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ABSTRACT

Strong correlation effects emerge from light-matter interactions in coupled reson-

ator arrays, such as the Mott-Insulator to superfluid phase transition of atom-photon

excitations are among the most interesting phenomena in the field of quantum optics

and quantum simulations. This Thesis focuses on the study of the transition from

Mott-Insulator to Superfluid phase of weakly coupled resonator arrays each one

doped with a two-level system. We discover that quenched dynamics of a finite-sized

complex array of coupled resonators induces a first-order like phase transition. We

demonstrate that the latter is accompanied by nucleation of superfluid-light domains

that can be used to manipulate the photonic transport properties of the simulated

superfluid phase; this in turn leads to an empirical scaling law. On the other hand,

adiabatic dynamics resembles a second order phase transition inducing a continous

change of the state of the system. First, we study the formation of dressed quantum

polariton states and the effective photon-photon interaction between them. This

system is described by the Jaynes-Cummings-Hubbard model. If the frequency of

the resonator mode and the two-level system are close to resonance the effective

photonic repulsion prevents the presence of more than one polaritonic excitations in

the resonator, due to the photon-blockade effect. Detuning the atomic and photonic

frequencies reduces this effect and leads the system to a photonic superfluid phase.

We find that a nucleated superfluid photon state emerges in a localized way, which

depends on the topology of the array. This avalanche-like behavior leads to a uni-

versal scaling law between the critical parameters of the superfluid state and the

average connectivity.

The second problem refers to the effect of the anisotropic distribution of light-

matter coupling across different sites of the array and the two level system frequency

anistropy on the dynamics of the phase transition. We obtain the modulation and



vi

resonance of superfluid states. This highlights the topological properties of the array,

and how they can be used to manipulate the photonic transport.

The validity of our results encompasses a wide range of complex architectures

that might lead to a promising device for use in scaled quantum simulations.

Keywords: Quantum Phase Transition, Jaynes-Cummings-Hubbard model, To-

pological Properties.
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Chapter 1

Introduction

Within the next 10 years traditional computational systems, built on semicon-

ductor transistors and based on the Von-Neuman architecture, will inexorably reach

a limit in their continued technological development due to fundamental physical

constraints[1]. In the Von-Neuman architecture the processor is physically separated

in functional blocks, thus the information must be transferred between the different

blocks for each operation. This is the origin of the Von-Neuman Bottleneck, which

limits information transfer rates[2]. Quantum systems represent one of the most

promising fields to surpass current computation technologies, where quantum entan-

glement and interference provide the system with great computational and storage

capabilities due to the large number of degrees of freedom involved[3].

Although the current computational paradigm leverages parallelism to increase

the computational performance, the processing power still uses traditional arquitec-

tures bound by the Von-Neuman Bottleneck. Quantum computing aims to solve these

issues through its intrinsic quantum parallelism[4] and carefully designed algorithms

leveraging the quantum properties of the computer.
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1.1 Quantum Computing

Richard Feynamm[3] was the first to introduce the idea of a quantum computer as

new mechanism to study the phenomena of physical systems in situations where

traditional computers (classical computers in this context) are not adequate, due to

the difficulty to keep track of the large number of variables involved in the study of

quantum systems, and the memory requirements which increase exponentially with

the system size[5]. In quantum computing, the basic premise is that everything

is governed by quantum mechanics, even classical computers, which are used for

calculations and modeling of nature. However, no classical computation takes ad-

vantage of quantum mechanics, therefore, the idea is to use quantum phenomena

for general computations, where the main goal is the development of a universal

quantum computer capable of executing any instruction or tasks taking advantage

of quantum physics to perform them at a much higher speed by levaring quantum

parallelism[6]. Typical examples of universal quantum computing are the quantum

cryptography algorithms[7], which would break current cryptography jeopardizing

financial transactions [8], and could also promise secure communication between

two parties without the possibility of eavesdropping, far beyond anything available

through the use of current computers[7]. Since its inception, Quantum Computing

has gathered a great interest from the community; however, the complexity of isolat-

ing and controlling the quantum states have hindered the development of quantum

computers[6].

Even if a universal quantum computer is not yet attainable, it is still possible

to use quantum mechanics to “simulate nature, with nature”, which is known as

quantum simulation. In quantum simulation one can study a controllable laboratory

system that exhibits the same or similar properties as another system of interest,
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that would not be tractable using conventional computers. Manipulating states of

the laboratory system is possible to discover new phenomena for the systems in

study[9]. In recent years there has been an increasing focus on quantum simulations,

as the techniques for controlling the small scale systems have experienced continuous

improvement[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 5, 21, 22].

1.2 Quantum Simulators

In Quantum Computing, the field of quantum simulations have showed success as

multiple quantum systems can be used for computation and analysis, each quantum

system is known as a platform[5]. Some of them are mentioned here with their

corresponding applications as introduction. Therefore, one can mention the ultra-

cold gasses platform[18], which operates in the Bose-Einstein condensate state, and

used to simulate superconductivity phenomena based on the BCS theory, Mott in-

sulator states and similar phenomena. Another interesting system is the trapped

ions architecture in radio-frequency traps, used in the study of magnetism phenom-

ena produced by spin interaction[12]. Quantum Chemistry phenomena can also be

studied through the use of the quantum photonic platform, which has the advant-

age of being usable at room temperature[9]. Finally the superconducting circuits is

one of the most interesting platforms due to the wide range of the parameters and

the possibility of building the system with great precision as they can be built using

techniques that are similar to the ones used in semiconductor industry[13, 23, 11, 24].

Finally, and most important platform for this study, Cavity quantum electro-

dynamics (CQED) describes light-matter interactions. The physics in this architec-

ture can be described through multiple models, such as the Jaynes-Cummings model,

Dicke model, Bose-Hubbard model. Multiple coupled cavities can be used to study

additional phenomena including many-body physics [21, 25, 26]. These characterist-
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ics make the study CQED systems important and the object of this work for both,

the additional insights revealed for multiple physics fields and the potential techno-

logical applications which can be developed with these systems. In the framework

of CQED systems and many-body physics phenomena, we focus our analysis on the

simulation of phase transitions.

1.3 Simulated phase transition

Phase transitions are phenomena observed in a range of physical systems and char-

acterized by a drastic change in an extensive wide range variable of the system. For

instance, solid-liquid-gas phase transition observed in materials like water, supercon-

ductivity in metals, the magnetic phase transition at curie temperature or the liquid

Helium superfluid phase transition, etc[27, 28, 29, 30, 31].

In this thesis, we explore, the Mott-Insulator/Superfluid phase transition in

the Jaynes-Cummings-Hubbard (JCH) model through the analysis of emergent phe-

nomena in the polaritonic states. Here the JCH model is analyzed in three different

conditions. First, we use quench dynamics and topology to show a first-order like

phase transition with accompanied nucleation. Second, we also consider Hall-like

states through anisotropy on the light-matter coupling. Finally, we study the res-

onance in a Meta-stable phase produced by the anisotropy of between the doping

two-level system frequency.

To understand the properties of the phase transition in the JCH model, it is

required to understand the Jaynes-Cummings (JC) model. The JC model [32, 33]

is one of the most studied CQED models, because of its successful experimental

realizations, particularly in superconducting circuits. The JC model is one of the

most simple models describing light-matter interaction where the excitations for the

system form hybrid light-matter dressed known as polaritons. This system has been
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comprehensively studied and will be used as building block in this work[34, 35, 36].

The Jaynes-Cummings-Hubbard(JCH) model[37], is an extension to the JC model

by coupling multiple JC cavities through a hopping constant so that excitations can

move between cavities. The JCH model extension exhibits multiple interesting phe-

nomena such as the Mott-Insulator/Superfluid phase transition, which appears due

to the interaction of the hybrid light-matter states (polaritons) and the photon block-

ade effect[38, 39, 40, 41, 42].

The main objective of this thesis is to explore the Mott-Insulator/Superfluid

phase transition in the Jaynes-Cummings-Hubbard (JCH) model through the ana-

lysis of emergent phenomena in the polaritonic states. Here the JCH model will be

analyzed in three different situations. First, through use quench dynamics and to-

pology. Second through anisotropy on the light-matter coupling and finally through

the anisotropy of between the doping two-level system frequency.

1.4 Methodology

This work explores the JCH model through analytical and numerical analysis per-

formed using computer simulation. For numerical simulations the quantum toolkit

QuTip [34, 35] is used, as it allows the analysis of the temporal evolution of the

system observable quantities through a variety of numerical methods, which include

the Lindblad Master equation Solver, and Mote-Carlo wavefunction approach.

1.5 Outline of this Thesis

This thesis is divided in chapters describing the theoretical background, and the

results of obtained through the development of this work, thus this first chapter

provides a brief introduction.

The Second chapter provides an introduction to different models including the
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Jaynes-Cummings model, describing its origin, properties, spectrum and some phys-

ical phenomena including the photon blockade effect. Then, we move to the Bose-

Hubbard model as an approach to many-body physics; the Bose-Hubbard model is

also used to shown that the properties of the system can be described using different

order parameters. Finally this, we focus on the Jaynes-Cummings-Hubbard model

and how physical phenomena such as Mott-Insulator/Superfluid phase transitions

arise on it by the manipulation of the different variables of the model.

The Third chapter provides a theoretical description of phase transitions, and

how they relate to the Quantum phase transition observed in many-body physics,

as well as the CQED models discussed in this work. This chapter shows how a first-

order-like quantum phase transition arises in the JCH model using quench dynamics.

This behavior is accompanied by nucleation of the superfluid light domains which

may be manipulated via the topology of the array. The latter may also allow for

the indirect manipulation of the photonic superfluid state. All results are verified

through numerical simulations and a mean field theory.

The Fourth chapter includes a theoretical analysis of the JCH model from an

energy perspective using quantum perturbation theory as an analysis tool. Then this

chapter discusses the effects of the detuning induced anisotropy in the JCH model,

which originates a new resonant phase on the model different to both the Mott-Insu-

lator phase and the superfluid phase with its own set of properties. Finally we show

that anisotropy on the light-matter coupling produces a modulated integer-filling

phase transition in the JCH model, which resembles Quantum-Hall effects.

The final chapter provides the conclusions of this Thesis and possible develop-

ments originating from the results here presented.
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Chapter 2

Phase transition in Light-Matter
Quantum Systems

2.1 Introduction

Coupled resonator arrays allow us to study several physical phenomena in a wide

array of different platform, ranging from superconducting circuits to doped optical

crystals. Furthermore, CQED models are capable of simulating many-body physics

phenomena including phase transitions. In this thesis we focus on the Mott-Insula-

tor/Superfluid phase transitions, specifically in the Jaynes-Cummings-Hubbard and

Bose-Hubbard model.

2.2 The Jaynes-Cummings Model

The JC model describes a two level system (TLS), such as a trapped ion inside an

optical cavity, interacting with photons as shown in figure 2.1.
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Figure 2.1: Schematic representation of the Jaynes-Cummings model. The JC model
describes the absorption(Red) and emission(Blue) of a photon by a TLS inside a
cavity. In this figure a(a†) is the photonic lowering(rising) operator, while σ+(σ−) is
the TLS rising(lowering) operator

The JC model is described by the Hamiltonian

HJC = ωca
†a+ ωaσ

+σ− + g(a†σ− + aσ+), (2.1)

where ωa is the TLS frequency, ωc is the photonic frequency, and g the light-matter

coupling strength. The first term of equation (2.1) correspond to a single mode

electromagnetic field of the cavity, the second term is a free TLS system and the

last term describes the light-matter coupling between the photons and the TLS, see

figure 2.1.

Equation (2.1) shows the Jaynes-Cummings Hamiltonian, which is an approxim-

ation of the Rabi Hamiltonian obtained through the rotating wave approximation

(RWA), considering ωc−ωa � ωc +ωa. For the JC model, the total number of exit-

ations N = a†a+ σ+σ− is a conserved quantity, hence [HJC , N ] = 0. The conserved

total excitations allows for the diagonalization of the JC model, which is not possible

for the Rabi model[47].
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2.2.1 Properties of the Jaynes-Cummings model

The JC model has interesting properties, the first one comes from the usage of the

(RWA), since the interaction terms describe the process in which the TLS and the

cavities exchange energy or excitations, thus the term aσ+ represents the absorption

of a photon in the cavity by the TLS going from the ground state to the excited

state, while a†σ− corresponds to the release of a photon from the TLS going from

the exited state to the ground state (Figure 2.1). a†σ+ shows a spontaneous creation

of a photon in the cavity with an spontaneous transition in the TLS from the ground

state to the exited state, similarly aσ− is the spontaneous destruction of a photon

and the transition of the TLS from the exited state to the ground state, while these

process are possible, they are less intuitive than the other terms, and represent

process that are much more energetic or faster, thus are discarded in the study of

the system(See A for a more detailed discussion).

The constant number of excitations in the JC model, allows for convenient writing

of the Hamiltonian in matrix form, using the basis {|n, ↓〉 , |n, ↑〉}, built from the

tensor product of the photon basis |n〉 for n photons in the cavity and the two-level

system basis {|↓〉 , |↑〉} which represent states with the system in the ground state

and the exited state respectively. Furthermore, for a total number of excitations(n)

the matrix form of the JC Hamiltonian is shown in equation (2.2).

〈n, ↓| 〈(n− 1), ↑|

Hn
JC =

[
nωc g

√
n

g
√
n (n− 1)ωc + ωa

]
|n, ↓〉
|(n− 1), ↑〉

. (2.2)

From the matrix form the standard procedure is to compute the eigenvalues and

eigenvectors of the Hamiltonian, from which the physical properties of the system

can be computed, including but not limited to the energies, the states and the time

evolution of the system[48]. At this point the diagonalization procedure will be



11

detailed, however before performing the procedure, it is convenient to perform the

following identifications. The detuning ∆ = ωa−ωc is defined as an auxiliary variable,

representing the difference between the energies of the photonic cavity and the TLS

transition energy. The cavity resonant frequency is re-labeled as ωc → ω, so it can

be identified as system’s Hamiltonian frequency, hence the modified Hamiltonian is

shown in equation (2.3), which will have a more convenient representation.

