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PATRONES LABERÍNTICOS EN SISTEMAS FUERA DEL EQUILIBRIO

Esta tesis está dedicada a la descripción e implementación de técnicas teóricas y com-
putacionales para comprender la emergencia de patrones laberínticos en sistemas fuera del
equilibrio. En particular, este trabajo se enfoca en dos contextos físicos en los cuáles se han
observado patrones laberínticos: ecosistemas bajo estrés hídrico y experimentos de cristales
líquidos nemático-quirales sometidos a frustración geométrica.

En el Capítulo 1, se da una breve introducción a los sistemas fuera del equilibrio y a la
formación de patrones para motivar la investigación de los patrones laberínticos. Además,
se definen los objetivos general y específicos de la tesis. El Capítulo 2 consiste en un com-
pendio de conceptos y técnicas, los cuáles sirven de base para abordar los objetivos de esta
investigación.

El Capítulo 3 introduce una definición precisa de patrones laberínticos, basada en la
estructura global y local de estos equilibrios. Además, se proponen parámetros de orden
adecuados, como la densidad de defectos, longitud de correlación y factor de estructura, para
revelar transiciones entre distintos tipos de laberintos observados en un modelo prototipo de
formación de patrones. En el Capítulo 4, se describe la existencia de patrones laberínticos
localizados en dos y tres dimensiones, y se proponen los ingredientes mínimos para observar
estas estructuras en diferentes sistemas físicos. En particular, el Capítulo 5 aborda este asunto
en el contexto de la auto organización de la vegetación en regiones áridas y semiáridas.

Los Capítulos 6 y 7 están destinados a explorar el efecto de las heterogeneidades espaciales
en la formación de estructuras de vegetación. Por una parte, el Capítulo 6 propone una forma
simple de incorporar inhomogeneidades en modelos ecológicamente relevantes, y discute la
formación de estructuras desde la perspectiva de separación de fases. Por otra parte, en el
Capítulo 7 se discute cómo la adición de heterogeneidades puede explicar la formación de
patrones laberínticos imperfectos.

En los Capítulos 8, 9 y 10 se investiga la formación de patrones laberínticos en celdas
de cristal líquido nemático quiral. Primero, en el Capítulo 8, se describe la observación de
laberintos colestéricos y burbujas quirales en experimentos forzados con temperatura. En
base a estas observaciones, se propone un modelo minimal tipo Ginzburg-Landau que da
cuenta de la anisotropía y quiralidad de la mezcla de cristal líquido utilizada. Empleando
experimentos, integraciones numéricas del modelo y una ecuación de interfaz, se revela el
mecanismo de aparición/desaparición de vórtices localizados. Luego, en el Capítulo 9 se
estudia detalladamente la emergencia de laberintos colestéricos ramificados, en donde se
expone cómo la manifestación mesoscópica de la quiralidad es responsable de la creación de
patrones desordenados. Finalmente, en el Capítulo 10 se explora la estabilización de otro tipo
de laberintos colestéricos, los cuáles son generados por una inestabilidad de invaginación. El
capítulo 11 resume las principales conclusiones de este trabajo.
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LABYRINTHINE PATTERNS IN OUT-OF-EQUILIBRIUM SYSTEMS

This dissertation is devoted to describing and implementing theoretical and computa-
tional techniques to understand the emergence of labyrinthine patterns in out-of-equilibrium
systems. In particular, this work focuses on two physical contexts in which labyrinthine pat-
terns have been observed: ecosystems under hydric stress and chiral nematic liquid crystal
experiments subjected to geometric frustration.

In Chapter 1, a brief introduction to out-of-equilibrium systems and pattern formation
is given to encourage the investigation of labyrinths. Additionally, the general and specific
objectives of the dissertation are defined. Chapter 2 consists of a compendium of concepts
and techniques, which are the essential tools to address the objectives of this research.

Chapter 3 introduces a precise definition of labyrinthine patterns based on the global and
local structure of these equilibria. Additionally, proper order parameters, such as defect
density, correlation length, and structure factor, are proposed to reveal transitions between
different types of labyrinths observed in a pattern-forming prototype model. Chapter 4
describes the existence of localized labyrinthine patterns in two and three dimensions, and it
proposes the minimum ingredients to observe these structures in different physical systems. In
particular, Chapter 5 addresses this issue in the context of the self-organization of vegetation
in arid and semi-arid regions.

Chapters 6 and 7 are devoted to exploring the effect of spatial heterogeneities on the
formation of vegetation structures. On the one hand, Chapter 6 proposes a simple way to
incorporate inhomogeneities into ecologically relevant models and discusses structure forma-
tion from the perspective of phase separation. On the other hand, Chapter 7 outlines how
adding heterogeneities can explain the formation of imperfect labyrinthine patterns.

In Chapters 8, 9, and 10, the formation of labyrinthine patterns in chiral nematic liq-
uid crystal cells is investigated. First, Chapter 8 describes the observation of cholesteric
labyrinths and chiral bubbles in temperature-forced experiments. Based on these observa-
tions, a Ginzburg-Landau type of model is proposed, which accounts for the anisotropy and
chirality of the liquid crystal mixture used. By using experiments, numerical integrations of
the model, and an interface equation, the appearance/disappearance mechanism of localized
vortices is revealed. Then, in Chapter 9, the emergence of branching cholesteric labyrinths
is studied in detail, exposing how the mesoscopic manifestation of chirality is responsible
for creating disordered patterns. Finally, in Chapter 10, the stabilization of another type of
cholesteric labyrinths is explored, in which an invagination instability governs the dynamics.
Chapter 11 summarizes the main conclusions of this work.
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Y yo canto para usted
El que atrasa los relojes

El que ya jamás podrá cambiar
Y no se dio cuenta nunca
Que su casa se derrumba

Sui Generis, Para Quien Canto Yo Entonces
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Chapter 1

Introduction

Patterns are dissipative structures appearing in systems out-of-equilibrium [1, 2, 3, 4]. Prod-
uct of a balance between energy injection and dissipation mechanisms, these systems exhibit
a collective behavior in which their constituents self-organize, giving rise to extended patterns
in space [5, 6]. This type of collective behavior, which can not be understood by looking at
the isolated constituents, is an emerging phenomenon [7]. Some of the forms observed in
nature are dunes, ripples in the sand near the beach, vegetation structures in semi-arid and
arid climates, animal fur, skin shapes in fish and butterflies, papillary ridges, honeycombs,
dendrites, river networks, and branches in trees, to name a few [8, 9, 10, 11, 12, 13]. The pres-
ence of patterns in various systems means that the phenomenon is robust; it does not depend
on the underlying physics nor the scales. The characteristic length of the spatial textures can
be determined by extrinsic factors, such as the geometry containing convective rolls in the
Bénard-Rayleigh experiment [14, 15, 16], or by intrinsic factors, such as diffusion constants
of chemical reactants regulating morphogenesis as shown by the pioneer work of Alan Turing
[17]. From a theoretical point of view, the emergence of patterns can be seen as a spatial
symmetry breaking instability experienced by a uniform (spatially and temporally invariant)
equilibrium. During the last century, this phenomenon has been described through weakly
nonlinear analysis methods based on amplitude or envelope equations [4, 5, 6, 18, 19, 20].
These methods are inspired by linear analysis and nonlinear saturation; that is, systems
at the onset of a spatial instability are described by the unstable critical modes and their
nonlinear saturation. This balance gives birth to stripe, hexagonal, square, superlattice,
and/or quasi-crystal patterns near the spatial instability [4, 5, 6, 18, 19, 20]. The stripe
patterns are understood as the stable equilibrium of a single mode [4, 5, 6, 18, 19, 20]. Like-
wise, the square, hexagonal, and superlattice patterns are understood as coupled equilibria
between two, three, and several resonant modes, respectively [4, 5, 6, 18, 19, 20, 21]. Qua-
sicrystals result from higher co-dimensional instabilities including modes of different wave-
lengths [4, 5, 6, 18, 19, 20, 22].

In isotropic two-dimensional systems, and far from the onset of spatial instabilities, com-
plicated patterns govern the dynamics of out-of-equilibrium systems. These dissipative struc-
tures have been coined as labyrinthine patterns [23, 24], and they consist in several domains
of stripes in different orientations connected by localized and extended defects [25]. They
have been observed in various physical systems, such as Bénard-Rayleigh convection [26, 27],
ferrofluids [28, 29], chemical reactions [30, 31], vegetation in semi-arid areas [32, 33, 34, 35],
liquid crystals [36, 37, 38], mollusk populations [39], block polymers [40], metal nanosur-
faces [41], and ferroelectric thin films [42]. Although complicated striped patterns have been
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termed labyrinths in numerous works, a precise quantitative definition that makes it possible
to understand, characterize, and differentiate labyrinthine patterns is lacking. The first part
of this dissertation is dedicated to defining and describing extended and localized labyrinthine
patterns based on numerical observations of these equilibria in a prototype pattern-forming
model called the Swift-Hohenberg (SH) equation [16, 43]. Then, this work aims to investigate
the emergence of labyrinthine patterns in two physical contexts: vegetation self-organization
in arid environments and confined chiral nematic liquid crystals (CNLCs).

Macroscopic self-organized structures arise in plant ecology, where stressed vegetation
biomass can self-organize when resources, such as water or nutrients, are limited [8, 44,
45, 46, 47, 48, 49, 33]. Under these arid conditions, the plant community displays coherent
distributions, which are maintained by facilitative and competitive processes involving plants
and the environment [44]. These distributions, whose wavelengths range from centimeter
to kilometer scales, are vegetation patterns. From an ecological modeling perspective, a
generic sequence of patterns, depending on climate stress, has been established. Starting
from a uniform cover, as the aridity level (resource availability) is increased (decreased),
the first pattern that appears consists of a periodic spatial distribution of gaps followed by
labyrinths and then spots. The first paper to discuss the sequence was [45] in 1999. Later
on, the sequence was analyzed from reaction-diffusion models approach in 2001 [46] and 2002
[47]. Besides periodic, other aperiodic and localized vegetation patterns have been reported
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. The second part of this dissertation is
focused on the investigation of localized and extended labyrinthine vegetation patterns in
real ecosystems, and the effect of heterogeneities in the latter.

CNLCs can be created by doping a nematic liquid crystal, characterized by a long-range
orientational order, but not a positional one, with chiral molecules [63, 64, 65]. In this
dissertation, we have used a mixture composed of a commercial nematic liquid crystal E7
(Merck) and chiral molecules EOS12 [66]. The addition of chiral dopants can induce a
spontaneous twist deformation in the nematic phase creating a helical structure [63, 67, 64].
When subjected to homeotropic anchoring in a cell, the helical phase gets frustrated, so that
given a critical degree of frustration, the system unwinds. This state is purely geometric and
is sustained by the competition between the cholesteric pitch, geometric effects introduced
by the cell thickness, and elasticity [68, 69, 64]. The twisted or winded structure can be
recovered by applying a voltage, a temperature difference, or changing the thickness to the
cell in the unwound state [64]. In general, the reappearance of the twisted phase is in the
form of a translationally invariant configuration (TIC) or in the form of cholesteric fingers
of type 1 (CF1) [70, 71, 36, 72]. Besides, localized structures, known as elementary torons
or chiral bubbles, can also be exhibited by cholesteric phases [64, 73, 74]. The last part
of this dissertation dedicates to understanding temperature-triggered transitions in CNLCs
from the point of view of Ginzburg-Landau (GL) equations. The emphasis is given to the
stabilization of localized vortices and the emergence of labyrinthine patterns.

1.1. Contents
This dissertation is a compendium of manuscripts consisting of 7 peer-reviewed published
papers and one conference paper. Each manuscript has an associated Chapter, including a
small introduction focused on the motivation of the particular paper and some perspectives
at the end. The first chapter of this dissertation is the present Introduction, which is followed
by Chapter 2 where the essential concepts and techniques needed to tackle this research are
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introduced. Chapter 3 introduces a precise definition of labyrinthine patterns based on the
global and local structure of these equilibria in Fourier space. Additionally, proper order
parameters, such as defect density, correlation length, and structure factor, are proposed
to reveal transitions between different types of labyrinths–fingerprint, glassy, and scurfy–
observed in a pattern-forming prototype model, the Swift-Hohenberg (SH) equation. Chapter
4 describes the existence of localized labyrinthine patterns in two and three dimensions in the
SH equation, and the minimum ingredients to observe these structures in different physical
systems (ecology, optics and chemistry) are proposed. In particular, Chapter 5 addresses this
issue in the context of the self-organization of vegetation in arid and semi-arid regions, where
localized disordered bands of vegetation in Africa motivates the employment of pattern-
forming ecological models.

Chapters 6 and 7 are devoted to exploring the effect of spatial heterogeneities on the
formation of vegetation structures. Chapter 6 proposes a simple way to incorporate inhomo-
geneities into ecologically relevant models motivated by the topographic variations in arid
landscapes. The heterogeneities are included by promoting an aridity parameter to be space
dependent by using correlated and non-correlated distributions. Moreover, the formation of
vegetated structures is discussed from the perspective of phase separation. Chapter 7 ad-
dresses the addition of heterogeneities to perfect labyrinthine patterns obtained in ecological
models, in order to explain the formation of imperfect labyrinthine patterns or disordered
self-organizations, which are in a closer qualitative agreement with the satellite images of
arid and semi-arid landscapes.

In Chapters 8, 9, and 10, the formation of labyrinthine patterns in chiral nematic liq-
uid crystal cells is investigated. First, Chapter 8 describes the observation of cholesteric
labyrinths and localized vortices in temperature-forced experiments. Based on these observa-
tions, a Ginzburg-Landau type of model is proposed, which accounts for the anisotropy and
chirality of the liquid crystal mixture used. By using experiments, numerical integrations of
the model, and an interface equation, the appearance/disappearance mechanism of localized
vortices is revealed, which turns out to be a saddle-node bifurcation. Then, in Chapter 9, the
emergence of branching cholesteric labyrinths is studied from the point of view of instabili-
ties of the rounded tips of cholesteric fingers of type I (CF1), exposing how the mesoscopic
manifestation of chirality is responsible for creating disordered patterns. Finally, in Chapter
10, the stabilization of another type of cholesteric labyrinths is explored, in which an invagi-
nation instability governs the dynamics. This instability occurs spontaneously due to energy
minimization processes. Chapter 11 summarizes the main conclusions of this work.

1.2. General objective
The main objective of this dissertation is to study and characterize creation, stabilization
and disappearance of labyrinthine-like patterns in out-of-equilibrium systems from theoretical
and numerical perspectives.

1.3. Specific objectives
The specific objectives of this doctoral dissertation are:

• Define the labyrinthine pattern from the physical and mathematical points of view.
• Understand the emergence and disappearance of the labyrinthine pattern, defining ap-
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propriate order parameters.

• Study the coexistence of labyrinths with uniform states and explore the localization of
non-trivial symmetry patterns in different physical systems.

• Use and extend the concepts of labyrinthine structures to understand the irregular
labyrinthine-like patterns observed in vegetation ecosystems.

• Characterize the appearance and stabilization of labyrinthine patterns in confined chiral
nematic liquid crystals (CNLCs).

• Study the formation of localized vortices, fingers, and labyrinths in CNLCs using the
amplitude equation approach.

1.4. Common abbreviations
• SH: Swift-Hohenberg equation.

• gSH: Generalized Swift-Hohenberg equation.

• GL: Ginzburg-Landau equation with real coefficients.

• CAGL: Chiral-anisotropic Ginzburg-Landau equation.

• CNLCs: Chiral nematic liquid crystals.

• CF1: Cholesteric fingers of type 1.

• POM: Polarized optical microscopy.

• CMOS: Complementary metal oxide semiconductor (camera).

1.5. Contribution statement

1.5.1. Labyrinthine pattern transitions (Physical Review Research
2, 042036)

Sebastián Echeverría-Alar performed research (implementation of computational algo-
rithms, numerical integration of SH equation, and analysis of numerical data). Marcel G.
Clerc designed the research and wrote the manuscript.

1.5.2. Localized states with nontrivial symmetries: Localized
labyrinthine patterns (Physical Review E 105, L012202)

Marcel G. Clerc designed the research. Sebastián Echeverría-Alar performed research
(numerical integrations and analysis of numerical data). Sebastián Echeverría-Alar and
Mustapha Tlidi wrote the manuscript.
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1.5.3. Localised labyrinthine patterns in ecosystems (Scientific
reports 11, 18331)

Marcel G. Clerc and Mustapha Tlidi designed the research. Sebastián Echeverría-Alar
performed research (numerical integrations and analysis of numerical and satellite data).
Sebastián Echeverría-Alar and Mustapha Tlidi wrote the manuscript.
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vironments (Chaos, Solitons & Fractals 163, 112518)

David Pinto-Ramos performed research (implementation of computational algorithms, nu-
merical integrations, analytical calculations, analysis of numerical data). Sebastián Echeverría-
Alar performed research (numerical integrations and analysis of numerical and satellite
data). David Pinto-Ramos, Sebastián Echeverría-Alar, and Mustapha Tlidi wrote the
manuscript. Marcel G. Clerc and Mustapha Tlidi designed the research.

1.5.5. Effect of heterogeneous environmental conditions on
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054219)

Sebastián Echeverría-Alar performed research (implementation of computational algo-
rithms, numerical integrations and analysis of numerical and satellite data). Sebastián
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tal cells (Physical Review Research 4, L022021)

Marcel G. Clerc designed the research. Gregorio González-Cortés performed research (exper-
iments). Sebastián Echeverría-Alar performed research (numerical integrations, analysis
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Academy of Sciences 120, e2221000120)

Sebastián Echeverría-Alar performed research (realization of experiments, implementa-
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merical data; and analytical calculations) and wrote the manuscript. Marcel G. Clerc de-
signed research. Ignacio Bordeu performed research (numerical simulations and analysis of
experimental and numerical data) and wrote the manuscript.
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12207, 75-81)

Sebastián Echeverría-Alar designed and performed research (realization of experiments,
implementation of isotropic algorithms, and numerical integrations), and wrote the manuscript.
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Chapter 2

Theoretical framework

2.1. Dissipative Dynamical Systems
An observer experiences the dynamic world around us through their senses. They smell the
vegetables on the fridge when they are past their due date, hear the boiling of water in the
kitchen, see their beloved ones get older every day, taste chocolate while it is melting in their
mouths, and feel pain because of a wound in their skin. All of the listed experiences have
a particular initial condition (good vegetables, cold water, young people, solid chocolate,
healthy skin, respectively), which are manifested in a macroscopic world, where inevitably,
an arrow of time will lead the initial states into the future [75, 76].

From a modeler perspective, the situations described above are defined as dynamical
systems and can be generally formulated as

∂tu = f(u, λ), (2.1)

where ∂tu accounts for the temporal evolution of a state variable u describing the system,
and f⃗ is a function governing the dynamics of the system. The set of parameters λ regulates
the evolution of the variable u.

In this dissertation, and in general, when dealing with real physical systems, the function f
is nonlinear in u. This key ingredient, nonlinearity, is responsible for the rich phenomenology
exhibited by systems modeled with Eq. (2.1). In particular, the functional form of the
nonlinear function f will dictate the type and stability of the equilibria (f = 0) exhibited by
Eq. (2.1). The stability of the solutions can be tested by a local linear analysis around them.
In the present work, we will deal with systems out of thermodynamic equilibrium; thus, the
concept equilibria should not be confused with thermodynamic equilibria [3, 19].

The set of control parameters λ is the connection between reality and models. A good
model Eq. (2.1) should be able to receive data from real experiments and then use this
information as realistic parameters to qualitatively or quantitatively describe natural phe-
nomena. In experiments and models, the parameters can be controlled; they can be decreased
or increased, obtaining changes between the equilibria of a dynamical system. These non-
thermodynamic transitions are known as bifurcations [77, 78].
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2.2. Bifurcations
Bifurcations account for qualitative changes in the dynamics of a system [79]. In this section,
we briefly introduce some of the minimal functional forms associated to bifurcations between
equilibria in zero-dimensional dynamical systems. These minimal or normal forms are valid
near the transition or critical points.

2.2.1. Saddle-Node bifurcation

The normal form related to a saddle-node bifurcation is

∂tu = ϵ− u2, (2.2)

where ϵ is the parameter controlling the bifurcation (bifurcation parameter) and u is a real
variable of a relevant physical system. The equilibria of equation (2.2) are ueq = ±

√
ϵ with

the positive root
√
ϵ being the stable solution. In particular, equation (2.2) illustrates the

appearance (disappearance) of the equilibria ueq when increasing (decreasing) the control
parameter ϵ. Figure 2.1 shows the bifurcation diagram of Eq. (2.2) where at the critical (or
saddle) point ϵ∗ = 0 the equilibria emerge ϵ ≥ ϵ∗ or disappear ϵ < ϵ∗.

Figure 2.1: Saddle-node bifurcation diagram. The solid blue line accounts
for the stable solution

√
ϵ and the dashed red line is the unstable solution

−
√
ϵ. The critical point is ϵ∗ = 0.

The behavior of the bifurcations can be represented in the phase space {u, ∂tu} of the
dynamical systems. In the case of the saddle-node transition, which will be relevant in
Chapter 8, a peculiarity is that the disappearance of the equilibria occurs through their
collision at the critical point ϵ = ϵ∗ (see Fig. 2.2).
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Figure 2.2: Saddle-node bifurcation in the phase space {u, ∂tu}. The solid
blue lines illustrates the functional form of Eq. (2.2) for different values of
ϵ, where ϵ1 > ϵ2 > ϵ3 > ϵ∗ > ϵ4. The solid red dots indicate the stable
equilibria while the hollow red dots the unstable equilibria.

2.2.2. Transcritical bifurcation
The normal form associated to a transcritical bifurcation is

∂tu = ηu− u2, (2.3)

where η is the parameter controlling the bifurcation and u is a real variable of a relevant
physical system. The equilibria ueq of equation (2.3) are u1 = 0 and u2 = η. The peculiarity
of the normal form (2.3) is that at the critical point η∗ = 0 an interchange of stability occurs
between u1 and u2 as shown in Fig. 2.3.

Figure 2.3: Transcritical bifurcation diagram. The solid (dashed) black line
indicates the stable (unstable) ueq = u1 equilibrium. The solid (dashed)
blue line indicates the stable (unstable) ueq = u2 equilibrium. The critical
point is η∗ = 0.
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2.2.3. Supercritical Pitchfork bifurcation

The normal form of a supercritical pitchfork bifurcation is

∂tu = ϵu− u3, (2.4)

where ϵ is the parameter controlling the bifurcation and u is a real variable of a relevant
physical system. The equilibria ueq of equation (2.4) are uo = 0 and u± = ±

√
ϵ. Figure 2.4

shows the bifurcation diagram of the dynamical system (2.4). Below the critical point ϵ∗ = 0,
only the equilibrium uo exists and it is stable. Above the bifurcation point, the two stable
solutions u± emerge and the uo state becomes unstable.

Figure 2.4: Supercritical bifurcation diagram. The solid (dashed) black
line indicates the stable (unstable) ueq = 0 equilibrium. The solid blue line
shows the stable solution u+, while the solid red line is the stable equilibrium
u−. The critical point is ϵ∗ = 0.

2.2.4. Subcritical bifurcation with reflection symmetry

The subcritical bifurcation can be described by the fifth-order normal form

∂tu = µu+ βu3 − u5, (2.5)

where µ is the parameter controlling the bifurcation and u is a real variable of a relevant
physical system. The parameter β controls the type of the bifurcation, which is subcritical
when β > 0. In particular, we can set β = 1 for the present discussion. The five equilibria
of the dynamical system (2.5) are uo = 0 and u±± = ±(1/2 ±

√
1/4 + µ)1/2. The subcritical

transition is manifested when the system is prepared with the initial condition u = uo at
µ < µ∗

ub = 0 and then increasing µ until the critical point µ∗
ub. There the zero solution loses

stability, and the system transitions abruptly to either u++ or u+− (see Fig. 2.5).
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Figure 2.5: Subcritical bifurcation diagram. The solid (dashed) black line
indicates the stable (unstable) ueq = 0 equilibrium. The solid blue curve
shows the stable solution u++ = (1/2 +

√
1/4 + µ)1/2. The solid red curve

shows the stable solution u+− = (1/2−
√

1/4 + µ)1/2. The dashed green line
indicates the unstable equilibria u−+ = −(1/2 +

√
1/4 + µ)1/2. The dashed

magenta line indicates the unstable equilibria u−− = −(1/2−
√

1/4 + µ)1/2.
The critical point are ϵ∗lb = −1/4 and ϵ∗ub = 0. The red arrows illustrates
the subcritical transition and hysteresis effect starting from the solution uo

at the sky blue dot.

The subcritical bifurcation has a lower codimension normal form, which has a pitchfork
form (∂tu = ϵu + u3). However, we have intentionally introduced the normal form (2.5) to
address an interesting nonlinear phenomenon, hysteresis. This nonlinear effect is observed
when decreasing the parameter µ starting from the stable branch u++ (it could be the sym-
metric one u−+) at µ > µ∗

ub. Now, when going through the critical point µ∗
ub the system does

not jump back to uo because the branch u++ is stable until µ∗
lb = −1/4. At µ∗

lb, the stable
solution u++ collides with u−+ disappearing in a saddle-node bifurcation, and the system
finally goes back to uo. In summary, the hysteresis phenomenon is the access to different
equilibria depending on the history of the system, and is expressed as a loop–multistability
region–in the bifurcation diagram (see Fig. 2.5).

2.3. Extended Systems
In the previous chapter, we introduced the notion of simple zero-dimensional dynamical
systems, where the single state variable u only depends on time (for example, the position
of a particle). However, throughout this dissertation, we will work with spatially extended
systems where the variable u will be an extended field u(x⃗, t) depending not only on time but
also on space x⃗. This spatial dependence is possible by including spatial couplings in the right-
hand side of Eq. (2.1), transforming ordinary differential equations into partial differential
equations or even into integrodifferential forms. The couplings can be implemented through
local terms (e.g., diffusion, hyperdiffusion, advection) [17, 80, 81, 82, 83, 84, 56, 43, 85]
or nonlocal terms [86, 44]. Perhaps, the simple form of spatial coupling is the laplacian
∇2 = ∂xx + ∂yy, which accompanies prototype two-dimensional reaction-diffusion models;
∂tu(x⃗, t) = f(u(x⃗, t)) + ∇2u(x⃗, t). The rich phenomenology introduced by spatially extended
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systems is beyond words, and in this dissertation, we mainly address interface and pattern
phenomena.

2.3.1. Interfaces

The notion of having two or more different states in a spatially extended dynamical system
motivates the questioning of how they connect and if this connection is static or dynamic.
In words of Pierre-Gilles de Gennes [87]:

"The borders between great empires are often populated by the most interesting ethnic
groups. Similarly, the interfaces between two forms of bulk matter are responsible for some
of the most unexpected actions. Of course, the border is sometimes frozen (the great Chinese
wall). But in many areas, the overlap region is mobile, diffuse, and active (...)".

Let us give a more mathematical framework by considering the dynamical system (2.5)
with β = 1, but including the one-dimensional spatial coupling ∂xx, that is

∂tu = µu+ u3 − u5 + ∂xxu. (2.6)

Now, we can use a computer and numerically integrate the above equation by discretiz-
ing the continuous operator ∂xx using a second-order finite difference scheme with null-flux
boundary conditions, and temporally evolve the system with a Runge-Kutta 4 algorithm.
Figure 2.6 shows three different equilibria with their respective temporal evolution, starting
from an initial condition meticulously prepared within the multistability region [µ∗

lb, µ
∗
ub].

This initial condition is an interface connecting the equilibria uo and u++, exhibiting its ma-
jor spatial variation at its core at x = 0. Figure 2.6(a) shows that the interface is static (an
equilibria) at µ = −3/16, while the interface moves in Figs. 2.6(b) and 2.6(c), establishing
as equilibria uo when µ < −3/16 or u++ when µ > −3/16, respectively.

The movement of the interface is related to a minimization principle underlying the dy-
namics of Eq. (2.6), that is the interface will move until the system reach a global minimum
of a Lyapunov Functional F [88, 89, 90] obeying ∂tu = −δF [u, ∂xu]/δu, where

F [u, ∂xu] =
∫
dx

{
− µ

u2

2 − u4

4 + u6

6 + (∂xu)2

2

}
. (2.7)

An interesting feature to highlight is that in Fig. 2.6(a) the interface is motionless because
both states uo and u++ have the same Lyapunov Functional value (or free energy); F [uo] =
F [u++], at µ = −3/16. This peculiar value of the bifurcation parameter is called the Maxwell
point [91, 92]. Moreover, it can be proved that the speed of the interface c in Fig. 2.6(a) is
proportional to the energy difference between the homogeneous states F [u++] − F [uo] [19].

The above picture changes dramatically in two dimensions due to curvature effects. For
example, if one thinks in a simple circular interface, the laplacian can be written in polar
coordinates with azimuthal symmetry ∇2 = ∂rr + ∂r/r. Furthermore, if we assume that
the circular interface is characterized by a big radius R, the curvature of the front can be
introduced as κ = 1/R, and then ∇2 = ∂rr + κ∂r. The geometrical correction incorporated
through κ directly affects the speed of the interface, which at first order is c = (F [u++] −
F [uo]) −aκ, where a is a constant. The interface will be in constant motion due to curvature
effects as the system tries to minimize energy by reducing its curvature. Higher order velocity-
curvature relations can arise in systems with more complicated interface shapes [93].
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(a)

(b)

(c)

Figure 2.6: Dynamics of the one-dimensional interface connecting the equi-
libria uo and u++ of Eq. (2.6). The initial condition, an interface of the
form uf (x) = [3/4(1 + e

√
3/4x)]1/2 [94], is shown in the left panels and it

evolves towards the right panels for different µ values. (a) µ = −3/16, (b)
µ < −3/16, and (c) µ > −3/16. The spatial length is in arbitrary units.
The green arrows represent the propagation of the interface.

The role of curvature in driving dynamics (of minimization or not) has attracted scientists
from different areas [95, 96, 97, 23, 19, 98, 99]. Part of this dissertation (Chapters 8, 9, and
10) is devoted to understand the curvature effects introduced by a nonlinear coupling.

2.3.2. Pattern Formation

In Chapter 1, we have established that the main focus of this dissertation are labyrinthine
patterns emerging in out-of-equilibrium systems and gave a proper introduction to the con-
cept of patterns. In this Chapter, we discuss prototype spatially extended two-dimensional
dynamical systems to establish some minimal ingredients needed to observe patterns, such
as stripes, labyrinths and hexagons, in mathematical models. Let us introduce the Swift-
Hohenberg equation (SH)

∂tu(x, y, t) = ϵu(x, y, t) − u(x, y, t)3 − ν∇2u(x, y, t) − ∇4u(x, y, t), (2.8)

where u(x, y, t) is a real scalar variable, x−y are spatial coordinates of a bidimensional plane,
and t is time. The first two terms in the right hand side of Eq. (2.8) accounts for a supercritical
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pitchfork bifurcation, between the homogeneous states u = 0 and u = ±
√
ϵ, controlled by

the ϵ parameter. The last two terms, an antidiffusion (ν > 0) and a hyperdiffusion, are the
spatial mechanisms responsible for the formation of patterns; they establish a wavelength in
the system, breaking the translational symmetry of the homogeneous states. This spatial
instability can be captured by a linear analysis around the uniform solution u = 0, obtaining
a dispersion relationship of the form σ = ϵ + νk2 − k4, where σ is the growth rate of an
arbitrary inhomogeneous perturbation around the uniform solution u = 0, and k = |⃗k| is the
arbitrary wave vector modulus of the perturbation. The patterns will emerge in the system
when σ > 0, then, the critical condition is ϵc = −ν2/4. At this critical point, or Turing
point, patterns with a critical wavelength 2π/kc = 2

√
2π/

√
ν will dominate the system (see

Fig. 2.7(a)). For bigger values of ϵ, not only the unstable mode kc arise, but an unstable
band of modes ∆k is also lifted as depicted in Fig. 2.7(a). Figure 2.7(b) illustrates the
dispersion relationship in the full wave vector space {kx, ky}. After the emergence of the
pattern, nonlinear mechanisms will play their role and saturate the growth of the unstable
mode and its accompanying band. For example, in the simple case when a single mode is
selected near ϵc, i.e., u = Aeikcx + A∗e−ikcx, its slowly varying amplitude A(X,Y, T ) obeys
the Newell-Whitehead-Segel nonlinear equation [100, 101, 19]

∂TA = ∆ϵA− |A|2A+
(
∂X − i√

2ν
∂Y Y

)2
A, (2.9)

where ∆ϵ measures the departure from the bifurcation point ϵc. The slow variables {X, Y, T}
are a renormalization of the temporal and spatial scales as a consequence of the proximity to
ϵc. The reduction of the dynamics near the critical point unveils dynamical behaviors that
were inaccessible in the starting equation (2.8). This amplitude equation formalism will be
employed in Chapters 8, 9 and 10 to reveal some of the dynamics exhibited by confined chiral
nematic liquid crystals.

(a) (b)

Figure 2.7: Linear spatial instability analysis around u = 0 in Eq. (2.8). (a)
Arbitrary one-dimensional cut in the wave vector space showing the desta-
bilization of one mode (kc =

√
ν/2) at ϵ = ϵc = −ν2/4, and a band of modes

∆k at ϵ > ϵc. (b) The full two dimensional view of the desestabilization of
a ring of modes at ϵ > ϵc.

The prototype pattern forming model (2.8) is variational, that is, ∂tu = −δF [u,∇u,∇2u]/δu,
where
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F =
∫ ∫ (

− ϵ
u2

2 + u4

4 − ν
(∇u)2

2 + (∇2u)2

2

)
dxdy, (2.10)

is the Lyapunov functional of the SH model. The variational dynamics in pattern forming
systems is not necessarily the rule. In out-of-equilibriums systems near the nascent of bista-
bility and a symmetry breaking instability, i.e., Lifshitz point, a generalized model of the
Swift-Hohenberg type (gSH) can be derived [83, 84]

∂tu = η + ϵu− u3 − (ν − bu)∇2u− c(∇u)2 − ∇4u, (2.11)

where the additional terms with respect to Eq. (2.8) are a constant term η, a nonlinear
diffusion process controlled by a parameter b, and a nonlinear advection term tuned by a
parameter c. Notice that the additional terms break the parity symmetry u → −u allowing
the system to establish hexagonal patterns as equilibria [102, 103]. Additionally, the nonlinear
spatial terms {u∇2u, (∇u)2} rule out the existence of a Lyapunov Functional in Eq. (2.11)
(except in the particular case c = b/2), allowing the system to access spatiotemporal dynamics
[104, 105, 106].

In practice, to study patterns in two dimensions an essential tool are computers, which
allows the numerical integration of SH and gSH models starting from different initial con-
ditions [107]. For example, purposedly prepared initial conditions can be implemented to
obtain perfect stripes (see Fig. 2.8(a)), perfect hexagonal patterns (see Fig. 2.8(b)), axisym-
metrical localized structures, which are a possible equilibria when the bistability and pattern
formation ingredients are present (cf. Figs. 2.8(c) and 2.8(d))[108, 109, 110, 111]. Addition-
ally, it is possible to start numerical integrations with a small amount of white noise allowing
a system, such as Eq. (2.8), to access different local minima of Eq. (2.10) instead of only
the global minimum. This freedom results in the emergence of defects in stripe patterns,
breaking the local symmetry of a perfect stripe and costing energy (cf. a pair of dislocations
in Fig. 2.8(e)). When the simulation box is sufficiently large, a lot of defects will take over
the dynamics creating extended labyrinthine patterns as shown in Figs. 2.8(f) and 2.8(g).
These equilibria are metastable states of model Eq. (2.8), while the perfect stripe pattern is
the stable solution (see Fig. 2.9 for a schematical energy landscape). In the regime where the
uniform solutions of Eq. (2.8) have a similar energy to the pattern solutions [112, 113], com-
plicated localized states can emerge, such as, localized labyrinthine patterns (see Figs. 2.8(g)).
Chapters 3 and 4 will focus on studying and extending the ideas of labyrinthine patterns in
the SH model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Various patterns in Eqs. (2.8) and (2.11) with ν = 1 and b =
c = 0. (a) Stripe pattern at ϵ = 0 and η = 0. (b) Hexagonal pattern at
ϵ = 0.1 and η = −0.03. (c) Localized structure at µ = 1 and η = 0. (d)
Chains of localized structures at µ = 0.2 and η = −0.08. (e) Dislocations
at ϵ = 0 and η = 0. (f) Labyrinthine pattern at ϵ = 0.2 and η = 0. (g)
Labyrinthine pattern at ϵ = 1.16 and η = 0. (h) Localized labyrinthine
pattern at ϵ = 1.165 [114].

(a) (b)

Figure 2.9: Schematical of metastable states in Eq. (2.8). (a) Usual picture
of a metastable state as a local minimum and a stable state as a global
minimum of a free energy F ′ depending on an equilibrium variable yeq. (b)
Schematical representation of the energy landscape F of Eq. (2.8) showing
that labyrinthine patterns (orange) are metastable states and stripe patterns
(blue) are stable states.

2.4. Vegetation self-organization
Self-organized structures emerge in plant ecology, where stressed vegetation biomass can self-
organize when resources, such as water or nutrients, are limited [8, 44, 45, 46, 47, 48, 49, 33].
Under these arid conditions, the plant community displays coherent distributions, which
are maintained by facilitative and competitive processes involving plants, resources and the
environment [44]. These distributions, whose wavelengths range from centimeter to kilometer

15



scales, are frequently referred to as vegetation patterns, which can be observed in satellite or
aerial images of arid or semi-arid regions (some examples are shown in Fig. 2.10).

200 m

100 m

100 m

300 m

(a) (b)

(c) (d)

Figure 2.10: Satellite images of vegetation patterns. (a) Niger (12◦36’29.76"
N 3◦00’47.77" E), (b) Namibia (17◦39’07.19" S 12◦36’22.79" E), (c) Su-
dan (11◦08’23.59” N 27◦50’48.33” E), and (d) Sudan (11◦05’42.77” N,
28◦22’13.15” E). All the images were retrieved from Google Earth soft-
ware [115].

The formation of vegetation patterns in arid and semi-arid regions has motivated the
scientific community to explore different modeling approaches and explanations for this phe-
nomenon [116, 44, 32, 117, 118, 119, 120, 121]. In this dissertation (Chapters 5, 6, and 7),
we concentrate on the pioneer modeling approach proposed in Ref. [44], which explains the
emergence of vegetation patterns from the perspective of symmetry-breaking instabilities of
homogeneous covers in arid or semi-arid environments. Particularly, the plant community
behavior is addressed by an interaction-redistribution approach, where the biomass density
c = c(r, t) at space point r = (x, y) and time t evolves following a logistic equation that
includes nonlocal interactions of the biomass [56]

∂tc = c(1 − c)Mf (r) − µcMc(r) +DMd(r). (2.12)

This is an integrodifferential equation where the constituents of the extended system inter-
act not only through local interactions occurring within a small area but through spatially
broader mechanisms mediated by nonlocal functions. The first term in the right-hand side of
Eq. (2.12) models the rate at which biomass increases and eventually saturates. The nonlocal
function Mf (r) = exp[χf

∫
dr′ϕf (r′, Lf )c(r + r′)] accounts for interactions facilitating growth,

regulated by an intensity χf . These effects are controlled by the kernel function ϕf , whose
range of influence is of the order of the plant’s aerial structure Lf (size of the canopy or crown).
The second term in the right-hand side of Eq. (2.12) represents the biomass death processes.
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Mc(r) = exp[χc

∫
dr′ϕc(r′, Lc)c(r + r′)] accounts for interactions enhancing biomass decay

with an intensity χc. The parameter µ is a measure of the mortality-to-growth rate ratio of
plants in the absence of interaction with others, which can be seen as resource scarcity or
aridity [44, 117]. This negative feedback acts over distances of the order of the root length
Lc with an intensity χc and is controlled by the kernel function ϕc. A cooperative measure of
the ecological system can be introduced as χf −χc. The last term in Eq. (2.12) incorporates
seeds dispersion with a diffusion parameter D, where Md(r) =

∫
dr′ϕd(r′)[c(r + r′) − c(r)],

and ϕd(r′) accounts for the biomass transport between positions r and r′. The shape of the
kernel or weighting functions depends on the system under study. For example, for isotropic
two-dimensional landscapes, Gaussian and exponential type of kernels are suitable enough for
qualitative modeling. Equation (2.12) exhibits uniform covers, a bare soil state, and patterns
as equilibria [44].

The integrodifferential Eq. (2.12) close to a Lifshitz point, where the bistability is between
a uniform vegetation cover and bare soil, and the symmetry breaking instability is suffered
by the uniform cover, can be reduced to a partial differential equation. The reduced model
reads [45, 56]

∂tb = −ηb+ κb2 − b3 + (ν − γb)∇2b− αb∇4b, (2.13)

where b = b(r, t) is the state variable associated to the biomass density. The parameters η and
κ are the deviations of the aridity and cooperativity critical parameters, respectively. ν and
γ are linear and nonlinear diffusion coefficients, respectively. The last term is a nonlinear
hyperdiffusion controlled by α. The parameters {ν, γ, α} depend on the strength of the
competitive feedback, the seed’s diffusion, and the shape of the kernels ϕf , ϕc, and ϕd [54].
The model Eq. (2.13) has three homogeneous states; the bare state b = 0, and b± = (κ ±√
κ2 − 4η)/2. The b± equilibria are connected by a saddle-node bifurcation at ηsn = κ2/4 with

κ positive. The uniform solution b− is always unstable. For small aridity, the vegetated state
b+ is stable. When the aridity is increased the uniform cover suffers a spatial instability. This
spatial instability with critical wavelength λc = 2π

√
2α/(γ − ν/bc) occurs at η ≡ ηc, where

ηc satisfies the implicit condition 4αb2
c(2bc − κ) = (γbc − ν)2 with bc ≡ b+(ηc). The generic

sequence of patterns following the increment of the aridity level is: gaps–stripes/labyrinths–
spots, and has been predicted using various pattern-forming ecological models. The first
paper that discusses the sequence was [45] in 1999. Later on, the sequence was analyzed from
reaction-diffusion models in 2001 [46] and 2002 [47]. Besides periodic, other aperiodic and
localized vegetation patterns have been reported [50, 51, 52, 53, 54, 122]. Well-documented
localized vegetation patterns are the fairy circles [55, 56, 57, 58, 59, 60, 61, 62]. Other
alternative hypotheses for the spatial structure of vegetation self-organization have been
explored, such as random patterns and power-law distributions of patch sizes [120, 121].

2.5. Chiral nematic liquid crystals

2.5.1. Nematic liquid crystals

Liquid crystals are a state of matter with intermediate physical properties between liquids
and solids [63]. This exotic material was discovered by Friedrich Reinitzer [123] when he was
studying the thermal behavior of crystals of cholesterol derivatives. In particular, he observed
two phase transitions (two melting points) while heating the sample. One year later, these
organic materials exhibiting mesomorphic phases (intermediate states) were coined as liquid
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crystals by the physicist Otto Lehmann [124]. To chemically generate liquid crystals, strongly
elongated molecules or groups of molecules are needed. From a modeling perspective, the
particular shape of these objects motivates the introduction of new degrees of freedom, such
as the orientation of these non-spherical molecules [63].

In 1922, Georges Friedel introduced the names of three different liquid crystal phases:
nematics, smectics, and cholesterics [125]. In this dissertation, we mainly focus on the latter.
Nevertheless, we briefly introduce the nematic, or thread-like [126], phase because cholester-
ics are generally created by doping a nematic liquid crystal with a chiral molecule. Nematics
behave as anisotropic fluids showing a preferred alignment in one direction. They are po-
sitionally disordered, but orientationally ordered [63]. Figure 2.11(a) shows a small organic
molecule, p-azoxyanisole, which from a steric point of view is a rigid rod as depicted schemat-
ically in Figure 2.11. When increasing temperature, the material undergoes the two melting
transitions described by Friedrich Reinitzer. First, a highly ordered phase (Fig. 2.11(b)) is
heated until it reaches the nematic phase (Fig. 2.11(c)), where the remaining orientational
order can be distinguished by defining the privileged direction n⃗, the nematic director. Fur-
ther heating the system results in the melting of the sample, and the liquid phase emerges
(Fig. 2.11(d)). Other molecules or multicomponents, such as MBBA, 5CB, and E7 (see
Fig. 2.12 for the molecular representation of the latter), present these macroscopic behaviors
when temperature is increased. In this dissertation, we work with liquid crystals undergoing
transitions only triggered by temperature variations, that is, thermotropic systems.

The transition from the nematic phase to the isotropic (or liquid) phase can be qualita-
tively seen as an order-disorder transition [127]. This change in the symmetry of the system
can be formally described by a suitable order parameter. In the case of an ideal nematic
phase, where molecules are oriented on average in a common direction n⃗, the system is
uniaxial and can be characterized by the macroscopic tensor order parameter [63]

(a)

(b)
(c)

(d)

Figure 2.11: Thermotropic liquid crystal exhibiting a nematic phase. (a)
Organic molecule p-azoxyanisole (PAA). (b) Ordered crystal phase. (c) The
nematic phase is characterized by the nematic director n⃗. (d) Disordered
liquid phase. The green rods are a schematic representation of the organic
molecules. The temperature bar indicates low temperatures (blue) and high
temperatures (red).
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Qαβ = Q(T )
(
nαnβ − 1

3δαβ

)
, (2.14)

where α and β label the three components {x, y, z} of the director n⃗, and δαβ is the Kronecker
delta. The tensor Qαβ is symmetric and fulfills the symmetry n⃗ → −n⃗ (no orientation). The
amplitude Q(T ) depends on the temperature T of the system and has been used as an order
parameter in the Landau-de Gennes theory to reveal the first-order transition between the
nematic and the isotropic phase [127].

