameter choice. Next, in
Chapter 4 we evaluate the architecture and its modules in the corpora mentioned. Also, we
describe the corpora, the ontologies of each corpus, and the clusterization decided for each
ontology. Finally, the last chapter summarizes the conclusions of this work and discusses
some of the future research lines for the project.

5

Chapter 2

Background and Related Work

This chapter starts by defining and reviewing the scientific disciplines in which our research
was based. Then it describes the parent tasks that englobe our specific task, text classifica-
tion, and its more difficult descendants: multi-label text classification and extreme multi-label
text classification. It also presents some of the most known and used methods for these tasks.

Finally, this chapter describes the task at hand, disease coding, and some broadly used
methods. It also extensively reviews the works for disease coding in the Spanish corpora in
which we tested our architecture.

2.1 Scientific Disciplines

2.1.1 Artificial Intelligence (AI)

Historically, intelligence has been thought of as a unique capability of humans in which we
can acquire, understand, and use knowledge. The ability to acquire knowledge is mainly
associated with data mining. It has evolved fast due to the advent of the Internet, which has
produced and continues to produce vast amounts of data.

The field of artificial intelligence attempts to understand and build intelligent entities that
can use the collected data for specific tasks. To be more precise, the field of weak-AI tries to
solve specific sets of tasks because there are other theoretical approaches known as strong-AI
in which a machine would have intelligence equal or superior to humans not circumscribed
to a specific task. This work is categorized in the weak-AI field given that it tries to solve a
specific task [100]. As shown in Figure 2.1, there are two main fields in weak-AI that aim to
solve different tasks: computer vision and natural language processing.

The base of an artificially intelligent entity, and the core concept behind computer pro-
gramming, are algorithms. An algorithm is a sequence of instructions that should be carried
out to transform the input into an output. Since computers were first built, we have been
able to devise algorithms for many tasks, and as a consequence, nowadays, we use computers

6

Figure 2.1: Diagram with the main disciplines belonging to the Artificial Intelligence field.
Figure extracted from [5].

for all sorts of purposes. They have become an indispensable part of our everyday life, both
professionally and socially, and digital technology has become the primary means to store,
process, and transmit information [11].

2.1.2 Machine Learning

Although artificial intelligence is being able to create an artificial artifact that can solve
a given task in various ways, it is different from machine learning on a fundamental level.
Machine learning is the ability to solve a given task by learning. However, what is learning
in this context?

Learning is applied to a broad range of processes, making it difficult to define precisely.
A dictionary definition includes phrases such as ”The act, process, or experience of gaining
knowledge or skill” and ”Behavioral modification, especially through experience or condi-
tioning .” With respect to machines, we might broadly say that a machine learns whenever
it changes its structure, program, or data based on its inputs or in response to external
information, improving its expected future performance on a given task [84].

For example, an algorithm to accurately respond to a question from a user could be just
randomly choosing from a manually predefined set of responses. However, this would not be
machine learning because the program does not change, and the performance on the task,
measured as correct responses, does not improve. Nevertheless, it may be categorized as
artificial intelligence.

That is why machine learning tasks are usually tasks we do not have an algorithm to solve,
despite decades of research in the task field. This is where we can see the power of machine
learning because we train models on given data to learn an algorithm that can successfully
solve a given task.

7

Most of these are tasks that we as human beings can do effortlessly without even being
aware of how we do them. We can recognize a person from a photograph, move in a crowded
room without hitting objects or people, play chess, drive a car, and hold conversations in a
foreign language [11].

Machine learning algorithms are usually classified as unsupervised, supervised, or semi-
supervised models. Unsupervised models seek to learn alternative data representations using
the data points features. The most known unsupervised algorithms are the ones that attempt
to do clusterization. Supervised models seek to learn an algorithm or mathematical function
connecting input data to an output prediction. It requires a labeled dataset, and the labels are
acquired by human annotation, thus being extremely costly to obtain in most cases. Finally,
we have the semi-supervised models, which in their core are supervised models. However,
the input and output pairs are extracted directly from the data, not by a human annotator.

In this work, we have used two algorithms that learn from the input data in a supervised
manner: gradient boosting trees, described in 3.3.3, and transformers [109]. The base learners
for transformers are artificial neural networks, and the base learners for gradient boosting
trees are decision trees. We proceed to explain both base learners as examples of simple
machine learning algorithms.

Artificial Neural Networks

Artificial neural networks are the base of recent advances in the machine learning community,
mainly because they are the foundation of deep and representation learning. The base learner
of an artificial neural network is an artificial neuron, which in the beginning was tightly
based on how neurons work; however, nowadays, the evolution of artificial neural networks
has diverged from biological replication. An artificial neuron is a mathematical abstraction
that linearly scales different features based on the neuron’s weights. After that, an activation
function allows some of the information to pass to the next connected layer adding non-linear
operations to the abstraction. Figure 2.2 shows how an artificial neuron works in a simplified
manner.

The real power of neural networks is obtained by combining multiple artificial neurons in
one layer, allowing for parallelization, and stacking various layers, allowing for more capacity.
In Figure 2.3, we can see an artificial neural network with multiple layers, where the output
of the last layer, which has the same amount of artificial neurons as classes in the dataset,
can be interpreted as the probability of each one of the classes.

It is relevant to note that to learn from the dataset’s training set, the artificial neural
network compares the final layer probability for every class with the gold label of the example
and calculates a loss function. Then, the derivate of the loss is evaluated in every neuron
using back-propagation. Finally, we use gradient descent to update the weights of every
neuron, subtracting the derivate, thus attempting to minimize the loss.

8

Figure 2.2: A simple mathematical model for a neuron. The unit’s output activation is
aj = g(

∑n
i=0wi,jai), where ai is the output activation of unit i and wi,j is the weight on the

link from unit i to this unit. Figure extracted from [100].

Decision Trees

A decision tree is a simple and explainable structure to provide an output class for a given
input example. It is built using a hierarchical structure in which we split every node based
on some feature value of the input data point. Every example traverses through the tree
based on its features until it reaches a leaf. Each leaf has an output class, so the example
is labeled with the output class of the leaf. This basic structure with an easy-to-understand
example can be seen in Figure 2.4.

The learning part of decision trees consists of conducting a greedy search to identify the
optimal split points within a tree based on the training data provided. This means that the
splitting process is repeated in a recursive top-down manner until most examples have been
classified on one of the output classes. To obtain leaves in which there are instances of one
class only, one would have to have a huge tree, leading to overfitting and incapability to
generalize on new examples. That is why leaves have examples of different classes. When an
unseen example belongs to a leaf, it has a probabilistic interpretation in which the output is
the probabilities based on the relative weight of every class in the example’s leaf.

Finally, all we have left to explain is how every individual split is performed to be able to
learn from the training data. There are different methods to select an optimal split, but all
of them have in common that they look in the feature space, which combination of feature
and value would make child nodes that have a higher ”purity” based on a purity metric. For
example, one widely used approach is to minimize the Gini impurity of a split, which can be
defined as,

GI(split) =
|N1|

|N1|+ |N2|
GI(N1) +

|N2|
|N1|+ |N2|

GI(N2),

GI(Nx) = (1−
∑
c∈C

pc(Nx)
2),

(2.1)

9

Figure 2.3: Artificial Neural Network. Figure extracted from [2].

where GI stands for Gini impurity, N1 is the subnode 1 created, N2 the subnode 2, Nx is
the cardinality of node x, C are the classes in the dataset, and pc(Nx) is the probability of a
class c in the node Nx.

2.1.3 Natural Language Processing (NLP)

Natural language processing is a collection of computational techniques for automatic anal-
ysis and representation of human languages and unstructured text. The automatic analysis
of text, at par with humans, requires a deep understanding of natural language by machines,
which is very difficult to obtain, taking into account the complexities and continuous evo-
lution of human languages [33]. Also, the existence of domain-specific dialects in which the
terminology is different from the general domain language used in day-to-day interactions
makes it even more difficult. Most NLP tasks can be categorized in one of the following
categories:

• Text Classification: This task’s objective is to categorize documents into a set of
classes. It can be used to organize, summarize, and process high volumes of data that
would be unprocessable without a huge workforce doing annotation. Some of the most
known tasks that can be categorized as text classification are sentiment analysis, spam
filtering, hate speech recognition, and clinical coding.

• Sequence Labeling: This task’s objective is to categorize each token of a sentence
with a category. These labels can be used as features for other models, summarize
information, and support human annotators. The most known examples of Sequence
Labeling are part-of-speech tagging and named entity recognition (NER).

10

Figure 2.4: Basic Decision Tree that decides whether to surf or not to surf. Figure extracted
from [7].

• Sequence to Sequence: This task’s objective is to output a sequence of tokens,
given as input another sequence of tokens. Both sequences may differ in length, so the
models that tackle this task are usually built using an encoder of the input sequence
and a decoder for the output sequence. They are very useful for direct interaction with
humans through text. The most known tasks in which sequence to sequence is used
are language translation, question answering, and summarization.

The text representation techniques used in NLP to process the text with machine learning
models can be categorized into three different approaches. These three methods can be
combined to solve a specific task.

• Expert designed features: This approach is the classical one, in which expert lin-
guistics and developers create rule-based systems to extract features or even directly
perform an NLP task. The most notable disadvantage is that the number of rules
needed to correctly encapsulate all the information that a sentence or document con-
tains is vast, so it does not scale. Also, it requires the work of experts in the matter,
which yields higher costs than the following methods.

• Bag of Words: The text is represented as a count or a more complex weighted count,
like tf-idf, of the word occurrences in a document. These have the convenience that they
are effortless to implement, design, and yield decent text representations. However, its
most notable drawback is that the order of the sentence is not encapsulated in this text
representation technique; thus, it fails to accurately capture syntactic and semantic
information. Most machine learning models can be used with this representation.

11

• Unstructured text: In this case, the order of the text is kept. This representation
can only be used by models designed to capture sequential order in some manner.
Recurrent Neural Networks and Transformers are the most known methods that use
this representation. It has the advantage of preserving order so the model can capture
syntactic and semantic information more accurately than the bag of words approach.
Nowadays, most state-of-the-art methods use this kind of text representation.

We used the bag of words and the unstructured text approach for different architecture
modules for this work. The following sections describe the NLP task addressed in our re-
search: clinical coding. This problem belongs to the text classification category and can be
more precisely defined as the most challenging form of text classification: extreme multi-label
text classification.

2.2 Text Classification

Text Classification is an essential field of NLP in which the intention is to assign a category
for a set of documents. Each one of the documents can be assigned none, one, or multiple
categories. When machine learning is applied to this task, the objective is to learn classifiers
that can assign these categories using training data to learn from a set of already categorized
documents. Thus, it can be categorized as a supervised learning task.

Text classification is an essential and significant task in many NLP applications, such as
sentiment analysis, topic labeling, question answering, and dialog act classification. Since
the amount of information available to process spiked due to the advent of the internet,
the required resources to process and classify vast amounts of text have made a manual
approach much more time-consuming and challenging. This has forced machine learning
methods to be used widely because of scalability and the ability to yield more reliable and
less subjective results. Manually labeling documents can not process as many documents as
machine learning algorithms and is prone to errors caused by various factors, such as fatigue
and lack of expertise [64].

2.2.1 Task Formalization

In most NLP tasks, a formal definition is usually introduced to understand the problem bet-
ter. This process involves identifying the input and output variables of the task under study.
We present below a definition of text classification, specifically multi-label text classification,
in which a document can have many different labels.

Definition 2.1(Multi-Label Text Classification) Given a set of documents D = d1, d2, ..., dn,
and an output set of labels L = l1, l2, ..., lm, multi-label classification is a mapping function
between the documents and the labels where for every document a variable number of labels is
predicted: f(dj) = lk, ll, ..., lx. Text classification aims to minimize both the number of labels
wrongly predicted and the number of correct labels that were not predicted.

12

2.2.2 Multi Label Text Classification

Multi-Label Text Classification is a particular instance of text classification in which the
amount of categories or labels that a text can be classified into is more than two, therefore it is
text classification when we are not dealing with a binary classification task. Nowadays, there
are three strategies to design and implement various discriminative multi-label classification
methods: data decomposition, algorithm extension, and hybrid strategies [116]. It is relevant
to note that extreme multi-label classification is distinct from multi-class classification, which
aims to predict a single mutually exclusive label. In multi-label classification, the prediction
is not only from a dataset that contains multiple labels but also a prediction of a variable
number of labels.

Data decomposition strategy divides a multi-label data set into either one or more single-
label subsets, constructs a sub-classifier for each subset using an existing binary classification
technique, and then ensembles all sub-classifiers into an entire multi-label classifier [116].
Data decomposition is the most flexible technique because it is classifier agnostic; every
classifier that supports binary classification can be used when a data decomposition strategy
is utilized. One disadvantage of data decomposition is that it does not directly capture
relations between labels, involves training multiple classifiers, and thus has a longer training
time.

An algorithm extension strategy uses a single multi-label classifier that uses all training
data set points with all their labels in a single instance all at once. This strategy can
induce complicated optimization problems, such as large-scale quadratic programming in
multi-label support vector machine [43], and unconstrained optimization in multi-label neural
networks [118]. The most known method that uses the algorithm extension technique is
neural networks, in which the last layer is the size of the classification labels and has a
sigmoid activation function to categorize in a multi-label environment. One advantage of
algorithm extension is that it can successfully reflect label correlation of different labels.

Finally, a hybrid strategy aims to mix the previously mentioned methods by modifying
a single label classifier to be able to implicitly, using the classifier characteristics, divide the
dataset into different subsets. These implementations are often the most complicated ones
and require expertise on the classifier that will be modified.

The first model used for the text classification task was NB [74]. Since then many different
models have been proposed for multi-label text classification such as KNN [38], SVM [53], and
Random Forest [25]. Recently, the eXtreme Gradient Boosting [30], and the Light Gradient
Boosting Machine [57] have been the go-to choice for tabular and generic classification, and
the best choice from the traditional methods for text classification.

Apart from the traditional machine learning methods, we have the deep learning methods,
which are now the most widely used ones for text classification. From these, it is crucial to
mention convolutional neural networks, which were initially designed for computer vision
tasks and obtained stated of the art results in that field. TextCNN [120] was the first
adaption of convolutional neural networks to the field of text classification, which yielded
excellent results. Finally, the transformers architecture [120] succeeded in obtaining the
standard of being the best approach for text-related tasks and thus for text classification.

13

2.2.3 Extreme Multi Label Text Classification (XMC)

Extreme multi-label classification is a subset of multi-label classification in which the objec-
tive is to learn feature architectures and classifiers that can automatically tag a data point
with the most relevant subset of labels from an extremely large label set [20].

