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SISTEMAS ELECTRODINÁMICOS CUÁNTICOS PARA UN LÁSER:
DESDE LAS CAVIDADES HASTA LAS GUÍAS DE ONDAS

La electrodinámica cuántica de cavidades se ha convertido en la herramienta canónica para
el estudio de la interacción entre la luz y la materia, en particular, en aquellos regímenes en
donde emerge el comportamiento cuántico de la luz, el cual puede estar asociado a aplicaciones
en metrología o computación cuántica. En los últimos años, una nueva plataforma ha llamado
la atención de los investigadores, la electrodinámica cuántica en guías de ondas.

Esta nueva plataforma, al igual que el caso de las cavidades, permite el control de la
cooperatividad, es decir, la razón entre el acoplamiento de la materia (emisores) y los modos
del campo electromagnético, y los procesos de disipación del sistema. Además, esta plata-
forma presenta gran flexibilidad para ser implementada con las tecnologías de fibra óptica
que han sido ampliamente desarrolladas y adoptadas para distintas aplicaciones. Más aún,
dichos sistemas presentan interacciones de largo alcance, lo que promueve la aparición de
fenómenos colectivos como la superradiancia o subradiancia, en los cuales, los modos guiados
del campo electromagnético sirven como medio para generar correlaciones entre los emisores,
potenciando o inhibiendo la emisión.

Este trabajo plantea un modelo de un láser generado por un sistema electrodinámico
cuántico en guías de ondas. Dicho modelo, describe tanto los componentes del láser, átomos
y campo electromagnético emitido (sistema de interés), así como también, el reservorio que
consiste en el mecanismo de bombeo y los modos del campo electromagnético no considerados
como parte del sistema de interés. Posteriormente, se describe la dinámica del sistema de
interés a través de las ecuaciones de Heisenberg-Langevin, a partir de las cuales, se estudia
el régimen estacionario de emisión del láser. Finalmente, se presentan dos mecanismos para
obtener el ancho espectral de emisión. El primer mecanismo considera que el campo puede
ser descrito como su amplitud estacionaria más pequeñas fluctuaciones que serán ignoradas.
Los resultados de este mecanismo muestran que el ancho espectral esta determinado por los
procesos de decaimiento del campo asociados a la guía de ondas, mientras que su potencia
depende del parámetro de bombeo y la cantidad de átomos que presenta el sistema. El
segundo mecanismo, considera que el campo tiene una forma definida por una amplitud y
una fase, y el ancho espectral estará determinado por los procesos de difusión de dicha fase.
Los resultados de este mecanismo que considera fluctuaciones, muestran dos regímenes de
comportamiento que dependen tanto de los procesos de decaimiento del campo como de los
átomos.
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QUANTUM ELECTRODYNAMICS SYSTEM FOR A LASER: FROM
CAVITY QED TO WAVEGUIDE QED

The Cavity Quantum Electrodynamics system is the canonical tool for studying the in-
teraction between light and matter, motivated by applications in quantum metrology or
quantum computing. In the last years, a new platform is taking importance, the waveguide
Quantum Electrodynamics systems.

This platform, as well as the cavity case, is used to control the cooperativity of the system,
i.e., the rate between the coupling strength of matter (emitters) and the electromagnetic
field modes and the dissipation process of the system. Furthermore, this platform presents
great versatility in connectivity to other systems, such as fiber optics technologies. Moreover,
waveguide QED systems present long-range interaction, promoting collective effects such as
superradiance and subradiance, where the guided modes of the electromagnetic field generate
correlations between the emitters, enhancing or inhibiting the emission.

In this thesis, we present a model of a waveguide QED system laser. This model describes
a system of interest that considers the atoms and the modes of the electromagnetic field of
the waveguide. This system of interest interacts with a reservoir that considers the pumping
mechanism and electromagnetic field modes out of the waveguide. From this model, we derive
the Heisenberg-Langevin equation of the system of interest operator. Finally, we present two
methodologies to study the spectrum of emission. The first mechanism considers that the
electric field is determined by an amplitude defined by the steady-state solution of the bosonic
operator’s mean-field equation and fluctuations. These fluctuations are ignored. The results
of this methodology show that the spectral linewidth is determined by the decay process of
the waveguide, and the power of the emission is determined by the pumping parameter and
the number of atoms. The second mechanism considers that the field is determined by an
amplitude and a phase, and the spectral linewidth is determined by the diffusion process of
the phase. The results of this methodology, which consider the effects of fluctuations, show
two regimes where the spectrum depends on the decay process of the waveguide and the
atoms.
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Roads? Where we’re going,
we don’t need roads.

Dr. Emmet Brown
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Introduction

One of Quantum Optics’s main challenges is manipulating light’s quantum states. To this
aim, it is necessary to control the coupling between the system of interest, e.g., an emitter and
one or several modes of the electromagnetic field, and the coupling of the system of interest
and the reservoir. In particular, when the control of quantum fluctuation enables technological
applications. This tool has been studied in different regions of the electromagnetic field, from
the microwave by Haroche[1] to optical by Kimble[2] and Reiserer et al. [3].

The cavity QED systems are the milestone platforms used to control electromagnetic field
properties[4, 5]. This platform uses mirrors to modify the vacuum modes of the field, indu-
cing preferential interaction between an emitter and a particular mode. The control of this
preferred interaction leads to the observation of phenomena such as the Purcell effect[6]- the
modification of spontaneous emission rates-, photon-mediated interaction, or synchronization
processed between the emitters, which exhibits collective behavior. The cavity QED systems
are the milestone platforms used to control electromagnetic field properties[4, 5]. This plat-
form uses mirrors to modify the vacuum modes of the field, inducing preferential interaction
between an emitter and a particular mode. The control of this preferred interaction leads to
the observation of phenomena such as the Purcell effect[6]- the modification of spontaneo-
us emission rates-, photon-mediated interaction, or synchronization processed between the
emitters, which exhibits collective behavior.

To characterize the ratio between the coupling with these preferred modes compared
with the interaction with the reservoir, a parameter known as cooperativity is defined. This
cooperativity parameter is determined by the coupling strength g, between the preferred
cavity mode and the emitter, the decay rate κ, which characterizes the effect of the cavity
walls, and the emitter’s spontaneous emission rate γ.

C = g2

γκ
(0.1)

The regime when C > 1 is known as a strong coupling regime, where the preferred
interaction is larger than the interaction with the reservoir.

In recent years, a new platform known as waveguide QED systems has emerged as a
promising tool to modify the electromagnetic field. A waveguide QED system consists of
an ensemble of emitters that could be coupled to nanophotonic waveguides or microwave
waveguides, where the electric field is confined, increasing amplitude and promoting the
interaction with the emitters. This tool could be designed to control the decay rate between
the guided modes and the free modes. Other promising properties are the presence of long-
range interactions between the emitters mediated by the guided modes[7], as well as the
versatility to be coupled to conventional optical fiber technologies.
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Recent research developed in waveguide QED systems has shown technological applica-
tions. For example, the generation of Fock states[8], the generation of multiphotonic states
generated by the collective behavior of the emitters[9, 10], and entanglement between qubits
mediated by waveguides[11, 12].

Coherent interaction between a large number of emitters has been recently studied. Theo-
retical studies predict the emergence of collective behavior, such as the generation of entan-
glement states and collective enhancement or suppression of the emission by superradiance
or subradiance regimes.

This thesis aims to model waveguide QED as a platform of implementation for a laser. In
this model, the waveguide defines the lasing mode, atoms around it act as a gain medium,
and an external optical field enables a pump. Moreover, the main goal is to study how the
presence of collective behavior mediated by the platform affects the properties of the laser,
in particular, the linewidth of the emission.

This thesis is organized into 5 chapters.
Chapter 1, presents fundamental concepts necessary to characterize the behavior of a laser.

We will start presenting theoretical tools of quantum optics and open quantum systems. Then
we will introduce the basic elements of a laser and the canonical example of a model for a
laser in a cavity QED system.

Chapter 2, presents the model developed in this project in order to represent a laser im-
plemented in a waveguide QED system. In this chapter, we will use an open quantum system
approach to describe a total system, which consists of a system of interest and a reservoir.
The system of interest consists of the electromagnetic modes inside the waveguide and the
atoms acting as an active medium. The reservoir considers the pumping mechanism and the
free electromagnetic field modes. At the end of this chapter, we will present the Hamiltonian
of the total system in two cases. A discrete model that could represent a multimodal cavity
QED system. And a continuous model that represents the waveguide QED system will be
used in the following chapters.

Chapter 3, presents the derivation of the equation of motion of the system of interest
operators. In particular, we will use the Heisenberg-Langevin formalism to derive the equation
of motion, which considers the effects of the fluctuation generated by the interaction with
the reservoir.

The last two chapters introduce two different methodologies used to characterize the laser
linewidth of the waveguide QED system.

In chapter 4, we present a methodology to obtain the spectrum of the laser by defining
an electric field as a mean-field term plus fluctuations. The mean-field term will be derived
from the steady-state solutions of the Heisenberg-Langevin equations of motion. At the end
of this chapter, we will study the spectrum of the field ignoring the fluctuating terms.

Finally, in chapter 5, we will present a methodology to derive the spectrum of emission
of the waveguide QED system laser considering the effects of fluctuations. To this aim, we
will derive the equations of motions of the phase of each mode of the electromagnetic field
inside the waveguide, and use it to obtain an expression for the coherence function as the sum
of each mode contribution. At the end of this chapter, we will study the spectrum of this
emission by numerically applying the Wiener-Khintchine Theorem. The numerical results
will be studied in two regimes, which we will call "generalized good/bad cavity regimes".
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Chapter 1

Fundamental Concepts

This chapter will present the building blocks necessary to develop a fully quantum me-
chanical model for a laser in a waveguide QED system.

We will start with the description of how light and matter interact with each other.
In section 1.1, we will introduce the basic concept of quantum optics, starting with the
quantization of the electromagnetic field, presenting some states of this quantized field, and
a model of interaction between this quantized field and the quantized matter.

Then, in order to consider that almost all quantum optics systems are not entirely isolated
from their environment, in section 1.2, we will present the open quantum system formalism.
This formalism is used to describe the interaction between a system of interest and its reser-
voir, considered as all other degrees of freedom that are not included in the system of interest.
Moreover, we will present the equation of motion of this system of interest, considering the
effects of the reservoir.

Once we understand the general idea of how an open quantum optics system could be
described, we will focus on the main topic of this thesis, the laser. In section 1.3, we will
present the importance of the laser as a motivation for this work.

Finally, in section 1.4, we will present a model of a cavity QED system of a laser and
a method to obtain the spectral linewidth of the laser emission based on the study of the
effects of fluctuation in the diffusion of the phase of the field.

1.1. Quantum Optics
Quantum optics is the physics area dedicated to studying the interaction between light and

matter, both intrinsically quantum. The quantum nature of matter determines its discretized
levels of energy. When matter interacts with light through absorption or emission[13], it is
called an emitter. There are several types of emitters, such as atoms or molecules, supercon-
ductor qubits, or NV-centers in diamonds[14, 15]. On the other hand, the quantum nature
of light is manifested by quantum fluctuations, which satisfies the Heisenberg uncertainty
principle.

In this section, we will present several quantum mechanics formalisms used to describe the
quantum nature of the electromagnetic field and its interaction with matter. In section 1.1,
we derive the quantization of the electromagnetic field in order to obtain an expression for
the Hamiltonian and the electric and magnetic quantized fields. In section 1.1.2, we introduce
two types of quantum states of the electromagnetic field, the number or Focks states and the
coherent states, each of one in the unimodal and multimodal cases. Section 1.1.3 present the
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generalization of the discrete coherent states to the continuous case, with great importance
in this thesis. Finally, section 1.1.4 present a model to represent the interaction between the
quantized light described in the previous sections and the quantized matter in the dipole
approximation.

1.1.1. Quantization of the Electromagnetic Field

We will consider the Columb gauge conditions ∇ · A(r, t) = 0 to describe the electromag-
netic field, where A is the vector potential that satisfies the wave equation [16, 17].

∇2A = 1
c2

∂2A
∂t2 (1.1)

Then, the electric and magnetic fields in the free space with no sources of radiation are
determined by:

E(r, t) = −∂A(r, t)
∂t

(1.2)

B(r, t) = ∇ × A(r, t) (1.3)

We will define a cavity of size L with a perfectly reflecting mirror, where L will be large
compared with the wavelength of the light. The vector potential takes the form of a sum of
plane waves:

A(r, t) =
∑
k,s

êk,s

[
Ak,s(t)eik⃗·⃗r + A∗

k,s(t)e−ik⃗·⃗r
]

(1.4)

Where Ak,s is the complex amplitude and êk,s is a real polarization vector, the index k
and s represent the wavenumber and the two independent polarization, respectively.

The equation (1.1) becomes

d2

dt
Ak,s + ω2

kAk,s = 0 (1.5)

with ωk = ck.
Moreover, the electric and magnetic fields take the form:

E(r, t) = i
∑
k,s

ωkêk,s

[
Ak,se

i(k⃗·⃗r−ωkt) − A∗
k,se

−i(k⃗·⃗r−ωkt)
]

(1.6)

B(r, t) = i

c

∑
k,s

ωk

 k⃗ × êk,s

|k⃗|

[Ak,se
i(k⃗·⃗r−ωkt) − A∗

k,se
−i(k⃗·⃗r−ωkt)

]
(1.7)
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The energy of the field is determined by the following:

H = 1
2

∫
V

(
ϵE · E + 1

µ0
B · B

)
dV (1.8)

Where:

∫
V

dV e(±i(k⃗−k⃗′)·⃗r) = V δk,k′ (1.9)

∫
V

dV e(±i(k⃗+k⃗′)·⃗r) = V δk,−k′ (1.10)

Then, the energy takes the form [17]

E(r, t) = 1
2
∑

k

∑
s,s′

V [(Ak,sA
∗
k,s′ + A∗

k,sAk,s)(ϵ0ω
2
kêk,s · êk,s′ + µ−1

0 k⃗ × êk,s · k⃗ × êk,s′)

−(Ak,sA−k,s′e−2iωkt + A∗
k,sA

∗
−k,s′e2iωkt)(ϵ0ω

2
kêk,s · ê−k,s′ + µ−1

0 k⃗ × êk,s · k⃗ × ê−k,s′)]
(1.11)

If we use the vector product property k⃗ × êk,s · k⃗ × ê±k,s′ = k2êk,s · ê±k,s′ , then the energy
could be rewritten as:

E =
∑

k

∑
s

ϵ0V ω2
k(Ak,sA

∗
k,s + A∗

k,sAk,s). (1.12)

If we introduce the change of variables:

Ak,s = 1
2ωk

√
ϵ0V

(ωkqk + ipk,s) (1.13)

A∗
k,s = 1

2ωk

√
ϵ0V

(ωkqk − ipk,s) (1.14)

Where the qk and pk could be recognized as the canonical position and momentum varia-
bles. If we replace these variables in the Hamiltonian, it gets the form of a simple harmonic
oscillator:

H = 1
2
∑
k,s

(
p2

k,s + ω2
k,sq

2
k,s

)
. (1.15)

Promoting the canonical variables to operators, p → p̂ and q → q̂, which satisfies the
canonical commutation relation:
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[q̂k,s, q̂k′,s′ ] = 0 = [p̂k,s, p̂k′,s′ ] (1.16)

[q̂k,s, p̂k,s] = iℏδk,k′δs,s′ (1.17)

Defining the creation and annihilation operators:

âk,s = 1
2πℏωk

1/2 [ωkq̂k,s + ip̂ks] (1.18)

â†
k,s = 1

2πℏωk
1/2 [ωkq̂k,s − ip̂ks] (1.19)

which satisfies the canonical commutation relations

[âk,s, âk′,s′ ] = 0 = [a†
k,s, a†

k′,s′ ] = δk,k′δs,s′ , (1.20)

[âk,s, â†
k′,s′ ] = δk,k′δs,s′ . (1.21)

Finally, the Hamiltonian operator of the free quantized electromagnetic field:

Ĥ =
∑
k,s

ℏωk

(
â†

k,sâk,s + 1
2

)
=
∑
k,s

ℏωk

(
n̂k,s + 1

2

)
(1.22)

The last term of the RHS of equation (1.22) is known as zero energy point and is related
to phenomena such as the Casimir effect. In the following sections, we will neglect this term
because it does not affect the dynamics of the systems studies in this thesis.

The quantized electric and magnetic fields take the form:

Ê(r, t) = Ê+(r, t) + Ê−(r, t) (1.23)

B̂(r, t) = B̂+(r, t) + B̂−(r, t) (1.24)

Where the positive frequency part of the electric and magnetic field:

Ê+(r, t) = i
∑
k,s

êk,s

(
ℏωk

2ϵ0V

) 1
2

âk,se
−i(ωkt−k⃗·⃗r) (1.25)
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B̂+(r, t) = i
∑
k,s

k⃗ × êk,s

(
ℏ

2ϵ0ωkV

) 1
2

âk,se
−i(ωkt−k⃗·⃗r) (1.26)

1.1.2. States of the Electromagntic Field

From the Hamiltonian of the free electromagnetic field (1.22)

Ĥ =
∑
k,s

ℏωk

(
â†

k,sâk,s + 1
2

)
=
∑
k,s

ℏωk

(
n̂k,s + 1

2

)
(1.27)

Where n̂k,s is the photon number operator of the mode with k wave number and polari-
zation s, with eigenvalues of the form:

n̂k,s |nk,s⟩ = â†
k,sâk,s |nk,s⟩ = nn,s |nk,s⟩ (1.28)

The orthonormal eigenstates |nk,s⟩ are the photon number states or Fock states of the
electromagnetic field [17].

The state of the total field is the product of the states of each unimodal case.

|nk1,1, nk1,2, nk2,1, nk2,2, ..⟩ = |nk1,1⟩ |nk1,2⟩ |nk2,1⟩ |nk2,2⟩ |nk3,1⟩ .. = |{nk,s}⟩ (1.29)

Another example of electromagnetic field states of essential importance is the coherent
state, denoted by |{α}⟩. Those states are distinguished because they are one of the quantum-
mechanical states with the closest properties to classical electromagnetic waves. In the limit
of strong excitation, the electric field variation of a coherent state approaches a classical wave
with stable amplitude and fixed phase.

In the unimodal case, we could define coherent states in the number states basis:

|α⟩ = e(− 1
2 |α|2)

∞∑
n=0

αn

(n!)1/2 |n⟩ (1.30)

where α is a complex number.
Coherent states are defined as right eigenstates of the destruction operator:

â |α⟩ = e(− 1
2 |α|2)∑

n

αn

(n!)1/2 n1/2 |n − 1⟩ = α |α⟩ (1.31)

From the last expression, we could rewrite the equation (1.30).

|α⟩ = e(− 1
2 |α|2)∑

n

(αâ†)n

n! |0⟩ = e(αâ†− 1
2 |α|2) |0⟩ (1.32)
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The generalization to the multimodal case is:

|{α}⟩ = |αk1⟩ |αk2⟩ |αk3⟩ |αk4⟩ .. (1.33)

where {α} denotes the complete set of complex amplitudes for each specific excited mode[17].
It follows that the electric field in the multimodal case could be rewritten as:

Ê−(z, t) |{α}⟩ =
∑

k

(
ℏωk

2ϵ0V

) 1
2

αke−i(ωkt−kz) |{α}⟩ . (1.34)

The multimode coherent state is an eigenstate of the positive frequency part of the electric
field operator.

Coherent states will play a central role in this thesis. In particular, this work aims to
characterize the emission of a laser, which is determined by coherent state excitation in the
case of single-mode lasers that operate above the threshold.

1.1.3. Continuos-mode Field Operators

This thesis aims to extend the canonical implementation of a laser in a cavity QED system
to a waveguide QED system. The main characteristic of this new platform is that it presents
open boundary conditions. The modes inside the waveguide could be described as continuous
instead of the discrete case, as in a cavity.

To this aim, we will generalize the discrete coherent state, presented in the previous section,
to the continuous case. We will consider a quantization volume V, defined as a transversal area
A perpendicular to the z-direction and a length L → ∞ in the z-direction. This configuration
defines one-dimensional continuous modes characterized by a wavevector k and a frequency
ω, with a mode spacing ∆ω = 2πcL, which tends to zero when the length L tends to infinity.

To obtain the fields operators in a continuous form, we will extend the sum to an integral:

∑
k

→ 1
∆ω

∫
dωk. (1.35)

The continuous-mode creation and destruction operators â(ωk) and â†(ωk),

âk → (∆ω)1/2â(ωk) â†
k → (∆ω)1/2â†(ωk). (1.36)

The generalized continuous-mode commutation relations:

[â(ωk), â†(ωk′)] = δ(ωk − ωk′). (1.37)

Then, the continuous-modes electric and magnetic field operators are:
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Ê+(z, t) = i
∫

dωk

(
ℏωk

4πϵ0cA

) 1
2

â(ωk)e−i(ωkt− z
c

) (1.38)

B̂+(z, t) = i
∫

dωk

(
ℏωk

4πϵ0c3A

) 1
2

â(ωk)e−i(ωkt− z
c

) (1.39)

Finally, the continuous-modes Hamiltonian is:

Ĥ =
∫

dωkℏωkâ†(ωk)â(ωk) (1.40)

where we have neglected the vacuum energy.

1.1.4. Light-Matter Interaction

Quantum Optics is the study area of light and matter interaction. Throughout this thesis,
the interaction between the quantized field (described in the previous section) and emitters
(quantized matter) will be restricted to the dipole approximation.

To understand this interaction, we will consider a toy model, which consists of an atom
interacting with one resonant electromagnetic field mode of a cavity. A two-level system
emitter will represent the atom. The free Hamiltonian of the emitter will be expressed in
terms of the pseudo-spin operator, and the bosonic operator will model the free Hamiltonian
of the electromagnetic field on the cavity.

Hfree = 1
2ℏωAσz + ℏωa†a + 1

2ℏω (1.41)

The difference in energy between the atomics levels is ℏωA = Ee − Eg, where Eg is the
energy of the ground state and Ee is the energy of the excited state, and ωA is the resonance
frequency of the atomic transition. The ω term is the resonance frequency of the cavity
mode. The last term of the equation (1.41) represents the energy of vacuum fluctuation of
the electromagnetic field.

The dipolar approximation assumes that the wavelength of the electromagnetic field mode
is much longer than the characteristic length of the emitter. The interaction Hamiltonian
takes the form:

Hint = −d̂ · Ê (1.42)

If the matter is described as a two-level system, the dipole operator d̂ is given by:

d̂ = ⟨0| d̂ |1⟩ (|0⟩ ⟨1| + |1⟩ ⟨0|) = ⟨0| d̂ |1⟩ (σ− + σ+) = D(σ− + σ+) (1.43)

where σ− and σ+ are the rising and lowering Pauli operators and D = ⟨0| d̂ |1⟩ is the
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dipole operator matrix element.
While the resonant electric field mode of a unimodal cavity in the Schrödinger picture is

given by equation (1.25):

Ê = i

(
ℏω

2ϵ0V

) 1
2

ê
(
â − â†

)
(1.44)

Then, the interaction Hamiltonian takes the form:

Hint = −D · E0(σ+ + σ−)
(
â − â†

)
= −ℏg(σ+ + σ−)

(
â − â†

)
(1.45)

where E0 = i
(

ℏω
2ϵ0V

) 1
2 ê and we define the coupling streght g = D · E0.

1.2. Open Quantum System
In quantum optics, it is common to find problems where the system of interest is subject

to dissipation processes; those situations are known as open quantum systems. This section
deals with the dissipation of open quantum systems from the system-plus-reservoir approach,
where the system of interest consisting of only a few relevant degrees of freedom is in contact
with an environment with a very large or infinite number of degrees of freedom. The evolution
of the system of interest could be studied from the Schrödinger picture through a quantum
master equation or the Heisenberg picture using the Heisenberg-Langevin evolutions of the
system operators.

This section is divided as follows. Subsection 1.2.1 presents an apparent inconsistency
between the Heisenberg uncertainty principle with dissipation in quantum systems and how
the role of the environment explains this situation. Subsection 1.2.2 describe the derivation
of a master equation of a damped two-level system. Finally, subsection 1.2.3 studies the same
problem from the perspective of Heisenberg-Langevin formalism.

1.2.1. System-Plus-Reservoir Approach
To understand dissipation in quantum mechanics, we will consider the classical dissipation

treatment in a harmonic oscillator[18].
The classical harmonic oscillator Hamiltonian:

H = p2

2m
+ 1

2mω2q (1.46)

With equations of motion:

q̇ = p

m
ṗ = −mω2q. (1.47)

We will include dissipation through a velocity-dependent force of the form −γp, and the
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dissipative equation becomes:

q̇ = p

m
ṗ = −γp − mω2q. (1.48)

Or equivalent:

q̈ + γq̇ + ωq2 = 0. (1.49)

If we quantize this system by promoting the canonical variables to the operator, p → p̂
and q → q̂, which satisfy the commutation relation [q̂, p̂] = iℏ, then the equations (1.48)

˙̂q = p̂

m
˙̂p = −mω2q̂. (1.50)

However, if we study the evolution of the uncertainty relation:

d

dt
[q̂, p̂] = d

dt
(q̂p̂ − p̂q̂) = ˙̂qp̂ + q̂ ˙̂p − ˙̂pq̂ − p̂ ˙̂q (1.51)

With a solution,

[q̂(t), p̂(t)] = e−γt[q̂(0), p̂(0)] = iℏe−γt (1.52)

This situation becomes an inconsistency because of the decay behavior of the uncertainty
principle 1. We will consider the fundamental relationship between fluctuation and dissipation
to overcome this misleading.

