UNIVERSIDAD DE CHILE )
FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

SPATIO-TEMPORAL TEXTUAL DATA MODELING

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN COMPUTACION

JUGLAR DIAZ ZAMORA

PROFESORES GUIA:
FELIPE BRAVO MARQUEZ
BARBARA POBLETE LABRA

MIEMBROS DE LA COMISION:
AIDAN HOGAN
MARCELO MENDOZA ROCHA
LUCA MARIA AIELLO

Este trabajo ha sido parcialmente financiado por CONICYT-PCHA /Doctorado
Nacional /2016-21160142, Fondecyt Grant No. 1181896, FONDEF Project
ID16110222 y el Instituto Milenio Fundamentos de los Datos

SANTIAGO DE CHILE
2023



Resumen

La popularidad y el uso de redes sociales en dispositivos méviles con GPS pro-
porciona una fuente de textos enriquecidos con contexto espacio-temporal. Otros
dominios, como consultas a motores de bisqueda y descripciones de incidentes delic-
tivos, son también fuentes de textos para los que se conoce cuando y dénde fueron
generados. Texto, tiempo y espacio tienen diferentes formas de representacién; por
lo que no es trivial desarrollar un modelo que los represente de forma conjunta.
La representacion conjunta de texto, tiempo y espacio se ha basado en técnicas
que ignoran la estructura secuencial de los textos y propiedades de tiempo y espa-
cio, como vecindad y jerarquia. Esto puede limitar la expresividad de un modelo
para representar ciertos patrones. En esta tesis presentamos dos nuevos modelos
para recuperacion de informacién multi-modal y modelado de lenguaje condicionado
espacio-temporalmente. Los modelos propuestos encuentran aplicaciones practicas
en recuperacion en texto-espacio-tiempo y caracterizacién de zonas urbanas.

Para la tarea de recuperacion multi-modal, proponemos un modelo basado en
una red neuronal Acceptor que permite consultar con pares del trio texto-espacio-
tiempo para recuperar el tercero. Esto resulta en tres tareas de recuperacion que se
entrenan simultaneamente. Nuestros experimentos muestran que modelar la estruc-
tura secuencial de los textos tiene un impacto positivo en la recuperacion de tiempos
y lugares. El modelo supera trabajos previos en mérgenes desde el 1% al 21% en
experimentos desarrollados sobre conjuntos de datos extraidos de las redes sociales
Twitter y Foursquare. Nuestras evaluaciones cualitativas demuestran la utilidad
del modelo propuesto para descubrir patrones espacio-temporales de delincuencia a
partir de reportes de incidentes delictivos.

Para la tarea de modelado de lenguaje condicionado espacio-temporalmente,
presentamos una red neuronal que nos permite representar tiempo y espacio como
contexto para generacién de texto en diferentes granularidades. Nuestros resulta-
dos experimentales muestran diferencias significativas en cémo el espacio y el tiempo
afectan la generacion de lenguaje. Para los datos extraidos de Twitter, el punto ideal
para la representacién espacial es celdas de 800m x 800m aproximadamente; mien-
tras que para los datos de Foursquare, los mejores resultados se obtienen a medida
que las celdas espaciales se hacen méas pequenas. Considerando la representacion
del contexto temporal, los resultados sobre los datos de Twitter mostraron mejoras
marginales pero no fueron tan significativos como el contexto espacial; para los datos
de Foursquare, incluir el contexto temporal es mejor que no incluirlo, pero cuando se
combina con el contexto espacial muestra no ser un factor positivo. Desarrollamos
analisis cualitativos que ejemplifican el uso del modelo propuesto para caracterizar
zonas urbanas y como una red neuronal basada en atencién permite visualizar las
relaciones entre el lenguaje natural y el contexto espacio-temporal dénde se genera.

En esta tesis presentamos dos modelos para representacion de texto, tiempo y
espacio. El modelo de lenguaje permite modelar tiempo y espacio en diferentes
granularidades para generacion de texto. El modelo para recuperacion multi-modal
permite consultar con pares de espacio, tiempo y texto; para recuperar el tercero.



Abstract

The popularity of mobile devices with GPS capabilities and the wide adoption of so-
cial media has created a rich source of textual data combined with spatio-temporal
information. In addition, other domains such as search engine queries and crime
incident descriptions are sources of text data associated with timestamps and geo-
coordinates. These data sources can be used to gain space-time insights into human
behavior. From a data modeling perspective: text, time, and space have differ-
ent representation approaches; hence it is not trivial to represent them in a unified
model. Spatio-temporal textual data representation has relied on techniques ignor-
ing the sequential structure of texts and properties of time and space like neighbor-
hood and hierarchy. This can limit a model’s expressiveness for representing certain
patterns extracted from spatio-temporal textual data. This thesis is centered around
two problems of spatio-temporal textual data processing: multi-modal retrieval and
spatio-temporal conditioned language modeling. This results in two spatio-temporal
modeling tasks with practical applications on space-time-text retrieval and charac-
terization of urban areas with natural language.

For the multi-modal retrieval task, we propose an Acceptor recurrent neural net-
work that allows us to query the model with pairs of elements of space, time, and
text to retrieve the third one. This results in three retrieval tasks that are trained
simultaneously. Our experiments show that modeling the sequential structure of
texts positively impacts retrieving times and places. The model outperforms prior
works ranging from a 1% to a 21% improvement for place retrieval and text re-
trieval on two social media datasets from Twitter and Foursquare. We also conduct
qualitative evaluations where we demonstrate the utility of the presented model for
finding spatio-temporal patterns of crime from a dataset of crime incident reports.

For the spatio-temporal conditioned language modeling task, we present an end-
to-end neural network that allows us to represent time and space as a context for
text generation at different granularities. Our results show significant differences
in how space and time influence language modeling. For the Twitter dataset, the
optimal when modeling space is to discretize around 800m x 800m cells; while for
the Foursquare dataset, we observed the best results as the spatial cell got smaller.
For the temporal context, including it for the Twitter dataset resulted in small
improvements but was not as important as including the spatial context; for the
Foursquare dataset, including the temporal context is better than not including it at
all, but when combined with the spatial context proved not to be a positive factor as
context for language generation. We present qualitative analyses where the proposed
model is used to characterize urban places from the perspective of social media.
We demonstrate how an attention-based neural network can be used to visualize
relations between text and the spatio-temporal context where it is generated.

The models presented in this thesis tackle different needs and complement each
other. The language model allows for language generation while modeling time and
space at different granularities; the retrieval model allows for querying a multi-modal
retrieval model with any pair of space, time, and text; to retrieve the third one.
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Chapter 1

Introduction

Online social media plays a crucial role in modern societies; it has gained adoption
worldwide and is now considered influential in public opinion. Within this context,
social platforms such as Twitter!, Instagram?, Facebook® and Foursquare* have en-
abled users to share the textual and multimedia content they generate (e.g., opinions,
interests, reviews, and everyday activities) with enriched spatio-temporal informa-
tion. This data can be represented as a record in the form of a (where, when, what)
tuple, in which the where means a location’s latitude-longitude geo-coordinates, the
when is its timestamp and the what is its content.

Pattern analysis of spatio-temporal data extracted from social media can help us
understand complex human behavior like mobility patterns [121, 70, 115], also when
and where popular social activities are taking place [107, 113, 91, 120]. In addition,
social media has been successfully used to detect and understand real-world events
such as earthquakes, typhoons, and civil unrest [83, 123]. Besides social media, other
data sources relate semantic content with spatio-temporal information. An example
is crime reports that include a natural language description of the crime and the
time and place it occurred. The textual crime descriptions are either in the form
of free text provided by the victim or based on keywords and more standardized
phrases used by the police. Overall, access to this type of data can allow us to study
and model textual information in relation to its spatio-temporal context.

This thesis focuses on spatio-temporal textual data modeling. The multi-modality
of space, time and text provides a challenge in modeling their joint representation.
In particular, text, its timestamp, and geographical coordinates are commonly rep-
resented in different scales and magnitudes. For instance, the text is discrete and
has been represented using vector spaces, while timestamps and geo-coordinates are
continuous variables. Hence, it is not trivial to combine these components into a
unified model. In this thesis, we tackle two traditional well-defined tasks in the

Thttps://twitter.com/
https://www.instagram.com/
3https://www.facebook.com/
4https://foursquare.com//



context of spatio-temporal textual data generation: information retrieval (IR) and
language modeling (LM).

We propose two models: 1) a multi-modal retrieval model where we focus on
retrieving one element of the tuple (time, location, text) giving the other two as
query, and 2) a spatio-temporal conditioned language model where we focus on lan-
guage modeling given a spatio-temporal context. Model /task 1) allows us to query
the model with any combination of keywords, geo-coordinates, or timestamps and
retrieve any of the three variables, while model/task 2) allows us to generate a
spatio-temporal characterization of urban areas using natural language. We con-
ducted our experiments with freely available public datasets collected from social
media platforms Twitter and Foursquare, as well as crime incident reports from the
city of New York.

The remainder of this chapter is organized as follows. Section 1.1 presents the
research problem. Section 1.2 briefly presents previous solutions and their limita-
tions. The research question and the proposed solutions are introduced in Section
1.3. The main contributions and main results are presented in Sections 1.4 and 1.5.
The publications derived from this work are listed in Section 1.6, and in Section 1.7,
we present the outline of the thesis’s structure.

1.1 Research problem

One challenge related to modeling spatio-temporal conditioned textual data is its
multi-modality. Timestamps, geo-coordinates, and texts exhibit different magni-
tudes and representation approaches, making it difficult to combine them effec-
tively. Timestamps and geo-coordinates are continuous variables, while the text
is a sequence of discrete items (i.e. words). An additional challenge is associated
with the individual representation of each type of variable. Previous approaches
for modeling how text is generated in a spatio-temporal context use a single gran-
ularity representation for time or space, either using hand-crafted discretizations
[64, 120, 117], automatic models like clustering algorithms [119], or probabilistic
models [27, 90, 100, 47, 3, 52]. Spatio-temporal patterns for text data generation
should capture patterns at different granularities like hours, weeks, months, or years
in the case of time; and houses, blocks, neighborhoods, or cities in the case of space.
In this sense, we expect a model that leverages text data generated under spatio-
temporal conditions to be flexible enough to capture these granularities at different
levels. Previous works on the joint representation of space, time, and text are based
on feature embedding representation or topic modeling. These approaches ignore
the sequential structure of texts, which can have a negative impact on performance.
Endowing our models with the ability to represent such sequential structure and the
multi-granularity of time and space is the major contribution of this work.

Given a collection of records that provide textual descriptions of a geographical
area at different moments in time, the general problem that we aim to solve is how



to effectively model text jointly with the timestamp and geo-coordinates that it was
generated at. We separate this general problem into two specific sub-problems based
on IR and LM:

1. Let H = {ry,...,r,} be a set of spatio-temporal annotated text records (e.g.,
a tweet, a crime incident description). Each r; is a tuple (t;,;, e;), where: ¢; is
the timestamp associated with r;, [; is a two-dimensional vector representing
the location corresponding to r;, and e; denotes the text in r;. We aim to
solve the sub-problem: given an incomplete record where either t;, r;, or e; is
missing, to retrieve the missing item. This results in three retrieval tasks in
which we rank the candidates in the collection given the query:

(a) to retrieve the time for which a certain text was produced in a particular
location,

(b) to retrieve the location from which a text was generated at a certain time,
and

(¢) to retrieve the text that is created from a certain location and time.

An important point to clarify is the difference between retrieving where a text
is written vs retrieving the event/place that a text is written about. There are
two reasons why we focus our research on retrieving where a text is written
instead of retrieving the event /place that a text is written about. i) Predicting
the place/event that a text is written about is a problem where we would
need to know the set of place/event labels that are covered in the dataset
and annotate each text with its corresponding label. We would need human
annotations to train a model to make this type of prediction. ii) Our research
focuses on finding patterns of how texts are generated given a timestamp and
geo-coordinates. If the pattern of people in place X writing about events in
place Y is strong enough, it will be captured by the model, hence the pattern
of people from place X writing about place Y will be found.

2. Let H ={ry,...,m,} be a set of spatio-temporal annotated text records (e.g.,
a tweet). Each r; is a tuple (¢;,[;, ¢;), where: t; is the timestamp associated
with r;, [; is a two-dimensional vector representing the location corresponding
to r;, and e; denotes the text in r;. Since e; is a sequence of words wyg, . . ., Wip;
the sub-problem that we aim to solve is assigning a probability to wy, . . ., w;i,
given the spatio-temporal context (t;,[;), which is an instance of a condi-
tioned language modeling task (see Section 2.3.2). This task can be written

as p((wio, - - -, win) /(ti, ;)

Each of these problems tackles different needs. The multi-modal retrieval model
can be helpful in scenarios where we are interested in knowing the most likely third
element given two of the tuple (time, location, text). The following are examples of
these scenarios:



e Helping local police optimize the allocation of their agents to areas more prone
to certain crimes at certain times of the day. The specific task, in this case,
could be to find the times at which ‘car thefts’ are more likely to take place in
‘shopping mall A’ (i.e., find time given loc and text).

e Finding places where certain activities occur at a certain time interval. A
concrete example, regarding criminal activity, would be to find areas in a city
in which ‘drug related crimes’ occur at night (i.e., find loc given text and time).

e To characterize which activities take place in a certain urban area at a certain
time (i.e., activity modeling). For example, given a particular park and time
frame, find the top-recreational activities practiced there (i.e., find text given
loc and time).

On the other hand, the spatio-temporal conditioned language modeling task can
help to describe/summarize spatio-temporal human activities with natural language
beyond just keywords. Consider the following example:

e Given that a sporting event like a basketball game is taking place at a venue
like the Staples Center, a coherent natural language description of the event
can provide insights into people’s feelings about what they are experiencing
and the general mood at the event. Table 5.8 provides additional examples of
this type of application.

1.2 Prior works and differentiation

Prior works have evolved from topic modeling to feature embedding. Early ap-
proaches [3, 27, 47, 52, 64, 90, 100] based on topic modeling aim to discover topics
related to geographical areas. Works based on learned embedded representations
[117, 119, 120] use feature embeddings methods to find learned representations for
the elements of the tuple (time, location, text).