The amount of labels that can be categorized as vast is one that most of the time exceeds
or is relatively equal to the number of documents that are available to train a given corpus. In
the extreme multi-label repository [20] we have various English corpora that are considered
an XMC task. It is relevant to note that we have a corpus that has from a hundred labels
to one million labels, so even in this particular subfield, there are many problems with their
difficulties regarding optimization of time and choosing classifiers. This makes this subfield
one where there are no standard methods that achieve state-of-the-art or similar to state-of-
the-art results in a straightforward manner.

The vast amount of labels makes traditional and deep learning approaches inapplicable
because of time complexity issues and the incapability of those methods to easily adapt to
an ample label space. The baseline approach for XMC is to classify using one-vs-rest linear
classifiers, which is convenient because it does not need an extended period of time to train
and can be easily parallelized.

Extreme classification is a significant research problem not just because modern-day ap-
plications have many categories but also because it allows the reformulation of core learning
problems such as recommendation and ranking [94]. For example, the ranking of which user
one would be most acquainted with to add as a friend on social media or which video one
would like to see next can be formulated as an XMC task that aims to rank the different
users or videos.

Most XMC algorithms can be classified into two categories: tree-based methods and
embedding-based methods. In tree-based methods, the objective is to learn a hierarchy over
the label space quickly and accurately using an ensemble of trees over the feature space and
minimizing a specific purity metric. Then for each leaf node, a single classifier of choosing is
trained. For prediction, the new data point traverses the tree until it reaches its leaf node,
and then the output is the output of the leaf classifier. Most notably, from the algorithms
that use this approach, we have [94], [32], and [93].

Embedding methods exploit label correlations and sparsity to compress the number of la-
bels. A low-dimensional label space embedding is typically found through a linear projection.
Then a one-vs-rest approach can be applied over the compressed label space minimizing the
number of classifiers that need to be trained. The results of the one-vs-rest classification over
the compressed label space are then decompressed to the original label space to predict a
new unseen data point. The algorithms that use this approach mainly differ in the choice of
compression and decompression techniques such as compressed sensing, Bloom filters, SVD,
landmark labels, and output codes. The most important disadvantage of embeddings meth-
ods is the loss of prediction accuracy due to the loss of information during the compression
phase. Most notably, from the algorithms that use this approach, we have [21], [107], and
[16].

14

One work that heavily inspired this work is X-Transformers [29], which proposes creating
a clusterization of labels using the distance between the label descriptions encoded using
transformers’ contextualized embeddings. Then they predict the clusters using a transformers
classifier, and finally, they predict the labels over the subset of predicted clusters using one-
vs-rest linear classifiers. This is thought to handle corpora much larger than the ones we
have studied in this work, thus prioritizing time efficiency much more.

2.3 Clinical coding

Clinical coding is an important NLP task that seeks to automatically assign codes to medical
documents following standard terminology, such as the ICD glossary.

The most widely used corpus for clinical coding is Medical Information Mart for Intensive
Care (MIMIC-III) [54], a publicly available database from MIT with de-identified medical
text data of more than 50,000 patients. More than 9,000 unique ICD-9 codes are associated
with the hospital admissions in this corpus, and each Electronic Health Record has more
than one code. Another relevant corpus is the Electronic Intensive Care Unit (eICU) [92],
formed by the Philips eICU program and contains de-identified data for more than 200,000
patients admitted to intensive care units. eICU contains 883 unique ICD-9 codes.

There has been a growing interest in clinical coding from the NLP research community
in recent years. Early work focuses on creating machine learning-based classifiers with heavy
feature engineering [60, 47]. However, as mentioned in [56] and [108], recent advancements
in deep learning have greatly improved the performance of clinical coding models for all
languages and domains.

Some of the most successful solutions to the clinical coding task come from the deep
learning field and have used different approaches, including CNNs, RNNs, and Hierarchical
Attention Networks [78]. Convolutional Attention for Multi-Label Classification (CAML)
[79] is considered the state-of-the-art method for automatically predicting medical codes
from EHRs by the most recent survey of deep learning methods for ICD coding [78]. CAML
trains a neural network that passes text through a convolutional layer to compute a base
representation of the text of each document, making one binary decision for each code. They
use an attention mechanism instead of a pooling operation to select the parts of the document
that are most relevant for each possible code.

Although transformers have revolutionized the bio-medical field by obtaining state-of-
the-art on different NLP tasks without needing to use an approach more complicated than
straightforward transfer learning [49], these results have not been extended to the clinical
coding task. Much of this has to do with the incapability of transformers to generalize
well in an XMC environment due to data scarcity and a vast amount of labels [117]. Also,
another disadvantage of the transformers approach is that a great number of documents are
longer than 512 tokens, which is the maximum length of a document for most transformers.
Longformer [19] can address this issue by applying an attention mechanism that scales linearly
to the sequence length, making it easy to process documents of thousands of tokens or longer.
This attention mechanism is a replacement for the standard self-attention that combines local

15

attention with task-motivated global attention.

2.3.1 Clinical coding in languages other than English

The ability to analyze clinical text in languages other than English opens access to critical
medical data concerning cohorts of patients treated in countries where English is not the
official language or in generating global cohorts, especially for rare diseases [83].

English is by far the most resource-rich language, not only in amount of public corpora
available for clinical tasks, but also because of the development of advanced tools dedicated
to the biomedical domain such as part-of-speech taggers [104], parsers [39], and biomedical
concept extractors [14].

Despite the availability of clinical resources in Spanish, such as CANTEMIST [76] or
CodiEsp [77], the available resources are not yet comparable to those available in English.
For example, Codiesp has 1.000 documents, while the MIMIC-III dataset [54] has 52.726
discharge summaries.

One widely used method for dealing with fewer resources is adapting systems that work
well for English to another language. In practice, this approach has been carried out with
varying levels of success depending on the task, language, and system design [83]. This forces
architectures in other languages to have a singular and different approach or a language
adaption of those architectures correctly working on the English datasets.

Another option to address the resource scarcity in languages other than English is to use
machine translation over the vast amounts of resources available in English. Nowadays, given
the recent developments in machine translation, automatic translators, e.g. Google translate,
can potentially reduce language bias in clinical NLP tasks.

In the following sections, we briefly describe the most notable architectures that have
been implemented for three clinical coding corpora in Spanish (Codiesp, Cantemist, FALP).
The descriptions of these corpora and their results can be found in Chapter 4.

2.3.2 Codiesp

For the Spanish language, one of the most popular datasets used for clinical coding is CodiEsp
[77]. In Codiesp, most participants used different approaches to the task. Some identified
the task as a straightforward text classification issue, while others used a NER approach and
joined the mentions identified and their codes for the final classification.

Most of the work proposed formulated the problem as text classification. For example, on
[71] they used a transformer-based model to classify the sentences of the documents. Then,
they joined each sentence set of codes with the codes of other sentences in the same document
to get the final set of codes.

Among the approaches that solved the problem as a Named Entity Recognition task,

16

we have [36]. They created a dictionary based on entity mentions and code definitions.
Then, they matched spans of documents with the code definitions in the dictionary using a
tree-based algorithm.

Finally, others used an ensemble of text classification models and NER. For example, [23]
implemented a model that used two different string-matching algorithms and a text classifier
using one-vs-rest. The two string-encoders identified spans of texts using as target the entity
mentions of codes in the documents and predicted the code with a lower distance to the entity
mention. The first algorithm measured the distance between the target and every span in
the document using the Levenshtein distance. The second one used the distance between the
transformer contextual embeddings of the spans in the text and the target. Finally, the text
classifier used a one-vs-rest approach with XGBoost as every single classifier. This model
obtained the best results in the competition.

2.3.3 Cantemist

Another important task of clinical coding in Spanish is Cantemist [76], which aims to identify
codes present in cancer diagnoses.

This task had two winner systems obtaining the same MAP score. The first model
proposed by [45] used different transformer-based models to predict specific parts of a code.
These models were ensembled using a novel voting system. The second winner was [70], who
reused their approach proposed in CodiEsp (classifying the sentences of the documents and
then joining the results) but further pre-trained a language model with a private oncology
corpus.

Recent work by [69] outperformed previous models in CodiEsp and CANTEMIST by a
wide margin. First, they trained three multilingual language models using private oncology
datasets and then fine-tuned these models for classifying documents into codes. To improve
the performance of their models, they ensembled the results from five different instances of
each trained transformer.

2.3.4 FALP

The FALP corpus has not been released publicly yet because it is intended to be used on
a shared task. Thus, we only know one work that solved the clinical coding task in the
FALP corpus [110]. This work creates a NER model applying transfer learning from state-
of-the-art pre-trained language models. Then the mentions found with the NER model are
subsequently coded using a search engine tailored to the ICD-O codes.

17

Chapter 3

Divide and Conquer - DaC

As described in 1 the task at hand is one of extreme multi-label classification. To be able
to approach this task correctly, we have proposed the Divide and Conquer architecture. Our
proposed architecture, described in Figure 3.1, comprises two main modules: the Matcher
and the Ranker. The first module calculates the probability that a document belongs to some
cluster of labels, while the second one calculates the probability of labels in the document.
The results of both modules are used to perform the final prediction of labels. This process
is carried out by multiplying the probability of labels obtained from the Ranker for each
document with the label cluster probability obtained from the Matcher module. We refer
to this approach as the Divide and Conquer model since dividing the original task into two
simpler text classification subtasks allows us to improve the results considerably.

It is essential to clarify that this model is designed for extreme multi-label classification;
thus, every document has many labels. Also, every label will be part of only one cluster,
thus making the clusters a partition of the label space.

The source code to implement this model has been made available for future use by
creating a library 1 which can quickly reproduce all the results obtained and can be straight-
forwardly extended for other corpora. We proceed to detail every component of the model
and the library itself.

3.1 DaC Corpus Preprocessing

To explain how documents are preprocessed, first we must define what clusters are. Clustering
is the process of grouping similar objects into different groups, or more precisely, partitioning
a data set into subsets according to some defined distance measure [73].

Most clustering algorithms are based on two popular techniques known as hierarchical[44]
and partitional[63] clustering. These methods try to minimize the distance between the points
in the same cluster. We can achieve this minimization using a more straightforward approach

1https://github.com/plncmm/dac-divide-and-conquer

18

https://github.com/plncmm/dac-divide-and-conquer

Figure 3.1: Overview of the DaC Architecture.

leveraging the systematized ontologies in the clinical domain.

Our objective is to group semantically related labels, and for that, we use the clusters
defined by the semantic clusterization of the ontologies which are divided into categories of
labels. For example, for Codiesp Diagnostics, we use the first three letters of the label (that
refer to a disease category) to obtain clusters of semantically related labels. We can see the
defined clusters for each ontology in Tables 4.2, 4.3, and 4.4.

Then the process is divided into two modules. The Matcher for each document seen
tries to predict the clusters of labels to which the document belongs. Secondly, the Ranker
predicts the labels that each document contains. Then these two results are combined by
multiplying the probabilities of the cluster and the labels or simply by filtering the labels
predicted in clusters that were not predicted.

19

Figure 3.2: Overview of the Matcher module. P (Ci): probability of document having a code
in cluster i.

3.2 Matcher

As shown in Figure 3.2, the Matcher module assigns the probability of each document be-
longing to each cluster. Each document is part of all the clusters of the documents labels,
where each label belongs to a single a cluster. This task can be formulated as multi-label
text classification.

It is relevant to note that the number of clusters is significantly lower than the number
of labels on the corpus. For example, in the Codiesp-Diagnostics subtask, the amount of
different labels is 2.557, and the number of clusters is 21. This makes the task charged to the
Matcher a more simple one, classifying in fewer classes using significantly more documents
per class.

3.2.1 Transformers

To perform this classification, we decided to fine-tune a transformer-based architecture, as
these models have boosted the performance of NLP architectures in several NLP tasks,
including text classification.

Transformers models are based entirely on attention, replacing the recurrent layers most
commonly used in encoder-decoder architectures with multi-headed self-attention[109]. Fig-
ure 3.3 shows an overview of this architecture. This aims to draw global dependencies between
input and output without the need for sequential computation of Recurrent Neural Networks
(RNN)[99] or Long short-term memory (LSTM)[51].

The parallelization of computation that transformers achieved allowed for the pretraining
of large representation learning models by speeding up the process of training them. This
could not be accomplished by RNNs due to their linear nature and proved to be superior
representations of words than those previously used, like Word2Vec [75], and Glove [89].

20

Figure 3.3: Overview of the Transformers architecture [109].

These representation learning models learn a contextual representation of the tokens
training a transformer-based architecture on large corpora of unlabeled text. The models are
trained for semi-supervised tasks like next word prediction, where the decoder predicts the
next word of a sentence having the context of all the previous words (GPT[96], GPT-2[97]).
Nowadays, the most common task to pre-train a transformer model is creating a masked
language model where each sentence has a percentage of its tokens masked, and the decoder
is asked to predict the words that should replace the masks (BERT[40], RoBERTa[68]).

Although these representation models were able to solve context issues, they are trained
on general domain corpora such as Wikipedia, which limits their applications to specific
domains like the medical domain. To enhance the performance in other domains, like the
medical one, domain-specific transformer-based models like Sci-BERT[18], BioBERT[62], and
BioAL-BERT[81] have been proposed [82].

One of the most important advantages of these representation models is that they learn
contextual information and semantic relations and can be easily fine-tuned to more down-
stream tasks allowing outstanding performance on corpora with limited resources [95]. For
example, for text classification, the last linear layer is discarded and replaced with a new lin-
ear layer with the number of labels in the corpus as the output size. This is later fine-tuned
for a few epochs with the new corpora and task without needing the enormous amount of
resources and data to train a transformer from scratch.

The fine-tuning of these models is done by freezing some of the layers of the transformer

21

in training with a new corpus. The last layers are left to be trainable because the layers in
the end are thought to have weights that relate more to the task for which they were initially
trained. In contrast, the layers at the beginning are thought to capture universal features
[61].

We have tested different transformers for this task (BioMedical RoBERTa [27], BioClinical
RoBERTa [27] and BETO [26]) generally getting better results with BioClinical RoBERTa.

3.2.2 Settings Matcher

For the implementation, we have used the Flair framework [10] that has various tools that
help simplify the implementation of these models. For instance, they implement the training
cycle and metrics report. Also, they integrate with the HuggingFace hub for easily using
pre-trained transformers models. It is worth noting that Flair uses torch [35] as its machine
learning framework.

Because the task we are resolving is one of multi-label classification, we can not use soft-
max as the last layer activation function, considering that softmax keeps only one predicted
class. This has led us to use the sigmoid as the last layer activation function. After having
the results of the activation function, we apply a cross-entropy loss. This loss function is
called Binary Cross Entropy with Logits Loss [3] and can be defined as,

l(x, y) = mean(l1, ..., ln), li = −wi ∗ (yi log σ(xi) + (1− yi) log σ(1− xi)), (3.1)

where x is the output of the linear layer prior to the activation function, y is the gold standard
labels and n is the batch size.

