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ENERGÍA, DINÁMICA Y ESTRUCTURA DE REDES NEURONALES DE IMPULSO
BAJO RESTRICCIONES METABÓLICAS

Todo tejido biológico o sistema físico está sometido a restricciones físicas que acotan su
funcionamiento. Específicamente en redes neuronales, restricciones energéticas determinan
estados físicamente factibles en los que estas pueden evolucionar. Sin embargo, este concepto
fundamental de energía ha sido mayormente omitido al modelar y simular las dinámicas de
redes neuronales.

Esta tesis busca formalizar, estudiar y simular la dinámica y estructura emergente en
las redes neuronales de impulso cuando hay restricciones metabólicas locales que afectan el
comportamiento a nivel neuronal y sináptico. Mediante la creación de un modelo de neurona
individual dependiente de la energía y una regla de plasticidad dependiente de la energía,
se analiza el impacto de diferentes tipos e intensidades de restricciones energéticas en la
conectividad y actividad en una red excitatoria-inhibitoria , tanto de manera analítica como
mediante simulación. La sensibilidad de las neuronas y sinapsis a los desequilibrios energéticos
da lugar a puntos fijos metabólicamente estables a nivel de la red, descritos matemáticamente
y validados en simulaciones.

El marco desarrollado permite el estudio de redes neuronales bajo condiciones metabólicas
alteradas, y podría resultar valioso para profundizar en la comprensión de la relación entre
enfermedades neurodegenerativas y alteraciones metabólicas a nivel neuronal, sináptico y de
red.
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UNDER METABOLIC CONSTRAINTS

Every biological tissue or physical system is subject to physical restrictions that limit its
functioning. Specifically in neural networks, energy constraints determine physically feasible
states in which they can evolve. However, this fundamental concept of energy has been
largely overlooked when modeling and simulating the dynamics of neural networks.

This thesis aims to formalize, study and simulate the dynamics and structure that emerges
in spiking neural networks when there are local metabolic restrictions that affect behavior
at the neuronal and synaptic level. In particular, through the creation of an energy de-
pendent single-neuron model and an energy dependent plasticity rule, the impact generated
by different types and intensities of energy constraints on connectivity and activity in an
excitatory-inhibitory balanced network is studied both analytically and through simulation.
When neurons and synapses are sensitive to energy imbalances, metabolic stable fixed points
appear at the network level, which are mathematically described and validated through sim-
ulations.

The developed framework allows the study of neural networks under impaired metabolic
conditions. Therefore, the proposed theoretical and simulation framework introduced in this
work could be valuable to deepen the knowledge about the relationship between neurodegen-
erative diseases and metabolic impairments at the neuronal, synaptic, and network levels.
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There is no excellence without integrity,
there is no integrity without equilibrium,

and there is no equilibrium without adaptation,
there where change is the only constant; life
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Chapter 1

Introduction

The ultimate goal of technological development is to facilitate the adaptation of human
beings to their environment and satisfy their needs and aspirations. One of the greatest
ambitions in the face of this challenge is the ability to build autonomous systems that re-
lieve humans of dangerous or strenuous tasks. Artificial intelligence is the field of study that
tries to meet these objectives by building intelligent agents, that is, devices that can mimic
cognitive functions such as learning or problem solving, with the aim that they can perceive
their environment and manage to make decisions that maximize their chances of succeed-
ing in performing a task. The inherent capacity that living systems have to achieve this
autonomy positions them as a reference when thinking about and building algorithms that
try to replicate this capacity. Among the living beings, the human being stands out for his
ability to solve problems and learn, with the brain being the main organ involved in this task.
This observation has opened the dialogue between mathematics and biology and has been a
source of inspiration for the construction of bio-inspired algorithms, such as artificial neural
networks, starting from the single-layer perceptron and its subsequent extensions, which gave
rise to a whole branch of studies within machine learning; the Deep Learning. This suggests
that understanding the mechanisms and phenomena that occur in the brain is essential for
the development of bio-inspired algorithms that can better mimic the cognitive processes of
intelligent beings.

From a neuroscientific perspective, one of the most ambitious challenges in this area is to
understand how neurons interact with each other, enabling neural activity that gives rise to
behavior [1]. To understand the magnitude of this challenge, it is necessary to consider that
it is estimated that an adult brain has 8.6×1010 neurons [2], where each of them typically has
tens of thousands connections with other neurons. There are 55 classes of neurons [3] and,
despite the morphological differences, they all have particular structures that allow them
to maintain operational relationships with others. Specifically, each neuron has a collecting
surface made up of dendrites and another effector called an axon. Through the collecting
surface one neuron can receive the afferent influence that another produces on its effector
surface. These structures enable electrochemical interactions between neurons, giving rise to
synapses. But what are the mechanisms that give rise to changes in the synapses and in the
individual behavior of each neuron? Or, more generally, what are the organizing principles
that drive the emergent behavior observed in neural networks?
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Given the complexity of the system under study and the enormous number of constantly
changing variables that give rise to new organizational states, no single theory or experiment
has been capable of answering these questions. This stimulates the search for general organi-
zational principles and the development of strategies that allow exploring how the elements
of the system interact with each other. In this task, mathematical models and computational
simulations have been essential to deepen our knowledge about the functioning of the brain,
providing clear directions on new experiments to develop and pointing out critical aspects
that are omitted in purely theoretical developments.

Energy consumption in the brain

The brain consumes an amount of energy disproportionate to its mass; in humans, the energy
used by this organ amounts to 20% of all the oxygen consumed by a body at rest, while its
mass only represents 2% of the total body mass [4, 5]. Furthermore, the energy consumption
of neurons is high relative to other cells [6]. Considering these challenging demands, neurons
have specialized structures for energy supply; externally, astrocytes are the main cellular
structure that provides energy, while internally -and in the same way as for all eukaryotic
cells- the mitochondria fulfill the function of producing energy.

For the brain to function properly, it is essential that the energy supply can compensate
for the energy expenditure incurred by the neurons [7]. Under the idea that there is a close
relationship between neuronal energy management and general organizational principles, it
has been proposed that the energy in the brain imposes restrictions on the processing power
[8, 9] or that the organization responds to a compromise between minimizing the energetic
cost and allow the emergence of anatomically and functionally adaptable topological patterns
in the connectivity between neuronal populations [10]. On the other hand, analyzing brain
organization from a Bayesian and information theory perspective, it has been proposed that
self-organization in the brain is driven by the Free Energy Principle [11]. Which proposes
that the operations within the brain respond to minimize the surprise -or free energy- that it
perceives with respect to the predictions it generates about its environment. This approach
requires assuming that the brain works predictively, specifically, that it tries to determine
the causes of its sensory inputs through inferential processes which are supported by the idea
that the brain minimizes the predictive error between what is perceived and the prediction
associated with that perception. In this work we will avoid assuming this symbolic informa-
tional approach and we will focus on the organizational rules that give rise to the complexity
of behavior observed in biological neural networks.

Regarding the relevance of energy administration in the brain, several lines of evidence
suggest that dysfunctions in the mitochondria and, therefore, in the neuronal energy sup-
ply, are a common cause of various neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS), Leigh, Alzheimer’s and Parkinson’s disease [12, 13, 14, 15, 16, 17]. How-
ever, there is a great lack of knowledge about how energy restrictions affect the operation
of the network under normal conditions. As a result of this lack of knowledge, the need
emerges to build a theoretical framework that allows (through neural models and describing
synaptic transmission processes taking into account the effects that energy restrictions have
on them) simulating neural networks and understanding in greater depth the relationship
between energy, organization and emergent behavior within the brain.
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Neuron: behavior and energy

A good strategy to understand in greater detail the connection between energy consumption
and behavior in the brain is to study how this relationship occurs in the simplest functional
element of the network: the cells of the nervous system.

The neuron, like any other cell, needs energy to carry out its daily tasks. In general,
neuron activities can be classified as signaling and non-signaling [18]. Within non-signaling
activities, the cell uses energy to carry out maintenance processes (such as organelle traffic and
the synthesis of proteins and molecules) and to maintain the membrane potential during rest.
This corresponds to the electrical potential in equilibrium generated as a consequence of the
different ionic concentrations inside and outside the cell, together with the existence of a cell
membrane selectively permeable to those ions, which gives rise to electrochemical potentials.
Signaling activities are activities present only during the communication period, such as the
generation of electrical pulses -called action potentials- or synaptic transmission processes,
which refer, mainly, to the energy expenditure present in the postsynaptic neuron product
of a presynaptic neuron that sends electrochemical messages, thus generating a disturbance
-called postsynaptic potential- in the ionic concentration of the receiving neuron and that
it must reverse. In the nerve cell, the energy expenditure associated with maintaining the
membrane potential at resting values and the signaling activities have been widely studied
and their values can be known with precision [6, 19, 18]. In contrast, and despite various
studies and estimates, there is no quantitative consensus on the energy expenditure associated
with maintenance activities [9].

The energy supply within each neuron changes dynamically according to activity and
there are several mechanisms that allow this precise coupling [20]. An example of the above
is that the mitochondria is able to increase its energy production (increases the synthesis of
ATP, which is the main source of energy that cells can use to carry out their activities) in
response to an increase in synaptic stimulation [17]. However, the energy reserves are small,
which is why there is a narrow margin between the energy that can be generated and that
required to reach maximum activity. This suggests that the energy supply must impose a
limit on the activity that the neuron can perform under normal conditions [20]. It has also
been suggested that energy consumption should contribute to limiting the cognitive abilities
of the brain, since the total energy that it consumes restricts the temporal rate at which
information can be encoded and processed at the neuronal level [21]. In particular, energetic
constraints on the neuron can determine the average frequency at which action potentials
occur [9].

Even though the relationship between energy administration and neuronal activity is
known, the vast majority of mathematical and computational models that allow simulating
neuronal activity have omitted this relationship. Despite the above, there are models that
account for the tight relationship between available energy and electrophysiological activity
[22, 23, 24, 25]. These results support the idea that the energy available in each neuron has a
significant impact on its activity. However, the computational complexity that they present,
makes it practically impossible to study the impact that energy has on networks made up of
thousands of neurons.
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Synaptic transmission and energy constraints

The basic functional unit of the neural network is the nerve cell and the formation of
connections that allow the transmission of electrochemical signals between them is called
synapses. Every time a neuron experiences an electrical pulse, it releases chemical sub-
stances -neurotransmitters- housed in organelles called vesicles. During synapsis, neurons
make use of specialized structures that allow them to modify their behavior depending on
the neurotransmitters they receive. The number of these specialized structures and how they
change over time, along with the different types of neurotransmitters, give rise to different
ways that neurons can interact. This explains, to a great extent, the wealth of possible
behaviors in a brain.

In general terms, the ability of neurons to modify their connections is known as synaptic
plasticity. This flexibility is a fundamental property of the brain, since it allows its connectiv-
ity to be modified in response to experience. Thus, it is thought as a condition for cognitive
processes such as learning, the ability to remember patterns, or to predict the outcome of
some event and obtain rewards [26]. For several decades, understanding the mechanisms
behind synaptic plasticity has been a challenge for the neuroscientific community. The first
studies on plasticity date back to the work carried out by the neurophysiologist Donal O.
Hebb [27] and the basic idea of his proposal can be summarized by the following phenomeno-
logical description “cells that fire together, wire together” [28]. One way to understand the
previous sentence is to think that when neurons fire simultaneously there is a common cause.
Furthermore, if one neuron consistently fires just before the firing of another, then a causal
relationship between the firing of the first and second cells can be inferred. This causal
relationship gives rise to an increase in the intensity of the connection, that is, it generates
synaptic plasticity [29].

Regarding energy administration, the mitochondria, being responsible for meeting the
ATP demands required by the synapses, has a fundamental and regulatory role in synaptic
plasticity processes. Indeed, the literature supports the idea that alterations in the func-
tioning of the mitochondria lead to a dysfunction in the synapse; that is, in the mechanisms
that facilitate communication between neurons [30, 23, 31, 17, 32]. Moreover, it is estimated
that problems in the functioning of the mitochondria are responsible for abnormalities in
brain plasticity processes and also in the neuronal degeneration present in diseases such as
Alzheimer’s, Parkinson’s, or psychiatric disorders [33]. In this regard, the brain has mecha-
nisms to adapt the synaptic function to the energy supply. One of the most obvious examples
of this is the effect on synaptic plasticity when homeostasis is challenged by stress: in the
presence of chronically high levels of glucocorticoids (also called stress hormones), mitochon-
drial function, synaptic growth, cell formation, and neurotransmission are inhibited [34]. In
the same sense, studies carried out in rats show the increase in the number and volume of
mitochondria in presynaptic neurons in response to high firing rates in the auditory system
[35]. It has also been suggested that brain energy use determines key parameters such as
the size of synaptic contacts and the probability of vesicle release [9, 31]. In particular, vesi-
cle cycling, specifically the rate of vesicle replenishment by endocytosis, is an energetically
dependent process [17, 32, 16]. However, the construction of rules of interaction between
neurons, through the mathematical abstraction of these phenomena, has largely omitted
the close relationship between energy management, mitochondria, and synaptic plasticity.
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Consequently, there is no clear consensus on how to extend synaptic plasticity rules to in-
clude energy dependencies in the interaction, nor how to define a mathematical conceptual
framework that accounts for the relationship between energy and synaptic transmission.

From neuron to neural network

Neurons are the basic element that makes up a neural network and synapses are the biological
structures through which these elements can interact with each other. Together, neurons and
synapses are essential for functional neural circuits to exist. Furthermore, and considering
the enormous number of factors and structures interacting in the brain, the challenge of
finding general principles to explain the complex phenomena that occur in it is particularly
difficult. The idea that the organization of neural networks responds to energy homeostatic
constraints imposed on each neuron has been proposed as one of those general principles: The
Energy Homeostasis Principle [36]. Under this scheme, the behavior of the neural network
as a whole is presented as the consequence of each neuron seeking to maintain a homeostatic
energy level.

Specifically, from the perspective of the Energy Homeostasis Principle, the brain is an or-
gan that has a high energy demand and, for each of the constitutive elements that compose
it -neurons- to function properly, the existence of synchronization between energy supply
and consumption is essential, thus indicating the relevance of the administration and energy
restrictions in its operation. Given this relationship, the energy budget of each neuron and
how it manages it has an impact on its behavior. Moreover, since there are synaptic connec-
tions, the individual behavior of a presynaptic neuron has consequences on the postsynaptic
neurons connected to it and thus the interaction imposes an energy consumption on the post-
synaptic neurons, displacing them from their energy balance. In this way, the postsynaptic
neuron will also modify its behavior successively affecting other neurons. The foregoing shows
how a local energy administration rule can generate a population modularity effect, through
a recursive mechanism. In this manner, the global behavior observed in neural networks
emerges, mainly, as a consequence of the energy administration of each neuron. That is, the
dynamics and structure of the neural network can be understood as the projection of a local
energy rule on the functioning of the network as a whole.

Finally, regarding the relationship between neural networks, Energy Homeostasis Princi-
ple and artificial intelligence, it is important to mention the possible impact of these studies
on the development of algorithms for learning in Spiking Neural Networks (SNNs). SNNs
correspond to a type of artificial neural networks (ANNs) that, unlike classical ANNs, respect
some mechanisms that are typical of the functioning of biological neural networks, such as the
inclusion of certain types of synaptic plasticity (Spike-Timing Dependent Plasticity) and the
communication of binary signals asynchronously, analogous to the existence of action poten-
tials in the brain. This makes them interesting candidates for the efficient implementation of
deep neural networks and, simultaneously, allows efficient mapping to hardware [37]. In this
sense, SNNs are a meeting point between artificial intelligence and biological neural networks
that allow, in principle, to study the extension of neuronal and synaptic plasticity models
considering local homeostatic energy constraints, enabling the opportunity to propose im-
provements and modifications to these networks and their learning rules through biologically
plausible mechanisms.
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1.1 Hypothesis
This thesis considered the following hypothesis:

Local homeostatic energy constraints modulate network structure in biological neural net-
works. Specifically, we anticipate that the network actively avoids states where energy con-
sumption surpasses the capacity for on-demand energy production.

1.2 Objectives

1.2.1 General objectives
This research aims to build a theoretical framework that allows mathematically formalizing
and studying the dynamics described by individual neurons and networks composed of them,
in terms of their energy dependence.

1.2.2 Specific objectives
1. To develop and verify an energy-dependent single neuron model.
2. To define a conceptual framework and mathematically formalize synaptic plasticity

rules that include dependence on the available neuronal energy.
3. To mathematically analyze and computationally simulate a biological neural network,

including local homeostatic energy constraints.

1.3 Contributions of the thesis
The contributions of this thesis to the state-of-the-art are described hereby accordingly with
each of the next chapters; from Chapter 3 to Chapter 5:

• Chapter 3: Build on the leaky integrate-and-fire model, this chapter introduces a
new simple neuronal model that includes energy-dependencies affecting the neuron
dynamics. The results shown in this chapter were published in [38].

• Chapter 4: Build on previous spike-timing-dependent plasticity models, this chap-
ter introduces an energy-dependent spike-timing-dependent plasticity, where drops in
postsynaptic energy levels suppress synaptic potentiation. In addition, we derived an-
alytical expression predicting the postsynaptic energy level at the synaptic plasticity
fixed point.

• Chapter 5: Leveraging on the developed energy-dependent single-neuron and plastic-
ity models, in this chapter the effect of local metabolic constraints in spiking neural
networks is studied. Analytical expression for the network’s fixed points are derived,
predicting the metabolic constraints effects on network’s structure and activity. In ad-
dition, motivated by the relation between neurodegenerative diseases and metabolic im-
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pairments, through an Excitatory-Inhibitory balanced network, we simulate a metabolic
impairment at neuron level to study its effects in network’s structure and activity.

1.4 Thesis outline
This thesis is organized as follows: In Chapter 2 the basic biological background, as well
as classical computational neuroscience models, are introduced. In Chapter 3 the Leaky
Integrate-and-Fire model is extended to account for metabolic dependencies affecting neu-
ronal behavior, giving rise to the energy-dependent Leaky Integrate-and-Fire model. In
Chapter 4, based on previous plasticity models, a new energy-dependent plasticity rule is
introduced: the energy-dependent spike-timing-dependent plasticity model. Additionally,
plasticity fixed points are analytically studied and their existence is proven through in silico
experiments. Based on both, the energy-dependent neuronal model as well as the energy-
dependent plasticity rule, in Chapter 5 the impact of different metabolic constraints at the
neuronal and synaptic level in the network structure and activity is studied. The evolution
of the network towards attractor states is mathematically studied and theoretical predictions
are tested against computational simulations. Finally, in Chapter 6 the main conclusions of
this thesis as well as potential future work are described.
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Chapter 2

Background and theoretical
framework

2.1 Neurons
In order to build a theoretical framework that makes it possible to study the dynamics
of a neural network and the effect of energy management on it, a strategy is to fragment
this problem into smaller problems. The neuron is the cellkind which has been pointed as
essential for neural processing, which is why it constitutes the morphological and functional
unit of the nervous system. To build a neural model in which there is a relationship between
behavior and energy management, it is essential to understand how science has approached
the challenge of modeling neurons. The essentials of neural modeling are introduced for the
unfamiliar reader.