Hn
JC =

[
nω g

√
n

g
√
n nω −∆

]
. (2.3)

The eigenvalues of the Hamiltonian above are E±n = nω + ∆
2
± χn with χn =√(

∆
2

)2
+ g2n, then the eigenvectors are |n−〉 =

√
n |n, ↓〉 − (χn − ∆

2
) |n, ↑〉 and

|n+〉 = g
√
n |n, ↓〉 + (χn + ∆

2
) |n, ↑〉, where |n−〉 corresponds to the lowest energy

eigenvalue for n total excitations(E−n = nω + ∆
2
− χn), and |n+〉 corresponds to the

highest energy eigenvalue.

Figure 2.2: Graphical representation of the Jaynes-Cummings model energy con-
stants which

From the definition of χn is observed that the quantities in the eigenvectors satisfy

a trigonometrical relationship, as shown in figure 2.2, from which the mixing angle θn

is defined as tan(2θn) = g
√
n

∆/2
to simplify the expressions for the eigenvectors shown
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in equation (2.4). This method to represent the JC Hamiltonian is known as the

Polariton mapping [49]

(
|n−〉
|n+〉

)
=

[
cos(θn) − sin(θn)
sin(θn) cos(θn)

]
·
(

|n, ↓〉
|n− 1, ↑〉

)
. (2.4)

Equation (2.4) shows the polariton mapping on the left side, where the states

|n±〉 are labeled according to their corresponding eigen-energies E±n , hence these

are associated with different energy branches. The equation (2.4) also shows how to

perform the linear transformation between the cavity-TLS system to the polariton

mapping where the states of the form |n, ↓〉 = |n〉⊗|↓〉 are the tensor product between

the cavity system basis and the TLS system basis.

2.2.2 The Energy spectrum of the Jaynes-Cummings model

Consider the energies of the system given by E±n = nω+ ∆
2
±χn(∆), then is clear that

is possible to study the system and its properties based on the detuning parameter ∆,

while keeping in consideration that represents the mismatch between the cavity and

TLS resonant frequencies. Figure 2.3 shows the energy spectrum of an empty cavity

and compares them with the energies of the JC model in the resonant case (∆ = 0).

For the empty cavity in figure 2.3 (Left) is possible to observe the harmonic energy

spectrum, so that the spectrum is coherent. For the JC system at the right side

of figure 2.3, the energy of the system is not uniquely determined by the number

of polaritons (n), in fact for a given number of polaritons there are two distinct

energy levels, which allow for the identification of different branches, the lower branch

characterized by E−n and |n−〉 and the upper branch characterized by E+
n and |n+〉,

which has a higher energy than the lower branch. In comparison with the empty

cavity spectrum, the light matter interaction in the JC model produces a dopant

splitting of the spectrum, and the spectrum becomes anharmonic as there is a non
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uniform energy gap between the different branches and a non uniform energy gap

between different number of excitations in the same branch.

Figure 2.3: The energy spectrum of the Jaynes-Cummings model in the resonant
case. Left shows the spectrum of an empty cavity of frequency ωc. Right the modified
spectrum through the interaction between the cavity and the two level system, where
for each total number of excitations (polaritons) the lower and upper branch can be
observed, associated to the frequencies ωP− = 1

~E|1−〉 and ωP+ = E|1+〉 respectively.

There is another case of interest in the JC model, which is given by the off-

resonance case ∆� g in such scenario shown in figure 2.4, the light-matter interac-

tion losses its influence over the dynamics of the system so that the cavity behaves

almost as if it was empty, as there is a lifting of the lower branch which matches
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with the empty cavity spectrum. Although the JC model has a similar spectrum to

an empty cavity, there are still two distinct branches, the lower branch for which the

TLS remains empty, and the upper branch where the TLS remains occupied for any

number of photons in the cavity. The lack of resonance between the TLS and the

cavity mode, means that a photon in the cavity can not effectively interact with the

TLS, which means that the TLS and the cavity are not coupled anymore.

Figure 2.4: The energy spectrum of the Jaynes-Cummings model in the off-resonant
case (∆ � g). Left shows the spectrum of an empty cavity. Right the modified
spectrum through the interaction between the cavity and the two level system, where
the lifting of the lower branch to match the empty cavity spectrum can be observed

A more detailed analysis of figure 2.4 shows that the spectrum of both branches
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becomes harmonic. This can be understood through the analysis of the energies

E±n = nω − ∆
2
± ∆

2

√
1 + n

( ∆
2g )

2 which in the limit ∆ � g becomes E−n = nω and

E+
n = nω + ∆. The spectrum of the polariton branches in the JC model as function

of the detuning is shown in figure 2.5

Figure 2.5: The energy spectrum of the Jaynes-Cummings model for multiple number
of polaritons as function of ∆. This figure shows how the energy of the lower polariton
branch is always smaller than for the upper polariton, and that these do not cross
at any point. [50]

2.2.3 Photon Blockade

One of the most interesting phenomena which can be observed in a non linear optical

cavity is the appearance of the photon blockade[36]. If the frequency of the resonator

mode and the two-level system are close to resonance the effective photonic repulsion

prevents the presence of more than one excitations in the resonator.Experimentally

this can be demonstrated using the setup shown in figure 2.6, in which a coherent
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photon source is used to drive a JC cavity, but it can only populate the |1−〉 state,

never higher energy levels[36].

Figure 2.6: Schematic representation of the experimental setup used to study the
photon blockade. A JC cavity is pumped with a coherent beam of photons, however
due to the photon blockade, they can only pass through the cavity at a reduced rate,
which is measured with the detectors [36]

2.3 The Bose-Hubbard Model

With the development of the quantum theory, also came the development of statist-

ical theory for the different types of particles: Fermi statistics for fermions and Bose

statistics for bosons[31]. From the statistics of a gas of particles arise the properties

of the system such as the Fermi pressure and the Bose-Einstein condensate (BEC);

however, is the interplay of particles with different statistics that give rise to more

interesting phenomena such as superconductivity, superfluidity, and the fractional

quantum hall effect[52, 53].

Is in this context that the Bose-Hubbard model[54] is used, as it has the optical

non-linearities that give rise to interesting phenomena, and being a multiple cavity

model, has the potential to simulate phenomena present in Many-Body systems
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2.3.1 Photon Blockade in the Bose-Hubbard model

The Bose-Hubbard model describes a system of coupled non-linear optical cavities[54],

in a similar manner as the Hubbard model[55] describes spin-chains.

HBH = µ

N∑
i

ni − J
N∑
〈i,i′〉

(a†iai′ + h.c.) + U
N∑
i

ni(ni − 1) (2.5)

The Bose-Hubbard model Hamiltonian, shown in equation (2.5), describes a sys-

tem on non-linear optical cavities in the grand-canonical ensemble where µ represents

the chemical potential for the photon occupation for each cavity, U represents the

on-site photon-photon repulsion originated by the non-linearities of the cavity, J

represents the nearest-neighbors hopping strength, or the strength of the coupling

between the cavities, a†i (ai) is the creation(destruction) operators for the photons

inside the cavity and ni represents the total number of photons inside the cavity.

The Bose-Hubbard model exhibits a photon blockade effect produced by the on-

site repulsion of the cavities. In this model, the competition between the on-site

repulsion and the hopping produces a Mott-Insulator/Superfluid phase transition

as shown in figure 2.7, where the Mott-Insulator phase is the result of a strong

on-site repulsion ( J
U
� 1), resulting in localized photons. On the other hand the

Superfluid phase is the result of a weak on-site repulsion ( J
U
� 1) where the photons

are delocalized.
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Figure 2.7: Phase diagram of the Bose-Hubbard model, which shows multiple Mott-
Insulator lobes and the superfluid phase, which depend on the competition between
the chemical potential (µ) and the hopping (J)[56].

Figure 2.7, also shows the effect of the chemical potential on the phase diagram

in the form of multiple Mott-Insulator lobes. Each lobe represent a different integer-

filling factor, meaning that the ration between the total number of photons of the

system and the number of cavities is an integer number, so the first lobe (n = 1),
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means that there is a single photon in each cavity.

2.3.2 Variance in the BH model

In the Mott-Insulator phase the excitations are localized. In contrast, the Superfluid

phase is characterized by the delocalization of the excitations. The order parameter

describing this phase transition, is the total variance.

∆N =
N∑
i

∆Ni =
M∑
i

1

T

T∫
0

dt
(
〈n2

i 〉 − 〈ni〉
2) , (2.6)

with ∆Ni is the time averaged variance for the site i. When the total variance is

close to zero the excitations are localized at the different sites of the system. In this

case, the number of photons in each site does not fluctuate. On the other hand, when

the system is in the superfluid phase, the excitations are delocalized and can move

freely through the different sites of the arrangement. Thus the number of photons

in each site has larger quantum fluctuations[26].

2.3.3 Bipartite Fluctuation

A generalization of the previous order parameter are bipartite fluctuations, defined

as

FA =
∑
i,j∈A

Ci,j =
∑
i∈A

1

T

T∫
0

dt (〈ninj〉 − 〈ni〉 〈nj〉) (2.7)

where A is a partition of the system, and Ci,j are the time averaged correlation

coefficients between cavities i and j, notice that for Ci,i = ∆Ni. The bipartite

fluctuations was introduced as a different order parameter to characterize the Bose-

Hubbard’s model Mott-Insulator/Superfluid transition. The fluctuations of a system

provide a description of the of the exchange of excitations of the system with the

environment. For a closed system the fluctuations are zero. For a closed system

divided in two partitions, then the fluctuations of both are equal in magnitude.
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The use of bipartite fluctuations, require the analysis of multiple partitions

schemes of the system, so it allows for the study of long range correlations. There-

fore are better suited to quantify a system going from an ordered state to a dis-

ordered state, in which the long range correlations are increased[59]. Bipartite fluc-

tuations exhibit scaling behavior between the gapless and gapfull phases according

to the dimension of the system, which allows for the detection of quantum critical

points[60, 61]

2.4 The Jaynes-Cummings Hubbard model

The JCH model an extension of the traditional JC model [37, 39] using the Hubbard

model [62] as inspiration for multiple coupled cavities. The first characteristic of the

JCH model is that being a multiple cavity system, in a similar fashion as other Hub-

bard based models, is that it can exhibit behaviors that mimics the phenomenology

studied in many body physics. The JCH model is built from multiple JC cavities

coupled through photon hopping.

HJCH = ωc

N∑
i

HJC − J
N∑
〈i,j〉

(
a†iaj

)
(2.8)

The JCH model shown in equation (2.8) as a collection of JC cavities, coupled

through the hopping term a†iaj, where HJCH is the JCH Hamiltonian. This model

has been used in the study of multiple many-body physics phenomena [39, 49, 63,

64, 65, 66, 67]
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Figure 2.8: Phase diagram of the JCH model as described in the literature[49].
This figure, shows the phase boundary between the Mott-Insulator phase and the
superfluid phase in the grand-canonical ensemble. The competition between the
chemical potential (µ) and the cavity frequency determines the Mott-Insulator phase
lobes for different occupation number. The lobes limit depend on the competition
between the hopping (J) and the light-matter coupling (g), and the shape is affected
by the detuning ∆ compared with the light-matter coupling

Figure 2.8 shows the Mott-Insulator phase boundary of the JCH [49]. Notice

that at large hoppings or large detunings, the photon blockade is no longer dominant,

so the system becomes superfluid.

In a similar way as the JC model, the JCH model has conserved quantities the

total number of excitations in the array of cavities N =
∑M

k Ni as a conserved quant-

ity of the Hamiltonian, however an analytical treatment of the system is not practical

anymore, as number of elements in the matrix representation of the Hamiltonian
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grows exponentially with the number of sites, and even if diagonalized there is no

clear interpretation for the states, in contrast to the single cavity Hamiltonian.

2.4.1 Polariton Mapping in the JCH model

It was previously established that is not practical or possible to diagonalize the JCH

model from the analytical perspective, as the difficulties involved in tracking the

number of states for any given configuration prevent the development of the physical

intuition of the behavior of the model, therefore it can be convenient to consider the

polariton mapping for the JC model from equation (2.4).

From the polariton mapping, is possible to define the creation and annihila-

tion polariton operators[49] P †n± = |n±〉 〈0| so that the JC Hamiltonian is writ-

ten as HJC =
∑

n,α∈{±}EnαP
†
nαP

†
nα, and the photon creation operators for a single

cavity are written as a† =
∑

n,α,β tnαβP
†
nαP(n−1)β, where the coefficients tnαβ =

〈nα| a† |(n− 1)β〉 represent the probability amplitude of interchange in polariton

number in the cavity and the mixing of polariton branches.

tn−− =
√
n cos(θn) cos(θn−1) +

√
n− 1 sin(θn) sin(θn−1),

tn−+ =
√
n cos(θn) sin(θn−1)−

√
n− 1 sin(θn) cos(θn−1),

tn+− =
√
n sin(θn) cos(θn−1)−

√
n− 1 cos(θn) sin(θn−1),

tn++ =
√
n sin(θn) sin(θn−1) +

√
n− 1 cos(θn) cos(θn−1).