As a scheduler, we use a linear scheduler with warmup, which linearly increases the
learning from 0 to the max learning rate during warmup and then decreases the learning rate
to 0.

The models are trained using the Adam with weight decay optimizer [72], which is an
improved version of Adam [58]. Adam is an optimizer that uses momentum to calculate the
gradient and tries to adapt the learning rate using past gradients. To accomplish this, it
uses exponential windows of the gradients in each update, giving more importance to the
last gradient when calculating the gradient and adapting the learning rate. This can be
formalized as:

PδW := β1PδW + (1− β1)δW ,

SδW := β2SδW + (1− β2)(δW ∗ δW) ,

PδW =
PδW

(1− βt1)
,

SδW =
SδW

(1− βt2)
,

W := W − λ√
SδW

∗ PδW ,

(3.2)

22

Figure 3.4: Overview of the Ranker module. P (Lij): probability of document having a
mention of code i in cluster j.

where W is the weights on each one of the parameters, PδW and SδW is a standard correction
for exponential window means (to avoid a cold start), PδW is the gradient using momentum,
SδW is the quadratic of the factor for which to adapt the learning rates, and β1, β2 are the
weights of the past gradients for each one of PδW and SδW .

As default settings, the model is trained for 15 epochs. This number was decided after
finetuning the model multiple times and checking that learning stagnates in the tenth epoch.
We have added five more epochs for security. It is relevant to note that the scheduler reduces
the learning rate, so no damage is done by adding more epochs.

We have used different batch sizes depending on the machine we have had available to
train the models but decided to keep 15 as a default batch size for evaluation, considering
that it fits in the GPU memory of a Kaggle Notebook.

3.3 Ranker

The Ranker module (shown in Figure 3.4) calculates, for each possible code, the probability
of belonging to the document. This process is carried out by training a single binary model
per code, following a one-vs-rest approach. Each model is trained only with documents with
codes belonging to the cluster. This way, the gold labels of this task are the codes in the
document.

Since each document can contain many codes, this problem, like the Matcher, can be
formulated as a multi-label text classification task. However, it is more challenging since
possible codes are much larger than the number of possible clusters in the other task. For

23

training the Ranker module, the input documents of the binary classifiers are encoded using
the TF-IDF method, and the output is fed into an Extreme Gradient Boosting model [30].

3.3.1 TF-IDF

The objective we are seeking is to classify the documents with multiple labels from the
cluster. One possible way of achieving this is by creating a ranking function for each one
of the labels. The Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical
statistic that reflects how important a word is to a document in the collection or corpus [101].
This method is often used in Information Retrieval to assign a score to a document according
to a query and then use those scores to rank every document on the corpus and extract the
most relevant.

TF-IDF is composed of two relevant term scores that support different notions and affect
different metrics, which multiplied give light to a widely used term score. First, we have
Term Frequency (TF) which is the number of occurrences of the query term t in document
d.

Term Frequency as above, suffers from a critical problem: all terms are considered equally
important when it comes to assessing relevancy of a query. In fact, certain terms have little
or no discriminating power in determining relevance. For instance, a collection of documents
on the auto industry is likely to have the term auto in almost every document [102].

To avoid giving relevance to a term that does not discriminate between documents, In-
verse Document Frequency (IDF) is a good weight factor because it gives higher scores for
terms that are present in fewer documents, thus effectively discriminating between different
documents. IDF can be defined as

IDFt = log

(
N

dft

)
, (3.3)

where N is the number of documents in the corpus and dft is the number of documents in
the corpus where the term t is present.

One of the most simple ranking functions and a widely used one is to simply sum the
TF-IDF of each term in a query for every document and use this as the document score,

Sd,q =
∑
t∈q

TF-IDFt, (3.4)

where Sd,q is the score of document d for query q and t ∈ q are the terms in query q.

We want to give a score for every label in a document. For this, we could get the
description of the label and treat this as the query and use the sum score function, but this
approach is too simple to get competitive results and does not even use the training data
provided.

Thus, one better way is to use a machine learning model as a scoring function and TF-IDF
encoding to represent the document. TF-IDF encoding can be defined as the output vector

24

when the complete vocabulary is the query. With this in mind, the score for each label in a
document would be,

Sd,l = f

TF-IDFt1
...

TF-IDFtn

 , (3.5)

where Sd,l is the score of label l for document d, f is a machine learning model and t1...tn is
the TF-IDF encoding of all terms in the vocabulary for document d.

3.3.2 One Vs Rest

As was discussed in 2.2.2 there are three strategies to design and implement various dis-
criminative multi-label classification models: data decomposition, algorithm extension, and
hybrid strategies. For the ranker we have decided to use data decomposition, which can be di-
vided into four widely used decomposition techniques: one-versus-rest (OvR), one-versus-one
(OVO), one-by-one (OBO), and label powerset (LP). [116].

We have chosen to use the OvR approach, also known in the multi-label scenario as Binary
Relevance method. To justify this choice, it is essential to explain the method and compare
it to the alternatives. OvR trains a single binary classifier for every label in the corpus. The
label of the binary classifier is 1 if the example is categorized with the label and 0 otherwise.
The final prediction is the ensemble of the results of every binary classifier,

OvR(x) =

fl1(x)
...

fln(x)

 , fli(x) ∈ [0, 1], (3.6)

where fli is the binary classifier for label i and x is the input document.

It is relevant to consider that this approach has certain advantages; it is possible to train
any model because all models are capable of doing binary classification, and the complexity
is θ(n) because there is only one model per label.

The one-vs-one approach consists of creating one subset for each combination of labels
in the corpus; these subsets have documents labeled with one of the two labels only (n(n−1)

2

subsets). Then each one of these subsets is used to train a binary classifier that aims to

separate the two classes. Finally, a voting system of the n(n−1)
2

classifiers is used to get the
final predictions.

Although OVO has shown to have better results than OvR [91], the complexity is θ(n2),
which, compared to OvR’s complexity of θ(n), is very costly for a large number of labels,
thus inapplicable for XMC.

Another option would be to use LP, which takes every combination of labels present in the
corpus as a new label, transforming the multi-label task into a simple multi-class problem.
This approach has the disadvantage that, in an XMC setting, the number of unique labels
explodes and the training examples for each one of the classes becomes scarce, thus making
the task a much more complicated one [24].

25

Figure 3.5: Example of CART Tree. Figure extracted from [4]

Finally, we could use OBO, which creates single-class subsets for each label, and support
vector data description to build single-class classifiers. Linear ridge regression is utilized to
integrate the single class classifiers into a multi-label classifier [115]. This approach has the
disadvantage that not every kind of model can be trained as single-class classifiers, thus losing
flexibility.

3.3.3 Gradient Boosting Trees

We have chosen to use Gradient Boosting Trees as a binary classifier for each one of the
one-vs-rest models. This decision was taken, weighing the computational cost of training one
model per label and the quality of the model’s predictions. Although, as previously discussed,
neural networks are the go-to choice when solving an NLP task, it is not feasible to train
one neural network (specifically a Transformer or LSTM) per label due to the computational
costs of this training in an XMC environment. Actually, due to the fact that each cluster has
fewer examples than the entire corpus, even training one neural network model per cluster
yields worse results because of the data scarcity issue. The other classical machine learning
methods were disregarded, taking into account that the best one-vs-rest algorithm had been
obtained using Gradient Boosting Trees by [23]. Also, because Gradient Boosting Trees has
shown excellent results in competitions worldwide [30].

Gradient Boosting Trees is a Classification and Regression Trees (CART) ensemble.
CARTs are Decision Trees that assign a score for each label in the leaf nodes using the
distribution of the classes in that leaf. We can see an example of a CART that differentiates
between oranges and mandarins in Figure 3.5.

The output of Gradient Boosted Trees is the sum of the results of all the composing trees.

26

This can be formalized as,

ŷi =
n∑
k=0

fk(xi), (3.7)

where ŷi is the predicted value for example xi, fk is the output of the tree k, and n is the
number of trees.

It is relevant to note that Random Forests are the most commonly known ensemble of
CARTs, but we are referring to these models as Gradient Boosting Trees because of how
these trees are trained. While a Random Forest is trained in a parallelized way and trees are
not related, Gradient Boosting Trees use a technique called tree boosting. This technique
trains each tree sequentially and uses the previous trees’ prediction so that the new tree
minimizes the residual errors.

This optimization task is done by minimizing a regularized objective function,

L =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (3.8)

where L is the objective function to minimize, l is any differentiable convex loss function,
and Ω(fk) is the regularization term of the tree k that penalizes the complexity of the model
(i.e., the regression tree functions). The additional regularization term helps smooth the final
learned weights to avoid over-fitting. Intuitively, the regularized objective will tend to select
a model employing simple and predictive functions.

This optimization task includes parameters that can not be optimized using traditional
optimization methods in Euclidean space, so the task is optimized using a greedy algorithm
that minimizes the loss for each added tree, thus forcing tree boosting to have a sequential
nature.

3.3.4 Settings XGBoost

As a tree boosting system, we have chosen to use XGBoost, which is a scalable end-to-end
system that is used widely by data scientists to achieve state-of-the-art results on many
machine learning challenges. The developers of XGBoost proposed a novel sparsity-aware
algorithm for sparse data (like tf-idf encoding of documents) and provided insights on cache
access patterns, data compression and sharding to build a scalable tree boosting system.
By combining these insights, XGBoost scales beyond billions of examples using far fewer
resources than existing systems [30].

Because it is not computationally feasible to perform a grid search for hyperparameter
tuning using a one-vs-rest approach, all hyperparameters were chosen using the XGBoost
documentation’s recommendations. First, we have chosen to use a column and row subsample
of 0.6 because it helps to avoid overfitting. So each newly added tree is trained only with
60% of the documents and using only 60% of the document tf-idf features.

Also, we have set the weights of the loss function relevance of the positive class using
XGBoost scale pos weight, which greatly helps when handling an imbalanced dataset. Since

27

we train one XGBoost binary classifier for each label, the positive class is less than 5% of the
training data in a cluster for almost all cases. The recommended value of scale pos weight
is spwl =

Dl

Dl
with Dl being the number of documents of the negative class and Dl being the

number of documents of the positive class. We have calculated this for each label and used
a constant scale pos weight per cluster of mean(spwl), l ∈ labels in cluster.

XGBoost mostly combines a huge number of CARTs with a small learning rate. In this
situation, trees added early are significant, and trees added late are unimportant. We have
chosen to use the DART booster, which addresses this issue by adding dropout techniques
from the deep neural net community into boosted trees and reported better results in some
situations [111].

Using DART, in each iteration, the loss function is calculated using a predicted value
that loses the prediction leaves of randomly selected trees. Thus forcing each newly added
tree to be able to predict correctly even with some of the other trees dropped, improving
generalization and avoiding overfitting.

Finally, as the tree selection method, we have used the exact method which greedily
enumerates all split candidates and selects the best one.

3.4 Combining results of the Matcher and Ranker

Having trained both the Matcher and the Ranker, the issue of how to combine the results
is left. We follow other machine learning models and implement two different ways, one
that outputs probabilities of all labels and another that simply predicts the labels of the
document.

First, we can get the probabilities of belonging to a cluster and label of unclassified
documents. It is important to note that the output probabilities of the Ranker are not
precisely the probabilities of the label because it was trained only with documents in the
cluster. More rigorously, they can be defined as the conditional probabilities of the label
given that it belongs to the cluster. So to get the probabilities of the label, we can use the
Bayes Theorem, which states:

P (L|C) =
P (C|L)P (L)

P (C)
,

P (L) =
P (L|C)P (C)

P (C|L)
,

(3.9)

where L is label, C is cluster, P (L|C) is the output probabilities of the Ranker, and P (C)
is the output probabilities of the Matcher. It is direct to note that P (C|L), the probability
of belonging to a cluster taking a label, is one if the label belongs to the cluster and zero
otherwise. So this equation can be redefined as:

P (L) = PRanker(L) ∗ PMatcher(C), L ∈ C . (3.10)

Another option is to output just the predicted classes. To generate this, we take a conservative
approach and do an inner join of the labels predicted and the clusters predicted, which means

28

that only predicted labels in a predicted cluster will be a predicted a label,

L = PredL ∩ PredLC , LC = L ∈ PredC . (3.11)

One of the problems of this architecture is that it has an error propagation from the Matcher
to the Ranker. More specifically, the documents that are wrongly predicted of one cluster
in the Matcher pass through to the Ranker, which has not seen similar documents in that
cluster.

To avoid this issue, we have implemented a correction when training with a validation set
(this can not be done if a validation set is not provided). This correction passes documents
whose cluster prediction is incorrect to the training of the binary classifiers of the wrongly
predicted cluster labeled with a negative class.

3.5 Ensemble

Ensemble methods are widely used methods in machine-learning and data-mining communi-
ties. By definition, an ensemble is a group of learning models whose predictions are aggregated
to give the final prediction. It is widely accepted that an ensemble is usually better than a
single classifier given the same amount of training information [119].

An ensemble learning framework or architecture features multiple weak predictive results
based on features extracted through a diversity of projections on data. Therefore, it can be
considered a standalone model for some purposes, especially regarding computational costs
[41].

A different approach is to ensemble strong learners, like deep neural networks or trans-
formers, done in the previous state-of-the-art of Codiesp and Cantemist [69]. We consider
this approach unfair because it only leverages different runs of the same computationally
expensive training process and thus confounds the advances obtained by creating better
architectures and simply applying more computational power.

However, for the purpose of competing in similar conditions, we have also created an
ensemble strategy in which we ensemble different instances of the DaC model and obtain
better results by brute force. The ensemble strategy is also done at two levels, ranking the
labels and predicting them.

The ranking of all the labels is done by summing the probabilities of the ensembled
models for each label. The prediction of the labels is a union of the predicted labels in all
the ensembled models.

Score(l, E) =
∑
m∈E

Prob(l,m) ,

Predicted(l, E) = max
m∈E

(Predicted(l,m)) .
(3.12)

29

3.6 Data Augmentation using Named Entities

Data Augmentation describes a set of algorithms that construct synthetic data from an
available dataset. This synthetic data typically contains small changes in the data that the
model’s predictions should be invariant to [103].

Most publications often overlook the importance of the data augmentation techniques
used, thus making their experiments’ reproducibility more challenging and claiming scores
higher than those other researchers may get when testing their models. Interestingly, 70%
of scientists report failure to reproduce someone else’s results, and more than half can not
reproduce their own [34]. To be able to reproduce all our results, the data augmentation
techniques we have used are explained below. Also, the code implementing these techniques
is part of the library so every implementation detail is transparent.

Furthermore, most libraries and implementations of different architectures see data aug-
mentation techniques as a preprocessing step and thus fail to include them in the library.
We have incorporated the data augmentation into the library and structured it so every user
can quickly implement and test the architecture on other corpora.