Works following the topic modeling approach take inspiration from topic models
such as Probabilistic Latent Semantic Analysis [10] and Latent Dirichlet Allocation
[11]. These works extend traditional models by assigning distribution probabilities
over locations to topics or introducing latent geographical regions. Feature embed-
ding methods find distributed learned representations for discrete variables. Learned
embedded representations are very popular in natural language processing [65, 76],
graph node representation [49], and computer vision [32]. For spatio-temporal tex-
tual data, embedded representations learn a joint representation for the elements
of the tuple (time, location, text). At inference time, a text is represented as the
average of its word embedding representations. In Chapter 3, we provide a more
in-depth description of works modeling spatio-temporal textual data following the
two approaches: topic modeling and feature embedding representations.



Both topic models and feature embedding methods assume a bag-of-words ap-
proach for text modeling, which ignores the sequential structure of texts. Hence,
potentially relevant language patterns derived from the sequential nature of text
data are discarded. When considering time and space modeling, each work models
timestamps and geo-coordinates at a single level of granularity using hand-crafted
spatial cells and temporal windows or clustering algorithms. Only Ahmed et al.
[3] model hierarchy, but only for space; to the best of our knowledge, there are no
studies of how representing time and space at different levels of granularity impact
the modeling of text generation under spatio-temporal conditions.

Overall, we can conclude that existing approaches ignore two dimensions of the
problem:
1. the sequential structure of language.

2. jointly modeling texts together with time and space represented at different
granularities.

1.3 Proposed solution

This thesis addresses the problem of modeling textual data generated under spatio-
temporal conditions. The research question is as follows:

Can the joint representation of text, time (timestamp), and space
(geographic coordinates), be better modeled by capturing the sequential
structure of texts and representing the spatio-temporal variables at mul-
tiple levels of granularity?

Modeling space and time at different levels of granularity should allow for better
spatio-temporal representation models by adapting to different data sources with
different spatio-temporal patterns of language generation. Also, potentially relevant
language patterns derived from the sequential nature of the text, that are discarded
when modeling text following a bag-of-words approach, can improve the modeling
of texts in conjunction with time and space. We will answer the research question
by developing and conducting quantitative and qualitative evaluations over spatio-
temporal textual data representation models that capture the properties of text,
time, and space mentioned before.

We separate the problem of modeling spatio-temporal annotated textual data
into two specific problems: 1) a retrieval problem where the goal is to retrieve
one element of the tuple (time, location, text) given the others as query, and 2) a
spatio-temporal conditioned language modeling problem where the goal is to model
language generation under spatio-temporal conditions. We propose two neural net-



work architectures to tackle these problems. Next, we provide an overview of these
models.

1.3.1 Multi-modal retrieval model

We propose an Acceptor [35] recurrent neural network (RNN) architecture which
we refer to as STT-RNN. The Acceptor is an RNN usage pattern in which an RNN
encodes a sequence into a single vector that corresponds to the output vector of the
last token in the sequence. This vector is usually fed into a fully connected layer
to produce a prediction [35]. STT-RNN follows an Acceptor usage pattern and is
designed to provide an integrated view of spatio-temporal textual data. Specifically,
STT-RNN is designed to retrieve one element of the tuple (time, location, text) by
only knowing the other two. Our proposed model aims to provide a representation
that allows us to extract patterns related to spatio-temporal human activities. We
propose a model that can be trained on spatio-temporal text records and, can be
used to gain insight into the following three information seeking or retrieval tasks:

1. What is the most likely time period associated with a given text passage and
a spatial location?

2. What is the most likely location associated with a given text passage and time
period?

3. What is the most likely text associated with a given location and time?

1.3.2 Spatio-temporal conditioned language model

With the spatio-temporal conditioned language model, we propose an end-to-end
neural network for encoding spatial and temporal contexts and decoding/generating
text. In contrast to the previous method, our design is targeted to model the
spatio-temporal context at different granularities. We employ an encoder-decoder
architecture where we test state-of-the-art sequence representation methods based
on recurrent neural networks [21] and attention-based neural networks [99].

By modeling time and space at different granularities, the proposed architecture
is adaptable to the specific characteristics of each data source. This has proven
to be paramount according to our experiments. Also, we can analyze how each
granularity level is weighted in the representation model. Attention-based neural
networks like the transformer architecture have the benefit of providing insights
into the importance of components of the spatio-temporal context by visualizing
the attention weights. The proposed model can be used to summarize activities in
urban environments with natural language generation. This application highlights
the importance of modeling the sequential structure of texts in order to generate
coherent descriptions for spatio-temporal contexts (the sequential structure of texts
is ignored in the retrieval model for text retrieval).
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1.4 Main contributions

The main contributions of this thesis center around the two models proposed: the
multi-modal retrieval model and the spatio-temporal conditioned language model.
Table 1.1 presents a comparison between these models considering their capabili-
ties, what information properties they can model, and what tasks they solve. The
language model allows for language generation and for modeling time and space
at different granularities as context for language generation; while the retrieval
model allows for querying a multi-modal retrieval model with any combination of
(time, location, text) and to retrieve the third one.

Table 1.1: Model comparison.

Retrieval Model Language Model

Hierarchy

Neighborhood
Multi-modal Retrieval
Natural Language Generation

>x \ X X
NESENEN

The multi-modal retrieval model finds practical applications in information-
seeking tasks, for example: to find patterns of crime incidents given a dataset of
crime incident descriptions (see Section 4.2.4). The spatio-temporal conditioned
language model allows us to characterize urban locations from the perspective of so-
cial media (see Section 5.2.4) with natural language as well as visualizing relations
between texts and the spatio-temporal context where it is generated (see Section
5.2.4).

1.5 Main results

Our main results are related to exploratory analyses as well as to qualitative and
quantitative evaluations conducted over the proposed multi-modal retrieval model
and the spatio-temporal conditioned language model. Exploratory analyses con-
ducted over two social media datasets from Twitter and Foursquare, we found that
words are more related to places than to times; covering 91% and 86% of the maxi-
mum entropy with temporal windows while only 50% and 34% with spatial cells (see
Section 2.6.1). From quantitative evaluations, the multi-modal retrieval model out-
performs previous works on Mean Reciprocal Rank (see Section 2.4.1) from 0.6758
to 0.7175 (6%) for place retrieval and from 0.3895 to 0.3939 (1%) for time retrieval,
in the Twitter dataset (see Section 4.2.2). The improvements for the Foursquare
dataset are from 0.9168 to 0.9547 (4%) and from 0.3716 to 0.4505 (21%) (see Section
4.2.2). For the spatio-temporal conditioned language model, when considering the
spatial context, we observed with the Twitter dataset that the optimal for spatial
cells is around 800m x 800m cells (around 0.008 geo-coordinates values in cell-size);
while for the Foursquare dataset, the observed pattern is that the lower the spatial



cell, the better the modeling of the spatial context (see Section 5.2.3). The temporal
context proved not to be a principal factor.

1.6 Publications

Journal papers:

e Juglar Diaz, Felipe Bravo-Marquez and Barbara Poblete. “An Integrated
Model for Textual Social Media Data with Spatio-Temporal Dimensions.” In-
formation Processing & Management 57, no. 5 (2020): 102219.

e Juglar Diaz, Felipe Bravo-Marquez and Barbara Poblete. “Language Mod-
eling on Location-Based Social Networks.” ISPRS International Journal of
Geo-Information 11, no. 2 (2022): 147.

Workshop and short papers:

e Juglar Diaz and Barbara Poblete. “Car Theft Reports: a Temporal Analysis
from a Social Media Perspective.” In Companion Proceedings of the 2019
World Wide Web Conference (WWW’19 Companion), (2019), San Francisco,
CA, USA, 4 pages.

e Juglar Diaz. “Spatio-temporal Conditioned Language Models.” In Proceed-
ings of the 43rd International Conference on Research and Development in
Information Retrieval (ACM SIGIR), (2020), Virtual Event, China, pp. 2478-
2478.

e Juglar Diaz and Barbara Poblete. “Spatio-temporal data representation:
place, time and text embedded in the same space.” Alberto Mendelson Work-
shop (2018), Cali, Colombia. (Presentation only, opted out of proceedings)

1.7 Thesis outline

This thesis is organized as follows:

Chapter 2 describes the preliminary concepts needed to better understand the
content of this thesis. We describe topic modeling, neural network representations,
retrieval models, language models, evaluation metrics, and datasets. We present an
exploratory analysis of the relation of words with time and space, as well as how the
data distributes over temporal windows and spatial cells in the presented datasets.



Chapter 3 provides a background of the literature relevant to this thesis. In the first
part of the section, we provide as context a discussion of applications that leverage
spatio-temporal textual data; after that, we delve into models that jointly represent
the three variables and highlight existing drawbacks from previous approaches that
need to be addressed.

Chapter 4 describes our proposed retrieval model that tackles the task of retrieving
one element of the tuple space, time and text giving the other two as a query. Also,
we present the experimental results conducted to validate this model.

Chapter 5 describes our proposed spatio-temporal conditioned language model.
We present our experimental results where we perform quantitative and qualitative
evaluations.

Chapter 6 presents the conclusions highlighting the main findings of this thesis, as
well as directions for future work.



Chapter 2

Preliminaries

This chapter presents the conceptual and theoretical background necessary for un-
derstanding this work. We begin by describing some preliminaries central to this
thesis’s topic; in particular, we present properties of text, time, and space that need
to be considered when modeling spatio-temporal textual data. We further describe
machine learning representation models related to spatio-temporal text data repre-
sentation. After that, we describe evaluation measures and the datasets we use to
conduct qualitative and quantitative evaluations. Finally, we describe discretization
approaches for timestamps and geo-coordinates and show exploratory analyses on
how text correlates to time and space; as well as how the examples in our datasets
distribute over different times and places.

2.1 Spatio-temporal text data properties

This section describes the properties of text, time, and space central to our research
question (see Section 1.3). While the sequential structure of texts is explicitly cap-
tured by models designed with this intention, properties of time and space like
neighborhood and hierarchy are captured by modeling time and space at different
levels of granularity. Next, we delve into these properties:

e What is meant by “neighborhood”? - As Tobler’s first law of geography states:
“everything is related to everything else, but near things are more related than
distant things” [96]. By leveraging neighborhood, we aim to capture that texts
generated near in time or space should be more similar than text generated
far in time or space.

e What is meant by “hierarchy”? - Both time and space show a hierarchical com-
position. In the case of time: hours make days, days make weeks, weeks make
months, months make seasons, and seasons make years. For space: buildings
make blocks, blocks make neighborhoods, neighborhoods make municipalities,
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Figure 2.1: Non-penal crime incident descriptions in New York.
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Figure 2.2: Hierarchy representation.

etc. These human-created semantic arrangements of time and space can im-
pact how text is generated in spatio-temporal contexts.

What is meant by “sequential structure of text”? - The bag-of-words ap-
proach ignores the sequential structure of texts. Discarding word order in text
representation ignores the context and can fall short of capturing sentence
meaning (semantics) [50, 8, 9]. Context and meaning could tell the difference
between the same words differently arranged (“this is a nice place” vs “is this
a nice place?”), capture lexical relations like synonymy (“beautiful location”
vs “great location”) or antonymy (“I am having a good time in a beautiful
location” vs “I am having a bad time in a terrible location”), and much more.
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2.2 Machine learning models

In this section, we overview machine learning models relevant to this thesis. These
models have been successfully applied in previous approaches or are the base for
novel models proposed in this thesis. We describe topic models and neural network
representations like feature embedding, recurrent neural networks, and self-attention
neural networks.

2.2.1 Topic modeling

Topic modeling is an unsupervised machine learning technique capable of scanning
a set of documents and automatically detecting topics from texts. The basic as-
sumption of topic models is that each document consists of a mixture of topics, and
each topic consists of a collection of words. Latent Semantic Analysis (LSA) [26],
Probabilistic Latent Semantic Analysis (PLSA) [45], and Latent Dirichlet Allocation
(LDA) [11] are the most frequent topic modeling techniques. The core idea of LSA
is to take a matrix of what is the input: documents, and words and decompose it
into a separate document-topic matrix and a topic-word matrix; usually by Singular
Value Decomposition. PLSA adds a probabilistic treatment of topics and words on
top of LSA. The core idea is to find a probabilistic model with latent topics that can
generate the data observed in the document-word matrix. LDA is a generalization
of PLSA, and it introduces sparse Dirichlet prior distributions over document-topic
and topic-word distributions, encoding the intuition that documents cover a small
number of topics and that topics often use a small number of words. All these mod-
els treat documents as bag-of-words, discarding language patterns derived from the
sequential nature of the text.

2.2.2 Neural network representations

Artificial neural networks (ANNs) [42] are a sub-field of machine learning inspired
by the working of the human brain. ANNs are comprised of artificial neuron layers
containing an input layer, one or more hidden layers, and an output layer. Each
artificial neuron receives the output of artificial neurons in the previous layer; these
values are weighted and passed through an activation function which generates the
output that is passed to the next layer of the network.

Next, we describe three neural network models that are related to this thesis.
First, feature embedding models, in particular, word2vec [65, 66]. After that, we
describe the two neural network architectures that have shown the best results for
natural language processing tasks: recurrent neural networks [23, 38, 43] and self-
attention based neural networks [24, 79, 99, 109]. We focus on the gated recurrent
unit [21] recurrent neural network and the transformer [99] self-attention neural
network.

12



Feature embedding: word2vec

Feature embedding models are used to find a dense, low-dimensional continuous
vector representation for discrete variables. These methods have been successfully
applied for representing words [65, 66, 76] and nodes in graphs [49]. In the case of
spatio-temporal textual data, embedding methods allow for representing the three
elements of the tuple (time, location, text) in the same space using co-occurrence
patterns. It is important to remark that spatial and temporal variables must be
discretized to employ embedding methods. Next, we describe word2vec [65, 66],
a popular word embedding method whose approach is similar to previous feature
embedding models for spatio-temporal textual data representation [117, 119, 120]
(see Section 3.1.4).

Word2vec takes as its input a text corpus and produces as output word vectors
for each word in the vocabulary. These word vectors present properties such that
words that appear in similar contexts in the corpus are located close to one an-
other in the vector space. There are two word2vec model architectures: skip-gram
(Skip-gram) and continuous bag-of-words (CBOW). They both focus on capturing
relations between a center word and its context in sliding windows over the corpus.
These models are two-layer neural networks, where each word has an associated
vector in each layer depending on whether the word is acting as a center word or as
a context word. In the Skip-gram architecture, the model uses the current word to
predict the surrounding words in the context window. In the CBOW architecture,
the model predicts the current word from the window given the surrounding con-
text words. The order of context words does not influence the prediction, hence the
bag-of-words assumption.

