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CONTRIBUCION AL ESTUDIO DE DINAMICAS SIMBOLICAS DE ENTROPIA
CERO: AUTOMORFISMOS, FACTORES Y ESTRUCTURE

Esta tesis se centra en el estudio de los subshifts minimales a través de secuencias S-adicas.
Primero, investigamos los automorfismos y factores de subshifts minimales generados por
secuencias S-adicas con alfabetos de cardinalidad acotada. Probamos que estos subshifts
tienen grupos de automorfismos que son virtualmente Z, que tienen finitos factores simbdlicos
aperiodicos (salvo conjugacién), y damos una descripcién fina de sus factores simbélicos.
Luego, consideramos la conjetura S-adica, un viejo problema que pregunta por un teorema de
estructura para los subshifts de complejidad lineal. Resolvemos completamente este problema
al dar una caracterizacién S-adica de esta clase de subshifts. Nuestros métodos se extienden
a subshifts de crecimiento no superlineal. Mostramos también cémo esto proporciona un
marco unificado y pruebas simplificadas de varios resultados conocidos, incluido el teorema
pionero de Cassaigne de 1996.



Abstract

This thesis focuses on the study of minimal subshifts via S-adic sequences. First, we inves-
tigate automorphisms and factors of minimal subshifts generated by S-adic sequences with
alphabets of bounded cardinality. As a result, we prove that these subshifts have virtually
Z automorphism groups, finitely many infinite symbolic factors (up to conjugacy), and we
give a fine description of symbolic factor maps. In the second part, we consider the S-
adic conjecture, an old problem asking for a structure theorem for linear-growth complexity
subshifts. We completely solve this problem by proving an S-adic characterization of this
class of subshifts. Our methods extend to nonsuperlinear-growth subshifts. We show how
this provides a unified framework and simplified proofs of several known results, including
Cassaigne’s Theorem.
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Résumé

Cette these porte sur 1’étude des systemes symboliques minimaux via des séquences S-
adiques. Dans la premiere partie, nous étudions les automorphismes et les facteurs des
systemes minimaux générés par des séquences S-adiques avec des alphabets de cardinalité
bornée. Comme résultat, nous prouvons que les systemes de cette classe ont des groupes
d’automorphismes virtuellement Z, un nombre fini de facteurs symboliques infinis (jusqu’a
la conjugaison), et une description fine des facteurs symboliques. Dans la seconde partie,
nous considérons la conjecture S-adique, un vieux probleme demandant un théoreme de
structure pour les systemes symboliques de complexité a croissance linéaire. Nous résolvons
completement ce probleme en prouvant une caractérisation S-adique de cette classe de
systemes. Les méthodes s’étendent aux systemes a croissance non superlinéaire. Nous mon-
trons comment cela fournit un cadre unifié et des preuves simplifiées de plusieurs résultats
connus, y compris le théoreme de Cassaigne de 1996.
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Introduction

An idea that became unavoidable to study zero entropy symbolic dynamics is that the dy-
namical properties of a system induce in it a combinatorial structure. The first use of this
approach was in the works of Morse and Hedlund [MH38; MH40], where Sturmian sequences
were studied based on a structure given by what the authors called derivative sequences. As
the theory developed, more examples like this one emerged. Relevant ones include substi-
tutive and linearly recurrent subshifts [DHS99|, Toeplitz systems [GJO00], (natural codings
of) interval exchange transformations [GJ02], dendric sequences [GL22] and general minimal
subshifts [HPS92].

In this thesis, we investigate these combinatorial structures under two approaches. The first
one assumes a given combinatorial structure and focuses on studying the dynamical properties
of the systems supporting such a structure. We will consider finite topological rank systems,
a class of systems possessing two desirable but opposite properties: It is a large class and
contains most of the known zero entropy symbolic systems, yet it presents strong dynamical
restrictions. Thus, the finite topological rank class provides a good framework for proving
general and interesting theorems. We exploit this idea by studying automorphisms and
symbolic factors of finite topological rank subshifts. Several theorems, describing rigidity
properties for these objects, are obtained in Chapters 2 and 3.

The second approach consists of finding new combinatorial structures for systems of interest.
We study one of the major questions in this direction -the S-adic conjecture, which asks for
a structure theorem for linear-growth complexity subshifts. In the final chapter, we solve
this conjecture and, furthermore, extend it to nonsuperlinear-growth complexity subshifts.
An important consequence of our results is that these complexity classes gain access to the
S-adic machinery. We show how this provides a unified framework and simplified proofs of
several known results, including the pioneering 1996 Cassaigne’s Theorem.

We will now discuss the thesis topics in more detail.

Basic terminology

Let us briefly review the modern standard for describing symbolic systems and their struc-
tures. An alphabet is a finite set A and a word is a finite concatenation of letters, i.e., elements
of A. The full-shift on A is the set A% endowed with the product topology of the discrete
topology of A. We define the shift as the map S: A% — AZ defined by (2,)nez = (Tni1)nez.
A symbolic system or subshift is a closed subset X of A% such that S(X) = X. We will



mostly consider minimal subshifts X, that is, such that {S"z : n € Z} is dense in X for all
reX.

A substitution is a map 7: AT — BT that substitutes the letters a; of a word w = a; ... ay
by 7(a;). Then, a sequence of substitutions 7 of the form (7,: A}, — A}),>0 is called an
S-adic sequence and generates a subshift X, C A% given by requiring that z € X, if and
only if, for all £ > 0, x_ ) occurs in 797y ... 7,—1(a) for some n > 1 and a € A,.

Finite topological rank systems

An ordered Bratteli diagram is an infinite directed graph B = (V, E, <) such that the vertex
set V and the edge set F are partitioned into levels V = Vo U ViuU..., E = EyU... so
that E, are edges from V.1 to V,, Vj is a singleton, each V,, is finite and < is a partial
order on E such that two edges are comparable if and only if they start at the same vertex.
The order < can be extended to the set Xp of all infinite paths in B, and the Vershik
action Vg on Xp is defined when B has unique minimal and maximal infinite paths with
respect to <. We say that (Xpg,Vp) is a BV representation of the Cantor system (X, .S)
if both are conjugate. Bratteli diagrams are a tool coming from C*-algebras that, at the
beginning of the 90°, Herman et. al. [HPS92] used to study minimal Cantor systems. Their
success at characterizing the strong and weak orbit equivalence for systems of this kind
marked a milestone in the theory that motivated many posterior works. Some of these works
focused on studying with Bratteli diagrams specific classes of systems and, as a consequence,
many of the classical minimal systems have been characterized as Bratteli-Vershik systems
with a specific structure. Some examples include odometers as those systems that have a
BV representation with one vertex per level, substitutive subshifts as stationary BV (all
levels are the same) [DHS99], certain Toeplitz sequences as “equal row-sum” BV [GJ00], and
(codings of) interval exchanges as BV where the diagram codifies a path in a Rauzy graph
[GJ02]. Now, almost all of these examples share certain coarse dynamical behavior: they are
subshifts, have finitely many ergodic measures, are not strongly mixing, have zero entropy,
and their BV representations have a bounded number of vertices per level, among many
others. It turns out that just having a BV representation with a bounded number of vertices
per level (or, from now on, having finite topological rank) implies the previous properties (see,
for example, [BKMS13], [DMO08]). In particular, finite topological rank systems are subshifts.
Hence, the finite topological rank class arises as a possible framework for studying minimal
subshifts and proving general theorems.

This idea has been exploited in many works: Durand et. al., in a series of papers (being
[DFM19] the last one), developed techniques from the well-known substitutive case and
obtained a criteria for any BV of finite topological rank to decide if a given complex number
is a continuous or measurable eigenvalue, Bezugly et. al. described in [BKMS13| the simplex
of invariant measures together with natural conditions for being uniquely ergodic, Giordano
et. al. bounded the rational rank of the dimension group by the topological rank ([HPS92]),
among other works. It is important to remark that these works were inspired by or first
proved in the substitutive case.

Now, since Bratteli-Vershik whose topological rank is at least two are conjugate to a subshift
[DMO8], it is interesting to try to define them directly as a subshift. This can be done by



codifying the levels of the Bratteli diagram as substitutions and then iterate them to obtain
a sequence of symbols defining a subshift conjugate to the initial BV system. This procedure
also makes sense for arbitrary nested sequences of substitutions (called directive sequences),
independently from the Bratteli diagram and the various additional properties that its codi-
fying substitutions have. Subshifts obtained in this way are called S-adic (substitution-adic)
and may be non-minimal (see for example [BSTY19]).

Although there are some open problems about finite topological rank systems depending
directly on the combinatorics of the underlying Bratteli diagrams, others are more naturally
stated in the S-adic setting (e.g., when dealing with endomorphisms, it is useful to have
the Curtis—Hedlund-Lyndon Theorem) and, hence, there exists an interplay between S-adic
subshifts and finite topological rank systems in which theorems and techniques obtained for
one of these classes can sometimes be transferred to the other. The question about which is
the exact relation between these classes has been recently addressed in [DDMP21] and, in
particular, the authors proved:

Theorem 0.1 ([DDMP21]) A minimal subshift (X, S) has topological rank at most K if and
only if it is generated by a proper, primitive and recognizable S-adic sequence of alphabet rank
at most K.

In Chapters 2 and 3, we will use the S-adic formalism to study automorphisms and factors
of finite topological rank systems.

Automorphisms

Let X be a subshift. The automorphism group of (X, 5), Aut(X, S), is the set of homeomor-
phisms from X onto itself that commute with S. The study of the automorphism group of
low complexity subshifts (X, S) has attracted a lot of attention in recent years. By complex-
1ty, we mean the increasing function py : N — N which counts the number of words of length
n € N appearing in points of the subshift (X, S). In contrast to the case of non trivial mixing
shifts of finite type or synchronized systems, where the algebraic structure of this group can
be very rich [BLR88; KR90; FF96], the automorphism group of low complexity subshifts
is expected to present high degrees of rigidity. The most relevant example illustrating this
fact are minimal subshifts of non-superlinear complexity, where the automorphism group is
virtually Z [CK15; DDMP16]. Interestingly, in [Sall7] (and then in [DDMP16] in a more gen-
eral class) the author provides a Toeplitz subshift with complexity px(n) < Cn'™7 whose
automorphism group is not finitely generated. So some richness in the algebraic structure
of the automorphism groups of low complexity subshifts can arise. Other low complexity
subshifts have been considered by Cyr and Kra in a series of works. In [CK16b| they proved
that for transitive subshifts, if lir_r:ig)fpx(n)/nZ = 0, then the quotient Aut(X,S)/(S) is a

periodic group, where (S) is the group spanned by the shift map; and in [CK16a] for a large
class of minimal subshifts of subexponential complexity they also proved that the automor-
phism group is amenable. All these classes and examples show that there is still a lot to be
understood on the automorphism groups of low complexity subshifts.

In Chapter 2, we study the automorphism group of minimal S-adic subshifts of finite or



bounded alphabet rank. This class of minimal subshifts is somehow the most natural class
containing minimal subshifts of non-superlinear complexity, but it is much broader, as was
shown in [DDMP16; DDMP21]. Moreover, this class contains several well studied minimal
symbolic systems. Among them, substitution subshifts, linearly recurrent subshifts, symbolic
codings of interval exchange transformations, dendric subshifts and some Toeplitz sequences.
Thus, this class represents a useful framework for both, proving general theorems in the
low complexity world and building subshifts with interesting dynamical behavior. The de-
scriptions made in [BKMS13] of its invariant measures and in [DFM19] of its eigenvalues
are examples of the former, and the well-behaved S-adic codings of high dimensional torus
translations from [BST20] is an example of the latter.

The main result of Chapter 2 is the following rigidity theorem:

Theorem 0.2 Let (X,S) be a minimal S-adic subshift given by an everywhere growing
directive sequence T = (1,2 A, — Ab)ns0. Suppose that T is of finite alphabet rank, i.e.,
liminf #A,, < +00. Then, Aut(X,S) is virtually 7Z.

n—-+o0o

A minimal S-adic subshift of finite topological rank, as stated in [DDMP21], is defined as an
S-adic subshift in which the defining directive sequence T is proper, primitive, recognizable
and with finite alphabet rank. In particular, T is everywhere growing. Therefore, Theorem
0.2 includes all minimal S-adic subshifts of finite topological rank. Also, in the same paper,
the authors prove that minimal subshifts of non-superlinear complexity are S-adic of finite
topological rank. Thus, Theorem 0.2 can be seen as a generalization to a much broader class
of the already mentioned results from [CK15] and [DDMP16]. Finally, by results stated in
[DDMP16], Theorem 0.2 also applies to all level subshifts of minimal Bratteli-Vershik systems
of finite topological rank and its symbolic factors.

The proof of Theorem 0.2 follows from a fine combinatorial analysis of asymptotic classes of
S-adic subshifts of finite alphabet rank. This idea already appeared in [DDMP16], where the
authors prove that the automorphism group of a minimal system is virtually Z whenever it
has finitely many asymptotic classes. The following theorem summarizes this combinatorial
analysis.

Theorem 0.3 Let W C A" be a set of nonempty words and define (W) = Il’llVI\I) length(w).
we

Then, there exists B C AN with #B < 122(#W)" such that: if x,2' € A” are factorizable
over W, T(_oo0) = x’(_oqo) and xo # Ty, then x_ow) ) € B.

Here, the important point is that, despite the fact that the length of the elements in B is
(W), the cardinality of B depends only on #W, and not on (W).

Finally, we get a bound for the asymptotic classes of an S-adic subshift of finite alphabet
rank. This result does not require minimality.

Theorem 0.4 Let (X, S) be an S-adic subshift (not necessarily minimal) given by an every-
where growing directive sequence of finite alphabet rank K. Then, (X, S) has at most 122K

4



asymptotic classes.

Factors

In the context of finite topological rank systems, a fundamental question is the following:

Question 0.1 Are subshift factors of finite topological rank systems of finite topological
rank?

Indeed, the topological rank controls various coarse dynamical properties (number of ergodic
measures, rational rank of dimension group, among others) which cannot increase after a
factor map, and we also know that big subclasses of the finite topological rank class are stable
under symbolic factors, such as the linearly recurrent and the non-superlineal complexity
classes [DDMP21], so it is expected that this question has an affirmative answer. However,
when trying to prove this using Theorem 0.1, we realize that the naturally inherited S-adic
structure of finite alphabet rank that a symbolic factor has is never recognizable. Moreover,
this last property is crucial for many of the currently known techniques to handle finite
topological rank systems (even in the substitutive case it is a deep and fundamental theorem
of Mossé), so it is not clear why it would be always possible to obtain this property while
keeping the alphabet rank bounded or why recognizability is not connected with a dynamical
property of the system. Thus, an answer to this question seems to be fundamental to the
understanding of the finite topological rank class.

In Chapter 3, we obtain the optimal answer to Question 0.1 in a more general, non-minimal
context:

Theorem 0.5 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and w: (X, S) — (Y, S) be an aperiodic
subshift factor. Then, (Y, S) is an S-adic subshift generated by an everywhere growing, proper
and recognizable directive sequence of alphabet rank at most K.

Here, a directive sequence o = (0,: Al | — Al),en is everywhere growing if the sequence
minge 4, |00 ... 0,—1(a)| diverges as n — 400, and a system (X, S) is aperiodic if every orbit
{S™x : n € Z} is infinite. Theorem 0.5 implies that the topological rank cannot increase after
a factor map (Corollary 3.19). Theorem 0.5 implies the following sufficient condition for a
system to be of finite topological rank:

Corollary 0.6 Let (X,S) be an aperiodic minimal S-adic subshift generated by an every-
where growing directive sequence of finite alphabet rank. Then, the topological rank of (X, 5)
1$ finite.

An interesting corollary of the underlying construction of the proof of Theorem 0.5 is the
coalescence property for this kind of systems, in the following stronger form:



Corollary 0.7 Let (X,S5) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and (X,S8) = (X1,9) B3 ... X% (X, S)
be a chain of aperiodic subshift factors. If L > log, K, then at least one 7; is a conjugacy.

One of the results in [Dur00] is that factor maps between aperiodic linearly recurrent subshifts
are finite-to-one. In particular, they are almost k-to-1 for some finite k. For finite topological
rank subshifts, we prove:

Theorem 0.8 Let w: (X,5) — (Y, 5) be a factor map between aperiodic minimal subshifts.
Suppose that (X, S) has topological rank equal to K. Then 7 is almost k-to-1 for some k < K.

We use this theorem, in Corollary 3.22, to prove that Cantor factors of finite topological rank
subshifts are either odometers or subshifts.

In [Dur00], the author proved that linearly recurrent subshifts have finite topological rank,
and that this kind of systems have finitely many aperiodic subshifts factors up to conjugacy.
Inspired by this result, we use ideas from the proof of Theorem 0.5 to obtain:

Theorem 0.9 Let (X,S) be a minimal subshift of topological rank K. Then, (X,S) has at
most (3K)3*K aperiodic subshift factors up to conjugacy.

Altogether, these results give a rough picture of the set of totally disconnected factors of a
given finite topological rank system: they are either equicontinuous or subshifts satisfying the
properties in Theorems 0.5, 0.7, 0.9 and 0.8. Now, in a topological sense, totally disconnected
factors of a given system (X,S) are “maximal”, so, the natural next step in the study of
finite topological rank systems is asking about the connected factors. As we have seen, the
finite topological rank condition is a rigidity condition. By this reason, we think that the
following question has an affirmative answer:

Question 0.2 Let (X,S) be a minimal system of finite topological rank and 7: (X, S) —
(Y, T) be a factor map. Suppose that Y is connected. Is (Y, T) an equicontinuous system?

We remark that the finite topological rank class contains all minimal subshifts of non-
superlinear complexity [DDMP21], but even for the much smaller class of linear complexity
subshifts the author is not aware of results concerning Question 0.2.

Low complexity subshifts

Structure theorems

Theorems that describe a combinatorial structure of a given class of subshifts are usually an
S-adic characterization, namely, of the form: a subshift X belongs to the class C if and only
if X is generated by an S-adic sequence satisfying certain property P. The structure then
appears as an infinite desubstitution process for the points of X.



In the context of structure theorems, an interesting intuition is that a subshift of low enough
complexity should be very restricted, and thus hide a strong structure. Here, low complexity
is a vague term referring to a slow growth of the complexity function py(n), defined as the
number of words of length n that occur in some point of X. This intuition dates back to the
70s, and matured in the 80s and 90s until it was finally established as the following more
concrete question.

Question 0.3 Consider the class (L) of linear-growth complexity subshifts, defined by re-
quiring that px(n) < dn for some d > 0. Is there an S-adic characterization of the class
(L)?

Question 0.3 is known as the S-adic conjecture. The first time it was explicitly stated was
in [Fer96], where the author attributes the idea to B. Host, who, in turn, attributes the idea
to the whole Marseille community.

The attempts to solve this conjecture have identified two major difficulties. The first one is
that, in contrast to what happens with other structure theorems, there is no clear structure
induced by the complexity. For example, in the substitutive case, it was always clear that the
substitution itself should produce a self-similar structure; the main obstruction was technical
and referred to whether the desubstitution process was properly defined [Mos96]. Similarly,
in the Sturmian and IET cases, the known structure came from the geometric counterpart
(more precisely, from the Rauzy induction). The second challenge is that the condition P we
are looking for in Question 0.3 is ill-defined. To exemplify this point, observe that a corollary
of [Casll] is the following S-adic characterization of (L): a subshift is in (L) if and only if
there exist 7 generating it and such that X is in (L). This tautological answer to Question
0.3 does not provide information. Certain restrictions on Question 0.3 have been proposed
to avoid this type of trivial answer, but none of them is considered satisfactory; we refer the
reader to [DLR13] for a full discussion.

In Chapter 4, we completely solve the S-adic conjecture for minimal subshifts by proving the
following theorem.

Theorem 0.10 A minimal subshift X has linear-growth complexity, i.e., X satisfies

limsup px(n)/n < 400,

n—-+0o00

if and only if there exist d > 0 and an S-adic sequence o = (0,: Api1 — Al )n>0 generating
X such that, for every n > 0, the following holds:

(P1) #(rootojgny(Ay)) < d .
(P2) |opmy(a)] < d-|opn(b)| for every a,b € A,.

(P3) |on-1(a)] < d for every a € A,.

tFor a word u, rootu denotes the shortest prefix v of u such that u = v* for some k; for a set of words
W, root W = {rootw : w € W}.



Our techniques extend to the case of nonsuperlinear complexity subshifts (NSL).

Theorem 0.11 A minimal subshift X has nonsuperlinear-growth complexity, i.e., X satisfies

lériligpx(n)/n < +o0,

if and only if there exist d > 0 and an S-adic sequence o = (0,: Api1 — Al )n>0 generating
X such that, for every n > 0, the following holds:

(P1) #(rootojony(Ay)) < d.
(P2) loomy(a)l < d-|opnd)| for every a,b € A,.

The case of non-minimal subshifts does not pose additional intrinsic difficulties and follows
from methods similar to those given here. However, we did not include it to avoid over
saturating an already technical presentation.

An important consequence of our main results is that the classes (L) and (NSL) gain access
to the S-adic machinery. We show in Section 4.10 how this provides a unified framework and
simplified proofs of several known results on (L) and (NSL), including Cassaigne’s Theorem
[Cas95]. Further applications of our main results, which include a new proof of partial
rigidity for (NSL) [Cre22] using the technique in [BKMS13, Theorem 7.2], will be presented
in a future work.

We prove, in the more specialized Theorems 4.75 and 4.76, that when X is in (L) or in (NSL),
then 7 can be assumed to be recognizable. Observe that the conditions (P;) in Theorems
0.10 and 0.11 are optimal in the sense that if we remove any of them then the corresponding
theorem is false. Conditions (P;) and (P3) also occur in the positive substitutive case * and
in linearly recurrent subshifts, but the behavior in our theorems is very different since we do
not impose positiveness.

With regard to (P;) and (Ps), these were designed on the basis of two conditions that are
present in most works that involve S-adic sequences. The first is having bounded alphabets
(BA), which requires that #.A4,, is uniformly bounded, and the second is finitariness, which
asks for the set {7, : n > 0} to be finite. Note that finitariness implies both (BA) and
Conditions (P;) and (P3), that (BA) implies (P;), and that, under (P3), finitariness and
(BA) are equivalent. There are several papers in which a finitary S-adic sequence is looked
for a subshift in (L) (see [Lerl4] and the references therein), and S-adic sequences with (BA)
have shown to be closely connected with (L) and (NSL) [Fer96; DDMP21]. It is then natural
to ask if we can replace, in Theorem 0.10, Conditions (P;) and (Ps) by finitariness. We show
in Theorem 4.77 that this is not possible. More precisely, we build a minimal subshift with
linear-growth complexity such that any 7 generating it and satisfying (Py), (P2) and (P3)
is not finitary (equivalently, (BA) does not hold). However, in Theorems 4.75 and 4.76 we
give a sufficient condition for 7 being finitary. Subshifts satisfying this sufficient condition
include substitutive subshifts, codings of IETs and dendric subshifts.

A substitution o: A — B is positive if for all a € A and b € B, b occurs in o(a)



Organization

The first chapter of the thesis is devoted to present the common background on topological
and symbolic dynamics that will be used in the rest of the document. We study automor-
phisms and symbolic factors of finite topological rank systems in Chapters 2 and 3, respec-
tively. Chapter 4 contains our results on the S-adic conjecture. Finally, a discussion of our
results and the future work is contained in Chapter 5.



Chapter 1

Background

1.1 Background in topological and symbolic dynamics

All the intervals we will consider consist of integer numbers, i.e., [a,b] = {k € Z : a < k < b}
with a,b € Z. For us, the set of natural numbers starts with zero, i.e., N={0,1,...}.

1.1.1 Basics in topological dynamics

A topological dynamical system (or just a system) is a pair (X,.S), where X is a compact
metric space and S: X — X is a homeomorphism of X. The orbit of x € X is the set
{S"x :n € Z}. A point x € X is periodic if its orbit is a finite set and aperiodic otherwise.
A topological dynamical system is aperiodic if any point x € X is aperiodic and is minimal
if the orbit of every point is dense in X. We use the letter S to denote the action of a
topological dynamical system independently of the base set X.

1.1.2 Basics in symbolic dynamics

Words and subshifts

Let A be an alphabet i.e. a finite set. Elements in A are called letters and concatenations
w = ay ...ap of them are called words. The number ¢ is the length of w and it is denoted
by |wl, the set of all words in A of length ¢ is A*, and AT = |J,, A*. The word w € A" is
|u|-periodic, with u € A*, if w occurs in a word of the form uu ... u. We define per(w) as the
smallest p for which w is p-periodic. We will use notation analogous to the one introduced in
this paragraph when dealing with infinite words € AY and bi-infinite words = € A%. The
set AT equipped with the operation of concatenation can be viewed as the free semigroup
on A. It is convenient to introduce the empty word 1, which has length 0 and is a neutral
element for the concatenation. In particular, AT U {1} is the free monoid in A.

Let W C A* be a set of words and u € A*. We write uW = {uw : w € W}, Wu = {wu :
w € W}, and also

(W) := min |w| and W] == max |w|.
wew wew
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The shift map S: AZ — A% is defined by S((2,)nez) = (Tpi1)nez. For x € AZ and integers
i < j, we denote by x[; jy the word x;z;41 ... x;. Analogous notation will be used when dealing
with intervals of the form [i,00), (i,00), (—00,i] and (—o00,i). A subshift is a topological
dynamical system (X, S) where X is a closed and S-invariant subset of A% (we consider the
product topology in A%) and S is the shift map. Classically one identifies (X, S) with X, so
one says that X itself is a subshift. When we say that a sequence in a subshift is periodic
(resp. aperiodic), we implicitly mean that this sequence is periodic (resp. aperiodic) for the
action of the shift. Therefore, if z € AZ is periodic, then per(z) is equal to the size of the
orbit of . The language of a subshift X C AZ is the set £(X) of all words w € AT that
occur in some x € X.

Morphisms and substitutions

Let A and B be finite alphabets and 7: AT — B* be a morphism between the free semigroups
that they define. Then, 7 extends naturally to maps from AY to itself and from A” to itself
in the obvious way by concatenation (in the case of a twosided sequence we apply 7 to
positive and negative coordinates separately and we concatenate the results at coordinate
zero). We say that 7 is primitive if for every a € A, all letters b € B occur in 7(a). The
minimum and maximum length of 7 are the numbers (1) = (7(A)) = minge |7(a)| and
|7] = |7(A)| = max,ec4 |7(a)|, respectively.

We observe that any map 7: A — Bt can be naturally extended to a morphism (that we
also denote by 7) from A" to BT by concatenation, and we use this convention throughout
the document. So, from now on, all maps between finite alphabets are considered to be
morphisms between their associated free semigroups.

Factorizations and recognizability

Definition 1.1 Let X C AZ be a subshift and o: A* — BT be a morphism. We say that
(k,x) € Z x X is a o-factorization of y € BZ in X if y = S*o(x). If moreover k € [0, |o(z0)|),
then (k,x) is a centered o-factorization in X.

The pair (X, 0) is recognizable if every point y € BZ has at most one centered o-factorization
in X, and recognizable with constant r € N if whenever y_,., = y_, ., and (k,z), (K, 2') are
centered o-factorizations of y,3’ € BZ in X, respectively, we have (k,zo) = (K, ).

The cuts of (k,x) are defined by

TN —k — ‘O'(I'[j’o))‘ lf] < 0.

We write C,(k,x) = {c,;(k,x) : j € Z}.

Remark 1.1 In the context of the previous definition:

(i) The point y € B% has a (centered) o-factorization in X if and only if y belongs to the
subshift Y := (J, ., S"0(X). Hence, (X,0) is recognizable if and only if every y € Y
has a exactly one centered o-factorization in X.

11



(ii) If (k,x) is a o-factorization of y € B in X, then (¢, ;(k, ), S7z) is a o-factorization of
y in X for any j € Z. There is exactly one factorization in this class that is centered.

(iii) If (X,0) is recognizable, then it is recognizable with constant r for some r € N
[DDMP21].

The behavior of recognizability under composition of morphisms is given by the following
lemma.

Lemma 1.1 ([BSTY19], Lemma 3.5) Let 0: A" — Bt and 7: BY — C* be morphisms,
X C A” be a subshift and Y = |J,., S¥0(X). Then, (X,70) is recognizable if and only if
(X,0) and (Y, T) are recognizable.

S-adic subshifts

We recall the definition of an S-adic subshift as stated in [BSTY19]. An S-adic sequence
or directive sequence o is a sequence of morphisms having the form (o,,: A, — Al )nen.
For 0 <n < N, we denote by o, y) the morphism o, 0 0,11 0---00ony_1. We say that o is
everywhere growing if

Jim (o) = +oo, (1.1)

and primitive if for any n € N there exists NV > n such that oy, ) is positive. We remark
that this notion is slightly different from the usual one used in the context of substitutional
dynamical systems. Observe that o is everywhere growing if o is primitive. Let P be a
property for morphisms (e.g. proper, letter-onto, etc). We say that o has property P if o,
has property P for every n € N.

For n € N, we define
Xl(,") = {x € AZ: VIl €N, T[gg OCCUrs in op, yy(a) for some N > n,a € AN}.

This set clearly defines a subshift that we call the nth level of the S-adic subshift generated by
o. Weset X, = X, O and simply call it the S-adic subshift generated by o. If o is everywhere
growing, then every Xf,"), n € N, is nonempty; if o is primitive, then X is minimal for
every n € N. There are non-everywhere growing directive sequences that generate minimal
subshifts.

The relation between levels of an S-adic subshift is given by the following lemma.

Lemma 1.2 ([BSTY19], Lemma 4.2) Let o = (0,,: A, — A )nen be a directive sequence
of morphisms. If 0 <n < N and x € x5 , then there exists a (centered) oy, ny-factorization
in X$V. In particular, X&) = Usez SF0pm.n) (XM,

We define the alphabet rank of a directive sequence 7 as

AR(7) = liminf #A4,,.

n—-+00
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A contraction of T is a sequence T = (T[n,npiy) .A,fk“ — A} Jren, where 0 = ng < ny <
ng < .... Observe that any contraction of 7 generates the same S-adic subshift X,.. When
the context is clear, we will use the same notation to refer to 7 and its contractions. If 7
has finite alphabet rank, then there exists a contraction T = (Tjn, n..) 0 Af | — A ke of

7 in which A, has cardinality AR(7) for every k > 1. o
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Chapter 2

Automorphisms

2.1 Introduction

Automorphism groups of low complexity subshifts have gained considerable attention in
recent years. Unlike the case of mixing shifts of finite type, where the algebraic structure of
this group can be very rich [BLR88; KR90; FF96], the automorphism group of low complexity
subshifts has a high degree of rigidity. The most relevant example illustrating this fact is the
case of minimal subshifts of nonsuperlinear-growth complexity, in which the automorphism
group is virtually Z [CK15; DDMP16]. In this chapter, we study the automorphism group of
minimal S-adic subshifts of finite alphabet rank. This class of subshifts contains all minimal
subshifts of nonsuperlinear-growth complexity, but it is much broader, as was shown in
[DDMP16; DDMP21].

The main result of this chapter is the following rigidity theorem:

Theorem 2.1 Let (X,T) be a minimal S-adic subshift generated by an everywhere growing
S-adic sequence T = (1,2 Al — A})nso. Suppose that T is of finite alphabet rank, i.e.
liminf, . #A, < +oo. Then, Aut(X,T) is virtually 7Z.

The proof of Theorem 2.1 is a consequence of a fine combinatorial analysis of asymptotic

classes of S-adic subshifts of finite alphabet rank, which we summarize in the following
theorem.

Theorem 2.2 Let W C A" be a set of nonempty words and define (W) = mlvr\l} length(w).
we

Then, there exists B C A with #B < 122(#W)7 such that: if x,2' € A” are factorizable
over W, T(—oo0) = 3:’(70070) and xo # x(, then x—owy0) € B.

This chapter was published as a standalone article in [Esp22a].
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2.1.1 Organization

The chapter is organized as follows. In the next section we give additional background in
topological and symbolic dynamics. In Section 2.3 we introduce some special ingredients
allowing to prove the main theorems: the notions of interpretation and reducibility of sets
of words together with its properties and the key Proposition 2.6, whose technical proof is
given in Section 2.5. In Section 2.4 we restate our main results and provide complete proofs.

2.2 Additional background

An automorphism of the topological dynamical system (X, S) is a homeomorphism ¢: X —
X such that ¢ o S = S o p. We use the notation ¢: (X,5) — (X,5) to indicate the
automorphism. The set of all automorphisms of (X, .5) is denoted by Aut(X, S) and is called
the automorphism group of (X,S). It has a group structure given by the composition of
functions. It is said that Aut(X,S) is virtually Z if the quotient Aut(X,S)/(S) is finite,
where (S) is the subgroup generated by S.

We write <, and <, for the relations in A* of being prefix and suffix, respectively. We also
write u <, v (resp. u <; v) when u <, v (resp. u <, v) and u # v. When v = sut, we say
that u occurs in v or that u is a subword of v. We also use these notions and notations when
considering prefixes, suffixes and subwords of infinite sequences.

2.3 Notion of Interpretation

In this section we introduce the concepts of interpretation and double interpretation of a word
together with its basic properties. The definitions we provide here are variants of the same
notion used seldom in combinatorics of words, see for example [Lot97]. The key Proposition
2.6, where we provide a fundamental upper bound for the number of irreducible sets of simple
double interpretations, is announced here and proved in the last section of the chapter.

For the rest of this section we fix an alphabet A and a finite set of nonempty words W C A™.

If u,v,w € A* are such that w = uv, then we write u = wv™! and v = v tw.

2.3.1 Interpretations and simple double interpretations

Definition 2.1 Let d € A*. A W-interpretation of d is a sequence of words I = dr,dy, dg, a
such that:

(1) dpy € W* and a € A;
(2) there exist ug,ug € W such that 1 # d; <, ur, dra <, ug;
(3) d=dpdydg.
See Figure 2.1 for an illustration of this definition. Note that dj; and dg can be the empty

word. The extra letter a will be crucial to handle asymptotic pairs and W-interpretations
later.
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Figure 2.1: Diagram of the W-interpretation I = dy,dy;,dg, a of d in Definition 2.1.

If the context is clear, we will say interpretation instead of W-interpretation.

Now we make an observation that will be useful when we want to inherit interpretations of
a given word to some of its subwords. We state it as a lemma without proof.

Lemma 2.3 Let I = dy,dy,dg,a be a W-interpretation of d € AT. Suppose that d' <, d
satisfy |d'| > |di|. Then, d' has a W-interpretation of the form I' = dp,d),,d%, a’ such that
da <, da.

The proofs of our main theorems are based in a procedure allowing to reduce the so called
double interpretations (defined below) to a special class called simple double interpretations.

Definition 2.2 Let d € AT. A W-double interpretation (written for short W-d.i.) of d is a
tuple D = (I;I'), where I = dy,dy,dg,a, I' =d},d},,d%, a' are W-interpretations of d such
that a # a’. We say that D is simple if in addition

(1) d),d% <; dg, and
(2) d7 e Wor |[d}| > |u] for some u € W having dra as a prefix.

Again, if there is no ambiguity, we will omit VW and simply say double interpretation or d.i.

Note that if D is simple, then D" = (I’; ) is a d.i., which is not necessarily simple. Condition
(1) in the previous definition says that d’, the left-most word of I’, “touches” dg, the right-
most word of I; see Figure 2.2 for an illustration of this. Condition (2) is more technical and
we will comment about it at the end of the Subsection 2.3.2.

Remark 2.1 From condition ((2)) in previous definition we have that |d7|,|d| > (W),
whenever D is a simple W-d.i.

16



Figure 2.2: Diagram of a d.i. of d satisfying (1) in Definition 2.2. Here, dra <, ug and
'ma’ <, Uy, where ug, u; are the words given in condition (2) of Definition 2.1.

The next lemma will be useful to build a simple double interpretation from a word having a
double interpretation.

Lemma 2.4 Let D = (I =dy,dy,dg,a; 1" = d},d),,dR,a") be a double interpretation of a
word d € A*. Suppose that d;, € W and |d| < |d}dy,|. Then, there exists e < d with a
simple double interpretation.

Proor. By considering the shortest suffix of d verifying the hypotheses of the lemma we can
assume without loss of generality that this suffix is d itself. We consider three cases.

(1) d}, <, di. This condition and the hypotheses of the lemma imply that d} <, d, <, d7.d’;.
Therefore, d); is not the empty word and we can write dj, = wv, with u € W and v € W*.
Then, e = dj,d% <, d has the interpretations J = (d};)~'d;,dys,dr,a (here we are using
that (d})'d; # 1) and J' = u,v,d%,a’. But w € W and |(d})~d.| < |(d}) " d,d),| = |uv],
so e is a strict suffix of d having a d.i. E := (J;J') verifying the hypotheses of the lemma,
which contradicts the minimality of d. Thus, this case is incompatible with the hypotheses.

(2) d <, d}. If D is not a simple d.i. we have dp <, d),d% since d; € W and then
d; <, d}, <, dpdy. This implies that dj is not the empty word. Then, we can write dy; = uv
with u € W and v € W*. We have that £ = (J = d;'d},d),,d%,a’; J =u,v,dg,a) is a d.i.
of e :== dydr <, d which, in addition, satisfies v € W and |d;'d}| < |uv|. This contradicts
the minimality of d and D must be simple.

(3) dp = d}. If dpy = 1 or ), = 1, it follows directly from definition that D = (I,I’) or
D' = (I',I) are simple d.i. respectively. So we assume dy; # 1 and d}, # 1. Therefore, we
can write dy; = wv and d}, = v'v’, with u, v’ € W and v,v" € W*. Let e = dydg = d,d'g,
J = wu,v,dg,a and J' = u',v',d}, a’. Observe that when |[v/| < |u|, E = (J';J) is a d.i. of
e satisfying u € W and |v/| < |uv|, and when |u| < ||, E = (J;J') is a d.i. of e satisfying
v € W and |u| < |u'v'|. In both cases we get a contradiction with the minimality of d. Then,
in this case either D or D’ is a simple d.i. of d.

O
A point = € A% is factorizable over W if there exist a point y € W% and k € Z such that

Too) = Yoy1y2 -+ and T(_oop) = - Y_3y—2y_1. For example, if T is a directive sequence,
0<n<Nandze X", from Lemma 1.2 we see that z is factorizable over Tin,N) (An).
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The last lemma of this subsection gives the relation between asymptotic pairs that are fac-
torizable over the set of words VW and simple double interpretations over WW. This lemma
is crucial to reduce our combinatorial studies in next sections to the case of simple double
interpretations.

Lemma 2.5 Ifz,12’ € A” are factorizable over W, x(_co0) = x’(foo 0) and xo # x|, then there
ewists a word e <y T(_s0,0) having a simple double interpretation over WW.

Proor. Let [ > 2|W| and d = x;_;0). Then d inherits in a natural way interpretations
I = dg.dy,dg,a and I' = d},d},,d, a' from the factorizations of x and 2’ respectively.
Since a = xg # xy = @', the tuple D := (I; ') is a d.i. Moreover, by choosing adequately [ we
can suppose that d;, € W. Also, |dp| < |W| < [—|d}| = |d}.d},|, so the hypotheses of Lemma
2.4 hold. Thus d (and of course x(_)) has a suffix e with a simple double interpretation
over W. This proves the lemma. ]

2.3.2 Reducible and irreducible simple double interpretations

In this section we introduce the notions of reducible and irreducible sets of simple double
interpretations. In Proposition 2.6 we provide an upper bound for the size of irreducible sets
of simple d.i. (the proof of this proposition is very technical and is postponed until Section
2.5). Thus, even if in some cases it is not necessary, most of the notions appearing in this
section will be considered only for simple d.i.

For the rest of the chapter each time we use a letter D to denote a d.i. on W, then it double
interprets the word d € AT and is written D = (Ip = dy,dy, dg,ap; I, = d}, d),, d%, dp).
Definition 2.3 Given U = (ups, ug, u}, uy, Uy, ¢) € W° x N, we define Dy as the set of

simple W-d.i. D such that:
(1) either dpy € W*uys or dyy = 1 and dy, < upy;
(2) drap <, ug and |ur| = min{|w| : drap <, w, w € W};
(3) dralp <p U, d7 < u} and |u}| = min{|w| : d} <, w, w € W};
(4) dj, =1lord), =v;-- v, € WH, vy = U}, and maxi<j<, |v;| = L.
It is easy to see that

D= |J Dy

UeW>5xN

is the set of all simple W-d.i. of words in A*. Moreover, from ((4)) of Definition 2.3 we have
that ¢ € {|w|: w € W}U{0} when Dy; # 0, so D is the union of no more than #W?(#W+1)
sets Dy .
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Figure 2.3: Diagram illustrating restrictions in Definition 2.3 for a simple d.i. in the case

Definition 2.4 Let D, E be simple d.i. on W. We say that,

(1) D is equivalent to E, and we write D ~ E, if d and e have a common suffix of length
at least (W) (this makes sense by Remark 2.1).

(2) D reduces to E, and we write D = E, if e <, d.

Observe that, when D and E are simple d.i. on W with D = FE, then, by Remark 2.1,
D~ E.

Definition 2.5 A subset D' C D of simple d.i. is reducible if

(1) there are two different and equivalent elements in D', or

(2) there exists D € D’ that reduces to some simple d.i.

If D' is not reducible, we say that it is irreducible.

The main combinatorial result about irreducible sets of simple d.i. is the following proposi-
tion, whose proof will be carried out in Section 2.5.

Proposition 2.6 Let U € W’ x N. Any irreducible subset of Dy has at most 61(#W)
elements.

The use of condition (2) of Definition 2.2 appears during the proof of this proposition. This
proof consists in directly showing that sets D' C Dy with more than 61(#W) elements are
reducible. For this, one finds elements in D’ that are equivalent or can be reduced. In this
process, one observes that eliminating condition (2) in the definition of simple d.i. has two
opposite effects. On one hand, it should be easier to find a reduction of a given simple
d.i., since more d.i. are simple; but on the other hand, without condition (2) being simple
means less structure, so it is more difficult to actually find the desired reductions during the
proof. Balancing this trade-off is the reason behind the technical condition (2). It is worth
mentioning that this condition (2) is only used in the proof of Lemma 2.11.
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2.4 Proof of main results

In this section we prove our main results. As we commented in the introduction, the proof
of Theorem 2.1 is based on two general steps: first we use a proposition from [DDMP16]
relating the number of asymptotic components with the “size” of the automorphism group
and secondly we develop a complete combinatorial analysis of the asymptotic classes arising
in an S-adic subshift of finite alphabet rank.

Let (X, S) be a topological dynamical system. Two points x, 2" € X are (negatively) asymp-
totic if lim,,_, ., dist(S™z, S™2’) = 0. We define the relation ~ in X as follows: x ~ 2
whenever x is asymptotic to S*a’ for some k € Z. It is easy to see that ~ is an equivalence
relation. An equivalence class for ~ that is not the orbit of a single point is called an asymp-
totic class, and we write Asym(X,S) for the set of asymptotic classes of (X,S). Observe
that if (X, S) is a subshift, then x ~ 2’ if and only if x(_ ) = x,(—oo,é) for some k, /¢ € 7Z.

The following proposition, which is a direct consequence of Corollary 3.3 in [DDMP16], gives
a relation between the number of asymptotic classes and the cardinality of Aut(X,S)/(S)
under conditions that any infinite minimal subshift satisfies.

Proposition 2.7 Let (X,S) be a topological dynamical system. Assume there exists a point
zo € X with w(w) = (50 15%z0 : k > n} = X that is asymptotic to a different point. Then,
#Aut(X, 9)/(S) < #Asym(X, S)!.

Now we prove our first combinatorial theorem.

Theorem 2.2 Let W C A" be a set of nonempty words. Then, there exists B C A with
#B < 122(#W)7 such that: if 2,2/ € A% are factorizable over W, z(_sop) = :13’(70070) and
To # x(, then x_ w0y € B.

As will be clear from the proof, the bound “122(#W)™ is not necessarily optimal. Here,
the important point is that, despite the fact that the length of the elements in B is (W), the
cardinality of B depends only on #W, and not on (W).

Proor. We start by defining the set B. For each U = (uys, ug, u}, uy,, us, ) € W x N, fix
D;; C Dy an irreducible subset of maximal size (we consider the empty set as an irreducible
set, so there always exists such set D). We define

B={weA™ :3U e W xN, D e D}, w<,d},

where in this set d € AT represents the word that is double interpreted by D. We note that
this makes sense because |d| > (W) for all simple d.i. As we observed previously, we have
¢ € {Jw| : w € W}U{0} when Dy is nonempty. Thus, there are no more than #W?(#W+1)
choices for U such that Dy is nonempty. Using this and Proposition 2.6 we get:

#B < 61#W - #{U ¢ W’ x N: Dy # 0},
< OLH#EW - #W P (H#W + 1) < 122(#W)7.
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It rests to prove the main property of the theorem. In this purpose, let x,2' € A% be
factorizable over W with z(_ o) = 95/(_00,0) and zo # x;. From Lemma 2.5 we can find a
simple d.i. D of d <, x(_s ). Let

D= D)= D(1)= D(2)=---= D(n)

be a sequence of reductions that starts with D (where, possibly, n = 0 and D has no
reduction). We write, for convenience, D(j) = (I(j);1'(j)) and d(j) for the word that is
double interpreted by D(j). Since |d(0)] > |d(1)|] > ..., any sequence like this ends after a
finite number of steps. In particular, we can take (and we are taking) this sequence so that
n is maximal. This implies that D(n) has no reduction.

Since D = Jyepsyy Pu, we can find U € W? x N satisfying D(n) € Dy. We claim that
there is a word e with a simple d.i. E = (Ig;I};) € Dy, such that D(n) is equivalent to E.
Indeed, if D(n) € Dy, then, since D(n) is equivalent to itself, we can take E = D(n). If
D(n) is not in Dy, then, from the maximality of D}, we see that D, U {D(n)} is reducible.
Since D(n) has no reduction and Dy, is irreducible, there exists F € Dy, equivalent to D(n).
This proves the claim.

Then, using the definitions of reduction and equivalence of simple d.i., we have that the suffix
w € AM) of e satisfies

w<sd(n) <sdn—1) <g -+ <, d(0) < (00,

and w € B since £ € Dy;. This finishes the proof. O

Now we have all the ingredients to compute the number of asymptotic classes in the case of
S-adic subshifts of finite alphabet rank.

Theorem 0.4 Let (X, S) be an S-adic subshift given by an everywhere growing directive
sequence of alphabet rank K. Then, (X, S) has at most 122K asymptotic classes.

Proor. Set K’ = 122K7. We are going to prove the following stronger result.

Claim 2.1 Let P be the set of pairs (x,y) € X x X such that (_0) = Y(—o0,0) and zo # yo.
Then, #{z () : (z,y) € P} < K'.

First, we show how this claim implies the theorem. Suppose the claim is true and let
Co, - - ., Ok be asymptotic classes for (X, S). For each j € {0,..., K’} we choose (z;, 2}) € C}
such that z; and zg do not belong to the same orbit. Then, there exist m;, m; € Z such that
xj =5z and y; = Smg'zé- satisfy

(%))(—00,0) = (Yj)(—o00) and  (z;)o0 # (yj)o. Vi €{0,..., K’} (2.1)
Thus, (z;,y;) € P for all j € {0,..., K’} and, by the claim and the Pigeonhole Principle,

there exist different j, 7" € {0,..., K’} such that (2;)(—cc,0) = (2j/)(—cc,0)- This implies C; =
Cj and, thus, that (X, S) has at most K’ asymptotic classes.
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Now we prove the claim. Let 7 = (7,,: A}, — Al),>0 be an everywhere growing directive
sequence of alphabet rank K generating X. By doing a contraction, if required, we can
suppose that #.A4, = K for every n > 1. For n > 1 put W, = 7o,,)(A,) and let B, C A§ be
the set given by Theorem 2.2 when it is applied to W,,. By hypothesis, #W,, < #A,, = K,
so #B,, < 122(#W,)" < 122K" = K.