Neurons have a cell membrane that spatially separates them from the external environ-
ment, and the existence of mitochondria that provides them with energy. In the neuron, the
soma extends generating branched structures called neurites, as can be seen in Figure 2.1a.
Neurites can be classified into dendrites: a substructure that allows receiving signals sent by
another neuron, and axons: a protruding branch that gives the neuron the ability to send
electrochemical signals to others. As for the cell membrane, this is a selective permeable
barrier that isolates the cell from its exterior. The permeability of the cell membrane to
certain ions is possible through the presence of specific proteins embedded in the cell mem-
brane called ion channels (Figure 2.1b), these generate pores allowing the entry and exit of
specific ions. Commonly, the ions involved in neuronal processes are sodium (Na+), potas-
sium (K+), calcium (Ca2+) and chlorine (Cl−). The presence of these ions both inside and
outside the neuron, together with the existence of ion channels, gives rise to electrochemical
gradients between the outside and inside of the cell, producing an electrical potential called
membrane potential. Depending on the opening or closing of ion channels, the membrane
potential changes over time. Sometimes, if the neuron is out of electrochemical equilibrium,
it is necessary to move ions against their concentration gradient, a process that requires en-
ergy. The sodium potassium pump allows to perform this task; extrude three sodium ions
(Na+) and inject two potassium ions (K+) into the neuron at the expense of consuming one
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(a)

(b)

(c)

Figure 2.1: The neuron.
a) Structure and parts of a neuron. b) Cell membrane with the presence of ion channels
permeable to K+ and Na+ c) Measurement of cell membrane potential as a function of
external excitation. Adapted from [39].

ATP molecule.

From a functional point of view, the cell membrane, by isolating the neuron from its exte-
rior and presenting ionic channels that allow the selective passage of certain ions that produce
potential differences, can be represented as an object with electrical properties. Considering
those electrical properties, the study of neuronal behavior -specifically the dynamics associ-
ated with the membrane potential according to the entry or exit of ions, or as a consequence
of the excitation or inhibition that a neuron experiences- has historically been approached
from a circuital point of view by means of constructing equivalent electrical circuits. Let
us now briefly describe the neuron from a circuital point of view, by starting with the well
known Hodgkin-Huxley neuron model.

2.1.1 Hodgkin-Huxley model
The Hodgkin-Huxley (HH) circuit model [40] is one of the most detailed and its construction
was the reason why its authors won the Nobel Prize in Physiology in 1963. In the circuit
analogue of the neuron according to the HH model (Figure 2.2 and Equation (2.1)) the
current injected into the neuron is Iinj(t), the cell membrane potential is represented by v(t),
while Cm conceptualizes the capacitive characteristic of the cell membrane by acting as an
electrical insulator between the extracellular environment and the interior of the neuron.
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Figure 2.2: Hodgkin-Huxley model.
Circuit analogue of the Hodgkin-Huxley neural model. The circuit represents the cell mem-
brane and its electrical properties.

Each ionic channel is represented by a variable conductance that depends on the membrane
voltage (voltage-gated channel), gK and gNa correspond to the conductances of the sodium
and potassium channels respectively (with ḡK and ḡNa maximum conductance values), while
gL is associated with current leakage, since the cell membrane is an imperfect capacitor as
it has ionic channels that allow the escape of ions. Regarding the electrochemical gradients
between the inside and outside of the neuron, EK , ENa and EL represent the electrochemical
equilibrium value -for each type of ions- that a neuron has at rest. The chemical force
produced by the ionic concentration gradient is represented by a battery, where the value
of the associated electromotive force can be calculated by thermodynamic principles (Nernst
potential), as follows:

Cm
dv(t)

dt
= −ḡKn

4(v(t)− EK)− ḡNam
3h(v(t)− ENa)− gL(v(t)− EL) + Iinj(t), (2.1)

where the dynamics of x = (n,m, h) is described by the Equation (2.2):
dx(t)

dt
= αx(v)(1− x)− βx(v)x, (2.2)

where αx(v) and βx(v):

αx(v) =
x∞(v)

τx
,

βx(v) =
1− x∞(v)

τx
.

(2.3)

x∞(v) and (1−x∞(v)) are the steady state activation and inactivation values for each ion
channel respectively.

The HH model describes in detail the dynamics of ion channels and allows to accurately
simulate the temporal evolution of the membrane potential. However, the specificity of the
model entails such a complexity that its computational cost prevents the use of thousands of
these neurons to simulate networks [41]. In contrast, there are other types of neural models
that capture some fundamental properties of the neuron, making it possible to describe the
membrane potential in a simpler manner and avoiding high computational costs by omitting,
mainly, certain details about the operation of ion channels, as explained below.
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2.1.2 Integrate-and-Fire models
Despite the relevance of the Hodgkin-Huxley model from a biological point of view, there
are much simpler neuronal models that are tremendously useful for simulating and studying
spiking neural networks. In 1907, long before the creation of the Hodgkin-Huxley neuronal
model, Lapicque introduced a simple neuronal model that represent the neuron as an electric
circuit consisting of a parallel capacitor and resistor: the integrate-and fire model [42]. Be-
cause the aforementioned circuit cannot generate action potentials, Lapicque postulate that
when the membrane capacitor reach a certain threshold potential, an action potential would
be generated and the capacitor would be discharge, resetting the membrane potential. Based
on Lapicque’s idea, there has been a great development of integrate-and-fire models. In a
general nonlinear integrate-and-fire model, the membrane potential v evolves according to:

τm
dv(t)

dt
= f(v(t)) +R(v(t))I(t), (2.4)

where τm is the neuron time constant, R(v(t)) is the voltage-dependent input resistance,
and I(t) the incoming current to the neuron. Different choices of the function f(·) allows
to obtain different integrate-and-fire models, such as the quadratic integrate-and-fire [43],
the adaptive exponential integrate-and-fire [44], or the leaky integrate-and-fire (LIF) model.
In particular, in the leaky integrate-and-fire model the function f(·) defines a linear voltage
dependence, which simplifies the analytical study of the neuron as well as the mathematical
analysis of large-scale neural networks. Therefore, we focus on the leaky integrate-and-fire
model. However, for more details about the general nonlinear integrate-and-fire model and
specific models not covered here, the reader is refered to [43].

2.1.2.1 Leaky Integrate-and-Fire model

The LIF neuron model is a single compartment model that describes the membrane potential
in terms of the synaptic inputs and the current that it receives. An action potential is
generated when the membrane potential reaches a fixed threshold (vth) [45]. The model is
described by the dynamic of the neurons membrane potential v(t) as follows:

Cm
dv(t)

dt
= −gleak(v(t)− vrest) + I(t), (2.5)

where Cm is the membrane capacitance, vrest is the equilibrium potential of leak channel
from the resting state, gleak = R−1 is the conductance associated with the current leakage
through the cellular membrane and the passive membrane time constant is τm = (gleak/Cm)

−1.
Whereas I(t) describes the incoming current to the neuron; it accounts for the effect of
synaptic input and the current stimuli presented by an external device.

If the membrane potential crosses the threshold vth from below at time ts, a spike is emitted
at ts (Eqn. (2.6)) and the neuron’s potential is immediately reset (limδ→0;δ>0 v(t

s+δ) = vreset)
to a new value vreset < vth for a period of time called the refractory period, and denoted by
τref:

ts = {t|v(t) = vth}. (2.6)

This straightforward conceptualization of the neuron is the root of a wide variety of model
extensions that aim to improve the original LIF models characterization of real neuronal
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Figure 2.3: Leaky Integrate-and-Fire model.
Circuit representation of the leaky integrate-and-fire model. gleak = R−1 is the conductance
associated with current leakage, Cm is the membrane capacitance, vrest the resting voltage of
the cell, vth is the threshold which determines the occurrence of an action potential, and I(t)
is the incoming current to the cell.

behavior [41]. Figure 2.3 shows a circuital representation of the leaky integrate-and-fire
model. The incoming current I(t) to the neuron in Eqn. (2.5) could be split in two terms:

I(t) = Iex(t) + Isyn(t), (2.7)

where Iex(t) is the injected current to the neuron from an external source, and Isyn(t) is
the current coming from connected presynaptic neurons. A more detailed explanation and
analysis of the effect of Isyn(t) in the LIF will be given in sections 2.2.

Subthreshold dynamics

To gain some intuition about the integrate-and-fire model, let us study the neuron dynamics
omitting the threshold effect and synaptic currents. To do so, we can set the firing threshold
to infinity (vth = ∞) and calculate the response of the system (2.5) to a pulse current at
time t = 0 injecting q total charge (i.e.

∫∞
−∞ I(t)dt = qδ(t)). If the initial condition for the

membrane voltage is v(0) = v0, then the membrane voltage evolves as follows:

v(t) = vrest + [v0 − vrest]e
−t/τm +

q

Cm

e−t/τm for t ≥ 0. (2.8)

Thus, using the superposition principle and the impulse response from Eqn. (2.8), we
can calculate how Eqn. (2.5) evolves when an arbitrary time-dependent input current I(t) is
injected:

v(t) = vrest + [v0 − vrest]e
−t/τm +

R

τm

∫ t

0

e−(t−t′)/τmI(t′)dt′, (2.9)

which is the convolution between the impulse response of the system and the current I(t).

Threshold and spikes

Now we are prepared to include the threshold vth and study the neuron dynamics. We denote
the firing times of the neuron i by t

(f)
i , where f is the spike label. Formally, the spike train
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S of the neuron i is denoted by a sequence of firing times:

Si(t) =
∑
f

δ(t− t
(f)
i ). (2.10)

It will be shown how the LIF model response if a constant supra-threshold current Iex >
(vth− vrest)/R is injected to the cell when v(0) = vrest. Using Eqn. (2.5) the voltage dynamic
before reaching the threshold can be derived:

v(t) = vrest + IexR[1− e−t/τm ]. (2.11)

Using Eqn. (2.11) and imposing v(t∗)
!
= vth

1 it is possible to calculate the time t∗ at which
an action potential occurs:

t∗ = τm ln
( IexR

IexR− (vth − vrest)

)
= τm ln

(v∞ − vreset

v∞ − vth

)
,

where v∞ = IexR + vreset. After each action potential the neuron will be in the refractory
period clamped to vreset (without integrating any current) for τref ms. Then, the period
between action potentials (also called the interspike interval) for a constant supra-threshold
current Iex is described as follows:

Tn = τref + τm ln
(v∞ − vreset

v∞ − vth

)
. (2.12)

Consequently, the neuron firing rate will be T−1
n kHz, and for high excitatory currents

(Iex → ∞) the firing rate is ν ≈ τ−1
ref KHz. In section 2.2, it will be shown how this analysis

could be extended when synaptic currents are included.

2.2 Synapses
Synapses enable electrical signals transmission between neurons. Let us briefly described how
synapses allows signal transmission from a biological point of view, and then explain how
this object can be abstracted and mathematically modeled.

When an action potential reaches the axon terminal of the neuron producing it, neurotrans-
mitter release occurs. These neurotransmitters are coupled to receptors on the postsynaptic
neuron (see Figure 2.4). The most common excitatory neurotransmitter is glutamate and,
after being released by the presynaptic neuron, it is coupled to AMPA and NMDA recep-
tors, stimulating their opening and generating a small depolarization in the receiving neuron.
This depolarization is called an excitatory postsynaptic potential (EPSP). If the neuron that
transmits the action potential is inhibitory, then an analogous process occurs, but instead of
producing depolarization in the receiving neuron, it produces hyperpolarization, in this case
the induced voltage variation it is called an inhibitory postsynaptic potential (IPSP).

1In this thesis, the a
!
= b notation is used to express that a has to be equal to b.
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Figure 2.4: Neurotransmitter release.
The presynaptic neuron releases neurotransmitters (glutamate) activating specific receptors
on the postsynaptic neuron, causing it to depolarize. Figure taken from [39].

2.2.1 Abstract synapses
From a phenomenological perspective, we are interested in describing how the aforementioned
postsynaptic potential (PSP) can be produced by the effect of incoming synapses to the
neuron. Therefore, let’s focus on how Isyn (Eqn. (2.7)) can be mathematically described and
the effect that it produces in the membrane potential of the postsynaptic neuron. In general,
synaptic interactions are modeled by stereotypical functions of time called interaction kernels
ε, and the impact of all incoming synapses to a neuron can be described as follows:

f syn(t) =
∑

synapses k

∑
spike s

wkεk(t− ts), (2.13)

where wk is the weight or strength of the kth synapses. In most models, the shape of the inter-
action kernel ε it is constrained by the biophysics of the synaptic interaction. Some widely
used interaction kernels are: α-function (ε(t) = Θ(t)te−t/τsyn) and the exponential kernel
(ε(t) = Θ(t)e−t/τsyn), where Θ(·) denotes the Heaviside step function. For the upcoming
analysis, we will focus on the synaptic interaction under the exponential kernel.

In principle, there are two main approaches to model synapses: conductance-based and
current-based synapses. Particularly, because of the chemical nature of synapses transmis-
sion, synapses can be modeled as a change in the conductance of the neuron’s membrane
towards the reversal potential of the ion type. In contrast, the membrane potential of the
soma changes because it receives a current that is passively propagated towards it. There-
fore, if we model the neuron as a point and assume that this point represents the soma of the
neuron, then is natural to model the synapses as a current (for a more detailed discussion
about the subject, the reader is refered to [46, 47]).
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2.2.1.1 Conductance-based synaptic interaction

As previously mentioned, modeling the synaptic interaction as a dynamic conductance re-
lated to a specific reversal potential associated with a particular ion type it is coherent with
chemical synapses interactions. In principle, different ion types have different reversal poten-
tials. In this case, the conductance of the kth synapses gk with ε interaction kernel can be
written:

gk(t) =
∑

spike s

Θ(t− ts)wkεk(t− ts), (2.14)

allowing to express f syn as:

f syn(t) =
∑

synapses k

∑
spike s

Θ(t− ts)wkεk(t− ts)(E
rev
k − v), (2.15)

where Erev
k is the reversal potential of the kth synapses. Then f syn is the synaptic injected

current to the neuron (f syn = Isyn), and we can plug it in the LIF Eqn. (2.5), obtaining:

Cm
dv

dt
= −g(v − vrest) + Iex +

∑
synapses k

∑
spike s

Θ(t− ts)wkεk(t− ts)︸ ︷︷ ︸
gk(t)

(Erev
k − v). (2.16)

Using the exponential kernel for the conductance’s dynamic we obtain:

Cm
dv

dt
= −g(v − vrest) + Iex +

∑
synapses k

∑
spike s

Θ(t− ts)wke
−(t−ts)/τsyn(Erev

k − v). (2.17)

Please note that using the conductance-based approach, the PSP depends on the distance
between the membrane voltage and the reversal potential. Therefore, the summation of PSP
is nonlinear. Thus, finding closed-form expressions for the membrane voltage of the neuron
under the conductance-based approach is more difficult than using the current-based synaptic
interaction approach, as we will explain in the following subsection.

2.2.1.2 Current-based synaptic interaction

As previously mentioned, an action potential of a presynaptic neuron generates a signal that
is propagated through the synapse generating a current that is passively propagated to the
soma of the postsynaptice neuron, modifying the membrane voltage of the soma. Therefore,
from a point-neuron perspective (assuming the model is representing the soma) it is possible
to describe the synaptic interaction as a current-based process. In this scenario, instead of
modifying the conductance of the synapse as in Eqns. (2.14) and (2.15), the kernel is used
to describe the current shape directly. Consequently, the synaptic current generated by the
kth presynaptic neuron, when an exponential kernel is used, is described by:

Iksyn(t) =
∑

spike s

Θ(t− ts)wke
(t−ts)/τsyn . (2.18)
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Plugging Eqn. (2.18) into Eqn. (2.5) we obtain:

Cm
dv

dt
= −g(v − vrest) + Iex +

∑
synapses k

∑
spike s

Θ(t− ts)wke
−(t−ts)/τsyn

︸ ︷︷ ︸
Iksyn(t)

, (2.19)

which allows to linearly sum up PSP, simplifying the search of closed-form expressions for
the membrane potential. Accordingly, in this work we will focus on current-based synapses
and now we will show some analytical expression for the membrane potential when a current-
based Isyn is received.

Synapses and membrane potential dynamic

The simplest case is when there is no external current (i.e Iex = 0), v(0) = vrest, and the
neuron receives only one spike at time tf with shape:

Isyn(t) = Θ(t− tf )we−(t−tf )/τsyn . (2.20)

For this case, the membrane potential of the neuron evolves as follows:

v(t) = vrest +
Rwτsyn

(τsyn − τm)
[e−(t−tf )/τsyn − e−(t−tf )/τm ]. (2.21)

Because the effect of current-based synapses can be linearly summed up for different spikes
and synapses, it is possible to use Eqn. (2.21) to find a general expression describing the
membrane potential dynamic for a postsynaptic neuron connected with several presynaptic
neurons, as follows:

v(t) = vrest +
∑

synapse k

∑
spike f

Rwkτ
k
syn

(τ ksyn − τm)
[e−(t−tf )/τksyn − e−(t−tf )/τm ]. (2.22)

In the previous analysis we have assumed that synaptic connections are static, but in our
brains the strength of the connection between neurons are constantly changing. In section
2.3 some of the mechanisms behind the change between neuronal connections explained.

2.3 Plasticity in the brain
The connections between neurons that allow the transmission of electrochemical messages
change over time according to experience and allow structural modifications in the brain. The
concept of synaptic plasticity refers to the flexibility that these connections enjoy. Without
synaptic plasticity, the brain would not be able to modify the strength of connections between
neurons. It is currently thought that these structural changes are the mechanisms behind
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cognitive processes such as learning and memory, so synaptic plasticity would be essential to
accomplish our daily tasks and develop new skills.

Synaptic plasticity occurs at different time scales [48], short-term plasticity [49], for ex-
ample, is only maintained on time scales of less than one second. In contrast, long-term
plasticity considers persistent changes in the synaptic response that can be generated in the
order of miliseconds and last for hours [50, 51], such potentiation and depression phenomena
are called long-term potentiation (LTP) and long-term depression (LTD), respectively. There
are also slower stabilization processes, such as homeostatic plasticity (or synaptic scaling)
that occurs on the order of minutes to hours [52]. In this work we will mainly study long-
term synaptic plasticity. Particularly, the long-term plasticity described by Spike-Timing-
Dependent-Plasticity (STDP).

2.3.1 Spike-Timing-Dependent Plasticity
Spike-Timing-Dependent-Plasticity (STDP) roots can be tracked back to Hebb’s ideas about
plasticity [27]. For Hebb, long-term plasticity phenomena can be summarized as follows:
‘Cells that fire together, wire together’. Formalization of Hebb’s ideas in their simplest form
can be achieved using the equation:

ẇ = F (w, νpre, νpost), (2.23)
where ẇ described the rate of change of the weight w, F (·) is an arbitrary function, and νpre
and νpost are the pre- and postsynapic firing rate, respectively. However, although relaying
on firing rate, Eqn. (2.23) neglects the relevance of precise timing between spikes, which is
in opposition with several experiments which demonstrate the relevance of spike timing on
synaptic weight evolution [51, 50].

STDP is a temporal asymmetric form of Hebbian learning induced by tight temporal
correlations between the spikes of pre- and postsynaptic neurons [53, 51, 50]. There are
different protocols for measuring how the spike times affect synapse modification, however,
one of the most recognized results are the measurement made in [50] (see Fig. 2.5), where
the effect of different pre- and postsynaptic spike-time on synaptic strength can be clearly
recognized.

Mathematically, general STDP can be described as follows:
ẇ = H(Spre, Spost), (2.24)

where ẇ describes the rate of change of the weight w and H is some arbitrary function of
the pre- (Spre) and postsynaptic (Spost) spike trains.

There are several ways in which H(·) can be described to fit the data in Fig. 2.5, but for
now we will focus on one of the most accepted formalization of STDP across the computa-
tional neuroscience field, the one introduced in [54]. In this formalization, a single pair of
presynaptic and postsynaptic action potential with time difference ∆t = tpost − tpre induces
a change in synaptic efficacy ∆w as follows:

∆w =

{
λf+(w)K(∆t), if ∆t > 0.

−λf−(w)K(∆t), if ∆t ≤ 0.
(2.25)
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Figure 2.5: Experimental in-vitro measurement of STDP for an excitatory synapse.
Spike timing refers to the difference in spike-time between the pre and the postsynaptic cell
(∆t = tpost−tpre). Dark circles represent the percentage in synaptic change for different spike-
times. If the postsynaptic cell fires after the presynaptic cell, then the synapses experience
potentiation. If the postsynaptic cell fires before the presynaptic cell, then the synapses is
depressed. Higher potentiation and depression occurs when there is a small spike-timing
difference, while for bigger spike-timing difference between cell, potentiation and depression
are weaker. Figure taken from [50].