In a general view, given a target word that is associated with vector w;, and
a predicted word vector v,; the probability of the target word conditioned on the
predicted word is calculated by the softmax function in equation 2.1, where W is
the set of all target word vectors. Equation 2.2 shows cost functions for one target
word where the goal is to minimize the negative log-likelihood of the target word
vector given its corresponding predicted word.

eXp(th 'Up)

2 wew exp(wvy)’

P(wlv,) = wy, vy, w € RYG tpe(1,2,..,VOCAB)  (2.1)

Loss(wy,v,) = —log P(wy|v,), wy,v, €RY t,pe(1,2,..,VOCAB)  (2.2)

In the Skip-gram model, for an index ¢ and a window size ¢, Skip-gram predicts
the context words {w,}, (i —c¢ < j <i+e¢,j# i) given the center word v;. Hence,
wy = w; and v, = v; for this case in the general model. Equation 2.3 shows the
derivation of the Skip-gram cost function.
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Lo5Sskipgram(C, 1) = Z —log P(wj|v;), wj,v; € R? (2.3)

i—c<j<iteit]

CBOW predicts a word given its context. The target word vector is now the
output vector of the word at index ¢, while the predicted word vector v, is the sum
over all context input vectors (Equation 2.4). Equation 2.5 shows the derivation of
the CBOW cost function.

vy = Z vj, v, v; € R (2.4)

i—c<j<itc,i#j
Losscpow (¢, 1) = —log P(w;|v,), w;, v, € R (2.5)

Authors Mikolov et al. claim that CBOW is faster to train while Skip-gram finds
better representations for infrequent words!.

Recurrent neural networks: gated recurrent unit

Recurrent neural networks (RNN) [38] are a family of neural network architectures
that capture temporal dynamic behavior. RNNs have been successfully applied
to natural language processing problems like speech recognition [39] and machine
translation [93, 22, 59]. In the case of spatio-temporal data, they have been mostly
used for mobility modeling [58, 108, 111, 30]. In the basic building block for a RNN,
a vector h represents the state of an input sequence, allowing it to perform sequence
processing tasks. At each timestep t, the model takes as an input h;_; and the
t-th element of the sequence x;; then computes h;. This enables making predictions
at each time step t for each object, or at the last object for the full sequence. For
language modeling, at each time step ¢, h; is used as input to a feed-forward network
that predicts the next token ;.. These building blocks can be stacked into L levels;
where the output of each block is used as input to the next block, and predictions
are computed over the outputs of the last level in the stack. Also, in bi-directional
RNNs [86], predictions can be made based on past and future contexts. This is done
by concatenating the outputs of two RNNs; one processing the input from left to
right, and the other one from right to left.

A simple instantiation of a RNN is Elman’s network. In Elman’s network, h; is
computed as the result of a sigmoid function applied to the sum of vector b after
the matrix-vector multiplication of weights matrices W and U with input sequence
element z; and previous state h;—; (Equation 2.6).

hy = Sigmoid(tht + Uphi_q + bh), Wh, U, € RkXd; by, € ]Rd (26)

Thttps://code.google.com /archive/p/word2vec/
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The most popular architectures of RNNs are the Long-Short Term Memory re-
current neural network (LSTM-RNN) [43] and the Gated Recurrent Unit recurrent
neural network (GRU-RNN) [21]. Both variants introduce gate mechanisms that
control the information flow between the hidden states representing the sequence
with the goal of preventing vanishing or exploding gradients problems in the train-
ing process. Next, we describe GRU-RNN; which has been proven to give similar
results to LSTM-RNN with fewer parameters, which makes it faster to train [23].
We develop our recurrent neural network experiments in this thesis with GRU-RNN
(see Sections 4.2.2 and 5.2.2).

Equations 2.7, 2.8, 2.9, and 2.10 describe a GRU-RNN block. A GRU-RNN block
has two gates, a reset gate r (Equation 2.7) and an update gate z (Equation 2.9).
The reset gate decides what information from the past (h;—;) to forget (Equation
2.8). The update gate decides how much the state representation h; updates its
content (Equation 2.10). The state of the GRU-RNN at time ¢ (h;), is a linear
interpolation between the previous state h;_; and the candidate state ¢; (Equation
2.8).

ry = oc(Wyx, + Uhy_1 +b,.), W, e R z, € R, U, € R**; hy_1,b, € R® (2.7)

c; = tanh(Wexy + Ue(re © hy_q) + be), W, € R U, € R b, € R® (2.8)
2z =0(W,x, +U,hy—1 + b)), W, € R™ U, € R¥*;b, € R® (2.9)
he = (1 —2) ©c+ 2z O hy—1), ©: element-wise product; z; € R® (2.10)

The hyper-parameters of the GRU-RNN are d (input embedding size), s (hidden
state size) and L (number of layers). In our experiments, we use two different
settings: d = 64, s = 128, and L = 1 in Section 4.1 and d = 128, s = 128, and
L = 2 in Section 5.1.1. We selected this parameter configuration to fit our available
hardware capabilities.

Self-attention based neural networks: the transformer

Self-attention architectures like the transformer [99] have revolutionized the natural
language processing field with several works that followed this approach [24, 109, 79].
The transformer architecture discards the recurrent component of RNNs that limits
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parallelization. This allows faster training with superior quality when compared to
previous models based on convolutional neural networks or recurrent neural net-
works. The transformer was initially proposed for a language translation task, com-
posed of an encoder-decoder architecture. Pre-trained language models following
this approach have improved the state of the art for many NLP tasks [24, 109, 79].

A transformer is a stacking of L transformer blocks. A transformer block can
be interpreted as a function fy : R™*? — R"*¢. Given an input € R™ ¢, x should
be interpreted as a collection (often a sequence) of n objects, each with d features.
The attention mechanism differentially weights (Equations 2.11, 2.12 and 2.13) the
importance of each part of the input data. Each object involved in the attention
process is associated with vectors: value, query, and key (Equation 2.11). These
vectors are used to produce the representation for each object as a weighted sum of
the values, where the weight assigned to each value is computed by a function of
the query and the key (Equation 2.12).

Q(h) (xz) = Wh,q(l’i), Wh,q € Rixd
KW (z;) = Whi(x;), Wyy € R4 (2.11)
(2:) = Who(2i), Wh, € R

Each block in a transformer model has H attention heads. Each set h of ma-
trices (Wh g, Wh, Who), where h =1,..., H; is called an attention head (Equation
2.11). The output values of the H attention heads are concatenated to compute
the output of the multi-head attention layer (Equation 2.13). Multi-head attention
allows encoding multiple patterns and nuances in the relationships between objects
like words in a text.

Oz;hj) = Softmax(<Q<h)(xi%((h)($i)>), [ : dimension of key vector  (2.12)

u; = Dropout, (W, (Concat{}_,, (37, Ozl(’hj)V(h) () p1), W, € R4

(2.13)

u; = LayerNorm(x; + u}; 71, £1), v, B € RE (2.14)

yi = Dropouty(Wo(ReLU (W1 (w;))); pa), W, € R™>*™ W, € Rm*d (2.15)

y; = LayerNorm(w; + y}; 72, B2), Yo, B2 € RY (2.16)
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LayerNorm(y;~, 5) = ”yw + 5, Yo, B2 € R?

Ty

(2.17)

A transformer, as described at this point, is a bag of features model, ignoring the
sequential structure in input € R™¢. The approach followed to model positions
in a transformer is positional encodings based on sinusoidal position embeddings
p € R™4 (Equation 2.18). Authors Vaswani et al. claim that the sinusoidal repre-
sentation works as well as a learned one and that it generalizes better to sequences
longer than the ones processed during training [99].

pioj = sin(—%7), pigjs1 = cos(— 5

o7 57 (2. 18)
10000 d 10000 @

As mentioned before, the transformer was initially proposed for a language trans-
lation task, composed of an encoder-decoder architecture. Each encoder consists of
several encoder transformer blocks. Each encoder block processes encodings from
the previous block and weighs their relevance to each other to generate output encod-
ings; these output encodings are then passed to the next encoder as its input, as well
as to the decoders. The first encoder takes positional information and embeddings
of the input sequence as its input. Each decoder consists of several decoder trans-
former blocks. The decoder adds an additional attention mechanism that extracts
information from the same level encoding block, this is called the encoder-decoder
attention. Like the first encoder, the first decoder takes positional information and
embeddings as its input. Also, it is important to mention that in the decoder, the
sequence must be masked to prevent information flow from following objects.

The hyper-parameters of the transformer are: d (input embedding size), m (fully-
connected layer size), s (encoding size), H (number of heads), and L (number of
layers). In our experiments in Section 5.1.1 we use the setting d = 128, m = 256,
H =4, and L = 2. We selected this parameter configuration to fit our available
hardware capabilities.

2.3 Modeling approaches

In this section, we describe the two modeling approaches we follow in this thesis, IR
and LM. First, we provide a context for what is the purpose of retrieval models and
contextualize our proposed model within this context. Later, we describe the goal
of language models and how our proposed model fits within the language modeling
task.
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2.3.1 Retrieval models

Information retrieval [62] in computer science and information science is the process
of obtaining information from sources related to information needs. An information
retrieval process begins with a user entering a query into the system. A query is a
formal statement of a need for information, such as a search string in a web search
engine. A query does not uniquely identify a single item in a collection; alternatively,
multiple objects can match the query, possibly with varying degrees of relevance,
so the results are usually ordered. Most IR systems calculate a numerical score for
how well each object in the database matches the query, and rank objects based on
that value.

In our case, the collection of resources is a set of spatio-temporal annotated text
records. The query can be any combination of (time, location, text), returning a
ranking of the specified needed type of information as output.

2.3.2 Language models

Language models [36, 50] solve the task of language modeling, which is defined as
the task of assigning a probability to a sequence of words w: p(w) = p(wy, ..., w;).
State-of-the-art models? for language modeling are based on neural networks. Typi-
cally, neural network language models are constructed and trained as discriminative
predictive models that learn to predict a probability distribution p(w;/wo, ..., w;j_1)
for a given word conditioned on the previous words in the sequence. These models
are trained on a given corpus of documents. The probability of a sequence of words
p(wo, ..., w;) can be estimated with: []'Z] p(w;/wo, . .., w;_1).

Conditioned language modeling is defined as the task of assigning a probability
to a sequence of words given a context c¢: p(w/c) = p((wo,...,w;)/c). Then, the
probability of each word in the sequence is computed as p(w;/c, wo, ..., w;_1). Con-
ditioned language models have applications in multiple natural language processing
tasks, for example, machine translation (generating text in a target language con-
ditioned on text in a source language), description of an image conditioned on the
image, a summary conditioned on a text, an answer conditioned on a question and
a document, etc.

In our case, the language model that we aim to develop is an instance of a
conditioned language model. The context that we will consider as the source for the
language generation will be a tuple of a timestamp and geo-coordinates.

2http:/ /nlpprogress.com /english /language modeling.html
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2.4 Evaluation

This section describes the evaluation measures used to validate the presented mod-
els. First, we describe the ranking evaluation measure to evaluate the multi-modal
retrieval model: Mean Reciprocal Rank (MRR), and then the language modeling
measure: Perplexity. We also discuss the evaluation procedure considering the tem-
poral component.

2.4.1 Evaluation of rankings

We evaluate the retrieval models assuming one of the items (time), (location), and
(text) is missing and use the other two to retrieve the missing one. We use the
retrieval model to build a ranking with the missing item, and % negative examples
randomly selected from the dataset. We use Mean Reciprocal Rank to evaluate the
rankings produced. We expect that the model ranks the real missing item better.
Given a set of queries (), where each query is the two known items, M RR is defined
as:

Q
YL

MER=(T0

) r; » ranking of the real missing item ¢ (2.19)

2.4.2 Evaluation of language models

Evaluation of language models can be performed intrinsically or extrinsically. In
extrinsic evaluation, the evaluation is performed by measuring how a language model
improves other tasks. Language models have been used to solve external tasks like
speech recognition, machine translation, optical character recognition, handwriting
recognition, and others. The other approach for language model evaluation is using
an internal measure. This is the traditional approach followed to evaluate language
models and the one followed in this thesis. Intrinsic evaluation of language modeling
is usually done using Perplexity [16]. Perplexity measures how well a language model
predicts a test sample; it captures how many bits are needed on average per word
to represent the test sample. It is important to note that in Perplexity, the lower
the score, the better the model. Perplexity, for a test set where all sentences are
arranged one after the other in a sequence of words wy, ..., wr of length T', is defined
as:

1

Perplexity = 27 1082p(Wiswr) (2.20)
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2.4.3 Evaluation procedure

When using a machine learning model, there are two types of analyses that can
be done when considering the temporal component, a retrospective analysis or a
predictive analysis:

e in a retrospective analysis, the goal is to study what happened in the past
with the help of a model to discover relevant patterns found in a dataset. An
example of a retrospective analysis is using a model to discover what happened
in Chile during the 2021 presidential elections from a social media perspective
by building a model with a dataset covering the time period and place of
interest,

e in a predictive analysis, the goal is to predict the future from what happened
in the past. An example of predictive analysis is time series forecasting, where
the goal is to study patterns of the value that a variable takes over time to
predict the values it will take in the future.

Considering model validation and the time dimension, for a predictive analysis
the correct approach is to split the dataset by the temporal variable, but for retro-
spective analysis, it may not be the correct approach. For example, to discover what
happened in Chile during the 2021 presidential elections, it would be desirable that
the model is tested with texts, times, and places related to the event of interest, the
Chilean presidential elections in 2021.

Both models proposed in this thesis, the multi-modal retrieval model and the
spatio-temporal conditioned language model can be used for both types of analysis,
retrospective and predictive. Nevertheless, the practical applications presented in
Sections 4.2.4 and 5.2.4 are examples of retrospective analysis. After our literature
review, one issue that we found is the lack of a standard evaluation setting (see
Section 3.2) when modeling spatio-temporal annotated text data. Previous works
evaluate their proposal on their own dataset, with their own evaluation procedure,
and their particular evaluation metric. We decided not to make this situation worse
by developing a new evaluation procedure, hence our evaluation setting is similar to
previous works [119] where datasets are randomly split for model validation without
special consideration for time or place dimensions.

2.5 Datasets description

We conduct experiments over two types of data sources, social media user posts, and
official crime incident reports. Social media datasets from Twitter and Foursquare
are used to validate both models. In the retrieval model, the social media datasets
are used for quantitative comparison between our approach and previous works.
Crime reports, on the other hand, are included to add diversity to our analysis of
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applications of the model. We conduct quantitative and qualitative evaluations over
the two social media datasets for the language model. Table 2.1 shows a summary
of these datasets. We next describe each dataset.