For j € {0,..., K"} let (z;,y;) € P. We have to show that (2;)—sc0) = (j/)(—cc0) for
different j, ;' € {0,..., K'}. Since for all n > 1 and j € {0, ..., K’} the points x; and y; are
factorizable over W, (Lemma 1.2), from Theorem 2.2 we have that (x;);_ow,)0 € Bn. But
#B,, < K’ so by the Pigeonhole Principle there exist j,,j. € {0,..., K’} with j, # j/ such
that

(%5, ) =) 0) = (Z32) =oW).0)- (2.2)

Thus, again by the Pigeonhole Principle, we can choose 1 < ny; < ng < ... such that
(@)= wn) 0 = (@) own0) Vi1 (2.3)

Since T is everywhere growing, (W,) goes to infinity when n — +oo. Thus, (2.3) implies
that (2;)(—00,0) = (Zj7)(=0,0), as desired. This completes the proof. O

We remark again that in previous result we do not assume minimality. This hypothesis is
needed in the next proof (of Theorem 2.1) only because we bound the size of the automor-
phism group by the number of asymptotic classes via Proposition 2.7. Thus, Theorem 2.1 is
mainly a consequence of combinatorial facts inherent to S-adic subshifts.

Theorem 2.1 Let (X,S) be a minimal S-adic subshift given by an everywhere growing
sequence of finite alphabet rank K. Then, its automorphism group is virtually Z.

Proor. From Proposition 2.7 and Theorem 0.4 we get
#Aut(X, 9)/(S) < #Asym(X, S)! < (122K7)! < 4o0.

This inequality proves that Aut(X,.S) is virtually Z. O

2.5 Proof of Proposition 2.6

In this last section we prove Proposition 2.6. All but one result we need (Lemma 2.4) are
presented and proved here, so the section is almost self contained.

We fix, for the rest of this section, a finite set of words W C A" and a sequence U =
(upr, ug, Uy, Uy, U, €) € W3 x N. For D € Dy, we define:

d = dp(dy,d) "t = (dpdy) " tdy

We need a last definition: two words u,v € A* are prefiz dependent (resp. suffix dependent)
if u <, vorwv<,u(resp. u<svorv <,u). In this case, v and v share a common prefix
(resp. suffix) of length min(|ul, |[v]).
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Lemma 2.8 Consider different elements D, E in Dy. If any of the following conditions
holds, then the set {D, E'} is reducible:

(i) dydrap, €\€har are prefiz dependent;
(ii) |dr| = lerl;
(iii) |d| < [&] < |ddy| or [&] < |d] < [&e}].

Proor. We will show that under conditions of the lemma one of the following relations occurs:
D ~ FE, E reduces to a simple d.i. or D reduces to a simple d.i.

(i) Without loss of generality, we can suppose that d},drap <, €),erar. We distinguish two
cases:

(1) dydrap = €),erar. Using item ((3)) of Definition 2.3 we can write d = d;d},d% <
updy,d. Similarly, e <, u}e},er. This and hypothesis (a) imply that d and e are suffix
dependent. But, since D and E are simple d.i., by Remark 2.1 we have that |d|,|e| > (W).
We conclude that d and e share a suffix of length at least min(|d|, |e|) > (W), which implies
D~ FE.

(2) dyydrap <, €y,€rar (so, dydrap <, €),e%). We claim that ¢ > 0 in the definition of U.
Suppose that ¢ = 0. Then, d), =€), = 1 and we can write:

/ / /

Since by ((3)) of Definition 2.3 we also have dra’, <, u;, we conclude that ap = af,. This
contradicts the fact that F is a d.i. Thus, ¢ > 0.

Now, ¢ > 0 and ((4)) of Definition 2.3 imply that vp = (u},)"'d}, € W* and vy =
(uy,) ey, € W Let w = d},;d%,. Observe that Jp = u);,vp,d,a} is an interpretation
of w. Moreover, since u}, <, w <, ujvger by hypothesis (b) and vy € W*, we can
obtain, using Lemma 2.3, an interpretation of w of the form Jg = U, €}, €}, a’, such that
wa, <, uyvpey.

Next, we prove that F' = (Jp; Jg)is a d.i. of w. Observe that vpdrap <, vgey by hypothesis
(b) and €},e}ha’ <, vgel by the definition of Jg. But vpdy = (u})'w = €,e}, so ap = dl},.
Hence, @/, # ap = a7, and F'is a d.i. of w.

Finally, we note that since Jp and Jg start with u), € W, we can use Lemma 2.4 with F' to
obtain a simple d.i. G of a word g such that ¢ <, w <, d. This corresponds to the fact that
D reduces to G.

(ii) Assume |dgr| = |eg|. Since, by ((2)) of Definition 2.3, we have that dg and er are prefix of
ug, hypothesis (ii) implies that dg = eg. In addition, from ((1)) of Definition 2.3 we see that
drdys and epey, either share the suffix uy, € W or are suffix dependent. We conclude that

d =dpdydg and e = epeyer share a suffix of length at least (W). This is, D ~ E.

(iii) We consider the case |d| < |& < |dd;,|, the other one is symmetric.
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We start with some simplifications. Observe that condition ((2)) in Definition 2.3 implies
drap = ad'Md;{aD <pur and egap = &\ ehar <, ug. (2.4)

Then, if |d| = |&], we are in case (i), and if |dgz| = |eg|, we are in case (ii). Thus, we can
suppose, without loss of generality, that

d| < [8],
|dr| # |erl.

—~~
DN

The idea of the proof is the following. We are going to define a word w, which is suffix of d
or e, and that has a d.i. F' satisfying the hypothesis of Lemma 2.4. This would imply that
F (and then also D or E) reduces to a simple d.i., as desired.

From (2.5) and hypothesis (iii) we have that |d| # |dd),| and thus ¢ # 0. In particular, this
last fact implies that vp = (u),)~'d), € W* and vg = (u},)~'e), € W*. Also, from (2.4)
and (2.5) we see that it makes sense to define ¢ :== d~'& # 1. Then, Jp = u},,vp,d}%, d}, is
an interpretation of d},d and Jg = t, €}, ey, a); is an interpretation of te’,ef. Now, using
(2.4) and (2.6) we also obtain that either d),d}, <, te),ef or te}, e <, d),dx. We analyze
these two cases separately:

(1) Assume dy,d}; <, te},e. We define w = d),d}; <, d. Note that Jp is an interpretation of
w. By hypothesis (iii), we have t <, w <, te/,€}, so we can use Lemma 2.3 with Jg to obtain
an interpretation of w having the form Ji; = ¢, €}, ef, a and satisfying wa <, €),ej. We set
P = (Jp, Jp). Since wa <, te},ep = dleg <, d 'ug and wap = d},drap = d 'drap <,
d~'ug, we have a = ap. Being ap # a/, as D is a d.i., we conclude that a # o, and that F' is
a d.i. Recall that uy € W and observe that |t| < |d),| by hypothesis (iii). Thus, F' satisfies

the hypothesis of Lemma 2.4. This implies that D is reducible.

(2) Suppose te) ey <, dy,dy. Observe that from ((4)) of Definition 2.3 we know that there
exist n > 0 and, for j € {1,...,n}, v; € W with |v;| < ¢, such that vp = vy ---v, (we
interpret vy - --v, = 1 when n = 0). We define w = te),e}y <, e and v,1; = d%. See Figure
2.4 for an illustration of the definitions so far. Since |w| > |u|, we have v}, <, w <,
uy U1+ - Upp1 by (b), and thus, there exists a least integer m € {1,...,n + 1} such that
w <, Uy, V1 - - Uy Being m minimal, we can write w = u)v; - - - vy 0),, With v), <, v, and
wa <, d),d}, for some a € A. Then, J}, == uy,,v1---vy_1,v,,,a and Jg are interpretations
of w.

~ 7
d UMT1 *** Upt1
w
URr
~ 7
e UmPE

Figure 2.4: Diagram of the construction in Case (b) of the proof of Lemma 2.8. Observe
that conditions (b) and (2.4) say that d <, & <, éu},vg <, du),v;1---v,41 <, up. This and
the definitions of w and t are represented in the figure.
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We set F' = (Jp, Jg) and clalm that F'is a d.i. Indeed, on the one hand, the deﬁmtlon of
Jp glveSNwa <, d,d%» <, d"'ug. On the other hand, since w = d~'&¢,e}, = d~'eg, we have

wap <, d"'ug by ((2)) of Definition 2.3. We conclude that a = ag. Then, a # a; (because
Elsadl) and F'is a d.i.

Finally, we prove that F' satisfies the hypothesis of Lemma 2.4. Since J}, starts with
uy, € W, we only need to show that [t| < |uf,v1---v,—1|. By contradiction, we as-
sume Uy V1 Upm—1 <, t. This condition implies two things. First, that we can define
t' = (uhv1 - vpm_1) Mt # 1, and then, since uj vy - - V10, = te),€, that v/, = t'e},ek. In
particular, ¢ < |e),| < |vl,|. The second fact is that m < n. Indeed, by hypothesis (iii) we
have |uf vy - Upt| < [t < |d)y| = |ufyv1- - vs|. Hence, ¢ < |v],| < |v,| < £, which is a
contradiction. This proves that Lemma 2.4 can be applied with F', so F' (and then also F)
reduces to a simple d.i.

O
If u e A", then we write u> = vuu--- and *®u = -- - wuu. Recall that an integer k > 1 is a

period of w € AT if w <, u*® (equivalently, w <, *u) for some u € A*. The following result
(also known as the Fine and Wilf Lemma) is classical.

Lemma 2.9 (Proposition 1.3.2, [Lot97]) If p,p’ > 1 are periods of w € AT and p+p' < |w|,
then ged(p, p') is also a period of w.

We fix an irreducible subset D' C Dy. For D, E € D', since d, & <, ug and d,& <, uy, we
have that d and & are both prefix and suffix dependent. So it makes sense to define in D":

D<E iff d<,8

Observe that Lemma 2.8 part (iii) implies that D = E if and only if d = & Therefore, < is
a total order. In particular, we can use the notation D < F when D < E and D # E. In
this case it is not difficult to prove that | — |d| is a period of &.

Let D(1) < --- < D(s) be all the elements in D’ (deployed in increasing order). We adopt
the mnemotechnical notation:

D(j) = (de(4), dn (), dr(5), ali); d7(5), das(4), dR(5), a'(5)); (2.7)
d(7) = di(j)dn(7)dr(5), d(j) = (dz(7)dn(5)""dL()- (2.8)

For D, E € D', since drap, € <, ug, we have that drap <, € if and only if |dg| < |€]. Thus,
for j € {1,...,s} we can define
D'(j) ={D € D' :drap <, d(j)} = {D € D' : |dg| < |d(j)[}

and D'(s + 1) = D'. By definition of the total order, this is a nondecreasing sequence.
Moreover, D'(j) € {D(k) : k € {1,...,j —1}} for all j € {1,...,s+ 1}. In particular,
(1) = 0.
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Lemma 2.10 Let p € {1,...,s + 1} be such that D'(p) is nonempty and let D(p') =
max D'(p), where the mazimum is taken with respect to the total order. Then, #(D'(p)\D'(p')) <
6.

Proor. We prove the lemma by contradiction. Suppose #(D'(p)\D'(p’)) > 7 and let D(j;) <
D(j2) < -+ < D(j7) be seven different elements in D'(p)\D'(p/).

We start by obtaining some relations. First, from part (iii) of Lemma 2.8 and the irreducibility
of D', we get )
dd), <, & for all D, E € D'(p) such that D < E. (2.9)

Thus,

d(j) <p d(in)day () <p dGinsr) <p d(rr)diy () for all k € {1,...,6}. (2.10)

In Figure 2.5 we illustrate these conditions.

uRl -
W d )

Figure 2.5: Diagram of conditions in equation (2.10). Observe that, since dd,d% = dg <, ug
for any D € D’ by ((2)) of Definition 2.3, all the words in the figure occur inside ug.

We set v, = d(ji)dy, (), k € {1,...,6}. By (2.10),

v <p o <p U5 <p d(Js) <pve <pd(j7)-
Also, observe that for any D € D'(p)\D’'(p’) we have D < D(p') and D ¢ D'(p’), which gives
d <, d®) <, dg <, ug. (2.11)
Equation (2.10), the first inequality of (2.11) used with d(j7) and the second inequality of
(2.11) used with d(ji) imply that

v <p d(57) <, d(p) <, dr(ji) for all k € {1,...,6}. (2.12)

From previous relations we can define the nonempty word w = v;'d(j;). Let ¢ <, w be such
that |g| is the least period of w. We will prove that |q| divides |v; 'v,| for all k € {1,...,5}.

On the one hand, the observation made before the proof shows that 1d(js)~d(j7)| is a period
of d(j7), and thus also of w. On the other hand, if k¥ € {1,...,6}, then from (2.12) and the
definition of d we get

1

(o7 op) "t = vk_la(j?) <y Uk_ldR(jk) = dR(jr) <p Ug,
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being the last step true due to item ((3)) of Definition 2.3. In particular, for £ = 1 we get
w <, up. These inequalities imply w <, (v;'v)®. Consequently, |v;'vy| is a period of w.
Since, by (2.10), v;'d(js) is defined for all k € {1,...,5}, then for these values of k we can
compute B B B

lal + [or o] < 1d(s) 7 d ()] + oy x| = [l = Jo ()| < fwl.
Hence, Lemma 2.9 can be applied to get that ged(|q|, vy vx|) is a period of w for k €
{1,...,5}. In particular, |q| = ged(|ql, |v; *vx|) and |g| divides |v; tvy| for k € {1,...,5}.

Then, we have w <, ¢* and, by the claim, for k € {1,...,5} there exists n; > 0 satisfying
vy v, = ¢™. Moreover, from the definition of v, we have v, = v,¢™, which implies

d () a(ir) = v 'dr(r)a(ie) <p v, 'ur = ¢ ™o ug

and d';(jr)a'(jk) <p uy. Thus, since a(jx) # a'(ji), we deduce that d(ji) is the maximal
common prefix of ¢~ v 'up and u’p.

Now, let n,n’ > 0 and 7,7’ <, ¢ be maximal such that ¢"r <, v;'ug and ¢"'r" <, uj. We
conclude that

dn(je) = ¢ if n —np < n' and d (k) = ¢*r if n—ny >0/ (2.13)
for k € {1,...,5}.

We have all the elements to complete the proof. Since ny < n3 < ng < ns, we have
Ny < ng <n-—norns >ng >n—n'. We are going to show that both cases give a
contradiction, proving, thereby, the lemma.

First, suppose that ny < ng < n —n/. Then, for k € {2,3}, we have n — n;, > n/, and
thus, by (2.13), d%(jx) = ¢"r". If £ =0, d(ji) = d7.(jr)dR (jx) <s uy¢" 7. Then, d(j) and
d(j3) are suffix dependent, which gives that D(js) is equivalent to D(js), contradicting the
irreducibility of D'. If £ > 0, we have dg(ji) = vi(v; vr)dR(jk) = vig™ 7', Then, using
(2.10),
7" = oy okl = foy o] = [y (52)] = July] = (W),

and hence d(j) and d(j3) share a common suffix of length (W). This is, D(j2) ~ D(j3),
which is a contradiction.

Finally, assume ns > ng > n —n'. We have, by (2.13), that d;(jx) = ¢ ™ for k € {4,5}.
Hence, dr(ji) = vi(v7 vp)dR(ik) = vig™ds(jx) = vig"r. In particular, condition (ii) of
Lemma 2.8 holds for {D(js), D(js)}, contradicting the irreducibility of D’. This completes
the proof. O

Lemma 2.11 Let p € {1,...,s} be such that #D'(p) > 2 and let D(p') = maxD'(p),
D(p") = maxD'(p) \ {D(p')}. Then, there exist w € W and w' <, d(s)d(p”)~" such that w
and w' are suffiz dependent, |w| > |d(p)| and |w'| > |d(s)| — |d(p)|.

Proor. Note that p” < p’ < p. Before proving the main statement of the lemma, we highlight
two useful relations. First, note that

dz(p")da (p")d(p") = d7,(p") (2.14)
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as D(p”) is simple. Second, since ur and v’ are, by Definition 2.3, the shortest words in W
satisfying dr(p”)a(p”) <, ug and d} (p") <, u}, respectively, we have, by condition ((2)) of
the definition of simple d.i., that |d} (p”)| > min(|ug|, |u}|) > |d(k)| for k € {1,...,s}. This
and the fact that d (p”) and d(k) are both suffix of v/, imply

d(k) <, d}.(p") for k € {1,...,s}. (2.15)

Now we are ready to prove the main statement of the lemma. Using (2.15) and d(p/) <, d(p),
we have (d7(p")d(p)"N)d(p') <, d}(p"). In addition, d,(p") <, d}(p") by the simplicity of
D(p"). Thus, (d}(p")d(p)"")d(p’) and dp(p") are prefix dependent. In what follows, we split
the proof in two cases according to which of these words is prefix of the other.

(a) (d’L(p”)a(p)_l)a( /)~< dr(p”). Observe that &( ) <s u7 and dp/(p ) (p' ) < d7(p") <
u’, so d(s) and dy/(p”)d(p”) are suffix dependent. In addition, from (2.14) and (a) we get

[dar(p")d(p")| = 17 (p")] = dL(p")] (2.16)
< [dL (") = I(d. (") d(p) ()]
=|d(p)| = d(@)| < [d(s)].
We conclude that
du(p")d(p") <, d(s).

Thus, it makes sense to define w’ = d(s )( m(p)d(@")~L. Clearly, w' <, d(s)d(p”)~". Let
w € W be a word satisfying d,(p”) <; w, as in the deﬁnltlon of mterpretatlon Observe that,
by (2.15) and (2.14),

w' <, di (") (du(p")d(p") " = di(p) <5 w

so w and w’ are suffix dependent. It is left to prove that [w'| > |d(s )]—~| (p)| and |w| > [d(p)].
For this, we note that in (2.16) it was shown that |da(p”)d(p”)| < |d(p)| — |d(p’)|. Thus,

[w'| > [d(s)] = [d(p)] + [d(p")| = max(|d(s)| - |d(p)], [d(p)])-

We conclude that |w/| > |d(s)| — |d(p)| and, since w’ <, w, |w| > |w’| > |d(p’)]. This
completes the proof in case (a).

(b) di(p") <, (d}(p")d(p)"H)d(p'). We start by claiming that
[d(p")| + 1d()| < [d(p)]. (2.17)

Assume that (2.17) does not hold. Let ¢ be the shortest word satisfying d(p) <, *q. As we
commented before Lemma 2.10, condition p/,p” < p implies that d(p), as well as d(p”), are
prefixes and suffixes of d(p). So |a( )| —|d(p")| and |d(p)| — |d(p")| are periods of d(p). More-
over, since we are assuming (2.17) is not true, we also have that (|d( )| — |d( ) + (|d( )| —
|d( ”)|) < |d(p)|. Then, by Lemma 2.9, we obtain that |g|_divides Id(p)| —|d(p")| and |d(p)| —
|d(p”)|. Hence, there exists n’,n” € N such that ¢" = d(p/)"'d(p) and ¢"" = d(p")"'d(p).
Now, since p/, p" € D'(p), we can write d), (p')d% (p)a(p') = d(p') " 'dr(p)a(p’) <, d(p')~'d(p)
q" <, ¢ and, in a similar way, d},(p")d%(p")a(p") <, ¢=. Thus, {D(p'), D(p")} is reducible
by part (i) of Lemma 2.8, which contradicts the irreducibility of D’. This proves the claim.
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From (2.17) and (2.14) we get

[(dz,(p")d(p) ()] = |dL.(p")] — [d(p)| + |d
< |d,. (") — ld(p")| = |

()
d(p") 'L (") = [dL(p")da (p")]-
Then, since

(d7,(p")d(p)")d(p') <, (d7(p")d(p)"")d(p) = d7,(p") = dr(p")dar(p")d(p"),

H)d
we obtain that (d/,(p")d(p)")d(p') <, dr(p")da(p”). This and (b) can be written together
as

dz(p") <p (d7(p")d(p)")d(p) <p de(p")dar (0"). (2.18)
Since dy, (p)da (p")d(p”) = d (p") by (2.14), we can represent the right-hand side of equation
(2.18) as in Figure 2.6.

dL(p)dmp”)  d@”)
- di(p”)
d(p’)

d(p)

Figure 2.6: Diagram of the right-hand side of equation (2.18).

By (2.18), we can write d(p”)dy (p”) = vwv', where v € d(p")W*, w € W, v/ € W* and
v <, (d3,(0")d(p) AR <, vw, (2.19)

The Yvord w is the one we need in the statement of the lemma. T9 define w’N, we first note
that d(s) <s d}(p") and v'd(p") < dp(p")dp (p")d(p”) = d’.(p”), so d(s) and v'd(p”) are suffix
dependent. Moreover, using (2.19) we get

[o'd(p")] = [d}(p")] — Jow| < |d3,(0")] = |(dL,(p")d(p)")d(¥)| = [d(p)| — [d()].  (2.20)

Then,N\v’a(p”N)] < |a( )| — |d(p)] < |d(s)| and va( ) <s d(s ) Now it makes sense to define
w' = d(s)(v'd(p")) !, which clearly verifies w’ <, d(s)d(p”)~". It is also clear that w and w’
are suffix dependent. Indeed, from (2.15) and (2 14) we have w’ < dL (") (W'd(p”) ! = vw.

Now, from (2.20), [w'| > |d(s)|—|d(p)|+|d(p)| > |d(s)|— |§i(p)|7 proving the desired condition
on the length of w’. It only rests to prove that |w| > |d(p’)|. We argue by contradiction.
Assume that

[wl < [d(p")]- (2.21)
First, we prove that it makes sense to define the word
"= ((d()d(p) ™) ) T da(p) € AT (2.22)

From (2.19) and (2.21) we get |v| > |(d’L(p”)a(p)_ ()| — |w| > \d’ (p "d ( )_1|. But,
v <p de(@)du(p") <, di(p") and di(pf )d(P)*l <p d'( ), s0 d’( )d(p)™" <, v and

(dz(p")d(p) ) o <, d(P) < dR(p) (2.23)
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and w"” is well defined.

Now, we have vw <, dr,(p")dp(p") <, d}.(p") and, using p’ € D'(p), that (d’L(p”)a(p)_l)dR(p’) <,

(d’L(p”)§ (p)~Hd(p) = d; (p"). Thus, vw and
(d%(p")d(p)~")dr(p') are prefix dependent. Therefore, there are two cases: vw is prefix of
(d7 (p")d(p) " Hdgr(p') and (d(p")d(p)~')dr(p') is a strict prefix of vw; in each of these cases

we will build a reduction for D(p’), producing a contradiction.

(b.1) vw <, (d}(p")d(p)"")dr(p'). We start by building a d.i. of w”. Note that
w”a(p') <, wo'd(p”). (2.24)

Indeed, since D(p') € D’( ) and (d’ (p")d(p)Hd(p) = d;,(p") = vwr'd(p"), we have dg(p')a(p’)
d(p) = (d,.(p")d(p)™ ")~ vwv’d( "), which implies (2.24). Now, since w € W, v' € W* and
d(p') <, ug, the word wv'd(p’) has an interpretation of the form J = w, v’ ,d(p'), a. Moreover,
using (b.1) we can get |w”| = |dr(p')| + |d7 (p")d(p) | — |v| > |w|. Hence, by (2.24), Lemma
2.3 can be applied with J to obtain an interpretation of w” having the form I = w, r, ', a(p’).
We need another interpretation of w”. Note that in the middle step of (2.23) we showed that
(d} (p")d(p)~") v <, d(p’). In particular, the word ((d/ (p")d(p)~)~'v)~'d(p’) is nonempty
and is a suffix of u}, € W. Then,

= ((d,.(")d(p) ™) o)1), dy (). dR(¥), d' (')

is an interpretation of w” (here, we used that d(p/)d}, (p)d%(p') = dr(p')). Weset D = (I,1').
Since a(p') # d'(p'), D is a d.i. of w".

Now we can conclude the proof of this case. From (2.19) we have |v] >
(¢, (")d(p) AW — ], which implies |((d5(")d(p) )~ v) 4| < || < for]. This
and that w € W allow us to use Lemma 2.4 to obtain a simple d.i. E of a word e such that
e <; w". Since w” <, dr(p’) <s d(p’), we have that D(p') reduces to E. This is the desired
contradiction.

(b.2) (d7.(p")
dr(p') <s d(pf

Let I' = d(p'), dy, (), d(p), d'(p'). Tt is clear that I’ is an interpretation of dg(p’) since
d(p') <s up, dy,(p") € W, dR(p")d (p') <, uy and |d(p’)| > |d(p”)| > 0. To define I, observe
that in the proof of (2.22) we showed that (d} (p”)d(p)~")"'v exists and is not the empty
word. But, moreover, from v € d(p”)W* we see that we can write (d} (p”)d(p)~") v = rv’
in such a way that r is a nonempty suffix of some word in W and ' € W*. Since, by
definition, dg(p') = rr’w” to prove that I == r, 7’ w” a(p’) is an interpretation of dg(p’) it is
enough to show that w” (p) <p w. From (b.2) we get rr'w” = dg(p’) <, rr'w, so w"a’ <, w
for some a’ € A. Then, using that vw <, vwv'd(p”) = d/,(p"), we obtain

dr(p))d’ <, rr'w = (d},(p")d(p)™") tow
<, (d(p")d(p) ™) L (")

Since we also have dg(p')a(p’) <, ug, we deduce that a’ = a(p’). Hence, w”a(p’) <, w and I
is an interpretation of dg(p’). Being a(p’) # d/(p’), we conclude that D := (I;I’) is a d.i. of
dr(p').

d(p) dgr(p)) <, vw. We are going to build a simple di. D = (I;I') of
), proving, thereby, that D(p’) has a reduction.

a(p) Sp Up.
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Finally, we prove that D is simple. Using the middle step in (2.23) we get 7’ = (d’, (p”)"'d(p)) v <,
d(p’). This implies that dy,(p)d%(p") = d(p') " 'dr(p') <, (rr')"'dr(p') = w"”, which is the

first condition in Definition 2.2. Since w”a(p') <, w and, by (2.21), |d(p’)| > |w], the second
condition also holds. Hence, D is simple and D(p') reduces to it.

]

Remark that in the last paragraph it was the first time that in a proof we build a reduction
to a simple d.i. satisfying the second condition of ((2)) in Definition 2.2.

2.5.1 Proof of Proposition 2.6

Proposition [ 2.6] Any irreducible subset of Dy has at most 61(#W) elements.

Proor. Let D' be an irreducible subset of Dy;. Recall that, with the notation introduced
above, D(1) < --- < D(s) are the elements of D’ deployed in increasing order, D'(s+1) = D’
and D'(j) ={D € D' :drap <, d(j)} ={D € D' : |dg| < |d(j)|} for j € {1,...,s}.

We define recursively a finite decreasing sequence (p;)!X5. We start with py = s + 1. Then,
for 1 > 0: a) if #D'(p;) < 1 we put p;y; = 1 and the procedure stops; b) if #D'(p;) > 1,
set D(p;+1) = maxD'(p;). Observe that D'(p;11) € D'(p;). Let t > 0 be the first integer for
which #D'(p;) < 1, so that D'(pi1) = D'(1) = (). This construction gives

D' = JD'(p)\D' (pis1).

=0

From Lemma 2.10 we get that #D’ < 6t + 1. To complete the proof we are going to show
that t < 8#W + 2.

We proceed by contradiction, so we suppose t > 8#W + 2. This will imply that D’ is
reducible, which contradicts our hypothesis.

Let 1 <i <t—1. Since p; # s+ 1 and #D'(p;) > 1, we can define D(p}) = maxD'(p;) \
{D(pi+1)} and use Lemma 2.11 with D'(p;) to obtain suffix dependent words w; € W and
w; € A* such that

() il > [d(piva)ls (i) wf] > d(s)| = ld(p)], (i) w} <, d(s)d(p}) " (2.25)
Then, by the Pigeonhole Principle, we can find 1 <1i5 < --- <43 <t — 1 such that
(a) w=wy =+ =w;; and (b) ix41 +2 < i for any k € {1,...,4}.
Using (a) and (b) we are going to obtain relations (2.26) and (2.27) below.

First, we use (b) to prove that

d(s)d(py,,) "t <p ), <pd(s)d(p,)" <pw), forany ke {1,...,4}. (2.26)

Tht1
Let k € {1,...,4}. By (b), we have iy < ippq + 1 < igqyq +2 <t — 1. Thus, D(p;,,,42) <
D(piy.,+1) and D(pi ., 4+1), D(Piy,142) € D'(piy,,), which implies that p! > p;, ., 4o by the

Th+1

31



definition of pj . Beir~1g Pirsr+2 > i, bgf (b), we obtain pj =~ > p;,. This and (iii) of
(2.25) imply wj, <, d(s)d(p,,,)"" <, d(s)d(p (~ )*1. This proves the middle inequality
cN)f (%.26). Let k:NE {1,...,5}. Since w; <, d(Ns) (p;’k)*1 <, d(s) by (iii) of (2.25) and
d(s)d(ps, )" <, d(s), we have that wj and d( )d(plk)_1 are prefix dependent. Moreover,

lwj, | > d(s)d (pzk) Y by (i) of (2.25), so d(s)d(p;, )" <, w! . This proves the first and last
inequahty of (2.26), completing the proof.

Thanks to (2.26), the word (a(s)a(pik)_l)_lwgk, exists for any 1 < k' < k < 5. We will use
this fact freely through the proof.

Next, we want to obtain from (a) that
(d(s)d(ps,) ™)~ "wi < wfor ke {l,... 4} (2.27)

By (a) and (i) of (2.25), we have |d(p;,)| < |d(pis+1)| < |w|. This and (iii) imply

[(d(s)d(pi,) ") Mo | < 1d(s)d(ply )~ = |d(s)d(pi,) '] < |d(piy)] < Jul.

But, being w and (d(s)d(p;,) 1) ~! w;, suffix dependent since w and wj;, have the same property
and (d(s)d(p;,) ") "t <, w), we obtam that (d(s)d(p;,) ") 'w) <, w, as desired.

lk7

Now we use relations (2.26) and (2.27) to obtain restrictions on the smallest period of v :=
(d(s)d(ps,)~")'w],. More precisely, we claim that if ¢ € A" is the shortest word satisfying
v <, ¢, then |q| divides |d(p;,)| — |d(ps, )| for k € {2,3}.

Fix k& € {2,3}. First, observe that v <, w and o((w)) 'w )" =

(d(s )d(pu) D7, <, w by (2.27). Being (w},)'w] # 1 by (2.25), we deduce that
v <, ((w],)"'w] ). This implies that |¢| < |(w],)~'w] |. Thus,

22

lal + 1d(pi)d(pi) | < (i)~ wr, |+ ld(pi)d (ps ) | (2.28)
= [v] + [(d(s)d(pi,) )" wl,| < o],

where (d(s)d(p;,)~") '), exists because k > 2.

Second, since wj, < ,d(s ) ( i) of (2.25), we have that v = (
up and (d( )d(plk) 1)* u <, a(pzk) <, ug. Therefore,

Q.
—~
VA
SN—

(@1}
Y
S
'S
N~—

—
SN—
—

S

s~

A
S|

o
—
S
I
S~—

A
S|

v <, ug and (d(pi,)d(p;,) ") tv = (a(S)5|(pik)_l)_lwé1 <p UR-

Hence,
d(pi,)d(p;,)7!| is a period of v. (2.29)

Then, from (2.28) and (2.29), we can use Lemma 2.9 with v to deduce that |q| divides
|d(pl4) (pi,) Y|, proving the claim.

Let now ¢ € A" be the shortest word such that a(pi4) <p ¢*°. From the last claim, we have
for k € {2,3} that d(p;,)d(p;,)~' = ¢"* for some ny > 1. Then, since |d(p;,)d(p;, )] is a
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period of d(pi,) as pi, < pi,, we obtain d(p,) <, (d(ps,)d(ps,)")® = ¢ and § <, ¢. Since,
v <, d(pi,) <, ¢, we also have g <, G. Therefore, § = q.

Now we can finish the proof of the proposition. Since a(pu) <p ¢, there are n > 0 and
r <, ¢ such that d(p;,) = ¢"r. Then, for k € {2,3}, we have d(p;,) = ¢~ " d(p;,) = ¢" 7.
Being Diys Pig € D/(pi4)7 we get

dy (pi )dR(pi)a(ps,) = d(pi,) " dr(pi,)alpi,) <p d(pi) Hd(pi,) = '¢" <, r'¢™.

Thus, condition (i) of Lemma 2.8 holds, which implies that {D(p;,), D(pi,;)} is reducible,
contradicting our hypothesis.

O
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Chapter 3

Symbolic factors

3.1 Introduction

The class of finite topological rank subshifts have shown to be both a broad class of symbolic
systems [DDMP16; DDMP21], containing many of the most studied types of subshifts, and
to present high degrees of rigidity [BKMS13; BDM10; EM21]. Hence, it arises as a possible
framework for studying minimal subshifts and proving general theorems.

In this direction, a fundamental question is the following:

Question 3.1 Is the finite topological rank class closed under symbolic factors?

Indeed, the topological rank aims to measure how complex is the system, so an affirmative
answer is expected to this question. However, symbolic factors inherit a natural yet non-
recognizable S-adic structure with finite alphabet rank from their extensions, and thus it is
not clear if a structure that is, in addition, recognizable can always be obtained. Thus, an
answer to this question seems to be fundamental to the understanding of finite topological
rank systems.

In this chapter, we obtain the optimal answer to Question 3.1 in a more general, non-minimal
context:

Theorem 3.1 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and w: (X, S) — (Y, S) be an aperiodic
subshift factor. Then, (Y, S) is an S-adic subshift generated by an everywhere growing, proper
and recognizable directive sequence of alphabet rank at most K.

Theorem 3.1 implies that the topological rank cannot increase after a factor map (Corollary
3.19).

We are also able to prove the following theorems, which give a finer description of symbolic
factors.
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Corollary 3.2 Let (X,S5) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and (X,S8) = (X1,9) B3 ... X% (X, S)
be a chain of aperiodic subshift factors. If L > log, K, then at least one 7; is a conjugacy.

Theorem 3.3 Let w: (X,5) — (Y, 5) be a factor map between aperiodic minimal subshifts.
Suppose that (X, S) has topological rank equal to K. Then 7 is almost k-to-1 for some k < K.

Theorem 3.4 Let (X, S) be a minimal subshift of topological rank K. Then, (X,S) has at
most (3K)3*K aperiodic subshift factors up to conjugacy.

This chapter was published as a standalone article in [Esp22a].

3.1.1 Organization

This chapter consists of 6 sections. In the first one, we give the additional needed back-
ground in topological and symbolic dynamics. Section 3.3 is devoted to prove some technical
combinatorial lemmas. The main results about the topological rank of factors are stated and
proved in Section 3.4. Next, in Section 3.5, we prove Theorem 3.3. In Section 3.6, we study
the problem about the number of symbolic factors and prove Theorem 3.4. The last section
contains a combinatorial proof of Proposition 3.15.

3.2 Preliminaries

The hyperspace of (X, S) is the system (2%,5), where 2% is the set of all closed subsets of X
with the topology generated by the Hausdorff metric dy (A, B) = max(sup,c4 d(z, A), sup,cp d(y, A)),
and S the action A — S(A).

A factorbetween the topological dynamical systems (X, S) and (Y, T') is a continuous function
7 from X onto Y such that moS = Tow. We use the notation 7: (X, S) — (Y, T) to indicate
the factor. A factor map 7: (X,S) — (Y, T) is almost K-to-1 if #r'(y) = K for all y in a
residual subset of Y. We say that 7 is distal if whenever 7(z) = w(2') and x # 2/, we have
infyez dist(S*z, Sk2') > 0.

Given a system (X, 5), the Ellis semigroup E(X,S) associated to (X,S) is defined as the
closure of {x + S™x : n € Z} C X in the product topology, where the semi-group operation
is given by the composition of functions. On X we may consider the F(X,S)-action given
by x + ux. Then, the closure of the orbit under S of a point x € X is equal to the orbit of
z under E(X,S). If m: (X,S5) — (Y, T) is a factor between minimal systems, then 7 induces
a surjective map 7*: E(X,S) — E(Y,T) which is characterized by the formula

m(uz) = " (u)m(z) foralluw € E(X,S) and z € X.

If the context is clear, we will not distinguish between u and 7*(u). When u € E(2%,S), we
write u o A instead of uA, the last symbol being reserved to mean uA = {uz : © € A}. We
can describe more explicitly u o A as follows: it is the set of all x € X for which we can find
nets ), € A and m, € Z such that lim, ™z, = x and lim, S = u. Finally, we identify
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X with {{z} € 2% : z € X}, so that the restriction map E(2%,S5) — F(X,S) which sends
u € E(2%,9) to the restriction u|x: X — X is an onto morphism of semigroups. As above,
we will not distinguish between u € 2% and ulx.

3.2.1 Basics in symbolic dynamics
Words and subshifts

The pair (z,z) € A% x A% is right asymptotic if there exist k € Z satisfying z(x,c0) = Z(k,00)
and x # Tj. If moreover k = 0, (x,Z) is a centered right asymptotic. A right asymptotic
tail is an element (o), where (z, ) is a centered right asymptotic pair. We make similar
definitions for left asymptotic pairs and tails.

Morphisms and substitutions

We say that 7 is positive if for every a € A, all letters b € B occur in 7(a), is r-proper, with
r > 1, if there exist u,v € B" such that 7(a) starts with v and ends with v for any a € A,
is proper when is 1-proper, and is letter-onto if for every b € B there exists a € A such
that b occurs in a. The minimum and maximum length of 7 are, respectively, the numbers

(1) = (1(A)) = minge4 |7(a)] and |7| == |7(A)| = maxge4 |7(a)|.

Let X C A% and Z C C% be subshifts and 7: (X,S) — (Z,S5) a factor map. The clas-
sic Curtis—Hedlund-Lyndon Theorem asserts that m has a local code, this is, a function
Y: AT — C, where r € N, such that m(2) = (Y(2[i—rit+]))iez for all z € X. The integer
r is called the a radius of 7. The following lemma relates the local code of a factor map to
proper morphisms.

Lemma 3.5 Let 0: AT — Bt be a morphism, X C A” and Z C C* be subshifts, and
Y = Uyeg SFo(X). Suppose that 7: (Y, S) — (Z,S) is a factor map of radius r and that o
is r-proper. Then, there exists a proper morphism 7: AT — Ct such that |7(a)| = |o(a)| for
any a € A, Z = Uy S"1(X) and the following diagram commutes:

X
"l \ (3.1)

Y 5 7

Proor. Let ¢: A* 1 — B be a local code of radius r for m and u,v € B" be such that o(a)
starts with v and ends with v for all a € A. We define 7: A — C* by 7(a) = Y (vo(a)u).
Then, since o is r-proper, 7 is proper and we have 7(o(x)) = 7(x) for all x € X (this is,
Diagram (3.1) commutes). In particular,

U s*r(X) = | S*r(o(X)) = =(Y) = Z.

keZ kEZ
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S-adic subshifts

The levels X5 can be described in an alternative way if o satisfies the correct hypothesis.

Lemma 3.6 Let o = (0,: A, = A )nen be an everywhere growing and proper directive
sequence. Then, for everyn € N,

XM= ﬂ U S* o, ny (AR) (3.2)

N>n kezZ

Proor. Let Z be the set in the right-hand side of (3.2). Since, by Lemma 1.2, XM =
Usez Ska[n,N)(Xc(,N)) for any N > n, we have that X3 included in Z.

Conversely, let v € Z and ¢ € N. We have to show that [, occurs in o, n)(a) for some
N > n and a € Ay. Let N > n be big enough so that oy, n) is f-proper. Then, by the
definition of Z, there exists y € A% such that z_ occurs in o, ny(y). Since (o, n)) > ¢
(as 0, is -proper), we deduce that

T[_gg) occurs in op, n)(ab) for some word ab of length 2 occurring in y. (3.3)

Hence, by denoting by w and v the suffix and prefix of length ¢ of 7, yy(a) and 7, ) (b),
respectively, we have that x(_, occurs in op, ny(a), in 74, 3y (), or in uv. In the first two
cases, we are done. In the last case, we observe that since oy, ny is £-proper, the following is
true: for every M > N such that (oy ) > 2, vu C op, ) (c) for any ¢ € Ay In particular,

T[—,0) © T,y (c) for such M and c¢. We have proved that x € X,(,")_ ]

Finite alphabet rank S-adic subshifts are eventually recognizable:

Theorem 3.7 ([DDMP21], Theorem 3.7) Let o be an everywhere growing directive sequence
of alphabet rank equal to K. Suppose that X, is aperiodic. Then, at most log, K levels

(X, 5,) are not recognizable.

We will also need the following property.

Theorem 3.8 ([EM21]|, Theorem 3.3) Let (X,S) be an S-adic subshift generated by an
everywhere growing directive sequence of alphabet rank K. Then, X has at most 144K7 right
(resp. left) asymptotic tails.

Proor. In the proof of Theorem 3.3 in [EM21] the authors show the following: the set
consisting of pairs (z,y) € X x X such that z(_w0) = Y(—0o0) and zg # 1o has at most
144K7 elements. In our language, this is equivalent to saying that X has at most 144K
left asymptotic tails. Since this is valid for any S-adic subshift generated by an everywhere
growing directive sequence of alphabet rank K, 144K7 is also an upper bound for right
asymptotic tails. O]
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3.3 Combinatorics on words lemmas

In this section we present several combinatorial lemmas that will be used throughout the
chapter.

3.3.1 Lowering the rank

Let 0: A" — BT be a morphism. Following ideas from [RS97], we define the rank of o
as the least cardinality of a set of words D C B* such that o(A") C D*. Equivalently,
the rank is the minimum cardinality of an alphabet C in a decomposition into morphisms
AT L ¢t 25 Bt such that o = pg. In this subsection we prove Lemma 3.12, which states
that in certain technical situation, the rank of the morphism ¢ under consideration is small
and its decomposition o = pq satisfies additional properties.

We start by defining some morphisms that will be used in the proofs of this subsection. If
a # b € Aare different letters and a is a letter not in A, then we define ¢, ;: AT — (A\{b})T,
Yap: AT = AT and 0,5: AT — (AU {a})* by

c ifc#b c ifc#b c ifc#a
¢w@:{ 7 %ua:{ 75 %A@z{ 7o

a ife=0b. ab ifc=0b. aa if c=a.

Observe that these morphisms are letter-onto. Before stating the basic properties of these
morphisms, we need one more set of definitions.

For a morphism o: A" — B, we define |o]; = Y .4 |o(a)]. When u,v,w € A" satisfy
w = uv, we say that u is a prefix of w and that v a suffix of w. Recall that 1 stands for the
empty word.

Lemma 3.9 Let o: AT — BT be a morphism.

(i) If o(a) = o(b) for some a #b € A, then 0 = o' pap, where o’: (A\ {b})" — BT is the
restriction of o to (A\ {b})™.

(11) If o(a) is a prefiz of o(b) and o(b) = o(a)t for some nonempty t € BT, then 0 = 0'1ay,
where o’ : AT — BYt is defined by

d@:{d@iﬂ%h

t if c=0b. (3.4)

(iii) If o(a) = st for some s,t € BT and a € A, then 0 = 0'0,5, where o’: (AU{a})t — BT
is defined by
o(c) ifc+#a,a,
de)=<s if c = a, (3.5)
t if c = a.
Proor. The lemma follows from unraveling the definitions. For instance, in case (ii), we have
o' (thap(a)) = o'(a) = a(a), o' (¥ay(b)) = o'(ab) = o(a)t = o(b), and o’ (¢ap(c)) = o'(c) =
o(c) for all ¢ # a, b, which shows that o’1),;, = 0. O
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Lemma 3.10 Let {o;: AT — B;’}jej be a set of morphisms such that
for every fixred a € A, £, = |oj(a)| is constant for any chosen j € J, (3.6)

and u,v € AT, with u of length at least £ == 3 _,La. Assume that u and v start with
different letters and that oj(u) is a prefiz of o;(v) for every j € J.

Then, there exist a letter-onto morphism q: AT — Ct, with #C < #.A, and morphisms
{pj: C* = B }jes satisfying a condition analogous to (3.6) and such that o; = p;q.

Remark 3.1 If in the previous lemma we change the last hypothesis to “u and v end with
different letters and o;(u) is a suffiz of o;(v) for every j € J”, then the same conclusion
holds. This observation will be used in the proof of Lemma 3.31.

ProoF (or LEMMA 3.10). By contradiction, we assume that u, v and {o;},c;, are counterex-
amples for the lemma. Moreover, we suppose that ¢ is as small as possible.

Let us write u = au’ and v = bv’, where a,b € A. Since 0;(u) is a prefix of o;(v), we have
that for every j € J,

one of the words in {o;(a),o;(b)} is a prefix of the other. (3.7)

We consider two cases. First, we suppose that ¢, = £,. In this case, (3.7) implies that
o;j(a) = o;(b) for every j € J. Hence, we can use (1) of Lemma 3.9 to decompose each o; as
0’¢ap, Where o is the restriction of ; to (A\ {b})*. Since @q is letter-onto and £, = |o7(c)|
for every j € J, ¢ € A\ {b}, the conclusion of the lemma holds, contrary to our assumptions.

It rests to consider the case in which ¢, # ¢,. We only do the case ¢, < ¢}, as the other is
similar. Then, by (3.7), for every j € J there exists a nonempty word ¢; € Bf”_z“ of length
U, — £, such that o;(b) = o;(a)t;. Thus, we can use (2) of Lemma 3.9 to write, for any j € J,
0j = 03tbap, where o} is defined as in (3.4).

Let @ = 1q,(u') and © = bip,p(v'). We want now to prove that @, o and {0} : j € J} satisfy
the hypothesis of the lemma. First, we observe that for every j € J,

if ¢ # b, then |0(c)| = L., and |07 (b)| = |t;] = by — L. (3.8)

Therefore, {0’} ;e satisfy condition (3.6). Also, since 9,,(c) never starts with b, we have
that
u, U start with different letters. (3.9)

Furthermore, by using the symbol <, to denote the prefix relation, we can compute:

oj(a)o(a) = oj(a)o;(u') = 0;5(u) <p 0j(v) = 5 (Yap(v)) = o (a)o}(D).

This and the fact that o;(a) is equal to o}(a) imply that

0;(t) is a prefix of 0’(v) for every j € J. (3.10)
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Finally, we note

] > Ju] =12 le—tly =L (3.11)

ceA

We conclude from equations (3.8), (3.9), (3.10) and (3.11) that @, © and {0’ : j € J} satisfy
the hypothesis of this lemma. Since ¢/ < ¢, the minimality of ¢ implies that there exist a
letter-onto morphism ¢': At — C*, with #C < #A, and morphisms {p;: C* — B;_}jej
satisfying o = p;q’ and a property analogous to (3.6). But then ¢ = q'1), is also letter-onto
and the morphisms {p,};es satisfy o; = p;q and a property analogous to (3.6). Thus, the
conclusion of the lemma holds for {o,};c;, contrary our assumptions. O]

Lemma 3.11 Let o: AT — BT be a morphism, u,v € A", a,b be the first letters of u,v,
respectively, and o(a) = st be a decomposition of o(a) in which t is nonempty. Assume that
o(u) is a prefix of so(v), |u| > |o|y + |s|, and either that s =1 and a # b or that s # 1.

Then, there exist morphisms q: AT — Ct and p: C* — Bt such that #C < #A, q 1is
letter-onto, |pl1 < |o|1, and o = pq.

Remark 3.2 As in Lemma 3.10, there are symmetric hypothesis for the previous lemma
that involve suffixes instead of prefixes and which give the same conclusion. We will use this
in the proof of Lemma 3.12.

PrOOF (oF LEMMA 3.11). Let us write u = au’ and v = bv’. We first consider the case in which
s = 1. In this situation, u and v start with different letters, so Lemma 3.10 can be applied
(with the index set J chosen as a singleton) to obtain a decomposition A+ 2% ¢+ % B* such
that ¢ is letter-onto, #C < #.A, and o = pq. Since C has strictly fewer elements than A, we
have |p|; < |o]1. Hence, the conclusion of the lemma holds in this case.

We now assume that s # 1. In this case, ¢ and s are nonempty, so we can use (3) of Lemma
3.9 to factorize 0 = 0’6, 5, where a is a letter not in A and o’ is defined as in (3.5). We set
@ = ab,(u') and 0 = 0, 5(v). Our plan is to use Lemma 3.10 with @, ¥ and o’.