We have created four types of data augmentation techniques:

• NE Mentions: Each mention of an entity in the corpus documents is added as a new
document with the label being the mentioned entity.

• NE Sentences: Every document is split, by points and new lines, into all its com-
pounding sentences. Then we add every sentence as a new document with the entity
mentions in the sentence as its labels.

• NE Stripped: Every document is stripped of all the words that are not entity men-
tions. This is then added as a new document.

• Definition codes: For each code of the ontology we add documents with the dictionary
definitions that can be found in the ontology.

The first three techniques need to have a corpus in which the different labels are associated
with a span of the document (Named Entity), which is a widespread thing to happen because
most corpora are created to solve Named Entity Recognition tasks and Text Classification
tasks. An important term related to data augmentation is label preservation, which describes
transformations of training data that preserve class information [17]. We can observe that
these three augmentation techniques take the same documents and faithfully preserves the
correct labels in the creation of new shorter documents.

One common issue with XMC is that some labels are present in very few documents or
are not even present at all. The fourth augmentation adds roughly the same number of
documents per label, so it also has the benefit of evening out the number of documents per
label.

Finally, not all these data augmentation techniques are used both by the Matcher and the
Ranker. In fact, the Matcher uses a transformer architecture that is trained using sentences

30

and needs semantic context, so for the Matcher, NE Stripped would only make the results
worse and is not used.

3.7 Library

The DaC library is an open-source implementation of our architecture for extreme multi-
label classification leveraging semantic relations between the labels. The library is currently
hosted and published on Github and can be found at link2. It can be downloaded using
the pip package manager. The source code was structured according to the design and code
patterns used by the Flair framework for managing word embeddings [10]. All the library
code is written in Python and requires Python ≥ 3.6.

This library was created to fulfill the following objectives:

• Encapsulate the DaC architecture as a standalone model for ease of use

• Incorporate and make easily extensible to other corpora the data processing steps to
be able to train a DaC architecture

• Incorporate and easily extend to other corpora the data augmentation steps

It also provides:

• Easily reproduce results on the different corpora tested

• Easily save and load different model instances

• Integration with Google Cloud Storage to save and upload models to/from the cloud

• The support for training different instances of the architecture and evaluating the en-
semble of these instances

• Automatic creation of corpora data exploration

• Easily evaluate models using F1 score and MAP.

3.7.1 Library important classes

To be able to extend the DaC architecture to other corpora, one python class is paramount:
the DACCorpus. If these abstract class methods are implemented on other corpora, the
DaC architecture can be easily trained on other corpora. The methods to implement or
override are shown in Listing 1.

Listing 1: DACCorpus abstract model and methods to implement to adapt to other corpora.

2https://github.com/plncmm/dac-divide-and-conquer

31

https://github.com/plncmm/dac-divide-and-conquer

1 class DACCorpus(ABC):

2 def __init__(

3 self,

4 corpus: str,

5 data_path: Path,

6 augmentation_matcher: List[Augmentation] =

[Augmentation.descriptions_labels, Augmentation.ner_sentence],↪→

7 augmentation_ranker: List[Augmentation] = [

8 Augmentation.descriptions_labels,

9 Augmentation.ner_sentence,

10 Augmentation.ner_stripped,

11 Augmentation.ner_mention,

12],

13 augmentation_corpus: List[Augmentation] = [

14 Augmentation.descriptions_labels,

15 Augmentation.ner_sentence,

16 Augmentation.ner_stripped,

17 Augmentation.ner_mention,

18]

19)

20 pass

21

22 # Mandatory methods to implement

23

24 @abstractmethod

25 def process_corpus(self) -> pd.DataFrame:

26 """

27 :return: A pandas DataFrame with the following columns:

28 sentence: String with the document text

29 labels: List of strings with the document labels

30 split_type: train, test or dev

31 filename: Filename or id of the document

32 """

33 pass

34

35 @abstractmethod

36 def assign_clusters_to_label(self, label: str) -> List[str]:

37 """

38 :param: Label string

39 :return: A list of the label clusters

40 """

41 pass

42

43 # Optional methods to override

44

45 def download_corpus(self):

32

46 pass

47

48 def process_augmentation_ne_mentions(self) -> pd.DataFrame:

49 """

50 :return: A pandas DataFrame with the following columns:

51 filename: Filename or id of the document

52 mention_text: Mention string of an entity

53 label: Label of the mentioned entity

54 off0: Start offset of the mention

55 off1: End offset of the mention

56 """

57 pass

58

59 def process_augmentation_descriptions(self) -> pd.DataFrame:

60 """

61 :return: A pandas DataFrame with the following columns:

62 label: Label string

63 description: Text description of label

64 """

65 pass

If all these methods are implemented, testing the architecture is as simple as following the
code in Listing 2.

Listing 2: Testing example when all methods are implemented.

1 data_path = Path(".").resolve()

2 corpus = DACCorpusImplemented("corpus_name", data_path)

3 corpus.reproduce_mean_models() # To reproduce 5 training rounds

4 corpus.reproduce_ensemble_models() # To reproduce ensemble of 15 models

Of course, the data can be manually downloaded, and tweaking and testing of hyperparam-
eters of the architecture may be needed. For more significant manipulation, the code in
Listing 3 can be used:

Listing 3: Testing example when download method is not implemented.

1 data_path = Path(".").resolve()

2 corpus = DACCorpusImplemented("corpus_name", data_path)

3 corpus.create_corpuses() # Does all pre processing and data augmentation

steps↪→

4 model = DACModel(corpus.indexers_path, corpus.models_path, corpus.corpus)

5 ranker_train_args = {}

6 matcher_train_args = {}

33

7 model.train(matcher_train_args=matcher_train_args,

ranker_train_args=ranker_train_args)↪→

All the models implement the save, train, predict, eval, and upload to gcp methods. The
training and initialization arguments that can be passed to the Matcher and Ranker are
shown in Listings 4 and 5.

Listing 4: Initialization and training arguments of Matcher model.

1 class Matcher:

2 def __init__(

3 self,

4 indexers_path: Path,

5 models_path: Path,

6 indexer: str,

7 transformer: str =

"PlanTL-GOB-ES/roberta-base-biomedical-clinical-es",↪→

8 seed: int = 0,

9):

10 """

11 :param indexers_path: path of preprocessing files created by

DACCorpus↪→

12 :param models_path: path of where to save the models

13 :param indexer: corpus name given to DACCorpus

14 :param transformer: transformer name to use of HuggingFace

15 :param seed: Seed to set for Flair

16 """

17 ...

18

19 def train(

20 self,

21 upload_to_gcp: bool = False,

22 augmentation: List[Augmentation] = [

23 Augmentation.ner_sentence,

24 Augmentation.descriptions_labels,

25],

26 max_epochs: int = 15,

27 mini_batch_size: int = 10,

28 remove_after_running: bool = False,

29 downsample: int = 0.0,

30 train_with_dev: bool = True,

31 layers="-1,-2,-3,-4",

32 num_workers=2,

33 save_model_each_k_epochs: int = 0,

34 optimizer: torch.optim = torch.optim.AdamW,

34

35 scheduler=LinearSchedulerWithWarmup,

36 **kwargs,

37):

38 """

39 :param upload_to_gcp: if True uploads the model to Google Cloud

Storage after training↪→

40 :param augmentation: list of Augmentations to use

41 :param max_epochs: Max epochs to use

42 :param remove_after_running: Removes saved model after running,

may be useful to save disk space if it was already uploaded↪→

43 :param downsample: downsample of data

44 :param train_with_dev: Whether to use the validation set in

training↪→

45 :param layers: Layers to be finetuned

46 :param num_workers: to use loading corpus

47 :param save_model_each_epochs: Epochs to pass between model saves

48 :param optimizer: Optimizer to use for training

49 :param scheduler: Scheduler to use for training

50 :param **kwargs: Other arguments that can be passed to flair

trainer↪→

51 """

52 ...

Listing 5: Initialization and training arguments of Ranker model.

1 class Ranker:

2 def __init__(

3 self,

4 indexers_path: Path,

5 models_path: Path,

6 indexer: str,

7 seed: int = 0,

8):

9 """

10 :param indexers_path: path of preprocessing files created by

DACCorpus↪→

11 :param models_path: path of where to save the models

12 :param indexer: corpus name given to DACCorpus

13 :param seed: Seed to set for XGBoost

14 """

15 ...

16

17 def train(

18 self,

35

19 upload_to_gcp: bool = False,

20 split_types_train: List[str] = ["train", "dev"],

21 augmentation: List[Augmentation] = [

22 Augmentation.ner_mention,

23 Augmentation.ner_sentence,

24 Augmentation.ner_stripped,

25 Augmentation.descriptions_labels,

26],

27 use_incorrect_matcher_predictions: bool = False,

28 subset: int = 0,

29 transformer_for_embedding: str = None,

30 log_statistics_while_train: bool = True,

31 train_starting_from_cluster: int = 0,

32 train_until_cluster: int = None,

33 n_jobs_ova: Union[float, int] = 1,

34 n_jobs_xgb: Union[float, int] = -1,

35 scale_pos_weight: str = "max",

36 tree_method: str = "auto",

37 booster: str = "dart", # gbtree gblinear

38 subsample: float = 0.6,

39 colsample_bytree: float = 0.6,

40):

41 """

42 :param upload_to_gcp: Wether to upload model to Google Cloud

Storage after training↪→

43 :param split_types_train: Which splits to use for training

44 :param augmentation: Which Augmentation techniques to use for

training↪→

45 :param use_incorrect_matcher_predictions: Use incorrect matcher

predictions for training↪→

46 :param subset: Subset of data to train

47 :param transformer_for_embedding: Add transformer contextual

embedding to tf-idf embedding, should provide transformer name to use

for embedding

↪→

↪→

48 :param log_statistics_while_train: Output stats of test

evaluation during training↪→

49 :param train_starting_from_cluster: From which cluster index to

start. Useful for pausing and resuming training.↪→

50 :param train_until_cluster: With which cluster index to end.

Useful for pausing and resuming training.↪→

51 :param n_jobs_ova: How many hard forks to create for one vs rest.

Usefull for paralellizing the training.↪→

52 :param n_jobs_xgb: How many threads to use in XGBoost train.

Default all.↪→

53 :param scale_pos_weight: Wether to use the max or the mean of the

cluster as scale_pos_weight↪→

36

54 :param tree_method: Tree method for XGBoost

55 :param booster: Booster for XGBoost

56 :param sumsample: Row subsample for XGBoost

57 :param colsample_bytre: Column subsample for XGBoost

58 """

59 ...

3.7.2 Library files

We proceed to do a small summary of what every library module does; the library structure
can be seen in Figure 3.6. First, we have the model folder where the Matcher, Ranker, and
DACModel are implemented. Next, we have the dataset folder, which has a base file that
implements all data processing and augmentation in a single abstract class, DACCorpus.
Codiesp, Cantemist, and Falp files are the implementation of the DACCorpus abstract class
for each one of those corpora.
Finally, we have different files in the root directory that contain various utils:

• corpora downloader.py: Creates simple functions to download files.

• custom io.py: Implements various methods to do input-output operations.

• evaluation.py: Implements the evaluation of ensembles and of different training
rounds.

• flair utils.py: Common integration methods with Flair framework.

• gcp.py: Integrates with Google Cloud Storage.

• metrics.py: Calculate metrics for the predicted sentences.

• utils.py: Miscellaneous utils.

37

Figure 3.6: Overview of the DaC Library structure.

38

Chapter 4

DaC on multiple medical corpora

Having already explained the architecture, its modules, and parameters in the previous chap-
ter, we proceed to evaluate our architecture on four different corpora that exist for clinical
coding in Spanish; CodiEsp Diagnostics, CodiEsp Procedures, Cantemist and FALP. We also
do a brief analysis of the different modules of the architecture and provide general conclusions
about when the architecture thrives.

4.1 Corpora

The corpora were chosen to try to stay loyal to the scope of this work, which is to tag medical
documents with codes from different medical ontologies. It is also relevant to notice that we
have decided only to approach this issue in Spanish written documents since it is a highly
used language but with less available data than English. Finally, one crucial feature we
looked at in the candidate corpora was the straightforward evaluation and comparison of our
architecture. This means that every corpus chosen has previous work to compare with our
model, and even three of the four corpora used were created for a shared task, thus, having
various models to compare. The corpora characterization can be seen in Table 4.1.

CodiEsp-D CodiEsp-P Cantemist FALP
Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Documents 500 250 250 500 250 250 501 500 300 869 124 108
Avg document length 410 411 414 410 411 414 894 804 812 859 915 834
Avg codes per document 14.4 13.7 14.7 3.9 4.2 4.4 12.8 12 12.1 8.6 9.5 8.9
Avg clusters per document 4.9 4.9 4.8 1.9 2.0 2.0 2.8 2.8 2.8 2.8 2.8 2.9

Number of different codes (Nc) 2557 870 850 225
Number of clusters 21 17 51 51
Avg codes per document (Cardinality) 14.3 4.1 12.3 8.7
Density = Cardinality / Nc 0.006 0.005 0.014 0.39

Table 4.1: Statistics of the corpora.

It is relevant to note that the corpus that most suits the extreme multi-label classification
task is Codiesp-D. It has three times more different codes than Codiesp-P and Cantemist.
For this reason, it is also the most difficult of the tasks above, with more codes and fewer
documents to train. All the corpora have a similar amount of documents to train the classifiers

39

and evaluate them. However, the length of the cancer diagnoses in Cantemist and FALP is
almost double that of Codiesp EHRs. This poses some challenges for transformers which
have a limit of 512 tokens. However, the sentence separation data augmentation addresses
this challenge, so it does not affect the overall performance of the architecture. Finally, the
most simple task is the FALP task, having only 225 different codes and relatively the same
amount of documents.

4.1.1 CodiEsp

The CodiEsp corpus 1 is a collection of 1,000 clinical case reports written in Spanish that
cover a diversity of medical specialties. The training subset consisted of 500 documents, while
the development and test set consisted of 250 documents each. Professional clinical coders
exhaustively and manually annotated all documents with codes from the Spanish version of
ICD-10 (procedure and diagnostic) [77].

The manual annotation process followed official clinical coding guidelines published for Spain.
CodiEsp documents were coded with the 2018 version of CIE-10 (the official Spanish version
of ICD-10-Clinical Modification and ICD-10-Procedures) and inspired by the ”Manual de
Codificación CIE-10-ES Diagnósticos 2018” 2 and the ”Manual de Codificación CIE-10-ES
Procedimientos 2018” 3 provided by the Spanish Ministry of Health. A document describing
the annotation guidelines 4 was published to cover aspects and particularities relevant to the
sub-tasks and documents used for CodiEsp [77].