Where the synaptic efficacy w is normalized to [0, 1]. The learning rate λ (0 < λ ≤ 0) scales
the magnitude of the individual weight change, and K(·) is a temporal filter K(x) = e−‖x‖/τstdp .

In principle, potentiation and depression has their own τstdp time constant. They will
be denoted by τ+ for potentiation, and τ− for depression. Finally, the updating functions
f+(w), f−(w) ≥ 0 scale the synaptic changes taking into account the current weight value,
and has the form of a power law with non-negative exponent µ+ for potentiation, and µ− for
depression (see Fig. 2.6):

f+(w) = (1− w)µ+ and f−(w) = αwµ− , (2.26)

with α > 0 accounting for the asymmetry between the scales of potentiation and depression,
as can be seen in Fig. 2.5, where the maximum magnitude of depression is smaller than the
maximum magnitude of potentiation. Note that modifying µ+ and µ− in Eqn. (2.26), allows
to recover previous STDP rules such as the ones introduced in [55, 56, 57], unifying previous
rules in a single framework. Thus, Eqn. (2.25) gives a general rule as a starting point for
creating an energy-dependent STDP rule, and is the one that we will use later in section 4
as a starting point for energy-dependent STDP.
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Figure 2.6: Non-linear temporal asymmetric Hebbian plasticity
Effect of the parameter µ on the updating functions f+(w) (top half) and f−(w) (bottom
half) for µ = 0, 0.02, 0.15, 0.5, 1 (α = 1). When µ = 0 there is no dependence of the weight
value in the updating rule (additive rule), while for µ > 0 the updating rule depends on the
current weight value (multiplicative rule). Figure taken from [54].

Spike-timing and neuromodulators

Classical Hebbian learning rule, as STDP, puts the emphasis on joint pre- and postsynaptic
firing times, but neglects the potential role of neuromodulators. Three-factor learning rules
[58], extends STDP rules for accounting the effect from neuromodulators in plasticity. In
general, any three-factor synaptic plasticity rule can by written as:

ẇ = F (M,Spre, Spost), (2.27)

where Spre and Spost are the pre- and postsynaptic spike trains, respectively and M is the
modulator signal. Since three-factor rules are a modern generalization of the original concept
of Hebb, they are also called neo-Hebbian. Particularly, the function F (·) is sometimes
assumed to consist of a Hebb-like term H(Spre, Spost) ,multiplied by a modulator function
G(M), hence:

ẇ = F (M,Spre, Spost) = G(M)H(Spre, Spost). (2.28)

Under the energy homeostasis principle, available energy in the neuron can be thought as
a neuromodulator affecting classical STDP rules, as we will explore in more detail in section
4.
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Chapter 3

Energy-dependent Leaky
Integrate-and-Fire

The content of this chapter has been published in the European journal of Neuroscience1.
We thank Taiki Harada for helping throughout the project, mainly with the code and the
writing, and Rodrigo Vergara, Pedro Maldonado, and Marcos Orchard for supervising and
guiding the work.

It is widely accepted that the brain, like any other physical system, is subjected to physical
constraints that restrict its operation. The brain’s metabolic demands are particularly critical
for proper neuronal function, but the impact of these constraints continues to remain poorly
understood. Detailed single-neuron models are recently integrating metabolic constraints,
but these models’ computational resources make it challenging to explore the dynamics of
extended neural networks, which are governed by such constraints. Thus, there is a need for
a simplified neuron model that incorporates metabolic activity and allows us to explore the
dynamics of neural networks. This chapter introduces an energy-dependent leaky integrate-
and-fire (EDLIF) neuronal model extension to account for the effects of metabolic constraints
on the single-neuron behavior. This simple, energy-dependent model could describe the
relationship between the average firing rate and the Adenosine triphosphate (ATP) cost as
well as replicate a neuron’s behavior under a clinical setting such as amyotrophic lateral
sclerosis (ALS). Additionally, EDLIF model showed better performance in predicting real
spikes trains -in the sense of spike coincidence measure- than the classical leaky integrate-
and-fire (LIF) model. The simplicity of the energy-dependent model presented here makes
it computationally efficient and, thus, suitable for studying the dynamics of large neural
networks.

During the last decade, some of the classical single-neuron models have been extended to
include the relationship between available energy and electrophysiological activity [22, 23,
25]. For example, the study conducted by Chander & Chakravarthy (2012) [22] illustrated
how different initial ATP levels affect the neuron’s behavior, leading to different types of
activities. In the study by Le Masson et al. (2014) [23] the Hodgkin-Huxley model was

1Link to the article: 10.1111/ejn.15326
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extended to include behavioral dependencies on the neuronal metabolic dynamics in order to
study the effects of energetic neuronal dysfunction. These results support the idea that the
neuron’s available energy generates a significant impact on its activity. However, these multi-
compartment and highly detailed Hodgkin-Huxley models demand increasing computational
resources. This high computational cost makes them impractical for studying the effect of
energetic dynamics on large neuronal population networks (for a further review of biological
plausibility and computational resources trade-off of different neuronal models, see [41]).

As an alternative, the leaky integrate-and-fire (LIF) model is a popular and widely used
single-neuron model. It is characterized by its simplicity, and at the same time, it is suffi-
ciently complex; this enables it to capture many of the essential features of neural dynamics
[45]. These attributes make the LIF model a suitable tool for the study of sizable neuronal
population dynamics simulations. Despite the popularity and simplicity of the LIF model,
it is not clear how we can use it to study large neuronal populations under a metabolic per-
spective. The main advantage of the LIF model is the balance between its simplicity and
capacity to capture essential features of neuronal behavior. Despite these attributes, as men-
tioned previously, the model and its consecutive extensions neglect metabolic dependence in
their dynamic. The main reasons for this omission are the following: (1) The model assumes
that the neuron has unlimited access to energy resources. (2) the available energy is restored
instantaneously. (3) Under normal conditions, the metabolic effect on neuronal behavior is
negligible.

Notwithstanding such omission, a metabolic imbalance could have a meaningful impact on
neuronal behavior and the development of neurodegenerative diseases. Therefore, given the
relevance of the metabolic dynamics for the brain’s proper function, it is beneficial to have
a simple single-neuron model that can account for the relationship between the metabolic
dynamic and neuronal behavior. The aforementioned model allows us to reinterpret the
single-neuron behavior under metabolic constraint. In this chapter, we develop a simple
single-neuron model that incorporates metabolic rules. Considering that single-neuron mod-
els are essential building blocks of in silico extensive neuronal population simulations, this
constituted the first step required to explore neural network dynamics that are constrained
by metabolic demands. Concretely, we extend the LIF model to account for metabolic de-
pendencies. Therefore, we grant it the simplicity and computational inexpensiveness but
allow it to describe metabolic dynamics and dependencies. We focus on evaluating three rel-
evant aspects of this single-neuron extended model: (1) comparing its performance against
the classical LIF model using spike recording from real neurons, (2) evaluating its biologi-
cal plausibility in relation with in vitro empirical data, and (3) assessing whether metabolic
predictions of more elaborate models can be replicated.

3.1 EDLIF formalization and dynamics
We used the LIF model’s structure and extended it to account for the relationship between
energetic dynamics and neuronal activity. We termed this new model the energy-dependent
leaky integrate-and-fire model (EDLIF). Specifically, we used an incomplete repolarization
mechanism [59] and made it ATP-sensitive, thereby making the post-reset membrane poten-
tial ATP-dependent. We examined how LIF model can be extended through an ATP-sensitive
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incomplete repolarization mechanism. While developing these concepts, we also analyzed the
cost and dynamic of energy consumption in the neuron.

The extension of the LIF model through the inclusion of adaptation terms has led to a
major improvement in the models predictive capabilities. There are several explanations for
the inclusion of adaptation terms; however, ultimately, the functioning of the neuron rests
on its ability to produce energy. Specifically, the sodium-potassium pump relies on available
ATP so that proper function can restore the resting potential. Consequently, neuronal be-
havior depends on energy production. Therefore, an energetic imbalance should affect several
adaptation processes in the neuron, but it is not clear how previous extended LIF models
made their adaptation process metabolic-dependent or how they could be used to explore
the neuronal dynamics while accounting for metabolism. EDLIF model addresses this ques-
tion by making the adaptation process explicitly dependent on the available neuronal energy
through the energy-dependent partial repolarization mechanism.

3.1.1 Energy Dependent Leaky Integrate-and-Fire model
Our proposed model is, as its name suggests, an energy-dependent neuronal model inspired
by the LIF. The model’s main objective was to include energy dependence in the neuronal
dynamics while maintaining the LIF model’s simplicity, so it requires low computational
resources and is suitable for the simulation and study of the networks of thousands of neurons
from an energy-dependent perspective. In this regard, the dynamic of neurons’ membrane
potential is to be described in the same way as done in Eqn. (2.5). However, the repolarization
mechanism induces an energy-dependent relationship, and it will affect the neuron’s temporal
evolution if an energy imbalance is present. In the EDLIF model, the neuron’s energy
dynamic is described by the intracellular ATP concentration dynamics.

3.1.1.1 ATP dynamics

In our model, the ATP dynamics are characterized while considering two collections of pro-
cesses: those that supply ATP to the neuron (As(t) (mM/ms)), and those that consume
ATP (Ac(t) (mM/ms)). The ATP dynamic concentration (A(t) (mM)) can be formalized
as follows [36]:

∂A(t)

∂t
= As(t)− Ac(t), (3.1)

where both terms As(t) and Ac(t) are divided per volume unit.

The observation that the neuron has relatively constant ATP can be interpreted as a
reflection of homeostatic feedback. Thus, the neuron’s homeostatic mechanisms keep ATP
levels close to the homeostatic ATP level (AH). In this work, the homeostatic feedback is
introduced explicitly in the ATP production dynamics, which fixis mathematically formalized
by Equation (3.2). Thus, ATP production depends on two terms: the actual ATP level with
respect to a homeostatic one (K(AH −A(t))) and a basal production term (AB) accounting
for resting potential and housekeeping activities:

As(t) = K(AH − A(t)) + AB, (3.2)
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where the parameter K ((1/ms) units) s the rate at which ATP is produced and its value is
equal to 1 [23].

3.1.1.2 Energy consumption by neuron

The neuron, like any other cell, requires energy to carry out its activities, which can be
classified as signaling and non-signaling [18]. Within the non-signaling activities, the neuron
uses energy to carry out maintenance processes (such as organelle traffic and the synthesis
of proteins and molecules) and conserve the membrane potential during rest. Signaling
activities are present only during the communication periods, such as action and postsynaptic
potentials and presynaptic activity associated with synaptic transmission.

Since we are working with a single-neuron model, our main concern is quantifying the
energy expenditure related to general homeostasis maintenance (house-keeping: EHK), con-
ditions required for nonsignaling (maintaining resting potential: ERP ), and signaling (action
potentials: EAP ). Consequently, the total energy consumption (Ac(t)) is derived by the sum
of EHK , ERP and EAP . These three energetic budget items have been already estimated as
shown in Table 3.1. These specific values emerged from the combination of the anatomic
and physiologic measurements and the theoretical calculation of bottom-up energy budget
using biophysical properties in conjunction with electrophysiological and morphological data
[60, 6]. The associated postsynaptic potential and presynaptic activity were beyond the scope
of this study. Since the total amount of energy consumed per action potential is not instantly

Table 3.1: Energy consumption.
Energy consumption related to different processes in a rat excitatory neuron, using experi-
mental data from [6].

Activity Unit energy consumption
House-Keeping (EHK) 8.41× 108 ATP/(neuron · s)
Resting potential (ERP ) 3.42× 108 ATP/(neuron · s)
Action Potential (EAP ) 1.25× 108 ATP/(neuron · spike)

expended, the consumption is described in a biologically plausible way through the inclusion
of a time-varying function (see Equation (3.3)) [61].This smooth decay in time reflects the
characteristic dynamic of the metabolic energy expenditure in an action potential in time.

Aap(t) =
(t− t

′
)

τ 2ap
· exp

(
− (t− t

′
)

τap

)
, ∀t ≥ t

′
, (3.3)

where t
′ is the time in ms at which the action potential occurs and τap = 3945.66 ms.

To determine the parameter τap, a detailed biophysical model of the brain’s metabolic in-
teractions is used. The model integrates three different approaches: the Buxton-Wang model
of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability,
and a biophysical model of metabolic pathways [25]. To reach equilibrium, the model is
left without stimulation for more than 100 seconds. Then, the neuron is stimulated to only
produce one spike (see Figure 3.1) and study the ATP dynamic imbalance that it produces
(see Figure 3.2).
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Figure 3.1: Metabolic-dependent Hodgkin-Huxley membrane potential.
Membrane potential generated by a detailed Hodkin-Huxley model accounting for biophysical
description of metabolic pathways [25].

Figure 3.2: Available ATP dynamic and spike occurrence.
The occurrence of one spike produces the ATP dynamic shown in the blue line, while the green
line shows the curve obtained by fitting τap in Eqn. (3.3) through least square minimization.
For clarity, the y-axis ticks have been autoscale using the upper left number above the Figure.
Therefore, every [ATP] value it is equivalent to the base number (2.1973, plus the offset 10−5)
times the tick-values.

3.1.1.3 Energy dependencies and incomplete repolarization

So far, we have introduced energy expenditure to EDLIF; however, we still need to factor
in how energy availability may impact neuron physiology. ATP imbalance in the neuron is
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known to alter the sodium-potassium pump. Specifically, a decrease in ATP concentration
implies a partial restoration of the resting potential as can be inferred from the following
equation: [23]:

pump + 3 Na +
i + 2 K +

e + ATP
kp1

kp2
pumpactive

pumpactive
kp3

kp4
pump + 3 Na +

e + 2 K +
i + ADP + P,

(3.4)

where ADP is adenosine diphosphate, ‘pump’ and ‘pumpactive’ represent two possible states for
the sodium-potassium pump; Na+i and Na+e are the intracellular and extracellular sodium
concentrations, respectively K+

e and K+
i are the extracellular and intracellular potassium

concentrations, respectively; ATP is the ATP concentration. This scheme shows that lower
ATP concentration disables the functioning of the sodium-potassium pump, thereby reducing
the rate at which sodium and potassium concentrations are restored. As such, the neuron is
maintained above the resting potential. From Eqn. (3.4) it follows that when the occurring
action potential and the neuron have ATP deficiency, the neuron remains slightly depolarized
with respect to its resting potential, i.e. it experiences partial repolarization, making it more
likely to produce a new action potential under stimulation.

One method that allows the modification of the membrane potential after the occurrence of
an action potential is partial reset. Incomplete repolarization or partial reset is a simple and
powerful tool for controlling the irregularity of spike trains fired by a leaky integrator neuron
model, and it is a computationally simple way to reproduce the effects of more complex
dynamical properties of the membrane. Previous works have shown that incorporating this
mechanism into the LIF model produces highly irregular firing that is similar to the one
observed in biological neurons [59]. The mechanism works by resetting the potential of the
capacitor to V (t) = βVth after an action potential occurs where Vth is the firing threshold
and β is called the reset parameter. In the EDLIF model, we use the reset parameter (β) to
introduce variability in the firing of the neuron, but we made this beta term ATP-dependent
in accordance with the interpretation of Eqn. (3.4). In our approach, we used sigmoidal
relation to link the ATP level with resetting potential and optimize the slope of the sigmoid
to find the sensitivity of the model to ATP level imbalance and its effect on resetting potential.
Our model allows the construction of a soft and flexible function linking the available energy
and its effect on neuronal behavior through reset potential. Nonetheless, it should be noted
that other similar functions could be used for the same purpose.

Despite the highly irregular firing that can be observed in the LIF model through the
inclusion of partial reset, the biological correlates that support this inclusion can not be
clearly determined. In our model, we include and reinterpret the partial reset mechanism
from a metabolic perspective. Specifically, we include the relationship between ATP level,
sodium-potassium pump, and repolarization level formalized in Eqn. (3.4) by making the
partial reset mechanism energy-dependent. Our model includes ATP dependencies explicitly
in β := β(A(t)) and follows the rationale explained above through the following formalization
exhibited:

β(A(t)) = 1 + α

(
2− 2

1 + e
−AH−A(t)

AH
γ

)
, (3.5)

where α = EL/Vth − 1. Based on Eqn. (3.5), we assume that β dependencies on ATP
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follow a sigmoidal relationship. This relationship represents the membrane repolarization
voltage values after an action potential occurs as a function of the available ATP in the
neuron. Given that the precise curve of the repolarization membrane voltage depending on
ATP is unknown, we introduced a sensitivity parameter γ, to account for this uncertainty.
This parameter provides the flexibility to adjust the intensity at which the repolarization
membrane voltage value is affected by ATP level changes. To illustrate this relation, Fig. 3.3
presents how higher values of the sensitivity γ account for a repolarization membrane voltage
that is extremely sensitive to ATP displacement from homeostatic ATP (ATPH). Conversely,
lower γ values represent a smoother Vreset(A) transition as the ATP level changes. In other
words, in the absence of stimuli, higher γ values will increase the difficulty of achieving
the equilibrium potential EL after an action potential occurs, keeping the neuron slightly
depolarized with respect to the equilibrium potential for a longer time. In contrast, in
the same scenario, EL will be achieved faster with lower values of γ. The aforementioned

Figure 3.3: Available ATP and repolarization.
Relationship between available ATP ratio (ATP : ATPH) and reset voltage Vreset, depending
on the sensitivity parameter γ.

relationship between γ, neuronal ATP level and firing rate can be theoretically explored when
a constant suprathreshold stimuli (Iinj = I0 > Vthgleak) is applied to the neurons model.

Given that the EDLIF model has an ATP-dependent reset potential Vreset(A) = β(A)Vth,
using Equation (2.5) with initial condition vm(t = 0) = Vreset(A), gives the following trajec-
tory for the membranes potential:

vm(t) = v∞[1− e−t/τm ] + Vreset(A)e
−t/τm , (3.6)

where v∞ = (I0/gleak+EL) . The time it takes for a spike to be generated (i.e., the interspike
interval, s0) is obtained imposing vm(s0) = Vth [45]:

s0(A) = τmln
[v∞ − Vreset(A)

v∞ − Vth

]
. (3.7)

Therefore, the corresponding ATP-dependent spiking-rate λ(A) is described by the fol-
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lowing equation (see Fig. 3.4):
λ(A) = (τref + s0)

−1. (3.8)

Figure 3.4: Neuronal Firing rate and ATP.
Neuronal theoretical firing rate for different γ values at distinct ATP level when a constant
suprathreshold stimuli (Iinj = I0 > Vth) is applied. I0 = 1000 pA.

As Fig. 3.4 shows, an ATP displacement from homeostatic ATP induces a different effect
in the neuronal firing rate depending on the sensitivity parameter -γ- value. Higher values
of γ imply an increasing sensitivity to slight ATP displacement from AH . On contrary, with
small values of γ ∼ 0, the neuron is not affected by ATP displacement, as in the classic LIF
or other GLIF models.

3.1.2 Parameter fitting
To fit our model to real spike trains and compare performances between EDLIF and LIF, we
optimized both models using the dataset supplied by QSNMC ("Quantitative Single Neuron
Modeling: Competition 2009") [62]. The QSNMC data comprise 13 voltage recordings of a
layer five pyramidal neuron with the same stimulation for 39 seconds. Data were divided
into training and test sets. First, we fitted the membrane conductance (gL = 32.9 µΩ−1),
resting membrane potential (Vreset = −67.54 mV ), and equilibrium potential of the leak
channel (EL = −67.54 mV ) from the resting state. Specifically, we obtained them from the
first five seconds of voltage recordings of the QSNMC dataset. The remaining 34 seconds
of the recordings were divided as follows: the first 80% was used for fitting the remaining
parameters and the last 20% for testing the model.