(2.9)

Equation (2.9) shows the values for all the coefficients tnαβ[63]. Finally the po-

lariton mapping for the full JCH model[63] is

HJCH =
∑
i

∑
n,α

EnαP
†
nαiPnαi

−J
∑
i,j

Aij
∑
n,n′

∑
α,α′,β,β′

tnαβtn′α′β′P
†
nαiP(n−1)βiP

†
(n′−1)β′jPn′α′j,

(2.10)

where Ai,j is the connectivity matrix given by Aij = 1 if the cavities i and j are

connected, and Aij = 0 otherwise.
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2.4.2 Phase transition in the JCH model

One of the most interesting phenomenon observable in the JCH model is the availab-

ility to study quantum phase-transitions due to the Mott-Insulator/Superfluid phase

transitions. For the analysis of the phase transitions, is convenient to consider that

there are two basic limits for the JCH model: the atomic limit J � g and the

hopping dominated limit J � g[49].

Atomic limit J � g

In the atomic limit of the JCH model, the hopping term of the Hamiltonian is

considered as a perturbation of the system, so the analysis of the phase transition

can be developed through the formalism developed for a single cavity JC model.

In a single cavity JC model, it was established that for the resonant case, the

mismatch between the energy levels with different number of excitations prevents the

change in the polariton number for the cavity using a specific photonic source, hence

a JC cavity driven by an optical source with the cavity frequency can only hold a

single excitation with that energy, and the same source cannot force the system to

a double exited state. This phenomenon is known as photon blockade[36]
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Figure 2.9: Phase transition in the JCH model defined by a change in the order
parameter 〈∆N〉T as a function of the detuning ∆

g
This figure shows the robustness

of the phase transition to the coupling with the environment modeled through the
parameters κ and γ which represent the cavity and TLS decay rates. In this figure
the hopping strength is A [39].

Now for a multiple cavity system, the photon blockade phenomenon is observed

in absence of an energy driver. In a JCH system prepared with a single polariton for

each cavity, the evolution of the photonic dynamics exhibit the photon blockade as

the lack of occupancy of higher energy states and the low variance of the polariton

number for each site[39].The phase transition is observed by changing the detuning

between the cavity and the TLS, the higher energy states for any given cavity can be

occupied with probability greater than zero. similarly the variance of the polariton

number for each site is also increased and can be used as order parameter in order
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to characterize the phase transition, as shown in figure 2.9

Hopping domiated limit J � g

For the Hopping dominated limit in the JCH model, the TLS light-matter interaction

can be treated perturbatively, regardless of the detuning, so at this limit the system

is considered to be mainly an array of coupled cavities where the photons can move

mostly free, so the increase of the hopping constant (J) drives the phase transition

from the Mott-Insulator to the Superfluid phase.

Figure 2.10: Phase transition in the JCH model defined by bipartite fluctuation as
the order parameter δn2 as a function of the hopping parameter[61]. In this figure
the hopping parameter is t and the light matter interaction is β

Figure 2.10 characterizes the quantum phase transitions using bipartite fluctu-

ations of the polariton number for the different partitions of the system[61, 60]. Bi-

partite fluctuations show that the phase transition is an universal phenomena which
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does not depend on the order parameter used for describing the system.

δn2(M) =

〈(∑
i∈M

ni

)2〉
−

〈∑
i∈M

ni

〉2

(2.11)

Equation (2.11) shows the method to compute the bipartite fluctuations of a given

size M . Another mechanism to compute the bipartite fluctuations is to use the two-

point correlation functions Cij = 〈ninj〉 − 〈ni〉 〈nj〉 so that δn(M) =
∑
{i,j}∈M Cij.

2.5 Conclusions

Coupled Cavity QED systems, provide a mechanism to bridge the different scales

of the physical phenomena involved, on one side the individual interactions between

atoms, and the macroscopic phenomena in condensed matter systems, as they provide

with a platform to perform controllable and precisely measurable experiments[25]

involving only a few cavities, only each one encompasses a wealth of phenomena,

such as the photon blockade, as was already discussed 2.2.3, in order to study and

broaden the understanding of Many-Body physics. In this context, the Jaynes-

Cummings-Hubbard (JCH ) model is used as a Many-Body quantum simulation

tool for the research of new physical phenomena.

This section has provided an introduction to the CQED models, starting with

the jaynes-Cummings model, its theoretical description and properties analysis. Fol-

lowing the JC model, we discussed how a Coupled resonating array is capable of sim-

ulating many body physics and in particular the Mott-Insulator/Superfluid phase

transition.

We also discussed how this Mott-Insulator/Superfluid phase transition can be

analyzed in the BH model and JCH model through different order parameters that
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are in agreement, and in particular that for the JCH model there are multiple mech-

anisms to trigger the phase transition through the competence between the hopping

and light-matter interaction, or through the detuning of the cavity.
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Chapter 3

Quantum Phase Transitions:
Topology and Nucleation

3.1 Introduction

In the previous chapter, we discussed different CQED model, and their properties,

as well as the Mott-Insulator/Superfluid phase transition in the Bose-Hubbard and

Jaynes-Cummings Hubbard models. This chapter provides a small introduction to

phase transitions and quantum phase transition from a theoretical perspective in-

cluding the classification of phase transitions and the use of order parameters to

describe them.

This chapter, also provides an introduction to the numerical analysis tools used

through this work, to validate the procedure and ensure the correctness of the results,

before describing the effect of topology on the phase transition in Coupled resonating

arrays (CRAs).

3.2 Phase Transitions

Phase transitions are examples of collective phenomena, because phase transition

arise through the mutual interaction of large groups of atoms, molecules, spins, etc,

rather than the single behavior [28]
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Statistical mechanics provides a mechanism to describe an extensive physical

system, and also provides a theoretical framework for thermodynamics, when the

system is in the thermodynamic limit. A system is considered to be in the thermo-

dynamic limit where the number of particles is large enough to be considered infinite

(N → ∞), and the volume of the same system is also considered infinite(V → ∞),

however the particle density is still finite(N
V
→ ν). [68]

The thermodynamic limit is important, not only because it provides a link

between statistical mechanics and thermodynamics, but also, because is in this limit,

where the different statistical ensembles can be considered equivalent, therefore al-

lowing for the rigorous mathematical study of physical phenomena.

The order parameter concept arise in the landau theory of phase transitions

providing a description of the local macroscopic state of the system. Within this

context, the order parameter is conveniently chosen for the phase transition to

be described, thus in ferromagnetism the local magnetization is the order para-

meter, while in the superconductivity theory, the order parameter is the macroscopic

wavefunction[30].

3.2.1 Phase transition classification

As there are multiple systems undergoing phase transitions, these transitions have

different characteristics, therefore there is the need to classify the phase transitions

in categories which share common properties. Ehrenfest devised the most influential

classification mechanism of phase transitions[69], where he differentiated between

first and second order phase transitions, based on the Gibbs free-energy description.

Consider a system on the neighborhood of a phase transition, with Gibbs free

energies g1 and g2 for the respective phases, so that at the transition point g1 = g2.

The system undergoes a first order phase transition if the first derivative of the Gibbs
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energy over thermodynamic variables has a discontinuity across the phases(
∂g1

∂T

)
P

−
(
∂g2

∂T

)
P

6= 0 (3.1)(
∂g1

∂P

)
T

−
(
∂g2

∂P

)
T

6= 0, (3.2)

where T and P are the temperature and the pressure respectively[68]. Second order

phase transitions, exhibit a discontinuity on the second derivative of the Gibbs free

energy. Higher order phase transitions could be defined, however no additional in-

formation can be obtained through a finer grained representation, so the custom is

to label all higher order phase transitions a second order[68].(
∂ng1

∂T n

)
P

−
(
∂ng2

∂T n

)
P

6= 0 (3.3)(
∂ng1

∂nP

)
T

−
(
∂ng2

∂P n

)
T

6= 0. (3.4)

3.2.2 Quantum Phase Transitions

Most phase transitions have a thermodynamical origin, where the ordering of the

system is destroyed by thermal fluctuations, as in the solid-liquid transition where

the lattice order is destroyed, or the ferromagnetic transition at Curie point, where

the thermal fluctuations destroy the magnetic order. Quantum phase transitions, are

a phenomenon occurring at low temperatures, where the system order is destroyed

by quantum fluctuations derived from Heisenberg uncertainty principle, and become

the example of a wide array of interesting phenomena such as the rare-earth magnetic

insulators, and the already mentioned superconductivity and the liquid helium phase

transition[70].

Just as in the separation between classical mechanics and quantum mechanics,

quantum phase transitions can only occur in systems where quantum mechanics is

dominant, which means that quantum fluctuations dominate over thermal fluctu-
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ations (~ω � kBT ); this is possible only at low temperatures and smaller scale

systems.

Classical phase transition theory provides insights for quantum phase transitions[70],

such as the description of the phase transition through order parameters and the

analysis of the classical and quantum crossover. However classical theories cannot

provide a complete description of quantum phase transitions due to the prevalence of

quantum phenomena. Which prevents an adequate mapping between classical and

quantum descriptions, due to phenomena such as the berry phase which does not

have a classical counterpart. Similarly the decoherence time rules over the dynamics

of quantum systems, which does not have an analogue in classical phase transitions

Considering that quantum phase transitions occur close to absolute zero temper-

atures, it becomes useful to analyze the phase transitions through the perspective the

singularities in the ground energy eigenstates. Therefore a first order quantum phase

transition is produced by single (a small number) crossings of the ground states, and

second order phase transitions are characterized by multiple ground states.

3.2.3 Nucleation and Domains formation

First-order transitions are characterized by the phase coexistence due to local do-

mains nucleation. In a nonequilibrium metastable state, thermal (or quantum) fluc-

tuations drive small fractions of the system to be locally stable forming a “nucleus”

[31]. For instance, the vapor-liquid phase transition, where a supercooled vapor is a

meta-stable phase, so is expected to transition into the liquid phase. This process

is mediated by fluctuations in which water droplets are continuously formed and

destroyed. Nonetheless statistically some droplets will be large enough to be stable,

forming a condensation nucleus around which the rest of the vapor will become li-

quid until reaching equilibrium. In a similar fashion, magnetic materials subject
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to a strong enough magnetic field will change their magnetization surrounding the

different magnetization nucleus[71].

3.3 Phase transition in JCH and BH models

In this section we show that the phase transition described in terms of the order

parameter is a universal characteristic and can be observed in both the Jaynes-

Cummings-Hubbard and the BH models

3.3.1 Phase Transition in the JCH model

Let us consider a 2-sites (Dimer) JCH array as shown in figure 3.1, described by

the JCH hamiltonian from equation (2.8), which for a Dimer configuration becomes

HJCH = HJC
1 + HJC

2 − J(a†1a2 + a†2a1), now considering the atomic limit for the

JCH model (J � g), and having the system set up in a particular detuning ∆ = τ ,

define the intial state |Ψ0〉∆ = |1−〉1 ⊗ |1−〉2, and let the system evolve in time for

a time T > J−1, which is the natural timescale for the JCH model as it represents

the minimum time the system needs to evolve so that the effect of the hopping is

significant.

1 2

Figure 3.1: A graph representation of a 2-sites (Dimer) Coupled resonating arrays
(CRA), each node of the graph represents a cavity, and each line represents a coupling
between nodes
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Now for the simulations, the following constants values were used for the para-

meters of the system considering the cavity frequency ω as the unity, the light-

matter coupling was defined as g = 10−2ω and the hopping as J = 10−4ω, then

from the simulations take the data for the expectation values for the operators

〈N1〉,〈N2〉,〈N2
1 〉,〈N2

2 〉 and 〈N1N2〉 as function of time, which means 〈N1〉 = 〈Ψ(t)|Ni |Ψ(t)〉.

Then we take their respective time average up to T = J−1, therefore 〈N1〉T =

1
T

∫ T
0
〈N1〉, in order to build the order parameter ∆N =

∑
i={1,2}(〈N2

i 〉T − 〈Ni〉2).

Repeating this process for different values of the detuning allows to build the phase

transition diagram for a Dimer JCH network shown in figure 3.2, where is possible

to observe that the sharp rise of the order parameter when the for higher values of

the detuning and that the order parameter of both sites is equal, which is consistent

with the symmetry of the network.
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Figure 3.2: Phase transition Diagram for a Dimer JCH network, using as order
parameter the variance for site
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3.3.2 Phase Transition in the BH model

To verify the procedure for the BH model, a similar mechanism was used, considering

again a Dimer CRA as shown in figure 3.1, but in this case the system Hamiltonian

becomes HBH = ω(N1 +N2)− U (N1(N1 − 1) +N2(N2 − 1))− J(a†1a2 + a†2a1). For

numerical simulations, the initial state of the system is prepared with a single photon

in each cavity (|Ψ0〉 = |1〉1 ⊗ |1〉2) with the hopping strength of the system was set

to J = 10−4ω. Now for a given on-site repulsion (U ∈ [10−2J, 102J ]) let the system

evolve for a time T > J−1 and in the same manner as proceeded for the JCH model,

build the order parameter as the time averaged variance for site at every on-site

repulsion simulated in order to get the phase diagram shown in figure 3.3. Notice

again that due to the symmetry of the network, both sites have the same order

parameter through the phase transition, which has the same overall second order

nature as the one shown in the JCH model
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Figure 3.3: Phase transition Diagram for a Dimer BH network, using as order para-
meter the variance for site

Now that the method for obtaining the phase transition for both models has been

shown to be successful, it can be used with confidence moving forward.

3.4 Topology and Nucleation in the JCH model

This section discusses the effect that the topology has on the dynamics and the phase

transition of CRA, leading to the previously unknown discovery of first order like

phase transition for the JCH model and accompanying nucleation.