Clinical codes (diagnostic and procedure) were linked to textual evidence fragments that sup-
port their assignment. This textual evidence was used as named entities for our architecture
purposes, defining the textual evidence as the mentioned label.

While CodiEsp comprises three different subtasks, Diagnostics, Procedures, and Explainabil-
ity, we have tested our architecture on two subtasks that use this corpus: CodiEsp Diagnos-
tics and CodiEsp Procedures. The Explainability subtask consisted of giving the supporting
spans of text for each code predicted, and our model does not have a module to obtain the
highest weighted words of each code predicted. It is relevant to note that this could be
obtained using each label XGBoost model’s most important parameters, as it is an ensemble
of trees, but this is subject to future work.

4.1.2 Cantemist

The Cantemist corpus is a collection of 1301 oncological clinical case reports written in
Spanish. The training subset contains 501 documents, the development subsets 500, and

1https://doi.org/10.5281/zenodo.3625746
2https://www.sanidad.gob.es/eu/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_

2018_norm_MANUAL_CODIF_DIAG_.pdf
3https://www.sanidad.gob.es/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_

2018_norm_MANUAL_CODIFICACION_PROCEDIMIENTOS_EDICION_2018.pdf
4https://zenodo.org/record/3730567

40

https://doi.org/10.5281/zenodo.3625746
https://www.sanidad.gob.es/eu/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_2018_norm_MANUAL_CODIF_DIAG_.pdf
https://www.sanidad.gob.es/eu/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_2018_norm_MANUAL_CODIF_DIAG_.pdf
https://www.sanidad.gob.es/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_2018_norm_MANUAL_CODIFICACION_PROCEDIMIENTOS_EDICION_2018.pdf
https://www.sanidad.gob.es/estadEstudios/estadisticas/normalizacion/CIE10/CIE10ES_2018_norm_MANUAL_CODIFICACION_PROCEDIMIENTOS_EDICION_2018.pdf
https://zenodo.org/record/3730567

the test subset 300. All documents of the corpus have been manually annotated by clinical
experts with mentions of tumor morphology. Every tumor morphology mention is linked to
an eCIE-O code (the Spanish equivalent of ICD-O) [76].

To increase the usefulness and practical relevance of the Cantemist corpus, the creators
of the corpus selected clinical cases affecting all genders that comprised most ages (from
children to the elderly) and of various complexity levels (solid tumors, hemato-oncological
malignancies, neuroendocrine cancer, etc.). The Cantemist cases include clinical signs and
symptoms, personal and family history, current illness, physical examination, complementary
tests (blood tests, imaging, pathology), diagnosis, treatment (including adverse effects of
chemotherapy), evolution, and outcome [76].

While Cantemist offered two different subtasks: NER and coding, we only used our model for
the coding subtask. Following the same intuition as in CodiEsp we could use the explainabil-
ity features of an ensemble of trees to provide NER mentions. Still, it would be far-fetched
and probably not the best approach to this issue. The named entities from the NER subtask
were used for data augmentation, as it is explained in 3.6.

4.1.3 FALP

The FALP corpus was created by collecting 1,101 anonymized pathology reports from the
Oncology Institute Fundación Arturo López Pérez (FALP) cancer registry written in Spanish
by pathologists. The reports already came with ICD-O morphologic and topographic codes
assigned at the document-level by FALP expert coders. Subsequently, all tumor morphology
and topography mentions inside the documents were manually annotated by clinical experts
[110].

Two FALP clinical experts with extensive experience in ICD-O coding performed manual
annotation of the FALP corpus using INCEpTION. This platform offers an intuitive user
interface, flexible configuration of the annotation scheme, and workflow support with anno-
tation and adjudication stages. It also offers an assistance system through recommenders
and active learning, which improves the efficiency of the manual annotation process [110].

Morphology annotations were performed following the Cantemist guidelines, while topogra-
phy annotation guidelines were developed from scratch following the design of the Cantemist
project [110].

The DaC architecture was tested only on the morphology mentions and could be extended
to the topology mentions. As the FALP corpus was primarily created for NER we defined
the codes in a document as all the codes of the named entities of the document and used the
named entities as a data augmentation technique.

It is relevant to note that the FALP corpus is private and is intended to be used for a shared
task, so the data is not yet available for reproducibility but will be in the forthcoming future.

41

4.2 Ontologies and Cluster Choice

Every corpus previously mentioned has documents tagged with medical codes in some ontol-
ogy. The ongoing rapid growth of the amount of available data and its use in a wide range
of domains to solve different complex tasks requires sophisticated techniques of intelligent
information and knowledge management. These efforts have resulted in a significant number
of data integration and management systems and tools enriched with vocabularies, thesauri,
terminologies, and ontologies [52].

There are no universally accepted definitions for ontology, but in computer science, it is
usually defined as an explicit, formal specification of a shared conceptualization [48].

Associating diseases and medical entities to unique codes started in medicine around 1880,
and for an extended period, the ICD was the only medical terminology resource. The newest
edition (ICD-10) is translated into 42 languages and maintained by the World Health Or-
ganization (WHO) [86]. All the corpora we have analyzed are coded in different variants of
the ICD ontology; disease codes (ICD-10-CM), procedure codes (ICD-10-PCS), and cancer
morphology codes (ICD-O-3). Since every ontology is different, every ontology has its own
clustering method that is based on the categories of the ontology.

4.2.1 Ontology - ICD-10-CM

The ICD-10-CM ontology comprises around 68,000 codes that relate to the different diagnoses
in the clinical domain. Work on ICD-10-CM began in 1983, became endorsed by the Forty-
third World Health Assembly in 1990, and was first used by member states in 1994 [8].

The ICD-10-CM coding system allows users of clinical healthcare data to get more specific
than the previous ICD-9 ontology. The features included in the ICD-10-CM coding system
allow for expansion and fine-grained differentiation between diagnoses [28].

ICD-10-CM starts with alpha (uses all letters except “U”); 2nd character is always numeric;
3rd–7th characters can be alpha or numeric; decimal is always after 1st three digits [28].

We have decided to use the first three digits prior to the decimal as the relevant part of the
code for clustering. This was agreed upon following the chapters of the ICD-10 coding guide
[86]. As it is shown in Table 4.2 the clusterization is done by assigning codes to different
ranges of the first three digits, which share a semantic relation.

Table 4.2: Clusters defined for ICD-10-CM Ontology.

Label partitioning Assigned Cluster
From a00 to b99 Certain infectious and parasitic diseases
From c00 to d49 Tumors [neoplasms]
From d50 to d89 Diseases of the blood and hematopoietic organs, and certain

disorders that affect the mechanism of immunity
Continued on next page

42

Table 4.2 – continued from previous page
Label partitioning Assigned Cluster
From e00 to e89 Endocrine, nutritional and metabolic diseases
From f00 to f99 Mental and behavioral disorders
From g00 to g99 nervous system diseases
From h00 to h59 Diseases of the eye and its adnexa
From h60 to h95 Diseases of the ear and mastoid process
From i00 to i99 Circulatory system diseases
From j00 to j99 Diseases of the respiratory system
From k00 to k95 Digestive system diseases
From l00 to l99 Diseases of the skin and subcutaneous tissue
From m00 to m99 Diseases of the musculoskeletal system and connective tissue
From n00 to n99 Diseases of the genitourinary system
From o00 to o9a Pregnancy, childbirth and puerperium
From p00 to p96 Certain conditions originating in the perinatal period
From q00 to q99 Congenital malformations, deformities and chromosomal ab-

normalities
From r00 to r99 Abnormal clinical and laboratory symptoms, signs, and find-

ings, not elsewhere classified
From s00 to t88 Injuries, poisoning and some other consequences of external

causes
From v00 to y99 External causes of morbidity and mortality
From z00 to z99 Factors influencing health status and contact with health ser-

vices

4.2.2 Ontology - ICD-10-PCS

ICD-10-PCS is a coding system designed to accommodate the rapidly changing world of
procedures better. The code system was developed in the 1990s, but the use of the continually
updated codes started almost 20 years later [105]. This coding system was developed to
differentiate diagnostics from procedures in the new ICD-10 ontology. While the ICD-9 had
procedure codes, ICD-10-CM did not, so the need to create ICD-10-PCS was noticeable.

ICD-10-PCS provides a multi-axial design to the codes, with each code consisting of seven
alphanumeric characters. The first character is the section of the code. The second through
seventh characters means different things in each section. The ten digits 0-9 and the 24
letters A-H, J-N, and P-Z may be used in each character. The letters O and I are excluded
to avoid confusion with the numbers 0, and 1 [9].

To assign clusters, we have decided to use the first character of the code, the section. Although
the multi-axial design meant we could have chosen any of the seven characters to clusterize,
we decided to use the first one because the section is at the top of the hierarchy.

43

Table 4.3: Clusters defined for ICD-10-PCS Ontology.

Label partitioning Assigned Cluster
Starting with 0 Medical and Surgical
Starting with 1 Obstetrics
Starting with 2 Placement
Starting with 3 Administration
Starting with 4 Measurement and Monitoring
Starting with 5 Extracorporeal or Systemic Assistance and Performance
Starting with 6 Extracorporeal or Systemic Therapies
Starting with 7 Osteopathic
Starting with 8 Other Procedures
Starting with 9 Chiropractic
Starting with B Imaging
Starting with C Nuclear Medicine
Starting with D Radiation Oncology
Starting with F Physical Rehabilitation and Diagnostic Audiology
Starting with G Mental Health
Starting with H Substance Abuse Treatment
Starting with X New Technology

4.2.3 Ontology - ICD-O-3

The International Classification of Diseases for Oncology (ICD-O-3) is the third revision
of a domain-specific ICD ontology for tumor diseases (ICD-O). This classification is widely
used by cancer registries and has two axes: topography which refers to cancer location, and
morphology which refers to the cancer histology and behavior. To the best of our knowledge,
identifying morphology and topography has not been solved together in Spanish. In fact, in
Cantemist the topography codes are not even annotated.

The clusterization for the morphology axis has been defined using a range of the first three
digits of the codes, and it is shown in Table 4.4. This clusterization was chosen following the
categories provided in [87].

Table 4.4: Clusters defined for ICD-O-3 Ontology.

Label partitioning Assigned Cluster
Label partitioning Assigned Cluster
From 800 to 800 Neoplasms, Sai
From 801 to 804 Epithelial Neoplasms, Sai
From 805 to 808 Epidermoid Neoplasms
From 809 to 811 Basal Cell Neoplasms

Continued on next page

44

Table 4.4 – continued from previous page
Label partitioning Assigned Cluster
From 812 to 813 Papillomas and Transitional Cell Carcinomas
From 814 to 838 Adenomas and Adenocarcinomas
From 839 to 842 Skin Adnexa Neoplasms
From 843 to 843 Mucoepidermoid Neoplasms
From 844 to 849 Cystic, Mucinous and Serous Neoplasms
From 850 to 854 Ductal, Lobular and Medullary Neoplasms
From 855 to 855 Acinar Cell Neoplasms
From 856 to 857 Complex Epithelial Neoplasms
From 858 to 858 Epithelial Neoplasms Thymomas
From 859 to 867 Specialized Gonadal Stromal Neoplasms
From 868 to 871 Paragangliomas and Glomus Tumors
From 872 to 879 Nevi and Melanomas
From 880 to 880 Soft Tissue Tumors and Sarcomas, Sai
From 881 to 883 fibromatous neoplasms
From 884 to 884 Myxomatous Neoplasms
From 885 to 888 Lipomatous Neoplasms
From 889 to 892 Myomatous Neoplasms
From 893 to 899 Complex Mixed and Stromal Neoplasms
From 900 to 903 Fibroepithelial Neoplasms
From 904 to 904 Synovial Neoplasms
From 905 to 905 Mesothelial Neoplasms
From 906 to 909 Germ Cell Neoplasms
From 910 to 910 Trophoblastic neoplasms
From 911 to 911 mesonephromas
From 953 to 953 meningiomas
From 912 to 916 Blood Vessel Tumors
From 917 to 917 Lymphatic Vessel Tumors
From 918 to 924 Bone and Chondromatous Neoplasms
From 925 to 925 Giant Cell Tumors
From 926 to 926 Other Bone Tumors
From 927 to 934 Odontogenic Tumors
From 935 to 937 Other Tumors
From 938 to 948 gliomas
From 949 to 952 Neuroepitheliomatous Neoplasms
From 954 to 957 Nerve Sheath Tumors
From 958 to 958 Granular Cell Tumors and Alveolar Soft Tissue Sarcoma
From 959 to 972 Hodgkin and Non-Hodgkin lymphomas
From 973 to 973 Plasma Cell Tumors
From 974 to 974 Mast Cell Tumors
From 975 to 975 Histiocyte and Accessory Lymphoid Cell Neoplasms
From 976 to 976 Immunoproliferative diseases
From 980 to 994 leukemias
From 995 to 996 Other Myeloproliferative Syndromes
From 997 to 997 Other Hematologic Disorders

Continued on next page

45

Table 4.4 – continued from previous page
Label partitioning Assigned Cluster
From 998 to 999 Myelodysplastic syndromes

4.3 Metrics

One way of generalizing effectiveness metrics to the multi-label scenario consists in modeling
the problem as a ranking task, i.e., the system returns an ordered label list for each item
according to its suitability. Reducing the classification to a ranking problem is especially
appropriate in extreme classification scenarios and simplifies the definition of metrics. [12]

Ranking problems are more commonly associated with Information Retrieval tasks, where the
output is the relevant documents based on a query but can be extended to multi-label using
the following definition. An XMC problem is learning a score function f : X × Y → R, that
maps a (document, label) pair (x, y) to a score f(x, y). The function f should be optimized
such that highly relevant (x, y) pairs have high scores, whereas the irrelevant pairs have low
scores.

Mean Average Precision is often used as an indicator for evaluating the ranked output of
documents in standard retrieval experiments [59] and has shown good discrimination and
stability [102]. It has also been used as the primary metric to rank participants in both
Cantemist [76] and CodiEsp [77].

The Average Precision (AP) of a document is defined as,

AP =
1

R

R∑
i=1

xi ∗ P@i ,

P@n =
1

n

n∑
k=1

xk ,

(4.1)

where xj is a variable that for the label ranked at position j is one if the label is in the gold
set and zero otherwise, P@n is precision at n labels and R is the total amount of labels. The
Mean Average Precision (MAP) is the mean accross all documents,

MAP =
1

D

D∑
d=0

APd, (4.2)

where D is the total amount of documents. An essential feature of AP compared to P@n,
as shown in 4.1, is that the gold labels do not have to be a ranked list. It can be a label set
because it only weights the relevant labels.

Another way of measuring performance in multi-label classification is using the typical micro-
F1 score. Although it is not specially fitted for these tasks, it also conveys critical information

46

to compare models. We use this as a secondary metric following the example of CodiEsp and
Cantemist.