Observe that 6, ;(c) never starts with a, so
@, v start with different letters. (3.12)

Also, by using, as in the previous proof, the symbol <, to denote the prefix relation, we can
write:

so'(t) = so'(a)o'(O,a(u') = sto(u') = o(u) <, so(v) = s0'(0ua(v)) = s’ (D),

which implies that
o'(a) is a prefix of o'(0). (3.13)

Finally, we use (3.5) to compute:
] = Jul =1 = o1+ [s| =1 = o1 = |o'|1. (3.14)

We conclude, by equations (3.12), (3.13) and (3.14), that Lemma 3.10 can be applied with
u, 0 and o’ (and J as a singleton). Thus, there exist morphisms ¢': (AU {a})* — C* and
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p: Ct — Bt such that #C < #(AU{a}), ¢ is letter-onto and o’ = pg’. Then, #C < #A,
q = q'0,5 is letter-onto and o = pq'6, ; = pq. Moreover, since 6, ; is not the identity function,
we have [p|; < |o];. O

The next lemma is the main result of this subsection. To state it, we introduce additional
notation. For an alphabet A, let A™" be the set of words w € A* in which all letters occur.
Observe that o: AT — BT is letter-onto if and only if o(A*T) C BT,

Lemma 3.12 Let ¢: A" — C*, 7: BT — C* be morphisms such that 7 is {-proper, with
0> ¢}, and (AT N T(BTY) # 0. Then, there exist BY - Dt X5 C* such that

(i) #D < #A, (ii) T =pq, (i) q is letter-onto and proper.

Proor. By contradiction, we suppose that the lemma does not hold for ¢ and 7 and, moreover,
that |¢|; as small as possible.

That ¢(A)" N 7(B*") is nonempty means that there exist v = uy---u, € A" and w =
wy -+ Wy, € BT with ¢(u) = 7(w). If m =1, then, since w € BT*, we have #B = {v;} and
the conclusion of the lemma trivially holds for D = {a € C : a occurs in 7(w1)}, ¢: BT — DT,
w; — 7(wy), and p: DT — C* the inclusion map, contradicting our initial assumption.
Therefore, m > 2 and {1,...,m — 1} is nonempty.

Let £ € {1,...,m — 1}. We define i) as the smallest number in {1,...,n} for which
|T(wy -+ - wy)| < |é(uq---u;, )| holds. Since |p(ug)| < o)1 < € < |7(wy---wy)|, i is at
least 2 and, thus, |¢(uy - --u;,—1)| < |7(wy - --wg)| by minimality of i. Hence, there exists a
decomposition ¢(u;, ) = sxtx such that 5 is nonempty and

b (Wi 41 -+ Up) = T(Wht1 -« . Wiy). (3.15)

Our next objective is to use Lemma 3.11 to prove that s; and uy have a very particular form:

Claim 3.1 For every k € {1,...,m — 1}, s, = 1 and uy = u;,.

Proof. To prove this, we suppose that it is not true, this is, that there exists k € {1,...,m—1}
such that

sk # 1 or uy # u, . (3.16)

Let @ = w;, ... s, q1g2—1 and 0 == uy ... ujyz. We are going to check the hypothesis of Lemma
3.11 for u, v and ¢.

First, we observe that, since ¢(u) = 7(v), we have that ¢(0) is a prefix of 7(v). Moreover,
given that |¢(0)| < |¢|] < £ and that 7 is l-proper, ¢(0) is a prefix of 7(b) for every b € B.
In particular,

¢(v) is a prefix of 7(wy). (3.17)

Second, from (3.15) and the inequalities [tpd(ui 11 - Ui yip2—1)| < 67 < € < |7(wy)] we
deduce that t.¢(wi, 41 .. U4 jg2—1) is a prefix of 7(wy). Therefore,

O(0) = sptud(Uiyt1 - - Ujy 1 1p2—1) 18 a prefix of sg7(wg). (3.18)
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We conclude from (3.17), (3.18) and the inequality |¢(a)| < |@|3 = |0| < |sré(v)| that

¢(u) is a prefix of sxd(0).
This, the inequality |a| > |¢[1 + |sk| and (3.16) allow us to use Lemma 3.11 with @, ¢ and
¢ and obtain morphisms A* Ny i> CT such that #4 < #A4, ¢ = ¢G and \(}5|1 < |91

Then, £ > |¢[f > g4 and ¢(A+) N 7(B+) contains the element ¢((u)) = 7(w), and so
7 and ¢ satisfy the hypothesis of this lemma. Therefore, by the minimality of |¢|;, there
exists a decomposition B+ % D+ % C+ of 7 satisfying (i-iii) of this lemma, contrary to our

assumptions. O

An argument similar to the one used in the proof of the previous claim gives us that
Up = U4, for every k€ {1,...,m —1}. (3.19)
We refer the reader to Remark 3.2 for further details.

Now we can finish the proof. First, from (3.15) and the first part of the claim we get that
T(wg) = ¢(usy_, -+ wiy—1) for k€ {2,...,m — 1}, 7(wy) = ¢(ug---u;—1) and 7(w,y,) =
&(u;, - -up). Being w € BTt these equations imply that each 7(b), b € B, can be
written as a concatenation zy---xy, with z; € ¢(A). Moreover, by the second part of
the claim and (3.19), we can choose this decomposition so that ;1 = u; and xy = u,.
This defines (maybe non-unique) morphisms B —— D 2% C* such that 7 = pig,
#D; < #{o(u1),...,P(u,)} < #A and ¢ is proper. If we define D as the set of letters
d € D, that occur in some w € ¢(B), and p as the restriction of p; to D, then we obtain a
decomposition B — Dt 25 C* that still satisfies the previous properties, but in which ¢
is letter-onto. Hence, p and ¢ met conditions (i), (ii) and (iii). O

3.3.2 Periodicity lemmas

We will also need classic results from combinatorics on words. We follow the presentation of
[RS97, Chapter 6.

Let w € A* be a nonempty word. We say that p is a local period of w at the position |u| if
w = wv, with u,v # 1, and there exists a word z, with |z| = p, such that one of the following
conditions holds for some words ' and v":

(1) u=u'z and v = 20';

(17) z =u'u and v = 2v'; (3.20)
(1i1) u=u'z and z = vV'; '

iy z=u'u=vv.

(iv)

Further, the local period of w at the position |u|, in symbols per(w, u), is defined as the smallest
local period of w at the position u. It follows directly from (3.20) that per(w,u) < per(w).

(4) (i) (iv)

Figure 3.1: The illustration of a local period.
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The following result is known as the Critical Factorization Theorem.

Theorem 3.13 (Theorem 6.2, Chapter 6, [RS97]) Fach nonempty word w € A*, with |w|
2, possesses at least one factorization w = wv, with u,v # 1, which is critical, i.e., per(w)
per(w, u).

>

3.4 Rank of symbolic factors

In this section we prove Theorem 3.1. We start by introducing the concept of factor between
directive sequences and, in Proposition 3.15, its relation with factor maps between S-adic
subshifts. These ideas are the S-adic analogs of the concept of premorphism between ordered
Bratteli diagrams from [AEG15] and their Proposition 4.6. Although Proposition 3.15 can
be deduced from Proposition 4.6 in [AEG15] by passing from directive sequences to ordered
Bratteli diagrams and backwards, we consider this a little bit artificial since it is possible to
provide a direct combinatorial proof; this is done in the Appendix. It is interesting to note
that our proof is constructive (in contrast of the existential proof in [AEG15]) and shows
some additional features that are consequence of the combinatorics on words analysis made.

Next, we prove Theorem 3.1. We apply these results, in Corollary 3.19, to answer affirmatively
Question 3.1 and, in Theorem 3.2, to prove a strong coalescence property for the class of
systems considered in Theorem 3.1. It is worth noting that this last result is only possible
due the bound in Theorem 3.1 being optimal. We end this section by proving that Cantor
factors of finite topological rank systems are either subshifts of odometers.

3.4.1 Rank of factors of directive sequences

The following is the S-adic analog of the notion of premorphism between ordered Bratteli
diagrams in [AEG15].

Definition 3.1 Let o = (A}, = Al)pen, 7 = (B 1 — B )nen be directive sequences.
A factor ¢: ¢ — T is a sequence of morphisms ¢ = (¢, )nen, Where ¢g: Af — Bj and
On: AT — B for n > 1, such that ¢y = 79¢1 and ¢,0, = T,¢n41 and for every n > 1.

We say that ¢ is proper (resp. letter-onto) if ¢,, is proper (resp. letter-onto) for every n € N,

Remark 3.3 Factors are not affected by contractions. More precisely, if 0 = ng < n; <
ng < ..., then ¢ = (¢n, Jren is a factor from o’ = (07n, np,0))ken 10 T' = (Thympsr) ken-

The next lemma will be needed at the end of this section.

Lemma 3.14 Let ¢ = (¢n)n>1: 0 — T be a factor. Assume that o and T are everywhere
growing and proper and that ¢ is letter-onto. Then, Xr = Uy Sk(ﬁo(Xc(,l)) and X =
Urkez Skgzﬁn(Xc(,n)) for every n > 1.
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Proor. We start by proving that X\ C Usez S*p (XS, Let y € X and ¢ € N. There
exist N > n and b € B, such that y_s 4 occurs in T[nyN)(b). In addition, since ¢y is letter-
onto, there exists a € Ay for which b occurs in ¢n(a). Then, y;_, g occurs in 75, yy@n(b) and,
consequently, also in ¢,0p, ny(b) as Ty n)yON = ¢nop,, Ny Hence, by taking the limit € — 00
we can find (K, z) € Z x X5 such that y = S¥ ¢, (z). Therefore, y € Urez Sk (XYY, To
prove the other inclusion, we use Lemma 3.6 to compute:

on(X) = () U S* nomm (A%) = [ U 5" 7mmon(A%)

N>n k€eZ N>n keZ
- ﬂ U 57,50 (BY) = X1,
N>nkeZ

]

As we mentioned before, the following proposition is consequence of the main result in
[AEG15]. We provide a combinatorial proof in the Appendix.

Proposition 3.15 Let o be a letter-onto, everywhere growing and proper directive sequence.
Suppose that X is aperiodic. Then, there exist a contraction o' = (0])nen, a letter-onto,
everywhere growing, proper and recognizable T = (T,)nen generating X, and a letter-onto
factor ¢: 0" — T, ¢ = (On)nen, such that ¢y = o).

The next proposition is the main technical result of this section. To state it, it is convenient
to introduce the following concept. The directive sequences o and T are equivalent if & = v/,
7 = V" for some contractions v/, v” of a directive sequence v. Observe that equivalent
directive sequences generate the same S-adic subshift.

Proposition 3.16 Let ¢: o — T be a letter-onto factor between the everywhere growing
and proper directive sequences. Then, there exist a letter-onto and proper factor ¥: o' — v,
where

(1) o' is a contraction of o;

(2) v is letter-onto, everywhere growing, proper, equivalent to T, AR(v) < AR(o), and the
first coordinate of ¢ and ¢ coincide;

(8) if T is recognizable, then v is recognizable.

Proor. Let us write o = (A, = A} )peny and 7 = (B, — B, )nen. Up to contractions,
we can suppose that for every n > 1, #A,, = AR(o) and that 7, is |¢,|{-proper (for the last
property we used that 7 is everywhere growing and proper).

Using that ¢,,.1 is letter-onto, we can compute:

Tn(Bn—i—l) 2 Tn(¢n+1(“4n+1)) ¢n(an(An+1)) C ?bn(ArT)v
where in the middle step we used the commutativity property of ¢. We deduce that

Ta(B5H) N ¢ (A)) # 0 for every n € N.
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This and the fact that 7, is a |¢,|{-proper morphism allow us to use Lemma 3.12 to find
morphisms B;,, 5% D, | 2% B such that

n
(i) #Dp11 < #A,, (i) T, = Pudnaa, (iil) gni1 is letter-onto and proper.

We define vy = pp, the morphisms v,, == ¢.p,: D,y — D} and ¢, = gu,: A5 — D;f,
n > 1, and the sequences v = (v,)nen and ¥ = (1, )nen, Where ¢y = ¢og. We are going to
show that these objects satisfy the conclusion of the proposition.

We start by observing that it follows from the definitions that the diagram below commutes

for all n > 1:

N + +
y B D
] SIS
+ y + s +
An—i—l bt Bn—l—l qn+1 Dn—i—l

In particular, v,Vp41 = GnTuDnt1, 50 (Vnmt1)) = (o). Being 7 everywhere growing, this
implies that v has the same property. We also observe that (iii) implies that v, = g,p, is
letter-onto and proper. Altogether, these arguments prove that, up to contracting the first
levels, v is everywhere growing and proper.

Next, we note that v and 7 are equivalent as both are contractions of (pg, g1, p1, g2, - - - ). This
implies, by Lemma 1.1, that v is recognizable if T is recognizable. Further, by (i), v has
alphabet rank at most AR(o).

It is only left to prove that 1 is a letter-onto and proper factor. By unraveling the definitions
we can compute:

o = ¢o = ToP1 = Poq1P1 = Vo1,

and from the diagram we have 0,1, = ¥, 117, for all n > 1. Therefore, 1 is a factor. Finally,
since ¢, is letter-onto and proper by (iii) and ¢ was assumed to be letter-onto, ¢, = g, ¢, is
letter-onto and proper. O

3.4.2 Rank of factors of S-adic subshifts

In this section, we will prove Theorem 3.1 and its consequences. We start with a technical
lemma.

The next lemma will allow us to assume without loss of generality that our directive sequences
are letter-onto.

Lemma 3.17 Let T = (1,: A, — A})nen be an everywhere growing and proper directive
sequence. If A, = A, N L’(X,(,n)), 7. is the restriction of T, to Apiq and ¥ = (Tos T1s- -+ ),
then T s letter-onto and X7(~_n) = x" for every n € N. Conversely, if T is letter-onto, then
A, C E(Xq(-n)) for every n € N.

Proor. By Lemma 1.2, 7, is letter-onto mapping fl:[ 41 Into A,.. Moreover, that lemma also

gives that for every z € X! and N > n, there exists a Tin,v)-factorization (A, ') of x in
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X,(-N). This together with the inclusion XS-N) - /l]ZV imply that

Z = ﬂ U SkT[nyN)(A%) 2 X_(rn)

N>n keZ

Now, T is everywhere growing and proper, so we can apply Lemma 3.6 to obtain that X ;n) =
7 D X" Since it is clear that X;n) C X" as Ay C Ay for every N, we conclude that
XM= XM,

If 7 is letter-onto, then A, C L(U,cz S*Tnn)(A%)) for every N > n, and hence, by the
formula in Lemma 3.6, A, C £(X\™). O

Now we are ready to prove Theorem 3.1. We re-state it in a more precise way.

Theorem 3.1 Let 7: (X,5) — (Y,S) be a factor map between aperiodic subshifts. Sup-
pose that X is generated by the everywhere growing and proper directive sequence o =
(on: AL, = Al )nen of alphabet rank K. Then, Y is generated by a letter-onto, everywhere
growing, proper and recognizable directive sequence 7T of alphabet rank at most K.

Moreover, if o is letter-onto, then, up to contracting the sequences, there exists a proper
factor ¢: & — 7 such that 7(og(x)) = ¢o(z) for all z € x5 and loo(a)] = |po(a)| for all
a &€ ./41

Proor. Thanks to Lemma 3.17, we can assume without loss of generality that o is letter-onto.
Moreover, in this case we have:

A, C L(XM) for every n € N. (3.21)
Let us write o = (0,,: A 1 = Al )nen. By contracting o, we can further assume that g is

r-proper and 7 has radius . Then, Lemma 3.5 gives us a proper morphism 7: A7 — BT,
where B is the alphabet of Y, such that

m(oo(z)) = 7(z) for all z € XV and |og(a)| = |7(a)| for every a € A;. (3.22)
In particular, 7(o7m (2)) = 70710 (z) and | (a)| = |[Topm (a)] for all n € N, z € X5 and

a € A,, so (3.22) holds for any contraction of o.

We define & = (7,01, 09, ... ) and observe this is a letter-onto, everywhere growing and proper
sequence generating Y. This and that Y is aperiodic allow us to use Proposition 3.15 and
obtain, after a contraction, a letter-onto factor J): o — T, where ggo =09 =17and T is a
letter-onto, everywhere growing, proper and recognizable directive sequence generating Y.
The sequence 7 has all the properties required by the theorem but having alphabet rank
bounded by K. To overcome this, we use Proposition 3.16 with ¢ and do more contractions
to obtain a letter-onto and proper factor ¢: & — 7 such that ¢y = ggo =7 and T is a
letter-onto, everywhere growing, proper and recognizable directive sequence generating Y

and satisfying AR(7) < AR(6) = AR(0).
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It is left to prove the last part of the theorem. Observe that since  and o differ only at
their first coordinate, ¢ is also a factor from o to 7. Further, by equation (3.22) and the
fact that ¢g = 7, we have 7(oy(z)) = 7(x) = ¢o(x) and |og(a)| = |po(a)| for every z € XM
and a € A;. O

Corollary 3.18 Let (X,S) be an aperiodic minimal subshift of generated by an everywhere
growing and proper directive sequence of alphabet rank K. Then, the topological rank of X 1is
at most K.

Proor. We can use Theorem 3.1 to obtain an everywhere growing, proper and recognizable
directive sequence T = (7,,: Bf,; — B/ )nen generating X and having of alphabet rank at
most K. Due to Lemma 3.17, we can assume that 7 is letter-onto. In particular, B, C
L£(X™) for every n € N.

We claim that X\ is minimal. Indeed, if ¥ € X" is a subshift, then Tioy(Y) is closed (as
Tion) : XM X, s continuous), s0 Uz S0, (V) = U|k|§|7'[0 ol SF710,)(Y) is a subshift in

X+ which, by minimality, is equal to it. Thus, any point z € X,(-”) has a 7y n)-factorization
(k,z) with z € Y. The recognizability property of (X.ﬁn), Tio,n)) then implies that Y = XM,

Now, we prove that for any n € N there exists N > n such that 7y, x) is positive. This
would imply that the topological rank of X is at most K and hence would complete the
proof. Let n € N and R be a constant of recognizability for (X7(-n),7'[07n)). Since X is
minimal, there exists a constant L > 1 such that two consecutive occurrences of a word
w e £(XM) N B2+ in a point x € X are separated by at most L. Let N > n be big
enough so that (7o, 5y) > L+2R. Then, foralla € By C LX) and w € ﬁ(Xﬁ”))mBELRH, w
occurs at a position i € {R, R+1,...,|mo,n)(a)| — R} of 7o n)(a). Since R is a recognizability
constant for (Xq(-n),T[om)), we deduce that for all @ € By and b € B, b occurs in 7p, ny(a).
Thus, 7, ) is positive. O

We can now prove Corollary 0.6.

Corollary 0.6 Let (X,S) be an aperiodic minimal subshift generated by an everywhere
growing directive sequence of finite alphabet rank. Then, the topological rank of (X,S) is
finite.

Proor. We are going to prove that X is generated by an everywhere growing and proper
directive sequence T of finite alphabet rank. This would imply, by Corollary 3.18, that the
topological rank of X is finite. Let o = (0,: A}, = Al),en be an everywhere growing
directive sequence of finite alphabet rank generating X. We contract 7 in a way such that
#A, < K for every n > 1.

We are going to inductively define subshifts X,,, n € N. We start with Xy := X. We now
assume that X, is defined for some n € N. Then the set X/, = {z € X5 o (2) € X}
is a subshift. We define X, as any minimal subshift contained in X7 ;. It follows from the
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definition of X,,4; that (J,; Sk, (Xps1) € X,,. Being X, minimal, we have

| S*on(Xns) = X (3.23)

kEZ

Let A, = A, N £(X,). Equation (3.23) and the fact that o is everywhere growing allow us
to assume without loss of generality that, after a contraction of o, the following holds for
every n € N:

if a € A,1 and w € £(X,,) has length 3, then w occurs twice in o, (a). (3.24)

Let us fix a word w,, = a,b,c, € L(X,) of length 3. Then, by (3.24), we can decompose
on(a) = uy(a)v,(a) in a way such that

up(a) ends with a,, v,(a) starts with b,c, and |v,(a)| > 2. (3.25)

To define 7, we need to introduce additional notation first. Let B,, be the alphabet consisting
of tuples [{] such that ab € L£(X,). Also, if w = wy...wy, € L£(X,) has length |w| > 2,
then y,(w) = [zﬂ [Zi] [wiu“"‘*ll] € Bf, and if v’ = Bﬂ [wgl”'*‘l] € By, then n(w') =

Wi ... Wyy—1 € Af. Observe that n: Bf — Aj is a morphism.

We now define 7. Let 7,: By, — Bl be the unique morphism such that 7,([;]) =

Xn(vn(@)un(a)b,) for every [f] € B,i1. Observe that since v,(a)u,(a)b, € L(X,), it is
indeed the case that 7,([]]) € B} We set T = (n70, 71,72, ...).

It follows from (3.25) that for every n € N and [{] € B,y1, 7,,([]]) starts with [Z:] and ends
with [Zﬂ Thus, 7 is proper. Moreover, since |v,(a)| > 2, we have |v,(a)u,(a)b,| > 3 and
thus |7,([;])| > 2. Therefore, (7,,) > 2 and T is everywhere growing. Also, #B, < #A2 < K*
for every n € N, so the alphabet rank of 7 is finite.

It remains to prove that X = X,. By minimality, it is enough to prove that X O X.
Observe that since 7, xn+1(ab) = xn(vn(a)u,(b)by,), the word 7, xn41(ab) occurs in x,0,(ab).
Moreover, for every w = wy ... wp, € E(X((,n)), TnXn+1(w) occurs in x,0,(w). Then, by
using the symbol C to denote the “subword” relation, we can write for every n € N and
ab e L(XI):

T[O,n)Xn<ab) C T[O,nfl)anlo'nfl(ab)
C Tj0,n-2)Xn—20[n—2,n)(ab) T - - £ Xo0[0,n)(ab)

Hence, 77j.n)( [Z]) C 7X0070,n)(ab) T 079,y (ab). We conclude that X, C X, = X. O
Corollary 3.19 Let (X,S) be a minimal subshift of topological rank K and 7: (X,S) —

(Y, S) a factor map, where Y is an aperiodic subshift. Then, the topological rank of Y is at
most K.

Proor. By Theorem 0.1, (X, S) is generated by a proper and primitive directive sequence
o of alphabet rank equal to K. In particular, o is everywhere growing and proper, so we
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can use Theorem 3.1 to obtain an everywhere growing, proper and recognizable directive
sequence T = (7,: By, — B),>0 generating (Y, S) and having of alphabet rank at most
K. Then, the hypothesis of Corollary 3.18 hold for (Y, S), and thus the topological rank of
(Y, S) is at most K. O

The following notion will be used in the proof of the theorem below: o = (0, : A | — A,)n>0
has ezact alphabet rank at most K if #A, < K for all n > 1.

Corollary 3.2 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper sequence of alphabet rank K, and 7;: (X;41,5) = (X;,5),7=0,..., L, be a chain of
aperiodic symbolic factors, with X;, = X. Suppose that L > log,(K’). Then 7; is a conjugacy
for some .

Proor. We start by using Theorem 3.1 with the identity function id: (X,S) — (X,S) to
obtain a letter-onto, everywhere growing, proper and recognizable directive sequence o, of
alphabet rank at most K generating X. By doing a contraction, we can assume that o, has
exact alphabet rank at most K.

By Theorem 3.1 applied to 7,1 and o, there exists, after a contraction of o, a letter-
onto factor ¢pp_1: o — orp_1, where op_; is letter-onto, everywhere growing, proper,
recognizable, has alphabet rank at most K, generates X;_, and, if ¢;_1 0 and o are the
first coordinates of ¢r_1 and o, respectively, then 7, 1(0p0(z)) = ¢r_10(z) for every

z e X&) and loro(a)| = |¢r-1,0(a)| for every letter a in the domain of o1 y. By contracting
these sequences, we can also suppose that o_; has exact alphabet rank at most K. The
same procedure applies to m;_s and or_1. Thus, by continuing in this way we obtain for
every 7 =0,...,L — 1 a letter-onto factor ¢;: 041 — o; such that

e 0, is letter-onto, everywhere growing, proper, recognizable, has exact alphabet rank at
most K, generates X, m;j(0j110(x)) = ¢jo(x) for every x € Xf,lj)Jrl, and |oj410(a)] =
|pjo(a)| for every a € Ajiq;.

Here, we are using the notation o; = (0jn: AT, .1 = Al Jnen, @5 = (Gjn: Ay, —
A7 Jnen and XJ(") = X,(,Z). We note that

(Ay) for every z € Xﬁ)l, 7j(0j110(x)) = ¢j0(x) = 0j001(2) since @0 = 7,00;1;

(A2) XS = Upes S¥051(XY)) by Lemma 3.14.

Hence, the following diagram commutes:

Xél) do,1 o XJ(l) P51 Xj(i)l o dr—1,1 Xél)
lo’op 75,0 lUjJrl,o lUL,O
(0) (0) (0) (0)

XO (T X] <TXj+1 (HXL
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Claim 3.2 If (X;El, ¢;1) is recognizable, then 7; is a conjugacy.

v @) is recognizable and let, for i = 0,1, 2" € X(l)1 such
that y = m;(2%) = m;(2'). We have to show that 2° = z'. First, we use Lemma 1.2 to find a

Proof. Let us assume that (X (1)

centered o;1 o-factorization (k', 2%) of 2’ in X J( +)1 Then, equation A, allows us to compute:

0 0 1
¥ 050050(2") = 8" mi(0510(2°) = m5(2°) = mi(2") = S* 050051 (2).
This implies that (£, 2") is a 00, 1-factorization of y in X ](i)l for i = 0,1. Moreover, these
are centered factorizations as, by e, |0;0¢;1(a)| = |oj+10(a)| for all @ € Aj41;. Now, being
(Xj(l), 09,j) and (Xy+17 ®j1) recogmzable Lemma 1.1 gives that (X](Jr)17 0,1¢;1) is recognizable,
and thus we have that (k°, 2°) = (k', z!). Therefore, 2° = z! and 7 is a conjugacy. O

Now we can finish the proof. We assume, by contradiction, that 7; is not a conjugacy for all
j. Then, by the claim,

(XJ(-D, ¢1,;) is not recognizable for every j € {0,..., L — 1}. (3.26)
Let
V= (9250,1, ¢1,1, ¢2,1, e ,¢L—1,17 001,002,013, - )
The idea is to use Theorem 3.7 with v to obtain a contradiction. To do so, we first note

that, since v and o™ have the same “tail”, X" = Xémﬂ) for all m € N. Moreover, A,
and the previous relation imply that

X = U Sk (XUTD) = U S*g1 . o1 (X))
keZ keZ
- U Sk¢j, - r-1( U Sk¢y 1 ¢L—2,1(ngl—)1) - X](l)'
keZ keZ

This and (3.26) imply that for every j € {1,..., L—1}, the level (X,(,j), ¢;1) of v is not recog-
nizable. Being v everywhere growing as o, has this property, we conclude that Theorem 3.7
can be applied and, therefore, that Xél) = X, is periodic. But then Xo = J,; Skaoﬁo(Xél))
is periodic, contrary to our assumptions. O

A system (X, S) is coalescent if every endomorphism 7: (X, S) — (X, S) is an automorphism.
This notion has been relevant in the context of topological dynamics; see for example [Dow97].

Corollary 3.20 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of finite alphabet rank. Then, (X, S) is coalescent.

Remark 3.4 A linearly recurrent subshift of constant C' is generated by a primitive and
proper directive sequence of alphabet rank at most C(C + 1)? ([Dur00], Proposition 6). In
[DHS99], the authors proved the following

Theorem 3.21 ([DHS99], Theorem 3) For a linearly recurrent subshift X of constant C,
in any chain of factors m;: (X;,5) — (X;+1,5), j = 0,...,L, with Xy = X and L >
(20/(2C + 1)?)*¢°(RC+1D? there is at least one 7; which is a conjugacy.
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Thus, Theorem 3.2 is not only a generalization of this result to a much larger class of systems,
but also improves the previous super-exponential constant to a logarithmic one.

In Proposition 28 of [DHS99], the authors proved that Cantor factors of linearly recurrent
systems are either subshifts or odometers. Their proof only uses that this kind of systems
satisfy the strong coalescence property that we proved in Corollary 3.20 for finite topological
rank systems. Therefore, by the same proof, we have:

Corollary 3.22 Let 7: (X,S) — (Y,T) be a factor map between minimal systems. Assume
that (X,S) has finite topological rank and that (Y,T) is a Cantor system. Then, (Y,T) is
either a subshift or an odometer.

Proor. We sketch the proof from [DHS99] that we mentioned above.

Let (Pn)nen be a sequence of clopen partitions of Y such that P, is finer than P, and
their union generates the topology of Y. Also, let Y,, be the subshift obtained by codifying
the orbits of (Y, T) by using the atoms of P,. Then, the fact that P, is a clopen partition
induces a factor map m,: (Y, T) — (Y,,,S). Moreover, since P, 1 is finer than P,,, there exists
a factor map &,: (Yn11,S5) — (Y,,,S) such that &,m,+1 = m,. Hence, we have the following
chain of factors:

57172

(X,S) = (Y, T) = (Y, S) &3 (v, 1, 9) ¥ =5 (v, 9).

We conclude, by also using the fact that the partitions P,, generate the topology of Y, that
(Y, S) is conjugate to the inverse limit lim,, . (Yy;&,).

Now we consider two cases. If Y,, is periodic for every n € N, then Y is the inverse limit of
periodic system, and hence an odometer. In the other case, we have, by Corollary 3.2, that
&n is a conjugacy for all big enough n € N, and thus that (Y,.S) is conjugate to one of the
subshifts Y,,. N

3.5 Fibers of symbolic factors

The objective of this section is to prove Theorem 3.3, which states that factor maps 7: (X, S) —
(Y, S) between S-adic subshifts of finite topological rank are always almost k-to-1 for some
k bounded by the topological rank of X. We start with some lemmas from topological
dynamics.

Lemma 3.23 ([Aus88|) Let m: X — Y be a continuous map between compact metric spaces.
Then m=1:Y — 2% is continuous at every point of a residual subset of Y.

Next lemma gives a sufficient condition for a factor map 7 to be almost k-to-1. Recall that
E(X,S) stands for the Ellis semigroup of (X, S).

Lemma 3.24 Letw: (X,S) — (Y,T) be a factor map between topological dynamical systems,
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with (Y, T) minimal, and K > 1 an integer. Suppose that for every y € Y there exists
u € E(2%,8) such that #uon(y) < K. Then, 7 is almost k-to-1 for some k < K.

Proor. First, we observe that by the description of v o A in terms of nets at the end of
Subsection 3.2, we have

#Huo A< #A Yue E(2X,8), Ac2¥. (3.27)

Now, by previous lemma, there exists a residual set Y CY of continuity points for 7.

Let y,y € Y be arbitrary. Since Y is minimal, there exists a sequence (ng), such that
lim, Ty = o/. If w € E(2%,95) is the limit of a convergent subnet of (S™),, then wy = y/'.
By the continuity of 77! at 3 and (3.27), we have

#r(y) = #r (wy) = Fwon (y) < H#r(y).

We deduce, by symmetry, that #71(y') = #7 ' (y). Hence, k := 771(y) does not depend on
the chosen y € Y. To end the proof, we have to show that k < K. We fix y € Y and take,
using the hypothesis, u € E(2%,S) such that #u o7 !(y) < K. As above, by minimality,
there exists v € F(2%,5) such that vuy = y. Then, by the continuity of 771 at v,

7 (y) =7 H(vuy) = (vu) o m(y) =vo (uom (y)).

This and (3.27) imply that k = #7 ' (y) < #uon (y) < K. O

Let 0: AT — B be a morphism, (k, z) a centered o-factorization of y € BZ in A% and ¢ € Z.
Note that there exists a unique j € Z such that ¢ € [c, j(k, ), ¢, j41(k, z)) (recall the notion
of cut from Definition 4.2). In this context, we say that (¢, ;(k,x),x;) is the symbol of (k,x)
covering position £ of y.

Theorem 3.3 Let 7: (X,S5) — (Y, 5) be a factor between subshifts, with (Y,.S) minimal
and aperiodic. Suppose that X is generated by a proper and everywhere growing directive
sequence o of alphabet rank K. Then, 7 is almost k-to-1 for some k < K.

Proor. Let o = (0,1 Ani1 — Ap)n>o be a proper and everywhere growing directive sequence
of alphabet rank at most K generating X. Due the possibility of contracting o, we can assume
without loss of generality that #.4, < K for every n > 1 and that oq is r-proper, where r
is the radius of m. Then, by Lemma 3.5, Y is generated by an everywhere growing directive
sequence of the form 7 = (7,0y,09,...), where 7: A — BT is such that 7(z) = 7(0¢(z))
for every x € X,(-l) = X,(,l). We will use the notation 7,y = 7071 ). Further, for y € ¥ and

n > 1, we write F,,(y) to denote the set of 7y ,y-factorizations of y in v,

Before continuing, we prove the following claim.

Claim 3.3 There exist ¢, € Z and G,, C Z x B, with at most K elements such that if
(k,x) € F,(y), then the symbol of (k,z) covering position £, of y is in G,,.
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First, since Y is aperiodic, there exists L € N such that
all words w € L(Y') of length > L have least period greater than |7y ). (3.28)

We assume, by contradiction, that the claim does not hold. In particular, for every ¢ € [0, L)
there exist K + 1 7y )-factorizations (z,k) of y in Y™ such that their symbols covering
position ¢ of y are all different. Now, since #7pn)(An41) < K, we can use the Pigeonhole
Principle to find two of such factorizations, say (k,z) and (k’,2’), such that if (¢,a) and
(c/,a’) are their symbols covering position £ of y then a = ¢’ and ¢ < ¢’. Then,

Y(e.ctimom@l = T0m)(@) = Y& e +mony (@]

and, thus, Y(.c+ro.. (@) 18 (¢ — c)-periodic. Being £ € (¢, ¢ + [7jo.n)(a)]), we deduce that the
local period of yj 1) at € is at most ¢ — ¢ < [7[pn)|. Since this true for every ¢ € [0, L) and
since, by Theorem 3.13, per(yp.)) = per(yp,z), ¥jo,¢)) for some £ € [0, L), we conclude that
per(ypo,r)) < |Tony|- This contradicts (3.28) and proves thereby the claim.

Now we prove the theorem. It is enough to show that the hypothesis of Lemma 3.24 hold.
Let y € Y and F,(y) C F,(y) be such that #F,(y) = #G,, and the set consisting of all the
symbols of factorizations (k,z) € F,(y) covering position ¢, of y is equal to G,,. Let z €
7 1(y) and (k, ) be a oy ,)-factorization of z in X, Then, SFri0.m () = S*m(o70 ) (2)) =
m(z) = y and (k,x) is a Ty n)-factorization of y in Y™ Thus, we can find (K, z') € Fu(y)
such that the symbols of (k,z) and (£, 2") covering position ¢,, of y are the same; let (m,a)
be this common symbol. Since o is proper, we have

Y
Am—(o70,n—1))m+070,n) (@) |40 10,0 -1))] = Z[m—(0[0,n—1))m+|00,n) (@) +(070,n—1))]’

where 2/ = S¥ o9,y (2') € X is the point that (k',2') factorizes in (Xc(,n),a[om)). Then, as
bn € (m,m =+ |ojom (a)ll;

o
Z(E"_<‘7[0,n—1)>’€"+<‘7[0,n—1)” o Z(g’ﬂ7<J[0,n71)>7£7’L+<U[0,n71)>}.

Thus, dist(S*z, S P,(y)) < exp(—(ojo,n-1))), where P,(y) C 7 *(y) is the set of all points
S¥ o0,y (2") € X such that (k”,2") € F,(y). Since this holds for every n > 1, we obtain that
du(S™71(y), S P,(y)) converges to zero as n goes to infinity (where, we recall, dy is the
Hausdorff distance). By taking an appropriate convergent subnet u € E(2%,5) of (S),en
we obtain #u o 7 (y) < sup,en #P, = sup,ey #G, < K. This proves that the hypothesis
of Lemma 3.24 holds. Therefore, 7 is almost k-to-1 for some k < K. O

3.6 Number of symbolic factors

In this section we prove Theorem 3.4. In order to do this, we split the proof into 3 subsections.
First, in Lemma 3.27 of subsection 3.6.1, we deal with the case of Theorem 3.4 in which the
factor maps are distal. Next, we show in Lemma 3.31 from Subsection 3.6.2 that in certain
technical situation -which will arise when we consider non-distal factor maps- it is possible
to reduce the problem to a similar one, but where the alphabet are smaller. Then, we prove
Theorem 3.4 in subsection 3.6.3 by a repeated application of the previous lemmas.

93



3.6.1 Distal factor maps

We start with some definitions. If (X,S) is a system, then we always give X* the diagonal
action S/ := § x ... x S. If 7: (X,S) — (Y, T) is a factor map and k > 1, then we define
RF = {(z',...,2%) € X* : 7(z') = --- = w(2*)}. Observe that R* is a closed S"-invariant
subset of X*.

Next lemma follows from classical ideas from topological dynamics. See, for example, Theo-
rem 6 in Chapter 10 of [Aus88].

Lemma 3.25 Let 7: (X,S) — (Y,T) be a distal almost k-to-1 factor between minimal
systems, z = (2',...,2%) € R* and Z = orbguw (2). Then, 7 is k-to-1 and Z is minimal

We will also need the following lemma:

Lemma 3.26 ([Dur00], Lemma 21) Letm;: (X, S) — (Y;,T3), i = 0, 1, be two factors between
aperiodic minimal systems. Suppose that my is finite-to-one. If x,y € X are such that
mo(z) = mo(y) and m(z) = Tim(y), then p=0.

Lemma 3.27 Let (X,S) be an infinite minimal subshift of topological rank K and J an
index set of cardinality #J > K(144K7)X. Suppose that for every j € J there exists a distal
symbolic factor w;: (X,S) — (Y;,S). Then, there arei # j € J such that (Y;, S) is conjugate
to (1.5).

Proor. We start by introducing the necessary objects for the proof and doing some general
observations about them. First, thanks to Theorem 3.3, we know that =; is almost k;-
to-1 for some k; < K, so, by the Pigeonhole Principle, there exist J; € J and k£ < K
such that #J; > #J/K > (144K")% and k; = k for every j € J;. For j € Ji, we fix
P=(2,...,4) € Rfrj with 27 # 23, for all n # m. Let Z; = orbguw(2?) and p: X*¥ — X be
the factor map that projects onto the first coordinate. By Lemma 3.25, 7; is k-to-1 and Z;
minimal. This imply that if x = (x1,...,2) € Z;, then

{z1,. . o} = m; N (mj(ay)) for all n € {1,... k}, (3.29)
Ty # xy for all n,m € {1,... k}. (3.30)
Indeed, since Z; is minimal, (S*)"z — x for some sequence (ng),, so,

inf dist(z,,2,) > inf dist(S'z,, S'2,) > 0,
n#m n#m,leZ

where in the last step is due the fact that 7; is distal. This gives (3.30). For (3.29) we first
note that {xy,..., 25} C 7Tj_1<7rj(l'n)) as ¥ € R, and then that the equality must hold since

#rH(mi(an) = k= #{a1, ... 2} by (3.30).

The next step is to prove that asymptotic pairs in Z; are well-behaved:

Claim 3.4 Let j € J; and (27 = (2,...,2)), ¥ = (#],...,%])) be a right asymptotic pair



in Z;, this is,
lim dist((S® 27, SM37) = 0 and 27 # &7 (3.31)

n——oo

Then, (x7, ) is right asymptotic for every n € {1,..., k}.

n»n

Proof. Suppose, with the aim to obtain a contradiction, that (z7,%7) is not right asymptotic
for some n € {1,...,k}. Observe that (3.31) implies that

for every m € {1,...,k}, either (27 7/ ) is right asymptotic or 2/ = #7 . (3.32)
Therefore, 2, = &), Using this and that 27,3/ € RE we can compute:
w2 ) =7 (20) = m;(#2) = 7;(&]) for all m,1 € {1,...,k},
and thus, by (3.29),
(whyad} = w7 () = 5 (g () = (., 2L

The last equation, (3.30) and that 27 # 7 imply that there exist m # [ € {1,...,k} such
that Z] = 7 . This last equality and (3.32) tell us that zJ, and ] are either asymptotic or
equal. But in both cases a contradiction occurs: in the first one with the distality of 7 and

in the second one with equation (3.30). O
Let j € Jy. Since Y is infinite, Z; is a infinite subshift. It is a well-known fact from symbolic
dynamics that this implies that there exists a right asymptotic pair (7 = (z1,...,x}),
& = (#],...,27)) in Z;. We are now going to use Theorem 3.8 to prove the following:

Claim 3.5 There exists i, j € Ji, 7 # j, such that Z; = Z;.

Proof. On one hand, by the previous claim, (zJ,%]) € X? is right asymptotic for every

n € {1,...,k} and j € Ji. Let p/ € Z be such that (SP"zJ,SP %)) is centered right
asymptotic. On the other hand, Theorem 3.8 asserts that the set

{Z(0,00) 1 (@, T) is centered right asymptotic in X'}

has at most 144K7 elements. Since #.J; > (144K")X, we conclude, by the Pigeonhole
principle, that there exist i, 7 € Jy, i # 7, such that

SPagl and Spi;le agree on (0, 00) for every n € {1,...,k}. (3.33)
We are going to show that Z; = Z;.

Using (3.33), we can find v € E(X,S) such that uSpizxiZ = uS”’%x{'1 for every n. Then, by
putting y!, = uz!, y2 = ux’, and g, = p), — p',, we have

y' = (yi, o ,y,@) € Z,y = (y{, . ,yi) € Z; and y; = Sq”yi.

Hence, 7(y%) = S%n(y)) and Lemma 3.26 can be applied to deduce that g := g, has the
same value for every n. We conclude that y* = S9y/ € S1Z; = Z;, that Z; N Z; is not empty
and, therefore, that Z; = Z; as these are minimal systems. O
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We can now finish the proof. Let i # j € J; be the elements given by the previous claim,
sothat Z == Z; = Z;. Let y € Y; and © = (z1,...,7%) € p~'m; '(y) N Z. Then, by (3.29),
m ' (y) = {21, ... 2} = ;' (m;(21)), and so mym; ' (y) contains exactly one element, which

is m;(z1). We define ¢: Y; = Y; by ¢(y) = m;(x1).

Observe that 7; ': Y; — 2% is continuous (as m; is distal, hence open) and commutes with S.
Being 7; a factor map, 1 is continuous and commutes with S. Therefore, ¢: (Y;,.5) = (Y;,5)
is a factor map. A similar construction gives a factor map ¢: Y; — Y; which is the inverse
function of ). We conclude that 1 is a conjugacy and, thus, that Y¥; and Y; are conjugate. [J

3.6.2 Non-distal factor maps

To deal with non-factor maps, we study asymptotic pairs belonging to fibers of this kind of
factors. The starting point is the following lemma.

Lemma 3.28 Let w: (X,S5) — (Y, 5) be a factor between minimal subshifts. Then, either m
is distal or there exists a fiber w1 (y) containing a pair of right or left asymptotic points.

Proor. Assume that 7 is not distal. Then, we can find a fiber 7~!(y) and proximal points
r, 2 € 7 (y), with z # 2/. This implies that for every k € N there exist a (maybe infinite)
interval I, = (ag, by) C Z, with by —ay, > k, for which z and 2’ coincide on I and I}, is maximal
(with respect to the inclusion) with this property. Since x # 2/, then a; > —o0 or by < 0.
Hence, there exists an infinite set £ C N such that a; > —oo for every k € E or b, < oo for
every k € E. In the first case, we have that (S (x,2'))rep has a left asymptotic pair (z, 2’)
as an accumulation point, while in the second case it is a right asymptotic pair (z,2’) who
is an accumulation point of (S (z,z’))rep. In both cases we have that (z,2') € R? since
(S% (2, 2"))rer and (S%(x,2'))rep are contained in R2 and R2 is closed. Therefore, the fiber
7Y (w(2)) contains a pair z, 2" of asymptotic points. O

The next lemma allows us to pass from morphisms o: X — Y to factors 7: X’ — Y in such
a way that X’ is defined on the same alphabet as X and has the “same” asymptotic pairs.
We remark that its proof is simple, but tedious.

Lemma 3.29 Let X C AT be an aperiodic subshift, o: At — BT be a morphism and
Y = Uyeg S¥0(X). Define the morphism i,: At — AT by is(a) = al?@| a € A, and X' =
Urez S¥io(X). Then, centered asymptotic pairs in X' are of the form (i,(z),i,(Z)), where
(x,Z) is a centered asymptotic pair in X, and there exists a factor map w: (X', S) — (Y, .5)
such that 7(i,(z)) = () for all x € X.

Proor. Our first objective is to prove that (X,i,) is recognizable. We start by observing
that

if (k, ), (l~€, T) are centered i,-factorizations of y € X', then zy = . (3.34)

Indeed, since the factorization are centered, we have xg = i, (20)r = Yo = i,(Z0); = Zo-

o6



Let A be the set of tuples (k,x,k, ) such that (k,z), (k,Z) are centered i,-factorizations
of the same point. Moreover, for R € {=,>}, let Ag be the set of those (k,z,k,7) € A
satisfying £ R k.

Claim 3.6 If (k,z,k %) € A_, then (0,S2,0,S%) € A_, and if (k,z,k,%) € A, then
(Jig(xzo)| — k + k,%,0, Sz) € As.

Proof. If (k,, k,#) € A_, then, since zy = &, by (3.34), we can write i,(Sz) = S¥i,(z) =
S*iq(%) = i,(SZ). Thus, (0,Sz,0,5%) € A—. Let now (k,z,k, %) € As and y == S¥i,(z) =
S*i,(Z). We note that

Slia(fﬂo)l—k-ﬁ-’;ig(j) = S\ia(ro)l—ky — S\ia(zo)\io(x) = i,(S),

50 (|ig(x0)| — k+ k, &) and (0, Sx) are i,-factorization of the same point. Now, since zo = &g
(by (3.34)) and (k, x), (k, ) are centered, we have k, k € [0, is(20)|). This and and the fact
that k > k imply that k — k € (0, |Zg(a:0)|). Therefore, |ig(zo)| — k + & € (0, |i,(x0)]) and,
consequently, (|iy(zo)| — k + k,%,0,5z) € As. O

We prove now that (X,i,) is recognizable. Let (k,x,/%,i’) € A. We have to show that
(k,x) = (l%,:i") First, we consider the case in which k¥ = k. In this situation, the previous
claim implies that (0,Sx,0,S5%) € A—. We use again the claim, but with (0, Sxz,0,S%), to
obtain that (0, S%z,0, 5%%) € A—. By continuing in this way, we get (0, S"z,0,S"%) € A_ for
any n > 0. Then, (3.34) implies that x, = 7, for all n > 0. A similar argument shows that
Tp = iy for any n < 0, and so (k, z) = (k, Z). We now do the case k > k. Another application
of the claim gives us (p1, 7,0, Sz) € A5 for some p; € Z. As before, we iterate this procedure
to obtain that (py, Sz, 0,5%) € A, (ps, S7,0,S5%z) € A~ and so on. From these relations and
(334) we deduce that To = i‘o, i‘g = (SIL’)O = X1, 1 = (S[E)Q = (Si’)o = i‘l, .i'l = (SZ%)O =
(S?x)y = w9, etc. We conclude that x, = Z,, = xo for any n > 0. Then, by compacity, the
periodic point ---xg.xgzo -+ belongs to X, contrary to our aperiodicity hypothesis on X.
Thus, the case k > k does not occurs. This proves that (X, i,) is recognizable.

Using the property we just proved, we can define the factor map 7: X’ — Y as follows: if
2’ € X', then we set 7(2') = S*r(z) € Y, where (k, z) is the unique centered i,-factorization
of #/ in X. To show that 7 is indeed a factor map, we first observe that since

|7(a)| = liy(a)| for all a € A, (3.35)

7w commutes with S. Moreover, thanks to (iii) in Remark 1.1, 7 is continuous. Finally, if
y € Y, then by the definition of YV there exist a centered (k,x) 7-factorization of y in X.
Thus, by (3.35), (k, x) is a centered i, factorization of 2’ := S¥i,(z). Therefore, w(2') = y and
7 is onto. Altogether, these arguments show that = is a factor map. That 7(i,(z)) = 7(z)
for every x € X follows directly from the definition of .