The system-plus-reservoir approach states that a small system of interest interacts with
a large environment in the thermal equilibrium. This environment exerts a fluctuating for-
ce in the system of interest and induces dissipation. From this perspective, damping is a
consequence of the coupling of the system with its environment.

The equation of motion (1.49) takes the form:

q̈ + γq̇ + ωq2 = F (t)
m

. (1.53)

In the harmonic oscillator case, defining a reservoir interacting with the system of in-
terest is necessary. For simplicity, we will consider the that this reservoir takes the form of
another harmonic oscillator. Then, the Hamiltonian of the total system (system of interest
plus reservoir) becomes:

Ĥ = ℏâ†â + ℏb̂†b̂ + ℏκ
(
â†b̂ + âb̂†

)
(1.54)

1 This inconsistency is not only valid in the quantum regime. In classical systems, which include dissipation,
it is necessary to consider the effect of the environment through a fluctuation that leads to dissipation.
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The Heisenberg evolution equation of â and b̂:

˙̂a = − i

ℏ
[â, Ĥ] = −iωâ − iκb̂ (1.55)

˙̂
b = − i

ℏ
[b̂, Ĥ] = −iωb̂ − iκâ (1.56)

With solutions

â(t) = e−iωt[â(0) cos(κt) − ib̂(0) sin(κt)] (1.57)

b̂(t) = e−iωt[b̂(0) cos(κt) − iâ(0) sin(κt)] (1.58)

So, the commutation relation:

[â, â†] = [â(0) cos(κt) − ib̂(0) sin(κt), â†(0) cos(κt) + ib̂(0) sin(κt)] = 1 (1.59)

The consideration of an environment acting over the damped system through a fluctuating
force introduces thermal fluctuations and preserves the commutation relations.

1.2.2. Master Equation

A closed system is characterized by its states, usually represented by a density operator
defined on a Hilbert space, and a Hamiltonian determines its dynamics. The density operator
evolves by the Liouville-von Neumann equation:

dρ

dt
= − i

ℏ
[H, ρ] (1.60)

In the case of an open system, we will be interested in a subsystem of the more extensive
closed system. The total system consists of a system of interest and its environment or reser-
voir, with states defined in the system and the reservoir Hilbert space[19–21]. The dynamic
is governed by a total system Hamiltonian of the form:

HT = HS + HR + V, (1.61)

where HS is the Hamiltonian of our system of interest, HR is the reservoir Hamiltonian,
and V is the interaction between the system of interest and the reservoir, each acting in the
system, the reservoir and the product Hilbert space.

The system of interest and the reservoir states are obtained by tracing the total system
state
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ρS = TrR[ρ] and ρR = TrS[ρ]. (1.62)

To obtain the evolution equation of the system of interest density matrix, we will study
the Liouville-von Neumann equation of the total state in the interaction picture

d

dt
ρ̃(t) = −i[Ṽ (t), ρ̃(t)] (1.63)

where ρ̃ = U(t)ρ(t)U †(t) and Ṽ = U(t)V (t)U †(t) are the density matrix of the system of
interest and the interaction Hamiltonian in the interaction picture, with U(t) = e[i(Hs+HR)t].

The solution of the equation (1.63) is:

ρ̃(t) = ρ̃(0) − i
∫ t

0
dt′[Ṽ (t′), ρ̃(t′)]. (1.64)

If we replace the solution in the Liouville-von Neumann equation:

d

dt
ρ̃(t) = −i[Ṽ (t), ρ̃(0)] −

∫ t

0
dt′[Ṽ (t′), [Ṽ (t′), ρ̃(t′)]]. (1.65)

Tracing out the reservoir degrees of freedom, we obtain:

d

dt
ρ̃s = −iT rR{[Ṽ (t), ρ̃(0)]} − TrR{

∫ t

0
dt′[Ṽ (t′), ρ̃(t′)]} (1.66)

This equation is exact, but now we will take the Born-Markov approximation. The Born
approximation assumes that the reservoir is large compared to the system of interest and
that the coupling is weak. The time dependence of the reservoir could be neglected, and the
total system density matrix takes the form:

ρ̃(t) = ρ̃S(t) ⊗ ρ̃R. (1.67)

The Markov approximation considers that the reservoir is in a stationary state with short
correlation times compared with the system of interest time scales. The system of interest
only depends on the present time of the environment, and the changes imprinted in the
reservoir in the past can not return. Then, the memory effects could be neglected.

Finally, the dynamic of the system of interest is described by:

d

dt
ρ̃s(t) = −

∫ ∞

0
dsTrR{[Ṽ (t), [Ṽ (t − s), ρ̃S(t) ⊗ ρ̃R]]} (1.68)

where we have replaced ρ̃(t′) → ρ̃(t), extended the limit of time to infinity since the time
scales of the reservoir is shorter than the system scales tR << tS, and vanished the system-
reservoir correlations.
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If we consider a specific interaction of the form:

V = ℏ
∑

i

siΓi (1.69)

where si are the system of interest operator defined in the Hilbert space HS and the Γi

are the reservoir operator defined in the Hilbert space HR.
Then, the master equation takes the form:

d

dt
ρ̃s(t) = −

∑
i,j

∫ t

0
dt′ {[s̃i(t)s̃j(t′)ρ̃(t) − s̃j(t′)ρ̃(t)s̃i(t)]⟨Γ̃i(t)Γ̃j(t′)⟩R

+[ρ̃(t)s̃j(t′)s̃i(t) − s̃i(t)ρ̃(t′)s̃j(t′)]⟨Γ̃i(t′)Γ̃j(t)⟩R} (1.70)

Where the correlation function decay rapidly compare with the time scale of which ρ̃s(t)
varies, ⟨Γ̃i(t)Γ̃j(t′)⟩R ∝ δ(t − t′).

1.2.2.1. Master Equation of the Damped Harmonic Oscillator

A canonical example in Quantum Optics is the case of a quantum harmonics oscillator
(e.g., an electromagnetic field cavity mode) interacting with a reservoir of quantum harmonic
oscillators[18].

The Hamiltonian of the system of interest is

HS = ℏω0a
†a (1.71)

where ω0 is the resonance cavity mode frequency, and a and a† are the creation and
annihilation operators or system of interest operators defined in Hs.

The reservoir Hamiltonian is

HR =
∑

j

ℏωjr
†
jrj, (1.72)

where ωj is the frequency of each quantum harmonic oscillator in the reservoir, and rj and
r†

j are the creation and annihilation reservoir operators defined in HR.
The interaction Hamiltonian takes the form:

V =
∑

j

ℏ
(
κ∗

jar†
j + κja

†rj

)
= ℏ

(
aΓ† + a†Γ

)
(1.73)

where κ is the coupling constant in the rotating wave approximation, and we have defined
Γ = ∑

j κjrj and Γ† = ∑
j κ∗

jr
†
j .
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Then, the master equation (1.70) in the interaction picture takes the form [18]:

d

dt
ρ̃S(t) = −

∫ t

0
dt′ {[aaρ̃(t′) − aρ̃(t′)a]e−iω0(t+t′)⟨Γ̃†(t)Γ̃†(t′)⟩R + h.c.

+[a†a†ρ̃(t′) − a†ρ̃(t′)a†]eiω0(t+t′)⟨Γ̃(t)Γ̃(t′)⟩R + h.c.

+[aa†ρ̃(t′) − a†ρ̃(t′)a]e−iω0(t−t′)⟨Γ̃†(t)Γ̃(t′)⟩R + h.c.

+[a†aρ̃(t′) − aρ̃(t′)a†]eiω0(t−t′)⟨Γ̃(t)Γ̃†(t′)⟩R + h.c.}.

(1.74)

Where the reservoir correlations are defined as:

⟨Γ̃†
i (t)Γ̃

†
j(t′)⟩R = ⟨Γ̃i(t)Γ̃j(t′)⟩R = 0 (1.75a)

⟨Γ̃†
i (t)Γ̃j(t′)⟩R =

∑
j

|κj|2eiωj(t−t′)ñ(ωj, T ) (1.75b)

⟨Γ̃i(t)Γ̃†
j(t′)⟩R =

∑
j

|κj|2eiωj(t−t′) (ñ(ωj, T ) + 1) (1.75c)

with ñ(ωj, T ) = e−ℏωj /kbT

1−e−ℏωj /kbT the mean photon number of an oscillator with frequency ωj,
where T is the temperature and kb is the Boltzmann constant, and we have assumed a thermal
reservoir.

If we consider a continuous reservoir, then we need to change the sum to an integral of
equations (1.75) by introducing the density of states D(ω). Then, the master equation:

d

dt
ρ̃ = −

∫ t

0
dτ{[aa†ρ̃(t − τ) − a†ρ̃(t − τ)a]e−ω0τ ⟨Γ̃†(t)Γ̃(t − τ)⟩R + h.c.

+[a†aρ̃(t − τ) − aρ̃(t − τ)a†]eiω0τ ⟨Γ̃(t)Γ̃†(t − τ)⟩R + h.c. (1.76)

Where the nonzero reservoir correlation functions are:

⟨Γ̃†(t)Γ̃(t − τ)⟩R =
∫ ∞

0
eiωτD(ω)|κ(ω)|2ñ(ω, T ) (1.77a)

⟨Γ̃(t)Γ̃†(t − τ)⟩R =
∫ ∞

0
e−iωτD(ω)|κ(ω)|2[ñ(ω, T ) + 1] (1.77b)

with ñ(ω, t) = e−ℏω/kbT

1−e−ℏω/kbT .
Considering the Markov approximation (ρ̃(t − τ) → ρ̃(t)), the master equation could be

rewritten as:
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d

dt
ρ̃(t) = α

(
aρ̃a† − a†aρ̃

)
+ β

(
aρ̃a† + a†ρ̃a − a†aρ̃ − ρ̃aa†

)
+ h.c. (1.78)

with

α ≡
∫ t

0

∫ ∞

0
dωe−i(ω−ω0)τD(ω)|κ(ω)|2 (1.79)

β ≡
∫ t

0
dt
∫ ∞

0
e−i(ω−ω0)τD(ω)|κ(ω)|2ñ(ω, T ) (1.80)

Using the expression:

lim
t→∞

∫ ∞

0
dτe−i(ω0−ω)τ = πδ(ω − ω0) + i

P

ω0 − ω
(1.81)

where P is the Cauchy principal value.
Then, α and β take the form:

α = πD(ω)|κ(ω0)|2 + iP
∫ ∞

0

D(ω)|κ(ω)|2
ω0 − ω

= πD(ω)|κ(ω0)|2 + i∆, (1.82)

β = πD(ω0)|κ(ω0)|2ñ(ω0, t) + iP
∫ ∞

0

D(ω)|κ(ω)|2
ω0 − ω

ñ(ω, t) = πD(ω0)|κ(ω0)|2ñ(ω0, t) + i∆′

(1.83)

where we have defined ∆ = P
∫∞

0
D(ω)|κ(ω)|2

ω0−ω
and ∆′ = P

∫∞
0

D(ω)|κ(ω)|2
ω0−ω

ñ(ω, t).
Finally, the master equation of the damped harmonic oscillator:

d

dt
ρ̃(t) = −i∆[a†a, ρ̃] + γ

2
(
2aρ̃a† − a†aρ̃ − ρ̃a†a

)
+ γñ

(
aρ̃a† + a†ρ̃a − a†aρ̃ − ρ̃aa†

)
(1.84)

where we have defined the decay rate γ ≡ 2πD(ω0)|κ(ω0)|2 and ñ = ñ(ω0, t).
In the Schrodinger Picture, equation (1.84) is usually performed in the Lindblad form

ρ̇ = −iω′
0[a†a, ρ] + γ

2 (ñ + 1)(2aρa† − a†aρ − ρa†a) + γ

2 ñ(2a†ρa − aa†ρ − ρaa†) (1.85)

where ω′
0 ≡ ω0 + ∆.
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1.2.3. Heisenberg-Langevin Equation of Motion

This section will be focused on the description of open quantum systems in the Heisenberg
picture. To this aim, we will study the Heisenberg evolution of the system of interest and
reservoir operators. In order to obtain the dynamic of the system operator considering the
effects of the reservoir.

Motivated by the classical Langevin expression, we will consider that the interaction with
the reservoir induces a fluctuating force on the system of interest expressed by a quantum
noise operator. This fluctuation is responsible for the decay effects.

Based on the Gardiner and Zoller’s work[22], we will consider an arbitrary system of
interest interacting with a reservoir of harmonic oscillators, with a total system Hamiltonian
of the form:

HT = HS + HR + Hint

(1.86)

Where:

HR =
∫ ∞

−∞
dωℏωb†(ω)b(ω) (1.87)

Hint = i
∫ ∞

−∞
dωκ(ω)[b†(ω)c − c†b(ω)], (1.88)

κ(ω) is the coupling strength, b and b† are the reservoir operators, and c and c† are the
system of interest operators.

Here two main approximations have been considered. The first is the rotating wave ap-
proximation, and the second is the extension of the integral limit from [0, ∞] to [−∞, ∞].
The first approximation considers neglecting the rapidly oscillating terms.

The Heisenberg equations of the system of interest and the reservoir equation take the
form:

ḃ(ω) = −iωb(ω) + κ(ω)c (1.89)

ȧ = − i

ℏ
[a, HS] +

∫
dωκ(ω){b†(ω)[a, c] − [a, c†b(ω)]} (1.90)

where a is one system of interest operator of the collection of all c possible system operators.
The solution of the equation (1.89):

b(ω) = e−iω(t−t0)bt0(ω) + κ(ω)
∫ t

t0
e−i(t−t′)c(t′)dt′ (1.91)

where bt0 is b(ω) at time t0.
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When we replace the solution (1.91) in the equation (1.89):

ȧ = − i

ℏ
[a, HS] +

∫
dωκ(ω){ei(t−t0)bt0(ω)[a, c] − [a, c†]e−iω(t−t0)bt0(ω)}∫

dω
∫ t

t0
dtκ2(ω){eiω(t−t′)c†(t′)[a, c] − [a, c†]eiω(t−t′)c(t′)} (1.92)

Now, we will consider the first Markov approximation, where the coupling κ(ω) =
√

γ/2π,
and defining bin = 1√

ω

∫
dωe−iω(t−t0)bt0(ω) which satisfies the commutation relation [bin(t), b†

in(t′)] =
δ(t − t′).

Then the quantum Langevin equation takes the form:

ȧ = − i

ℏ
[a, Hs] −

√
γ

2π
[a, c†]

∫
dωe−iω(t−t0)bt0(ω) +

√
γ

2π

∫
dωe−iω(t−t0)bt0(ω)[a, c]

−[a, c†]
(

γ

2π

) ∫ t

t0
dt′δ(t − t′)c(t′) +

(
γ

2π

) ∫ t

t0
δ(t − t′)c†(t′)[a, c] (1.93)

ȧ = − i

ℏ
[a, HS] − [a, c†]

(√
γbin(t) + γ

2 c(t)
)

+
(√

γb†
in(t) + γ

2 c†(t)
)

[a, c] (1.94)

1.2.3.1. Heisenberg-Langevin Equation for an Harmonic Oscillator

In the previous section, we studied the canonical damped harmonics oscillator immersed
in a reservoir of harmonic oscillators in the Schrödinger picture. This section will study the
same system in the Heisenberg picture based on the work developed by Meystre[23].

As in section 1.2.2.1 , we will consider the total Hamiltonian of the form:

HT = HS + HR + Hint = ℏω0a
†a +

∑
j

ℏωjr
†
jrj +

∑
j

ℏ
(
κ∗

jar†
j + κjrja

†
)

(1.95)

Where a and a† are the system of interest bosonic operators, r and r† are the reservoir
bosonic operator, and κj are the coupling strength between the system mode and the j-mode
of the reservoir.

The Heisenberg equations of the system of interest and the reservoir operator are:

ȧ(t) = − i

ℏ
[a, HT ] = −ω0a − i

∑
j

κjrj (1.96)

ṙj(t) = − i

ℏ
[rj(t), HT ] = −iωjrj(t) − iκ∗

ja(t) (1.97)

The solution of the equation (1.97) is:

18



rj(t) = rj(t0)e−iωj(t−t0) − iκ∗
j

∫ t

t0
dt′e−iωj(t−t′) (1.98)

We replace the solution in the Heisenberg equation of the system operator Heisenberg
equation (1.96):

ȧ(t) = −iω0a − i
∑

j

κjrj(t0)e−iωj(t−t0) −
∑

j

|κj|2
∫ t

t0
dt′a(t′)e−iωj(t−t′) (1.99)

Defining the slowly varying system operator:

A(t) = a(t)eiω0t (1.100)

which satisfies the commutator relation [A(t), A†(t)] = 1.
The evolution of this slowly varying operator is:

Ȧ(t) = −i
∑

j

κjrje
−i(ωj−ω0)(t−t0) −

∑
j

|κj|2
∫ t

t0
dt′A(t′)e−i(ωj−ω0)(t−t′) (1.101)

From the expression, we could define the noise operator:

F(t) = −i
∑

j

κjrj(t0)ei(ωj−ω0)(t−t0) (1.102)

where ⟨F(t)⟩ = 0 and
〈
F †(t)F(t′)

〉
= δ(t − t′).

Now, we will consider the approximation A(t′) → A(t), because the exponential term in
the integral evolves rapidly compared with the slowly varying operator, and we will extend
the limit of the integral to infinity. Then, the last term of the equation (1.101) becomes:

∑
j

|κj|2
∫ t

t0
dt′A(t′)e−i(ωj−ω0)(t−t′) = A(t)

∑
j

|κj|2
∫ t

t0
dt′e−i(ωj−ω0)(t−t′)

= A(t)
∫ ∞

−∞
dωjD(ωj)|κ(ωj)|2

∫ ∞

0
dt′e−i(ω0−ωj)t′

= A(t)
(∫ ∞

−∞
dωjD(ωj)|κ(ωj)|2πδ(ωj − ω0) + iP

∫ ∞

−∞
dωj

|κ(ωj)|2
ω0 − ωj

)

= κ

2A(t) + iP
∫ ∞

−∞
dωj

|κ(ωj)|2
ω0 − ωj

A(t) (1.103)

where D(ωj) is the density of states, we have used the relation (1.81) and defined the
decay rate κ = 2πD(ω0)|κ(ω0)|2.

Then, we obtain the Heisenberg-Langevin equation:
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Ȧ(t) = −κ

2A(t) + F(t) (1.104)

where we have neglected the principal value.

1.3. Laser
At the beginning of the XX century, Einstein published his paper “On the Quantum

Theory of Radiation,"[13] where he explained the mechanisms of light-matter interactions
and established the basic ideas of revolutionary technology, the laser. Since its first imple-
mentation in 1960 by Maiman [24], the laser has become one of the most versatile tools with
many technological applications, such as in industry, science, and even art. Some of the most
remarkable applications are related to Nobel Prize ideas. In 2018 the Nobel Prize in Physics
was awarded to Arthur Ashkin, Gerard Mourou, and Donna Strickland “for groundbreaking
inventions in the field of laser physics,” such as “optical tweezers” and “the generations of
high-intensity ultra-short optical pulses” [25]. While in 2017, Kip Thorne, Rainer Weiss, and
Barry C. Barrish won the Nobel Prize in Physics “for decisive contribution to the LIGO
detector and the observations of gravitational waves.” [26] Another important application in
science is the atomics clocks, where the laser’s linewidth must be narrow to guarantee the
best performance of the clock. This work will be focused on this property, the linewidth, and
how we could manipulate the electromagnetic field to satisfy this narrow condition. In par-
ticular, we will study the waveguide QED system platform as an extension of the canonical
case of a cavity QED system developed by Maiman in 1960.

1.4. Linewidth of a Cavity QED Laser
This section is based on the work developed by Minghui[27] and Meiser[28] and uses the

same notation as those references. We present this model as a canonical example of a laser on a
cavity and as an example of a methodology to obtain the linewidth of the laser using quantum
electrodynamics tools applied to the case of a unimodal cavity. In the following chapters, we
will extend this methodology to the case of a waveguide, where the main challenge is the
extrapolation of the QED tools used in this section to the multimodal system.

This section is divided as follows. Section 1.4.1 presents a cavity QED system, the Hamil-
tonian, the master equation, and the Heisenberg-Langevin equations of motion of the system.
Section 1.4.2 studies the semiclassical limits of the system equations and obtain the steady-
state solutions in the mean-field. Section 1.4.3 presents a methodology to obtain the laser
linewidth based on a fully quantum mechanical description and the study of the first-order
coherence function.

1.4.1. Model of a Laser on a Cavity QED system
Based on the work of Minghui[27], we present a quantum electrodynamics description of

a system of interest that consists of an ensemble of atoms inside a cavity. Those atoms are
modeled as two-level systems of the same resonance frequency ωa. The electromagnetic field
inside the cavity is represented as one quantum harmonics oscillator of frequency ωc. Because
of the closed boundary conditions of the cavity, the electromagnetic field has discretized
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energy levels. We will consider that the separation between those energy levels is enough to
guarantee that only one frequency is resonant with the atoms inside its spectral linewidth
[29].

The system of interest evolution is determined by the Tavis-Cumming Hamiltonian.

Ĥ = ℏωa

N∑
j=1

σ̂+
j σ̂−

j + ℏωcâ
†â + ℏg

2

N∑
j=1

(â†σ̂−
j + σ̂j â) (1.105)

As mentioned in section 1.2, almost all quantum optical systems are not isolated, meaning
an open quantum system methodology must be applied. Here we will consider the system-
plus-reservoir approach, where the system described before is coupled to its environment, and
this coupling generates decay and decoherence process. The system-environment interaction
consists of three parts. The first part is the interaction between the ensemble of atoms and
the electromagnetic field modes, except the cavity mode. The second part is the pumping
mechanism; this interaction guarantees the population inversion of the system’s atoms. The
third part is the effective interaction between the cavity mode and all other modes of the elec-
tromagnetic field, which is mediated by the atoms of the cavity wall. Based on the reference
[18], the total system interaction Hamiltonian is described by the equation (1.106).

HI
total = HF + HA + HP

= ℏ
(
aΓ† + a†Γ

)
+
∑

j

ℏ
(
σ−

j Γ†
j + σ+

j Γj

)
+
∑

j

ℏ
(
σ−

j ΓP†
j + σ+

j ΓP
j

)
(1.106)

where:

Γ† =
∑

j

κ∗
jr

†
j (1.107a)

Γ†
j =

∑
k,λ

κ̄j∗
k,λr†

k,λ (1.107b)

ΓP+

j =
∑

k

κ̃∗
j,kP+

j,k. (1.107c)

where r†
j are the reservoir operators associated with the degrees of freedom of the electro-

magnetic fields modes that could interact with the atoms through spontaneous emission, r†
k,λ

are the reservoir operators associated with the degrees of freedom of the electromagnetic field
modes that interacts with the resonant mode of the cavity through the degrees of freedom
of the cavity walls, and P+

j,k are the operator associated to the degrees of freedom of the
reservoir which characterize the pump mechanism.

The master equation could be deduced from the Hamiltonian (1.106) by the same method
applied in section 1.2.2.
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d

dt
ρ̂ = 1

iℏ
[Ĥ, ρ̂] + κL[â]ρ̂ +

N∑
j=1

γL[σ̂−
j ]ρ̂ + wL[σ̂+

j ]ρ̂ (1.108)

Where κ, γ, and w represent the different decay rates. The first term, κ, is the decay rate
associated with the interaction mediated by the atoms of the cavity walls between the cavity
mode and the other electromagnetic field modes. The γ term is the spontaneous emission
rate of the atoms to the modes of the electromagnetic field that are not considered in the
system of interest. The w is the pumping rate related to the incoherent effective process of
population inversion of the two-levels systems.

Figure 1.1: Diagram of the different decay processes of a laser in a cavity.
Where γ, w,κ represent the decay rates associated with the spontaneous
emission, pumping, and decay generated by the walls of the cavity.

From the same Hamiltonian 1.106, we could study the system in the Heisenberg picture.
Following the sale procedure of the toy model of the section 1.2.3, applied to the system
operators a. We obtain the Heisenberg-Langevin equations.

d

dt
â = −1

2(κ + 2iωc − 2iω)â − iNg

2 Ŝ− + F̂ a (1.109a)

d

dt
Ŝ− = −1

2(Γ + 2iωa − 2iω)Ŝ− + ig

2 âŜz + F̂ − (1.109b)

d

dt
Ŝz = −(w + γ)

(
Ŝz − d0

)
+ ig

(
â†Ŝ− − âŜ+

)
+ F̂ z (1.109c)

Where we have defined the collective atomics ladder operators as and Ŝ− = ∑N
j=1 σ̂−

j /N

and Ŝ+ = ∑N
j=1 σ̂+

j /N , and the collective inversion operator Ŝz = ∑N
j=1 σ̂z

j /N . Here we also
define the generalized single-atom decoherence as Γ = w + γ and the atomic inversion of a
single atom in absence of a cavity as d0 = (w − γ)/(w + γ).