Twitter dataset

This dataset (‘LA-TW’) was presented by Zhang et al. [119] and corresponds
to Twitter messages collected from Los Angeles, USA. This dataset consists of
1,584,307 geotagged tweets (short-text messages) covering the period of time from

2014.08.01 to 2014.11.30.

Foursquare dataset

This dataset (‘NY-FS’) was also presented by Zhang et al. [119] and consists of
Foursquare check-ins reported on Twitter by users in the city of New York, USA.
The data contains 479,297 records indicating places in the city that were visited by
users and their location for the period from 2010.02.25 to 2012.08.16.

Crime incident dataset

This dataset (‘NY-Crime’) contains crime reports from the city of New York, USA3.
It was obtained from the New York City Open Data repository*. The dataset
contains textual descriptions used by police agents to classify crime incidents along
with their geolocation. This dataset consists of 1,016,008 crime incident records
that cover the dates starting from 2000.01.01 to 2015.12.31.

Table 2.1: Spatio-temporal textual datasets.

Records City Start Date End Date
LA-TW 1,584,307 Los Angeles 2014.08.01 2014.11.30
NY-FS 479,297  New York  2010.02.25 2012.08.16

NY-Crime 1,016,008 New York  2000.01.01 2015.12.31

2.6 Text-space-time patterns exploration

In this section; first, we explore how text correlates with time and space; and second,
how the examples in the social media datasets distribute over time and space. For
both exploratory analyses, timestamps and geo-coordinates are discretized. To cover
the two discretization approaches followed in this thesis, for the correlation analysis,

3https://data.cityofnewyork.us/api/views/qgea-i56i/rows.csv?access Type=DOWNLOAD
“https://opendata.cityofnewyork.us/
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we use a density-based automatic discretization approach (see Section 4.1.1), while
for the distribution analysis, we use hand-crafted discretizations (see Section 5.1.1).

2.6.1 Words relation to time and space

The first step for this exploratory analysis is to discretize timestamps and geo-
coordinates. Timestamps are converted to numbers in the range [0-86,400]° by
calculating their offset in seconds with respect to 12:00 am, while geo-coordinates
are represented in the 2-D space of latitudes and longitudes. Then, a density-based
automatic discretization technique is applied to both the transformed temporal vari-
ables and coordinates. This leads to high-density temporal windows and spatial cells
(for more details, refer to [119]). Each timestamp belongs to a temporal window
and each geo-coordinate belongs to a spatial cell (column Cells in Table 2.2). We
computed the average entropy of the distribution of words for temporal windows
and spatial cells for both social media datasets from Twitter and Foursquare (see
Section 2.5). In Table 2.2, we see that for both datasets the entropy of word dis-
tribution over spatial cells covers a lower percentage of the maximum entropy than
the entropy of the word distribution over temporal windows. This means that words
are more correlated with spatial cells than with temporal windows, and is an indi-
cation that capturing patterns of text in relation to locations should be easier than
capturing patterns of text in relation to times.

Table 2.2: Number of spatial cells and temporal windows. Average, maximum
entropy and percent of the maximum entropy of words distribution over spatial cells
and temporal windows for datasets LA-TW and NY-FS.

Dataset Dimension Cells Ave Entropy Maximum Entropy % Max Entropy

Time 24 4.50 4.90 0.91
LA-TW Location 5297 6.76 13.31 0.50
Time 29 4.01 4.64 0.86
NY-FS Location 10159 4.23 12.37 0.34

2.6.2 Distribution of the number of tweets over timestamps
and geo-coordinates discretizations

In order to better understand how the examples in the datasets distribute over time
and space, as well as the spatio-temporal discretizations, we show in Figures 2.3 and
2.4 the distribution of the number of tweets over the 24 hours of the day (0-23) and
the discretization of geo-coordinates by (0.001 x 0.001) spatial cells.

We can observe that, for both datasets, early morning hours are the least fre-
quent, starting to increase in the afternoon until the night hours. In total, there are

586,400 is the number of seconds in a day.
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19,157 spatial cells for the NY-FS dataset and 84,693 for the LA-TW dataset. In
the case of the NY-FS dataset, around 82% (15,796) of the cells have less than the
mean number of texts per cell (dotted line in Figure 2.3). For the LA-TW dataset,
the distribution is similar; around 83% (70,529) of the cells have less than the mean
number of examples per cell (dotted line in Figure 2.3). These similarities in the
patterns observed in the distributions indicate that even when these datasets were
collected from different cities and on different time windows, there are patterns for
text generation under spatio-temporal contexts that prevail independently of the
place and time window within which the data was collected.

Distribution over (0.001 % 0.001) spatial cells

-- Mean

Distribution over the 24 hours of the day

80,000 4

60,000 4

40,000 A

20,000 4

01 2 3 4 5 6 7 B 9% 1011 1z 13 14 15 16 17 18 19 20 21 22 23

Figure 2.3: Distribution of the number of tweets for the NY-FS dataset.

Distribution over (0.001 % 0.001) spatial cells

10° 4 ---- MAverage

Distribution over the 24 hours of the day
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40,000 +
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Figure 2.4: Distribution of the number of tweets for the LA-TW dataset.
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Chapter 3

Related works

In this section, we provide an overview of the work in the literature related to this
thesis. First, we describe the principal applications of spatio-temporal text data on
the main source of this type of content: location-based social networks. Later, we
delve into the models for spatio-temporal text data, derived from the applications
mentioned before. These works study how text, time, and space are jointly modeled
and how time and space can be used as context for language generation.

3.1 Applications for spatio-temporal text data

As stated in previous sections, many sources of text data have spatio-temporal
dimensions. Nevertheless, most of the work in the literature focuses on the social
network domain. It is the most abundant data source and easiest to acquire using
APIs. The main applications [118] in the literature are mobility modeling [70, 7, 121],
event detection [83, 84, 71, 75, 101] , event forecasting [118, 103, 33, 19, 123], and
activity modeling [64, 27, 100, 90, 47, 3, 52]. Next, we describe these applications.

3.1.1 Mobility modeling

Mobility modeling [118, 70, 7, 121] using spatio-temporal text data allows us to know
not only the geometric aspects of human mobility data but also the semantics:
i.e., going from point A at time t; to point B at time ¢; is not as informative
as going from home at time tg to work at time t; or from work at time ty to
a restaurant at time t3. Studying human mobility patterns has applications like
place prediction/recommendation [70, 7] for individual users and trajectory pattern
mining for mobility understanding in urban areas [121].

Works in mobility modeling have focused mainly on two problems: next-place
prediction/recommendation and trajectory modeling. A trajectory is a sequence
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T = (p1,...,pn), of places a user has visited with time and space constraints to
guarantee semantic consistency. If the time or geographic distance between two
consecutive places p;, p;+1 is too big, then they should not belong to the same tra-

jectory. Knowing the sequence of places (p1,...,pn_1) & user u has visited, the
objective of next place prediction/recommendation [118; 70, 7] is to select p, as
the next place u will visit from a set of candidates C' = {cy,..., ¢, }. Trajectory

modeling [118, 121] studies trajectories at individual and global levels. At an indi-
vidual level, it studies specific trajectory patterns for individual users; at a global
level, it studies aggregated mobility patterns. This information can lead to grasping
the reasons that motivate people’s mobility behaviors, understanding the nuances of
mobility problems in urban environments, and then taking effective actions to solve
them.

3.1.2 Event detection

Event detection methods [118; 83, 84, 71, 75, 101] applied to the streaming of spatio-
temporal text data from location-based social networks allow us to detect; in real-
time, geo-localized events from first-hand reporters. As defined by Allan et al. [4],
an event is something that happens at a specific time and place and impacts people’s
lives, e.g., protests, disasters, sports games, or concerts. Some events reflected in
location-based social networks and can be detected are earthquakes [83, 84, 71|, or
traffic congestion [75, 101].

Event detection techniques can be classified into two approaches: document-
pivot [94, 31] and feature-pivot [2]. In the document pivot approach, events are
represented as clusters of documents. The feature-pivot approach detects bursty
terms, which are then clustered to form events. A common approach is to use
spatial information to localize the unusual activity, while temporal information is
used to detect it. Once the data is localized by the spatial variable, the text is used
as the clustering unit, either document-based for the document-pivot approach or
term-based for the feature-pivot approach.

3.1.3 Event forecasting

Event forecasting methods [118, 103, 33, 19, 123], unlike event detection, which
typically discovers events while they are occurring, predict the incidence of events
in the future. The common approach is using social network data in conjunction
with external sources to build prediction models. For some events like criminal
incidents [103, 33, 19] or civil unrest [123], predicting the exact location as far in
advance as possible is paramount.

A common approach is to define features as indicators and train prediction mod-
els for spatial regions. For civil unrest, the prediction is usually at the city level or
smaller administrative regions, while for crimes and traffic events, the prediction is
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at a finer-grained level like neighborhoods or blocks. The temporal variable is used
to identify the changing patterns that indicate the occurrence of an event in the
future.

3.1.4 Activity modeling

Activity modeling studies human activities in urban environments using spatio-
temporal text data related to human activities. As people share information about
activities they do in everyday life, spatio-temporal text data from social networks
provides useful information about spatial and temporal patterns of human activities.
Unlike static analysis of spatial data, spatio-temporal text data can discover the
purpose of a visit to a point of interest that hosts multiple kinds of events. For
instance, the STAPLES Center, a multi-purpose arena in Los Angeles, California,
holds sports events such as basketball matches but also can hold others, such as
concerts. People may visit the STAPLES Center for different purposes. Using
“STAPLES Center” to annotate a location record could fail to reveal the complete
purpose of the location.

Works in activity modeling focus on place labeling and models that jointly rep-
resent text, time, and space. Both approaches characterize urban areas using data
collected from location-based social networks. Given a set R = {r1, ..., 7, } of spatio-
temporal text data records, place labeling finds labels that best describe points of
interest, either static or at different time periods. Models that combine text, time,
and space in a joint representation are the closest to the subject of this thesis. Next,
we provide an in-depth description and analysis of these works that jointly represent
text, time, and space for activity modeling.

Activity modeling: jointly modeling text, time, and space

Analyzing the former applications, the joint modeling of text, time, and space in
activity modeling [118] can be considered the basic task. It allows to answer (what)
happens, (when) it happens, and (where) it happens, and the remaining applications
can benefit from an activity modeling model. For example, spatial and temporal
activity patterns can be used to define transition points in trajectories for mobility
models, spatial and temporal activity patterns are used as features for event fore-
casting models, and unusual localized bursty activity is used to detect events. Next,
we focus on specialized models for activity modeling; first, we describe models that
detect geographical topics, and after that, we describe feature embedding models
for spatio-temporal text data.

Spatio-temporal topic modeling discovers topics related to geographical areas
[64, 27, 100, 90, 47, 3, 52]. Mei et al. [64] proposed a generalization of the Probabilis-
tic Latent Semantic Indexing [45] model, where topics can be generated by text or by
the combination of timestamp and location. Fisenstein et al. [27] proposed a cascad-
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ing topic modeling. Words are generated by a multinomial distribution that is the
mean of a latent topic model and a region topic model. Regions are latent variables
that also generate coordinates. Topics are generated by a Dirichlet distribution,
regions are generated by a multinomial distribution, and coordinates are generated
by a bivariate Gaussian distribution. Each region has a multinomial distribution
over topics, and each topic has a multinomial distribution over keywords. Wang et
al. proposed LATM [100], which is an extension of Latent Dirichlet Allocation [11],
capable of learning the relationships between locations and words. In the model,
each word has an associated location. For generating words, the model produces the
word and the location, in both cases with a multinomial distribution depending on a
topic generated by a Dirichlet distribution. Additionally, Sizov et al. [90] developed
a model similar to the work of Wang et al. [100]. Rather than using a multinomial
distribution to generate locations, they replace it with two Gaussian distributions
that generate latitudes and longitudes. Yin et al. [113] studied a generative model
where there are latent regions that are geographically distributed by a Gaussian.
Hong et al. [47] use a base language model, a region-dependent language model,
and a topic language model. Geo-coordinates are discretized into regions using clus-
tering algorithms. Regions are generated by a multinomial distribution depending
on the user and a global region distribution. Geo-coordinates are generated by the
regions using multivariate Gaussian distributions. Words are generated by topics
depending on the global topic distribution, the user, and the region. Ahmed et al.
[3] developed a hierarchical topic model which models document and region-specific
topic distributions and also models regional variations of topics. Relations between
the Gaussian distributed geographical regions are modeled by assuming a strict hier-
archical relation between regions that are learned during inference. Finally, Kling et
al. proposed MGTM [52], a model based on multi-Dirichlet processes. The authors
used a three-level hierarchical Dirichlet process with a Fischer distribution for de-
tecting geographical clusters, a Dirichlet-multinomial document-topic distribution,
and a Dirichlet-multinomial topic-word distribution.

Feature embedding methods find distributed learned representations for discrete
variables. Learned embedded representations are very popular in natural language
processing [65, 76] and graph node representation [49]. For spatio-temporal textual
data, embedded representations learn a joint representation for the elements of the
tuple (time, location, text). Zhang et al. proposed CrossMap [119]. In CrossMap,
the first step is to discretize timestamps and coordinates using Kernel Density Esti-
mation techniques. After that, CrossMap uses two different strategies to learn the
embedded representations: Recon and Graph. In Recon, the problem is modeled as a
relation reconstruction task between the elements of the tuple (time, location, text),
while in Graph; the goal is to learn representations such that the structure of a
graph built from the tuples (time, location, text) is preserved. Zhang et al. extended
CrossMap [120] to learn the embedded representation in a stream. The authors
propose two strategies based on life-decay learning and constrained learning to find
representations from the streaming data. Unlike Crossmap, timestamps and geo-
coordinates are discretized into hand-crafted spatial windows and temporal cells
instead of Kernel Density Estimation. Zhang et al. proposed another extension

27



[117] to Crossmap to learn representations from multiple sources. The main dataset
is the set of tuples (time, location, text). Each dataset defines a graph, and the repre-
sentations are learned to preserve the graph structure. Nodes representing the same
entity are shared between the main graph and secondary graphs. During training,
the learning process alternates between learning the main graph’s embeddings and
learning the embeddings for the secondary datasets.