To fit the parameters of the model, we used the particle swarm optimization (PSO) al-
gorithm, which was inspired by birds flocking behavior, where individuals share the best
positions for getting food and finally converge to that point [63]. This algorithm seeks the
best position of particles where the cost is minimum or the benefit is maximum. For the
benefit function, we measured spike coincidence Γ (Eqn. (3.9)) between two spike trains
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based on the competition method [64, 65]:

Γ =
Ncoinc − 〈Ncoinc〉
Ndata +Nmodel

1

N
, (3.9)

where Ndata is the number of spikes on real neuron recording, whereas Nmodel is the number
of spikes given by the model; one spike coincidence is counted if the spike of the model
exists within four ms (precision ∆) from that of reference. Ncoinc is the total number of
spike coincidences, and 〈Ncoinc〉 = 2ν∆Ndata is the expected number of spike coincidences
generated by an homogeneous Poisson process with the same frequency (ν) as the spike
trains associated with Nmodel. Finally N = 1−2ν∆ is a normalization term. To consider and
measure spike trains reliability, we calculated the intrinsic reliability of the reference spike
trains. For a detailed procedure of calculating intrinsic reliability and more information about
spike coincidence, the reader is referred to the QSNMC articles [65, 62].

Finally, PSO seeks the best position around a bounded space, so we set the upper and
lower bounds of each parameter. The bounds are presented in Table 3.2.

Table 3.2: Upper and lower bounds of parameters
Upper and lower bounds of parameters for optimization procedure. PSO algorithm fitted
Cm, Vth and τr for LIF, and Cm, Vth, τr and γ for EDLIF.

Cm nF Vth mV τr ms γ

Upper 400 -50 25 1000
Lower 200 -53 7 0

3.1.3 EDLIF evaluation
To test the EDLIF, we used three strategies:

• Performance contrast of EDLIF and LIF
• Evaluation of biological plausibility
• Evaluation of EDLIFs potential use in neurodegeneration

In order to evaluate the performance of EDLIF compared to LIF, we used publicly available
data from The quantitative single-neuron modeling competition [62] and utilized the spike-
coincidence (Γ) as a fitness function to measure the performance of each model, which allowed
us to quantify the similarity between real spikes trains and the ones generated by each model.
It is also possible to characterize the neurons spiking behavior through the Inter-Spikes-
Interval (ISI) distribution. Fig 3.5 shows ISI distribution for the EDLIF and LIF model
generated by a particular trial of neuronal recordings. To quantify the discrepancy between
the real ISI distribution and the one generated by the model, the Jensen-Shannon metric [66]
was used (the Jensen-Shannon metric is bounded between 0 and 1, and it is equal to 0 only
if the two distributions under comparison are equal).

Biological plausibility was assessed by exploring the relationship between neuronal behav-
ior and metabolism. Specifically, we wanted to explore two scenarios: (1) to evaluate the
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on-demand ATP dynamics; (2) to study how the average firing rate impacts ATP consump-
tion. For this purpose, we tested the model under stimulation conditions to trigger ATP
productions on-demand similar to those reported in in vitro studies [17, 67]. This allowed us
to evaluate if EDLIF presents on-demand ATP dynamics similar to those reported in vitro
studies and to evaluate the impact of firing rate over ATP production.

To evaluate the potential of using EDLIF in neurodegeneration modeling, we used our
model to explore neuronal behavior under a mitochondrial dysfunction scenario. One char-
acteristic of the neurodegeneration firing rate dynamic in ALS is its increment under ATP
deprivation, thereby leading to a higher firing rate, referred to as the deadly loop [23]. As
such, we aimed to evaluate if EDLIF, which is a simple model, can mimic the deadly loop
reported by the sophisticated model of Le Masson et al. (2014). To mimic a mitochondrial
dysfunction, we simulated our model while considering different levels of reduced homeo-
static ATP concentrations (AH) where AH can be interpreted as the severity of ALS, which
is reflected in lower ATP availability. To evaluate the impact of AH over firing rate in this
scenario, we used a constant current (4 seconds), which was tuned such that the neuron
fired at 15 Hz. Under this mitochondrial dysfunction scenario (AH < 10−4) , we expected
an increment in the firing rate in relation to the AH value. Therefore, our study indicated
that the same stimulus should produce an increment in the neurons firing rate (> 15 Hz),
following the rationale of the deadly loop [23]. In contrast, under homeostatic concentrations
of ATP (AH = 10−4), the same stimulation should produce a constant firing rate (∼ 15 Hz).

3.2 Results
In this chapter, we extended the LIF model to include ATP consumption and production
in association with neuron physiology. As mentioned above, we evaluated the extended LIF
model (EDLIF) by employing its ability to predict real data as well as predict a previously
reported neurodegeneration pattern.

3.2.1 Models performance in predicting real spike trains
Table 3.3 shows, that the EDLIF model has a smaller average Jensen-Shannon metric (see
column JS metric in Table 3.3) than the LIF model, implying that the EDLIF model is
more akin to the real neuron ISI distribution than the one generated by the LIF model.
Surprisingly, although the LIF model has a shorter refractory time compared to EDLIF (τr
in Table 3.3), Figure 3.5 shows that for the EDLIF model, there exist ISI values within
the range (12.5, 25) ms, whereas interspike-intervals for the LIF model are always above 25
ms. This result can be explained through the energetic dependence introduced to the model
through the incomplete repolarization mechanism.

Table 3.3 also presents the parameters (Cm, Vth, τr and γ) when executing the optimization
algorithm in each model and the performance (Γ) that each one obtains.

These results showed that EDLIF exhibits better performance than the LIF model. It
provides a better characterization of real neuron spikes trains under intracellular current
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Table 3.3: Model Parameters and Performance Comparison of LIF and EDLIF model
performance in test set in terms of spike-coincidence measure Γ (Mean ± SD). JS metric
is the Jensen-Shannon (Mean ± SD) metric calculate between experimental ISI distribution
and the one generate by the model. Results of the Spike-coincidence and Jensen-Shannon
metric result are average across all trials of neuronal recording. Parameters are obtained by
maximizing Γ in the training set through PSO optimization algorithm.

Cm nF Vth mV τr ms γ Performance (Γ) JS metric
LIF 279.94 -52.49 14.1 0.55 ± 0.0029 0.41 ± 0.018
EDLIF 202.43 -51.6 16.33 178.84 0.61 ± 0.0004 0.38 ± 0.02

Figure 3.5: Inter-spike-Interval distributions.
Inter-spike-Interval distribution of LIF, EDLIF and real neuron recording. CV corresponds
to the coefficient of variation, whereas JS is the Jensen-Shannon metric, which enables to con-
trast the discrepancy between the real ISI and the one given by each model. The distribution
corresponds to an histogram with 80 bins.

stimulation either by considering the spike-coincidence measure (Γ) or by contrasting the
similarity between the model and real ISI distribution using the Jenssen-Shannon metric.

3.2.2 Neurons energetics and behavior
To explore the biological plausibility by means of the relationship between energetics and neu-
ronal behavior, we subjected the EDLIF model to different experiments. Figure 3.6 shows
how stimulating the neuron affects ATP dynamics. When pulses of 600 pA amplitude and 10
seconds width were applied, the available ATP in the neuron started to drop. These stimuli
generated a firing rate of approximately 36 Hz and caused a maximum of ∼ 0.4% decrease in
available ATP. Those minor ATP decreases mentioned earlier may be explained by the tight
coupling between ATP consumption and production. Thus, ATP consumption was rapidly
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supplied by ATP production, allowing the neuron to maintain a stable ATP concentration.
These results are aligned with previous studies that showed the neuronal capacity to increase
ATP production on-demand while consumption is increased [17, 67]. Regarding the rela-

Figure 3.6: Neuronal behavior and ATP dynamics.
Neuronal behavior and ATP dynamics under 60 second stimuli: each pulse have an amplitude
of 600 pA and 10 seconds width with a 3 sec 0 pA amplitud between each. Available ATP is
measured in percentage with respect to homeostatic ATP level AH (100% level means that
available ATP is equal to AH).

tionship between average firing rate and ATP consumption on the evaluation of biological
plausibility, a thalamocortical biophysically-realistic model was used to show that the aver-
age firing rate, rather than temporal pattern, determined the ATP cost across firing patterns
[68]. To study the relation between the average firing rate and ATP consumption, the EDLIF
model was tested under different firing rates. Figure 3.7 shows that ATP demand increases
linearly as a function of the firing rate in concordance with the study by Yi and Grill (2019).
The increase in ATP consumption following an increase in firing rate could be explained
by the depolarization phase of the action potential which generated abundant Na+ entry,
and this dominated the metabolic cost of neuronal activity. In summary, our model showed
that there is a straightforward relation between ATP consumption and neuronal firing rate
intensity, but because of the tight coupling between ATP consumption and production, the
available ATP changes slightly.
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Figure 3.7: Effect of average firing rate on estimated metabolic cost.
(A) Total and relative (%) change in [ATP]/second consumption for different firing rates.
(B) neuron’s stimuli and corresponding membrane potential responds (mV ). The stimuli
consisted of 30 seconds of pulses of 0.1 ms width and 45 nA amplitude.

3.2.3 Neurodegeneration and energetics: amyotrophic lateral scle-
rosis

Because our model accounts for energy-dependencies affecting neuronal activity, it will be
useful for studying neuronal behavior under a metabolic disorder. Specifically, to explore the
link between bioenergetics and neuron degeneration, we used the EDLIF model and simu-
lated neuronal behavior by stimulating the neuron with constant current (4 seconds) under
mitochondrial dysfunction. As mentioned above, mitochondrial dysfunction was achieved by
reduced homeostatic ATP concentration (AH) by following Le Masson et al. (2014). As
shown in Figure 3.8 , a more substantial mitochondrial dysfunction (lower AH concentra-
tion) implies a higher firing rate response under the same stimuli. This shows how an energy
depletion in the neuron affects sodium-pump activity and, consequently, the repolarization
process. This entails a depolarization state, which increases the likelihood of an action po-
tential, leading to a hyperexcitable state.

The inclusion of the sensitivity term (γ in Eqn. (3.5)) in the EDLIF model accounts for
the different affection of energy imbalance in a particular neuron type; therefore, the model
is suitable for describing energy-dependent sensitivity dynamics.

3.3 Discussion
This chapter introduced the EDLIF model, an energy-dependent extension of the classical LIF
model. Our model aimed to integrate the effects of ATP imbalance levels in single-neuron dy-
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Figure 3.8: Neuron behavior under ALS.
Simulation of ALS disease by reduction of homeostatic ATP level (AH). As ATPH is reduced,
neurons depolarize and their firing rate increases. When ATPH is reduced, higher sensitivity
values (γ) imply greater firing rate. These results are coherents with the effects of ALS in
motor neurons described in [23].

namics through partial repolarization mechanisms. The biologically inspired inclusion of ATP
dependence through partial reset mechanism allows the model to keep computational simplic-
ity and improve predicting capabilities when representing real spike trains while considering
both spike coincidence measure and the dissimilarity (Jensen-Shannon metric) between the
real ISI distribution and the one generated by the models. Regarding predicting capabilities,
we are aware of the predicting improvement associated with LIF with adaptation terms and,
even thought the advances in this topic are valuable, our proposed neuronal model is strongly
motivated for extending computational cheap neuronal models to account for metabolic de-
pendencies. Therefore, in addition to the improvement in the models prediction capabilities
concerning LIF, our model allows us to link energetics and neuronal behavior, keeping the
simplicity of LIF and opening new possibilities to use simple-enough models to explore the
neural activity and their link to energetics in the brain (e.g. Estimate ATP concentration
dynamics). Additionally, EDLIF could be used to answer questions where LIF or LIF with
adaptation are not suitable.

The EDLIF model can also emulate ALS neuronal behavior similar to the model intro-
duced by Le Masson et al. (2014), but it uses a significantly more straightforward compu-
tation. In this sense, the EDLIF model seems suitable to study the effect of ALS in silico
spiking neural networks with thousands of neurons. Naturally, EDLIF simplifications trade
off with biological detailed description, such as avoiding specific modeling of channel kinetics
in the neuron and the spatial dependencies stated in Le Massons (2014) model. Despite
the limitations, the way in which the average firing rate affects ATP consumption was also
quantified, indicating that the action potentials firing rate makes a significant contribution
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to overall energy consumption. Quantifying the metabolic demand of neuronal activity in-
fluences the interpretation of functional brain imaging data through related metabolic mech-
anisms. Therefore, the EDLIF model prediction should be considered when interpreting
findings of functional imaging studies that rely on estimates of neuronal metabolic demand,
e.g., functional magnetic resonance imaging [68].

Despite the advantages of the proposed model with respect to LIF and other more complex
models, some limitations are worth mentioning. First, given that our goal was to develop a
simple model that can simulate networks of thousands of neurons, the EDLIF model neglects
calcium kinetics and morphological or spatial description, i.e. EDLIF is a single-compartment
model. Evidence suggested that the sodium-potassium pump plays a significant role in neu-
ronal activity by regulating membrane potentials and neuronal firing. Experiments showed
that pharmacological blocking of sodium-potassium pumps increases the spontaneous firing
rate and generates membrane depolarization [69]. It has also been shown that there is a
membrane voltage depolarization of the neurons during hypoxia and ischemia. This increase
is partly due to the inhibition of the Na-K pump due to lowered ATP levels [70]. These
experiments emphasized the relevance of Na-K pumps in neuronal activity and their rela-
tionship with ATP levels. In this regard, the EDLIF model includes an ATP imbalance in the
Na-K pump through incomplete repolarization mechanisms. Thus, the model is a suitable
tool for studying the effect of ATP imbalance in neuronal behavior by accounting for the
sodium-potassium pumps inhibition when the ATP level is low (as in the case of hypoxia) as
well as its consequences on neural and network activity.

ALS results were coherent with other neurodegenerative conditions as the abnormal high-
frequency burst firing in rapid-onset dystonia-parkinsonism, which suggested that partially
blocking sodium-potassium pumps in the cerebellar cortex is sufficient to cause dystonia, as it
increased the firing rate of cells and ultimately caused a conversion from tonic firing to high-
frequency bursting activity [71]. Fremont et al., (2014) also showed the relationship between
the sodium channel density and sensitivity to a partial block of the sodium-potassium pump.
A lower sodium channel density implies less sensitivity to the partial blockade of sodium
pumps. Thus, γ can be explained in biological terms associating it with the density of
sodium channels and disclosing why different γ values better describe the behavior of different
neuron types in the EDLIF model. Finally, considering the vast literature linking metabolic
dysfunction and neurodegenerative disease [12, 13, 14, 15, 16, 17, 72], simple computational
models as the one introduced in this thesis become relevant as an alternative to classical LIF
extensions because of their capability to include energetic dependencies, which make them
suitable for studying the effect of metabolic disorder using in silico networks.
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Chapter 4

Energy-dependent
Spike-Timing-Dependent Plasticity

Our goal is to study the impact of local energy constraints on the properties of the network
and, to comply with that, although it is necessary to have an energy-dependent single-neuron
model (Chapter 3), this is insufficient. The energy administration of the neuron is essential for
its adequate operation, and considering the significant effect of these restrictions on synaptic
activity [9, 31, 16, 17], then, before studying the relationship between energy management
and organization in biological neural networks, the need to have synaptic transmission rules
that depend on the energy management of the cell emerges naturally. Consequently, in this
chapter we leverage on the EDLIF model as well as previously defined plasticity models to
introduce an energy-dependent synaptic plasticity rule.

Synaptic plasticity occurs at different time scales [48]. For instance, short-term plasticity
[49] is only maiintained on time scales of less than one second. In contrast, long-term plasticity
considers persistent changes in the synaptic response that can be generated in the order of
milliseconds and last for hours [50], such as long-term potentiation and depression (LTP
and LTD, respectively). There are also slower stabilization processes, such as homeostatic
plasticity (or synaptic scaling) that occurs on the order of minutes to days [52]. In this chapter
we focus on the long-term synaptic plasticity mechanisms, specifically LTP and LTD.

Inspired by the experiments made by Bi and Poo [50], a very popular plasticity model
in computational neuroscience is the spike-timing-dependent plasticity (STDP) model [54,
55, 56, 57]. However, to the best of our knowledge, non of those plasticity models include
notions of energy dependencies or metabolic constraints, modifying plasticity as neuronal
energy levels vary. Nevertheless, there are biological evidence showing the synaptic plasticity
dependence on energy constraints [73]. Build on this observation, and in previously devel-
oped spike-timing-dependent plasticity models, now we proceed to mathematically define and
numerically test an energy-dependent STDP model.
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4.1 Synapses and energy consumption
In chapter 3, we studied single-neuron energy and voltage dynamics when energy constraints
are imposed on the neuron. Previously, to study energy dynamics, detailed activity-related
energy consumption values were used (see Chapter 3). However, in practice, it is very dif-
ficult to measure energy level in the neuron and it is not clear neither how to establish
nor to measure the homeostatic energy level (AH) in the neuron. To overcome this diffi-
culty and to define a more general framework, from now on (Chapters 4 and 5) we will
use percentage units to quantify available energy (A(t)), homeostatic energy (AH = 100%),
and activity-related energy consumption such as action potential energy consumption (EAP ),
house-keeping (EHK), resting potential (ERP ), and postsynaptic energy consumption (Esyn).

To understand in detail the energy perturbations induced by presynaptic neurons in post-
synaptic energy levels through synapses, let us analyze the neuron’s energy dynamics when
several presynaptic neurons are connected to it. In a network, each neuron’s energy evolves
as follow:

dA(t)

dt
= As(t)− Ac(t), (4.1)

where As = K(AH − A) + AB, and the energy consumption Ac can be divided into the
following terms:

Ac(t) = AB + Aap(t) + Asyn(t), (4.2)
where AB is the basal consumption accounting for resting potential and housekeeping activ-
ities, Aap is the energy consumption accounting for the neuron action potentials, and Asyn

is the energy consumption related to receiving actions potential from other neurons through
the synapses1.

The solution to Eqn. (4.1) with an arbitrary energy consumption Ac(t) is described by
Eqn. (4.3):

A(t) = AH −
∫ t

0

e−(t−t′)/τAAc(t
′)dt′, (4.3)

where K = 1/τA is the rate at which ATP can be produced in the neuron (see (3.2)). Eqn.
(4.3) can be found using the impulse response of the system described by Eqn. (4.1), together
with the superposition principle. Please realize that without considering each variable mea-
surement unit, the energy dynamic in Eqn. (4.3) is analogous to the voltage dynamic in the
LIF model under Eqn. (2.5), with the following modification A(t) → v(t), I(t) → −Ac(t),
vrest → AH , gleak → K, Cm → 1 .