Figure 2.12: Multicomponent nematic liquid crystal E7. Pure components
from the top panel to the bottom panel: 4-cyano-4’-n-pentyl-1,1’- biphenyl
(5CB-51%); 4-cyano-4”-n-pentyl- 1,1’ ,1” -terphenyl (5CT-8%); 4-cyano-
4’- n-heptyl-1,1’- biphenyl (7CB-25%); 4-cyano-4’-n-octyloxy-1,1’- biphenyl
(8OCB-16%).

2.5.2. Continuum theory: Frank-Oseen free energy

The uniaxial alignment discussed above is highly ideal and is sustained from a hypothetical
situation where the nematic liquid crystal is isolated. For example, liquid crystals are used in
cell phones subjected to boundaries and voltage variations [128]. These external ingredients
cause deformations of the nematic alignment making the tensor Qαβ space dependent. These
deformations can be studied with a continuum theory supposing that the spatial variations
occur over distances much larger than the size of the molecules [63]. In this weakly distorted
regime, a valid assumption is that locally the properties of the material are still uniaxial, then
the amplitude of the tensor order parameter Qαβ remains constant, and only the reorienta-
tion of the nematic director vector n⃗(r⃗), with r⃗ = {x, y, z} a positional vector, governs the
dynamics. The elastic distortions of n⃗ can be characterized by the Frank-Oseen free energy
[129, 130]

Fed =
∫ [

K1

2 (∇ · n⃗)2 + K2

2 (n⃗ · ∇ ∧ n⃗)2 + K3

2 (n⃗ ∧ ∇ ∧ n⃗)2
]
dr⃗. (2.15)

Notice that this free energy is invariant under the change n⃗ → −n⃗, invariant under rotations,
and is related to a centrosymmetric material. The first deformation mode is splay ∇ · n⃗,
which captures the tilt inward or outward of the director n⃗ in its perpendicular plane. The
energetic cost associated with this distortion is measured by the splay constant K1. The
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second mode is twist n⃗ · ∇ ∧ n⃗, which indicates how n⃗ varies in a right-hand or left-hand way
with respect to the perpendicular plane of n⃗. The elastic constant associated with the twist
mode is K2. The third mode is bend n⃗∧∇∧n⃗, which accounts for the variations of n⃗ along its
direction, and its associated elastic constant is K3 [131]. Figure 2.13 shows the values of the
elastic constants of E7 together with their temperature dependence. The free energy (2.15)
only considers bulk terms, and this is accurate while surface terms remain neglectable (e.g.,
strong anchoring conditions [63]). When surface terms are important (e.g., soft anchoring),
saddle-splay distortions must be considered [132].

49 50 51 52 53
1

2

3

4

5

6

7

8

Figure 2.13: Temperature dependence of the elastic constants of E7. The
chart is adapted from Ref. [133].

2.5.3. Chiral nematic liquid crystals

Chirality is the absence of mirror symmetry. In 1894, Lord Kelvin used the term for the first
time [134]:

"I call any geometrical figure, or group of points, ’chiral’, and say that it has chirality if
its image in a plane mirror, ideally realized, cannot be brought to coincide with itself".

Chiral nematic liquid crystals (CNLCs) can be created by doping a nematic liquid crystal
with chiral molecules [63, 64, 65]. The molecule employed in this dissertation is called EOS12
(see Fig. 2.14), which has been synthetized by the Liquid Crystal Group from the Universidad
de Concepción [66]. The addition of the chiral dopants can induce a spontaneous twist
deformation in the nematic phase creating a helical structure [63, 67, 64]. Figure 2.15 shows
schematically the emergence of the cholesteric phase [63]. The main feature of this phase is
the characteristic length of the helix, known as cholesteric pitch po, which corresponds to the
distance required for one full rotation of the nematic director vector n⃗(r⃗). In a dilute limit,
the pitch is equal to β/c, where β is the rotatory power of the cholesteric [135, 136], and
c is the concentration of the dopant [63]. The pitch is the mesoscopic manifestation of the
molecular chirality [137].
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Figure 2.14: EOS12 molecule; (S)–(4–(5–dodecylthio–1,3,4–oxadiazole–2–
yl) phenyl 4’–(1”–methylheptyl–oxy)benzoate).

(a) (b)

(c)

Figure 2.15: The schematic emergence of a cholesteric phase. (a) Nematic
phase undistorted, where the green cylinders define a local nematic director
n⃗. (b) Doping of the nematic phase with a non-centrosymmetric material,
represented by sky-blue objects. (c) Cholesteric phase with a pitch po indi-
cating its inverse relationship with the concentration c of the chiral dopant.

When subjected to homeotropic anchoring in a cell of thickness d (the molecules arrive
perpendicular to the plane of the cell), the helical phase gets frustrated, so that given a critical
degree of frustration, which is measured in terms of the ratio d/po, the system transitions
to an unwound (nematic) metastable state (see Fig. 2.16(a)). This state is purely geometric
and is sustained by the competition between the pitch, geometric effects introduced by the
cell thickness, and elasticity [68, 69, 64]. The twisted or winded structure can be recovered
by applying a voltage, a temperature difference, or changing the thickness to the cell in the
unwound state [64]. The cholesteric phase is characterized by the spatial variations of the
director field (see Fig. 2.16(b)). In general, the reappearance of the twisted phase is in the
form of a translationally invariant configuration (TIC) or in the form of cholesteric fingers of
type 1 (CF1). The TIC phase is characterized by a twist along the cell thickness n⃗(z) (see
Fig. 2.16(c)), and the CF1 by a director field of the general form n⃗(x, y, z) (see Fig. 2.16(d)).
In directional growth experiments with voltage, other types of cholesteric fingers (CF2, CF3,
and CF4) have been observed [138].
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The recovery of the twisted structure can be described by the minimization of the Frank-
Oseen free energy (2.15) with an additional chiral term 2K2πn⃗ ·∇∧ n⃗/po, breaking the mirror
symmetry in the system [63]. Note that the cholesteric pitch needs to be big, compared to
the molecular scale, so the supposition of uniaxiality remains valid [67]. The minimization
process describes the evolution of the director, γdn⃗/dt = −δFed/δn⃗ while maintaining its
unitary norm [139], and reads

γ
dn⃗

dt
= K3[∇2n⃗− n⃗(n⃗ · ∇2n⃗)] + (K3 −K1)[n⃗(n⃗ · ∇)(∇ · n⃗) − ∇(∇ · n⃗)]

+ (K2 −K3)[2(n⃗ · ∇ ∧ n⃗){n⃗(n⃗ · ∇ ∧ n⃗) − ∇ ∧ n⃗} + n⃗ ∧ ∇(n⃗ · ∇ ∧ n⃗)]

+ 4πK2

p
[−∇ ∧ n⃗+ n⃗(n⃗ · ∇ ∧ n⃗)],

(2.16)

where γ is a rotational viscosity constant, and the homeotropic boundary conditions n⃗(x, y, z =
0) = ẑ and n⃗(x, y, z = d) = ẑ are considered during the evolution.

(a) (b)

(c)

(d)

Figure 2.16: Schematic representation of the nematic director within a cell
of thickness d with homeotropic boundary conditions. (a) Nematic phase
induced by homeotropic anchoring. (b) Representation of the nematic di-
rector n⃗ as tubes in a spherical coordinate system. The angle α represents
the tilt of n⃗ from the z-axis and θ corresponds to the angle between the
x-axis and the projection of n⃗ in the plane x− y. (c) Translationally invari-
ant configuration (TIC) is characterized by a uniform twist parallel to the
cell thickness. (d) Director distribution of the cross-section of a cholesteric
finger of type I. In this case, spatial modulations of n⃗ are in z and in the
plane x− y. This director representation is adapted from [140].

During the minimization dynamics, the experimental setup to monitor the emergence of
the cholesteric phase triggered by temperature is depicted in Fig. 2.17(a). The thermal setup
(1-3) consists of a thermal chamber operating under a Peltier effect controlled by a computer.
The optical setup (4-9*) is the usual Polarized Optical Microscopy (POM), which exploits
the birefringence of the liquid crystals to observe their beautiful textures [65]. The polarizer
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(P) and analyzer (A) are crossed, giving no transmittance of light when the liquid crystal is in
the nematic phase. Figure 2.17(b) highlights, schematically, that inside the thermal chamber
is the liquid crystal cell (see Figure 2.17(c)). The cholesteric phase is obtained by heating a
liquid crystal mixture of E7 with EOS12 inside the cell (with thickness d = 7 µm and treated
with homeotropic boundary conditions). This recovery of the winded phase is related to the
decrease of the cholesteric pitch, which depends inversely on the temperature [65], relieving
the geometrical frustration d/p(T ) of the system.

Figure 2.17: Experimental setup. (a) 1) LinkamT95-PE hot stage, 2) Ther-
mal chamber (TC), 3) Linkam software, 4) Lamp, 5) Polarizer (P), 6) Ob-
jectives (O), 7) Analyzer (A), 8) CMOS camera, 9*) Quarter-wave plate.
(b) Schematic drawing of the experiment highlighting the (c) liquid crystal
cell (Instec) inside the thermal chamber.
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Chapter 3

Labyrinthine pattern transitions
(Physical Review Research 2, 042036)

The spontaneous emergence of self-organized dissipative structures out of a homogeneous
state has been observed in many out-of-equilibrium systems, including biology, chemical
reaction-diffusion systems, fluid mechanics, nonlinear optics, and laser physics [3, 141, 11].
The loose of stability of a homogenous state against spatial dependent perturbations is a
symmetry-breaking instability. Near this transition, the emerging patterns are simple, such
as stripes, hexagons, squares, and superlattices [19, 141, 18, 20, 21]. The simplicity is syn-
onymous of trivial symmetry, which is manifested in the few modes needed to describe these
patterns [141, 18]. Far from the critical point, the structures start to be complex, that is,
they display non-trivial symmetries.

Labyrinthine patterns are one of the complicated spatial structures arising far from pri-
mary spatial instabilities. Without loose of generality, let us discuss the spatial structure
of labyrinths by means of a simple SH equation. It is well-known that labyrinths are char-
acterized by a powdered ring-like global Fourier spectrum as shown in Figure 3.1(a) [24].
Nevertheless, this description is exhibited by disordered patterns in general. Figure 3.1(b)
shows a disordered hexagonal pattern exhibiting a powdered ring spectrum in its global
transform. In this chapter, we will show that a precise labyrinth’s definition needs a local
description in addition to a global characterization. Indeed, when performing local Fourier
transforms in windows of size ∝ λc (red-framed boxes in Figure 3.1) a distinction between
labyrinths and disordered hexagons can be established.

The ring-like feature of the spectrum of labyrinths can be loosely understood as a a com-
bination of local stripes (two diametrically opposed peaks in Fourier space) in different direc-
tions, while the powdered feature is related to the presence of defects in the pattern. These
defects reconcile discrepancies in orientation (connect the different stripes) and local wave-
length [19, 141, 18]. Figure 3.2 shows the typical local (dislocations and disclinations) and
extended (phase and amplitude walls) defects of an equilibrium two-dimensional labyrinthine
pattern in the SH equation [25]. Being a signature of the labyrinthine patterns, we think
defects are worthy of being considered as an order parameter to describe the transition from
simple patterns (for example, stripes with no defects) to complex patterns, such as labyrinths.
To measure defects, we introduce the orientational field θ(x, y) of the local stripe patterns
following the ideas introduced in Ref. [142] (see Figure 3.2). This local analysis filters the
wavelength of the labyrinthine pattern to distinguish the scalar field θ(x, y) as shown in
Figs. 3.3(a) and 3.3(b). By a visual inspection, it is easy to see (for the top panel at least)
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that the discontinuities in the orientational field are related to the defects in the labyrinthine
pattern. A way to characterize these jumps is by a local winding number of the orientational
field:

∮
θ(x, y)dxdy/2π. Because of the complexity of the labyrinthine patterns in the SH

equation, it is necessary to introduce a threshold (th) in the local winding number to decide
if a region is defective or not. Following this idea, we implement the field

W (x, y) =





1, if
∮
θ(x, y)dxdy/2π ≥ th

0, otherwise
, (3.1)

which is used to compute the density of defects fd =
∫ L

0
∫ L

0 W (x, y)dxdy/L2. This density
allows us to characterize labyrinthine transitions, and their emergence as a freezing of defects
dynamics (see Fig. 3.4).

(a) (b)

Figure 3.1: Global and local spatial structures of (a) a labyrinthine and (b)
a hexagonal pattern. Both patterns are equilibria of the gSH equation with
ϵ = 0.02, η = 0, and ϵ = −0.25, η = −0.1, respectively.

Figure 3.2: "Anatomy" of a two-dimensional labyrinthine pattern ueq of the
SH equation with ϵ = −0.15 (adapted from Ref. [25]). Local defects (con-
cave and convex disclinations, and dislocations) are highlighted in blue.
Extended defects (phase and amplitude walls) are highlighted in red. The
shaded yellow region indicates a local stripe pattern described by it wavevec-
tor k⃗ and an orientation θ(x, y).
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(b)(a) (c)

Figure 3.3: Method to determine the density of defects of a labyrinthine
pattern. (a) Equilibria labyrinthine patterns of SH equation with ϵ = −0.18
(top panel) and ϵ = 0.02 (bottom panel). (b) Orientational field of the
labyrinths. (c) W (x, y) field of the complex patterns.

We note that defects are also observed in the region of parameters where stripe patterns
are stable. However, as the defects cost energy, the system always seeks the annihilation
of defects. When labyrinths are not too complicated (near ϵ = ϵc = −0.25 in the SH
equation with ν = 1), the variational dynamics of the SH equation is characterized by
defects annihilation. An example of this complicated dynamics is depicted in Fig. 3.5, where
important events are highlighted.

Iterations

Figure 3.4: Temporal evolution of the density of defects in direct numerical
simulations of the SH equation (with ν = 1) with different values of ϵ.
It can be seen that equilibria for large ϵ, far from the primary instability
ϵc = −0.25, have a non-zero fd. Near ϵc, the defects can be annihilated,
giving rise to perfect stripe patterns fd = 0.

In this chapter, we investigate the structure, emergence, transitions, and disappearance of
labyrinthine patterns in the SH equation. We introduce the windowed average Fourier trans-
form to describe labyrinths locally and define them unambiguously. Additionally, we propose
the existence of three different types of labyrinths–fingerprint, glassy, and scurfy–based on
their defect density, correlation length, competition against the homogeneous solutions, and
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free energy.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

t=0 t=7 t=15

t=21 t=23 t=28

t=33 t=63 t=70

t=154 t=355 t=437

Figure 3.5: Temporal snapshots of numerical integrations of the SH equa-
tion (with ν = 1) at ϵ = −0.22 starting from the unstable state u = 0 with a
small perturbation of white noise. The times t are in arbitrary units. (a) The
dominant wavelength λc starts to dominate the pattern against all the other
wavelengths excited by white noise. (b) Well-defined labyrinthine pattern
with characteristic defects: dislocations (shaded yellow and shaded sky blue
regions) and an amplitude wall (shaded red region). (c) Quickly, nearby dis-
locations annihilated (shaded yellow region from (b)), others moved (shaded
sky blue), and the amplitude wall (shaded red) also moved as one orienta-
tion of stripes started to be selected by the system. The snapshots (d)-(g)
summarize the disappearance of a local stripe orientation (shaded blue),
while (f)-(g) displays the annihilation of dislocations (shaded yellow). The
snapshots (g)-(i) describe the transformation of an amplitude wall (shaded
red) into a chain of dislocations. The final snapshots (j)-(l) display the
slow annihilation of dislocations governing the asymptotic dynamics. After
a long time from (l), the minimization of the curvature (undulations along
the stripes) gives rise to perfect stripe patterns.
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Macroscopic systems with injection and dissipation of energy exhibit intricate dissipative structures.
Labyrinthine patterns are disordered spatial structures arising into homogeneous media that show a short-range
order. Here, we investigate the stability properties, classification, and transitions of labyrinthine patterns.
Based on a prototype pattern forming model, we characterize the existence of three types of labyrinthine
patterns—fingerprint type, glassy, and scurfy—and reveal the bifurcation diagram. The defects density, free
energy, structure factor, and correlation length are used as order parameters.
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Nature is full of patterns such as dunes, animal fur, fish
skin, snowflakes, pigmentation on mollusk shells, fir waves,
mountain ripples, and clouds, which have attracted attention
due to their regularities or irregularities that generate the di-
versity of forms [1–5]. All these physical systems correspond
to macroscopic systems with injection and dissipation of en-
ergy. Out-of-equilibrium systems are characterized in general
by exhibiting pattern formation as a result of spontaneous spa-
tial breaking symmetry of a homogeneous state [1–5]. Near
this transition, the observed equilibrium patterns are generally
striped, hexagonal, square, and superlattice. A unified strategy
to describe the emergence and dynamics of these simple pat-
terns is the amplitude equations of critical modes [1–5]. By
increasing energy injection, pattern forming systems exhibit
more complex patterns, characterized by a large number of
defects. Indeed, far from the primary spatial instabilities, dis-
ordered patterns arise into homogeneous media. An example
of these types of complex patterns is the so-called labyrinthine
patterns. Figure 1 shows examples of labyrinthine patterns
observed in nature. These patterns have been observed in
mussel beds [6], cardiovascular calcification [7], phytomass
[8], microemulsions [9], fish skin [10], fluid convection [11],
Langmuir monolayer [12], magnetic fluids [13], chemical re-
actions [14], and cholesteric liquid crystals [15], to mention
a few. Hence, labyrinthine patterns are a robust phenomenon
of nature. Intuitively, in all the aforementioned systems, the
observed patterns are denominated labyrinths. However, a pre-
cise definition is not available. A proposition of a labyrinthine
pattern is a spatial state that shows a short-range order and a
powdered spatial spectrum [16]. Notwithstanding the above,
when one considers a hexagonal structure with defects, it
satisfies the previous definition and is not an intuitive labyrinth

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

structure. The previous definition can be amended by specify-
ing that a single wave number characterizes short-range order.
The characterization of different types of labyrinth patterns,
their properties as a state of equilibrium, and transitions be-
tween them has not been established.

The purpose of this Rapid Communication is to de-
scribe different types of labyrinthine patterns and characterize
the transitions between them. Based on a prototype pattern
forming model, the Turing-Swift-Hohenberg equation, we
characterize the existence of three types of labyrinthine pat-
terns (fingerprint-type, glassy, and scurfy) and reveal their
transitions. The defects density, free energy, structure fac-
tor, and correlation length are used as order parameters.
Fingerprint-type labyrinths arise as a result of the emergence
of bound states between defects. This is a supercritical tran-
sition, which precedes freezing of the coarsening process
that characterizes striped patterns [17]. When increasing the
bifurcation parameter, the transition between the fingerprint-
type and glassy patterns is of the second-order type, which
is detected by means of the correlation length. The structure
factor allows us to characterize the transition between glassy
and scurfy labyrinthine patterns. Free energy allows us to en-
visage the complex organization of the different labyrinthine
patterns.

Let us consider a prototype model of pattern formation, the
dimensionless Turing-Swift-Hohenberg equation [18]. This
model equation accounts for the dynamics of a real order pa-
rameter deduced originally to describe the pattern formation
on Rayleigh-Bénard convection [18,19], which reads

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

with u = u(x, y, t ) a real scalar field, and x, y, and t are
spatial coordinates, and time, respectively. ε is the bifurcation
parameter. The parameter ν stands for the diffusion coefficient
(ν < 0); when this parameter is positive (ν > 0), it induces
an antidiffusion process. Notice that the above model is the
simplest isotropic, reflection symmetry, and nonlinear equa-
tion that presents patterns and localized states [2]. In the last
decade, it has been established that Eq. (1) had already been
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FIG. 1. Labyrinthine patterns. (a) Chiral liquid crystal
labyrinthine pattern (courtesy of Gregorio Gonzalez). (b) Vegetation
patterns observed in Niger using Google Earth (coordinates
12◦27′50.61′′ N 3◦18′30.76′′ E). (c) Seafoam patterns (courtesy of
Randall Straka). (d) Giant puffer fish (courtesy of Chiswick Chap).

constructed by Turing, but was unpublished [19]. Note that
Eq. (1) was published 23 years after Turing’s death [18].
Observe that model equation (1) is of variational nature, that
is, ∂t u = −δF/δu where F is the Lyapunov function

F[u] =
∫∫ (

−ε
u2

2
+ u4

4
− ν

(∇u)2

2
+ (∇2u)2

2

)
dx dy.

(2)

Hence, the dynamics of model equation (1) is characterized
by the minimization of the free energy F .

A trivial solution of model equation (1) is the zero so-
lution, u(x, y, t ) = 0. This solution is stable for ε < εc ≡
−ν2/4. For ε = εc, the homogeneous solution becomes un-
stable and gives rise to the emergence of a striped pattern
with wavelength |�kc| = √

ν/2 [2,3]. This spatial supercritical
instability is characterized by the emergence of domains of
striped patterns with different orientations and the same wave-
length. These domains are randomly distributed. Defects that
reconcile different pattern orientations separate the domains.
These are local disclinations and extended grain boundaries;
both of amplitude and phase. Also, dislocations appear that
fix local discrepancies in wavelength (see textbook [3], and
references therein). The interaction of these defects causes
domains to grow over time. This process is self-similar, usu-
ally called coarsening process, which is characterized by
the grain-boundaries perimeter growing as a power law of
time t1/3 [17]. Note that phase separation in supersaturated
solids [20,21] and the formation of localized patterns in optics
[22,23] present a coarsening process, which is governed by
the same critical exponent. Hence, in a finite-size system, the
final equilibrium reached is a striped pattern (monodomain).
Figure 2(a) shows the typical observed striped pattern. The
orientation of these patterns only depends on the initial con-
dition. The modulus Fourier transform of this type of pattern
is characterized by exhibiting two maximums [see the upper
inset panel in Fig. 2(a)]. In order to describe the short-range
order of the pattern, we introduce the averaged windowed
Fourier transform by considering a large number of boxes of
the same length l , calculating the Fourier transform, rotating
the wave-vector space so that a peak of the transformation is

FIG. 2. Equilibrium patterns of the dimensionless Turing-Swift-
Hohenberg equation (1) with ν = 1. Surface plots of (a) striped
pattern ε = −0.22, (b) fingerprint-type labyrinthine pattern ε =
−0.16, (c) glassy labyrinthine pattern ε = 0.02, and (d) scurfy
labyrinthine pattern ε = 1.15. The upper and lower insets account for
the modulus of global and averaged windowed Fourier transforms,
respectively. λc and l are the critical wavelength (2π/|�kc|) and the
size of the window in the averaged windowed Fourier transform,
respectively.

always horizontal, and averaging over these transforms. The
lower panel of Fig. 2(a) illustrates this transform.

Unexpectedly, when the bifurcation parameter ε is in-
creased, the interaction of defects freezes [24], that is, the
defects present bound states. In this region of parameters,
starting with the zero solution perturbed with a small initial
noise, the system exhibits labyrinth solutions as equilibria.
Figure 2 shows the different labyrinthine patterns observed
in the Turing-Swift-Hohenberg equation. By using the global
and averaged windowed Fourier transform, we can verify that
the observed patterns are disordered and show a short-range
order characterized by a single wave number. All numerical
simulations were implemented using a pseudospectral code
with the Runge-Kutta order-4 algorithm. In the present study,
u = 0 with a small random disturbance is always considered
as the initial condition.

To verify that the labyrinthine patterns are equilibrium
states, we have conducted two analyses. First, monitoring the
evolution of free energy over time F[u(x, y, t )], which should
have the tendency to decrease and settle at an asymptotic
value. Indeed, the free energy decreases as the defects are
annihilated or reach their final position. Figure 3 shows the
evolution F[u] as a function of time. And second, by calculat-
ing the linear stability spectrum of the labyrinth solution (cf.
upper inset in Fig. 3). Both analyses allow us to conclude that
labyrinthine patterns are stable.
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2.7×

FIG. 3. Temporal evolution of the free energy F [u(x, y, t )] for a
labyrinth state of the Turing-Swift-Hohenberg equation (1) with ν =
1 and ε = 0.02. The upper inset corresponds to the linear stability
spectrum of the labyrinth solution for large times. The lower insets
show the labyrinthine pattern for three different instances.

When defects begin to freeze, ε = εSFP, the system fea-
tures large domains of striped patterns mainly separated by
amplitude grain boundaries. We have called these structures
fingerprint-like labyrinthine patterns, due to their similarity to
fingerprints. Figure 2(b) shows a fingerprint-type pattern and
their respective Fourier transforms. To characterize the emer-
gence of these patterns, we have measured the defects density
fd , based on the orientational field of the pattern [25], as a
function of the bifurcation parameter. Figure 4(a) summarizes
fd as a function of the bifurcation parameter. Observe that
the transition between fingerprint-type and striped patterns is
of a supercritical type and described by a critical exponent
1/2, as shown by the continuous curve [cf. Fig. 4(a)]. Notice
that at this critical point, the striped patterns do not become
unstable, and even for higher bifurcation parameters, they
coexist with labyrinthine patterns. Likewise, if one calculates
the correlation length ξ [26] as a function of the bifurcation
parameter [see Fig. 4(a)], we observe that this length diverges
in the transition between fingerprint-type and striped patterns
with a −1/2 power law. When increasing the bifurcation
parameter, we observe that the rate of the defects density
decreases; particularly from ε > εFPG, no grain boundaries
were observed. Then, the patterns in this region are charac-
terized by presenting a large number of local defects. We
have termed this type of pattern as glassy labyrinths, due to
its amorphous structure. Figure 2(c) shows a typical glassy
labyrinthine pattern. The correlation length close to εFPG ex-
hibits a slight local maximum [cf. inset in Fig. 4(a)], which is
a peculiarity of glassy-type second-order transitions [27]. To
analyze this transition more carefully, we have monitored the
time evolution of the correlation length. Figure 4(b) shows the
evolution of the correlation length as a function of the bifur-
cation parameter. From this chart, we infer that the correlation
length variations are almost negligible for glassy labyrinthine
patterns. Indeed, the glassy state corresponds practically to an
instantly frozen state. In brief, the fingerprint-type and glassy
labyrinthine patterns can be distinguished by the prevalence

(a)

(b)

FIG. 4. Bifurcation diagram of labyrinthine patterns. (a) The
correlation length ξ and defects density fd as a function of the
bifurcation parameter ε. The circles (•) and triangles (�) account
for the correlation length and defects density, respectively. The error
bars account for the standard deviation obtained after analyzing
50 numerical realizations. εSFP and εFPG account for the transition
points between striped and fingerprint-type labyrinthine patterns, and
fingerprint-type and glassy labyrinthine patterns, respectively. The
solid curves describe the fitting for the defects density and correlation
length. The inset accounts for the magnification of the correlation
length close to the transition from fingerprint-type to glassy patterns.
(b) Temporal evolution of the correlation length ξ as a function
of the bifurcation parameter ε. The inset shows the initial ξ0 and
equilibrium ξ∞ correlation length difference as a function of the
bifurcation parameter.

of amplitude grain boundaries and the relaxation dynamics to
their respective equilibria.

By further increasing the bifurcation parameter, we ob-
serve that the glassy patterns maintain the same structure.
However, from a critical value, ε > εGS , we begin to find the
appearance of circular spots embedded in the labyrinth pat-
tern. We have called this type of structure scurfy labyrinthine
patterns. Figure 2(c) shows a typical scurfy labyrinthine pat-
tern. As a result of the presence of spots we are not able to
compute the defects density and correlation length. To analyze
the emergence of circular spots onto labyrinthine patterns, let
us consider the structure factor

S(k) =
∫ π

−π

∣∣∣∣ 1√
π

∫
u(x, y, t )ei�k�rdx dy

∣∣∣∣k dθ, (3)

where k = |�k| and θ are the polar coordinate representation
of wave-vector space �k. The typical structure factors S(k) for
the different labyrinthine patterns are shown in the insets of
Fig. 5. Note that for fingerprint-type and glassy patterns only
one dominant peak is observed, while for scurfy labyrinthine
patterns there are two peaks. This second peak close to
k = 0 is a consequence of the effect of circular spots and
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(a)

(b)

FIG. 5. Characterization of labyrinthine patterns. (a) The nor-
malized area difference between the peaks, 
(ε) ≡ (

∫ ∞
ko

S dk −∫ ko

0 S dk)/
∫ ∞

0 Sdk as a function of the bifurcation parameter. The
insets correspond to normalized structure factors at different val-
ues of the bifurcation parameter. The continuous curve 
(ε) ≈
|ε − εSD|0.26 accounts for the fitting obtained for the area difference
near the disappearance of the scurfy patterns. εGS and εSD stand
for the transition points between glassy and scurfy labyrinths, and
scurfy labyrinths and their disappearance, respectively. (b) Free en-
ergy F of the different equilibria as a function of the bifurcation
parameter ε. The solid curve accounts for the energy of the striped
pattern. The circles account for the different labyrinthine patterns
(◦ fingerprint-type, ◦ glassy, and ◦ scurfy). The error bars show the
standard deviation obtained from 30 realizations. Insets stand for the
magnification of the chart in the respective regions.

localized structures. Introducing the normalized area differ-
ence between the peaks,


(ε) ≡
∫ ∞

ko
S(k)dk − ∫ ko

0 S(k)dk∫ ∞
0 S(k)dk

, (4)

one can monitor the emergence of the second peak, where
ko is an intermediate wave number between peaks. Figure 5
shows the evolution of the area difference 
 as a function of

ε. This indicator presents a sharp decrease at ε = εGS . For
εGS < ε < εSD, we observe scurfy labyrinthine patterns. In
this region of parameters, we observe that the labyrinthine
patterns coexist with the uniform state and localized structures
[28,29]. Hence, εGS accounts for the transition between glassy
and scurfy labyrinthine patterns. When ε > εSD, the scurfy
labyrinthine patterns become unstable by shrinking, and form-
ing a gas of localized spots. The inverse process, that is, how
a labyrinthine pattern is generated deterministically from a
localized structure, is well known as invagination [29]. Close
to the disappearance point of the labyrinthine patterns, we find

(ε) satisfies a power law 1/4 [see Fig. 5(a)].

The Turing-Swift-Hohenberg model equation (1) is vari-
ational. Then, we can use the free energy F to characterize
different equilibria. Figure 5(b) illustrates the free energy F
of the different equilibria as a function of the bifurcation
parameter ε. From this chart, we conclude that the striped pat-
tern is the most stable state. The fingerprint-type labyrinthine
patterns are the most stable labyrinthine state. Note that close
to εFPG, the energy of fingerprint-type labyrinths merges with
the energy of glassy and scurfy ones. The energy of the
glassy labyrinths is always less than the energy of the scurfy
labyrinths. Therefore, considering different initial conditions,
the system presents a large number of equilibria with varying
levels of energy.

In conclusion, out-of-equilibrium systems exhibit compli-
cated disordered patterns. One of the patterns observed in
various physical contexts is the so-called labyrinth pattern.
We establish these labyrinthine patterns as a spatial state that
shows a short-range order characterized by a single wave
number and a powdered spectrum. The consideration of a
local single wave-number behavior allows the distinction be-
tween labyrinths and disordered hexagonal patterns, the latter
characterized locally by three wave numbers. Based on a pro-
totype pattern forming model, the Turing-Swift-Hohenberg
equation, we investigate the stability properties, classification,
and transitions between labyrinthine patterns. The observa-
tion of three types of labyrinthine patterns—fingerprint-type,
glassy, and scurfy—are established. The density of defects,
free energy, structure factor, and correlation length allow us to
reveal the bifurcation diagram. The mentioned order param-
eters, except free energy, together with techniques of global
and averaged windowed Fourier transforms can also be used
to characterize stationary labyrinths and their transitions in
nonvariational systems [16,30].
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3.1. Perspectives
The study presented in this chapter was devoted to understanding labyrinthine patterns in
the simple framework of the two-dimensional SH equation by introducing a labyrinth’s def-
inition and quantitatively describing the transitions between fingerprint, glassy, and scurfy
patterns. An interesting future research direction will be to analyze real systems, for exam-
ple, vegetation labyrinthine-like patterns and liquid crystal textures, and test our findings.
Additionally, it will be scientifically appealing to study three-dimensional labyrinthine pat-
terns in the SH equation and try to extend our definitions to higher dimensions. Finally, it
is reasonable to think that fingerprint, glassy, and scurfy labyrinthine patterns are not the
only labyrinths in nature (other mechanisms can trigger the emergence of non-trivial sym-
metry patterns, such as branching and invagination processes [23, 64, 143]). Then, it will be
interesting to test if the tools used here are enough to reveal the transitions of other types
of labyrinths.
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Chapter 4

Localized states with nontrivial
symmetries: Localized labyrinthine
patterns (Physical Review E 105,
L012202)

In Chapter 3, we describe the disappearance of the scurfy labyrinthine pattern in the SH
equation using as an order parameter a quantitative measure of the competition between the
modes k = 0 and k = kc, |∆| (see Chapter 3 and Fig. 4.1a). The loss of the labyrinthine
structure, when increasing ϵ, is governed by the growing of homogeneous domains and the
shrinking of isolated stripes (or fingers), which transform into localized structures (black up-
triangles in Figs. 4.1b and 4.1c). The inverse process, when decreasing ϵ, is characterized
by the elongation of fingers filling all the available space and thus forming a labyrinthine
pattern again (see blue down-triangles in Figs. 4.1b and 4.1c). Interestingly, a hysteresis loop
connecting the labyrinth and the homogeneous state is revealed and shown in Fig. 4.1b. The
coexistence of both equilibria gives the possibility of localized scurfy labyrinthine patterns
(see an example in Fig. 4.2). The phenomenon is also manifested in the gSH equation, where
the breaking of the reflection symmetry u → −u allows the localization of localized glassy
labyrinthine patterns.

(a) (b) (c)

Figure 4.1: Hysteresis loop connecting scurfy labyrinthine patterns and the
homogeneous solutions in the SH equation. (a) Disappearance of scurfy
labyrinthine patterns in terms of the order parameter |∆| (see Chapter 3
for details). (b) Hysteresis loop within the scurfy region. (c) Examples of
the disappearance and reappearance of scurfy labyrinthine patterns.
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Figure 4.2: Localized labyrinthine pattern of the SH equation with ϵ = 1.17
and ν = 1. The upper and lower insets are the global and local Fourier
transforms, which define a labyrinthine pattern. Windows of size 2l where
used for the averaged windowed Fourier transform.

In this chapter, we show for the first time the possibility of having non-trivial symmetry
patterns localized in two and three dimensions. We show that this phenomenon is robust and
is presented in various physical systems (vegetation, optics, and chemistry). Furthermore,
we give a glimpse of the complex bifurcation diagram exhibited by some stable branches of
the localized labyrinthine structures in 2D.
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The formation of self-organized patterns and localized states are ubiquitous in Nature. Localized states
containing trivial symmetries such as stripes, hexagons, or squares have been profusely studied. Disordered
patterns with nontrivial symmetries such as labyrinthine patterns are observed in different physical contexts.
Here we report stable localized disordered patterns in spatially extended dissipative systems. These two- and
three-dimensional localized structures consist of an isolated labyrinth embedded in a homogeneous steady state.
Their partial bifurcation diagram allows us to explain this phenomenon as a manifestation of a pinning-depinning
transition. We illustrate our findings on the Swift-Hohenberg-type of equations and other well-established models
for plant ecology, nonlinear optics, and reaction-diffusion systems.

DOI: 10.1103/PhysRevE.105.L012202

Spatiotemporal patterning resulting from a symmetry-
breaking instability is a central issue in almost all driven
far from equilibrium systems [1–3]. Localized structures,
dissipative solitons, and localized patterns belong to this
field of research. They consist of one or more regions in
one state surrounded by a region in a qualitatively different
state [4–8]. Spatial localization appears not only in nonlin-
ear systems, but can occur in linear ones such as Anderson
localization that arises in inhomogeneous systems [9]. Local-
ized states appear in other classes of experimentally relevant
systems such as nonlinear optics and photonics. Spatial lo-
calized patterns possess potential applications to all-optical
control of light, optical storage, and information processing
[6,8].

Localized patterns involving trivial symmetries such as
stripes, hexagons, or squares have been abundantly discussed
and are by now fairly well understood, including their re-
spective snaking bifurcation diagrams [7,10]. Indeed, these
localized patterns involve few Fourier modes. However, lo-
calized patterns with nontrivial symmetries have neither been
experimentally observed nor documented, nor theoretically
predicted. An example of this type of patterning phenomenon
is referred to as localized labyrinthine patterns (LLP). They
are observed in population biology, such as in vegetation pop-
ulations, on the skin of animals, or human bodies [cf. Fig. 1].
All these examples show an area, which is not necessarily
circular, containing complex spatial structures, a labyrinth,
and surrounded by a uniform state. In the vegetation pop-
ulations, this intriguing phenomenon seems to be stationary
(see the Supplementary Material [20]). Extended labyrinthine
patterns refer to two-dimensional (2D) or more-dimensional
dissipative structures characterized by a circular or spherical
powder-like spectrum globally [12], they exhibit a short-range
order with a single Fourier mode, and have a finite number of
defects [13]. A power spectrum with a powdered ring (sphere)

structure is the main characteristic of patterns with nontrivial
symmetries.

In this Letter, we account for the formation of local-
ized patterns with nontrivial symmetries in well-established
models from ecology, optics, and reaction-diffusion sys-
tems. We illustrate and investigate this phenomenon using
a Swift-Hohenberg equation (SHE) [14], which constitutes
a well-known paradigm in the study of spatial periodic or
localized patterns in spatially extended systems [2]. We show
that this model supports static and stable LLP. Considering ad-
equate initial conditions, LLP are generated in the coexistence
region between the extended labyrinth and homogenous state.
We draw the partial bifurcation diagram showing the stability
domain of LLP and their pinning-depinning transitions, where
the localized labyrinth exists as a stationary solution. Free
energy allows us to study the relative stability analysis. We
show numerical evidence of stable three-dimensional local-
ized labyrinthine patterns. Further, within the pinning range
of parameters, three LLP with different sizes are generated
for a fixed value of the system parameters.

The SHE reads ([14])

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

where the real order parameter u = u(x, y, z, t ) is an excess
scalar field variable measuring the deviation from criticality,
ε is the control parameter, and ν the (anti) diffusion coefficient
for (positive) negative value. The cubic term accounts for the
nonlinear response of the system under study. The Laplace
operator ∇2 = ∂xx + ∂yy + ∂zz acts in the (x, y, z)-Euclidean
space and t is time. The last term on the right-hand side,
the bi-Laplacian, stands for hyperdiffusion. Equation (1) can
also be used to describe 2D systems, where the Laplacian,
bi-Laplacian, and the order parameter u are defined in the
(x, y)-Euclidean space. The model equation (1) can be rewrit-
ten in a variational form as ∂t u = −δF/δu, where F is a
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FIG. 1. Snapshots of localized labyrinthine patterns in natural
systems. (a) Irregular distribution of vegetation embedded in a uni-
form vegetated cover observed in central Cameroon using Google
Earth software (with ground coordinate 3◦58’22.70” N 12◦19’05.84”
E). (b) Brain cactus (Mammilaria Elongata Cristata) with a contorted
tissue (courtesy of David Stang). It is a localized structure in the bare
soil background. (c) Pigmented areas composed of stripes and spots
in the skin dorsum of a frog (Dendropsophus ozzyi) [11] (reproduced
with permission from the copyright holder). (d) Skin lessions of
Tinea imbricata disease (courtesy of Michael Marks).

Lyapunov functional or a free energy

F =
∫

dxdydz

2

(
−εu2 + u4

2
− ν(∇u)2 + (∇2u)2

)
. (2)

The variational structure of the SHE (1) indicates that only sta-
tionary solutions such as uniform states, spatially periodic, or
localized patterns are possible. The SHE (1) is a well-known
paradigm for the study of periodic and localized patterns, was
first derived in hydrodynamics [14], and later in other fields of
natural science, such as chemistry [15], and nonlinear optics
[16]. In the last decade, it has been established that Eq. (1) has
already constructed by Turing, but was unpublished [17].

Other real SHE was derived for out of equilibrium systems
[18,19]

∂t u = η − εu − u3 − (ν − bu)∇2u − ∇4u − c(∇u)2, (3)

where ε and η are control parameters; ν, b are diffusion
parameters; and c is the nonlinear advection strength. The
presence of nonlinear diffusion and nonlinear advection terms,
u∇2u and (∇u)2, render Eq. (3) nonvariational. In general, this
equation does not admit a Lyapunov functional.

Whether a SHE model is variational or not, numerical
simulations of both models, Eqs. (1) and (3) with periodic
boundary conditions show evidence of stable stationary local-
ized labyrinthine patterns [see Figs. 2(a) and 2(b)].

To obtain localized labyrinthine patterns, the initial con-
ditions consist of a circular area, of certain diameter d , of a
stable labyrinthine pattern in the center of the simulation box,
embedded in a uniform background. The evolution towards

a)

(c) Vegetation

(d) Photonics

(e) Chemistry

(b)

(a)

FIG. 2. Stationary localized labyrinthine patterns obtained in
different pattern forming models: (a) SHE (1) (ε = 1.17, ν = 1);
(b) generalized SHE (3) (ε = 0.2, ν = 1, η = −0.06, b = 0.1, c =
0.1); (c) nonlocal vegetation; (d) passive diffractive resonator; and (e)
reaction-diffusion. See the Supplementary Material for more details
of models and parameters used in (c), (d), and (e) [20]. The right-
upper inset in (a) shows the powder-like ring specturm of the LLP in
the SHE model (1). All the localized structures fulfill the definition of
labyrinthine patterns (see Supplementary Material [20] for details).

equilibrium starts with a quick adjustment of the interface
mediated by the curvature of the stripe patterns; then there
is an accommodation of the stripe patterns in the bulk. To this
end, some retraction of stripes in the interface takes place (cf.
Video 1 and the stabilization of LLP in the Supplementary
Material [20]). The final localized region is not perfectly cir-
cular, containing finite segments of deformed stripes separated
by spots of the same width, and a high number of defects
inherited from the extended labyrinth. These finite-size stripes
can be interconnected or not. They support all stripe orienta-
tions along the motionless interface separating the labyrinth
to the homogeneous steady state, as shown in Fig. 2. Note that
localized nontrivial symmetry patterns arise between the crit-
ical sizes do � d � dc (see the Supplementary Material [20]
for details). In addition, the formation of LLP in the above
scalar model equations in the form of SHE, additional models
are also considered that are experimentally relevant. First, a
generic interaction redistribution model describing vegetation
pattern formation which is an integrodifferential model equa-
tion. This simple modeling approach based on the interplay
between short-range and long-range interactions governing
plant communities captures localized labyrinthine pattern as
shown in Fig. 2(c). Second, broad area photonics devices
such as nonlinear resonators subjected to a coherent injected
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FIG. 3. Three-dimensional localized labyrinthine pattern solu-
tion of Eq. (3). (a) Color map of the full simulation, (b) and (c) are
color map slices of the localized labyrinthine pattern. (d) Isosurface
of the localized labyrinthine pattern with u = 1.3. Parameters are
ε = 4.2, ν = 5, η = −6.8, b = 0, and c = 0. The mesh integration
is 40 × 40 × 40.

beam [see Fig. 2(d)]. In this case, the resulting equation is a
complex Ginzburg-Landau-type equation. Finally, a reaction-
diffusion model for chemical dynamics, also supports LLP as
shown in Fig. 2(e). The description of these models and the
values of the parameters are provided in the Supplementary
Materials [20]. Similar solutions when using Dirichlet and
Neumann boundary conditions are observed. Also, localized
labyrinthine patterns are independent of the numerical grid
size (see the Supplementary Material [20] for details).

The 2D LLP are robust structures in 2D systems in the
various natural system, that is, this phenomenon is observed
in different physical systems as shown in Fig. 1 and in the
Supplementary Material [20]. It has been shown that the
Swift-Hohenberg equation supports three-dimensional (3D)
extended patterns with trivial symmetries such as lamellae,
body-centered cubic crystals, hexagonally packet cylinders
[25–28], and localized patterns [27–29]. Recently, clusters of
3D bullets forming a localized crystal with trivial symmetry
were reported [30]. We extend this analysis to 3D nontriv-
ial symmetry patterns and we show the existence of stable
3D localized labyrinthine patterns. They consist of finite-size
curved and connected tubes embedded in a homogeneous
background. The width of the tubes is half of the critical
wavelength at the symmetry-breaking instability. They are
obtained by numerical simulations of the generalized SHE
Eq. (3) with Neumann boundary conditions along x, y, and z
directions. Figure 3 shows a typical 3D localized labyrinthine
pattern.