It is left to prove the property about the asymptotic pairs. We only prove it for left asymptotic
pairs since the other case is similar. We will use the following notation: if Z is a subshift,
then A(Z) denotes the set of centered left asymptotic pairs. To start, we observe that
(io(2), iy (2")) € A(X") for every (z,%) € A(X). Let now (z,%) € A(X'), and (k,z) and (k,Z)

be the unique centered i,-factorizations of z and Z in X, respectively. We have to show that
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k =k =0 and that (z,%) € A(X). Due to (iii) in Remark 1.1, (X,i,) has a recognizability
constant. This and the fact that (z, Z) is centered left asymptotic imply that (k, z) and (k, )
have a common cut in (—o0, 0], this is, that there exist p,q < 0 such that

m = —k — ig(2,0))] = —k — i (Fy0))| € (—00,0].

We take m as big as possible with this property. Then, z, # Z,. Moreover, being z,, = z,
and Z,, = ¥, by the definition of i,, we have that z,, # Z,, and consequently, by also using
that (z, 2) is centered left asymptotic, that m > 0. We conclude that m = 0, this is, that
k+ lig(2p0)| = k + |ig(Fq0)| = 0. Hence, k = k = p = ¢ = 0. Now, it is clear that
T(—oop] = T(—o0y, SO from the last equations we obtain that (z,2) € A(X). This completes
the proof. O

We will also need the following lemma to slightly strengthen Proposition 3.8.

Lemma 3.30 Let X C A% be an aperiodic subshift with L asymptotic tails. Then, (X,S)
has at most 2L* - #.A? centered asymptotic pairs.

Proor. Let P, be the set of centered right asymptotic pairs in X and 7, = {2« : (¢,T) €
A} C ANzt be the set of right asymptotic tails, where N>y = {1,2,. } We are going to

prove that
#P, < #T72 #A% (3.36)

Once this is done, we will have by symmetry the same relation for the centered left asymptotic
pairs P;, and thus we are going to be able to conclude that the number of centered asymptotic
pairs in X is at most (#7,2 + #7,?) - #A% < 2L* - #A% completing the proof.

Let (z,7) € P, and Ry = {k < 0: T(r00) € T} We claim that #R, < #7,. Indeed, if this
is not the case, then, by the Pigeonhole principle, we can find £ < k£ and w € 7, such that
W = T(koo) = T(k,00)- But this implies that w has period k — %', and so X contains a point
of period k — k', contrary to the aperiodicity hypothesis. Thus, R, is finite and, since R, is
nonempty as it contains x(g ), k; = minR, is a well-defined non-positive integer.

Let now ¢: P, — T, x A? be the function defined by

(2, T) = (T(hy00)s L (ks.,00)s Tha» Thz )
If ¢ is injective, then (3.36) follows. Let us then prove that ¢ is injective.

We argue by contradiction and assume that there exist (z,%) # (y,9) such that ¢(z,2) =
o(y,9) = (z,2,a,a). Without loss of generality, we may assume that z # y. Then,
T(hy00) = 2 = Y(ky,o0) A0 g, = a = yg,. Being x # y, this implies that (z,y) is asymptotic.
Furthermore, it implies that there exist p < k and ¢ < ¢ such that (SPx,S%) is centered
right asymptotic. In particular, z(, ) € 7, and p < k,, contrary to the definition of k,. We
conclude that ¢ is injective and thereby complete the proof of the lemma. O

Lemma 3.31 Let X C AZ be a subshift of topological rank K, J be an index set and, for
jgeJ, lettj: AT — Bj be a morphism. Suppose that for every j € J
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(1) Y; = Upey S*15(X) is aperiodic;
11) for every fized a € A, |1;(a)| is equal to a constant ¢, independent of j € J.
J

Then, one of the following situations occur:

(1) There exist i,j € J, i # j, such that (Y;,S) is conjugate to (Y;,S).

(2) There exist p: AT — A with #A; < #A, a set J; C J having at least #J/2#A*(144K7)*—
K(144K™)X elements, and morphisms T CH — Bj, j € Ji, such that 7; = T¢. In
particular, the hypothesis of this lemma hold for Xy =, S*¢(X) and 7}, j € Ji.

Proor. Let i: At — AT be the morphism defined by i(a) = a’, a € A, and X' =
Usez S™i(X). We use Lemma 3.29 with X and 7; to obtain a factor map 7;: (X', S) — (Y;,5)
such that

m(i(x)) = 7j(x) for every x € X. (3.37)

If 7r; is distal for K(144K7)X + 1 different values of j € J, then by Lemma 3.27 we can
find ¢, j such that (Y;,S) is conjugate to (Y;, S). Therefore, we can suppose that there exists
J' C J such that

] > #J — K(144K™)® and =, is not distal for every j € J'. 3.38
j

From this and Lemma 3.28 we obtain, for every j € .J', a centered asymptotic pair (z), 7))
in X’ such that m;(z\)) = 7;(7\)). This and (3.37) imply that

7y(@9) = my(a)) = my(3D) = 7y(a)). (3.39)

Now, by Lemma 3.30, X has at most 2#.4%(144K7)? centered asymptotic pairs and thus,
thanks to Lemma 3.29, the same bound holds for X’. Therefore, by the Pigeonhole principle,
there exist J; C J satisfying #.J; > #J' /24 A*(144K7)? > #J/24#A*(144K7)*— K (144K")K
and a centered asymptotic pair (z,Z) in X’ such that (z,%) = (21, 29) for every j € J,.

We assume that (z, %) is right asymptotic as the other case is similar. Then, equation (3.39)
implies that if £ = " _, {,, then, for every j € Ji,

one of the words in {7;(xp)), 7j(Z[0,¢))} is a prefix of the other. (3.40)
This, hypothesis (II) and the fact that, since (z, %) a centered asymptotic pair, o # o allow
us to use Lemma 3.10 with u := zy), v == Zjo0), J = J1 and w! = 7j(2[9 00))0,¢) and obtain

morphisms ¢: AT — A and T Al — B;f, J € Ji, such that #. A, < #A, 7; = 7j¢ and

for every a € Ay, £ = |7/(c)| does not depend on the chosen j € J. 3.41
a J

Finally, we observe that X; and 7/, j € Ji, satisfy the hypothesis of the lemma: condition
(I) holds since, by the relation 7; = 7/¢, the subshift X; = {J,; S*¢(X) satisfies that
Upez S*7j(X1) =Y is aperiodic; condition (IT) is given by (3.41). O
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3.6.3 Proof of main result

We now prove Theorem 3.4. We restate it for convenience.

Theorem 3.4 Let (X,S) be an minimal subshift of topological rank K. Then, (X,S) has
at most (3K)32% aperiodic symbolic factors up to conjugacy.

Proor. We set R = (3K)3*). We prove the theorem by contradiction: assume that there
exist X C AZ of topological rank K and, for j € {0, ..., R}, factor maps 7;: (X,S) — (Y}, 5)
such that (Y;,S) is not conjugate to (Y}, S) for every i # j € {0,..., R}. We remark that X
must be infinite as, otherwise, it would not have any aperiodic factor.

To start, we build S-representations for the subshifts X and Y;. Let o = (0,: A, —
AT )nen be the primitive and proper directive sequence of alphabet rank K generating X
given by Theorem 0.1. Let » € N be such that every m; has a radius r and let B; the
alphabet of Y;. By contracting o, we can assume that o is r-proper and #.A, = K for all
n > 1. Then, we can use Lemma 3.5 to find morphisms 7;: Af" — B; such that

mi(o1(z)) = 7;(x) for all z € X and |7;(a)| = |oo(a)]| for all a € A,. (3.42)

Next, we inductively define subshifts X,, C CZ and morphisms {7, ;: C;/ — B, : j € J,} such
that

(i) X, has topological rank at most K;

(ii) Y; = UkeZ Tn,j (Xn>;
(iii) for every ¢ € Cp, £y = |Tnj(c)| does not depend on the chosen j € J,.

First, we set Xy = Xf,l), Co = A1, Jo = J and, for j € Jy, 79; = 7;, and note that by
the hypothesis and (3.42), they satisfy (i), (ii) and (iii). Let now n > 0 and suppose that
X, C CE and 7,4, j € Jn, has been defined in a way such that (i), (ii) and (iii) hold. If
#J,/2#A%(144K"7)? — K(144K")% < 1, then the procedure stops. Otherwise, we define step
n + 1 as follows. Thanks to (i), (ii), (iii) we can use Lemma 3.31, and since there are no
two conjugate (V;,S), this lemma gives us a morphism ¢: ;7 — C, 4, a set J,4q C J, and
morphisms {7,,41;: Cy — B} : j € Juya} such that

#Cni1 < #Cpy # i1 > #J,)2#C2(144K7)? — K(144K )X and 7,,; = Tpi1,jbn-

Furthermore, X, = [, S¥¢,(X,,) and 7,41 ; satisfy the hypothesis of that lemma, that
is, conditions (ii) and (iii) above. Since (¢, ... ¢o01,02,03,...) is a primitive and proper
sequence of alphabet rank K generating X, 1, Theorem 3.1 implies that condition (i) is met
as well.

Since #Cy > #C; > ..., there is a last Cy defined. Our next objective is to prove that
N > K. Observe that #C,, < K, so

S ] > #J, 2K (144K7)? — K(144K™)X for any n € {0,..., N — 1}.
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Using this recurrence and the inequalities #.Jy > (3K)32% and K > 2, it is routine to verify
that the following bound holds for every n € {0, ..., K —1} such that the nth step is defined:

#J,/24#C3(144K™)? — K(144K™)% > 1
Therefore, N > K. We conclude that #Cy < #Cy — K = 0, which is a contradiction. H
Remark 3.5 In Theorem 1 of [Dur00], the author proved that linearly recurrent subshifts
have finitely many aperiodic symbolic factors up to conjugacy. Since this kind of systems

have finite topological rank (see Remark 3.4), Theorem 3.4 generalizes the theorem of [Dur00]
to the much larger class of minimal finite topological rank subshifts.

3.7 Appendix

To prove Proposition 3.15, we start with some lemmas concerning how to construct recog-
nizable pairs (Z, 1) for a fixed subshift Y = (J,, S*7(2).

3.7.1 Codings of subshifts

If Y C BZ is a subshift, U CY and y € Y, we denote by Ry(y) the set of return times of
y to U, this is, Ry(y) = {k € Z : S*y € U}. We recall that the set C,(k,z) in the lemma
below corresponds to the cuts of (k, z) (see Definition 4.2 for further details).

Lemma 3.32 Let Y C BZ be an aperiodic subshift, with B C L(Y). Suppose that U CY is

(1) d-syndetic: for everyy € Y there exists k € [0,d — 1] with S*y € U,
(II) of radius r: U is a union of sets of the form [u.v], with u,v € A",
(IIT) (-proper: U C [u.v] for some u,v € A°,

(IV) p-separated: U,SU, ..., SP7U are disjoint.
Then, there exist a letter-onto morphism 7: CT — Bt and a subshift Z C C% such that
(1) Y = U,z S"1(Z) and C C L(Y),
(2) (Z,7) is recognizable with constant r + d,
(8) |T| <d, (t) > p and T is min(p, £)-proper,
(4) C-(k,z) = Ry(y) for ally € Y and T-factorization (k,z) of y in Z.
Remark 3.6 If U C Y satisfies (III), then U is p := minper(L,(Y"))-separated. Indeed, if
UNSkU # § for some k > 0, then [v] N S¥[v] # 0, where v € A’ is such that U C [v]. Hence,

v is k periodic and k > p.
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Proor. Let y € Y. By (I), the sets Ry(y) N [0,00), Ry(y) N (—o0,0] are infinite. Thus,
we can write Ry(y) = {... k-1(y) < ko(y) < k1(y)...}, with min{i € Z : k;(y) > 0} = 1.
Let W = {Y)hinw) * ¥ €Y, @ € Z} € BY. By (I), W is finite, so we can write C :=
{1,...,#W} and choose a bijection ¢: C — W. Then, ¢ extends to a morphism 7: C* — B™.
As B C L(Y), ¢ is letter-onto. We define ¢: Y — C% by ¥(y) = (¢~ (Ylk:(y) k1)) )icz and
set Z =1(Y). We are going to prove that 7 and Z satisfy (1-4).

Claim 3.7
(1) I Yimd—rasr] = Y{_a_rarr then ¥(y)o = (o,
(i) 7(¢(y)) = S*Wy,
(iif) S (y) = y(S*y) for j € Z and k € [k;(y), kj11(y)).

Proof. Let y,y" € Y such that yj—g—rarr] = Y[_g_r a4, BY (I), we have k;y1(y) — ki(y) < d
for all ¢ € Z and, thus, [ko(y)|, [k1(y)| < d. Since U has radius r and y[—q—r.dar] = Y[_g_r 410>
we deduce that ko(y) = ko(y') and ki(y) = ko(y'). Hence, ¥(v)o = ¢ ' WUkow)hr(y))) =
¢_1(yfk0(y,)7kl(y,))) = 1(y')o. To prove (ii) we compute:

(W) = 7( - ¢ Wk w)ko )P Wiko(w) k) )
= Y ) ko) Ylko () ka () 0 = S0V

Finally, for (iii) we write, for k € [k;(y), kj11(v)),

STp(y) = 0 Yk 1y )0 Wiy )by w)) - - = Y(S*y).

Now we prove the desired properties of 7 and Z.

(1) From (i), we see that 1 is continuous and, therefore, Z is closed. By (iii), Z is also
shift-invariant and, then, a subshift. By (ii), Y = U,c, S"7(Z). The condition C C L(Y)
follows from the definition of W and 7.

(2) We claim that the only centered T-interpretation in Z of a point y € Y is (—ko(v), ¥(y)).
Indeed, this pair is a 7-interpretation in Z by (ii), and it is centered because ko(y) < 0 <
ki(y) implies —ko(y) € [0,k1(y) — ko(y)) = [0,|¢(v)o]). Let (n,z) be another centered 7-
interpretation of y in Z. By the definition of Z, there exists ¥ € Y with z = ¢ (y’). Then,
by (ii),

STy = $"r(y(y') = $"7(2) = . (3.43)
Now, on one hand, we have |7(20)| = |7(¥(¥')o)| = k1(y') — ko(y'). On the other hand, that

(n,1(y'")) is centered gives that n € [0,|7(20)|). Therefore, n + ko(y') € (ko(v'), k1(y')]. We
conclude from this, (iii) and (3.43) that ¥(y') = ¥(y). Hence, y = S"m¢(y') = S"1(y) =
Sntko)y which implies that n = —kg(y) as Y is aperiodic. This proves that (—ko(y), ¥ (y))
is the only 7-interpretation of y in Z. From this and (i) we deduce property (2).
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(3) Since U is d-syndetic, |7(¢(4)i)| = Yk () kir1wp] = Kisa(y) — kily) < d for y € Y and

i € Z, so |t| < d. Similarly, we can obtain (1) > p using that U is p-separated. Let
u,v € B satisfying U C [u.v]. Since ki, kiv1 € Ru(y), we have that u = Yk, (y) ki (y)+lul):
U = Ylkop1(y)—|vl ki1 (y)) a0, thus, that 7 is min(¢, ())-proper. In particular, it is min(¢, p)-
proper.

(4) This follows directly from the definition of 7 and Ry (y).

O

Lemma 3.33 For j € {0,1}, let 0;: .Aj — BT be a morphism and X; C AJZ be a subshift
such that Y =, ., S"0;(X;) and A; C L(X;) for every j € {0,1}. Suppose that:

nel

(1) (Xo,00) is recognizable with constant ¢,
(2) oy is L-proper,

(3) Coy(k°,2°)(y) 2 Cyy (K, 2')(y) for ally € Y and o;-factorizations (k?,27) of y in X,
ji=0,1.

Then, there exist a letter-onto and proper morphism v: Af — A such that oy = ogv and
XO = UkEZ Skl/(Xl)

Proor. Since o, is (-proper, we can find u,v € B’ such that o;(a) starts with u and ends
with v for every a € A;. We define v as follows. Let a € A; and x € X; such that a = x,.
Since o0y is ¢-proper, the word v.oy(a)u occurs in oy(x) € Y at position 0. By (3), we can
find w € L(Xy) with o1(z9) = oo(w). We set v(a) = w. Since (X, 0p) is recognizable
with constant ¢ and w,v have length ¢, w uniquely determined by v.oy(a)u and, therefore,
v is well defined. Moreover, the recognizability implies that the first letter of v(a) depends
only on v.u, so v is left-proper. A symmetric argument shows that v is right-proper and,
in conclusion, that it is proper. We also note that v is letter-onto as Ay C L(Xp). It
follows from the definition of v that o3 = ogv. Now, let x € X; and (k,2’) be a centered
oo-factorization of oy(z) in Xy. By (3), k = 0 and o4(z;) = UO(x/[kj,ij)) for some sequence
... < k_1 < ko < ... Hence, by the definition of v, v(z) = 2’ € Xy. This argument shows that
X = Upez S"v(X1) € Xo. Then, oz S"00(X)) = U, ez S"00v(X1) =Y, where in the last
step we used that ogrv = 7. Since the points in Y have exactly one og-factorization, we must
have X = X,. This ends the proof. O

3.7.2 Factors of S-adic sequences

Now we are ready to prove Proposition 3.15. For convenience, we repeat its statement.

Proposition 3.34 Let o0 = (0,,: Ay — An_1)n>0 be a letter-onto, everywhere growing and
proper directive sequence. Suppose that X, is aperiodic. Then, there exists a contraction o' =
(O, Jken and a letter-onto and proper factor ¢: o' — T, where T is letter-onto, everywhere
growing, proper, recognizable and generates X .
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Proor. We start by observing that from Lemma 3.17 we can get that

A, C E(X(")) for every n € N. (3.44)

o

Let p, = min{per(opn)(a)) : @ € A,}. Since o is everywhere growing and X, is aperiodic,
lim,, .o, p, = 00. Hence, we can contract o in a way such that, for every n > 2,

(In) Pn > 3‘0[0,n—1)‘7 (IIn) Olo,n) 1s 3|U[O,n—1)"proper7

For n > 2, let U, = U, caz[010m)(u.v)]. Observe that U, is |ojn|-syndetic, has radius
2|o10,m)], i 3|ofon—1)|-proper Zmd, by Remark 3.6, is p,-separated. Thus, by (I,), U is
3|070,n—1)|-separated. We can then use Lemma 3.32 with (X,(,"), Ojo,n)) to obtain a letter-onto
morphism v,,: B — A{ and a subshift Y,, C BZ such that

(PY) Xo = Upeg S*vn(Yn) and B, C L(Y,),
(P2) (Y,,v,) is recognizable with constant 3|0 ],
(P3> |Vn’ S |U[O,n)|7 <Vn> Z 3|U[O,n—1)|7 and Vp is 3|U[O,n—1)"proper7

(P C,, (k,y) = Ry, (x) for all z € X, and v,-factorization (k,y) of z in Y,,.

We write C,, (x) = C,, (k,y) if v € X, and (k,y) is the unique v,-factorization of = in
Y,. Observe that U,y € U, for n > 2. Thus, C,,, (z) = Ry, (z) € Ry, (z) = C,, ()
for all € X,. This, (P?) and (P?,,) allow us to use Lemma 3.33 with (Y,,41,7,,41) and
(Y, v,) and find a letter-onto and proper morphism 7,: B, — B, such that v,7, = vp41
and Y, = U, SE T (Yg1).

Next, we claim that C,, (v) 2 Gy, (

zin XS Indeed, if j € Z, then S<om+n7 ™)y ¢ [010.n41)(2j-1-252j31)] C [00,0)(a.bc)] C
U,, where a is the last letter of 0,(z;_1) and bc the first two letters of 0,(z;zj41), so
Copominyi (ks 2) € Ry, (x) = Cy, (), as desired.

k,z) for all x € X, and oo ,41)-factorization (k, z) of

Thanks to the claim, (P?), (I,,1) and (3.44), we can use Lemma 3.33 with (Y,,v,) and

(Xf,"“% Ol0.n+1)) tO obtain a proper morphism ¢, : A, — B, such that ojg,11) = vn¢, and
n+1

Yo = Ukez Skgbn(X,(, " ))'

Now we can define the morphisms 7y := 15 and ¢ := v5¢, and the sequences:
¢) = (¢n)n217 T = (Tn)n21 and 0'/ = (0'[072), 092,03, ... )nZQ.

We are going to prove that ¢, o/, and T are the objects that satisfy the conclusion of the
Proposition.

These sequences are letter-onto as each v, and each ¢, is letter-onto. Next, we show that ¢
is a factor. The relation ¢ = 7¢ follows from the definitions. To prove the other relations,
we observe that from the commutative relations for 7,, and ¢,,, we have that

Vn¢nan+1 = 00,n+1)0n4+1 = O[0,n+2) — Vn+1¢n+1 - VnTn¢n+1- (345>
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In particular, v,¢,0,11(%) = VpTpdpy1(z) for any = € X2 Since Gnoni1(z) and 7,0, ()

are both elements of Y;, and (Y,,, ;) is recognizable, we deduce that ¢,0,.1(x) = T,¢ns1(2)
for any z € X&', Thus, one of the words in {¢nons1(20), Tndns1(T0)} is a prefix of the
other. Since A, .o C E(X,(,"+2)), we deduce that, for any a € A, .2, one of the words in
{Tntns1(a), vnononi1(a)} is a prefix of the other. But, by (3.45), the words v, 7,,¢n11(a) and
Un®noni1(a) have the same length, so ¢,0,,1(a) must be equal to 7,¢,.1(a) for every n > 2.
This proves that ¢,0,11 = T,¢ny1 for every n > 2 and that ¢p: ¢’ — 7 is a factor.

The following commutative diagram, valid for all n > 2, summarizes the construction so far:

+ On+1 + 910,n+1) +
—>
An+2 An+1 Ao
¢n+1l Vnt1

B —— B}
As shown in the diagram, we have that v, 7, = v,.1 for n > 2. Thus, 77, = Vs 1, and
hence (1179 Tn) = (Vni1) = Pn —nooo 0. Therefore, 7 is everywhere growing. Also, by
using Lemma 1.1 with (Y,,,v,) = (Y, 172 - - 1), we deduce that (Y, 7,,—1) is recognizable
for every n > 2, which implies that 7 is recognizable. Finally, as each 7, is proper, T is
proper. ]
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Chapter 4

A solution to the S-adic conjecture

A interesting intuition in symbolic dynamics of zero entropy is that a subshift of low enough
complexity should be very restricted, and thus hide a strong structure. This idea dates back
to the 70s, and matured in the 80s and 90s until it was finally established as the following
more concrete question.

Question 4.1 Consider the class (L) of linear-growth complexity subshifts, defined by re-
quiring that px(n) < dn for some d > 0. Is there an S-adic characterization of the class
(L)?

Question 4.1 is known as the S-adic conjecture.

In this chapter, we completely solve the S-adic conjecture for minimal subshifts by proving
the following theorem.
Theorem 4.1 A minimal subshift X has linear-growth complexity, i.e., X satisfies

limsup px(n)/n < +oo,

n—-+00

if and only if there exist d > 0 and an S-adic sequence o = (0,: Apy1 — Al)u>0 generating
X such that, for every n > 0, the following holds:

(P1) #(root o (An)) < d .
(P2) |opom(a)| < d-lopn(D)| for every a,b € A,.
(P3) |on_1(a)] < d for every a € A,.

We are able to give a similar structure for nonsuperlinear complexity subshifts (NSL).

tFor a word u, rootu denotes the shortest prefix v of u such that u = v* for some k; for a set of words
W, root W = {rootw : w € W}.
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Theorem 4.2 A minimal subshift X has nonsuperlinear-growth complexity, i.e., X satisfies

liminf px(n)/n < +o0,

n—-+o0o
if and only if there exist d > 0 and an S-adic sequence o = (0,: Api1 — Al )n>0 generating
X such that, for every n > 0, the following holds:

(Pl) #(rOOt Olo,n) (An)) <d.
(P2) loom(a)l < d-|opn )| for every a,b € A,.

We show in Section 4.10 how these theorems provide a unified framework and simplified
proofs of several known results on (L) and (NSL), including Cassaigne’s Theorem [Cas95].
We also prove, in Theorem 4.77, that Condition (P;) in Theorems 4.1 and 4.2 cannot be
improved to a uniform bound on the cardinalities of the alphabets.

This chapter was published as a standalone article in [Esp22b].

Strategy of the proof

The hard part of the proofs of Theorems 4.1 and 4.2 is constructing an S-adic sequence
satisfying properties (P;) from the complexity hypothesis. We detail here the strategy for
doing so in the case of Theorem 4.1; the proof of Theorem 4.2 is similar.

It is convenient to introduce the following terminology: a coding of a subshift X C A%
is a pair (Z,0), where Z C C% is a subshift and o: C — AT a substitution such that
X = Uy S*o(Z). Tt is a standard fact that if 7 is an S-adic sequence then there are
subshifts X!, with X! = X, such that (X-,(—m),T[n’m)) is a coding of X for any n < m,
where 7, m) = TaTog1 - Tt

Let X be a linear-growth complexity subshift and d = sup,,~; px(n)/n. The typical method
for building an S-adic sequence for a subshift X is an inductive process: First, Xy = X;
then, a coding (X1, 0:11) of X; is defined. In this way, o = (0,),>0 is an S-adic sequence
that, under mild conditions, generates X. We, instead, take a more direct approach, similar
to that in [DDMP21, Theorem 4.3] and [Esp22a, Corollary 1.4], but with additional technical
details. We consider an increasing sequence of positive integers (¢, ),>0 with adequate growth
and build codings (X, C CZ,0,: C, — A") of X C A” satisfying (P1), 3(, < |o(a)| < d'C,
for all letters a and with d’ depending on d, and such that certain technical properties hold.
These technical properties allow us to define connecting substitutions 7,,: C,+1 — C;7 in such
a way that o,7,(z) is, up to a shift, equal to o,1(z), for all x € X,,;1. Then, we can prove
that 7 = (09, 79, 71, T2, - . . ) generates X and satisfies all the properties in Theorem 4.1.

The main idea for constructing the codings (X,,,0,) is that, thanks to a modification of
the technique from [Fer96, Proposition 5], we can build a coding (X/,0/,) of X (which is
described in Proposition 4.28) in such a way that the words ¢’(a) are either strongly aperiodic
or strongly periodic. The aperiodic words greatly contribute to the complexity, so we can
efficiently control them using d. For controlling the periodic words, we rely on tricks from
combinatorics on words. These two ideas are used to obtain, in Sections 4.6 to 4.7, two
variations of (X! o/), with increasingly better properties, and where the last one is (X,,, ;).

n’-n
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Organization

The chapter has three parts. The first one consists of Sections 4.1, 4.2 and 4.3 and provide
the necessary background and some lemmas for handling periodic words. Then, in Sections
4.4 to 4.8, we carry out the proofs of Theorems 4.1 and 4.2. Finally, we prove Theorem 4.77
and present applications of our main results in Sections 4.9 and 4.10.

4.1 Preliminaries

The word w € A" is |u|-periodic, with u € AT, if w occurs in u" for some n > 1. We denote
by per(w) the least p for which w is p-periodic.

In order to describe more precisely the periodicity properties of w, we use the notion of root,
which will play a key role throughout the chapter.

Definition 4.1 The minimal root, or just root for short, of w € A* is the shortest prefix u
of w for which w = u* for some k > 1, and it is denoted by root w.

We remark that per(w) is an integer but that root w is a word, and that per(w) is in general
different from | root w|.

Let X C A” be a subshift and v € AT. We will use the notation v>* = vov--- € AY and
Ve = ... vvwv - € AZ. We denote by Powx(v) the set of words v*, where k > 1, for which
there exist u,w € A"\ {v} of length |v| such that uv*w € L£(X). The power complezity
of X is the number pow-com(X) = sup,c 4+ #Powx(v). Remark that pow-com(X) may
be infinite. Examples with finite power complexity include linearly recurrent subshifts and
subshifts in which the extension graph of every long enough word is acyclic (in particular,
Sturmian subshifts and codings of minimal interval exchange transformations).

4.1.1 Morphisms and codings

We say that 7 is positive if for every a € A, all letters b € B occur in 7(a), that 7 is proper if
there exist letters a,b € B such that 7(c) starts with a and ends with b for any ¢ € A, and
that 7 is injective on letters if for all a,b € B, 7(a) = 7(b) implies a = b.

Factorizations and recognizability

We now introduce factorizations, the recognizability property and the associated notation.

Definition 4.2 Let Y C BZ be a subshift and 7: BY — A" be a morphism. We say that
(k,y) € Z x Y is a T-factorization of v € AZ in Y if z = S*7(y) and 0 < k < |7(y0)|.

The pair (Y, 7) is recognizable if every point € AZ has at most one T-factorization in Y. We
say that (Y, 7) is d-recognizable, with d > 1, if whenever (k,y) and (k,7) are 7-factorizations

of x,7 € A% in Y, respectively, and T(—q,d) = T[-a,d), We have that k =k and yy = 7.
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The cut function c: Z — Z of the T-factorization (k,y) of x in Y is defined by

—k ; if j >
Cj = { + |T(y[07]))‘ iy = 07 (41>

k= |y i <0.

When (Y, 7) is recognizable, we write (c,y) = F(y,-(x) and (co, yo) = F(()Y,T) ().

Remark 4.1 In the context of the previous definition:

(1) If (Y, 7) is recognizable, then a compacity argument shows that it is d-recognizable for
some d > 1.

(2) Suppose that (Y,7) is recognizable. Let z € X, (c,y) = Fy,»(x) and i € Z. Then,
there exists a unique j € Z such that ¢ € [¢;,¢j41). Note that the last condition is
equivalent to F(()YJ)(S%) = (¢; —1,y;).

Lemma 4.3 Leto: C — Bt and 7: B — C* be morphisms and Z C C% be a subshift. We set
Y = Upez S*0(Z) and X = U, S*7(Y). Suppose that (Z,70) is recognizable. Let x € X,
(k,Y) be a T-factorization of x in'Y and ({,z) be a To-factorization of x in Z. Then, there
exists m € [0, |0(2)|) such that y = S™o(2) and k = |o(2—m0))| + ¢

Proor. Being (¢, 2) a To-factorization of z, we have that ¢ € [0,|r(c(z2))|). Hence, there
exists m € [0, |o(zp)|) such that

|(T(Z)[0,m)| S l < |O’(Z)[07m]|. (42)
Therefore, as (¢, z) is a To-factorization of x, we can write
StIre@om)lr(Sma(2)) = Stro(z) = .

This and (4.2) ensure that (¢ — |7(0(2)p0,m))|, S™0o(2)) is a T-factorization of = in Y. We
conclude, using that (Y, 7) is recognizable by Lemma 1.1, that £ — [7(0(2)j0m))| = k and
S™o(z) = y. O
Codings of a subshift

We fix a subshift X C AZ. A coding of X is a pair (Y,7), where Y C BZ is a subshift
and 7: BY — A% a morphism satisfying X = (J, ., S*7(Y)). We present in Proposition 4.4 a
general method for building recognizable codings of a subshift X. This idea occurs commonly
in the literature under several different names and with different degrees of generality. Our
Proposition 4.4 is inspired by the coding based on return words from [Dur98].

Let U C X be a clopen (i.e., open and closed) set. We say that U is

(1) (-syndetic if for all x € X there exists k € [0, ) such that S*z € U;

(2) of radius r if U is an union of sets of the form {x € X : x[_jy| o)) = uv}, where u,v € A".
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Remark that, in a minimal X, any nonempty clopen set U is ¢-syndetic and of radius r for
some ¢ and r.

Proposition 4.4 Let U C X be a nonempty clopen set. There exists a recognizable coding
(Y CB%,0: B— A%) of X, with o injective on letters, such that if v € X, (¢,y) = F(y,»(x)
and i € Z, then S'x € U if and only if i = ¢; for some j € Z.
If U is C-syndetic and of radius r, then (Y, o) additionally satisfies that:

(1) |o(a)| <€ for all a € B.

(2) (Y,o0) is (£ + r)-recognizable.

4.1.2 The complexity function

The complexity function px : Z>1 — Z>1 of a subshift X is defined by px(n) = #L(X)N A"
Equivalently, px(n) counts the number of words of length n that occur in at least one = € X.

Definition 4.3 We say that X has

(1) linear-growth complexity if there exists d > 0 such that px(n) < dn for all n > 1;

(2) nonsuperlinear-growth complexity if there exists d > 0 such that px(n) < dn for in-
finitely many n > 1.

Remark 4.2 When X is infinite, then a classic theorem of Morse and Hedlund [MH3§]
ensures that px(n) > n + 1 for all n > 0. Thus, an infinite subshift of linear-growth
complexity satisfies n < px(n) < dn, and so px grows linearly.

The following theorem is classic.

Theorem 4.5 ([Cas95]) Let X be a transitive linear-growth complexity subshift. Then,
px(n+1) —px(n) is uniformly bounded.

For the proof of Theorems 4.75 and 4.76 in Section 4.8, we will need only the following two
weaker versions of Cassaigne’s Theorem.

Lemma 4.6 Let X be a subshift and d > 1 be such that px(n) < dn for allm > 1. Then,
for every n > 1 there exists m € [n,2n) such that px(m+ 1) — px(m) < 2d.

Proor. Let n > 1. We observe that the average of px(m + 1) — px(m) for m € [n,2n) can
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be bounded as follows by using that px(2n) < 2dn:

2n—1

1 1
=3 pxlm+1) = px(m) = —(px(20) — p(n)) < 24
Thus, there exists m € [n, 2n) satisfying px(m + 1) — px(m) < 2d. O

Lemma 4.7 Let X C AZ be a subshift and d > 1 be such that px(n) < dn for infinitely many
n > 1. Then, there are infinitely many m such that px(m) < 3dm and px(m—+1) —px(m) <
2d.

Proor. Let n > 1 be arbitrary. The hypothesis permits to find & > 2n such that px (k) < dk.
We now observe that

k
1 1
—_— px(m+1) —px(m) < px (k) < 2d.
w2, /2
Therefore, there exists m such that |k/2| < m <k and px(m + 1) — px(m) < 2d. The first
condition ensures that m > n and px(m) < px(k) < dk < 3dm. O

4.2 Some combinatorial lemmas

In order to prove our main results, we will need to extensively deal with strongly periodic
words. The objective of this section is to give the necessary tools for doing so.

A basic result on periodicity of words is the Fine and Wilf Theorem, which we state below.

Theorem 4.8 Let u,v,w € AT and suppose that w is a prefiv of u™ and v*>®°. If |w| >
|u| + |v| — 1, then there exists t € AT such that u and v are powers of t.

A proof of Theorem 4.8 can be found in [RS97, Chapter 6, Theorem 6.1].

Lemma 4.9 Let u be a word such that |u| > 2| rootu|. Then, |rootu| = per(u).

Proor. Note that u is a prefix of (rootu)? and thus that per(u) < | rootu|. It is left to prove
the other inequality.

Let ¢ be the prefix of u of length per(u). Then u is a prefix of both ¢> and (rootwu)>. We
deduce, as |u| > 2per(u) > |t| + |rootu|, that the hypothesis of Lemma 4.8 is complied.
Hence, t and rootu are powers of a common word r. In particular, u is a power of r, so we
must have that rootu = r. Therefore, |rootu| = |r| < [t| = per(u). O

Remark 4.3 The previous lemma ensures that if u is a word and k& > 1, then root ©* = root u.
In particular, if u and v are powers of a common word, then they have the same root. These
basic relations will be freely used throughout the chapter.
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The next proposition will allow us to synchronize occurrences of strongly periodic words.

Proposition 4.10 Lett,s € AT.

(1) Suppose that £ > |s|+[t| =1 and i, j € Z are such that t],, ,y = s{; ;. Then, S't = s.
(2) An integer i satisfies S‘” =t if and only if i = 0 (mod |roott|).

Proor. We first prove Item (1). Let to = t{;,,,y, S0 = [ ;) and w = [, = [ .p.
Then, w is a prefix of both ¢3° and s3°. Since |w| =€ > |s| + |t| — 1 = |so| + |to| — 1, we can
use Theorem 4.8 to deduce that sy and tg are powers of a common word r. We then have
Sis? = sf = 1 = {f = Sit?,

We now prove Item (2). It is clear that if i+ = 0 (mod |roott|) then Sit% = t%. Let us
suppose that SZ = tZ. We argue by contradiction and assume that i # 0 (mod | roott|).
We write roott = ss’, where |s| = i (mod |roott|). Then, (s's)? = SitZ = £ = (ss')?,
so Theorem 4.8 implies that s’'s and ss’ are powers of a common word r. In particular,
root(s’s) = root(ss’) = rootr. This implies that

| root(s’s)| = |root(ss’)| = | rootroott| = |roott| = |ss’| = |s's],

so root(s's) = s’'s. Hence, §'s = ss’. Now, since i # 0 (mod |roott|), s and s" are not the
empty word. This and the condition s’s = ss’ imply that s's is a prefix of s> and of s'™.
We can then use Theorem 4.8 to deduce that s and s’ are powers of a common word 7.
Therefore, as root = ss’, s’ = roott = roots = roots’. This is possible only if s = 1 or
s' = 1. Consequently, |s| € {0,|roott|} and i = |s|] = 0 (mod |roott|), contradicting our
assumptions. ]

The rest of the section is devoted to prove Propositions 4.12 and 4.13. These results describe
situations in which information about the global period of a word can be retrieved from
small subwords of it. We remark that Propositions 4.12 and 4.13 can be obtained as a direct
consequence of the Critical Factorization Theorem, a fundamental result in combinatorics
on words; here we give proofs that depend only on Theorem 4.8 in order to maintain our
presentation as self-contained as possible.

Lemma 4.11 Let u,v,w,s and t be words in A.

(1) Suppose that uv occurs in t> and that vw occurs in s*. If, |v| > |t|+|s| — 1, then uvow
occurs both in t>° and in s*°.

(2) Suppose that uv is a prefix of t° and that vw is a suffix of t°. If |v| > 2|t|, then vow
s a power of roott.

(3) If |v| > per(uv) + per(vw), then per(uvw) = per(uv) = per(vw).

Proor. Assume that the hypothesis of Item (1) holds. Then, uv = t%,i+|uv|) and vw =

Z

(i [ uv]) This and the inequality |v| >

) for some 7,5 € Z. Hence, t = S[Z

SZ
(7,5 +|vw] J+vl)
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|t| + |s| — 1 allows us to use Item ((1)) in Proposition 4.10 to get that S™¢% = Sis% We
conclude that

_ 4L zZ _ 4z zZ _ 4z
UOW = i) STt ol.g+Howl) = Fiit o) Uil ol il Howl) = Fitww]):
and that wvw occurs in ¢*°. Similarly, uvvw occurs in s*.

We now assume that the hypothesis of Item (2) holds. Let ¢y = roott Then, uv = (¢5)(0 juv|)
and vw = (t])_jpwl,0)- This implies that (t3)ulju) = (t5)[=jvw|,—|w)), and then, since |v| >
2|t| > 2|to|, Item ((1)) in Proposition 4.10 ensures that

Sl = Sl and wvw = (£5) 0, juvw) - (4.3)

Now, from the first equation in (4.3) and Item ((2)) in Proposition 4.10 we get that |u| =
—Jvw| (mod [ty]), that is, [uvw| = 0 (mod |tp]). This and the second equation in (4.3) give
that vvw = (t%)[aluvw\) is a power of ¢ty = root .

We finally prove Item (3). Clearly, per(uv) < per(uvw) and per(vw) < per(uvw). Let ¢y be
the prefix of uv of length per(uv) and sy be the prefix of vw of length per(vw). Then, uv
occurs in ¢y and vw occurs in sg. This and the inequality |v| > |u| + |v] > |to] + |so| allow
us to use Item (1) of this lemma to deduce that uvw occurs in ¢4 and sf. We deduce that
per(uvw) < [to| = per(uv) and per(uvw) < |so| = per(vw). Therefore, per(uvw) = per(uv) =
per(vw). O

Proposition 4.12 Let V C A" and u € A" be such that |u| > 2|V|. Suppose that for any
subword v of u with length |v| = 2|V| there exists w, € V such that v occurs in w”. Then,
for any such word v, u occurs in wZ. In particular, per(u) < |V|.

Proor. The case |u| = 2|V| follows directly from the hypothesis. Suppose the lemma is true
for words u’ of length 2|V| < |v/| < |u|. Let v be a subword of u with length |v| = 2|V|. We
have to prove that w occurs in wZ. Let us write u = au’ = u”b for certain letters a,b and
words u’,u”. There is no loss of generality in assuming that v occurs in «’. Since |u| > 2|V,
we can take a subword v’ of u” with length |v'| = 2|V|. Then, the inductive hypothesis can
be used to deduce that v’ occurs in w? and that v” occurs in w%. Now, v/ and u” have a
common subword of length |u| —2 > 2|W| — 1 > |w,| + |wy| — 1. Therefore, Item ((1)) of
Lemma 4.11 can be applied and we deduce that w occurs in wZ. This proves the inductive
step and thereby the proposition. O]

Proposition 4.13 Let u be a word.

(1) If t is a word occurring in u and |t| > 2 per(u), then per(t) = per(u).

(2) Let k > 1. If |u| > 2k and per(u) > k, then there exists t occurring in u with |t| = 2k
and per(t) > k.

Proor. We start with Item (1). Note that per(t) < per(u), so we only have to prove the other
inequality. Let s (resp. s’) be the prefix of t of length per(t) (resp. per(u)). Then, ¢ occurs
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in % and s'”. Being |t| > 2per(u) > |s| 4 ||, we can use Item ((1)) in Proposition 4.10 to

Z P . . 7 .
deduce that s* = S%s'” for some ¢ € Z. This implies, as u occurs in s’”, that u occurs in s%.

In particular, per(u) < |s| = per(t).

Next, we prove Item (2) by contradiction. Assume that £ > 1 and u are such that |u| > 2k
and per(u) > k, but that for all word ¢ occurring in u of length |t| = 2k we have that
per(t) < k. We define, for all such ¢, s; as the prefix of ¢ of length per(¢), and note that ¢
occurs in sZ and that |s;| < k. Therefore, the set V consisting of the words s; and the word
u comply with the hypothesis of Proposition 4.12. We conclude that per(u) < |[V| < k. O

4.3 The classic coding based on special words

The notion of right-special word is an important concept for studying linear-growth complex-
ity subshifts. In this section, we present basic results on right-special words and the coding
associated to them. Most of these ideas are common to many works on the S-adic conjecture
and related problems. One of the new ingredients of our work is Proposition 4.16.

Definition 4.4 Let X be a subshift. A word w € £(X) is called right-special if there exist
two different letters a and b such that wa,wb € L£(X). We denote by RS, (X) the set of all
right special words of X having length n.

Remark 4.4 We can also define left-special words, which together with right-special words
form the set of special words of X. In our work, we will only use right-special words.

The next proposition summarizes the facts about RS,,(X) and its relation to the complexity
of X that are important for us. A return word to a clopen set U is an element w € A" such
that there exists z € X satisfying S*x € U if k € {0, |w|} and S*z g U if k € (0, |w)).

Proposition 4.14 Let X C AZ be an aperiodic subshift and U the clopen set U = {x € X :
Zon) € RSn(X)}

(1) We have the following bounds on the number of right-special words:

ﬁwn +1) = px(n)) < #RS,(X) < px(n+1) = px(n).

(2) The set U is (px(n) + n)-recurrent in X.
(3) The number of return words to U is at most #A - # RS, (X).
Proor. A proof of Items (1), (2) and (3) can be found, with a different notation, in [LR13]. [

We can combine Propositions 4.14 and 4.4 to obtain the following proposition.
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Proposition 4.15 Suppose that X C A% is an aperiodic subshift and let d be the mazimum
of [px(n)/n], px(n+1) —px(n) and #A. Let (Z CC% 7: CT — A") be the coding obtained
from Proposition 4.4 with U = {x € X : xpn) € RS,(X)}. Then:

(1) #C < d&.
(2) |t(a)] < (d+ 1)n for alla €C.
(3) (Z,7) is (d + 2)n-recognizable.

(4) If v € X, (¢,2) = Fizpn(x) and i € Z, then i = ¢; for some j € Z if and only if
x[i,i+n) S RS(X)

Proposition 4.15 is the starting point of other works on the S-adic conjecture; see for example
[Fer96; Ler12].

Proposition 4.16 Let (Z,7) be the coding in Proposition 4.15. Let x € X and (c,z) =
F 2+ (x) and suppose that i,j € Z satisfy i +d < j and { = max{|7(z)| : k € [i,7)} < n/6d.
Then, per(x[ci_n/gﬁcjfd)) < dl.

Proor. We start by noticing that, since xy,,_—nc,) € RS,(X) for all m € Z and since
#RS,,(X) < d, we can use the Pigeonhole principle to obtain, for each k € [i, j — d), integers
Pk, qx € |k, k + d) such that p, < ¢x and Tlep, —nocp,) = Llog—nicqy)- These conditions imply
that per(a:[cpk,mch)) < ¢, — Cp, < dl. Therefore, as ¢,, —n < ¢y +dl —n < ¢; —2n/3 and
Cqp = Cht1,

Tley—2n/3,c0,1) fOr Al k € [i, 5 —d). (4.4)

We will use (4.4) to prove the lemma by contradiction. Assume that per(zj,_n/3c,_4)) >
dl. Then, by Item ((2)) in Lemma 4.13, there exists m € [¢; — n/3 + 2dl, c¢j_4) such that
per(Tpm—24e,m)) > dl. Now, the condition m € [¢; — n/3 + 2dl, cj_q) allows us to find k €
i, j—d) such that m € [c;,—n/3, ci11). Hence, as 2dl < n/3, Tjpm—_2qe,m) 0CCUTS N T, —on /3., 1)
which yields per(zi,—n/3.c.,1)) = Per(Tpm—24r,m)) > €. This contradicts (4.4) and completes
the proof. n

4.4 The first coding

In this section, we begin the proof of the main results: Theorems 4.75 and 4.76. We start by
constructing the codings described in Proposition 4.17. Then, in Sections 4.5, 4.6, and 4.7,
we will modify these codings to obtain new versions of them, each with better properties than
the previous one. We will show in Subsection 4.7.2 that the final codings can be connected
with morphisms, and we will use this fact in Section 4.8 to complete the proof of the main
results.

Proposition 4.17 Let X be a minimal infinite subshift, n > 1 and let d be the maximum of
[px(n)/n], px(n+1)—px(n), #A and 10*. Then, there exist a coding (Z C C% 7: C — AT)
of X and ¢ € [n/d**+4 n/d) satisfying the following conditions:
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(1) C has at most d® elements.
(2) |T(a)| < 3dn for all a € C.
(3) (Z,T) is 3dn-recognizable.

(4) The periodicity properties in Proposition 4.18 are satisfied.

Proposition 4.18 Consider the coding described in Proposition 4.38. Let z € Z, x = 7(z
and (c,z) = F(z ) (x). We define Qp(2) as the set of integers j € Z such that |root(z;)| < e

VA
and T(c; —99e.c; 1 +99) = (rootT (Zj))[f99€,|f(zj)\+9ge)'

(1) 0 & Qp(2) and |7(20)| > 401e implies that per(Tcy97e,c,—97e)) > €.

(2) Suppose that 0 & Qu(z) and |7(z)| < 40le. If —1 € Qu(z) or 1 € Qu(x), then
per(x[co+97s,cl—97e)> > €.

(3) If k > d and |7(2;)| < 401e for all j € [0, k), then [0,k) C Qp(2).

(4) Let 2" € Z and assume that 0 € Qp(2), 0 € Qu(2’) and that root 7(z) is conjugate to
root 7(z,). Then root7(zy) = root 7(z}).

We fix, for the rest of the section, the following notation. Let X C A% be a minimal infinite
subshift, n > 0 and d be the maximum of px(n)/n, px(n + 1) — px(n), #A and 10*. We
denote by (Y C B%,0: B — A") the coding given by Proposition 4.15 when it is used with
X and n.