Equations (1.109) also consider the definition of the quantum noise operators as F̂ µ(t),
which are characterized by a zero mean

〈
F̂ µ
〉

(t) = 0, and the second-order correlations
satisfy

22



〈
F̂ µ(t)F̂ ν(t′)

〉
= 2Dµν(t)δ(t − t′). (1.110)

Here, Dµν are the diffusion coefficients, which are obtained by the generalized Einstein
relations[30]:

2Daa† = κ (1.111a)

2D+− = w

N
(1.111b)

2D−+ = γ

N
(1.111c)

2D+z = −2w

N

〈
Ŝ+
〉

(1.111d)

2Dz+ = 2γ

N

〈
Ŝ+
〉

(1.111e)

2D−z = 2γ

N

〈
Ŝ−
〉

(1.111f)

2Dz− = −2w

N

〈
Ŝ−
〉

(1.111g)

2Dzz = 2γ

N
(1 +

〈
Ŝz
〉
) + 2w

N
(1 −

〈
Ŝz
〉
) (1.111h)

The master equation and the Heisenberg-Langevin equation consist of a fully quantized
description of the laser system on a Cavity.

1.4.2. Steady state solutions of the Mean Field Equations of a
Cavity QED Laser

To simplify the treatment of the cavity QED system equations of motions, we will consider
a mean-field approximation of the dynamics[27]. This approximation is applied considering
that the noise terms scale as

√
N , while the expectations values scale as N . Then, taking

the limits of a large number of atoms, the noise terms could be neglected. The equations of
motion take the form of expressions [27, 28].
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d

dt
a0 = −1

2(κ + 2iωc − 2iω)a0 − iNg

2 S−
0 (1.112a)

d

dt
S−

0 = −1
2(Γ + 2iωa − 2iω)S−

0 + ig

2 âSz
0 (1.112b)

d

dt
Sz

0 = −(w + γ) (Sz
0 − d0) + ig

(
â∗S−

0 − a0S
+
0

)
(1.112c)

Studying the steady-state solution of the mean field equations, we obtain an expression
for the atomic coherence and the atomic inversion as:

S−
0 = igSz

0a0

(Γ + 2iωa − 2iω) (1.113)

Sz
0 = d0

1 + g2|a0|2
(γ+w)

2Γ
Γ2+(ωa−ω)2

(1.114)

The steady-state solution for the bosonic operator equation of motion in the mean-field
must satisfy the condition:1 − Ng2

(κ + 2iωc − 2iω)(Γ + 2iω − 2iω)
d0

1 + g2|a0|2
γ+w

2Γ
Γ2+(ωa−ω)2

 a0 = 0 (1.115)

This expression has two possible solutions to |a0|2. The first solution is the trivial a0 = 0,
where there is no lasing behavior, and the second solution takes the form:

|a0|2 = γ + w

g2
Γ + 4(ωA − ω)2

2Γ

(
d0Ng2

(κ + 2iωc − 2iω)(Γ + 2iωa − 2iω) − 1
)

. (1.116)

This second solution must satisfy the positivity condition of |a0|2, which implies that the
rotating frequency takes the form ω = κωa+Γωc

κ+Γ . If we take the limit when |ωc − ωa| << κ + Γ,
the equation (1.116) takes the form

|a0|2 ≈ (w + γ)Γ
2g2

(
d0Ng2

κΓ − 1
)

= n0 (G − 1) , (1.117)

where n0 = (w+γ)Γ
2g2 is called the saturation photon number, and G = d0Ng2

κΓ is the generalized
cooperativity and defines the threshold where the laser works. In this generalized cooperati-
vity is the rate between the system of interest coupling determined by d0Ng2 and the decays
process of the cavity κ and the atom γ, and is the generalization of the relation (0.1).

1.4.3. Phase Diffusion Linewidth

This section shows a methodology to obtain the laser linewidth by studying the evolution
of the phase of the bosonic operator of the system. This work is based on the references
[27–29, 31].

First, we will consider an ansatz of the form
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â = (a0 + r̂)eiϕ̂. (1.118)

In this expression, the field is defined as the product of an amplitude and a phase. If we
neglect the amplitude fluctuation, then the two-times correlation function takes the form(see
section [optics]):

g(1)(t) = ⟨E−(t)E+(0)⟩
⟨E−(0)E+(0)⟩ =

〈
a∗

0e
−iϕ̂(t)a0e

iϕ̂(0)
〉

〈
a∗

0e
−iϕ̂(0)a0eiϕ̂(0)

〉 =
〈
ei[ϕ̂(t)−ϕ̂(0)]

〉
(1.119)

In order to obtain the laser linewidth, we will consider the quantum mechanical equation
of the bosonic operator (1.109a) and differentiate it.

¨̂a ≈ −1
2(κ + Γ) ˙̂a − Γκ

4 âŜz + Ng2

4 âŜz + F̂ (1.120)

Where F̂ = Γ
2 F̂ a − iNg

2 F̂ − + ˙̂
F a. Studying the resonance case ωc = ωA and when the

rotating frame frequency satisfy ω = κωa+Γωc

κ+Γ , we get

¨̂a ≈ −1
2(κ + Γ) ˙̂a − Γκ

4 âŜz + Ng2

4 âŜz + F̂ (1.121)

Replacing the ansatz in the equation (1.121), we could get an equation for the phase
evolution by taking the imaginary part.

¨̂
ϕ = −1

2(κ + Γ) ˙̂
ϕ + 1

a0
Im[F̂ ] (1.122)

Integrating the last expression, we get the solution of phase evolution.

ˆϕ(t) − ϕ̂(0) = 2
a0(κ + Γ)

∫ t

0
dt′Im[Γ2 F̂ a − iNg

2 F̂ −] (1.123)

The expression 1.123, depends on the gaussian operators F̂ a and F̂ −, which satisfy the
relation(see appendix correlation).

〈
ei[ϕ̂(t)−ϕ(0)]

〉
= e− 1

2⟨(ϕ̂(t)−ϕ(0))2⟩ = e− 1
2 ∆νt (1.124)

From the relation (1.124), the Appendix A studies the argument of the exponential at the
RHS, and obtain the expression:

〈
(ϕ̂(t) − ϕ̂(0))2

〉
= (G/d0 + 1)

2(G − 1)
Γ

(w + γ)
g2κ

(κ + Γ)2 t. (1.125)
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Then two-times correlation function takes the form

g(1)(t) =
〈
ei[ϕ̂(t)−ϕ̂(0)]

〉
= e− 1

2⟨(ϕ̂(t)−ϕ(0))2⟩

= e
− 1

2

(
(G/d0+1)

2(G−1)
Γ

(w+γ)
g2κ

(κ+Γ)2

)
t (1.126)

From this last equation, we could recognize the spectral linewidth ∆ν

∆ν = (G/d0 + 1)
2(G − 1)

Γ
(w + γ)

g2κ

(κ + Γ)2 (1.127)

This expression could be studied in two regimes. The first regime is known as the "good
cavity regime,"where the cavity decay rate is smaller than the atomic decay rate, i.e., κ << Γ.
In this regime, the emission is determined by the coherence of the light field, where the
equation (1.127) is approximated to the Shawlow-Townes linewidth [32]:

∆ν ≈ (G/d0 + 1)
2(G − 1)

κ

(w + γ)Γ/g2 ∝ κ

|a0|2
. (1.128)

The second regime is known as the "bad cavity regime,"where κ >> Γ. In this regime, the
emission is determined by the correlation between the emitters. Then, the equation (1.127)
is approximated to:

∆ν ≈ (G/d0 + 1)
2(G − 1) Cγ ∝ Cγ (1.129)

where C is the cooperativity parameter defined in equation (0.1).
To sum up, this section recapitulates the work developed in references [27, 30, 33] to

present a mechanism to obtain the spectral linewidth of the field in the cavity QED system.
In the following chapters, we will extend this procedure to the case of a waveguide QED
system, where the electromagnetic is not discretized, so the method must be generalized to
the continuous case.
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Chapter 2

Model of a Laser on a Waveguide
QED

This work aims to extend the laser behavior to the waveguide QED system platform.
Waveguide QED systems have become a promising platform for the fundamental study of
light and matter interaction and for technological applications such as quantum metrology,
quantum networks [34, 35], and quantum computers [36].

This chapter presents a fully quantum mechanical model for a laser in a waveguide QED
system. We will consider a system of interest that consists of a collection of atoms or emitters
interacting with the guided-electromagnetic field modes of the waveguide. This system of
interest is not isolated and interacts with a reservoir, which generates dissipation processes,
so an open quantum system approach must be applied.

We will present a discretized model to represent the interaction of the system and its
reservoir. Then, it will be extended to the continuous case considering that in the limit
where the waveguide is long compared with the characteristic length of the system, the
guided mode could be considered continuous. Finally, from this interaction model, we will
obtain the equations that characterize the dynamics of our system of interest.

This chapter is divided as follows. Section 2.1, presents the total system Hamiltonian.
In section 2.1.1 we will present the system of interest, the atoms and the guided modes,
and their interaction. Then, in section 2.1.2, we will study the interaction of the system
of interest with the reservoir. Section 2.1.2.1 describes the mechanism of pumping and its
Hamiltonian. Section 2.1.2.2 describes the interaction between the waveguide modes and
the electromagnetic field outside the waveguide. Then, section 2.2 presents the discrete and
continuous version of the interaction Hamiltonian which describes the dynamics of our model
for a waveguide QED system laser.

2.1. Open Quantum System Approach

2.1.1. System of interest

As is shown in the figure 2.1, we will consider a waveguide that could be implemented as
an optical nanofiber, a coplanar waveguide in circuits QED or nanophotonic waveguides [37],
which interacts with emitters such as atoms, superconducting qubits, quantum dots, or NV-
centers in diamonds. The strength of this interaction depends on the platform. In the case
of optical nanofibers, the electromagnetic field is confined to a reduced volume promoting an
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increase in the coupling to the emitters through the evanescent field. In the case of circuit
QED, a coplanar waveguide is capacitively coupled with a Josephson junction, which behaves
as an emitter thanks to its not linear behavior.

Figure 2.1: Rectangular Waveguide

Those platforms could be represented by a multimodal waveguide (continuous or discre-
tized) that interacts with an ensemble of emitters with a coupling strength of the form:

g(ωk) = D
√

ℏωk

4πϵcA
, (2.1)

where D is the dipole operator matrix element.
Here we have considered a dipole approximation, which means that the characteristic

length of the emitter is smaller than the wavelength of the electromagnetic field modes
considered. (There are some cases where the dipole approximation is not valid, e.g., giant
atom [38].)

Here, we will consider a system of interest interaction Hamiltonian in the discretized case
as:

HS
I =

∑
j,k

ℏ
(
g∗

ka†
kσ−

j ei(ωk−ωA)t + gkσ+
j ake−i(ωk−ωA)t

)
(2.2)

This expression could be extended to the continuous case:

HS
I =

∑
j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t + g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
=

∫
dωkℏ

(
g∗(ωk)a†(ωk)NS−ei(ωk−ωA)t + g(ωk)NS+a(ωk)e−i(ωk−ωA)t

)
(2.3)

Nevertheless, in order to describe a laser, this system of interest could not be isolated.
Moreover, in practical implementations, noise sources are inherent in the systems. We must
consider some incoherent processes, such as a mechanism of population inversion and spon-
taneous emission to modes that are not part of the system of interest.

The following section will describe the total system of the waveguide QED laser platform
and how the reservoir interacts with the system of interest.
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2.1.2. Reservoir

2.1.2.1. Pumping System

This section presents the pumping mechanism, the incoherent process that guarantees the
inversion of the population of the gain of the laser.

A two-level system cannot achieve population inversion because any coherent interaction
saturates the excited state population at N/2, where N is the number of atoms. Then a third
state must be considered to obtain an effective population inversion between the two states of
interest. Figure (2.2) shows the three-level system, its energy levels, the ground, the excited,
and the upper states, and the transition processes between them.

Figure 2.2: Diagram of the pumping process. This picture shows a possible
mechanism to obtain population inversion through a three-level atom, ge-
nerating an effective pumping rate w.

The underlying process follows the following stages. A coherent source of light, resonant
with the g − u transition, could populate the upper state. Then, a spontaneous emission
process could generate an incoherent transition between the upper and the excited state.
The effective result is an incoherent process between the excited and upper states, which can
reach the inversion of the population.

Here, we will consider that the degrees of freedom associated with the pumping mecha-
nism could be represented by a Pauli pseudo-spin operators, P+/−/z(ω). The advantage of
considering this kind of reservoir is the characterization of a negative temperature reservoir,
promoting population inversion.

The Hamiltonian of the degrees of freedom of the pumping mechanism in the continuous
limits takes the form:

HP
I = 1

2

∫
dωνℏωνPz(ων) (2.4)

This expression could be studied in the discrete case:

HP
I = 1

2
∑

β

ℏωβPz
β . (2.5)
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2.1.2.2. Free Electromagnetic Field

In order to consider the decay process associated with the spontaneous emission of the sys-
tem of interest atoms and the decay process associated with the guided modes decay because
of the interaction with the waveguide atoms, we will define a reservoir of the electromagnetics
field modes outside the waveguide. This free electromagnetic field reservoir will be divided
into two subsystems. First, we will consider those modes interacting with the atoms of the
system of interest. The second subsystem considers those modes that interact with the de-
grees of freedom of the waveguide’s dielectric body, which generates an effective mode-mode
interaction between the guided modes and the modes outside of the waveguide.

The Hamiltonian of this free electromagnetic field reservoir in the interaction picture takes
the form:

HR
I = ℏ

∑
µ

ωµr̃†
µr̃µ + ℏ

∑
α

ωαr†
αrα (2.6)

where r̃µ and r̃†
µ are the degrees of freedom of the electromagnetic field which could interact

with the atoms of the system of interest through spontaneous emission, and rα and r†
α are

the operators that represent the degrees of freedom of the electromagnetic field that could
effectively interact with the guided modes through the traced degrees of freedom of the
material of the waveguide.

2.2. The Interaction Hamiltonian of the Total System
This section will present the Interaction Hamiltonian of the total system in the interaction

picture and the Hamiltonian of the system of interest. First, it will be presented in the discrete
case, which could be a model of a multimode cavity. Then, this multimode model will be
extended to the continuous case, which could be the model of the waveguide QED system
Laser.

2.2.1. Discrete Model

The canonical case of a laser in a unimodal cavity is extended to a cavity QED multimodal
case. In this system, we considered that the cavity length is large enough to assume that there
is not only one resonant mode of the cavity interacting resonantly with the emitter. If the
length of the cavity increase, the separation between the resonant modes frequencies of the
cavity decrease, as was shown in the reference Pierre et al. [39]. Then, we must consider more
modes in our system of interest.

The interaction Hamiltonian of the system of interest in the interaction picture takes the
form:

HS
I =

∑
j,k

ℏ
(
g∗

ka†
kσ−

j ei(ωk−ωA)t + gkσ+
j ake−i(ωk−ωA)t

)
=

∑
k

ℏ
(
g∗

ka†
kNS−ei(ωk−ωA)t + gkNS+ake−i(ωk−ωA)t

)
(2.7)
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Where ak and a†
k are the creation and destruction operators of the cavity mode of frequency

ωk,σ−
j sigma is the coherence atomic operator, and we have defined S− as the collective

coherence operator.
The interaction Hamiltonian of the system of interest and the reservoir, in the interaction

picture, takes the form:

HSR
I =

∑
µ,i

ℏ
(
κ∗

µ,ir̃
†
µσ−

i ei(ωµ−ωA)t + κµ,iσ
+
i r̃µe−i(ωµ−ωA)t

)
+
∑
β,i

ℏ
(
κ̃∗

β,iP+
β σ+

i e−i(ωβ−ωA)t + κ̃β,iσ
−
i P−

β ei(ωβ−ωA)t
)

+
∑
α,β

ℏ
(
κ̄∗

α,βr†
αaβei(ωα−ωβ)t + κ̄α,βa†

βrαe−i(ωα−ωβ)t
)

(2.8)

2.2.2. Continuous Model
Motivated by the idea of implementing a laser in a waveguide QED system, we will ge-

neralize the case described in the previous section to the continuous case. We will consider
that the guided modes are continuous in the waveguide system. This assumption considers
the generalization of the idea presented in reference [39]. If we understand the waveguide as
a large cavity, the separation between the frequencies of the modes will decrease. In the case
of infinite large, we obtain a continuous spectrum of frequencies.

The system of interest interaction Hamiltonian in the interaction picture is:

HS
I =

∑
j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t + g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
=

∫
dωkℏ

(
g∗(ωk)a†(ωk)NS−ei(ωk−ωA)t + g(ωk)NS+a(ωk)e−i(ωk−ωA)t

)
(2.9)

Where we have defined a continuous term of coupling strength g(ωk), which includes the
density of states of the cavity/waveguide modes, and a(ωk) and a†(ωk) are the continuous
bosonic operators of the form of the relations (1.36).

The interaction Hamiltonian in the interaction picture is:

HSR
I =

∑
i

∫
dωµℏ

(
κ∗(ωµ)r̃(ωµ)†σ−

i ei(ωµ−ωA)t + κ(ωµ)σ+
i r̃(ωµ)e−i(ωµ−ωA)t

)
+
∑

i

∫
dωνℏ

(
κ̃∗(ων)P+(ων)σ−

i e−i(ων−ωA)t + κ̃(ων)σ+
i P−(ων)ei(ων−ωA)t

)
+
∫

dωα

∫
dωβℏ

(
ζ∗(ωα, ωβ)r(ωα)†a(ωβ)ei(ωα−ωβ)t + ζ(ωα, ωβ)a†(ωβ)r(ωα)e−i(ωα−ωβ)t

)
(2.10)

Where κ(ωµ) is the coupling between the atoms and the outside of the cavity/waveguide
modes, and κ̃(ων) is the coupling between the atoms and the pumping mechanism reservoir
modes.
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The coupling term ζ(ωα, ωβ) of the last line in equation (2.10) could be understood as
an adimensional decay coefficient of the waveguide, which models the effective interaction
between the guided modes and the out-of-the-waveguide modes of the electromagnetic field.
The underlying process of this effective interaction considers two processes. The first process
is the interaction between the guided modes with the atoms of the waveguide. The second
process is the subsequent interaction of these waveguide degrees of freedom with the outside
of the waveguide modes. Because this model has traced those degrees of freedom associated
with the waveguide dielectric body, we get an effective mode-mode interaction between the
ωα-frequency mode with the ωβ-frequency mode, expressed by the coupling term ζ(ωα, ωβ).
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Chapter 3

Heisenberg-Langevin Equation of
Motion of a Waveguide QED system
Laser

In this chapter, we will derive the equations of motion of the laser waveguide QED system
model of the last chapter. First, we will consider the continuous Hamiltonian of the total
system, reservoir plus system of interest, to derive its Heisenberg equations of motion. Then,
we will apply the Heisenberg-Langevin formalism shown in section (Langevin) to obtain the
dynamic equations of the system of interest operators.

This chapter is divided as follows. Section 3.1 presents the Heisenberg equation of motion
of all the total system operators. In section 3.2, we will use the methodology presented in
section 1.2.3 to derive the Heisenberg-Langevin equation of motion of the system of interest
operators. Finally, 3.3 is a summary of our model of a waveguide QED system that will be
used in the following chapter.

3.1. Heisenberg Equation of the total system opera-
tors

Considering the continuous Hamiltonian of the waveguide QED system laser in the inter-
action picture:

HI =
∑

j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t + g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
+
∑

i

∫
dωµℏ

(
κ∗(ωµ)r̃(ωµ)†σ−

i ei(ωµ−ωA)t + κ(ωµ)σ+
i r̃(ωµ)e−i(ωµ−ωA)t

)
+
∑

i

∫
dωνℏ

(
κ̃∗(ων)P+(ων)σ−

i e−i(ων−ωA)t + κ̃(ων)σ+
i P−(ων)ei(ων−ωA)t

)
+
∫

dωα

∫
dωβℏ

(
ζ∗(ωα, ωβ)r(ωα)†a(ωβ)ei(ωα−ωβ)t + ζ(ωα, ωβ)a†(ωβ)r(ωα)e−i(ωα−ωβ)t

)
(3.1)

In this section, we will study the evolution of all operators which influence the dynamic
of our system of interest. Using the general expression of the evolution of an operator A:
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Ȧ(t) = −i

ℏ
[A(t), H] +

(
∂A

∂t

)
(3.2)

In the case of the reservoir and the system operators, there is no explicit dependency on
time, then the last term of the RHS of equation (3.2) vanishes.

Applying the expression (3.2) to the system of interest operators. In the case of the bosonic
operators of the waveguide modes, we obtain:

ȧ(ωk) = −i
ℏ [a(ωk), HI ] (3.3)

ȧ(ωk) = −i
∫

dωαζ(ωα, ωk)r(ωα)e−i(ωα−ωk)t − i
∑

i

g∗(ωk)σ−
i ei(ωk−ωA)t

(3.4)

In the same way, we could obtain the evolution of the atomics operators for coherence and
inversion:

σ̇−
j = −i

∫
ωµκ(ωµ)σz

j r̃(ωµ)e−i(ωµ−ωA)t − i
∫

dωβκ̃(ωβ)σz
j P+(ωβ)e−i(ωβ−ωA)t

−i
∫

dωkg(ωk)σz
j a(ωk)e−i(ωk−ωA)t

(3.5)

σ̇z
j = 2i

∫
dωµ

(
κ∗(ωµ)r̃†σ−

j ei(ωµ−ωA)t − κ(ωµ)σ+
j r̃(ωµ)e−i(ωµ−ωA)t

)
−2i

∫
dωβ

(
κ̃∗(ωβ)σ+

j P+(ωβ)e−i(ωβ−ωA)t − κ̃(ωβ)P−(ωβ)σ−
j ei(ωβ−ωA)t

)
+2i

∫
dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
(3.6)

Applying the same procedure to the reservoir operators. In the case of the bosonic reservoir
operators r̃(ωl), which represent the modes interacting with the atoms of the system of
interest, we get:
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˙̃r(ωl) = −i

ℏ
[r̃(ωl), HI ]

= −i

ℏ

[
r̃(ωl),

∑
i

∫
dωµℏ

(
κ∗(ωµ)r̃(ωµ)†σ−

i ei(ωµ−ωA)t + κ(ωµ)σ+
i r̃(ωµ)e−i(ωµ−ωA)t

)]

= −i

ℏ
,
∑

i

∫
dωµℏ

(
κ∗(ωµ)

[
r̃(ωl), r̃(ωµ)†

]
σ−

i ei(ωµ−ωA)t
)

= −i

ℏ
∑

i

∫
dωµℏ

(
κ∗(ωµ)δ(ωl − ωµ)σ−

i ei(ωµ−ωA)t
)

= −i
∑

i

κ∗(ωl)σ−
i ei(ωl−ωA)t (3.7)

In the case of the bosonic reservoir operators r(ων), which represent the electromagnetic
field modes interacting with the waveguide modes, we get:

ṙ(ων) = −i

ℏ
[r(ων), HI ]

= −i

ℏ

[
r(ων),

∫
dωα

∫
dωβℏ

(
ζ∗(ωα, ωβ)r†(ωα)a(ωβ)ei(ωα−ωβ)t

)]
= −i

ℏ

∫
dωα

∫
dωβℏ

(
ζ∗(ωα, ωβ)

[
r(ων), r†(ωα)

]
a(ωβ)ei(ωα−ωβ)t

)
= −i

ℏ

∫
dωα

∫
dωβℏ

(
ζ∗(ωα, ωβ)δ(ων − ω)a(ωβ)ei(ωα−ωβ)t

)
= −i

∫
dωβζ∗(ων , ωβ)a(ωβ)ei(ων−ωβ)t

(3.8)

Finally, the evolution of the pumping operators P−(ωµ) and Pz(ωµ) is determined by:

Ṗ−(ωµ) = −i

ℏ
[
P−(ωµ), HI

]
= −i

ℏ

[
P−(ωµ),

∑
i

∫
dωνℏ

(
κ̃∗(ων)P+(ων)σ−

i e−i(ων−ωA)t + κ̃(ων)σ+
i P−(ων)ei(ων−ωA)t

)]

= −i

ℏ
∑

i

∫
dωνℏ

(
κ̃∗(ων)

[
P−(ωµ), P+(ων)

]
σ−

i e−i(ων−ωA)t
)

= −i

ℏ
∑

i

∫
dωνℏκ̃∗(ων) (−δ(ωµ − ων)Pz(ων)) σ−

i e−i(ων−ωA)t

= i
∑

i

∫
dωµκ̃∗(ωµ)Pz(ωµ)σ−

i e−i(ωµ−ωA)t

(3.9)
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Ṗz(ωµ) = −i

ℏ
[Pz(ωµ), HI ]

= −i

ℏ

[
Pz(ωµ),

∑
i

∫
dωνℏ

(
κ̃∗(ων)P+(ων)σ−

i e−i(ων−ωA)t + κ̃(ων)σ+
i P−(ων)ei(ων−ωA)t

)]

= −i
∑

i

∫
dων

(
κ̃∗(ων)

[
Pz(ωµ), P+(ων)

]
σ−

i e−i(ων−ωA)t + κ̃(ωµ)σ+
i

[
Pz(ωµ), P+(ων)

]
ei(ωµ−ωA)

)
= −i

∑
i

∫
dων

(
κ̃∗(ων)(2δ(ωµ − ων)P+(ων))σ−

i e−i(ων−ωA)t + κ̃(ωµ)σ+
i (−2δ(ωµ − ων)P−(ων))ei(ωµ−ωA)

)
= −2i

∑
i

(
κ̃∗(ωµ)P+(ωµ)σ−

i e−i(ωµ−ωA)t − κ̃(ωµ)σ+
i P−(ωµ)ei(ωµ−ωA)t

)
(3.10)

3.1.1. Solutions of Heisenberg Equations of the Reservoir opera-
tors

We need to integrate the reservoir equation of motion (3.7), (3.8), (3.9) and (3.10) to
obtain the Heisenberg-Langevin evolution equation of the system of interest operators.

