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SÉBASTIEN FERENCZI
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POR: BASTIÁN ALEJANDRO ESPINOZA CONTRERAS
FECHA: 2023
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CERO: AUTOMORFISMOS, FACTORES Y ESTRUCTURE

Esta tesis se centra en el estudio de los subshifts minimales a través de secuencias S-ádicas.
Primero, investigamos los automorfismos y factores de subshifts minimales generados por
secuencias S-ádicas con alfabetos de cardinalidad acotada. Probamos que estos subshifts
tienen grupos de automorfismos que son virtualmente Z, que tienen finitos factores simbólicos
aperiódicos (salvo conjugación), y damos una descripción fina de sus factores simbólicos.
Luego, consideramos la conjetura S-ádica, un viejo problema que pregunta por un teorema de
estructura para los subshifts de complejidad lineal. Resolvemos completamente este problema
al dar una caracterización S-ádica de esta clase de subshifts. Nuestros métodos se extienden
a subshifts de crecimiento no superlineal. Mostramos también cómo esto proporciona un
marco unificado y pruebas simplificadas de varios resultados conocidos, incluido el teorema
pionero de Cassaigne de 1996.
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Abstract

This thesis focuses on the study of minimal subshifts via S-adic sequences. First, we inves-
tigate automorphisms and factors of minimal subshifts generated by S-adic sequences with
alphabets of bounded cardinality. As a result, we prove that these subshifts have virtually
Z automorphism groups, finitely many infinite symbolic factors (up to conjugacy), and we
give a fine description of symbolic factor maps. In the second part, we consider the S-
adic conjecture, an old problem asking for a structure theorem for linear-growth complexity
subshifts. We completely solve this problem by proving an S-adic characterization of this
class of subshifts. Our methods extend to nonsuperlinear-growth subshifts. We show how
this provides a unified framework and simplified proofs of several known results, including
Cassaigne’s Theorem.
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Résumé

Cette thèse porte sur l’étude des systèmes symboliques minimaux via des séquences S-
adiques. Dans la première partie, nous étudions les automorphismes et les facteurs des
systèmes minimaux générés par des séquences S-adiques avec des alphabets de cardinalité
bornée. Comme résultat, nous prouvons que les systèmes de cette classe ont des groupes
d’automorphismes virtuellement Z, un nombre fini de facteurs symboliques infinis (jusqu’à
la conjugaison), et une description fine des facteurs symboliques. Dans la seconde partie,
nous considérons la conjecture S-adique, un vieux problème demandant un théorème de
structure pour les systèmes symboliques de complexité à croissance linéaire. Nous résolvons
complètement ce problème en prouvant une caractérisation S-adique de cette classe de
systèmes. Les méthodes s’étendent aux systèmes à croissance non superlinéaire. Nous mon-
trons comment cela fournit un cadre unifié et des preuves simplifiées de plusieurs résultats
connus, y compris le théorème de Cassaigne de 1996.
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Introduction

An idea that became unavoidable to study zero entropy symbolic dynamics is that the dy-
namical properties of a system induce in it a combinatorial structure. The first use of this
approach was in the works of Morse and Hedlund [MH38; MH40], where Sturmian sequences
were studied based on a structure given by what the authors called derivative sequences. As
the theory developed, more examples like this one emerged. Relevant ones include substi-
tutive and linearly recurrent subshifts [DHS99], Toeplitz systems [GJ00], (natural codings
of) interval exchange transformations [GJ02], dendric sequences [GL22] and general minimal
subshifts [HPS92].

In this thesis, we investigate these combinatorial structures under two approaches. The first
one assumes a given combinatorial structure and focuses on studying the dynamical properties
of the systems supporting such a structure. We will consider finite topological rank systems,
a class of systems possessing two desirable but opposite properties: It is a large class and
contains most of the known zero entropy symbolic systems, yet it presents strong dynamical
restrictions. Thus, the finite topological rank class provides a good framework for proving
general and interesting theorems. We exploit this idea by studying automorphisms and
symbolic factors of finite topological rank subshifts. Several theorems, describing rigidity
properties for these objects, are obtained in Chapters 2 and 3.

The second approach consists of finding new combinatorial structures for systems of interest.
We study one of the major questions in this direction -the S-adic conjecture, which asks for
a structure theorem for linear-growth complexity subshifts. In the final chapter, we solve
this conjecture and, furthermore, extend it to nonsuperlinear-growth complexity subshifts.
An important consequence of our results is that these complexity classes gain access to the
S-adic machinery. We show how this provides a unified framework and simplified proofs of
several known results, including the pioneering 1996 Cassaigne’s Theorem.

We will now discuss the thesis topics in more detail.

Basic terminology

Let us briefly review the modern standard for describing symbolic systems and their struc-
tures. An alphabet is a finite set A and a word is a finite concatenation of letters, i.e., elements
of A. The full-shift on A is the set AZ endowed with the product topology of the discrete
topology of A. We define the shift as the map S : AZ → AZ defined by (xn)n∈Z 7→ (xn+1)n∈Z.
A symbolic system or subshift is a closed subset X of AZ such that S(X) = X. We will
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mostly consider minimal subshifts X, that is, such that {Snx : n ∈ Z} is dense in X for all
x ∈ X.