Before discussing the topology effects in a JCH CRA network, is convenient to

discuss the effect of using the quench dynamics in the system. A quantum system

subject to an abrupt change, reflected in the Hamiltonian, evolves through quench

dynamics. For the JCH model, an abrupt change in the detuning parameter ∆

triggers the quench dynamics



36

(
|n−〉
|n+〉

)
=

[
cos(θn) − sin(θn)
sin(θn) cos(θn)

]
·
(

|n, ↓〉
|n− 1, ↑〉

)
. (3.5)

The sudden change in the detuning ∆, produces a change in the basis of the

system, so in the new basis, the initial state is a superposition of the upper and

lower polariton states. For clarity consider a single cavity, where the relation between

the polariton mapping and the photon-TLS exitation is given by equation (3.5) as

discussed in 2.2.1. notice that θn = tan−1(2g
√
n

∆
) is a function of the detuning ∆, so for

an initial state |Ψ0〉 = |n−〉∆0
subject to an abrupt quench ∆0 → ∆1, can be written

in the new basis as |Ψ0〉 = cos(θ∆1 − θ∆0) |n−〉∆1
+ sin(θ∆1 − θ∆0) |n+〉∆1

, therefore

as consequence from quench dynamics the initial state is a linear superposition of

the upper and lower polariton states (∆ 6= 0).

The experimental realization of the JCH model can be achieved through circuit

QED [72, 73] where one might cool down the whole system reaching temperatures

around T0 ∼ 15[mK]. In this case, the system will be prepared in its global ground

state |G〉 =
⊗L

i=1 |0,−〉i, with L the total number of sites. Then, one can apply

individual magnetic fields on the TLSs, each implemented via a transmon qubit [74],

such that the resonance condition ∆ = 0 is achieved. This way one can address

individually each cavity with an external AC microwave current or voltage tuned

to the transition |0,−〉i → |1,−〉i, with a driving frequency ωD = ω − g, such that

the system will be prepared in the desired initial state |ψ0〉 . The sudden quench of

the detuning can be achieved by applying magnetic fields to the transmon qubits in

order to reach the desired superfluid phase.
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Figure 3.4: First and Second order phase transition diagram simulated in a dimer
array. Quench are shown in Red, and adiabatic dynamics is shown in blue for
comparison

Figure 3.4 shows the phase transition for a JCH model dimer array subject to

adiabatic dynamics (blue) and quench dynamics (red). This figure shows that for

low detunings the system remains in the Mott-Insulator phase, while for large de-

tunings the system goes to a superfluid phase, regardless of the involved dynamics.

For adiabatic dynamics notice the sharp increase in the order parameter during the

transition, and its stabilization after reaching the superfluid state, which is a defin-

ing characteristic of a second-order type phase transition. In contrast, the quenched

dynamics exhibits a peak in the phase transition diagram before settling to its su-

perfluid value, this behavior is consistent with a first-order like phase transition,

analogous to the Metal-Insulator transition of oxides [75].
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3.4.1 Domain Nucleation in the JCH model

Now we see that the topology of the array dominates the phase transition in this

system. Indeed, let us consider four CRA, which can be arranged in six different

topologies as shown in figure 3.5. Studying a reduced number of cavities is different

from the usual approach of using large number of cavities for simulating many-

body phenomena, as with few cavities is already possible to simulate many-body

phenomena, but we focus on the topology of the cavity array to find the key factors

which dominate the phenomena. Thus we chose only 4 cavities arrays as a good

compromise between the variety of arrays and the number of possibilities allowing

for a systematic analysis of the properties of the arrays.

Figure 3.5: Schematic representation of all the possible topologies that can be ar-
ranged for four-sites JC nodes. Notice that each site has a number which represent
the total number of sites to which it is connected

Figure 3.6 compares the results obtained through the analysis of the variance for

site, and the order parameter obtained through bipartite fluctuations for a 4-sites
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array connected in a cyclic fashion.
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Figure 3.6: Comparison between the different order parameters to describe the phase
transition for quench dynamics. (Top) Phase transition described using the variance
for site. (Bottom) Phase transition described using bipartite fluctuations. Notice
that regardless of the order parameter used, the nature of the phase transition re-
mains the same

Considering that the nature of the phase transition remains the same regardless of

the order parameter chosen, is possible to analyze the phase transition for each array
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as shown in figure 3.7, which shows the order parameter as function of the detuning,

which reinforces the idea of using these topologies to determine the influence over

the phase transition.
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Figure 3.7: This figure shows the Mott-Insulator to superfluid phase transition for
the different 4-sites arrays, where is possible to observe that each different topology
has a different transition.

Now that there are clear difference between the each array, the following will

show that the key factor driving the difference between the multiple topologies is the

local connectivity of each site, which is shown in figure 3.8.
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Figure 3.8: This figure shows the phase transition for 2 different arrays, analyzing
the order parameter for each connectivity. Notice that all the sites that have the
same connectivity, here noted by k, have the same behavior

Careful analysis of figure 3.8, shows that the number of local connections, or

connectivity, of each site dominates the phase transition, determines the detuning at

which the phase transition starts, which is different for each site, and also determines

the superfluid phase order parameter, which confirms that the local connectivity is

the key factor in the phase transition of quench dynamics JCH model.

Now that is clear that the connectivity dominates the quenched dynamics phase

transition, and in particular the limit value of the superfluid phase order parameter,

is possible to extend the analysis beyond 4 sites, up to 5 sites with carefully selected

arrays to show that the averaged standard deviation depends linearly on the con-

nectivity of the CRAs As shown in Fig. 3.9(a). Consider a set of CRAs with four and

five interconnecting resonators as shown in Fig. 3.9(b). In contrast to these results,
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the adiabatic dynamics does not exhibit a monotone or linearly growing behavior as

function of the connectivity.
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Figure 3.9: a) Standard deviation of the superfluid phase as a function of the con-
nectivity. Adiabatic dynamics (blue circles) and quench dynamics (red squares).
A set of CRAs with four and five interconnecting resonators, as shown in b) are
considered. Continuous lines have been added as a guide to the eye.

3.4.2 Mean field theory and Nucleation

In the thermodynamics limit, the emergent superfluid phase behaves as a quantum

liquid [37]. Superfluidity is achieved by means of a transition of the excitations from

polaritonic to photonic. In order to describe the simulated superfluid phase in our
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system, we introduce the mean-field photonic order parameter [37] ψ in which we use

the ansantz ψ = 〈ai〉. Using the decoupling approximation a†iaj ≈ 〈a
†
i〉aj + a†i〈aj〉 −

〈a†i〉〈aj〉, the resulting mean-field JCH Hamiltonian can be written as

HJCH =
∑
i

HJC
i − J

∑
i

ki(ψa
†
i + ψ∗ai). (3.6)

Therefore, the simulated Mott-Insulator phase is described by the on site repulsion,

which suppresses the fluctuations of the number of per site excitations |ψ| = 0. On

the contrary, the superfluid phase is dominated by the hopping and the quantum

fluctuations |ψ| 6= 0. Introducing the identity σ+σ− + σ−σ+ = 1, we obtain an

effective light-matter coupling, since it retains the mixed products of photonic and

two level operators,

hLMi = g̃ia
†
iσ
−
i + g̃†iaiσ

+
i + h.c. (3.7)

Here g̃i = 1g−Jkiψ∗σ−i is the effective light-matter coupling per site, which therefore

turns out to be an operator. In the simulated superfluid phase the atomic transitions

are expected to be suppressed against the photonic dressed states. Moreover, the

total excitation number does not change, hence when the photonic excitations in-

crease the atomic excitations decrease. Note that when g̃i = 0, i.e. when there are

no hopping or topological effects,

〈σ+
i 〉 =

g

Jki

1

ψ
, (3.8)

which indicates that the increase of the photonic states leads to a reduction of the

atomic excitations, due to the conservation of the number excitations. Figure 3.10

shows the effect of the quench dynamics on the simulated phase transition of the

JCH model for different arrays. In this case the nucleation of superfluid states

emerges due to the variation of the order parameter, according to Eq. (3.8). In the

Mott-Insulator state 〈σ+
i 〉 > 0∀i, when the detuning is increased 〈σ+

i 〉 decreases
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by a factor 1/(kiψ), until the superfluid phase is reached. Therefore the mean field

theory strongly supports the scaling law of the order parameter shown in figure 3.9(a)

; namely, as the connectivity of CRAs is increased locally, the light superfluid phase

is achieved for a smaller detuning strength, which is evindence for nucleation.
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Figure 3.10: Numerical simulation of the quench dynamics using the variance per
site as order parameter. The full set of four node arrays, with (a-b) three; (c-d)
four; (e) five; and (f) six connections. Connectivity per site a) (1,2,2,1), b) (3,1,1,1),
c) (2,2,2,2), d) (3,2,2,1), e) (3,2,3,2), and f) (3,3,3,3). Notice that as the local
connectivity increases, the system reaches the superfluid phase with a lower detun-
ing strength. For each array and from left to right we have considered parameters
log (∆/g) = (0.5, 0.7, 0.75, 0.8), and g = 10−2ω, J = 10−4ω, where ω is the resonator
frequency.
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3.4.3 Topology effect on Adiabatic dynamics and BH model

In the previous section, the topology effect on the quench dynamics for the JCH

model was demonstrated, while the superfluid phase of adiabatic dynamics showed

no obvious dependence of the topology. Figure 3.11 shows the little dependence of

the order parameter in the superfluid phase of the BH model as function of the local

connectivity. This reinforces that the quench dynamics is required for the appearance

of nucleation and ties the topology to the superfluid phase.
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Figure 3.11: Standard deviation of the variance of the polariton occupation number
as a function of connectivity in the Bose-Hubbard model. (Inset)Standard deviation
of the variance of the polariton occupation number as a function of connectivity in
the JCH model.

3.5 Conclusions

This chapter demonstrated that quench dynamics induce a first-order like phase

transition in coupled resonator arrays doped with a two-level system governed by
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the JCH model, where nucleation of simulated superfluid states has been valid-

ated through numerical simulation and by a mean field theoretical approach. In

the quench dynamics the change of the order parameter, is explained by the non

uniform transition from Mott-Insulator to superfluid, which depends on the local

connectivity. Since the quench dynamics exhibits the same behavior independent of

the choice of the order parameter, the standard deviation of the polariton number

or the bipartite fluctuation, the results reveal the universality of the simulated first

order phase transition. In particular, as far as we understand, there is no known

microscopic mechanism for predicting nucleation in first-order phase transitions. In

this context, our results provide an exact geometrical description for the appearance

of domain nucleation due to the number of connections.
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Chapter 4

Light-Matter Anisotropy and
Dimerization

4.1 Introduction

The previous Chapter, showed the effects topology has in Coupled resonator arrays,

and in particular in the Mott-Insulator/Superfluid phase transition of the JCH

model. This chapter focused on the effect that other sources of anisotropy have

on the dynamics of the same model, and how they modify the phase transition, but

first is required to describe the JCH model from the energy perspective for additional

insights of the model.

4.2 Phase Transition from the Energy perspective

Up to this point the JCH model phase transition has been discussed only through

the order parameters that describe the system, however this chapter shows that

additional insight can be obtained through the analysis of the energy of the system

Now to have a better understanding of the related phenomenon, we rely on an

energy level description of the system, nevertheless as the Hamiltonian cannot be

diagonalized, we proceed to describe the energy levels through perturbation theory

for the uniform case using that J � g, therefore we can treat the hopping part



49

of the Hamiltonian as a perturbation over the on-site JC Hamiltonian. The JCH

Hamiltonian can be written in the polariton basis [39, 49] as

HJCH =
M∑
i

∑
n,α

EnαP
†α
in P

α
in

+ J
∑
i,j

Aij
∑
n,n′

∑
α,α′,β,β′

tnαβtn′α′β′P
†α
in P

β
i(n−1)P

†β′
j(n′−1)P

α′

jn′ , (4.1)

where we recognize the JC Hamiltonian as
∑
n,α

EnαP
†α
in P

α
in = HJC with Enα the en-

ergy levels of the cavity for polariton number (n) and polariton branch (α → ±).

P †αin P
β
im = |nα〉i 〈mβ|i are the polariton creation destruction operators for site.

We identify the terms in the Hamiltonian for perturbation theory as HJCH =

H0 + JHhop, where H0 =
∑

iH
JC
i is the unperturbed Hamiltonian, and Hhop as the

perturbation. Choosing the basis for the unperturbed state as

∣∣ψ0
〉

=
M⊗
k

|nkαk〉k (4.2)

so that each state has a unique defined number of polaritons per site and belongs to

a specific polariton branch, the first correction to the energy is

E1
ψ = 〈ψ0|Hhop |ψ0〉

= 〈ψ0|P †αimP
β
i(m−1)P

†β′
j(m′−1)P

α′

jm′ |ψ′0〉

=
M⊗
k

〈nkγk| (|miαi〉 〈mi − 1βi| |mj − 1βj〉 〈mjαj|)
M⊗
k

|n′kγ′k〉

= 〈niγi| 〈njγj| |miαi〉 〈mi − 1βi| 〈mj − 1βj| |mjαj〉 |n′iγ′i〉 |n′jγ′j〉
= δni

mi
δ
n′i
mi−1δ

γi
αi
δβiγ′i
δ
nj

mj−1δ
n′j
mjδ

γj
βj
δ
αj

γ′j

= 0 if |ψ′0〉 = |ψ0〉

(4.3)

For equation 4.3, different basis states were used for the algebra (|ψ′0〉,|ψ0〉) for

simplicity, and later were made the same state as required for perturbation theory.