The solution of the equation (3.7) is

r̃t(ωl) = r̃t0(ωl) − i
∑

i

∫
dt′κ∗(ωl)σ−

i ei(ωl−ωA)t′ (3.11)

The evolution of the r(ων)reservoir operator

rt(ων) = rt0(ων) − i
∫

dt′
∫

dωβζ∗(ων , ωβ)at′(ωβ)ei(ων−ωβ)t′ (3.12)

And the solutions of the pumping operator equations (3.9) and (3.10) are

P−
t (ωµ) = P−

t0 (ωµ) + i
∑

i

∫
dt′κ̃∗(ωµ)Pz

t′(ωµ)σ+
i (t′)e−i(ωµ−ωA)t′ (3.13)

Pz
t (ωµ) = Pz

t0(ωµ) − 2i
∑

i

∫
dt′κ̃∗(ωµ)σ+

i (t′)P+
t′ (ωµ)e−i(ωµ−ωA)t′

+2i
∑

i

∫
dt′κ̃(ωµ)Pz

t′(ωµ)σ−
i (t′)ei(ωµ−ωA)t

(3.14)

3.2. Deduction of the Heisenberg-Langevin equations
of motion
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3.2.1. Deduction of the atomic coherence operator Heisenberg-
Langevin Equation of Motion

From the equation of motion of the coherence atomic operator 3.5, we will replace the
solution of the reservoir bosonic operator which interacts with the atoms (3.11) and the
pumping operator equation solution (3.13)

σ̇−
j = −i

∫
dωkg(ωk)σz

j a(ωk)e−i(ωk−ωA)t

−i
∫

ωµκ(ωµ)σz
j

(
r̃t0(ωµ) − i

∑
i

∫
dt′κ∗(ωµ)σ−

i ei(ωµ−ωA)t′
)

e−i(ωµ−ωA)t

−i
∫

dωβκ̃(ωβ)σz
j

(
P+

t0 (ωµ) − i
∑

i

∫
dt′κ̃∗(ωβ)Pz

t′(ωβ)σ−
i (t′)e−i(ωβ−ωA)t′

)
e−i(ωβ−ωA)t

(3.15)

Defining the noise operator associated to the atomic coherence
FR

(−) = −i
∫

ωµκ(ωµ)σz
j (r̃t0(ωµ)) e−i(ωµ−ωA)t and FP

(−) = −i
∫

dωβκ̃(ωβ)σz
j

(
P+

t0 (ωµ)
)

e−i(ωβ−ωA)t,
where F(−) = FP

(−) + FR
(−).

σ̇−
j = −i

∫
dωkg(ωk)σz

j a(ωk)e−i(ωk−ωA)t + F(−)

−
∑

i

∫
ωµκ(ωµ)κ∗(ωµ)σz

j (t)
(∫

dt′σ−
i (t′)ei(ωµ−ωA)t′

)
e−i(ωµ−ωA)t

−
∑

i

∫
dωβκ̃(ωβ)κ̃∗(ωβ)σz

j (t)
(∫

dt′σ−
i (t′)Pz

t′(ωβ)e−i(ωβ−ωA)t′
)

e−i(ωβ−ωA)t

(3.16)

Now, we will consider that the term σ−
i (t′) and Pz

t′(ωβ)σ−
i (t′) in the integrand varies slowly

compared with the exponential term so that we will apply the approximation σ−
i (t′) → σ−

i (t)
and Pz

t′(ωβ)σ−
i (t′) → Pz

t (ωβ)σ−
i (t), respectively.

σ̇−
j = −i

∫
dωkg(ωk)σz

j a(ωk)e−i(ωk−ωA)t + F(−)

−
∑

i

∫
ωµκ(ωµ)κ∗(ωµ)σz

j (t)σ−
i (t)

(∫
dt′ei(ωµ−ωA)t′

)
e−i(ωµ−ωA)t

−
∑

i

∫
dωβκ̃(ωβ)κ̃∗(ωβ)σz

j (t)σ−
i (t)Pz

t (ωβ)
(∫

dt′e−i(ωβ−ωA)t′
)

e−i(ωβ−ωA)t

(3.17)

We will use the relation

lim
t→∞

∫ t

0
dt′ei(ω−ω0)t′ = πδ(ω − ω0) + i

P

ω0 − ω
(3.18)

The, we obtain
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σ̇−
j = −i

∫
dωkg(ωk)σz

j a(ωk)e−i(ωk−ωA)t + F(−)

−
∑

i

∫
ωµκ(ωµ)κ∗(ωµ)σz

j (t)σ−
i (t)

(
πδ(ωµ − ωA) − i

P

ωµ − ωA

)
e−i(ωµ−ωA)t

−
∑

i

∫
dωβκ̃(ωβ)κ̃∗(ωβ)σz

j (t)σ−
i (t)Pz

t (ωβ)
(

πδ(ωβ − ωA) + i
P

ωβ − ωA

)
e−i(ωβ−ωA)t

(3.19)

Defining the decay rates of the atomic coherence associated with the spontaneous emission
and the pumping mechanism:

γ = 2π|κ(ωA)|2 (3.20)

w = 2π|κ̃(ωA)|2Pz
t (ωA) (3.21)

And the terms associated with the Lamb shift:

∆(−) = P
∑

i

∫
ωµ

|κ(ωµ)|2
ωµ − ωA

e−i(ωµ−ωA)t − P
∑

i

∫
dωβ

|κ̃(ωβ)|2
ωβ − ωA

Pz
t (ωβ)e−i(ωβ−ωA)t

(3.22)

Finally, we get the Heisenberg-Langevin equation of the atomic coherence operator:

σ̇−
j = −i

∫
dωkg(ωk)σz

j a(ωk)e−i(ωk−ωA)t + F(−) − γ + w

2
∑

i

σz
j (t)σ−

i (t) + i∆σz
j (t)σ−

i (t)

(3.23)

3.2.2. Deduction of the atomic inversion operator Heisenberg-
Langevin Equation of Motion

From the equation of motion of the atomic inversion operator (3.6), we will replace the
solution of the reservoir bosonic operator, which interacts with the atoms (3.7) and the
pumping operator equation solution (3.13)
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σ̇z
j = 2i

∫
dωµ

(
κ∗(ωµ)

(
r̃†

t0(ωµ) + i
∑

i

∫
dt′κ(ωµ)σ+

i (t′)e−i(ωµ−ωA)t′
)

σ−
j (t)ei(ωµ−ωA)t

)

−2i
∫

dωµ

(
κ(ωµ)σ+

j (t)
(

r̃t0(ωµ) − i
∑

i

∫
dt′κ∗(ωµ)σ−

i (t′)ei(ωµ−ωA)t′
)

e−i(ωµ−ωA)t
)

−2i
∫

dωβ

(
κ̃∗(ωβ)σ+

j (t)
(

P+
t0 (ωβ) − i

∑
i

∫
dt′κ̃∗(ωβ)σ−

i (t′)Pz
t′(ωβ)ei(ωµ−ωA)t′

)
e−i(ωβ−ωA)t

)

+2i
∫

dωβ

(
κ̃(ωβ)

(
P−

t0 (ωβ) + i
∑

i

∫
dt′κ̃∗(ωβ)Pz

t′(ωβ)σ+
i (t′)e−i(ωµ−ωA)t′

)
σ−

j (t)ei(ωβ−ωA)t
)

+2i
∫

dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
(3.24)

Defining the noise operator associated to the atomic inversion F(z) = FR
(z) + FP

(z), where

FR
(z) = 2i

∫
dωµ

(
κ∗(ωµ)r̃†

t0(ωµ)σ−
j ei(ωµ−ωA)t

)
− 2i

∫
dωµ

(
κ(ωµ)σ+

j r̃t0(ωµ)e−i(ωµ−ωA)t
)

(3.25)

FP
z = −2i

∫
dωβ

(
κ̃∗(ωβ)σ+

j P+
t0 (ωβ)e−i(ωβ−ωA)t

)
+ 2i

∫
dωβ

(
κ̃(ωβ)P−

t0 (ωβ)σ−
j ei(ωβ−ωA)t

)
(3.26)

Then, the inversion equation takes the form of (3.27).

σ̇z
j = F(z) + 2i

∫
dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
−2

∑
i

∫
dωµ

(
|κ(ωµ)|2

(∫
dt′σ+

i (t′)e−i(ωµ−ωA)t′
)

σ−
j (t)ei(ωµ−ωA)t

)
−2

∑
i

∫
dωµ

(
|κ(ωµ)|2σ+

j (t)
(∫

dt′σ−
i (t′)ei(ωµ−ωA)t′

)
e−i(ωµ−ωA)t

)
−2

∑
i

∫
dωβ

(
|κ̃(ωβ)|2σ+

j (t)
(∫

dt′σ−
i (t′)Pz

t′(ωβ)ei(ωµ−ωA)t′
)

e−i(ωβ−ωA)t
)

−2
∑

i

∫
dωβ

(
|κ̃(ωβ)|2

(∫
dt′Pz

t′(ωβ)σ+
i (t′)e−i(ωµ−ωA)t′

)
σ−

j (t)ei(ωβ−ωA)t
)

(3.27)

Now, we will consider that the terms σ−
i (t′),σ+

i (t′), Pz
t′(ωβ)σ−

i (t′) and σ+
i (t′)Pz

t′(ωβ) in the
integrand varies slowly compared with the exponential term, so we will apply the approxi-
mation σ−

i (t′) → σ−
i (t),σ+

i (t′) → σ+
i (t), Pz

t′(ωβ)σ−
i (t′) → Pz

t (ωβ)σ−
i (t) and σ+

i (t′)Pz
t′(ωβ) →

σ+
i (t)Pz

t (ωβ).
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σ̇z
j = F(z) + 2i

∫
dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
−2

∑
i

∫
dωµ

(
|κ(ωµ)|2

(∫
dt′e−i(ωµ−ωA)t′

)
σ+

i (t)σ−
j (t)ei(ωµ−ωA)t

)
−2

∑
i

∫
dωµ

(
|κ(ωµ)|2σ+

j (t)σ−
i (t)

(∫
dt′ei(ωµ−ωA)t′

)
e−i(ωµ−ωA)t

)
−2

∑
i

∫
dωβ

(
|κ̃(ωβ)|2σ−

j (t)σ+
i (t)Pz

t (ωβ)
(∫

dt′ei(ωµ−ωA)t′
)

e−i(ωβ−ωA)t
)

−2
∑

i

∫
dωβ

(
|κ̃(ωβ)|2

(∫
dt′e−i(ωµ−ωA)t′

)
Pz

t (ωβ)σ+
i (t)σ−

j (t)ei(ωβ−ωA)t
)

(3.28)

Using the relation (3.18), we could obtain the time integral of the last equation.

σ̇z
j = F(z) + 2i

∫
dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
−2

∑
i

∫
dωµ

(
|κ(ωµ)|2

(
πδ(ωµ − ωA) + i

P

ωµ − ωa

)
σ+

i (t)σ−
j (t)ei(ωµ−ωA)t

)

−2
∑

i

∫
dωµ

(
|κ(ωµ)|2σ+

j (t)σ−
i (t)

(
πδ(ωµ − ωA) − i

P

ωµ − ωa

)
e−i(ωµ−ωA)t

)

−2
∑

i

∫
dωβ

(
|κ̃(ωβ)|2σ−

j (t)σ+
i (t)Pz

t (ωβ)
(

πδ(ωβ − ωA) − i
P

ωβ − ωa

)
)

e−i(ωβ−ωA)t
)

−2
∑

i

∫
dωβ

(
|κ̃(ωβ)|2

(
πδ(ωβ − ωA) + i

P

ωβ − ωa

)
Pz

t (ωβ)σ+
i (t)σ−

j (t)ei(ωβ−ωA)t
)

(3.29)

Now, we will use the definition of the decay rates γ and w of the equations (3.21) and
(3.20).

σ̇z
j = F(z) + 2i

∫
dωk

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t − g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
−γ

∑
i

(
σ+

i (t)σ−
j (t) + σ+

j (t)σ−
i (t)

)
− w

∑
i

(
σ−

j (t)σ+
i (t) + σ+

i (t)σ−
j (t)

)
−2iP

∑
i

∫
dωµ

(
|κ(ωµ)|2
ωµ − ωa

)(
σ+

i (t)σ−
j (t)ei(ωµ−ωA)t − σ+

j (t)σ−
i (t)e−i(ωµ−ωA)t

)
+2iP

∑
i

∫
dωβ

(
|κ̃(ωβ)|2
ωβ − ωa

)(
σ+

j (t)σ−
i (t)Pz

t (ωβ)e−i(ωβ−ωA)t − Pz
t (ωβ)σ+

i (t)σ−
j (t)ei(ωβ−ωA)t

)
(3.30)
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3.2.3. Deduction of the Continuous bosonic Heisenberg-Langevin
Equation of Motion

From the equation of motion of the bosonic operator (3.4), we will replace the solution of
the reservoir bosonic operator (3.12)

ȧ(ωk) = −ig∗(ωk)NS−ei(ωk−ωA)t − i
∫

dωαζ(ωα, ωk) (rα(t0) − iπζ∗(ωα, ωα)a(ωα))

(3.31)

ȧ(ωk) = −ig∗(ωk)NS−ei(ωk−ωA)t − i
∫

dωαζ(ωα, ωk)rα(t0)

−π
∫

dωαζ(ωα, ωk)ζ∗(ωα, ωα)a(ωα) (3.32)

Here, we could define Fa(ωk) = −i
∫

dωαζ(ωα, ωk)rα(t0) as the noise operator of the bosonic
system operator equation.

ȧ(ωk) = −ig∗(ωk)NS−ei(ωk−ωA)t + Fa(ωk) − π
∫

dωαζ(ωα, ωk)ζ∗(ωα, ωα)a(ωα)

(3.33)

Assuming that the term of the coupling is only considerable near resonance, then we
could define a rate associated with the mode with frequency ωk as κ(ωk) ≡ π|κ̄(ωk)|2 and
ζ(ωα, ωk)ζ∗(ωα, ωα) ≈ |κ̄(ωk)|2δ(ωk − ωα)

π
∫

dωαζ(ωα, ωk)ζ∗(ωα, ωα)a(ωα) ≈ π
∫

dωα|κ̄(ωk)|2δ(ωk − ωα)a(ωα)

≈ π|κ̄(ωk)|2a(ωk) (3.34)

Finally, we get the Heisenberg-Langevin equation of motion of the bosonic operator

ȧ(ωk) = −ig∗(ωk)NS−ei(ωk−ωA)t + Fa(ωk) − κ(ωk)a(ωk).
(3.35)

3.3. Heisenberg-Langevin Equations of Motion of the
Atom-Field System operators

This section presents a summary of the equation of motion of the waveguide QED system
laser model derived in the previous sections. Explicit calculations of the derivation of those
equations are presented in Appendix B and C.
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3.3.1. Equations of Motion in the Rotating Frame

Defining the new variables in the rotating frame ã(ωk) = a(ωk)e−i(ωk−ω)t and S̃− =
S−e−i(ωa−ω)t, acording to the equations (C.1,C.2,C.3), we get:

ȧ(ωk) = F̃(a) − ig(ωk)∗NS− − 1
2 (κ − 2i(ωk − ω)) a(ωk) (3.36a)

Ṡ− = F(−) − 1
2 [Γ + 2i(ωA − ω)] S− + i

∫
dωkg(ωk)Sza(ωk) (3.36b)

Ṡz = Fz − Γ (Sz − d0) + 2i
∫

dωk

(
g∗(ωk)a†(ωk)S− − g(ωk)S+a(ωk)

)
(3.36c)

This set of equations is the generalization of the set of equations (1.109), from the discrete
case of a laser in a cavity QED system to the continuous case that models a laser in a
waveguide QED system.

Figure 3.1 is a diagram of the model presented in this chapter. It presents the different
decays process that affects the dynamics of the system operators expressed by equations
(3.36).

Figure 3.1: Optical nanofiber system and reservoir diagram, with κ decay
process associated with the waveguide, γ represents the emission of the
atoms, and w is the decay rate associated with the pumping mechanism.
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Chapter 4

Linewidth of a Waveguide QED
system Laser

In this chapter, we will present a method to obtain the linewidth of the field generated by
a laser developed in a waveguide QED system. To obtain the laser linewidth, we will consider
that the electric field is determined by the stationary solution of the bosonic operator of the
waveguide in the mean-field approximation, as is shown in the equation (4.1).

〈
E+(t)

〉
=
∫

dωk

√
ℏωk

4πϵ0cA
⟨a(ωk)⟩ss e−iωkt (4.1)

We could obtain the emission spectrum from this definition and apply the Wiener-Khinchin
Theorem.

This chapter is divided as follows. First, section 4.1 presents the equations of motions
in the mean-field approximation and derives the steady-state solutions of those equations.
Section 4.2 will obtain an expression for the Electric field operator based on the assumption
(4.1). Section 4.3 derives an expression for the emission spectrum by applying the Wiener-
Khinchin Theorem. Finally, subsection 4.3.2 shows the results of the power and the linewidth
of the laser emission.

4.1. Mean-Field Equation of Motion
In this section, we will consider the mean-field approximation. In this approximation, the

correlations of two operators could be considered independent, ⟨Sza(ωk)⟩ = ⟨Sz⟩ ⟨a(ωk)⟩.
Then, the equations of motion 3.36 derived in the previous chapter take the form:

⟨ȧ(ωk)⟩ = −ig(ωk)∗N
〈
S−
〉

− 1
2 [κ − 2i(ωk − ω)] ⟨a(ωk)⟩ (4.2a)

〈
Ṡ−
〉

= −1
2 [Γ + 2i(ωA − ω)]

〈
S−
〉

+ i
∫

dωkg(ωk) ⟨Sz⟩ ⟨a(ωk)⟩ (4.2b)
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〈
Ṡz
〉

= −Γ [⟨Sz⟩ − d0] + 2i
∫

dωk

(
g∗(ωk)

〈
a†(ωk)

〉 〈
S−
〉

− g(ωk)
〈
S+
〉

⟨a(ωk)⟩
)

(4.2c)

In order to obtain an expression for the electric field to derive the emission spectrum of
the laser in the waveguide QED system, we will study the steady-state solutions of the set
of equations 4.2.

4.1.1. Steady State Solutions in the Mean Field

Imposing the steady state condition on the coherence equation (4.2b)

〈
S−
〉

ss
= 2i

Γ + 2i(ωA − ω)

∫
dω′

kg(ω′
k) ⟨Sz⟩ss ⟨a(ω′

k)⟩ (4.3)

Replacing the last expression in the inversion mean field equation, and considering the
steady state condition

⟨Sz⟩ss = d0 + 2i

Γ

∫
dωk

(
g∗(ωk)

〈
a†(ωk)

〉 〈
S−
〉

ss
− g(ωk)

〈
S+
〉

ss
⟨a(ωk)⟩

)
(4.4)

After some algebra we obtain

⟨Sz⟩ss

[
1 +

(
8 ⟨Sz⟩ss

Γ2 − 4(ωA − ω)2

)∫
dωkg∗(ωk)

〈
a†(ωk)

〉 ∫
dω′

kg(ω′
k) ⟨a(ω′

k)⟩
]

= d0 (4.5)

Considering that g(ωk) = D
√

ℏωk

4πϵ0cA
, where D is the dipole element of matrix of the dipole

operator. Then

∫
dωkg(ω′

k) ⟨a(ω′
k)⟩ =

∫
dω′

kD
√

ℏω′
k

4πϵ0cA
⟨a(ω′

k)⟩ = D
〈
E+

〉
(4.6)

Replacing in the expresion for the steady state solution in the mean field of the inversion
operator

⟨Sz⟩ss

(
1 + 8

Γ2 − 4(ωA − ω)2

∫
dωkg∗(ωk)

〈
a†(ωk)

〉 ∫
dω′

kg(ω′
k) ⟨a(ω′

k)⟩
)

= d0 (4.7)

Where we could reconized the definition of the Electric field

⟨Sz⟩ss = d0 (Γ2 − 4(ωA − ω)2)
Γ2 − 4(ωA − ω)2 + 8|D|2 ⟨E−⟩ ⟨E+⟩

(4.8)
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Replacing equation (4.8) on the coherence equation (4.3), the steady state solution of the
mean field coherence equation

〈
S−
〉

ss
=
(

2id0Γ
Γ2 + 8|D|2 ⟨E−⟩ ⟨E+⟩

)〈
E+

〉
(4.9)

Finally, the steady state solution of the mean field equation of motion of the bosonic
operator

⟨a(ωk)⟩ss = −2ig(ωk)∗Nd0

κ + 2i∆k

[
2i(Γ − 2i∆A)

Γ2 + 4∆2
A + 8

∫
dωkg∗(ωk) ⟨a†(ωk)⟩

∫
dω′

kg(ω′
k) ⟨a(ω′

k)⟩

]
∫

dω′′
kg(ω′′

k) ⟨a(ω′′
k)⟩

(4.10)

4.2. Electric Field Equation of Motion in the Heisen-
berg Picture

The main goal of this section is to obtain an expression for the electric field operator. First,
we will consider the electric field definition in the Heisenberg picture. Then, we will present
the electric field operator in the steady-state regime based on the steady-state solution of
the bosonic operator Heisenberg-Langevin equation of motion in the mean-field approxima-
tion. Finally, we present an expression of the electric field operator defined as a mean field
amplitude and a fluctuating term.

4.2.1. Steady-state Solution of the Mean-field equation of the
Electric Field operator

In the Heisenberg picture, the electric field operator will be determined by the solution of
the Heisenberg-Langevin equation of the waveguide bosonic operator.

E+(t) =
∫

dωk

√
ℏωk

4πϵcA
a(ωk) (4.11)

Where a(ωk) is the solution of the Heisenberg equation of the bosonic operator.
The steady-state solution of the electric field operator in the mean-field approximations

takes the form:

〈
E+

〉
ss

=
∫

dωk

√
ℏωk

4πϵcA
⟨a(ωk)⟩ss (4.12)

We could obtain an expression analogous to the condition equation of the bosonic operator
(4.10) for the electric field by taking (4.10) and multiplying it by the one-photon amplitude
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and integrating over ωk.

〈
E+

〉
ss

=
[

4Nd0(Γ − 2i(ωA − ω))
Γ2 + 4(ωA − ω)2 + 8|D|2 ⟨E−⟩ss ⟨E+⟩

ss

] 〈
E+

〉
ss

∫
dωk

(
|g(ωk)|2

κ + 2i(ωk − ω)

)
(4.13)

If we consider that the rotating frequency is resonant with the atomic frequency, ωA = ω,
then:

〈
E+

〉
ss

=
[

4Nd0(Γ)
Γ2 + 8|D|2 ⟨E−⟩ss ⟨E+⟩ss

] 〈
E+

〉
ss

∫
dωk

(
|g(ωk)|2

κ + 2i(ωk − ωA)

)
(4.14)

Studing the integral of the equation (4.14)

∫
dωk

(
|g(ωk)|2

κ + 2i(ωk − ωA)

)
= 1

2i

∫
dωk

(
|g(ωk)|2

ωk − ωA − iκ/2

)
(4.15)

In the limit of κ << ωA, based on the complex variable treatment of the reference [40],
we obtain the relation:

lim
κ→0

∫
dωk

(
|g(ωk)|2

ωk − ωA − iκ/2

)
= 2πi|g(ωA)|2 (4.16)

If we replace the result of the last expression in the equation (4.14)

〈
E+

〉
ss

=
[

4Nd0Γ
Γ2 + 8|D|2 ⟨E−⟩ss ⟨E+⟩ss

] 〈
E+

〉
ss

π|g(ωA)|2.

(4.17)

Here, we have defined the spontaneous emission rate in the waveguide as γ(1D) = 2π|g(ωA)|2.
Then, we obtain a condition expression to obtain the steady-state solution of the electric field
in the mean-field approximation:

〈
E+

〉
ss

(
1 −

[
2Nd0Γγ(1D)

Γ2 + 8|D|2 ⟨E−⟩ss ⟨E+⟩ss

])
= 0

(4.18)

The equation (4.18) has two solutions. The first is the trivial solution ⟨E+⟩ss = 0. The
second solution is obtained by taking the parenthesis equal to zero. Studying the parenthesis
condition, we get:
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〈
E−

〉
ss

〈
E+

〉
ss

= Γ2

8|D|2

[
2Nd0γ

(1D)

Γ − 1
]

(4.19)

Where we could define G = 2Nd0γ(1D)

Γ as the generalized cooperativity, and obtain

〈
E−

〉
ss

〈
E+

〉
ss

= Γ2

8|D|2
[G − 1] , (4.20)

this expression could be understood as the generalization of equation (1.117).
Finally, the steady-state solution of the electric field in the mean-field approximation takes

the form:

〈
E+

〉
ss

= ΓD∗

2
√

2|D|2
√

G − 1 (4.21)

We could find the steady-state solution of the bosonic operator equation in the mean-field
approximation by replacing (4.21) in (4.10):

⟨a(ωk)⟩ss =
√

ℏωk

2πϵ0cA

4d0NΓ
κ + 2i(ωk − ωA)

|D|2

Γ2 + Γ2[G − 1]
〈
E+

〉
ss

(4.22)

After some algebra:

⟨a(ωk)⟩ss = 2d0ND∗

κ + 2i(ωk − ωA)

√
ℏωk

2πϵ0cA

√
G − 1
2G2 = 2d0Ng(ωk)

κ + 2i(ωk − ωA)

√
G − 1
2G2 (4.23)

4.2.2. Electric Field Operator above the threshold

Finally, we now could define the mean-field approximation electrical field operator of the
form:

E+
0 (t) =

〈
E+(t)

〉
=
∫

dωk

√
ℏωk

4πϵ0cA
⟨a(ωk)⟩ss e−iωkt

= 2d0N

√
G − 1
2G2 D∗

∫
dωk

ℏωk

4πϵ0cA

(
e−iωkt

κ + 2i(ωk − ωA)

)
(4.24)

We will assume that the electric field could be expressed by the mean-field amplitude plus
a fluctuation term determined by a zero mean and delta-correlated operator ξ̂.