A substitution is a map τ : A+ → B+ that substitutes the letters ai of a word w = a1 . . . aℓ
by τ(ai). Then, a sequence of substitutions τ of the form (τn : A+

n+1 → A+
n )n≥0 is called an

S-adic sequence and generates a subshift Xτ ⊆ AZ
0 given by requiring that x ∈ Xτ if and

only if, for all ℓ ≥ 0, x[−ℓ,ℓ) occurs in τ0τ1 . . . τn−1(a) for some n ≥ 1 and a ∈ An.

Finite topological rank systems

An ordered Bratteli diagram is an infinite directed graph B = (V,E,≤) such that the vertex
set V and the edge set E are partitioned into levels V = V0 ∪ V1 ∪ . . . , E = E0 ∪ . . . so
that En are edges from Vn+1 to Vn, V0 is a singleton, each Vn is finite and ≤ is a partial
order on E such that two edges are comparable if and only if they start at the same vertex.
The order ≤ can be extended to the set XB of all infinite paths in B, and the Vershik
action VB on XB is defined when B has unique minimal and maximal infinite paths with
respect to ≤. We say that (XB, VB) is a BV representation of the Cantor system (X,S)
if both are conjugate. Bratteli diagrams are a tool coming from C∗-algebras that, at the
beginning of the 90’, Herman et. al. [HPS92] used to study minimal Cantor systems. Their
success at characterizing the strong and weak orbit equivalence for systems of this kind
marked a milestone in the theory that motivated many posterior works. Some of these works
focused on studying with Bratteli diagrams specific classes of systems and, as a consequence,
many of the classical minimal systems have been characterized as Bratteli-Vershik systems
with a specific structure. Some examples include odometers as those systems that have a
BV representation with one vertex per level, substitutive subshifts as stationary BV (all
levels are the same) [DHS99], certain Toeplitz sequences as “equal row-sum” BV [GJ00], and
(codings of) interval exchanges as BV where the diagram codifies a path in a Rauzy graph
[GJ02]. Now, almost all of these examples share certain coarse dynamical behavior: they are
subshifts, have finitely many ergodic measures, are not strongly mixing, have zero entropy,
and their BV representations have a bounded number of vertices per level, among many
others. It turns out that just having a BV representation with a bounded number of vertices
per level (or, from now on, having finite topological rank) implies the previous properties (see,
for example, [BKMS13], [DM08]). In particular, finite topological rank systems are subshifts.
Hence, the finite topological rank class arises as a possible framework for studying minimal
subshifts and proving general theorems.

This idea has been exploited in many works: Durand et. al., in a series of papers (being
[DFM19] the last one), developed techniques from the well-known substitutive case and
obtained a criteria for any BV of finite topological rank to decide if a given complex number
is a continuous or measurable eigenvalue, Bezugly et. al. described in [BKMS13] the simplex
of invariant measures together with natural conditions for being uniquely ergodic, Giordano
et. al. bounded the rational rank of the dimension group by the topological rank ([HPS92]),
among other works. It is important to remark that these works were inspired by or first
proved in the substitutive case.

Now, since Bratteli-Vershik whose topological rank is at least two are conjugate to a subshift
[DM08], it is interesting to try to define them directly as a subshift. This can be done by
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codifying the levels of the Bratteli diagram as substitutions and then iterate them to obtain
a sequence of symbols defining a subshift conjugate to the initial BV system. This procedure
also makes sense for arbitrary nested sequences of substitutions (called directive sequences),
independently from the Bratteli diagram and the various additional properties that its codi-
fying substitutions have. Subshifts obtained in this way are called S-adic (substitution-adic)
and may be non-minimal (see for example [BSTY19]).

Although there are some open problems about finite topological rank systems depending
directly on the combinatorics of the underlying Bratteli diagrams, others are more naturally
stated in the S-adic setting (e.g., when dealing with endomorphisms, it is useful to have
the Curtis–Hedlund–Lyndon Theorem) and, hence, there exists an interplay between S-adic
subshifts and finite topological rank systems in which theorems and techniques obtained for
one of these classes can sometimes be transferred to the other. The question about which is
the exact relation between these classes has been recently addressed in [DDMP21] and, in
particular, the authors proved:

Theorem 0.1 ([DDMP21]) A minimal subshift (X,S) has topological rank at most K if and
only if it is generated by a proper, primitive and recognizable S-adic sequence of alphabet rank
at most K.

In Chapters 2 and 3, we will use the S-adic formalism to study automorphisms and factors
of finite topological rank systems.

Automorphisms

Let X be a subshift. The automorphism group of (X,S), Aut(X,S), is the set of homeomor-
phisms from X onto itself that commute with S. The study of the automorphism group of
low complexity subshifts (X,S) has attracted a lot of attention in recent years. By complex-
ity, we mean the increasing function pX : N→ N which counts the number of words of length
n ∈ N appearing in points of the subshift (X,S). In contrast to the case of non trivial mixing
shifts of finite type or synchronized systems, where the algebraic structure of this group can
be very rich [BLR88; KR90; FF96], the automorphism group of low complexity subshifts
is expected to present high degrees of rigidity. The most relevant example illustrating this
fact are minimal subshifts of non-superlinear complexity, where the automorphism group is
virtually Z [CK15; DDMP16]. Interestingly, in [Sal17] (and then in [DDMP16] in a more gen-
eral class) the author provides a Toeplitz subshift with complexity pX(n) ≤ Cn1.757, whose
automorphism group is not finitely generated. So some richness in the algebraic structure
of the automorphism groups of low complexity subshifts can arise. Other low complexity
subshifts have been considered by Cyr and Kra in a series of works. In [CK16b] they proved
that for transitive subshifts, if lim inf

n→+∞
pX(n)/n

2 = 0, then the quotient Aut(X,S)/⟨S⟩ is a

periodic group, where ⟨S⟩ is the group spanned by the shift map; and in [CK16a] for a large
class of minimal subshifts of subexponential complexity they also proved that the automor-
phism group is amenable. All these classes and examples show that there is still a lot to be
understood on the automorphism groups of low complexity subshifts.