Also the ortogonality of the polariton basis was used allowing to determine that

E1
ψ ≡ 0, meaning that there is no first order energy correction. Following a similar

procedure, we find that
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Eψ = E0
ψ + J2

∑
k

∣∣〈ψ0
k|Hhop |ψ0〉

∣∣
E0
ψ − E0

ψk

, (4.4)

where |ψ0
k〉 are the unperturbed basis states with different energy than the analyzed

state. At this point we see that unless the energy levels for different states are

near-degenerate, perturbation theory shows that we can properly describe the states

of the system through the unperturbed energy states only. Notice that for precise

analysis in near degenerate state, one would need to identify the relevant degenerate

states and perform the corresponding analysis, however, as we will show next, this

is not necessary for a qualitative picture.

Now that we have a good theory for the energy levels through the perturbation

theory, we proceed to show that the energy levels can also be correlated to the

states of the phase transition in the JCH model, to do so consider the lower branch

unperturbed states for the JCH model with two total exitations |ψ1,1〉 = |1−〉1 ⊗

|1−〉2, |ψ2,0〉 and |ψ0,2〉. Now for an initial state with a single polariton per site in the

resonant case, the system remain in the |ψ1,1〉, consistently with the Mott-insulating

phase. In the superfluid phase the polaritons flow freely through the cavities. For

instance considering an initial state |ψ1,1〉, in the superfluid phase, the states |ψ2,0〉

and |ψ2,0〉 are also allowed.

Now the energies of the described states, are E1,1 = 2ω + ∆ − 2
√

∆2

4
+ g2 for

|ψ1,1〉 and E2,0 = 2ω+ ∆
2
−
√

∆2

4
+ 2g2 for |ψ2,0〉, notice that symmetry dictates that

E0,2 = E2,0. For convenience we define the effective energy levels Ẽ1,1 = E1,1−2ω

g
=

2δ − 2
√
δ2 + 1 and Ẽ2,0 = δ −

√
δ2 + 2, where ∆ = 2gδ, to give a measure of the

energy difference between states with the same number of polaritons.

Figure 4.1 shows that the energies of the JCH Hamiltonian corrected up to first

order quantum perturbation theory describe the phase transition as degeneracy of

the different energy levels so that for states which have different energy levels in the
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dimer (E1,1 6= E2,0) at the Mott-insulating phase (∆ ≈ 0) become degenerate as the

system transitions to the superfluid phase (E1,1 ' E2,0 if ∆ ' g). From this point it

becomes possible to describe and engineer CRA systems to exhibit a wide array of

physical phenomena.
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Figure 4.1: (Top) JCH Mott-Insulator/Superfluid phase transition for a dimer
CRA, as function of the detuning parameter ∆ and described using the total vari-
ance of the polariton number. (Bottom) Effective energy levels as function of the
detuning. The vertical red dashed line shows the point in which both analysis de-
scribe a superfluid phase
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This section has shown that the phase Mott-Insulator to Superfluid phase trans-

ition can be understood from the energy perspective using quantum perturbation

theory as the transition from a gaped energy system considering the spectrum across

the different states of the system in the Mott-Insulator phase to the Superfluid phase

in which the energy spectrum of the system is highly degenerate

4.3 JCH Model detuning anisotropy and reson-

ance.

This Chapter shows that detuning anisotropy exhibits new phenomena for the adia-

batic dynamics of the JCH model, through the interplay between the different access-

ible quantum states. For reference consider Figure 4.2, which shows the archetypal

behavior of the order parameter as a function of the detuning ∆ in the adiabatic

dynamics regime, and for an integer filling factor of one net excitation per site [39].

Here we also show the expectation value for the polariton number for each site.

Notice that although the system is in the superfluid phase, the polariton number

remains constant, this is because in the superfluid phase all states are considered

to be equally probable, therefore a state with two poalritons in one site 1, and 0

polaritons in site 2, has the same possibility than the state with two polaritons in

site 2 and 0 polaritons in site 1 so in average is the same as having a single polariton

in each cavity.
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Figure 4.2: (Top) JCH Mott-Insulator/Superfluid phase transition for a dimer
CRA, as function of the detuning τ and using the total variance of the polariton
number as order parameter with g = 102ω, J = 10−2g and 3 fock states per site.
(Bottom) Expectation value for the polariton number per site, notice that the po-
lariton number per cavity remains constant through the experiment

We show that the introduction of detuning anisotropy in CRA described by the

JCH model, produces a resonant phenomenon which gives rise to the appearance of

directional dynamics through the cavities in contrast to the usual superfluid dynamics

in the model.
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Figure 4.3: (Top) JCH Mott-Insulator/Superfluid phase transition for a dimer
with detuning anisotropy (∆1 6= ∆2) CRA as function of the detuning parameter
and described using the total variance of the polariton number as order parameter
using g = 102ω and J = 10−2g considering up to 3 fock states per polaritonic mode,
Notice the spike in the order parameter on the Mott-insulating phase. (Bottom)
Expectation value for the polariton number per site during the same phase transition,
notice that the polariton number per cavity shows a distinctive occupation difference
at the point in which the order parameter exhibits a spike



55

Figure 4.3 shows the phase transition of a dimer with a detuning anisotropy

(∆2 6= ∆1) in which the index represents the cavities. For analysis purposes, consider

a global detuning parameter (τ), and for each simulation point set the detuning of

the respective cavities as ∆1 = τ and ∆2 = 2τ . The total variance per site in the top

panel of figure 4.3 exhibits a peak on the order parameter in for a global detuning

, in the Mott-insulating phase zone, this peak has a parallel in for the polariton

number for site, which shows a departure from the initial state of one polariton in

each site to different occupation numbers for sites depending on the frequencies of

the cavities.

Figure 4.4 shows the simulation of the time evolution up to T = 6J−1 of the

polariton number for site at log ∆
g

= −0.28, which shows the peak in the order

parameter of figure 4.3. Figure 4.4 shows how the system oscillates periodically

between the states |1−〉 ⊗ |1−〉 and |2−〉 ⊗ |0〉, with no large deviations, which in

turn demonstrate its robust behavior.
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Figure 4.4: Time data for the polariton number for site at the resonant detuning
(log ∆

g
= −0.28). Notice simulations times going over T = 6−1J . At resonant

frequency we observe that the system goes periodically from state |1, 1〉 to |2, 0〉.

Now we show that the energy perspective provides a good theoretical framework

for modeling and predicting resonance, considering the states and respective energies

of uncoupled JC cavities as the initial point of analysis and using that figure 4.4

suggest that the relevant states are |1, 1〉 and |2, 0〉 with their corresponding energies

E1,1 = 2ω+ ∆1

2
+ ∆2

2
− 1

2

√
∆2

1 + 4g2− 1
2

√
∆2

2 + 4g2 and E2,0 = 2ω+ ∆1

2
− 1

2

√
∆2

1 + 8g2 to

determine at which point these energies are equal (E11, = E2,0). Using the definitions

∆1 = 2gδ, ∆2 = 2gαδ, we get that δc = 1√
α2−1

, from which τc = 2g√
α2−1

. Our

numerical simulation gave the closest value for τc from log τc
g

= −0.28 which is in

close accordance to the theoretical value log τc
g
≈ −0.287 considering our simulation

did not cover all the spectrum of possible values for τ .
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Now we proceed to show how our theory can predict the resonance in the phase

transition diagram for a dimer with ∆1 = τ and ∆2 = ατ , from which we get that

ω2 = ω + α(ω1 − ω) so by using the relationship δc = 1√
α2−1

we get the critical

frequency

ωc2 = ω +

√
(ω1 − ω2)2 + 4g2 (4.5)

as function of ω1, thus for any detuning factor α used to study the phase transition,

the point in which the second cavity frequency intersects the theoretical resonant

frequency will mark the resonant point as shown in figure 4.3.
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Figure 4.5: (Color online) (Top) Order parameter as function of the global detuning
(τ) for a dimer network with different anisotropy factors between ∆1 and ∆2 exhib-
iting a peak at different detunings. (Bottom) Critical frequency ω2 at which the
cavities enter in resonance as a function of the detuning, and compared with the fre-
quencies for the cavities according to a detuning factor α; the crossing points between
the cavity frequency according to the detuning factor and the theoretical resonant
frequency predicts the point the phase transition diagram where the resonance is
observed
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Now that the theory has proven itself as predictive, is possible to use it for

designing CRA with specific resonance for a subset of states, as shown in figure 4.3,

where a CRA of three cavities connected in line was designed specifically to exhibit

resonance between the states |1, 1, 1〉 and |0, 3, 0〉, so at no point a single cavity

actually have 2 polaritons, but goes straight to three, which shows the predictive

power of our analysis and provides a designing mechanism for JCH CRA which

exhibit new phenomena
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Figure 4.6: Time data for the polariton number for site at the resonant detuning
(log ∆

g
= −0.2132). Notice simulations times going over T = 12−1J . At resonant

frequency we observe that the system goes periodically from state |1, 1, 1〉 to |0, 3, 0〉.

We have proven that through the individual manipulation of the TLS in a JCH

model, is possible to induce a resonant phenomenon which is both highly configurable

and robust. Furthermore, although is possible to tailor the anisotropy and structure



60

of the array, the exact dynamics is still to be completely determined, therefore the

resonance could provide additional understanding of the JCH model.

4.4 Hall effect in JCH model

This section shows that through the analysis of the JCH model phase transition from

the energy perspective and building a system with light-matter coupling anisotropy,

is possible to engineer a stepped phase transition with a similar profile to the quantum

hall-effect conductivity behaves under magnetic influence.

1

1

2

0.1

3

0.1

Figure 4.7: Tree sites CRA connected in a cyclic fashion, with anisotropy in the
light-matter couplings between the TLS and the cavity frequency

Consider a 3-cavity CRA system connected in a cyclic formation as shown in
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figure 4.4, with light-matter coupling anisotropy engineered so that for one cavity is

g1 = 10−2ω = g and for the other two cavities g2 = g3 = 10−1g, while the hopping

strength remains constant for all connections at J = 10−2g.

We show that consistently with the theory described in 4.2, this system exhibits

a 2-step superfluid phase transition as the different energy levels become degenerate

to the initial state |ψ0〉 = |1, 1, 1〉 for adiabatic dynamics over the lower polariton

branch. Considering the effective energies for the meaningful states |ψ0〉 = |1, 1, 1〉,

|ψ1〉 = |1, 2, 0〉 and |ψ2〉 = |2, 0, 1〉 in which |ψ1〉 represent the process in which the

sites labeled as 2 and 3 transition to a partial superfluid and |ψ2〉 represents the

process in which the sites labeled as 1 and 2 transition to a partial superfluid, we

have that their corresponding effective energies are

Ẽ1,1,1 = 3δ −
√
δ2 + 1− 2

√
δ2 + 0.1 (4.6)

Ẽ1,0,2 = 2δ −
√
δ2 + 1−

√
δ2 + 0.2 (4.7)

Ẽ2,0,1 = 2δ −
√
δ2 + 2−

√
δ2 + 0.1 (4.8)

where we notice that we can define δc1 and δc2 , as points in which we can perform a

first-order taylor approximation over
√
δ2 + 0.1 and

√
δ2 + 1 respectively so that

Ẽ1,1,1 −−−→
δ>δc1

δ −
√
δ2 + 1− 0.1

δ2
(4.9)

Ẽ1,1,1 −−−→
δ>δc2

−0.5

δ2
− 0.1

δ2
(4.10)

Ẽ1,0,2 −−−→
δ>δc1

δ −
√
δ2 + 1− 0.1

δ2
(4.11)

Ẽ2,0,1 −−−→
δ>δc2

− 1

δ2
− 0.05

δ2
(4.12)

where it becomes clear that for δ > δc1 Ẽ1,1,1 = Ẽ1,0,2, thus we have the first partial

superfluid phase transition. Similarly for δ > δc2 Ẽ1,1,1 ≈ Ẽ2,0,1 and if δ is large

enough the difference becomes negligible, therefore the states are considered to have
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the same energy and the nodes become superfluid. This process is shown in figure

4.8
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Figure 4.8: (Top) JCH Mott-Insulator/Superfluid phase transition for 3-sites cycle
CRA with anisotropy on the light-matter coupling, as function of the detuning para-
meter ∆ and described using the total variance of the polariton number, where 2
plateaus are observed. The shaded area shows the first derivative of the order para-
meter and the highlighted peaks exhibit the point in which a transition is observed.
(Bottom) Effective energy levels as function of the detuning, where the different
levels become degenerate as the detuning is increased. The vertical red dashed line
shows the point in which both analysis describe a superfluid phase
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We have shown how the CRA array with anisotropy on the light-matter coupling

exhibits multiple plateaus through the Mott-Insulator/Superfluid phase transition.

Now is possible to have Hall behavior present in CRA beyond 3-cavities with a

corresponding theory within the same energy analysis previously discussed. Figure

4.9 shows the Mott-Insulator to superfluid phase transition for a 4-sites CRA in

line configuration where three plateaus are possible through the transition as the

different sites start to interact with each other.
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Figure 4.9: 4-sites line network with light-matter couplings g1 = g2 = 10−2ω = g and
g3 = g4 = 10−1g. In this configuration there are plateaus for each pair with the same
light-matter coupling superfluid dimerization and an additional plateau for larger
detunings (∆) as the sites with different light-matter couplings start interacting
with each-other

Now that 4-sites networks are considered, it becomes interesting to check if to-

pology has an impact through the phase transition under light-matter coupling an-
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isotropy. Figure 4.10 shows that there is small impact on the phase transition when

considering the topology effects, as there is a minor overshot beyond the superfluid

phase value for a cycle topology accompanied by an additional peak in the first de-

rivative of the order parameter, which means that the topology has an impact which

requires further investigation.
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Figure 4.10: 4-sites cycle network with light-matter couplings g1 = g2 = 10−2ω = g
and g3 = g4 = 10−1g. In this configuration there are plateaus for each pair with the
same light-matter coupling superfluid dimerization and an additional plateau for lar-
ger detunings (∆) as the sites with different light-matter couplings start interacting
with each-other

As we have seen in this section, the use of the light-matter coupling anisotropy

allows for fine grained control over the Mott-Insulator to superfluid phase transition

of a JCH system, so while there are some cavities in the superfluid phase, some other

cavities remain in a Mott-insulating phase, thus it could be used for technological
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applications where selective transport is needed.