Ê+(t) = E+
0 (t) + ξ̂(t). (4.25)

In the following section, we will use this expression to obtain the emission spectrum of the
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laser.

4.3. The Spectrum
In the previous section, we obtained an expression for the electric field of the laser emission

above the threshold. This expression is determined by a mean-field approximation plus a
fluctuating term. In this section, we will study the spectrum of laser emission considering
only the mean-field term and ignoring the fluctuating terms. In section 4.3.1, we will apply
the Wiener-Khintchine Theorem by taking the Fourier transform of the two times correlation
function of the field. In section 4.32, we will show the power of the laser emission and the
numerical results of its dependency on the pumping rate and the number of atoms in the
system.

4.3.1. Wiener-Khintchine Theorem
In this section, we will make use of the Wiener-Khintchine Theorem [17, 23, 41, 42], which

states that the power spectral density S(ω) could be obtained as the Fourier transform of
the two times correlation function. In the case of the electric field, the spectrum could be
derivated as follows:

S(ω) =
∫ ∞

0

〈
E−(τ)E+(0)

〉
e−iωτ +

∫ ∞

0

〈
E−(0)E+(τ)

〉
eiωτ (4.26)

If we replace the expression (4.25) in the relation (4.26), we will get the following expres-
sion.

S(ω) =
∫ ∞

0

〈(
E−

0 (τ) + ξ̂†(τ)
) (

E+
0 (t) + ξ̂(0)

)〉
e−iωτ +

∫ ∞

0

〈(
E−

0 (0) + ξ̂†(0)
) (

E+
0 (τ) + ξ̂(τ)

)〉
eiωτ

(4.27)

Where we can neglect the terms
〈
E+

0 ξ̂
〉

and
〈
ξ̂†E−

0

〉
, because ξ̂ has zero mean.

S(ω) =
∫ ∞

0

〈
E−

0 (τ)E+
0 (t)

〉
e−iωτ +

∫ ∞

0

〈
E−

0 (τ)E+
0 (t)

〉
eiωτ

+
∫ ∞

0

〈
ξ̂†(τ)ξ̂(0)

〉
e−iωτ +

∫ ∞

0

〈
ξ̂†(τ)ξ̂(0)

〉
eiωτ

(4.28)

If we define the first two terms of the RHS of last equation as S1(ω) and S2(ω), respectively,
then S1(ω):

S1(ω) = 4d2
0N

2
(G − 1

2G2

)
|D|2

∫
dωk

∫
dω′

k

( ℏ
4πϵ0cA

)2

ωkω′
k

(
1

κ − 2i(ωk − ωA)

)
[(

1
κ + 2i(ω′

k − ωA)

)] ∫ ∞

0
dτe−i(ω−ωk)τ

(4.29)

48



The time integral has the form of equation (3.18), ignoring the principal value term, we
get:

S1(ω) = 8πd2
0N

2
(G − 1

2G2

)
|D|2

∫
dω′

k

( ℏ
4πϵ0cA

)2

ωω′
k

(
1

κ − 2i(ω − ωA)

)(
1

κ + 2i(ω′
k − ωA)

)
(4.30)

After some algebra, and considering the relation g(ωk) = D
√

ℏωk

4πϵ0cA
.

S1(ω) = 8πd2
0N

2
(G − 1

2G2

)( ℏω

4πϵ0cA

)(
1

κ − 2i(ω − ωA)

)∫
dω′

k

[(
|g(ω′

k)|2
κ + 2i(ω′

k − ωA)

)]
(4.31)

From the last expression, we could reconize that γ(1D) =
∫

dω′
k

(
|g(ω′

k)|2
κ+2i(ω′

k
−ωA)

)
(see the

previous section).

S1(ω) = 4πd2
0N

2γ(1D)
(G − 1

2G2

)( ℏω

4πϵ0cA

)(
1

κ − 2i(ω − ωA)

)
(4.32)

If we repite the same procedure with S2(ω), we get:

S(ω) = 4πd2
0N

2γ(1D)
(G − 1

2G2

)( ℏω

4πϵ0cA

)(
1

κ − 2i(ω − ωA) + 1
κ + 2i(ω − ωA)

)
(4.33)

S(ω) = 4πd2
0N

2γ(1D)
(G − 1

2G2

)( ℏω

4πϵ0cA

)(
2κ

κ2 + 4(ω − ωA)2

)
(4.34)

S(ω) = πΓ2

γ(1D) (G − 1)
(

ℏω

4πϵ0cA

)(
κ

κ2 + 4(ω − ωA)2

)
(4.35)

But γ(1D) = 2π|g(ωA)|2 = 2π|D|2 ℏω
4πϵ0cA

S(ω) = Γ2

2|D|2
(G − 1)

(
ω

ωA

)(
κ

κ2 + 4(ω − ωA)2

)
(4.36)

Finally, the spectrum could be rewritten as:
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S(ω) = 4
〈
E−

〉 〈
E+

〉( ω

ωA

)(
κ

κ2 + 4(ω − ωA)2

)
(4.37)

4.3.2. Laser Power and Spectrum
In this section, we will study the spectrum obtained in the previous section. First, we will

compare the expression (4.37) to a Lorentzian shape. Then we will study the Power of the
emission spectrum.

The equation (4.37), which shows the spectrum as a function of the intensity of the field,
⟨E−⟩ ⟨E+⟩, could be written as a function of the decay rate of the system, γ, w, and γ(1D).

S(ω) = (γ + w)2

2|D|2

(
2Nd0γ

(1D)

γ + w
− 1

)(
ω

ωA

)(
κ

κ2 + 4(ω − ωA)2

)
(4.38)

Figure 4.1: This figure shows the normalized version of the spectrum. Here,
we compare two curves. The blue line considers the term ω/ωA, and the
orange curve approximates this term to one. The two curves are completely
overlapped for κ << ωa, here we used κ/ωa ∼ 0.01.

Figure 4.1 presents a normalized form of the emission spectrum of the equation 4.39. In
this figure, we considered the case when ωA is larger compared with the others time scales
of the system. In this regime, the two spectrums shown in the figure could be considered
to be approximately the same. From now, we will consider that the following expression
approximately describes the spectrum:

S(ω) ≈ (γ + w)2

2|D|2

(
2Nd0γ

(1D)

γ + w
− 1

)(
κ

κ2 + 4(ω − ωA)2

)
. (4.39)
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This equation states that a Lorentzian curve could approximately describe the spectrum.
The linewidth of this curve will be directly defined by the field decay rate κ. Figure 4.2,
presents different spectrums and shows how the linewidth varies for different values of κ.

Figure 4.2: This figure shows the spectrum of the laser emission. Here we
have considered different values for κ, where κ0 = 2π × 11MHz based on
the reference value in the cavity case of reference [43].

From the expression 4.39, we could study the Power of the emission spectrum of the laser,
which is determined by:

P = (γ + w)2

2|D|2

(
2Nd0γ

(1D)

γ + w
− 1

)
= Γ2

2|D|2

(
2Nd0γ

(1D)

Γ − 1
)

(4.40)

It is important to consider that in order to have emission, the system must satisfy the
threshold condition. This condition states that the parenthesis of the equation (4.40) must
be positive, and d0 = w−γ

w+γ
> 0, so w > γ to guarantee population inversion.

Figure 4.3 illustrates the Power of the emission spectrum as a function of the pumping
parameter. There are two important aspects to derive from this figure. First, it shows that
the Power has a maximum, which depends on the number of atoms. The second aspect is that
the emission is confined between the threshold conditions. The close-up of the figure shows
that there is no emission before a certain value, representing the condition w > γ. Moreover,
the graphic shows that there is a maximum value of the pumping from which there is no
more emission. This maximum value also depends on the number of atoms in the system.

In figure 4.4, we studied the Power of the emission as a function of the number of atoms
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in the system. Here we can see that the number of atoms necessary to satisfy the threshold
condition (illustrated with the vertical lines) depends on the rate of emission of the atoms to
the waveguide modes, γ(1D). Moreover, γ(1D) not only determines the threshold, but it also
determines the slope of the curve. Then, this model states that if we increase the coupling
between the atoms and the waveguide, the emission will be more intense, and the number of
atoms necessary to overcome the threshold will decrease.

Figure 4.3: This Figure shows the dependency of the Power of the laser
emission on the number of atoms and the pumping rate. The close-up of
the figure shows the threshold from which the laser starts the emission. Here
we considered a normalization term of the form Pc = ℏωaγ(1D).

Finally, we present Figure 4.5. This figure shows the dependency of the Power as a function
of the number of atoms and the pumping rate simultaneously. At the bottom of the figure,
we can observe the threshold associated with the condition w > γ. At the top left side of the
figure, we can observe that when the number of atom increase, the pumping rate necessary to
satisfy the threshold condition also increases. The top right side illustrates that the emission
intensity will increase if we increase the pumping rate or the number of atoms.
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Figure 4.4: This Figure shows the dependency of the Power of the emission
spectrum on the Numer of atoms of the system. The different curves repre-
sent different values of the rate of emission to the atoms in the waveguide,
γ(1D). Where the normalization term Pc = ℏωaγ(1D). The vertical lines show
the number of atoms necessary to satisfy the threshold condition.
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Figure 4.5: This Figure shows the dependency of the Power of the laser
emission on the number of atoms and the pumping rate. The regions of the
figure colored blue imply that the threshold condition is not satisfied, and
there is no emission of the laser.Here we considered a normalization term
of the form Pc = ℏωaγ(1D).

54



Chapter 5

Waveguide Phase Equation Method
for the Linewidth

In the previous chapter, we presented a mechanism to obtain the linewidth based on the
definition of the electric field operator as an amplitude determined by the mean steady-
state solution of the Heisenberg-Langevin equation on the mean-field approximation and a
fluctuating term that was ignored. In this chapter, we will present a different method to
obtain the linewidth of the laser emission, taking into account the effects of fluctuations.

To this aim, we will study the first-order coherence function:

g(1)(τ) = ⟨E−(t)E+(t + τ)⟩
⟨E−(t)E+(t)⟩ =

∫
dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k)
〈
ei(ϕk(t)−ϕk′ (t+τ))

〉
∫

dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k) ⟨ei(ϕk(t)−ϕk′ (t))⟩

(5.1)

Here the field is determined by an amplitude a0(ωk), which is determined by the stationary
solution of the bosonic operator equation obtained in the previous chapter, and a phase which
is determined by the fluctuating terms.

Because the fluctuating terms are gaussian, the exponential of the last expression satisfies
the relation:

〈
ei[ϕk(t)−ϕk′ (0)]

〉
= e− 1

2⟨(ϕk(t)−ϕk′ (0))2⟩ (5.2)

Then the coherence function takes the form:

g(1)(τ) =
∫

dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k)e− 1

2⟨(ϕk(τ)−ϕk′ (0))2⟩∫
dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k)e− 1

2 ⟨(ϕk(0)−ϕk′ (0))2⟩
(5.3)

In order to obtain the first-order coherence function, in section 5.1, we will derive an
expression for the evolution of the phase term. Based on this equation of motion, we will get
the form of the argument of the exponential in the equation (coherence).

Solving the phase equation of motion of the phase, we will obtain the contribution of
fluctuations of each mode of the electric field. In particular, we will study the effects of these
contributions in different regimes of coupling.

In section 5.3, we will obtain the expression of the first-order coherence function based
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on the integration of the contribution of all waveguide modes. Finally, in section 5.4, we
will present the numerical results of the spectrum obtained as the Fourier Transform of the
coherence function.

5.1. Waveguide Phase Equation
In this section, we will assume that the solution of the bosonic operator of the waveguide

modes takes the form:

a(ωk) = ⟨a(ωk)⟩ss eiϕk(t) = a0(ωk)eiϕk (5.4)

Where a0(ωk) is the steady-state solution of the mean-field equation of the bosonic operator
and ϕk is defined as a phase term. Then, the electric field is defined as:

E−(t) =
∫

dωk

√
ℏωk

4πϵ0cA
a0(ωk)eiϕk(t) =

∫
dωk

g(ωk)
D

a0(ωk)eiϕk(t) (5.5)

This section aims to derive the evolution of the phase term to obtain the argument of the
exponential in the first-order coherence function.

g(1)(τ) =
∫

dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k)
〈
ei(ϕk(t)−ϕk′ (t+τ))

〉
∫

dωk

∫
dω′

kg(ωk)g∗(ω′
k)a†

0(ωk)a0(ω′
k) ⟨ei(ϕk(t)−ϕk′ (t))⟩

(5.6)

To this aim, we first take the equation of motion of the bosonic operator and replace the
ansatz (5.4). Then, we will study the imaginary part. Finally, we will obtain the coherence
function based on the two times correlations functions of the fluctuations operators.

5.1.1. Derivation of the Phase Equation

This section generalizes the procedure developed in reference Minghui [27] presented in
the section 1.4 to the case of the continuous multimodal model developed in chapter 2. The
main idea is to obtain the equation of the evolution of the phase.

To this aim, first, we will consider the equation of motion of the bosonic operator in the
rotating frame derived in chapter 3.

ȧ(ωk) = Fκ − ig∗(ω)NS− − 1
2 [κ + 2i(ωk − ω)] a(ω) (5.7)

Derivating the last equation
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ä(ωk) = Ḟκ − ig∗(ωk)NF(−) + 1
2 [Γ + 2i(ωA − ω)] Fκ

−1
2 [Γ + 2i(ωA − ω)] ȧ(ωk) − 1

2[κ + 2i(ωk − ω)]ȧ(ωk)

−1
4 [Γ + 2i(ωA − ω)] [κ + 2i(ωk − ω)]a(ωk) + g∗(ωk)N

∫
dω′

kg(ω′
k)Sza(ω′

k)

(5.8)

Where Sz is the solution of the Heisenberg-Langevin equation of the inversion

Sz =
∫

dt′
∫

dω′′
keΓ(t−t′)

(
Γ + F(z) − 2

N

[
d

dt
(a†(ω′′

k)a(ω′′
k)) + κa†(ω′′

k)a(ω′′
k) − a†(ω′′

k)Fκ − F †
κa(ω′′

k)
])

(5.9)

Now, we will define a noise operator of the form F(ωk) = Ḟκ−ig∗(ωk)NF(−)+1
2 [Γ + 2i(ωA − ω)] Fκ.

If we replace this noise operator and the expression of Sz of the equation in the equation 5.8:

ä(ωk) = F(ωk) − 1
2 [Γ + 2i(ωA − ω)] ȧ(ωk) − 1

2[κ + 2i(ωk − ω)]ȧ(ωk)

−1
4 [Γ + 2i(ωA − ω)] [κ + 2i(ωk − ω)]a(ωk)

+
∫

dω′
k

∫
dt′
∫

dω′′
keΓ(t−t′)g∗(ωk)g(ω′

k)N(
Γ + F(z) − 2

N

[
d

dt
(a†(ω′′

k)a(ω′′
k)) + κa†(ω′′

k)a(ω′′
k) − a†(ω′′

k)Fκ − F †
κa(ω′′

k)
])

a(ω′
k)

(5.10)

From this point, we will study the resonance case ωA = ω, so the rotating frame moves in
the atomic transition frequency.

ä(ωk) = F(ωk) − 1
2[κ + Γ + 2i(ωk − ωA)]ȧ(ωk) − Γ

4 [κ + 2i(ωk − ωA)]a(ωk)

+g∗(ωk)N
∫

dω′
kg(ω′

k)a(ω′
k)
∫

dt′eΓ(t−t′)(
Γ + F(z) − 2

N

∫
dω′′

k

[
d

dt
(a†(ω′′

k)a(ω′′
k)) + κa†(ω′′

k)a(ω′′
k) − a†(ω′′

k)Fκ − F †
κa(ω′′

k)
])

(5.11)

As was mentioned, we will assume an ansatz of the form (5.4):

a(ωk) = ⟨a(ωk)⟩0 eiϕk(t) (5.12)

When we replace this ansatz in the equation (5.11):
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[
−ϕ̇2

k + iϕ̈k

]
a0(ωk)eiϕk(t) =

F(ωk) − 1
2[κ + Γ + 2i(ωk − ωA)]

(
iϕ̇k(t)a0(ωk)eiϕk

)
− Γ

4 [κ + 2i(ωk − ωA)]a0(ωk)eiϕk

+2g∗(ωk)N
∫

dω′
kg(ω′

k)a0(ω′
k)eiϕk′

∫
dt′eΓ(t−t′)(

Γ + F(z) − 2
N

∫
dω′′

k

[
d

dt
|a0(ω′′

k)|2 + κ|a(ω′′
k)|2 − a∗

0(ω′′
k)e−iϕk′′ Fκ − F †

κa0(ω′′
k)eiϕk′′

])
(5.13)

We will study the imaginary part:

iϕ̈ka0(ωk)eiϕk(t) =

Im[F(ωk)] − 1
2[κ + Γ + 2i(ωk − ωA)]

(
ϕ̇k(t)a0(ωk)eiϕk

)
− Im[Γ4 [κ + 2i(ωk − ωA)]a0(ωk)eiϕk ]

+Im[2g∗(ωk)N
∫

dω′
kg(ω′

k)a0(ω′
k)eiϕk′

∫
dt′eΓ(t−t′)(Γ + F(z))

−Im[2g∗(ωk)N
∫

dω′
kg(ω′

k)a0(ω′
k)eiϕk′

∫
dt′eΓ(t−t′)

( 2
N

∫
dω′′

k

[
a∗

0(ω′′
k)e−iϕk′′ Fκ + F †

κa0(ω′′
k)eiϕk′′

])
−Im[2g∗(ωk)N

∫
dω′

kg(ω′
k)a0(ω′

k)eiϕk′
∫

dt′eΓ(t−t′)
( 2

N

∫
dω′′

k

[
κ|a(ω′′

k)|2
])

(5.14)

In the overdamped regime:

1
2[κ + Γ + 2i(ωk − ωA)]

(
ϕ̇k(t)a0(ωk)eiϕk

)
=

Im[F(ωk)] − Im[Γ4 [κ + 2i(ωk − ωA)]a0(ωk)eiϕk ]

+Im[2g∗(ωk)N
∫

dω′
kg(ω′

k)a0(ω′
k)eiϕk′

∫
dt′eΓ(t−t′)(Γ + F(z))

−Im[2g∗(ωk)N
∫

dω′
kg(ω′

k)a0(ω′
k)eiϕk′

∫
dt′eΓ(t−t′)

( 2
N

∫
dω′′

k

[
a∗

0(ω′′
k)e−iϕk′′ Fκ + F †

κa0(ω′′
k)eiϕk′′

])
−Im[2g∗(ωk)N

∫
dω′

kg(ω′
k)a0(ω′

k)eiϕk′
∫

dt′eΓ(t−t′)
( 2

N

∫
dω′′

k

[
κ|a(ω′′

k)|2
])

(5.15)

We will drop the real terms and integrate the last relation:

ϕk(t) − ϕk(0) = 2
a0(ωk)(Γ + κ)

∫ t

0
Im[ ˜F(ωk)] −

∫ t

0

Γ
Γ + κ

(ωk − ωA) (5.16)

Then, the evolution of the phase is determined by:
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ϕk(t) = 2
a0(ωk)(Γ + κ)

∫ t

0
Im[ ˜F(ωk)] −

∫ t

0

Γ
Γ + κ

(ωk − ωA) + ϕk(0) (5.17)

5.2. Fluctuating terms of the Phase
In the previous section, we obtained an expression for the phase of the bosonic operator,

which is determined by fluctuating terms. In order to obtain the exponential term in the
coherence equation (5.6), we will use the relation:

〈
ei[ϕk(t)−ϕk′ (0)]

〉
= e− 1

2⟨(ϕk(t)−ϕk′ (0))2⟩ (5.18)

This expression is a generalization of the unimodal relation presented in section 1.4.3 to
the multimodal case. (The derivation of this relation is presented in Appendix E.1). In other
words, equation (5.18) represents the contribution to the linewidth of the phase fluctuations
of each mode of the electromagnetic field in the waveguide, in analogy to the unimodal case
studied by Minghui [27].

In this section, we will calculate the argument of the RHS of the equation (5.18) by repla-
cing the solution of the phase (5.17). Then we will determine the noise operators’ correlations
contributing to the phase correlations.

5.2.1. Phase Correlations
Studying the argument of the exponential in the RHS of equation (5.18), we get:

〈
(ϕk(t) − ϕk′(0))2

〉
=

〈
(ϕk(t) − ϕk′(0))†(ϕk(t) − ϕk′(0))

〉
=

〈
(ϕk(t)† − ϕk′(0)†)(ϕk(t) − ϕk′(0))

〉
=

〈
ϕ†

k(t)ϕk(t)
〉

−
〈
ϕ†

k(t)ϕk′(0)
〉

−
〈
ϕ†

k′(0)ϕk(t)
〉

+
〈
ϕ†

k′(0)ϕk′(0)
〉

(5.19)

Replacing the solution obtained in the last section for the phase evolution, equation (5.17),
in the last expression(See Appendix E.1):

〈
(ϕk(t) − ϕk′(0))2

〉
= 1

|a0(ωk)|2(Γ + κ)2

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
+
∫

dt′
∫

dt′′
〈
F(t′)F †(t′′)

〉
+ Γ2

(Γ + κ)2 (ωk − ωA)2t2,

(5.20)

where we have assumed that
〈
ϕ†

k(0)ϕk′(0)
〉

=
〈
ϕ†

k′(0)ϕk(0)
〉

= 0 and that
〈
ϕ†

k′(0)ϕk′(0)
〉

+〈
ϕ†

k(0)ϕk(0)
〉

= 2
〈
ϕ†

k(0)ϕk(0)
〉
.

Considering the definition of the fluctuation operator in chapter 3, we could derive the
correlation presented in the first term of the equation (this derivation is presented in Appendix
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E):

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
+
∫

dt′
∫

dt′′
〈
F(t′)F †(t′′)

〉
= |g(ωk)|2N (γ + w) t + Γ2

4 π|ζ(ωk, ωk)|2t

= |g(ωk)|2NΓt + Γ2κ(ωk)
4ϑ

t

(5.21)

Where we have considered the definition κ(ωk) ≡ π|ζ(ωk, ωk)|2ϑ, with ϑ a dimensionaliza-
tion term.

Finally, we obtain an expression for the argument of the exponential in the coherence
function:

〈
(ϕk(t) − ϕk′(0))2

〉
= 1

|a0(ωk)|2(Γ + κ)2

(
|g(ωk)|2NΓ + Γ2κ(ωk)

4ϑ

)
t

+ Γ2

(Γ + κ)2 (ωk − ωA)2t2

(5.22)

Defining the coefficients η2
k and ∆νk as:

ηk = Γ
(Γ + κ)(ωk − ωA) (5.23)

∆νk = 1
|a0(ωk)|2(Γ + κ)2

(
|g(ωk)|2NΓ + Γ2κ(ωk)

4ϑ

)
(5.24)

Where we had used de steady state solution of the photon number derived in the chapter
4, |a0(ωk)|2 = 4d2

0N2|g(ωk)|2
κ(ωk)2+4(ωk−ωA)2 (G−1

2G2 ) and defined the generalized cooperativity term G(ωk) =
4|g(ωk)|2Nϑ

Γκ(ωk) d0.
The expression (5.22) could be rewritten as:

〈
(ϕk(t) − ϕk′(0))2

〉
= ∆νkt + η2

kt2

(5.25)

Here we recognize that the first term, which has a linear dependency on time, could be
understood as an analogous term of the unimodal case presented in equation (1.127). Ne-
vertheless, the generalization to the multimodal case presents a new term with quadratic time
dependence. This term is not uncommon, since it also appears when there is inhomogeneous
broadening, such as Doppler broadening.
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5.3. Coherence Function
In this section, we will present the coherence function of our model for a waveguide QED

system laser in the case where fluctuation effects are considered. This coherence function
is the sum of the fluctuation of the phase of each field mode. The effects of those phase
fluctuations will be described through the correlation term calculated in the last section. At
the end of this section, we will obtain a coherence function with a form of a Bessel Function.