In Chapter 2, we study the automorphism group of minimal S-adic subshifts of finite or
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bounded alphabet rank. This class of minimal subshifts is somehow the most natural class
containing minimal subshifts of non-superlinear complexity, but it is much broader, as was
shown in [DDMP16; DDMP21]. Moreover, this class contains several well studied minimal
symbolic systems. Among them, substitution subshifts, linearly recurrent subshifts, symbolic
codings of interval exchange transformations, dendric subshifts and some Toeplitz sequences.
Thus, this class represents a useful framework for both, proving general theorems in the
low complexity world and building subshifts with interesting dynamical behavior. The de-
scriptions made in [BKMS13] of its invariant measures and in [DFM19] of its eigenvalues
are examples of the former, and the well-behaved S-adic codings of high dimensional torus
translations from [BST20] is an example of the latter.

The main result of Chapter 2 is the following rigidity theorem:

Theorem 0.2 Let (X,S) be a minimal S-adic subshift given by an everywhere growing
directive sequence τ = (τn : A+

n+1 → A+
n )n≥0. Suppose that τ is of finite alphabet rank, i.e.,

lim inf
n→+∞

#An < +∞. Then, Aut(X,S) is virtually Z.

A minimal S-adic subshift of finite topological rank, as stated in [DDMP21], is defined as an
S-adic subshift in which the defining directive sequence τ is proper, primitive, recognizable
and with finite alphabet rank. In particular, τ is everywhere growing. Therefore, Theorem
0.2 includes all minimal S-adic subshifts of finite topological rank. Also, in the same paper,
the authors prove that minimal subshifts of non-superlinear complexity are S-adic of finite
topological rank. Thus, Theorem 0.2 can be seen as a generalization to a much broader class
of the already mentioned results from [CK15] and [DDMP16]. Finally, by results stated in
[DDMP16], Theorem 0.2 also applies to all level subshifts of minimal Bratteli-Vershik systems
of finite topological rank and its symbolic factors.

The proof of Theorem 0.2 follows from a fine combinatorial analysis of asymptotic classes of
S-adic subshifts of finite alphabet rank. This idea already appeared in [DDMP16], where the
authors prove that the automorphism group of a minimal system is virtually Z whenever it
has finitely many asymptotic classes. The following theorem summarizes this combinatorial
analysis.

Theorem 0.3 Let W ⊆ A+ be a set of nonempty words and define ⟨W⟩ := min
w∈W

length(w).

Then, there exists B ⊆ A⟨W⟩ with #B ≤ 122(#W)7 such that: if x, x′ ∈ AZ are factorizable
over W, x(−∞,0) = x′(−∞,0) and x0 ̸= x′0, then x[−⟨W⟩,0) ∈ B.

Here, the important point is that, despite the fact that the length of the elements in B is
⟨W⟩, the cardinality of B depends only on #W , and not on ⟨W⟩.

Finally, we get a bound for the asymptotic classes of an S-adic subshift of finite alphabet
rank. This result does not require minimality.

Theorem 0.4 Let (X,S) be an S-adic subshift (not necessarily minimal) given by an every-
where growing directive sequence of finite alphabet rank K. Then, (X,S) has at most 122K7
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asymptotic classes.

Factors

In the context of finite topological rank systems, a fundamental question is the following:

Question 0.1 Are subshift factors of finite topological rank systems of finite topological
rank?

Indeed, the topological rank controls various coarse dynamical properties (number of ergodic
measures, rational rank of dimension group, among others) which cannot increase after a
factor map, and we also know that big subclasses of the finite topological rank class are stable
under symbolic factors, such as the linearly recurrent and the non-superlineal complexity
classes [DDMP21], so it is expected that this question has an affirmative answer. However,
when trying to prove this using Theorem 0.1, we realize that the naturally inherited S-adic
structure of finite alphabet rank that a symbolic factor has is never recognizable. Moreover,
this last property is crucial for many of the currently known techniques to handle finite
topological rank systems (even in the substitutive case it is a deep and fundamental theorem
of Mossé), so it is not clear why it would be always possible to obtain this property while
keeping the alphabet rank bounded or why recognizability is not connected with a dynamical
property of the system. Thus, an answer to this question seems to be fundamental to the
understanding of the finite topological rank class.

In Chapter 3, we obtain the optimal answer to Question 0.1 in a more general, non-minimal
context:

Theorem 0.5 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and π : (X,S)→ (Y, S) be an aperiodic
subshift factor. Then, (Y, S) is an S-adic subshift generated by an everywhere growing, proper
and recognizable directive sequence of alphabet rank at most K.

Here, a directive sequence σ = (σn : A+
n+1 → A+

n )n∈N is everywhere growing if the sequence
mina∈An |σ0 . . . σn−1(a)| diverges as n→ +∞, and a system (X,S) is aperiodic if every orbit
{Snx : n ∈ Z} is infinite. Theorem 0.5 implies that the topological rank cannot increase after
a factor map (Corollary 3.19). Theorem 0.5 implies the following sufficient condition for a
system to be of finite topological rank:

Corollary 0.6 Let (X,S) be an aperiodic minimal S-adic subshift generated by an every-
where growing directive sequence of finite alphabet rank. Then, the topological rank of (X,S)
is finite.