4.4.1 Construction of the first coding

Lemma 4.19 Let W be a finite set of words. Then, there exists € € [|[W|/d*#V+ [W|/d)
such that for allw € W, either |w| > 10%e or |w| < e/d.

Proor. Let dy = 10%d and, for £ € [LL#W + 1], W, = {w € W : [W|/d;"" < |w| <
W|/d5}. The Pigeonhole principle ensures that W, is empty for some ¢ € [1,#W + 1].
We set ¢ = |d|W|/d{T"] and note that for any w € W, either w € Uy Wy and |w| >
10%, or w € Ups Wy and |w| < g/d. Also, since ¢ € [1,#W + 1], we have that € €
[IWI/d*# 74, [l /d). 0

We use Lemma 4.19 with the set o(B) to obtain € € [n/d**V*4 n/d) such that
for all a € B, either |o(a)| > 10% or |o(a)| < ¢/d. (4.5)
Note that e € [n/d** 4, n/d) as d®* > #o(B) by Item ((1)) in Proposition 4.15.

We now define a set W. C AT that will be important for controlling the periodicity properties
in Proposition 4.17. We start by introducing classic notions related to periodicity of words.
Recall that two words u,v € A" are conjugate if ur = rv for some r € A*. The relation
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u ~gr v iff v and v are conjugate is an equivalence relation, and a ~pg-equivalence class is
called a rotation class. A word u € AT is primitive if u = rootu . We fix a set W. C A+
consisting of one element of the rotation class of each primitive word w € A" such that
lw| < e.

Lemma 4.20 Lett € A" be such that per(t) < e and |t| > 198 + per(t). Then, for some
s eW,, 3[27995,995) occurs in t.

Proor. Let u be the prefix of ¢ of length per(t). Note that w is primitive as otherwise
per(t) < |rootu| < |u| = per(t), which is a contradiction. The primitiveness of u and the
inequality |u| = per(t) < e imply that there exist s € W. and a suffix u’ of s such that
|s| = |u| and u's is a prefix of uu. Being per(t) = |u| = |s|, we then have that

t is a prefix of u's™. (4.6)

We set k = Pg%"“q. Observe that, since |s| < e.

99
[u's®| = |u'| + k|s| < per(t) + [—8—‘ e = 99¢ + per(t).
5

Hence, |u's*| + 99¢ < |t|. From this and Equation (4.6) we deduce that if v is the prefix of
5 of length 99¢, then u's*v is a prefix of t. Now, we have the bound

99e — ||
5]

Hence, s* is a suffix of u/s*v. We conclude that s* occurs in t. ]
» 2[—99¢,99¢) [—99¢,99¢)

lu's¥| = |u/| + [ -‘ |s| > 99e.

Lemma 4.21 Let w be a word of length n. Then, there exists a decomposition w = vuu'v’
satisfying one of the following sets of conditions.

(a) |u| = |u'| =99, |v],|v'| > n/2—500e, and uu' = 3%—995,995) for some s € W..

(b) |u| = || = 500e, |v| = [n/2 —500e], |v'| > n/2 —500e, and 5[2—995,995) does not occur
in uu' for all s € W..

Proor. Since |w| > 2 - 500e, there is a decomposition w = vptvy, where |vg| = |n/2 — 500¢ |,
|vg| > n/2 — 500e and |t| = 2 - 500e. There are two cases:

. Z .
(1) S_go 99¢) OCCUIS In T for some s € W..

(ii) 5[Z7995,995) does not occur in ¢ for all s € W..

Suppose first that case (i) occurs. It is then possible to write ¢ = vjuu'v], where uu' =
3[2_9957995) and |u| = |v/| = 99e. We set v = vov; and v' = vjv) and note that w = vuu'v’
satisfies Condition (a).

fWe recall the reader that rootu is the shortest prefix v of u such that v = v* for some k > 1
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We now assume that (ii) holds. Being the length of ¢ equal to 2-500e, we can write wy = u/,
where |u| = |u/| = 500e. Then, the decomposition w = vouuv} satisfies Condition (b). O

We now can define (Z, 7).

Definition 4.5 For w € RS,,(X), we use Lemma 4.21 to fix a decomposition w = v,,u,u,, v,
satisfying one of the following conditions:

(Po) |ww| = |ul,| =99, vy, |v,| > n/2 — 500e, and w,ul, = 8[2_9957998) for some s € W..

(Py) |uw| = |ul,| = 500e, |v,| = [n/2 —500e], |v),| > n/2 — 500e, and 8[279967998) does not
occur in wu,ul, for all s € W..

Moreover, we choose this decomposition so that |v,u,| is as small as possible. We define
(Z CC%,7:C — AT) as the coding of X obtained from Proposition 4.4 and the clopen set
U={z e X :3weRS,(X), 2 jvpuulu,o,)) = W}

4.4.2 Basic properties of the first coding

Lemma 4.22 Let v € X and 1,5 € Z with © < j. Suppose that Tji_jy,u,lithu,o,)) = W and
Tl vgus|j+lu o) = W for some w,w € RS, (X). Then, i + |u,v,,| < j + |ugvy]|.

Vo
Proor. We assume, with the aim of obtaining a contradiction, that i + |ul,v) | > j + |uvy|.
First, we consider the case i + |u} v, | = j + |ujvy|. Then,
W = Tlicful vfy =ity vly) = Ll =nj+ugo)) = ©-
Hence, u! vl = u_ v, and therefore
i = (1 g,V ]) — g, | = (G + Jugvip]) — lugvi| = j.
This contradicts that ¢ < j.

Next, we assume that
i+ [u,ul| > g+ Jugu). (4.7)

Note that this is equivalent to i — |v,u,,| > j — |[vgug|. This fact will be freely used through
the proof.

We consider the following two cases:
(1) @+ fun| <J + |ugl-
(i) @+ |ug,| = J + Juggl.

Suppose first that case (i) occurs. We are going to define a decomposition w = vuu'v’ as the
one in Definition 4.5 and such that |vu,| < |vgug|. This would contradict the minimality of
|’UU~JUU~J|.
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We start by noting that, thanks to (4.7), if we set v = Z[j vz ug|i—|u.|) a0d V' = Tlirg | o+ il ol )
then @ = vu,ul,v’'. Note that from (4.7) we have that

v = 12} jogusli-lowuo )| + [Vw] 2 1/2 = 500e.
Also, (i) implies that
V'] = (@t g+ | 2 T e | = [vg] = n/2 — 500e.

We conclude, as w = v,u,ul,vl, satisfies Condition (P,) or (P,) in Definition 4.5, that
w = vu,u,v satisfies (P,) or (Pp). Moreover, since |[vViy| = |T}j_jugvgls)| and |vaus| =
| T~ jvgusl,j) |, We have that

[vaug| = [vu| + 7 — @ > |[vuy.

Thus, w = vu,u, v satisfies (P,) or (Py), and |vu,| is strictly smaller than |vgug|. This
contradicts the minimality of |vgug|.

Next, we assume that i+|u,| > j+|ul;|. Then, asi < j, we have that [j, j+|u|) C [4, i+]|ul,|).
This implies two things. First, since |ug| = |uj;| and |u,| = |ul,|, that

= sl g+ lugl) G [0 = Juwl, i+ fug,])- (4.8)
Second, that |ul;| < |ul|. Being |ul |, |ul| € {99¢,500e}, the last relation is possible only if

= 500e. (4.9)

luz| = 99¢ and |u],|

Therefore, Condition (P,) holds for @ = wvguguyvy and Condition (P,) holds for w =
Uyt vl In particular, we can find s € V. such that ugul, = S[Z This implies,

—99¢,99¢)
by (4.8), that 5[2—995,995) = uguy, occurs in wu,ul,. But then Condition (P,) cannot hold for
W = Uy Uy Ul vl , contradicting our assumptions. O

It is convenient to introduce some notation. Let v € X, (¢,y) = Fy,o(x) and (f,2) =
F(z (7). For j € Z, we define w;(x) = T, —nc;) € RSu(X), 0;(%) = Vu(2), Uj(T) = U (a),

ui(r) = uin(x) and vi(r) = v;j(x). Then,

Tle;—ne;) = Wy () = vj(w)u;(v)u)(z)v)(z).

Observe that if j € Z then (s, |u,uyl,f+[u,e,)) = w for some w € RS,.(X), so there exists
i € Z such that f; + |ui(z)vi(z)] = ¢;. We define ¢,(j) as the smallest integer such that

fi + g, iy (@)vg, 5y (@) = e, )- (4.10)
Then, by Lemma 4.22,
¢2(1) < ¢p(j) forall z € X and 7 < j. (4.11)
Lemma 4.23 Let v € X, (c,y) = Fyo(z) and (f,2) = Fizr(x). Ifi € Z and k €
[62(1), ¢ (i + 1)), then f; + |u()vi(2)| = c.
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Proor. Observe that, since xj, nc) = wi(x), there exists j € Z such that f; = ¢ —
|ul(z)v(x)|. We are going to prove that j = i.

First, we note that, since k € [¢,(7), ¢,(i + 1)) and ¢ = f; + |uj(x)vy ()],

fi g, o) (@), ) (2)] = i) < S + ug (@) vy (2)]
< Cp(irr) = firn + Wy iy ()G, 4y ()] (4.12)

This implies, by Lemma (4.22), that ¢ < j <i+ 1. Now, if j =i + 1, then Equation (4.12)
ensures that fir1 + |uj(z)vp(2)] is strictly smaller than fiy1 + |} ;) (2)v) ;1) (2)], which
contradicts the minimality of ¢, (i + 1). We conclude that j = i. O

Lemma 4.24 The set C has at most d° elements.

Proor. Let x € X, (¢,y) = Fv»)(2) and (f,2) = Fz-(x). We drop the dependency on x
in ¢, and just write ¢. The lemma follows from the following claim.

(o) For j € Z, let ((j) = (Wo(j+1)-1, Teyg1)1) € RSu(X) x A, Then, ((i) = ((j) implies
that 2z, f,) = Llfjofis1)

Indeed, being Z minimal (as X is minimal and (Z, 7) is recognizable), (o) implies that
#T(C) = #{x[fj,fj+l) .7 € Z} S # RSn<X) : #A S dsu

where we used that # RS, (X) < #A- (px(n+1) —px(n)) by Item ((1)) in Proposition 4.14.
This implies, as 7 is injective on letters by Proposition 4.4, that #C = #7(C) < d°.

Let us prove the claim. Suppose that i,j € Z satisfy ((i) = ((j) = (w,a). We start with
some observations. First, the condition ((i) = ((j) = (w, a) implies that

(Z> w= x[c¢<j+1)—1—”’c¢(j+1)—1) - x[c¢<i+1)—1—"’c¢(i+1)—1); and

(@) a= Legrn-1 = Tegirn-1-

Also, Equation (4.11) ensures that ¢(i) < ¢(i + 1) and ¢(j) < ¢(j + 1), so

p(i) < pli+1)—1 < p(i+1) and ¢(j) < d(j+1) —1 < ¢(j + 1). (4.13)

We now prove the claim (o). The definition of c4(j11)-1 and cg(;+1) guarantees that the
Words Zjp_nk), ¥ € (Co(j+1)—1, Co(j+1)), are not right-special. Thus, Tleyjany-1rcaieny) 15 deter-
mined by Lley(ia1)—1—MoCo(j11)-1) and Leyisny1 A similar observation holds for x|
Combining these two things with (i) and (ii) yields that

)
C¢(¢+1)7170¢(z‘+1))'

(4.14)

Llegry-1:¢6G+11)) = Llearn—1:Coa+1))"

Then, by (i),
w¢>(j+1)(x) = Llcga1)—MeCo+1)) — Llepiit1)—MsColitn)) — w¢>(i+1)(w)'
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Let us write @ = wg(j41) () = Weit1y(x). With this notation, we have, by (4.10), that

!/

) = UgUg (4.15)

o /
x[fj+1ac(j>(j+l)) - x[fi+1,c¢(i+1) w*

Now, Equation (4.13) allows us to use Lemma 4.23 with ¢(i + 1) — 1 and ¢(j + 1) — 1; we
deduce, as w = wy(j+1)—1 = We(i+1)—1, that

[ + uy vy, | = coije1y—1 and f; + |uyv,,| = coir1)—1-

In particular,

_ Y A
x[fj’cd)(j-}—l)—l) - x[fiuc¢(i+1)—1) = Uy Uy

This and Equation (4.14) then give that

Lificoii+1)) = Llfiscoitn)-

We conclude using (4.15) that z(, r,,,) = @[, f,,,)- This completes the proof of the claim and
thereby the proof of the lemma. O]
Lemma 4.25 Letx € X, (¢,y) = Fiyo(x) and (f,2) = Fz(x). Then:

(1) lo(ye)| < [7(z0)| + 2 - 401 for any k € [¢(0), ¢x(1)).

(2) |7(20)| < |o(ygay)-1)| +2-401e.

Proor. We write, for simplicity, ¢ = ¢,. Let k € [¢(0),¢(1)). Then, by Lemma 4.23,
fo + |uf(x)v,(z)| = cx. Hence,

7(20) - u;&(l)(lﬂ)vfﬁ(l)(x) = Z(fo,f1) " Tlf1,e601))
= T(fo.cr) " Lhowcon) = We(@)VL(@) - 0 (Yp(1)))-
In particular,
|17 (20)| = o (Yo | = [lupa) (@)vha) (@) = luj,(@)v, ()] (4.16)

Now, Conditions (P,) and (P,) in Definition 4.5 ensure that for any w € RS, (X) the in-
equalities n/2 — 401e < |u, vl | < n/2 4 401e hold. Putting this in (4.16) produces

“T(zo)\ — o (Yrea))|| < 2-401e for all k € [¢(0), ¢(1)). (4.17)

Item (1) of this lemma follows. Moreover, since yg1)-1 = Y[s(1)-1,6(1)), Ltem (2) is also a
consequence of (4.17). O

4.4.3 Proof of Propositions 4.17 and 4.18

We now prove Proposition 4.17.
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ProoF oF ProposiTION 4.17. Item (1) follows directly from Lemma 4.24.

Let us prove Items (2) and (3). We define U’ = {z € X : 29,y € RS,(X)} and U = {z €
X 1 Jw € RS,(X), T/ juyve,ju,v,) = w}. First, we recall that (Z, 7) is defined as the coding
of X obtained from U as in Proposition 4.4. Observe that, since |v,u,| < |w| = n and
lu, vl < |w| = n for all w € RS, (X), U has radius n. Also, Item ((2)) in Proposition
4.14 ensures that U’ is (d + 1)n-syndetic, and thus that U is (d + 3)n-syndetic. Therefore,
Proposition 4.4 ensures that |7(a)] < (d + 3)n for all a € C and that (Z,7) is (d + 4)n-
recognizable. Since d > #A > 2, Items (2) and (3) follow. O

The rest of the section is devoted to prove Proposition 4.18.

Lemma 4.26 Let v € X and (c,z) = Fz(x). We use the notation w = we, ) and
W = wg,1y. Then, the following are equivalent:

(1) |root7(z0)| < e and L[eg—99¢,c1499) = (root 7—(20>>[Z—995,|‘r(z0)|+995)'

(2) The decompositions w = vy,u,u,v., and W = vpugugvy satisfy Condition (P,) in
Definition 4.5 and per(Z|e,+97e,c,—97)) < €.

Moreover, if any of the previous condition holds, then rootT(zy) € W.

Proor. We assume that Item (1) holds. Let s = root7(2) and note that Item (1) ensures
that

|s| <& and Zey—g0c.c1199¢) = ST 00z r(z0) | +000): (4.18)

This allows us to use Lemma 4.20 with [, _goc,co+|s|+99¢) and find ¢ € W, such that t[Z_99£7998)
0CCUIS N T[ey—99e,co+]s|+09s)- Oince |s| < e, we have in particular that t[27995,995) occurs in
Tlcy—500e,c049¢)- Lhis is incompatible with the decomposition w = vy, u.,u.,v;, satisfying Con-
dition (Pp) in Definition 4.5; therefore, w = v, u,u,v!, satisfies Condition (P,). A similar
argument shows that @ = vgugulv}; also satisfies Condition (P,). Finally, it follows from
(4.18) that per(xic+97e,c,-072)) < || < e.

We assume that Item (2) holds. Then, by Definition 4.5, there exist s, 5 € W. such that

Z _ r_ <z — ) —
5[-99¢,99¢) = Uwlyy = L[co—99e,c0+99¢) and 5[-99¢,99¢) = UdUp = T[c;—99e,c1+99%) - (4.19)

We claim that
per(Ticy—99z,c,4+99c)) < €. (4.20)

Assume, with the objective of obtaining a contradiction, that (4.20) is not satisfied. Then,
Item ((2)) in Proposition 4.13 gives i € [co — 98¢, ¢1 + 98¢) such that per(x_.;4c)) > €. We
consider three cases. If i € [cy — 98¢, ¢o + 98¢), then xj_. ;4. occurs in u,u,,. Thus, by
(4.19) and since s € W, implies that |s| < e, per(zj_cits)) < |s| < e. This contradicts our
assumptions. In the case i € [¢; — 98¢, ¢ + 98¢), a similar argument gives a contradiction.
Finally, if ¢ € [co + 98¢, ¢; — 98¢), then T[i—c,ite) OCCUTS IN T[c197c ¢, —97e) and thus, by the
hypothesis, per(zj;_ciis)) < €. This proves (4.20).
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Our next objective is to use the claim for proving that

5] = 18] = Per(f[co—gge,clJrgga))- (4.21)

We note that |s| < e as s € W.. Hence, Equations (4.19) and (4.20) allows us to use Item ((1))
of Proposition 4.13 and deduce that per(z,—goc.c,+99¢)) is equal to per(Zic,—99e,co+99s))- Also,
(4.20) ensures that per(x(,—g9e,c1+99:)) < |5/, so by Item ((1)) in Proposition 4.13 we have that
per(Z(cy—99,co+99)) 1S equal to per(s?). Moreover, by Lemma 4.9, per(s®) = |root s?| = |s|.
Combining all these relations produces

per(x[co—995,cl+99£)) = Per(I[co—gge,co+9ga)) = per(s2) = |3|

Similarly, per(jc,—g9e,c,+99e)) = |5|. Equation (4.21) follows.

We combine (4.21) with (4.19) to obtain that

8[2799€,|T(z0)|+99€) = E[Zf|7(zo)\799€,995) = Tleo—99¢,c1+99¢) - (4-22>

Being |s| equal to |5|, we get that s and § are conjugate. Moreover, since s, § € W, and since
W. contains at most one element of a given rotational class, we have that

s = 8. (4.23)

We use (4.23) to prove that Item (1) of the lemma holds. Observe that Equation (4.19) and
(4.23) imply that 8[279957998) = (SI7=0)ls)[_ggc 99c). This and the fact that |s| < e (as s € W)
allow us to use Item ((1)) in Proposition 4.10 and deduce that s* = SI70)ls%. Ttem ((2)) of
Proposition 4.10 then gives that |7(2p)| = 0 (mod |s|). We conclude that x, ., is a power of
s and that root 7(2p) = root s = s. Item (1) of this lemma is a consequence of the last relation
and (4.22). This also shows that if Item (2) of the lemma holds, then root7(z) € W.. [

Lemma 4.27 Let x € X, (f,2) = Fiz(x) and i,j € Z with j > i+ d. Suppose that
|7(z)| < 401e for all k € [i,j). Then:

(1) root7(zy) = root7(z;) for all k € [i,j) and |root7(2;)| < e.
(2) @(f,—99¢,1,+992) = (rOOtT(Zi))[Z—gge,h(z[i,j))\+995)'

Proor. Let (¢,y) = Fy,»)(z). We will use Lemma 4.16 with y and [¢,(i), ¢»(j)) to prove the
following:
per(Z(f,—500e,f,4500¢)) 1S at most €. (4.24)

Let us check the hypothesis of Lemma 4.16. Let k € [¢.(7), ¢.(j)) be arbitrary. There exists
¢ € [i,j) such that k € [¢p.({), p.(¢ + 1)). Putting the hypothesis |7(zx)| < 401le in the
inequality of Lemma 4.25 produces the bound |o(y)| < |7(2¢)| + 2 - 401e < 10%. Hence, by
(4.5),

lo(yx)| < e/d for all k € [p.(i), P (7). (4.25)
Since ¢ < n/10%, Equation (4.25) and the inequalities ¢,(j) > (7 — 1) + ¢.(i) > d + ¢,(i)
allow us to use Lemma 4.16 and deduce that per(zi, . -n/3c,. o)) < € Now, observe that,
for any k € Z,
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Hence, as (4.25) ensures that cy, (jy—a > ¢p;) — € and since e < n/10%, we have that
T[f,—500¢,f;+500c) OCCUTS 1N Tfe, —n/3 e, ;) q)- Lherefore, (4.24) holds.

Next, we use (4.24) to prove the following:

Vk € i, j], the decomposition wg, (x) = U¢z(k)u¢x(k)UI¢>z(k)U;sz(k)
satisfies (P,) in Definition 4.5. (4.26)

Let k € [7,7]. We note that (4.24) implies that per(x(, —500e,c,+500¢)) < €. Thus, by Lemma
4.20, there exists s € W. such that 5[2—995,995) OCCUTS N Z[c, —500e,c,+500¢)- 1 his implies that
if (Pp) in Deﬁnit‘ion 4.5 holds for the decomposition wd,z(,?) = Vs, () U (k) Ueh, () Vo (> U1IETL
5[279957995) occurs in u%(k)u;sz(k) = Z[ep—500e,c,+500e), contradicting (Py). Therefore, wy, )y =

Vg (k) Uehs () Uay, () Uss, (i Satisfies (Pg) and (4.26) is proved.

We now prove the properties in the statement of the lemma. Let k € [7, j). Then, Equations
(4.24) and (4.26) imply that Item (1) in Lemma 4.26 is satisfied. Hence, for all k € [i, j),

|rOOtT(Zk)‘ < e and Llck—99,cp414+99) = (rOOtT<Zk))[z—99€,\7(zk)|+99£)' (427>

In particular, we have for every k € [i, 7 — 1) that

(rOOtT(Zk))[Z(),QQE) = Llcg,cr+99%) = Llcgir,cpp1+99e) = (rOOtT(2k+1>>(ZO,99£)'

This and the inequalities |root7(z;)| < € and |root 7(zx41)| < € allow us to use Theorem
4.8 to deduce that root 7(zx) and root 7(2x41) are powers of a common word, and thus that
root 7(z) = root 7(zx41). And inductive argument then yields Item (1) of this lemma, and
therefore, by (4.27), that Item (2) holds as well. O

We have all the necessary elements to prove Proposition 4.18.

Proor oF ProposiTiON 4.18. We prove Item (1) by contradiction, Suppose that 0 ¢ Qu(2),
|7(20)] > 401e and that per(Zic,197cc,—97)) is at most . Let us write w = wg, (o) and
W = wg,1). Then, the condition 0 € Q,(2) ensures that Item (1) in Lemma 4.26 does not hold.
Hence, Item (2) does not hold either. This implies, as per({c,+o7e,,—97s)) at most ¢, that one
of the decompositions w = v, u,u., vl or W = vgugzu, vy satisfies (P,) in Definition 4.5. We
assume, without loss of generality, that w = v, u,ul v), satisfies (Py). Then, for any s € W.,
3%79957995) does not occur in Uy, = T(e,—401e,c0+401¢)- 1N particular, 3[27995,995) does not occur
N Z(¢y497¢,c0+304¢)- Being this valid for all s € W, and since (., 197¢,¢,+304¢) has length at least
2e, we deduce from Lemma 4.20 that per(2(c,197z,c0+304c)) > €. But ¢; — ¢g = |7(20)| > 401e
SO T[ag+97e,c0+304e) OCCUTS IN Ty 1972.¢,—97e) and thus per(xi4o7c,—97)) > €. This contradicts
our assumptions and thereby proves Item (1).

We continue with Item (2). The proof is by contradiction. We assume that the hypothesis
of Item (2) holds and that per(c,4+97c,c,-97c)) < €. Let us further assume, without losing
generality, that 1 € Qu(2). We will use the notation w = wg, ) and @ = wg,). Then,
the condition 1 € Qp(2) is equivalent to Item (1) of Lemma 4.26 being satisfied by Sz;
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hence, Item (2) of that lemma holds with Sz. In particular, @ = vgugulv; satisfies (P,) in
Definition 4.5, that is,

_ ' 7
Tley —99e,e1+99e) = Uil = S[_gge 99¢) LOT some s € W,.

Now, the condition 0 ¢ Q,(2) implies, by Lemma 4.26, that Item (2) of that lemma is not
satisfied by z. This implies, since W = vgugul v, satisfies (P,) and since we assumed that
Per(Ticyto7e,c1—o7e)) < €, that w = vy,u,uy, v, satisfies (Py). Therefore,

— oL :
L[cy—99e,c1+99¢) = 8[79957996) does not occur in L [co—500¢,c04500¢) - (428)

But, since ¢1 — ¢ = |7(20)] < 401e, we have that [c; — 99¢,¢; + 99¢) is contained in [cy —
500¢, c; + 500¢), and thus that @i, _g9- ¢ +99e) OCCUIS in Ty —500e,c,4500s)- Lhis contradicts
(4.28), finishing the proof of Item (2).

Next, we consider Item (3). Assume that k > d and that |7(z;)| < 401e for all j € [0,k).
Then, we can use Lemma 4.27 to deduce that

(1) root7(z;) = root7(z) for all j € [0, k) and |root7(zp)| < &;

(2) L[fo—99, fr+99) — (rOOtT(Z[)))[2—995,\7'(2’[0,1@)”4-995)'

In particular, o, _gge.c,, +99s) = (root T(Zj)>[z—995,\r(zj)|+995) and |root7(z;)] < ¢ for all j €
[0, k). We conclude that [0,k) C Qu(2).

Finally, we prove Item (4). Let 2’ € Z and assume that 0 € Q,(2) NQp(2") and that root 7(z)
is conjugate to root 7(2{). The condition 0 € Qu(2) N Qu(z') permits to use Lemma 4.26 to
deduce that root 7(zy) and root 7(2{) belong to W.. Since root 7(zg) conjugate to root 7(z{),
the definition of W. ensures that root 7(zy) = root 7(z(). O

4.5 The second coding

We continue the proof of the main theorems. The main result of this section is Proposition
4.28, which describes a modification of the coding in Proposition 4.4. The principal new
element in Proposition 4.28 is a period dichotomy for the words 7(a). This property is
shared by the codings constructed in Sections 4.6 and 4.7, so we introduce it as a definition.

Definition 4.6 Let (Z C CZ,7: C — AT) be a recognizable coding of the subshift X C AZ,
Cap UC, be a partition of C, and € > 1. We say that (Z,7) has dichotomous periods w.r.t.
(Cap,Cp) and € if for € X and (c, 2) = F(z,)(x) the following holds:

(1) 20 € Cyp implies that per(Zig4e,c,—e)) > €.
(2) 2 € Cpimplies that |root 7(20)| < € and that (¢, . ¢, 1<) is equal to (root T(ZO))[Zig 7 (20)|+)-

(3) If a € C, and root 7(zp) is conjugate to root 7(a), then root 7(zy) = root 7(a).
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Proposition 4.28 Let X be a minimal infinite subshift, n > 0 and let d be the mazximum
of [px(n)/n], px(n + 1) — px(n), #A and 10*. There exist a recognizable coding (Z C
CZ1:C — AY) of X, a partition C = Cap UCy, and € € [n/d**+* n/d) such that:

(1) #Cop < 24386 H#C, < 23479 pow-com(X) and # root 7(C) < 3d3¥+0,
(2) |r(a)] <10d*n for a € Cap and |7(a)| > 80 for a € C.

(8) (Z,T) satisfies the recognizability property in Proposition 4.29.

(4) (Z,7) has dichotomous periods w.r.t. (Cap,Cp) and 8.

(5) The set C, satisfies the following: if z € Z, then zy and z does not simultaneously
belong to C,.

Proposition 4.29 Consider the coding described in Proposition 4.38. Let x,& € X be such
that per(z(_..)) > € and T(_7q2n 7020) = T[-7d2n,7d2n)- 1hen, F?ZJ)(x) is equal to F(()Z’T) (7).

The strategy for proving Proposition 4.28 is as follows. We consider the coding (Y, o) given
by Proposition 4.17 and, for a point y € Y, we glue together letters y; to form words vy,
where [ is an interval, in such a way that y; corresponds either to a maximal periodic part
of o(y) or to an aperiodic part of o(y) of controlled length. This will produce a new coding
where the letters are in correspondence with the words y; and that satisfies all the properties
in Proposition 4.28 except for the lower bound in Item ((2)) for the letters associated to
periodic parts y;. We solve this by slightly moving the edges of the words o(y;).

We start, in Subsection 4.5.1, by defining stable intervals, which correspond to the intervals
I described in the last paragraph. The definition of the coding of Proposition 4.28 is given
in Subsection 4.5.2, together with the proof of its basic properties. In the final subsection,
we prove Propositions 4.28 and 4.29.

We fix the following notation for the rest of the section. Let X C A% be a minimal infinite
subshift, n > 0 and let d be the maximum of [px(n)/n], px(n + 1) — px(n), #A and 10%.
Then, Proposition 4.17 applied to X and n gives a recognizable coding (Y C BZ,0: B — A™)
of X and an integer € € [n/d** 4 n/d).

4.5.1 Stable intervals
Let y e Y,z =0(y) and (c,y) = Fy,s)(x). We define

Qshort(y) = {Z € 7 : |J<yz)| S 4015} and Qlong(y) =17 \ C)2|ong-
Let Qp(y) be the set of integers i € Z such that

’ I’OOtU(yi)’ < ¢ and Llc;—99e,ci41+99) — (rOOtU(Z/i)z)[—9957|T(yi)|+995)' (4'29>

We set Qap(y) = Z \ Qp(y). Remark that the definition of Q,(y) coincides with the one in
Proposition 4.18.
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Definition 4.7 A stable interval for y is a finite interval I = [i, j) C Z satisfying one of the
following conditions.

(1) 1CQ,
(2) I C Qap, #(I N Qiong) < 1, and if ¢ € Qgpory then i — 1 € Q.

The interval I is of periodic type if it satisfies Item (1) of this definition, and of aperiodic
type if it satisfies Item (2). We say that I is a mazimal stable interval if for all stable interval
I' O I we have that I’ = I.

Remark 4.5 We stress on the fact that the previous definition does not depend just on vy,
but also on ¢ and «.

Lemma 4.30 Let I = [i,j) be a stable interval set for y of periodic type. Then:
(1) rooto(yy ;) = rooto(yx) for allk € [i,7) and T, —gge ¢, +99¢) s equal to (root U(yi))[2—995,|a(y[i7j>)\+99a)'

(2) If I is mazimal, I' = [, j') is a stable interval and either i = j or j' =1, then I' is of
aperiodic type.

(3) If y € Y, 0 € Qu(y) and rooto(y;) is conjugate to rooto(y;), then rooto(y;) =
root o (y;).

Proor. We first prove Item (1). Let sp = rooto(yx). Being I of periodic type, we have by
Definition 4.7 that

|Sk| S 19 and IL‘[ck_ggg,ck_H_,_ggg) = (8%)[—99€7|0(yk)|+995) fOl" all k’ & [’L,j) (430)
Then, for any k € [i,j — 1),
(5%)[0,995) = ZTleg,cp+99e) = Llegyr,cpp1+99) = (S%H)[o,g)gs)-

Combining this with the inequalities |si|, |sg+1] < € and Theorem 4.8 produces a word ¢ such
that s and sy; are powers of t. Hence, as s, and sg,; are roots of a word, s, = sgy1 = ¢
for any k € [i,5 — 1). Item (1) of the lemma follows from this and (4.30).

For Item (2), we note that if I’ is of periodic type then I U I’ is an interval contained in
Qp(y), and so I U I’ is a stable interval for y. This would contradict the maximality of I;
therefore, I’ is of aperiodic type.

Let us now assume that the hypothesis of Item (3) holds. Then, since i € I C Qu(y),
0 € Qp(v) and rooto(y;) is conjugate to rooto(y}), the points S’y and y' comply with the
hypothesis of Item ((4)) of Proposition 4.18. We conclude tat root o(y;) = root o (y;). O
Lemma 4.31 Lety € Y and I = [i,j) be a stable interval for y of aperiodic type. Then,

(Z) per(x[ci+97£,c]-—97a)) > €;
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(2) I has length at most 2d + 1;
(3) 195¢ < |o(y;)| < 9d°n.

Proor. We prove Item (1) by considering two cases. Suppose that i € Qiong(y). Then, i €
Qiong (¥)NQap(y) and we can use Item ((1)) of Proposition 4.18 to obtain that per(z(s,1o7e.c;,,—07)) >
. Assume now that i € Qgnort(y). Then, Definition 4.7 ensures that i — 1 € Q,(y). Hence,
Item ((2)) of Proposition 4.18 applies and so per(Z(,197c,¢,,,-97:)) > €. In particular, Item

(1) holds.

We prove Item (2) by contradiction. Assume that #I > 2d + 1. Then, it follows from
Definition 4.7 that there exists I’ C I such that #I' > d and I’ C Qgpore. These conditions
allow us to use Item ((3)) in Proposition 4.18 and deduce that I’ C Q,(y), contradicting the
fact that I is of aperiodic type.

Finally, we consider Item (3). Item (2) of this lemma and Item ((2)) produce that |o(y;)| <
(2d + 1) - 3dn, from which the upper bound in Item (3) follows. To prove the lower bound,
we consider two cases. If there exists k € I N Qiong(y), then |o(yr)| > |o(yx)| > 401e.
Assume now that I N Qiong () is empty. Then, i € Qsnort(y), and so Definition 4.7 indicates
that ¢ — 1 € Qu(y). This allows us to use Item ((2)) of Proposition 4.18 to obtain that
Per(L(e,+97z,ci,1—97¢)) > €. In particular, [, 197¢,c,,, 97| > €; hence,

0(yn)] = 0(9i)] = |2, +97e,0011-072) | +2 - 97e > 195e.

]

Lemma 4.32 There exists a constant C' depending only on X such that for any y € Y and
stable interval I for'Y, we have that #1 < C'. In particular, any stable interval is contained
m a mazimal stable interval.

Proor. Let Cjy be the length of the longest word w that occurs in some x € X such that
per(w) < e. We remark that Cy is finite as X is assumed to be minimal and infinite. Let
C' = max{Cy, 2d + 1}. We claim that for any y € Y, any stable interval I for y has length
at most C. Indeed, if I is of aperiodic type, then Item (3) of Lemma 4.31 implies that
#I1 <2d+1 < C, and if [ is of periodic type, then Item (1) of Lemma 4.30 ensures that
per(o(yr)) < e, and thus that #I < |o(y;)| < Cy < C. O

Lemma 4.33 Lety € Y. Then, the set of all mazimal stable intervals for y is a partition
of Z.

Proor. We first prove that any k € Z is contained in a stable interval. This would imply

that any k is contained in a maximal stable interval by Lemma 4.32.

Let k € Z be arbitrary. We consider two cases. If k € Qu(y) or k € Qap(y) N Qiong(y), then
{k} is stable interval and we are finished. Suppose now that k € Q.,(y) N Qshort(y). Let i < k
be the biggest integer such that i & Qap(y) NQshort(y). Note that [i4+1, k] C Qap(y) N Qshort (V).
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Hence, if i € Qap(y)NQiong (), then [4, k] is stable interval of aperiodic type, and if i € Q,,, then
[i41, k] is stable interval of aperiodic type. These are the only cases as i € Qap(¥) N Qshort (¥),
and so we conclude that ¢ belongs to a stable interval.

Next, we prove that for any maximal stable intervals I, I’, either I = I’ or INI' = (). The
lemma follows from this and the fact that any k is contained in a maximal stable interval.

Let I =[i,j) and I’ = [i’, j') be maximal stable intervals with nonempty intersection. There
is no loss of generality in assuming that ¢ < i’ < j < j'. Note that if : = ¢/ or j = j/, then
Iul' e {I,I'},so I =I' = TUI' by maximality. Hence, we may assume that i <’ < j < j'.
Remark that this implies that j —1 € I NI

In order to continue, we consider three cases.

(1) If j —1 € Qp(y), then, as j —1 € I NI, Definition 4.7 implies that I and I’ are of
periodic type. It then follows from Definition 4.7 that U’ is stable interval of periodic
type, and so I = I' = I U I’ by maximality.

(2) If j =1 € Qap(y) N Qiong- Then, since j —1 € I N I’, Definition 4.7 ensures that
[i,j — D) U7+ 1,7) € Qap(y) N Qshort(y). Hence, [i,5") = I U I’ is a stable interval of
aperiodic type, which implies that I = I’ = I U I’ by maximality.

(3) If j — 1 € Qap(y) N Qshort(y). Then, as j —1 € I NI, Definition 4.7 guarantees that
I and I’ are of aperiodic type. In particular, as i/ — 1 € I, i — 1 € Qap(y) and
therefore, by Definition 4.7, V' € Quong(y). We conclude, using Definition 4.7, that

[,7') € Qap(y) N Qshort (), 7" € Qap(y) N Qong(y) and that [’ +1,5') € Qap(y) N Qshore (1).
Hence, [i,j') = I U I’ is a stable interval of aperiodic type and I = I’ = T U I’ by

maximality:.

O

4.5.2 Construction of the second coding

The coding (Z, 7) is obtained by modifying the cut function ¢ in F(y () of the points z € X.
We give the construction of the modified cut function as the proof of the following lemma,
and we define (Z, 7) right after.

Lemma 4.34 Let v € X and set (c,y) = Fvo)(v). There exist unique increasing sequences
of integers satisfying (k.(j));jez and (r4(j)) ez satisfying the following conditions.
(1) {lks(4),ke(§+1)):j €Z} is the set of all mazimal stable intervals of y.
(2) For any j € Z,
(1) if [ke(J), k2 (§ + 1)) is of aperiodic type, then r,(j) = k()

(2) if [ke(§), ko(j + 1)) is of periodic type, then r,(j) = cx,j) — |s‘|, where s =
root o (Yik, (j)k. (j+1))) and £ = [80e/|s|]
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(3) 0 belongs to [ry(0),7,(1)).
Moreover, in this case, r(j + 1) > r.(j) + 80¢ for all j € Z.
Proor. Lemma 4.33 ensures that the set of all maximal stable intervals of y can be described

as {[k(j),k(j + 1)) : j € Z} for some increasing sequence of integers (k;);ecz. The sequence
(k;)jez is unique up to an index shift.

We define 7(j) as follows:
(i) if [k(j),k(j + 1)) is of aperiodic type, then r(j) = cx(j).

(ii) if [k(5), k(j+1)) is of periodic type, then r(j) = cx(;y—|s‘|, where s = root o (yp(;)k(j+1)))
and ¢ = [80e/|s|]

It is important to remark that, in case (ii), Lemma 4.30 ensures that |s| < e.

We claim that
r(j+1) > r(j) + 80e for all j € Z. (4.31)

,
First, we note that the definition of r(j) and r(j + 1) guarantees that
k(7) —8le <r(j) <k(j) and k(j+1)—8le <r(j+1) <k(j+1). (4.32)

We now consider two cases. If [k(j),k(j + 1)) is of aperiodic type, then, by Lemma 4.31,
|0 (Yik(j),k(i+1)))| 1s at least 195e. Combining this with (4.32) yields

TG 2 Tl enian | — 816 = [0 (W) i+1))| — 81 > 80¢

Assume now that [k(j), k(j+ 1)) is of periodic type. Then, [k(j +1),k(j +2)) is of aperiodic
type by Lemma 4.30. In particular, 7(j 4+ 1) = cx(j4+1) by (i). Also, since [k(j),k(j + 1)) is of
periodic type, (ii) ensures that r(j) < k(j) —80e. These two things imply that |xp¢;)+1))| >
|T(er(s)—802.ex541y) | = 80g, completing the proof of the claim.

Equation (4.31) implies that (r(j));ez is increasing. Thus, there exists a unique ¢ € Z such
that 0 € [r(€),r(¢+1)). We define k,(j) = k(j+¢) and r,(j) = r(j+¢). Then, (k.(j));ez and
(r2(4))jez satisty Items (1), (2) and (3) of the lemma. Moreover, being (r(j));ez increasing,
it is clear ¢ (and then also (k;(j));ez and (74(j))jez) is unique. O

We now define (Z, 7). It follows from the recognizability property of (Y, o) and Lemma 4.32
that the map « — r,(0) is continuous. In particular, U = {z € X : r,(0) = 0} is clopen (and
nonempty). We define (Z C C%,7: C — A™) as the recognizable coding of X obtained from
U as in Proposition 4.4.

4.5.3 Basic properties of the second coding

We fix, for the rest of the section, the following notation. Let z denote an element of X,
(c,y) = Fyoy(z) and (f,2) = Fz(x). We also define (k;(j))jez and (r.(j))jez as the
sequences given by Lemma 4.34.
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Lemma 4.35 We have that v,(j) = f; for all j € Z.

Proor. Note that {k € Z : Skz € U} is equal to {r,(j) : 5 € Z}. Then, by Item (1) in
Proposition 4.4, there exists a bijective map g: Z — Z such that r;(z) = fy(;) for all j € Z.
Now, since Lemma 4.34 states that r,(j) < rp(j + 1) for all j € Z, the map g is increasing.
As it is also bijective, we conclude that there exists ¢ € Z satisfying g(j) = j+/ for all j € Z.
Finally, by Ttem (3) in Lemma 4.34 and the definition of f, we have that 0 € [fy, f1) and
0 € [r:(0),72(1)) = [fo-1(0)s fo-1(0)+1)- Hence, g71(0) = 0, £ = 0 and the lemma follows. [

The last lemma allows us to drop the notation r,(j) and use only f;. In particular, Items
(2) and (3) of Lemma 4.34 hold with f;.

We define a partition C, UC,, of C as follows:

Cap ={a €C:per(r(a)) > e} and C, = {a € C : per(7(a)) < e}.

Lemma 4.36 Let j € Z. The following are equivalent:

(1.a) z; € C,.

(1.b) [ks(7), k(5 + 1)) is of periodic type fory.

(1.c) Lets =rootT(z;). Then, |s| <&, (s, g f, 1+80) = 3[2—85,\7(zj)|+85) and s = root 0 (Ypk, (j) ke (j+1)) ) -
The following are also equivalent:

(2.a) zj € Cyp.

(2.b) [kz(4), kz(j + 1)) is of aperiodic type for y.

(2.¢) per(ai;+se,f,41-82)) > €.

Proor. We start with a general observation. Let us write k(j) = k,(j). Then, Item ((2)) in
Lemma 4.34 ensures that

cr() — 8le < fj < epyy and cp(ipry — 8le < fii1 < cpgitn)-

Hence,
0 # [en(y)s crn) — 81€) € [fj, fir) C lewy) — 81e, eugivn) + 8le) (4.33)

We now prove the lemma. Let us assume that (1.a) holds. Then, (4.33) implies that
Per(ie ) +07e0 0y 970)) < Per(eys, g ) < e Hence, by Lemma 4.31, [k(j), k(j + 1)) is
not of aperiodic type, that is, [k(j), k(j + 1)) is of periodic type.

Assume next (1.b). Then, Lemma 4.30 states that s = root o (yp(;)kj+1))) satisfies |s| < ¢,
s = rooto(yg) for all k € [k(j),k(j + 1)) and

_ 7
Lleg(j) =99, (j41)+99) = S[—99€,Ck(j+1)—Ck(j)+99€)' <4'34>
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Moreover, Item (2) in Lemma 4.30 guarantees that [k(j + 1), k(j + 2)) is of aperiodic type.
Hence, by Item ((2)) in Lemma 4.34, f; = ¢y — |s°] and fj41 = ci(jq1), where £ = [80e/]s|].
We can then compute, thanks to (4.34) and (4.33),

X == SZ
[f] _887fj+1+85) - [_‘se‘_sevck(]’-&-l) —Ck(j+1)+8€)

[=8¢,[s%[+cr(jt1) —Cr(i+1)+8€) [—8e,fj+1—f;+8¢)"

z _
[*\Se\»ck(ﬁl)*ck(jﬂ)) -
s[Zf‘s@‘,O)U(y[k(j),k(jﬂ))). Hence, root7(z;) = root s = s and we have proved (1.c).

Note that the last computation also shows that 7(z;) = @[y, 5,,,) is equal to s

Observe that if (1.c) holds, then per(7(z;)) < |s| < e and z; € C, by the definition of Cp.

We now assume (2.a). Then, Equation (4.33) implies that per(z(y,; f,,,)) = Per(T(e, ) ;i1 —81e)) >
e. Hence, by Lemma 4.30, [k(j), k(j + 1)) is not of periodic type, that is, [k(j),k(j + 1)) is
of aperiodic type.

Let us suppose that (2.b) holds. In this case, Lemma 4.31 and (4.33) allows us to compute

per<x[fj+8€,f]‘+1785)> > per(x[ck(j)+97€,ck(j+1)7975)) > €.

Finally, if (2.c) is satisfied, then per(7(2;)) > per(z(s,1se,f,,1—-8c)) > €. O

Lemma 4.37 Suppose that z_1z021 € CapCpCap. Then, there exists a decomposition T(z_12021) =
us™u' such that:

(1) € < |u] <|7(2-1)| — 2¢ and e < || < |7(21)] — 2e.
(2) s € rooto(B).
(8) s is not a suffizx of u and is not a prefix of u'.

Proor. Let us denote k(j) = k,(j). We define s = root 7(zp). Then, as 2, € C,, Lemma 4.36
ensures that |s| < e, Tip_se 48 = 8[27887f17f0+85), s = root o (Yp(0),k(1))) and that [k(0), k(1))
is of periodic type in y. Thus, by Lemma 4.30, s = rooto(yk©)) € o(B). In particular, s
satisfies Item (2) of this lemma.

Now, we can find an interval I = [i, j) containing [fy — 8¢, fi + 8¢) such that z; = S%ffo,jffo)
and that no other interval strictly containing I satisfies the same properties. We observe
that i > f_, + 8¢ as, otherwise, per(x[s_, ys f,—ss)) < €, contradicting the fact that, since
z_1 € Cap, Item ((2.¢)) Lemma 4.36 holds. Similarly, j < fo — 8. From these two things and
the fact that I contains [fy — 8¢, fi + 8¢) we obtain that

f_1+8€§i§f0—8€andf1+8€§j§f2—88. (435)
This allows us to write xfy_, ) = us™v, where |u| € [i — f_1,i — f_1 + |s]), m > 0 and

vl € [fo =7, f2— 7+ 15])
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We have from (4.35) that |u| > ¢ — f_; > 8 and |v| > fo —j > 8. Moreover, as |s| < ¢,
lu| < fo— f1—Te =|7(a)| — 7e and |v| < fo — fi — 7Te = |7(d’)| — Te. This proves that
Item (1) of the lemma holds. Item (3) follows from the fact that |s| < e, (4.35) and the
maximality of I. O]

4.5.4 Proof of Propositions 4.28 and 4.29

We are ready to prove the main results of this section.

PROOF OF PROPOSITION 4.29. Let x,Z € X be such that per(zj_..) > € and T[_rp2n702n) =

T[_742n,7a2n)- We define (c,y) = F(Y’J)(x), (¢,7) = Fryo)(2), (f,2) = Fizpn(x) and (f,2) =
Fz- (). Let k(j) = ko(j) and k(j) = kz(j) be the sequences from Lemma 4.34. With this
notation, we have to prove that f, = fo and zp = Zp.

Note that per(x[f,—se f+se)) > per(zj—ce) > €. Thus, by Lemma 4.36, [£(0),k(1)) is of
aperiodic type in y.

We claim that
[ck(0)—1 — 3dn, cr1)+1 + 3dn) is contained in [—7d*n, 7d*n) (4.36)

Note that, by Items ((2)) and ((3)) in Lemma 4.34, ci) < fo+8le < 8le and ¢y > f1 > 0.
Hence, cpy+1 < croy + (k(1) — k(0) + 1)|o] < 8le + (k(1) — k(0) + 1)|o| and cxy—1 >
ey — (k(1) — k(0) + 1)|o| > —(k(1) — k(0) 4 1)|o|. Since, by Lemma 4.31, [k(0), k(1)) has
at most 2d + 1 elements, and since |o| < 3dn by Item ((2)) in Proposition 4.17, we obtain
that cy1y+1 + 3dn < 7d*n and c¢g()—1 — 3dn > —7d?n. This shows (4.36).