3.2 Discussion

In Table 3.1, we present a summary of works that study the joint representation of
text, time, and space for activity modeling. Existing approaches are based on topic
modeling or feature embedding. Works following the topic modeling approach are
based on topic models such as Probabilistic Latent Semantic Analysis [10] or Latent
Dirichlet Allocation [11] and extend these models by assigning distributions over
locations to topics or by introducing latent geographical regions.

Both topic models and feature embedding models assume a bag-of-words ap-
proach for text modeling, ignoring the text’s sequential structure. These models
discretize coordinates and timestamps using clustering algorithms or hand-crafted
spatial cells and temporal windows.

When considering time and space modeling, each work models timestamps and
coordinates at a single level of granularity using hand-crafted discretizations or clus-
tering algorithms. Only Ahmed et al. [3] model hierarchy, but only for space. To the
best of our knowledge, there are no studies on how representing time and space at
different levels of granularity impact the modeling of text generation under spatio-
temporal conditions. Also, no works model the sequential structure of texts.

An additional problem with modeling spatio-temporal text data which is impor-
tant to mention is the evaluation framework. On the one hand, there is no consensus
about the evaluation metric. On the other hand, building a reference dataset in this
field is complex. First, a temporal variable is involved: this means that data should
be collected for a long time. Second, data is related to a specific region: this means
that using models in a new region would require collecting data from that region.

Overall, we can conclude that existing approaches ignore two dimensions of the
problem:

1. the sequential structure of language.

2. a unified model that leverages time and space at different granularities as

context for language generation.

In the next two chapters, we present models to tackle the drawbacks of current
approaches for modeling spatio-temporal annotated textual data presented in this
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Table 3.1: Spatio-temporal text data modeling.

Work Time Space Text Time-Space- Evaluation
Modeling Modeling Modeling Text Metric
Integration
[64] Days in a week City Multinomial ~ Topic modeling -
distribution
27 - User aggregation Multinomial =~ Topic modeling Accuracy  and
+ Gaussian distribution Mean Distance
[90] - Two Gaussian Multinomial ~ Topic modeling Accuracy
[113] - Region Multinomial ~ Topic modeling Perplexity
+ Gaussian
[100] - Multinomial Multinomial ~ Topic modeling Perplexity
(47 - Clustering Multinomial =~ Topic modeling Mean Distance
+ Gaussian
B - Hierarchical Hierarchical =~ Hierarchical Topic Accuracy  and
Gaussian multinomial ~ modeling Mean Distance
[52] - Fisher distribu- Multinomial — Multi-Dirichlet Perplexity
tion process
[119]  Clustering over Clustering Embedding Multi-modal em- Mean Reciprocal
seconds in a bedding Rank
day
[120] Hours in a day Equal-sized Embedding Online multi- Mean Reciprocal
grids modal embedding Rank
[117]  Hours in a day Equal-sized Embedding Cross-modal em- Mean Reciprocal

grids

bedding

Rank

section. First, in Chapter 4, we present a multi-modal retrieval model which captures
the sequential structure of language and allows us to query the model with pairs of
elements of space, time, and text to retrieve the third one. Second, in Chapter 5,
we present a spatio-temporal conditioned neural language model that allows us to
represent time and space as a context for text generation at different granularities.
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Chapter 4

Multi-modal retrieval model

As mentioned in Section 3, previous works that model the joint generation of text,
time, and space use topic models [64, 27, 100, 90, 47, 3, 52] or feature embedding
[119, 117, 120] to represent the elements of the tuple (time, location, text). These
approaches discard the order of words, which can limit the expressiveness power
of a model. In this section, we present a multi-modal retrieval model that follows
an Acceptor RNN usage pattern. We refer to this model as STT-RNN. STT-RNN
jointly represents (time, location, text) and captures the sequential structure of texts.

4.1 Model description

Figure 4.1 shows STT-RNN’s architecture. As a first step, we build a text indexer
and discretize timestamps and geo-coordinates (Equation 4.1). The text indexer
builds a vocabulary, keeping only those terms that are alpha-words (words made up
of alphabet letters only), appear more than 100 times, and are not stop-words (words
like articles and prepositions without semantic meaning). After discretization, each
word, temporal window, and spatial cell is assigned an index in a look-up embedding
matrix shared by the three components. Each component occupies a segment of the
embedding matrix (Equation 4.2). The embedding layer is similar to the embedding
layer used for tokens (e.g. words) representation in natural language processing
tasks, where each token is assigned an index between zero (0) and the size of the
vocabulary of tokens (vocab_size). In the case of timestamps and geo-coordinates,
it is the same principle, just that the vocabulary instead of a set of words is a set
of temporal windows or spatial cells. Each temporal window and spatial cell has
an index in the respective vocabulary in the same way each word has an index in
the vocabulary of words. Next, the query-context elements are concatenated as a
sequence input to the GRU-RNN (Equations 4.3, 4.4, and 4.5). In this way, the RNN
processes the input as a sequence of tokens formed by words, times, or locations.

30



IDTime = DiscTime((timestamp))
IDPlace = DiscCoordinates((latitude, longitude)) (4.1)
IDWordy,...,IDWords = TextIndexer((text))

EmbTimeb? = EmbLayer(I DTime)
EmbPlace’® = EmbLayer(I D Place) (4.2)
EmbWord®, ..., EmbWord“® = EmbLayer(IDWordy, ..., IDWords,)

Context2T ext*>? = [EmbTime"?, EmbPlace' ]

EmbContext2Text"? = RNN(SeqContext®?) (4.3)

Context2Place’™? = [EmbTime"?, EmbWord}®, ..., EmbWord?] (4.4)
EmbContext2Place’® = RNN(SeqContext™ 1) '

Context2Time’* 1% = [EmbPlace?, EmbWord}’d, .., EmbWord9] (4.5)

EmbContext2Time!? = RNN(SeqContexts™14)

PredictedW ords®*v°c-*iz¢ = PredictorWord( EmbContext2T ext'?)
Predicted Place'"*=z¢ = PredictorPlace( EmbContext2Place'?) (4.6)
PredictedTimeltmes-sz¢ = PredictorTime( EmbContext2Time?)

LossText = CrossEntropy(PredictedW ords, Words)
LossPlace = CrossEntropy(PredictedPlace, Place)
LossTime = CrossEntropy(PredictedTime, Time)

Loss = LossText + LossPlace + LossTime

(4.7)

The output of the GRU-RNN is passed as input to the retrieval-predictor compo-
nent. The retrieval-predictor component is formed by three different fully connected
layers to predict either time, place, or words; depending on the target. We call them
PredictorTime, PredictorLoc, and PredictorWord (Equation 4.6). We select which
fully connected layer to use depending on the target. The fully connected layers are
passed through a softmax function with a cross-entropy loss over the output space of
the corresponding retrieval task: words for PredictorWord, locations for Predictor-
Loc, and time for PredictorTime. The loss function is computed as the addition of
the three losses (Equation 4.7). At retrieval time, the probability of a text passage
is computed as the average probability of the predictions made by Predictor Word
for each of its words.

We trained the model with pairs (time,loc) — text, (time,text) — loc and
(loc, text) — time. The contexts are represented with the same GRU-RNN sharing
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parameters for the three cases. This allows each task to benefit from the others and
allows us to query the model with any combination of (time, location, text) and to re-
trieve any of the three variables as output. Any combination of (time, location, text)
can be processed as an input sequence by the GRU-RNN. For example, we could
query the model with any of the sequences that the model is trained to represent
(time, loc), (time, text) and (loc, text), but also with sequences like just text (text),
or just a token of time (time) or a token of location (loc) and ask the model to
retrieve any of the three variables.

Although the proposed model is evaluated following an information retrieval ap-
proach (see Section 2.4.1), the training is carried out in a classification environment.
Evaluating the model in the form of information retrieval allows, firstly, to keep the
evaluation process consistent with previous works [119] and, secondly, to provide a
view of the model closer to practical applications, since information retrieval allows
to perform tasks related to people’s information needs.

It is worth mentioning that we conducted preliminary experiments considering
variations of the proposed architecture for both, the GRU-RNN and the Predictor
components. All these variants either performed worse or did not exhibit any im-
provement over our model while adding complexity in some cases. We tested using
LSTM-RNN [43] instead of GRU-RNN and also experimented with attention mech-
anisms [6]. Both cases added complexity to the model (in terms of the number of
parameters to estimate) without obtaining any significant improvements. In the case
of the LSTM-RNN, our results were consistent with previous results [23]. Regarding
the attention mechanism, since our sentences were truncated to 15 tokens for the
social media datasets and 10 tokens for the crime incidents description dataset, we
believe that the sentences were not long enough to observe the benefits of adding
an attention mechanism to the network. Regarding the predictor component, we
tested text generation with a decoder GRU-RNN having also the GRU-RNN as the
encoder. We got poor results with this approach when compared to generating each
word independently.

Our preliminary experiments show the main benefit of our designed architecture:
it is simple and competitive with other more complex variations.

4.1.1 Timestamps and geo-coordinates discretization

As mentioned before, texts, timestamps, and geo-coordinates are variables from dif-
ferent domains with different scales and representation methods. Text is a sequence
of discrete tokens (i.e., words, characters), while timestamps and geo-coordinates are
continuous variables. To jointly model the three variables, the approach we follow is
to discretize timestamps and geo-coordinates. We use two different discretization ap-
proaches: 1) density-based and 2) equal-width binning. The density-based approach
was proposed by Zhang et al. [119], we use it to make our results comparable to
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Figure 4.1: Multi-modal retrieval neural network architecture.

previous work. Timestamps are converted to numbers in the range [0-86,400]" by
calculating their offset in seconds with respect to 12:00 am. Then, a density-based
automatic discretization technique is applied to both the transformed temporal vari-
ables and geo-coordinates. This leads to high-density temporal windows and spatial
cells (for more details, refer to [119]).

The second discretization approach is to apply equal-width binning to both tem-
poral and spatial variables. The main benefits of this approach are: 1) discretization
bins are easier to interpret, and 2) it allows us to study the impact of the discretiza-
tion granularity on the model’s performance by modifying the size of the bins. For
equal-width binning timestamp discretization, we consider the 168 hours of a week
(24 x 7) as the representation domain. That means that two events occurring on the
same hour and day of the week would be mapped to the same time number. Then
we use bins of k continuous hours to discretize the 168-hour window. The greater
the value of k, the lower the number of bins.

For equal-width spatial discretization we use equal-size cells obtained after per-
forming the following arithmetic operation on the latitude and longitude floating

number coordinates: [ — (I mod ¢), where [ can be latitude or longitude and ¢ refers
to the cell size.

For example, coordinates (-72.45772, 33.358423) would be assigned to cell (-
72.457, 33.358) using 0.001 as the cell size, or to cell (-72.456, 33.358) using 0.002
as the cell size. Table 4.1 shows an example of the discretization of a tweet.

186,400 is the number of seconds in a day.

33



Table 4.1: Example of discretization of a geo-tagged tweet using a one-hour time
window size and a 0.02 spatial cell size.

Location 34.0430 ,-118.2673 34.04 -118.26
Time Feb 1,2019, 1:31:00AM (Friday)5 x 24 + 1=121€120
Message LeBron is back LakeShow lebron back lakeshow

4.1.2 Training, parameters, and evaluation

Algorithm 1 shows the training process for STT-RNN. First, we split the dataset
into training (60%), validation (20%), and testing (20%). The model is trained for a
number of epochs (30) using mini-batch gradient descent with Adam optimizer [51].
At each step, we batchify the dataset, and for each batch, we compute the loss as
the addition of the losses (three) associated with each task. The goal is to train the
model to take steps in the gradient descent toward solving the three tasks at the
same time. After each epoch, we store the model’s weights as well as the results of
evaluating the model on the held-out validation set. The returned model is the one
that performed best on the validation set across the various training steps.

We use 64-dimensional feature embedding representation for temestamp, location,
and words. The GRU-RNN representation uses a single layer with a hidden layer
size of 128 (see Section 2.2.2).

To evaluate the model, for each tuple in the test we want to retrieve an element,
given the others of the tuple as a query. For each test example, we randomly
selected k£ = 10 negative examples. We ranked the negative examples and the
target according to the model using the query elements as input. We used the mean
reciprocal rank (M RR) to evaluate the quality of the ranks produced by the model;
MRR is described in Section 2.4.1.

It is worth mentioning that we chose this evaluation setting to keep the evaluation
methodology consistent with the evaluation setting of previous works [119]. We
used the same discretization techniques with the same parameters and the same
methodology described in [119].

4.2 Experiments

Our experiments aim to answer our research question: can the joint representation of
text, time (timestamp), and space (geographic coordinates), be better modeled; by
capturing the sequential structure of texts? In that sense, we compare the proposed
multi-modal retrieval model with previous approaches for spatio-temporal textual
data modeling.

First, we describe the datasets used in our evaluation. After that, we present
the results of comparing STT-RNN with previous approaches. We describe the
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Algorithm 1: Training algorithm for STT-RNN
Input: Set H of spatio-temporal records tuples of the form (¢;,1;, €;).
Output: Trained model T.
Split H in Train(60%), Validation(20%), Test(20%).
//TrainingStep
Initialize Parameters 6
Initialize EPOCHS = 30
for epoch € 1,2,...., EPOCHS do
Batches = Batchify(Train)

for batch € Batches do
Loss = 0

for target € {t,l,e} do

context is {t,l, e} - target

ForwardPass(batch(context, target))

Loss = Loss + Loss(context, target)
BackwardPass(batch)
Update 6 using the three batches of (context,target) and the
| optimization algorithm

EvalV alepoer, = ObjectiveFunction(Validation)

| Save ¢ and FvalV alcpoen at this step.

Output trained model T with weights 6 at step with best results over
the Validation set

baselines, the evaluation setting, and the experimental results. Then, we present
a study of the sensitivity of the model to the granular representation of times and
places. We conclude our analysis with a real-world crime description dataset case
study.

4.2.1 Datasets

We evaluate the retrieval model using two types of data sources, social media user
posts, and official crime incident reports. Social media datasets coming from Twitter
and Foursquare are used for quantitative comparison between the proposed model
and previous works (using the same settings used in previous works). Crime reports,
on the other hand, are included to add more diversity to our analysis and to show
a real-world application of our model in the form of a case study. All datasets are
described in Section 2.5. Table 5.1 shows a summary of the datasets employed in
this section.

4.2.2 Comparison to previous works

In this section, we show a comparison with previous works. First, we describe the
baselines against which we compare the proposed model; after that, we describe the
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Table 4.2: Datasets employed to evaluate the multi-modal retrieval model.