An interesting corollary of the underlying construction of the proof of Theorem 0.5 is the
coalescence property for this kind of systems, in the following stronger form:
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Corollary 0.7 Let (X,S) be an S-adic subshift generated by an everywhere growing and

proper directive sequence of alphabet rank equal to K, and (X,S)
π1→ (X1, S)

π2→ . . .
πL→ (XL, S)

be a chain of aperiodic subshift factors. If L > log2K, then at least one πj is a conjugacy.

One of the results in [Dur00] is that factor maps between aperiodic linearly recurrent subshifts
are finite-to-one. In particular, they are almost k-to-1 for some finite k. For finite topological
rank subshifts, we prove:

Theorem 0.8 Let π : (X,S)→ (Y, S) be a factor map between aperiodic minimal subshifts.
Suppose that (X,S) has topological rank equal to K. Then π is almost k-to-1 for some k ≤ K.

We use this theorem, in Corollary 3.22, to prove that Cantor factors of finite topological rank
subshifts are either odometers or subshifts.

In [Dur00], the author proved that linearly recurrent subshifts have finite topological rank,
and that this kind of systems have finitely many aperiodic subshifts factors up to conjugacy.
Inspired by this result, we use ideas from the proof of Theorem 0.5 to obtain:

Theorem 0.9 Let (X,S) be a minimal subshift of topological rank K. Then, (X,S) has at
most (3K)32K aperiodic subshift factors up to conjugacy.

Altogether, these results give a rough picture of the set of totally disconnected factors of a
given finite topological rank system: they are either equicontinuous or subshifts satisfying the
properties in Theorems 0.5, 0.7, 0.9 and 0.8. Now, in a topological sense, totally disconnected
factors of a given system (X,S) are “maximal”, so, the natural next step in the study of
finite topological rank systems is asking about the connected factors. As we have seen, the
finite topological rank condition is a rigidity condition. By this reason, we think that the
following question has an affirmative answer:

Question 0.2 Let (X,S) be a minimal system of finite topological rank and π : (X,S) →
(Y, T ) be a factor map. Suppose that Y is connected. Is (Y, T ) an equicontinuous system?

We remark that the finite topological rank class contains all minimal subshifts of non-
superlinear complexity [DDMP21], but even for the much smaller class of linear complexity
subshifts the author is not aware of results concerning Question 0.2.

Low complexity subshifts

Structure theorems

Theorems that describe a combinatorial structure of a given class of subshifts are usually an
S-adic characterization, namely, of the form: a subshift X belongs to the class C if and only
if X is generated by an S-adic sequence satisfying certain property P . The structure then
appears as an infinite desubstitution process for the points of X.
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In the context of structure theorems, an interesting intuition is that a subshift of low enough
complexity should be very restricted, and thus hide a strong structure. Here, low complexity
is a vague term referring to a slow growth of the complexity function pX(n), defined as the
number of words of length n that occur in some point of X. This intuition dates back to the
70s, and matured in the 80s and 90s until it was finally established as the following more
concrete question.

Question 0.3 Consider the class (L) of linear-growth complexity subshifts, defined by re-
quiring that pX(n) ≤ dn for some d > 0. Is there an S-adic characterization of the class
(L)?

Question 0.3 is known as the S-adic conjecture. The first time it was explicitly stated was
in [Fer96], where the author attributes the idea to B. Host, who, in turn, attributes the idea
to the whole Marseille community.

The attempts to solve this conjecture have identified two major difficulties. The first one is
that, in contrast to what happens with other structure theorems, there is no clear structure
induced by the complexity. For example, in the substitutive case, it was always clear that the
substitution itself should produce a self-similar structure; the main obstruction was technical
and referred to whether the desubstitution process was properly defined [Mos96]. Similarly,
in the Sturmian and IET cases, the known structure came from the geometric counterpart
(more precisely, from the Rauzy induction). The second challenge is that the condition P we
are looking for in Question 0.3 is ill-defined. To exemplify this point, observe that a corollary
of [Cas11] is the following S-adic characterization of (L): a subshift is in (L) if and only if
there exist τ generating it and such that Xτ is in (L). This tautological answer to Question
0.3 does not provide information. Certain restrictions on Question 0.3 have been proposed
to avoid this type of trivial answer, but none of them is considered satisfactory; we refer the
reader to [DLR13] for a full discussion.

In Chapter 4, we completely solve the S-adic conjecture for minimal subshifts by proving the
following theorem.

Theorem 0.10 A minimal subshift X has linear-growth complexity, i.e., X satisfies

lim sup
n→+∞

pX(n)/n < +∞,

if and only if there exist d > 0 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 generating

X such that, for every n ≥ 0, the following holds:

(P1) #(rootσ[0,n)(An)) ≤ d †.

(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

(P3) |σn−1(a)| ≤ d for every a ∈ An.

†For a word u, rootu denotes the shortest prefix v of u such that u = vk for some k; for a set of words
W, rootW = {rootw : w ∈ W}.
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Our techniques extend to the case of nonsuperlinear complexity subshifts (NSL).

Theorem 0.11 A minimal subshift X has nonsuperlinear-growth complexity, i.e., X satisfies

lim inf
n→+∞

pX(n)/n < +∞,

if and only if there exist d > 0 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 generating

X such that, for every n ≥ 0, the following holds:

(P1) #(rootσ[0,n)(An)) ≤ d.