EL, SP
HSS
Pinning zone

I
II

III
IV

(a) (b)

HSS
EL

SP
LLP

V

II IVI III V

FIG. 4. (a) Bifurcation diagram of homogenous solutions and
(b) relative stability analysis of a localized labyrinth in SHE (1)
with ν = 1. The uniform u(x, y) = 0 state suffers a Turing instability
at εc1 = −0.25. The uppermost curve (blue) shows the maximum
u(x, y) of the different equilibrium patterns [stripe (i), fingerprint-
type labyrinth (ii), glassy labyrinth (iii), and scurfy labyrinth (iv)]. At
εc2 = 0.125, the nonzero homogenous states (HSS-green curves) are
unstable to in-homogenous perturbations. In the narrow region lim-
ited by ε−

p = 1.16 and ε+
p = 1.19, where the extended labyrinthine

pattern and the uniform solutions coexist, the existence of localized
labyrinthine patterns (v) is possible. Free energy F given by Eq. (2)
is computed for an extended labyrinth (EL), the stripe pattern (SP),
the homogenous states (HSS), and a localized labyrinthine pattern
(LLP) near the pinning region.

The homogeneous steady states us = 0 and us± = ±ε1/2

solutions of Eq. (1) undergo symmetry-breaking instabilities
at εc1 = −ν2/4 and εc2 = ν2/8. At both critical bifurcations
points the critical wavelength is λc = 2π/kc = 2

√
2π/

√
ν.

Indeed, when the linear coefficient of the Laplacian is negative
ν > 0, the spontaneous pattern formation process becomes
possible thanks to the appearance of a finite band of lin-
early unstable Fourier modes that triggers the appearance
of spatially periodic patterns. The upper cutoff is affected
by the bi-Laplacian term, which is always stabilizing for
short distances since dispersion is an efficient mixing mech-
anism. Numerical simulations of the bi-dimensional Eq. (1)
in the neighborhood of the critical point ε = εc1 indicate
the emergence of extended patterns, as shown in Fig. 4(a).
When increasing the control parameter, the sequence of
symmetry-breaking transitions fingerprint, glassy, and scurfy
labyrinthine patterns are observed [13].

Spatial confinement leading to the formation of localized
patterns with nontrivial symmetry occurs in parameter space
(ε > εc2), where extended labyrinthine patterns coexist with a
homogeneous steady state. Within this hysteresis loop, there
generally exists a so-called pinning range of parameters [31],
delimited by ε±

p , in which LLP can be observed [cf. Fig. 4(a)].
Taking advantage of the variational structure of Eq. (1), we
address the problem of the relative stability analysis. We
evaluate numerically F , associated with uniform states, ex-
tended labyrinth, and LLP. Figure 4(b) summarizes the results.
These equilibria correspond to a local or global minimum
of Lyapunov functional F given by Eq. (2). From Fig. 4(b),
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we see that the localized labyrinth is more energetically fa-
vorable than the extended labyrinth (EL) but less stable than
the homogeneous steady state (HSS) and the perfect stripe
pattern (SP). The limiting points of the stability region of the
localized labyrinth solutions ε−

p < ε < ε+
p are similar to the ε

parameters associated to the interchange of metastability be-
tween extended states. The localized labyrinths are stationary
and stable patterns since their localized area never expands
despite diffusion and never shrinks despite nonlinearity and
dissipation.

Localized patterns with trivial symmetry (stripes and
hexagons) are organized into a complex diagram following
a homoclinic snaking bifurcation [7]. This type of diagram
is obtained by a continuation method. The symmetries of the
localized structures are relevant for the convergence of this
algorithm. However, in the case of LLP there is a lack of
continuation algorithms to characterize the full bifurcation
diagram. To figure out the existence region of stable LLP, we
performed direct numerical simulations of Eq. (1). Figure 5(a)
summarizes the results, where we plot

||u||2 = 1

LxLy

∫ Lx

0

∫ Ly

0
[u(x, y) − us+]2dxdy, (4)

as a function of the bifurcation parameter. The full bifurcation
diagram can be complex, so we display only three branches
of LLP obtained with different initial conditions shown in the
insets (i), (ii), and (iii) of Fig. 5(a). The maximum amplitude
of the three LLPs is the same, but they have different sizes.
Varying ε from these initial conditions, we obtain the three
branches shown in Fig. 5(a). Whatever the initial condition,
when increasing the bifurcation parameter the LLP decrease
in size, mediated by the shrinking of fingers and accommo-
dation of defects (see the Supplementary Material [20] for
details). All LLP disappear close to ε > ε+

p and the system
exhibit a transition towards a mixture of circular localized
peaks and dips. Figure 5(b) illustrates this transition, during
which we observe the contraction of fingers, which transform
to circular peaks or dips. This process correspond to the in-
verse of the invagination of localized structures [32]. Starting
from the initial conditions shown in the insets (i), (ii), and
(iii) of Fig. 5(a) and decreasing the bifurcation parameter, we
observe an increase in the size of the LLP. Further decreasing
ε < ε−

p , we observe a transition to an extended fingerprint-like
labyrinthine pattern. This depinning transition mediated by
front propagation has the tendency to reduce the number of
circular spots and dips, and enhance the invagination process
as illustrated in Fig. 5(c).

By varying the control parameter within the pinning region
delimited by ε−

p and ε+
p , we see that for a fixed ε, and near

ε = ε−
p the sizes of the coexisting LLP are different. However,

close to ε = ε+
p the system reaches more or less the same size.

We stress that the position of LLP and their size depends on
the initial conditions, and the maximum of the coexisting LLP
is essentially constant for fixed values of the system parame-
ters. The number of coexisting LLP with different sizes can be
much larger than the three branches shown in the bifurcation
diagram displayed in Fig. 5(a).

The localized patterns with trivial symmetries have a
well-established bifurcation diagram based on continuation

(c)

(a)

(b)

(b)

(c)

ii

i

iii
iii

i

ii

FIG. 5. Three stable branches of LLP and pinning-depinning
transitions in the SHE model (1). (a) Plot of ||u||2 for three initial
conditions (i, ii, and iii) with different sizes (see Fig. 3 in the Supple-
mentary Material [20] for details). The upward (downward) triangles
account for the increasing (decreasing) of ε, starting from εic = 1.17.
(b) Temporal sequence of the pinning-depinning transition when
crossing ε+

p =1.19 and (c) ε−
p = 1.16.

methods. However, when dealing with localized patterns with
nontrivial symmetries, there are no available algorithms for
the continuation to handle this problem. Whether the localized
labyrinthine patterns present a homoclinic snaking bifurcation
diagram or not remains an open question. The plausibility of
spatial varying parameters can be responsible for complex lo-
calized patterns. However, our result opens a novel possibility
of localized patterns with nontrivial symmetries even in ho-
mogenous and isotropic systems. The existence of these types
of localized patterns is the consequence of an intricate inter-
play between pinning, defects, and complex-shaped interface.
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I. LOCALIZED LABYRINTHINE PATTERNS

Labyrinthine patterns are disordered spatial structures characterized by a well-defined intrinsic length and presenting
a powderlike ring spectrum in Fourier space [1], which signifies their lack of simple symmetry, local behavior of a single
wavevector, and a large number of defects [2]. Localized labyrinthine patterns (LLP) arise as the stabilization of a
labyrinthine pattern enclosed by a homogenous state. For example, they can be observed in the context of vegetation
self-organization as irregular patches embedded in a uniform vegetated cover [cf. Fig. 1]. The localized vegetation
labyrinths are robust and stationary, as shown in the temporal sequence of Figure 1, in which no relevant change is
observed in a decade. Hence, natural systems can show the coexistence between states with trivial and nontrivial
symmetries. Figure 2 shows stationary localized labyrinthine patterns obtained in different pattern forming models.
The upper (lower) insets are the modulus of the global (averaged windowed) Fourier transform. From these Fourier
transforms, one concludes that the localized patterns are disordered (upper insets) and locally characterized by a
single mode (bottom insets).

8 km

(a) 2011 (b) 2015 (c) 2020

Figure 1: Temporal sequence of snapshots of a localized vegetation labyrinthine pattern. The localized labyrinthine
pattern is observed in central Cameroon using Google Earth software (with ground coordinate 3◦58’22.70" N
12◦19’05.84" E [3]). The images were taken on December of (a) 2011, (b) 2015, and (c) 2020.

II. SWIFT-HOHENBERG MODELS

To shed light in the existence, stabilization, and growth mechanisms of these new localized patterns, we consider
the paradigmatic Swift-Hohenberg equation (SHE) [4]

∂tu = εu− u3 − ν∇2u−∇4u, (1)

where u = u(x, y, t) is a real scalar field, ε is the bifurcation parameter, and ν > 0 is the anti-diffusion coefficient, and
a generelization version of the SHE [5, 6]

∂tu = η − εu− u3 − (ν − bu)∇2u−∇4u− c(∇u)2, (2)

where ε and η are control parameters, ν, b are linear and nonlinear diffusion parameters, and c is the nonlinear
advection strength. Both models support LLP [see Figs. 2(a) and 2(b)] in a pinning region where the uniform
solutions us± = ±ε1/2 coexist with labyrinthine patterns of a critical wavelength λc = 2

√
2π/
√
ν.
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Figure 2: Stationary localized labyrinthine patterns obtained in different pattern forming models: (a) SHE (1) with
ε = 1.17 and ν = 1, (b) generalized SHE (2) with ε = 0.2, ν = 1, η = −0.06, b = 0.1, and c = 0.1, (c) Non-local
vegetation model Eq. (4) with Lf = 2.5, D = 1, ξf = 3, ξc = 1, µ = 1.3, (d) Passive diffractive resonator
equation (8) with C = 21, θ = −3.8, and Ei = 22, (e) reaction-diffusion model Eq. (10) with a = 17.16. The upper
(lower) inset is the modulus of global (local) Fourier transform. λc and l are the critical wavelength (2π/|~kc|), of the
corresponding model, and the size of the window in the averaged windowed Fourier transform, respectively.

III. OTHER EXPERIMENTALLY RELEVANT SYSTEMS

The existence of stable localized labyrinthine structure is not limited to the large wavelength pattern regime
described by the paradigmatic Swift-Hohenberg equation but can be obtained from other experimentally relevant
systems. Three examples are chosen across various fields of natural science: (A) vegetation interaction-redistribution
model of vegetation dynamics, which can generate patterns even under strictly homogeneous and isotropic envi-
ronmental conditions. It is grounded on a spatially explicit formulation of the balance between facilitation and
competition. Ecosystems experience transitions towards fragmentation of landscapes followed by desertification con-
stitutes a major risk to the biological productivity of degradated zones, (B) nonlinear optical cavity subjected to a
coherent injected field, where localized states have been experimentally observed with a possibility for applications in
all-optical control of light, optical storage, and information processing, and (C) Chemical reaction-diffusion far from
equilibrium systems.

A. Vegetation interaction-redistribution model

The nonlocal approach, we adopt here focuses on the relationship between the structure of individual plants and the
facilitation-competition interactions existing within plant communities. Three types of interactions are considered: the
facilitative Mf (~r, t), the competitive Mc(~r, t), and the seed dispersion Md(~r, t) nonlocal interactions. To simplify fur-
ther the mathematical modeling, we consider that the seed dispersion obeys a diffusive process Md(~r, t) ≈ D∇2b(~r, t),
whereD is the diffusion coefficient. We assume in addition that all plants are mature neglecting the allometry, and they
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are settled on flat territory ~r = (x, y), assuming isotropic environmental conditions. The interaction-redistribution
model reads

Mi = exp

{
ξi
Ni

ˆ

b(~r + ~r′, t)φi(~r, t)d~r
′
}
, with φi(~r, t) = exp(−~r/Li) (3)

where i = {f, c}. ξi represents the strength of the interaction, Ni is a normalization constant. We assume that their
Kernels φi(~r, t) are exponential functions with Li the range of their interactions.

A logistic equation with the above mentioned nonlocal interactions leads to the so called vegetation interaction-
redistribution model. The spatiotemporal evolution of the normalized biomass density b(r, t) in isotropic environmental
conditions reads [7]

∂tb(~r, t) = b(~r, t)[1− b(~r, t)]Mf (~r, t)− µb(~r, t)Mc(~r, t) +DMd(~r, t). (4)

The normalization is performed with respect to the total amount of biomass supported by the system. The first two
terms in the logistic equation with nonlocal interaction Eq. (4) describe the biomass gains and losses, respectively.
The third term models seed dispersion. The aridity parameter µ accounts for the biomass loss and gain ratio. Other
approches based on reaction-diffusion type of modelling incorporate water transport by below ground diffusion and/or
above ground run-off [8].

The homogeneous steady state solutions of Eq. (4) are: bo = 0 which corresponds to the state totally devoid of
vegetation, and the homogeneous cover solutions, which satisfy the equation

µ = (1− b) exp ∆b, (5)

with ∆ = ξf − ξc measures the community cooperativity if ∆ > 0 or anti-cooperativity when ∆ < 0. The bare state
bo = 0 is unstable (stable) µ < 1 (µ > 1) and stable otherwise. The homogeneous cover state with higher biomass
density is stable and the other is unstable. These solutions are connected by a saddle node or a tipping point whose
coordinates are given by

{
bsn = (∆− 1)/∆, µsn = e∆−1/∆

}
. The linear stability analysis of the vegetated cover (bs)

with respect to small fluctuations of the form b(~r, t) = bs + δb exp{σt + i~k · ~r} with δb small, yields the dispersion
relation

σ(k) =

(
bs(1− bs)ξf − bs −

bs(1− bs)ξc
(1 + L2

ck
2)3/2

)
eξf bs −Dk2. (6)

Given the spatial isotropy, the growth rate σ(k) is a real quantity. This eigenvalue may become positive for a finite
band of unstable modes which triggered the spontaneous amplification of spatial fluctuations towards the formation
of periodic structures with a well-defined wavelength (2π/kc). At the symmetry-breaking instability, the value of
the critical wavenumber kc marking the appearance of a band of unstable modes, and hence the symmetry-breaking
instability, can be evaluated by two conditions: σ(kc) = 0 and ∂σ/∂k|kc = 0. These conditions yield the most unstable
mode

k2
c =

1

L2
c

[(
3bse

ξf bs(1− bs)ξcL2
c

2D

)2/5

− 1

]
. (7)

This critical wavenumber determines the wavelength of the periodic vegetation pattern 2π/kc that emerges from the
symmetry-breaking instability. Replacing kc in the condition σ(kc) = 0, we can then calculate the critical biomass
density bc. The corresponding critical aridity parameter µc is provided explicitly by the homogeneous steady states
Eq. (5). The critical wavelength (2π/kc) determines the half space between stripes in the localized labyrinth, solution
of Eq. (4), shown in Fig. 2.

B. Passive nonlinear resonator model

We consider a passive resonator with plane mirrors, filled by a resonant two-level medium without population
inversion and driven by a coherent plane-wave injected signal. In the good cavity limit where the medium relaxes
much faster than the cavity field, the material variables (the atomic polarization and population difference) are
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adiabatically eliminated, and the resulting model equation is a complex Ginzburg-Landau equation of the form

∂tE = Ei − (1 + iθ)E − 2CE

1 + |E|2 + i∇2E, (8)

where E is the normalized slowly varying complex envelope of the electrical field circulating within the optical cavity,
Ei is the input field amplitude, θ is the detuning parameter, and C is a cooperative parameter. The homogenous
steady state solutions (Eo) satisfy

E2
i =

{(
1 +

2C

1 + I

)2

+ θ2

}
I, (9)

where I = |Eo|2. The emergence of bistability in the model can be established by the conditions d2E2
i /d

2I = dE2
i /dI =

0. The system exhibits bistability if C > Cc, where Cc is solution of (Cc−4)(1+2C2
c ) = 27θ2C2

c , with a critical cavity
intensity Ic = (1+2Cc)/(Cc−1). The system exhibits two symmetry-breaking instabilities at I±T = C−1±

√
C2 − 4C.

The critical wavenumber at both instabilities is kc =
√
−θ. Close to this point a Swift-Hohenberg equation, Eq. (1),

has been established [9]. The critical wavenumber defines a critical wavelength 2π/kc, which is the half space between
the stripes observed in the localized labyrinthine pattern, solution of Eq. (8), shown in Fig. 2.

C. Reaction-Diffusion model

Finally, reaction-diffusion systems are models of predilection for the study of dissipative structures and localized
states. These models apply not only to chemical open reactors such as continuously stirred tank reactors (CSTR) but
also to population dynamics such as population biology and epidemiology. In this context, the symmetry-breaking
bifurcation is called the activation-inhibition instability. This bifurcation results from the competition between two-
opposite processes: a short-range positive feedback due to an activator that favours the growth of fluctuations and
a long-range negative feedback due to an inhibitor that neutralizes the activator’s action. We choose the Edblom,
Orban, and Epstein (EOE) model [10].

∂tu = −uv2 + av − (1 + b)u+D∇2u

∂tv = uv2 − (1 + a)v + u+ F +∇2v,
(10)

where the dimensionless variables u and v corresponds to HSO3 and H+ concentrations, respectively. a and b are
reduced reaction rates, d is the ratio of the diffusion constants of u and v, and F is the dimensionless inflow of
hydrogen ions. The homogenous steady states of Eq. (10), uo and vo, are solutions of

uo =
avo

v2
o + 1 + b

av3
o

1 + b+ v2
o

− (1 + a)vo +
avo

1 + b+ v2
o

+ F = 0.
(11)

In the case of b = 1 and F = 7.65 the system exhibits a S-shaped bifurcation diagram with a as the bifurcation
parameter. The middle branch is always unstable. In the narrow range a ∈ [16.95, 17.04] the model displays bistability
of homogenous states, characterized by a hysteresis loop. To characterize pattern formation in this chemical model
we perform a linear stability analysis. We make perturbations of finite wavenumber around the stable homogenous
states, i.e.

(
u(~r, t)

v(~r, t)

)
=

(
uo

vo

)
+

(
δu

δv

)
ei
~k·~r+σt. (12)

After introducing Eq. (12) into Eq. (10), we obtain the linearized problem

σ

(
δu

δv

)
=

(
−v2

o − 1− b−Dk2 −2uovo + a

v2
o + 1 2uovo − 1− a− k2

)(
δu

δv

)
. (13)
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We impose σ = ∂σ
∂k = 0 in the characteristic polynomial equation for σ and obtain the critical wavenumber,

k2
c =
−v2

c − 1− b+D(2ucvc − 1− ac)
2D

, (14)

together with Eq. (11) the critical point(s) (ac, vc) can be obtained. We find, numerically, that in the two stable
branches the Turing instability can arise. Note that, close to this critical point a non-variational Swift-Hohenberg
model (Eq. (2)) has been established [6]. Eq. (14) defines a critical wavelength 2π/kc, which is the half space between
stripes in the localized labyrinthine pattern in Fig. 2.

IV. INITIAL AND BOUNDARY CONDITIONS, AND GRID INDEPENDENCE OF LOCALIZED
LABYRINTHINE PATTERNS

The nucleation process in the SHE model (1) is illustrated in Fig. 3. A circular patch of a diameter d is extracted
from the center of a stable labyrinthine pattern. Then, it is embedded in the uniform solution us+ in order to create
the initial condition as shown in t1 in Fig. 3. The localized labyrinthine pattern evolves towards an equilibrium until
the temporal evolution of the Lyapunov Functional reaches a plateau, and the stable localized labyrinthine pattern
emerges. The step-like descend of the Lyapunov Functional at early stages of the temporal evolution is related to
the accomodation of defects in the frustrated labyrinthine pattern [2]. A similar procedure is used to generate the
three-dimensional LLP.

Figure 3: Creation and stabilization of a localized labyrinthine pattern in the SHE (1) with ε = 1.165 and ν = 1.
The left panel shows an extended labyrinthine pattern in equilibrium. The dashed circle indicates the patch of
labyrinthine pattern that is embedded in the uniform solution. The size is d = 220. The middle planel accounts for
the evolution towards equilibrium of the localized labyrinthine pattern (t1 = 1 to t6 = 106, where
t1 < t2 < t3 < t4 < t5 < t6). The red curve in the right panel shows the minimization of the Lyapunov Functional F
during the stabilization of the localized labyrinthine pattern from the initial condition. See Supplementary Video 1
for the whole evolution.

In the SHE model (1), given an initial condition with a diameter d, LLP emerge as stable patterns when d . dc.
Figure 4 shows the total area of localized labyrinthine patterns ||u||2 for different initial conditions, considering the
same initial extended labyrinthine pattern. There is a transition between LLP and extended labyrinthine patterns
for dc ≈ 12λc. There is a finite size of stripes needed to localized the complex labyrinthine patterns. Also, there is a
minimum size do ≈ 7λc, which gives the minimum amount of wavelengths to form a non-trivial symmetry pattern.

All the two-dimensional localized labyrinthine patterns shown in the main text and here [cf. Fig. 2 and Fig. 3]
are obtained using periodic boundary conditions. For completeness, we show that in the SHE model (1) the same
localized complex pattern can be seen in numerical simulations using Dirichlet and Neumann boundary conditions [see
Fig. 5]. All of these disordered localized patterns are obtained using the procedure described above.Also, we perform
numerical simulations in the SHE model (1) varying the numerical grid discretization, ∆x, to show the numerical
robustness of LLP. These localized patterns are displayed in Fig. 6.
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(i)

(ii)

(iii)

Figure 4: Transitions between (i) localized trivial symmetry patterns, (ii) localized non-trivial symmetry patterns,
and (iii) extended labyrinthine patterns in the SHE model (1) with ε = 1.164 and ν = 1. ||u||2 is the area of the
localized non-trivial symmetry patterns. The light blue shaded region accounts for the localized patterns with
different degree of non-trivial simmetries exist. do ≈ 7λc and dc ≈ 12λc.

(a) Periodic (b) Dirichlet (c) Neumann

Figure 5: Different boundary conditions for the numerical simulations of localized labyrinthine patterns in the
SHE (1) with ε = 1.175 and ν = 1. Periodic (a), Dirichlet (b), and Neumann (c) boundary conditions. The diameter
of the initial condition is d = 180.
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Figure 6: Localized labyrinthine patterns with different space discretizations ∆x the SHE model (1) with ε = 1.162
and ν = 1. (a) ∆x = 0.4, (b) ∆x = 0.5, and (c) ∆x = 0.6. The initial diameter is d = 200.

V. GROWTH MECHANISM OF LOCALIZED LABYRINTHINE PATTERNS IN THE
SWIFT-HOHENBERG EQUATION

Localized labyrinthine patterns, in the SHE model (1), are stable inside the pinning region delimited by ε−p and ε+p
as shown in Fig. 7, in which the square of the area supported by the localized labyrinthine patterns ||u||2 is plotted
as a function of the bifurcation parameter ε. When varying ε within this region, transitions between different LLP
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are possible due to shrinking or expansion of fingers (at the interface or inside the labyrinthine structure), and the
accommodation of defects. Likewise, this shrinking process is accompanied by the appearance of circular spots and
the disappearance of local domains of stripe patterns. Figure 7 shows four LLP along one stable branch generated by
decreasing/increasing ε, starting from ε = εic [inset (i) in Fig. 7].

i

i

Figure 7: Localized labyrinthine patterns in the SHE model (1) along one stable branch (blue curve). The yellow
shaded area with boundaries ε−p = 1.16 and ε+p = 1.19 is the pinning region. Starting from the LLP in (i) at
εic = 1.17, the bifurcation parameter is increased (upward triangles) and decreased (downward triangles).
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4.1. Perspectives
In this article, we have conceived the concept of localization of a non-trivial symmetry pat-
tern. We believe that these spatial structures are a consequence of a complicated interplay
between the pinning of defects in the bulk of the pattern and its complex-shaped inter-
face. An interesting research avenue is to fully discover the bifurcation diagram of the lo-
calized labyrinthine patterns. As we have performed direct numerical simulations of the SH
equation, we only have access to the stable equilibria. Then, the unstable branches of the
labyrinthine patterns are hidden from us. Nowadays, sophisticated numerical continuation
algorithms are used to reveal the unstable branches of localized solutions with trivial sym-
metries [144, 145, 146, 147, 148]. However, in the case of localized labyrinthine patterns, we
think the problem is significantly more complicated as the presence of defects and curvature
are synonymous with having various degrees of freedom to destabilize the labyrinths. Future
work could be aimed to elaborate continuation algorithms for non-trivial symmetry patterns.
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Chapter 5

Localised labyrinthine patterns in
ecosystems (Scientific reports 11,
18331)

The formation of vegetation patterns in arid and semi-arid regions has motivated the scientific
efforts of ecologists, engineers, biologists, mathematicians, and physicists [116, 44, 32, 117,
118, 119]. Until today, the question of how vegetation biomass self-organizes to survive
under adverse climate conditions is a matter of debate [149]. In this and the following two
chapters, we will contribute to this discussion by mainly focusing on localized and extended
labyrinthine vegetation patterns.

In the previous chapter, we showed that in a well-established vegetation model [44, 50,
117, 56] localized labyrinthine patterns are stable. In the present chapter, we analyze satellite
images from Google Earth [115] and discover that localized labyrinthine-like patterns are seen
in different parts of the world (Central Cameroon, Southwest Niger, and Western Australia).
Indeed, these localized patterns are a robust phenomenon. Furthermore, we perform numer-
ical integrations of other types of vegetation models, such as non-local and reaction-diffusion
equations, and conclude that the localized labyrinthine patterns are model-independent.
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Localised labyrinthine patterns 
in ecosystems
M. G. Clerc1, S. Echeverría‑Alar 1* & M. Tlidi2

Self‑organisation is a ubiquitous phenomenon in ecosystems. These systems can experience 
transitions from a uniform cover towards the formation of vegetation patterns as a result of 
symmetry‑breaking instability. They can be either periodic or localised in space. Localised vegetation 
patterns consist of more or less circular spots or patches that can be either isolated or randomly 
distributed in space. We report on a striking patterning phenomenon consisting of localised vegetation 
labyrinths. This intriguing pattern is visible in satellite photographs taken in many territories of Africa 
and Australia. They consist of labyrinths which is spatially irregular pattern surrounded by either a 
homogeneous cover or a bare soil. The phenomenon is not specific to particular plants or soils. They 
are observed on strictly homogenous environmental conditions on flat landscapes, but they are also 
visible on hills. The spatial size of localized labyrinth ranges typically from a few hundred meters to 
ten kilometres. A simple modelling approach based on the interplay between short‑range and long‑
range interactions governing plant communities or on the water dynamics explains the observations 
reported here.

The appearance of order and structures that involve nonequilibrium exchanges of energy and/or matter have been 
widely observed in many natural systems including fluid mechanics, optics, biology, ecology, and  medicine1–6. 
Vegetation populations and vegetation patterns belong to this field of research. Being often undetectable at the 
soil level, large-scale vegetation patterns have been first observed thanks to the usability of aerial photographs 
in the early  fifties7. They appear as extended bands of vegetation alternating periodically with vegetated areas 
and unvegetated bands. These large-scale botanical organisations have been reported in many semi-arid and 
arid ecosystems of Africa, Australia, America, and Asia. It is now widely admitted that the origin of these large 
scale botanical organisations is attributed to a nonequilibrium symmetry-breaking instability leading to the 
establishment of stable periodic spatial patterns. Extended and periodic vegetation pattern arising in semi-arid 
and arid ecosystems has been the subject of numerous studies and is by now fairly well-understood issue (see 
recent  overviews8–10 and references therein).

Vegetation patterns are not always periodic and extended in space. They can be spatially localised and ape-
riodic consisting of isolated or randomly distributed patches on bare  soil11–13 or gaps embedded in a uniform 
vegetation  cover14,15. They are generated in a regime where the homogeneous cover coexists with periodic vegeta-
tion patterns. The interaction between well-separated patches is always  repulsive16,17 while for gaps the interaction 
alternates between attractive and repulsive depending on the distance separating  gaps14,17. The localised patches 
has a more or less circular shape. However, for a moderate aridity condition, the circular shape can exhibit defor-
mation followed by splitting of a single into two new patches. Newer patches will in their turn exhibit deformation 
and self-replication18–20 until the system reaches a periodic distribution of patches that occupies the whole space 
available in  landscapes19,20. This process leading to spotted periodic patterns can be seen as warnings of ecosystem 
degradation and may lead to outcome of vegetation recovery. Besides patches self-replication, circular spots can 
exhibit deformation leading to the formation of arcs and spirals like in isotropic and uniform environmental 
 conditions21. The vegetation spirals are not waves since they do not  rotate21.

In this work, we unveil a new type of vegetation pattern consisting of a localised labyrinth embedded either 
in a homogeneous cover or surrounded by bare soil. This phenomenon is observed in Africa and Australia by 
remote sensing imagery. An example of such a botanical self-organisation phenomenon is shown in Fig. 1. They 
consist of either an irregular distribution of vegetation surrounded by a uniform cover (see Fig. 1a, b), or by a 
bare state (Fig. 1c, d). We show that localised labyrinths embedded in a uniform cover can be stable even if the 
environment is isotropic and their formation does not depend on the topography. However, when a localised 
labyrinth is surrounded by a bare state, they can expand or shrink. We analyse this phenomenon by using three 
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well-known self-organisation vegetation models, which support localised labyrinths. We show that localised 
labyrinths are permanent structures, and they can be observed worldwide involving a range of species and spatial 
scales. We interpret this phenomenon as a spatial compromise between the extended labyrinth that occupies the 
whole space available and stable homogeneous states. More precisely, the mechanism leading to their formation 
is attributed to the pinning-depinning transition that takes place in a parameter space where models exhibit 
bistability between extended disordered pattern and homogeneous cover.

Field observations of localised labyrinths
Localised labyrinths observed in nature are large-scale self-organisation patterns. They are satellite images from 
Africa and Australia obtained by the use of Google Earth software. The landscape of Central Cameroon (zone 
of forest-savanna  mosaic22), shown in Fig. 1a, displays contrasted phases of bare and densely vegetated areas 
with well-defined scale and symmetry surrounded by more or less uniform woodland. The climate in the zone 
where we observe the localised labyrinth is humid, with annual averaged precipitation of 1800  mm23. The annual 
averaged of potential evapotranspiration is between 1500 and 1600  mm24. The localised labyrinth we observe 
in Western Australia (see Fig. 1b) consists of localised woodland embedded in the shrubland of Mulga Bush 
(Acacia Aneura)25. In this zone the climate is arid, where the mean annual precipitation is 250  mm26 and the 
mean annual potential evapotranspiration is between 1200 and 1300  mm27. Besides, the localised labyrinth can 
be surrounded by bare zones as shown in landscapes of Southwest Niger in a brush-grass Savanna  zone28 (Fig. 1c, 
d). In this region the climate is semi-arid, the mean annual rainfall is 605 mm, in between June and  September29, 
and the annual mean potential evapotranspiration near this zone is 1900  mm30. All the climate data is summa-
rized in Table 1 in Methods section. Sparsely populated or bare areas alternate with dense vegetation irregular 
bands or patches made of microchloa Indica. The field observations suggest that localised labyrinthine structures 
are formed both in a flat landscape and with topographic variation (see Fig. 2). By their spatial regularity, by 
their spatial scales ranging from a few hundred meters to ten kilometres, as well as by the composition of their 
vegetation (tree, shrubs, herbs, and grasses), localised labyrinthine patterns are permanent structures, and they 

Figure 1.  Localised labyrinth vegetation patterns. Top views of (a) Central Cameroon (3◦ 59′ 22.05″ N 12◦ 
17′ 20.99″ E), (b) Western Australia (29◦ 33′ 36.16″ S 117◦ 15′ 32.60″ E), (c) and (d) Southwest Niger (12◦ 34′ 
45.10″ N 2 ◦ 41′ 28.71″ E and 12◦ 22′ 6.72″ N 3 ◦ 28′ 39.35″ E, respectively). The inset (d) show a zoom of the 
characteristic labyrinth pattern. All the images were retrieved from Google Earth software (https:// earth. google. 
com/ web/) with a resolution of 1920× 1080 pixels (total areas of (a) 196.5 km2 , (b) 7.4 km2 , (c) 12.3 km2 , and 
(d) 24.6 km2). The satellite images were taken on 17 of February, 2021; 22 of September, 2018; 15 of November, 
2016; and 12 of February, 2020, respectively. The upper-right insets show the localised patterns to emphasize the 
topography of the landscape.
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Figure 2.  Elevation profiles of the localised labyrinths observed in nature (Fig. 1). They were obtained using Google Earth 
software (https:// earth. google. com/ web/). In each zone two elevation profiles are shown for two arbirtary cross-sections (L1 
and L2). (a) The localised labyrinth in central Cameroon has large fluctuations in height ranging from 665 to 745 m. The 
homogenous cover that surrounds the localised labyrinth also has fluctuations in height of the same order. The size of the 
major axis of the localised pattern is 16.7 km. (b) In Western Australia the localised labyrinth is in a gentle slope ( 0.8% ), the 
size of its major axis is 0.6 km. (c) and (d) shows the elevation profiles of the localised labyrinths in Southwest Niger. Both 
patterns are in small hills of about 10 m, surrounded by a bare state. These localised labyrinths emerge in plain terrains. 
The sizes of the major axes are 1.0 km and 2.0 km, respectively. See the "Methods" section for details on the accuracy of the 
elevation data.
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can be observed even in non-arid climates. They have neither been observed nor reported. Understanding their 
formation and maintenance is an important ecological issue.

The mechanism underlying the emergence of the localised labyrinth can be captured by using self-organisa-
tion mathematical models that can explain vegetation pattern formation within a unified conceptual framework. 
In this respect, two approaches will be used. The first is based on the relationship between the plants’ aerial-
subterranean structures, the facilitative and competitive feedbacks which act at the community level, and the 
plants’ spatial propagation by seed  dispersion31,32. The second approach incorporates explicitly water transport 
by below ground diffusion and/or above ground run-off33–35. These models are in reasonable agreement with 
the field  observations36–38.

Mathematical modelling of ecosystems
The absence of the first principles for biological systems in general, and in particular for vegetation populations 
where phenomena are interconnected makes their mathematical modelling complex. The theory of vegetation 
pattern formation rests on the self-organisation hypothesis and symmetry-breaking instability that provoke the 
fragmentation of the uniform cover. The symmetry-breaking instability takes place even if the environment is 
 isotropic31,33,35. This instability may be an advection-induced transition that requires the pre-existence of the 
environment anisotropy due to the topography of the  landscape34,39,40. Generally speaking, this transition requires 
at least two feedback mechanisms having a short-range activation and a long-range inhibition. In this respect, 
we consider three different vegetation models that are experimentally relevant systems: (i) the generic interac-
tion redistribution model describing vegetation pattern formation which incorporates explicitly the facilitation, 
competition and seed dispersion nonlocal interactions (ii) the local nonvariational partial differential model 
described by a nonvariational Swift–Hohenberg type of model equation, and (iii) the reaction–diffusion system 
that incorporate explicetely water transport.

The interaction‑redistribution approach. The integrodifferential model. This approach consists of 
considering a well-known logistic equation with nonlocal plant-to-plant interactions. Three types of interactions 
are considered: the facilitative Mf (r, t) , the competitive Mc(r, t) , and the seed dispersion Md(r, t) nonlocal inter-
actions. To simplify further the mathematical modelling, we consider that the seed dispersion obeys a diffusive 
process Md(r, t) ≈ ∇2b(r, t) , with D the diffusion coefficient, b the biomass density, and ∇2 = ∂2/∂x2 + ∂2/∂y2 
is the Laplace operator acting in the (x,y) plane. The interaction-redistribution reads

where i = f , c . ξi represents the strength of the interaction, Ni is a normalisation constant. We assume that their 
Kernels φi(r, t) are exponential functions with Li the range of their interactions. The facilitative interaction 
Mf (r, t) favouring vegetation development. They involve the accumulation of nutrients in the neighbourhood 
of plants, the reciprocal sheltering of neighbouring plants against climatic harshness which improves the water 
budget in the soil. The range of the facilitative interaction Lf  operates on the crown size. The competitive interac-
tion operates over a length Lc and involves the below-ground structures, i.e., the rhizosphere. In nutrient-poor 
or/and in water-limited territories, lateral spreading may extend beyond the radius of the crown. This extension 
of roots relative to their crown size is necessary for the survival and the development of the plant in order to 
extract enough nutrients and/or water from the soil. When incorporating these nonlocal interactions in the 
paradigmatic logistic equation, the spatiotemporal evolution of the normalised biomass density b(r, t) in isotropic 
environmental conditions  reads14

The normalisation is performed with respect to the total amount of biomass supported by the system. The 
first two terms in the logistic equation with nonlocal interaction Eq. (2) describe the biomass gains and losses, 
respectively. The third term models seed dispersion. The aridity parameter µ accounts for the biomass loss and 
gain ratio, which depends on water availability and nutrients soil distribution, topography, etc. The homogene-
ous cover solutions of Eq. (2) are: bo = 0 which corresponds to the state totally devoid of vegetation, and the 
homogeneous cover solutions satisfy the equation

with � = ξf − ξc measures the community cooperativity if � > 0 or anti-cooperativity when � < 0 . The bare 
state bo = 0 is unstable (stable) µ < 1 (µ > 1 ). The homogeneous cover state with higher biomass density is stable 
and the other is unstable. These solutions are connected by a saddle-node or a tipping point whose coordinates 
are given by 

{
bsn = (�− 1)/�,µsn = e�−1/�

}
 . The linear stability analysis of vegetated cover ( bs ) with respect 

to small fluctuations of the from b(r, t) = bs + δb exp{σ t + ik · r} with δb small, yields the dispersion relation

Given the spatial isotropy, the growth rate σ(k) is a real quantity. This eigenvalue may become positive for a finite 
band of unstable modes which triggered the spontaneous amplification of spatial fluctuations towards the forma-
tion of periodic structures with a well-defined wavelength. At the symmetry-breaking instability the value of the 
critical wavenumber kc marking the appearance of a band of unstable modes, and hence the symmetry-breaking 

(1)Mi = exp

{

ξi
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∫

b(r + r
′, t)φi(r, t)dr

′
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, with φi(r, t) = exp(−r/Li)
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instability, can be evaluated by two conditions: σ(kc) = 0 and ∂σ/∂k|kc = 0 . These conditions yield the most 
unstable mode

This critical wavenumber determines the wavelength of the periodic vegetation pattern 2π/kc that emerges from 
the symmetry-breaking instability. Replacing kc in the condition σ(kc) = 0 , we can then calculate the critical 
biomass density bc . The corresponding critical aridity parameter µc is provided explicitly by the homogeneous 
steady states Eq. (3).

Local model: a nonvariational Swift–Hohenberg model. The integrodifferential equation  (2) can be reduced 
by means of a multiple-scale analysis to a simple partial differential equation, in the form of nonvariational 
Swift–Hohenberg equation. This reduction has been performed in the neighbourhood of the critical point asso-
ciated with the nascent  bistability14,32. The coordinates of the critical point are: the biomass density bc = 0 , the 
cooperativity parameter �c = 1 , and the aridity parameter µc = 1 . These coordinates are obtained from Eq. (3) 
by satisfying the double condition ∂µ/∂bs = 0 and ∂2µ/∂b2s = 0 . To apply a multiple-scale analysis it is neces-
sary to define a small parameter that measures the distance from criticality and expand b, µ , and � in the Taylor 
series around their critical values. The symmetry-breaking instability should be close to that critical point. To 
fulfil this condition, we must consider a small diffusion coefficient in order to include the symmetry-breaking 
instability in the description of the dynamics of the biomass density. This reduction is valid in the double limit of 
nascent bistability and close to the symmetry-breaking instability. In this double limit, the time-space evolution 
of biomass density obeys a non-variational Swift–Hohenberg  model14

where η and κ are, respectively, the deviations of the aridity and cooperativity parameters from their values at 
the critical point. The linear and nonlinear diffusion coefficients ν , γ , and α depend on the shape of  kernels17. In 
addition to the bare state u = 0 , the homogeneous covers obey

where the two homogeneous solutions u± are connected through the saddle-node bifurcation {
usn = κ/2, ηsn = κ2/4

}
 , with κ > 0 . The solution u− is always unstable even in the presence of small spatial 

fluctuations. The linear stability analysis of vegetated cover ( u+ ) with respect to small spatial fluctuations, yields 
the dispersion relation

Imposing ∂σ/∂k|kc = 0 and σ(kc) = 0 , the critical mode can be determined

where uc satisfies 4αu2c (2uc − κ) = (2γuc − ν)2. The corresponding aridity parameter ηc can be calculated from 
Eq. (7).

The reaction–diffusion approach. The second approach explicitly adds the water transport by below 
ground diffusion. The coupling between the water dynamics and the plant biomass involves positive feedbacks 
that tend to enhance water availability. Negative feedbacks allow for an increase in water consumption caused by 
vegetation growth, which inhibits further biomass growth.

The modelling considers the coupled evolution of biomass density b(r, t) and groundwater density w(r, t) . In 
its dimensionless form, this model  reads33

The first term in the first equation describes plant growth at a constant rate ( γ /ω ) that grows linearly with w 
for dry soil. The quadratic nonlinearity −b2 accounts for saturation imposed by poor nutrients soil. The term 
proportional to θ accounts for mortality, grazing or herbivores. The mechanisms of dispersion are modelled by 
a simple diffusion process. The groundwater evolves due to a precipitation input p. The term (1− ρb)w in the 
second equation accounts for the evaporation and drainage, that decreases with the presence of vegetation. The 
term w2b models the water uptake by the plants due to the transpiration process. The groundwater movement 
follows the Darcy’s law in unsaturated conditions; that is, the water flux is proportional to the gradient of the 
water matric  potential41. The matric potential is equal to w, under the assumption that the hydraulic diffusivity 
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is  constant41. To model the suction of water by the roots, a correction to the matric potential is included; −βb , 
where β is the strength of the suction.

Results
Localised labyrinthine vegetation pattern. In our analysis, we focus on the simplest vegetation model 
that has been derived from the interaction-redistribution approach, namely the non-variational Swift–Hohen-
berg Eq.  (6) described above. This model is appropriate to describe the space-time dynamics of the biomass 
under resource-limited landscapes such as nutrient limitation or water deprivation. In this case, the average bio-
mass density is low comparing the carrying capacity closed-packing density of unstressed vegetation. The simu-
lated stationary localised vegetation labyrinth is shown in Fig. 3a. Moreover, to confirm the field observation 
and to show that this phenomenon is model-independent, we conducted numerical simulations of the other two 
models, the integrodifferential (Eq. (2)) based on the facilitative, competitive, and seed dispersion interactions; 
and the reaction–diffusion type that explicitly incorporates water transport (Eq. (11)). The results are shown in 
Fig. 3b and 3c. The parameters used to simulate the different localised labyrinths are listed in Tables 2, 3, and 4 in 
the "Methods" section. The localised labyrinth consists of one spatially disordered state surrounded by a quali-
tatively different state. Note that the localised labyrinthine patterns shown in Fig. 3 do not have a round shape. 
The fact that this shape is not round is attributed to the presence of defects in the disordered pattern since they 
modify the interface energy. Investigations of fronts propagation between labyrinths and homogeneous states 
mediated by defects are missing in the literature. The interface separating these two states is stationary leading to 
a fixed size of a localised labyrinth. It neither grows and invades the uniform cover nor shrinks. The stabilization 
of localised labyrinth is attributed to the interface pinning  phenomenon42,43. This phenomenon is characterized 
by an interface that connects a homogeneous state and a periodic one, which is motionless on a finite region of 
parameters, pinning range. This pinning effect occurs due to the competition between a global energy symmetry 
breaking between states that favors the interface propagate in one direction and the spatial modulations that 
block the interface by introducing potential  barriers42.

To determine the stability domain of the localised labyrinth, we establish the bifurcation diagram shown in 
Fig. 4a, where we plot the biomass density as a function of the aridity parameter η . The aridity refers not only 
to water scarcity but can be also attributed to the nutrient-poor soil. When the aridity is low obviously the uni-
form vegetated state is stable (blue line) and the bare state (broken line) is unstable. When the aridity parameter 
is further increased, the homogeneous cover becomes unstable with respect to small fluctuations. Above this 
symmetry-breaking instability, several branches of solutions emerge sub-critically for η < ηc . Example of veg-
etation patterns that appears follows the well-known sequence made sparse vegetation spots that can be either 
periodic or localised in space (see i, Fig. 4a), banded vegetation (see ii, Fig. 4a) or a periodic distribution of 
localised patches setting on the bare state (see iii, Fig. 4a).

An extended labyrinthine pattern can be generated subcritically as indicated by the red line in the bifurcation 
diagram (see Fig. 4a). The situation which interests us requires that this extended labyrinth exhibits a coexistence 
with the uniform vegetated state. The coexistence between these two qualitatively different states is the prereq-
uisite condition for the formation of a stable localised labyrinth. However, this condition is necessary but not 
sufficient, the interface separating these two states exhibits a pinning  phenomenon42. Indeed, as shown in the 
inset of Fig. 4a, there exists a finite range of the aridity parameter often called the pinning zone η−p < η < η+p  , 
where localised labyrinthine patterns are stable. Examples of localised labyrinth obtained by numerical simula-
tions for fixed values of the control parameters are shown in Fig. 4a (iv, v, vi). The motionless interface is not 
necessarily circular, and contains bands perpendicular to it and circular patches. Similar bifurcation diagram is 
obtained from the integrodifferential model (see Fig. 4b).

Finally, we discuss the situation where the aridity is not homogenous due to the topography. For this purpose, 
we choose a top hat-like shape for the aridity parameter as shown in Fig. 5a. In this case, numerical simulations 
of the integrodifferential model Eq. (2) show a stable localised labyrinthine pattern (see Fig. 5a). Note that the 
localised labyrinthine structures surrounded by bare soil shown in Fig. 1c, d are unstable since the interface 
propagates. The interface can not be pinned in the absence of spatial oscillations around the bare state. Oscilla-
tions around this state are unphysical since the biomass density is a positive defined quantity. However, when 
the aridity parameter possesses an inverted top hat-like shape, it is possible to pin the interface (see Fig. 5b). In 
this case, the localised labyrinthine pattern is surrounded by a mosaic extended state, and the mechanism of 
stabilization is rather due to the inhomogeneity of the aridity parameter.