Thanks to (4.36), we can use the fact that (Y, o) is 3dn-recognizable (Item ((3)) of Proposition
4.17) to deduce that

cr = ¢ and y, = Ui for all k € [k(0) — 1, k(1) + 1). (4.37)

We now observe that (4.36) and the hypothesis guarantees that
T[e—99¢ ¢y 1+99) = L[&,—99e,5,,1+99€) for every k € [k(0) — 1, k(1) +1). (4.38)

Thus, for any such k, k € Q,(y) if and only if Q,(7). It is then not difficult to verify, using
the definition of stable interval, that if i € {0, 1} then

(1) k(i) = k(i);
(IT) the type of [k(i), k(i + 1)) in y and the type of [k(i), k(i + 1)) in § are equal.
Then, (I) and (4.38) imply that

L[k (0)—99¢,k(1)+99¢) 5;[15(0)—998715(1)—1—995)‘ (4.39)

We claim that . 3
f() = f() and f1 = fl- (440)

93



Let ¢ € {0,1}. We consider two cases. First, we assume that [k(i), k(i + 1)) is of aperiodic
type in y. Then, then by (II), [k( ), k(i 4 1)) is of aperiodic type in 3. Hence, by Item ((2))
in Lemma 4.34, f; = ¢4 and f; = ¢,). This gives f; = f; by (I) and (4.37).

Next, we assume that [k(4), k(i+1)) is of periodic type in y. Then, [k(i), k(i+1)) is of periodic
type in g by (II). Hence, by Lemma 4.30, s = root o (y[x(:),k(i+1))) and § = root a(y[k(l) (z+1)))
satisfy |s|,|5] < e, Ty oy ioniny+2) 15 equal to S[Z(:),QE) and j[gé(i),gk(i)+2€) is equal to sfzo’%) In this
situation, (I) and (4.38) ensures that

7 o A ~ ~7
510,26) = Llewiyscuy+2e) = ‘T[C;;(i)vcz"c(iﬁ?g) S[0,2¢)-

Since [s|, ]3] < e, this allows us the use of Theorem 4.8 and deduce that s = 5. Putting

this and the fact that [k(:), k(i + 1)) and [k(7), k;(@ + 1)) are of periodic type in Item ((2)) of

Lemma 4.34 produces f; = ¢ — |s'| and f; = — |s%|, where ¢ = [80¢/|s|]. Therefore, as
C(i) = Crpy by (1) and (4.37), fZ = f;. This completes the proof of (4.40).

Finally, we show that 2y = Z,. Item (2) in Lemma 4.34 gives that | f; — cx(;)| < 8le. Hence, by
(4.39) and (4.40), (s, 11) = T(go.p1) = Zf;, jr)- We conclude that 7(20) = 7(%0), and therefore
that zp = Zy as 7 is injective on letters by Proposition 4.4. O

We end this section with the proof of Proposition 4.28.

Proor or ProposiTioN 4.28. Let € X, (¢,y) = Fy,o)(x) and (f,2) = Fz - (x). Let k(j) =
k.(j) be the sequence from Lemma 4.34.

We start with Item (ii). Let a € C,p. By minimality, there exists j € Z such that z; = a. We
compute as follows:

()l = [fie0 = fil <152 = cugen | + (RG + 1) = kG)ol + 1f; — e (4.41)

On one hand, we have by Item (2) in Lemma 4.34 that |f; 41 — cijs1)| and |f; — crj)| are at
most 8le. On the other hand, since z; € C,p, Lemma 4.36 ensures that [k(j), k(7 + 1)) is of
aperiodic type in y. Hence, by Lemma 4.31, #[k(j),k(j + 1)) < 2d + 1. Putting these two
things in (4.41) yields |T(Z])| <2-8le+ (2d—|— 1)|o| < 10d*n.

Let now a € C and j € Z be such that z; = a. Then, by Lemma 4.34, |7(a)| = fj4+1—f; > 80e.

Next, we consider Item (i) and the inequality #C,p, < 2d%¢5. Observe that Lemmas 4.30 and
4.31 ensure that
\o (W), ei+1)))| = pe for all j € Z. (4.42)

This allows us to define u; as the prefix of o (yp(j)k(+1))) of length 2e.

We claim that

if [k(j),k(j + 1)) is of periodic type, then
root o (Yk(j),k(j+1))) is the prefix of u; of length per(u;). (4.43)
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Let us suppose that [k(j),k(j + 1)) is of periodic type. Then, Lemma 4.30 states that

_ - _ Z
s = rOOtU(y[k(j),k(jJrl))) satisfies |s| < e and Lle(jy—992,cr(j4+1)+99%) = S[—99€,|U(y[k(j),k(j+1)))|+99€)' In
particular, since u; = T(c, ;) ey ;) +2¢) S[ZO 9e) = Uj. Being |s| < e, we obtain that s? is a prefix of
u; and that per(u;) < |s|. This permits to use Item ((1)) in Proposition 4.13 to obtain that
per(s?) = per(u;). Moreover, |s| = per(s?) by Lemma 4.9; therefore, |s| = per(s?) = per(u;).
Since S{ZOQ&) = u;, this shows that s is the prefix of u; of length per(u;), completing the proof
of the claim.

We now use (4.43) to prove the following:

if z; € C,p, then 7(z;) is uniquely determined by
o (Yk(j),k(+1))) and wheter z;1 belongs to Cyp.  (4.44)

Suppose that z; € C,,. We consider two cases. If 2,11 € C,p, then Lemma 4.36 ensures
that [k(j),k(j + 1)) and [k(j + 1),k(j + 2)) are of aperiodic type in y, and so, by Item
((2)) in Lemma 4.34, that 7(2;) = o(yg@)ki+1)))- If zj41 € Cap, then Lemma 4.36 ensures
that [k(j),k(j + 1)) is of aperiodic type and that [k(j + 1),k(j + 2)) is of periodic type.
Hence, by ((2)) in Lemma 4.34, 7(2;) = i, ;) epjs1)—1s¢))» Where s = root o (Yp(j+1),k(j+2))) and
¢ = [80¢/|s|]. Now, (4.43) says that s is determined by o (yk(j)k(j+1))), and the definition of
¢ depends only on s. Therefore, 7(2;) = Tlenisyenieny—lsl) 1S determined o (Yk(j),k(j+1)))- The

proof of (4.44) is complete.

Finally, we bound C,,. Condition (4.44) implies that #7(C,p) is at most 2 times the number
of words of the form o (Y k(j+1))), where j € Z is such that z; € C,p. Note that if z; € Cyp
then Lemma 4.36 gives that [k(j),k(j + 1)) is of aperiodic type, and thus, by Lemma 4.31,
we have that the length of [k(j),k(j + 1)) is at most 2d + 1. Hence, there are at most #B2
words o (Yp(j),k(j+1))) such that z; € Cap. We conclude that #7(Cap) < 2-#B%2, and therefore
that #C,p < 2d3¥6 by Item ((2)) in Proposition 4.17 and the fact that 7 is injective on letters

Next, we prove that # root 7(C) < 3d*5. Since # root 7(Cap) < #Cap < 2d3*T° by what we
just proved and since # root o(B) < #B < d® by Item ((2)) in Proposition 4.17, it is enough
to show that

root 7(Csp) C {rooto(yp) 1y € Y,0 € Qu(y)}. (4.45)

Let a € C, and j € Z be such that z; = a. Thanks to Lemma 4.36, we have that root 7(2;) =
root o (Yjr(j),k(j+1))) and that [k(j), k(5 + 1)) is of periodic type in y. Hence, by Lemma 4.30,
root 7(z;) = root o (yx(;)). This proves (4.45) and thereby that # root 7(C) < 3d3¢+S.

We now prove that #C, < 2d3*? pow-com(X) using Lemma 4.37. Let U = {z;_1zj2j41:j €
Z,z; € Cp}. We define the map 7: U — Userooto(8)PoWx (s) as follows. For aba’ € U, Lemma
4.37 gives a decomposition 7(aba’) = us™u'. We set m(aba’) = s™. Observe that Item (3) in
Lemma 4.37 ensures that s™ € Powx(s), and, by Item (2) of the same lemma, s € root o (B).

We claim that . . .
if aba’, aba’ € U and 7w(aba') = w(aba’), then b = b. (4.46)

Let 7(aba’) = us™d' and 7(aba’) = 43™4' be the decompositions from the definition of .
With this notation, the hypothesis 7(aba’) = w(aba’) is equivalent to s™ = §™. Then, as
s =roots and s =roots, s = § and m = m.
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We now prove that v = 4. First, we assume without loss of generality that |a| < |u|. Then,
Lemma 4.37 ensures that

7(a) is prefix of both us™ and @s™ and that |a| < |u| < |7(a)| — 2e. (4.47)

This implies that sf ) _jup = (5™ "5™)(07(a)|—ju))- Combining this with the bound |7(a)|—
|u| > 2e > 2|s| given by (4.47) allow us to use Item ((1)) in Proposition 4.10 and conclude
that sZ = Sl=l#sZ Then, by Item ((2)) of the same proposition, |u| = || (mod |s|). From
this and (4.47) we deduce that u = us® for some ¢ > 0. But since, by Item (3) in Lemma
4.37, s is not a suffix of u, we must have that £ = 0. Therefore, u = .

We can show, in a similar fashion, that «’ = @’. This allows us to conclude that 7(aba’) =
7(aba') = us™u’, and thus that 7(b) = 7(b). Being 7 injective on letters by Proposition 4.4,
b = b and the claim is proved.

Condition (4.46) implies that #C, < #C2, - #(Uscrooto(8)Powx (s)). Hence, #C, < #C2,-#B-
pow-com(X). Since #C,, < 2d%¥*¢ and since #B < d® by Item ((2)) in Proposition 4.17, it
follows that C, < 2d3¢9 pow-com(X).

Item ((3)) is a direct consequence of Proposition 4.29.

Let us prove Item ((4)). Lemma 4.36 ensures that (Z, 1) satisfies Items ((1)) and ((2)) of
Definition 4.6. Let now =z € X, (¢,2) = Fz-(x) and a € C, be such that root7(z) is
conjugate to root7(a). We note that, by Lemma 4.36, |root7(zo)| = | root 7(a)| < e. Hence,
Per(Ticy+8e,c,—8e)) < |root7(zp)| < e. This implies, by Lemma 4.36, that 2y € C,p. We can
then use (4.45) to get that root 7(zy) = root o(yy) and root 7(a) = root o (y;) for certain v,y €
Y such that 0 € Qu(y) N Qp(y’'). We remark that, since root 7(z) is conjugate to root7(a),
the words root o(yy) and root o(y() are conjugate. Therefore, y and y’ satisfy the hypothesis
of Item (3) of Lemma 4.30. We conclude that root 7(z) = root o (yo) = root o(y;) root 7(a).

It is left to prove Item ((5)). Let j € Z. We have, from Lemma 4.30, that [k(j),k(j + 1)) or
[k(j+1),k(j+2)) is of aperiodic type. Hence, by Lemma 4.36, z; or 2,41 belongs to Cp. [

4.6 The third coding

We continue refining the codings. The main addition to this version is that the words 7(a)
have controlled lengths. The properties of the new coding are summarized in Proposition
4.38.

Proposition 4.38 Let X C A% be a minimal infinite subshift, n > 1 and let d be the
mazimum of [px(n)/n], px(n+1) — px(n), #A and 10*. There exist a recognizable coding
(Z CCZ1:C— AY) of X, a partition CapUCep UCup 0f C and £ € [n/d**** n/d) such that:
(1) #Cap < 2d3%6, #Cqy < 3346, H#Cyp, < 2340 pow-com(X)* and # root 7(C) < 5d3@+°,
(2) 20e < |7(a)| < 10d?n for all a € C.
(8) (Z,T) satisfies the recognizability property described in Proposition 4.39.
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(4) (Z,7) has dichotomous periods w.r.t. (Cap, Csp U Cup) and 8c.

(5) The set Csp satisfies the property described in Proposition 4.40.

Remark 4.6 Assume the notation of Proposition 4.38. Then, a € C \ C,, implies that
| root 7(a)| = per(7(a)). Indeed, Item ((4)) ensures that |root7(a)| < e, and Item ((2)) that
|7(a)| > 2¢, therefore, by Lemma 4.9, |root7(a)| = per(7(a)).

Proposition 4.39 Consider the coding described in Proposition 4.38. For any x,% € X, we
have that:

(1) If per(x—cc)) > € and T|_7q2p 72n) = T|—7d2n,7d2n), then F(()ZJ) (x) is equal to F (4 (Z).

(2) If k > 0, (50020 k+50a2n) = T[—50d2n k+50d2n) OGN F(()Z’T)(x) is equal to F (), then
F?Z’T)(Skx) is equal to F (7 (S*E).

Proposition 4.40 The coding of Proposition 4.38 satisfies the following.

(1) If = € Z and © < j are integers such that z, € C\ Csp for all k € [i,7 + 1), then
2, = 2 € Csp for all k € [i,7) and root 7(z;) = root 7(2;) for all k € [i,5 + 1).

(2) Ifa € Cqp, then 7(a) = (root7(a))?", where r is the unique integer for which 27| root T(a)|
belongs to [20e, 40¢).

We now introduce the notation that will be used in this section. Let X C A% be a minimal
infinite subshift, n > 1 and let d be the maximum of [px(n)/n], px(n + 1) — px(n), #A
and 10%. Then, Proposition 4.28 applied to X and n gives a recognizable coding (Y C
CZ,o:C — AT) of X, a partition Cy = C, UCap, and an integer € € [n/d**+* n/d) satisfying
the properties described in Proposition 4.28.

The strategy to prove the main proposition of this section is the following. The coding (Z, T)
will be obtained from (Y, o) by splitting the words in ¢(C,) into subwords of carefully chosen
lengths. This will maintain most of the properties of (Y, o) at the same time that we gain
control on the lengths of all the words 7(a). A delicate part involves defining the splittings of
the words in 0(C,) in such a way that (Z, 7) has the recognizability properties in Proposition
4.39.

4.6.1 Construction of the third coding

For s € rooto(C,), we define ((s) as the unique power of two such that ((s) - |s| lies in
[20e,40¢). Note that, by Item ((4)) of Proposition 4.28, we have that ((s) > 1. Then, for
a € Cp, we can define p, and ¢, as the unique integers satisfying

|o(a)l

| root o(a)| and 0 < g, < ((rooto(a)). (4.48)

Pa - C(I’OOtO’((Z)) +qo =

It is important to remark that Item ((2)) in Proposition 4.28 ensures that p, > 2.
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For a € C,, let
wsp(a) = (I’OOt U(a))C(roota(a)) and wwp(a) = (I’OOt U(a))C(roota(a))Jrqa_

Note that
O'(CL) = 77Z)sp((l)pa_l??Z}\,\/,)(CL) for all a [ Cp-

We also choose bijections

¢sp: Csp — ¢sp(cp> and ¢wp3 pr — 1/pr(cp>a

where Csp, Cyp and C,p, are pairwise disjoint. Then, we define for a € Cy,

a if a € C,p
a) = 4.49
(a) {gzs;;wsp(a))pa-lm;pr(a)) faecy (4.49)

Let Cz = Cyp U Csp U Cyp and, for a € Cz, we set

ola) ifaelCy
T(a) = § dspla) ifa €Cy (4.50)

dwp(a) if a € Cup
It then follows that

o= Tn. (4.51)
Finally, we set Z = (J, o, S*n(Y).
Let us comment on the definition of 7. Equation (4.51) says that o(a) = 7(a) if a € C,p and
that o(a) = 7(b)"*~'7(c) if a € Cy, b = ¢! (¥sp(a)) and ¢ = ¢ (Yup(c)). In other words, 7 is

obtained from o by slicing the words o(a).

4.6.2 Proof of Propositions 4.38, 4.39 and 4.40

PRrROOF OF ProPOSITION 4.38. We start with Item (1). Item ((1)) in Proposition 4.28 gives the
bound #C,, < 2d3¥+6. Also, it follows from the definitions and Item ((1)) in Proposition 4.28
that

#Cep = #15p(Cp) = # root 7(Cp) < 3d**6 and
H#Cop = #Vup(Cp) < #Cp < 2 - pow-com(X).
Now, using 4.50 yields root7(Cz \ C.p) = rooto(C,). Therefore, #root7(Cz) < #C.p +

#root o(C,), which gives #root7(Cz) < 4d**0 if we use the bounds #C,, < 2d**6 and
#root o (Cy) < 3d3¥°, where the last bound is given by Item ((1)) in Proposition 4.28.

We now consider Item (2). Let a € Cz. If a € C,p, then by Item ((2)) in Proposition 4.28
we have that 20e < |7(a)| = |o(a)] < 10d?n. If a € Cz \ Csp and s = root 7(a), then (4.50)
implies that

7 (a)] = C(s)]s| if a € Csp
(C(s) + qa)ls| ifa € Cup
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Since 20e < ((s)|s| < 40e and 0 < ¢, < |((s)], we obtain that 20e < |7(a)| < 80s < 10d*n.

Next, we prove Item (3). Let x € X, (¢,y) = F(y,oy) and (f,2) = F(z,)(z). We use Lemma
4.3 to obtain m € [0, |n(yo)|) such that

1(Y0) = Z-m,—m+in(zo)l) and co = fo = |7(2-m0)] (4.52)

We first assume that zy € C,,. Then, Equation (4.52) implies that z, occurs in 7(yo), and
thus, since zy € C,p, Equation (4.49) ensures that n(yo) = yo € Cap. Hence, m = 0, zy = yo,
co = fo and ¢; = ¢y + |o(yo)| = fo+ |7(20)| = f1. Using this and Item ((4)) of Proposition
4.28 with x and (¢, y) produces

per(‘r[f0+8€,f1—85)> - per(x[co—&—Se,cl—Sa)) > €.

Let us now assume that zyp € Cz\C,p. This condition and Equation (4.49) imply that yo € C,.
Hence, we can use Item ((4)) in Proposition 4.28 to obtain that per(zc,—sec +ss)) < €. We
conclude, since (4.49) guarantees that [fy, f1) is contained in [co, ¢1), that per(x(f, s, f+82)) <

per(l’[60,85701+85)) <e.

It rests to prove that (Z, ) satisfies Item ((3)) of Definition 4.6. Let a € Cz \ C,p be such
that root 7(zg) is conjugate to root 7(a). We have from (4.52) that zy occurs in n(yp), so, by
(4.49), root 7(zp) = root o (yp). Similarly, a occurs in 7(b) and root 7(a) = root o (b) for some
b € Cy. The first condition and (4.49) imply, as a € Cz\Csp, that b € C,. Now, the hypothesis
ensures that root o(y) is conjugate to root o(b). Therefore, as (Y, o) has dichotomous periods
w.r.t. (Cap,Cp), we can use Item (3) of Definition 4.6 to obtain that rooto(yy) = rooto(b).
We conclude that root 7(zy) = root 7(a), completing the proof of Item (3).

Finally, for Items (4) and (5), we present the proofs of Propositions 4.39 and 4.40 hereafter.
]

Lemma 4.41 Let Cpioek be the set of words a’b, where a € Cqp, b € Cyyp, £ > 1 and root T(a) =
root7(b). Then, any z € Z can be written as z = ... w_jwow ..., where w; € Cplock OT
wj € Cap and wjwjs1 & Ciock-

Proor. Let z € Z and (c,y) = F(v,»)(7(2)). We set w; = n(y;). The definition of 7 in (4.49)
ensures that w; € Cpiock UCap. Moreover, Item ((5)) in Propositions 4.28 says, in this context,
that wjw;1 & Cue for all j € Z. Finally, by Lemma 4.3 we have that z = Sy(y) for some
{ € Z, and thus that z = ... w_jwow; ... O

We can now present the proof of Proposition 4.40.

PrROOF OF PrOPOSITION 4.40. Item ((2)) directly follows from the definition of 7 in (4.50).
Let us prove Item ((1)). Let z € Z be such that zj,41) € (Cz \ Cap)™. We write z =
.. wW_qwowy ... as in Lemma 4.41 and let Cpock be the set defined in Lemma 4.41. Then, the
hypothesis 2 ;11) € (Cz \ Cap) ™ and the condition wywyi1 & Cpiock imply that 2 j41) occurs
in wy for certain k € Z such that wy € Cpiock- Hence, 2, = z; € Csp for all ¢ € [i,j) and
root 7(z) = root7(z;) for all k € [i,j + 1). O
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Lemma 4.42 Let 2,2 € Z and { > 1 be such that 7(Zjy) is a prefix of 7(2). Then,
29 € Cz \ Cap tmplies that Z; € Cz \ Cap and root 7(Z;) = root 7(zg) for all i € [0, 7).

Proor. First, we note that, by Item ((4)) in Proposition 4.38, per(7(2;)) < per(7(29)) < ¢ for
all 7 € [0,¢). Thus, by Item ((4)) in Proposition 4.38, Z; € Cz \ C,p for all i € [0, 7).
Let s = root 7(2p). In order to continue, we claim that

if a € Cz \ Csp and 7(a) is a prefix of s, then root7(a) = s.

First, we note 7(a) is a prefix of (root 7(a))>. Also, Item ((4)) in Proposition 4.38 guarantees
that |root7(a)| < e and that |s| < e. Hence, as |7(a)| > 2¢ by Item ((2)) in Proposition
4.38, we can use Theorem 4.8 to deduce that root7(a) and s are powers of a common word
r. This implies that s = root7(a) = rootr.

We now prove that root 7(Z;) = s for i € [0,¢) by induction on . If i = 0, then we have from
the hypothesis that 7(Z) is a prefix of 7(zp) and that Z, € Cz \ C,p. Thus, root 7(Z) = s by
the claim. Let us assume now that 0 < i < ¢ and that root7(Z;) = s for j € [0,4). Then,
7(Zj0,5)) is a power of s. Being 7(Zp) a prefix of 7(29)* = s>, we deduce that 7(Z;) is a
prefix of s>. This allows us to use the claim and obtain that root 7(Z;) = s. This finishes the
inductive step and the proof of the lemma. n

Finally, we prove Proposition 4.39

Proor orF ProrosiTioN 4.39. We fix the following notation for this proof. Let z,7 € X,

(f’ Z) = F(Z,T)(I)7 (fv 2) = F(Z,T)(j)7 (Cv y) = F(Y,U) (ZE) and (57 g) = F(Y,U) (‘%)

We start by proving [tem (1).~Assume that per(zj_c.)) > € and that 272, 7420) = x’[_m%’mgn).
We have to show that fy = fy and zg = 2.

We claim that
(i) co = ¢ and yo = go;
(ii) yo € Cap and go € Cap;
(iil) 20 = Yo, fo = co, 20 = Gio and fo = G,

Item (i) follows from the fact that the current hypothesis allows us to use Item ((3)) of
Proposition 4.28 to get that F(()ng) (x) = F(()Y’a) (), which is equivalent to (i). For Item
(ii), we note that if yo € Cy \ Cop = Cp, then Item ((4)) in Proposition 4.28 implies that
per(Tcy—seci+8:)) < €. Hence, as [—¢,¢) is included in [co — 8¢, ¢ + 8¢), per(z_.y)) < &,
contradicting our hypothesis. Therefore, yo = 7o € Cap.

To prove Item (iii), we first note that Lemma 4.3 gives an integer m € [0, |7(2o)|) such that

Ylmm,—m+n(z0)) = M(20) and —co = — fo + |1(2)[0,m)|- (4.53)

In particular, yo occurs in 7(zp). Since Item (ii) ensures that yo € Csp, it follows from the
definition of n in (4.49) that n(yo) = yo = 20. Putting this in (4.53) gives that m = 0 and
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co = fo. A similar argument shows that Z; = 7y and fo = ¢o as well. This completes the
proof of the claim.

Items (i) and (iii) of the claim imply that (fo, z9) = ( o, Zp), proving Item (1) of the proposi-

tion.

Before proving Item (2), we claim that
if 20 € Cap and x[,17d2n,17d2n) = j[*l?dQn,17d2n)7 then F(()Z,T) (l’) = F?Z,T) (5}') (454)

To prove (4.54), we start by using Item ((4)) in Proposition 4.38 to obtain that per(xs,+se,f,—sc)) >
e. Thus, by Item ((2)) in Proposition 4.13, there exists j € [fo + 8¢, fi — 8¢) satisfying

per(Tj_c jte)) > €. (4.55)

Now, since j € [fo+8¢, fi—8¢) and |7| < 10d’n, we have that j € [~10d*n, 10d*n). Therefore,
by the hypothesis T 1742, 1742n) = T[-17a2n,17d2n), T[j—7d2n,j+7d?n) = T[j—7d2n,j+7d2n)- COmbining
this with (4.55) allows us to use Item (1) of this proposition and deduce that

Fly(57x) = Fly . (5°%). (4.56)

Observe that the condition j € [fy + 8¢, fi — 8¢) implies that F?Z,T)(ij) = (fo—7,20). Let
i be the integer satisfying f; < j < fi+1 and note that F?Z’T)(Sj:i) = (f; — 4, Z;). Then, by
(4.56), fo = f; and 2o = Z;. In particular, fi=fo <0< fi = fiz1,s0i=0. We conclude
that F{, () = (fo, 20) = (fo, 20) = F{z(T).

We now prove Item (2). Assume that F(()Z,T) (x) = F((]ZJ)(:Z’). The is equivalent to zy = Z and

fo = fo, s0 fi = f1 as well. Hence,
Fly . (S'x) = Fy (S'E) for all i € [fo, f1). (4.57)
We are going to prove that
if T[—50d2n,50d2n) = L[—50d2n,50d%n), then F(()Z7T)(Sf1x) = F?z,r)(sfli")- (4.58)

The lemma then follows from an inductive argument on k that uses Equations (4.57) and
(4.58).

Let us assume that T[_s5042n50a2n) = T[—50d2n,50a2n). We consider two cases. First, we as-
sume that z; or Z; belongs to C,p. There is no loss of generality in assuming that z
is the one belonging to C,,. Observe that the hypothesis and that |7] < 10d*n ensure

that @[ _742n f,17420) = Z[f,—7d2n,fi+7d2n)- This allows us to use (4.54) and deduce that
F(()Z,T) (Sflaj) = F(()Z,'r) (Sfl‘%)

We now consider the case in which 2z, and Z; belong to Cz \ C,p. Observe that, since f; = fl,
v&lzqe have tliat F?ZJ)(Sflx) = (0,21) and F(()ZJ)(Sfli:) = (0,2;). Thus, it is enough to show
that z; = 2;.
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We assume without loss of generality that |7(21)] > [7(Z1)]. Let £ be the integer satisfying
fo < fo < fera. Remark that £ > 2 as fo = f1 + |7(21)| < fi + |7(21)| = f2. Being fi = fi
and fy < fo, the hypothesis Z(_s042n,5042n) = Z[—5042n,5042n) and the bound |7| < 7d*n ensure
that 7(2p1,¢) is a prefix of 7(21). Hence, since we assumed that z; € C; \ Csp, Lemma 4.42
yields that

Zi € Cz \ Cyp and root7(Z;) =root7(z) for all i € [1,7). (4.59)
We set s = root 7(z1). It then follows from 4.59 and 4.50 that for any i € [1,7)
o s6(s) %f 21 € Csp s = 560 ~ ?f %, € Cop (4.60)
sSEFeif 2 € Cpp sStaz  if z Cup

We can use this to prove that |7(z1)| = |7(21)] implies that z; = Z;. Indeed, in the case
21 € Cgp, it follows from (4.60) and the fact that ¢, > 0 for all a € C,, that 7(2) =
7(z1) = s¢¢), and thus that Z; = z; = ' (s¢®). Similarly, if z; € Cyp, then (4.48) and
the equation root 7(z1) = root 7(2;) ensure that ¢,, = ¢z, and thus from (4.60) we get that
7(21) = 7(21) = 5T In particular, 2 = 2 = ) (s¢C) ),

It is left to consider the case |7(21)| > |7(Z1)], so let us assume that this condition is satisfied.
Then, by (4.60) and the fact that ¢, > 0 for all a € Cp,

21 € Cyp and Z; € Cp. (4.61)
In this situation, Item ((1)) in Proposition 4.40 ensures that z; € C,p,. Now, observe that
f3 < 3|7| < 30d?n and f, > 0; so the hypothesis T[—50d2n,50d2n) = L[|—50d%n,50d2n) Sives that
T fy—7d2n, f5+7d?n) = L[fo—Td2n,fs+7d2n)- Hence, we can use (4.54) to obtain that F?ZJ)(Sfo) is
equal to F?ZVT)(SfQ:i). More precisely, since fy < fo < foi1, we can write
(ff - f27 2@) = F[()Z,T)(Sh‘%) = F?Z,T)(‘th) = (07 Z2)'
Hence, the equation F[()ZJ)(Sf?x) = F(()ZJ)(Sf?i:) is equivalent to
fo=f, and 3 = 2. (4.62)

In particular, 7(%p1,)) = 7(21)-

Now, since z; € Cyp, we have by Item ((1)) in Proposition 4.40 that 2, = 2, € C,,. Therefore,
Item ((1)) in Proposition 4.40 guarantees that z; € Cs, for all ¢ € [0, — 1) and 2, € Csp.
Combining this with (4.60) and the equality 7(Z}1,¢)) = 7(21) produces that

(€(s) + gz)ls| = |7(z0)] = 7 (Zp.p)| = (€C(s) + gz, sl

Since ¢., < ((s) and ¢z, , > 0, we conclude that ¢ < 1. But then 7(z1) = 7(Z,) is the
empty word, which contradicts the definition of 7. Therefore, the case |7(z1)| > |7(21)| does
not occur and the proof is complete. O

4.7 The fourth coding

In this section, we give the final versions of the codings needed in the proof of the main
theorems. The new element of these codings is that it is possible to connect them using
morphisms.
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The section has two parts. In the first one, we construct the new codings, using Proposition
4.38 and a modified higher block construction, and present their basic properties. Then,
in the second one, we show how we can connect two of these codings using the morphism
described in Subsection 4.7.2.

4.7.1 Construction of the fourth coding

Let X C A” be an infinite minimal subshift, n > 0 and let d be the maximum of [px(n)/n],
px(n+1)—px(n), #A and 10*. We use Proposition 4.38 with X and n to obtain a recognizable
coding (Y C B% 0: B — A") of X, a partition B = B,, U Bs, U B, and an integer ¢ €
[n/d*®+4 n/d) satisfying Items (1) to (5) of Proposition 4.38.

We start with the following observation. Since (Y, o) is a recognizable coding of a minimal
subshift, Y is minimal; thus, for all y € Y there exists k < 0 such that y; € B,,. This
observation allows us to define the map £(y) = max{k < 0: y, € Bap} that returns the index
of the first-to-the-left symbol in B,p.

Let vg: Y — B* be the map y — Yey)Y—1Yoy1 and P (y) = (10(S7y))jez. We treat 1 (y) as a
sequence over the alphabet B* and define Z = ¢(Y) C (B*)Z. We set

C={xn:2€7}CB" (4.63)
Let 0(aa_japay) = ag for aa_japa; € C and 7 = 0. Remark that
OY(y) =y for any y € Y. (4.64)

We abuse a bit of the notation and define £(z) = max{k < 0 : z; € C,,} for z € Z. Note
that £(¢(y)) = L(y) for y € Y.

Basic properties of the fourth coding
We present here the basic properties of (Z, 7).
Lemma 4.43 The pair (Z,7) is a recognizable coding of X .

Proor. It follows from the definitions that ¢ commutes with the shift and that it is continu-
ous; hence Z = ¢(Y) is a subshift. Also, by (4.64), we have that ¢ (y) = y for any y € Y, so
Y =0u(Y) = 0(Z). Therefore, (Z,0) is a coding of Y. It is easy to see from the definition
of Z that (Z,0) is recognizable. Hence, as (Y, o) is recognizable as well, Lemma 1.1 tells us
that (Z,00) is recognizable. Being 7 = ¢, we conclude that (Z, 7) is recognizable. O

Thanks to the last lemma, F(; - (z) and F(()Z,T) (x) are defined for every z € X.

Lemma 4.44 Let v € X, (¢,y) = Fyo(x) and (f,2) = Fizr(x). Then, ¢, = fi and
@/Jo(Sky) =z, for allk € 7.
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Proor. On one hand, (4.64) implies that 7¢(y) = 06¥(y) = o(y), and thus that S~°7(¢(y))
is equal to S™®o(y) = x. On the other hand, o(yy) is equal to 7(¢o(y)) = 7(¥(y)o); so, as
(—co,y) is a o-factorization, [0, |o(yo)|) = [0, |7(¥(y)o)|) contains —cy. From these two things,
we conclude that (—cg,%(y)) is a T-factorization of x. Then, since (Z,7) is recognizable by
Lemma 4.43, (—co,%(y)) and (—fo,2) are the same 7-factorization, that is, ¢g = fy and
Y(y) = z. We use this to compute, for 7 > 0,

fi= =T+ 7(zp.)l = —co + |[T(W(Y)s)| = —co + |o(yp.)| = ¢,

where in the last step we used that 7(¢(y)) = o(y). A similar computation shows that f; = ¢;
for j < 0 as well. m

The last lemma has the following important consequence. For any x € X, the cut functions of
its o-factorization in Y and of its 7-factorization in Z are the same. Therefore, we can simply
write (¢,y) = Fv,»)(z) and (¢, z) = F(z(x). This will be tacitly used in this subsection.

Lemma 4.45 Let z,@ € X, (¢,2) = Fz»(X) and (¢,2) = Fz(Z). If 20 = Z, then
LlegyCe(z)+1) '%[52(5)752(2)-9—1) and Llej,cip) — ‘%[Ejﬂéﬂ—l) forj € [_1’ 1]'

Proor. Let (c,y) = F(v)(z) and (¢,9) = F(v,»)(Z). Then, by Lemma 4.44 and the hypothesis

Ye)Y-1Y01 = Yo(y) = 20 = Zo = Yo(¥) = Ue(z)J-1J0T1-

Hence,

Llcozy,Cozy41) — U(yﬂ(y)) = U(QS(Z})) = j}[és(z)ﬁs(z)ﬂ)‘
Similarly, zje_, ¢,) = o(y—1%0y1) is equal to Tjz_, &) = o (F-19oT1)- O
Let

Cap = 07 (Bap), Cup = 07 (Bup) and Cs, = 07 (Bs,). (4.65)

Note that, since B,, U By, U Bsp, is a partition of B, the sets C,p, Cup and Csp form a partition
of C = 6071(B).

Proposition 4.46 The following conditions hold:
(1) 20e < |7(a)] < 10d*n for all a € C.
(2) #7(Cap) < 2436 #(root 7(C)) < 5d3¥6 and #C < 74d**¢+36 pow-com(X)*.

(3) (Z,7) has dichotomous periods w.r.t. (Cap,Csp U Cup) and 8c.

Proor. We start with the proof of Items ((2)) and ((1)). We have, from the equation 7 = o
and (4.65), that
7(Cap) = 0(Bsp) and 7(C) = B.

Thus, by Item ((1)) in Proposition 4.38, #7(Cap) = #0(Bap) < 2d3¢5 and #(root 7(C)) =
#(rooto(B)) < 5d34t5. Also, from the definition of C we get that #C < #B*. Putting the
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bounds from Item ((1)) of Proposition 4.38 in this inequality gives that #C < 7*d'24+36 pow-com(X)*.
Item ((1)) follows from the equation 7(C) = B and Item ((2)) of Proposition 4.38.

We now prove Item ((3)). Let € X be arbitrary and define (c, z) = F(z,)(z) and (c,y) =
F (v, (z). Equation (4.65) ensures that yo € Bap if and only if 2y € C,p. We also note that, by
Lemma 4.44, root7(zy) = rooto(yy). Therefore, Item ((3)) of this proposition follows Item
((4)) in Proposition 4.38. O

Remark 4.7 As was similarly observed in Remark 4.6, a consequence of Items ((3)) and
((1)) in Proposition 4.46 is that, for all a € C \ C,p, |root 7(a)| = per(7(a)).

Proposition 4.47 Let z € 7.

(1) Ifi < j are integers such that z, € C \ Cap for all k € [i, j), then root 7(z;) = root 7(z;)
ifk€li,j), 2k €Csp ifk €[i,j—1), and zp = 241 for alli € i+ 1,7 —1).

(2) If zy € Csp, then T(a) = (root7(a))?", where r is the unique integer for which 2| root T(a)|
belongs to [20e, 40¢).

Proor. Suppose that ¢ < j satisfy 2z, € C\Cap for all k € [i, j+1). Let us denote F(y,,)(7(2))
by (¢,y). Then, by Lemma 4.44, y, = 0(z;) € B\B,p for all k € [i, j+1). In this context, Item
((1)) of Proposition 4.40 ensures that root o(yy) = rooto(y;) if k € [i,j+1) and y, = y; € By,
if k£ € [i,7) We deduce, as 7(zx) = o(yx), that root7(z;) = root7(z;) for all k € [i,5 + 1).
Also, for any k € [i, ), we have that z, € 07! (yx) € Bs,. Now, since y; € C\ Cap if 1,5+ 1),
we have that ye(sky) = yg(siy) for all k € [i, j +1). Combining this with the fact that y, = y;
if k € [i,7) yields

Yo (S™Y) = Ye(sky) Yn—1YkYr+1 = Yo(siyYiyiyi for all k€ [i+ 1,5 —1).
We conclude, using Lemma 4.44, that z = 2z;11 for k€ [i + 1,7 — 1). O]
Lemmas 4.48, 4.50 and 4.49 will use the following notation:
E = 50d’n.
Observe that |o| < E, |7| < E and that E is bigger than or equal to the constants 7d* and

50d?n appearing in Proposition 4.39.

Lemma 4.48 Let x,7 € X be such that x(_3p3p) = T-sp3p) and per(x_..) > €. Let
(c,2) =Fz(x) and (¢,2) = F(z(Z). Then, 7(20) = 7(Z) and F(()ZJ)(SQZE) = F(()ZJ)(S‘”:T:).
In particular, co = ¢o and ¢, = ¢;.

Proor. We use the notation (c,y) = Fy)(z) and (¢,7) = Fy,»)(Z). Observe that the
hypothesis 2|_3p 3p) = Z|-3£,3E) allows us to use Item ((3)) in Proposition 4.38 to obtain that

Fly ) (S'z) = Fiy,(S'E) for all i € [0,2E]. (4.66)
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In particular, ¢ = ¢ and yo = go. Thus, by Lemma 4.44, 7(29) = o(yo) = (%) = 7(20).
Also, for j € {1,2} we have that 0 < ¢; < s < 2FE, so (4.66) can be applied to deduce that
Fly ) (592) = F{y ,(S9E). Then,

Yo,3) = Jpo,3) and ¢; = ¢; for all j € [0,3). (4.67)

Before continuing, we prove that
Yo, gO € Cap- (468)

We note that if yg € C\Csp, then Item ((3)) in Proposition 4.46 gives that per(zy,—sc.c,+9s)) <

e, which is impossible since we assumed that per(zj_..)) > €. Thus, yo € Csp. Similarly,
Yo € Cap as i’[_e,g) = T[—ce)-

We can now finish the proof. The condition ¢; = ¢ follows from (4.67). Also, we have
from Lemma 4.44 that z; = ¥o(Sy) = £(SY)yorr1y2 and Z; = ¥o(Sy) = £(SY)Yot172- Now,
Equation (4.68) guarantees that £(Sy) = yo and £(Sy) = gy. Therefore, by Equation (4.67),
z1 = Z1. We conclude, using that ¢; = ¢, that

Flz(52) = (0,21) = (0,7) = F{z(S9%). (4.69)
O

Lemma 4.49 Letx, € X, (¢,2) = F(z - (x) and (¢, Z) = F(5)(Z). Suppose that v|_apar) =
T_apap) and 2o € Cap. Then, 7(20) = 7(Z) and F?Z,T)(Sclx) = F?Z’T)(SC%). In particular,
co = Cg and ¢ = 4.

Proor. The condition 2y € C,p implies, by Item ((3)) in Proposition 4.46, that per(z,q,)) >
e. Thus, by Item ((2)) in Lemma 4.13, there is i € [co, ¢1) such that per(zj_c1c)) > €. Now,
since |7| < E, the hypothesis ensures that (S'2)j_. 1) is equal to (S'Z);i_c4s). Therefore,
we can use Lemma 4.48 and conclude that 7(z) = 7(Zp) and F(()ZJ)(SCl.Z‘) = F?Z’T)(Scli). O

Lemma 4.50 Let z,2 € X and k > 0 be an integer. Suppose that F(()Z,T) (x) = F?ZJ) (Z) and
that T[_3p k+3E) = T[-38,k+3E). Lhen, F?ZJ)(SZ':U) = F(()Z,T)(Sii") for alli € [0,k].

Proor. We only prove that F(()ZJ)(SQS) = F(()ZJ)(S,%) if F(()ZJ) (x) = F(()Z,T) (%) and that x|_3p,1438) =
T[_3E,143E), as then an inductive argument on ¢ gives the lemma.

Let us write (c,y) = Fy,o)(x) and (¢,9) = Fy,»)(x). Then, by Lemma 4.44, z = 1(y) and
Z = 1(y) satisfy (c,2) = Fz(x) and (¢, 2) = F(z-(x). Hence, the hypothesis F(()ZJ)(I) =
F?Z’T) (Z) is equivalent to zg = Zy and ¢y = ¢&. This implies two things:

(1) Yewy-190y1 = Yo(y) = 20 = Zo = Yo(Y) = Ye()YoY17-
(ii) ¢4 = co+ |o(yo)| = ¢ + |o(go)| = ¢ and, similarly, ¢y = é.
We deduce that, for any i € [0, ¢),
Fl;(S'z) = (co —i,20) = (Go — 1, %) = Fz(S'Z).
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In particular, if ¢; > 0 then F(()ZJ)(SZL‘) = (co — 1, z) is equal to F?ZJ)(S:%) = (éo— 1, %) and
the proof is complete.

We now assume that ¢; = 1 (so ¢, = 1 as well by (ii)). In this case, F(()ZJ)(S:L') = (0,2) and
F(()Z,T)(Sj) = (0, 21); thus, it is enough to prove that z; = Z.
We observe that, since z; = ¥y (Sy) and Z; = 10(S7),

(1) 21 = yoyorrye if yo € Bap and 21 = yeyYoy1y2 if yo & Bap, and

From these relations and (i) we deduce that
z1 = Zz; if and only if y5 = ¢s.

Now, since F(()KU)(x) = (co,y0) = (Co,Y0) = F?YJ) (%) and since we assumed that r[_sp1438) =
T[_3p,143E), We can use Item ((3)) in Proposition 4.38 to obtain that F?Y’U)(S"x) is equal to
F?Yﬁa)(Sif) for any i € [0,2F]. In particular, since ¢y satisfies 0 < ¢y < ¢y + 2|0| < 2F, we
have that

(0,52) = F(()Y,U)(SCQ:U> = F(()Y,a)(scgi’) = F(()Yp)(Séin) = (0, %),

where we used that ¢o = é by (ii). It follows that y, = J> and thus that F(()ZJ)(SQZ) is equal
to F{y ) (ST). O

4.7.2 Connecting two levels

In this subsection, we consider two of the codings constructed in Subsection 4.7.1 and prove
several lemmas that relate them. We start by fixing the necessary notation.

Let X be a minimal infinite subshift, n,n’ > 1 be integers and let d be the maximum of

[px(n)/n], Tpx(n')/n'], px(n+1) =px(n), px(n'+1) —=px(n'), #.A and 10*. Let E = 50d°n
and E’ = 50d?n/. We will assume throughout the subsection that

n' > P+ 500d%n. (4.70)

We consider the recognizable codings (Z C C%,7: C — A") and (2’ C C'*,7': C' — A*) of
X obtained from n and n’ as in Subsection 4.7.1, respectively. Let also &’ € [n//d?*+4 n//d)
and ¢ € [n/d**+* n/d) be the constants defined in Subsection 4.7.1, and let us denote by
CapUCspUCy,, and C; ,UC,, UC,,, the partitions of C and C’ defined there. Let £(z) = max{k <
0:2, €Cop}and £(2) ={k <0:2,€C}forz€ Zand 2 €Z.

The crucial relation between (Z’,7') and (Z, 7) is the following inequality, which is a conse-
quence of (4.70):
e > 10E. (4.71)

Preliminary lemmas

We fix, for the rest of Subsection 4.7.2, a point € X and the notation (c,2) = F(z(x)
and (¢, 2") = F(z 1 (2).
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Lemma 4.51 Suppose that per(7'(z))) < e. Leti € [¢, — 7',y + T€’) and j be the integer
satisfying 1 € |[cj,¢is1). Then, zj = 29 € Csp, |root7(z;)| = |root7'(z))| and ¢; = ¢
(mod | root 7'(2})]).

Proor. The condition per(7'(z;)) < & < ¢’ implies that z; € C"\ C},. Hence, by Item ((3)) in
Proposition 4.46,

(e8¢’ ¢, +8e7) = (root 7—/(26))[2—85’,|T’(z(’))|+85’) (4.72)
and

| root 7'(z)| = per(7'(2p)) < e. (4.73)

Equation (4.72) implies the following: If & is the integer satisfying c¢{, —7¢’ € [c, ck+1) and £ is
the integer satisfying ¢f, —7¢’ € [cy, coy1), then 7(z;) € C\C,p for all j € [k, £). Indeed, for any
such j, we have that 7(2;) = (¢, ¢,,,) OcCurs in 2 _7or_3p o 17o43p), and so per(7(z;)) < ¢,
which implies, by Item ((3)) in Proposition 4.46, that z; € C \ C,p. We can then use Item
((1)) in Proposition 4.47 to get that

2j = zp41 € Csp and ¢; = cx1 (mod |root 7(2zx41)|) for all j € [k + 1,0 —1).
Since & > |7|, 41 < ¢o < ¢—1, S0 we in particular have that

zj =29 € Csp and ¢; = ¢y (mod |root 7(2p)]). (4.74)

We are now going to prove that | root 7(2)| is equal to | root 7/(z()|. The lemma would follow
from this and (4.74).

Note that 7'(2;) and 7(20) occur in [ _ger 1 82r). Also, Item ((1)) in Proposition 4.46 ensures
that 7/(2;) and 7(z) have length at least 2c. Then, as per(7(y s, +se)) < € by (4.72) and
(4.73), we can use Item ((1)) of Proposition 4.13 to deduce that

per(7(29)) = per(x[06,8€/70/1+8€/)) = per(7'(z)) < e.

In this situation, Item ((3)) in Proposition 4.46 guarantees that zy € C\C,p and | root 7(zp)| =
per(7(zo)) = per(7'(2})). Equation (4.73) then yields | root 7(zg)| = | root 7/(2{)|. O

Lemma 4.52 Assume that z, € C'\ C,, and that per(7'(zy)) > . Let & € X and suppose

that .T[_gel’gg/) = Zi[_35/735/). Then, F(()Z,T) (l‘) = F?Z,T) (SC)

Proor. The hypothesis gives that per(x(y «)) = per(7'(zy)) > €, and Item ((1)) in Proposition
4.46 that [v(y )| > 2¢. Hence, we can use Item ((2)) of Proposition 4.13 to obtain iy € [cg, ¢})
such that

per(x[i0*€,io+€)) > €.
Now, since z; € C"\ C,,, Item ((3)) of Proposition 4.46 applies, so

/
per(m[cg—Se’,c’l—&-Se’)) <e.

This implies, as € < ¢, that there exists i € [-2¢", —¢’) such that zj_. ;1e) = T[ig—cigte)-
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Our plan is to derive the lemma using Lemma 4.48 with S‘xr and S'Z. First, we note that

per((S'@)(—ce)) = Per(Tji—cite)) = Per(Tiig—cigre)) > E- (4.75)

Also, since 4E < ¢’ and i € [—2¢', —¢'), we have that [i — 4F i 4 3¢’ 4+ 4F) is contained in
[—3¢’,3¢). Thus, by the hypothesis 2|_3c 301y = T[_3- 3¢,

(Si+Ex)[—4E,3a’+3E) = T[j—3E,i+3¢'+4E)
= Fji—sp,i4eam) = (SPE) Lapsetar).  (4.76)

In particular,
(S'0)(-spsm) = (S'T)[-3p38)- (4.77)

Equations (4.75) and (4.77) allow us to use Lemma 4.48 and deduce that
Fizm(S™H ) = Fly(S777).