(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

The case of non-minimal subshifts does not pose additional intrinsic difficulties and follows
from methods similar to those given here. However, we did not include it to avoid over
saturating an already technical presentation.

An important consequence of our main results is that the classes (L) and (NSL) gain access
to the S-adic machinery. We show in Section 4.10 how this provides a unified framework and
simplified proofs of several known results on (L) and (NSL), including Cassaigne’s Theorem
[Cas95]. Further applications of our main results, which include a new proof of partial
rigidity for (NSL) [Cre22] using the technique in [BKMS13, Theorem 7.2], will be presented
in a future work.

We prove, in the more specialized Theorems 4.75 and 4.76, that when X is in (L) or in (NSL),
then τ can be assumed to be recognizable. Observe that the conditions (Pi) in Theorems
0.10 and 0.11 are optimal in the sense that if we remove any of them then the corresponding
theorem is false. Conditions (P2) and (P3) also occur in the positive substitutive case ‡ and
in linearly recurrent subshifts, but the behavior in our theorems is very different since we do
not impose positiveness.

With regard to (P1) and (P3), these were designed on the basis of two conditions that are
present in most works that involve S-adic sequences. The first is having bounded alphabets
(BA), which requires that #An is uniformly bounded, and the second is finitariness, which
asks for the set {τn : n ≥ 0} to be finite. Note that finitariness implies both (BA) and
Conditions (P1) and (P3), that (BA) implies (P1), and that, under (P3), finitariness and
(BA) are equivalent. There are several papers in which a finitary S-adic sequence is looked
for a subshift in (L) (see [Ler14] and the references therein), and S-adic sequences with (BA)
have shown to be closely connected with (L) and (NSL) [Fer96; DDMP21]. It is then natural
to ask if we can replace, in Theorem 0.10, Conditions (P1) and (P3) by finitariness. We show
in Theorem 4.77 that this is not possible. More precisely, we build a minimal subshift with
linear-growth complexity such that any τ generating it and satisfying (P1), (P2) and (P3)
is not finitary (equivalently, (BA) does not hold). However, in Theorems 4.75 and 4.76 we
give a sufficient condition for τ being finitary. Subshifts satisfying this sufficient condition
include substitutive subshifts, codings of IETs and dendric subshifts.

‡A substitution σ : A → B+ is positive if for all a ∈ A and b ∈ B, b occurs in σ(a)
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Organization

The first chapter of the thesis is devoted to present the common background on topological
and symbolic dynamics that will be used in the rest of the document. We study automor-
phisms and symbolic factors of finite topological rank systems in Chapters 2 and 3, respec-
tively. Chapter 4 contains our results on the S-adic conjecture. Finally, a discussion of our
results and the future work is contained in Chapter 5.
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Chapter 1

Background

1.1 Background in topological and symbolic dynamics

All the intervals we will consider consist of integer numbers, i.e., [a, b] = {k ∈ Z : a ≤ k ≤ b}
with a, b ∈ Z. For us, the set of natural numbers starts with zero, i.e., N = {0, 1, . . . }.

1.1.1 Basics in topological dynamics

A topological dynamical system (or just a system) is a pair (X,S), where X is a compact
metric space and S : X → X is a homeomorphism of X. The orbit of x ∈ X is the set
{Snx : n ∈ Z}. A point x ∈ X is periodic if its orbit is a finite set and aperiodic otherwise.
A topological dynamical system is aperiodic if any point x ∈ X is aperiodic and is minimal
if the orbit of every point is dense in X. We use the letter S to denote the action of a
topological dynamical system independently of the base set X.

1.1.2 Basics in symbolic dynamics

Words and subshifts

Let A be an alphabet i.e. a finite set. Elements in A are called letters and concatenations
w = a1 . . . aℓ of them are called words. The number ℓ is the length of w and it is denoted
by |w|, the set of all words in A of length ℓ is Aℓ, and A+ =

⋃
ℓ≥1Aℓ. The word w ∈ A+ is

|u|-periodic, with u ∈ A+, if w occurs in a word of the form uu . . . u. We define per(w) as the
smallest p for which w is p-periodic. We will use notation analogous to the one introduced in
this paragraph when dealing with infinite words x ∈ AN and bi-infinite words x ∈ AZ. The
set A+ equipped with the operation of concatenation can be viewed as the free semigroup
on A. It is convenient to introduce the empty word 1, which has length 0 and is a neutral
element for the concatenation. In particular, A+ ∪ {1} is the free monoid in A.

Let W ⊆ A∗ be a set of words and u ∈ A∗. We write uW = {uw : w ∈ W}, Wu = {wu :
w ∈ W}, and also

⟨W⟩ := min
w∈W
|w| and |W| := max

w∈W
|w|.
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The shift map S : AZ → AZ is defined by S((xn)n∈Z) = (xn+1)n∈Z. For x ∈ AZ and integers
i < j, we denote by x[i,j) the word xixi+1 . . . xj. Analogous notation will be used when dealing
with intervals of the form [i,∞), (i,∞), (−∞, i] and (−∞, i). A subshift is a topological
dynamical system (X,S) where X is a closed and S-invariant subset of AZ (we consider the
product topology in AZ) and S is the shift map. Classically one identifies (X,S) with X, so
one says that X itself is a subshift. When we say that a sequence in a subshift is periodic
(resp. aperiodic), we implicitly mean that this sequence is periodic (resp. aperiodic) for the
action of the shift. Therefore, if x ∈ AZ is periodic, then per(x) is equal to the size of the
orbit of x. The language of a subshift X ⊆ AZ is the set L(X) of all words w ∈ A+ that
occur in some x ∈ X.