Deppining mechanism. The spatial location of the localised labyrinth immersed in the bulk of the stable 
uniform vegetated state depends on the initial condition considered. When ecosystems operate out of the pin-

Table 1.  Mean annual precipitation, potential evapotranspiration, and aridity index of the regions where 
localised labyrinthine patterns are observed. For more details on the meteorological data see the references 
given in the text.

Precipitation (mm) Potential evapotranspiration (mm) Aridity index Classification

Central Cameroon 1800 1500–1600 1.1–1.2 Humid

Western Australia 250 1200–1300 0.1–0.2 Arid

Southwest Niger 605 1900 0.3 Semi-arid
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ning zone, the interface separating the labyrinth and the homogeneous cover propagates due to the depinning 
transition (see Fig. 6a, b). In this case, depending on the aridity level, the interface propagates from one stable 
state to another The transition is different when moving the aridity parameter slowly or abruptly. In the second 
type of variation, when η < η−p  , the homogeneous cover invades the system, while when η > η+p  , the localised 
labyrinth survives but it is now embedded by a periodic distribution of gaps (see Fig. 6b).

Conclusions
In this paper we have reported for the first time evidence of localised labyrinthine vegetation patterns observed 
on satellite images from Africa and Australia. We have shown that these localised structures are robustly con-
sisting of either an irregular distribution of vegetation surrounded by a uniform cover or on the contrary sur-
rounded by a bare state. We have shown that the formation of localized labyrinthine patterns is not specific to 
particular plants or soils. We have found localised labyrinths in ecosystems on flat landscapes and hills. Three 
relevant models which undergo localised vegetation labyrinthine patterns have been considered; (i) vegeta-
tion interaction-redistribution model of vegetation dynamics, which can generate patterns even under strictly 
homogeneous and isotropic environmental conditions. It is grounded on a spatially explicit formulation of the 
balance between facilitation and competition. Ecosystems experience transitions towards landscape fragmenta-
tion of landscapes (ii) the nonvariational Swift–Hohenberg model that can be derived from the model (i) in the 
long-wavelength pattern forming regime, and (iii) reaction–diffusion model that incorporates explicitly water 
transport. We have shown that all these models despite their mathematical structure support the phenomenon 

Figure 3.  Numerical observations of localised labyrinths. The model-independent structure is observed in (a) 
a non-variational Swift–Hohenberg model, (b) integrodifferential non-local model, and (c) reaction–diffusion 
model. In the three cases the labyrinth is supported by a uniform vegetated state. The parameters used in each 
model are listed in the "Methods" section. From numerical simulations, the figure was created using Inkscape 
1.0 (https:// inksc ape. org/ relea se/ inksc ape-1. 0/).

Table 2.  List of parameter values of the simulations of the non-variational Swift–Hohenberg equation, shown 
in Fig. 3a ( 200× 200 grid, η = 1.01 ), Fig. 4a ( 120× 120 grid, [i, ii, iii] with space step �x = 0.5 ), and Fig. 6 
( 120× 120 grid).

Cooperativity ( κ) ν γ α Time step ( �t) Space step ( �x)

0.6 0.011 0.5 0.125 0.05 0.8

Table 3.  List of parameter values of the simulations of the integrodifferential model, shown in Fig. 3b 
( 512× 512 grid, µ = 1.301 ), Fig. 4b ( 256× 256 grid), and Fig. 5 ( 256× 256 grid).

Competition length ( Lc) Diffusion (D) Facilitation strength ( ξf ) Competition strength ( ξc) Time step ( �t) Space step ( �x)

2.5 1 3 1 0.1 0.8

Table 4.  List of parameter values of the simulation of the reaction–diffusion model, shown in Fig. 3c 
( 512× 512 grid).

γ ω θ p ρ δ β Time step ( �t) Space step ( �x)

1.45 1.5 0.2 0.7 1.5 100 2.7 0.001 0.6
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of the localised labyrinth. We have established their bifurcation diagram and identified a parameter region, 
where we have observed a coexistence between a homogeneous cover and an extended labyrinthine structure 
which are both linearly stable. Within it, there exist a pinning zone of parameters where localised labyrinthine 
vegetation patterns have been generated as a stable pattern. Note however that localised labyrinth is determined 
by the initial condition, while their maximum peak biomass remains constant for a fixed value of the system 
parameters. This phenomenon results from front pinning between qualitatively different coexisting vegetation 
states. Outside of the pinning region, we have shown that the localised labyrinth either shrink and leads to the 
formation of regular distribution of circular spots or expand leading to the formation of an extended labyrinth. 
Finally, we have investigated the formation of localised labyrinth on a hill by considering an inhomogenous 
aridity parameter. This forcing acts as a trapping potential for the labyrinthine pattern. Owing to its general 
character, robust localised labyrinthine structures observed and predicted in our analysis should be observed in 
other systems of various fields of natural science such as fluid mechanics, optics, and medicine.

We have documented for the first time the phenomenon of localised vegetation labyrinth by remote observa-
tions, using the Google Earth computer program, and numerical simulations of three different theoretical models 

Figure 4.  Bifurcation diagram of vegetation models. (a) the non-variational Swift–Hohenberg model, and (b) 
the integrodifferential model. Gaps (i), labyrinths (ii), and spots (iii) is the standard sequence of patterns in 
vegetation models. 〈u〉 and 〈b〉 stands for the average biomass in each model. The solid curves indicate where the 
bare soil or uniform vegetation cover are stable, whereas the segmented curves indicate where these states are 
unstable. In (a), the critical point (ηc = 0.038, uc = 0.53) stands for the instability threshold where the uniform 
vegetated cover loses stability to a modulated state. In a narrow region, between η−p = 0.010 and η+p = 0.013 , 
where there is a multistability of states (labyrinth, uniform vegetation, bare soil) the emergence of localized 
labyrinths is possible. In (b), (µc = 1.309, bc = 0.62) and µ−

p = 1.2950 , µ+
p = 1.3044 . The insets with the 

pinning zones enlarged show the existence of a family of localized labyrinths (triangles) with different average 
biomasses. The insets (iv), (v), and (vi) show different localized labyrinthine patterns [(a) and (b)]. The other 
parameters are provided in the "Methods" section. From numerical simulations, the figure was created using 
Inkscape 1.0 (https:// inksc ape. org/ relea se/ inksc ape-1. 0/).
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which are based on ecologically realistic assumptions. These models provide a clear explanation of how nonlinear 
plant-plant interactions and the effects of plants on soil water can be crucial in determining the spatial distribu-
tion of plant communities. It is far from the scope of this contribution to provide parameters assessment and 
comparison between the theoretical predictions and the field observations. Work in this direction is in progress.

Extended and localised vegetation labyrinthine patterns opens a whole new area of research in self-organi-
sation in vegetation pattern formation, where field observations will be fundamental to establish a connection 
with the concepts developed in this work.

Methods
Google Earth data. The satellite images (cf. Fig. 1) are retrieved from the open-access program Google 
Earth (see the link https:// earth. google. com/ web/ and information there), courtesy of CNES/Airbus, Landsat/
Copernicus, and Maxar Technologies (Fig. 1a), and CNES/Airbus (see Fig. 1b–d).

The elevation profiles in Fig. 2 are obtained from Google Earth. This software uses digital elevation data from 
the Shuttle Radar Topography Mission at a resolution of 30  m44,45. The error, at a 90% confidence level, associated 
to the absolute height data is less than 6 m for the territories considered here (Africa and Australia)44.

Climate data. Localised labyrinthine patterns are observed in Central Cameroon (Fig. 1a), Western Aus-
tralia (Fig. 1b), and Southwest Niger (Fig. 1c, d). The climate types of these regions are humid, arid, and semi-
arid, respectively. The climatic classification is based on the aridity index (see Table 1), which is the ratio of mean 
annual precipitation and potential  evapotranspiration46. Note that the aridity index is small (big) when the arid-
ity parameter ( η or µ ), defined in the interaction-redistribution approach subsection, is big (small).

Numerical simulations data. Numerical simulations of models under consideration were solved in 
square grids with Runge-Kuttta 4 time integrator. The spatial derivatives were approximated using finite differ-
ence scheme with a three point stencil using periodic boundary conditions. In the integrodifferential simulation, 
the convolution integrals were solved in Fourier space through DFT algorithms. The detail of the parameters 
used in the numerical simulations are listed in the Tables below.

Generation of numerical localised labyrinthine patterns. The localised labyrinthine patterns are 
initialised in a region of parameters where the uniform vegetation cover and the labyrinthine pattern coexist, 
in particular, in a pinning zone (see Fig. 4). The initial condition consists of a circular patch of labyrinthine pat-
tern in the centre of the simulation box, embedded in a homogenous background (see Fig. 7). After a transient 
accommodation of the biomass field, the stable localised labyrinth emerges. The dynamics towards equilibrium 
in the integrodifferential model Eq. (2) is resumed in Fig. 7 and the Supplementary Video S1.

Computation of the bifurcation diagrams. The bifurcation diagrams in Fig. 4 were determined with 
analytical and direct numerical integration techniques of the governing equations. The blue and black curves 
account for the vegetated state and the bare one, respectively. The curves are solid when the corresponding state 
is stable, and broken if unstable. The critical points in which the different states change their stability are deter-
mined by linear analysis, detailed in the interaction-redistribution approach subsection.

The red curve is the stable branch of labyrinthine patterns, and it is determined by direct numerical integra-
tion of the governing equations (using the algorithm explained above). Starting from a vegetated state with a 
small amplitude noise perturbation, in the region where the uniform vegetation state is unstable, a stable laby-
rinthine pattern can emerge (see (ii) in Fig. 4). The stability range of the labyrinth state, that is (i) and (iii) in 

Figure 5.  Localised labyrinthine patterns generated by inhomogenous aridity in the integrodifferential model. 
The spatially forced pattern can be supported by (a) the vegetated state (top hat-like shape µ parameter), and 
(b) the bare state (inverted top hat-like shape µ parameter). From numerical simulations, the figure was created 
using Inkscape 1.0 (https:// inksc ape. org/ relea se/ inksc ape-1. 0/).
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Fig. 4, are found by decreasing/increasing the aridity parameter starting from the labyrinthine pattern (see the 
black arrows in Fig. 4).

The blue triangles account for the stable branch of the localised labyrinthine pattern. The initial condition is 
a stable localised labyrinth state (cf. state (iv) in Fig. 4). The aridity is decreased until the localised labyrinthine 
pattern becomes a localised hexagonal pattern, which determines the left boundary of the pinning region ( η−p  
or µ−

p  ). On the other hand, the right boundary of the pinning region ( η+p  or µ+
p  ) is determined by increasing the 

aridity until the localised labyrinthine pattern invades all the system (see Fig. 6).

Figure 6.  Deppining transitions of a localised labyrinth state ( η = 0.0102 ) in a non-variational Swift–
Hohenberg model. This state is shown in the middle panel of (a) and (b). The localised pattern destabilize when 
crossing the pinning region boundaries when varying slowly (a) or abruptly (b) the aridity parameter. In the 
first case (a), when decreasing η the localized labyrinth loses its internal structure due to shrinking of stripes (left 
panel, η = 0.007 ), and when increasing η some stripes begin to grow at the interface of the localized labyrinth 
and a hexagon pattern starts to invade the uniform cover (right panel, η = 0.016 ) . In the second case (b), when 
decreasing η all the stripes and patches of sparse vegetation disappear in favor of a uniform vegetated cover 
(left panel, η = −0.03 ), and when increasing η the vegetated cover becomes unstable and stripes emerge. This 
process transform the localised labyrinth into an extended one (right panel, η = 0.05 ). The other parameters 
are provided in the "Methods" section. From numerical simulations, the figure was created using Inkscape 1.0 
(https:// inksc ape. org/ relea se/ inksc ape-1. 0/).
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5.1. Perspectives
In this investigation, we elucidated the existence of localized complex vegetation patterns in
different sites around the world. We reproduce these observations by modeling the distribu-
tion of vegetation biomass with different theoretical perspectives [44, 32, 50, 117, 56]. Addi-
tionally, we show numerically how an inhomogeneous aridity parameter localize labyrinthine
patterns. An appealing perspective will be to obtain on-site measurements to know the nat-
ural conditions at which ecosystems privilege the existence of localized labyrinthine patterns
instead of extended labyrinths.
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Chapter 6

Vegetation covers phase separation in
inhomogeneous environments (Chaos,
Solitons & Fractals 163, 112518)

Until now, well-established vegetation mathematical models based on the interactions be-
tween plants have been successful in qualitatively reproducing the vegetation self-organization
observed in arid and semi-arid ecosystems [116, 44, 32, 117, 118, 150]. Nevertheless, the reg-
ularity of the patterns obtained by numerical integration of mathematical models is perfect
(see Chapter 5), which is not the case for real patterns subjected to heterogeneous conditions.
The causes of heterogeneities are frequently related to changes in interannual precipitation,
occurrences of fire, topographic variations, inhomogeneous grazing, soil depth distribution,
and soil-moisture islands [151, 152, 153, 154, 119, 155, 48, 156, 157]. It makes sense to infer
that one or more of the aforementioned heterogeneities control the irregularities in vegetation
patterns. For example, the topography can be estimated from satellite data (see a site of
Niger in Fig. 6.1).
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Figure 6.1: Satellite image of a vegetation pattern in Niger (12◦27’50.58" N
3◦18’30.76" E). The insets correspond to elevation profiles along the dotted
lines. The value of ∆ indicates the difference between the maximum and
minimum height.

In this chapter, we suppose that topographic static fluctuations (see a site of Niger in
Fig. 6.1 for illustration) can affect the resource distribution in vegetated ecosystems. Partic-
ularly, we include inhomogeneities by promoting an aridity parameter to be space dependent.
We characterize the effects of these heterogeneities in the selection of equilibria, by computing
Fourier transforms and correlation functions, and in the transition between a bare state and
a uniform cover. Moreover, we discuss the invasion of a vegetation front in an inhomogeneous
environment from the perspective of coarsening dynamics.
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A B S T R A C T

Vegetation patterns in arid and semi-arid ecosystems as a self-organized response to resource scarcity is a well-documented issue. Their formation is often
attributed to the symmetry-breaking type of instability. In this contribution, we focus on a regime far from any symmetry-breaking instability and consider a
bistable regime involving uniformly vegetated covers and a bare state. We show that vegetation populations exhibit non-random two-phase structures where high
biomass density regions are separated by sparsely covered areas or even bare soil. These structures are referred to as phase separation vegetation covers. We
provide observations of this phenomenon in Gabon, Angola, Argentina, and Mexico. The inhomogeneities in environmental conditions are crucial to explain the
origin of phase separation vegetation covers. We derive a simple equation from ecologically relevant models to explain various field observations. The bifurcation
diagrams obtained from this model allow us to prove that inhomogeneity in the aridity parameter is a source of resilience for vegetation covers, avoiding collapsing
towards a bare state. We characterize the natural observations and the equilibria from the model by using Fourier transform technique, spatial autocorrelation
analysis, and size distribution of patches analysis.

1. Introduction

The fragmentation of landscapes and loss of biological produc-
tion in drylands, which leads to desertification as a result of cli-
mate change and longer drought periods, is one of the world’s most
pressing environmental challenges. This fragmentation is typically ac-
companied by a non-equilibrium symmetry breaking instability, even
when the topology of the landscapes is flat [1,2]. The patterns that
emerge from the symmetry-breaking instability is generically called
vegetation patterns. The ‘tiger bush’ is a well-known example that
was first seen in the early 1940s thanks to the development of aerial
photography [3]. Since this discovery, several modeling approaches
have been proposed to explain the origin of these patterns, ranging
from cellular-automata models [4], integrodifferential equations [1],
reaction–diffusion equations [5–8], to spatially stochastic models [9,
10]. The later approach focuses on how environmental randomness can
be used to create symmetry-breaking transitions that lead to the forma-
tion of vegetation patterns. Besides tiger bush other spatially periodic
vegetation patterns have been reported such as hexagons [1,2,11,12],
and labyrinths [2,12].

Vegetation patterns are not always periodic. They can be localized
in space [13–17], found close to the symmetry-breaking instability.
In [18,19], it is established how two well separated isolated patches
interact in one- and two-dimensions. As one moves out from the
patch center, the patch tail monotonically decays, whereas localized
gaps have a damped oscillatory tail. Depending on how far apart the

∗ Corresponding author.
E-mail address: david.pinto@ug.uchile.cl (D. Pinto-Ramos).

1 David Pinto-Ramos, Sebastián Echeverría-Alar, Marcel G. Clerc, and Mustapha Tlidi contributed equally to the production of this work.

gaps are, the interaction can be either attractive or repulsive [20].
Localized patches may exhibit a curvature instability that causes the
self-replication phenomenon [21,22] or the emergence of arcs and
spirals [23].

Nonperiodic vegetation patterns in a regime far from any symmetry-
breaking instability can be observed in nature. These structures emerge
spontaneously from random perturbations of the unstable homoge-
neous steady state that separates the two stable states forming a bistable
system. This phenomenon is referred as phase separation. Growth of
spatial domains of different phases whose dynamics is governed by
power law in systems with conserved and nonconserved order param-
eters is a well documented issue [24–26]. This phenomenon has been
studied in a variety of out-of-equilibrium systems, including polymer
chemistry [27,28], material science [29], optical systems [30–33] and
cell biology [34]. However, the topic of phase separation in ecosystems
caused by environmental inhomogeneity has received little attention.

Examples of phase separation in ecosystems are shown in Fig. 1.
These are satellite photos, retrieved from Google Earth software, of
vegetation coverage in different regions. Near the African coast, the
landscapes of Gabon (see Fig. 1a) and Angola (see Fig. 1b) show distinct
patches of bare soil and planted areas of various sizes and forms. Scat-
tered vegetated and non-vegetated areas are seen in the hilly regions
of Argentina (see Fig. 1c) and Mexico (see Fig. 1d). It is seen that the
vegetation distribution in all these places is inhomogeneous. Modeling

https://doi.org/10.1016/j.chaos.2022.112518
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Fig. 1. Vegetation pattern phase separation. Top views of (a) Gabon, Africa (2◦ 44’
08.42" S, 10◦ 12’ 28.37" E), (b) Angola, Africa (6◦ 19’ 39.10" S, 12◦ 35’ 25.98" E), (c)
Argentina, South America (40◦ 58’ 17.21" S, 71◦16’ 03.76" O), and (d) Mexico, North
America (29◦ 04’ 25.99" N, 110◦ 11’ 19.27" O).

approaches in vegetation ecosystems do not exhibit heterogeneous non-
periodic self-organization as equilibrium. The spatial characterization
of such vegetation states and the transitions between them have not
been explored.

We propose a unified description for non-homogeneous and non-
periodic vegetation covers, vegetation pattern phase separation. We
show that the inhomogeneous vegetation covers are equilibrium states
of the ecosystem under inhomogeneous environment. We demonstrate
how the inclusion of inhomogeneities in the parameters plays a crucial
part in explaining the wide range of distinct observed equilibria. We
observe that the vegetation spatial organization is characterized by a
power-law distribution in Fourier space and an exponential decay in
the spatial correlation. Finally, a power law for the early temporal
evolution of the total biomass is numerically inferred .

Following an introduction, Section 2 shows the characterization
of the spatial self-organization of the satellite images in Fig. 1. In
Section 3, we present a straightforward Fisher–Kolmogorov–Petrovskii–
Piskunov (FKPP) type model with inhomogeneous environmental con-
ditions and explore the dynamics of phase separation vegetation covers.
The study of equilibria and the coarsening dynamics of homogeneous
states are discussed in Sections 4 and 5, respectively. In Section 5.2, we
examine how the coarsening dynamics are impacted by an inhomoge-
neous environment by avoiding collapse to the bare state. The paper is
concluded in Section 6. A detailed derivation of the FKPP equation from
the generic interaction redistribution model and the reaction–diffusion
water and biomass model is included in the Appendix section.

2. Spatial characterization of field observations

To characterize vegetation phase separation patterns shown in
Fig. 1, we evaluate their Fourier spectrum and their spatial autocor-
relation. The results are shown in Fig. 2, where the Fourier spectrum
|𝐹 (𝑞)|2, as a function of the radial wavevector 𝑞, is depicted in Fig. 2(𝑎1,
𝑏1, 𝑐1, 𝑑1). All satellite images taken from Gabon, Angola, Argentina,
and Mexico unexpectedly possess a power-law decaying tail connecting

Fig. 2. Fourier spectra and spatial autocorrelations. The blue dots and the blue lines
represent the real data from the vegetation images of Fig. 1. (𝑎1, 𝑏1, 𝑐1, and 𝑑1)
correspond to the Fourier spectrum of Gabon, Angola, Argentina, and Mexico vegetation
patterns, respectively. The red line in the Fourier space illustrates the power-law
behavior of the tail in the radial direction 𝑞. The exponents range from 2.0 to 3.4.
The 𝑅2 values of the linear fittings are (𝑎1) 0.79, (𝑏1) 0.77, (𝑐1) 0.69, and (𝑑1) 0.70,
respectively. (𝑎2, 𝑏2, 𝑐2, and 𝑑2) are autocorrelations corresponding to Gabon, Angola,
Argentina, and Mexico vegetation patterns, respectively. The characteristic correlation
lengths 𝑙 are (𝑎2) 𝑙 = 610.9 m, (𝑏2) 𝑙 = 20.6 m, (𝑐2) 𝑙 = 11.3 m, and (𝑑2) 𝑙 = 72.4 m. They
are obtained by fitting the exponential law 𝐵𝑒−𝑟∕𝑙 to the real data, where 𝐵 is a positive
constant. The 𝑅2 value of all the exponential fittings is 0.99. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

a range of spatial scales in the wavevector space. In this figure, the lin-
ear fitting is indicated by red line. At the very least, this eliminates the
possibility of a wavelength selection process leading to the formation
of periodic vegetation patterns. Besides, each vegetation photograph
of Fig. 1 is accompanied by spatial autocorrelation function 𝐶(𝑟) as
a function of a distance 𝑟 [see Fig. 2(𝑎2)]. The vegetation structures
have a spatial autocorrelation characterized by an exponential decay
behavior until an asymptotic value is reached. Up until great distances,
Gabon shown in Fig. 2(𝑎2) and Angola shown in Fig. 2 (𝑏2) exhibit
an exponential behavior. At small distances, the exponential decay is
truncated in Argentina and Mexico as shown in Fig. 2(𝑐2) and Fig. 2(𝑑2),
respectively. The exponential decay is represented by fitting curves of
the form ∼ 𝑒−𝑟∕𝑙 of the autocorrelation data [see brown dashed lines in
panels of Fig. 2(𝑎2, 𝑏2, 𝑐2, 𝑑2)]. The correlation length is denoted by 𝑙,
which describes the local vegetation pattern phase-separation of a well
defined mean patch size. In fact, a closer look at the vegetation covers
in Fig. 1 reveals nonperiodic behavior, leaving aside the explanation of
spontaneous symmetry-breaking mechanisms.

The Fourier spectra together with spatial autocorrelations indicated
that the vegetation patterns observed in Africa and America reported in
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Fig. 1 do not emerge spontaneously from symmetry-breaking instability
but rather from phase separation mechanism. Independent of the region
of the planet, and type of soil and vegetation (bushes, patches, shrubs,
trees), we observe a power-law in Fourier space and an exponential
decay of the autocorrelation function. In the next sections, we introduce
a model and provide an explanation to the field observations.

3. Phase separation dynamics for biomass

We adopt a continuous time and space description of the biomass
density 𝑏(𝑥, 𝑦, 𝑡) at space coordinates 𝐫 = (𝑥, 𝑦) and time 𝑡. Theory of
vegetation patterns based on the non-local FKPP equation has been
reported in [35–37]. In this contribution, we consider the paradigmatic
local FKPP [38,39] model equation describing the population dynamics
of individuals with the inclusion of small inhomogeneities in the growth
parameter

𝜕𝑡𝑏 = −
(
𝜂 +

√
𝛤𝜉(𝐫)

)
𝑏 + 𝜅𝑏2 − 𝑏3 +𝐷∇2𝑏. (1)

This simple model is derived from the nonlocal FKPP equation, and
from reaction–diffusion water biomass model (see the Appendix). The
parameter 𝜂 measures the linear growth (𝜂 < 0) or decay (𝜂 > 0) of
vegetation population. 𝜂 increases as the aridity of the environment
increases; 𝜅 measures the net effect of facilitative versus competi-
tive interactions, and 𝑏3 is the nonlinear saturation. The last term
describes diffusion with coefficient 𝐷 and ∇2 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 is the
bidimensional laplacian operator. The degree of aridity described by
the parameter 𝜂 of an environment is related with on-site evapotran-
spiration process [40]. A spatial distribution of this process can arise
naturally due to different type of soil, diverse plant groups, and topo-
graphic variations [41]. The function 𝜉(𝐫) models these environmental
inhomogeneities and 𝛤 measures the intensity of them.

Let us briefly recall that Eq. (1) can be stated in gradient form

𝜕𝑡𝑏 = − 𝛿𝐹
𝛿𝑏

,

𝐹 ≡ ∫ 𝑑𝐫
(
𝜂(𝐫) 𝑏

2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
+ 𝐷

2
(∇𝑏)2

)
, (2)

where 𝜂(𝐫) = 𝜂 +
√
𝛤𝜉(𝐫). Then, it is well-known that the system Eq. (1)

will reach an equilibrium minimizing the potential 𝐹 .
In what follows, we focus on the effects of independent inhomo-

geneities in space. In this case, the function 𝜉(𝐫) is generated by a
delta-correlated gaussian random process of zero mean. In the absence
of inhomogeneities, i.e., 𝛤 = 0, the model for vegetation Eq. (1)
was derived from ecologically relevant models (see the Appendix).
It has also been derived from a variety of physical systems, including
liquid crystals [42], flame combustion [43], fiber Kerr resonators [44],
passive Kerr cavity [45], and electrical circuits [46], to mention a few.

Eq. (1) for 𝛤 = 0 supports domain walls [47] (or bistable fronts)
separating the two stable equilibrium states 𝑏ℎ1 = (𝜅+

√
𝜅2 − 4𝜂)∕2 and

𝑏ℎ2 = 0. One important aspect of equilibria, is that for positive values
of 𝜅 there exist a tipping – or saddle node – point at 𝑏𝑠 = 𝜅∕2 and
𝜂𝑠 = 𝜅2∕4. As one crosses the critical aridity 𝜂 = 𝜂𝑠, this bifurcation,
which is defined by the annihilation of two equilibria, causes dramatic
changes in the system [48], well documented as catastrophic shift in
ecology.

The dynamics of Eq. (1) in the simple case of homogeneous environ-
mental conditions, is characterized by front propagation. Straightfor-
ward calculations lead to a propagation speed of the fronts proportional
to the difference of energy of the homogeneous states. Neglecting the
curvature effects for the domain propagation, the speed of walls reads
(see the textbook [47] and reference therein)

𝑣𝑤𝑎𝑙𝑙𝑠(𝑏ℎ1 → 𝑏ℎ2) ≡ 𝑣0 ∝ 𝐹 (𝑏ℎ2) − 𝐹 (𝑏ℎ1), (3)

𝐹 (𝑏) ≡ 𝜂 𝑏
2

2
− 𝜅 𝑏

3

3
+ 𝑏4

4
. (4)

In homogeneous environmental conditions where 𝜂 is a constant, the
dynamics leads to either a uniform vegetated cover or a state totally

Fig. 3. The bifurcation diagram of Eq. (1) for parameters 𝜅 = 0.6 and 𝐷 = 0.1,
showing the different behaviors for different 𝛤 values. (a) Bifurcation diagram for the
averaged biomass ⟨𝑏⟩. (b) Bifurcation diagram for the area fraction ⟨𝐴⟩. (c), (d) and
(e) show examples of the different equilibria exhibited in the bifurcation diagram. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

devoid of vegetation. This approximation cannot explain the wide range
of vegetation patterns depicted in Fig. 1. It is then necessary, to include
inhomogeneities in the environmental conditions, such as the aridity,
which will explain the field observation as we will see in the next
section.

4. Equilibrium states analysis

In this section, we discuss equilibria of Eq. (1) first in the homoge-
neous parameter 𝛤 = 0 case, and then when 𝛤 ≠ 0, considering both
delta-correlated and spatial correlated inhomogeneities.

4.1. Homogeneous case 𝛤 = 0

Starting from random initial conditions 𝑏𝑖(𝐫, 0) around the unsta-
ble vegetated state, one can introduce the averaged biomass ⟨𝑏⟩ ≡∑𝑁

𝑖=1 ∫ 𝑑𝐫𝑏𝑖(𝐫, 𝑇 )∕𝑁𝐿2, where 𝑁 is the number of realizations and 𝑇
is the time to reach equilibrium. ⟨𝑏⟩ exhibits an abrupt change when
increasing the aridity parameter 𝜂 as shown by the blue dotted curve
in Fig. 3(a). There exist a single point called the Maxwell point and
denoted by 𝜂 = 𝜂𝑚, where front solutions of Eq. (1) are stationary,
i.e., when the two stable homogeneous steady states have the same
energy. For 𝜂 < 𝜂𝑚, 𝑏ℎ1 has the lowest free energy density, whereas
for 𝜂 > 𝜂𝑚, 𝑏ℎ2 = 0 is the preferred state. Figs. 3(b) illustrates
the bifurcation diagram for the mean biomass ⟨𝑏⟩ and the biomass
area fraction ⟨𝐴⟩ ≡ ∑𝑁

𝑖=1 ∫ 𝑑𝐫𝐴𝑖(𝐫, 𝑇 )∕𝑁𝐿2, respectively. The latter
is defined using the binarized biomass field 𝐴𝑖 for different initial
conditions 𝑏𝑖 as

𝐴𝑖(𝐫, 𝑇 ) ≡
{

1 if 𝑏𝑖(𝐫, 𝑇 ) ≥ 𝑏𝑠 = 𝜅∕2,
0 if 𝑏𝑖(𝐫, 𝑇 ) < 𝑏𝑠 = 𝜅∕2. (5)

The biomass area fraction corresponding to the case 𝛤 = 0 is indicated
by the blue dotted curve in Fig. 3(b). Without inhomogeneities, nu-
merical simulations of Eq. (1) for a long time evolution, reach either
a uniform cover state or a state totally devoid of vegetation. These
equilibrium biomass covers correspond to an area fraction one or zero
in Fig. 3(b), respectively. Therefore, vegetation patterns and phase
separation vegetation covers are excluded in this case.
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Fig. 4. Statistical analysis of a low area fraction equilibrium for parameters 𝜅 = 0.6,
𝐷 = 0.1, 𝜂 = 0.95, and 𝛤 = 0.01. (a) Examples of equilibrium 𝐴 fields. (b) Probability
density of patch area 𝑃 (𝑎) with a power law fit and its logarithmic scale graph in
the inset. (c) Autocorrelation function of the 𝑏 field, showing an exponential fit and a
semi logarithmic scale graph in the inset. (d) Averaged absolute value of the Fourier
transform of 𝑏 in semi logarithmic scale (for contrast purposes). (e) Logarithmic scale
graph for the tail of the Fourier transform with power law fits for the 𝐴 and 𝑏 fields.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.2. Inhomogeneous 𝛤 ≠ 0 and non-correlated 𝜉(𝐫) case

When the aridity parameter is inhomogeneous 𝛤 ≠ 0, numerical
simulations of Eq. (1), using different random initial conditions and
different realizations of 𝜉(𝐫), show there is no abrupt change in the
mean biomass for large enough 𝛤 . Fig. 3(a) show this smooth transition
(see orange and green curves). In this case, the transition is rather
continuous avoiding a catastrophic shift in the ecosystem.

Contrarily to the homogeneous case, the system can reach phase
separation vegetation covers as shown in Figs. 3(c, d, e). Now, the
system is characterized by the coexistence of disordered patches of
vegetation and bare soil. According to the bifurcation diagram in
Fig. 3(b), equilibrium biomass covers can have an area fraction other
than zero or one. Note that states with low area fraction (⟨𝐴⟩ ≪ 1)
are found above the Maxwell point (𝜂 > 𝜂𝑚) (cf. Figs. 3(d) and 3(e)).
However, states with high area fraction (1 − ⟨𝐴⟩ ≪ 1) are only found
below the Maxwell point (𝜂 < 𝜂𝑚), as shown in Fig. 3(c).

Inhomogeneities can prevent plants from collapsing to bare ground.
It is important to notice that even for entirely uncorrelated inhomo-
geneities, one can recognize the spatial structures seen in vegetation
(see Fig. 1), and predicted by the FKPP Eq. (1). One can identify the
location and size of patches by using ImageJ software [49], which has
been applied to the field 𝐴. Fig. 4(a) shows examples of the field 𝐴 for
different realizations of the numerical simulations. It is interesting to
note that the probability distribution of patch sizes 𝑃 (𝑎), where 𝑎 is the
area of a biomass patch, follows a power law as shown in Fig. 4(b).
This 𝑃 (𝑎) behavior is in line with some measurement for small patch

Fig. 5. Steady state averaged biomass ⟨𝑏⟩ from Eq. (1) with spatially correlated
inhomogeneities. The surface-plot show the average biomass ⟨𝑏⟩ for different values
of the intensity

√
𝛤 and the degree of correlation 𝑑∕𝐿 of the inhomogeneities. 𝑑 is the

correlation length of the 𝜉(𝐫) function, obtained by fitting an exponential law to the
autocorrelation 𝐶(𝐫) of 𝜉(𝐫), and 𝐿 is the size of the simulation box. All the correlated
𝜉(𝐫) were created with the reaction–diffusion process (𝜖 = 0.1). (i) 𝑑∕𝐿 = 0 and

√
𝛤 = 0,

(ii) 𝑑∕𝐿 = 0.03 and
√
𝛤 = 0.08, and (iii) 𝑑∕𝐿 = 0.08 and

√
𝛤 = 0.07 correspond to

different equilibria obtained in Eq. (1). The biomass 𝑏 is normalized to 1 in the three
insets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

sizes that have been documented in the literature [50]. In addition, as
shown in Figs. 4(d) and 4(e), the tails of the Fourier transform of the
𝑏𝑖(𝐫, 𝑇 ) and 𝐴𝑖(𝐫, 𝑇 ) fields both follow a power law, typical of complex
systems [51,52]. This Fourier space structure translates into a well-
defined correlation function with an exponential decay for equilibrium
states produced by the model Eq. (1), as shown in Fig. 4(c). We compare
the outcomes of numerical simulations of the model equation with
the satellite photos provided in Fig. 1 thanks to these straightforward
analysis tools.

4.3. Inhomogeneous 𝛤 ≠ 0 and correlated 𝜉(𝐫) case

In what follows, we address the problem of considering the effects
of inhomogeneities that are spatially correlated. To have spatially
correlated inhomogeneities, let us consider an initial delta correlated
function 𝜉(𝐫), to go through a simple reaction–diffusion process

𝜕𝑠𝜉(𝐫) = −𝜖𝜉(𝐫) + ∇2𝜉(𝐫), (6)

where 𝜖 is a positive relaxational constant, and 𝑠 parametrizes the
evolution of 𝜉(𝐫). We extract different temporal stages of this evolution.
In this way, we obtain inhomogeneity functions with a degree of spatial
correlation, which is characterized by the dimensionless parameter
𝑑∕𝐿. 𝑑 is the correlation length and 𝐿 is the system size. After, we
normalize the correlated functions 𝜉(𝐫, 𝑠) between [−1, 1] in order to
control the inhomogeneities in Eq. (1) with the inhomogeneity level
intensity 𝛤 . Fig. 5 shows the averaged biomass ⟨𝑏⟩ from Eq. (1) for
different values of the inhomogeneity intensities 𝛤 and correlation
lengths 𝑑 of the inhomogeneities 𝜉(𝐫). When increasing 𝑑, ⟨𝑏⟩ decreases
(see insets (ii) and (iii) in Fig. 5) in comparison to the homogeneous
case shown in the inset (i) of Fig. 5. This is related to the coherent
patches of bare soil that can coexist with the vegetated state thanks to
incorporating a correlated inhomogeneity function 𝜉(𝐫). The addition
of the spatial correlation can capture more smooth vegetation distri-
butions, which are comparable to the satellite images of Gabon and
Angola (cf. Figs. 1(a) and 1(b), respectively).
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Fig. 6. Biomass propagation in homogeneous landscape. (a) The blue dots are the
temporal evolution of the area cover for numerical simulations of Eq. (1), with
parameters 𝜅 = 0.6, 𝐷 = 0.1, 𝜂 = 0.02, and 𝛤 = 0. The orange indicates the theoretical
prediction from Eq. (9). (b), (c), and (d) are different stages of propagation, showing
that homogeneous conditions favor circular patches and full cover at equilibrium. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5. Coarsening dynamics

In the last section, we analyze the early temporal evolution of
the biomass density field 𝑏(𝑥, 𝑦, 𝑡) that leads to the equilibrium states
discussed previously.

5.1. Coarsening in homogeneous environment

From the front or wall speed Eq. (3), one can infer the temporal
evolution for the total cover of the biomass 𝑏 as depicted in Fig. 6(a).
For this, consider that a localized portion of vegetation (patch) is placed
on bare ground 𝑏 = 0, as shown in Fig. 6(b). Then, the interface
propagates, as seen in Figs. 6(c) and 6(d), with an approximated speed
of 𝑣0 (see Section 3 and Eq. (3)). Thus, the characteristic size of the
patch increases linearly with time 𝑡 as

⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑣0𝑡. (7)

Then, it is straightforward to introduce the total biomass and the area
of a patch 𝐴𝑝𝑎𝑡𝑐ℎ by

𝑏𝑡𝑜𝑡𝑎𝑙 ∼ 𝑏ℎ1⟨𝐿𝑝𝑎𝑡𝑐ℎ⟩2 ≡ 𝑏ℎ1⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩. (8)

From this, one can easily see that

⟨𝐴𝑝𝑎𝑡𝑐ℎ⟩ ∼ 𝑡𝑛, (9)

with 𝑛 = 2. The previous expression is valid for a single patch in
space neglecting curvature effects. Otherwise, front interactions and
curvature effects alter the simple dynamics of the front. Fig. 6 (a) shows
perfect agreement with this simple theory by fitting Eq. (9) to the
numerical data.

More interesting is the natural nucleation of multiple patches after
an initial perturbation. Initializing the system with random initial
conditions, small deviations from the critical exponent 𝑛 = 2 are
expected due to multiple patch nucleation, as seen in Figs. 7(a) and (b)
for early times. Figs. 7(c) to 7(f) show the temporal evolution of the
nucleation of patches. Note that as one gets closer to the Maxwell point,
the interaction between walls becomes stronger, and we expect larger
deviations from the naive exponent 𝑛 = 2. Unexpectedly, a crossover
between exponents 𝑛 = 2 and 𝑛 = 3 is observed for low area fractions
⟨𝐴⟩ with the former dominating the early time dynamics.

Fig. 7. Temporal dynamics of multiple patch growth in homogeneous landscape. (a)
and (b) exhibit the temporal dynamics following power laws in time for the vegetation
area cover, calculated from numerical simulation data of Eq. (1) with parameters
𝜅 = 0.6, 𝐷 = 0.1, and 𝛤 = 0. (c), (d), (e) and (f) show different stages of temporal
evolution with coarsening dynamics. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5.2. Coarsening in an inhomogeneous environment

In the case 𝛤 ≠ 0, fronts can suffer from a pinning phenomenon [53],
explaining the amorphous shapes we can observe as equilibrium states.
Pinning phenomenon has been studied in several fields of physics,
appearing naturally in discrete systems such as crystal lattices [54],
and pattern forming systems [55]. Spatially modulated parameters
could also induce pinning phenomenon as observed in liquid crystal
devices [56] or granular media [57].

For the temporal dynamics, fronts will be highly coupled to the
external inhomogeneities imposed, putting in doubt the validity of
Eq. (7). Surprisingly, coarsening dynamics for low area fractions were
observed, although with a different exponent 𝑛 compared with the
homogeneous case, as seen in Fig. 8.

One can see that inhomogeneities increase the characteristic expo-
nent for the area cover growth, from 𝑛 = 2 to 𝑛 = 4. Indeed, it is ob-
served that inhomogeneities dramatically accelerate evolution towards
the equilibrium state, reaching an almost full cover approximately fifty
times faster compared to the homogeneous case 𝛤 = 0 case.

6. Conclusions

We have reported satellite photos showing phase separation vege-
tation covers, obtained from Google Earth software in different land-
scapes of Africa and America. We have characterized vegetation phase
separation patterns by establishing their Fourier spectra and spatial au-
tocorrelations. We have demonstrated that these patterns, independent
of the plant involved and the type of soil in which they are observed,
exhibit a generic power-law in Fourier space and exponential decay of
the autocorrelation function. Thanks to this investigation, we were able
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Fig. 8. Effect of inhomogeneities on early temporal evolution. The area cover of
vegetation shows a different exponent for its temporal dynamics, from numerical
simulations of Eq. (1) with delta correlated 𝜉(𝐫), parameters 𝜅 = 0.6, 𝐷 = 0.1, 𝜂 = 0.02.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to rule out the symmetry-breaking mechanism caused by the formation
of periodic vegetation patterns.

We have derived a simple equation, the local FKPP, as a paradigm
for the studying of population dynamics, from the generic interaction
redistribution model, and the reaction–diffusion water and biomass
model. We have demonstrated that environmental inhomogeneities are
necessary to account for the phase separation patterns observed in
vegetation. Numerical simulations for a long time evolution showed
that the model Eq. (1) without inhomogeneities cannot support phase
separation vegetation covers.

Simple static indicators such as patch size distributions, spatial
Fourier transform analysis, and correlation functions analysis reveal
the presence of inhomogeneities. Additionally, we propose dynamical
indicators given by the coarsening power-law exponents for the early
time evolution of vegetation covers.

More importantly, inhomogeneities are shown to be a source of
resilience for vegetation covers. We demonstrated that enough inho-
mogeneities allowed to avoid collapsing towards a bare state, shed-
ding light on mechanisms to preserve arid ecosystems from the global
warming process and long drought periods.
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Appendix

A.1. Nonlocal FKPp model

The nonlocal FKPP model for vegetation population reads [20,35]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑚𝑓 (𝐫) − 𝜇𝑏𝑚𝑐 (𝐫) +𝐷𝑚𝐷(𝐫), (10)

𝑚𝑓,𝑐 = exp(𝜒𝑓,𝑐 ∫ 𝑑𝐫′𝜙𝑓,𝑐 (𝐫′)𝑏(𝐫 + 𝐫′)), (11)

𝑚𝐷 = ∫ 𝑑𝐫′𝜙𝐷(𝐫′)
[
𝑏(𝐫 + 𝐫′) − 𝑏(𝐫)

]
, (12)

where 𝑏 corresponds to the biomass density field, following a logistic
growth depending on the neighboring biomass with 𝑚𝑓 . Mortality has
a base rate 𝜇 enhanced by competition feedback through 𝑚𝑐 . The seed
dispersion is described by the last term in the rhs of Eq. (10). The
nonlocal terms Eqs. (11) and (12) correspond to a weighted sum of the
biomass with kernels 𝜙𝑓,𝑐,𝐷(𝐫′). These kernels are decaying functions
of the distance between interacting plants, and are assumed to be
radially symmetric. They model facilitative (𝑓 ), competitive (𝑐), and
seed dispersion (𝐷) processes. The strength of the competitive and
facilitative interactions are 𝜒𝑓 and 𝜒𝑐 , respectively. Whereas 𝐷 is the
intensity of seed dispersion.