In chapter 3 we explained how different activities change the available energy in the neuron.
However, because we focused on the single-neuron dynamics, we excluded from the analysis
the synaptic effect on energy dynamics. Now we will describe how presynaptic activity
affects postsynaptic available energy levels. For one presynaptic action potential propagating
through a synapse with strength w, the synaptic consumption on the postsynaptic neuron

1Aap(t) (Asyn(t)) is different than EAP (Esyn). The former is the action potential (postsynaptic) energy
consumption through time, and the latter is the total amount of energy related to that activity. Thus,
Aap (Asyn) is obtained using EAP (Esyn) and a kernel function ε(·) which describes how the total energy
consumption is expended through time.
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can be described by:
Asyn(t) = Esynw̄Θ(t− ts)εsyn(t− ts), (4.4)

where Esyn is the total energy expended for an incoming presynaptic action potential, w̄ is
the absolute value of the normalized synaptic strength (w̄ = |w/wmax|, where wmax is the
maximum allowed weight strength) and εsyn(t) is a kernel describing how the synaptic energy
expenditure is expended through time (

∫∞
0

Θ(t)εsyn(t)dt = 1). If we choose a kernel that
can be linearly summed up, then the synaptic energy expenditure in the postsynaptic neuron
with several presynaptic cells and spike times is:

Asyn(t) = Esyn

∑
synapse k

∑
spike s

w̄kΘ(t− ts)εsyn(t− ts). (4.5)

Similarly, for each action potential in the postsynaptic neuron, the energy expenditure
can be described by:

Aap(t) = EapΘ(t− ts)εap(t− ts), (4.6)
where Eap is the energy expenditure related to one action potential and εap is analogous to
εsyn, but for the postsynaptic action potentials (

∫∞
0

Θ(t)εap(t)dt = 1). If εap can be linearly
summed up, then Eqn. (4.6) reads:

Aap = Eap

∑
spike s

Θ(t− ts)εap(t− ts). (4.7)

For finding closed-form expressions for the available energy in the postsynaptic neuron, it
is possible to define εap and εsyn kernels and plugin Eqns. (4.5) and (4.7) into Eqn. (4.1). In
particular, if exponential kernels are used for εap and εsyn, Eqn. (4.5) reads:

Asyn(t) =
∑

synapse k

∑
spike s

w̄kE
k
syn

τA,k
syn

Θ(t− ts)e
−(t−ts)/τ

A,k
syn , (4.8)

where τA,k
syn is the energy time constant of the kth synapse and describes how fast is the

change in the postsynaptic neuron’s energy given the incoming action potential through the
kth synapse. Note that if wk = wmax the total energy consumption in the postsynaptic
neuron produced by the presynaptic neuron sending one action potential through synapse
kth is Ek

syn. Thus, Eqn. (4.8) guarantees that for the maximum allowed synaptic weight,
the total energy consumption perceived by the postsynaptic neuron is exactly Ek

syn and a
fraction (|wk/wmax|) of Ek

syn otherwise. Similarly, using an exponential kernel, Eqn. (4.7)
can be expressed as:

Aap(t) = Θ(t− ts)
Eap

τap
e−(t−ts)/τap , (4.9)

where τap is the time constant defining how fast is Eap expended through time. Consequently
with Eqn. (3.3), Eqn. (4.9) guaranties that the neuron will consume a total amount of Eap

for each action potential.

Therefore, plugin Eqns. (4.9) and (4.8) into Eqn. (4.3), we have a closed-form expres-
sion for the neuron’s energy dynamics under exponential kernels (εap and εsyn) for energy
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consumption:

A(t) =AH −

Aap(t)︷ ︸︸ ︷
EapτA
τA − τap

∑
spike s

Θ(t− ts)[e
−(t−ts)/τA − e−(t−ts)/τap ]

−
∑

synapse k

∑
spike f

Ek
synw̄kτA

(τA − τA,k
syn )

[e−(t−tf )/τA − e−(t−tf )/τ
A,k
syn

︸ ︷︷ ︸
Asyn(t)

]. (4.10)

Eqn. (4.10) describes the energy dynamics of a single neuron within a network, given all in-
coming synapses strengths and spike-times. Thus, it allows to precisely quantify and analyze
the energy dynamics of each neuron within a network with arbitrary architecture.

4.2 Energy Dependent Spike-Timing-Dependent-Plasticity
model

In section 4.1 closed-form expressions for available energy level in the cell were introduced.
In Eqn. (4.10) the neuron’s energy expenditure due to synaptic activities is pondered by the
normalized synaptic strength w̄k, however, as explained in section 2.3, strength between neu-
rons change over time (i.e. wk := wk(t)). Therefore, based on previous work, we introduced
an energy-dependent plasticity rule for synaptic strength. We follow the formalization of
STDP introduced in [54] (see section 2.3), and inspired our energy-dependent plasticity rule
from the findings shown in [73]. We focus on the fact that plasticity, in particular Long-Term
Potentiation (LTP), depends on metabolism. Specifically, when glycolysis is pharmacologi-
cally inhibited (thus ATP production from glucose is inhibited), then LTP is suppressed [73].
Consequently, our energy-dependent STDP rule should suppress LTP when there is a low
energy level. Following this observation, we proceed to extend Eqn. (2.25) to account for
energetics, while keeping in mind that this is a practical simplification of much more com-
plex biological phenomena, but which allows deepening the understanding of metabolism and
plasticity interactions, and its impact on neural network dynamics.

To account for energetics in STDP, it is possible to extend f+(w) in Eqn. (2.26) to include
the energy level A of the postsynaptic neuron2, obtaining f+(w,A). There are several ways to
mathematically formalize the inclusion of postsynaptic energy level in f+(w), but we follow
a similar rationale as the one used when formalizing the EDLIF neuron, namely, we want
energy-dependent STDP to be sensitive to energy imbalance. Hence, we can investigate not
only how energy affects STPD, but also how energy imbalance affects STDP given a certain
level of energy imbalance sensitivity in that synapse’s plasticity. Using the aforementioned
logic we extend f+(w) to f+(w,A) as follows:

f+(w,A) = f+(w)e
−η

AH−A

AH , (4.11)
2STDP effects can be thought as a change in postsynaptic receptors density, and because the postsy-

naptic neuron has to modify receptors density, then their energy level is the one affecting receptors density
modifications, and we do not need to take care about presynaptic energy level.
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where η is the sensitivity of the synapse’s plasticity to energy imbalances, AH is the homeo-
static energy level, and A is the postsynaptic energy level. Please note that if the synapse is
not sensitive to energy imbalances (i.e. η = 0), then we recover the original STDP rule. The
postsynaptic energy level can be interpreted as a plasticity modulator. Thus, our energy-
dependent STDP rule is a special case of a three-factor learning rule, with postsynaptic
available energy A as modulator (see Eqn. (2.28) and Fig. 4.1).

(a) η = 1 (b) η = 5 (c) η = 20

Figure 4.1: Energy-dependent STDP.
Weight potentiation depends on postsynaptic available energy A. If energy A = AH , the
original STDP rule is recovered (see Figure 2.5), while for η = 0 the synapse’s plasticity is
insensitive to energy imbalance, thus weight update only depends on spike-timing differences
(∆t). If the postsynaptic available energy decreases, potentiations is suppressed and potenti-
ation suppression depends on the sensitivity parameter η. a) sensitivity η = 1, b) sensitivity
η = 5, c) sensitivity η = 20.

For the depression updating function f−(w) we keep the original formulation (f−(w) =
αwµ− , see Eqn. (2.26)) because we do not have conclusive evidence justifying the depres-
sion dependence on postsynaptic available energy. However, energy may be also affecting
depression. The inclusion of energy dependence on STDP depression, as well as other ways
in which energy affects plasticity is subject of future research.

Plugging Eqn. (4.11) into Eqn. (2.25), it is possible to describe weight’s update accounting
for pre- and postsynaptic spike-time and postsynaptic energy level:

∆w =

{
λf+(w,A)e

−∆t/τ+ , if ∆t > 0.

−λf−(w)e
∆t/τ− , if ∆t ≤ 0.

(4.12)

In principle, Eqn. (4.12) allows to include weight w dependencies in the updating rule if
µ± > 03. In those cases, the updating rule is called a multiplicative rule, while if µ± = 0 the
updating rule is additive, because weight update is independent of the current weight value.
Multiplicative rules generate uni-modal weights distributions while additive rules generates
bi-modal weights distributions [54]. As bi-modal weights distributions are observed in biology
and because mathematical tractability of STDP additive rules is easier than multiplicative

3Please remember that f+(w) = (1− w)µ+ and f−(w) = αwµ− , as described in Chapter 2.
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ones, in what follows we decided to use an additive update rule for weights update (µ± = 0),
however, there is also significant biological evidence supporting multiplicative STDP. For this
reason we define Eqn. (4.12) in a general form, allowing the exploration of multiplicative
energy-dependent STDP in future work.

4.2.1 Energy-dependent plasticity and equilibrium
As we previously explained, our energy-dependent STDP rule uses postsynaptic available
energy as a neuromodulator. Therefore, for low postsynaptic energy levels, potentiation is
suppressed and the suppression depends on the sensitivity parameter η. For the following
explanation let us assume equal synaptic time constants (i.e. τ+ = τ−). Intuitively, given
Eqn. (4.12) and A(t = 0) = AH initial postsynaptic available energy, if peak potentiation is
stronger than peak depression (i.e. α ∈ [0, 1)) then, for uniformly random pre- and postsy-
naptic spike times, in a short-time window simulation, weights tend to increase in average
(see Figure 4.2a). Higher weights induce more energy consumption in the postsynaptic neu-
ron (because of the increased energy expenditure related to postsynaptic potentials and, also,
because postsynaptic neurons will integrate more current potentially increasing firing rate,
which also contributes to energy consumption). Therefore, postsynaptic available energy de-
creases, suppressing potentiation. If potentiation is strongly suppressed then, for uniformly
random pre- and postsynaptic spike times, in a short-time window simulation, depression
will have a greater effect on weights, generating a net depression effect on weights (see Figure
4.2b). This net depression force weights to decrease on average, thus decreasing the post-
synaptic firing rate and also diminishing postsynaptic energy consumption. Consequently,
postsynaptic available energy increases, allowing stronger potentiation than depression, which
put us back in the loop (see Figure 4.2). However, it is also possible that the postsynaptic
available energy reaches an equilibrium level where potentiation and depression balance each
other. Before proceeding with further experiments, let us formally explain this intuition.

Let us assume random uniformly distributed inter-spike intervals ∆t = tpost − tpre:

∆t ∼ U [−∆t′,∆t′]. (4.13)

Given the postsynaptic available energy A, the net effect, also called drift, experienced by
weights is the integral of ∆w from Eqn. (4.12) over all possible ∆t:∫ ∆t′

−∆t′
∆wdt =

∫ 0

−∆t′
−λαet/τ−dt+

∫ ∆t′

0

λe−η(AH−A)/AHe−t/τ+dt (4.14)

= λ
[
− ατ−e

t/τ−
∣∣∣0
−∆t′

− τ+e
η(AH−A)/AHe−t/τ+

∣∣∣∆t′

0

]
(4.15)

= λ[−ατ−(1− e−∆t′/τ−)− τ+e
−η(AH−A)/AH (1− e−∆t′/τ+)] (4.16)

If τ+ = τ− = τsyn, Eqn. (4.16) reads:∫ ∆t′

−∆t′
∆wdt = λτsyn(1− e−∆t′/τsyn)︸ ︷︷ ︸

≥0

[−α + e−η(AH−A)/AH ]. (4.17)
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Consequently, if e−η(AH−A)/AH > α, then potentiation is favored (i.e.
∫ ∆t′

−∆t′
∆wdt ≥ 0).

Whereas if e−η(AH−A)/AH < α depression is favored. Similarly, if e−η(AH−A)/AH
!
= α we can

find the update weight fixed point (i.e. ∆w = 0), which gives the energy level Ă value for
which potentiation and depression mutually balance each other:

Ă = AH

(
1 +

ln(α)

η

)
. (4.18)

Eqn. (4.18) predicts the available energy level on the postsynaptic neuron for which, on
average, potentiation and depression are compensated4. Moreover, the equilibrium level for
postsynaptic available energy Ă is inversely proportional to the sensitivity parameter η. As a
consequence, if the plasticity rule is highly sensitive to energy imbalances, then Eqn. (4.18)
guarantees that the postsynaptic energy level stay close to AH (see Figure 4.3). As we will
explain in chapter 5, this fixed point is crucial for the network dynamics, because for A = Ă
the weights are static (on average), thus average incoming current to the neuron should stay
approximately constant if average is calculated over a time period Tw greater than membrane
and synaptic time constant (i.e. Tw � τm, τsyn). Thus, we should expect a fixed point for
the firing rate also. In chapter 5 we will formalize this intuition.

λe−η(AH−A)/AH

−αλ

−∆t′

∆t′
∆t

∆w

Potentiation favored

(a) A > Ă

λe−η(AH−A)/AH

−αλ

−∆t′

∆t′
∆t

∆w

Depression favored

(b) A < Ă

Figure 4.2: Energy-dependent plasticity and postsynaptic available energy.
Potentiation suppression depends on postsynaptic energy level A. If A > Ă potentiation is
favored a), while for A < Ă depression is favored b)

4Given that in our setup A represents the energy level with respect to AH = 100%, the energy level found
using Eqn. (4.18) should be in the [0, 100] range. Therefore, in case Ă escapes from [0, 100] it should be
clipped to respect biologically plausible energy levels.
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Figure 4.3: Available postsynaptic energy equilibrium level Ă.
Postsynaptic energy equilibrium level Ă as a function of the sensitivity parameter η and
depression scaling factor α. AH = 100%.

4.3 Results
To numerically test our theoretical predictions, the experiments are simulated utilizing the
NEural Simulation Tool program (NEST) [74] and the EDLIF neuronal model as well as the
ED-STDP synaptic model are specified using NESTML [75]. The domain specific language
tailored for the spiking neural network simulator NEST.

4.3.1 Two-neurons experiment
To validate that our energy-dependent STDP rule defined in Eqn. (4.12) is in agreement with
numerical simulations, we first test the ED-STDP rule under the simplest experimental setup:
a single pre- and postsynaptic excitatory neuron, as ilustated in Fig. 4.4. In this setup, the
pre- and postsynaptic neurons were assigned arbitrary spike times, allowing the measurement
of specific spiking-time delays, calculated as the difference between the postsynaptic and
presynaptic spike times. This experiment is an in silico analogous to the in vitro experiment
carried out in [50].

By comparing the expected weight updates, computed using Eqn. (4.12), with the weight
updates obtained through simulations using one presynaptic and one postsynaptic EDLIF
neuron model, it is possible to evaluate the agreement between the theoretical and simulated

wpre post

Figure 4.4: Two-neurons experiment setup.
A single excitatory presynaptic neuron connected by synapse w to a single excitatory post-
synaptic.
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results. To properly compare the weight updates given by Eqn. (4.12) against simulation,
we set the ATP energy level of the EDLIF neuron to 100%, 80% and 60% values, each of
those corresponding to a different weight update curve as shown in Fig. 4.5 (the weight
update curve associated to an specific ATP level ATP ∗ is the intersection between the Eqn.
(4.12) and the plane satisfying ATP = ATP ∗ in Fig. 4.1). In this manner, it is possible to
compare the expected weight updates from Eqn. (4.12) against numerical simulations. If the
ATP energy level of the EDLIF neuron is not set to a constant value, then each spike and
post-synaptic potential in the simulation generates an energy consumption thus making it
harder to compare experimental results against what is expected from theory.

Fig. 4.5 shows the contrast between the weight updated expected using Eqn. (4.12)
(referred to as the “Theory” curve) with respect to the one obtained when the plasticity
rule is computed through simulations using the EDLIF neuron model, thus having spiking
neurons (referred to as the “Experiment”curve). In this manner, Fig. 4.5 demonstrate that

(a) A = 100% (b) A = 85% (c) A = 60%

Figure 4.5: Energy-dependent STDP theory versus in-silico experiment.
The contrast between theoretically expected weight updates using Eqn. (4.12) versus mea-
sured weight updates obtained through simulations using in silico EDLIF neurons (one presy-
naptic and one postsynaptic neuron, in accordance with the experiments carried out in [50].
See Fig. 4.4). For contrasting the theory and observations, in the simulated experiment the
postsynaptic energy level (A) is fixed to a constant value. a) fixed postsynaptic energy level
A = 100%, b) fixed postsynaptic energy level A = 85%, c) fixed postsynaptic energy level
A = 60%. All simulations use η = 5.

the weight updates under different ATP levels obtained through simulations using EDLIF
spiking neurons align well with the expected theoretical weight updates values derived from
Eqn. (4.12).

4.3.2 Bombarding postynaptic neuron
So far we have developed an energy-dependent STDP rule which allows the suppression
of synaptic potentiation when the available energy level drops. We found a closed-form
expression that allows us to predict the available energy equilibrium level under uniformly
distributed spikes times (Eqn. (4.18)). Now we proceed to verify if the theory corresponds
with experimental results. To evaluate the theoretical prediction given by Eqn. (4.18) we test
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our predictions connecting m presynaptic neurons to one postsynaptic unit as it is shown in
Figure 4.6. An excitatory current (Ipost

ex ) is injected into the postsynaptic neuron generating
a basal firing rate for this unit and, similarly, each presynaptic neuron has an excitatory
current Ipre

ex sampled from a random normal distribution, thus every presynaptic neuron has
its own firing rate. For the experiment, we use the EDLIF model (see Chapter 3) but with
no sensitivity to energy imbalance (i.e. γ = 0), hence recovering the classical LIF model
dynamics (section 2.1.2.1), but enabling the measurement of energy level on each neuron,
which is necessary in order to use ED-STDP. Figure 4.7 shows the results of applying ED-

wn1→t

wn2→t

wnm→t

n1

n2

...

nm

t

Figure 4.6: Weight equilibrium experiment setup.
Multiple excitatory presynaptic neurons stimulating one postsynaptic neuron.

STDP on the all-to-one architecture ilustrated in Figure 4.6, with 1000 presynaptic units for
12 seconds. Each row in Figure 4.7 corresponds to the simulation of the same experiment
with equal initial conditions but with different η sensitivity.

The first column of Figure 4.7 shows available ATP on the postsynaptic neuron through
time, as well as the postsynaptic firing rate. The second column shows the weights strength
evolution, and the third column shows the histogram associated with the value of the weights
at the end of the simulation. In agreement with Eqn. (4.18), while increasing η the post-
synaptic equilibrium available energy (Ă) increases. Moreover, the available energy in the
postsynaptic neuron converges towards the predicted equilibrium value coherently with our
theoretical predictions. Although the weights are always varying because of the specific
inter-spike intervals, the postsynaptic energy level oscillates around Ă and, coherently with
our previous explanations, this oscillation occurs because when A < Ă depression is favored
allowing the postsynaptic neuron to recover from the energy deficit. If the neuron energy
recovers in such a way that the condition A > Ă is fulfilled, then potentiation is favored
which in turn will push the postsynaptic neuron’s energy to lower energy levels. This ex-
plains why the neurons energy oscillates around Ă, which is the energy level that enables
counterbalance between potentiation and depression. Consequently, Ă is an attractor for the
system described by Eqn. (4.10).
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Figure 4.7: Weight sensitivity to energy imbalance and equilibrium.
Multiple excitatory presynaptic neurons (m = 1000) stimulating one postsynaptic neuron
for different sensitivity η values. As η increases, Ă is closer to AH , consequently with Eqn.
(4.18). Only excitatory synapses are present in the experiment, and the initial value for all
weights is zero. Specific parameter values for the experiment are shown in Table 4.1.
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Table 4.1: Parameters used in the experiment.
Parameter values associated with the experiment described in Figure 4.6 and the results
shown in Figure 4.7.

Parameter Value Unit
∆tsim 0.1 ms
α 0.5 -
µ− 0 -
µ+ 0 -
λ 0.01 -
τm 20 ms
τref 8 ms
Cm 200 pF
vreset -70 mV
vrest -70 mV
vth -50 mV
τsyn 6 ms
τap 100 ms
Ipre

ex 210 ± 10 pA
Ipost

ex 175 pA
τAsyn 100 ms

EAP 8 %
Esyn 4 %
ERP 5 %
EHK 5 %

4.4 Discussion
In this chapter, inspired by spike-timing-dependent plasticity models, we develop an energy-
dependent plasticity model which allows replicating wet-biology experimental results, namely,
the suppression of long-term potentiation when the available energy level on the postsynaptic
neuron drops. Additionally, we derived a general mathematical expression for the available
energy on every neuron in a network with arbitrary architecture.