Morphisms and substitutions

Let A and B be finite alphabets and τ : A+ → B+ be a morphism between the free semigroups
that they define. Then, τ extends naturally to maps from AN to itself and from AZ to itself
in the obvious way by concatenation (in the case of a twosided sequence we apply τ to
positive and negative coordinates separately and we concatenate the results at coordinate
zero). We say that τ is primitive if for every a ∈ A, all letters b ∈ B occur in τ(a). The
minimum and maximum length of τ are the numbers ⟨τ⟩ := ⟨τ(A)⟩ = mina∈A |τ(a)| and
|τ | := |τ(A)| = maxa∈A |τ(a)|, respectively.

We observe that any map τ : A → B+ can be naturally extended to a morphism (that we
also denote by τ) from A+ to B+ by concatenation, and we use this convention throughout
the document. So, from now on, all maps between finite alphabets are considered to be
morphisms between their associated free semigroups.

Factorizations and recognizability

Definition 1.1 Let X ⊆ AZ be a subshift and σ : A+ → B+ be a morphism. We say that
(k, x) ∈ Z×X is a σ-factorization of y ∈ BZ in X if y = Skσ(x). If moreover k ∈ [0, |σ(x0)|),
then (k, x) is a centered σ-factorization in X.

The pair (X, σ) is recognizable if every point y ∈ BZ has at most one centered σ-factorization
in X, and recognizable with constant r ∈ N if whenever y[−r,r] = y′[−r,r] and (k, x), (k′, x′) are

centered σ-factorizations of y, y′ ∈ BZ in X, respectively, we have (k, x0) = (k′, x′0).

The cuts of (k, x) are defined by

cσ,j(k, x) =

{
−k + |σ(x[0,j))| if j ≥ 0,

−k − |σ(x[j,0))| if j < 0.

We write Cσ(k, x) = {cσ,j(k, x) : j ∈ Z}.

Remark 1.1 In the context of the previous definition:

(i) The point y ∈ BZ has a (centered) σ-factorization in X if and only if y belongs to the
subshift Y :=

⋃
n∈Z S

nσ(X). Hence, (X, σ) is recognizable if and only if every y ∈ Y
has a exactly one centered σ-factorization in X.
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(ii) If (k, x) is a σ-factorization of y ∈ BZ in X, then (cσ,j(k, x), S
jx) is a σ-factorization of

y in X for any j ∈ Z. There is exactly one factorization in this class that is centered.

(iii) If (X, σ) is recognizable, then it is recognizable with constant r for some r ∈ N
[DDMP21].

The behavior of recognizability under composition of morphisms is given by the following
lemma.

Lemma 1.1 ([BSTY19], Lemma 3.5) Let σ : A+ → B+ and τ : B+ → C+ be morphisms,
X ⊆ AZ be a subshift and Y =

⋃
k∈Z S

kσ(X). Then, (X, τσ) is recognizable if and only if
(X, σ) and (Y, τ) are recognizable.

S-adic subshifts

We recall the definition of an S-adic subshift as stated in [BSTY19]. An S-adic sequence
or directive sequence σ is a sequence of morphisms having the form (σn : A+

n+1 → A+
n )n∈N.

For 0 ≤ n < N , we denote by σ[n,N) the morphism σn ◦ σn+1 ◦ · · · ◦ σN−1. We say that σ is
everywhere growing if

lim
N→+∞

⟨σ[0,N)⟩ = +∞, (1.1)

and primitive if for any n ∈ N there exists N > n such that σ[n,N) is positive. We remark
that this notion is slightly different from the usual one used in the context of substitutional
dynamical systems. Observe that σ is everywhere growing if σ is primitive. Let P be a
property for morphisms (e.g. proper, letter-onto, etc). We say that σ has property P if σn
has property P for every n ∈ N.

For n ∈ N, we define

X(n)
σ =

{
x ∈ AZ

n : ∀ℓ ∈ N, x[−ℓ,ℓ] occurs in σ[n,N)(a) for some N > n, a ∈ AN

}
.

This set clearly defines a subshift that we call the nth level of the S-adic subshift generated by
σ. We setXσ = X

(0)
σ and simply call it the S-adic subshift generated by σ. If σ is everywhere

growing, then every X
(n)
σ , n ∈ N, is nonempty; if σ is primitive, then X

(n)
σ is minimal for

every n ∈ N. There are non-everywhere growing directive sequences that generate minimal
subshifts.

The relation between levels of an S-adic subshift is given by the following lemma.

Lemma 1.2 ([BSTY19], Lemma 4.2) Let σ = (σn : A+
n+1 → A+

n )n∈N be a directive sequence

of morphisms. If 0 ≤ n < N and x ∈ X(n)
σ , then there exists a (centered) σ[n,N)-factorization

in X
(N)
σ . In particular, X

(n)
σ =

⋃
k∈Z S

kσ[n,N)(X
(N)
σ ).