5.3.1. Derivation of the Coherence Function

In order to get the coherence function of the waveguide laser emission, we will use the
definition:

g(1)(τ) =
∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k)e− 1
2⟨(ϕk(τ)−ϕk′ (0))2⟩∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k)e− 1
2 ⟨(ϕk(0)−ϕk′ (0))2⟩

(5.26)

Here a0(ωk) =
√

4d2
0N2g(ωk)|2

κ(ωk)2+4(ωk−ωA)2

√(
G−1
2G2

)
is the steady state solution of the bosonic ope-

rator equation derived in chapter 4. The exponential term of equation (5.26) considers the
fluctuation effects. As was shown in the last section, the correlations of the phases are related
to the noise operator correlation. Those correlations could be written as the relation (5.25).
If we replace a0(ωk) and equation (5.25) in the equation (5.26), we get:

g(1)(τ) =

∫
dωk

√
4d2

0N2|g(ωk)|2
κ(ωk)2+4(ωk−ωA)2

√(
G−1
2G2

)
e− 1

2 (∆νkt+η2
kt2)

∫
dωk

√
4d2

0N2|g(ωk)|2
κ(ωk)2+4(ωk−ωA)2

√(
G−1
2G2

) (5.27)

If we ignore the normalization term and the term associated with the initial condition of
the phase, the coherence function could be written as:

g(1)(τ) ∝
∫

dωk

√√√√ |g(ωk)|2
κ(ωk)2 + 4(ωk − ωA)2 e− 1

2 (∆νkt+η2
kt2) (5.28)

The integrand of equation (5.28) has the form of an amplitude and an exponential term.
The amplitude is a square root of a Lorentzian distribution. This amplitude could be unders-
tood as a weight where only the values near from resonance are significant. This implies that
we could approximate the values of κ(ωk) and |g(ωk)|2 by constants evaluated in the resonant
frequency ωA. Then |g(ωk)|2 ≈ 2π|g(ωA)|2 ≡ γ(1D) and κ(ωk) ≈ κ(ωA) ≡ κ. The amplitude
term takes the form:

g(1)(τ) ∝
∫

dωk

√√√√ γ(1D)

κ2 + 4(ωk − ωA)2 e− 1
2 (∆νkt+η2

kt2) (5.29)

This approximation is not only valid for the amplitude, but the terms of the phase are
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also affected, then ∆νk takes the form:

∆νk = 1
|a0(ωk)|2(Γ + κ)2

(
|g(ωk)|2NΓ + Γ2κ(ωk)

4ϑ

)

=
(

2G2

G − 1

)(
κ(ωk)2 + 4(ωk − ωA)2

4d2
0N

2|g(ωk)|2

)
Γ

(Γ + κ)2

[
|g(ωk)|2N + Γκ(ωk)

4ϑ

]

≈
(

4γ(1D)Nϑ + Γκ

2ϑ(2Nd0γ(1D) − Γ)

)[
κ2 + 4(ωk − ωA)2

(Γ + κ)2

]
γ(1D) (5.30)

Where we used de steady state solution of the photon number derived in the chapter 4,
|a0(ωk)|2 = 4d2

0N2|g(ωk)|2
κ(ωk)2+4(ωk−ωA)2 (G−1

2G2 ) and the approximation |g(ωk)|2 ≈ 2π|g(ωA)|2 ≡ γ(1D) and
κ(ωk) ≈ κ(ωA) ≡ κ.

If we replace equation (5.30) in equation (5.29), the coherence function takes the form:

g(1)(τ) ∝
∫

dωk

√√√√ γ(1D)

κ2 + 4(ωk − ωA)2 e
−
(

4γ(1D)Nϑ+Γκ

2ϑ(2Nd0γ(1D)−Γ)

)[
κ2+4(ωk−ωA)2

(Γ+κ)2

]
γ(1D)t− 1

2
Γ2

(Γ+κ)2 (ωk−ωA)2t2

(5.31)

Equation (5.31) represents the contribution of each mode which determines the coherence
function. The integral over all the modes frequencies could be written in a compact form by
defining ∆ = (ωk − ωA) and λ(t) = 4γ(1D)d0Nϑ+Γκ

ϑ(2d0Nγ(1D)−Γ)
γ(1D)t
(Γ+κ)2 + Γ2t2

2(Γ+κ)2 .

∫
dωk

√
1

κ2 + 4(ωk − ωA)2 e
−
[(

4γ(1D)Nϑ+Γκ

ϑ(2Nd0γ(1D)−Γ)

)
γ(1D)t

(Γ+κ)2 − Γ2
2(Γ+κ)2 t2

]
(ωk−ωA)2

=
∫

d∆ e−λ(t)∆2

√
κ2 + 4∆2

(5.32)

The solution of the RHS of equation (5.23) is a modified Bessel Function, defined as
Kα(x) =

∫∞
0 e−xcosh(z)cosh(αz)dz

∫
d∆ e−λ(t)∆2

√
κ2 + 4∆2

= 1
2e

λ(t)κ2
2 K0(

λ(t)κ2

2 ) (5.33)

Finally, we obtain an expression for the coherence function of the form:

g(1)(τ) ∝ e

(
κ2Γ2t2

4(Γ+κ)2

)
K0

(
κ2

2

[
4γ(1D)d0Nϑ + Γκ

ϑ(2d0Nγ(1D) − Γ)
γ(1D)t

(Γ + κ)2 + Γ2t2

2(Γ + κ)2

])
(5.34)

5.4. Spectrum of the Phase Equation Method
In this section, we will present the emission spectrum of the waveguide QED system

laser, which considers the effects of the fluctuations. First, we will apply the Kitchine-Wiener
Theorem by taking the Fourier transform of the coherence function presented in the previous
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section. In section 5.3.2, numerical results will be presented, where the spectrum obtained
is compared with the standard Lorentzian distribution. In section 5.3.3, we will study the
linewidth of the spectrum and its dependency on the system variables.

5.4.1. Wiener-Khintchine Theorem
In section 4.3.1, we applied the Wiener-Khintchine Theorem for the two times correlation

function of the field, which was considered in a mean-field approximation. In this section,
we will use the same formalism by taking the Fourier transform to the coherence function
derived in the previous section.

The definition of the Wiener-Khintchine Theorem states the relation:

S(ω) =
∫

dtg(1)(t)eiωt (5.35)

If we define α = κ2

2

(
(4γ(1D)d0Nϑ+Γκ)
ϑ(2γ(1D)d0N−Γ)

)
γ(1D)

(Γ+κ)2 and β = κ2Γ2

4(Γ+κ)2 , we could obtain a simpler
expression for the coherence function:

g(1)(τ) ∝ eβt2
K0[αt + βt2] = eβt2

∫ ∞

0
e−(αt+βt2)cosh(z)dz (5.36)

where we used the definition of the modified Bessel function, K0(x) =
∫∞

0 e−xcosh(z)dz.
Now, when we replace the equation (5.36) in the definition of the Wiener-Khintchine

Theorem (5.35):

S(ω) =
∫

dt
[
eβt2

∫ ∞

0
e−(αt+βt2)cosh(z)dz

]
eiωt (5.37)

5.4.2. Spectrum and Power in the Phase Equation Method
In the previous section, we derived an expression for the spectrum of emission of the wave-

guide QED system laser, which considers the effect of the interaction of the system with the
environment through the study of the phase fluctuation of each mode of the electromagnetic
field inside the waveguide. In this section, we will present some numerical results to solve the
integral of the equation (5.37).

The idea of this section is to study the behavior of the emission spectrum in two regimes
of parameters. The first regime, which we will call the "generalized good cavity regime",
considers that the decay rate of the field inside the waveguide is narrow compared with the
decoherence term Γ = w+γ. The second regime studies the other range of parameters, so the
field decay rate, which models the effect of the waveguide atoms, is larger compared with the
decoherence of the atoms of the system. This regime will be called the "generalized bad cavity
regime."Those names were chosen not only because they are used in the standard cavity case
but instead because our model could be easily extended to the case of a multimodal cavity
if we consider the discrete model presented in chapter 2.

5.4.2.1. Generalized Good Cavity Regime

In this subsection, we will study the region of the parameter where the decay rate of the
electromagnetic field of the waveguide is smaller than the decay process associated with the
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spontaneous emission of the atoms and the pumping mechanism, κ << γ + w = Γ. This
means that we will consider the approximation where the β of equation (5.36) takes the
form:

β = κ2Γ2

4(Γ + κ)2 ≈ κ2

4 . (5.38)

When we replace this expression in the spectrum equation (5.37) and use numerical inte-
gration methods to calculate it, we obtain a spectrum shape described in the figure 5.1. This
figure presents three curves, each representing the spectrum for different values of the field
decay term κ. It is important to note that the spectrum linewidth maintains unchanged when
the value of κ decreases. The green curve shows that there is a critical value from which the
shape of the curve starts to change its linewidth.

Figure 5.1: Generalized Good Cavity Regime. This figure shows three
Spectral curves, each with a different value of κ. The blue and the orange
curves have the same linewidth, while the green curve represents the critical
point from which the linewidth starts to change with κ. Here we considered
κ0 = ωA × 10−4 and ωA = 109.

Figure 5.2 shows that if the value of κ is less than the critical value of the showed in figure
5.1, two new peaks emerge in the spectrum. While the central peak decreases its linewidth
by decreasing the value of κ, the lateral peaks increase their amplitudes.
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Figure 5.2: Generalized Good Cavity Regime. This figure shows the
spectrum of emission below the critical point shown in figure 5.2. The orange
curve presents three peaks, and the central peak has a narrower linewidth
than the behavior above the critical point.

Figure 5.3: Generalized Good Cavity Regime. This figure shows the
Power of the spectrum as a function of the atomic decay term Γ = γ+w. The
two vertical lines are in Γ/ωa = 0.000015 and Γ/ωa = 0.000063. The bottom
horizontal line shows the local maximum of the left side of the graphic, and
the top horizontal line shows the asymptotic behavior of the curve on the
right side. Here we used Pc = ℏωaγ(1D).

We could find different behaviors if we study the Power of the spectrum in the generalized
good cavity regime as a function of the atom decay Γ. As we can observe on the left side of
Figure 5.3, the Power shows a negative concavity behavior with a local maximum. Then, after
some critical point, the Power increases until a maximum value and decreases asymptotically
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to a particular value.

Figure 5.4: Generalized Good Cavity Regime. This figure shows the
Power of the spectrum as a function of the number of atoms in the genera-
lized good cavity regime. A curve of orange stars represents the numerical
results, and the blue line represents a linear fitting curve. Here we used
Pc = ℏωaγ(1D).

The dependency of the Power of the emission spectrum on the number of atoms is shown
in figure 5.4. Here, we obtained that the Power increase linearly with the number of atoms
in the generalized good cavity regime.

5.4.2.2. Generalized Bad Cavity Regime

This subsection will consider the regime when the decay processes associated with the field
are bigger than the processes associated with the decay of the atom, κ >> Γ. This regime
implies that the terms α and β of the equation (5.37) could be approximated to:

α ≈ γ(1D)

2

(
(4γ(1D)d0Nϑ + Γκ)
ϑ(2γ(1D)d0N − Γ)

)
(5.39)

β ≈ Γ2

4 . (5.40)

Here we will study the dependency of the spectrum and the Power of the spectrum of
the emission as a function of the system decay rates. The numerical results show that the
spectrum of the emission has a Lorentzian shape.

Figure 5.5 shows the normalized emission spectrum in the generalized bad cavity regime.
From this figure, we can deduce that the linewidth of the spectrum in this regime does not
depend on the field decay rate κ.
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Figure 5.5: Generalized Bad Cavity Regime. This Figure shows the
spectrum of emission of the laser in the generalized bad cavity regime. In
this figure, there are two overlapping curves with different values of the κ
parameter.

The Power of the spectrum as a function of the decay rate of the field is shown in figure
5.6. This figure shows that there is an inversed relation between the Power and κ.

Figure 5.6: Generalized Bad Cavity Regime. This Figure shows the
numerical results of the Power of the emission in the "generalized bad cavity
regime,represented by orange stars. In contrast, the continuous blue line
represents an inverse proportionality of the Power and the field decay rate,
which fits the numerical results. Here we used Pc = ℏωaγ(1D)N , with N =
106 the number of atoms.
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Conclusions

In this thesis, we developed a fully quantum mechanical model for a laser implemented
in a waveguide QED system. This quantum mechanical treatment was motivated by the
potential applications of the study of the Spectral linewidth of a laser, which could not be
derived from a semi-classical description. Although a laser could be considered a macroscopic
system because of the number of components, this model will describe the system starting
from the microscopic interactions between its elements. Here we have used an open quantum
system approach, where we considered a system of interest consisting of the atoms that act
as the active medium and the electromagnetic field modes inside the waveguide. The system
of interest interacts with a reservoir. This reservoir consists of a pump mechanism, which
guarantees the population inversion of the atoms and electromagnetic field modes outside
the waveguide.

In chapter 1, we presented the background knowledge necessary to understand the beha-
vior of the laser. First, we presented quantum optical tools which describe the interaction
between matter and the quantized electromagnetic field. We introduced the two quantum
states of light, in particular, the coherent state used to describe the laser emission. Here we
presented the extension from the unimodal cavity case to the continuous multimodal case
of the waveguide field. Then, we introduced the Heisenberg-Langevin formalism, which was
the methodology used to describe the dynamics of the system of interest, which considers
the effect of the interaction with the reservoir. The motivation of this work is to extend the
case of a laser developed in the standard platform of cavity QED to this new platform, the
waveguide QED system. To this aim, we considered some tools developed in the cavity QED
system case. In particular, the study of the linewidth in the case of the unimodal cavity
QED system developed by Minghui [27]. In that model, the effects of the interaction with
the reservoir are considered by studying the phase fluctuations of the cavity mode. Here, we
extended this idea from the unimodal cavity mode to the multimodal case, so we developed
a theoretical tool to represent a multimodal cavity or, in the continuous case, a waveguide.

In chapter 2, we presented our model for the waveguide QED system. Here we used the
open quantum system approach to define a system of interest as the atoms plus the field
inside the waveguide. The reservoir considered the degree of freedom associated with the
electromagnetic field outside the waveguide and the pumping mechanism. This mechanism is
modeled by a collection of two-level systems that generate a negative temperature reservoir
necessary to obtain population inversion. One important aspect to highlight of this chapter
is the definition of the adimensional effective coupling term ζ(ωα, ωβ), which could be un-
derstood as a transmission coefficient of the waveguide, and models the effective interaction,
mediated by the atoms of the waveguide, between the modes inside the waveguide and the
free electromagnetic field modes of the reservoir.

In chapter 3, we implemented the Heisenberg-Langevin formalism in order to obtain the
dynamic evolution of the system of interest. In particular, in the case of the waveguide
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electromagnetic field modes equations, where the ζ(ωα, ωβ) term couples the modes inside
and outside the waveguide, an effective mode-mode interaction could be created between two
waveguide modes, mediated by the reservoir. In this work, we assumed that those situations
could be ignored because the reservoir is markovian. For future works, the study of those
mode-mode effective interactions is proposed, particularly in the non-markovian description
of the reservoir.

In chapter 4, we studied the steady-state solution of the mean-field approximation of
the Heisenberg-Langevin equation of motion. Future works could consider the numerical
treatment of this set of equations, in particular, to simulate the multimodal cavity QED
system, where the discrete model presented in chapter 2 could be considered, and because
the number of degrees of freedom is less compared with the continuous case, the numerical
costs of implementation are reduced. Chapter 4 also studied the spectrum of emission of
the laser. To this, we defined a form of the electric field as an amplitude determined by the
steady-state solutions of the mean field equations of motion of the bosonic operators and a
fluctuating term. The analytical results for the spectrum of emission show that the linewidth
is determined by the term of decay of the field κ. The Power of the spectrum showed to
have a linear dependency on the number of atoms, with a slope determined by the γ(1D),
the spontaneous emission to the waveguide modes. It is important to highlight the presence
of the threshold, which defines the activation of the lasing behavior, where both conditions
2Nd0γ

(1D) > Γ and w > γ must be satisfied to generate the laser emission.
Finally, in chapter 5, we generalized the study developed in reference Minghui [27], from

the case of a unimodal cavity to the case of a waveguide. Here we have obtained the phase
equation of each mode inside the waveguide and then studied the diffusion of this phase
through its two times correlations. Then, we obtained a form for the coherence function
of the electric field emitted by the laser as the sum of the contributions of each mode.
This coherence function has the form of a generalized Bessel function. For future works, we
propose to find a new way to treat this expression and its Fourier transform, analytically or
numerically.

The numerical results of chapter 5 were studied in two regimens of parameters, which we
called the "generalized good/bad cavity regime.Ïn the generalized good cavity regime, the
spectral shape does not depend on the κ term until a critical point from which the spectrum
presents two new peaks. The central peak, which is in resonance with the atomic frequency,
has a narrower linewidth than the spectrum above the critical point. For future works, we
propose to understand if this configuration of a narrower central linewidth could be helpful
to technological applications.

The Power of the emission showed a linear dependency on the number of atoms. In the
generalized bad cavity regime, the decay of the field does not influence the shape of the
spectrum, but the Power has an inverse proportionality relation with κ.

We could find a relation between the results obtained in the generalized good cavity regime
with the results shown in chapter 4, for the method without fluctuations. However, the results
of the generalized bad cavity regime showed a new behavior that is only considered in the
method with fluctuation.

One open question of this work is how to interpret the total field spectrum as the sum
of each mode singular spectrum, each with its characteristic linewidth. What does each
mode spectrum represent? What does it mean to sum over all these modes to have the total
spectrum?
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Annex A

Derivation of the Phase Fluctuations

〈
(ϕ̂k(t) − ϕk(0))2

〉
=
〈(

∆kt −
∫ t

0
Im

[
i
g∗

kN

ako

F̃
]

dt′
)(

∆kt −
∫ t

0
Im

[
i
g∗

kN

ako

F̃
]

dt′′
)〉

(A.1)

〈
(ϕ̂k(t) − ϕk(0))2

〉
=
〈
∆2

kt2
〉

+
〈(∫ t

0
Im

[
i
g∗

kN

ako

F̃
]

dt′
)(∫ t

0
Im

[
i
g∗

kN

ako

F̃
]

dt′′
)〉

(A.2)

〈
(ϕ̂k(t) − ϕk(0))2

〉
=
〈
∆2

kt2
〉

+ 1
4

∫
dt′
∫

dt′′
(〈[

i
g∗

kN

ako

F̃
] [

i
g∗

kN

ako

F̃
]†〉

+
〈[

i
g∗

kN

ako

F̃
]† [

i
g∗

kN

ako

F̃
]〉)

(A.3)

〈
(ϕ̂k(t) − ϕk(0))2

〉
=
〈
∆2

kt2
〉

+ 1
2

|gk|2N2

|ako|2
∫

dt′
∫

dt′′
(〈

F̃ −F̃ +
〉

+
〈
F̃ +F̃ −

〉)
(A.4)

〈
(ϕ̂k(t) − ϕk(0))2

〉
=
〈
∆2

kt2
〉

+ 1
2

|gk|2N2

|ako|2
∫

dt′
∫

dt′′
(

γ

2 + w

2

)
δ(t′ − t′′)

(A.5)

〈
(ϕ̂k(t) − ϕk(0))2

〉
= ∆2

kt2 + 1
2

|gk|2N2

|ako|2
(

γ

2 + w

2

)
t

(A.6)
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Annex B

Equations of motion of Atomics
Opertors

B.1. Equation of Motion of Coherence Operator
This results are shown in sections F.2.2.1 and F.2.2.2 for both reservoir

NṠ− = −i

ℏ
∑

j

[
σ−

j , HI

]
= −i

ℏ
[
NS−, HR

I + HP
I + H1D

I

]
(B.1)

Ṡ−
(1D) = i

N

∑
j,k

gkσz
j ake−i(ωk−ωA)t (B.2)

Ṡ−
(R) = F̃R

(−) − 1
2γ(R)S− + iΩ(R)

(−)S
− (B.3)

Ṡ−
(P) = F̃P

(−) − 1
2γ(P)S− + iΩ(P)

(−)S
− (B.4)

Ṡ− = i
∑

k

gkSzake−i(ωk−ωA)t + F̃(−) − 1
2
(
γ(R) + γ(P)

)
S− + iΩ(−)S

− (B.5)

Where Ω(−) = Ω(P)
(−) + Ω(R)

(−), is the shift generated by the reservoirs R and P.

B.2. Equation of Motion of Inversion Operator
This results are shown in sections F.2.1.1 and F.2.1.2 for both reservoir

NṠz = −i

ℏ
∑

j

[
σz

j , HI

]
= −i

ℏ
[
NSz, HR

I + HP
I + H1D

I

]
(B.6)

Ṡz
(1D) = 2i

N

∑
j,k

(
g∗

ka†
kσ−

j ei(ωk−ωA)t − gkσ+
j ake−i(ωk−ωA)t

)
(B.7)
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Ṡz
(R) = −i

ℏ
[
Sz, HR

I

]
= F̃R − γ(R) [Sz + 1] + iΩ(R) [Sz + 1]

(B.8)

Ṡz
(P) = −i

ℏ
[
Sz, HP

I

]
= F̃P − γ(P) [Sz − 1] + iΩ(P) [Sz − 1]

(B.9)

Ṡz = 2i

N

∑
j,k

(
g∗

ka†
kσ−

j ei(ωk−ωA)t − gkσ+
j ake−i(ωk−ωA)t

)
− γ(R) [Sz + 1] + iΩ(R) [Sz + 1]

+F̃R + F̃P − γ(P) [Sz − 1] + iΩ(P) [Sz − 1]
(B.10)

Ṡz = 2i
∑

k

(
g∗

ka†
kS−ei(ωk−ωA)t − gkS+ake−i(ωk−ωA)t

)
−
(
γ(R) + γ(P)

)
Sz + i

(
Ω(R) + Ω(P)

)
Sz

−
(
γ(R) − γ(P)

)
+ i

(
Ω(R) − Ω(P)

)
+ F̃z

(B.11)

Ṡz = 2i
∑

k

(
g∗

ka†
kS−ei(ωk−ωA)t − gkS+ake−i(ωk−ωA)t

)
−
(
γ(R) + γ(P)

)
[Sz − d0]

+iΩ [Sz − ∆0] + F̃z

(B.12)

Where d0 = γ(R)−γ(P)

γ(R)+γ(P) , ∆0 = Ω(R)−Ω(P)

Ω and F̃z = F̃R + F̃P .
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Annex C

Rotating frame variable change

From the equation of motion of the bosonic operator (??,??,C.3), and considering the
change of variables ãk = ake−i(ωk−ω)t and S̃− = S−e−i(ωa−ω)t:

˙̃ak = ȧke−i(ωk−ω)t − i(ωk − ω)ake−i(ωk−ω)t

=
(
−ig∗

kNS−ei(ωk−ωA)t
)

e−i(ωk−ω)t − i(ωk − ω)ake−i(ωk−ω)t

= −ig∗
kNS−e−i(ωA−ω)t − i(ωk − ω)ãk

= −ig∗
kNS̃− − i(ωk − ω)ãk

(C.1)

˙̃S− = Ṡ−e−i(ωA−ω)t − i(ωA − ω)S−e−i(ωA−ω)t

=
(

F̃(−) − 1
2(γR + γP)S− + i

∑
k

gkSzake−i(ωk−ωA)t
)

e−i(ωA−ω)t − i(ωA − ω)S−e−i(ωA−ω)t

= F̃(−)e
−i(ωA−ω)t − 1

2(γR + γP)S−e−i(ωA−ω)t + i
∑

k

(
gkSzake−i(ωk−ωA)t

)
e−i(ωA−ω)t

−i(ωA − ω)S−e−i(ωA−ω)t

= F̄(−) − 1
2(γR + γP)S̃− + i

∑
k

(
gkSzake−i(ωk−ωA)t

)
e−i(ωA−ω)t − i(ωA − ω)S̃−

= F̄(−) − 1
2 [γR + γP − 2i(ωA − ω)] S̃− + i

∑
k

(
gkSzake−i(ωk−ω)t

)
= F̄(−) − 1

2 [γR + γP − 2i(ωA − ω)] S̃− + i
∑

k

gkSzãk

(C.2)
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Ṡz = F̃(z) − (γR + γP)(Sz − d0) + 2i
∑

k

(
g∗

ka†
kS−ei(ωk−ωA)t − gkS+ake−i(ωk−ωA)t

)
= F̃(z) − (γR + γP)(Sz − d0)

+2i
∑

k

(
g∗

k(ã†
ke−i(ωk−ω)t)(S̃−ei(ωA−ω)t)ei(ωk−ωA)t − gk(S̃+e−i(ωA−ω)t)(akei(ωk−ω)t)e−i(ωk−ωA)t

)
= F̃(z) − (γR + γP)(Sz − d0) + 2i

∑
k

(
g∗

kã†
kS̃− − gkS̃+ãk

)
(C.3)
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Annex D

Schrödinger, Heisenberg and
Interaction Pictures

Considering an operator AS on the Schrödinger Picture, we could change the reference
frame of this operator througth a unitary transformation.

On the Heinsenberg Picture, the operator AS will have the form

AH = e
iHst
ℏ Ase

−iHst
ℏ (D.1)

On the Interaction Picture, the operator AS will have the form

AI = e
iH0t

ℏ Ase
−iH0t

ℏ (D.2)

On this section we will study the Hamiltonian in those different pictures.

D.1. Interaction Picture

HI =
∑

j

ℏωA

2 σj +
∫

dωkℏωka†(ωk)a(ωk)

∑
j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j ei(ωk−ωA)t + g(ωk)σ+
j a(ωk)e−i(ωk−ωA)t

)
(D.3)

D.2. Schrödinger Picture

HS =
∑

j

ℏωA

2 σj +
∫

dωkℏωka†(ωk)a(ωk) +
∑

j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j + g(ωk)σ+
j a(ωk)

)
(D.4)
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D.3. Heisenberg Picture

HH =
∑

j

ℏωA

2 σj +
∫

dωkℏωka†(ωk)a(ωk) +
∑

j

∫
dωkℏ

(
g∗(ωk)a†(ωk)σ−

j + g(ωk)σ+
j a(ωk)

)
(D.5)

Note that from the equation (D.1), we have that

HH = e
iHst
ℏ Hse

−iHst
ℏ (D.6)

But Hs commute with itself, so we get that HH = HS.