The energy-dependent STDP model can be interpreted as a neo-Hebbian plasticity rule,
where the postsynaptic available energy is the neuromodulator. The newly introduced model
has a general structure that allows the implementation of both multiplicative and additive
learning rules. However, we focus on the additive learning rules (i.e. µ± = 0) and found
closed-form expression predicting the available energy level equilibrium point Ă on the post-
synaptic neuron. The theoretical predictions are confirmed using our previously developed
EDLIF model in a two-neuron experiment (Figure 4.4), which proves that numerical simu-
lations with spiking neurons are in good agreement with the theoretically expected weight
update value given by Eqn. (4.12).

Regarding the theoretical developments predicting the equilibrium postsynaptic available
energy, we tested the theory in an all-to-one architecture experiment (Figure 4.6), where a
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single postsynaptic neuron is stimulated by multiple presynaptic neurons. Consistent with
our proposal, the available energy on the postsynaptic neuron reaches the predicted equi-
librium point Ă and oscillates around it, following the previously mentioned rationale and
graphically explained through Figure 4.2, where postsynaptic energy levels above Ă favored
potentiation, while A < Ă favored depression. These results highlight how including local en-
ergy constraints restrict network structure by imposing limitations in the weight distribution
and, also, pushing postsynaptic energy level towards the system’s attractor Ă. These results
are essential to understand the structure and dynamic emergence in a more complex network,
where excitatory and inhibitory neurons coexist and recurrent connections are present, as we
will show in chapter 5.

Finally, it is worth mentioning that our model focuses on the effect of postsynaptic avail-
able energy on the excitatory-excitatory synaptic potentiation, however, available energy
is possibly also affecting depression. The mathematical formulation of ED-STDP (see Eqn.
(4.12)) allows extending of the proposed model for accounting energy dependencies on depres-
sion plasticity, and it is part of the future work related to the energy homeostatic principle.
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Chapter 5

Energy-dependent Spiking Neuronal
Networks

The brain is one of the most complex systems that we know. Therefore, to study it and try
to understand the mechanism driving dynamics and structure, it is practical to divide the
problem into simpler ones. That is the approach that we followed throughout this thesis.
Firstly, by defining and studying a single-neuron model, then we modeled the interaction be-
tween neurons by introducing an energy-dependent plasticity rule, which dictates the synaptic
strength modifications between neurons. Now all the required ingredients to study and simu-
late a spiking neural network under energy dependencies are available. In this regard, there is
biological evidence suggesting the existence of excitatory-inhibitory (E-I) balanced networks
in different parts of the brain, such as the CA3 region of the hippocampus, basal ganglia,
and the primary visual cortex [76]. Thus, E-I balanced networks appear as a suitable model
to explore neural networks’ dynamics and structure. However, in general, when simulating
and studying E-I balanced networks, energy or metabolic constraints are not considered.

In this chapter, built on the energy-dependent single-neuron model (Chapter 3) and the
energy-dependent synaptic plasticity model (Chapter 4), we formalize, simulate, and inves-
tigate the dynamic and structure of E-I balanced networks including energy constraints in
both, the single-neuron model as well as the synaptic plasticity. The developed models allow
investigating how different sensitivities to energy imbalances at single neuron and synaptic
level affects the network’s dynamics and structure.

In this chapter, we find the conditions under which the network converges toward a fixed-
point. Then, we contrast the predictions made by theory against numerical simulations,
observing a good agreement between both. Regarding different simulation cases, we divide
the experiments into three main scenarios. Firstly, we study the dynamics and structure
of the E-I balanced networks when there is only synaptic sensitivity to energy imbalances.
Next, the neuronal sensitivity to energy imbalances is included in the simulations. Finally,
motivated by the evidence suggesting the relation between neurodegenerative diseases and
metabolic impairments, we study the effect of neuronal impaired metabolic productions in
the network’s dynamics and structure.
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5.1 Network dynamics under the Energy Homeostasis
Principle

To mathematically describe an E-I balanced network (Figure 5.1) with nex excitatory and nin
inhibitory neurons, we introduce the network’s weight matrix w of (nex + nin)× (nex + nin)
dimension:

w =

(
wex→ex wex→in

win→ex win→in

)
,

where the i, j element of w correspond to the synapse from the ith presynaptic neuron to
the jth postsynaptic neuron. wex→ex is the nex × nex matrix containing all the excitatory-
excitatory connections, wex→in is the nex×nin matrix containing all the excitatory-inhibitory
connections, win→ex is the nin × nex matrix containing all the inhibitory-excitatory connec-
tions, and win→in is the nin×nin matrix containing all the inhibitory-inhibitory connections.
The mean firing rate of each neuron in the [t, t+T ] interval, is described by the (nex+nin)×1
vector ν̄t:

ν̄t =

(
ν̄ex
t

ν̄in
t

)
,

where ν̄ex
t is the nex×1 dimension vector containing the excitatory mean firing rate, whereas

ν̄in
t contains the inhibitory mean firing rates in a nin × 1 dimension vector.

wex→in

wex→ex

win→ex

win→in

ex in

Figure 5.1: Excitatory-inhibitory balanced network.
The network is composed of excitatory and inhibitory neuronal populations, with
excitatory-excitatory wex→ex, excitatory-inhibitory wex→in, inhibitory-excitatory win→ex

and inhibitory-inhibitory win→in connections. All connections are static, except the
excitatory-excitatory connections, which evolve following the Energy-Dependent STDP plas-
ticity rule (see Chapter 4).

5.1.1 Network’s firing-rate
To continue with the analytical treatment of the E-I balanced network, it is practical to
have an approximation of the network’s firing rate ν, quantifying each neuron firing rate. As
previously explained in Chapter 3, the firing rate of a neuron excited by a constant current
can be calculated utilizing Eqn. (3.8). In a more general way, the firing rate of a neuron can
be calculated by defining a function φ : R → R, mapping stimulation current to firing rate.
If the neuron is insensitive to energy imbalance (i.e. γ = 0), the function φ(·) can be found
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utilizing Eqn. (2.12), such as ν = T−1
n = φ(I), where I is the constant incoming current to

the neuron. Thus, the firing rate of each neuron under a constant current stimulation can be
calculated knowing the neuron’s parameters as well as the incoming constant current and the
φ(·) function, which is monotonically increasing in I1. Therefore, if we can approximate the
mean incoming current Īt to a neuron in a small time-window, it is possible to approximate
the neuron’s firing rate ν̄t ≈ φ(Īt), where x̄t = T−1

∫ t+T

t
x(t′)dt′. Hence, to approximate each

neuron’s firing rate, let us approximate the mean incoming current Īt to each neuron:

Īt =
1

T

∫ t+T

t

I(t′)dt′

=
1

T

∫ t+T

t

Istim +
∑

synapses k

∑
spike s

wkεk(t
′ − ts)︸ ︷︷ ︸

Eqn.(2.13)

dt′. (5.1)

Therefore, the mean incoming current to a neuron is the mean incoming synaptic current,
plus the constant external incoming stimulation current Istim injected into the neuron. Eqn.
(5.1) describes the mean incoming current to a neuron utilizing an εk(·) interaction kernel.
If we use a delta Dirac interaction kernel (i.e. εk(·) = δ(·)), Eqn. (5.1) reads:

Īt =Istim +
∑

synapse k

wk
1

T

∫ t+T

t

∑
spike s

δ(t′ − ts)dt
′

︸ ︷︷ ︸
ν̄kt

=Istim +
∑

synapse k

wkν̄
k
t . (5.2)

If we define the constant incoming stimulation current to each neuron as the (nex+nin)×1
dimension vector I>stim = [(Iexstim)>, (Iinstim)>]>, and the mean incoming synaptic current as
the (nex + nin) × 1 dimension vector Ī>t = [(̄Iext )>, (̄Iint )>]>, Eqn. (5.2) can be expressed in
matrix form as follows:

Ī>t =I>stim + ν̄>
t w̄t. (5.3)

It is possible to apply φ(·) point-wise to obtain the approximated network’s firing rate:

ν̄>
t ≈φ(̄I>t )

=φ(I>stim + ν̄>
t w̄t). (5.4)

Eqn. (5.4) imposes a current-frequency constraint on the network. In general, φ(·) defines
a nonlinear relationship between incoming current and the neuron’s firing rate. However, we
can Taylor expand Eqn. (5.4) around I>stim:

ν̄>
t ≈φ(I>stim) + φ′(I>stim)ν̄>

t w̄t

⇒ ν̄>
t ≈φ(I>stim)[I− φ′(I>stim)w̄t]

−1, (5.5)
1if I ≤ I

′ ⇒ φ(I) ≤ φ(I
′
). Thus, if the incoming current I increase, the firing rate of the neuron increases

or stays constant.
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where I is the identity matrix. Moreover, if φ(·) is a linear transformation such as φ(x) = ξx,
the following relationship holds:

ν̄>
t ≈ξ(I>stim + ν̄>

t w̄t)

⇒ ν̄>
t ≈ξI>stim[I− ξw̄t]

−1. (5.6)

Eqns. (5.5) and (5.6) shows that, if the weights are static (∆w̄t = 0), then the firing rate
of the network converge towards an equilibrium. This observation is important because it
highlights the fact that, in general, constant weights are needed to achieve a constant firing
rate.

Eqn. (5.4) defines a relation determining plausible weight-frequency values, which, in
principle, is independent of the network’s energy dynamics. However, given that our network
has energy constraints that must be fulfilled, let us include energy dynamics in the analytical
study of the network dynamics.

5.1.2 Energy dynamics
When studying the network’s dynamics, we are particularly interested in knowing if the net-
work converges or oscillates toward a specific state. If the network evolves toward an specific
state independently of the initial conditions2, those states are attractors of the network.
Therefore, to find fixed points in the network dynamics, we start by trying to find if there
are energy attractors in the network dynamics. Accordingly, we analyze stable fixed points
for energy states of an arbitrary neuron in the network.

The total energy change ∆A(t) = A(t+ T )−A(t) of any neuron in the network in a time
interval T is calculated by summing the contributions of energy production and consumption
occurring in the time interval [t, t+ T ]. From Eqn. 4.1 we obtain:

∆A(t) =

∫ t+T

t

As(t
′)− Ac(t

′)dt′. (5.7)

In section 4.1 we formalized synaptic energy consumption Asyn (see Eqn. 4.5) as well
as the neuron’s own action potential energy consumption Aap (see Eqn. 4.7), for arbitrary
εsyn and εap kernels. To simplify the mathematical tractability, now we will choose the delta

2When analyzing the fixed points of the network independently of the initial constraints, we mean that
the network’s state converges towards an attractor when considering a certain range of initial conditions.
However, it is not completely independent of the initial conditions. For instance, if the inhibitory-excitatory
weight values in the network are such that there is no excitatory activity (excitatory population has zero
firing rate), then there are no weight updates in the networks and, consequently, the network is already in a
fixed point. Therefore, in what follows, we are assuming that the initial conditions allow significant excitatory
and inhibitory activity, thus avoiding the study of trivial solutions as the one previously explained.
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kernel ε(t− ts) = δ(t− ts) for εsyn and εap. Thus, Eqn. 5.7 reads:

1

T
∆A(t) =

1

T

∫ t+T

t

K(AH − A(t′))dt′ − Eap
1

T

∫ t+T

t

∑
spike s

δ(t′ − ts)dt
′− (5.8)

Esyn
1

T

∫ t+T

t

∑
synapse k

∑
spike s

w̄k(t′)δ(t′ − ts)dt
′. (5.9)

Because weights change slowly (i.e. λ � 1 in Eqn. (4.12)), for small T we can assume
they are constant in the [t, t + T ] interval3 (i.e. w̄k(t) = w̄k

t ). In addition, because of the
linearity of the integral operator (

∫ ∑
=
∑∫

):

1

T
∆A(t) =K(AH − Āt)− Eap

1

T

∑
spike s

δ(t− ts)− Esyn
1

T

∑
synapse k

∑
spike s

w̄k
t δ(t− ts)

=K(AH − Āt)− Eapν̄t − Esyn

∑
synapse k

w̄k
t ν̄

k
t , (5.10)

where Āt = T−1
∫ t+T

t
A(t′)dt′ is the mean energy level of the neuron in the [t, t+ T ] interval,

and in the second and third terms we obtain the neuron self and connected neighbor’s firing
rates, respectively (T−1

∫ t+T

t

∑
spikes s δ(t

′ − ts)dt
′). Now, if we force ∆A

!
= 0 in Eqn. (5.10),

it is possible to find neuron’s firing rates, incoming weight, and energy expenditure values
that satisfies the energy fixed point constraints:

Āt =AH − 1

K

[
Eapν̄t + Esyn

∑
synapse k

w̄k
t ν̄

k
t

]
, (5.11)

which in matrix form reads:

Āt
>
=AH

> − 1

K
ν̄t

>
[
EapI+ Esynw̄t

]
, (5.12)

where Āt = [Āex
t

>
, Āin

t
>
]>. Eqn. (5.11) holds if the neuron is in an energy fixed-point and,

to achieve the energy fixed point, the excitatory-excitatory connections to the neuron under
study also need to achieve a fixed point (the other connections are static). Otherwise, the
synaptic energy consumption (Asyn) will stay varying, impeding to achieve an energy fixed
point in the postsynaptic excitatory neuron. Please realize that, if the excitatory-excitatory
connections achieve a fixed point as well as the presynaptic neuron’s firing rate, then the firing
rate of the postsynaptic neuron also achieves a fixed point (i.e. ∆ν̄t = 0). The excitatory-
excitatory connections achieve a fixed point if the postsynaptic excitatory neuron has an
energy level equal to Ă4 (see Chapter 4 and, in particular, Eqn. (4.18)). Thus, in the fixed

3Formally, we are assuming that time scales of learning and neuronal spike dynamics can be separated
[77]

4Here we are again neglecting the trivial solutions where the neuron’s own firing rate ν̄t is zero. If ν̄t = 0
(∆ν̄t = 0) there are no spikes to update the incoming weights to the neurons, so incoming weights are
constant and the total energy change in the neuron is also constant (∆A = 0), even if Āt 6≈ Ă. Thus, silent
neurons satisfies Eqn. (5.11), and if there is no increment in their incoming current, they will remain in the
∆A = ∆w = ∆ν = 0 fixed point, but without the neet to satisfy the Āt ≈ Ă condition.
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point, we can approximate Āt ≈ Ă, obtaining:

Ă ≈AH − 1

K

[
Eapν̄t + Esyn

∑
synapse k

w̄k
t ν̄

k
t

]
AH

(
1 +

ln(α)

η

)
≈AH − 1

K

[
Eapν̄t + Esyn

∑
synapse k

w̄k
t ν̄

k
t

]
. (5.13)

By rearranging (5.13), we arrive to the following relationship constraining weights and
firing rates of each neuron in the network:

−AHK ln(α)

η
≈Eapν̄t + Esyn

∑
synapse k

w̄k
t ν̄

k
t . (5.14)

If all the neurons in the network converge towards a fixed point, they must satisfy Eqn.
(5.11) and, in particular, non-silent excitatory neurons must satisfy Eqn. (5.14). In conse-
quence, in this state, all the excitatory-excitatory connections in the network remain constant
(i.e. ∆w̄t = 0) in average as well as the firing rates (i.e. ∆ν̄t = 0). As a result, Eqn. (5.14)
predicts the energy level for each non-silent excitatory neuron in the network after converging
towards a fixed point.

However, under certain conditions, such as the neuron under study has n � 1 synapses,
high Esyn values or strong incoming w weights, it is possible to neglect the neuron’s own
action potentials energy consumption (i.e. Eapν̄t � Esyn

∑
k w̄

k
t ν̄

k
t ), thus we approximate

(5.14) by:

−AHK ln(α)

ηEsyn

≈
∑

synapse k

w̄k
t ν̄

k
t

=
∑

ex→ex synapse k

w̄ex→ex, k
t ν̄ex, k

t +
∑

in→ex synapse k

w̄in→ex, k
t ν̄in, k

t . (5.15)

Consequently,

−AHK ln(α)

ηEsyn

−
∑

in→ex synapse k

w̄in→ex, k
t ν̄in, k

t︸ ︷︷ ︸
Λ

≈
∑

ex→ex synapse k

w̄ex→ex, k
t ν̄ex, k

t . (5.16)

Eqn. (5.11) reveals a metabolic constraint over incoming synapse strengths and their
respective presynaptic neuronal firing rates, affecting non-silent excitatory neurons in the
energy fixed point. In particular, Eqn. (5.14) shows that, in order to achieve a metabolic
fixed point in the excitatory postsynaptic neurons, there is a trade-off between synaptic
strength and the corresponding presynaptic neuronal firing rate. Interestingly, the metabolic
constraint in Eqn. (5.14) dictates an inverse relationship between weights and firing rates,
which is a completely new constraint in the system, given that in general, previous models
do not account for metabolic activity. Moreover, the aforementioned constraint enables the
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emergence of an attractor state to the network, as a consequence of the interception between
the metabolic and the physically plausible states of the network given by the previously
introduced metabolic (see Eqn. (5.14)) and weight-frequency relations (see Eqn. (5.4)).

On the one hand, Eqn. (5.4) gives a weight-rate relationship where increasing excitatory-
excitatory weights wex→ex generates higher excitatory firing rates νex, due to higher mean
incoming synaptic currents to postsynaptic neurons. On the other hand, if either excitatory-
excitatory weights or excitatory firing rates increase, the postsynaptic energy levels drop (see
Eqn. (5.12)). In addition, at the metabolic fixed point, non-silent excitatory neurons fulfill
Eqn. (5.16). As a consequence, if excitatory firing rates (excitatory-excitatory weight) in-
crease, then excitatory-excitatory weights (excitatory firing rates) must decrease. Thus, Eqn.
(5.16) imposes an inverse relationship between excitatory-excitatory weights and excitatory
firing rates, contrary to Eqn. (5.4), where the relationship between the two variables is direct.
Figure 5.2 shows a conceptualization of the previous reasoning. As a consequence of Eqns.
(5.4) and (5.16) restricting the network’s dynamics and structure, it is possible to predict the
effect of modifying some parameters on the metabolic fixed point achieved by the network.
For instance, if the synapses are less sensitive to energy imbalance (by imposing a smaller
η), then the energy level fixed point Ă decreases. As a consequence of having a lower energy
level fixed point, allowed energy consumption per neuron increases. Thus, if η decreases,
higher synaptic strengths and firing rates state are allowed (see dashed red line in Figure
5.2). Likewise, it is possible to anticipate the effect of increasing the neuronal sensitivity
to energy imbalances γ. Greater γ values decreases the interspike intervals (see Eqn. 3.7),
meaning that neurons become more excitable under metabolic challenging situations. For
example, the same constant current produces a higher firing rate in a neuron with high γ
with respect to a neuron without energy imbalance sensitivity (see Figure 5.3). Thus, for the
same incoming synaptic strengths and presynaptic firing rates, the postsynaptic neuron with
higher γ has a higher or equal firing rate than the postsynaptic neuron with lower γ. Conse-
quently, for higher γ, if the network achieves a fixed point, the synaptic strengths should be
weaker and the firing rates higher with respect to a network composed of neurons with no
energy imbalance sensitivity (i.e. γ = 0).

5.2 Results
To numerically test our theoretical predictions, the network is simulated utilizing the NEural
Simulation Tool program (NEST) [74] and the EDLIF neuronal model as well as the ED-
STDP synaptic model are specified using NESTML [75], the domain specific language tailored
for the spiking neural network simulator NEST.