4.5 Conclusions

This chapter has shown that the energy perspective for the JCH model provides

additional insight for the model, including the phase transition and becomes the

most useful tool in the analysis of the anisotropy based phenomena.

This chapter also showed that the different sources of anisotropy, produce differ-

ent changes in the dynamics of the system, so that the individual manipulation of

the TLS induces a new phase on the model, here named as resonant dynamics which

are easily configurable and robust. On a similar fashion, the light-matter coupling

anisotropy modifies the phase transition in multiple steps according to the dimeriz-

ation induced by the competence between the light-matter coupling anisotropy and

the detuning of the cavities.



67

Chapter 5

Summary and Outlook

Through this work anisotropy has shown new and interesting phenomena in coupled

resonating arrays described by the JCH Model, which open additional research opor-

tunities for quantum simulations and potential technological applications taking ad-

vantage of the new phenomena.

We have shown that quench dynamics induce a first-order like phase transition in

coupled resonator arrays doped with a two-level system, this behavior is independent

of the choice of the order parameter, the standard deviation of the polariton number

or the bipartite fluctutation, our results reveal the universality of the simulated first

order phase transition. Thus quench dynamics provides a new mechanism to study

many-body systems using CRAs as quantum simulation platorm.

A topologycal anisotropy of the network in presence of quench dynamics so that

the nucleation of simulated superfluid states, demonstrated by numerical simulation,

is a function of the local connectivity as demonstrated by the mean field theory. This

dependence of the superfluid phase with the local connectivity explains the nucleation

in CRAs where as far as we understand, there is no known microscopic mechanism

for predicting nucleation in first-order phase transitions. In this context, our results
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provide an exact geometrical description for the appearance of domain nucleation

due to the number of connections. Thus, our results may be used to predict, and

manipulate, the nucleation of a superfluid phase of light in complex-random networks

A CRA system described by the JCH model subject to a detuning anisotropy has

exhibited a resonance phenomenon, which can be understood a new phase different

from either the Mott-Insulating phase and the Superfluid phase. In contrast to the

usual Superfluid phase, not all possible quantum states are available, which gives

rise to a different dynamics in which the system oscillates. These oscillations show

evidence of complex directional dynamics which in larger arrays could exhibit new

phenomena not previously observed in other quantum systems. Similarly careful

design of such cavities could have additional technological applications in quantum

computing circuits.

The rise of the quantum Hall-like phase transition on Coupled JCH cavities under

light-matter anisotropy, broadens the scope in which the JCH model can be used for

quantum simulations as, to our best knowledge, this is the first evince of quantum

Hall-like curves in these systems, which allow for the study of many-Body phenom-

ena not previously accessible through smaller systems, which can provide additional

insights for materials research and development.

The energy perspective of the JCH model demonstrated through perturbation

theory has exhibited good predictive capabilities, which can be used to determine

if a CRA is in the Mott-Insulator or superfluid phase, and can be further utilized

in the design of complex systems for research and technological applications, taking

advantage of the different discussed in this work and elsewhere.

As discussed, the different types of anisotropy discussed through this work, each

exhibit new and interesting phenomena, which have yet to yield all the results they

could individually provide. Furthermore, additional research is possible through
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combinations of the previously mentioned anisotropies in the system in search for

new phenomena and applications.
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Appendix A

Rotating Wave Approximation for

the JC model

The Rabi model is a complete description of a two level system inside an optical cavity

and interacting with it, however the treatment of the Rabi model is complex, because

it does not have conserved quantities which can be used for the diagonalization of the

system. Consider the Rabi’s model Hamiltonian HR = ωca
†a+ ωaσ

+σ− + g(a†σ− +

aσ+ + a†σ+ + aσ−), with ~ = 1, where ωc is the cavity frequency, ωa is the TLS

energy gap frequency, and g is the light-matter coupling. Now we see that light-

matter coupling term has components that conserve the energy in the cavity, and

terms that do not. The energy conserving terms are a†σ− + aσ+, which represent

the energy movement from the cavity to the TLS and back, through the absorption

of a photon by the TLS to transition to a its exited state, and the reverse process.

The non energy conserving terms are a†σ+ +aσ−, which describe the TLS transition

from the ground state to a higher energy simultaneous to the creation of a photon

in the cavity. Now we analyze the Rabi Hamiltonian using interaction picture[76].
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HI = eiH0t
(
H0 + g(a†σ− + aσ+ + a†σ+ + aσ−)

)
e−iH0t (A.1)

Equation (A.1), shows the Rabi Hamiltonian in the interaction picture, where

H0 = ωca
†a + ωaσ

+σ− is the free Hamiltonian. Then we can use the the Baker-

Hausdorff lema[48], shown in equation (A.2), over the Rabi hamiltonian

eαB A e−αB = A+ α [B,A] +
α2

2!
[B, [B,A]] + · · · (A.2)

Now in order to take advantage of the expansion, the most relevant expressions

are shown in equation (A.3).

[
H0, a

†σ+
]

= (ωc + ωa)a
†σ+

[H0, aσ
−] = −(ωc + ωa)aσ

−[
H0, a

†σ−
]

= (ωc − ωa)a†σ−

[H0, aσ
+] = −(ωc − ωa)aσ−

(A.3)

Finally, the rebuilding the expansion shows the interaction Hamiltonian in equa-

tion (A.4)

HI = H0+g(ei(ωc−ωa)t a†σ−+e−i(ωc−ωa)t aσ++ei(ωc+ωa)t a†σ++e−i(ωc+ωa)t aσ−) (A.4)

We define two frequencies: ∆ = ωc − ωa and Ω = ωc + ωa, then we have that the

terms associated to the ∆ frequency are slow rotating, and the terms associated to

the frequency Ω are fast rotating. In the limit Ω� ∆, we have that the fast rotating

terms, in average, do not contribute to the dynamics of the system dominated by

the slower rotating terms. Notice that this approximation is possible only if g
Ω
� 1.
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The Rabi Hamiltonian, in the interaction picture, is approximated as

HI ≈ H0 + g(ei(ωc−ωa)t a†σ− + e−i(ωc−ωa)t aσ+), (A.5)

from which we can reverse the transformation back to the Heisenberg, in which the

approximated Rabi Hamiltonian is

HR ≈ ωca
†a+ ωaσ

+σ− + g(a†σ− + aσ+) = HJC , (A.6)

which is known as the Jaynes-Cummings model Hamiltonian.
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Appendix B

Detuning sign and the polariton

map

The Jaynes-Cummings Hamiltonian can be diagonalized using the polariton map, as

discussed in [39, 49], however there are subtle differences in the polariton mapping

depending on the sign convention used for the definition of the detuning (Detun-

ing), which can be confusing for someone using a different sign convention, therefore

this appendix will discuss the different sign conventions and how these change the

polariton mapping allowing for the reader a single handy reference when comparing

multiple publications

B.1 The ∆ = ωa − ωc Convention

Consider the single cavity Jaynes-Cummings Hamiltonian shown in equation (B.1),

which has already been discussed, as the starting point for the discussion on the

∆ = ωa − ωc convention.
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HJC = ωca
†a+ ωaσ

+σ− + g
(
a†σ− + σ+a

)
(B.1)

The Jaynes-Cummings Hamiltonian has the conserved quantity N = a†a+σ+σ−,

which corresponds to the polariton number, so we write the Hamiltonian following

the ∆ = ωc − ωa convention, which is traditionally used for analysis in which the

resonant photon frequency the cavity will be considered higher than the resonant

frequency of the two level system, as shown in equation (B.2)

HJC = ωcN − (ωc − ωa)σ+σ− + g
(
a†σ− + σ+a

)
(B.2)

Now to study the polariton mapping, the Hamiltonian is written in matrix form,

redefining the variables ω = ωc and ∆ = ωc−ωa for comfort, leaving the Hamiltonian

as shown in equation (B.3)

HN =

 ωn g
√
n

g
√
n ω −∆

 (B.3)

At this point, traditional linear algebra techniques are used to compute the ei-

genvalues of the Hamiltonian in its matrix form, so that the energies of the polariton

states are E±n = ωn− ∆
2
±χn where χn =

√(
∆
2

)2
+ g2n and the polariton states are

described by equations (B.4) and (B.5)

|n−〉 = sen(θn) |n, ↓〉 − cos(θn) |n− 1, ↑〉 (B.4)

|n+〉 = cos(θn) |n, ↓〉+ sen(θn) |n− 1, ↑〉 (B.5)

Where for the polariton mapping we used the auxiliary variable θn defined by the
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equation (B.6)

Tan(2θn) =
g
√
n

∆
2

(B.6)

B.2 The ∆ = ωc − ωa Convention

The ∆ = ωc−ωa can be used in cases where the cavity photon resonant frequency is

designed to be lower than the two level system resonant frequency, in such scenarios,

the Jaynes-Cummings Hamiltonian shown in equation (B.1) is written as shown by

equation (B.7)

HJC = ωcN + (ωa − ωc)σ+σ− + g
(
a†σ− + σ+a

)
(B.7)

Again the Hamiltonian is written in matrix form as shown in B.1, but only now

the convention is different so ω = ωc and ∆ = ωa − ωc, leaving the hamiltonian as

shown in equation (B.8)

HN =

 ωn g
√
n

g
√
n ω + ∆

 (B.8)

Finally by doing the diagonalization procedure on the Jaynes-Cummings Hamilto-

nian, the polariton map energies are for the E±n = ωn + ∆
2
± χn, where χn =√(

∆
2

)2
+ g2n, with the polaritons states defined by equations (B.9) y (B.10), with

the mixing angle thetan as shown in equation (B.6):

|n−〉 = cos(θn) |n, ↓〉 − sen(θn) |n− 1, ↑〉 (B.9)

|n+〉 = sen(θn) |n, ↓〉+ cos(θn) |n− 1, ↑〉 (B.10)
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It can be observed that even though the expressions for the different states seems

to be different, the energies are the same.
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Nucleation of superfluid-light 
domains in a quenched dynamics
Joaquín Figueroa1,2, José Rogan1,2, Juan Alejandro Valdivia  1,2, Miguel Kiwi  1,2, 
Guillermo Romero3 & Felipe Torres1,2

Strong correlation effects emerge from light-matter interactions in coupled resonator arrays, such as 
the Mott-insulator to superfluid phase transition of atom-photon excitations. We demonstrate that the 
quenched dynamics of a finite-sized complex array of coupled resonators induces a first-order like phase 
transition. The latter is accompanied by domain nucleation that can be used to manipulate the photonic 
transport properties of the simulated superfluid phase; this in turn leads to an empirical scaling law. This 
universal behavior emerges from the light-matter interaction and the topology of the array. The validity 
of our results over a wide range of complex architectures might lead to a promising device for use in 
scaled quantum simulations.

The absence of energy dissipation in the flow dynamics of a quantum fluid is one of the most fascinating effects 
of strongly correlated condensates1–6. Quantum phase transitions, from Mott insulator to superfluid, have been 
observed in a wide range of physical platforms such as ultracold atoms in optical lattices7, trapped gases of inter-
acting fermionic atom pairs8, and exciton-polariton condensates9–11. Furthermore, the remarkable progress in 
controlling light-matter interactions in the microwave regime of circuit quantum electrodynamics (QED) has 
provided a suitable scenario for studying strongly correlated effects with light12–14. In this case, coupled resona-
tor arrays (CRAs) each doped with a two-level system (TLS) allow for the formation of dressed quantum states 
(polaritonic states) and effective photon-photon interactions. The underlying physics is well described by the 
Jaynes-Cummings-Hubbard (JCH) model15–17. In this case, if the frequencies of the single resonator mode and the 
TLS are close to resonance, the effective photonic repulsion prevents the presence of more than one polaritonic 
excitation in the resonator, due to the photon-blockade effect18–20. Detuning the atomic and photonic frequencies 
diminishes this effect and leads the system to a photonic superfluid16. Unlike Bose-Einstein condensation in 
optical lattices, polariton condensation includes two kind of excitations, atomic and photonic, and the transition 
from Mott-insulator to superfluid is accompanied by a transition of the excitations from polaritonic to photonic16.

Here we show how a first-order like phase transition of the simulated superfluid phase of polaritons in CRAs 
can be induced by a quench dynamics as described by the JCH model. We compare full numerical simulations of 
several arrangements of CRAs with mean-field theory of photonic fluctuations dynamics. In this case, the simu-
lated Mott-superfluid transition relies on the topological properties of the array, since the on-site photon blockade 
strongly depends on the connectivity of each node, even for small resonator-resonator hopping strength. When 
the system is prepared in the Mott state with a filling factor of one net excitation per site, and a sudden quench 
of the detuning between the single resonator mode and the TLS is applied, we find a first-order like phase tran-
sition which can be described by two bosonic excitations of the lower and upper polariton band. We find that 
a nucleated superfluid photon state emerges in a localized way, which depends on the topology of the array. 
This avalanche-like behavior near the simulated phase transition leads to a universal scaling law between critical 
parameters of the superfluid phase and the average connectivity of the array.