D.4. Electric Field
Now, we will study the Electric Field Operator on different Pictures. First, we will consider

the Interaction Picture

E+
I =

∫
dωk

√
ℏωk

4πϵ0cA
a(ωk)eiωkt (D.7)

To change the Picture to the Schrödinger Picture, we need to apply the transformation

As = e
−iH0t

ℏ AIe
iH0t

ℏ (D.8)

Then, in the case of the Electric Field Operator

E+
s = e

−iH0t

ℏ E+
I e

iH0t

ℏ

= E+
I + i(−t)

ℏ
[
H0, E+

I

]
+ i2(−t)2

2!ℏ2

[
H0,

[
H0, E+

I

]]
+ i3(−t)3

3!ℏ3

[
H0,

[
H0,

[
H0, E+

I

]]]
...

(D.9)

Tthe Electric Field operator on the Schrödinger Picture

E+
S =

∫
dωk

√
ℏωk

4πϵ0cA
a(ωk) (D.10)

Now, we want to obtain the expression of the Electric Field Operator in the Heisenberg
Picture. To do this, we will apply the unitary transformation to the Electric Field opertator
in the Schrödinger Picture.
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E+
H = e

iHSt

ℏ E+
S e

−iHSt

ℏ

= E+
I + it

ℏ
[
HS, E+

S

]
+ i2t2

2!ℏ2

[
HS,

[
HS, E+

S

]]
+ i3t3

3!ℏ3

[
HS,

[
HS,

[
HS, E+

S

]]]
...

(D.11)

Studying the commutator

[
HS, E+

S

]
=

[
ℏωA

2 NSz,
∫

dωk

√
ℏωk

4πϵ0cA
a(ωk)

]

+
[∫

dω′
kℏω′

ka†(ω′
k)a(ω′

k),
∫

dωk

√
ℏωk

4πϵ0cA
a(ωk)

]

+
[∫

dω′
kNℏ

(
g∗(ω′

k)a†(ω′
k)S− + g(ω′

k)S+a(ω′
k)
)

,
∫

dωk

√
ℏωk

4πϵ0cA
a(ωk)

]
(D.12)

[
HS, E+

S

]
=

∫
dω′

k

∫
dωk

√
ℏωk

4πϵ0cA
ℏω′

k

[
a†(ω′

k)a(ω′
k), a(ωk)

]
+
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
Nℏ

[(
g∗(ω′

k)a†(ω′
k)S− + g(ω′

k)S+a(ω′
k)
)

, a(ωk)
]

(D.13)

[
HS, E+

S

]
= −

∫
dω′

k

∫
dωk

√
ℏωk

4πϵ0cA
ℏω′

kδ(ωk − ω′
k)a(ωk) −

∫
dω′

k

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ω′

k)S−δ(ωk − ω′
k)

(D.14)

[
HS, E+

S

]
= −

∫
dωk

√
ℏωk

4πϵ0cA
ℏωka(ωk) −

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)S−

(D.15)

Now, we will study the second commutator term
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[
HS,

[
HS, E+

S

]]
=

[
ℏωA

2 NSz, −
∫

dωk

√
ℏωk

4πϵ0cA
ℏωka(ωk) −

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)S−

]

+
[∫

dω′
kℏω′

ka†(ω′
k)a(ω′

k), −
∫

dωk

√
ℏωk

4πϵ0cA
ℏωka(ωk) −

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)S−

]

+
[∫

dω′
kNℏ

(
g∗(ω′

k)a†(ω′
k)S− + g(ω′

k)S+a(ω′
k)
)

, −
∫

dωk

√
ℏωk

4πϵ0cA
ℏωka(ωk)

]

+
[∫

dω′
kNℏ

(
g∗(ω′

k)a†(ω′
k)S− + g(ω′

k)S+a(ω′
k)
)

, −
∫

dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)S−

]
(D.16)

[
HS,

[
HS, E+

S

]]
= −

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)ℏωA

2 N
[
Sz, S−

]
−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
ℏωkℏω′

k

[
a†(ω′

k)a(ω′
k), a(ωk)

]
−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
ℏωkNℏg∗(ω′

k)
[
a†(ω′

k)S−, a(ωk)
]

−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)Nℏg(ω′

k)
[
S+a(ω′

k), S−
]

(D.17)

[
HS,

[
HS, E+

S

]]
= −

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)ℏωA

2 N(−2S−)
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
ℏωkℏω′

kδ(ωk − ω′
k)a(ωk)

∫
dω′

k

∫
dωk

√
ℏωk

4πϵ0cA
ℏωkNℏg∗(ω′

k)δ(ωk − ω′
k)S−

−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
Nℏg∗(ωk)Nℏg(ω′

k)Sza(ω′
k)

(D.18)
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[
HS,

[
HS, E+

S

]]
=

∫
dωk

√
ℏωk

4πϵ0cA
N2ℏ2ωAg∗(ωk)S−

+
∫

dωk

√
ℏωk

4πϵ0cA
ℏ2ω2

ka(ωk)

+
∫

dωk

√
ℏωk

4πϵ0cA
ℏ2ωkNg∗(ωk)S−

−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
N2ℏ2g∗(ωk)g(ω′

k)Sza(ω′
k)

(D.19)

[
HS,

[
HS, E+

S

]]
=

∫
dωk

√
ℏωk

4πϵ0cA

(
N2ℏ2ωAg∗(ωk)S− + ℏ2ω2

ka(ωk) + ℏ2ωkNg∗(ωk)S−
)

−
∫

dω′
k

∫
dωk

√
ℏωk

4πϵ0cA
N2ℏ2g∗(ωk)g(ω′

k)Sza(ω′
k)

(D.20)
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Annex E

Noise Operator Two times Correlation

From the correlation function expression

g(1)(τ) = ⟨E−(t)E+(t + τ)⟩
⟨E−(t)E+(t)⟩ (E.1)

g(1)(τ) =
∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k)
〈
ei(ϕk(t)−ϕk′ (t+τ))

〉
∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k) ⟨ei(ϕk(t)−ϕk′ (t))⟩
(E.2)

g(1)(τ) =
∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k)e− 1
2⟨(ϕk(τ)−ϕk′ (0))2⟩∫

dωk

∫
dω′

ka†
0(ωk)a0(ω′

k)e− 1
2 ⟨(ϕk(0)−ϕk′ (0))2⟩

(E.3)

E.1. Gaussian Noise

〈
ei(ϕk(t)−ϕk(0))

〉
=

〈∑
n

in(ϕk(t) − ϕk(0))n

n!

〉

=
∑

n

in

n! ⟨(ϕk(t) − ϕk(0))n⟩

= 1 + i ⟨(ϕk(t) − ϕk(0))⟩ + (−1)
2

〈
(ϕk(t) − ϕk(0))2

〉
+ −i

3!
〈
(ϕk(t) − ϕk(0))3

〉
+ ...

= 1 + (−1)
2

〈
(ϕk(t) − ϕk(0))2

〉
...

=
∑

n

(−1)n(1
2)n

n!
〈
(ϕk(t) − ϕk(0))2n

〉
= e− 1

2⟨(ϕk(t)−ϕk(0))2⟩

(E.4)
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〈
ei(ϕk(t)−ϕk′ (0))

〉
=

〈∑
n

in(ϕk(t) − ϕk′(0))n

n!

〉

=
∑

n

in

n! ⟨(ϕk(t) − ϕk′(0))n⟩

= 1 + i ⟨(ϕk(t) − ϕk′(0))⟩ + (−1)
2

〈
(ϕk(t) − ϕk′(0))2

〉
(E.5)

Studying the second term of the RHS

⟨(ϕk(t) − ϕk′(0))⟩ = 0 (E.6)

The second term of the RHS

〈
(ϕk(t) − ϕk′(0))2

〉
=

〈
(ϕk(t) − ϕk′(0))†(ϕk(t) − ϕk′(0))

〉
=

〈
(ϕk(t)† − ϕk′(0)†)(ϕk(t) − ϕk′(0))

〉
=

〈
ϕ†

k(t)ϕk(t)
〉

−
〈
ϕ†

k(t)ϕk′(0)
〉

−
〈
ϕ†

k′(0)ϕk(t)
〉

+
〈
ϕ†

k′(0)ϕk′(0)
〉

(E.7)

Considering that

ϕk(t) − ϕk(0) = 2
a0(ωk)(Γ + κ)

∫
dt′Im [F(t)] −

∫
dt′ Γ

(Γ + κ)(ωk − ωA) (E.8)

Then

ϕk(t) = 2
a0(ωk)(Γ + κ)

∫
dt′Im [F(t)] −

∫
dt′ Γ

(Γ + κ)(ωk − ωA) + ϕk(0) (E.9)

The first term on the RHS of the equation (E.7)

〈
ϕ†

k(t)ϕk(t)
〉

= 4
|a0(ωk)|2(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F †(t′))
)† (∫

dt′′ 1
2(F(t′′) − F †(t′′))

)〉

+ 2
a0(ωk)(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F)†(t′)
)

ϕk(0)
〉

+ 2
a0(ωk)(Γ + κ)2

〈
ϕk(0)

(∫
dt′ 1

2(F(t′) − F)†(t′)
)〉

+
〈∫

dt′
∫

dt′′ Γ2

(Γ + κ)2 (ωk − ωA)2
〉

+
〈
ϕ†

k(0)ϕk(0)
〉

(E.10)

The second term
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〈
ϕ†

k(t)ϕk′(0)
〉

= 2
a∗

0(ωk)(Γ + κ)

〈∫
dt′ 1

2(F(t′) − F †(t′))ϕk′(0)
〉

−
∫

dt

(
Γ

Γ + κ

)
(ωk − ωA) ⟨ϕk(0)⟩ +

〈
ϕ†

k(0)ϕk′(0)
〉

= 2
a∗

0(ωk)(Γ + κ)

〈∫
dt′ 1

2(F(t′) − F †(t′))ϕk′(0)
〉

+
〈
ϕ†

k(0)ϕk′(0)
〉
(E.11)

〈
ϕ†

k′(0)ϕk(t)
〉

= 2
a0(ωk)(Γ + κ)

〈
ϕ†

k′(0)
∫

dt′ 1
2(F(t′) − F †(t′))

〉
+
〈
ϕ†

k′(0)ϕk(0)
〉
(E.12)

Replacing in the equation (E.7)

〈
(ϕk(t) − ϕk′(0))2

〉
=

〈
ϕ†

k(t)ϕk(t)
〉

−
〈
ϕ†

k(t)ϕk′(0)
〉

−
〈
ϕ†

k′(0)ϕk(t)
〉

+
〈
ϕ†

k′(0)ϕk′(0)
〉

(E.13)

〈
(ϕk(t) − ϕk′(0))2

〉
= 4

|a0(ωk)|2(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F †(t′))
)† (∫

dt′′ 1
2(F(t′′) − F †(t′′))

)〉

+ 2
a0(ωk)(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F)†(t′)
)

ϕk(0)
〉

+ 2
a0(ωk)(Γ + κ)2

〈
ϕk(0)

(∫
dt′ 1

2(F(t′) − F)†(t′)
)〉

+
〈∫

dt′
∫

dt′′ Γ2

(Γ + κ)2 (ωk − ωA)2
〉

+
〈
ϕ†

k(0)ϕk(0)
〉

− 2
a∗

0(ωk)(Γ + κ)

〈∫
dt′ 1

2(F(t′) − F †(t′))ϕk′(0)
〉

−
〈
ϕ†

k(0)ϕk′(0)
〉

− 2
a0(ωk)(Γ + κ)

〈
ϕ†

k′(0)
∫

dt′ 1
2(F(t′) − F †(t′))

〉
−
〈
ϕ†

k′(0)ϕk(0)
〉

+
〈
ϕ†

k′(0)ϕk′(0)
〉

(E.14)

If
〈(∫

dt′ 1
2(F(t′) − F)†(t′)

)
ϕk(0)

〉
=
〈∫

dt′ 1
2(F(t′) − F †(t′))ϕk′(0)

〉
= 0, there is no corre-

lation at t = 0, then
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〈
(ϕk(t) − ϕk′(0))2

〉
= 4

|a0(ωk)|2(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F †(t′))
)† (∫

dt′′ 1
2(F(t′′) − F †(t′′))

)〉

+
〈∫

dt′
∫

dt′′ Γ2

(Γ + κ)2 (ωk − ωA)2
〉

+
〈
ϕ†

k(0)ϕk(0)
〉

−
〈
ϕ†

k(0)ϕk′(0)
〉

−
〈
ϕ†

k′(0)ϕk(0)
〉

+
〈
ϕ†

k′(0)ϕk′(0)
〉

(E.15)

If we assume that
〈
ϕ†

k(0)ϕk′(0)
〉

=
〈
ϕ†

k′(0)ϕk(0)
〉

and that
〈
ϕ†

k′(0)ϕk′(0)
〉

+
〈
ϕ†

k(0)ϕk(0)
〉
,

the we have

〈
(ϕk(t) − ϕk′(0))2

〉
= 4

|a0(ωk)|2(Γ + κ)2

〈(∫
dt′ 1

2(F(t′) − F †(t′))
)† (∫

dt′′ 1
2(F(t′′) − F †(t′′))

)〉

+
〈∫

dt′
∫

dt′′ Γ2

(Γ + κ)2 (ωk − ωA)2
〉

+ 2
〈
ϕ†

k(0)ϕk(0)
〉

(E.16)

〈
(ϕk(t) − ϕk′(0))2

〉
= 1

|a0(ωk)|2(Γ + κ)2

〈(∫
dt′(F(t′) − F †(t′))

)† (∫
dt′′(F(t′′) − F †(t′′))

)〉

+ Γ2

(Γ + κ)2 (ωk − ωA)2t2 + 2
〈
ϕ†

k(0)ϕk(0)
〉

(E.17)

E.2. Fluctuation Operator two times correlation
Let’s consider a Fluctuation Operator of the form:

F(t) = eiϕk(t)
[
Ḟκ − ig∗(ωk)NF(−) − Γ

2 Fκ

]
, (E.18)

where Fκ and F(−) are the noise operators of equations of the bosonic and coherence
equations of motion 3.36.

Then, the two times correlation of the noise operator

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
=
∫

dt′
∫

dt′′
〈(

Ḟκ − ig∗(ωk)NF(−) − Γ
2 Fκ

)† (
Ḟκ − ig∗(ωk)NF(−) − Γ

2 Fκ

)〉

(E.19)
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∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
=

∫
dt′
∫

dt′′
〈(

ig(ωk)NF(+) − Γ
2 F †

κ

)(
−ig∗(ωk)NF(−) − Γ

2 Fκ

)〉
(E.20)

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
=

∫
dt′
∫

dt′′
[
|g(ωk)|2N2

〈
F(+)(t′)F(−)(t′′)

〉
+ Γ2

4
〈
F †

κ(t′)Fκ(t′′)
〉]

(E.21)

E.2.1. Coherence Noise Operator correlation

F(−) = FR
(−) + FP

(−)

= −i
∫

dωµκ(ωµ)NSzrµ(t0)ei(ωµ−ωA
)t − i

∫
dωβκ̃(ωβ)Pβ(t0)NSze−i(ωβ−ωA)t

(E.22)

Then, see the document New Phi Correlation Fuction

〈
F(+)(t′)F(−)(t′′)

〉
=

∫
dωµ

∫
ωµ′κ∗(ωµ)κ(ωk′)

〈
r†

t0(ωµ)ωt0(ωµ′)
〉

ei(ωµ−ωA)te−i(ωµ′ −ωA)t

+
∫

dωβ

∫
dωβ′κ̃(ωβ)κ̃(ωβ′)

〈[1
2(Iβ − Pz

β)
]〉

e−i(ωβ−ωA)t′
ei(ωβ′ −ωA)t′′

=
∫

dωµ

∫
ωµ′κ∗(ωµ)κ(ωk′)δ(ωµ − ωµ′)n̄(ωµ)ei(ωµ−ωA)t′

e−i(ωµ′ −ωA)t′′

+
∫

dωβ

∫
dωβ′κ̃(ωβ)κ̃(ωβ′)1

2δ(ωβ − ωβ′)e−i(ωβ−ωA)tei(ωβ′ −ωA)t

=
∫

dωµ|κ(ωµ)|2n̄(ωµ)ei(ωµ−ωA)(t′−t′′) + 1
2

∫
dωβ|κ̃(ωβ)|2ei(ωβ−ωA)(t′−t′′)

(E.23)

The term n̄(ωµ) = 0 in the optical regime.

〈
F(+)(t′)F(−)(t′′)

〉
= 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

(E.24)

Meanwhile the conjugate

〈
F(−)(t′)F(+)(t′′)

〉
=

∫
dωµ|κ(ωµ)|2 (n̄(ωµ) + 1) ei(ωµ−ωA)(t′−t′′) + 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

(E.25)
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〈
F(−)(t′)F(+)(t′′)

〉
=

∫
dωµ|κ(ωµ)|2ei(ωµ−ωA)(t′−t′′) + 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

(E.26)

E.2.2. Bosonic Noise Operator Correlation

Now, we will study the bosonic noise operator

Fκ(ωk) = −i
∫

dωµζ(ωk, ωµ)rt0(ωµ)ei(ωµ−ωk)t (E.27)

Then, the two times correlations

〈
F †

κ(t′)Fκ(t′′)
〉

=
∫

dωµ

∫
dωµ′ζ∗(ωk, ωµ)ζ(ωk, ωµ′)

〈
r†

t0(ωµ)rt0(ωµ′)
〉

e−i(ωµ−ωk)t′
ei(ωµ′ −ωk)t′′

(E.28)

〈
F †

κ(t′)Fκ(t′′)
〉

=
∫

dωµ

∫
dωµ′ζ∗(ωk, ωµ)ζ(ωk, ωµ′)n̄(ωµ)δ(ωµ − ωµ′)e−i(ωµ−ωk)t′

ei(ωµ′ −ωk)t′′ = 0

(E.29)

While the conjugate

〈
Fκ(t′)F †

κ(t′′)
〉

=
∫

dωµ

∫
dωµ′ζ∗(ωk, ωµ)ζ(ωk, ωµ′)

〈
rt0(ωµ)r†

t0(ωµ′)
〉

e−i(ωµ−ωk)t′
ei(ωµ′ −ωk)t′′

(E.30)

〈
F †

κ(t′)Fκ(t′′)
〉

=
∫

dωµ

∫
dωµ′ζ∗(ωk, ωµ)ζ(ωk, ωµ′) (n̄(ωµ) + 1) δ(ωµ − ωµ′)e−i(ωµ−ωk)t′

ei(ωµ′ −ωk)t′′

=
∫

dωµ|ζ(ωk, ωµ)|2e−i(ωµ−ωk)(t′−t′′)

(E.31)

〈
F †

κ(t′)Fκ(t′′)
〉

=
∫

dωµ|ζ(ωk, ωµ)|2e−i(ωµ−ωk)(t′−t′′) (E.32)

E.3. Summary of Correlations

〈
F †

κ(t′)Fκ(t′′)
〉

=
∫

dωµ|ζ(ωk, ωµ)|2e−i(ωµ−ωk)(t′−t′′) (E.33)

88



〈
F †

κ(t′)Fκ(t′′)
〉

= 0
(E.34)

〈
F(−)(t′)F(+)(t′′)

〉
=

∫
dωµ|κ(ωµ)|2ei(ωµ−ωA)(t′−t′′) + 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

(E.35)

〈
F(+)(t′)F(−)(t′′)

〉
= 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

(E.36)

Replacing in the expression (E.21)

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
=

∫
dt′
∫

dt′′
[
|g(ωk)|2N2 1

2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

]
+
∫

dt′
∫

dt′′
[

Γ2

4
〈
F †

κ(t′)Fκ(t′′)
〉]

(E.37)

∫
dt′
∫

dt′′
〈
F †(t′)F(t′′)

〉
= 1

2 |g(ωk)|2N2
∫

dt′
∫

dt′′
[∫

dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)
]

= 1
2 |g(ωk)|2N2

∫
dt′′

[∫
dωβ|κ̃(ωβ)|2

∫
dt′e−i(ωβ−ωA)(t′−t′′)

]
= 1

2 |g(ωk)|2N2
∫

dt′′
[∫

dωβ|κ̃(ωβ)|2 (πδ(ωβ − ωA)) ei(ωβ−ωA)t′′
]

= π

2 |g(ωk)|2N2
∫

dt′′|κ̃(ωA)|2

= π

2 |g(ωk)|2N2|κ̃(ωA)|2t

≡ |g(ωk)|2N w

2 t

(E.38)

And
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∫
dt′
∫

dt′′
〈
F(t′)F †(t′′)

〉
=

∫
dt′
∫

dt′′
[
|g(ωk)|2N2

〈
F(−)(t′)F(+)(t′′)

〉]
+
∫

dt′
∫

dt′′
[

Γ2

4
〈
Fκ(t′)F †

κ(t′′)
〉]

=
∫

dt′
∫

dt′′
[
|g(ωk)|2N2

(∫
dωµ|κ(ωµ)|2ei(ωµ−ωA)(t′−t′′)

)]
∫

dt′
∫

dt′′
[
|g(ωk)|2N2

(1
2

∫
dωβ|κ̃(ωβ)|2e−i(ωβ−ωA)(t′−t′′)

)]
+
∫

dt′
∫

dt′′
[

Γ2

4

∫
dωµ|κ̄(ωk, ωµ)|2e−i(ωµ−ωk)(t′−t′′)

]

= |g(ωk)|2Nγt + g(ωk)|2N w

2 t

+
∫

dt′′
[

Γ2

4

∫
dωµ|κ̄(ωk, ωµ)|2

∫
dt′e−i(ωµ−ωk)(t′−t′′)

]

= |g(ωk)|2N
(

γ + w

2

)
t

+
∫

dt′′
[

Γ2

4

∫
dωµ|κ̄(ωk, ωµ)|2δ(ωk − ωµ)ei(ωµ−ωk)t′′

]

= |g(ωk)|2N
(

γ + w

2

)
+ t

∫
dt′′

[
Γ2

4 |κ̄(ωk, ωµ)|2
]

= |g(ωk)|2N
(

γ + w

2

)
t + Γ2

4 π|κ̄(ωk, ωk)|2t

(E.39)

∫
dt′
∫

dt′′
〈
F(t′)F †(t′′)

〉
= |g(ωk)|2N

(
γ + w

2

)
t + Γ2

4 π|κ̄(ωk, ωk)|2t

(E.40)
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Annex F

Heisenberg-Langevin Equations for
the reservoir operators in a Laser on a
waveguide QED

F.1. Heisenberg Equations of the Reservoir Operators
The evolution equation of the bosonic and the reservoir operators[18]:

ȧk = −i
∑

i

g∗
kσ−

i ei(ωk−ωA)t (F.1)

ṙα = −i
∑

i

κ∗
α,iσ

−
i ei(ωα−ωA)t (F.2)

The Heisenberg evolution of the raising and lowering pumping operators:

Ṗ−
µ = −iκ̃µ,jPz

µσ+
j e−i(ωµ−ωA)t (F.3a)

Ṗ+
µ = iκ̃µ,jσ

−
j Pz

µei(ωµ−ωA)t (F.3b)

Finally the inversion evolution equation

Ṗz
µ = 2i

(
κ̃∗

µ,jP+
µ σ+

j e−i(ωµ−ωA)t − κ̃µ,jσ
−
j P−

µ ei(ωµ−ωA)t
)

(F.4)

F.1.1. Solutions of Heisenberg Equations

The solution of equation (F.2):

ṙα = rα(t0) − i
∫ t

t0

∑
i

κ∗
α,iσ

−
i (t′)ei(ωα−ωA)tdt′ (F.5)

The evolution of the bosonic operators:

ȧk(t) = ak(t0) − ig∗
k

∫ t

t0

∑
i

σ−
i (t′)ei(ωk−ωA)t′

dt′ (F.6)

The solutions of equations (F.3):
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P−
µ (t) = P−

µ (t0) − i
∫ t

t0
κ∗

µ,jPz
µ(t′)σ+

j (t′)e−i(ωµ−ωA)t′
dt′ (F.7a)

P+
µ (t) = P+

µ (t0) + i
∫ t

t0

∑
j

κµ,jσ
−
j (t′)Pz

µ(t′)ei(ωµ−ωA)t′
dt′ (F.7b)

And the evolutions of the inversion:

Pz
µ,j(t) = Pz

µ,j(t0) + 2i
∫ t

t0

∑
j

κ̃∗
µ,jP+

µ,j(t′)σ+
j e−i(ωµ,j−ωA)t′

dt′ − 2i
∫ t

t0

∑
j

κ̃µ,jσ
−
j P−

µ,j(t′)ei(ωµ,j−ωA)t′
dt′(F.8)

F.2. Derivation of the Equations of Motion of the Ato-
mic Operators

F.2.1. Equation of Motion of Inversion

This section calculations are base on [23, 44]

F.2.1.1. Evolution generated by the reservoir R

σ̇z
j = −i

ℏ
[
σz

j , HI

]
= −i

ℏ
[
σz

j , HR
I + HP

I + H1D
I

]
(F.9)

−i

ℏ
[
σz

j , HR
I

]
= −i

ℏ
∑
µ,i

ℏ
(
κ∗

µ,ir
†
µ

[
σz

j , σ−
i

]
ei(ωµ−ωA)t + κµ,i

[
σz

j , σ+
i

]
rµe−i(ωµ−ωA)t

)
= −i

∑
µ,i

(
κ∗

µ,ir
†
µ(−2δi,jσ

−
i )ei(ωµ−ωA)t + κµ,i(2δi,jσ

+
i )rµe−i(ωµ−ωA)t

)
= 2i

∑
µ

(
κ∗

µ,jr
†
µσ−

j ei(ωµ−ωA)t − κµ,jσ
+
j rµe−i(ωµ−ωA)t

)
(F.10)

Replacing rµ and r†
µ by the solution of the equation of motion:

−i

ℏ
[
σz

j , HR
I

]
= 2i

∑
µ

[
κ∗

µ,j

(
r†

µ(t0) + i
∫ t

t0

∑
i

κµ,iσ
+
i (t′)e−i(ωµ−ωA)tdt′

)
σ−

j ei(ωµ−ωA)t
]

−2i
∑

µ

[
κµ,jσ

+
j

(
rµ(t0) − i

∫ t

t0

∑
i

κ∗
µ,iσ

−
i (t′)ei(ωµ−ωA)tdt′

)
e−i(ωµ−ωA)t

]
(F.11)
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−i

ℏ
[
σz

j , HR
I

]
= 2i

∑
µ

(
κ∗

µ,jr
†
µσ−

j ei(ωµ−ωA)t − κµ,jσ
+
j rµe−i(ωµ−ωA)t

)

+2i
∑

µ

[
κ∗

µ,j

(
i
∫ t

t0

∑
i

κµ,iσ
+
i (t′)e−i(ωµ−ωA)tdt′

)
σ−

j ei(ωµ−ωA)t
]

−2i
∑

µ

[
κµ,jσ

+
j

(
−i
∫ t

t0

∑
i

κ∗
µ,iσ

−
i (t′)ei(ωµ−ωA)tdt′

)
e−i(ωµ−ωA)t

]
(F.12)

−i

ℏ
[
σz

j , HR
I

]
= 2i

∑
µ

(
κ∗

µ,jr
†
µ(t0)σ−

j ei(ωµ−ωA)t − κµ,jσ
+
j rµ(t0)e−i(ωµ−ωA)t

)

−2
∑

µ

[
κ∗

µ,j

(∫ t

t0

∑
i

κµ,iσ
+
i (t′)e−i(ωµ−ωA)t′

dt′
)

σ−
j ei(ωµ−ωA)t

]

−2
∑

µ

[
κµ,jσ

+
j

(∫ t

t0

∑
i

κ∗
µ,iσ

−
i (t′)ei(ωµ−ωA)t′

dt′
)

e−i(ωµ−ωA)t
]

(F.13)

Definig the noise operator gererated by the reservoir R.