The simulated network has n = 500 neurons and the excitatory-inhibitory ratio is nex :
nin = 4 : 1 following biologically realistic excitatory-inhibitory ratio values [78]. Figure 5.4
shows the excitatory and inhibitory neurons randomly distributed in a 1mm2 surface area.
The network architecture is defined by an all-to-all connectivity. In addition, following in
vitro measured weights strength in neuronal cell assemblies [79], initial synaptic strength
values for the simulated network are drawn from an exponential distribution (see Figure 5.5
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A > Ă

A < Ă

Figure 5.2: Energy-dependent E-I balanced network and constraints intersection.
The gray curve describes excitatory firing rate magnitude as a function of excitatory-
excitatory weights magnitude (see Eqn. (5.4)), whereas the red curve conceptualizes the
inverse relation between excitatory firing rates and excitatory-excitatory weights magnitudes
given by metabolic constraints (see Eqn. (5.16)) afecting non-silent excitatory neurons in
the energy fixed-point. On the blue region, the postsynaptic energy level drops below the
energy level fixed-point Ă. Thus, in the blue region, wex→ex experience a net depression
drift (see Eqn. (4.16)), whereas in the white region, the postsynaptic energy level is above
Ă. Consequently, in the white region, there is a net potentiation drift. Therefore, if the
network state is in the blue region, energy-dependent plasticity rules push the network state
toward the intersection between the two curves (following the green arrows). Likewise, if the
network is in the white region, energy-dependent plasticity push the network state toward
the intersection point between the two curves (following the blue arrows). Finally, in the
intersection between the two curves (the system’s metabolic fixed point) the postsynaptic
energy level is Ă and, as a consequence, ∆wex→ex = 0 on average.

and Eqn. (5.17))

f(w; β) =

{
1
β
e−w/β, if w ≥ 0,

0, otherwise,
(5.17)

where f(w; β) is the probability density function of the exponential distribution5. To emulate
the incoming activity to each neuron from other brain areas, we inject into each neuron
a constant current Istim drawn from a Gaussian distribution with mean µ = 166 pA and
standard deviation σ = 15 pA. By assuming that all neurons share the same parameters
values we study the homogeneous parameter scenario (neuronal parameters are presented in
Table 4.1, but in this chapter the simulations use Esyn = 0.5%, EAP = 2%, and the previously
described stimulation current to each neuron). However, formalizing and simulating the

5This means that the distribution of the weights w is described by an exponential distribution with scale
parameter β. Therefore, the expected value of the weights is E[w] = β and the variance Var[w] = β.
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Figure 5.3: Current-frequency mapping for neurons with different γ sensitivity.
The current-frequency mapping φ(·) depends on the neuronal sensitivity to energy imbal-
ances. If γ is higher the neuron’s firing rate saturates before (with a smaller current) in
contrast to a neuron with lower neuronal sensitivity to energy imbalances.

heterogeneous parameter case is left to future work.

Before studying the network’s structure and dynamics under energy constraints, we first
simulate the network without energy constraints (i.e. γ = η = 0). Thus, the current-rate
relation from Eqn. (5.4) as well as the available energy in the neuron dictated by Eqn. (5.12)
holds, but Eqn. (5.14) does not hold, because Eqn. (5.14) holds for the excitatory population
only if energy constraints are affecting wex→ex plasticity (i.e. η > 0).

Simulating the network without metabolic constraints is useful as a base case for compar-
ison before including metabolic constraints6. Figure 5.6 shows the network’s dynamics and
structure when no metabolic constraints are included. As expected, firing rates increase until
saturation due to favored synaptic potentiation (α = 0.5). In this regard, the refractory pe-
riod for each neuron in the network is τref = 8ms. Thus, the maximum theoretical firing rate
for an infinite stimulation current is τ−1

ref kHz ⇒ νmax = 125Hz (see Eqn. (2.12)). Therefore,
the network’s firing rate is close to the saturation state. Moreover, the mean energy level
of the excitatory population (Figure 5.6a) decreases until stabilizing at A(t) ≈ 75%. The
energy stabilization point occurs at the firing rate and excitatory-excitatory strength satu-

6All the simulations presented in this chapter have the same initial conditions
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Figure 5.4: Excitatory-inhibitory balanced network.
Excitatory and inhibitory neuronal positions in a 1mm2 surface area. Each neuron x and y
position is drawn from a random uniform distribution U [−0.5, 0.5].

ration7. However, in principle, without energy constraints, each neuron’s energy level can
decrease until achieving A(t) = 0. This is the case if we, for instance, sufficiently increase
the number of neurons in the network, or increase the energy consumption related to post-
synaptic potentials Esyn. Eqn. (5.11) describes which variables affect energy consumption
and, consequently, the available energy in the neuron. Now it is possible to include metabolic
constraints and study their impact on the network’s dynamic and structure. We start only
including synaptic sensitivity to energy imbalances (η > 0), but no neuronal sensitivity to
energy imbalances (γ = 0). Later, we also include neuronal sensitivity to energy imbalances
in the simulation (η, γ > 0), thus energy constraints directly affects neuronal dynamics as
well as plasticity. Finally, we maintain neuronal and synaptic energy imbalance sensitivity
(η, γ > 0), but emulate a metabolic impairment by decreasing K neuronal parameter. Thus
decreasing the rate at which ATP is produced.

7If firing rates and excitatory-excitatory weights are saturated, the energy consumption in each neuron
can be approximated by:

Ac ≈Esyn

∑
k

w̄kν̄k

≈Esyn × nex × w̄max × νmax

=0.5× 400× 1× 0.125

=25%,

in agreement with what is observed in Figure 5.6a
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(a)

(b)

Figure 5.5: Initial weight distribution and adjacency matrix.
Weights distribution in a) follows an exponential distribution with scale parameter β =
5. wex→ex, wex→in, win→ex, and win→in synaptic strengths follow the same exponential
distribution with scale parameter β = 5, but win→ex and win→in synapses are inhibitory,
thus their strengths are negative. Figure b) shows the respective adjacency matrices A
obtained from the weight matrices, where if wi,j ≥ 5 ⇒ Ai,j = 1 and Ai,j = 0 otherwise.
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(a)

(b) (c)

Figure 5.6: Network dynamic and structure without energy constraints.
Network simulation when there are no metabolic constraints in the network. Mean available
energy in the excitatory population keeps dropping until neuronal firing rates are saturated.
Figure a) shows mean energy level and mean firing rate for the excitatory population, while
Figure b) shows final incoming synaptic strength per neuron (

∑
j wj,i) and mean firing rate

per neuron. The mean firing rates in Figures b) and c) are calculated considering the last
10% of the simulation.
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5.2.1 Exploring synaptic energy imbalance sensitivities η

From our previous theoretical developments, for higher synaptic energy imbalance sensitiv-
ities η we expect higher energy level equilibrium values Ă (Eqn. (4.18)). In this regard, to
achieve Ă closer to AH , energy consumption needs to decrease, and postsynaptic energy con-
sumption decreases if presynaptic rate decreases, or if incoming synaptic strengths decrease
(Eqn. (5.15)). Consequently, as we increase η, lower firing rates as well as weaker excitatory-
excitatory synaptic strengths are expected as Figure 5.2 conceptually represents. In addition,
to satisfy Eqn. (5.15) an inverse relation between

∑
k w̄

in→ex, k
t ν̄in, k

t and
∑

k w̄
ex→ex, k
t ν̄ex, k

t

should be observable in the simulations.

Figure 5.7 shows the mean available energy and neuronal firing rate through the simu-
lation, for the excitatory population. Consistently with Eqn. (4.18), while synaptic energy
imbalance sensitivity η increases, the energy level equilibrium point increases and stays close
to our analytical prediction (dashed gray line). Also, while the energy fixed-point Ă increases,
the mean neuronal firing rate decreases, which aligns with the theoretical description repre-
sented in Figure 5.2.

The first column of Figure 5.8 shows neuronal firing rate as a function of incoming synaptic
strength, for different synaptic sensitivities η values. In agreement with Eqn. (5.4), as the
incoming synaptic strengths increases, the firing rate increases. Also, when η increases,
neuronal rates and excitatory-excitatory weights decrease, as it can be observed from Figure
5.8a with η = 30 having higher firing rates and stronger excitatory-excitatory synapses than
the ones observed in Figure 5.8c where η = 50. The previous observation is also valid when
contrasting Figure 5.8c where η = 50 against Figure 5.8e where η = 100; when synaptic
sensitivity η increases, excitatory firing rates tend to decrease.

Regarding the inverse relation between
∑

k w̄
in→ex, k
t ν̄in, k

t and
∑

k w̄
ex→ex, k
t ν̄ex, k

t dictated
by Eqn. (5.15), the second column of Figure 5.8 shows the relationship between these two
variables for simulations with increasing η. For a low synaptic sensitivity to energy imbalance,
there seems to be an inverse relation present in Figure 5.8b, although not very clear. However,
if synaptic sensitivity η increases, the inverse relationship between the two variables becomes
more evident, as shown in Figure 5.8d. Interestingly, when the synapses are highly sensitive
to energy imbalance (Figures 5.8e and 5.8f), it is not possible for all the neurons to achieve
the metabolic fixed point, and some neurons achieve the silent fixed point described in the
footnote 4.

When there is an extreme synaptic sensitivity to energy imbalances (Figures 5.8e and
5.8f), a subpopulation of excitatory neurons remains silent (neurons with zero firing rate in
Fig. 5.8e). It is not surprising that silent neurons have higher inhibitory weights (black
dots in Fig. 5.8f). This happens because just before the separation of the network into two
subpopulations (t ≈ 7000ms), there is a slight decrease (increase) in available energy (firing
rate), followed by an increase (decrease) in available energy (firing rate). This last increase in
available energy must be accompanied by a general decrease in excitatory-excitatory weights
(A < Ă implies a net negative drift in excitatory-excitatory weights), and if there is a general
decrement in excitatory-excitatory weights, then the first neurons to be silent are the ones
with higher inhibitory incoming weights. After entering the silent state, their excitatory-
excitatory weights remain constant, so the only possibility for them to stop being silent, is
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(a)

(b)

(c)

Figure 5.7: Mean available energy and firing rate for different synaptic sensitivities
to energy imbalances.
Figure a) is obtained with η = 30 parameter, while for Figure b) η = 50, and η = 100 in
Figure c). Figures show the mean energy level and firing rate for the excitatory population,
and there is no neuronal sensitivity to energy imbalances (i.e. γ = 0).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Weight-rate and synaptic energy consumptions when the synaptic
sensitivity to energy imbalances varies.
The Figures in the first column show the mean firing rates versus incoming synaptic strengths,
thus the numerically equivalent to the current-rate mapping defined by φ(·). The Figures in
the second column show the energy consumption in each neuron due to presynaptic excitatory
neurons and presynaptic inhibitory neurons. Figures a) and b) are obtained with η = 30, γ =
0 parameter values, while for Figures c) and d) η = 50, γ = 0. finally, figures e) and f)
show the simulations results when η = 100, γ = 0. The mean firing rates ν̄t in all cases were
calculated considering the last 10% of the simulation.
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Figure 5.9: Excitatory population separations.
The excitatory population divides into two subpopulations due to high synaptic sensitivity
to energy imbalances η. The silent subpopulation is the one with higher available energy
(ATP ∼ 99.6%).

to receive higher incoming current, but this is not possible, because the silent neurons allow
decreasing the energy consumption in the non-silent neurons such as the non-silent neurons
can satisfy the metabolic fixed-point where A ≈ Ă. As a consequence, the silence of those
neurons enables the network to converge toward a stable fixed point,with one subpopulation
staying in the metabolic fixed point, while another subpopulation stays in the silent fixed
point (see footnote 4). In this scenario, one group of neurons still tries to satisfy the Āt ≈
Ă energy constraints, and their energy equilibrium point is close to the one predicted by
Eqn. (5.14), as shown in Figure 5.9. The second group of silent neurons has a higher
available energy, but their energy consumption is different than zero. This is not the only
case in which there must be silent neurons to achieve a global fixed point. For instance, if
the neuronal population is huge, then this phenomenon also occurs (although there is no
need for extreme synaptic sensitivity to energy imbalances in this case), or if a metabolic
impairment is simulated, as we will show later. The separation of excitatory populations in
two subpopulations can be interpreted as a specialization. Surprisingly, under the developed
framework, silent neurons emerge as a consequence of local energy constraints in the network
and, if this silent neurons are not present, then it is not possible to achieve a global fixed
point in the network. This is interesting because silent neurons are present in our brains and
it is not clear why would we have them. In fact, silent neurons have been referred to as ‘dark
neurons’ in analogy to the astrophysical observation that much of the matter in the universe
is undetectable, or dark [80]. In our framework, silent neurons are playing an important role
from a metabolic point of view. One hypothesis is that given local energy constraints in
biological neural networks, the price to pay due to having redundant neurons in the brain is
to silence some of them to achieve a network energy equilibrium.
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5.2.2 Including neuronal sensitivities to energy imbalances γ

So far, the developed theoretical analysis of the energy-dependent network does not account
explicitly for neuronal energy imbalance sensitivity γ. However, in Chapter 3, we showed that
neuronal sensitivity to energy imbalances γ affects neuronal firing rate. Thus, we can include
the neuronal sensitivity parameter in the current-rate mapping φ(·) := φγ(·). In particular,
if the energy level in a neuron is below the homeostatic energy level (i.e. A ≤ AH), for the
same incoming input current, the neuron’s firing rate is higher for higher γ, as demonstrated
by Eqn. (3.8) and shown in Figure 5.3. Consequently, if two networks (A and B) are
equal (in particular, have the same initial excitatory-excitatory weights), but the neurons
in network A have higher γ sensitivity than neurons in network B, then network A must
have higher or equal excitatory firing rates than network B. As a consequence, to achieve
an energy equilibrium point, network A needs to decrease excitatory-excitatory synaptic
strengths. This idea is conceptualized in Figure 5.2 with the gray dashed line representing
the current-rate mapping when γ is increased. Following the previous explanation, for higher
γ we expect the network to have weaker excitatory-excitatory synaptic strengths as well as
higher firing rates.

To numerically explore the effect of modifying γ, we maintain synaptic sensitivity η = 50
fixed and vary the neuronal sensitivity to energy imbalances γ. Because the synaptic sensitiv-
ity η is constant for all cases in Fig 5.10 and the energy level fixed point is independent of the
neuronal sensitivity parameter γ, the theory predicts that networks with different neuronal
sensitivity γ should converges towards the same energy level. The previous prediction is
confirmed by observing Figure 5.10, where for different γ values, the energy fixed points are
almost the same. However, as already anticipated by the theory, in the metabolic fixed point,
higher γ value are associated with higher mean excitatory firing rates ν̄ex

t . This prediction
is confirm by calculating the mean excitatory firing rate ν̄ex

t considering the last 10% of the
simulation for each case. Particularly, when γ = 10 we obtain ν̄ex

t = 106.5, while for γ = 20
the mean excitatory firing rate (ν̄ex

t ) is 107.6, finally for γ = 50 we obtain ν̄ex
t = 111.1. Al-

though not easily recognizable, this pattern is also observable by comparing the weight-rate
relationship in Fig. 5.11 for each case. When γ = 10 (Figure 5.10a) the firing rate is slightly
lower compared with the γ = 20 case (Figure 5.10b). Moreover, this relation also holds when
comparing the γ = 20 case against the γ = 50 case (Figure 5.10c). The first column in Figure
5.11 shows the experimental current-rate relationship for excitatory neurons in the network.
In agreement with the previous explanation and with Figure 5.2, as neuronal sensitivity γ
increases from Figure 5.11a to 5.11c and 5.11e, numerical experiments show that neurons
become more easily excitable. Thus, generating higher firing rates when γ is higher. Fur-
ther, if we observe the second column in Figure 5.11, it is clear that the relationship defined
by Eqn. (5.15) is satisfied, thus respecting the relationship between

∑
k w̄

in→ex, k
t ν̄in, k

t and∑
k w̄

ex→ex, k
t ν̄ex, k

t .

Regarding excitatory-excitatory synaptic strength, simulations shows that excitatory-
excitatory weight slightly decreases as neuronal sensitivity γ increases This observation is
supported by realizing that when γ increases, the energy fixed point does not change, but the
firing rates increases (Figure 5.10). This is only possible because the excitatory-excitatory
weights decrease, compensating the increased firing rates and thus allowing to keep the same
energy consumption. Thus, the theoretical predictions regarding the effect of increasing γ
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(a)

(b)

(c)

Figure 5.10: Mean available energy and firing rate for different neuronal sensitiv-
ities to energy imbalances.
Figure a) is obtained with η = 50, γ = 10 parameter values, while for Figure b) η = 50, γ = 20,
and η = 50, γ = 50 in Figure c). Figures show the mean energy level and firing rate for the
excitatory population.
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while keeping η fixed is proved and in well agreement with numerical experiments.

5.2.3 Impaired metabolic production
Regarding biology, our theoretical and simulation framework allows us to study what happens
when there is impaired metabolic production affecting neurons. This question is relevant be-
cause there is evidence suggesting that metabolic impairments are a common cause for various
neurodegenerative diseases [12, 13, 14, 15, 16, 17]. Therefore, improving the understanding
of how metabolic impairments affect network dynamics and structure is potentially valuable
from a treatment point of view.

From our theoretical developments, if the ATP rate production controlled by parameter
K decreases, we expect:

1) Given that the energy level equilibrium point for non-silent neurons Ă guaranteeing
∆wex→ex = 0 on average is independent of K (see Eqn. (4.18)), if there is a mean
energy level fixed-point for non-silent neurons, it should stay constant as K varies.

2) By analyzing Eqn. (5.15), for non-silent neurons, if K decrease,
∑

k w̄
in→ex, k
t ν̄in, k

t or∑
k w̄

ex→ex, k
t ν̄ex, k

t needs to decrease to satisfy the aforementioned metabolic relation.
The only plastic synapses in the network are wex→ex. Therefore, if the metabolic pro-
duction is impaired, we expect lower firing rates as well as weaker excitatory-excitatory
synaptic strengths.

3) By analyzing Eqn. (4.3) and the fact that the time constant of the energy produc-
tion in the neuron is τA = 1/K, we know that lower production rate K values are
associated with slower production responses. As a consequence, if a neuron with im-
paired metabolic production is subjected to an abrupt constant energy consumption,
the energy production response to that consumption will be slower than the energy
production response of a healthy neuron. In addition, this abrupt energy consumption
will pull the neuron’s available energy to a lower level compared to a healthy neuron
subjected to the same energy consumption8. Given the slower response to energy con-
sumption in the impaired case, producing higher delays between energy production
and consumption, we expect to observe more oscillations in the ATP dynamics when
simulating the network.

For the metabolically impaired simulation we vary K, but keep the synaptic sensitivity to
energy imbalances η = 50 and the neuronal sensitivity γ = 20 (Figs. 5.10b, 5.11c and 5.11d).

Figure 5.12 shows the mean available energy level and firing rate of the network through
the simulations. In particular, Figure 5.12a is obtained when K = 0.7. Please note that
the numerical energy level fixed point when K = 0.7 is very close to the one obtained with
K = 1 simulation (Fig. 5.10b), confirming that if there is an energy fixed point for non-
silent neurons, it is independent of the ATP rate production K, in agreement with our first
theoretical prediction. Moreover, if we compare Figures 5.11d and 5.13b, it is clear that

8Formally, we can describe an abrupt and constant consumption as a step energy consumption Ac(t) =
Θ(t′)Ac starting at time t = t′. Given enough time, the available energy of a neuron subjected to such energy
consumption is A = AH − Ac

K .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Weight-rate and energy consumptions when neuronal sensitivity to
energy imbalances varies.
The Figures in the first column show mean firing rates versus incoming synaptic strengths,
thus the numerically equivalent to the current-rate mapping defined by φ(·). The Figures
in the second columns show the energy consumption in each neuron due to presynaptic
excitatory neurons and presynaptic inhibitory neurons. Figures a) and b) are obtained with
η = 50, γ = 10 parameter values, while for Figures c) and d) η = 50, γ = 20. Finally, Figures
e) and f) show the simulations results when η = 50, γ = 50. The mean firing rates ν̄t in all
cases were calculated considering the last 10% of the simulation.
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both simulations satisfy the energy relationship defined by Eqn. (5.15). However, in Figure
5.11d (K = 1) the mean

∑
k w̄

ex→ex, k
t ν̄ex, k

t energy consumption is much higher than the one
consumed in Figure 5.13b when K = 0.7, in agreement with the second theory prediction.
Besides, contrasting Figures 5.10b and 5.12a, a decrease in mean firing rate (orange curve)
for the excitatory populations is observed when ATP rate production K decreases, also in
agreement with the second prediction from theory. The decrease in excitatory population
firing rate when K decreases can also be observed by contrasting Figure 5.11c (K = 1) and
Figure 5.13a (K = 0.7). Therefore, if energy production is impaired in any neuron, then the
energy consumption of that neuron needs to decrease to achieve a fixed point.