Records City Start Date End Date
LA-TW 1,584,307 Los Angeles 2014.08.01 2014.11.30
NY-FS 479,297  New York  2010.02.25 2012.08.16

NY-Crime 1,016,008 New York  2000.01.01 2015.12.31

evaluation methodology, and at the end, we present the experimental results.

Baselines

This section describes the baseline methods we use to validate our approach. As
baselines, we use previous works for modeling spatio-temporal textual data based
on feature embedding as well as existing approaches for geographic topic modeling.
Next, we detail these baselines.

e LGTA [113] is a generative model where latent regions are geographically
distributed by a Gaussian distribution. Each region has a multinomial distri-
bution over topics, and each topic is a multinomial distribution over words.

e MGTM [52] is a generative model based on the multi-Dirichlet process. The
authors use a three leveled hierarchical Dirichlet process with a Fischer distri-
bution for detecting geographical clusters, a Dirichlet-multinomial document-
topic distribution, and a Dirichlet-multinomial topic-word distribution.

e SVD performs Singular Value Decomposition on the co-occurrence matrix of
timestamps, location, and words.

e Recon [119] assumes each tuple (time, location, text) is a relation and then
learns embeddings for timestamps, locations and words such that the relation
can be reconstructed.

e Graph [119] builds a graph of co-relations and then learns embeddings for
timestamps, locations, and words such that the structure of the graph can
be reconstructed.

Results

In Table 4.3, we show the results for the social media datasets. We can see that
STT-RNN outperformed all the models for location retrieval and time retrieval.
This is consistent with our idea that RNNs will produce a better representation
than the average of word embeddings for texts. Since text is only considered as
input for location retrieval and time retrieval, these are the tasks that STT-RNN
performed the best. Consistent with previous works, it showed better results for
NY-FS (Foursquare) than for LA-TW (Twitter). Also, time prediction proved to
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be the hardest task. These results validate our exploratory analysis in Section 2.6.1,
where we discovered that words are more correlated to spatial cells than to temporal
windows.

Table 4.3: Mean Reciprocal Rank for spatio-temporal textual data modeling.
The three tasks evaluated are to retrieve each one of the elements of the tuple
(time, location, text) knowing the other two. This table shows results for the social
media datasets of STT-RNN and baseline methods.

Text Location Time
Method LA-TW NY-FS LA-TW NY-FS LA-TW NY-FS
LGTA 0.3760 0.6107  0.3792 0.6083 - -
MGTM 0.3874 0.5974  0.4474 0.5753 - -
SVD 0.4475 0.4475  0.3953 0.6460  0.3256 0.3187
STT-RNN 0.4947 0.7227 0.7175 0.9547 0.3939 0.4505
Recon 0.6870 0.9219 0.6526 0.9044  0.3582 0.3612
Graph 0.7011 0.9449 0.6758 0.9168  0.3895 0.3716

In the case of text retrieval, the proposed model ranked third behind the two
variants of the feature embedding models proposed by Zhang et al. [119]; though
outperforming three of the previous works. A relevant aspect of the models proposed
by Zhang et al. that can help to explain the results in Table 4.3 is that these works
encode neighborhood relationships. These works capture neighborhood relationships
by computing Gaussian kernel strengths between temporal windows or spatial cells.
Later, these kernel strengths are introduced as weighting factors over related spatial
cells and temporal windows in the feature embedding algorithms. Since modeling
neighborhood properties allows for better generalization on the test dataset, this
representation property, missing in our model, is an important aspect influencing the
results of the previous feature embedding works when modeling the spatio-temporal
context for text retrieval. Modeling the sequential structure of the text in our work
is enough to overcome not modeling neighborhood properties in the case where text
is part of the context representation (time retrieval and place retrieval), but for text
retrieval, there is no sequential structure in the spatio-temporal context, hence the
modeling of neighborhood relationships is a relevant factor in the spatio-temporal
context that we lack to model. Later, in Section 5, we present a spatio-temporal
conditioned language model where we address the weakness of the model presented
in this section; text generation under spatio-temporal conditions. We focus on the
modeling of spatio-temporal contexts for language generation by representing time
and space at different granularities as contexts for language generation.

4.2.3 Sensitivity analysis of spatial and temporal granular-
ities

In this section, we show how the spatial and temporal granularities influence the
results of STT-RNN. We studied how robust the model is to changing the granularity
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of time windows and spatial cells.

Temporal-granularity analysis. In Table 4.4, we show results while changing the
temporal window size. For these experiments, we used a combination of hour-of-
the-day and day-of-the-week, resulting in a set of 24x7=168 hour ranges. In our
experiments, we used temporal window sizes 1,2,4,8,12, and 24 (see Section 4.1.1).
In Table 4.4, we can see that location retrieval is not affected by changes in the
temporal variable, while text retrieval shows a small drop. For time prediction, the
clear tendency is to decrease the MRR while increasing the window size. We consider
that this is due to the fact that increasing the temporal window size introduces noise
because a bigger temporal window size means a bigger spreading of when the text
was generated and additional places to consider inside the temporal window. Also,
this corroborates the idea that the temporal variable is poorly correlated with the
other two, and changing the temporal discretization has a low influence on the
prediction of places and texts.

Table 4.4: Mean Reciprocal Rank for spatio-temporal textual data modeling.
The three tasks evaluated are to retrieve each one of the elements of the tuple
(time, location, text) knowing the other two. This table shows how STT-RNN per-
forms while changing the temporal window, here we evaluate using the Foursquare
dataset.

Text  Location Time
Window-Size NY-FS NY-FS NY-FS

1 0.6373  0.9524  0.4489
2 0.6319  0.9532  0.4432
4 0.6334  0.9553  0.4362
8 0.6288  0.9551  0.3938
12 0.6262  0.9542  0.3647
24 0.6209  0.9530  0.2966

Spatial-granularity analysis. In Table 4.5, we show the results by changing the
spatial cell size. We use squared equal-size spatial cells by manipulating the con-
tinuous values representing the latitudes and longitudes (see Section 4.1.1). We
experimented with cells size 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. Retrieving the
temporal variable does not get affected by changing the size of the spatial cell, con-
firming previous findings about the relations between the temporal variable and the
spatial variable. Similar to what happens with time retrieval when expanding the
temporal window, expanding the spatial cell makes it harder to retrieve the spa-
tial cell correctly. Also, expanding the spatial cell makes the task of text retrieval
harder, confirming a strong correlation between places and texts.

4.2.4 Qualitative analysis

In this section, we show a case study of the application of STT-RNN to a dataset of
crime descriptions. We chose this dataset to show the usefulness of applying STT-
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Table 4.5: Mean Reciprocal Rank for spatio-temporal textual data modeling.
The three tasks evaluated are to retrieve each one of the elements of the tuple
(time, location, text) knowing the other two. This table shows how STT-RNN per-
forms while changing the spatial granularity. Here we evaluate using the Foursquare
dataset.

Text  Location Time

Cell-Size NY-FS NY-FS NY-FS
0.01 0.6373  0.9524  0.4489
0.02 0.5612 0.9410 0.4534
0.03 0.5352 0.9291 0.4521
0.04 0.5013  0.9253 0.4539
0.05 0.4735 0.9125 0.4534
0.06 0.4755 0.9054  0.4541

RNN to different domains. Crime descriptions are texts describing a crime, either
with natural language descriptions used by a victim or keywords and phrases used
by police agents. We used a dataset of crime descriptions from the city of New York
(see Section 2.5) which contains texts used by police agents to describe the incident,
timestamps of when the crime took place and geo-coordinates of where.

First, we compared STT-RNN to previous work [119] following the same method-
ology described in Section 4.2.2. Similar to the results using the social media
datasets, in Table 4.6 we can see that STT-RNN shows the best results for re-
trieving times and places. Given that STT-RNN is at its best for retrieving places
and times, in Table 4.7 and Table 4.8 we show results querying STT-RNN when
trained with the crime dataset. As mentioned in Section 4.1, we could query the
model with any of the sequences that the model is trained to represent (time, loc),
(time, text) and (loc, text), but also with sequences like just text (text), or just
a token of time (time) or a token of location (loc) and ask the model to retrieve
any of the three variables. To show the utility of the model, we queried first with
a crime associated with night activity “alcoholic beverage control law”. We can see
that the results show night hours and weekend days. Second, we queried the model
with a crime not associated with night activities “state laws non penal”; and we can
see that the results show afternoon hours and weekdays. For both cases STT-RNN
allows us to find hot spots in the map of the corresponding types of crimes.

Table 4.6: Mean Reciprocal Rank for spatio-temporal textual data modeling. This
table shows results for the crime incident dataset of STT-RNN and the previous
work Graph.

Text Location Time

Method  NY-Crime NY-Crime NY-Crime
Graph 0.370 0.385 0.319
STT-RNN 0.311 0.559 0.368
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Table 4.7: Spatial and temporal results for textual queries. Query=*“alcoholic

beverage control law”.

Coordinates Time-Day | Time-Hour
Paramus v 5s) Friday 1 1pm
OnKers

Paterson @ New Rochelle Sunday lam

Hackensack Saturday 1 am
A 5] 2 Sunday 12am
N ?HE BRONX Thursday 1 1pn’1
Ttclair A ﬁa Saturday 10pm
s Saturday 12am

MANHATTAN
/ Tuesday 10pm
9 RN
e, L: B Wednesday lam
New York o @) Thursday lam

Table 4.8: Spatial and temporal results for textual queries. Query=-*“state laws

non penal”.

Coordinates Time-Day | Time-Hour
Param o
QS vom o (55 Wednesday 3pm
Paterson New Rochell Tuesday 3pm
@
Hackensack /Y Monday Spm
o o5 e Wednesday Spm
_ RO Saturday 6pm
oo ® “ w Thursday Spm
s Thursday 3pm
MANHATTAN
o Tuesday S5pm
Newark (3 495 AP Friday 3pm
__Newitork & @ Tuesday 4pm

4.3 Chapter conclusions

In this chapter, we presented a multi-modal retrieval model for spatio-temporal tex-
tual data. We described the model and the results of the quantitative and qualitative
experiments that we conducted. The proposed retrieval model outperformed previ-
ous works in our experiments in two of the three evaluated tasks and ranked third
for the other task. Our qualitative experiments proved how the proposed model can
be used in a crime-incident domain to gain insights into spatio-temporal patterns of
crime incidents from their description and the information about when and where
those crimes took place.

Of the three retrieval tasks, retrieving text given time and location was the task
where the model performed the worst in comparison to the other methods. We
attribute this to the fact that RNNs benefit when processing sequential data as
input (e.g., text). Time and space do not exhibit this sequential structure when
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used as input. Also, representing time and space with one level of granularity
ignores properties of time and space like neighborhood and hierarchy (see Section
2.1). Motivated by this, we present additional studies in the next chapter on how
text is generated under spatio-temporal conditions.
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Chapter 5

Spatio-temporal conditioned
language model

As mentioned in Section 3, ignoring properties of space and time like neighborhood
and hierarchy can limit the capacity of a model for pattern learning in the joint
representation of text, time, and space. Capturing such properties in the modeling
of the spatio-temporal context should have a positive influence on spatio-temporal
conditioned language models. In this section, we present an end-to-end neural net-
work for encoding spatial and temporal contexts and decoding/generating text; we
refer to this model as STT-LM. The neural network architecture design aims to
model the spatio-temporal context at different granularities and to make the decod-
ing/generating component agnostic to how the encoding of the spatial and temporal
contexts are instantiated.

5.1 Model description

Figure 5.1 shows STT-LM’s architecture. In order to feed the model with spatio-
temporal textual data, some pre-processing steps are required: first, the text is
tokenized, timestamps are discretized into temporal windows, and geo-coordinates
are discretized into spatial cells (Equation 5.1). We set the vocabulary to the 12,288
most common words in the training set. The number of spatial cells and temporal
windows is variable depending on the experiment. We filter out tuples where the
number of words in the vocabulary is ten or less and reduce all URLs to the token
‘hittp’. After pre-processing, discretized timestamps and discretized geo-coordinates
are passed through embedding layers (Equation 5.2). The embedding layer projects
words, temporal windows, and spatial cells into a dense representation. Each item
is embedded using a look-up table and there is a look-up table for each type of item:
temporal windows, spatial cells, and words. Each item is associated with an integer
that is used as an index in the correspondent look-up table.

After the discretization step, the next step is building the spatio-temporal con-
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Figure 5.1: Spatio-temporal conditioned neural language model architecture.

text (Equation 5.3). Each timestamp can be discretized into n temporal windows
and each coordinate can be discretized into p spatial cells. For each one of the n+p
temporal windows and spatial cells, there is a gate to select whether it is included in
the context. Afterward, the context is passed through an encoder layer that results
in a context-representation tensor (EmbContext). This context-representation ten-
sor is of invariant /fixed dimensions ({1, d) where d is the representation dimension)
no matter how the context is selected. The EmbContext tensor is concatenated
as the first element in the sequence of word embeddings (Equation 5.4); this se-
quence [EmbContext, EmbWords] is passed through a decoder that represents the
language model. Finally, we compute the loss function as the cross-entropy between
the predicted sequence of words and the observed sequence of words in the training
examples (Equation 5.5). This is the general architecture that we propose. The
main building blocks of our encoder-decoder architecture can be implemented using
different approaches, such as recurrent neural networks or self-attention transformer
blocks. We experiment with them in Section 5.2.2.

A salient property of this architecture is that it allows for representing time and
space at different levels of granularity. This is achieved by modeling the spatio-
temporal context as a sequence of discrete tokens representing each context type’s
particular semantics. For example, we could represent the temporal context by the
hour of the day (0-23), day of the week (Sunday to Monday), week of the month,
and month of the year (January to December), and the spatial context by block,
neighborhood, district, etc.

43



IDTimey, ..., IDTime, = DiscTime({timestamp))
IDPlacey, . ..,IDPlace, = DiscCoordinates((latitude, longitude)) (5.1)
IDWordy,...,IDWords = TextIndexer((text))

EmbTimel®, ... EmbTime-? = EmbLayer(IDTime, . .., 1 DTime,)
EmbPlace%’d, . EmbPlace[l;d = EmbLayer(I DPlacey, ...,IDPlace,)  (5.2)
EmbWord™, . .. , EmbWordy* = EmbLayer(IDWordy, ..., IDWord,)

SeqContext™ P = [EmbTime%’d, .., EmbTimel?, EmbPlacei’d, . ,EmbPlace;’d]
EmbContext'® = Encoder(SeqContext™ P:?)