We perform a weak nonlinear analysis in Eq. (10). First, note the
critical parameter 𝜇 = 𝜇𝑐 = 1 at which the bare soil state 𝑏 = 0 changes
its stability. The curve defining the non-trivial homogeneous equilibria
is 0 = (1 − 𝑏) exp(𝜒𝑓 𝑏) − 𝜇 exp(𝜒𝑐𝑏), and has two positive solutions for
𝜒𝑓 − 𝜒𝑐 ≥ 1. These solutions collapse to the 𝑏 = 0 state at 𝜒𝑓 − 𝜒𝑐 = 1
and 𝜇 = 𝜇𝑐 . Let us explore the vicinity of the onset of bistability by
introducing a small parameter 𝜖 (𝜖 ≪ 1) that describes the distance
from criticality as

𝜇 = 𝜇𝑐 + 𝜖2𝜂, (13)
𝜒𝑓 − 𝜒𝑐 = 1 + 𝜖𝜅. (14)

A linear analysis of Eq. (10) around 𝑏 = 0 with finite wavevector
perturbation 𝑏 = 𝐴 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡) leads to the characteristic equation
𝜆(𝐪) = 1 − 𝜇 + 𝐷(𝜙𝐷(𝐪) − 1), where 𝜙𝐷(𝐪) is the Fourier transform of
𝜙𝐷(𝐫). Remembering that the kernels are normalized, it follows that
�̂�𝑓,𝑐,𝐷(𝐪 = 0) = 1. Moreover, as the kernels are radially symmetric
the expansion for large wavelength perturbation reads 𝜙𝐷(𝐪) ≈ 1 +
𝜕𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)𝐪2∕2 + ⋯, having at dominant order the band of unstable
modes 𝛥𝑞2 = (𝜇−1)∕(𝐷𝜕𝑞𝑥𝑞𝑥𝜙𝐷(𝟎)∕2) ∼ 𝜖2. Then, we propose the ansatz

𝑏 = 𝜖𝐴(𝑇 = 𝜖2𝑡,𝐑 = 𝜖𝐫) + 𝜖2𝑊 [2] + 𝜖3𝑊 [3] +⋯ , (15)

where 𝑊 [𝑛] correspond to nonlinear corrections of order 𝜖𝑛. Addi-
tionally, we expand the integral terms, provided that the kernels in
Eqs. (11) and (12) decay faster than an exponential, as

∫ 𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝑏(𝐫 + 𝐫′) ≈ 𝑏(𝐫) + ∇2𝑏
4 ∫ 𝑑𝐫′𝜙𝑓,𝑐,𝐷(𝐫′)𝐫′2 +⋯

By replacing this expansion and Eqs. (13), (14), (15) in Eq. (10) a
hierarchy of equations at different orders in 𝜖 are found. Orders 𝜖 and
𝜖2 satisfy automatically the solvability condition, and at 𝜖3 order we
get the equation

𝜕𝑇𝐴 = −𝜂𝐴 + 𝜅𝐴2 − 𝐴3∕2 +𝐷𝑒∇2𝐴, (16)

where

𝐷𝑒 =
𝐷
4 ∫ 𝑑𝐫′𝜙𝐷(𝐫′)𝐫′2. (17)

In this way, with a renaming and scaling of variables and parameters
in Eq. (16), we recover the local FKPP Eq. (1).
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A.2. Water and biomass model

Another popular approach to explain the vegetation pattern forma-
tion proposed in the literature is based on water transport [5–8]. When
biomass and water interact, vegetation ecosystems can be modeled by a
pair of coupled reaction–diffusion equations. A general approach when
considering sloped territory was provided in [5]. A model considering
the possible bistability between bare soil and populated state reads [58]

𝜕𝑡𝑏 = 𝑏(1 − 𝑏)𝑤(1 + 𝛾𝑏)2 − 𝜇𝑏 +𝐷∇2𝑏,

𝜕𝑡𝑤 = 𝑝 −𝑤 − 𝜎𝑏𝑤(1 + 𝛾𝑏)2 + ∇2𝑤. (18)

Where 𝑏 and 𝑤 correspond to the biomass and ground water density
fields, respectively. 𝛾 characterizes the increase of biomass production
with water consumption. The parameter 𝜇 represents the mortality rate
and 𝐷 accounts for the dispersal by seeds. The parameter 𝑝 models
the mean water input to the system, and 𝜎 weights the water lost by
consumption of the biomass.

We can derive a normal form equation for long wavelength pertur-
bations near the onset of bistability. Let us consider the linear dynamics
around the bare soil state as (𝑏,𝑤) = (0, 𝑝) + 𝛿𝐴𝑣 exp(𝑖𝐪 ⋅ 𝐫 + 𝜆𝑡), with
𝛿𝐴 ≪ 0, the jacobian reads

𝐽 =
(
𝑝 − 𝜇 −𝐷𝑞2 0

−𝜎𝑝 −1 − 𝑞2

)
, (19)

which has eigenvalues 𝜆𝑠(𝑞) = −1 − 𝑞2 and 𝜆𝑢(𝑞) = 𝑝 − 𝜇 − 𝐷𝑞2.
The eigenvalue 𝜆𝑢 can change of sign at 𝜇𝑐 = 𝑝 and the equilibrium
point changes its stability. The corresponding band of unstable modes
is 𝛥𝑞2 = (𝑝−𝜇)∕𝐷. thus, close to the instability of the bare soil solution
𝑝 = 𝜇, slow spatial variations domain the dynamics (𝛥𝑞2 → 0). We
use a multiple time–space scale analysis to establish a simple normal
form model Eq. (1). We choose a small parameter 𝜖 which measure the
distance from the critical point 𝑝 = 𝜇 as

𝑝 = 𝜇 − 𝜖2𝜂, (20)

then, 𝛥𝑞2 ∼ 𝜖2. The non-trivial homogeneous equilibria read 𝑤1 =
𝜇∕

[
(1 − 𝑏)(1 + 𝛾𝑏)2

]
and 𝑤2 = 𝑝∕

[
1 + 𝜎𝑏(1 + 𝛾𝑏)2

]
. The onset of bista-

bility condition reads 𝜕𝑏𝑤1|𝑏=0 = 𝜕𝑏𝑤2|𝑏=0, giving the critical relation
𝜎𝑐 = 2𝛾 − 1. Thus, we perturb around this condition as

𝜎 = 2𝛾 − 1 − 𝜖𝜅. (21)

To perform a weak nonlinear analysis, we consider the ansatz
(
𝑏
𝑤

)
=
(
0
𝑝

)
+ 𝜖𝐴(𝑇 ,𝐑)𝑣𝟏 + 𝜖2�⃗� [2] + 𝜖3�⃗� [3] +⋯ (22)

where the slow time scale is 𝑇 = 𝜖2𝑡, and the space scale is 𝐑 =
𝜖𝐫. We insert the previous expressions for 𝑏 and 𝑤, and expansions
Eqs. (20), (21) in Eq. (18), and solve the linear problems for the
unknown functions �⃗� [𝑛] corresponding to nonlinear corrections of
order 𝜖𝑛.

At order 𝜖, one has

0 =
(

0 0
−𝜎𝑐𝑝 −1

)
𝐴𝑣𝟏, (23)

which gives the eigenvector at instability

𝑣𝟏 =
(

1
−𝜎𝑐𝑝

)
. (24)

At order 𝜖2, one finds

0 =
(

0 0
−𝜎𝑐𝑝 −1

)
�⃗� [2] + 𝐴2

(
0

−𝜎𝑐𝑝

)
, (25)

which is solved for

�⃗� [2] = 𝐴2
(

0
−𝜎𝑐𝑝

)
. (26)

Finally, at order 𝜖3, we get the following linear inhomogeneous
problem

𝑣𝟏𝜕𝑇𝐴 =
(

0 0
−𝜎𝑐𝑝 −1

)
�⃗� [3] + 𝐴

(
−𝜂
0

)
+ 𝑝𝐴2

(
𝜅
0

)
+

𝑝𝐴3
(

−3𝛾2
−𝜎𝑐 (𝛾2 − 2𝛾𝜎𝑐 − 𝜎𝑐 )

)
+ ∇2𝐴

(
𝐷

−𝜎𝑐𝑝

)
. (27)

Introducing the inner product ⟨𝑓 |𝑔⟩ ≡ ∑
𝑖 𝑓𝑖𝑔𝑖, we search for the kernel

of the adjoint of the linear operator acting on �⃗� [3], which is

𝑣∗ =
(
1
0

)
.

Then, for a linear problem of the form 𝐴𝑥 = 𝑏, solutions exist
whenever ⟨ker(𝐴†)|𝑏⟩ = 0. Applying the solvability condition to solve
Eq. (27), we get

𝜕𝑇𝐴 = −𝜂𝐴 + 𝑝𝜅𝐴2 − 3𝛾2𝑝𝐴3 +𝐷∇2𝐴. (28)

By a renaming and scaling of variables and parameters, we recover the
local FKPP Eq. (1).
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6.1. Perspectives
In this chapter, we have shown the effects of spatial heterogeneities in the homogeneous
equilibria of a population model. Particularly, inhomogeneities are shown to be a source
of resilience for vegetation landscapes. We demonstrated that inhomogeneities can avoid a
critical collapse into a bare state. A future research direction is to explore the effect of hetero-
geneous environmental conditions, following the framework developed in this chapter, in the
(de)stabilization of more complicated equilibria, such as hexagonal, stripe, and labyrinthine
patterns.

73



Chapter 7

Effect of heterogeneous environmental
conditions on labyrinthine vegetation
patterns (Physical Review E 107,
054219)

In the previous chapter, we studied the effect of spatial heterogeneities in the homogeneous
equilibria of a population model related to plant communities in harsh environments. Now,
we would like to investigate the effect of heterogeneities in the labyrinthine-like structures
observed in different regions of Africa (cf. Figure 7.1). The simple question driving this
analysis is: Can we extend the ideas of labyrinthine patterns of Chapter 3 in real systems,
where heterogeneities are the rule rather than the exception?

In this chapter, we will include spatial heterogeneities in a local model of vegetation dy-
namics (2.13) by promoting the aridity parameter η to be spatial dependent, and study its ef-
fects in labyrinths (see different equilibria in Fig. 7.2). We discover that perfect labyrinths are
persistent below critical heterogeneous conditions, depending on the intensity level and degree
of correlation of the heterogeneities. After these conditions are reached, perfect labyrinths
transform into imperfect labyrinthine patterns. This transition is revealed by employing
global spatial analysis techniques (Fourier transforms and structure factor function) and by
extending the windowed Fourier transform tool (see Chapter 3) to the case where a zero mode
is active. We think the imperfect labyrinthine patterns are the structures observed in Fig. 7.1;
that is, the labyrinths observed in real landscapes are a combination of symmetry-breaking
instabilities of uniform covers and the underlying heterogeneities.
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(a) (b)

(c) (d)

Figure 7.1: Satellite images of labyrinthinelike vegetation patterns in
(a) Niger (12◦27’50.58" N 3◦18’30.76" E), (b) Sudan (11◦18’26.07" N
27◦57’58.62" E), (c) Cameroon (3◦59’22.05” N 12◦17’20.99” E), and (d)
Senegal (15◦20’48.72” N, 14◦43’07.17” O). All the images were retrieved
from Google Earth software [115].
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Figure 7.2: Numerical integrations of Eq. (2.13) with κ = 0.6, ν = 0.01, γ =
0.5, and α = 0.125, showing different labyrinthinelike textures for different
intensity levels (increasing from left to right) and degrees of correlation
(increasing from bottom to top) of the heterogeneities. The simulations are
performed in squared boxes of size 240 × 240.
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Effect of heterogeneous environmental conditions on labyrinthine vegetation patterns
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Self-organization is a ubiquitous phenomenon in Nature due to the permanent balance between injection and
dissipation of energy. The wavelength selection process is the main issue of pattern formation. Stripe, hexagon,
square, and labyrinthine patterns are observed in homogeneous conditions. In systems with heterogeneous
conditions, a single wavelength is not the rule. Large-scale self-organization of vegetation in arid environments
can be affected by heterogeneities, such as interannual precipitation fluctuations, fire occurrences, topographic
variations, grazing, soil depth distribution, and soil-moisture islands. Here, we investigate theoretically the
emergence and persistence of vegetation labyrinthine patterns in ecosystems under deterministic heterogeneous
conditions. Based on a simple local vegetation model with a space-varying parameter, we show evidence of
perfect and imperfect labyrinthine patterns, as well as disordered vegetation self-organization. The intensity level
and the correlation of the heterogeneities control the regularity of the labyrinthine self-organization. The phase
diagram and the transitions of the labyrinthine morphologies are described with the aid of their global spatial
features. We also investigate the local spatial structure of labyrinths. Our theoretical findings qualitatively agree
with satellite images data of arid ecosystems that show labyrinthinelike textures without a single wavelength.

DOI: 10.1103/PhysRevE.107.054219

I. INTRODUCTION

Self-organization is a universal feature of out-of-
equilibrium systems and is of common occurrence in many
fields of nonlinear science [1–4]. The spontaneous emergence
of self-organized dissipative structures out of a homogeneous
state has been observed in many out-of-equilibrium systems,
including biology, chemical reaction-diffusion systems, fluid
mechanics, nonlinear optics, and laser physics [1–3]. On the
one hand, these systems are subjected to a balance between
a nonlinear effect and a transport or a spatial coupling pro-
cess. On the other hand, they are subjected to a continuous
injection and dissipation of energy. The balance between these
processes triggers the emergence of dissipative structures with
an intrinsic macroscopic scale [2,5,6], which corresponds to
a spontaneous symmetry-breaking instability. Over the past
decades, extensive research has been done to understand the
origins of simple patterns, such as stripes, hexagons, and
squares, from a theoretical point of view [2,7]. However,
nontrivial symmetry patterns, i.e., labyrinths, have gotten little
attention due to their complicated structure, rich in spatial
defects [8,9]. Recently, an attempt to characterize this ubiq-
uitous phenomenon has introduced a quantitative definition of
ideal labyrinthine patterns [10], which satisfy the following:
(i) the disordered patterns are characterized globally by a
powdered ring Fourier spectrum, and (ii) the spatial structures
are described locally by a single wave mode. The ideal adjec-
tive refers to labyrinths with a single dominant characteristic
wavelength, which are observed in controlled physical con-
texts, e.g., ferrofluids, chemical reactions, cholesteric liquid
crystals, block copolymers, metal nanosurfaces, and ferroelec-
tric thin films [11–16].

Self-organized structures arise in plant ecology, where
stressed vegetation biomass can self-organize when resources,
such as water or nutrients, are limited [17–24]. Under these
arid conditions, the plant community displays coherent distri-
butions, which are maintained by facilitative and competitive
processes involving plants and the environment [18]. These
distributions, whose wavelengths range from centimeter to
kilometer scales, are frequently referred to as vegetation pat-
terns. Starting from a uniform cover, as the aridity level is
increased, the first pattern that appears consists of a periodic
spatial distribution of gaps followed by labyrinths and then
spots. This generic sequence has been predicted using various
pattern-forming ecological models. The first paper that dis-
cusses the sequence was [19] in 1999. Later on, the sequence
was analyzed from reaction-diffusion models in 2001 [20] and
2002 [21]. The sequence gaps-stripes/labyrinths-spots as a
function of the aridity has been empirically studied in an arid
region of Sudan [24]. There, the term labyrinth was used to
describe disordered vegetation bands in a flat surface [20–25].
Besides periodic, other aperiodic and localized vegetation pat-
terns have been reported [26–31]. Well-documented localized
vegetation patterns are the fairy circles [32–39]. Localized
vegetation patterns can exhibit curvature instabilities leading
either to the self-replication phenomenon [40,41], or the for-
mation of arcs and spirals [42]. Other alternative hypotheses
for the spatial structure of vegetation self-organization have
been explored, such as random patterns and power-law distri-
butions of patch sizes [43,44].

In ecological systems, the presence of spatial and/or tem-
poral heterogeneities may influence the self-organization of
plant communities. The causes of heterogeneities are fre-
quently related to variations in interannual precipitation,

2470-0045/2023/107(5)/054219(9) 054219-1 ©2023 American Physical Society
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FIG. 1. Satellite images of vegetation labyrinths. Self-organization of vegetation observed in (a)(i) Niger (12◦27′50.58′′ N 3◦18′30.76′′E)
and (b)(i) Sudan (11◦18′26.07′′ N 27◦57′58.62′′E). The (ii) insets display a zoom of images in (i) and are characterized by their Fourier
transform |F (k)|2. The (iii) and (iv) insets are local regions of the images in (ii) accompanied by their local Fourier transforms |F (k̃)|2. The
(v) insets correspond to elevation profiles along the green dotted lines in (i). The value of � indicates the difference between the maximum
and the minimum height. The vegetation snapshots and elevation profiles were retrieved from Google Earth Pro software.

occurrences of fire, topographic changes, grazing, soil depth
distribution, and soil-moisture islands [22,45–49]. It makes
sense to infer that one or more of the aforementioned het-
erogeneities control the irregularities in vegetation patterns
(see the labyrinthinelike structures in Fig. 1). In the majority
of the ecological mathematical models, these heterogeneous
effects are not included, resulting in far too ideal vege-
tation patterns, or are approached by stochastic processes
in time [46,47,49,50] or space [51]. To our knowledge,
the role of deterministic heterogeneities in forming differ-
ent labyrinthinelike vegetation patterns and controlling their
possible transitions has not been addressed. Understanding
the conditions under which heterogeneous labyrinths arise is

relevant from an ecological perspective as it sheds light on the
self-organization of vegetation in isotropic real ecosystems
(Fig. 1). Furthermore, the study of these types of vegetation
self-organization can contribute to the discussion on how het-
erogeneities in arid or semiarid systems can avoid catastrophic
shifts [27,51,52], which corresponds to abrupt transitions
between a vegetated cover and bare soil, by establishing ir-
regular vegetation mosaics.

In this article, we investigate theoretically the role of deter-
ministic heterogeneities in shaping labyrinthinelike vegetation
patterns as equilibria in arid and semiarid landscapes. For
this purpose, we use a well-established model for vegetation
biomass, where the effects of heterogeneities are modeled
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as spatial variations around a mean aridity parameter. The
heterogeneities are controlled by their intensity and degree
of correlation. Different equilibria are numerically observed
after the temporal evolution of the biomass. These vegetation
patterns are characterized by their structure factor and their
spatial Fourier transform at a global and local scale. These
tools allow us to differentiate between perfect and imper-
fect labyrinths, and disordered self-organization. We construct
a phase diagram and show that a minimum intensity level
and/or degree of correlation are needed to observe imperfect
labyrinthine patterns. This equilibrium qualitatively resem-
bles the labyrinthinelike patterns observed in nature (Fig. 1).
Finally, we discuss a possible implementation of our classifi-
cation in natural landscapes.

II. LABYRINTHINELIKE PATTERNS IN ECOSYSTEMS

It is crucial to identify whether plants have structures
resembling labyrinths to assess if they fulfill the definition
of a labyrinth proposed recently [10]. Figures 1(a i) and
1(b i) show two examples of labyrinthinelike self-organized
structures in Niger and Sudan, respectively. These vegeta-
tion images can be characterized by their Fourier spectrum
at different scales as shown in insets (ii), (iii), and (iv) of
Fig. 1. The insets (ii) exhibit the disordered feature of the
self-organization at a global scale. The Fourier transform is
nearly isotropic and highly scattered, involving several wave
vectors (powderlike ring spectrum). The insets (iii) and (iv)
of Fig. 1 show the spatial behavior at a local scale. The local
Fourier transforms do not show a dominant single wave vector
pair structure. Specifically, two diametrally opposed peaks are
not visible in the local two-dimensional Fourier transform,
and more complex structures are exhibited. As a result, neither
the landscapes of Niger nor of Sudan meet the criteria for a
perfect labyrinthine pattern [10]. We attribute the departure
from the ideal pattern to the presence of heterogeneities in
the regions shown in Fig. 1. The insets (v) in Figs. 1(a) and
1(b) display the topographic variations of the terrain in Niger
and Sudan, respectively. Indeed, the topography is a source of
spatial heterogeneity for the vegetation local self-organization
[53–55]. In the following, we suppose that these topographic
fluctuations affect the resource distribution on the Niger and
Sudan landscapes.

III. THEORETICAL MODELING APPROACH

We choose to model the emergence of vegetation patterns
from the perspective of symmetry-breaking instabilities of
homogeneous covers in arid or semiarid environments [18].
Particularly, we use an interaction-redistribution approach for
plant community behavior, where the biomass density c =
c(r, t ) at space point r = (x, y) and time t evolves following
a logistic equation that includes nonlocal interactions of the
biomass [33]:

∂t c = c(1 − c)M f (r) − μcMc(r) + DMd (r). (1)

The first term on the right-hand side (rhs) of Eq. (1) models
the rate at which biomass increases and eventually saturates.
The nonlocal function M f (r) = exp[χ f

∫
dr′φ f (r′, L f )c(r +

r′)] accounts for interactions facilitating growth, regulated by

FIG. 2. Equilibrium patterns of Eq. (2) in a square domain of
size L = 240 (arb. units) with κ = 0.6, ν = 0.011, γ = 0.5, and α =
0.125. The temporal evolutions of the spatially averaged biomass
〈b〉 are displayed for the (a) homogeneous case 
 = 0, and the
inhomogeneous cases 
 �= 0 considering both (b) noncorrelated and
(c),(d) correlated heterogeneities. The insets show the respective
equilibria. (e) Bifurcation diagram of Eq. (2). The black lines cor-
respond to the bare state and the blue curves account for the uniform
vegetated state in the homogeneous case 
 = 0. The continuous
(broken) lines indicate that these analytical solutions are stable (un-
stable). In the shaded region, limited by ηl and ηr , the labyrinthine
patterns in homogeneous conditions are stable. In this subfigure, 〈b〉
is the mean value over 30 random initial conditions around b+.

an intensity χ f . These effects are controlled by the kernel
function φ f , whose range of influence is of the order of
the plant’s aerial structure L f . The second term on the rhs
of Eq. (1) represents the biomass death processes. Mc(r) =
exp[χc

∫
dr′φc(r′, Lc)c(r + r′)] accounts for interactions en-

hancing biomass decay with an intensity χc. The parameter
μ is a measure of the mortality-to-growth rate ratio of plants
in the absence of interaction with others, which can be seen
as resource scarcity or aridity [18,56]. This negative feed-
back acts over distances of the order of the root length Lc

with an intensity χc and is controlled by the kernel function
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φc. A cooperative measure of the ecological system can be
introduced as χ f − χc. The last term in Eq. (1) incorpo-
rates seeds dispersion with a diffusion parameter D, where
Md (r) = ∫

dr′φd (r′)[c(r + r′) − c(r)], and φd (r′) accounts
for the biomass transport between positions r and r′.

The integrodifferential equation (1), close to the double
limit of nascent bistability (between uniform vegetation cover
and bare soil) and the symmetry-breaking instability of the
uniform cover, can be reduced to a partial differential equa-
tion. The reduced model reads [19,33]

∂t b = −ηb + κb2 − b3 + (ν − γ b)∇2b − αb∇4b, (2)

where b = b(r, t ) is the state variable associated to the
biomass density close to nascent bistability. The parameters
η and κ are the deviations of the aridity and cooperativ-
ity critical parameters, respectively. ν and γ are linear and
nonlinear diffusion coefficients, respectively. The last term is
a nonlinear hyperdiffusion controlled by α. The parameters
{ν, γ , α} depend on the strength of the competitive feed-
back, the seed’s diffusion, and the shape of the kernels φ f ,
φc, and φd [30]. The model equation (2) has three homoge-
neous states: the bare state b = 0 [black line in Fig. 2(d)]
and b± = (κ ±

√
κ2 − 4η)/2 [blue line in Fig. 2(d)]. The

b± equilibria are connected by a saddle-node bifurcation at
ηsn = κ2/4 with κ positive. The uniform solution b− is always
unstable. For small aridity, the vegetated state b+ is stable.
When the aridity is increased the uniform cover suffers a
spatial instability. This spatial instability with critical wave-
length λc = 2π

√
2α/(γ − ν/bc) occurs at η ≡ ηc, where ηc

satisfies the implicit condition 4αb2
c(2bc − κ ) = (γ bc − ν)2

with bc ≡ b+(ηc). Hence, the homogeneous cover b+ is unsta-
ble to patterns within the range ηc � η � ηsn [see Fig. 2(d)].
By fixing the parameters {κ, ν, γ , α} in Eq. (2), labyrinthine
patterns are stable within the aridity range [ηl , ηr] as shown in
Fig. 2(d).

To model the effect of heterogeneities in the labyrinths
of Eq. (2), in principle, we must promote all parameters
to be spatially dependent; that is, one should consider five
functions [η(r), κ (r), α(r), ν(r), γ (r)], which makes the the-
oretical and numerical studies cumbersome. To shed light on
the effect of heterogeneities in the labyrinthine patterns, we
promote the aridity parameter to be spatially dependent η(r)
and keep the other parameters homogeneous. Hence, in the
following analysis, we focus on the model equation (2) with
heterogeneous aridity η(r) = η + √


ξ (r), where η accounts
for the mean aridity. This average value is inside the aridity
range [ηl , ηr]. ξ (r) models the spatial variations with zero
mean value 〈ξ (r)〉 = 0 and intensity level 
. The hetero-
geneities ξ (r) can be spatially independent (delta correlated)
or correlated. To obtain a spatially correlated function ξ (r)
characterized by a correlation length d , we consider a relax-
ation diffusive process with a random initial condition, which
evolves until a given time [57]. Note that the results presented
below are qualitatively similar if all parameters are spatially
dependent.

IV. RESULTS

Let us introduce the spatially averaged biomass 〈b〉 ≡∫ L
0

∫ L
0 b(r, t )dx dy/L2, where L2 is the system size. The charts

in the left panel of Fig. 2 show the temporal evolution to
equilibrium for 〈b〉 according to Eq. (2) starting from the vege-
tated state b+ in the symmetry-breaking regime ηc � η � ηsn.
Figure 2(a) corresponds to the homogeneous case, 
 = 0,
exhibiting an ideal labyrinthine pattern. Figure 2(b) represents
the noncorrelated spatial variations, while Figs. 2(c) and 2(d)
show the spatially correlated cases. In these cases, the striped
structure of the labyrinthine pattern becomes locally distorted.
Figure 2(e) shows the bifurcation diagram of Eq. (2). The
labyrinthinelike patterns (dotted plots) are characterized by
their averaged biomass 〈b〉. The green dotted curve indicates
a branch of an ideal labyrinthine pattern when 
 = 0, which
is stable in the range ηl � η � ηr . By increasing the aridity
level, the labyrinth exhibits a transition to a mosaic of local-
ized spots at η > ηr . When decreasing the aridity parameter,
the labyrinthine pattern becomes clusters of hexagonal gaps
at η < ηl [31]. The blue dotted curve represents the stable
branch of a vegetation pattern when 
 �= 0 and ξ is noncorre-
lated. The red and black dotted curves are the stable branches
of labyrinthinelike patterns under correlated heterogeneous
conditions. We note that the impact of heterogeneities in the
averaged biomass is not always strong [see red and blue dots
in Fig. 2(e)]. Thus, other types of spatial tools are needed to
understand and differentiate the labyrinthinelike equilibria of
Eq. (2).

To characterize labyrinthine equilibria under homogeneous
(
 = 0) and heterogeneous (
 �= 0) conditions, we consider
first the aridity distributions depicted in Fig. 3, and next
we concentrate on the biomass densities beq(r) shown in
Fig. 4. We analyze the spatial structure of these aridities
and biomass equilibria employing the Fourier transform am-
plitude |F (k)|2 = | ∫ g(r)eik·rdx dy|2 and the structure factor
S(k) = ∫ π

−π
|F (k)|k dθ , where k = (k cos θ, k sin θ ), and g(r)

can be either beq(r) or η(r). The homogeneous and noncorre-
lated heterogeneous aridity distributions are characterized by
a delta and a noisy flat |F (k)|2, respectively [see Figs. 3(a) and
3(b)]. The spatially correlated aridities have a nontrivial S(k)
shape associated with their coherent distribution [cf. Figs. 3(c)
and 3(d)].

Let us now have a look at the biomass densities beq(r)
displayed in the top panels of Fig. 4. These equilibria are
obtained by numerical simulations of the model equation (2)
in square boxes. The spatial profiles of the aridity η(r) used
in these numerical simulations are the same as those in Fig. 3.
Under homogeneous conditions, the biomass density exhibits
a perfect labyrinthine pattern. The corresponding spectrum
and the structure factor are shown in Fig. 4(a). From this
figure, we see that the spectrum has a powdered ringlike
shape and the structure factor presents a well-defined peak
at k = kc [see Fig. 4(a)]. The finite width in the structure
factor is attributed to the defects size and local variations of
the wavevector [9]. The powdered ringlike shape indicates
no preferred direction since the system is isotropic in the
(x, y) plane. The full width at half maximum of S(k) for the
labyrinth in Fig. 4(a) is w ≈ 0.15kc. It is obtained by fitting
a Lorentzian squared curve to the structure factor [58,59].
We define wh = kc ± w/2 as the characteristic wavevector
range of the perfect labyrinthine pattern, which emerges from
a symmetry-breaking instability in Eq. (2). Figure 4(b) shows
an equilibrium in the case of 
 �= 0 and delta-correlated ξ (r).
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FIG. 3. Spatial distributions of the aridity parameters η(r) = η +√

ξ (r) with η = 0.075. In the top panels, the aridity distributions

are shown. The insets correspond to an arbitrary one-directional
cut represented by dashed pink lines. The lower panels illustrate
the spatial structure of the distributions by their Fourier transform
amplitude |F (k)|2 or structure factor S(k). Other parameters are
(a) 
 = 0; (b)

√

 = 0.2, d/L = 0; (c)

√

 = 0.2, d/L = 0.08; and

(d)
√


 = 0.5, d/L = 0.1.

In this case, the labyrinth does not exhibit long fingers as in
the homogeneous case due to the proliferation of local spots.
Indeed, the heterogeneities introduce local disturbances in the
wavevector reflected in the widening of S(k) [cf. blue curve
and inset in the bottom panel of Fig. 4(b)]. When the hetero-
geneities are sufficiently intense (

√

 = 0.2) and correlated

(d/L = 0.08), the perfect labyrinthine pattern loses its struc-
ture and blobs of vegetation or bare soil emerge [see Fig. 4(c)].
In this aridity level, the maximum of the structure factor k̂ lies
outside wh [cf. blue curve in the bottom panel of Fig. 4(c)].
We define this shift in k̂ as a transition from perfect labyrinths
(|k̂ − kc| < wh) to imperfect labyrinthine patterns (|k̂ − kc| >

wh). When further increasing the correlation and the intensity
level of the heterogeneities (

√

 = 0.5 and d/L = 0.1), the

labyrinthine pattern is almost completely lost. A few vege-
tated fingers coexist with homogeneous islands of vegetation
and bare soil [see the top panel in Fig. 4(d)]. As seen in the
bottom panel of Fig. 4(d), the peak of the structure factor
exhibits a significant shift (from k̂ = 0.9kc to k̂ = 0.55kc) to-
ward the center of the spectrum. Moreover, the global Fourier
spectrum loses its powdered ring shape [see the inset in the
bottom panel of Fig. 4(d)]. In this regime, the spatial profiles

FIG. 4. Spatial characterization of the equilibria from Eq. (2)
with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075. The
top panels in each subfigure display the steady-state vegetated covers
from the model equation (2) considering the aridity profiles η(r)
depicted in Fig. 3, respectively. The blue and yellow curves of
the bottom panels indicate the normalized structure factor S̄(k) ≡
S(k)/Sh(kc ), and S̄h(k) ≡ Sh(k)/Sh(kc ), respectively. Sh(k) is the
structure factor in the homogeneous case. The insets in the bottom
panels correspond to the Fourier transform |F (k)|2 of the solutions
from Eq. (2). The wavevector k̂ illustrates the maximum of S̄(k) when
heterogeneities are present.

of the aridity and the biomass density are strongly correlated
[see the lower panels of Fig. 3(d) and Fig. 4(d), respec-
tively]. We have termed this spatial structure as disordered
self-organization.

A phase diagram is generated using numerical simulations
of Eq. (2), as shown in Fig. 5(a). The diagram depicts the
existence and stability domains of three types of vegetation
structures: perfect and imperfect labyrinths and disordered
self-organization. We can see that perfect labyrinthine patterns
can persist for different combinations of

√

 and d/L. Given

a minimum intensity level value
√


 or degree of correlation
d/L, the perfect labyrinths bifurcate to imperfect labyrinthine
patterns. When heterogeneities are strong enough, the sys-
tem exhibits disordered self-organization. We stress that the
transition between different labyrinthinelike textures can be
triggered solely by

√

 or d/L [cf. dashed arrows in Fig. 5(a)].

For example, Fig. 5(b) show the variation of k̂/kc by fixing
d/L = 0.08 and moving

√

. The insets (i)–(iii) along the

diagram illustrate the change in S̄(k) and k̂ as the biomass
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(i)

(ii)

(iii)

FIG. 5. Phase diagram of vegetation patterns in heterogeneous
environments. (a) Phase diagram of the global spatial structure of
Eq. (2) with κ = 0.6, ν = 0.011, γ = 0.5, α = 0.125, and η = 0.075
as a function of the intensity level

√

 and the degree of corre-

lation d/L. The different phases are perfect labyrinthine patterns
(k̂ ≈ kc), imperfect labyrinthine patterns (k̂ ≈ 0.9kc), and disordered
self-organizations (k̂ ≈ 0.55kc). The dashed gray arrows illustrate
possible transition paths between the equilibria. (b) Transition trig-
gered by changing the intensity of the heterogeneities

√

 given a

correlation d/L = 0.8 in the aridity distribution. The insets (i)–(iii)
show the normalized structure factor S̄(k) and its peak position k̂.
The yellow rectangle depicts the characteristic wavevector range wh

of the labyrinth with 
 = 0.

departures from the perfect labyrinths. The transition between
imperfect labyrinths and disordered self-organization [(ii) →
(iii)] resembles the disappearance of scurfy labyrinthine pat-
terns in a variational Swift-Hohenberg model [10].

In what follows, we further numerically characterize the
labyrinthinelike equilibria using local Fourier transforms.
This statistical tool allows us to investigate the self-
organization process at small spatial scales. Ideal labyrinthine
patterns, for instance, are characterized by their local striped
behavior. This feature can be extracted through the averaged

FIG. 6. Phase diagram of the local structure of labyrinthine pat-
terns from Eq. (2) with κ = 0.6, ν = 0.0113, γ = 0.5, α = 0.125,
and η = 0.075. (a) Colormap of the local two-mode fraction φ2 for
different intensity level 
 and correlation d/L of the heterogeneities
ξ (�r). The segmented yellow lines separate the three regions of Fig. 5:
(i) perfect labyrinthine patterns, (ii) imperfect labyrinthine patterns,
and (iii) disordered self-organization. (b) Spatial division of a steady-
state vegetation pattern, with

√

 = 0.4 and d/L = 0.04 ( ), in

windows of size 2.3λc. (c) Local Fourier transform |F (k̃)|2 of each
window. The orange borders in (b) and (c) indicate that the local
pattern fulfills the criteria of being dominantly a stripe.

windowed Fourier transform [10]. The procedure consists of
dividing the labyrinthine patterns into N windows of size s,
calculating each window’s Fourier transform, and then per-
forming a projective average in Fourier space. The result
is a single wave mode (stripe) local Fourier spectrum. The
critical step is to choose the adequate size s. It has to be small
enough to lose the pattern’s isotropy and sufficiently big to
account for the labyrinth wavelength. Then, the safe choice
is s ≈ 2λc. Here, we compute the local Fourier transform
of the patterns obtained from Eq. (2) in windows of size
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TABLE I. Summary of the sensitivity analysis. The sensitivity
indices Si(φ pi

2 ) and Si(φid
2 ) are associated to the transition fractions

φ
pi
2 and φid

2 , respectively.

η κ ν γ α s th

Original value 0.085 0.6 0.01 0.5 0.125 2.3λc 0.8
Si(φ pi

2 ) 0.10 0.09 0.11 0.07 0.14 0.16 0.26
Si(φid

2 ) 0.33 0.17 0.12 <0.01 0.23 0.11 0.21

s = 2.3λc because L/s is an integer number. As a consequence
of imperfect labyrinths and disordered self-organizations, the
projective average process is not a good approach. To amend
this, we introduce the three largest values of the local Fourier
transforms F1 � F2 � F3. We define a local window to be
dominantly a stripe if F1 = F2 (dominated by two peaks, i.e.,
a stripe) and F3 � 0.8F1. The threshold (th = 0.8), which
takes into account the defects of the labyrinths, is selected to
maximize the fraction φ2 = Ns/N of the labyrinthine pattern
under homogeneous conditions. Ns is the number of windows
exhibiting stripes.

Figure 6(a) shows the fraction φ2 for different combina-
tions of the intensity level 
 and degree of correlation d/L of
the heterogeneities. Additionally, the dashed yellow lines indi-
cate the transitions related to the global spatial structure of the
biomass density (see Fig. 5). We note that the transition from
perfect labyrinths to imperfect labyrinths is marked by φ

pi
2 =

0.61 ± 0.06. As well, imperfect labyrinths become disordered
self-organizations when φid

2 = 0.30 ± 0.02. Figures 6(b) and
6(c) illustrate the local structure and the windowed Fourier
transform of an imperfect labyrinthine pattern with Ns = 6 as
depicted by the orange squares. We note that the transitions
in the (

√

, d/L) parameter space depend on the choices

of [η, κ, γ , α, ν]. Hence, we highlight that a suitable model
parametrization is needed for extending our classifications to
natural landscapes.

To test the robustness of our predictions against modeling
decisions, we have performed a sensitivity analysis by chang-
ing in ±10% the original values of the parameters chosen
to observe labyrinths in Eq. (2), the window size s, and the
threshold th. When varying the window length, we use the
same number of windows N as in the original case by over-
lapping the windows or by not considering the boundaries of
the simulation boxes. To evaluate the sensitivity, the simple
sensitivity index Si(h) = |1 − hmin/hmax| is used, where hmin

and hmax are a model output when a parameter was decreased
or increased, respectively [60]. Values closer to 1 indicate
high sensitivity, while Si(h) < 0.01 means no sensitivity to
variations. We consider the averaged fractions φ

pi
2 and φid

2 as
model outputs with sensitivity indices Si(φpi

2 ) and Si(φid
2 ),

respectively (see Table I). The transitions from perfect to
imperfect labyrinths and imperfect labyrinths to disordered
self-organizations are always observed when varying the pa-
rameters in Table I.

The sensibility analysis shows that φid
2 is sensible to the

mean aridity parameter η, which is related to the system being
near the boundaries ηl and ηr (see Fig. 2). Additionally, this
transition is highly affected by the spatial coupling parameter
α and could be related to changes in λc. Table I suggests that

both φ
pi
2 and φid

2 are sensible to the threshold th, which can be
attributed to a wrong counting of the Ns values.

V. DISCUSSION AND CONCLUSIONS

We have investigated the effect of heterogeneous condi-
tions on a pattern-forming ecological model of semiarid and
arid landscapes. We have considered a well-known model
based on the relationship between the vegetation biomass
and the facilitation-competition interactions operating within
plants. We have further simplified the analysis by focusing on
a reduced model, Eq. (2), and we have restricted our study
to a single species that accounts for most of the biomass.
Motivated by topographic variations along labyrinthinelike
self-organization in Niger and Sudan, we have modeled the
heterogeneities as a spatial-dependent aridity parameter. The
spatial fluctuations act around a mean aridity value with a
certain intensity level. These variations can be correlated with
a given correlation length.

By increasing the intensity level and the correlation
length of the aridity heterogeneities, we have shown ev-
idence of imperfect labyrinthine patterns and disordered
self-organizations. These equilibria of Eq. (2) qualitatively re-
semble the real labyrinthinelike vegetation patterns observed
in satellite images of arid and semiarid landscapes. Further-
more, we have found that perfect labyrinthine patterns are
persistent until a critical degree of heterogeneity is reached,
where they become imperfect labyrinths. Further increas-
ing the heterogeneities, the spatial structure of the imperfect
labyrinth is eventually lost to a disordered self-organization,
which is governed by the spatial distribution of the aridity.
Based on the peak’s position and width of the global structure
factor, we have characterized the transitions between equilib-
ria and built a phase diagram. A windowed Fourier transform
is used to measure the departure from perfect labyrinthine
patterns as a function of heterogeneities.

An interesting future research is the identification of
perfect labyrinths, imperfect labyrinths, and disordered self-
organizations in real ecosystems by applying the tools and
modeling introduced here. To achieve this natural classifica-
tion, on-site measurements in arid environments populated by
labyrinthinelike vegetation patterns will be needed to validate
the application of the reduced model, Eq. (2), and to verify if
the model parameters are realistic or not. It will be crucial to
determine the parameters η and α, as they significantly impact
the transitions between labyrinthinelike vegetation patterns.
For example, if the labyrinthinelike landscapes of Niger and
Sudan (Fig. 1) are well described by model equation (2) and
the parameters chosen are characteristic of these particular
places, our classification could be applied by extending the
local analysis presented here. In fact, our modeling can be
used to identify the threshold th for the Sudan and Niger
regions in Fig. 1. We hypothesize that these labyrinths are
imperfect; that is, they are sustained by a minimum level of
spatially correlated heterogeneity, and are the consequence
of a combination of a symmetry-breaking instability and
heterogeneous environmental conditions. Moreover, in situ
observations of topography and resource distribution could
reveal if a more complex way to incorporate heterogeneities
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is needed or if our straightforward approach, based on the
intensity level and degree of correlation, is sufficient and
reasonable.

Our theoretical findings can be used with other modeling
approaches to obtain more realistic labyrinthine patterns, such
as reaction-diffusion systems where water dynamics is in-
cluded explicitly [20,21]. Additionally, our classification can
also be applied in different scientific contexts where labyrinths
are experimentally observed. For example in fluid mechanics,
liquid crystals, optics, biology, and chemistry [61–65], where
the sources of heterogeneity are diverse (e.g., thermal fluc-
tuations, experimental imperfections, boundary conditions,
inhomogeneous forcing, material defects).
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7.1. Perspectives
The present chapter was devoted to analyzing the stabilization of perfect labyrinths, imper-
fect labyrinths, and disordered self-organizations in a local vegetation model (2.13) with a
spatial dependent aridity parameter. An interesting future research is the identification of
perfect labyrinths, imperfect labyrinths, and disordered self-organizations in real ecosystems
by applying the framework introduced in this study. To achieve this classification, on-site
measurements in arid environments populated by labyrinthine-like vegetation patterns will be
needed to validate the application of the reduced model Eq. (2.13) and to verify if the model
parameters are realistic or not. Moreover, in-situ observations of topography and resource
distribution could reveal if a more complex way to incorporate heterogeneities is needed or
if our straightforward approach is sufficient and reasonable.

As a final remark, we note that our theoretical findings can be applied using other modeling
approaches, such as reaction-diffusion systems, where water dynamics is included explicitly
[46, 47] as shown in Fig. 7.3.

(a) (b) (c)

Figure 7.3: Numerical integrations of Eqs. (1) and (2) from Reference [46],
considering the mortality parameter µ to be space dependent. (a) Perfect
labyrinthine pattern. (b) Imperfect labyrinthine pattern. (c) Disordered
self-organization. The field n accounts for the vegetation biomass. The
simulations are performed in squared boxes of size 400 × 400.
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Chapter 8

Localized dissipative vortices in chiral
nematic liquid crystal cells (Physical
Review Research 4, L022021)

In the previous chapter, we have studied the emergence of labyrinthinelike patterns in an
inherently inhomogeneous real system. In this and the following two chapters, we will inves-
tigate the appearance of perfect labyrinthine patterns in a controlled experiment (almost a
homogenous real system) of chiral nematic liquid crystals under geometrical frustration. A
distinctive feature of these labyrinths is that they are not consequence of a spatial symmetry-
breaking instability, which has been the rule of the labyrinthine patterns studied in this dis-
sertation so far. Interestingly, to our knowledge, they emerge through two growth modes of
cholesteric fingers of type 1 (CF1): invagination and tip-splitting [64]. In this and the next
chapter, we will focus only on the tip-splitting process.

In the context of frustrated chiral nematic liquid crystals, the developing of labyrinthine
patterns occurs near the winding/unwinding transition when a critical degree of frustration is
reached [158, 36, 72, 37] and the twisted phase of the cholesterics is recovered. Figure 8.1(a)
shows the appearance of a CF1 in an unwound background at the temperature-triggered
transition, highlighting their asymmetric tips (rounded and pointed). As time evolves (t4 >
t3 > t2 > t1), the finger grows by straightening its pointed tip while producing some side
branches, and by the ramification of their rounded tips (tip-splitting instability) [140, 158,
36, 72, 37]. Eventually, the pointed tip merges with the cholesteric interface of another
cholesteric finger, and all the rounded tips fill the sample by the splitting of their tips giving
rise to a perfect labyrinthine pattern (t4). We note that upon cooling the sample, fingers
retract, and the frustrated unwound phase is the equilibrium again. Now, let us take a closer
look at the merging process of pointed tips of CF1 by inspecting the particular case illustrated
in Fig. 8.2. The figure shows the usual invasion of the cholesteric phase by tip-splitting of
rounded tips and the straight elongation of pointed tips (see the red arrows in t1). However,
a peculiarity is that two domains, created by successive ramifications of a starting CF1, close
themselves through their pointed tips (see the pink path closing from t2 to t3) creating a
closed loop of CF1. Starting from this texture, the dynamics when decreasing temperature
is not only governed by the retraction of fingers, but also by the collapse of CF1 loops into
chiral bubbles (cf. Fig 8.3) [159, 74, 160]. These localized twisted objects allow us to control
the emergence of cholesteric labyrinthine patterns and avoid the creation of pointed tips.
Figure. 8.4 displays the creation of a labyrinthine pattern, where cholesteric fingers grow
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from chiral bubbles when the temperature is increased.

Roundedtip

Pointedtip

A
P

Figure 8.1: Sequence of temporal snapshots of the creation of a labyrinthine
pattern (t4 > t3 > t2 > t1). At t1, the appearance of a cholesteric finger
of type 1 marks the onset of the winding transition. Subsequent snapshots
illustrate the space-filling dynamics of the fingers, showing, in particular,
a merging event between a pointed tip and a cholesteric interface at t3.
The snapshots were taken at T = 51.7◦C, and the confinement ratio of the
sample is d/p = 0.7.

Figure 8.2: Sequence of temporal snapshots of the creation of a cholesteric
labyrinthine pattern (t3 > t2 > t1) showing the generation of a closed loop
of CF1. The red arrows indicate the pointed tips of fingers, and the pink
path illustrates the closing of the loop (from t2 to t3) due to two merging
events. The snapshots were taken at T = 51.3◦C, and the confinement ratio
of the sample is d/p < 26.6.