FR = 2i
∑

µ

(
κ∗

µ,jr
†
µ(t0)σ−

j ei(ωµ−ωA)t − κµ,jσ
+
j rµ(t0)e−i(ωµ−ωA)t

)
(F.14)

−i

ℏ
[
σz

j , HR
I

]
= FR − 2

∑
µ,i

[
κ∗

µ,jκµ,i

(∫ t

t0
σ+

i (t′)e−i(ωµ−ωA)tdt′
)

σ−
j ei(ωµ−ωA)t

]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j

(∫ t

t0
σ−

i (t′)ei(ωµ−ωA)tdt′
)

e−i(ωµ−ωA)t
]

(F.15)

If σ±
i (t′) → σ±

i (t):
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−i

ℏ
[
σz

j , HR
I

]
= FR − 2

∑
µ,i

[
κ∗

µ,jκµ,i

(∫ t

t0
σ+

i (t′)e−i(ωµ−ωA)tdt′
)

σ−
j ei(ωµ−ωA)t

]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j

(∫ t

t0
σ−

i (t′)ei(ωµ−ωA)tdt′
)

e−i(ωµ−ωA)t
]

= FR − 2
∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t)

(∫ t

t0
e−i(ωµ−ωA)tdt′

)
σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t)
(∫ t

t0
ei(ωµ−ωA)tdt′

)
e−i(ωµ−ωA)t

]
(F.16)

Where, if t − t0 → ∞:

lim
t→∞

∫ t

0
dt′ei(ω−ω0)t′ = πδ(ω − ω0) + i

P

ω0 − ω
(F.17)

−i

ℏ
[
σz

j , HR
I

]
= FR − 2

∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t)

(
πδ(ωµ − ωA) − i

P

ωµ − ωA

)
σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t)
(

πδ(ωµ − ωA) + i
P

ωµ − ωA

)
e−i(ωµ−ωA)t

]
(F.18)

−i

ℏ
[
σz

j , HR
I

]
= FR − 2

∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t)

(
πδ(ωµ − ωA) − i

P

ωµ − ωA

)
σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t)
(

πδ(ωµ − ωA) + i
P

ωµ − ωA

)
e−i(ωµ−ωA)t

]

= FR − 2
∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t) (πδ(ωµ − ωA)) σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t) (πδ(ωµ − ωA)) e−i(ωµ−ωA)t
]

−2
∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t)

(
−i

P

ωµ − ωA

)
σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t)
(

i
P

ωµ − ωA

)
e−i(ωµ−ωA)t

]
(F.19)
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−i

ℏ
[
σz

j , HR
I

]
= FR − 2

∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t) (πδ(ωµ − ωA)) σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t) (πδ(ωµ − ωA)) e−i(ωµ−ωA)t
]

−2
∑
µ,i

[
κ∗

µ,jκµ,iσ
+
i (t)

(
−i

P

ωµ − ωA

)
σ−

j ei(ωµ−ωA)t
]

−2
∑
µ,i

[
κµ,jκ

∗
µ,iσ

+
j σ−

i (t)
(

i
P

ωµ − ωA

)
e−i(ωµ−ωA)t

]
(F.20)

−i

ℏ
[
σz

j , HR
I

]
= FR − 2π

∑
µ,i

δ(ωµ − ωA)
[
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t + κµ,jκ
∗
µ,iσ

+
j σ−

i e−i(ωµ−ωA)t
]

+2
∑
µ,i

(
i

P

ωµ − ωA

) [
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t + κµ,jκ
∗
µ,iσ

+
j σ−

i e−i(ωµ−ωA)t
]
(F.21)

Defining the collective operator:

Sz = 1
N

∑
j

σz
j (F.22)

−i

ℏ
[
NSz, HR

I

]
= −i

ℏ
∑

j

[
σz

j , HR
I

]
= F̃R − 2π

∑
µ,i,j

δ(ωµ − ωA)
[
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t + κµ,jκ
∗
µ,iσ

+
i σ−

j e−i(ωµ−ωA)t
]

+2i
∑
µ,i,j

(
P

ωµ − ωA

) [
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t − κµ,jκ
∗
µ,iσ

+
i σ−

j e−i(ωµ−ωA)t
]
(F.23)

−i

ℏ
[
NSz, HR

I

]
= F̃R − 2π

∑
µ

∑
i,j

δ(ωµ − ωA)
[
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t + κ∗
µ,jκµ,iσ

+
j σ−

i e−i(ωµ−ωA)t
]

+2i
∑

µ

∑
i,j

(
P

ωµ − ωA

) [
κ∗

µ,jκµ,iσ
+
i σ−

j ei(ωµ−ωA)t − κ∗
µ,jκµ,iσ

+
i σ−

j e−i(ωµ−ωA)t
]
(F.24)
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−i

ℏ
[
NSz, HR

I

]
= F̃R − 2π

∑
µ

∑
i,j

δ(ωµ − ωA)κ∗
µ,jκµ,i

[
ei(ωµ−ωA)t + e−i(ωµ−ωA)t

]
σ+

i σ−
j

+2i
∑

µ

∑
i,j

(
P

ωµ − ωA

)
κ∗

µ,jκµ,i

[
ei(ωµ−ωA)t − e−i(ωµ−ωA)t

]
σ+

i σ−
j

(F.25)

If we consider ∑µ → ∑
m

∫
dωµ

−i

ℏ
[
NSz, HR

I

]
= F̃R − 2π

∑
m

∫
dωµ

∑
i,j

δ(ωµ − ωA)κ∗
µ,jκµ,i

[
ei(ωµ−ωA)t + e−i(ωµ−ωA)t

]
σ+

i σ−
j

+2i
∑
m

∫
dωµ

∑
i,j

(
P

ωµ − ωA

)
κ∗

µ,jκµ,i

[
ei(ωµ−ωA)t − e−i(ωµ−ωA)t

]
σ+

i σ−
j

(F.26)

−i

ℏ
[
NSz, HR

I

]
= F̃R − 4π

∑
m

∑
i,j

κ∗
m,j(ωA)κm,i(ωA)σ+

i σ−
j

+2i
∑
m

∫
dωµ

∑
i,j

(
P

ωµ − ωA

)
κ∗

m,jκm,i

[
ei(ωµ−ωA)t − e−i(ωµ−ωA)t

]
σ+

i σ−
j

(F.27)

Definig γ
(R)
i,j = 2π

∑
m κ∗

m,j(ωa)κm,i(ωa) and Ω(R)
i,j the shift generated by the reservoir R:

Ω(R)
i,j =

∑
m

∫
dωµ

(
P

ωµ − ωA

)
κ∗

m,jκm,i

[
ei(ωµ−ωA)t − e−i(ωµ−ωA)t

]
(F.28)

Then the evolution generated by the reservoir R:

−i

ℏ
[
NSz, HR

I

]
= F̃R − 2

∑
i,j

γ
(R)
i,j σ+

i σ−
j + 2i

∑
i,j

Ω(R)
i,j σ+

i σ−
j

(F.29)

But studing the term σ+
i σ−

j

σ+
i σ−

j = δi,j

[1
2
(
σz

j + Ij

)]
(F.30)

Replacing in the equation (F.29)
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−i

ℏ
[
NSz, HR

I

]
= F̃R − 2

∑
i,j

γ
(R)
i,j σ+

i σ−
j + 2i

∑
i,j

Ω(R)
i,j σ+

i σ−
j

= F̃R − 2
∑
i,j

γ
(R)
i,j δi,j

[1
2
(
σz

j + Ij

)]
+ 2i

∑
i,j

Ω(R)
i,j δi,j

[1
2
(
σz

j + Ij

)]
= F̃R −

∑
j

γ
(R)
j,j

[
σz

j + Ij

]
+ i

∑
j

Ω(R)
j,j

[
σz

j + Ij

]
(F.31)

−i

ℏ
[
NSz, HR

I

]
= F̃R −

∑
j

γ
(R)
j,j

[
σz

j + Ij

]
+ i

∑
j

Ω(R)
j,j

[
σz

j + Ij

]
(F.32)

Defining γ(R) = γ
(R)
j,j and Ω(R) = Ω(R)

j,j for all j:

−i

ℏ
[
NSz, HR

I

]
= F̃R − γ(R)∑

j

[
σz

j + Ij

]
+ iΩ(R)∑

j

[
σz

j + Ij

]
= F̃R − γ(R) [NSz + N ] + iΩ(R) [NSz + N ]

(F.33)

Ṡz
(R) = −i

ℏ
[
Sz, HR

I

]
= F̃R − γ(R) [Sz + 1] + iΩ(R) [Sz + 1]

(F.34)

F.2.1.2. Evolution generated by the reservoir P

σ̇j
z = −i

ℏ
[
σz

j , HI

]
= −i

ℏ
[
σz

j , HR
I + HP

I + H1D
I

]
(F.35)

−i

ℏ
[
σz

j , HP
I

]
= −i

ℏ
∑
β,i

ℏ
(
κ̃∗

β,iP+
β

[
σz

j , σ+
i

]
e−i(ωβ−ωA)t + κ̃β,i

[
σz

j , σ−
i

]
P−

β ei(ωβ−ωA)t
)

= −i
∑
β,i

(
κ̃∗

β,iP−
β (2δi,jσ

+
i )e−i(ωβ−ωA)t + κ̃β,i(−2δi,jσ

−
i )P+

β ei(ωβ−ωA)t)t
)

= −2i
∑

β

(
κ̃∗

β,jP+
β σ+

j e−i(ωβ−ωA)t − κ̃β,jσ
−
j P−

β e+i(ωβ−ωA)t
)

(F.36)

Replacing P+
β and P−

β by the solution of the equation of motion:
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−i

ℏ
[
σz

j , HP
I

]
= −2i

∑
β

(
κ̃∗

β,j

(
P+

β (t0) + i
∫ t

t0

∑
i

κβ,iσ
−
i (t′)Pz

β(t′)ei(ωβ−ωA)t′
dt′
)

σ+
j e−i(ωβ−ωA)t

)

+2i
∑

β

(
κ̃β,jσ

−
j

(
P−

β (t0) − i
∫ t

t0

∑
i

κ∗
β,iPz

β(t′)σ+
i (t′)e−i(ωβ−ωA)t′

dt′
)

e+i(ωβ−ωA)t
)

(F.37)

−i

ℏ
[
σz

j , HP
I

]
= −2i

∑
β

(
κ̃∗

β,jP+
β (t0)σ+

j e−i(ωβ−ωA)t − κ̃β,jσ
−
j P−

β (t0)e+i(ωβ−ωA)t
)

−2i
∑

β

(
κ̃∗

β,j

(
i
∫ t

t0

∑
i

κβ,iσ
−
i (t′)Pz

β(t′)ei(ωβ−ωA)t′
dt′
)

σ+
j e−i(ωβ−ωA)t

)

+2i
∑

β

(
κ̃β,jσ

−
j

(
−i
∫ t

t0

∑
i

κ∗
β,iPz

β(t′)σ+
i (t′)e−i(ωβ−ωA)t′

dt′
)

ei(ωβ−ωA)t
)

(F.38)

−i

ℏ
[
σz

j , HP
I

]
= −2i

∑
β

(
κ̃∗

β,jP+
β (t0)σ+

j e−i(ωβ−ωA)t − κ̃β,jσ
−
j P−

β (t0)e+i(ωβ−ωA)t
)

+2
∑
β,i

(
κ̃∗

β,jκ̃β,i

(∫ t

t0
σ−

i (t′)Pz
β(t′)ei(ωβ−ωA)t′

dt′
)

σ+
j e−i(ωβ−ωA)t

)

+2
∑
β,i

(
κ̃β,jκ̃

∗
β,iσ

−
j

(∫ t

t0
Pz

β(t′)σ+
i (t′)e−i(ωβ−ωA)t′

dt′
)

ei(ωβ−ωA)t
)

(F.39)

Definig the noise operator gererated by the reservoir P .

FP = −2i
∑

β

(
κ̃∗

β,jP+
β (t0)σ+

j e−i(ωβ−ωA)t − κ̃β,jσ
−
j P−

β (t0)e+i(ωβ−ωA)t
)

(F.40)

−i

ℏ
[
σz

j , HP
I

]
= FP + 2

∑
β,i

(
κ̃∗

β,jκ̃β,i

(∫ t

t0
σ−

i (t′)Pz
β(t′)ei(ωβ−ωA)t′

dt′
)

σ+
j e−i(ωβ−ωA)t

)

+2
∑
β,i

(
κ̃β,jκ̃

∗
β,iσ

−
j

(∫ t

t0
Pz

β(t′)σ+
i (t′)e−i(ωβ−ωA)t′

dt′
)

ei(ωβ−ωA)t
)

(F.41)

If σ±
i (t′) → σ±

i (t) and Pz
β,j(t′) → Pz

β,j(t):
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−i

ℏ
[
σz

j , HP
I

]
= FP + 2

∑
β,i

(
κ̃∗

β,jκ̃β,i

(∫ t

t0
ei(ωβ−ωA)t′

dt′
)

Pz
βσ−

i σ+
j e−i(ωβ−ωA)t

)

+2
∑
β,i

(
κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i

(∫ t

t0
e−i(ωβ−ωA)t′

dt′
)

ei(ωβ−ωA)t
)

(F.42)

Where, if t − t0 → ∞:

lim
t→∞

∫ t

0
dt′ei(ω−ω0)t′ = πδ(ω − ω0) + i

P

ω0 − ω
(F.43)

−i

ℏ
[
σz

j , HP
I

]
= FP + 2

∑
β,i

(
κ̃∗

β,jκ̃β,i

(
πδ(ωβ − ωA) + i

P

ωβ − ωA

)
Pz

βσ−
i σ+

j e−i(ωβ−ωA)t
)

+2
∑
β,i

(
κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i

(
πδ(ωβ − ωA) − i

P

ωβ − ωA

)
ei(ωβ−ωA)t

)
(F.44)

−i

ℏ
[
σz

j , HP
I

]
= FP + 2

∑
β,i

(
κ̃∗

β,jκ̃β,i (πδ(ωβ − ωA)) Pz
βσ−

i σ+
j e−i(ωβ−ωA)t

)
+2

∑
β,i

(
κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i (πδ(ωβ − ωA)) ei(ωβ−ωA)t
)

+2
∑
β,i

(
κ̃∗

β,jκ̃β,i

(
+i

P

ωβ − ωA

)
Pz

βσ−
i σ+

j e−i(ωβ−ωA)t
)

+2
∑
β,i

(
κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i

(
−i

P

ωβ − ωA

)
ei(ωβ−ωA)t

)
(F.45)

−i

ℏ
[
σz

j , HP
I

]
= FP + 2

∑
β,i

(πδ(ωβ − ωA))
(
κ̃∗

β,jκ̃β,iPz
βσ−

i σ+
j e−i(ωβ−ωA)t + κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i ei(ωβ−ωA)t
)

+2
∑
β,i

(
i

P

ωβ − ωA

)(
κ̃∗

β,jκ̃β,iPz
βσ−

i σ+
j e−i(ωβ−ωA)t − κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i ei(ωβ−ωA)t
)

(F.46)

Defining the collective operator:

Sz = 1
N

∑
j

σz
j (F.47)
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−i

ℏ
[
NSz, HP

I

]
= −i

ℏ
∑

j

[
σz

j , HP
I

]
= FP + 2π

∑
β,i,j

δ(ωβ − ωA)
(
κ̃∗

β,jκ̃β,iPz
βσ−

i σ+
j e−i(ωβ−ωA)t + κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i ei(ωβ−ωA)t
)

+2
∑
β,i,j

(
i

P

ωβ − ωA

)(
κ̃∗

β,jκ̃β,iPz
βσ−

i σ+
j e−i(ωβ−ωA)t − κ̃β,jκ̃

∗
β,iPz

βσ−
j σ+

i ei(ωβ−ωA)t
)
(F.48)

−i

ℏ
[
NSz, HP

I

]
= FP + 2π

∑
β

∑
i,j

δ(ωβ − ωA)κ̃∗
β,jκ̃β,iPz

β

(
e−i(ωβ−ωA)t + ei(ωβ−ωA)t

)
σ−

i σ+
j

+2
∑

β

∑
i,j

(
i

P

ωβ − ωA

)
κ̃∗

β,jκ̃β,iPz
β

(
e−i(ωβ−ωA)t − ei(ωβ−ωA)t

)
σ−

i σ+
j

(F.49)

If we consider ∑β → ∑
l

∫
dωβ

−i

ℏ
[
NSz, HP

I

]
= FP + 2π

∑
l

∫
dωβ

∑
i,j

δ(ωβ − ωA)κ̃∗
l,j(ωβ)κ̃l,i(ωβ)Pz

l

(
e−i(ωβ−ωA)t + ei(ωβ−ωA)t

)
σ−

i σ+
j

+2
∑

l

∫
dωβ

∑
i,j

(
i

P

ωβ − ωA

)
κ̃∗

l,j(ωβ)κ̃l,i(ωβ)Pz
l

(
e−i(ωβ−ωA)t − ei(ωβ−ωA)t

)
σ−

i σ+
j

(F.50)

−i

ℏ
[
NSz, HP

I

]
= FP + 4π

∑
l

∑
i,j

κ̃∗
l,j(ωA)κ̃l,i(ωA)Pz

l σ−
i σ+

j

+2i
∑

l

∫
dωβ

∑
i,j

(
P

ωβ − ωA

)
κ̃∗

l,j(ωβ)κ̃l,i(ωβ)Pz
l

(
e−i(ωβ−ωA)t − ei(ωβ−ωA)t

)
σ−

i σ+
j

(F.51)

Definig γ
(P)
i,j and Ω(P)

i,j the decay rate and the shift generated by the reservoir R, respecti-
vely:

γ
(P)
i,j = 2π

∑
l

κ̃∗
l,j(ωA)κ̃l,i(ωA)Pz

l (F.52)

Ω(P)
i,j = i

∑
l

∫
dωβ

(
P

ωβ − ωA

)
κ̃∗

l,j(ωβ)κ̃l,i(ωβ)Pz
l

(
e−i(ωβ−ωA)t − ei(ωβ−ωA)t

)
(F.53)

Then the evolution generated by the reservoir P :
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−i

ℏ
[
NSz, HP

I

]
= F̃P + 2

∑
i,j

γ
(P)
i,j σ−

i σ+
j + 2i

∑
i,j

Ω(P)
i,j σ−

i σ+
j

(F.54)

But studing the terms σ−
i σ+

j and σ+
i σ−

j

σ−
i σ+

j = δi,j

[1
2
(
Ij − σz

j

)]
(F.55)

σ+
i σ−

j = δi,j

[1
2
(
σz

j + Ij

)]
(F.56)

Replacing in the equation (F.54)

−i

ℏ
[
NSz, HP

I

]
= F̃P + 2

∑
i,j

γ
(P)
i,j δi,j

[1
2
(
Ij − σz

j

)]
− 2i

∑
i,j

Ω(P)
i,j δi,j

[1
2
(
Ij − σz

j

)]
= F̃P +

∑
j

γ
(P)
j,j

[
Ij − σz

j

]
− i

∑
j

Ω(P)
j,j

[
Ij − σz

j

]
(F.57)

Defining γ(P) = γ
(P)
j,j and Ω(P) = Ω(P)

j,j for all j:

−i

ℏ
[
NSz, HP

I

]
= F̃P + γ(P)∑

j

[
Ij − σz

j

]
− iΩ(P)∑

j

[
Ij − σz

j

]
= F̃P + γ(P) [N − NSz] − iΩ(P) [N − NSz]

(F.58)

Ṡz
(P) = −i

ℏ
[
Sz, HP

I

]
= F̃P + 2γ(P) [1 − Sz] − iΩ(P) [1 − Sz]

(F.59)

F.2.2. Equation of Motion of Coherence

This section calculations are base on [23, 44].
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F.2.2.1. Evolution generated by the reservoir R

−i

ℏ
[
σ−

j , HR
I

]
= −i

ℏ
∑
µ,i

ℏ
(
κ∗

µ,ir
†
µ

[
σ−

j , σ−
i

]
ei(ωµ−ωA)t + κµ,i

[
σ−

j , σ+
i

]
rµe−i(ωµ−ωA)t

)
= −i

∑
µ,i

(
κµ,i(−δi,jσ

z
i )rµe−i(ωµ−ωA)t

)
= i

∑
µ

(
κµ,jσ

z
j rµe−i(ωµ−ωA)t

)
(F.60)

Replacing rµ and r†
µ by the solution of the equation of motion:
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Definig the noise operator gererated by the reservoir R.
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(−) = i

∑
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z
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(F.62)
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If σ±
i (t′) → σ±

i (t):
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Where, if t − t0 → ∞:

lim
t→∞

∫ t

0
dt′ei(ω−ω0)t′ = πδ(ω − ω0) + i
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(F.65)
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Defining the collective operator:

S− = 1
N

∑
j
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j (F.67)
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If we consider ∑µ → ∑
m
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Definig γ
(R)
(−)i,j and Ω(R)

i,j as the decay rate and the shift generated by the reservoir R,
respectively:

γ
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∑
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103



Ω(R)
(−)i,j =

∑
m

∫
dωµκm,j(ωµ)κ∗

m,i(ωµ)
(

P

ωµ − ωA

)
e−i(ωµ−ωA)t (F.72)

−i

ℏ
[
NS−, HR

I

]
= FR

(−) + 1
2
∑
i,j

γ
(R)
i,j σz

j σ−
i − i

∑
i,j

Ω(R)
(−)i,jσ

z
j σ−

i

(F.73)

But studing the term σz
i σ−

j
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j = −δi,j |g⟩i ⟨e|j (F.74)
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Defining γ(R) = γ
(R)
j,j and Ω(R) = Ω(R)

j,j for all j:
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Ṡ−
(R) = F̃R

(−) − 1
2γ(R)S− + iΩ(R)S−

F.2.2.2. Evolution generated by the reservoir P
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Replacing P+
β and P−

β by the solution of the equation of motion:
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Definig the noise operator gererated by the reservoir P .
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If σ±
i (t′) → σ±

i (t) and Pz
β,j(t′) → Pz
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Where, if t − t0 → ∞:
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t→∞
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Defining the collective operator:

S− = 1
N

∑
j
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j (F.86)
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If we consider ∑β → ∑
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Definig γ
(P)
(−)i,j and Ω(P)

(−)i,j the decay rate and the shift generated by the reservoir P , res-
pectively:
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The evolution of the collective coherence operator generated by the pump reservoir:
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But studing the term σ−
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Defining γ(P) = γ
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j,j and Ω(P) = Ω(P)

j,j for all j:
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