(5.3)

SeqPredst'4 = [EmbContext™*, EmbWord\®, ..., EmbW ord"] (5.4)

PredictedW ords®*v°¢?s%*¢ = Decoder(SeqContextst14)

Loss = CrossEntropy(PredictedW ords* "= CorrectW ords*"*******¢)  (5.5)

5.1.1 Timestamps and geo-coordinates discretization

To discretize geo-coordinates and timestamps we use equal-size squared cells in the
case of the geo-coordinates and hand-crafted temporal windows in the case of the
timestamps. For timestamp discretizations, we use human semantic arrangements of
time, in particular: the hour of the day (0-23), day of the week (Sunday to Monday),
week of the month (first week to the fifth week), and month of the year (January to
December). Figure 5.2 shows a hierarchy describing these discretizations. For spatial
discretization, we use equal-size spatial cells using the coordinates as metric units
to define the spatial cells. Figure 5.3 shows a hierarchy describing the squared-cell
discretizations.

It is important to remark that our approach to representing contexts as discrete
sequences allows for working at different levels of granularity. For example, a coarse
representation could represent time by a single token corresponding to the month,
whereas a more fine-grained approach could encode time as a sequence containing
month, day, hour, etc. We argue that this is a core property of our architecture as
it allows us to adapt the spatio-temporal context representation depending on the
application. For example, granularities at the hour level should be more efficient
for events related to daily activities (e.g., going to work, and having lunch). On the
other hand, for seasonal events (e.g., Christmas, Holidays) month-level granularities
should work better.

44



Days

Months

Jan | Feb I

| Nov | Dec I

| |Sat|Sun| |Mon|Tue|

0.004

Week

Figure 5.2: Hierarchy of timestamps discretization.

0.002

R I

Drake Stadium

UCLA

UCLA Intramural Fields

Student Aclivities’Cemer#\
IRl

Wilson-Pl azarJr

[Straus Stadium

LA DashewiCenter:

e 9 Pauley Ravilion Q

|

ICLA S,

S
Pl
o

(Teyerand a 9 Engineering VI

Renee Luskin..@
457 * (537)
4.star hotel

Stfathmore Pl
AFE Cenlel

-|LA Sanitation §...

9 John Wooden Center
————Bruin-Walk =
o LOSANGEres | \_UCLA Store
2 Tennis Center UCLA Centrd Department store  ——

Ticket Officd

| Ticket [

|
Eventticket sellfr \

(@
\\

i

a
|
Universfty of 9 Ge
Califorpia, ‘ Henry Samueli School Court of
Los Andeles of Engineering Sciences
=]
Boyer Hall e

California, ]

Q Royce‘

5 ‘

Q

& Dick:

[

Powell Libra

i

on Cour

Moore Hall

4

Mathematical
Sciences Building

ezejg ejdlog

Invert:

Figure 5.3: Hierarchy of coordinates discretization.

45



5.1.2 Training, parameters, and evaluation

Algorithm 2 shows the training process for STT-LM. First, we split the dataset
into training-validation-testing, keeping 10% of each dataset for testing, 10% for
validation, and 80% for training. The model is trained for E epochs, where E is
computed following an early stopping approach. At each step, we batchify the
dataset and train using mini-batch gradient descent with Adam optimizer [51]. After
each epoch, we store the model’s weights as well as the results of evaluating the model
on a held-out validation set. The returned model is the one that performed best on
the validation set across the various training steps (early stopping).

In all our experiments we use 128-dimensional feature embedding representation
for timestamp, location, and words 128 examples as batch-size. We develop experi-
ments with the encoder and the decoder self-attention architectures proposed in [99].
Also, we test a multi-layer GRU-RNN [23] for language modeling. The GRU-RNN
has two layers with a hidden layer size of 128. The self-attention architectures are
used in all cases with two self-attention layers, four heads, and 128 as vector sizes
for queries, keys, and values (see Section 2.2.2 for additional details).

For our quantitative experiments, we use the traditional intrinsic evaluation met-
ric for language modeling: Perplexity [16]. Perplexity measures how well a language
model predicts a test sample, in our case: text generated given a spatio-temporal
context. For additional details and the Perplexity formula, see Section 2.4.2.

Algorithm 2: Training algorithm for STT-LM
Input: Set H of spatio-temporal records tuples of the form (¢;,1;, €;).
Output: Trained model T.

Split H in Train(80%), Validation(10%), Test(10%).
//TrainingStep
Initialize Parameters 6
Initialize FarlyStop = False, i = 0
while not FarlyStop do
Batches = Batchify(Train)
for batch € Batches do
ForwardPass(batch)
Loss(batch)
BackwardPass(batch)
Update 6 using the optimization algorithm

Save 6 at this step

1 =1+1

EvalVal; = ObjectiveFunction(Validation)

if EvalVal; is worse than EvalVal;_; then
| FarlyStop = True

6utput trained model T with weights 6 at step with best results over
the Validation set
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5.2 Experiments

Our experiments aim to answer our research question: can the joint representation
of text, time (timestamp), and space (geographic coordinates), be better modeled
by representing the spatio-temporal variables at multiple levels of granularity? In
that sense, we conduct extensive experiments where we study how the modeling
of time and space at different granularities influences the quality of the produced
spatio-temporal conditioned language models.

Next, we describe the datasets used in our evaluation. We then present an anal-
ysis of different variants for the spatio-temporal context representation component
(Encoder) and the language modeling component (Decoder). After that, we study
how modeling time and space at different granularities influence the results of the
spatio-temporal conditioned language model over the two social media datasets. We
conclude the experiments with case studies where we show how the proposed model
can be used to characterize urban places from the perspective of social media and
how an attention-based neural network can be used to visualize relations between
texts and the spatio-temporal context where it is generated.

5.2.1 Datasets

We conduct experiments over two social media datasets from Twitter and Foursquare.
These datasets are described in Section 2.5. Both datasets are used in our quanti-
tative analyses. Given the diversity and variety of language generated on Twitter
compared to Foursquare, Los Angeles’s Twitter dataset is used in our qualitative
experiments. Table 5.1 shows a summary of the datasets employed in this section.

Table 5.1: Datasets employed to evaluate the spatio-temporal conditioned language
model.

Records City Start Date End Date
LA-TW 1,584,307 Los Angeles 2014.08.01 2014.11.30
NY-FS 479,297  New York  2010.02.25 2012.08.16

5.2.2 Encoder-decoder analysis

In our first set of experiments, we evaluate different options for the spatio-temporal
context representation component (Encoder) and the language modeling component
(Decoder) (see Section 5.1). In each case, we test two variants. For the encoder, we
test: 1) projecting the feature embedding output of the embedding layer with a fully-
connected layer on top and 2) the self-attention encoder representation proposed in
[99] (without the positional encoding since the order is irrelevant in the sequence of
tokens representing the spatio-temporal context) also with a fully-connected layer
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on top. For the decoder, we test 1) a two-layer GRU-RNN [23] and 2) a transformer-
based two-layer decoder representation proposed in [99].

In Table 5.2, we show the results for the dataset from Twitter, and in Table
5.3 for the dataset from Foursquare. For both datasets, we test two different op-
tions for times and places in the encoder: all times (alltimes), all places (allplaces),
and all times-places (all). We can see that for both datasets and each option of
times and places, using only the embeddings in the encoder performed better than
using the self-attention component, while for the decoder, the self-attention compo-
nent performed better than the GRU-RNN in the same analysis. The combination
encoder(Embeddings)-decoder(Self-Attention) got the best results in all cases. Our
interpretation of these results is that the self-attention mechanism in the spatio-
temporal context introduces noise between the units in the spatio-temporal context;
using only the embeddings keeps the representations of the spatio-temporal units
independent from each other. In the case of the decoder, there is no such issue; what
we are modeling is the sequential structure of the text, which can be captured with
the self-attention decoder. In the next section, where we analyze different granular-
ities for time and space, we use this setting for the encoder (Embeddings) and the
decoder (Self-Attention) as the evaluation framework.

Table 5.2: Perplexity results for the Twitter dataset from Los Angeles. Testing
only embeddings and self-attention for the encoder component and GRU-RNN or
self-attention for the decoder. In the Contert column: h means hour, d means day
in the week, w means week in the month, and m means month in the year. Also:
pl, p2, p4, and p8 mean squared cells of side: 0.001, 0.002, 0.004, and 0.008.

Context Encoder Decoder  Dataset Perplexity
I - GRU-RNN LA-TW 63.03
[ . Self-Attn  LA-TW 57.35
[hdwm]-alltimes Embeddings GRU-RNN LA-TW 61.90
[hdwm]-alltimes Embeddings  Self-Attn LA-TW 56.67
[hdwm]-alltimes Self-Attn ~ GRU-RNN LA-TW 63.02
[hdwm]-alltimes Self-Attn Self-Attn ~ LA-TW 193.77
[p1p2p4p8l-allplaces  Embeddings GRU-RNN LA-TW 61.13
[plp2p4p8l-allplaces  Embeddings  Self-Attn ~ LA-TW 54.30
[p1p2p4p8|-allplaces Self-Attn ~ GRU-RNN  LA-TW 62.42
[p1p2p4p8]-allplaces Self-Attn Self-Attn  LA-TW 161.14
[hdwm plp2pdp8J-all Embeddings GRU-RNN LA-TW 58.88
[hdwm plp2p4p8]-all Embeddings  Self-Attn  LA-TW 53.85
[hdwm plp2p4p8J-all  Self-Attn ~ GRU-RNN LA-TW 63.06
[hdwm plp2pdp8J-all  Self-Attn Self-Attn ~ LA-TW 72.80

5.2.3 Spatio-temporal granularities analysis

In this section, we study how modeling time and space at different granularities
impacts the spatio-temporal conditioned language models. In Table 5.4, we show
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Table 5.3: Perplexity results for the Foursquare dataset from New York. Testing
only embeddings and self-attention for the encoder component and GRU-RNN or
self-attention for the decoder. In the Contert column: h means hour, d means day
in the week, w means week in the month, and m means month in the year. Also:
pl, p2, p4, and p8 mean squared cells of side: 0.001, 0.002, 0.004, 0.008.

Context Encoder Decoder  Dataset Perplexity
I - GRU-RNN NY-FS 10.49
[ ; Self-Attn  NY-FS 9.13
[hdwm]-alltimes Embeddings GRU-RNN NY-FS 10.02
[hdwm]-alltimes Embeddings  Self-Attn ~ NY-FS 9.00
[hdwm]-alltimes Self-Attn ~ GRU-RNN  NY-FS 10.14
[hdwm]-alltimes Self-Attn Self-Attn ~ NY-FS 47.15
[plp2p4p8l-allplaces  Embeddings GRU-RNN NY-FS 6.51
[plp2p4p8l-allplaces  Embeddings — Self-Attn ~ NY-FS 5.45
[p1p2p4p8]-allplaces Self-Attn ~~ GRU-RNN  NY-FS 10.13
[p1p2p4p8|-allplaces Self-Attn Self-Attn ~ NY-FS 36.62
[hdwm plp2pdp8J-all Embeddings GRU-RNN NY-FS 6.38
[hdwm plp2pdp8J-all Embeddings  Self-Attn ~ NY-FS 5.34
[hdwm plp2pdp8J-all  Self-Attn ~ GRU-RNN NY-FS 10.14
[hdwm plp2p4p8J-all  Self-Attn Self-Attn ~ NY-FS 34.93

the results for the Twitter dataset from Los Angeles. We can see that for all cases,
including a spatial or a temporal context, proved to be better than not including it at
all (first row in the table). The temporal context improvements were also marginal
compared to a language model that ignores the spatio-temporal context (first row in
the table). The spatial contexts show notable improvements in all cases; the larger
the spatial cell, the better the results.

As a complement to the results in Table 5.4, in Table 5.5, we show the results
with bigger spatial cells. We can see that Perplexity gets worse instead of getting
better results, indicating that the optimal is around 0.008 in geo-coordinates values
for cell size.

In Table 5.6, we show the results for the Foursquare dataset from New York.
The Perplexities for this dataset are lower than the Perplexities for the Twitter
dataset from Los Angeles. This is due to most of the Foursquare reports being
generic text generation suggested by the application. These texts differ in most
cases on the checked-in place, while the Twitter dataset is mostly free texts. About
the spatio-temporal modeling, we observe similar results to the Twitter dataset;
in all cases, including the spatio-temporal context improves the Perplexity. The
temporal contexts produce marginal improvements, while the spatial contexts show
the biggest improvement margin. Contrary to the results over the Twitter dataset,
with this dataset, smaller cell-size produced better results than the wider ones. We
consider this is due to texts being correlated to places of interest where people report
activities in Foursquare (restaurants and small businesses) with a fine granularity.
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Table 5.4: Perplexity results for the Twitter dataset from Los Angeles. In this table,
we show the results using squared cells as spatial discretizations.

plp2p4p8l-allplaces 125,992 LA-TW 54.30
hdwm plp2p4p8J-all 126,036 LA-TW 53.85

Context Cells Dataset Perplexity
I - LA-TW 57.35
[h]-hour 24 LA-TW 57.07
[d]-day 7 LA-TW 57.17
[w]-week 5 LA-TW 57.13
[m]-month 12 LA-TW 56.95
[hdwm]-alltimes 48 LA-TW 56.67
[p1]-0.001 77,065 LA-TW 54.65
[p2]-0.002 34,284 LA-TW 52.91
[p4]-0.004 11,359 LA-TW 51.45
[p8]-0.008 3,283 LA-TW 51.30
[

[

Table 5.5: Perplexity results for the Twitter dataset from Los Angeles. In this table,
we show the results using bigger squared cells as spatial discretizations.

Context  Cells Dataset Perplexity
] - LA-TW 57.35
[p]-0.016 1,253 LA-TW  52.39
[p]-0.024 460 LA-TW 5281
[p]-0.032 197 LA-TW 53.32

As a complement to the results in Table 5.6, in Table 5.7, we show the results
with smaller spatial cells. Perplexity gets lower as the cells get smaller, meaning the
results improve. We could not continue the decrease the spatial cell size because of
resources restriction. Also, to find a point where the Perplexity begins to deteriorate,
we need to test spatial cells smaller than the regular size of popular places where
activities are reported on Foursquare.