Furthermore, the last equation and (4.76) are the hypothesis of Lemma 4.50; hence,

Fly o (S7F ) = F,  (S7HPHE) for any k € [0,3€). (4.78)
Since i € [-2¢',—¢') and E < €', k == —(i + E) belongs to [0,3¢'), so (4.78) gives that
F(()Z,T) ($) = F((]Z,T) (i‘) u

Lemma 4.53 Suppose that z, € Cg,. Then,
F(()ZJ)(SC&*%) = F(()ZJ)(SCH%) for any i € [—5¢',5¢").

Proor. We consider two cases. First, we assume that per(7'(z;)) < e. This allows us to
use Lemma 4.51 and obtain that, if i € [¢, — 7e,c| + Te) and j is the integer satisfying
1€ [Cj, Cj+1>, then

cj =co (mod |root7'(z)]), z; = 20 € Csp and
|root 7(z;)| = | root 7'(2()|. (4.79)

Let i € [—5¢’,5¢’) be arbitrary and denote by k and ¢ the integers satisfying ¢j+i € [ck, Chi1)
and ¢ +i € [y, ¢gq1). With this notation, F?Z )(SCGH )= (ck cy—i, z,) and F{ Z, )(SclH T) =
(¢ — ¢4 — 1, 2,), so we have to prove that z; = zp and ¢ — ¢, —i = ¢, — ¢} — 1.

We have, by (4.79), that z; = z,. Thus, it only rests to prove that ¢, — ¢ —i = ¢, — ¢} — 1.
We note that the definition of £ and ¢ ensures that

(i) ex < ch+i < cpyr = e+ |7(2); and

(i) co <) +1i < copr =co+|7(20)].
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If we use the equality ¢, = ¢, + (¢ — k)|7(20)|, which is a consequence of (4.79), and that
= ¢y +|7'(2))| to replace ¢, and ¢ in (ii), we get that

cr < co+ 14 (I7(20)] = (€ = F)|7(20)]) < ex + |7(20)]-

This and (i) yield
17 (20)] = (£ = B)I7(20)l] < |7(20)I- (4.80)

Now, since zp € Cs, and |root7(z;)| = |root7'(z;)| by (4.79) and since z; € C[, by the
hypothesis, the definition of Cq, and CZ, in Proposition 4.46 guarantees that |7(2)| divides
|7"(24)]. Therefore, the inequality in (4.80) is possible only if |7/(2))| = (¢ — k)|7(20)|. We
conclude, as (4.79) implies that ¢, = ¢ + (£ — k)|7(20)], that

co=cr+ (0 —Fk)|T(20)| = cr + |7 (25)| = ek + ] — .

Hence, ¢, — ¢ — i = ¢y — ¢} — i and the proof of the first case is complete.

Next, we assume per(7'(z)) > ¢. Observe that the condition z; € C, implies that z; € C'\C],

(T
Hence, by Item ((3 /)) in Proposition 4.46, [ s sy = (root7"(26))[2_85,7‘7,(Z6)|+85,) and

| root 7'(2g)| = per(7'(2))) < e. In particular, if 7 € [=5¢',5¢’), then 2y i_s3cr¢ 430y Is equal
t0 T[¢ 4i—ser ¢ 3y Then, the hypothesis of Lemma 4.52 is satisfied for Scotiy and Satig,
and thus we obtain that F{,  (S9™x) = F{; ,(S4"z) for any i € [-5¢',5¢'). O

Lemma 4.54 Let & € X and (¢,2) = F(z(Z). Suppose that z, € Cyp, k > 1, and that
x[60,61+k+88/) = j[50,51+k+85/)' Then}

F(2:)(S9"2) = Fz.(S%T'%) for alli € [T,k +T¢"). (4.81)

Proor. First, Item ((3)) in Proposition 4.46 ensures that per(z(y yser.,—ger)) > €' > e. Thus,
Item ((2)) in Proposition 4.13 ensures that there exists an integer m such that

m € [cy+8',¢; — &) and per(Tm—cmie)) > €. (4.82)

Using that 4F < &’ and m € [¢f + 8¢, ¢} — 8¢’) it can be checked that [m —3E, ¢| + 7¢' + 3F)
is contained in [cj, ¢} + 8¢”). Hence, by the hypothesis @ o sy = T & 486,

m+FE _
(S $) [4E.¢|+7e’—m+3E) = L[m—3E,c|+7'+4E)

= Tm—3E+&)—ch,ci+7'+4E+E) —ch)

(Sm+cO CO+E )[ 4E,ci+7e'—m+3E)- (483>

In particular, as ¢, —m > 0 by (4.82),
(S™x)[_3E3R) (Sm+c° COQ?)[ 3E,3E)-
This and (4.82) allow us to use Lemma 4.48 and deduce that

F?Z,T) (Sm+Ex) = F(()Zﬂ') (Sm+66_66+E‘%) :
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The last equation and (4.83) imply that the hypothesis of Lemma 4.50 holds; therefore, for
every j € [0,¢, + 7' —m), Fy  (S™FHz) = F),  (Sm~ 0T TEHz) Equivalently,

F, . (Sx) = F, (S~ ) for all j € [m+ E, ¢ + (r — 1)¢). (4.84)
We will derive (4.81) from this.

Let i € [—7¢',7¢') be arbitrary. Then, (4.82) and the inequality £ < ¢’ imply that j =
di+i€[m+ E, d + 7). Hence, Equation (4.84) gives that

F, (S ) = F, (ST ot g). (4.85)
Now, we observe that

&r = ¢ = I7(z0)| = I7(%)| = & — &,
S0 i+ ¢ — ¢y + & =i+ ¢. Therefore, the lemma follows from (4.85). O

Proposition 4.55 Let x,7 € X and suppose that F(y . (x) = F(z (Z). Then,

F(()Z,T)(Six) = F(()Z’T)(Sif) for alli € [cy —4¢’, dy — €'). (4.86)

Proor. The hypothesis implies that ¢f, = ¢, and z{, = Z|. Combining this with Lemma 4.45
yields

L

x[c’v /

i) = Ll

'T[C;:/<Z/)’C/£/(z/)+1) [5/2/(2/),82/(5/)+1)7 j7C;'+1)

and ¢; = ¢ for j € [-1,1]. (4.87)
This and the lower bound in Item ((1)) of Proposition 4.46 ensure that

Tie —8el o +8¢") = L(e)—8e! &, 18e)- (4.88)

Next, we show that the following facts hold.
(1) (S%x)_ser gy = (S2)[_ger 80y for all £(y') < k,1<0.

(ii) (S%Z)|_ger 8ery = (S9T)|_ser 80y for all £(7') < k, 1 < 0.

(iii) Tl Coriyy i 82) = Ly g Eor g pa 52"

We start with Ttem (i). If £'(y/) = —1, then (i) is vacuously true. We assume that £'(y’) <

—1. Let k be such that £'(y') < k < 0. The definition of £’ ensures that z;, € C"\ C, . So,
by Item ((3)) in Proposition 4.46, s = root 7'(z;,) satisfies (¢, —se .y, +8c) = 3[2786,7‘T,(Z;6)|+8€,).
In particular, as |7/(z5)| =0 (mod |s|),

R/ . ()| 7 o
Tiop—ser cpt8e) = S1gergery = (ST RSP Lsor ey = @iy, “8er ey 4801

Being this valid for all k£ € [£/(2/) + 1,0), an inductive argument gives (i). Fact (ii) follows
analogously. For (iii), we use (4.88), (i) and (ii) to deduce that
18¢/) = Teg—8e' co+8¢’) = L[ao—8e’,co+8e") = L& 8¢

i / 4 =/
[CE/(Z/)+1’C£/(z/)+1 2/(5’)+1’C£’(2’)+1
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Fact (iii) follows from this and the first equality in (4.87).

Now, since ZS/( € C,, and since (iii) holds, the hypothesis of Lemma 4.54 are satisfied.
Therefore,

FO, (Svenn™e) = FY, (S i) for all i € [~7¢/,7¢). (4.89)

In order to continue, we need to consider two cases. We first assume that £'(z") = —1. Then,
2" € Cap, so (4.87) and Item ((3)) in Proposition 4.46 give

~ ’
per(x[6L1+8€’,~6—85’)) = per(l‘[cL1+8€’, 6—85’)) > €.

This implies, by Item ((3)) in Proposition 4.46, that Z_; € C,,. Hence, £'(2) = —1 and then
(4.86) follows from (4.89).

Next, we assume that £'(2") < —2. In this case, we first prove the following.

(a) F?Z’T)(SCIL"WHIHQ:) = F?ZJ)(SCLl”x) for all i € [-5¢’, 5e').

(b) F(()ZJ)(S CoN 'F) = F{, (50—1“ ) for all i € [—5¢’, 5¢’).

We only prove (a) as (b) follows from an analogous argument. If £'(z') = —2, then (a) is
trivially true. Assume then that £'(z") < —3. The definition of £ ensures that 2} € C'\ Cyp
for all £'(2') +1 < j < —1. Thus, by Item ((1)) in Proposition 4.47, 2} € Cg, for all
£(2) +1 < j < —2. This allows us to inductively apply Lemma 4.53 and deduce that, for
any i € [—be’, be’),

Bl (S0 0) = By (S04 w) =+ = Fiy (57 7a),

This shows (a).

Now, combining Equation (4.89), (a) and (b) produces
F{, (S Ma) = F, (S“1HF) for all i € [-5¢',5¢). (4.90)
We are going to derive (4.86) from this and (4.87).

Let i € [y — 4€',¢y, — €') be arbitrary. We note that (4.90) gives, in particular, that
Tle_—5e/ ey 456') = Tfe_y—5e' 5,45 From this, (4.87) we get that

Lle_1—5e'c0) = i’[57175€',52)' (4'91)

In view of Equations (4.90) and (4.91) and of 3FE < &', the hypothesis of Lemma 4.50 holds;
hence, ‘
F(()ZJ)(SCLl”x) =F{;, (SC 1HF) for all j € [—4e', ) — ¢, —€).

We set j =i — ¢, and note that j € [—4e,d, — ¢, — €’). Therefore, the last equation can
be used to obtain that

F?Z,T)(Si$) = F(()ZJ)(SCLI—H ) F(()Z’T (Sc 1717 4 ) F(Zr)(SH_C 11— 1:[)

Being & ; = ¢, by (4.87), we deduce that (4.86) holds. O

112



The connecting morphism

In this subsection, we build a morphism ~ that connects (Z’,7') with (Z,7). We start by
introducing the auxiliary map r: Z’ — Z and proving some properties for it. The crucial
Proposition 4.57 will allow us to define the connecting morphism . We finish the section
with Propositions 4.60, 4.61 and 4.62, which will be crucial for proving (P;) in Theorems
4.75 and 4.76.

For 2’ € Z" and (c,2) = F(z(7'(%)), let

)= if per(r/(4)) < ¢
r(z) = {min{z’ >0: 2 €Chpt if per(r/(2)) > ¢ (4.92)

Lemma 4.56 Let 2’ € Z' and (c,z) = Fz(7'()).

(1) If 24 € C.

ap’

then ¢,y € [—€', |7 ()| — 8¢').

(2) If e < |root7'(z))| < €' and i is the integer satisfying |7'(z))| € [¢i, Ciy1), then ¢y ) €
[—¢',€") and ciqr(szy € [|T(20)] — €, |7 (25)] + €).

(3) If |root 7'(2)| < €, then ¢,y € [—€',€').

Proor. We start with Item ((1)). Being r(z") nonnegative by the definition of r, we have that
Cr(z) = Co. Hence, ¢,y > —|7| > —¢’. To prove the other inequality, we note that the con-
dition z; € Cj, implies, by Item ((3)) in Proposition 4.46, that per(7'(2')ser r(z)-8e1)) > €
Using Item (2) of Lemma 4.13, we get k € [8¢', |7/(2()| —8¢’) satisfying per(7'(2)ji—c/ ktery) > €.
Let j be the integer satisfying k € [c;, ¢j1). Then, per(7/(2)(c;—se.c;s148¢)) = Per(7'(2')h—ep+e)) >
£, 50 zj € Cyp by Item ((3)) in Proposition 4.46. Also, since ¢;11 > k > 0, we have that j > 0.
We conclude, by the minimality condition in the definition of 7, that r(z’) < j. Therefore,
Gy S ¢ S k<[ (%)] — 8¢

We now consider Item ((2)). Let s = root7'(2(). Since |s| < &/, Item ((3)) in Proposition
4.46 ensures that per(7/(z))) = |s| € (e,€']. Thus, by Item (2) of Lemma 4.13, there is
k € [0,|7'(%)|) such that per(7'(2")jk—e k+e)) > €. Moreover, the condition |s| < €’ implies,
by Ttem ((3)) in Proposition 4.46, that per(7'(2){_ger 7 (z)+8e)) is at most &’. Therefore, we
can find ko € [0,¢’) and ky € [|7/(2)], |7/ (20) | +€’) satisfying 7/(2') p—c kte) = T'(2') (ko—e kote) =
T'(2") ey —e k1 +)- In particular,

per(7' (2 ) k—c k+e)) = PEr(T'(2) ko—ckote)) = PEN(T () k1 —e ki 42)) > €. (4.93)

Let jo, j1 € Z be the integers satisfying ko € [c;,, ¢jo+1) and &y € [¢j,, ¢j,+1). Observe that, by
(4.93) and Item ((3)) in Proposition 4.46, z;, and z;, belong to C,,. Also, since ¢j 41 > ko > 0
and c¢j,41 > k1 > |7'(2))| (where i is the element defined in the statement of the lemma),
we have that jo > 0 and j; > i. We conclude, from the definition of r, that r(z') < jg
and i + 7(S2') < ji. Therefore, ¢,y < ¢y < ko < € and sy < ¢, < |T'(%)| + €
Finally, (4.92) ensures that r(2) > 0 and i + 7(S%') > 4, so ¢y > —|7] > —¢' and
Citr(s2) = |T'(20)] = |7'(25)| — €’. This completes the proof of Item ((2)).
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For Item ((3)), we note that the condition |s| < e implies that per(7'(2})). Hence, r(z') =0
and ¢,y € [—|7],0] C [=€',€'). O

Proposition 4.57 Let 2,2 € Z', (¢,z) = Fz(7'(?')) and (¢,2) = Fz(7'(Z')). We
define i and j as the integers satisfying |7'(2))| € [ci, civ1) and |7 (Z)| € [}, Ej41). If 2,
then ¢,y = Cr(z1y, Civr(S2r) = Cjgr(5z) AN 2[r(2)itr(S21)) 1S €qual to Zjp(z1 jir(s37))-

Proor. We start with some observations that will be used throughout the proof. Since
2y = %, Lemma 4.45 gives that

7(2Ly) = 7(2L0), T (20) = 7'(%) and 7'(21) = 7'(Z).

In particular,

T (20) 1l e = T (Z0) =i G L (=)D (4.94)
Also, since 2z, = Z, we have from Proposition 4.55 that
F?Z,T)(SkT,(Z/)) Flz (S*7'(2)) for all k € [—4e’, |7/ (2))| + 4€'). (4.95)
We now prove that
Cr(z) = 5r(2’) and Zr(z') = gr(gl). (496)
Note that Lemma (4.56) ensures that
Cr(2')s 6T(g/) € [—6/, ’T’(Zé)‘ — 86/). (4.97)

Hence, from (4.95) we get that F0 H (ST (Z)) = F(()ZJ)(SCT(ZWT’(,%’)). This implies the
following: If ¢ is the integer satlsfylng Cr(z) € [Co, Cpp1), then

Cr(z) = ¢ and Zr(z') = Zy- (498)

Note that £ > 0 (as ¢ip1 = ¢py41 > 0). Being 7/(25) = 7'(%), we get, from (4.92), that

r(z') < {. In particular, Cr(z) < € = Cp(zr). A symmetric argument shows that c,;y < ¢z,
which allows us to conclude that ¢.z) = ¢»). Then, it follows from (4.98) that ¢,y = ¢&.
Therefore, 7(Z) = ¢, and thus 2. = Z = Z,(z) by (4. 98) This proves (4.96).

Observe that (4.96) implies that F(z ) (Sw¢)7(2')) is equal to F (4 (S“"7'(Z")). This,
(4.94) and (4.97) permit to use Lemma 4.50 and obtain that

F?Z,T)(SkT’(z')) =F! (Z7) (S*r'(7)) for all k € [c,ry, |7/ (2021)] — ). (4.99)

Then, since ¢, .y = é(z), we have, for any k € Z such that ¢, € [c.(2), |7'(2521)] — €'), that
Ch = Chp(z)4r(z) ANA 2k = Zp_p(ar)4r(z)- (4.100)
To continue, we consider two cases. Assume that per(7/(z])) < e. We note that, since
7'(21) = 7'(2]), per(7'(Z})) < e. Hence, by (4.92), r(Sz') = r(SZ') = 0. Now, the definition

of 7 and j and (4.100) imply that ¢; = ¢; and z; = Z;. Therefore, ¢y, 52y = Cjqr(sz) and
Zigr(S2') = Zj+r(sz)- This completes the proof in this case.
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Let us now assume that per(7/(z])) > . We are going to argue as in the proof of (4.96).
Being 7'(2]) = 7'(%]), we have that per(7'(2])) > €. Hence, by the definition of 7, 2,521
and Zj4,(sz) belong to Cap. Then, since cipr(s.y € [|7(25) — €, |7'(2521)| — 8¢) by Lemma
4.56, it follows from (4.99) that

F(()Z,T) (SC¢+T<SZ/)T/<z/)) — F(()Z,T) (Sci+r<SZ’)7-'(§’))_

Therefore, if k is the integer satisfying ¢;y,(s.) € [Ck, Chy1), then ¢;yp (g2 = E and 2, (s2) =
Zp. As per(7'(21)) > €, we have that 2, = zi,5.) € Cap. Also, since |7'(2))| = |7'(%)],
Cht1 = Cipr(s2)41 = |T'(Z)], so k > j. The last two things imply, by the definition of (5%'),
that 5j+,»(55/) S 6k = Ci4r(S2)- Similarly, Citr(Sz) S 5j+,n(55/). We conclude that k£ = j—l—T(SZ/),
Cj4r(S5) = Citr(sz) and that Zji,.(sz) = 2itr(s2)- O

Definition 4.8 The last proposition allows us to define v: ¢’ — C* in such a way that, if
2 e’ (c,z) =F iz (7'(¢)) and i is the integer satisfying |7'(2))| € [¢;, ¢iy1), then

V(20) = Z[r(z"),i+r(Sz"))- (4.101)

We call v the connecting morphism from (Z',7") to (Z, 7).

Remark 4.8 Let 2/ € Z" and (c,z) = F(z(7'(¢')). Then, (4.101) ensures that r(z’) +
|7(24)| = i+ r(S2’), where ¢ is the integer satisfying |7/(z()| € [¢;, ¢iv1). This relation will be
freely used throughout this subsection.

The rest of this section is devoted to prove the main properties of . We first introduce some
notation. Let p(a’) = 7'(a’) if @' € C,, and p(a’) = root7'(a’) if a’ € C"\ C},. We define
(') = (p(24), 7' (24), p(24)) if 2/ € Z'. Let p(a) and ¢ (z) be defined analogously for a € C
and z € Z.

We fix, for the rest of the section, points 2',2" € Z’ and the notation (c,z) = Fz ) (7'(2))
and (¢, 2) = Fz.(7'(2)).

Lemma 4.58 Let x,& € X, (¢,2) = Fzn(x) and (¢,2) = Fz(2). If -0 o) = T o)
and zy € Cap, then ¢Y(z) = Y(2).

Proor. The hypothesis implies that (S°z)_g g = (5°%)_pr). Then, as 2y € Cyp, we
can use Lemma 4.49 to deduce that ¢g = ¢ and 7(z9) = 7(Z). It is left to show that
p(z—1) = p(Z-1) and p(z1) = p(Z1). We will only prove the first equality as the other follows
from a similar argument.

There are three cases. Assume first that z_y € C,p. Then, the hypothesis ensures that
(S tz)_pp)y = (SO'E)_E k). Since z_; € Cyp, this permits using Lemma 4.49 with S~ 1z
and S~ to deduce that 7(z_1) = 7(2_1). The case Z_; € C,, is analogous.

Let us now assume that z_1,Z_; € C\Csp. We define s = root 7(2_;) and § = root 7(2_1). We
have to prove that s = 5. Observe that, by Item (3) in Proposition 4.46, S[Z_SQO) = Tfey—8e,co)
and 5[2_8570) = T[g—8e,50)- Being cg equal to ¢y and since z|_o ) = T[_o ), we deduce that
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S[ngg,,o) = 5[2785/’0). Then, by Theorem 4.8, s and § are power of a common word, which
implies that s = s. [

Lemma 4.59 Suppose that p(z)) = p(Z)) and that per(7'(z})) > . Assume that p(z' ;) =
p(Z.1) or that per(7'(2)) < &. Then, ¢y = Crizry and Y(STE)z) = (STE)7).

Proor. We first prove the lemma in the case per(7/(z))) < €. Note that the condition
p(zy) = p(Z)) and Items ((1)) and ((3)) in Proposition 4.46 guarantee that per(7'(Z))) =
per(7'(2y)) < € and 2, Z; € C'\ C},. The first thing and Lemma 4.56 give

Cr(2')s 67»(2) S [—6,, 5/). (4.102)
The second thing and the hypothesis p(z) = p(Z}) imply that

7'(2) e gery = T'(2')[—8er 8e7)- (4.103)

Now, we know from the definition of  and the condition per(7/(z()) = per(7'(Z;)) > ¢ that
Zr(2), Zr(z) € Cap. Hence, by Equations (4.102) and (4.103), we can use Lemma 4.49 and
deduce the following: If ¢ and j are the integers satisfying ¢,y € [&,¢i41) and &z €
[¢j,¢js1), then ¢,y = & and .z = ¢;. Therefore, by the definition of r, that ¢,z < & =
Cr(zy and ¢,y < ¢; = (). We conclude that ¢,y = &.(zy. This and Equations (4.102) and
(4.103) allow us to use Lemma 4.58, yielding (S"(*)2) = (S 2).

We now assume that p(z’ ) = p(Z_;) and that per(7'(z;)) > €’. Then, 2| € C;p, so, since

p(zy) = p(Z)), we have that 7/(z) = 7/(Z}). Combining this with the equation p(2’ ;) = p(z" ;)
and Item ((3)) of Proposition 4.46 produces
T/<Z/)[78£’,\T/(26)|+85) =T ( /)[ 8e’,|7/(24)]+8¢") - (4104)

Now, by Lemma 4.56,
Crz), Gr(z) € [—€', 17 (20)| — 8€'). (4.105)

Equations (4.104) and (4.105) imply that

(ST T(2)) e en = (STNT(F)) e er)
and (ST (2)) Loy = (ST T (2)) Loy, (4.106)

Since 2.2y, Zrz) € Cap by (4.92), we can use Lemma 4.49 to deduce the following: If i

and j are the mtegers satisfying ¢,y € [G;,Cit1) and Grz) € [cj,¢j41), then ¢y = G
and ¢,zy = ¢;. We can then argue as in the first case to conclude that ¢, = ¢,(z) and
P(S7)z) = 9(S73). O

Proposition 4.60 Suppose that z, Z, € C,, and y(2') = (Z'). Then:
(1) erery = Crzry and Criayipy(ag) = G+l

(2) (ST 2) = p(S™EVZ) and (STEN TN L) = 4 (STEH G 2,
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Proor. We have, from the condition ¢(z') = ¥(2'), that p(z",) = p(2",) and p(z}) = p(Z}).
Also, since z; € C,,, we have that per(7'(z))) > ¢. Hence, we can use Lemma 4.59 to deduce
that

Cr(z) = ér(g/) and 1/J<ST(Z/)2) = iﬂ(Sr(El)g). (4107)

Now, from Lemma 4.56 we have that c,. € [—¢',|7'(%))| — 8¢’). Also, the hypothesis and
Item ((1)) in Proposition 4.46 give

T2 ) 1_ser () sery = T () [-8er e () +8¢7) (4.108)

These two things, together with the fact that 2. € C,p, allow us to use Lemma 4.49 and
deduce that
B (5507 () = Bl (87w (2)). (4.100)

In particular, ¢, (.11 = Crz)41-
To continue, we have to consider two cases. We first assume that z; € C,,. Then, since ¢(2') =

¥(Z'), we can use Lemma 4.59 to obtain that ¢,/ 1) = Crz)4 vz and P(STENH ) =
B(STEHNE) ).

It rests to consider the case z; € C'\ C.,. Equations (4.108) and (4.109) enable us to
use Lemma 4.50 and deduce that F?Z,T)(Skf’(z’)) is equal to F (Sk '(2')) for all k €
[er(zn41, |7/ (20)] + 7€’). Since ¢y < |7'(20)] — 7€', we in partlcular have that

Flz . (S*7'(2) = Flz(S"7'(Z)) for all k € [|7'(z)| — 7€, |7'(z)| + T€"). (4.110)
Now, the condition ¥(2") = ¢(z’) implies that 2, € C’ \ C},. Thus, by Lemma 4.56,
Cr@) )] Cr@yia)l € 17 (20)] = €17 ()| + €.

We Conclude, using (4110), that Cr(z’)+|7(z(’))| = 6”(5/)""7(%) and ZT(Z/)+"Y(Z(I))| = 2”(5/)""7(%)' The
lemma follows. O
Proposition 4.61 Suppose that p(zf) = p(Z) and € < |root7'(z)| < &'. Then:

(1) ey = ennthep = IT(20)l = Gy = e — 17 ()]

(2) 2r(z) = 2o ()] = Zr(@) = 2@+

Proor. Note that, by Item (3) in Proposition 4.46, per(7/(z)) = | root 7'(2})| € (¢,¢']. This
and the condition p(2f) = p(Z)) permit to use Lemma 4.59 to obtain that ¢,y = & (2.

Then, since z; € C"\ C,,, from Lemma 4.56 we have that

Cr(z) = @(g/) € [—5’,6’).

Now, the hypothesis allows us to use Lemma 4.52 and deduce that F((]Z7T)(SCT<Z')T/ (") =
F(()Z’T)(SCT(Z')T/(gl)). Since ¢,y = €,(zy, we get that

() = Fr(@)-
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We use again Lemma 4.52 to obtain that F?ZJ)(S’“T’(Z’)) = F(()ZJ)(S“'T'(ZBNT’(%’)) for all
k € [—4¢<’,4¢"). This implies, since ¢,y € [—¢’,€'), that

Cr() ()] = Crizn) + 1T (20)]
Similarly, ér(%’)+|'y(26)| = 57"(2/) + |’7'/(2,’6)|. ]
Proposition 4.62 Let k,{ > 1 and s be such that |s| < & and s = root 7'(2]) = root 7'(%})
for alli € [0,k) and j € [0,€). Then:

(1) There is t such that |t| = |s| and t = root7(z;) = root7(Z;) for all i € [r(Z),r(2') +
Yzl and 5 € [r(2), 7(Z) + 1 (Zo,0)])-

(2) ey = Criz) = Col) ey )l = Cr@)th(E,,,) (mod [s]).
(3) w(Sr(z’)Z> _ ¢(Sr(2’)2) and, if p(z}) = p(3)), thenw(ST(leh(zft’vk))‘z) _ ¢(ST(5')+|“/(5fo,2))|g),

Proor. We note that, since |s| < e, Lemma 4.56 implies that
Cr(e), Grzn € (€, €). (4.111)
Hence, by Lemma 4.51, every i € Z such that ¢; € [—4¢’, |7'(2[y ;)| + 4¢’) satisfies
t == root 7(z,(.1) = root7(2), |t| = |s| and ¢; = ¢,y (mod |s]) (4.112)

Similarly, for all j € Z such that ¢; € [—4e’, |7(Z ;)| + 4€'),

== root 7(Z,z)) = root7(%;),|t| = |s| and ¢ = ¢,z (mod |s|) (4.113)
We will use these relations to prove the following:

Crx) = Gy (mod |s]) and ¢ = 1. (4.114)
Since |s| < e < &/, we can use Item ((3)) in Proposition 4.46 and (4.111) to get that

S[Zcr(zqvcr(zfﬁ&) = T (e, e t89) = Logey- As [s| = [t] < e, Ttem ((1)) of Lemma 4.10

gives that S s% = tZ. Similarly, S s” = t*. We conclude that
Sttt = ST eEni?, (4.115)

Since | root 7(2,(.))| = | root 7(Z,(z)| = |s|, we deduce that ¢ and ¢ are conjugate. Therefore,
by Item ((3)) in Proposition 4.46, t = t. Putting this in (4.115) and then using Item ((2)) of
Lemma 4.10 yields ¢,(.y = ¢,z) (mod |s|). This completes the proof of (4.114).

Let a be the integer satisfying |7'(2[y ;)| € [ca; Cat1). We have, by (4.112), that z; € C\ Cyp
for all i € [r(2'),a). Also, by the definition of r, we have that z; € C\ C,, for all i €
[, a + r(S*2")). Hence, by ((1)) in Proposition 4.47, root 7(z;) = root 7(z(.) = t for every
i € [r(?),a+r(S%2')). In particular, coy.(si) = Cr(z) (mod [s]). Since o + r(S*z) =
r(2') 4+ |[v(zp k)], we get that Cr() (2l )| = Cr(z) (mod |s|) and that root7(z;) = t for
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every i € [r(2),r(2) + [v(2p))])- We can prove in a similar way that Cr(2)+11(Z )| = Cr(z)
(mod |s|) and that root7(Z;) = ¢ for every j € [r(Z),r(Z') + [7(Z{0.4))])- Being t equal to t,
we obtain Item (1). Moreover, since ¢,(») = Gz (mod [s), we also have Item (2).

It is left to prove Item (3). We note that, since t = ¢, Equations (4.112) and (4.113) imply
that 1(S")z2) = ¢(STEV2) = (t,t,t). Let us now assume that p(z,) = p(Z,). There are
two cases. First, we assume that |root7/(z,)| < e. Then, by Lemma 4.56, » Co() ey )l €
(17" (o p)) | — €' 17" (2o 1)) | +€7). We get, using (4.112), that ¢(S S ET L)) = (¢, ¢,). Now,
since p(z;) = p(Z;), we have that |root7’ (zé)\ < . Hence, a similar argument shows that
P(S"IT )2y = (1 4,8) = (5" C0m)lL) . Next, we assume that |root 7/(z})| > e.
Then, as p(z;,) = p(%;) and p(z,_,) = p(%),_;) = s, we can use Lemma 4.59 with 2, and Z; to

deduce that ¢( TZ)H'Y [01))‘ ):w(s( 2+ (= O,k))‘z)_ 0

4.8 Main Theorems

We now complete the proofs of Theorems 4.75 and 4.76. The part of the proof in which
we have to obtain a complexity restriction from the S-adic structures can be done without
difficulties with Lemma 4.74. For the other part, we first present in Theorem 4.63 sufficient
condition under which an S-adic structure as the ones in Theorems 4.75 and 4.76 can be
obtained. Then, we check that linear-growth and nonsuperlinear-growth complexity subshifts
satisfy these conditions using Lemmas 4.6 and 4.7.

4.8.1 A set of sufficient conditions

This subsection is devoted to prove the following theorem.

Theorem 4.63 Let X C A” be an infinite minimal subshift. Let (€,)n,>0 be an increasing
sequence of positive integers and d > max{10*, #A}. Suppose that for everyn >0

Ly :
bx (gn) < d; pX(gn + 1) - pX(gn) < d; and €_+1 > 104d2d3+6- (4'116>

n

Then, there exists a recognizable S-adic sequence o = (0,: Anp1 — Al )u>0 generating X
such that for allm > 1:

(P1) #(root ojgn)(Ay)) < 35d"+24 and #A,, < 71d"?*36 . pow-com(X)™.
(P2) oo (@)] < 4dT+0 - |org,(b)] for every a,b € A,.
(Ps) |on-1(a)] < 40424+ . 7 for every a € A,.

The proof is presented as a series of lemmas.

We fix an infinite minimal subshift X C A% an increasing sequence ({,),>o of positive
integers and d > max{10* #.4} such that (4.116) holds for every n > 0.
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We start by defining . Let (Z,, C Cf, Tn: C = AT) be the coding constructed in Subsection
4.7.1 using £,, and let &, € [(,/d**+* ¢,/d) and C, = Cp.ap U Cpwp U Crsp be the constant
and the partition that appear in this construction. In this context, Proposition 4.46 states
the following:

(1) (#root,(Cn)) < 5d3H6, #C,, < 74d"*4+36 pow-com(X)?* and #7(C,, ap) < 2d3416.
(i) 2e, < |m(a)| < 10d%¢, for all a € C,,.
Also, the definition of C,, in (4.63) guarantees that
(iii) For all a € C,, there is z € Z,, such that zy = a.

Moreover, (4.116) implies that 500d2¢, < €, /d**+*, so the results from Subsection 4.7.2
can be used with (Z,41,0,+1) and (Z,, 7,). In particular,

(iv) Propositions 4.57, 4.60, 4.61 and 4.62 can be used with (Z,,11,0,41) and (Z,, 7).
We define the map r, as follows. If 2’ € Z, 1 and (¢, 2) = F(z, ) (Tn+1(%")), then
0 if per(r,.1(2) <
ra(2) =4 i per(7u (=) < € (4.117)
min{i > 0: 2, € Cpapt if per(m41(2))) > €

Note that this is analogous to the definition of r in (4.92). Therefore, Proposition 4.57
ensures that the connecting morphism o,,: C, 1 — C; described in Definition 4.8 is well-
defined. The morphism o, satisfies the following: If 2’ € Z, 11, (¢, 2) = F(z, .)(Tas1(2’)) and
i is the integer satistfying |7,11(z()| € [¢i, ¢it1), then

O-"(ZE)) = Z[rn(2')itrn(S2')) (4118)

We set og = 19 and o = (0,)n>0-

Next, we describe 0(p,)(2)) in terms of 7,(zy) and the auxiliary functions g;, that we now
define. For 2’ € Z,,, we set ¢, ,(2') = 0 and then inductively define, for 0 < j < n,

4in(2) = Ga1n(2') + (), (4.119)
where (¢, z) = F(Zj+177-j+1)(qu+1’"(zl)Tn(Zl)). An inductive use of (4.119) yields the formula
10m) (20) = T () g0, (=) 7 () [+ 0.0 (527)) (4.120)
In particular,
oo (2) = Sa0n) () for all n > 1 and 2’ € Z,. (4.121)

We now prove that o satisfies all the conditions in Theorem 4.63.

Lemma 4.64 Let 7 = (7,: Apy1 — Al )uso be an S-adic sequence. Suppose there are
subshifts Z, C AL satisfying A, C L(Z,). Then, for every v € X, there are sequences
(ng)eso and x4 € UkeZSkT[OM)(ZW) such that x is the limit of (z¢)e>o-
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Proor. Let x € X,. Then, for all £ > 0 there exist n, > 0 and a, € A, for which z[_
occurs in 7y n,)(ar). The hypothesis permits to find z, € Z,, such that (z)o = a,. Being
T(_g) a subword of 7jg,,)((2)0), there is a point of the form z, = S*7yg,,)(2) satisfying
(2¢)[—e,0y = T[—¢,0). Then, z is the limit of (2¢)¢>o. The lemma follows. O

Lemma 4.65 The S-adic sequence o is recognizable and generates X .

Proor. First, we show that o generates X. Note that (4.121) ensures that

U SkO'[O,n)(Zn) - U San(Zn) = X.

keZ keZ

Now, thanks to Condition (iii), we can use Lemma 4.64, so any x € X, is an adherent point
of a sequence x,, € UkeZSko[oﬂn)(Zn) = X. Therefore, X, C X. We conclude that X, = X
by the minimality of X.

It rests to prove that (Z,, ojn)) is recognizable. Let (K, z) and (k, 2) be two o70,n)-factorizations
in Z, of x € X. Then, Equation (4.121) implies that

Sk+qo,n(z)7_n(2) _ Ska[()’n)(z) _ S]%U[O,n)(g) _ SfﬂJrqo,n(Z)Tn(g).

In particular, S7,(2) = 7,,(2) where £ = k 4+ qo.n(2) — k — go.n(3). Without loss of generality,
we assume that £ > 0. We can find ¢ > 0 such that (¢ — |7,(20,,))|, S*2) is a 7,-factorization
of S°7,(2) in Z,. Then, as (0,2) is a 7,-factorization of S*7,(2) in Z,, we deduce from the
recognizability property of (Z,,7,) that

(=Fk+ qon(z) — k — qon(2) = 170(20,)] and S’z = 2 (4.122)

Using this and the fact that (k,z) and (k, 2) are oj0,n)-factorizations of x, we can write

0[0771)(2) = Skika[o,n)(i) = SkikU[om)(Siz)
— Sqo,n(Z)*qo,n(g)flTn(Z[O,i))H"‘T[O,n)(Z[O,i))|0-[07n)(Z).

Being Z,, aperiodic (as X is aperiodic), we get that go,(2) — gon(2) + 0700 (20,5))| is equal

to |7n(2j0,))|- Putting this in (4.122) produces |00, (2j0,))| = k — k. Since k € [0, 070, (20)])
and k € [0, |op.n)(Z0)]), we obtain that
[010m) (200,0)| < K < |op0,n)(20)]-

We deduce that ¢ = 0, and then, from (4.122), that z = Z and k = k. ]

Before continuing, we give some bounds for go.,.

Lemma 4.66 Letn > 1 and 2’ € Z,,. Then,
—2e, < qon(2') < |alz2)| — Ten. (4.123)
Moreover, if 2, € C,, \ Cpap, then

—2e, < qon(2') < 2e,. (4.124)
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Proor. Lemma (4.56) gives the bound —&; < ¢,;) < |7j41(20)| — 8¢ for all 0 < j < n and
2z € Zjp1. Thus, from (4.120), —&, < @uo14(2') < |T0(2)| — 8en and gjp10(2") — |74 <
in(?) < @ir1.0(2) + |Tj11].. We obtain that

n—2 n—2
—en = Y Iml < @onl(Z) < Imalz0)| = 8en + D 7. (4.125)
7=0 7=0

Now, since |7;| < 10d?¢; and 500d>¥+6 . ¢; < £;,,, we have the bound d"2~7|r;| < £,_; for
every j € [0,n — 1). Therefore,

n—2 n—2 1
Z |7'j+1| < Z Wgn—l < 2dl, 1 < ép.
J=0 j=0

Putting this in (4.125) yields (4.123). Moreover, if zj € C,, \ Cpap, then Lemma 4.56 gives
that ¢,—1.,(2") € [—€n,en). So, the previous argument shows, in this case, that ¢o,(2") €
[—2¢e,,2e,). O

Lemma 4.67 For everyn > 1 and 2’ € Z,,

5

Wén < |ojom (20)] < 20d°C,,. (4.126)

In particular, o satisfies Items (Pa) and (Ps3) of Theorem 4.63.

Proor. We first show that (4.126) implies that o satisfies Items (P;) and (Pz) of Theorem
4.63. Observe that, by Condition (iii), (4.126) gives, for every n > 1 and a,b € C,, that

|G[O,n) (CL)‘ < 20d2€n < 4dd3+6 : |U[07n) <b>| (4127)

Thus, (P,) is satisfied. For Item (P3), we note that, for any pair of morphisms £ and £ such
that ££ is defined, we have that |££'| > (€)|¢'|. Therefore,
’U[O,n+1)| > <U[O,n)> |0n|

Then, by Item (4.127),

‘O'[O,n—‘,—l)l < 10d2€n+1 _ 40d2d3+8€n+1

<0[07n)> - 1/4d2d3+6€n 4,

lon| <

We now prove (4.126). Let n > 0 and 2’ € Z,, be arbitrary. On one hand, from (4.120) we
have that

710 (20)] = |70 (20)] = G0 (") + Go.n(S2) for any 2’ € Z,.
Hence, by (4.123) and Condition (ii),

700 (20)] = 170 (20)| = d0.n(2') + G0.n(S2') < |7(20)| + |7(21)] — Den < 20d°C,.

Similarly,

0100 (20)] = |70 (20)| = Go.n(2') + qo.n(SZ) > e, > ln.

dd3 +4
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We now introduce some notation. Let p(a) = a if a belongs to C,, 5, for some n > 1 and let
p(a) = root7,(a) if n > 1 and a € C,, \ Cpap. We set ¥(z) = (p(2-1), p(20), p(21)) for n > 1
and z € Z,. Note that these definitions are consistent with the ones in Subsection 4.7.2.

The proof of the following lemma will be postponed until the end of the subsection.
Lemma 4.68 Let z,%Z € Z, be such that ¢(z) = 1 (Z). Then, root ojg,(20) = root ajg ) (Zo)-

Lemma 4.69 [tem (Py) of Theorem 4.63 is satisfied by o .

Proor. The inequality #C, < 7*d'2?+36 pow-com(X)?* in Item (P;) follows from Condition
(i). To prove the other inequality, we note that Lemma 4.68 implies that

# root Olo,n) (Cn) < #¢(Zn> : # root Tn(cn)'

Now, it follows from the definition of ¢ that #1(Z,,) is at most (# root 7,,(Cp.) + #7(Crap) )®.
Combining this with the bounds given by Condition (i) yields

# root Jlo,n) (Cn) < #¢(Zn) : # root Tn(cn)
< <5d3d+6 + 2d3d+6)3 . 5d3d+6 < 35d12d+24.

O
It only rests to prove Lemma 4.68. We start by fixing some notation. Let 2", z" € Z,
be such that (z") = ¥(2"). We set s = rootT,(zf) = root7,(Z}). For j € [O n), we
inductively define 27 = ¢;(2/*!) and 27 = 0;(Z7*!). Let (¢, 1) = F(z, -)(1541(z7™))
(@,57) = Fz,7)(15:2(F*1))
With the notation introduced, we have, for every j € [0,n), that
STy = 4 (4.128)
and that '
2 = o) (2"). (4.129)
We can also write, thanks to (4.119),
q]‘,n(zn) = qu,n(z”) + Cij(zj+l)
and ¢;j,(S2") = qj+1.,(52") + e (4.130)

7 (23 ) o ny (25)]

for every j € [0,n). Similar relations hold for z".

The next three lemmas are the core of the proof of Lemma 4.68.

Lemma 4.70 Suppose that (") = 1(Z") and that €, < |s|. Then, for every j € [0,n], the
following holds:
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((l) Qjm(zn) = Qj,n(gn) and Qj,n(SZn) = Qj,n(Szn)'

(b) $(=9) = () and (S5 ) 25) = (S EI5T).
iz 5 :
(c) Zp, %, Flomy () Flogym 2] € Cap-

Proor. We prove the claim by induction on j. The case j = n is a direct consequence of
the hypothesis. Assume that j € [0,n) and that the claim is true for j 4+ 1. The inductive
hypothesis gives that 2}"" and 2" belong to Cji1.p,. In particular, per(rj;1(25"")) and
per(TjH(,%gH)) are greater than ¢;.;. Hence, by the definition of r; and (4.128), Z =
yij(sz) S Cj,ap and 28 S Cj@p.

Next, by Items (b) and (c) of the induction hypothesis, 2 and z7 satisfy the hypothesis of
Lemma 4.60. Hence, by (4.128),

(1) Cij(zjﬂ) = 6ij(,zjﬂ)v and

(2) Y(27) = (ST yd) = (ST T EI) = op(57).

Putting the first equation and Item (a) of the induction hypothesis in the definition of g;,,
yields , ,
Gjn(2") = Qjr1n(z") + C{nj(zjﬂ) = ¢j+1a(2") + aj(zjﬂ) = gjn(Z").

The rest of the inductive step follows from similar arguments. O]

Lemma 4.71 Suppose that p(zy) = p(Z) and €,—1 < |s| < &,. Then, for every j € [0,n),
the following holds:

(a) Qj,n(zn) = Qj,n('gn) = Qj,n(SZn) = %,n(sgn)
(b) (7)) = p(57) = p(S16mEM 7Y = gp(Sloum Mz,

(€) 20 2: Zoyy (o) @0 Zlg, ooy Delong 10 Ca.

[5.:m) (2"
Proor. We first assume that j = n—1. Let us write r = r, 1, ¢; = 71, z = 2"~ y = ¢y,
etc. Since g,-1 < |s| < &, and p(zf) = p(Z}), we can use Lemma 4.61 with zJ and ZJ to
deduce the following:

(87) Criamy = Crzn) = Cremytlona (@)l — [Tal(20)] = Crianytiona )l — [Tn(Z0)]-

(D) Yrzn) = Urzn) = Yr(zn)tlon—1 ()] = Ir(Em)+lon_1 ()] -

Item (b”) implies, by (4.128), that Item (b) of the claim holds for j = n—1. Also, since |s| >
€n—1, the definition of r ensures that 2o = yr(;n) € Cy—1,ap, 50 Item (c) of the claim holds. For
Item (a), we note that, since g, = 0, the definition of ¢,_;,, ensures that g,_1,(2") = cy(zn),
Qn—l,n(gn) = 6r(6")a Qn—l,n(szn) = Cr(z”)+\an—1(z(’;)\_|Tn(Z(T)L)| and qn—l,n(sgn) = 6T(5")+‘Un—1(28)‘_
|7,(Z0)|. Therefore, Item (a) of the claim follows from Item (a’).
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We now assume that j € [0,n — 1) and that the claim holds for j + 1. Item (c¢’) of the
induction hypothesis ensures that

AT € Ciyrap and (27T = 9 (F ). (4.131)

Then, by the definition of 7; and (4.128), 2) = yij(zjﬂ) € Cjap and %, € Cj.p. Equation
(4.131) also allows us to use Lemma 4.60 with z/*! and 27! and deduce the following:

(&) &y = Emy
(07) Y(STEyl) = (S D).

Equation (4.128) ensures that Item (b’) is equivalent to 1(27) = ¥(z7). Now, putting Item
(a’) and Item (a) of the induction hypothesis in the definition of ¢;,, yields

Qj,n(zn) = Qj+1,n(28) + Cij(zj+1) = qj‘+1,n<§0> + Cj i+ = 4, n(Z").

Similar arguments which rely on using Lemma 4.60 with So6+1.m (¢ )|zf+1 and S1o6+1m G0l Z7+1
show that Z‘U[ )(Z”)|7 ~‘j‘7[j,n)(zn)| S Cj,apa ’(/}(S|U] n)(z Z]) = ¢(S|U] n) )|Z.7) and qj, n(SZ ) =
qin(SZ").