We define the alphabet rank of a directive sequence τ as

AR(τ ) = lim inf
n→+∞

#An.
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A contraction of τ is a sequence τ̃ = (τ[nk,nk+1) : A+
nk+1

→ A+
nk
)k∈N, where 0 = n0 < n1 <

n2 < . . . . Observe that any contraction of τ generates the same S-adic subshift Xτ . When
the context is clear, we will use the same notation to refer to τ and its contractions. If τ
has finite alphabet rank, then there exists a contraction τ̃ = (τ[nk,nk+1) : A+

nk+1
→ A+

nk
)k∈N of

τ in which Ank
has cardinality AR(τ ) for every k ≥ 1.
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Chapter 2

Automorphisms

2.1 Introduction

Automorphism groups of low complexity subshifts have gained considerable attention in
recent years. Unlike the case of mixing shifts of finite type, where the algebraic structure of
this group can be very rich [BLR88; KR90; FF96], the automorphism group of low complexity
subshifts has a high degree of rigidity. The most relevant example illustrating this fact is the
case of minimal subshifts of nonsuperlinear-growth complexity, in which the automorphism
group is virtually Z [CK15; DDMP16]. In this chapter, we study the automorphism group of
minimal S-adic subshifts of finite alphabet rank. This class of subshifts contains all minimal
subshifts of nonsuperlinear-growth complexity, but it is much broader, as was shown in
[DDMP16; DDMP21].

The main result of this chapter is the following rigidity theorem:

Theorem 2.1 Let (X,T ) be a minimal S-adic subshift generated by an everywhere growing
S-adic sequence τ = (τn : A+

n+1 → A+
n )n≥0. Suppose that τ is of finite alphabet rank, i.e.

lim infn→+∞ #An < +∞. Then, Aut(X,T ) is virtually Z.

The proof of Theorem 2.1 is a consequence of a fine combinatorial analysis of asymptotic
classes of S-adic subshifts of finite alphabet rank, which we summarize in the following
theorem.

Theorem 2.2 Let W ⊆ A+ be a set of nonempty words and define ⟨W⟩ := min
w∈W

length(w).

Then, there exists B ⊆ A⟨W⟩ with #B ≤ 122(#W)7 such that: if x, x′ ∈ AZ are factorizable
over W, x(−∞,0) = x′(−∞,0) and x0 ̸= x′0, then x[−⟨W⟩,0) ∈ B.

This chapter was published as a standalone article in [Esp22a].
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2.1.1 Organization

The chapter is organized as follows. In the next section we give additional background in
topological and symbolic dynamics. In Section 2.3 we introduce some special ingredients
allowing to prove the main theorems: the notions of interpretation and reducibility of sets
of words together with its properties and the key Proposition 2.6, whose technical proof is
given in Section 2.5. In Section 2.4 we restate our main results and provide complete proofs.

2.2 Additional background

An automorphism of the topological dynamical system (X,S) is a homeomorphism φ : X →
X such that φ ◦ S = S ◦ φ. We use the notation φ : (X,S) → (X,S) to indicate the
automorphism. The set of all automorphisms of (X,S) is denoted by Aut(X,S) and is called
the automorphism group of (X,S). It has a group structure given by the composition of
functions. It is said that Aut(X,S) is virtually Z if the quotient Aut(X,S)/⟨S⟩ is finite,
where ⟨S⟩ is the subgroup generated by S.

We write ≤p and ≤s for the relations in A∗ of being prefix and suffix, respectively. We also
write u <p v (resp. u <s v) when u ≤p v (resp. u ≤s v) and u ̸= v. When v = sut, we say
that u occurs in v or that u is a subword of v. We also use these notions and notations when
considering prefixes, suffixes and subwords of infinite sequences.

2.3 Notion of Interpretation

In this section we introduce the concepts of interpretation and double interpretation of a word
together with its basic properties. The definitions we provide here are variants of the same
notion used seldom in combinatorics of words, see for example [Lot97]. The key Proposition
2.6, where we provide a fundamental upper bound for the number of irreducible sets of simple
double interpretations, is announced here and proved in the last section of the chapter.

For the rest of this section we fix an alphabet A and a finite set of nonempty wordsW ⊆ A+.
If u, v, w ∈ A∗ are such that w = uv, then we write u = wv−1 and v = u−1w.

2.3.1 Interpretations and simple double interpretations

Definition 2.1 Let d ∈ A+. AW-interpretation of d is a sequence of words I = dL, dM , dR, a
such that:

(1) dM ∈ W∗ and a ∈ A;

(2) there exist uL, uR ∈ W such that 1 ̸= dL ≤s uL, dRa ≤p uR;

(3) d = dLdMdR.

See Figure 2.1 for an illustration of this definition. Note that dM and dR can be the empty
word. The extra letter a will be crucial to handle asymptotic pairs and W-interpretations
later.
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Figure 2.1: Diagram of the W-interpretation I = dL, dM , dR, a of d in Definition 2.1.

If the context is clear, we will say interpretation instead of W-interpretation.

Now we make an observation that will be useful when we want to inherit interpretations of
a given word to some of its subwords. We state it as a lemma without proof.

Lemma 2.3 Let I = dL, dM , dR, a be a W-interpretation of d ∈ A+. Suppose that d′ ≤p d
satisfy |d′| ≥ |dL|. Then, d′ has a W-interpretation of the form I ′ = dL, d

′
M , d

′
R, a

′ such that
d′a′ ≤p da.

The proofs of our main theorems are based in a procedure allowing to reduce the so called
double interpretations (defined below) to a special class called simple double interpretations.

Definition 2.2 Let d ∈ A+. A W-double interpretation (written for short W-d.i.) of d is a
tuple D = (I; I ′), where I = dL, dM , dR, a, I

′ = d′L, d
′
M , d

′
R, a

′ are W-interpretations of d such
that a ̸= a′. We say that D is simple if in addition

(1) d′Md′R ≤s dR, and

(2) d′L ∈ W or |d′L| ≥ |u| for some u ∈ W having dRa as a prefix.