The Model
The physical scenario that we consider are CRAs in complex arrangements such as the one in Fig. 1(a). Here, 
each node of the array consists of a QED resonator doped with a TLS to be a real or artificial atom, and the whole 
system is described by the Jaynes-Cummings-Hubbard model15–17, whose Hamiltonian reads
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∑ ∑ ∑μ= − + . . −
= 〈 〉 =

†H H J A a a nh c ,
(1)i

L

i
i j

ij i j
i

L

i iJCH
1

JC

, 1

where L is the number of lattice sites, †a a( )i i  is the annihilation (creation) bosonic operator, J is the photon-photon 
hopping amplitude, Aij is the adjacency matrix which takes values Aij = 1 if two sites of the lattice are connected 
and Aij = 0 otherwise. μi stands for the chemical potential at site i and σ σ= + + −†n a ai i i i i  represents the number 
of polaritonic excitations at site i. Also, ω ω σ σ σ σ= + + ++ − + −† †H a a g a a( )i i i i i i i i i

JC
0  is the Jaynes-Cummings (JC) 

Hamiltonian describing light-matter interaction21. Here, σ σ+ −( )i i  is the raising (lowering) operator acting on the 
TLS Hilbert space, and ω, ω0, and g are the resonator frequency, TLS frequency, and light-matter coupling 
strength, respectively. Notice that the total number of elementary excitations (polaritons) in this system 

σ σ= ∑ + + −†N a a( )i
M

i i i i  is the conserved quantity [N,HJCH] = 022,23.
The quantum dynamics of this model has been studied for linear lattices15,16, and its equilibrium properties 

at zero temperature have been studied by means of density matrix renormalization group24, and by means of 
mean field (MF) theory, for two-dimensional lattices17,25,26 and complex networks27. The latter studies have pro-
vided evidence of a quantum phase transition from Mott-insulating phases to a superfluid polaritonic phase. 
Beyond the MF approach there have been important contributions from the numerical and analytical viewpoint 
for extracting the phase boundaries28–31, the study of critical behavior30,31, and the excitation spectrum29–31. For a 
general overview on many-body physics with light relevant literature is available32–34.

Mott-insulator to superfluid phase transition
Here we briefly summarize the Mott-insulator to superfluid phase transition in the JCH model16. Our main results 
are focused on the quantum dynamics of the JCH model (1) in complex networks, where we focus on the canon-
ical ensemble with a fixed total number of polaritons13,14. In this case, the JCH Hamiltonian reads

∑ ∑= − + . .
= 〈 〉

†H H J A a a h c
(2)i

L

i
i j

ij i jJCH
1

JC

,

In the atomic limit, where the photon-hopping can be neglected ( J g), the JC Hamiltonian at site i (Hi
JC) can 

be diagonalized in the polaritonic basis that mixes atomic and photonic excitations |n, ±〉i = γn±|↓, 
n〉i + ρn±|↑,n − 1〉i with energies ε ω χ= + Δ ±± n n/2 ( )n , where χ = Δ +n g n( ) /42 2 , ρn+ = cos(θn/2), 
γn+ = sin(θn/2), ρn− = −γn+, γn− = ρn+, θ = Δg ntan 2 /n , and the detuning parameter Δ = ω0 − ω.

Figure 1. (a) Schematic representation of the Jaynes-Cummings-Hubbard lattice in a complex array where 
each node consists of a single resonator strongly coupled to a two-level system. (b) Phase transition from Mott-
insulator to superfluid in light-matter CRAs systems as a function of the detuning parameter.
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Now, one can introduce the polaritonic creation operators at site i defined as α= | 〉 〈 − |α†P n, 0,i
n

i
( , ) , where 

α = ± and we identify |0,−〉≡|↓, 0〉 and |0, + 〉≡|0〉 being a ket with all entries equal to zero, that is, it represents 
an unphysical state. These identifications imply γ0− = 1 and γ0 + = ρ0± = 0. Using this polaritonic mapping the 
Hamiltonian (2) can be rewritten as16,26

∑∑ ∑ ∑ ∑ ∑ε= −








+ . .






α

α α α

α α β β
α α β β

α α β β

= =

∞

=± 〈 〉 =

∞

′ ′
′ ′

− ′ − ′† † †H P P J A t t P P P P h c ,
(3)i

L

n
n i

n
i

n

i j
ij

n m

n m
i

n
i

n
j

m
j
m

1 1

( , ) ( , )

, , 1 , , ,
, ,

( 1, ) ( , ) ( , ) ( 1, )

where γ γ ρ γ= + −±+ ± − + ± − −t n n 1n
n n n n( 1) ( 1)  and γ ρ ρ ρ= + −±− ± − + ± − −t n n 1n

n n n n( 1) ( 1) . The first term 
in Eq. (3) stands for the local polaritonic energy with an anharmonic spectrum and gives rise to an effective 
on-site polaritonic repulsion. The last term in Eq. (3) represents the polariton hopping between nearest neighbors 
and long range sites, and it may also allow for the interchange of polaritonic excitations.

If the physical parameters of the Hamiltonian (3) are in the regime ω Jn g n , and for an integer filling 
factor, where the total number of excitations N over the lattice is an integer multiple of the number of unit cells L, 
the lowest energy state is the product ⊗ | − 〉= 1,i

L
i1  which corresponds to a Mott-insulating phase, and its associ-

ated energy is ε= −E N 1 . In the thermodynamic limit, the interplay between the on-site polariton repulsion and 
the polariton hopping leads to a phase transition from a Mott insulator to a superfluid phase. The latter may be 
reached by diminishing the on-site repulsion by means of detuning the atomic and photonic frequencies. At 
equilibrium, this phase transition may be quantified by means of bipartite fluctuations24,35. In a simulated 
Mott-insulator transition, where an adiabatic dynamics drives the passage, it has been shown that a suitable order 
parameter corresponds to the variance of the number of excitations per site. Figure 1(b) shows the archetypal 
behavior of the order parameter as a function of the detuning Δ in the adiabatic dynamic regime, and for an 
integer filling factor of one net excitation per site16.

Quenched dynamics and Topology in finite-size complex lattices
Our aim is to describe how complex arrangements of CRAs, such as the one appearing in Fig. 1(a), affect the 
simulated phase transition from Mott insulator to superfluid as the detuning parameter Δ is suddenly quenched. 
In particular, we are interested in how one can manipulate photonic transport properties of the emerging super-
fluid phase depending on the specific topology of the CRAs. As order parameter we choose the time-averaged 
standard deviation of the polariton number ∫ ∑ 〈 〉 − 〈 〉dt n n( ))

T
T

i
L

i i
1

0
2 2  with T = J−1, and we assume the whole 

system initially prepared in the Mott-insulating state ψ| 〉 = ⊗ | − 〉= 1,i
L

i0 1 , with Δ = 0 at each lattice site. In the 
Supplementary Material we present another equivalent measure of the order parameter based on the bipartite 
fluctuation proposed by S. Rachel et al.35, and D. Rossini et al.24. Of course, due to computational restrictions, we 
consider relatively small arrangements of CRAs, but with varying degrees of complexity, suggesting that the 
topology of the network could be used in a nontrivial way to manipulate the emerging of the superfluid phase as 
these system becomes larger and approach the thermodynamic limit. The initialization process may be achieved 
by the scheme proposed by Angelakis et al.16. For instance, in circuit QED13,14 one might cool down the whole 
system reaching temperatures around T0 ~ 15 mK. In this case, the system will be prepared in its global ground 
state | 〉 = ⊗ | − 〉=G 0,i

L
i1 . Then, one can apply individual magnetic fields on the TLSs, each implemented via a 

transmon qubit36, such that the resonance condition Δ = 0 is achieved. This way one can address individually 
each cavity with an external AC microwave current or voltage tuned to the transition |↓, 0〉i→|1, −〉i, with a driv-
ing frequency ωD = ω − g, such that the system will be prepared in the desired initial state |ψ0〉. The sudden 
quench of the detuning can be achieved by applying magnetic fields to the transmon qubits in order to reach the 
desired superfluid phase. It is noteworthy that when the initial state is a linear superposition of upper and lower 
polariton states (Δ ≠ 0) the quantum dynamics will be dominated by these two polaritonic bands. Also, we carry 
out full numerical calculations for the parameters g = 10−2ω and J = 10−2g, and we consider up to 6 Fock states per 
bosonic mode. These parameter values allow us to prevent the interchange of polaritonic excitations between 
different sites.

In order to gain insight into the quench dynamics of the topological CRAs let us consider a dimer array. As 
shown in Fig. 2, the simulated Mott-insulator to Superfluid phase transition strongly depends on the type of 
dynamics. Adiabatic dynamics resembles a second order phase transition which leads to a continuous change of 
the state of the system. On the other hand, the quench dynamics takes place accompanied by a discontinuous 
change of the state, analogous to the Metal-Insulator transition of oxides37. Hence, as we expected, the adiabatic 
dynamics is not qualitatively affected by the distribution of nearest neighbors. However, the topological proper-
ties of the array dominate a first-order like phase transition driving the quench dynamics (see Fig. 2). As the 
degree of inter-connectivity between the resonators grows the distance between them rapidly diminishes, and 
thus local correlations become more important due to quantum interference effects. If scaled up to the size of the 
system, due to the increase in the degrees of freedom, the numerical simulation time grows exponentially. In the 
next section we obtain an empirical scaling law to address this issue. Indeed, we demonstrate that the photon 
propagation in the simulated superfluid phase strongly depends of the connectivity per site = ∑k Ai j ij. Let us 
consider a set of arrays with a fixed number of TLS. As shown in Fig. 3(a) in the quench dynamics case the aver-
aged standard deviation depends linearly on the connectivity, which means that depending on the connectivity 
the local superfluid states are reached with different detuning scales. We consider a set of CRAs with four and five 
interconnecting resonators as shown in Fig. 3(b). In contrast to these results, the adiabatic dynamics does not 
exhibit a monotone or linearly growing behavior, which leads to a sharper phase transition, as illustrated in Fig. 2.
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Mean-field theory of the Superfluid Phase
In the thermodynamic limit, the emergent superfluid phase behaves as a quantum liquid17. Superfluidity is 
achieved by means of a transition of the excitations from polaritonic to photonic. In order to describe the simu-
lated superfluid phase in our system, we introduce the photonic order parameter17 ψ = 〈ai〉. Using the decoupling 
approximation ≈ 〈 〉 + 〈 〉 − 〈 〉〈 〉† † † †a a a a a a a ai j i j i j i j , the resulting mean-field JCH Hamiltonian can be written as

∑ ∑ ψ ψ= − + .† ⁎H H J k a a( )
(4)JCH

i
i
JC

i
i i i

Therefore, the simulated Mott-insulator phase can be characterized by the on site repulsion, which suppresses 
the fluctuations of the number of per site excitations |ψ| = 0. On the contrary, the superfluid phase is dominated 
by the hopping and the quantum fluctuations |ψ| ≠ 0. Now we focus on the light-matter coupling induced by 
the hopping of photons through cavities. Introducing the identity σ + σ− + σ−σ +  = I, we obtain an effective 
light-matter coupling, since it retains the mixed products of photonic and two level operators,

σ σ= + + . .− +
 

† †h g a g a h c (5)i
LM

i i i i i i

Figure 2. Quantum phase transition of a dimer array. Detuning dependence of the order parameter with two 
TLS coupled through photon hopping, adiabatic dynamics (blue circles) and quench dynamics (red squares). 
Continuous lines have been added as guide to the eye.

Figure 3. (a) Standard deviation of the superfluid phase as a function of the connectivity. Adiabatic dynamics 
(blue circles) and quench dynamics (red squares). A set of CRAs with four and five interconnecting resonators, 
as shown in (b) are considered. Continuous lines have been added as a guide to the eye.



www.nature.com/scientificreports/

5Scientific REPORTs |  (2018) 8:12766  | DOI:10.1038/s41598-018-30789-9

Here ψσ= − +
g Ig Jki i i  is the effective light-matter coupling per site, which therefore turns out to be an oper-

ator. In the simulated superfluid phase the atomic transitions are expected to be suppressed against the photonic 
dressed states. Moreover, the total excitation number does not change, hence when the photonic excitations 
increase the atomic excitations decrease. Note that when =g Igi , i.e. when there are no hopping or topological 
effects,

σ
ψ

〈 〉 =+ g
Jk

1 ,
(6)i

i

which indicates that the total number of excitations is conserved and also demonstrates that the increase of the 
photonic states leads to a reduction of the atomic excitations, due to the conservation of the number excitations. 
Figure 4 shows the effect of the quench dynamics on the simulated phase transition of the JCH model for different 
arrays. In this case the nucleation of superfluid states emerges due to the variation of the order parameter, accord-
ing to Eq. (6). In the Mott-Insulator state σ〈 〉 > ∀+ i0i , when the detuning is increased σ〈 〉+

i  decreases by a factor 
1/(kiψ), until the superfluid phase is reached.

We have shown that the mean field approach strongly supports the scaling law of the order parameter shown 
in Fig. 3(a); namely, as the connectivity of CRAs is increased locally, the light superfluid phase is achieved for a 
smaller detuning strength.