Precision is the first component of the F1 score; it can be interpreted as counting the correct
percentage from everything that has been predicted as positive. A precise model may not
find all the positives, but the ones that the model classifies as positive are very likely to be
correct. An unprecise model may find most of the positives, but its selection method is noisy,
detecting many positives that are actually negatives. It is defined as,

P =
TP

TP + FP
, TP = True Positives, FP = False Positives . (4.3)

Recall is the second component of the F1 Score; it can be interpreted as how many predicted
positive examples from everything that is actually positive the model managed to obtain. A
model with high recall succeeds well in finding all the positive cases in the data, even though
they may also wrongly identify some negative cases as positive cases. A model with a low
recall cannot find most of the positive cases in the data. It is defined as,

R =
TP

TP + FN
, TP = True Positives, FN = False Negatives . (4.4)

F1 score can be defined as a harmonic mean of precision and recall. A model will obtain a
high F1 score if both precision and recall are high, a low F1 score if both precision and recall
are low, and a medium F1 score if one of precision and recall is low and the other is high. It
is defined as,

F1 = 2 ∗ P ∗R
P +R

. (4.5)

Another widely used metric in multi-label scenarios is the Hamming Score, which can be
related to accuracy taking into account partially correct predictions. The Hamming Score
is defined as one minus the Hamming Loss. The Hamming Loss can be calculated by sum-
ming the number of labels incorrectly predicted (false negatives and false positives) for each
document and then dividing it by the sum of the number of gold labels in each document.

Although this metric has high interpretability (being that it can be interpreted as the accu-
racy in a multi-label scenario), it was not calculated. This decision was taken because the
competitions and the prior relevant work did not use the metric, so we had no comparison
with the other models.

4.4 Evaluation

To compare the predictions against the actual data, we used the metrics described in Section
4.3. These metrics were evaluated on the test set provided by the shared tasks, so com-
parability to other models is assured. To avoid data leakage, the test set was completely
separated from the training process; it is not used to train the models, define the encoding
of the documents, or even in data augmentation techniques such as the description of the
labels.

47

However, the process of training a transformer and boosting trees is not deterministic, so
reporting a performance score of one training round is an unfair comparison with the other
participants. They had to predict one single run but were blind to the test set, so they could
not choose the runs where they had better outcomes.

To correctly determine whether the differences between the performance of our model and
the other models are reliable or just due to statistical chance, we have done five different
training rounds, each with a different seed, ensuring different results. The results reported
are the mean of these five training rounds, and the standard deviation is also reported for
completeness.

Regarding the performance of the ensemble models, the report of different training rounds
is unfeasible due to the fact that we would have to train an immense amount of models.
However, the statistical chance is interiorized in the ensemble because it uses 15 different
instances of the architecture.

Notably, the FALP corpus has not been divided by the creators yet, so the training, testing
and validation subsets were randomly defined. We used 80% of the documents for training,
10% for validation, and 10% for testing.

4.5 Results

CodiEsp-D CodiEsp-P Cantemist Falp
Model MAP F1 MAP F1 MAP F1 MAP F1

IXA-AAA [23] 0.593 0.009 0.425 0.008 - - - -
IAM [36] 0.521 0.687 0.493 0.522 - - - -
FLE [46] 0.519 0.679 0.443 0.514 - - - -
The Mental Strokers [37] 0.517 0.591 0.445 0.488 - - - -
Vicomtech [45] - - - - 0.847 0.855 - -
ICB-UMA [70] 0.482 0.009 - - 0.847 0.013 - -
FlatNER + Search Engine [110] - - - - - - 0.416 -
Clinical Coding Transformers - Best [69] 0.616 - 0.514 - 0.862 - - -
Clinical Coding Transformers - Ensemble [69] 0.662 - 0.544 - 0.884 - - -
Divide and Conquer (DaC) 0.665 0.746 0.545 0.553 0.788 0.712 0.957 0.919
Divide and Conquer - Ensemble (DaC-E) 0.682 0.744 0.562 0.560 0.804 0.695 0.964 0.907

Table 4.5: Overall results on three clinical coding datasets. Results of Clinical Transformers
are taken from the author’s paper. FlatNER + Search engine results were calculated by us
using predictions provided to us by the authors. All the other results are from the compe-
titions overview. Some results are missing because those approaches were not implemented
for the corresponding tasks.

Table 4.5 shows the overall results of our model. We reported two different results for the
DAC architecture: the average of five distinct training rounds using the original approach
and another result from a version that ensembled 15 different model instances. We did not
do a mean of five executions for the latter because that would involve training 75 instances,
and the variation is interiorized in the 15 different instances.

48

Interestingly, our base model achieves state-of-the-art results in both CodiEsp tasks, sur-
passing the best base model (Clinical Coding Transformers - Best [69]) by 8% in CodiEsp
diagnostics and by 6% in CodiEsp Procedures.

Even in comparison with an ensemble of strong learners, which obtains a similar performance
(Clinical Coding Transformers - Ensemble [69]), our base model surpasses their results by a
small margin of 0.5% in CodiEsp Diagnostics and 0.2% in CodiEsp Procedures. Their results
correspond to 15 distinct runs of 3 different strong learners, where each language model was
trained with a private oncology corpus. Unlike the mentioned work, we used only publicly
available resources and a simpler architecture in terms of computational cost.

Most notably, our ensemble-based version of 15 different instances of our model outperformed
previous results in the CodiEsp tasks by a wide margin, outperforming state-of-the-art meth-
ods, including ensembles of strong learners, on CodiEsp-D and CodiEsp-P by 3.0% and 3.3%,
respectively.

In the FALP corpus, our base model has surpassed the previous method by an astonishing
131% according to the MAP metric. However, this corpus has not been tested using multiple
different approaches, more models will be tested in the FALP documents in the forthcoming
future, and this work can be considered a benchmark for those.

Although we did not obtain state-of-the-art in CANTEMIST, our models still achieve com-
petitive performance. In fact, in the original shared task [76], we would have finished in
third place, only surpassed by ICB-UMA [70] and Vimcotech [45], the two tied winners of
the competition.

Regarding the comparison between our base model and the ensemble, we can observe in Table
4.5 that the ensemble-based version is better than the base version according to the MAP
metric but not necessarily for the F1 metric. This finding opens space for a better choice of
voting mechanism for what classes to predict when using an ensemble of models.

We hypothesize that the high performance of our model is because the original text classifi-
cation task is reduced to two subtasks, where the number of possible labels is smaller. First,
the Matcher module performs a text classification in which the number of labels is equal to
the number of clusters. Secondly, the Ranker is trained only with documents belonging to a
cluster, which allows for a fine-grained differentiation between similar codes.

The differences between the datasets’ results, not only in our model but in all the others
as well, can be explained by taking into account two factors: the number of different codes
(Cardinality) and the number of different codes in the dataset (Nc). These 2 factors can be
comprised into the label density of the corpora, which greatly explains the overall results
that every model can have in each dataset.

As can be seen in Table 4.1, when comparing the results between Codiesp-D, FALP, and
Cantemist, the fewer codes there are in the entire dataset, the easier it is to do the classi-
fication. This conclusion is straightforward, taking into account that fewer codes make the
task less extreme and thus easier to resolve.

The other factor that can explain the differences between results (the cardinality) becomes

49

apparent by comparing the results obtained in Cantemist and Codiesp-P. While both have
a similar number of different codes, Codiesp-P has fewer examples to learn from because it
has roughly one-third as many codes per document as Cantemist.

These two metrics can be combined into a single metric: label density. It can be noted by
looking at the label densities of the different corpora in Table 4.1 and the results in Table
4.5 that label densities explain the degree of difficulty associated with the task at hand. This
conclusion is shared for the clinical coding task in [22].

4.6 Module Analysis

To provide a more comprehensive analysis of the architecture, we have computed metrics
for each one of the modules. These metrics help us gain insights into which part of the
architecture levels are acceptable and allow us to know when high scores for the architecture
as a whole can be expected.

Regarding the Matcher module, we report the MAP and the F1 score when the gold labels
are the clusters. In the case of the Ranker module, we had to approach the issue of creating
metrics that could evaluate its performance independently from the Matcher step, which is
not straightforward. To overcome this issue, we have defined a weighted metric in which,
for each cluster, we calculate the metric for that cluster’s sentences. Then the clusters
metrics are aggregated and weighted by the number of sentences in each cluster. This metric
indicates how well the Ranker is labeling the documents. However, by itself, it does not give
information that can relate to a practical task because it assumes that the previous step is
correctly solved. It can be interpreted as what the metric would be if the Matcher had a
perfect performance and thus acts as a ceiling for the DaC model’s final performance.

In Tables 4.6, 4.7, 4.8, and 4.9 we report all the experiments made with the architecture
for each corpus. We have performed experiments for 15 instances of the architecture with
different seeds, five using BioClinical RoBERTa, five using BioMedical RoBERTa, and five
using BETO. We also report the mean of the executions for each type of transformer and
also the ensemble results of the architecture.

We can see in Tables 4.6, 4.7, 4.8, and 4.9 that the MAP and F1 scores for the Matcher are
high in all the experiments. This is required for the architecture to be competitive; otherwise,
the error propagation leads to a low-quality final model. Most notably, in the FALP corpus,
the scores are almost perfect, meaning that the chosen clusterization was correct and created
clusters whose identification is relatively simple.

It is trivial that the Ranker metrics are not correlated to the transformer used because the
Ranker does not use a transformers model. Though what is interesting is that the Ranker
scores are much more consistent than the Matchers. This can be noted even within the
same transformers models like in Table 4.6 where for BioClinical RoBERTa, we have the
best and worst Matcher, and a 5-point gap separates them. This is probably due to the
fact that the initial weights given by the seed may interfere with the correct learning of the
transformer, leading to some instances that fail to achieve competitive performances. Even

50

Matcher Ranker DaC
Model MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - 1 0.943 0.880 0.727 0.726 0.670 0.737
BioClinical RoBERTa - 2 0.889 0.783 0.729 0.725 0.654 0.697
BioClinical RoBERTa - 3 0.926 0.842 0.730 0.725 0.666 0.725
BioClinical RoBERTa - 4 0.945 0.878 0.731 0.729 0.668 0.739
BioClinical RoBERTa - 5 0.948 0.876 0.729 0.726 0.667 0.736
BioMedical RoBERTa - 1 0.936 0.866 0.729 0.724 0.663 0.730
BioMedical RoBERTa - 2 0.943 0.877 0.726 0.725 0.663 0.736
BioMedical RoBERTa - 3 0.944 0.871 0.731 0.726 0.667 0.734
BioMedical RoBERTa - 4 0.942 0.868 0.731 0.726 0.665 0.731
BioMedical RoBERTa - 5 0.926 0.842 0.732 0.727 0.665 0.713
BETO - 1 0.915 0.819 0.729 0.731 0.657 0.712
BETO - 2 0.924 0.840 0.727 0.733 0.650 0.724
BETO - 3 0.920 0.828 0.729 0.723 0.654 0.706
BETO - 4 0.921 0.837 0.727 0.731 0.652 0.719
BETO - 5 0.900 0.798 0.729 0.722 0.653 0.702
BioClinical RoBERTa - Mean 0.930 0.852 0.729 0.726 0.665 0.727
BioMedical RoBERTa - Mean 0.938 0.865 0.730 0.726 0.665 0.729
BETO - Mean 0.916 0.824 0.728 0.728 0.653 0.713
Ensemble - - - - 0.682 0.744

Table 4.6: Report of metrics for each module and model trained in CodiEsp Diagnostics.
The F1 scores of both the DaC model and the Ranker use only the first three characters
of the code as the label, following the procedures of how to evaluate the models created by
the competition. The bolded results indicate the best metric score for each module and the
underline mark the worst performance.

with this ”failed” Matcher, the mean of BioClinical RoBERTa managed to obtain state-of-
the-art results for the CodiEsp Diagnostics task.

Another interesting finding is that, we can see no significant difference between the domain-
specific language models (RoBERTa BioMedical and BioClinical) in the tasks we performed
experiments on. However, the general-domain language model we have tested (BETO) has
significantly lower performance on all the tasks except in the FALP corpus. This can be
explained because the FALP task was more straightforward according to our model results.

Finally, it is important to note that the ensemble-based architecture significantly outperforms
all the base models at hand, at least in the MAP metric. In the F1 metric, it surpasses the
models in the CodiEsp tasks and fails in the Cantemist and FALP corpora. This adds room
for improvement in how the class prediction is combined to calculate the F1 metric.

51

Matcher Ranker DaC
Model MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - 0 0.939 0.883 0.614 0.588 0.543 0.537
BioClinical RoBERTa - 1 0.944 0.881 0.610 0.577 0.549 0.528
BioClinical RoBERTa - 2 0.941 0.873 0.612 0.582 0.542 0.533
BioClinical RoBERTa - 3 0.940 0.881 0.614 0.580 0.544 0.533
BioClinical RoBERTa - 4 0.941 0.877 0.621 0.592 0.545 0.547
BioMedical RoBERTa - 5 0.948 0.857 0.612 0.586 0.549 0.534
BioMedical RoBERTa - 6 0.956 0.869 0.620 0.603 0.546 0.549
BioMedical RoBERTa - 7 0.938 0.867 0.617 0.581 0.542 0.512
BioMedical RoBERTa - 8 0.940 0.868 0.615 0.587 0.546 0.531
BioMedical RoBERTa - 9 0.955 0.873 0.620 0.578 0.549 0.529
BETO - 10 0.944 0.860 0.616 0.582 0.534 0.517
BETO - 11 0.934 0.851 0.609 0.586 0.526 0.526
BETO - 12 0.933 0.853 0.612 0.588 0.538 0.534
BETO - 13 0.938 0.856 0.615 0.586 0.540 0.521
BETO - 14 0.931 0.846 0.611 0.592 0.528 0.527
BioClinical RoBERTa - Mean 0.941 0.879 0.614 0.584 0.545 0.536
BioMedical RoBERTa - Mean 0.947 0.867 0.617 0.587 0.546 0.531
BETO - Mean 0.936 0.853 0.612 0.587 0.533 0.525
Ensemble - - - - 0.562 0.560

Table 4.7: Report of metrics for every module and model trained in CodiEsp Procedures.
The F1 scores of both the DaC model and the Ranker use only the first four characters of
the code as the label, following the procedures of how to evaluate the models created by the
competition. The bolded results point to the best metric score for each module, and the
underline marks the worst performance.