The first step of our investigation is to understand the stabilization of chiral bubbles, so
then we can study the emergence of labyrinthine patterns from the interface of the localized
objects. To achieve our goal, we have proposed a variational amplitude equation based
on symmetry arguments, multiscaling and the subcritical nature of the winding/unwinding
transition. The model equation reads
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∂tA = µA+ β|A|2A− |A|4A+ ∇2A+ δ∂ηηĀ+ χ(A∂η̄A− Ā∂ηA), (8.1)

where A is a complex parameter accounting for the rotation in the x − y plane, and the
tilt from the z axis of the nematic director n⃗. ∂η = ∂x + i∂y is a differential operator on
the complex plane, the Wirtinger derivative [161]. The bifurcation parameter µ measures
the distance from the critical transition point. The three first terms on the right-hand side
of Eq. (8.1) model a subcritical bifurcation (β > 0). This transition presents a bistability
range within which a Maxwell point exists [91, 92]. The fourth and fifth terms account for
the isotropic and anisotropic elastic coupling in the system, respectively [162]. The last term
models the mirror symmetry breaking, i.e., chirality [163].

A

P

Figure 8.3: Temporal snapshots (t6 > t5 > t4 > t3 > t2 > t1) showing the
retraction of fingers and the collapse of closed loops CF1 into chiral bubbles.
The snapshots were taken at T = 50.6◦C, and the confinement ratio of the
sample is d/p < 58.8.

A

P

Figure 8.4: Temporal snapshots (t6 > t5 > t4 > t3 > t2 > t1) showing
the emergence of cholesteric fingers from the interface of chiral bubbles.
The dynamics is characterized by the elongation and tip-splitting of the
cholesteric fingers. The snapshots were taken at T = 51.3◦C, and the
confinement ratio of the sample is d/p < 58.8.
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Figure 8.5: Temporal snapshots (t6 > t5 > t4 > t3 > t2 > t1) of a numerical
integration of Eq. 8.1 with δ = 0.1, µ = −0.4, β = 1, and χ = 2.5. The
figure shows the emergence of a labyrinthine pattern with closed loops from
an initial condition t1 consisting of various perturbations in the real part of
the complex field Re(A). The polarized field ψ is defined as Re(A)Im(A).
The green (red) shaded region corresponds to a closing event of three (two)
domains. The numerical simulation was performed in a box of size 200×200.

Numerical integrations of model (8.1) show good agreement with experiments and allow us
to discover more information about the dynamics of fingers and chiral bubbles. Figure. 8.6
describes a numerical experiment reproducing the creation of closed loops of CF1. The
dynamics, as in the experiment, is governed by the creation and elongation of fingers with
asymmetric tips, where pointed tips advance straight, producing side branches, and the
rounded tips are unstable against a tip-splitting mode. The green shaded region, from t4 to
t5 in Figure. 8.6, illustrates the closing of three domains, while the red shaded region (from
t5 to t6) shows the closing of two domains. Both events produce closed loops of CF1. Our
model also predicts the self-closing of one domain as shown in Fig. 8.6, where a pointed tip
meets a side branch created by the same finger giving rise to a closed loop. By changing the
parameters µ or χ, the closed loops collapse into localized vortices (cf. Figure. 8.7). The
radially symmetric localized solutions, i.e., A = R(r)eiθ where (r, θ) are polar coordinates,
resemble the vortices of Ginzburg-Landau type of equations, where the phase structure ϕ
(see Fig. 8.7(b)) exhibits a phase jump at the center of the vortex [164, 165]. However, in
this case, the vortex is localized and supported by the background of modulus |A|= 0.
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(a) (b)

(d)(c)

Rounded tips
Pointed tip

Figure 8.6: Temporal snapshots (t4 > t3 > t2 > t1) of a numerical integra-
tion of Eq. 8.1 with δ = 0.1, µ = −0.4, β = 1, and χ = 2.8. The figure
shows the emergence of a labyrinthine pattern with a closed loop from an
initial condition t1 consisting of a perturbation of the real part of the com-
plex field Re(A) at the center of the system. The polarized field ψ is defined
as Re(A)Im(A). The numerical simulation was performed in a box of size
1000 × 1000.

(a)

(b)

Figure 8.7: Numerical transition from a labyrinthine pattern with closed
loops to localized vortices. (a) Labyrinthine pattern at χ = 2.5. (b) Chiral
bubble sat χ = 2.2. The other parameters are δ = 0.1, µ = −0.4, and β = 1.
The numerical simulation was performed in a box of size 200 × 200.
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We note that model Eq. (8.1) has numerical chiral bubbles of different sizes as equilibria,
where the size can be quantified by the position rf of the interface between the localized
vortex and the homogeneous background (see Figs. 8.8(a) and 8.8(b)). To shed light on the
stabilization of the spherulite, we have derived a particle-type model for the core rf . In this
way, we approximate the radial profile as Ro = (3/4/(1 + e

√
3/4(r−rf )))1/2, which is solution

of µRo +R3
o −R5

o + ∂rrRo = 0 at the Maxwell point µ = µMP [94]. The solid line in Fig. 8.8
accounts for the profile Ro showing a good match with the full profile far from the center
of the vortex. We make a weakly nonlinear analysis near µMP and include the effects of
the two-dimensional terms (curvature, topology, and chirality), assuming that rf ≫

√
4/3.

Introducing the ansatz A = Rei(θ+ϕo) in Eq. (8.1) and assuming that δ → 0, we obtain for
the real part

∂tR = µR + βR3 −R5 + ∂rrR + 1
rf

∂rR − R

r2
f

+ 2χR
2

rf

, (8.2)

and the imaginary part sets the phase jump ϕo = 0. We propose the following ansatz
R = (Ro(r−rf (t))+ ϵW1(r, rf (t))+ ϵ2W2(r, rf (t))), µ = µMP + ϵ2µ1, χ = χo + ϵχ1, rf = r̃f/ϵ,
∂t = ϵ3∂T , where we have introduced the small parameter ϵ. At O(ϵ0) in Eq. (8.2), the 1D
problem µMPRo +R3

o −R5
o + ∂rrRo = 0 is recovered. At first order in ϵ we have

(µMP + 3R2
o − 5R4

o + ∂rr)W1 = ∂rRo

r̃f

+ 2χo
R2

o

rf

. (8.3)

To solve the inhomogenous equation (8.3), we introduce the inner product ⟨f |g⟩ =
∫ ∞

−∞ fgdz,
where z = r − rf . The operator L = µMP + 3R2

o − 5R4
o + ∂rr is self-adjoint (L = L†),

and Ker{L} = ∂zRo. Then, the solvability condition is ⟨∂zRo|(∂rRo + 2χoR
2
o) /r̃f⟩ = 0,

which gives χo = 0.25. This is the minimum chirality value that allows the existence of the
cholesteric bubble, which agrees with numerical observations. At O(ϵ2) we get

(µMP +3R2
o−5R4

o+∂rr)W2 = −∂zRo∂T r̃f−µ1Ro+
Ro

r̃2
f

−2χ1
R2

o

r̃f

−∂rW1

r̃f

−4χo
RoW1

r̃f

−3RoW
2
1 +10R3

oW
2
1 .

(8.4)

Following the same procedure as before, we obtain the solvability condition ⟨∂zRo|b2⟩ = 0,
with b2 the right hand side of Eq. (8.4), which gives

∂T r̃f = c1µ1 + c2
χ1

r̃f

− c3

r̃2
f

, (8.5)

where

c1 = − ⟨∂zRo|Ro⟩
⟨∂zRo|∂zRo⟩

> 0, (8.6)

c2 = −2 ⟨∂zRo|R2
o⟩

⟨∂zRo|∂zRo⟩
> 0, (8.7)

and
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c3 = −⟨∂zRo|Ro⟩ − ⟨∂zRo|∂rw1⟩ − 4χo⟨∂zRo|Row1⟩ − 3⟨∂zRo|Row
2
1⟩ + 10⟨∂zRo|R3

ow
2
1⟩

⟨∂zRo|∂zRo⟩
≈ c1 > 0.

(8.8)

(arb. units)

(arb. units)

(arb. units)

Numerical
Analytical fit

(a)

(b)

(c)

Figure 8.8: Radial profiles R(r) of different localized vortex solution of size
rf with (a) µ = −0.19 and χ = 0.3, (b) µ = −0.19 and χ = 0.28, and (c)
µ = −0.19 and χ = 0.25. In (c), the solid black line indicates the analytical
fit Ro. All the profiles correspond to numerical integrations of Eq. (8.1)
with β = 1, and δ = 0.05 in squared boxes of size 200 × 200.

In the article of this chapter, we show the potential of Eq. (8.1) in predicting transitions
and cholesteric textures observed in the winding/unwinding temperature-controlled experi-
ment. We explore the appearance and disappearance of the chiral bubble solution by using
the zero-dimensional model Eq. (8.5) and discover that a saddle-node bifurcation is respon-
sible for the stabilization of the localized solution. Additionally, we discuss the emergence of
cholesteric fingers from the interface of chiral bubbles.
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Solitary waves and solitons have played a fundamental role in understanding nonlinear phenomena and
emergent particle-type behaviors in out-of-equilibrium systems. This type of dynamic phenomenon has not only
been essential to comprehend the behavior of fundamental particles but also to establish the possibilities of novel
technologies based on optical elements. Dissipative vortices are topological particle-type solutions in vectorial
field out-of-equilibrium systems. These states can be extended or localized in space. The topological properties of
these states determine the existence, stability properties, and dynamic evolution. Under homeotropic anchoring,
chiral nematic liquid crystal cells are a natural habitat for localized vortices or spherulites. However, chiral
bubble creation and destruction mechanisms and their respective bifurcation diagrams are unknown. We propose
a minimal two-dimensional model based on experimental observations of a temperature-triggered first-order
winding/unwinding transition of a cholesteric liquid crystal cell and symmetry arguments, and investigate this
system experimentally. This model reveals the main ingredients for the emergence of chiral bubbles and their
instabilities. Experimental observations have a quite fair agreement with the theoretical results. Our findings
are a starting point to understand the existence, stability, and dynamical behaviors of dissipative particles with
topological properties.

DOI: 10.1103/PhysRevResearch.4.L022021

Dissipative particle-type solutions have been studied in
many fields of nonlinear science, ranging from biology,
chemistry, to physics (see the reviews [1–4] and references
therein). Localized structures are characterized by being sup-
ported by a spatially extended stable state. These localized
states present features of the particles. Hence, one can char-
acterize them with a family of discrete parameters such
as position, amplitude, width, and topological charge. The
localized structures generalize the concept of solitons or soli-
tary waves reported in fluid dynamics, nonlinear optics, and
Hamiltonian systems [5]. Because of the initial conditions
or inherent fluctuations, out-of-equilibrium physical systems
exhibit rich dynamics of the localized structures [1–4].
Particle-type solutions with topological charges are well
known as vortices [6]. In complex fields, vortices are point-
like singularities that locally break the rotational symmetry.
Namely, zero intensity at the singular point characterizes the
vortex with a phase spiraling around it. The number of phase
jumps determines the topological charge of the vortex [6].
The spiral rotation sense gives the sign of the charge. Vor-
tices are nucleated and annihilated by pairs between opposite
charges due to the conservation of the total topological charge.
The Ginzburg-Landau equation is a universal and minimal
model that presents vortices [6,7]. This universal model has

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

been used to describe superconductors, magnetic media, flu-
ids, superfluids, granular matter, liquid crystals, and optical
dielectrics, to mention a few [6–10].

Liquid crystals are a natural physical context where ex-
tended or localized dissipative vortices can be observed [11].
Extended vortices in nematic liquid crystals are usually
called umbilical defects. Topological localized states are
the cholesteric bubbles observed in chiral liquid crystals,
spherulites or elementary torons [12–15]. These localized
states are characterized by exhibiting localized vorticity with
a circular shape surrounded by a homogeneous state without
vorticity, when observed under crossed polarizers (see Fig. 1).
These cholesteric localized objects and textures also pos-
sess a rich three-dimensional structure [15]. The spherulites
are usually observed close to the winding/unwinding tran-
sition [12–14], which occurs when the helical structure
of a chiral nematic liquid crystal develops/frustrates un-
der homeotropic anchoring [16,17]. Topological transitions,
nontopological to topological states and vice versa, have pre-
viously been observed in liquid crystals [12,18–21]. Although
cholesteric bubbles and their transitions have been studied for
several decades, their theoretical description, interaction, cre-
ation mechanisms, and instabilities have not been completely
clarified.

This Letter aims to investigate the emergence, stabiliza-
tion, and instabilities of chiral bubbles in the context of
cholesteric liquid crystal cells subjected to thermal driving.
Experimentally, the winding/unwinding transition, triggered
by temperature, of a chiral nematic liquid crystal sample is
analyzed. We show that this transition is of the first-order type.
Different cholesteric textures are observed when changing

2643-1564/2022/4(2)/L022021(6) L022021-1 Published by the American Physical Society
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FIG. 1. Cholesteric liquid crystal cell under homeotropic an-
choring and crossed polarizers. (a) Schematic representation of the
experimental setup. TC represents the thermal chamber. O stands for
the objective of the microscope, with magnifications ranging from
20× to 50×. P and A are the polarizer and analyzer, respectively.
(b) Director representation �n of the chiral nematic liquid crystal
displaying a TIC phase. p is the cholesteric pitch. (c) The subcritical
bifurcation between the (d) unwound state and the (e) TIC phase.
The light blue shaded region stands for the bistability region. (f)
Cholesteric labyrinth. (g) Loop of CF-1. (h) Chiral bubbles. (i) Fin-
gering instability of the localized vortices.

the temperature, such as translational invariant configuration
(TIC), modulated TIC, cholesteric fingers of type 1 (CF-1),
loops of CF-1, and spherulites. Similar textures have been
reported in experiments controlled by applying a voltage to
cholesteric liquid crystal cells [12]. Based on the subcritical
nature of the observed transition and symmetry arguments, an
amplitude equation of the Ginzburg-Landau type is proposed.
This minimal two-dimensional model allows us to disclose the
phase diagram and the transitions in the system. We establish,
theoretically and numerically, the stability region of the chiral
bubbles. The combined effect of chirality, interface curvature,
and topology allows us to reveal a saddle-node mechanism
of the appearance or disappearance of the chiral bubbles. The
finger instability of the cholesteric bubbles is characterized by

a modal stability analysis. There is a fair agreement between
the experimental observations and the theoretical findings.

Experimental setup. Polarized optical microscopy with a
hot stage is a well-known experiment setup that permits the
characterization of liquid crystal textures and their transitions
(see Ref. [22] and references therein). Figure 1(a) shows a
schematic representation of this experiment. This setup is
made up of a white light source, which passes through a
polarizer P and illuminates a cholesteric liquid crystal (CLC)
sample. To control the temperature, the sample is inside a
thermal chamber (TC). The transmitted light goes into the
objective O and after that passes through another polarizer
A. A CMOS camera monitors transmitted light. We consider
CLC samples with homeotropic anchoring. The imposition
of this boundary condition frustrates the helical structure of
the CLC [cf. Fig. 1(b)]. The degree of frustration of this
mesophase is quantified by the confinement parameter d/p,
where d is the cell thickness and p is the cholesteric pitch [17].
This pitch accounts for the length of rotation of the molecules,
and it depends on temperature, and the concentration of chiral
molecules [12,22]. The liquid crystal used is a mixture of
nematic E7 (Merck) with a chiral molecule EOS-12 [23].
The molecule concentration determines the cholesteric pitch
p [11]. The pitch length is determined by the Grandjean-Cano
technique [12].

Experimental results. To carry out the study of the
winding/unwinding transition of CLC samples, we consider
two cells with different concentrations of chiral elements
since a higher chiral molecule concentration yields a higher
mixture chirality and shorter pitch. The first sample has a
dopant concentration of 3 wt % (p = 21.8 μm at T = 57 ◦C)
and its thickness is d = 9 μm. When varying the temper-
ature, the sample shows a subcritical winding/unwinding
transition at T +

c ≈ 61.3 ◦C, as depicted in Fig. 1(c). The
transmitted light intensity is used to measure the subcritical
winding/unwinding transition. The blue (red) curve stands for
the increase (decrease) of temperature at a rate of 0.5 ◦C/min.
At T < T −

c ≈ 61.1 ◦C the helical structure of this CLC un-
winds completely, and under crossed polarizers a homeotropic
texture is observed [see Fig. 1(d)], which is characterized by
no transmitted light. When the sample overcomes the critical
temperature T +

c , the uniform helical structure is recovered
and a homogeneous coloration is observed on the transmitted
light, TIC phase [cf. Fig. 1(e)]. The hysteresis loop between
the homeotropic and TIC phase renders the transition of the
first-order type. Indeed, the system exhibits a bistability region
[see the light blue shaded region in Fig. 1(c)].

The second sample of the CLC mixture contains 25 wt %
(p = 2.6 μm at T = 57 ◦C) of the chiral molecule and
thickness d = 200 μm. We observe a subcritical bifurca-
tion, however, the scenario changes radically. In this case, at
T > T +

c ≈ 51.3 ◦C the nucleation of the cholesteric fingers is
observed. Rapidly, the rounded tip of the fingers suffers a tip-
splitting instability, and the abnormal tip advance and merge
with the nearest cholesteric finger, showing similar dynamical
behaviors to those reported in Ref. [24]. This process ends in
a cholesteric labyrinthine pattern. Figure 1(f) shows a typical
observed labyrinthine pattern. The self-merging of the fingers
gives rise to CF-1 loops, analogous to those observed with
the application of an oscillatory voltage [25]. Upon decreasing
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the temperature, the CF-1 retracts and the loops survive [see
Fig. 1(g)]. Lowering further, the CF-1 loop collapses into
cholesteric bubbles [cf. Fig. 1(h)]. Here, we use the term
cholesteric bubble for the localized objects created by this
process, which correspond to the elementary torons [15]. The
transition from CF-1 loops to spherulites is irreversible [14].
When increasing the temperature, the cholesteric fingers ap-
pear at the interface of the localized vortices, as shown in
Fig. 1(i). This fingering instability has been also observed in
electrically driven experiments [26].

Theoretical description. Close to the winding/unwinding
transition and in the long-pitch limit p � l , where l is a
typical molecular length, the average molecular orientation of
the frustrated chiral nematic liquid crystal state inside a cell
of thickness d can be modeled as [27,28]

�n =

⎛
⎜⎝

cos
(

z
p + θ

)
sin

[
α sin

(
πz
d

)]
sin

(
z
p + θ

)
sin

[
α sin

(
πz
d

)]
cos

[
α sin

(
πz
d

)]

⎞
⎟⎠, (1)

where �n is the liquid crystal director, which accounts for the
orientational average of molecules in a small volume ele-
ment, α = α(x, y, t ) is the tilt angle of �n from the vertical z
axis, and θ = θ (x, y, t ) is the azimuth angle of the director,
that is, the angle between the projection of �n into the x-y
plane and the x axis. To characterize the winding/unwinding
transition, one can introduce the order parameter Q ≡
nz(nx + iny) [27]. Close to the transition, α � 1, the or-
der parameter becomes Q(x, y, z, t ) ≈ αei(θ+z/p) sin(πz/d ) =
Aeiz/p sin(πz/d ). The two-dimensional complex amplitude
A(x, y, t ) = αeiθ can be used as an order parameter to
study the winding/unwinding transition at the middle plane
of the cell [27]. This simplification assumes that 3D ef-
fects, such as confinement and surface anchoring, are
neglectable.

To shed light on the cholesteric textures that emerge in the
thermically driven winding/unwinding transition, we propose
a phenomenological amplitude equation for A. Based on the
subcritical nature of the transition [see Fig. 1(c)], symme-
try arguments, and multiscaling, the dimensionless amplitude
equation reads

∂t A = μA + β|A|2A − |A|4A + ∂η∂η̄A

+ δ∂η∂ηĀ + χ (A∂η̄A − Ā∂η̄A), (2)

where ∂η = ∂x + i∂y is a differential operator on the complex
plane, the Wirtinger derivative. The bifurcation parameter
μ ∝ T − T +

c measures the distance from the critical temper-
ature. Indeed, μ is a function of temperature, concentration,
cholesteric pitch, thickness of the cell, and elastic constants.
The three first terms on the right-hand side of Eq. (2) model
a subcritical transition (β > 0). The fourth and fifth terms
account for the isotropic and anisotropic elastic coupling in
the system, respectively [29]. The last term models the mirror
symmetry breaking, i.e., chirality [27]. The model Eq. (2)
obeys the scaling ∂t ∼ μ, ∂η ∼ μ1/2, A ∼ μ1/4, χ ∼ μ1/4,
with μ � 1 and δ ∼ O(1). The dynamics of Eq. (2) is vari-

FIG. 2. Phase diagram of model Eq. (2) with β = 1 and δ =
0.05. μlb = −1/4 and μub = 0 are the limits of the bistability re-
gion between Ao and AT . μMP = −3/16 is the Maxwell point. The
green line accounts for the spatial instability of AT . The red curve
is the saddle-node bifurcation of the localized vortices. The yellow
line with � markers stands for the transition between loops and
spherulites. The blue line with ◦ markers shows the mode-3 insta-
bility of chiral bubbles. χo = 0.26 is the minimum value for the
existence of spherulites ( ). The 
 symbol is the triple point of
the system. Regions I, II, III, IV, and V account for the stable zone
of uniform state Ao, TIC phase AT , cholesteric patterns, cholesteric
loop, and chiral bubble, respectively. Path VI represents the finger-
ing instability. ψ = Re(A)Im(A) is the polarization field. The right
panels illustrate the states in the respective regions.

ational, ∂t A = −δF[A, Ā]/δĀ, where

F =
∫∫

dxdy

{
− μ|A|2 − β

|A|4
2

+ |A|6
3

+ |∇A|2

+2δ Re
{
(∂ηĀ)2

} − χ |A|2(∂η̄A + ∂ηĀ)

}
(3)

is a Lyapunov functional. Hence, the dynamics of the ampli-
tude Eq. (2) is driven by the minimization of F . A similar
amplitude equation to model (2), but supercritical and with
terms of different order in the scaling has been used to study
the unwinding transition [27].

For μ < μub ≡ 0, the unwound state A = Ao ≡ 0 of Eq. (2)
is stable (see region I in Fig. 2). When μ � μub the zero state
is unstable by a subcritical instability and the TIC state AT =
(1/2 + √

1/4 + μ)1/2eiθo is stable (see region II in Fig. 2),
with θo an arbitrary phase. Indeed, the model Eq. (2) presents
a bistability region between A = 0 and AT in μlb � μ �
μub for small chirality. Within this zone there is a Maxwell
point μMP, where F[AT ] = F[Ao] [30]. The AT solution has
a spatial instability that gives rise to striped pattern, which
is associated with the modulated TIC phase [12]. A linear
stability analysis around AT delivers the critical wave vector

|�kc| =
√

[ f (μ) + δg(μ) + 2χ2A2
T ]/(1 − δ2), where f (μ) =

μ + 2βA2
T − 3A4

T and g(μ) = βA2
T − 2A4

T . The spatial in-
stability curve is obtained by restricting |�kc| to be a real
quantity (cf. green line in Fig. 2). The critical wavelength is
λc = 2π/|�kc|, which is proportional to the pitch p [12]. For
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FIG. 3. Transition from CF-1 loops to chiral bubbles. (a) Ex-
perimental bifurcation triggered by decrease the temperature in the
sample with 25 wt % of chiral dopant. (b) Numerical transition in
model Eq. (2) with β = 1, and δ = 0.05, when parameters change
from region IV to V in the phase diagram of Fig. 2. ψ = Re(A)Im(A)
is the polarization field. φ is the phase field. The middle panels are
transient states.

high chirality (χ > 1.5), the parameter χ is approximated
by χ ≈ (2π/

√
2AT )/p. Hence, χ is interpreted as a quali-

tative measure of the confinement, and have a temperature
dependence through p. Experimentally, a similar bifurcation
diagram has been obtained by varying the applied voltage and
the confinement parameter (chirality) [26].

Chiral bubble solutions and instabilities. The model Eq. (2)
exhibits localized finger states with different tips. When
changing parameters, the pointed tips can merge, and the
rounded tips exhibit the tip-splitting instability, which is
characterized by a flowerlike type of growth [12]. The final
equilibrium structure is a labyrinthine pattern with embedded
loops (see panel III of Fig. 2 and Video 1 in the Supplemental
Material [31]). Entering in the zone IV, the fingers withdraw
and only loops survive. Starting from region IV and going into
region V, the loop collapses into an axisymmetric localized
vortex solution A(r, θ ) = R(r)eiφ(θ ), where R and φ are the
modulus and phase, and {r, θ} are the polar coordinates. Fig-
ure 3 shows this transition experimentally and numerically.
Besides the change in size, the phase field transforms from
a nontrivial phase structure into the typical phase jump of a
singular point or vortex (spherulites) [19]. This transition has
been studied experimentally and numerically from a three-
dimensional configuration [32].

In the experiment, when decreasing temperature, the
spherulites shrink as depicted in Fig. 4(a). Suddenly, the
localized vortex is lost. This out-of-the-blue disappearance
is characteristic of a saddle-node bifurcation and is referred
to as ruin [33]. An analogous transition is observed numer-
ically between regions V and I of Fig. 2. This transition
should be accompanied by the divergence of the spherulite
residence time τr , which is the elapsed time by the vortex
before its disappearance, near the saddle-node bifurcation. To
shed light on this mechanism, we measure from model Eq. (2)
the accumulated area Aac(χ ) = ∫ τr

to

∫ ∞
0 R(r, t )2drdt , which is

FIG. 4. Disappearance of chiral bubbles. (a) Experimental obser-
vation of the spherulite loss in the sample with 25 wt % of chiral
dopant. The black dots correspond to the maximum intensity peak
of the localized structure when the temperature is decreased from
56.3 ◦C (i) until the disappearance at Td ≈ 55.3 ◦C. The blue curve
is the fit 128(T − Td )0.08. The insets shows the spherulite changes
under circular polarization. (b) Divergence of Aac at χc = 0.989,
in Eq. (2) with μ = −0.45, β = 1, δ = 0.05, and to = 0. The fit is
Aac = 0.024(χc − χ )−1/2, where χc = 0.9895.

proportional to τr near the bifurcation [34]. The lower limit
to is an arbitrary reference time. Figure 4(b) summarizes the
result. When varying χ , a power law Aac ∝ (χc − χ )−1/2 is
obtained, rendering the transition of the saddle-node type [33].

In region V of Fig. 2, cholesteric bubbles of different sizes
are stable. The main feature of the transition between bubbles
is the interface dynamics, with a core r f , which connects
R = 0 and R ≈ |AT | [see Fig. 5(a)]. For large bubbles size,
the radial profile of the interface is approximated by Ro =
[3/4(1 + e

√
3/4(r−r f ) )]1/2 at the Maxwell point [35]. Introduc-

ing the ansatz A(r, θ, t ) = Ro[r − r f (t )]eiθ + w, where w is a
small correction function, into Eq. (2) with β = 1 and δ � 1,
linearizing in w and applying a solvability condition after
straightforward calculation, we get

ṙ f = c1�μ + c2χ − co

r f
− c1

r2
f

, (4)

FIG. 5. (a) Chiral bubble observed in model Eq. (2) with μo =
−0.21, χ = 0.4, δ = 0.05, and β = 1. The radial profile |A| = R(r)
is characterized by the core r f of the interface. (b) Phase portrait
of Eq. (4). The yellow curve accounts for the case χ = 0. The blue
curve shows the force ṙ f when χ > χo. The open dots represent
unstable solutions. The solid black dot is a stable equilibrium (req).
μsn is the saddle-node critical parameter. μMP is the Maxwell point.
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where co = ∫ ∞
−∞(∂zRo)2dz, c1 = − ∫ ∞

−∞ ∂zRoRodz, c2 =
−2

∫ ∞
−∞ ∂zRoR2

odz, z = r − r f , �μ = μ − μMP, and ṙ f =
co∂t r f .

The kinematic Eq. (4) combines energy difference, chiral-
ity, curvature, and topology effects, respectively. Figure 5(b)
illustrates the kinematic Eq. (4). There are two cases: zero chi-
rality χ = 0 (yellow curve) in which the system only has one
unstable state, and χ > χo = co/c2 (blue curve), where the
systems exhibit two localized topological states, one unstable
and another stable (r f = req). Hence, chiral bubbles are a con-
sequence of the presence of the chirality. Likewise, we note
that the previous method is only applicable for positive topo-
logical charges since the negative one requires considering the
transversal dynamics of the interface. The disappearance of
the chiral bubble (μ = μsn) is mediated by the collision of
two equilibria, which indicates a saddle-node bifurcation. The
critical curve of this bifurcation is χ = χo + 2c1|�μ|1/2 (red
line in Fig. 2). Note that at μ = μMP and χ = χo, the chiral
bubble is unstable due to the divergence of its size.

In model Eq. (2), the chiral bubble suffers a fingering
instability (cf. path VI in the phase diagram of Fig. 2).
A numerical linear analysis can be performed to inves-
tigate this transition. Introducing the ansatz A = [Ro +
R̃(r) cos(mθ )eλmt ]ei[θ+φ̃(r) sin(mθ )eλmt ] in Eq. (2), where R̃(r) and
φ̃(r) are small perturbations, the modes m = 1, 2, and 3 are
unstable, where λ3 > λ2 > λ1 > 0. Modes with m > 3 cannot
be treated with the perturbational ansatz given above, due
to the appearance of new phase jumps in the complex field.
Experimentally, we have not observed these higher modes.
The blue line shown in Fig. 2 is the mode-3 instability. This
curve allows us to envisage a triple point between a patterned
state and two uniform phases (see the triangle in Fig. 2) [36].

In conclusion, the minimal model Eq. (2) allows us to
reveal analytically the instabilities of chiral bubbles, namely,
saddle-node bifurcation and interfacial instability. Both
behaviors are mainly controlled by the chirality χ of the
system, which is the manifestation of the inherent twist of
the chiral liquid crystal in the middle plane of the cell. Also,
the model reproduces other types of cholesteric textures,
such as the TIC phase, cholesteric labyrinth, and CF-1 loop.
The instabilities and textures have been experimentally
observed using polarized optical microscopy. Indeed, there
is agreement between the experimental observations and the
2D minimal model Eq. (2). Three-dimensional effects were
neglected in this work and could be necessary to describe in
more depth the transition from CF-1 loop to the cholesteric
bubble. However, the detailed analysis of this transition
was out of the scope of this study. Comparisons between
the theoretical 2D model and the 3D results in Ref. [32]
are in progress. In addition, with our modeling approach, it
is possible to visualize and understand other behaviors of
cholesteric liquid crystals. For example, nematic umbilical
defects undergo structural transitions due to chirality [37], the
chiral bubble interaction, and topological labyrinthine pattern
propagation. Work is in progress in these directions.

We acknowledge P. I. Hidalgo and J. Vegara for the syn-
thetization of the cholesteric liquid crystal. The authors thank
for the financial support of ANID-Millenium Science Initia-
tive Program–ICN17_012 (MIRO) and FONDECYT Project
No. 1210353. G.G.-C. acknowledges the financial support
from ANID-PFCHA Doctorado Nacional Grant No. 2017-
21171672. S.E.-A. acknowledges the financial support from
ANID by Beca Doctorado Nacional 2020-21201376.

[1] N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From
Optics to Biology and Medicine (Springer, Heidelberg, 2008),
Vol. 751.

[2] H.-G. Purwins, H. U. Bödeker, and S. Amiranashvili, Dissipa-
tive solitons, Adv. Phys. 59, 485 (2010).

[3] O. Descalzi, M. Clerc, S. Residori, and G. Assanto, Localized
States in Physics: Solitons and Patterns (Springer, Berlin, 2011).

[4] M. Tlidi, K. Staliunas, K. Panajotov, A. G. Vladimirov, and M.
G. Clerc, Localized structures in dissipative media: from optics
to plant ecology, Phil. Trans. R. Soc. A 372, 20140101 (2014).

[5] A. C. Newell, Solitons in Mathematics and Physics (Society for
Industrial and Applied Mathematics, Philadelphia, 1985).

[6] L. M. Pismen, Vortices in Nonlinear Fields: From Liquid Crys-
tals to Superfluids, from Non-equilibrium Patterns to Cosmic
Strings (Oxford Science, New York, 1999).

[7] I. S. Aranson and L. Kramer, The world of the com-
plex Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99
(2002).

[8] E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-
Landau Model (Springer, Boston, 2008).

[9] F. Bethuel, H. Brezis, F. Hélein et al., Ginzburg-Landau Vortices
(Springer, New York, 1994).

[10] M. C. Cross and P. C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[11] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Clarendon Press, Oxford, UK, 1993).

[12] P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid
Crystals (CRC Press, London, 2005).

[13] N. Nawa and K. Nakamura, Observation of forming process of
bubble domain texture in liquid crystals, Jpn. J. Appl. Phys. 17,
219 (1978).

[14] S. Pirkl, P. Ribiere, and P. Oswald, Forming process and sta-
bility of bubble domains in dielectrically positive cholesteric
liquid crystals, Liq. Cryst. 13, 413 (1993).

[15] P. J. Ackerman and I. I. Smalyukh, Diversity of Knot Solitons in
Liquid Crystals Manifested by Linking of Preimages in Torons
and Hopfions, Phys. Rev. X 7, 011006 (2017).

[16] F. Lequeux, P. Oswald, and J. Bechhoefer, Influence of
anisotropic elasticity on pattern formation in a cholesteric liquid
crystal contained between two plates, Phys. Rev. A 40, 3974
(1989).

[17] P. Ribiere, S. Pirkl, and P. Oswald, Electric-field-induced phase
transitions in frustrated cholesteric liquid crystals of negative
dielectric anisotropy, Phys. Rev. A 44, 8198 (1991).

[18] I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D.
Lavrentovich, H. Huang, E. C. Gartland, Jr., V. H. Bodnar,
T. Kosa, and B. Taheri, Electric-field-induced nematic-
cholesteric transition and three-dimensional director struc-

L022021-5



M. G. CLERC et al. PHYSICAL REVIEW RESEARCH 4, L022021 (2022)

tures in homeotropic cells, Phys. Rev. E 72, 061707
(2005).

[19] R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, and E.
Vidal-Henriquez, Optical vortex induction via light–matter in-
teraction in liquid-crystal media, Adv. Opt. Photonics 7, 635
(2015).

[20] M. G. Clerc, M. Kowalczyk, and V. Zambra, Topological tran-
sitions in an oscillatory driven liquid crystal cell, Sci. Rep. 10,
19324 (2020).

[21] G. Durey, H. R. O. Sohn, P. J. Ackerman, E. Brasselet, I. I.
Smalyukh, and T. Lopez-Leon, Topological solitons, cholesteric
fingers and singular defect lines in Janus liquid crystal shells,
Soft Matter 16, 2669 (2020).

[22] I. Dierking, Textures of Liquid Crystals (Wiley, Hoboken, NJ,
2003).

[23] M. L. Parra, P. I. Hidalgo, and E. Y. Elgueta, Synthesis and
mesomorphic properties of oxadiazole esters derived from
(R)-2-octanol, (S)-2-n-octyloxypropanol and (2S, 3S)-2-chloro-
3-methylpentanol, Liq. Cryst. 35, 823 (2008).

[24] P. Ribiere and P. Oswald, Nucleation and growth of cholesteric
fingers under electric field, J. Phys. (Paris) 51, 1703 (1990).

[25] J. Baudry, S. Pirkl, and P. Oswald, Looped finger transformation
in frustrated cholesteric liquid crystals, Phys. Rev. E 59, 5562
(1999).

[26] S. Thiberge, Structures cholestériques et dynamique hors équili-
bre, Ph.D. thesis, Université de Nice–Sophia Antipolis, 1999.

[27] T. Frisch, L. Gil, and J. M. Gilli, Two-dimensional Landau–
de Gennes dynamical model for the unwinding transition
of a cholesteric liquid crystal, Phys. Rev. E 48, R4199
(1993).

[28] P. Oswald, J. Baudry, and S. Pirkl, Static and dynamic proper-
ties of cholesteric fingers in electric field, Phys. Rep. 337, 67
(2000).

[29] T. Frisch, S. Rica, P. Coullet, and J. M. Gilli, Spiral Waves in
Liquid Crystal, Phys. Rev. Lett. 72, 1471 (1994).

[30] R. E. Goldstein, G. H. Gunaratne, L. Gil, and P. Coullet, Hy-
drodynamic and interfacial patterns with broken space-time
symmetry, Phys. Rev. A 43, 6700 (1991).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.L022021 for a video showing the
experimental and numerical emergence of labyrinthine patterns
from cholesteric fingers.

[32] J.-S. B. Tai, P. J. Ackerman, and I. I. Smalyukh, Topological
transformations of Hopf solitons in chiral ferromagnets and
liquid crystals, Proc. Natl. Acad. Sci. USA 115, 921 (2018).

[33] S. H. Strogatz, Nonlinear Dynamics and Chaos with Student
Solutions Manual: With Applications to Physics, Biology, Chem-
istry, and Engineering (CRC Press, New York, 2018).

[34] F. del Campo, F. Haudin, R. G. Rojas, U. Bortolozzo, M. G.
Clerc, and S. Residori, Effects of translational coupling on
dissipative localized states, Phys. Rev. E 86, 036201 (2012).

[35] M. G. Clerc and C. Falcón, Localized patterns and holesolutions
one-dimensional extended systems, Physica A 356, 48 (2005).

[36] R. M. Hornreich, M. Luban, and S. Shtrikman, Critical Behav-
ior at the Onset of �k-Space Instability on the λ Line, Phys. Rev.
Lett. 35, 1678 (1975).

[37] J. M. Gilli and L. Gil, Static and dynamic textures obtained
under an electric field in the neighbourhood of the winding
transition of a strongly confined cholesteric, Liq. Cryst. 17, 1
(1994).

L022021-6



8.1. Perspectives
In this chapter, we have proposed a variational amplitude equation to understand exper-
imental observations of a frustrated chiral nematic liquid crystal. In particular, we have
focused on the stabilization of localized vortices. We have shown that chirality and topology,
expressed as curvature corrections in the weakly curved front dynamics of chiral bubbles, are
the main ones responsible for the appearance and disappearance of the localized objects. Fig-
ure 8.9 shows the µ−χ phase diagram, where the solid red line is the analytical saddle-node
curve obtained in the article of this chapter. Although the agreement between numerical
integrations (blue dots) of Eq. (8.1) and theory is good, for sufficiently big χ values, the
approximation stops being correct. Obviously, our theoretical interpretation remains valid
only near the critical point (µMP , χo); however, an interesting future direction is to include
the anisotropic coupling δ and study if its effect amends the prediction of the saddle-node
bifurcation for high χ values.

Numerical
Analytical

MPlb

Figure 8.9: Phase diagram of Eq. (8.1) with β = 1 and δ = 0.05. µlb is
the lower boundary of the bistability range, µMP is the Maxwell point, and
χ̄ = 2χ. The red line (blue dots) indicates the analytical (numerical) saddle-
node curve for the localized vortices. The shaded gray region is associated
with the homogeneous zero solution, the green shaded region is part of the
bistability region between the uniform solutions, and the sky blue shaded
region is the zone of stability of modulated solutions such as chiral bubbles,
closed loops, fingers, and labyrinths.
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Chapter 9

Emergence of disordered branching
patterns in confined chiral nematic
liquid crystals (Proceedings of the
National Academy of Sciences 120,
e2221000120)

In the previous chapter, besides revealing the stabilization mechanisms of localized vortices
in a model of chiral nematic liquid crystals, we have also learned the predicting ability of
the Equation (8.1). In particular, we discussed the emergence of labyrinthine patterns as an
interfacial instability of chiral bubbles, where fingers are produced, and their rounded tips
exhibit a cascade of tip-splitting events (cf. Fig. 9.1).

In the present chapter, we focus on how the tip-slipping instability develops at cholesteric
interfaces and which are the interaction rules that ultimately give rise to the large-scale
cholesteric labyrinthine pattern. Using the minimal model (8.1), which is now derived from
first principles, we demonstrate the role of chirality in the tip-splitting mechanism and the
emergence of the disordered branching pattern with a velocity-curvature equation for the
cholesteric interface. We show that during the growth of the chiral fingers, there is a selec-
tion principle in the morphology and speed of the rounded tip (see Fig. 9.2). Furthermore,
from these analyses, we deduce a small number of crucial interactions that regulate the
growth process and show that the topological features of the labyrinthine pattern emerge
from stochastic branching and termination events.
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Figure 9.1: Emergence of labyrinthine patterns as a consequence of the
instability of chiral bubbles and rounded tips. The left (right) panel shows
the experimental (numerical) temporal evolution (a)-(d) of the instability.
In the experimental case, the chiral nematic liquid crystal is at T = 51.3◦C,
and the confinement ratio of the sample is d/p < 58.8. The numerical
integration in the right panel was performed with µ = −0.4, χ = 2.5,
δ = 0.1, and β = 1 in a squared box of size 200 × 200.

(a)
(b) (c)

Figure 9.2: Morphology of the rounded tips in model Eq. (8.1). (a) Modulus
|A| of a propagating finger with. (b) Normalized curvature distribution w|κ|
along the interface of the finger. (c) Anatomy of the rounded tip showing
the finger width w, and the size of the tip wtip defined as the diameter of the
biggest circle (yellow line) that fit in the finger solution. We track the center
to estimate the velocity of the finger. When |κ|= 0 at the furthest point
of the rounded tip (green dot), the tip-splitting takes place. The numerical
integration was performed with µ = −0.4, χ = 2, δ = 0.0, and β = 1 in a
squared box of size 200 × 200.
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Spatial branching processes are ubiquitous in nature, yet the mechanisms that drive
their growth may vary significantly from one system to another. In soft matter physics,
chiral nematic liquid crystals provide a controlled setting to study the emergence
and growth dynamic of disordered branching patterns. Via an appropriate forcing, a
cholesteric phase may nucleate in a chiral nematic liquid crystal, which self-organizes
into an extended branching pattern. It is known that branching events take place
when the rounded tips of cholesteric fingers swell, become unstable, and split into two
new cholesteric tips. The origin of this interfacial instability and the mechanisms that
drive the large-scale spatial organization of these cholesteric patterns remain unclear.
In this work, we investigate experimentally the spatial and temporal organization of
thermally driven branching patterns in chiral nematic liquid crystal cells. We describe
the observations through a mean-field model and find that chirality is responsible
for the creation of fingers, regulates their interactions, and controls the tip-splitting
process. Furthermore, we show that the complex dynamics of the cholesteric pattern
behaves as a probabilistic process of branching and inhibition of chiral tips that drives
the large-scale topological organization. Our theoretical findings are in good agreement
with the experimental observations.

liquid crystals | chirality | interface dynamics | branching process

Branching processes are responsible for the formation of a vast number of ramified
structures observed in geology, chemistry, biology, and physics (1). In soft matter physics,
fingering instability, whereby a flat interface becomes unstable, giving rise to tip splitting,
is a well-known mechanism of spatial branching (2–4). Several macroscopic models have
been formulated to describe the context-dependent mechanisms of branching (1, 5–7).
However, it remains a challenging task to identify the key ingredients that lead to the
large-scale branching self-organized patterns in each case.

The rich phenomenology of chiral nematic liquid crystals (CNLCs) renders them an
ideal system to study pattern formation and branching (8–11). CNLCs can be created
by doping a nematic liquid crystal, characterized by a long-range orientational order, but
not a positional one, with chiral molecules (12–14). The addition of chiral dopants can
induce a spontaneous twist deformation in the nematic phase, creating a helical structure
(12, 13, 15). The main feature of this phase is the characteristic length of the helix,
known as cholesteric pitch p, which corresponds to the distance required for one full
rotation of the nematic director vector En(Er), where Er = (x, y, z) is a position vector. The
pitch is the mesoscopic manifestation of the molecular chirality (16), while the director
vector field accounts for the local average orientation of liquid crystal molecules (17, 18).
When subjected to homeotropic anchoring in a cell of thickness d , the helical phase gets
frustrated, so that given a critical degree of frustration, which is measured in terms of the
ratio d/p, the system transitions to an unwound (nematic) metastable state. This state
is purely geometric and is sustained by the competition between the pitch, geometric
effects introduced by the cell thickness, and elasticity (13, 19, 20). The twisted or winded
structure can be recovered by applying a voltage, a temperature difference, or changing
the thickness to the cell in the unwound state (13). In general, the reappearance of the
twisted phase is in the form of a translationally invariant configuration (TIC) or in the
form of cholesteric fingers of type 1 (CF1). The TIC phase is characterized by a twist along
the cell thickness En(z) (SI Appendix, Fig. S1) and the CF1 by a director field of the general
form En(x, y, z) (Fig. 1 A–C and SI Appendix, Fig. S1). In directional growth experiments
with voltage, other types of cholesteric fingers (CF2, CF3, and CF4) have been observed
(21). The recovery of the twisted structure can be described by the minimization of the
Frank–Oseen free energy with an additional chiral term (SI Appendix) (12). This type of
noncentrosymmetric interaction is also modeled in chiral magnets and in particle physics
(22, 23).
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Fig. 1. Emergence of branching patterns in cholesteric liquid crystal cells. (A–D) and (J–M) display the schematic representation of the director field of the CNLCin the midplane of the cell z = d/2. The angles � and � correspond to the tilt angle of En from the z-axis and the angle between the x-axis and the projection of Enin the plane of the cell, respectively. (A) shows the CF1 director field on the plane, characterized by a good twist across its (B) body and (C) rounded tip and alocalized bad twist at its (D) pointed tip. (E) Schematic representation of the experimental setup. (F ), Steady-state cholesteric branching pattern reached afterthe tip-splitting dynamics. Evolution of branching patterns through the fingering instability of a cholesteric interface starting at t1 = 0.00 s, which is triggeredat (G), cholesteric fingers (t2 = 5.27 s; t3 = 5.83 s, t4 = 6.63 s) of type I, (H) chiral bubbles (t2 = 2.62 s; t3 = 3.20 s, t4 = 3.41 s), and (I), glass beads (t2 = 0.88 s;t3 = 1.28 s, t4 = 1.63 s). The initial conditions from where the cholesteric interfaces were created are (G) impurities in the nematic phase, (H) closed loop of CF1,and (I) glass bead. The branching patterns (t4) are observed at (G), 51.7 ◦C, (H) 51.3 ◦C, and (I) 51.7 ◦C. The green (purple) arrows in (G) illustrate the elongationof the rounded (pointed) tips of CF1. (J) depicts the director field of a chiral bubble on the plane, exhibiting a radial (K ) �-twist from its center to the interface(skyrmion-like). (L–M) show a schematic representation of the director field build-up around a glass bead on the plane.