Conclusion
We show that quench dynamics induce a first-order like phase transition in coupled resonator arrays doped with 
a two-level system. The nucleation of simulated superfluid states has been demonstrated by numerical simula-
tion and by a mean field theoretical approach. In the quench dynamics the abrupt change of the order parame-
ter, instead of sharper crossover driven by adiabatic dynamics, is explained by the non uniform transition from 

Figure 4. Numerical simulation of the quench dynamics. The full set of four node arrays, with (a,b) three; 
(c,d) four; (e) five; and (f) six connections. Connectivity per site (a) (1, 2, 2, 1), (b) (1, 1, 1, 3), (c) (2, 2, 2, 2), 
(d) (1, 3, 2, 2), (e) (2, 3, 3, 2), and (f) (3, 3, 3, 3). As the connectivity is increased locally the superfluid phase is 
achieved with a lower detuning strength. For each array and from left to right we have considered parameters 
log(Δ/g) = (0.5, 0.7, 0.75, 0.8), and g = 10−2ω, J = 10−3ω, where ω is the resonator frequency.



www.nature.com/scientificreports/

6Scientific REPORTs |  (2018) 8:12766  | DOI:10.1038/s41598-018-30789-9

Mott-Insulator to superfluid, which locally depends of the connectivity. Since the quench dynamics exhibits the 
same behavior independent of the choice of the order parameter, the standard deviation of the polariton number 
or the bipartite fluctutation, our results reveal the universality of the simulated first order phase transition (also 
see Supplementary Material). As the number of TLS is increased the averaged standard deviation of the superfluid 
phase depends linearly on the connectivity. At an increased scale, for large networks of doped optical/microwave 
resonators, our system may enter the field of quantum simulators. In particular, as far as we understand, there is 
no known microscopic mechanism for predicting nucleation in first-order phase transitions. In this context, our 
results provide an exact geometrical description for the appearance of domain nucleation due to the number of 
connections. Thus, our results may be used to predict, and manipulate, the nucleation of a superfluid phase of 
light in complex-random networks.
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ABSTRACT

Electromagnetic coupled resonator arrays (CRAs) doped with a quantum two-level system allow for the quantum
simulation of a Mott-insulator to superfluid phase transition. We demonstrate that the order of this simulated
phase transition depends on the type of dynamics. Thus, a first order like phase transition can be induced by a
quench dynamics, while a second order like phase transition is produced by an adiabatic dynamics. In addition,
we show that the underlying macroscopic behavior of the phase transition in other many body systems, such as
domain nucleation and phase coexistence, can also be observed in CRAs. This universal behavior emerges from
the light-matter interaction and the topology of the array. Therefore, the latter can be used to manipulate the
photonic transport properties of the simulated superfluid phase.

Keywords: Quantum Simulation, Topology effect, Polariton Dynamics

1. INTRODUCTION

Remarkable progress has been made in controlling light-matter interactions in quantum systems, for instance, in
the microwave regime of circuit quantum electrodynamics (QED), ultra-cold atoms in optical lattices,1 trapped
gases of interacting fermionic atom pairs,2 and exciton-polariton condensates,3–5 which have provided a suitable
scenario for studying strongly correlated effects with light.6–8 Quantum phase transitions, from Mott insulator
to superfluid phase, have been observed in the aforementioned physical platforms. The absence of energy dis-
sipation in the flow dynamics of a quantum fluid is one of the most fascinating effects of strongly correlated
condensates.9–14 Coupled resonator arrays (CRAs) each doped with a two-level system (TLS) allow for the for-
mation of dressed quantum states (polaritonic states) and effective photon-photon interactions. The underlying
physics is well described by the Jaynes-Cummings-Hubbard (JCH) model.15–17 In this case, if the frequencies
of the single resonator mode and the TLS are close to resonance, the effective photonic repulsion prevents the
presence of more than one polaritonic excitation in the resonator, due to the photon-blockade effect.18–20 Detun-
ing the atomic and photonic frequencies diminishes this effect and leads the system to a photonic superfluid.16

The quantum dynamics of this model has been studied for linear lattices,15,16 and its equilibrium properties
at zero temperature have been studied by means of density matrix renormalization group,21 and by means of
mean field (MF) theory, for two-dimensional lattices17,22,23 and complex networks.24 The latter studies have
provided evidence of a quantum phase transition from Mott-insulating to a superfluid. Beyond the MF approach
there have been important contributions from the numerical and analytical viewpoint for extracting the phase
boundaries,25–28 the study of critical behavior,27,28 and the excitation spectrum.26–28 For a general overview on
the many-body physics with photons relevant literature is available.29–31

Unlike the Bose-Einstein condensation in optical lattices, polariton condensation includes two kind of excita-
tions, atomic and photonic, and the transition from Mott-insulator to superfluid is accompanied by a transition
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Figure 1. (color online) Simulated phase transition from Mott-insulator to superfluid in light-matter CRAs systems as
a function of the detuning parameter. Four CRAs coupled in a square lattice with g = 10−2ω, and J = 10−2g. First
(Second)-like phase transition can be induced by a quench (adiabatic) dynamics (details concerned with theoretical model
will be addressed in the next section).

of the excitations from polaritonic to photonic.16 Usually the study of the simulated Mott-Superfluid phase
transition in CRAs considers the initial state of the system to be in a Mott-insulating state, and an adiabatic
change of the detuning between light and matter frequencies applies. This yields a smooth change in the order
parameter, namely the variance of the polaritons number per site, thus leading to a second order phase tran-
sition. When we prepare the JCH system in the Mott state with a filling factor of one net excitation per site,
and a sudden quench of the detuning between the single resonator mode and its corresponding TLS is applied
for each site, we find a first-order like phase transition in the collective system, which can be described by two
polaritonic excitations of the lower and upper polariton branch. Here we show how a first (second)-order like
phase transition of the simulated superfluid phase of polaritons in CRAs can be induced by a quench (adiabatic)
dynamics as described by the JCH model. We find that a localized nucleated superfluid photon state emerges,
which depends on the topology of the array. As shown in Fig.1, quench (adiabatic) dynamics produces a first
(second) order like phase transition. The first-order like Mott Insulator to superfluid phase transition can be
observed with a sudden quench of the detuning parameter ∆, where the whole system initially prepared in the
Mott-insulating state |ψ0〉 =

⊗L
i=1 |1,−〉i, at the resonance condition ∆ = 0 for each lattice site. From this state

a sudden quench of the detuning applied to the JCH cavities generates a discontinuity of the order parameter, see
Fig.1. It is noteworthy that the initial state obtained is a linear superposition of the upper and lower polaritonic
states (∆ 6= 0), so that the quantum dynamics will be dominated by these two polariton branches.

The model

Let us consider an array of CRAs, as described by the JCH model, which consists of a QED resonator doped
with a TLS to be a real or artificial atom. The whole system is described by the Jaynes-Cummings-Hubbard
model15–17

HJCH =
∑
i=1

HJC
i − J

∑
〈i,j〉

Aija
†
iaj + h.c., (1)

where i indicates the site at the array, ai(a
†
i ) is the annihilation (creation) bosonic operator, J is the photon-

photon hopping amplitude, Aij takes values Aij = 1 if two sites of the lattice are connected and Aij = 0 otherwise.

Also, HJC
i = ωa†iai + ω0σ

+
i σ
−
i + g(σ+

i ai + σ−i a
†
i ) is the Jaynes-Cummings (JC) Hamiltonian describing light-

matter interaction.32 Here, σ+
i (σ−i ) is the raising (lowering) operator acting on the TLS Hilbert space, and ω,

ω0, and g are the resonator frequency, TLS frequency, and light-matter coupling strength, respectively. Notice
that the total number of elementary excitations (polaritons) in this system NJCH =

∑L
i (a†iai + σ†iσi) is the
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Figure 2. (color online) Mott-insulator to superfluid first (second)-like phase transition induced by an adiabatic (left) and
an quench (right) dynamics as a function of the time averaged bipartite fluctuations. The simulated phase transition
behavior aid remains independent from the order parameter choice.

conserved quantity33,34 [N,HJCH ] = 0. The Mott-Insulator to Superfluid phase transition may be quantified by
means of the time averaged bipartite fluctuations21,35

Ci,j =
1

T

∫ T

0

dt

(
〈ni nj〉 − 〈ni〉〈nj〉

)
, (2)

or by means of the variance
∑

i Cii with T = J−1, which can be used as a global descriptor of the phase of the
system. In a simulated Mott-insulator transition, where an adiabatic dynamics drives the passage, it has been
shown that a suitable order parameter corresponds to the variance of the number of excitations per site. Fig. 2
shows the archetypal behavior of the order parameter as a function of the detuning ∆ in the adiabatic dynamic
regime, and for an integer filling factor of one net excitation per site.16 As to compare the difference between the
adiabatic and quenched transition, we run the simulations for 4-sites cycle networks in both dynamics, shown in
Fig. 2. The simulated Mott-insulator to Superfluid phase transition strongly depends on the type of dynamics,
where the adiabatic dynamics exhibits a second order phase transition which leads to a continuous change of
the state of the system. On the other hand, the quench dynamics takes place accompanied by a discontinuous
change of the state, analogous to the Metal-Insulator transition of oxides.36

For the initialization process the scheme proposed by Angelakis et al.16 is considered. For instance, in circuit
QED7,8 one can cool down the whole system reaching temperatures around T0 ∼ 15mK. In this case, the system
will be prepared in its global ground state |G〉 =

⊗L
i=1 |0,−〉i. Then, depending if the dynamics of interest is

adiabatic or quenched, some variations need to be included. For example, in the adiabatic dynamics one can apply
individual magnetic fields on the TLSs, each implemented via a transmon qubit,37 such that the desired condition
∆ 6= 0 is achieved. This way one can address individually each cavity with an external AC microwave current
or voltage tuned to the transition | ↓, 0〉i → |1,−〉i, with a driving frequency ωD = ω+ω0

2 − 1
2

√
(ω − ω0)2 − 4g2,

such that the system will be prepared in the desired initial state |ψ0〉 =
⊗L

i=1 |1,−〉i. A similar procedure is
available for quenched dynamics, by changing the initial detuning to a resonant state ∆ = 0 and modifying the
initial driving frequency to ωD = ω − g, in order to perform a sudden quench in the detuning ∆ 6= 0 to the
desired value. We carry out full numerical calculations for the parameters g = 10−2ω and J = 10−2g, and we
consider up to 6 Fock states per bosonic mode for an integration time T = J−1 as this time is a characteristic
time for the hopping effect to act on the system, and the fact that the behavior of the system stabilizes for times
longer than this characteristic time.

As shown Fig.2, as compared to Fig.1, the order of the simulated phase transition is independent of the order
parameter choice.

We can generalize these results even further. Considering that the JCH model is in the same universality
class as the Bose-Hubbard Model (BH model), we also extended our analysis to the BH model, which is the
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Figure 3. (color online) Simulated phase transition from Mott-insulator to superfluid in Bose-Hubbard model as a function
of the detuning parameter. The order parameter of the transition correspond to the variance (left) and the bipartitte
fluctuations (right).

paradigmatic model to study bosonic ultra cold atoms, which take the role of the model excitations.38 For the
theoretical description of the system, we rely on the BH model in the canonical ensemble whose Hamiltonian
reads

HBH =
1

2
U
∑
i=1

ni(ni − 1)− J
∑
〈i,j〉

Aija
†
iaj + h.c., (3)

where L is the number of lattice sites, U is the strength of the on-site photonic repulsion, ai(a
†
i ) is the annihilation

(creation) bosonic operator, J is the hopping amplitude, Aij is the connectivity between sites, which takes values
Aij = 1 if two sites of the array are connected and Aij = 0 otherwise. Notice that the in the BH model just

as the JCH model, the total number of excitations NBH =
∑L

i a
†
iai is a conserved quantity [NBH , HBH ] = 0.

As shown in Fig.3, simulated second-like phase transition in the Hubbard model do not depend on the order
parameter.

2. NUCLEATION OF SUPERFLUID-LIGHT DOMAIN

Now our aim is to describe how complex arrangements of CRAs affect the simulated phase transition, from Mott
insulator to superfluid, inducing localized superfluid nucleation. In order to do so, we first focus our attention
on the phase transition in presence of quench dynamics, which already exhibits a fist-order like phase transition.
We show that in the presence of complex arrangements nucleation emerges, as shown in Fig. 4 where the on-site
variance was used to exhibit connectivity nucleation.

Conclusions

We have demonstrated that quench dynamics induces a first-order like phase transition in coupled resonator
arrays doped with a two-level system. The nucleation of simulated superfluid states has been demonstrated
by numerical simulation as a function of the local connectivity. In the quench dynamics the abrupt change
of the order parameter, instead of sharper crossover driven by adiabatic dynamics, is explained by the non
uniform transition from Mott-Insulator to superfluid, which locally depends on the connectivity. Since the
quench dynamics exhibits the same behavior, independent of the choice of the order parameter, the variance
of the polariton number or the bipartite fluctuations, our results reveal the universality of the simulated first
order like phase transition. We show that phase transition for adiabatic dynamics in the JCH model, and the
phase transition in the BH model, are capable of exhibiting nucleation, by changing the topology of the network.
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Figure 4. (color-online) Numerical simulation of the quench dynamics. The full set of four node arrays, with (a-b) three;
(c-d) four; (e) five; and (f) six connections. Connectivity per site a) (1,2,2,1), b) (1,1,1,3), c) (2,2,2,2), d) (1,3,2,2), e)
(2,3,3,2), and f) (3,3,3,3). As the connectivity is increased locally the superfluid phase is achieved with a lower detuning
strength. For each array and from left to right we have considered parameters log (∆/g) = (0.5, 0.7, 0.75, 0.8), and
g = 10−2ω, J = 10−3ω, where ω is the resonator frequency.

Therefore, we are able to provide a mechanism to change the nature of the phase transition from second-order
like to first-order like.

As far as we understand, there is no known microscopic mechanism for predicting nucleation in first-order
phase transitions. In this context, our results provide a geometrical description for the appearance of domain
nucleation due to the number of connections. Thus, our results may be used to predict, and manipulate, the
nucleation of a photonic superfluid phase in complex-random networks.
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Kavokin, A. V., Senellart, P., Malpuech, G., and Bloch, J., “Spontaneous formation and optical manipulation
of extended polariton condensates,” Nature Physics 6(11), 860–864 (2010).

Proc. of SPIE Vol. 10734  1073403-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/4/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[5] Byrnes, T., Kim, N. Y., and Yamamoto, Y., “Exciton-polariton condensates,” Nature Physics 10(11), 803–
813 (2014).
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