52

Matcher Ranker DaC
Model MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - 0 0.956 0.899 0.823 0.710 0.791 0.705
BioClinical RoBERTa - 1 0.955 0.903 0.817 0.714 0.786 0.711
BioClinical RoBERTa - 2 0.950 0.898 0.821 0.711 0.789 0.706
BioClinical RoBERTa - 3 0.951 0.899 0.823 0.711 0.787 0.703
BioClinical RoBERTa - 4 0.953 0.898 0.820 0.710 0.787 0.705
BioMedical RoBERTa - 5 0.943 0.900 0.827 0.715 0.784 0.710
BioMedical RoBERTa - 6 0.948 0.896 0.816 0.716 0.780 0.706
BioMedical RoBERTa - 7 0.950 0.895 0.817 0.712 0.785 0.708
BioMedical RoBERTa - 8 0.944 0.894 0.820 0.713 0.784 0.709
BioMedical RoBERTa - 9 0.956 0.905 0.817 0.709 0.788 0.708
BETO - 10 0.915 0.858 0.830 0.716 0.767 0.694
BETO - 11 0.922 0.863 0.815 0.709 0.763 0.696
BETO - 12 0.916 0.858 0.814 0.707 0.761 0.687
BETO - 13 0.914 0.856 0.824 0.711 0.765 0.686
BETO - 14 0.909 0.851 0.825 0.716 0.760 0.695
BioClinical RoBERTa - Mean 0.953 0.900 0.821 0.711 0.788 0.706
BioMedical RoBERTa - Mean 0.948 0.898 0.819 0.713 0.784 0.708
BETO - Mean 0.915 0.857 0.822 0.712 0.763 0.692
Ensemble - - - - 0.804 0.695

Table 4.8: Report of metrics for every module and model trained in Cantemist. The bolded
results point to the best metric score for each module, and the underline marks the worst
performance.

53

Matcher Ranker DaC
Model MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - 0 0.994 0.975 0.975 0.940 0.958 0.925
BioClinical RoBERTa - 1 0.991 0.979 0.976 0.935 0.957 0.921
BioClinical RoBERTa - 2 0.992 0.976 0.978 0.930 0.960 0.916
BioClinical RoBERTa - 3 0.990 0.973 0.975 0.930 0.956 0.915
BioClinical RoBERTa - 4 0.995 0.979 0.977 0.932 0.956 0.916
BioMedical RoBERTa - 5 0.992 0.987 0.970 0.937 0.955 0.928
BioMedical RoBERTa - 6 0.986 0.976 0.973 0.939 0.955 0.924
BioMedical RoBERTa - 7 0.988 0.981 0.974 0.935 0.956 0.923
BioMedical RoBERTa - 8 0.992 0.978 0.974 0.931 0.959 0.913
BioMedical RoBERTa - 9 0.990 0.983 0.973 0.934 0.953 0.923
BETO - 10 0.996 0.976 0.976 0.938 0.963 0.922
BETO - 11 0.990 0.982 0.969 0.933 0.950 0.922
BETO - 12 0.993 0.970 0.977 0.934 0.962 0.917
BETO - 13 0.994 0.974 0.972 0.934 0.957 0.916
BETO - 14 0.995 0.975 0.973 0.935 0.960 0.922
BioClinical RoBERTa - Mean 0.993 0.977 0.976 0.933 0.957 0.919
BioMedical RoBERTa - Mean 0.990 0.981 0.973 0.935 0.955 0.922
BETO - Mean 0.994 0.975 0.973 0.935 0.958 0.920
Ensemble - - - - 0.964 0.907

Table 4.9: Report of metrics for every module and model trained in FALP. The bolded
results point to the best metric score for each module, and the underline marks the worst
performance.

54

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work proposes a novel model for clinical coding in Spanish, outperforming previous
results in three datasets; CodiEsp-D, CodiEsp-P, and FALP. Also, we obtained competitive
results on the Cantemist task. Our method uses a Divide and Conquer approach that creates
semantic groups of codes to build an architecture composed of two specialized modules: the
Matcher and the Ranker.

The task of the clinical coding problem is separated into two simpler problems solved by
each one of the modules. First, the Matcher predicts the clusters of each document, and then
the Ranker predicts the codes of each document given a cluster. This division allows us to
use state-of-the-art transformers to solve the easier task of cluster prediction and permits a
fine-grained differentiation between similar codes in a cluster using XGBoost.

Interestingly, our base model obtains better results for these corpora than previous work,
including ensembles of strong learners. However, for a fair comparison, we have included the
results of an ensemble version of our model, demonstrating that this technique improves the
performance of the models even more. Our model can be applied to any ontology having a
hierarchy or partition of semantically related labels, as in the case of clinical ontologies.

Finally, the DaC architecture has been packaged into a library for ease of use, reproducibil-
ity, and to be able to extend the architecture for other extreme multi-label corpora in a
straightforward manner.

5.2 Future Work

Future directions include implementing and testing the Divide and Conquer model on other
multi-label text classification corpora. First, we expect to test the DaC architecture on
clinical corpora in other languages, including languages with more resources like English.
Second, we expect to test the architecture on other extreme multi-label classification corpora.

55

This poses a challenge since the number of labels we have processed thus far, though being
very vast, falls into the category of small extreme multi-label classification datasets [20]. We
expect to encounter issues with the training time required for processing other large corpora,
forcing us to modify the library to optimize the speed.

In terms of improving the performance using this architecture, we identify opportunities to
optimize the number of layers that we left fine-tuneable in the Matcher module given that we
have seen research that shows that finetuning more layers provides better results [61]. Also,
for the Ranker, we know that XGBoost can be trained with a ranking objective function,
thus providing an alternative to the one-vs-rest approach. Implementing the Ranker using
this approach would be faster to train (only one model per cluster would be trained) and
may provide similar or better results.

Finally, the DaC architecture is a black box when defining which labels to assign for each
document. Recently, explainability features of the different architectures are gaining more
relevance. It is paramount that the model’s predictions are understood to help the user
make appropriate choices [42]. We expect to develop explainability to the labels predicted
by providing textual queues of what features the model used to choose each label. The
textual queues that support label assignment can be provided by the Ranker leveraging the
explainability features of tree ensembles [90], and the textual queues that support the cluster
choice can be obtained using the attention weights of the transformer model [67].

5.3 Contributions

This work has contributed by making a library that can be further extended and tested on
other corpora. Also, our work is currently in the process of being published in the form of a
short paper.

• Divide and Conquer: Extreme Multi-Label Classification for Clinical Coding in Spanish
(In the process of being published).

56

Bibliography

[1] AdamW – PyTorch 1.11.0 documentation. https://pytorch.org/docs/stable/

generated/torch.optim.AdamW.html. [Online; accessed 2022-06-03].

[2] Artificial Neural Network. https://samansiadati.blogspot.com/2019/03/

artificial-neural-network.html. [Online; accessed 2022-07-15].

[3] BCEWithLogitsLoss – PyTorch 1.11.0 documentation. https://pytorch.

org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.

BCEWithLogitsLoss. [Online; accessed 2022-06-08].

[4] CART: Classification and Regression Trees for Clean but Powerful Mod-
els. https://towardsdatascience.com/cart-classification-and-regression-trees-for-clean-
but-powerful-models-cc89e60b7a85. [Online; accessed 2022-07-07].

[5] Machine Learning Hierarchy. https://gearsngenes.com/wp-content/uploads/

2020/12/Machine-Learning-Hierarchy-2-768x768.png. [Online; accessed 2022-07-
15].

[6] ReduceLROnPlateau – PyTorch 1.11.0 documentation. https://pytorch.org/docs/
stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html. [On-
line; accessed 2022-06-03].

[7] What is a Decision Tree - IBM. https://www.ibm.com/topics/decision-trees.
[Online; accessed 2022-07-15].

[8] WHO International Classification of Diseases (ICD) Information Sheet.
https://web.archive.org/web/20121104064222/http://www.who.int/

classifications/icd/factsheet/en/. [Online; accessed 2022-06-29].

[9] Aalseth, P. T. CodeBusters: A Quick Guide to Coding and Billing Compliance for
Medical Practices. Jones & Bartlett Learning, 1998.

[10] Akbik, A., Bergmann, T., Blythe, D., Rasul, and Vollgraf, R. FLAIR: An
easy-to-use framework for state-of-the-art NLP. In NAACL 2019, 2019 Annual Confer-
ence of the North American Chapter of the Association for Computational Linguistics
(Demonstrations) (2019), pp. 54–59.

[11] Alpaydin, E. Introduction to machine learning. MIT press, 2020.

57

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://samansiadati.blogspot.com/2019/03/artificial-neural-network.html
https://samansiadati.blogspot.com/2019/03/artificial-neural-network.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss
https://gearsngenes.com/wp-content/uploads/2020/12/Machine-Learning-Hierarchy-2-768x768.png
https://gearsngenes.com/wp-content/uploads/2020/12/Machine-Learning-Hierarchy-2-768x768.png
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://www.ibm.com/topics/decision-trees
https://web.archive.org/web/20121104064222/http://www.who.int/classifications/icd/factsheet/en/
https://web.archive.org/web/20121104064222/http://www.who.int/classifications/icd/factsheet/en/

[12] Amigó, E., and Delgado, A. Evaluating Extreme Hierarchical Multi-label Classifi-
cation. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (2022), pp. 5809–5819.

[13] Amin, S., Neumann, G., Dunfield, Chapman, K. A., and Wixted, M. K.
MLT-DFKI at CLEF eHealth 2019: Multi-label Classification of ICD-10 Codes with
BERT. In CLEF (Working Notes) (2019), pp. 1–15.

[14] Aronson, A. R., and Lang, F.-M. An overview of MetaMap: historical perspective
and recent advances. Journal of the American Medical Informatics Association 17, 3
(2010), 229–236.

[15] Báez, P., Bravo-Marquez, F., Dunstan, J., Rojas, M., and Villena, F.
Automatic Extraction of Nested Entities in Clinical Referrals in Spanish. ACM Trans-
actions on Computing for Healthcare (HEALTH) 3, 3 (2022), 1–22.

[16] Balasubramanian, K., and Lebanon, G. The Landmark Selection Method for
Multiple Output Prediction. In ICML (2012).

[17] Bayer, M., Kaufhold, M.-A., and Reuter, C. A Survey on Data Augmentation
for Text Classification. ACM Computing Surveys (jun 2022).

[18] Beltagy. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
(Hong Kong, China, nov 2019), Association for Computational Linguistics, pp. 3615–
3620.

[19] Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The Long-Document
Transformer. ArXiv abs/2004.05150 (2020).

[20] Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal, A., Prabhu, Y., and
Varma, M. The extreme classification repository: Multi-label datasets and code,
2016.

[21] Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. Sparse local embed-
dings for extreme multi-label classification. Advances in neural information processing
systems 28 (2015).

[22] Blanco, A., Casillas, A., Pérez, A., and Diaz de Ilarraza, A. Multi-
label clinical document classification: Impact of label-density. Expert Systems with
Applications 138 (2019), 112835.

[23] Blanco, A., Pérez, A., and Casillas, A. IXA-AAA at CLEF eHealth 2020
CodiEsp. Automatic Classification of Medical Records with Multi-label Classifiers and
Similarity Match Coders. In CLEF (Working Notes) (2020).

[24] Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. Learning multi-label
scene classification. Pattern recognition 37, 9 (2004), 1757–1771.

[25] Breiman, L. Random forests. Machine learning 45, 1 (2001), 5–32.

58

[26] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., and Pérez, J.
Spanish Pre-Trained BERT Model and Evaluation Data. In PML4DC at ICLR 2020
(2020).

[27] Carrino, C. P., Armengol-Estapé, J., no, A. G.-F., Llop-Palao, J.,
Pàmies, M., Gonzalez-Agirre, A., and Villegas, M. Biomedical and Clini-
cal Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a
Mid-Resource Scenario. ArXiv (2021).

[28] Cartwright, D. J. ICD-9-CM to ICD-10-CM codes: what? why? how?, 2013.

[29] Chang, W.-C., Yu, H.-F., Zhong, K., Yang, Y., and Dhillon, I. S. Taming
pretrained transformers for extreme multi-label text classification. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining
(2020), pp. 3163–3171.

[30] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen,
K., et al. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 4 (2015),
1–4.

[31] Cho. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP) (Doha, Qatar, oct 2014), Association for
Computational Linguistics, pp. 1724–1734.

[32] Choromanska, A. E., and Langford, J. Logarithmic time online multiclass
prediction. Advances in neural information processing systems 28 (2015).

[33] Chowdhary, K. Natural language processing. Fundamentals of artificial intelligence
(2020), 603–649.

[34] Cohen, K. B., Xia, J., Zweigenbaum, P., Callahan, T. J., Hargraves, O.,
Goss, F., Ide, N., Névéol, A., Grouin, C., and Hunter, L. E. Three di-
mensions of reproducibility in natural language processing. In LREC... International
Conference on Language Resources & Evaluation:[proceedings]. International Confer-
ence on Language Resources and Evaluation (2018), vol. 2018, NIH Public Access,
p. 156.

[35] Collobert, R., Kavukcuoglu, K., and Farabet, C. Torch7: A matlab-like
environment for machine learning.

[36] Cossin, S., and Jouhet, V. IAM at CLEF eHealth 2020: Concept Annotation in
Spanish Electronic Health Records. In CLEF (Working Notes) (2020).

[37] Costa, J., Lopes, I., Carreiro, A. V., Ribeiro, D., and Soares, C. Fraunhofer
AICOS at CLEF eHealth 2020 Task 1: Clinical Code Extraction From Textual Data
Using Fine-Tuned BERT Models. In CLEF (Working Notes) (2020).

[38] Cover, T., and Hart, P. Nearest neighbor pattern classification. IEEE transactions
on information theory 13, 1 (1967), 21–27.

59

[39] Cunningham, H., Tablan, V., Roberts, A., and Bontcheva, K. Getting more
out of biomedical documents with GATE’s full lifecycle open source text analytics.
PLoS computational biology 9, 2 (2013), e1002854.

[40] Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers) (2019), J. Burstein, C. Doran, and
T. Solorio, Eds., Association for Computational Linguistics, pp. 4171–4186.

[41] Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. A survey on ensemble learning.
Frontiers of Computer Science 14, 2 (2020), 241–258.

[42] Duque, A., Fabregat, H., and Araujo. A keyphrase-based approach for inter-
pretable ICD-10 code classification of spanish medical reports. Artificial Intelligence
in Medicine 121 (2021), 102177.

[43] Elisseeff, A., and Weston, J. A kernel method for multi-labelled classification.
Advances in neural information processing systems 14 (2001).

[44] Frigui, H., and Krishnapuram, R. A Robust Competitive Clustering Algorithm
With Applications in Computer Vision. IEEE transactions on pattern analysis and
machine intelligence 21, 5 (1999), 450–465.

[45] Garćıa-Pablos, A., Perez, N., and Cuadros, M. Vicomtech at Cantemist 2020.
In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR
Workshop Proceedings (2020).