The winding/unwinding transition of chiral nematic liquid
crystals has been widely studied from experimental and theoreti-
cal perspectives (10, 24–29). Near this transition, the distinctive
CF1 appear (Fig. 1 A–I ) (30). These elongated chiral textures
nucleate from the unwound background and may elongate in
arbitrary orientations from both ends. (Fig. 1A and SI Appendix,
Fig. S1 for the schematic director fields in the midplane of the
cell and in a cross-section along d , respectively.) The CF1 are
dissipative soliton-like structures with a well-defined width that
is regulated by an in-plane good twist of the nematic director
(Fig. 1B) (25, 31). The elongation of fingers introduces the
good twist in the frustrated sample. Fingers are asymmetric
and exhibit two different tips, a rounded and a pointy one.
The difference in morphology is associated with the handedness
of the nematic director near the tips: The good twist gives
rise to rounded tips (Fig. 1C ), while the bad twist produces
pointy ones (Fig. 1D) (25). In these frustrated CNLCs, above
a critical forcing—of temperature, voltage, or confinement—
fingers invade all the system through a branching dynamic. Pointy
tips propagate in a straight line, nucleating rounded tips through
a side-branching mechanism, and rounded tips become unstable,
undergoing tip splitting as they propagate (11, 25, 32). Pointy
tips, unlike rounded tips, are not generated during branching

events and quickly reconnect with the cholesteric pattern or
merge with impurities in the system (25). A combination of
side branching and reconnection of pointy tips gives rise to
closed loops of CF1. Closed loops can transform into localized
twisted objects (29, 33, 34). These localized structures have
been termed elementary torons, in particular, triple-twist toron-1
(35, 36). They exhibit a skyrmion-like structure in the midplane
director field (36, 37) (cf. Fig. 1 J and K ). Here, we refer
to these elementary torons as chiral bubbles, which have also
been termed spherulites (13). While more complex cholesteric
textures can arise to alleviate frustration (34–36, 38), in our
study, we focus only on CF1 and in the interface of chiral bubbles.
Similar to glass beads, chiral bubbles can act as nucleation sites
for CF1 avoiding the creation of pointy tips (29, 31), which
are energetically unfavorable. Hence, the long-term dynamic of
growth is governed by the continuous elongation and splitting of
rounded tips, resulting in a disordered branching cover. Despite
all the work conducted in frustrated CNLCs, the mechanisms
that drive the tip splitting of rounded tips of CF1 and the
self-organization of disordered ramified patterns have not yet
been studied in detail. In this work, we study how the tip-
slipping instability develops at cholesteric interfaces and which
are the interaction rules that ultimately give rise to the large-scale
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cholesteric branching pattern. For this, we focus on temperature-
tuned chiral nematic liquid crystal experiments that allow us
to control the transition toward branching and the formation
of ramified patterns by heating the system. Using an adequate
order parameter and its minimal model, which is derived from
first principles, we demonstrate the role of chirality in the
tip-splitting mechanism and the emergence of the disordered
branching pattern with a velocity–curvature equation for the
cholesteric interface. We show that during the growth of the
chiral fingers, there is a selection principle in the morphology
and speed of the rounded tip, which depends on the forcing of
the system. From these analyses, we deduce a small number of
crucial interactions that regulate the growth process and show
that the topological features of the large-scale pattern emerge
from stochastic branching and termination events.

Results
Emergence of Disordered Branching Patterns. To explore the
growth of cholesteric branching patterns experimentally (Fig. 1
and SI Appendix, Movie S1), we consider two chiral–nematic
liquid crystal cells, composed of mixtures of a commercial
nematic liquid crystal E7 (Merck) and chiral molecules EOS12
(39), under thermal forcing. The cholesteric pitch p in each
sample depends on the EOS12 concentration and on the tem-
perature within the cell (14). The samples were introduced into
a thermal chamber and then placed between crossed polarizers
(Fig. 1E). In this setup, dark regions correspond to the unwound
phase, while birefringent regions (shades of blue) correspond
to the cholesteric phase (Fig. 1F ). To trigger the emergence
of the cholesteric phase, we initialize the experiments at room
temperature (20 ◦C), where the CNLC is in the unwinding
state, and increase the temperature at a rate of 0.35 ◦C min−1

until reaching a winding phase. Fig. 1F (cell #1; T = 51.3 ◦C,
p = 3.4 μm, d/p<58.8; Materials and Methods for details) shows a
steady-state of the system, which corresponds to a disordered self-
organized labyrinthine pattern (40). This pattern develops mainly
from the elongation and splitting of rounded tips that leads
to a ramified texture, constituted locally by various connected
CF1 pointing in arbitrary directions. The cholesteric fingers may
be initially nucleated from impurities in the unwound phase
as shown in Fig. 1G (cell #2; T = 51.7 ◦C, p = 12.9 μm,
d/p=0.7) or at the cholesteric interface of a chiral bubble, which
is created by cooling a closed loop of CF1 (29) (see cell #1
in Fig. 1H ), or at the interface of glass beads, as depicted in
Fig. 1I (cell #2), where molecular deformations are enhanced
(31, 41). Under the experimental conditions considered here, the
winding/unwinding transition is characterized by the emergence
of CF1 (Fig. 1), instead of the TIC phase, when d/p ≈0.7 and
the transition temperature (Tc) is around 50 ◦C. In previous
experiments, the TIC phase emerged subcritically in a mixture
of E7 with EOS12 at 3 wt% with d/p = 0.4 and Tc ≈61.3 ◦C
(29). The texture selection and type of transition are governed by
the elastic constants of the CNLC mixture E7-EOS12 and the
confinement ratio in the cell (SI Appendix) (13). In consequence,
in the current experimental setup, CF1 are more stable than the
TIC phase.

In cells #1 and #2, the system generally avoids the creation of
pointy tips by nucleating rounded tips of CF1 from chiral bubbles
or glass beads instead. Therefore, the merging process of pointy
tips described in the Introduction section can be neglected. We
illustrate schematically the in-plane director field of the chiral
bubble (Fig. 1 J–K ) and around the glass bead (Fig. 1 L–M )
to highlight the similarity between both interfaces and rounded
tips (Fig. 1A). In the following, we focus our attention on the

growth of fingers and their rounded tips, which can destabilize
and undergo branching.

Before introducing a model to describe the rounded tip
dynamic and the subsequent patterning process, we explored
whether further qualitative insight into the growth process could
be extracted from the spatial organization of the labyrinthine
pattern (cell #2 in Fig. 2A). Analysis of the power spectrum of
the spatial patterns (Fig. 2B) revealed a characteristic wavelength
of λc = 14.9 μm and powder-like ring spectrum with local
order, proper of labyrinthine patterns (Fig. 2 B, Inset) (40).
Furthermore, the distribution of segment lengths (defined as
the distance between two branching points along the cholesteric
phase) was well fitted by a gamma distribution (data in Fig. 2C ),
whose exponential tail suggests that the timing between consec-
utive branching events is uncorrelated (7). The typical segment
length (observed as a kink for short fingers) indicates a short-term
memory or maturation process between consecutive branching
events of a tip. From the temporal evolution of the branching
pattern, we noted that branching events could be inhibited by the
neighboring pattern (green arrowheads in Fig. 2D), with some
newly formed tips receding in favor of the growth of other, more
developed tips (white arrowheads in Fig. 2D). These interactions
lead to remodeling of the patterns, further contributing to the
disordered self-organization of the patterns.

Altogether, these observations suggest that the dynamic of
growth, branching, and inhibition of rounded tips controls
the self-organization of the chiral labyrinthine patterns. To
understand how these mechanisms arise in the context of CNLCs,
in the following, we introduce a Ginzburg–Landau-type model
that allows us to relate the interaction mechanisms to the chiral
nature of the liquid crystal.

The Chiral–Anisotropic Ginzburg–Landau (CAGL) Model. Close
to the winding/unwinding transition and in the long-pitch limit
of the chiral nematic liquid crystal, the following model can be
derived (SI Appendix for details)

∂tA = µA + β|A|2A− |A|4A + ∂η∂η̄A

+ δ∂η∂ηĀ + iχ
(
A∂η̄A+Ā∂ηA

)
, [1]

where A(x, y, t) = αeiθ is the complex order parameter close to
the transition (26), ∂η = ∂x + i∂y is the Wirtinger derivative,
and Ā is the complex conjugate of A. Here, µ is the bifurcation
parameter describing the winding/unwinding transition, while
the parameter β = β(K12, K32, d/p) controls the type of
bifurcation, which is subcritical (β > 0) for the experiments
considered here (29). The elastic coupling, characterized by the
parameter δ = (K12 − 1)/2(K12 + 1) (42), considers both
isotropic and anisotropic effects. The last term breaks the mirror
symmetry in the plane of the cell and is controlled by the
parameter χ = χ(K12, K32, d/p). K12 = K1/K2, K32 = K3/K2,
where the parameters {K1, K2, K3} are the elastic constants of
the CNLC (12). The model (1) is variational, i.e., ∂tA =
−δF [A, Ā]/δĀ, where

F =

∫ ∫
dxdy

[
− µ |A|2 − β

|A|4

2
+
|A|6

3
+ |∇A|2

+ 2δRe
{
(∂ηĀ)2}

− iχ |A|2 (∂η̄A−∂ηĀ)

]
, [2]

is the free energy of the system, which is minimized during the
dynamics of Eq. 1.
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Fig. 2. Tip-branching drives the formation of a cholesteric labyrinthine pattern. (A), Time lapse of the destabilization of multiple cholesteric interfaces aroundglass beads (cell #2 with d/p = 0.7) and formation of an extended labyrinthine pattern, at times t1 = 3.3 s, t2 = 7.8 s, t3 = 12.2 s, and t4 = 16.7 s. (B), Circularaverage of the 2D power spectrum (Inset Top) of the extended pattern in panel (A) at t4, showing a characteristic wavelength of the cholesteric pattern of
�c = 14.9 microns and (Inset Bottom) local Fourier transform characterizing the local order in the pattern. (C), segment length distribution of the experimentallabyrinthine patterns (markers, with errors obtained from 7 independent realizations) and a gamma distribution fit (solid line, for scale and shape parameters),together with the distribution obtained from numerical integration of Eq. 1 at three different times, rescaled by the ratio of the experimental and modelwavelengths �c/�CAGL ≈ 2.3. (D), Two time points (t1 < t2) of the experiment, showing remodeling of the patterns, where short fingers are inhibited (greenarrowheads) allowing other fingers to continue elongating (white arrowheads).

The CAGL Eq. 1 exhibits the same equilibria observed in
CNLC experiments: a homeotropic phase Ao = 0 (region I in
Fig. 3A); a translationally invariant configuration (TIC) phase
AT (region II in Fig. 3A); a modulated TIC (starting in region
II and crossing the green curve into region V or VI in Fig. 3A),
chiral finger states (region IV in Fig. 3A); chiral bubbles (region
III in Fig. 3A); and cholesteric labyrinths (starting in region IV
and crossing the blue curve into region V in Fig. 3A) (13, 29).
Additionally, the model (1) has a region of bistability of states Ao
and AT (µlb ≤ µ ≤ µub) that contains a Maxwell point µMP ,
where both states are energetically equivalent F [Ao] = F [AT ]
(43). The model also exhibits fingers and tip splitting (Right
panels of Fig. 3A), where fingers nucleate from the homeotropic
phase or from a chiral bubble and invade the system through
elongation (region IV of Fig. 3A) or branching of their rounded
tips (region V of Fig. 3A). Note that the fingers emerge at
µ < µMP (region V in Fig. 3A), where the state Ao is more
stable than AT . In brief, the appearance of a finger with a given
width is not explained by a modulational instability, as in the
case of the modulated TIC phase (13).

To understand the emergence of the chiral fingers from an
energy minimization perspective, we first study the properties
of an infinite finger in the CAGL Eq. 1. In the top panel of
Fig. 3B, the polarized fieldψ(x, y) ≡ Re(A)Im(A) of the infinite
finger solution is shown, together with the horizontal profile of

its modulus R and phase gradient ∂xφ, where we use the polar
representation A(x, y) = Reiφ . The profiles show bell-shaped
soliton structures, which are characterized by their heights (R̄
and 8̄) and widths (w and wφ), and can be approximated by
R ≈ R̄sech(x/w) and ∂xφ ≈ −8̄sech(x/wφ), respectively.
Introducing these ansatz into the free energy (2), we obtain
(SI Appendix)

Ffinger = Fow +
2(1 + δ)

3w
R̄2 + (1 + δ)R̄28̄2I5(w, wφ)

+ 2χ R̄3I6(w, wφ , 8̄)− 2χ R̄38̄I7(w, wφ , 8̄), [3]

where Fo = −2µR̄2
− 2βR̄4/3 + 16R̄6/45, and I5, I6, I7 are

integrals, which depend on the coupling between R, φ, and ∂xφ.
The finger solution is supported by the homogenous state

(F [Ao] = 0) if Ffinger < 0. The energy term Fo is bounded
from below Fo ≥ (1.68

√
|µ| − 0.67)R̄4, which is positive for

µ < µMP . Hence, the only energetic contribution that stabilizes
the finger solution is the chirality, proportional to χ in Eq. 3,
while all the other terms in Eq. 3 act as a nucleation barrier. To
find the optimal finger width, we minimize the free energy Eq. 3
with respect to w in the limit w/L � 1, wφ/L � 1, where
L is the length of the finger in the y-direction. As a result of
the dependence on the integrals in Eq. 3, we can only find
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Fig. 3. Local ingredients for the appearance of cholesteric labyrinths. (A), Phase diagram of Eq. 1 with � = 0.05 and � = 1. �lb = −1/4 and �ub = 0 are theboundaries of the bistability region between Ao (I) and AT (II). �MP = −3/16 is the Maxwell point. �o is the critical chirality, where chiral bubbles appear. Thedark yellow line marks the saddle-node transition of chiral bubbles. The light green curve delimits the emergence of chiral fingers. The blue line represents thetip-splitting instability. Region III is the stable zone of chiral bubbles. In region IV, fingers enlarge from their tips. Rounded tips of chiral fingers are unstable inregion V. Regions V and VI exhibit modulated TIC. Right panels show temporal snapshots for three different initial conditions with � = −0.4, in the regions IV(� = 2.31) and V (� = 2.70). (B) shows (top) the profiles of the modulus |A| and the gradient of the phase (�) in the x-direction ∂x� of an infinite chiral finger,with � = 2.4 and � = −0.4, and (Bottom) shows the variation of the finger width w with respect to � (red line) in the one-dimensional case, with �b = 2.3 when
� = −0.4; the yellow line shows the change in free energy Ffinger . The insets show the polarized field of chiral fingers with � = 2.2 < �b and � = 2.4 > �b,
exhibiting shrinking and elongation, respectively. (C), Different morphologies of chiral fingers were observed experimentally in cell #2 with d/p ≈0.68 (Leftpanel) and numerically (Right panel) with � = −0.4. In the experimental case, the graph shows the speed of the rounded tip against the shape factor wtip/wfor different temperatures (the variations of the pitch with temperature in SI Appendix, Fig. S2). wtip is the biggest diameter within the rounded tip of the chiral
finger, and w is the width of the finger far from the rounded tip. The insets show the morphologies associated with 49.7 ◦C (pink asterisk) and 50.4 ◦C (lightblue asterisk). Dots are the average of five fingers moving inside a cell of CNLC. The vertical and horizontal bars are the SD of the speed and the shape factor,respectively. In model Eq. 1, the different morphologies are obtained by varying the � parameter. The insets display the finger shapes in the case of � = 2.31(green asterisk) and � = 2.45 (orange asterisk). The tip-splitting regime is shown for both cases (50.5 ◦C and � = 2.46). Three snapshots (t1 = 0.0 s, t2 = 0.25 s,and t3 = 0.4 s) of the chiral fingers interface are shown, demonstrating the advance, flattening, and modulation of the rounded tips. All speeds are normalized
to the average speed previous to tip-splitting vts . In the experiment, vts = 27.4 μm s−1. (D), (Top) Evolution of the distance xo(t) in the repulsion between twoinfinite fingers for � = −0.4 and � = 2.5. Black dots were obtained from direct simulations, and the solid line corresponds to the integration of Eq. 5. The Bottompanels display two instants, t1 and t2, of the repulsive dynamics.

a relationship between the optimal parameters of the finger
solution; w3

≈ 3π3χw3
φ R̄38̄/4Fo (SI Appendix). Therefore, the

nontrivial phase structure plays a fundamental role in defining the
width, and Fo must be positive to observe stable finger solutions,
i.e., the most stable homogenous state needs to be Ao. Note that
a similar energy dependence is obtained in bistable reaction–
diffusion systems (6).

The bottom panel of Fig. 3B shows the variation of the one-
dimensional finger width w as a function of the chirality χ (red
curve), which has a maximum at χ = χb. When χ > χb, the
free energy Ffinger (Eq. 3) becomes negative (yellow line in the
Bottom panel of Fig. 3B) and the system favors the propagation
of fingers by elongation of the two tips (Bottom Right panels of
Fig. 3B). Conversely, when χ < χb, the chiral finger shrinks and
eventually disappears due to the merging of both tips.

When chiral fingers emerge, they propagate and cover the
whole system. In the experiment of CNLCs, the temperature
specifies the pitch and finger width and fixes the propagation
speed of CF1, v. We note that the chiral finger growth has
a selection mechanism similar to that observed in dendritic
growth (44, 45), where the propagation speed is controlled by
the curvature of the tip. By increasing the temperature, fingers
propagate faster, and the tip swells, as shown in Fig. 3C .

CF1 may be characterized morphologically by the shape factor
wtip/w, where wtip is the diameter of the rounded tip and w is the
finger width (cell #2 in the left panel of Fig. 3C ). At the critical
speed vts and corresponding critical shape factor, propagating
tips become unstable, swelling and undergoing tip splitting.
This branching process may be interpreted as a more efficient
dissipation mechanism to develop chirality than simple tip
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propagation. The tip-splitting dynamics is characterized by the
inflation, flattening, and interfacial modulation of the rounded
tip (see the snapshots t1 − t3 in the Left panel of Fig. 3C ).
The Right panel of Fig. 3C shows the change in morphology in
numerical integrations of Eq. 1 for different values of the chiral
parameter χ . Remarkably, the relation between speed and shape
obtained through numerical simulations closely resembles the
experimental observations. The critical value of the shape factor
at which tip splitting takes place is close to its experimental value
wtip/w h 1.4, and in both cases, tips suffer the same curvature
and morphological changes during branching.

One way to understand the emergence of tip splitting is to
analyze it from the perspective of local interface dynamics (5, 6).
Recently, a local zero-dimensional interface equation was derived
from Eq. 1 near the critical point {µMP ,χo} for chiral bubbles
(29). There, it was shown that a balance between metastability,
a linear curvature term due to chirality, and a squared curvature
contribution defined the size of chiral bubbles. Here, to describe
the tip-splitting instability, one needs to account for the spatial
modulation along the interface and the proper stabilization
mechanism at small wavelengths. We model the interface of
the rounded tip as the interface of half of the chiral bubble in
model Eq. 1. The tip splitting is analogous then to a fourth
mode instability of the interface of a full cholesteric bubble
as shown in the Bottom Right panel of Fig. 3A. Therefore, to
extract the curvature dynamics of the interface, we perform a
nonlinear stability analysis around the interface of the chiral
bubble solution, Acb = Roeiφ in Eq. 1 and obtain the speed-
curvature or Gibbs–Thomson (46) relation

vN = −|µ1|A + Bχ1κ̃ + C κ̃3 + D∂SS κ̃ , [4]

where A, B, C , and D are constants (SI Appendix). A similar
version of Eq. 4 has been heuristically proposed to explore the
local behavior of interface dynamics (5), derived in the study
of growth laws of droplets (47) and bistable reaction–diffusion
systems (6) and also used in the framework of bacterial growth
(48). The constants A, B, and D are always positive above the dark
yellow line in the phase diagram of Fig. 3A. For large wavelength
perturbations, Eq. 4 has a modulational instability due to a
Mullins–Sekerka type of term (linear in curvature κ̃), which is
tuned by the chirality, i.e., growth is enhanced in curved regions
of the interface. At short wavelengths, the instability is saturated
by the last term in Eq. 4, which plays the role of line tension. The
cubic term in Eq. 4 is responsible for the tip splitting, where the
constant C is defined by a nontrivial balance between chirality,
diffusion, and energy differences between states, and it must
be positive to ensure that the curvature dynamics is variational
(SI Appendix). The relation between curvature and splitting
explains why a tip must swell before branching, a dynamic
that also explains the maturation (or refractory period) feature
observed earlier in the segment length distribution (Fig. 2C ).

Another key ingredient for the formation of the cholesteric
branching patterns is the repulsion between the chiral fingers
(25). To study the origin of the CF1 repulsion in our model,
Eq. 1, we consider two infinite cholesteric fingers. The Bottom
panels of Fig. 3D show two different instants of the interaction
between two cholesteric fingers, where a nontrivial structure in
the gradient of the phase is observed between the two fingers. As it
turns out, this structure is responsible for the repulsion between
fingers. Following this idea and the symmetry of the modulus
R and the phase gradient ∂xφ, we model the repulsion between
fingers as the interaction between a single finger, at a position
xo(t) from the origin, and half of the phase structure near x = 0,

that is, R(t) = R(x−xo(t)) and ∂xφ(t) = ∂xφ(x−xo(t))+θb(x),
where A(t) = R(t)eiφ(t) and θb represents the phase structure
near x = 0. Numerical observations show that the tail of θb decays
like e−bx/x for a positive constant b. Based on the variational
form of model Eq. 1, the dynamic of the position xo is given by
(SI Appendix)

∂txo = N (µ,χ)
e−bxo

xo
. [5]

The prefactor N (µ,χ) is positive in the range of parameters
where chiral fingers are observed (region IV and V of Fig. 3A).
Thus, the interaction between fingers is repulsive in order to
minimize the energy of the system. By integrating the repulsive
relationship, we get the semianalytical curve xo(t) shown in the
Top panel of Fig. 3D.

Organization of the Large-Scale Chiral Branching Pattern. In
the previous section, we described how the local destabilization
of the nematic phase leads to the propagation of a chiral
(or cholesteric) phase, which organizes into a ramified pattern
that expands through the propagation of chiral tips. The
chirality drives the growth and splitting of tips as well as
the repulsion between fingers. From the propagation of the
branching pattern (experiment Fig. 2A and model Fig. 4A), we
note that actively elongating and branching tips localize entirely
at the periphery of the growing pattern, while tips submerged
within the labyrinthine structure arrest their growth due to steric
interactions with the surrounding pattern. The interactions that
give rise to the branching cholesteric pattern can be reduced
then to tip propagation and branching, repulsion (that results
in alignment of neighboring segments), and tip inhibition.
Moreover, the characteristic width of CF1 combined with the
energy minimization dynamics leads to a spatial pattern structure
with a well-defined wavelength, with a short-scale order but large-
scale disorder (Fig. 2B).

To study how the large-scale disorder emerges from the local
interaction rules, we first focused on the model (1), which
allowed us to study the topological properties of large-scale
patterns without the influence of additional structures (Fig. 4A).
From these patterns, we were able to extract the branching trees
(Fig. 4B), produced by reducing the pattern to a network of
vertices and edges, where each edge corresponds to a chiral
segment that connects vertices representing branching points.
Here, we were concerned solely with the topology of the network,
which is completely characterized by the levels (or generations)
of branching. The subtrees of the network, defined as sets of
branches with a last common ancestor node at level 2, showed a
high heterogeneity of sizes (number of segments) and persistence
(number of generations beyond level 2); see colored subtrees in
Fig. 4 A and B indicating a rather random organization of the
topology of the pattern as seen, for example, in biological tissues
(7, 49, 50). A heterogeneous organization of the branching tree
may arise from a stochastic process of branching and inhibition
of propagating chiral tips, which was also supported by the
exponential decay of segment lengths (Fig. 2C ). To test this
hypothesis, we computed the probability that tips at a given level
arrest their growth (Fig. 4C ). As time passes, tips that are not
constrained may continue branching, lowering the termination
probability. We then simulated a zero-dimensional birth–death
process, where particles either branched or became inhibited
with probabilities depending on their generations and given by
Fig. 4C (Methods for details). To compare the results of the
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Fig. 4. The large-scale organization emerges from probabilistic tip branching and inhibition events. (A), Numerical integration of the Eq. 1 showing thedestabilization of a chiral bubble-like initial condition (t = 0) into a branched pattern (t = 240 and t = 360, measured in arbitrary units). Subtrees of thebranching structure, defined as those trees that have a last common ancestor at branching level 2, are colored at different times to emphasize the variabilityin the tree growth dynamics. (B), Branching tree representation of the pattern at time t = 360, shown in (A). (C) The probability that a tip terminates at a givenlevel in the tree at different time point obtained from n = 8 large-scale simulations of the model (1). (D and E) show the cumulative probability of (D) subtreesizes and (E) subtree persistence obtained from large-scale simulations of the model (mean and SD from n = 8 realizations) and birth–death process whensupplied with the termination probabilities at each time point in (C), with mean (line) and SD (shaded) from n = 103 realizations. (F ), Branching tree resultingfrom the birth–death process using as input the termination probabilities at t = 360 shown in (C). (G), Representative stationary state from experiments;disconnected branching patterns are shown in different colors, and black-shaded patterns were not considered in the analysis as they cross the boundariesof the observation window. (H), Average termination probability obtained from 39 disconnected branching patterns from 7 experimental realizations. (I and J)show the cumulative probability of (D) tree sizes and (E) tree persistence (full trees were used due to their small size) obtained from experiments (mean andSD) and birth–death process when using the termination probabilities in (G) as input.

model (1) and the stochastic birth–death process, we looked
at the distribution of subtree sizes and persistence, from which
we found excellent agreement (Fig. 4 C and D). These results
show that even though the system has well-defined interaction
rules, their large-scale organization emerges from random events
of branching and termination that are regulated locally, at the
single tip level (see the typical branching tree from the birth–
death process in Fig. 4F ).

To verify that these observations also apply to the experimental
branching patterns, we looked at 7 realizations of the experiments,
where multiple distinct patterns nucleated from the glass beads
in the sample (Figs. 1E and 4G). The final patterns had a range
of sizes and interacted as they developed, in some cases inhibiting
the growth of neighboring tips. By focusing on trees with more
than one branching event, we reconstructed the termination
probability (Fig. 4H ) and used it as input in the stochastic birth–
death process. These resulted, again, in good agreement between
experiments and the stochastic process (Fig. 4 I and J , where full
trees were analyzed due to their small size), strongly supported the

conclusion that the large-scale topology of the chiral branching
patterns is regulated locally by statistical rules of branching and
termination, resulting in the disordered patterns observed.

In summary, we have investigated experimentally and the-
oretically the spatial and temporal organization of thermally
induced branching patterns in chiral nematic liquid crystal cells.
By using the Ginzburg–Landau-type description of CNLCs, we
established the role of chirality in the formation of disordered
branching patterns. Here, the (de)stabilization of chiral fingers
arises from an energy minimization process, which also leads to
tip splitting and causes repulsive interactions between fingers.
We extracted a minimal set of local rules that regulate the pattern
growth—tip elongation, branching, repulsion, and inhibition—
and showed that the large-scale organization of the branch-
ing pattern described a stochastic birth–death process, where
branching and termination events are probabilistic in nature.
The large-scale organization of the chiral phase emerges then
from local interactions at the single tip level, which minimizes
energy efficiently through branching.
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Our analyzes show that even though the liquid crystal structure
is inherently 3D, the dynamics of growth of the branching
phase follows simple local rules that take place on the 2D mid-
plane, resulting in branching and inhibition of tips. Therefore,
neglecting the three-dimensional liquid crystal structure is a
good approximation for studying the formation of disordered
branching patterns resulting from CF1 destabilization. An
interesting future direction of research is to explore other finger
structures, such as CF2, CF3, and CF4 (21) and investigate their
space-filling dynamics. Additionally, in the broader context, it
will be interesting to explore possible branching processes of
stripe phases in chiral magnets (51).

Materials and Methods
Materials and Experimental Setup. We consider a chiral liquid crystal
composedofamixtureofacommercialmulticomponentnematic liquidcrystalE7
(pure components: 4-cyano-4’-n-pentyl-1,1’- biphenyl (5CB-51\%); 4-cyano-4’-
n-heptyl-1,1’- biphenyl (7CB-25\%); 4-cyano-4’-n-octyloxy-1,1’- biphenyl (8OCB-
16\%); 4-cyano-4”-n-pentyl- 1,1’ ,1” -terphenyl (5CT-8\%)) from Merck with chiral
molecules EOS-12 (4-(5-dodecylthio-1,3,4-oxadiazole-2-yl)phenyl 4’-(1”-methyl
heptyl-oxy)benzoate) at 25 wt% and 7 wt%. The cholesteric pitchpassociated with
each chiral–nematic mixture is measured with the Grandjean–Cano technique
at the temperatures of observation, by using a planoconvex cylindrical lens of
radius 10.3 mm (Thorlabs) as thickness modulation. Two cell preparations were
implemented. In the first one, a chiral liquid crystal droplet (with EOS-12 at
25 wt%) is deposited over a soda-lime glass sheet using a microcapillary tube
and covered with another sheet of the same characteristics (2.5 cm×2.5 cm
area and 4 mm thickness). This type of glass induces a homeotropic anchoring
on the liquid crystal sample. The squeezed disk-shaped droplet reaches an
equilibrium diameter of approximately 1 cm. The cell obtained with this method
is cell #1 with d = 200 μm. The cell thickness was obtained with a Mitutoyo
digital micrometer with an accuracy of 1 μm. We note that to increase the
resolution of the images of chiral bubbles, we used a 50x objective with a small
working distance (Leica, HC PL APO 50x/0,90). Then, in our experimental setup,
it was unavoidable to squeeze cell #1 with the objective, thus pushing the cell
thickness to an effective value d <200 μm. For this reason, this cell was used
exclusively for observational purposes (Fig. 1 F andH). The second method is by
filling chiral nematic liquid crystals (with EOS-12 at 7 wt%), by capillary action
at 70 ◦C, into a fabricated cell (SG025T090uT180 manufactured by Instec) of
thickness d = 9 μm, which is chemically treated to give homeotropic boundary
conditions, and its thickness is fixed by glass beads. This cell, #2, was used in the
experimental measurements discussed in the text (Figs. 2, 3C, and 4 G–J) and
in the observations shown in Fig. 1 G and I. The prepared cells are introduced
into a LinkamT95-PE hot stage and placed between crossed polarizers in a Leica
DM2700P microscope with 5x, 10x, and 50x objectives. A CMOS camera records
the branching dynamics.

Numerical Integrationof theChiral–AnisotropicGinzburg–LandauEqua-
tion. To solve model Eq. 1, we write the equation in terms of its real part u and
imaginary part v (A = u + iv). Then, we discretize the space by using a finite
difference scheme with a spatial step of 1x = 0.25 and a three-point stencil
using nonflux boundary conditions. The coupled equations for u and v are
numerically integrated in time with the Runge–Kutta 4 time integrator with
temporal step 1t = 0.01. The finger solutions shown in Fig. 3 were created
by perturbing the zero solution with a rectangular perturbation of width 2w
and amplitude (u, v) = (1.5, 0) in region IV of the phase diagram in Fig. 3A.
Depending on the proximity of the tips to the boundaries (with nonflux boundary
conditions), we can annihilate tips and create fingers only with rounded tips
(Fig. 3C) and without tips (Fig. 3B andD). The chiral bubble solutions are created
following the experiment. We start with a finger in region IV and sweep the

parameter χ or µ to access the branching region V of the phase diagram in
Fig. 3A. The pointy tip of a finger can merge with a side branch and create a CF1
loop solution (29). Then we change the parameters into region III and the CF1
loop solution collapses into the chiral bubble solution. This localized solution
is used as the initial condition in Figs. 3A and 4A (in the branching region V).
All the numerical results related to Fig. 3 are obtained in square grids of size
200x200. In the case of Fig. 4A, we used a square grid of size 1000x1000.

Shape Factor wtip/w and Speed of CF1. To characterize the morphology of
the chiral fingers, we introduced in the text the dimensionless shape factor
wtip/w. The width w of the fingers is calculated as the finite width at half-
maximum of the transversal profiles of the fingers from the binarized images
in the experiment and from the numerical solutions of Eq. 1. We determine
the diameter of the tip wtip as the diameter of the biggest circle that fits the
rounded tips of CF1. Once the biggest circle is fitted in the rounded tip of a CF1,
we track the position of the tip and measure its speed v. In the experimental
case, mixture of E7 and EOS-12 at 7 wt% within cell #2 with d/p ≈0.68, we
averaged the width, tip diameter, and speed of five fingers, which are seen under
crossed polarizers at different temperatures. Finally, the criteria to determine
the tip-splitting speed vts is when the far-most point of the rounded tip interface
has zero curvature (flat front).

Numerical Simulation of the Stochastic Birth–Death Process. The topol-
ogy and statistics of a branching tree depend on the growth dynamic and how tips
interact with the surrounding structures. In particular, the exponential decay of
segment lengthsinthechiralbranchingtree(Fig.2C)suggests that thebranching
and termination events are uncorrelated, thus following a Poisson-like process,
albeit with a short refractory period. With this in mind, we questioned whether
the large-scale topology of the branching tree could be fully characterized by
its branching (and terminating) probabilities. For this, we formulated a simple
birth–death model: a zero-dimensional branching process, where tip branching
and terminations follow a stochastic rule. In this birth–death model, which has
also been used to describe ramified biological tissues (49), tips are allowed
to branch and terminate with probabilities estimated from the data. These
probabilities are obtained from the termination probabilities qi (Fig. 4 C andH)
and depend exclusively on the generation in the branching tree. We note that if
the birth–death model was not able to recapitulate the branching topology of the
tree, then it would indicate that correlations and spatial considerations would
indeed be essential to the resulting large-scale chiral pattern. Numerically, the
birth–death model was implemented as a discrete-time process, where, at every
iteration, all active (tip) particles were allowed to either branch (with probability
pbranch = 1− qi) or become inactive (inhibited) with probability pinhib = qi,
depending on the generation i at which the particles are. For this, we initialized
the system with a number N ≥ 1 of particles to match the initial state observed
either in the model (1) or the experiments. For each realization, we kept track of
the history of all particles in order to reconstruct the branching trees (Fig. 4F).

Data, Materials, and Software Availability. The raw data used for this
study are available in Zenodo repository (DOI: https://doi.org/10.5281/
zenodo.7753119). All other study data are included in the article and/or
SI Appendix.
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Derivation of the chiral-anisotropic Ginzburg-Landau (CAGL) model. The CAGL model can be derived from first principles,
based on the dissipative dynamics of the director field n⃗(r⃗, t), where r⃗ and t indicate spatial and temporal dependence,
respectively. This procedure gives a unique dependence of the parameters µ, β, δ, and χ with the elastic constants and the
confinement ratio d/p of chiral nematic liquid crystal (CNLC) cells. We are interested in the experimental situation where
a nematic phase n⃗ ≡ n⃗o, induced by the homeotropic anchoring of a cell with thickness d, is invaded by a cholesteric phase
n⃗ ≡ n⃗(r⃗) in the form of cholesteric fingers of type I (CF1) when energy is injected in the system. In our case, an increase in
temperature is the injection of energy, but it could also be an electric field (1).

The starting point is a continuum theory for the chiral nematic liquid crystal. We follow a simple approach and suppose that
in a weakly distorted regime, the local properties of the material are the ones of a uniaxial liquid crystal (2). This supposition
allows us to write the Frank-Oseen free energy

Fed =
∫ [

K1

2 (∇ · n⃗)2 + K2

2 (n⃗ · ∇ ∧ n⃗ + 2π/p)2 + K3

2 (n⃗ ∧ ∇ ∧ n⃗)2
]

dr⃗, [1]

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively. The volumetric free energy Fed is valid in
the limit of strong anchoring where surface terms can be neglected. The cholesteric pitch p needs to be big, compared to a
molecular scale, so the supposition of uniaxiality remains valid (3). When energy is injected into the system, the molecules will
dissipate it following a minimization process that can be accounted by the evolution of the director n⃗(r⃗, t), while maintaining
its unitary norm (4)

γ
dn⃗

dt
= −δFed

δn⃗
+ n⃗

(
n⃗ · δFed

δn⃗

)
, [2]

where γ is a rotational viscosity constant. Then, introducing the free energy Eq. (1) into Eq. (2), one obtains (5)

(3)
γ

dn⃗

dt
= K3[∇2n⃗ − n⃗(n⃗ · ∇2n⃗)] + (K3 − K1)[n⃗(n⃗ · ∇)(∇ · n⃗) − ∇(∇ · n⃗)]

+ (K2 − K3)[2(n⃗ · ∇ ∧ n⃗){n⃗(n⃗ · ∇ ∧ n⃗) − ∇ ∧ n⃗} + n⃗ ∧ ∇(n⃗ · ∇ ∧ n⃗)] + 4πK2

p
[−∇ ∧ n⃗ + n⃗(n⃗ · ∇ ∧ n⃗)],

with the homeotropic boundary conditions, n⃗(x, y, z = 0) = n⃗(x, y, z = d) = ẑ. Note that the last term accounts for the torque
induced by chiral effects.

We perform a linear stability analysis of the homeotropic nematic phase n⃗o = (0, 0, 1) against small perturbations to find
the critical confinement ratio d/p, at which the winding/unwinding transition is developed. Then, we replace the perturbative
ansatz n⃗ = (n1, n2,

√
1 − n2

1 − n2
2) into Eq. (3) and retain only linear terms in n1 and n2, which leads to the coupled equations

γ
∂n1

∂t
= K3∂zzn1 + 4πK2

p
∂zn2, [4]

γ
∂n2

∂t
= K3∂zzn2 − 4πK2

p
∂zn1. [5]

Note that the third component of the perturbation was restrained to higher order corrections in n1 and n2 due to the norm
conservation |n⃗|= 1. The next step is to find the condition at which the first unstable winding mode grows, that is, we
consider an ansatz of the form n1 = αo cos(fz) sin(πz/d)eσt and n2 = αo sin(fz) sin(πz/d)eσt. These components satisfy the
homeotropic boundary conditions at z = 0 and z = d (see Fig. S1a) and correspond to a helicoidal rotation at rate f within the
cell. The linear growth rate is σ and ao is a constant. The rotation of the director components in the z-axis is motivated by the
translationally invariant configuration (TIC) phase (see Fig. S1b). We incorporate the ansatz n1(z, t) and n2(z, t) in Eqs. (4)
and (5), and set the marginal stability condition σ = 0 to obtain the critical rate fc = 2π/pK32 and the critical confinement
dc/p = K32/2, where K32 = K3/K2. Indeed the helical structure of the chiral nematic liquid crystal will be recovered when a
critical confinement ratio is surpassed (1, 6).

Close to the critical confinement ratio, winding/unwinding transition, we perform a weakly nonlinear analysis to find the
slow spatiotemporal dynamics of the director n⃗ near this critical point and to saturate the instability revealed by the linear
analysis. In the nonlinear regime, we need to take into account the spatial variations of n1 and n2 in the plane x-y. Only with
this consideration, for example, we are able to observe CF1 (see Fig. S1c). A simple way to consider the spatial dependence
near the winding/unwinding transition is by introducing the following director field (7, 8)




n1

n2

n3


 ≈




cos (fcz + θ) sin
(

α sin
(

πz

dc

))

sin (fcz + θ) sin
(

α sin
(

πz

dc

))

cos
(

α sin
(

πz

dc

))




, [6]
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where α = α(x, y, t) and θ = θ(x, y, t) correspond to the angle tilt of n⃗ from the z-axis, and the angle between the x-axis and
the projection of n⃗ in the plane of the cell, respectively (Fig. S1). Both α and θ vary slowly in space and time. Note that Eq. (6)
is the representation on the surface of the unit sphere S2 of the TIC texture plus a bidimensional modulation modeled by θ
(1, 7, 9). In the limit α ≪ 1, we may introduce the complex small order parameter A(x, y, t) ≡ αeiθ ≡ Re(A) + iIm(A) ≡ u + iv
to describe the behavior of CNLCs close to the winding/unwinding transition (7). Then, we write Eq. (6) in terms of u and v




n1

n2

n3


 ≈




u cos
(

πz

dc

)
sin

(
πz

dc

)
− v sin2

(
πz

dc

)
+ W

[3]
1 + W

[5]
1 + · · ·

v cos
(

πz

dc

)
sin

(
πz

dc

)
+ u sin2

(
πz

dc

)
+ W

[3]
2 + W

[5]
2 + · · ·

1 − n2
1

2 − n2
2

2 − n4
1

8 − n4
2

8 − n2
1n2

2
4 + · · ·




, [7]

where W
[3]
1 , W

[5]
1 , W

[3]
2 , and W

[5]
2 are higher nonlinear corrections of order cubic and quintic in A, respectively. Now, we

substitute the previous ansatz into Eq. (3) and at order W⃗ [3] = (W [3]
1 , W

[3]
2 ), we obtain

γ∂tucs−γ∂tvs2 = −2π2

d2 K3us2 −2π2

d2 K3vc2 +K3∂zzW
[3]
1 +K3

π2

d2 (usc−vs2)(u2 +v2)+K3(∂xx +∂yy)ucs−K3(∂xx +∂yy)vs2 +

(K3−K1)π2

d2

{
−(ucsc2−vs2c2)(u2+v2)+ d2

π2 (−∂xxucs+∂xxvs2)+ d

π
[s2u∂xu+s2v∂xv+s2

2
2 u∂yu+c2s2

2 u∂yv−s2s2v∂yu−s2c2v∂yv+

s2c2

2 u∂xu − s2
2
2 u∂xv − s2c2v∂xu + s2s2v∂xv]

}
+(K1 − K2)

{
∂xyus2 + ∂xyvcs

}
+(K2 − K3)

{
∂yyucs − ∂yyvs2 − 2π2

d2

[
u3

2 s2s2c2 −

u2v

2 s2
2s2+ u2v

4 s2
2c2− uv2

4 s3
2−u2vs4c2+uv2s4s2− uv2

2 s2s2c2+ v3

2 s2s2
2+u3s2s4+u2vs2

2s2+ uv2

4 s3
2+u2vs4c2+uv2s2s2c2+ v3

4 c2s2
2+

u3

2 s3
2 + u2vs2

2c2 + uv2

2 s2c2
2 − u2vs2s2

2 − 2uv2s2s2c2 − v3s2c2
2 − u3s2s2c2 − u2vs2c2

2 + u2vs2s2
2 + uv2s2s2c2 − u2v

2 s2
2c2 − uv2

2 s2c2
2 +

uv2

2 s3
2 + v3

2 s2
2c2

]
− 2π

d

[
−s2s2u∂xu− s2

2
2 u∂xv+ s2

2
2 u∂yu−s2s2u∂yv−c2s2v∂xu− c2s2

2 v∂xv+ c2s2

2 v∂yu−c2s2v∂yv

]
+ π

d

[
s2

2
2 u∂yu

−s2s2u∂yv+ c2s2

2 v∂yu−c2s2v∂yv+s2s2u∂xu+s2c2u∂xv+ s2
2
2 v∂xu+ s2c2

2 v∂xv−2s2c2u∂yu+2s2s2u∂yv−s2c2v∂yu+s2
2v∂yv

+ s2
2
2 u∂yu + c2s2

2 u∂yv − s2s2v∂yu − c2s2v∂yv − c2s2u∂yu − c2s2

2 u∂yv + s2s2v∂yu + s2
2
2 v∂yv

]}

+4π2K2

dp
(us2 + vc2) + 4πK2

p
∂zW

[3]
2 + 4πK2

p

{
[u∂xu − v∂xv + u∂yv + v∂yu]s3c + [v∂yv + u∂xv]c2s2 + [u∂yu − v∂xu]s4

}

+4π2K2

dp

{
−s3

2
4 u3 + s2

2s2

2 u2v + s2c2s2

2 uv2 − c2s4v3 + s2c2s2

2 u3 − s3
2
4 uv2 − c2s4u2v + s2

2s2

2 v3
}

,

γ∂tus2 +γ∂tvcs = 2π2

d2 K3uc2 −2π2

d2 K3vs2 +K3∂zzW
[3]
2 +K3

π2

d2 (us2 +vcs)(u2 +v2)+K3(∂xx +∂yy)us2 +K3(∂xx +∂yy)vcs+

(K3 −K1)π2

d2

{
−(us2c2 +vcsc2)(u2 +v2)− d2

π2 (∂yyus2 +∂yyvcs)+ d

π
[s2u∂yu+v∂yv+s2c2u∂xu−s2s2u∂xv+ s2c2

2 v∂xu− s2
2
2 v∂xv+

s2s2u∂yu + s2c2u∂yv + s2
2
2 v∂yu + c2s2

2 v∂yv]
}

+(K1 − K2)
{

∂xyucs − ∂xyvs2
}

+(K2 − K3)
{

∂xxus2 + ∂xxvcs + 2π2

d2

[
u3

4 s2
2c2 −

u2v

4 s3
2 − u2vs2c2s2 + uv2s2

2s2 + uv2c2s4 − v3s4s2 + u3

2 s2
2s2 + u2v

4 s3
2 − u2vs2s4 − uv2

2 s2
2s2 + u2v

2 s2c2s2 + uv2

4 s2
2c2 − uv2c2s4 −

v3

2 c2s2s2 − u3s2c2
2 + 2u2vs2c2s2 − uv2s2s2

2 − u2v

2 s2c2
2 + uv2c2s2

2 − v3

2 s3
2 + u3

2 s2
2c2 + u2v

2 s2c2
2 − u2v

2 s3
2 − uv2

2 s2
2c2 − u2vs2s2c2 −

uv2s2c2
2 +uv2s2s2

2 +v3s2s2c2

]
− 2π

d

[
c2s2u∂xu+ c2s2

2 u∂xv − c2s2

2 u∂yu+c2s2u∂yv −s2s2v∂xu− s2
2
2 v∂xv + s2

2
2 v∂yu−s2s2v∂yv

]
+

π

d

[
− s2

2
2 u∂xu + s2s2u∂xv − c2s2

2 v∂xu + s2c2v∂xv − s2
2u∂xu − c2s2

2 u∂xv + 2s2s2v∂xu + 2c2s2v∂xv + s2c2

2 u∂yu − s2
2
2 u∂yv −

s2c2v∂yu + s2s2v∂yv + c2s2u∂xu + c2s2

2 u∂xv − s2s2v∂xu − s2
2
2 v∂xv + s2c2u∂xu − s2s2u∂xv + s2c2

2 v∂xu − s2
2
2 v∂xv

]}

+ 4π2K2

dp
(−uc2 + vs2) − 4πK2

p
∂zW

[3]
1 − 4πK2

p

{
[u∂yu − v∂yv − u∂xv − v∂xu]s3c + [v∂yu + u∂xu]c2s2 + [v∂xv − u∂yv]s4

}

+4π2K2

dp

{
−s2

2s2

2 u3 + c2s4uv2 − s2
2s2

2 uv2 + c2s4u3 − s3
2
4 u2v + s2c2s2

2 v3 + c2s2s2

2 u2v − s3
2
4 v3

}
.
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We have used the simplified notation d = dc, c = cos(πz/d), s = sin(πz/d), c2 = cos(2πz/d), and s2 = sin(2πz/d). The
above equations are an inhomogeneous linear problem on W⃗ [3] of the form LW⃗ [3] = b⃗, where

L =




K3∂zz
4πK2

p
∂z

−4πK2

p
∂z K3∂zz




, [8]

and b⃗ = (b1, b2) is the collection of all the other terms. To solve the inhomogeneous problem LW⃗ [3] = b⃗, we must introduce
an inner product to apply a solvability condition, i.e., the linear inhomogeneous equation will have a solution if and only
if b⃗ is orthogonal to the Ker{L†}. Let us consider the canonical inner product ⟨g⃗|⃗h⟩ =

∫ d

0 g⃗ · h⃗dz, in order to be able to
project the dynamics (⃗b) in the elements of Ker{L†}. Note that L = L† is self-adjoint. The elements of the kernel are
Ker{L†} = {H1, H2} = {(cos(πz/d) sin(πz/d), sin2(πz/d)), (sin2(πz/d), − cos(πz/d) sin(πz/d))}. The next step is to apply
the solvability conditions, that is, ⟨H1 |⃗b⟩ = 0 and ⟨H2 |⃗b⟩ = 0. After straightforward calculations and combining the resulting
two equations using A = u + iv, we get

(9)
γ

2K2
∂tA = π2

d2 (2C − K32)A − π2

4d2 (3 + K12 − 6K32 + 6C)|A|2A + K12 + 1
4 ∇2A +

1 − K12

8 ∂η∂ηĀ + π

8d
(3 − 4K32 + K12 + 3C)(A∂η̄A − Ā∂ηA),

where ∂η = ∂x + i∂y, K12 = K1/K2, and C = d/p. The functional form of the solution of the inhomogeneous problem is
(W [3]

1 , W
[3]
2 ) = (G1(z)u|A|2+G2(z)v|A|2, −G2(z)u|A|2+G1(z)v|A|2). The functions G1 and G2 depend on the elastic constants

and in the confinement ratio.
Near the recovery of the twisted structure, C ≃ K32/2, the type of the bifurcation is imposed by the sign of b ≃ 3+K12 −3K32.