To complete the proof, it is enough to show that 1(z7) = ¢ (SloEmEI27) and g;,.(2") =
jn(Sz"). We observe that Item (b) of the inductive hypothesis guarantees that ¢(z7*1) =

. ; 1 1
Y (S1U+1m G871 - Since we know that 2] and zf;;ﬂ e belong to Cji1.p, We can use

Lemma 4.60 with 2/t! and S76+1.m )23+ to obtain the following:
(a”) C;j(zj-kl) = Cznj(zj+1)+|g[j7n>(zg)| - |Tj+1g[j+1,n)<zg)|-

(b7) (5 yl) = p(H b Gly),

Item (b”) implies, by (4.128), that (27) = ¢(Sl76mE0)I27). Also, using the definition of
¢j+1,, and Item (a”) we can write

Gjn(52") = Q41 (52") = C,Jnj(zj+1)+\0[j,n>(zg)| — |Ti+1041,m)(20)]

- C‘Zj(zm) = @in(2") = @1 (2").
This and Item (a) of the induction hypothesis gives that g;,(52") = g;,(2"). O
Lemma 4.72 Suppose that p(zf) = p(Z}) and that |s| < e,—1. Let jo € [0,n) be the least
element satisfying |s| < €j,. Then, for every j € [jo,n|, the following holds:

(a) There is sj such tiiat |s;| = |s| and s; = root 7j(2]) = root 7;(%]) for all k € [0, |oyjm(z)])
and £ € [0, |07 (Z5)])-

(b) Gjn(2") = 4jn(Z") = qjn(92") = jn(SF") (mod [s]).
(c) ¥(27) = Y(F7) and (S175mE 27 = (Slotm EIz7),
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Proor. The case j = n follows directly from the hypothesis. Assume that j € [jo, n) and that
the claim holds for j + 1. We observe that, by Items (a) and (c) of the induction hypothesis,

Z[ﬁiif{j,") (o)) and Z[ﬁi“,n) (zpy comply with the hypothesis of Lemma 4.62. Therefore, by

(4.128), Items (a) and (c) hold for j. Moreover, we have that

=

Gyt = Gy

=c = (mod |s]). (4.132)

i (W) +lo ) (28] i (G +losn) (23]

Now, Item (b) of the induction hypothesis gives that g;11.,(2") = ¢j+1..(2") = ¢j+1,(52") =
¢j+1,,(SZ") (mod |s|). Hence, by the definition of g; ,,

qj}n(zn) = Qj+1,n(zn) + CZ‘j(yj"!‘l) = Qj+1,n(2n) + Czﬂj(ﬂjﬁ-l) = %’m(gn) (mod |3|)

We note that, since Item (a) holds for j, we have that |7'(Z[]O - )(z(’})l))’ =0 (mod |s|). Hence,
s19[5,n

by the definition of g;,

0jn(S2") = qjr1n(S2") = Czﬂj(yj+1)+\g[j’n)(zg)| = logm (20)]
(mod |s|)

=d
7 (YT +logm (0]

Thus, by (4.132) and Item (b) of the induction hypothesis, ¢;,(52") = ¢;,(2"). Similarly,
¢in(SZ") = ¢jn(Z"). We conclude that Item (b) holds for j. O

The last ingredient for the proof of Lemma 4.68 is the following lemma.

Lemma 4.73 Suppose that ¢(2") = ¥ (Z").
(Z) [f Zg € Cn,ap; %,n(zn) = QO,n(gn) and QO,n(Szn) = QO,n(Sgn)f then U[O,n)(zg) = U[O,n)(gg)

(2) Let s = rootT,(2) and suppose that |s| < e, and qon,(2") = qon(Z") = qon(z") =
qon(2") (mod |s|). Then, root oy, (2y) = root ojg.)(Z))-

Proor. Assume that the hypothesis of Item (1) holds. We also assume, without loss of
generality, that |7,(2])| < |7.(2}7)]. We start by noticing that, since 2} € Cy,ap and (2") =
¥ (2™), we have that 7,(z) is equal to 7,(Z{). Furthermore, by Condition (ii) we have that

Tn(Zn)[_Sgn,‘Tn(zg‘z{l)l) = Tn(gn)[_s%lm(zgz?)‘). (4,133)

Now, from Lemma 4.66 and the hypothesis we get that

Qo.n(Z") = qon(2") € [—2en, [Ta(27)] — Ten)
and qon(SZ") = qon(Sz") € [|Tn(25)] — 2en, [T (20 2T)] — Ten).

We conclude, using (4.133), that

010,0)(20) = Tn(2") [go.n (2,7 (22) [ +-q0.0 (527))

= Tn(Z")lgo,n ("), 17 (20 [ +0,n(S21)) = Olo,) (%0 )-
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Next, we assume that the hypothesis of Item (2) holds. The condition |s| < &, enables us to
use (4.124) from Lemma 4.66, so

Qon(2") € [—2en,2e,).

Also, since |s| < g, Item ((3)) in Proposition 4.46 guarantees that

n Z
Tn(z )[—88n7|7'n(28')|+8€n) = S[—Sen,|7'n(zg)\+8€n)‘
Therefore,
n Z

T10.)(20) = Sigo,u () ()l 0,0 (527))- (4.134)
Now, by the hypothesis, there is k € Z such that k = ¢, (2") = qo.n(52") (mod |s|). We
deduce from (4.134) that

root U[Om)(zg) = Sk, k+]|s|)-

Being v(2") equal to (z"), we have that s = root7,(Z;). Hence, we can give simi-
lar arguments to prove that rooto,)(2y) = S z1s) Where k = qoa(2") = qoa(SZ")

(mod |s|). We conclude, as the hypothesis ensures that k = k (mod |s|), that root oo (2¢) =
root oo.n) (Z5). O

We have all the necessary elements to prove Lemma 4.68.

Proor oF LEMMA 4.68. Let 2/, 2" € Z, be such that ¢(2') = ¥(Z') and let s = root7(2}) =
root 7(Z)). We split the proof into two cases. Let us first assume that |s| > ¢,. Then, we
can use Lemma 4.70 and deduce that ¢, (2") = qo.(2") and qo,(S2") = qo.(SZ"). Thus,
by Lemma 4.73, 0(0.)(25) = 0j0.n)(Z5), which implies that root oy, (25) = root jg,) (Z).

Next, we assume that |s| < ¢,. Let j € [0,n] be the least element satisfying |s| < ;. We
claim that the following is true:

(a) If j < n, then root7;(27) is equal to root ;(S176:mZ"I=127) and has length |s|.
(b) ¢jn(2") = ¢jn(2") = ¢jn(52") = ¢;n(SZ") (mod |s]).

(€) (=7) = (/) and (S5 EDNT) = (S5 () 57).

If j = n, then the claim is equivalent to the hypothesis 1/(2’) = ¥(Z'). We assume that j < n.
Then, |s| < e,-1, which permits to use Lemma 4.72 and conclude that Items (b) and (c)
of the claim hold. Moreover, Lemma 4.72 also states that there is ¢ such that |t| = |s| and
t = root7;(2}) = root (%) for all k € [0, |0y (25)]) and £ € [0, |00 (25)]). In particular,
Item (a) holds. This completes the proof of the claim.

Next, we now prove that

Qn(2") = qon(Z") = qon(S2") = qon(SZ") (mod |s|) (4.135)

If j = 0, then (4.135) follows from the claim. Let us assume that j > 0. Then, ¢;_1 < |s| < ¢;.

This and Items (a) and (c) of the claim allow us to use Lemma 4.71 twice, first with 27 and
%7, and then with S17mEI=127 and SleumEI=127 We get

G05(#) = qoj(#). and CIo,j(S‘U”’")(zn)lzj) = QO,j(Sm’")(gn)lgj)'
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Moreover, since root 7j(27) is equal to root 7;(S176mE"I=127) and has length |s| < ¢;, we
can use Lemma 4.71 with 2/ and Sl96mGE"I=120 to obtain that qoj(27) = go ;(S176mEMI29).
Therefore,

9045(2)) = @03(Z) = q0,4(S'5mENLI) = go 5(S'7mEIIZ), (4.136)
Now, from the definition of gy, we have that gg,(2") = ¢;.(2") + qo,(2?) and qp,(z") =
¢in(Z") + qo;(7). Putting (4.136) and Item (b) of the claim in this relation produces
Gon(2") = qon(Z") (mod |s|). The rest of the equalities in (4.135) follow from (4.136) and
Item (b) of the claim in the same way. The proof of (4.135) is complete.

We recall that we assumed that 1(z") = ¥ (2") and |s

| < e,. These two things and (4.135)
permit to use Lemma 4.73 and conclude that root o »)(25) =

<
2) = root opn)(Z). O

4.8.2 Proof of the main theorems

Lemma 4.74 Let X be a subshift and W a set of words such that X C |,y SEWEZ . Then,
px((W)) < W] - #(root W)>2.

Proor. The hypothesis implies that any w of length (W) occurring in some x € X occurs
in a word of the form uwv, where u,v € W. In particular, w occurs in (rootu)"/(rootv)™!.
There are at most |W| - #(root W)? words satisfying this condition, so px({(W)) < W] -
#(root W) O

Theorem 4.75 A minimal subshift X has linear-growth complexity i.e.

limsup px(n)/n < +o0,

n—-+o0o

if and only if there exist d > 1 and an S-adic sequence o = (0, Any1 — Al )n>o such that
for every n > 0:

(Pl) #(FOOt Olo,n) (An)> <d.
(P2) lopn (@)l < d-lojmn(b)] for every a,b € A,.

(Ps) |on-1(a)] < d for every a € A,.

If X is infinite and has linear-growth complexity, then o can be chosen to be recognizable and
satisfying #A,, < d - pow-com(X)* for all n > 0.

Theorem 4.76 A minimal subshift X has nonsuperlinear-growth complezity i.e.

liminf pyx(n)/n < +oo,

n—-+o0o

if and only if there exists d > 1 and an S-adic sequence o = (0,1 Apy1 — Al )0 such that
for everyn >0

(P1) #(rootopny(A,)) < d.
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(Pa) |ojon(a)] < d-|ojpm(b)| for every a,b € A,.

If X is infinite and has nonsuperlinear-growth complexity, then o can be chosen to be recog-
nizable and satisfying #A, < d - pow-com(X)? for all n > 0.

We prove Theorems 4.75 and 4.76 simultaneously.

PROOF OF THEOREMS 4.75 AND 4.76. Let d = liminf;_, . px(k)/k and d’ = sup,~, px(k)/k.

We first assume that px has nonsuperlinear- or linear-growth and show that there exists an
S-adic sequence as the ones in Theorems 4.75 and 4.76, respectively.

If px has nonsuperlinear-growth, then d is finite and so, using Lemma 4.7, we obtain a
sequence (€y,)n>o such that for all n > 0

lpi1 > dly, px(0,) < dl, and px (£, + 1) — px(4,) < d. (4.137)

If px has linear growth, then d’ is finite and using Lemma 4.6 we get a sequence (¢,,),>o that
satisfies (4.137) and
by < d'l, for every n > 0. (4.138)

We use Theorem 4.63 with the sequence (¢,),>0. This produces a recognizable S-adic se-
quence o = (0, Apy1 — A} )n>o generating X such that for every n > 1:

(P1) #(root oy n)(An)) < d and #.A, < pow-com(X).
(P3) |opom(a)] < d-|opn(b)| for every a,b € A,.

(P}) |on-1(a)| < dl,/l,_; for every a € A,,.

In particular, the conclusion of Theorem 4.76 holds. Moreover, if px has linear growth, then
Equation (4.138) holds, so we also have the bound |o,_;(a)| < dd' for every n > 1 and
a € A,. Therefore, in this case, o satisfies the conclusion of Theorem 4.75.

We now assume that there exists an S-adic sequence o = (0,: A1 — A )n>o satisfying
the conclusion of Theorem 4.76 or the one of Theorem 4.75.

Note that since o generates X, we have that

X C U Ska[o,n)(fl%)

kEZ

for any n > 1. Thus, by Lemma 4.74, px({0j0n))) 1S at most |opg | - #(root o (A,))>.
Items (P;) and (Ps) of Theorems 4.76 and 4.75 then imply that

px({op.n)) < d* (o)) for all n > 1. (4.139)
This proves that X has nonsuperlinear-growth complexity.

It rests to prove that X has linear-growth complexity when the conclusion of Theorem 4.75
holds. We assume that o satisfies Items (P;), (P2) and (P;3) of Theorem 4.75. Let k > 1 be
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arbitrary and let n > 1 be the biggest integer such that (o9 ,)) < k. Then, by the maximality
of n and Ttems (P;) and (Ps3) of Theorem 4.75, we can compute

k< (010nt1) < |00m] - |onl < d*{o0m) < dF.

Combining this with (4.139) yields px(k) < d°k. This proves that X has linear-growth
complexity. [

4.9 Bounded alphabet structures

Theorems 4.75 and 4.76 provide S-adic structures for linear-growth complexity subshifts and
nonsuperlinear-growth complexity subshifts. These are not the only representations known
for these classes: for instance, in [DDMP21] it is proved that if X has nonsuperlinear-growth
complexity, then X is generated by a recognizable, proper and primitive S-adic sequence
o= (0,: A1 — AT ),>0 such that #.A4,, is uniformly bounded. The last condition is known
as the bounded alphabet property and it is considered natural in the low complexity setting;
see [Fer96; DLR13; Esp22a]. Note that the representations given by Theorems 4.75 and 4.76
do not necessarily satisfy this property. In fact, our construction gives a bonded alphabet
S-adic sequence if and only if the subshift has finite power complexity. Thus, it is natural
to ask whether it is possible to modify Theorems 4.75 and 4.76 so that they give bounded
alphabet S-adic sequences. In this section, we show that such a strengthening is not possible
for Theorem 4.75. More precisely, we prove the following:

Theorem 4.77 There exists a minimal subshift X such that:

(1) X has linear-growth complexity.

(2) If o = (0p: Apns1 — Al )n>o is an S-adic sequence generating X and satisfying Items
(1), (2) and (3) of Theorem 4.75, then sup,,s, #A, = +00.

We were not able to obtain an analogous result for Theorem 4.76, so we leave this as an open
question.

It is interesting to compare Theorem 4.77 with the main result of [Ler14], which describes
bounded alphabet S-adic representations of minimal subshifts whose complexity function
satisfies px(n 4+ 1) — px(n) <2 for all n > 1. We are led to ask the following.

Question 4.2 How small can sup,,»; px(n + 1) — px(n) be made in Theorem 4.777

We now turn into proving Theorem 4.77. We start with some technical lemmas.

Let n,ng,d, ¢ > 1. We define P(n,ng, () as the set of integer sequences (py, ..., p¢) such that
pino € [8n,2-8n). Let K(n,d,!) be the set of integer sequences (ki,...,k;) € P(n,ng,?)
for which there exists E C [d 'n,dn), with at most d elements, such that every k; can be
written as ) .., ace, where a, € Zx.
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Lemma 4.78 Suppose that n > n3, n > (3¢ and ¢ > 3d > 8. Then, P(n,no, () \ K(n,d, ()
18 monempty.

Proor. We will show that # P(n,ng,¢) > K(n,d,{), which implies that P(n,ng, )\ K(n,d,?)
is nonempty. We first estimate #P(n, ng, (). Note that there are at least (2-8/n — 8/n)/ng
ways of choosing p; in a sequence (p1,...,pr) € P(n,ng, ). Thus,

~

#P(n,ng, ( H In/ng > (n/ng)". (4.140)

Next, we estimate #K (n,d,£). Choosing a set E C [d~'n,dn) with at most d elements can
be done in no more than (dn — d~'n)? < (dn)?¢ different ways. For each set E and j € [1,d],
there are at most (2-8n/d~'n)? numbers Y, ace in [8n,2-8n). Thus, each E generates
at most (2d - 8- (2d - 82). .. (2d - 8°)? sequences (ki, ..., k) € K(n,d, /). Therefore,

#K(n,d,0) < (dn)*-(2d-8") - (2d-8?)...(2d - 8)
< P28t < gt (4.141)
where we used that ¢ > 3d > 8.

Now, since we assumed that n > n3, we have that (n/ng)’ > n*/3. Hence, as the hypothesis

ensures that ¢ > 3d and n > 81822,
(n/ng)’ > nn'? > n®”.

This and Equations (4.140) and (4.141) imply that P(n,ng,?) \ K(n,d,¥) is nonempty. [

Lemma 4.79 Let (¢,),>0 be a sequence of positive integers. We consider, for each n > 0,
kn > 1 and a sequence (pY,...,py) such that p} € [87ky,2 - 8ky,). For a € {0,1} and
a=1—a, we define

To(a) = aPlaPab2aP? . . . aPinalin . (4.142)

and T = (Ty)n>0. Then:

(1) X is infinite, minimal and with linear-growth complexity.
(2) |70 (0)] = |7r0m) (1]

(3) (X o) Tion)) 15 |Tjo,n)|-recognizable.

(4) 10%1 € LX) for all j € [1,4,].

Proor. Let A = {0,1}. For a € A, n > 0 and j € [1,4,], we use the notation w, j(a) =
Tiomy(a)?7 and

Wy i(a) = wp1(a)w,1(a) . .. wya(a)w,2(a) ... wyj(a)w,;(a). (4.143)
Remark that W, (a) = Tjont1)(a).

We start by proving the following properties of the morphisms 7,,.
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(1) |wn;(0)] = |Jwy,;(1)| and |W,, ;(0)] = |W,;(1)] for all n > 0 and j € [1,4,].
(i) 8knlTiom| < lwnj(a)] < 28 ky|Tjom)| and 2 - 8k, |7j0.m)| < [Whji(a)] < 8+ ky|7i0m-

(iii) If n >0, a,b € A and t is a word such that |t| > |7,|/2, t is a prefix of 7,,(a) and ¢ is a
suffix of 7,(b), then 7,,(a) = 7,(b) = t.

Item (i) directly follows from (4.142). In Item (ii), the first inequality is a consequence of the
equality |w, ;(a)| = p}|mo,m| and that, by the hypothesis, p}' € [87ky,2 - 8k,). We can use
this to compute |W,, ;(a)| > 2|w, j(a)] > 2 - & k,|1p0,n)| and

J J
Wag(@)] = lwnj(@)wa;(@)] <22 8kalmom| < 8 kalmom,
i=1

i=1

which shows the second inequality in (ii). Finally, we prove Item (iii). We note that (4.143)
implies that |70 ,+1)] = [Whe (0)| > 2|wye, (0)]. Hence, as (i) ensures that |779,,(0)] =
|T[Ov”)(1)|7 n

7l = |T0n )|/ 1T10m | = 2lwn., (@)]/[T10m)| = 2|a”],
which allows us to bound [t| > |7,|/2 > |aP|. Being t a suffix of 7,(a), this implies that
aPin is a suffix of . Moreover, since t is a prefix of 7,(b), P occurs in 7,(b). But (4.142)

guarantees that a”é occurs in 7, (b) only as a suffix, so we must have that ¢t = 7,,(b). Therefore,
To(a) = 71,(b) = t.

We now prove that 7 satisfies the properties of the lemma. The morphisms 7,, are positive,
so X is minimal. It follows from (4.142) that 07" 1 and 0760 belong to £(X{") for all n > 0,
S0 Tjo,,)(0)1 and 7y ,)(0)0 are elements of £(.X'). This shows that X has infinitely many right-
special words, and thus that X is infinite. To prove that X has linear-growth complexity,
we will show that px (k) < 1024k for all £ > 1. Let k£ > 1 be arbitrary. We take n > 0 such
that |70, <k < |Tjon41)]. We consider three cases. Assume first that k& < |wy1(0)|. Then,
from (4.142) we have that any w € £(X) N A* occurs in a word of the form wy,1(a)w,1(b)
for some a,b € A. This implies, since |w| > |7j0,,)(a)| and wy,1(a) = 79 (a)?T for any a € A,
that px (k) < #A4% - k = 4k.

Let us now assume that |w,1(0)| < k < [W,,,-1(0)|. Let j € [1,¢, — 1] be the least integer
satisfying k < |W,, ;(0)|. Then, by (ii),

k < |w;n(a)] = |1j0m (0)7] for alli € [j+ 1,¢,] and a € A.
Using this, (4.142) and the definition of w, ;(a) we deduce that any w € £(X)N.A* occurs in
a word having either the form W, ;(a)7j ) (b)"+ or the form 7y, (a)"5+1 7 ) (b)P7+1, where
a,b € A. Therefore,
px (k) < A ([Wo 5 (0) 70, ()75 + [710.0 (0)F% 70,0 (0)F3+1 ).
Putting that |W,, ;(0)| < |7j0,,)(0)P7+1| in the last inequality yields

px (k) < 16pj1 |70y (0)] = 16]wn 11 (0)].
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Now, if j = 1, then 16|w, 2(0)| < 16 - 16|w, 1(0)| < 256k by (ii), and so px(k) < 256k. If
j > 1, then the minimality of j implies that k > |W,, ;_1(0)|. Hence, by (ii), 16]w,, ;+1(0)] <
16 - 82|, ;(0)| < 1024k, and therefore px (k) < 1024k.

Finally, we assume that & > |W,,,,_1(0)|. Since k < |79 n41)|, we have that any w € £(X)NA
occurs in a word of the form 7 ,,41y(a)70,n41)(b), where a,b € A. Thus, px (k) < 4|70n+1)]-
Moreover, being |W, 4, -1(0)| at most k, we have from (ii) that 4|7 nq1)] = 4|[Wh e, (0)] <
82|W,, 0,-1(0)| < 82k; therefore, px (k) < 64k.

We conclude that px (k) < 1024k for every k > 1 and that X has linear-growth complexity.

Items (2) and (4) of the lemma follow from (4.142). Thus, it only left to prove Item (3). We
note that, since |7j,,)| = |7o| - - - |Tu—1], it is enough, by Lemma 1.1, to prove that (A%, 7,) is
|7 |-recognizable for all n > 0. Let z,Z € A, and (k,y), (k,§) be 7,-factorizations of z, % in
AZ” | respectively, and assume that T |rn| ) 18 equal t0 T[—|7,),|r))- We assume with no loss of
generality that k& < k. There are two cases. If k — k < |7,,|/2, then Tk _Fyjry) Das length at
least |7,,|/2 and is a suffix of 7,,(y0). AS Z[_|r,.|jral) = T[=|rl,ral)s WE alsO have that T( ko)
is a prefix of 7,,(g1). We deduce, using (iii), that 7,,(y0) = 7 (%0) = 2y, et ral)? and thus
that yo = §o. Moreover, since k, k € 0,|7a]), k = k. Let us now suppose that k — k > |70|/2.
Then, |zt _y| = |7al/2 and z_; 4 is both a suffix of Tn(ﬂ,1)~and a prefix of 7,(yo). Hence,
by (iii), 7 (§-1) = Tu(Yo) = [_y, _f), which is impossible as k, k € [0,[7,]). We conclude that

(X 7..) i | 7|-recognizable. O
We can now prove Theorem 4.77.

Proor oF THEOREM 4.77. Let (¢,)n,>0 and (d,)n,>0 be nondecreasing diverging sequences of
integers with ¢, > 3d,, > 8. We inductively define M, mn7 (pt,...,p;,) and 7, as follows.

Let mo = 1 and M be such that My > m3 and My > 618 0
to find

Then, we can use Lemma 4.78

(p(l)vpgv e ,pE?O) € P(Moy, myg, o) \ K (Mo, dy, Cy).

We define 7 using (p9, . .. ,pgo) as in (4.142). Suppose now that M,, m,, (p},...,p}, ) and 7,

1862
are defined. We set m,41 = |7j0,n41)| and take M, 41 so that M,41 > m3 ; and M1 > €, 7"

Then, we can use Lemma (4.142) to find

(p61+17p711+1’ cee 7p?+1)3 1 € P(Mn-i-la Mpy1, En—i-l) \ K(Mn‘f‘l’ dn+1’ €n+1) (4144)
and define 7, using (pf*!, ... ,p?tll) as in (4.142).

We set 7 = (7,)n>0. Then, Items (1) to (4) in Lemma 4.79 hold. In particular, X, is minimal
and has linear-growth complexity. We prove that X, satisfies the conclusion of the theorem
by contradiction. Suppose that there exist d and o = (0,,: A1 — A ),>0 satisfying Items
(1), (2) and (3) of Theorem 4.75 and #.A4,, < d for all n > 1.

We claim that there exists n,n’ > 0 such that

1 1
d, > 2d® +d, 2m,, < @Mn < (o0} and |ojn| < éMn (4.145)
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We take n > 0 big enough so that d,, > 12d* + d and m,, > 12d%. Let n’ > 0 be the integer
satisfying 00| < § My < |ofo+1)|- Then, by Items (2) and (3) in Theorem 4.75,

1 2
g Mn < o] < d*(o0,0)-
Also, since we chose M, and n so that M,, > m2 and m,, > 12d?, we have that m,, < 5z M,.
This completes the proof of the claim.

Let w, = Tjom(a) for a € {0,1}. Then, by Item (4) in Lemma 4.79, 10%1 € [,(X.f-")) for
every j € [1,py ]. Being X, generated by o, there exist u; € A" such that wlwg?wl occurs
in ooy (u;). Moreover, we can take u; so that the following condition holds: If a; is the first
letter of u; and b; is the last letter of u;, then there exists a prefix s; of 09,/ (a;) and a suffix
t; of opony(b;) such that sjwlwg?wltj = opo,n)(u;). Observe that |op ) (u;)| > |wg?| = M,,
SO

451> 1010y (45) /10709 > Ma/[00,9] > 6. (4.146)
We define aja;-a;-’ as the first three letters of u; and b}’ b}bj as the last three letters of u;.

We claim that

if i,7 € [1,4,] and a;a;a;b/bib; = a;aa bbb, then s; = s; and t; = t;. (4.147)

At e 7737 ]

The inequality |w;| = m, < |oj,)| and (4.146) ensure that oy ) (a;) is a prefix of s;wwg®.
Hence, as s; is a prefix of )9, (a;), we can write o9 »)(a;a;) = s;wywg'r;, where ¢; > 1 and r; is
a prefix of wy different from wy. Similarly, oy ) (a;a;) = s;wiwg’r; for some ¢; > 2 and prefix
r; of wy different from wy. Then, as the hypothesis implies that ojg ) (a;ajai) = o0 (a;a}a’),
Item (4) in Lemma 4.79 can be used to obtain r; = r;. We obtain that

qi _ N __ ry __ qj o qj
saw1wy T = o) (@ia;) = 00, (aa}) = swiwy’ ry = sjwiwg’ .

Therefore, if ¢; # q; then wy = wy, which contradicts the fact that X is infinite. We conclude
that ¢; = g;, and thus that s; = s;. A similar argument shows that ¢; = ¢;, and the claim
follows.

Thanks to the claim, we have that the set

S = A{lom (arap)| = [skwil, [oj0m) (bpbe)| — [wits] : k € [1, 6]}
U{lopn)(a)| - a € Ay}
has no more than 2#A% + #A,, elements. Thus, by the choice of d,,
#S5 <2d° +d < d,. (4.148)

Also, by (4.145), max S < 2|ojg.y| < M,. Moreover, as |sjwi| < |ojw)(a;)| + my, and
lwit;| < |00, (b;)] + My, we have that min S > (oj0.n) — My > 13 M, where in the last
step we used (4.145). Therefore, as d,, > 2d® + d,

1

S C [-My, duMy)]. (4.149)
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Let us write u; = a;ajv;b)b; for certain v;. Then, the equation o (u;) = s;wiwg'r; implies
that

n Py
pimn, = |wy' | = (o (azal) — |s;wi]) + oy (v5)] + (oo (050;5) — lwity]).

This shows that

every pjm, can be written as Z vee for certain v, € Zxo. (4.150)

ecS
We conclude, from Equations (4.148), (4.149) and (4.150) that (pf,...,py ) belongs to
K(M,,d,,?,). This contradicts (4.144). O

4.10 Applications

We present in this section new and simpler proofs, based on Theorems 4.75 and 4.76, of
known results about linear-growth and nonsuperlinear-growth complexity subshifts.

4.10.1 Cassaigne’s Theorem

A classic result on linear-growth complexity subshift is Cassaigne’s Theorem [Cas95], which
states that, for any transitive subshift X in this complexity class, px(n + 1) — px(n) is
uniformly bounded. We show in this subsection how to use Theorem 4.75 to give a different
proof of this result, in the case in which X is minimal.

We start with a lemma containing the technical core of our approach.

Lemma 4.80 Letz,y € A%, pi,...,pn € Z be a collection of different integers and (1, . .., 0, >
1. Suppose that:

('Z) Llp;pi+L) = Y0,¢5) fO’f’ a’”] S [1,”]
(2) |p]_pl| S%Ek fO?" (lll’l,],]{fe [1,71]
Then, there exists w € AT such that, for all i,j € [1,n], Tl p,) 1S @ power of w and

y o0
L[p; py+min(t; ;) 1S @ prefiz of w™.

Proor. Being the p; different, there is no loss of generality in assuming that p; < p, <--- <
Pn. We define, for i,j € [1,n] with ¢ < j, w;; = rootwp, ) and £;; = min({;,¢;). Then,

Item (1) in the statement of the lemma ensures that @, s, ) = Tjp, p;+¢,,), and thus that

T(p; pi+t; ;) 18 @ prefix of w5, In particular, as p; < p; and w; ; = root xy, ;,), we have that for
all 7,7 € [1,n] with i < j,

Tip; pitt; ;] a0d T, g,y are prefixes of wys. (4.151)
Therefore, it is enough to find w such that w = w; ; for all 7 < j.

First, we show that

w; k= wjy, for all 4,5,k € [1,n] with 7,7 < k. (4.152)
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Observe that, in this situation, we have from (4.151) that if m = min(l; s, £; ), then zp, 5, +m)
is a prefix of wiy, and xp, p, +m) 1s a prefix of w3y Thus,

(wi)om) = (W) om): (4.153)

Now, by Item (2) in the statement of the lemma and the definition of w;, and w;j, w; , and
wj , have length at most m/2. This and (4.153) permits to use Theorem 4.8 and obtain that
w; , and w;, are powers of a common word. This implies, since w; , and w;;, are defined as
roots, that w; , = w; .

We now note that if ¢, j € [1,n] and ¢ < j, then (4.152) ensures that w; ; = w; ;. Hence, as
Ty p;) = Tlpr,pi) Tlpipy)s Wi = W15 = w;j. Being 1, 7 arbitrary, this implies that wy, = w; ; =
w; j. Therefore, the lemma follows from defining w := w; 5. L]

The proposition below uses Lemma 4.80 to give a bound for px(n + 1) — px(n) in a very
general context.

Proposition 4.81 Let W C A" and X C U,y S"WE. Then, for any ¢ < (W),

px (0 +1) — px () < 256# A - #(root W) W2 /12

Proor. We prove the proposition by contradiction. Suppose that ¢ < (W) and that px (¢ +
1) — px(€) > 256#A - #(root W)?|W)|? /€. Then, by Proposition 4.14, we can find at least
2564 (root W)2|W)|?/£? right-special words {u; : i € I} of length £ in X. Let w;a; and u;a;
be two different right extensions for u; in X. We are going to prove that a,, = a,; for some
i € I, contradicting the fact that u;a; ¢ and w;a,; are different.

Let X' = {...v000v0V - : 0,0 € root W} C AZ. Then, it is not difficult to check that:
(a) every w € L(X) of length at most (W) occurs in some = € X'.
(b) #X' < #(root W)2,

In particular, each w;a; ; occurs in some x; ; = .. .vi,j.vl’»yj e X', s0

Uiti; = (T 5)[5,,.5.,+0 for some B ; € [=|W], W) (4.154)

We use (b) and the Pigeonhole principle to obtain a set I’ C I and zg,x; € X' such that
#I' > 256|W|?/¢* and x; = x;; for all i € I’ and j € {0,1}. We use again the Pigeonhole
principle to find I” C I’ satisfying #1” > #1I'/(8|W|/¢)? > 4 and

Let f =max{f;1:i € ["} and, for i € I”, v; = B0 — Bi1 + 5. We claim that for all i € I”,

(i) Bin < B < Bip+ /4 and Big <7 < Bip + /4
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(ii) u; has a suffix u} of length at least %f such that wja;o = (70)p, 4 and wja;; =
(1) 18,8+

(iii) if p, g € I" are different, then v, + [u;, | # 74 + [uy| and v, # 7,

Item (i) follows from (4.155). For Item (ii), we first note that the definition of +; ensures that
m; =0+ fi1 — B =L+ Bio — i, and that (i) gives %E < m; < (. Thus, u; has a suffix u} of
length m; > 3/ such that, by (4.154), satisfies Item (ii). It is left to prove (iii). Assume that
p,q € I" and 7, + |up| = v + |ug|. Then, 8,0 = v, + |uy,| — € = v + |ug| — £ = B40 and hence
u, = g, which implies that p = ¢. Let us now suppose that 7, = 7,. Note that if |u)| = |ug|
then 7, + |u,| = 74 + [uy|, and so p = ¢ by what we just proved. Thus, there is no loss of
generality in assuming that [w,| < |ug|. Then, (ii) allows us to write u,a,0 = (Z0) [, yp+iuy]
afld Uy, = (IU)hpﬂerlu{;!}' In particular, u,a,o is a prefix of u;. Similarly, (ii) implies that
Upap1 = (21)[p+[u) I8 @ prefix of uj = (x1)gs1juy- Therefore, upa,o = upap:, which
contradicts the definition of a,¢ and a,;. This shows that the case |u,| < |u;| does not
oceur, so |uy,| = |uy| and p = g. This completes the proof of the claim.

Thanks to the claim, we have that (), 4wy = (S°21) 0y and |y — 3| < 5luj] for all
i,i" € I". Moreover, all the v; are different by (iii). Therefore, we can use Lemma 4.80 and
deduce that there exists w € A1 such that for any p,q € I”,

(20)[ypyq) 1 & power of w

and (mo)[7p77p+min(|u;|7|ug‘)) is a prefix of w™. (4.156)

We use Item (iii) of the claim and that #I1” > 4 to find p,q € I” such that [u;| < [u| < |uy|
for all t € I”\ {p,q}. Furthermore, (iii) allows us to find r,s € I” \ {p,q} such that
Yr ] < vs 4 gl

We observe that, since |uj| < |uy|, the second part of (4.156) ensures that that wu, =
(%0) [y ys+]ur) is @ prefix of w™. Then, by the first part of (4.156), (o), yo+lur)) i & pre-
fix of w™>. Since 7, + |ul| < s + |u}], we get that

Up g = (Z0)}y, 7o+ 18 @& prefix of w™. (4.157)

Now, the definition of 7 and p guarantees that |u;| < |u, |, so, by (4.154), ua,1 = (21)(8,84u)
is a prefix of (o), v+ ) = (T1)[8,6+u))- Moreover, as |u,| < |ug], the second part of (4.156)
gives that (xo)hmpﬂugl) is a prefix of w>. We conclude that ula,; is a prefix of w™. But
then (4.157) implies that ula,; = ula,p, contradicting our assumptions. O

Theorem 4.82 ([Cas95]) Let X be a minimal linear-growth complexity subshift. Then,
px({+ 1) — px(€) is uniformly bounded.

Proor. Let ¢ > 1 be arbitrary. The theorem is trivial if X is finite, so we assume that X
is infinite. Then, we can use Theorem 4.75 to obtain an S-adic sequence o = (0,,: Al —
AF),>1 generating X and d > 1 such that the conditions (1), (2) and (3) of Theorem 4.75
hold.
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Let n > 1 be the least integer such that (o79.,)) > ¢. Then, X is a subset of ;. S*070,)(AZ),
so Proposition 4.81 and the conditions in Theorem 4.75 give the bounds:

px(é —+ ].) — Px (6) S 256#A0#(root O[O,n) (An))2|0[0,n)|2/€2
< 256# A0 - d* - ojo ) [* /€.

Now, the minimality of n ensures that (0jp,-1)) < ¢, so by Items (2) and (3) in Theorem
4.75,
|U[O,n)| S |O-n71‘ : |U[0,n—1)| S d2<0[0,n—1)> S d2£

Therefore, px (£ + 1) — px(£) < 256#A, - d° and px (£ + 1) — px (¢) is uniformly bounded. [J

4.10.2 A theorem of Cassaigne, Frid, Puzynina and Zamboni
The following result was proven in [CFPZ18].

Theorem 4.83 Let x € AN be an infinite sequence. The following conditions are equivalent:

(1) = has linear-word complezity.
(2) There exists S C A* such that S* 2 L(x) and sup,,>, ps(n) < 40o.

In this subsection, we give a different proof of Theorem 4.83 for the case of minimal subshifts.
We start by proving the following corollary of Theorem 4.75.

Proposition 4.84 Let X be an infinite minimal subshift of linear-growth complexity. There
exists d > 1 such that for any d' > 2 we can find T = (1,,: Apy1 — Al )n>o generating X
such that:

(1) #(root7pn)(A,)) < d.
(2) |Tomy(a)] < d-|mon(b)] for all a,b € A,.

(3) d < |mp_y(a)| < d'22? for all a € A,.

Proor. Let 7/ = (7,,: App1 — Al ),>0 and d be the elements given by Theorem 4.75 when it
is applied with X, and let d" > 1 be arbitrary. We will construct 7 by carefully contracting
7.

Let ng = 0 and inductively define ng,; as the smallest integer such that n;.; > n; and
(Tingmesa)) = 2. We observe that, since (7jn, n,,,-1)) = 1 by the minimality of n;,, we have
that (Tjom,.,-1)) < |Tjone)|- Then, by Items (2) and (3) in Theorem 4.75, we can bound

’T[O’nk+1)’ < ’T[O,nk+1*1)HTnk+1*1‘ < d<7_[0,nk+1*1)> -d < d2|7—[07nk)| < d3<7—[0,nk)>'

We note now that for any pair of morphisms ¢ and ¢’ for which oo’ is defined we have that
loa’| > (o)|o’|. Therefore,

|7_[0 ng 1)| 3
| < P, (4.158)
"= o)

|T[nk,nk+1
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We set ¢ = [log,d'| and consider the contraction 7 = (T[nek,nz(k+1)))k20. It follows from the
definition of ny that (7 > 2Y > d', and, from (4.158), that [ Thmern| < d3 <
df°82¢' Thus, T satisfies Item (3) of this proposition. Moreover, since 7' satisfies Item
(1) and (2) in Theorem 4.75 and since 7 is a contraction of 7/, Items (1) and (2) of this
proposition hold. O

Mok M (k41)) >

Lemma 4.85 Let w € A" and ¢ < |w|. There exists a set of words V such that:

(1) #V N A" < 25|w|/l for alln > 1.
(2) (V) 2L, V] < |wl.
(3) For any u occurring in w of length |u| > 25¢ we have that u € V2.

Proor. Fori > 0andj € [0,7], let w = w; j(1)u;;(2) ... u;;(2") be the (unique) decomposition
of w into 2 words u; (k) € A* such that |u;;(1)...u;;(k)] = [(8k + j)|w|/2773] for all
k € [1,2°]. We define V; as the set of words that are a prefix or a suffix of length at least ¢
of some u; (k). Set V = Up<iciog,(ju|/0) Vi-

It follows from the definition of V that (V) > ¢ and that |V| < |w]|, so Item (2) holds. For
Item (1), we note that if n > 1, then each w; ;j(k) has at most one prefix of length n and
at most one suffix of length n. Hence, #V; N A" is bounded by above by 2 -8 - 2f = 24,
Therefore, #V N A" < 370, g juiye 2 < 2%l /2.

We now prove Item (3). Let u be a word of length |u| > 2%¢ that occurs in w. Let us write
w = tus, where t,s € A*, and take ¢ > 0 such that |w|/2"! < |u| < |w|/2". Remark that
i < log,(|w|/f) as |u| > 25¢. We also consider the unique pair (k,j) € [1,2] x [0, 7] such that

(8k + f)|w] /22 < |t] + |w|/2 < (8k + j + 1)|w]| /2.

Then, we can write v = u/u” in such a way that |tu/| = |(8k + j)|w|/2773]. Tt is not
difficult to check that v’ is a suffix of u; ;(k) and that «” is a prefix of u; ;(k + 1). Moreover,
||, |u"] > |w|/2" > ¢, sou',u” € V; and u € V2 O

Theorem 4.86 Let X C A” be an minimal subshift. The following conditions are equivalent:

(1) X has linear-word complexity.

(2) There exists S C A* such that S* 2 L(X) and sup,>, ps(n) < 400.

Proor. We first suppose that X satisfies Condition (2) and define d = sup,,», ps(n). Then
LX)NA"C {ss':s,5 €8, |s|=n—]s]}. Hence,

px(n) < ips(k)ps(n —k) < (n+1)d?

and px has linear growth.
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Let us now suppose that X has linear-growth complexity. The case in which X is finite is
trivial; hence, we assume that X is infinite. Using Proposition 4.84 with d' = 2, we can find
a constant d and an S-adic sequence 7 = (7, Apy1 — A )n>0 generating X such that Items
(1), (2) and (3) in Proposition 4.84 hold.

We define S as follows. Let n > 1. For u € root 7y (Ay), we take p,, > 1 such that
ITomy| < [uPre| < 2|70m)|. We define W, = {uPrvP™ : u,v € root ) (A,)}. For each
w € W,, we use Lemma 4.85 with ¢ = (79,_1))/2° to obtain a set V,,, satisfying the
following:

(a) #Vpw NAY < 2Mw|/(710,4-1)) for all k > 1.
(b) Vaw) = <T[0,n—1)>/26> Vol < |w.
(c) if woccurs in w and |u| > (7j0,n—1)), then w € V2 .

We set S = Up,>1 Uyew,, Vaw-

Before continuing, we make some observations about the definitions. It follows from the
definition of W, and Item (1) in Proposition 4.84 that

#W,, < #(root 1,y (A,))? < d°. (4.159)
We also have that
if a,b € A, and v occurs in 7j)(ab), then v occurs in some w € W,. (4.160)
Note that since |w| < 2|7jg,,| for all w € W, (a) and (b) imply that
Vil < 2|70m| and #Viw < 2|70/ (Ton-1)) < 2%d°, (4.161)
where in the last step we used Items (2) and (3) of Proposition 4.84.

We now prove that S satisfies the desired properties. Let us start by showing that £(X) C
S?. Let uw € L£(X) and let n > 1 be the biggest integer such that |u| > (7j0,)). Then,
|u| < (Ton41)) and, thus, as T generates X, there exists a,b € A,4; such that u occurs
in 7j9,41)(ab). Hence, by (4.160), u occurs in some w € Wi, 41, which implies, by (c), that
ueVi,,, C5%

It remains to prove that pg is uniformly bounded. Let S, = Uyew,Vnw. We claim the
following:

(i) #ps, (k) <2'2d* for all n > 0 and k > 0.

ii) for any k > 0, there are at most log,(d) + 7 integers n such that S, N .A* is not empty.
y g2 g y

Observe that (i) and (ii) allow us to write

ps(k) < Y ps,(k) < (log,d +7) - 2"%d",
n:SpNAKA£D

which would show that pg is uniformly bounded and would complete the proof.
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Let us first prove (i). The definition of S, ensures that pg, (k) < #W, - max{#V,., N A" :
w € W,}. Hence, by (4.159) and (4.161), pg, (k) < d? - 212d°.

Next, we prove (ii) by contradiction. Assume that there are more than log, d 4+ 7 integers n
such that S, N A¥ # (. Then, we can find n and m such that S, N A* # 0, S,, N A* #£ ()
and m > n + logod + 7. We have, on one hand, that the definition of S, ensures that
k > minyew, (Vo). Hence, by (b) and Item (3) in Proposition 4.84,

k> (Tom-1))/2° 2 2" (70.0)).- (4.162)

On the other hand, the definition of S,, guarantees that k < max,ew, |Vyw|- Combining this
with (4.161) and Item (2) in Proposition 4.84 produces

k < 2|7j0m)| < 2d(Ti0,0))- (4.163)

Equations (4.162) and (4.163) are incompatible as m —n — 7 > log, d. This contradiction
proves (ii) and completes the proof of the theorem. O

4.10.3 Topological rank

The topological rank of a minimal subshift X is the least element k € [1,4o00] such that
there exists a recognizable S-adic sequence 7 = (7,: A1 — Al )0 satisfying, for every
n > 1, that #A, < k and that 7, is positive and proper. The class of finite topological
rank subshifts satisfies several rigidity properties, and many tools have been developed to
handle it; a non-exhaustive list includes [BKMS13; DFM19; Esp22a; EM21; DM08; BSTY19;
HPS92].

It was proved in [DDMP21] that a minimal subshift of nonsuperlinear-growth complexity
has finite topological rank, and thus that the aforementioned rigidity properties hold for this
class. We present in this subsection a new proof of this fact based in Theorem 4.76.

Theorem 4.87 ([DDMP21], Theorem 5.5) Let X be a minimal subshift of nonsuperlinear-
growth complexity. Then, X has finite topological rank.

Proor. The case in which X is finite is trivial, and so we may assume that X is infinite.
Then, Theorem 4.76 gives d and a recognizable S-adic sequence o = (0,,: Apy1 — AL )n>o
generating X such that Items (1) and (2) of Theorem 4.76 hold. In particular,

X C U S*(root oy ny(A,))* for all n > 1. (4.164)
keZ
Now, since |o7g,| goes to +00 as n — 400 and d|ojgn| < (0j,n)) by Item (2) in Theorem

4.76, we have that (o7jg,)) diverges to +-00 as n — 4-00. Hence, since X is aperiodic,

lim (root ojg ) (Ay)) = +00.

n——+o00

This and (4.164) allow us to use [Esp22a, Corollary 1.4] or [DDMP21, Theorem 4.3] to
conclude that X has finite topological rank. O
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Chapter 5

Perspectives and future work

In this final chapter, we will present some open questions and comments that have emerged
from the thesis work. These ideas correspond to a future research plan.

5.1 More on symbolic factors

The theorems in Chapter 3 provide a fine description of the symbolic factors for a general class
of subshifts: those having finite topological rank. It is then natural to search for applications
within the finite topological rank class. We now describe two ideas for doing this.

5.1.1 Symbolic factors of eventually dendric shifts

The class of minimal dendric subshifts was introduced in [Ber+14] (under the name of tree
shifts) and are a generalization of Arnoux-Rauzy subshifts and (the natural coding of) interval
exchanges. This class presents interesting rigidity properties, such as that any set of return
words is a basis of the free group of a fixed cardinality or that the complexity function is an
affine function [Ber+14]. Moreover, the closely related class of eventually dendric subshifts
was independently discovered in [DF22] while generalizing a theorem on the number of ergodic
measures of interval exchanges. Due to this, dendric and eventually dendric shifts have gained
attention, and, in particular, the question about their symbolic factors has become relevant.

Problem 5.1 Describe the symbolic factors of (eventually) dendric shifts.

There are examples of dendric subshifts with non-dendric symbolic factors. However, all
known such factors are eventually dendric. This has led to the following conjecture.

Conjecture 5.1 Are all symbolic factors of a given eventually dendric shift eventually den-
dric?

Interestingly, a finite topological rank structure for minimal eventually dendric subshift was
recently obtained [GL22]. Therefore, the methods developed in Chapter 3 can be applied to
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this case and, by doing so, we may be able to shed some light on the conjecture.

5.1.2 Symbolic factors of interval exchanges

The following is an old question regarding interval exchange transformations:

Question 5.1 Let F be the set of interval exchange transformations that do not have non-
trivial measure-theoretic factors. Is F generic?

Observe that an affirmative answer to this question has, as a particular case, the Avila-Forni
Theorem, so it is probably a difficult problem. We consider instead a topological version of
it.

Question 5.2 Let Fi,, be the set of interval exchange transformations whose natural coding
does not have non-trivial symbolic factors. Is Fi., generic?

In a work in progress with Vincent Delecroix, we have outlined a strategy, using the ideas of
Chapter 3, for giving an affirmative answer to Question 5.2. This would represent progress
towards Question 5.1.

5.2 More on the S-adic conjecture

Our work on the S-adic conjecture opened at least two new directions of research, which we
now discuss.

5.2.1 Applications of the structure theorems

The S-adic characterization obtained in Chapter 4 permit the use of the S-adic machinery
to study linear- and nonsuperlinear-growth complexity subshifts. Some cases in which this
idea produces interesting results were presented in Section 4.10 of Chapter 4. We plan
on continuing investigating in this direction. In particular, it seems that the absence of
the strong mixing property and the partial rigidity (with respect to an ergodic measure)
may be better understood using the methods in [BKMS13]. More generally, any of the
currently known techniques for handling S-adic sequences can now be applied to linear- and
nonsuperlinear-growth complexity subshifts, see [HPS92; BKMS13; DFM19; Ber+21]. In
some cases, non-proper variations of those techniques must be developed first.

5.2.2 Finite alphabet rank structures

Let (L) and (NSL) be the classes of linear- and nonsuperlinear-growth complexity subshifts,
respectively. We showed in Theorem 4.77 that the structure provided we obtained for (L)
must have, in some cases, infinite alphabet rank . Now, most of the techniques for handling
S-adic sequences are designed for finite alphabet rank sequences. Although some of them
can be adapted to our case, the following question seems natural:

"The alphabet rank of T = (7, Atﬂ — Al ) >0 is minf, o #A,,.
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Question 5.3 Let C be (L) or (NSL). Is there a finite alphabet rank S-adic characterization
of C?

This question is sometimes called the strong S-adic conjecture. Observe that this question is
ill-defined in the same sense as the S-adic conjecture is.

In the direction of Question 5.3, a close inspection of the proof of Theorem 4.77 shows
that, in some cases, the sets Powx(w) encode certain long-range information that seems
to be incompatible with finite alphabet rank S-adic sequences. Therefore, we suspect that
Question 5.3 has a negative answer.
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