Hence, if we keep decreasing K (higher production impairment), energy consumption
needs to drop to be consistent with the theory. In Figures 5.12b, 5.13c and 5.13d the ATP
rate production is K = 0.5. Although the mean average rate and excitatory-excitatory
weights decrease (Figs. 5.12b and 5.13d, respectively) with respect to the K = 0.7 case,
when K = 0.5 the convergence towards a global fixed point is possible when a subpopulation
of the network becomes silent. This behavior is in agreement with the energy constraints
imposed on the network. In particular, as previously explained, if the ATP rate production
parameter K decreases, then the energy consumption needs to drop. To decrease energy con-
sumption, excitatory-excitatory weights decrease and, consequently, mean excitatory firing
rates decrease. Then, silencing a subpopulation of neurons is a consequence of a strict policy
toward diminishing energy consumption. Even though this is a similar phenomenon to the
one observed when there is a high synaptic sensitivity to energy imbalances (Figs. 5.7c, 5.8f,
5.8e and 5.9), it is not the same, because the cause of the phenomenon is different. When
there is a high synaptic energy imbalance sensitivity η, the energy level fixed point is close
to the homeostatic energy level AH (Eqn. (4.18)), thus decreasing energy consumption is
necessary to converge towards a global fixed point. In contrast, in the metabolic production
impairment case, the energy level fixed point is not necessarily close to the homeostatic en-
ergy level AH . However, because energy production is impaired, energy consumption needs to
drop to achieve an energy fixed point. Therefore, in the high synaptic sensitivity case, the en-
ergy consumption drops because the energy level fixed point needs to be close to AH in order
to achieve ∆w ≈ 0, which is a constraint imposed by the synapses, while in the metabolically
impaired case, the energy consumption needs to drop because neuronal on-demand energy
production does not match energy consumption (a constraint imposed by neurons, not by
the synaptic energy sensitivity), thus decreasing energy consumption is necessary to achieve
the energy fixed point. However, despite both phenomena being different, in the metabolic
impaired case again the silent neurons are the ones with higher inhibitory synapses, and the
reason is the same as in the case where high synaptic sensitivity to energy imbalances is
present: before the network separates into two subpopulations there is an increase in avail-
able energy accompanied by a global excitatory-excitatory weights strength’s decrease. If all
the excitatory neurons receive a decreasing incoming current, the first in becoming silent are
the ones that have higher inhibitory weights.

If we continue aggravating the metabolic production impairment and the network is able
to achieve a fixed point, theoretically, we expect even weaker excitatory-excitatory synaptic
strengths as well as lower firing rates in the equilibrium state. Accordingly, we simulate
the network with K = 0.1, emulating the case where neurons can produce energy at a 10%
rate with respect to the healthy case (i.e. K = 1). Figure 5.12c shows that the energy
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(a)

(b)

(c)

Figure 5.12: Mean energy and firing rate for different ATP production impairment.
Figure a) is obtained with η = 50, γ = 20, K = 0.7 parameters, while for Figure b) η = 50, γ =
20, K = 0.5, and η = 50, γ = 20, K = 0.1 in Figure c). Figures show the mean energy level
and firing rate for the excitatory population.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Weight-rate and energy consumptions when neuronal ATP produc-
tion is impaired.
The Figures in the first column show mean firing rates versus incoming synaptic strengths,
thus the numerically equivalent to the current-rate mapping defined by φ(·), while the
Figures in the second column show the energy consumption in each neuron due to presy-
naptic excitatory neurons and presynaptic inhibitory neurons. Figures a) and b) are ob-
tained with η = 50, γ = 20, K = 0.7 parameter values, while for Figures c) and d)
η = 50, γ = 20, K = 0.5. Finally, Figures e) and f) show the simulations results when
η = 50, γ = 20, K = 0.1. The mean firing rates ν̄t in all cases were calculated considering the
last 10% of the simulation. 70



production is so impaired that the network is not able to achieve an equilibrium point and
stays oscillating, exploring excitatory-excitatory weights strengths which allow for achieving
an equilibrium state. The problem appears to be that there are no excitatory-excitatory
weights values that allow a firing rate and energy consumption which can be compensated by
the impaired energy production. Specifically, an abrupt change in firing rate as a consequence
of a small variation in excitatory-excitatory strengths seems to be part of the problem. Thus,
small excitatory-excitatory weight variations generate energy consumptions that cannot be
compensated by on-demand energy production. This is coherent with the third prediction
and shows and extreme case where energy production is so impaired that it is not possible to
converge towards a homeostatic balance where energy production and consumption match
each other. To understand more intuitively what is happening, besides considering that
neurons with impaired metabolism (small K) have slower responses to energy consumptions,
thus a higher delay between consumption and production, it is relevant to remember that
the excitatory-excitatory weight net drift depends on the available energy in the neurons
(see Eqn. (4.17) and Fig. 4.2). Thus, if we start the simulation with all the neurons
with the homeostatic energy level (i.e. A(t = 0) = AH), given that the energy fixed point
value is smaller than the initially available energy (i.e. Ă < AH), then at the begging
of the simulation and while the condition Ă < A(t) is fulfilled, weights will increase and,
because of the current-rate relationship, firing rates also. Consequently, energy consumption
in the neurons increases, but energy production is severely delayed, so the available energy
in the neurons will tend to decrease on average (i.e. ∆A(t) < 0). If the available energy
continues to decrease, at some point, on average the available energy in the excitatory neurons
will be lower than the energy fixed point value (i.e. A(t) < Ă). When this condition is
fulfilled, the excitatory-excitatory weights will tend to decrease on average, generating a
decrease in the excitatory firing rates. This decrease in excitatory-excitatory weights and the
accompanied decrease in firing rates will continue while the available energy is lower than the
energy fixed point value (i.e. A(t) < Ă). This decrease in energy consumption enables the
possibility of energy production surpassing the energy consumption (while ∆A(t) < 0 and
A(t) < Ă energy consumption is decreasing but energy production is increasing). If energy
production surpasses energy consumption, the available energy in the neurons is increasing
(i.e. ∆A(t) > 0). This increase in the available energy A(t) should continue at least until
the available energy match the energy equilibrium point (i.e. A(t) = Ă), because when
the available energy A(t) is below the energy fixed point Ă, energy consumption is always
decreasing, but energy production is always active (because As(t) = K(AH − A(t))). This
behavior of energy production and consumption allows that available energy increases above
the energy fixed point value Ă in the ∆A(t) > 0 regimen. When the available energy is above
the energy Ă equilibrium value, then the loop starts again, and excitatory-excitatory weights
as well as excitatory firing rates increase, thus increasing energy consumption faster than the
capacity of the neuron to compensate for those consumptions, thus entering the decreasing
available energy regimen (i.e. ∆A(t) < 0). This behavior stop when it is possible to match
energy production and consumption, while having, on average, available energy near to the
energy fixed point (i.e. A(t) ≈ Ă). When on-demand energy production can compensate
energy consumption in the neurons it is easier to find that equilibrium.

Accordingly to our understanding of how energy constraint affects the networks, one pos-
sible solution to solve the non-converging system due to a dramatic ATP production impair-
ment (K = 0.1), is decreasing the synaptic sensitivity to energy imbalances η. In this manner,
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synapses experience softer strengths updates transitions when they are close to the analytical
fixed-point Ă. Thus, diminishing the oscillations due to changes in the peak energy-dependent
potentiation described in Eqn. (4.12). To test this hypothesis, we simulate the network (Fig.
5.14) with the same initial conditions and parameters as the one shown in Figure 5.12c, but
decreasing the synaptic sensitivity to energy imbalances to η = 10. The proposed solution
allows for alleviating the oscillations in the system. However, the equilibrium is achieved by
silencing a subpopulation of excitatory neurons. The logic behind this phenomenon is the
same as the one explained for the η = 50, γ = 20, K = 0.5 case (Figs. 5.12b, 5.13e and 5.13f).
Figure 5.14 shows that non-converging networks due to a dramatic metabolic impairment
can be alleviated by modifying other parameters in the network. However, there are other
solutions to this problem that might alleviate the oscillations. For instance, a simple solution
is to decrease the energy expenditure due to postsynaptic potentials Esyn, thus forcing a
decrease in energy consumption. Other possible solution could be modifying the neuron’s
time-constant τm. In particular, if τm decreases, each neuron has an slower dynamic. Thus,
decreasing the slope of the current-rate relation. As a consequence, new weights and rates
combinations allows to satisfy the required energy constraints, but with lower rates, thus
with slower weights updates (weights update when pre- and postsynaptic spikes are present.
Thus, lower rates implies less spikes and, therefore, slower weight updates). In addition, if
the slope of the current-rate mapping decreases, weights modifications should produce softer
transitions in rates, thus helping to decrease the oscillations due to the sensitivity of the
firing rates to weights modifications.

5.3 Discussion
Based on the developments described in Chapters 3 and 4, in this chapter we mathematically
formalize and simulate spiking neuronal networks under metabolic constraints. The work
focuses on the emergence of dynamics, structure, and the study of attractors under energy
constraints for homogeneous neuronal populations in E-I balanced networks. In general
terms, the developed theory allows us to predict behaviors observed in numerical experiments.
Moreover, the introduced neuronal and synaptic energy constraints generate a new attractor
in E-I balanced networks due to the intersection of classic physical constraints (neuronal
current-rate relations (5.4)) and the new constraints emerged from the local energy constraint
imposed to each neuron in the network. We mathematically describe this phenomenon and
conceptualize it in Figure 5.2.

Regarding the network’s fixed points, synaptic sensitivity to energy imbalances is the
main parameter affecting the available energy fixed-point for each neuron. As a conse-
quence, through energy-dependent plasticity, synaptic strengths change until non-silent neu-
rons achieve the energy equilibrium point Ă. When the weights change, the neuron’s firing
rates change accordingly. We mathematically describe the required constraints on the post-
synaptic neuron between inhibitory and excitatory presynaptic energy consumptions (Eqn.
(5.15)), in order to achieve the energy equilibrium point. Surprisingly, if synaptic sensitivity
to energy imbalances η is too high, in order to achieve a global fixed point in the network, the
neuronal excitatory population divides into two subpopulations, with one of them composed
of silent neurons. The occurrence of this phenomenon shed light on why silencing excita-
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(a)

(b)

Figure 5.14: Energy and firing rates for a dramatic metabolic impairment with low
synaptic sensitivity to energy imbalances.
Simulations are obtained with η = 10, γ = 20, K = 0.1 parameters. Figures show results for
the excitatory population. In particular, b shows the mean energy and firing rate dynamics
of the entire network, while in b the energy dynamic for each neuron in the populations is
shown.
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tory neurons could be practical to diminish energy consumption in neuronal networks, thus
allowing the network’s convergence towards a fixed point. Moreover, this phenomenon can
be interpreted as a specialization in the excitatory population. Is surprising that this sort
of behavior emerges given the simplicity of the developed rules constraining the network’s
energy, dynamics and, structure.

The effect of neuronal sensitivity to energy imbalances γ in the network’s dynamics and
structure is also analyzed. Theoretically, the available energy fixed point is independent of
the neuronal sensitivity γ. Also, to achieve an energy fixed point when neuronal sensitivity
γ is higher, excitatory-excitatory synaptic strengths need to decrease due to higher neuronal
excitability produced by increased neuronal sensitivity γ. Numerical experiments confirm
the predictions made by theory (Figures 5.10 and 5.11).

Regarding neurodegenerative diseases and given the biological evidence suggesting their
relation with metabolic impairment, we study how neurons with impaired energy production
affect the network dynamics and structure. Our theoretical developments predict that in
impaired energy production cases, energy consumption needs to drop. Consequently, lower
firing rates and excitatory-excitatory synapses are expected. These predictions are confirmed
by numerical experiments (Figure 5.13). However, there are other important details in the
metabolic impaired scenario. For instance, if the metabolic impairment is high enough, it
is also possible that the excitatory population divides into two subpopulations, with one of
them composed of silent neurons, although the source of this phenomenon (neuronal incapac-
ity to produce enough energy on demand) is different from the one explained previously when
too high synaptic energy sensitivity is present in the network (the energy fixed point Ă must
be close to AH , forcing low energy consumption). Even more dramatic energy production
impairments may produce constant oscillations in the network, preventing the convergence
towards an attractor (Fig. 5.12c). We show how these oscillations can be alleviated by
modifying other parameters of the simulations. Trying to alleviate the oscillations present
in dramatic metabolic impairment scenarios is important because it could help in developing
new treatments for neurodegenerative diseases. A detailed study of how to alleviate patho-
logical behaviors due to metabolic impairments is out of the scope of this thesis. However, the
proposed theory as well as the simulation framework could be valuable to deepen the knowl-
edge about the relationship between neurodegenerative diseases and metabolic impairments
at the neuronal, synaptic, and network levels.

It is important to mention some of the limitations of this work. Firstly, we use a simple
single-neuron model that neglects the neuron’s morphology and the effect of some relevant
ions, such as calcium kinetics, on the neuron’s activity. Also, the model includes one type
of plasticity, which only modifies excitatory-excitatory connections. Thus, we are neglect-
ing other types of plasticity acting at different time scales, such as short-term plasticity or
synaptic scaling. In addition, all the connections in the model, except excitatory-excitatory
connections, are static. This is also an important limitation because different types of plas-
ticity acting on other connections could have a significant impact on the network’s activity
and structure.

Finally, it is worth mentioning that -in general- previous neuronal and synaptic models
do not account for energy dependencies. Thus, the developed framework and analysis of
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dynamics and structure in spiking neural networks under metabolic impairment as well as the
analysis of the effect of energy constraints in E-I balanced networks are the main contributions
of this thesis.
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Chapter 6

Conclusion and future work

The objective of this thesis is to formalize, simulate and study spiking neural networks under
metabolic constraints. To achieve that goal, we proceed by studying and developing neuronal
and synaptic energy-dependent models. The first contribution of this thesis is the develop-
ment of a computationally simple but biologically meaningful energy-dependent single-neuron
model. The model allows us to adapt the neural sensitivity to energy imbalances, thus allow-
ing the representation of neurons with different sensitivities to energy imbalances. Despite its
simplicity, the model allows for the replication of pathological behavior that was previously
simulated by much more complex and computationally demanding models.

The second contribution of this thesis is the creation of an energy-dependent spike-timing-
dependent model, where synaptic modifications depend on the postsynaptic ATP level. In
particular, this model allows for the replication of biological evidence supporting the sup-
pression of long-term potentiation when there is a deficit in the postsynaptic energy level.
Furthermore, we formulated an analytical expression that allows us to predict the postsy-
naptic energy level when a single neuron is bombarded by several presynaptic neurons. The
introduced plasticity model allows for the modification of synaptic sensitivity to postsynap-
tic energy levels, thus enabling the representation of plastic synapses with different energy
sensitivities.

In addition, taking advantage of the energy-dependent single-neuron and plasticity model,
we mathematically analyze the behavior of an Excitatory-Inhibitory balanced network af-
fected by metabolic constraints. Through the proposed theory, analytical expressions pre-
dicting the network’s activity and structure were derived. Then, the E-I balanced network
is simulated for different scenarios, and the theoretical predictions are compared against
experimental observations, giving reasonable agreement between the observations and the
qualitative predictions given by the theory. In this regard, the developed mathematical
framework as well as the understanding of the impact of metabolic constraints at different
scales in neural networks through computational simulations are novel contributions of this
thesis.

Unfortunately, and despite current technology, the majority of the predictions made by the
developed theory are not easy to measure in vitro or in vivo. However, from a computational
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neuroscience point of view, the hypotheses on which this work is based have been validated in
silico, and the committed goals of this thesis have been accomplished, namely, the develop-
ment of an energy-dependent single-neuron model, the development of an energy-dependent
synaptic plasticity model, and the study of neural networks under metabolic constraints.

An interesting observation related to artificial intelligence emerges inspired by the work
developed in this thesis. Studying how energy dynamics affect neurons, it can be observed
that the energy dynamic is much slower than the other dynamics involved in the system
(at least the ones considered in this study). As such, energy level can be thought of as a
state giving long term memory to the cell. In particular, because it changes slower than, for
instance, membrane voltage or synaptic currents, the current energy level of the neuron can
be connected to a much previous activity affecting it. Built on that observation, it might be
possible to create a simple neuronal model where the energy level gives the neuron a recurrent
internal dynamic. Following this idea, we are working on the simplest computational neuronal
model accounting for the role of energy in the neural dynamic for solving AI challenges.
Thus allowing us to explore what could be the role of a biologically-inspired energy dynamic
variable in the training and performance of conventional ANN when solving a specific task.
This is far beyond the scope of this thesis, however, we would like to finish this manuscript
by giving to the reader an example of how studying the brain from a biological point of view
can inspire the creation of new AI algorithms, thus opening new avenues for the virtuous
circle between neuroscience and engineering collaborations, from which both can benefit.

Interestingly, despite the new knowledge that we have developed and gained through this
doctoral thesis, understanding how metabolic constraints affect dynamics and structure at
the network level is still a very difficult task and, regardless of the efforts made here, there are
still many unanswered questions (known unknowns) and unformulated questions (unknown
unknowns). We hope that this observation does not produce frustration in the reader but,
on the contrary, stimulates curiosity and passion for discovering new knowledge and keeps
expanding the sphere of what is known. In this regard, there are a few avenues, along which
to continue and extend the work presented in this thesis. We will outline four such possible
directions:

ã Include long-term plasticity in other connection types In this thesis, we only
included energy-dependent long-term plasticity in the excitatory-excitatory connec-
tions. Presumably, there are other types of connections experiencing long-term energy-
dependent plasticity. Those plasticities affecting other connection types may have a
significant impact on the network structure and activity. Therefore, one possible ex-
tension of the work presented here is the creation of an energy-dependent long-term
plasticity for other connection types.

ã Include plasticity occurring at different time scales In this thesis, regarding
synaptic modification phenomena, we focused on long-term plasticity. However, as
explained in Chapter 3, synaptic plasticity occurs at different time scales. Therefore,
a possible extension is to include synaptic plasticity mechanisms affecting synaptic
strength at different time scales. A candidate is the inclusion of short-term plasticity
rules. In particular, following the formalization of short-term plasticity introduced in
[49] and the arguments presented in [16, 17], it is possible to extend known models
of short-term plasticity to account for energy dependence by making the recuperation
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rate of neurotransmitters ATP dependent. Thus, including energy dependencies in the
synaptic vesicle recycling process.

ã Extend theory to the heterogeneous scenario For mathematical treatment and
simplifying the study and analysis of neural networks under metabolic constraints, in
this thesis we focused on the homogeneous case, meaning that all neurons have the
same parameters (consequently, they have the same current-rate mapping). However,
noise represents an inherent property of biological substrates. Therefore, to get closer
to biology, a generalization by relaxing the homogeneous assumption and extending the
theory for studying heterogeneous neural networks under metabolic constraints could
be developed.

ã Extend theory to the frequency domain This work does not include a detailed
study or mathematical analysis of how coupling phenomena between neurons or pop-
ulations of them could affect the structure and activity of a network. However, given
the long-term plasticity mechanism used here where synaptic strengths are modified
by pre- and postsynaptic spike times, specific neurons’ coupling may have a relevant
effect on the networks’ structure. Therefore, the work presented in this thesis could
be extended by carrying out analytical studies as well as computational simulations
measuring the effect of coupling effects and oscillation on the network structure and
activity.
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