5.2.4 Qualitative analysis

In this section, we present qualitative studies of language generation for the proposed
model. First, we show examples of texts generated by a trained spatio-temporal
conditioned language model. After that, we present examples in Figures 5.4, 5.5,
and 5.6 where we can see the attention weights that the text generation component
gives to the elements in the spatio-temporal context. Attention weights in our model
can be particularly useful for the GIS community since they relate words to spatial
and temporal contexts and offer interpretability. We can see the direct relationship
between individual words and different granularities of representation.
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Table 5.6: Perplexity results for the Foursquare dataset from New York. In this
table, we show the results using squared cells as spatial discretizations.

plp2p4p8l-allplaces 38,532 NY-FS 5.45
hdwm plp2p4p8J-all 38,580 NY-FS 5.34

Context Cells Dataset Perplexity
I T NYFS 903
[h]-hour 24 NY-FS 8.97
[d]-day 7 NY-FS 9.10
[w]-week 5 NY-FS 9.21
[m]-month 12 NY-FS 9.09
[hdwm]-alltimes 48 NY-FS 9.00
[p1]-0.001 17,9029 NY-FS 540
[p2]-0.002 11,260 NY-FS 5.74
[p4]-0.004 6,060 NY-FS  6.10
[p8]-0.008 3,283 NY-FS 6.63
|

[

Table 5.7: Perplexity results for the Foursquare dataset from New York. In this
table, we show the results using smaller squared cells as spatial discretizations.

Context Cells Dataset Perplexity
I - NY-FS 8.31
[p]-0.00075 21,250 NY-FS 5.33
[p]-0.00050 26,431 NY-FS 5.22
[p]-0.00025 35,091 NY-FS 5.07

Language generation given a spatio-temporal context

In Table 5.8 we show examples of a language model trained with the Twitter dataset
from Los Angeles with all granularities of time and space discretization (last row in
Table 5.4). We selected two hubs for urban activities in Los Angeles: the Staples
Center and Venice Beach. For the Staples Center, we selected a date for a concert
by the British band Arctic Monkeys and a date for a basketball game between the
Los Angeles Lakers and the Los Angeles Clippers. We can observe that even for the
same location, the texts generated can be associated with different events. For the
examples using Venice Beach as context, we can see that the generated texts are
associated with beach activities.

Attention weights given a spatio-temporal context

Figures 5.4, 5.5, and 5.6 present examples given the Staples Center as context. In
Figure 5.4, we show the date from a Los Angeles Lakers game. We can see that the
word staples is associated with the finer granularity of geo-coordinates discretization
while the word night pays attention to the timestamp discretization as the hour of
the day. In Figure 5.5, we show the date from a Katy Perry concert. We can
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Table 5.8: Examples of text generation after training a spatio-temporal conditioned
language model with the dataset of Twitter from Los Angeles. In this table, we
show results for two points of interest: the Staples Center and Venice Beach. For
the Staples Center, we selected a date for a concert and a date for a basketball game.

Context Text Generated

(Staples Center) (34.043; -118.267) [‘<START>’, ‘taking’, ‘a’,

(Concert Date) 2014/08/07 22:00:00" ‘break’, ‘from’, ‘the’, ‘arctic’,
‘monkeys’, ‘concert’, ‘and’, ‘i’,
‘love’, ‘the’, ‘place’, ‘if’, ‘you’,
‘are’, ‘here’, ‘#tstaples’, ‘staples-
center’, ‘http’, ‘<END>’
[[<START>’, ‘during’, ‘the’,
‘night’, ‘#arcticmonkeys’, ‘http’,
‘<END>'|
[[<START>’, ‘arctic’, ‘monkeys’,
‘anthem’, ‘with’, ‘my’, ‘mom’,
‘at’, ‘staples’, ‘center’, ‘http’,
‘<END>'|

(Staples Center) (34.043; -118.267) [‘<START>’, ‘just’, ‘posted’, ‘a’,

(Game Date) ‘2014/10/31 22:00:00°  ‘photo’, ‘105°, ‘east’, ‘los’, ‘an-
geles’, ‘clippers’, ‘game’; ‘http’,
‘<END>'|
[[<START>’, ‘#lakers’;, ‘#go-
lakers’, ‘los’, ‘angeles’, ‘lakers’,
‘surprise’, ‘summer’, ‘-, ‘great’,
‘job’, -7, ‘lakers’, ‘nation’; ‘http’,
‘#sportsroadhouse’, ‘<END>’]
[[<START>’, ‘who’, ‘wants’, ‘to’,
‘go’, ‘to’, ‘the’; ‘lakings’, ‘game’,
‘lmao’, ‘<END>’]

(Venice Beach) (33.985; -118.472) [‘<START>’, ‘touched’,
(Date) ‘2014/08/24 13:50:00’ ‘down’, ‘venice’, ‘beach’,
‘#venice’, ‘#venicebeach’,
‘http’, ‘<END>’
[[<START>’, ‘venice’, ‘beach’,
‘cali’,  ‘#fnofilter’,  ‘#fvenice’,
‘#venicebeach’, ‘is’,  ‘rolling’,

‘great’, ‘<END>'|

[[<START>’, ‘who’, ‘wants’, ‘to’,
‘go’, ‘to’, ‘venice’, ‘beach’; ‘shot’,
‘on’, ‘the’, ‘beach’, ‘<END>’]
[[<START>’, ‘venice’, ‘beach’,

‘#venicebeach’, ‘#california’,
‘#travel’, ‘venice’, ‘beach’, ‘ca’,
‘http’, ‘<END>’

[[<START>’, ‘#longbeach’,
‘#venicebeach’, ‘#venice’,
‘#beach’, ‘Fsunset’, ‘Fvenice’,
‘#venicebeach’, ‘#losangeles’,

‘#california’; ‘http’, ‘<<END>’]
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Figure 5.4: Example sentence attention to the spatio-temporal context from a Los
Angeles Lakers basketball game at The Staples Center. Yellow means more atten-
tion, while blue means less attention.
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Figure 5.5: Example sentence attention to the spatio-temporal context from a Katy
Perry concert at The Staples Center. Yellow means more attention, while blue
means less attention.
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Figure 5.6: Example sentence attention to the spatio-temporal context from a beach
day at Venice Beach. Yellow means more attention, while blue means less attention.



see how the words katyperry and at the staples center are associated with the finest
granularities of geo-coordinates discretization, while the word tonight, a more general
term, is associated with the coarsest granularity. In Figure 5.6, we show an example
with the geo-coordinates of Venice Beach as spatial context. We can observe how
the word wvenice is associated with the finest level of spatial discretization; while the
word beach is associated with the second finest granularity, beach is a more general
term than venice, but also is only associated with coastal regions in a city.

5.3 Chapter conclusions

In this chapter, we presented a neural network architecture for spatio-temporal
conditioned language modeling. This model is adaptable to different granularities
of time and space; which proved to be effective in changing patterns for language
generation on two social media datasets.

A remarkable result of our experiments is how modeling space and time at differ-
ent granularities influences language generation. The optimal when modeling spa-
tial cells for the Twitter dataset is around 800m x 800m cells. For the Foursquare
dataset, we observed the best results as the spatial cell got smaller. For the temporal
context, the Twitter dataset showed small improvements but was not as important
as the spatial context; for the Foursquare dataset, including the temporal context
is better than not including it at all, but when combined with the spatial context it
does not play a positive role.

We conducted qualitative evaluations, illustrating the potential of our model
for spatio-temporal analyses. On the one hand, we demonstrate that our language
models are able to generate sentences that efficiently and coherently describe a
spatio-temporal context. This can be especially useful for researchers trying to de-
scribe or summarize an event using natural language from spatio-temporal contexts.
Moreover, our attention weights provide an interpretable relationship between text,
space, and time. To the best of our knowledge, this is the first work to use an
attention mechanism for this purpose. These interpretations are valuable as they
provide insights into how space and time influence what people say (whether on
social networks or any other data source of this nature). Although neural networks
are known to be difficult to interpret, attention weights are a well-known example
of an interpretable component that has been widely used in machine translation
and video captioning, among others. We hope that the results presented here will
increase interest in the use of this mechanism in spatio-temporal domains.
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Chapter 6

Conclusions

This thesis studies the problem of modeling spatio-temporal annotated textual data.
We proposed two models that jointly represent text, timestamps and geographical
coordinates: a multi-modal retrieval model and a spatio-temporal conditioned lan-
guage model. These models aim to answer the research question stated in Section
1.3:

Can the joint representation of text, time (timestamp), and space
(geographic coordinates), be better modeled by capturing the sequential
structure of texts and representing the spatio-temporal variables at mul-
tiple levels of granularity?

In this chapter, we present the main findings of this thesis. The rest of the
chapter is structured as follows: first, we present the main results in Section 6.1;
after that the main contributions are presented in Section 6.2, and finally, in Section
6.3, we point out future directions of work.

6.1 Main results

The main results of this thesis are listed next:

e In two social media datasets from Twitter and Foursquare, words are more
related to places than to times; covering 91% and 86% of the maximum entropy
with temporal windows while only 50% and 34% with spatial cells.

e The distribution of examples over temporal windows (hours of the day (0-23))
and spatial cells (0.001x0.001) show that for both datasets from Twitter and
Foursquare; early morning hours are the least frequent, starting to increase in
the afternoon until the night hours. Also, for spatial cells around 82%-83%

95



of the cells have less than the mean number of examples per cell for both
datasets.

e The multi-modal retrieval model outperformed previous works based on fea-
ture embedding for place retrieval given text and time by 6% in the LA-TW
dataset and 4% in the NY-FS dataset.

e The multi-modal retrieval model outperformed previous works based on fea-
ture embedding for time retrieval given text and place by 1% in the LA-TW
dataset and 21% in the NY-FS dataset.

e The multi-modal retrieval model ranked third outperforming four of the base-
lines for text retrieval given time and place as querying elements.

e For the spatio-temporal conditioned language model, when considering the
spatial context, we observed with the Twitter dataset that the optimal for
spatial cells is around 800m x 800m cells (around 0.008 in geo-coordinates
values for cell size); while for the Foursquare dataset, the observed pattern is
that the lower the spatial cell, the better the modeling of the spatial context.

e For the spatio-temporal conditioned language model, when considering the
temporal context, we observed with the Twitter dataset small improvements,
but not as important as with the spatial context; for the Foursquare dataset,
including the temporal context, it is better than not including it at all, but
when combining it with the spatial context proved to be harmful.

The results listed above suggest that modeling the sequential structure of texts,
as well as modeling time and space at different levels of granularity, have a positive
impact on modeling text generated under spatio-temporal dimensions. Therefore,
we can conclude that our research question is supported by the experimental results.

6.2 Main contributions

The main research contributions of this thesis are listed next:

e Proposed a multi-modal retrieval model which given a collection of spatio-
temporal annotated texts allows for querying the model with any pair from
(time, location, text) and retrieving the missing one.

e Demonstrated how the multi-modal retrieval model could be used to find pat-
terns of crime incidents given a dataset of crime incident descriptions from the
city of New York.

e Proposed a spatio-temporal conditioned language model which allows for rep-
resenting times and places at different levels of granularities as context for
language generation.
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e Demonstrated how the spatio-temporal conditioned language model could be
used to characterize urban locations from the perspective of social media with
natural language.

e Demonstrated how an attention-based neural network could be used to vi-
sualize relations between texts and the spatio-temporal context where it is
generated.

These contributions make us believe that the models developed in this thesis
offer practical solutions for people looking to explore, analyze, characterize and find
patterns of interest from spatio-temporal annotated textual datasets.

6.3 Future work

In this section, we discuss directions for further research for the models presented
in this thesis. These research directions focus on pre-trained language models, dis-
cretization approaches, periodic patterns of timestamps and geo-coordinates, prop-
erties of spatial and temporal embeddings, transferability of the presented models,
and studies over additional datasets. Next, we provide additional details on these
future lines of research.

6.3.1 Pre-trained language models

Pre-trained language models are state-of-the-art for most natural language process-
ing tasks. In the case of spatio-temporal conditioned language modeling, pre-trained
language models can be fine-tuned to learn to generate language given the spatio-
temporal context.

6.3.2 Discretization based on socioeconomic divisions

The two discretization approaches followed in this thesis are density-based auto-
matic discretization and hand-crafted discretizations. Other discretization tech-
niques may provide additional semantic information. For example, in the case of
spatial discretization, geographical divisions based on socioeconomic criteria could
be interesting to explore.

6.3.3 Periodic patterns of timestamps and geo-coordinates

Humans follow patterns in their everyday life. Usually, in the morning, we go to
work, in the afternoon we can go to the gym or get together with friends; while
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at night we are at home and go out on weekends. Mostly, these patterns are ruled
by time and semantic meanings of time (hour, day, week, etc) that we arrange in
circular patterns. For example hour 24 is near hour 1, and month 12 (December) is
near month 1 (January); despite the numerical difference. It would be interesting
to represent these periodic patterns of time in the joint modeling of text, time, and
space. In the case of geo-coordinates, periodic patterns arise when a dataset covers
the region of the world where the maximum longitude is near the minimum longitude
due to the horizontal expansion of the world on maps.

6.3.4 Properties of spatial and temporal embeddings

Although previous works focus on feature embeddings and the main objective of the
models presented in this thesis is to measure the influence of modeling the sequential
structure of texts, as well as modeling time and space at different granularities, it
would be insightful to explore the properties of the learned embeddings as a sub-
product of the learning process. This analysis would provide a view into spatio-
temporal representation patterns learned by the proposed models.

6.3.5 Transferability

The third option of further research is to study the transferability of the presented
models by deploying spatio-temporal textual models trained on data from a source
domain to a target domain. The source domain can be Twitter and the target
domain can be crime incident reports. The hypothesis is that if the data of the
source domain is larger than that of the target domain, and both domains are
related to each other (e.g., time and space are shared in both domains); then a
transfer learning approach can be employed. In this example, the source domain
can enrich the available information the target domain. Neural network models
are very suitable for transfer learning as one can pre-train a model from the source
domain and adapt it to the target domain via further training. Since neural networks
leverage statistical strengths from large datasets (the source domain), the transfer
learning approach may help to improve performance on the target domain.

6.3.6 Contemporary datasets

And fourth, we foresee valuable future research opportunities by working with con-
temporary datasets. We conducted our experiments with the LA-TW (Twitter
messages collected from Los Angeles, USA, 2014), NY-FS (Foursquare check-ins
reported on Twitter by users in the city of New York, USA, 2012) and NY-Crime
(crime reports from the city of New York, USA, 2015) datasets to keep the evaluation
process consistent with previous works. An interesting research option would be to
work with recent contemporary and to study how recent events like the COVID-19
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pandemic are reported on social media from a spatio-temporal perspective.
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