This elastic dependence on the winding/unwinding transition in chiral nematic liquid crystals is well known (1, 6, 8). In
particular, the system undergoes a supercritical bifurcation if b > 0; otherwise, the winding/unwinding bifurcation is subcritical.
In our case of interest, the mixture of E7 and EOS12, we have measured a first-order transition (subcritical bifurcation) between
the nematic phase and the TIC phase (10). Therefore, Eq. (9) is not enough to saturate the winding/unwinding instability in
our experiment. We fix this problem by considering the next nonlinear correction W⃗ [5] and |b|≪ 1. After applying the same
solvability conditions as before, we obtain

(10)
γ

2K2
∂tA = π2

d2 (2C − K32)A − π2

4d2 (3 + K12 − 6K32 + 6C)|A|2A + K12 + 1
4 ∇2A +

1 − K12

8 ∂η∂ηĀ + π

8d
(3 − 4K32 + K12 + 3C)(A∂η̄A − Ā∂ηA) − 5π2

16d2 (K32 − 7K12

40 − 1 − 16M
5 )|A|4A,

where M is the projection of the first nonlinear correction W⃗ [3] into the dynamics at order W⃗ [5] and is equal to

M = −K32

∫ 1

0
[(−G1s2

2 + 2G1s2c2 − s2c2∂zG1 + s2
2∂zG2)cs + (s2

2G2 − 2c2s2G2 − 2c2s2∂zG1 + 2s2s2∂zG2)s2]dz′

+ (K32 − K12)
∫ 1

0
[(−s2∂zz(csG1) + s2∂zz(s2G2) − 2c2G1)cs

2 + (−s2∂zz(csG1) + s2∂zz(s2G2) + c2G2)s2]dz′

+ 4C
∫ 1

0
[(s4

2
4 ∂zG2 − s2

2G1 + cs3∂zG1 − csc2G2 + c2s2G1)cs + (cs3∂zG2 − s2s2G1 + s4∂zG1 − 2c2s2G2 + 2csG2)s2]dz′

+ (1 − K32)
∫ 1

0
[(s2∂z(cs∂zG2) − s2∂z(s2G1) + s2∂z(s2∂zG1) − s2∂z(c2G2) + 2G2s2c2 − G2∂z(s2c2) + s2

2∂zG2]

− (1 − K32)
∫ 1

0
[2s2

2G1 + 2s2s2G1 − 2c2s2G2 + s2
2∂zG2 − 2c2s2∂zG2)cs + (−cs∂z(cs∂zG2) + cs∂z(s2G1) − cs∂z(s2∂zG1)]

+ (1 − K32)
∫ 1

0
cs∂z(c2G2) + 2s2c2G1 − G1∂z(s2c2) − s2c2∂zG2 + 2c2s2G1 − 2c2s2∂zG1 + 2c2

2G2)s2]dz′.

(11)

In the above equation, the change of variable z′ = z/d was employed. In the double limit C ≃ K32/2 and b ≃ 3 + K12 − 3K32,
the functions G1 and G2 are

(12)G1(z′) = −dz′

4 + sin(2πz′)
8 + sin(4πz′)

48 + 1
4K32

(dz′ − dz′ cos(2πz′) − sin(2πz′)),
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(13)G2(z′) = z′

4K32
sin(2πz′) + 1

96 cos(4πz′).

Thus, we obtain M = 0.11K12 + 0.65/K32 − 0.07K12/K32 − 0.68. Then, the sign of the quintic term in Eq. (10) is governed by
Q = K32 − 0.53K12 − 2.1/K32 + 0.22K12/K32 + 1.18, which is always positive. Finally, after rescaling time, space, and the
complex parameter A, we get the dimensionless equation

(14)∂tA = µA + β|A|2A − |A|4A + ∂η∂η̄A − δ∂η∂ηĀ + χ
(
A∂η̄A − Ā∂ηA

)
,

where µ is the bifurcation parameter describing the winding/unwinding transition, β = −π2(3 + K12 − 6K32 + 6C)/d2 controls
the type of the bifurcation, δ = (K12 − 1)/2(K12 + 1), and

(15)χ =
(

16
5Q

)1/4 3 − 4K32 + K12 + 3C
2
√

2
√

1 + K12
.

controls the two-dimensional chiral effects expressed by the term
(
A∂η̄A − Ā∂ηA

)
. This chiral term has been predicted by

symmetry arguments before (7, 10). Note that the rotational transformation A → Aeiπ/2 in Eq. (14) gives

(16)∂tA = µA + β|A|2A − |A|4A + ∂η∂η̄A + δ∂η∂ηĀ + iχ
(
A∂η̄A + Ā∂ηA

)
.

We have termed this model the chiral-anisotropic Ginzburg-Landau (CAGL) equation in the main text. Equation (16) is
variational, i.e., ∂tA = −δF [A, Ā]/δĀ, where

(17)F =
∫ ∫

dxdy

[
−µ |A|2 − β

|A|4
2 + |A|6

3 + |∇A|2 + 2δRe
{

(∂ηĀ)2}
− iχ |A|2 (∂η̄A − ∂ηĀ)

]
.

Free energy of a very long finger. To address the stabilization of a chiral finger as an energy minimization process, we consider
a finger solution A = Reiϕ of model Eq. (16) with longitudinal length L. The transversal profiles of the finger solution, in
amplitude and phase gradient, can be approximated by R ≈ R̄sech(x/w) and ∂xϕ ≈ −Φ̄sech(x/wϕ), respectively. We study a
very long finger on a square domain, i.e., w/L ≪ 1 and wϕ/L ≪ 1. Replacing the ansatz for the finger into the free energy
Eq. (17), we have F [R, ϕ] = LFfinger[R, ϕ], where

Ffinger[R, ϕ] = −µR̄2

L∫

−L

sech2(x/w)dx − βR̄4

2

L∫

−L

sech4(x/w)dx

+ R̄6

3

L∫

−L

sech6(x/w)dx + (1 + δ)R̄2

w2

L∫

−L

sech2(x/w) tanh2(x/w)dx + (1 + δ)ϕ̄2R̄2

L∫

−L

sech2(x/w)sech2(x/wϕ)dx

+ 2χR̄3

w

L∫

−L

sech3(x/w) tanh(x/w) sin(2wϕϕ̄ tan−1[tanh(x/2wϕ)])dx

− 2χR̄3ϕ̄

L∫

−L

sech3(x/w)sech(x/wϕ) cos(2wϕϕ̄ tan−1[tanh(x/2wϕ)])dx

≡ Fow + 2(1 + δ)
3w

R̄2 + (1 + δ)R̄2Φ̄2I5(w, wϕ) + 2χR̄3I6(w, wϕ, Φ̄) − 2χR̄3Φ̄I7(w, wϕ, Φ̄).

(18)

In the above equation, we have used the limit L/w ≫ 1 to calculate the first four integrals, and we defined Fo = −2µR̄2 −
2βR̄4/3 + 16R̄6/45. A numerical exploration of the five energy terms in Eq. (18) show that Fow ≈ (1 + δ)R̄2Φ̄2I5(w, wϕ)
when δ → 0, and that 2(1 + δ)R̄2/w is negligible. Therefore, the transversal energy of the finger can be simplified to
Ffinger[R, ϕ] ≈ 2Fow + 2χR̄3I6(w, wϕ, Φ̄)/w − 2χR̄3Φ̄I7(w, wϕ, Φ̄). We minimize Ffinger[R, ϕ] with respect to w, considering
the limit wϕ/w ≪ 1, and obtain at leading order w3 ≈ 3π3χw3

ϕR̄3Φ̄/4Fo. Note that ∂I6/∂w = 0 due to the odd symmetry of
the integrand.
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Local speed-curvature equation. To shed light on the interface dynamics of the cholesteric phase, at the rounded tips of CF1 or
at the interface of chiral bubbles, we perform a nonlinear analysis around the interface of the chiral bubble solution, that is
Acb = Roeiϕ in Eq. (16). Note that here we do not take into account the phase jump in ϕ (10), as we are interested in the
branching dynamics away from the center of the chiral bubble. Changing variables in Eq. (16), A = Reiϕ, and supposing that
the temporal evolution of the phase is negligible compared to the dynamics of the modulus, which is reasonable at the interface,
and that the phase only has a local linear dependence at the interface, the dynamics of the modulus R may be written in
curvilinear coordinates {n, s} and in the limit δ → 0 as

−vn∂nR = µR + βR3 − R5 + ∂nnR + κ∂nR − κ2R + χκR2 + ∂ssR, [19]

where κ is the curvature, s is the arclength, and vn = ∂tr · n̂ is the speed normal to the interface (described by a position
vector r). Equation (19) is the evolution of the modulus R = |A| in the sharp-interface limit κ ≪

√
3/4 (11). We have used

the local approximation ∂sϕ ≈ κ for the phase.
Near the Maxwell point µMP , the modulus of the interface of the chiral bubble can be approximated by the flat front

solution Ro = [3/4(1 + e
√

3/4n)]1/2 (10, 12). Now, we introduce curvature and chirality to the flat front by performing a weakly
nonlinear analysis near the critical point {µMP , χo}. We introduce the ansatz R(n, s, t) = Ro(n) + ϵ1/2R1 + ϵR2 + ϵ3/2R3,
µ = µMP + ϵ3/2µ1, χ = χo + ϵ1/2χ1, vn = ϵ3/2vN , ∂s = ϵ1/2∂S and κ = ϵ1/2κ̃ with ϵ ≪ 1 into Eq. (19), and solve at every order
in ϵ by applying solvability conditions (as we have elaborated already in this Supporting Information text). At order ϵ3/2, we
obtain the speed-curvature (or Gibbs-Thomson (13)) relation

vN = −|µ1|A + Bχ1κ̃ + Cκ̃3 + D∂SS κ̃, [20]

where

A = ⟨|∂nRo||Ro⟩
⟨∂nRo|∂nRo⟩ > 0, [21]

B = ⟨|∂nRo||R2
o⟩

⟨∂nRo|∂nRo⟩ > 0, [22]

D = ⟨|∂nRo||f(n)⟩
⟨∂nRo|∂nRo⟩ > 0, [23]

and

C = ⟨∂nRo|{−6Rof(n)g(n) − f(n)3 + 20R3
of(n)g(n) + 10R2

of(n)3 − ∂ng(n) + f(n) − χo(f(n)2 + Rog(n))}⟩
⟨∂nRo|∂nRo⟩ > 0. [24]

In the above equations, we have used the inner product ⟨q1|q2⟩ =
∫ ∞

−∞ q1q2dn. f(n) and g(n) are functions associated to the
corrections of the modulus R. The functional form of f(n) and g(n) can be obtained numerically and with it approximate the
coefficients C and D.

The interfacial equation (20) can be transformed into the reference-frame independent equations of motion (14)

˙̃κ = −(∂SS + κ̃2)U, [25]

ġ = 2gκ̃U, [26]

where g is the curve metric, and U = −|µ1|A + Bχ1κ̃ + Cκ̃3 + D∂SS κ̃. Considering the arclength S =
∫ σ

0

√
g(σ′)dσ′, where σ

is the variable parameterizing the interface, and introducing the full form of U in Eqs. (25) and (26), we get

˙̃κ = |µ1|Aκ̃2 − Bχ1κ̃3 − Cκ̃5 − Bχ1∂SS κ̃ − D∂SSSS κ̃ − Cκ̃(∂S κ̃)2 − (3C + D)κ̃2∂SS κ̃, [27]

Ṡ =
S′∫

0

(−|µ1|Aκ̃ + Bχ1κ̃2 + Cκ̃4 + Dκ̃∂SS κ̃)dS′. [28]

As the growth of the cholesteric interface must be variational, that is, introducing the good twist in the frustrated sample to
minimize the energy in the system, the restriction D=3C is needed. Indeed, both constants have the same sign. From Eqs. (27)
and (28), one can see that at a linear stage, a modulational instability with wavelength 2π

√
D/

√
Bχ1 can destabilize a flat

front (κ̃ = 0). The subsequent nonlinear dynamics at the cholesteric interface shape the morphologies of the rounded tips.
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Repulsion between two very long fingers. In numerical integrations of Eq. (16), we have seen that repulsion between two infinite
fingers (at x = ±xo(t)) is mediated by a non-trivial phase structure between them. Then, we decided to approximate this
interaction by taking into account only the effect at zeroth order of the phase structure near x = 0 in one finger (at x = xo(t)).
In terms of the complex field we have A = R(t)eiϕ(t), where R(t) = R(x − xo(t)) and ∂xϕ(t) = ∂xϕ(x − xo(t)) + θb(x). The
variable θb(x) represents the phase gradient shape near x = 0. Numerical observations show that the tail of θb behaves as
Coe−bx/x, where Co and b are positive constants. We approximate the transversal profiles of the finger by bell-shaped soliton
functions, R ≈ R̄sech(x/w) and ∂xϕ ≈ −Φ̄sech(x/wϕ). We rely on the variational form of our model to extract the key features
of the interaction (15). The chiral-anisotropic Ginzburg-Landau Equation is variational, ∂tA = −δF/δA∗, that is

∂tF = −
∫

|∂tA|2dxdy. [29]

Introducing the moving frame of reference A(x − xo), and considering the limit xo >> {w, wϕ}, into Eq. (17) we obtain the
temporal variation of the energy

(30)∂tF = −Lẋo

∫ ∞

0
dx

{
−2µR(∂zR) − 2R3(∂zR) + 2R5(∂zR) + 2(∂xR)(∂zxR) + 2R(∂zR)(∂xϕ)2 + 2R2(∂xϕ)(∂xzϕ)

+ 2R(∂zR)θ2
b + 4R(∂zR)(∂xϕ)θb + 2R2(∂zxϕ)θb + 6χR2(∂zR)(∂xϕ) + 2χR3(∂xzϕ) + 6χR2(∂zR)θb

}
,

where z = x − xo and L is the longitudinal length of the finger. Changing the integration variable from x to z, Eq. (30) reduces
to

(31)∂tF = −Lẋo

∫ ∞

−xo

dz
{

2R(∂zR)θb(z + xo)2 + 4R(∂zR)(∂zϕ)θb(z + xo) + 2R2(∂zzϕ)θb(z + xo) + 6χR2(∂zR)θb(z + xo)
}

.

Now, we take the limit xo → ∞ and introduce the tail behavior of θb, that is Co exp(−bx)/x. The first term in the integral
of Eq. (31) can be neglected, as we retain only to first order in exp(−bxo)/xo. Then, we have to analyze three terms

T1 = 4Co
R̄2Φ̄

w

e−bxo

xo

∫ ∞

−∞
sech2

(
z

w

)
tanh

(
z

w

)
sech

(
z

wϕ

)
e−bzdz, [32]

T2 = 2Co
R̄2Φ̄
wϕ

e−bxo

xo

∫ ∞

−∞
sech2

(
z

w

)
tanh

(
z

wϕ

)
sech

(
z

wϕ

)
e−bzdz, [33]

T3 = −6χCo
R̄3

w

e−axo

xo

∫ ∞

−∞
sech3

(
z

w

)
tanh

(
z

w

)
e−bzdz, [34]

where we have introduced the functional form proposed for the transversal profiles of the cholesteric finger. All the integrals
listed above are negative. This is because the exponential term makes smaller the positive side of the hyperbolic tangent
function. Hereafter, we name the absolute value of the integrals I1, I2, and I3. Replacing all into Equation (29) we obtain at
dominant order

ẋo =

(
−4 Φ̄

w
I1 − 2 Φ̄

wϕ
I2 + 6χR̄

I3

w

)

(
2

3w
+ 2Φ̄2

∫ ∞
−∞ sech2

(
z

w

)
sech2

(
z

wϕ

)
dz

)Co
e−bxo

xo
= N (χ, µ)e−bxo

xo
. [35]

We find numerically that the constant N (χ, µ) is positive in a range of χ values at fixed µ = −0.4 (Fig. S3). Therefore, the
interaction between cholesteric fingers is repulsive at zeroth order. We can integrate Eq. (35) to obtain the temporal dependence
of xo

xo = W ((C1 + N (χ, µ)t)/e) + 1
a

, [36]

where C1 is a constant, which depends on the initial conditions, e is the Euler number and W is the Lambert function.
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P(a)

(c)(b)

(d)

P(a)

(c)(b)

(d)

Fig. S1. Schematic representation of nematic director within a cell of thickness d with homeotropic boundary conditions. a Representation of the nematic director n⃗ as tubes in
a spherical coordinate system. The angle α represents the tilt of n⃗ from the z-axis and θ corresponds to the angle between the x-axis and the projection of n⃗ in the plane
x − y. b Nematic phase induced by homeotropic anchoring. c Translationally invariant configuration (TIC) is characterized by a uniform twist parallel to the cell thickness. d
Director distribution of the cross-section of a cholesteric finger of type I far from its tips. In this case, spatial modulations of n⃗ are in z and in the plane x − y. This director
representation is adapted from (16).
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Fig. S2. Temperature dependence of the cholesteric pitch p of the mixture between E7 and EOS-12 at 7 wt% within the range 49.7◦C-50.5◦C.
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Fig. S3. Numerical values of the constant N (χ, µ) with µ=-0.4, b =0.31.
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Movie S1. This movie shows an example of branching dynamics in chiral nematic liquid crystals under crossed
polarizers. It corresponds to cell #1 (T =51.3◦C, p=3.4 µm, d/p <58.8). The nucleation sites are chiral bubbles
created by cooling closed loops of CF1.
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9.1. Perspectives
In this chapter, we have investigated experimentally and theoretically the spatial and tempo-
ral organization of branching patterns in frustrated chiral nematic liquid crystals. Our ana-
lyzes show that even though the liquid crystal structure is inherently 3D, the growth dynamic
of the branching phase follows simple local rules that take place on the 2D transversal plane,
resulting in branching and inhibition of tips. Therefore, neglecting the three-dimensional
liquid crystal structure is a good approximation to studying the formation of disordered
branching patterns resulting from CF1 destabilization. An interesting future direction of
research is to explore other finger structures, such as CF2, CF3, and CF4 [138], and investi-
gate their space-filling dynamics. Additionally, in the broader context, it will be interesting
to investigate possible branching processes of stripe phases in chiral magnets [166], where
Eq. (8.1) should be valid in some limit.

123



Chapter 10

Morphological transition of
labyrinthine patterns in frustrated
chiral nematic liquid crystals (Liquid
Crystals XXVI 12207, 75-81)

In the context of chiral nematic liquid crystals, we have discussed the emergence of labyrinthine
patterns only by a tip-splitting mechanism suffered by the rounded tips of CF1. Neverthe-
less, chiral fingers can exhibit another type of instability, giving rise to labyrinthine patterns.
Figure 10.1 illustrates an invaginated dynamics of cholesteric fingers of type I, in which the
finger elongates and modulates itself through a transversal instability with a well-defined
wavelength [37, 143]. The interaction between different fingers undergoing this instability
creates invaginated labyrinthine patterns. In this chapter, we characterize these patterns
and reveal some differences between them and the branching labyrinths. Additionally, with
the help of model (8.1), we show that a cholesteric finger invaginates to minimize energy.

(a)
(b)

(c)
A

P

Global

Local

Figure 10.1: Invaginated labyrinthine pattern (a) temporal snapshots (t2 >
t1) of the invagination dynamics in a chiral nematic liquid crystal sample at
T = 49.8◦C and d/p = 0.7. (b) Global and local Fourier transforms of the
invaginated texture (t2 in (a)) display the spatial structure of a labyrinthine
pattern (see Chapter 3). (c) Numerical invaginated pattern obtained from
Eq. (8.1) with µ = −0.4, χ = 2.22, δ = 0.1, and β = 1 in a squared box of
size 600 × 600.
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Morphological transition of labyrinthine patterns in
frustrated chiral nematic liquid crystals
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de Chile, Casilla 487-3, Santiago, Chile

ABSTRACT

Several morphologies are observed in out-of-equilibrium systems. They can be highly symmetric as stripes,
hexagons, or squares, and more complicated such as labyrinthine patterns. These shapes arise in different
contexts, ranging from chemistry, biology, and physics. Here we study the emergence of chiral labyrinthine
patterns near the winding/unwinding transition of a chiral liquid crystal under geometrical frustration. The
patterns emerge due to morphological instabilities of cholesteric fingers of type 1. Experimentally, we show that
when heating the cholesteric liquid crystal cell at different rates, the winding/unwinding transition is remarkably
different. At low rates, chiral fingers appear and exhibit a serpentine instability along their longitudinal direction.
At higher rates, after the chiral fingers nucleate, the splitting of their rounded tips and side-branching along their
body is observed. Both mechanisms create labyrinthine patterns. Theoretically, based on an amplitude equation
inferred by symmetry arguments, we study the morphological instabilities and characterize them by their interface
curvature distribution. We discuss the possible velocity-curvature relationship of the finger rounded tips.

Keywords: chiral fingers, curvature, morphological instabilities, cholesteric liquid crystals, amplitude equation.

1. INTRODUCTION

Dissipative structures have been studied in many fields of nonlinear science, ranging from biology and chemistry
to physics (see1–4 and references therein). Patterns emerge in out-of-equilibrium systems, which are subjected
to injection and dissipation of energy. These patterns can be extended or localized in space.5,6 The main
ingredient of pattern-forming systems is the stabilization of a characteristic length. This spatial scale can be
related to intrinsic factors (diffusion of reactants in chemical reactions, facilitative and competitive processes in
ecosystems, helical pitch, and so on) or extrinsic factors such as the spatial geometry (for example, convection
of rolls in the Rayleigh-Bernard experiment).7–10 In general, patterns are observed in macroscopic systems that
exhibit a spontaneous spatial symmetry breaking instability of a homogeneous state.2,3 Near this bifurcation, the
equilibria displayed by the system are stripes, hexagons, squares, and superlattices. Nevertheless, the creation
of patterns is also possible far from this spatial instability. For example, in bistable chemical reactions and
ferrofluids, the interaction of fronts and the modulational instability of their interfaces produce complicated
shapes with a characteristic wavelength.11,12 Furthermore, far from a symmetry-breaking instability, localized
dissipative structures may undergo an interfacial instability.13–15 This instability creates fingers, which elongate
and eventually develop an oscillatory instability or a splitting of their tips.15,16 Both mechanisms can create
labyrinthine patterns in a two-dimensional isotropic system by filling all the space with the finger phase. The
labyrinths are characterized by a powdered-ring Fourier spectrum and a short-range order described by a local
single wavenumber.17,18

Frustrated chiral liquid crystals (CLC) are a natural physical context where dissipative labyrinthine patterns
can be observed.19 The cholesteric phase is characterized by the inherent twist of the liquid crystal molecules,
the so-called cholesteric pitch p.20 This pitch length depends on the temperature and the concentration of chiral
molecules in the CLC mixture.19,21 When a CLC is confined into a cell with homeotropic boundary conditions
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and thickness d < p, the helical structure is frustrated and unwinded into a nematic phase. The chirality of
the CLC can be recovered by applying a voltage, a thermal gradient, or by increasing the cell thickness.9,19,22

This transition is termed winding/unwinding. The recuperation of the chiral structure is often mediated by the
nucleation of cholesteric fingers of type 1 (CF1).9,23–25 These chiral fingers possess structurally different tips.
One is rounded and associated with the good twist rotation of the liquid crystals, which is imposed by the chiral
dopant. The other is pointed and related to the opposite twist of the molecules (see19 and references therein).
After the emergence of the chiral fingers, they elongate from both ends and start to suffer an oscillatory instability
or a tip-splitting of their rounded tips.19,24 Although these mechanisms have been observed experimentally in
the last decades, the theoretical description of these morphological instabilities and their transition has not been
completely elucidated.

This work investigates the appearance of cholesteric fingers of type 1 and their instabilities close to a wind-
ing/unwinding transition in a CLC cell under homeotropic anchoring. Experimentally, we show that by heating
the cell at different rates, the CF1 experience two different morphological instabilities: serpentine and tip-
splitting. Theoretically, based on an amplitude equation inferred by symmetry arguments and the first-order
type of transition between the nematic and chiral phase, we reveal the transformations suffered by the chiral
fingers. We characterize the morphological instabilities in terms of the curvature distribution along the interface
of the CF1. Finally, we comment on the relation between the velocity of the propagation of the fingers and their
tip curvature.

2. EXPERIMENTAL OBSERVATION OF MORPHOLOGICAL INSTABILITIES

Cholesteric fingers of type 1 and their instabilities have been observed in various experiments in the last decades
(see textbook19 and references therein). They appear when a CLC sample is geometrically frustrated due to
homeotropic boundary conditions. Commonly, an electric field parallel to the thickness of the cell is applied to
a CLC with negative dielectric anisotropy to recover the winding phase (in the form of CF1). The chiral fingers
also emerge when a CLC cell is subjected to a thermal gradient parallel to the cell thickness.26

We consider a chiral liquid crystal composed of a mixture of a commercial nematic liquid crystal E7 (Merck)
with a chiral molecule EOS-1227 at 16 wt% (this is a new molecule, and its properties are soon to be published).
The cholesteric pitch associated with the chiral-nematic mixture is p = 3.1 µm at 57◦C. The pitch length is

A

P

A

P

A

P(a) (b) (c)

Figure 1. The emergence of labyrinthine patterns in frustrated cholesteric liquid crystal sample. (a) Two cholesteric
fingers of type 1 nucleating from a glass bead at a heating rate of 0.5◦C/min. The inset shows a schematic draw of
the nematic director (green tubes) across the width w of the CF1 in the midplane of the cell. The α and θ angles are
introduced in the main text. (b) Serpentine instability of a chiral finger at a time t1, and the asymptotic labyrinth
observed at t2 � t1. The heating rate is 1.2◦C/min. (c) Tip-splitting and side-branching instability of a chiral finger at
a time t1, and the asymptotic labyrinth observed at t2 � t1. The heating rate, in this case, is 2.0◦C/min.



determined with Grandjean-Cano technique.19 A droplet of the mixture is deposited inside a cell (Instec) using
a microcapillary tube. The cell is chemically treated to induce homeotropic anchoring on the cholesteric liquid
crystal sample. The cell thickness is d = 9 µm, maintained by glass beads uniformly distributed in the sample.
The prepared cell is introduced into a LinkamT95-PE hot stage and placed between crossed polarizers in an
Olympus BX51 microscope. A white light illuminates the sample. Starting from room temperature (20◦C), the
frustrated cholesteric liquid crystal, which is in a homeotropic phase (unwinding state), is heated from below
at different rates to induce the winding/unwinding transition. The cholesteric phase accounts for the winding
state. For the mixture used in this study, the winding/unwinding transition is always first-order.26 A CMOS
camera monitors the emergence of the cholesteric phase. The winding/unwinding transition is characterized by
the sudden nucleation of cholesteric fingers of type 1 in the homeotropic background state.9 The nucleation is
heterogeneous due to the presence of glass beads. Indeed, the chiral fingers nucleate from the interface of these
imperfections. Note that for this reason, we do not observe pointed tips in our experiment. Figure 1a shows a
snapshot of two CF1, which undergo elongation when the sample is being heated at 0.5◦C/min. Besides, Fig. 1a
depicts the organization of the nematic director (green tubes), which is the average orientation of the liquid
crystal molecules in the CF1. Note that the width w of the finger is intimately related to the rotation of the
molecules in the x − y plane. When the sample is heated at 1.2◦C/min, while the chiral fingers elongate, they
also exhibit a serpentine instability with a finite wavelength (see the top panel in Fig. 1b). After the interaction
with several fingers, the asymptotic labyrinthine pattern observed is shown in the bottom panel of Fig. 1b.
The convoluted shape of this labyrinth is associated with the serpentine instability of the individual fingers.
Increasing further the heating rate (2◦C/min), the CF1 quickly grow and manifest a side-branching instability
and a tip-splitting of their tips, as shown in the top panel of Fig. 1c. The asymptotic branching labyrinthine
pattern is shown in the bottom panel of Fig. 1c. This labyrinth displays a weaker spatial coherence compared
to the previous one.

3. AMPLITUDE EQUATION FOR THE UNWINDING/WINDING TRANSITION

Near the unwinding/winding transition and in the long-pitch limit (p� l), where l is a typical molecular length,
the chiral-nematic liquid crystal, inside a homeotropic cell of thickness d, can be modelled locally as an uniaxial
nematic, described by the director vector28,29

~n(x, y, z, t) =
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where the director ~n(x, y, z, t) accounts for the average molecular orientation, α(x, y, t) is the amplitude of angle
tilt of ~n from the z–axis, and θ(x, y, t) is the angle between the projection of ~n into the x–y plane and the
x–axis (cf. Fig. 1a). The sin (πz/d) accounts for the vertical rotation of the molecular orientation and ensures
homeotropic boundary conditions at z = 0 and z = d, being ~n = (0, 0, 1), that is α = 0, the corresponding
homeotropic nematic state.

The solutions θ = θ0 and α = αo, with θ0 and α0 are constants, correspond to the translational invariant
cholesteric (TIC) state.19 The TIC state describes a uniform twist along the z–axis, across all the sample. The
spatial dependence of α(x, y, t) and θ(x, y, t) allows the twist of the vector director ~n along the x and y axes. It
gives the possibility of non-trivial configurations, such as cholesteric fingers of type 1, and labyrinthine patterns
built from the morphological instabilities of the fingers.

Using the components of the director ~n, formula Eq. (1), the order parameter Q ≡ nz(nx + iny) can be
introduced,28 which is invariant under the transformation ~n→ −~n. This condition is a prerequisite for any liquid
crystal theory since the director accounts for the molecular orientation. In the limit α� 1, the order parameter
becomes Q(x, y, z, t) ≈ α(x, y, t)eiθ(x,y,t) sin (πz/d). Let us introduce the complex field A(x, y, t) ≡ αeiθ that



accounts for the amplitude of the parameter of order Q = A sin (πz/d). This complex field A can be used to
study the unwinding/winding transition.28

To shed light on the unwinding/winding transition and the different morphological instabilities of CF1 from
a theoretical perspective, we use the following phenomenological amplitude equation for A in the limit of small
elastic anisotropy26

∂tA = µA+ β|A|2A− |A|4A+ ∂η∂η̄A+ χ
(
A∂η̄A− Ā∂η̄A

)
, (2)

where ∂η ≡ ∂x + i∂y is a complex differential operator. µ is the bifurcation parameter that is proportional
to the departure from the critical temperature Tc of the unwinding/winding transition. The second and third
terms on the right hand side (RHS) of Eq. (2) account for the nonlinear saturation characteristic of a subcritical
transition (β > 0). The fourth term accounts for the isotropic elastic coupling. The last term proportional to χ
is the lowest order term that accounts for the chirality, that is, χ measures the mirror symmetry breaking in the
mid-plane of the cell.

The model Eq. (2) is of variational nature, that is, ∂tA = −δF/δĀ, where F is a Lyapunov Functional

F =

∫ ∫
dxdy

{
−µ |A|2 − β |A|

4

2
+
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3
+ |∇A|2 − χ |A|2 (∂η∗A+ ∂ηA

∗)

}
. (3)

Hence the dissipative dynamics of Eq. (2) is characterized by the minimization of the free energy F .

(b)(a)

From triads 
    to tips Triads

Tips

Figure 2. Numerical simulations of an infinite finger from Eq. (2) with µ = −0.4 and β = 1. (a) At χ = 2.5, the chiral
finger is unstable to a sinusoidal deformation along its axis. The morphology is described by the absolute value of the
normalized absolute value of the interfacial curvature w|κ|. The distribution f(w|κ|) displays a divergent power-law with
c = 0.3 and w|κc| = 0.17. (b) At χ = 3.0, the chiral finger exhibit side-branching in the regions of high curvature and
then tip-splitting. The tail of the distribution f(w|κ|) shows an exponential behavior with b = 3.1. |A| is the modulus of
the complex field A.

For µ < 0, the homeotropic state A = 0 is stable, and when µ > 0, this phase is unstable. The model
equation (2) has a bistability region in the range µ = −1/4 and µ = 0, between the homeotropic A = 0 and TIC
A = (1/2+

√
1/4 + µ)1/2eiθo state, with θo an arbitrary phase. This θo phase is an arbitrary constant due to the

freedom of definition of the representation vectors x̂ and ŷ. Close to the bistability region, one expects to find
chiral fingers of type 1.9,16 To study the CF1, the serpentine, and tip-splitting instability, we perform numerical
simulations of the model equation (2) with periodic boundary conditions. We consider a square grid of 400×400,
with ∆x = 0.25. An isotropic finite difference method is used for the spatial derivatives, and a Runge-Kutta
order-4 algorithm for the temporal evolution with a time step ∆t = 0.01. The initial condition is an infinite chiral



finger in a homogeneous nematic background A = 0 at µ = −0.4, where the homeotropic state A = 0 is stable.
We choose this initial condition to annihilate the pointed tip and neglect the elongation of the finger. Figure
2a shows the serpentine instability at χ = 2.5. The color map of |A| shows the modulus of the complex field
A. To characterize the instability, we have measured the absolute value of the interfacial curvature |κ|, which
is normalized by the width w of the finger. Note that the distribution of the normalized interfacial curvature
f(w|κ|) follows a divergent power-law until w|kc|. The absolute values of sinusoidal functions follow this type of
distribution. The last two bars of the histogram are associated with the big accumulation of curvatures in the
tips of the folds. Let us focus on the power-law behavior of the distribution, where the serpentine shape of the
chiral finger can be approximated by the sinusoidal x = b sin(qy). In the limit of small amplitude bq � 1 and
small curvature κb� 1, the energy associated with the spatial oscillations is

Fserpentine = Fsf

∫
ds+H

∫
κ2ds, (4)

where Fsf is the energy per length of a straight finger, which is always negative because the finger is supported
by the nematic phase F [A = 0] = 0. H is a positive constant. The arclength is s ≈ Ly + b2qπ/2. Ly is the length
of the initial straight finger. Note that Eq. (4) represents the competition between the minimization of energy
by increasing the size of the finger and the cost of generating curvature.24 The free energy Fserpentine can be

minimized with respect to q to obtain the optimal wavelength of the oscillation qc =
√
|Fsf |/6H. Replacing qc

into Eq. (4), one gets that Fserpentine[qc] < 0. Therefore, the chiral finger will suffer a serpentine instability with
a sinusoidal shape of wavelength qc to minimize the energy of the system.

In Figure 2b, the distribution of interfacial curvature of a finger undergoing side-branching and tip-splitting
is shown at χ = 3. The distribution f(w|κ|) exhibits an exponential tail bounded by the triads (produced by
side-branching and tip-splitting) and the inflated rounded tips of the CF1. Therefore, a transition between the
different morphologies exists and is mediated by the curvature of the chiral fingers, which is controlled by the
chirality in the system.

Finally, we investigate the propagation of a single finger into the nematic phase A = 0. In the case of
serpentine instability, the tip of the fingers advances straightly with a constant velocity v as shown in Fig. 3a.
However, in the tip-splitting regime χ = 3, the fingers suffer a deceleration process, while the curvature near the
tip starts to decrease (cf. Fig. 3b). When the curvature is zero on the tip of the finger, the tip-splitting takes
place (vertical black line in Fig. 3b).
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Figure 3. Numerical simulations of a propagative finger from Eq. (2) with µ = −0.4 and β = 1. (a) At χ = 2.5, the
rounded tip of the chiral finger advance in a straight manner with a constant velocity v. (b) At χ = 3.0, the rounded tip
undergoes a flattening deformation, decelerating the propagation of the finger and eventually dividing the tip into two
new fingers. The colored insets are the interface of the rounded tip.



4. CONCLUSIONS

The comprehension of how the transition between morphologies in a non-living system (CLC) occurs can open
the avenue to understanding and controlling morphologies observed in living systems. For example, one can
think of shaping forms during biological growing processes by artificially controlling the chemical signal rate.

In this study, we have shown that the heating rate of the sample can control the transition between different
morphological instabilities in frustrated CLC. Moreover, in terms of a phenomenological amplitude equation, we
reveal that the transition is mediated by curvature. Apparently, in these chiral systems, a selection mechanism
between curvature and velocity is mediated by chirality. Work is in progress in this direction.
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10.1. Perspectives
In this chapter, we briefly described the invaginated labyrinthine patterns and made quali-
tative distinctions between them and the cholesteric branching labyrinthine patterns. An in-
teresting research direction is to address quantitatively the transition between the cholesteric
labyrinthine patterns, that is, identify the nature of the transition and propose the good
order parameters to describe it (defects, correlation length, energy, and others).
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Chapter 11

Conclusions

This dissertation was dedicated to the understanding of the emergence, stabilization, desta-
bilization, and transitions of labyrinthine patterns in dissipative systems. The main scientific
driving of this work was the lack of analytical and computational tools to approach the
disordered patterns, which were introduced in this work in the best possible way. In particu-
lar, the focus was on labyrinthine patterns exhibited by common pattern-forming equations,
labyrinthine-like patterns observed in irregular landscapes of arid and semi-arid regions, and
cholesteric disordered patterns manifested in confined CNLCs.

To explore the robustness of labyrinthine patterns, we spent our first steps performing nu-
merical integrations of the prototype SH equation, which allowed us to propose a definition
of labyrinths: spatial state with a minimum number of defects displaying a short-range order
characterized by a single wave number and a powdered spectrum. This was possible by intro-
ducing the averaged windowed Fourier transform numerical algorithm. In the framework of
the SH equation, we have demonstrated that different types of labyrinthine patterns can be
distinguished by implementing algorithms of defect counting, computation of orientational
fields, and measurement of correlation lengths.

We have proved the existence of localized labyrinthine patterns when scurfy labyrinths
coexist with stable homogeneous solutions in the SH equation. We have revealed the behavior
of some stable branches of these non-trivial symmetry localized patterns, elucidating that the
stable equilibria are given by a complicated balance of bulk defects, curvature, and a complex-
shaped interface. To our knowledge, this was the first time that the problem of localization
of complex patterns had been addressed. Additionally, we showed the existence of localized
labyrinths in other pattern-forming models. In particular, we have explored the observations
of localized labyrinthine patterns in ecology where disordered vegetation bands, intercalated
with bare soil bands, are supported by a uniform vegetated background, and studied its
stabilization in three relevant ecological models of vegetation in arid environments.

To unveil the key ingredients responsible for the stabilization of the irregular vegetation
structures observed in arid climates, we have incorporated the effects of topographic varia-
tions, as a spatially modulated aridity parameter, in population dynamics models. We have
shown the role of heterogeneities in the transitions between homogenous states and in the
stabilization of labyrinthinelike vegetation patterns. This new modeling framework allowed
us to introduce the concept of imperfect labyrinths, which result from combining perfect
labyrinths with a minimum degree of heterogeneity. We revealed the transition between
these labyrinths with the help of a numerical protocol implemented in this work.

Disordered patterns in CNLCs (labyrinths under our definition) have intrigued liquid crys-
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talers for almost three decades. We have investigated their emergence and stabilization from
the perspective of an amplitude equation of the Ginzburg-Landau type (CAGL). This model
was derived close to the winding/unwinding transition from the dissipative dynamics related
to the minimization of the Frank-Oseen energy of CNLCs, in the limit of strong homeotropic
anchoring and large cholesteric pitch. The CAGL equation includes the minimal representa-
tion of the breaking of mirror symmetry projected into the plane.

The chiral-anisotropic Ginzburg-Landau equation allowed us to explore numerically and
theoretically localized vortices, chiral fingers, and labyrinthine patterns. We think that the
qualitative agreement with the textures seen in experiments of confined CNLCs controlled by
temperature (also with voltage) is remarkably good. The theoretical approach to investigate
the solutions mentioned was to derive interface equations considering curvature effects. On
the one hand, by establishing an equation for the interface of chiral bubbles, we proved
that a critical chiral parameter, which depends on the confinement ratio and the elastic
constants of the material, is needed for their stabilization. Additionally, we revealed that the
appearance/disappearance mechanism of the localized vortices is governed by a saddle-node
bifurcation. On the other hand, a curvature-velocity relationship was derived for the rounded
tips of CF1, revealing the tip-splitting mechanism underlying the emergence of branching
labyrinthine patterns. Tip detection algorithms for the comparison between experiments and
numerical integrations of the CAGL equation were implemented. Also, we have performed
analytical calculations regarding the minimization of the free energy of the CAGL model,
which helped us to find criteria for the stabilization, repulsion, and invagination instability
of chiral fingers.
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