[46] Garćıa-Santa, N., Cetina, K., Cappellato, L., Eickhoff, C., Ferro, N.,
and Nevéol, A. FLE at CLEF eHealth 2020: Text Mining and Semantic Knowledge
for Automated Clinical Encoding. In CLEF (Working Notes) (2020).

[47] Goldstein, I., Arzumtsyan, A., and Uzuner, Ö. Three approaches to automatic
assignment of ICD-9-CM codes to radiology reports. In AMIA Annual Symposium
Proceedings (2007), vol. 2007, American Medical Informatics Association, p. 279.

[48] Gruber, T. R. A translation approach to portable ontology specifications. Knowledge
acquisition 5, 2 (1993), 199–220.

[49] Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann,
T., Gao, J., and Poon, H. Domain-specific language model pretraining for biomed-
ical natural language processing. ACM Transactions on Computing for Healthcare
(HEALTH) 3, 1 (2021), 1–23.

[50] Hirschberg, J., and Manning, C. D. Advances in natural language processing.
Science 349, 6245 (2015), 261–266.

[51] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural compu-
tation 9, 8 (1997), 1735–1780.

60

[52] Ivanović, M., and Budimac, Z. An overview of ontologies and data resources in
medical domains. Expert Systems with Applications 41, 11 (2014), 5158–5166.

[53] Joachims, T. Text categorization with support vector machines: Learning with
many relevant features. In European conference on machine learning (1998), Springer,
pp. 137–142.

[54] Johnson, A. E., Pollard, T. J., Shen, L., Lehman, Ghassemi, M., Moody,
B., Szolovits, P., Anthony Celi, L., and Mark, R. G. MIMIC-III, a freely
accessible critical care database. Scientific data 3, 1 (2016), 1–9.

[55] Karimi. Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep
Learning and Conventional Classification Methods. In BioNLP 2017 (Vancouver,
Canada,, aug 2017), Association for Computational Linguistics, pp. 328–332.

[56] Kaur, R., Ginige, J. A., and Obst, O. A Systematic Literature Review of Au-
tomated ICD Coding and Classification Systems using Discharge Summaries. ArXiv
abs/2107.10652 (2021).

[57] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and
Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems 30 (2017).

[58] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (2015).

[59] Kishida, K. Property of average precision and its generalization: An examination
of evaluation indicator for information retrieval experiments. National Institute of
Informatics Tokyo, Japan, 2005.

[60] Larkey, L. S., and Croft, W. B. Automatic assignment of ICD-9 codes to
discharge summaries. Tech. rep., Technical report, University of Massachusetts at
Amherst, Amherst, MA, 1995.

[61] Lee, J., Tang, R., and Lin, J. J. What Would Elsa Do? Freezing Layers During
Transformer Fine-Tuning. ArXiv abs/1911.03090 (2019).

[62] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J.
BioBERT: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics 36, 4 (2020), 1234–1240.

[63] Leung, Y., Zhang, J.-S., and Xu, Z.-B. Clustering by scale-space filtering. IEEE
Transactions on pattern analysis and machine intelligence 22, 12 (2000), 1396–1410.

[64] Li, Q., Peng, H., Li, J., Xia, C., Yang, Yu, P. S., and He, L. A Survey on Text
Classification: From Traditional to Deep Learning. ACM Transactions on Intelligent
Systems and Technology (TIST) 13, 2 (2022), 1–41.

[65] Liu, J., Chang, W.-C., Wu, Y., and Yang, Y. Deep Learning for Extreme
Multi-Label Text Classification. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York, NY,
USA, 2017), SIGIR ’17, Association for Computing Machinery, p. 115–124.

61

[66] Liu, P., Wang, X., Xiang, C., and Meng, W. A survey of text data augmentation.
In 2020 International Conference on Computer Communication and Network Security
(CCNS) (2020), IEEE, pp. 191–195.

[67] Liu, S., Le, F., Chakraborty, S., and Abdelzaher, T. On Exploring Attention-
based Explanation for Transformer Models in Text Classification. In 2021 IEEE Inter-
national Conference on Big Data (Big Data) (2021), IEEE, pp. 1193–1203.

[68] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., and Stoyanov, V. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[69] López-Garćıa, G., Jerez, J. M., Ribelles, N., Alba, E., and Veredas, F. J.
Transformers for clinical coding in Spanish. IEEE Access 9 (2021), 72387–72397.

[70] López-Garćıa, G., Jerez, J. M., and Veredas, F. J. ICB-UMA at CAN-
TEMIST 2020: Automatic ICD-O Coding in Spanish with BERT. In IberLEF SEPLN
(2020), pp. 468–476.

[71] López-Garcıa, G., Jerez, J. M., Veredas, F. J., Cappellato, L., Eickhoff,
C., Ferro, N., and Névéol, A. ICB-UMA at CLEF e-health 2020 task 1: Auto-
matic ICD-10 coding in Spanish with BERT. In Proc. Work. Notes CLEF, Conf. Labs
Eval. Forum, CEUR Workshop (2020), pp. 1–15.

[72] Loshchilov, I., and Hutter, F. Decoupled Weight Decay Regularization. In ICLR
(2019).

[73] Madhulatha, T. An Overview on Clustering Methods. IOSR Journal of Engineering
2 (05 2012).

[74] Maron, M. E. Automatic indexing: an experimental inquiry. Journal of the ACM
(JACM) 8, 3 (1961), 404–417.

[75] Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. Efficient Estimation of
Word Representations in Vector Space. In ICLR (2013).

[76] Miranda-Escalada, A., Farré, E., and Krallinger, M. Named entity recog-
nition, concept normalization and clinical coding: Overview of the Cantemist track for
cancer text mining in Spanish, corpus, guidelines, methods and results. In Proceed-
ings of the Iberian Languages Evaluation Forum (IberLEF 2020), CEUR Workshop
Proceedings (2020).

[77] Miranda-Escalada, A., Gonzalez-Agirre, A., Armengol-Estapé, J., and
Krallinger, M. Overview of Automatic Clinical Coding: Annotations, Guidelines,
and Solutions for non-English Clinical Cases at CodiEsp Track of CLEF eHealth 2020.
In CLEF (Working Notes) (2020).

[78] Moons, E., Khanna, A., Akkasi, A., and Moens, M.-F. A comparison of deep
learning methods for ICD coding of clinical records. Applied Sciences 10, 15 (2020),
5262.

62

[79] Mullenbach. Explainable Prediction of Medical Codes from Clinical Text. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-
pers) (New Orleans, Louisiana, jun 2018), Association for Computational Linguistics,
pp. 1101–1111.

[80] Nam, J., Kim, J., Menćı a, E. L., Gurevych, I., and Fürnkranz, J. Large-
Scale Multi-label Text Classification — Revisiting Neural Networks. In Machine Learn-
ing and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2014, pp. 437–
452.

[81] Naseem, U., Khushi, M., Reddy, V., Rajendran, S., Razzak, I., and Kim, J.
Bioalbert: A simple and effective pre-trained language model for biomedical named en-
tity recognition. In 2021 International Joint Conference on Neural Networks (IJCNN)
(2021), IEEE, pp. 1–7.

[82] Naseem, U., Razzak, I., Khan, S. K., and Prasad, M. A comprehensive survey
on word representation models: From classical to state-of-the-art word representation
language models. Transactions on Asian and Low-Resource Language Information
Processing 20, 5 (2021), 1–35.

[83] Névéol, A., Dalianis, H., Velupillai, S., Savova, G., and Zweigenbaum,
P. Clinical natural language processing in languages other than english: opportunities
and challenges. Journal of biomedical semantics 9, 1 (2018), 1–13.

[84] Nilsson, N. J. Introduction to machine learning. An early draft of a proposed text-
book, 1996.

[85] of Chile, A. U. Patagón Supercomputer, 2021.

[86] Organization, W. H., et al. The ICD-10 classification of mental and behavioural
disorders: clinical descriptions and diagnostic guidelines. World Health Organization,
1992.

[87] Organization, W. H., et al. International classification of diseases for oncology
(ICD-O)–3rd edition, 1st revision. World Health Organization, 2013.

[88] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in Python. the Journal of machine Learning research 12 (2011), 2825–2830.

[89] Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP) (2014), pp. 1532–1543.

[90] Petkovic, D., Altman, R., Wong, M., and Vigil, A. Improving the explain-
ability of Random Forest classifier–user centered approach. In PACIFIC SYMPOSIUM
ON BIOCOMPUTING 2018: Proceedings of the Pacific Symposium (2018), World Sci-
entific, pp. 204–215.

63

[91] Petrovskiy, M. Paired comparisons method for solving multi-label learning problem.
In 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS’06) (2006),
IEEE, pp. 42–42.

[92] Pollard, T. J., Johnson, A. E., Raffa, J. D., Celi, L. A., Mark, R. G.,
and Badawi, O. The eICU Collaborative Research Database, a freely available multi-
center database for critical care research. Scientific data 5, 1 (2018), 1–13.

[93] Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., and Varma, M. Parabel:
Partitioned label trees for extreme classification with application to dynamic search
advertising. In Proceedings of the 2018 World Wide Web Conference (2018), pp. 993–
1002.

[94] Prabhu, Y., and Varma, M. Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (2014), pp. 263–272.

[95] Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., and Huang, X. Pre-trained models
for natural language processing: A survey. Science China Technological Sciences 63,
10 (2020), 1872–1897.

[96] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving
language understanding by generative pre-training.

[97] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.
Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[98] Rokach, L., and Maimon, O. Clustering methods. In Data mining and knowledge
discovery handbook. Springer, 2005, pp. 321–352.

[99] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations
by back-propagating errors. nature 323, 6088 (1986), 533–536.

[100] Russell, S. J. Artificial intelligence a modern approach. Pearson Education, Inc.,
2010.

[101] Salton, G., and Buckley, C. Term-weighting approaches in automatic text re-
trieval. Information processing & management 24, 5 (1988), 513–523.

[102] Schütze, H., Manning, C. D., and Raghavan, P. Introduction to information
retrieval, vol. 39. Cambridge University Press Cambridge, 2008.

[103] Shorten, C., Khoshgoftaar, T. M., and Furht, B. Text data augmentation
for deep learning. Journal of big Data 8, 1 (2021), 1–34.

[104] Smith, L. H., Rindflesch, T. C., and Wilbur, W. J. The importance of the
lexicon in tagging biological text. Natural language engineering 12, 4 (2006), 335–351.

[105] Steindel, S. J. Learning and Using ICD-10-PCS. Journal of AHIMA website (2011).

64

[106] Sun, C., Qiu, X., Xu, Y., and Huang, X. How to fine-tune bert for text classi-
fication? In China national conference on Chinese computational linguistics (2019),
Springer, pp. 194–206.

[107] Tagami, Y. Annexml: Approximate nearest neighbor search for extreme multi-label
classification. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining (2017), pp. 455–464.

[108] Teng, F., Liu, Y., Li, T., Zhang, Y., Li, S., and Zhao, Y. A review on
deep neural networks for ICD coding. IEEE Transactions on Knowledge and Data
Engineering (2022), 1–1.

[109] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. Attention is all you need. Advances in
neural information processing systems 30 (2017).

[110] Villena, F., Báez, P., Peñafiel, S., Rojas, M., Paredes, I., and Dunstan,
J. Automatic support system for tumor coding in pathology reports in Spanish.

[111] Vinayak, R. K., and Gilad-Bachrach, R. Dart: Dropouts meet multiple additive
regression trees. In Artificial Intelligence and Statistics (2015), PMLR, pp. 489–497.

[112] Wiegreffe. Clinical Concept Extraction for Document-Level Coding. In Proceedings
of the 18th BioNLP Workshop and Shared Task (Florence, Italy, aug 2019), Association
for Computational Linguistics, pp. 261–272.

[113] Wolf, T., Debut, L., Sanh, V., Chaumond, Moi, A., Cistac, P., Rault,
Funtowicz, M., Davison, J., Shleifer, Ma, C., Jernite, Y., Plu, J., Xu,
C., Scao, T., Gugger, S., and Rush, A. Transformers: State-of-the-Art Natural
Language Processing. In EMNLP (01 2020), pp. 38–45.

[114] Xie, P., and Xing, E. A neural architecture for automated ICD coding. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (2018), Association for Computational Linguistics.

[115] Xu, J. Constructing a fast algorithm for multi-label classification with support vector
data description. In 2010 IEEE International Conference on Granular Computing
(2010), IEEE, pp. 817–821.

[116] Xu, J. An extended one-versus-rest support vector machine for multi-label classifica-
tion. Neurocomputing 74, 17 (2011), 3114–3124.

[117] Yogarajan, V., Montiel, J., Smith, T., and Pfahringer, B. Transformers
for multi-label classification of medical text: an empirical comparison. In International
Conference on Artificial Intelligence in Medicine (2021), Springer, pp. 114–123.

[118] Zhang, M.-L., and Zhou, Z.-H. Multilabel neural networks with applications to
functional genomics and text categorization. IEEE transactions on Knowledge and
Data Engineering 18, 10 (2006), 1338–1351.

65

[119] Zhang, Y., Burer, S., Nick Street, W., and Bennett. Ensemble Pruning
Via Semi-definite Programming. Journal of machine learning research 7, 7 (2006),
1315–1338.

[120] Zhang, Y., and Wallace, B. C. A Sensitivity Analysis of (and Practitioners’ Guide
to) Convolutional Neural Networks for Sentence Classification. In IJCNLP (2017).

[121] Zinkevich, M., Weimer, M., Li, L., and Smola, A. Parallelized stochastic
gradient descent. Advances in neural information processing systems 23 (2010).

66

	Introduction
	Problem Statement
	Hypothesis
	Objectives
	General Objective
	Specific Objectives

	Methodology
	Thesis Structure

	Background and Related Work
	Scientific Disciplines
	Artificial Intelligence (AI)
	Machine Learning
	Natural Language Processing (NLP)

	Text Classification
	Task Formalization
	Multi Label Text Classification
	Extreme Multi Label Text Classification (XMC)

	Clinical coding
	Clinical coding in languages other than English
	Codiesp
	Cantemist
	FALP

	Divide and Conquer - DaC
	DaC Corpus Preprocessing
	Matcher
	Transformers
	Settings Matcher

	Ranker
	TF-IDF
	One Vs Rest
	Gradient Boosting Trees
	Settings XGBoost

	Combining results of the Matcher and Ranker
	Ensemble
	Data Augmentation using Named Entities
	Library
	Library important classes
	Library files

	DaC on multiple medical corpora
	Corpora
	CodiEsp
	Cantemist
	FALP

	Ontologies and Cluster Choice
	Ontology - ICD-10-CM
	Ontology - ICD-10-PCS
	Ontology - ICD-O-3

	Metrics
	Evaluation
	Results
	Module Analysis

	Conclusions and Future Work
	Conclusions
	Future Work
	Contributions

	Bibliography