Again, if there is no ambiguity, we will omit W and simply say double interpretation or d.i.

Note that if D is simple, then D′ = (I ′; I) is a d.i., which is not necessarily simple. Condition
(1) in the previous definition says that d′L, the left-most word of I ′, “touches” dR, the right-
most word of I; see Figure 2.2 for an illustration of this. Condition (2) is more technical and
we will comment about it at the end of the Subsection 2.3.2.

Remark 2.1 From condition ((2)) in previous definition we have that |d′L|, |d| ≥ ⟨W⟩,
whenever D is a simple W-d.i.

16



Figure 2.2: Diagram of a d.i. of d satisfying (1) in Definition 2.2. Here, dRa ≤p uR and
d′Ra

′ ≤p u
′
R, where uR, u

′
R are the words given in condition (2) of Definition 2.1.

The next lemma will be useful to build a simple double interpretation from a word having a
double interpretation.

Lemma 2.4 Let D = (I = dL, dM , dR, a; I
′ = d′L, d

′
M , d

′
R, a

′) be a double interpretation of a
word d ∈ A+. Suppose that d′L ∈ W and |dL| ≤ |d′Ld′M |. Then, there exists e ≤s d with a
simple double interpretation.

Proof. By considering the shortest suffix of d verifying the hypotheses of the lemma we can
assume without loss of generality that this suffix is d itself. We consider three cases.

(1) d′L <p dL. This condition and the hypotheses of the lemma imply that d′L <p dL ≤p d
′
Ld

′
M .

Therefore, d′M is not the empty word and we can write d′M = uv, with u ∈ W and v ∈ W∗.
Then, e := d′Md′R <s d has the interpretations J = (d′L)

−1dL, dM , dR, a (here we are using
that (d′L)

−1dL ̸= 1) and J ′ = u, v, d′R, a
′. But u ∈ W and |(d′L)−1dL| ≤ |(d′L)−1d′Ld

′
M | = |uv|,

so e is a strict suffix of d having a d.i. E := (J ; J ′) verifying the hypotheses of the lemma,
which contradicts the minimality of d. Thus, this case is incompatible with the hypotheses.

(2) dL <p d′L. If D is not a simple d.i. we have dR <s d′Md′R since d′L ∈ W and then
dL <p d

′
L ≤p dLdM . This implies that dM is not the empty word. Then, we can write dM = uv

with u ∈ W and v ∈ W∗. We have that E = (J = d−1
L d′L, d

′
M , d

′
R, a

′; J ′ = u, v, dR, a) is a d.i.
of e := dMdR <s d which, in addition, satisfies u ∈ W and |d−1

L d′L| ≤ |uv|. This contradicts
the minimality of d and D must be simple.

(3) dL = d′L. If dM = 1 or d′M = 1, it follows directly from definition that D = (I, I ′) or
D′ = (I ′, I) are simple d.i. respectively. So we assume dM ̸= 1 and d′M ̸= 1. Therefore, we
can write dM = uv and d′M = u′v′, with u, u′ ∈ W and v, v′ ∈ W∗. Let e := dMdR = d′Md′R,
J = u, v, dR, a and J ′ = u′, v′, d′R, a

′. Observe that when |u′| ≤ |u|, E = (J ′; J) is a d.i. of
e satisfying u ∈ W and |u′| ≤ |uv|, and when |u| ≤ |u′|, E = (J ; J ′) is a d.i. of e satisfying
u′ ∈ W and |u| ≤ |u′v′|. In both cases we get a contradiction with the minimality of d. Then,
in this case either D or D′ is a simple d.i. of d.

A point x ∈ AZ is factorizable over W if there exist a point y ∈ WZ and k ∈ Z such that
x[k,∞) = y0y1y2 · · · and x(−∞,k) = · · · y−3y−2y−1. For example, if τ is a directive sequence,

0 ≤ n < N and x ∈ X(n)
τ , from Lemma 1.2 we see that x is factorizable over τ[n,N)(AN).
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The last lemma of this subsection gives the relation between asymptotic pairs that are fac-
torizable over the set of words W and simple double interpretations over W . This lemma
is crucial to reduce our combinatorial studies in next sections to the case of simple double
interpretations.

Lemma 2.5 If x, x′ ∈ AZ are factorizable overW, x(−∞,0) = x′(−∞,0) and x0 ̸= x′0, then there
exists a word e ≤s x(−∞,0) having a simple double interpretation over W.

Proof. Let l ≥ 2|W| and d := x[−l,0). Then d inherits in a natural way interpretations
I = dL, dM , dR, a and I ′ = d′L, d

′
M , d

′
R, a

′ from the factorizations of x and x′ respectively.
Since a = x0 ̸= x′0 = a′, the tuple D := (I; I ′) is a d.i. Moreover, by choosing adequately l we
can suppose that d′L ∈ W . Also, |dL| ≤ |W| ≤ l−|d′R| = |d′Ld′M |, so the hypotheses of Lemma
2.4 hold. Thus d (and of course x(−∞,0)) has a suffix e with a simple double interpretation
over W . This proves the lemma.

2.3.2 Reducible and irreducible simple double interpretations

In this section we introduce the notions of reducible and irreducible sets of simple double
interpretations. In Proposition 2.6 we provide an upper bound for the size of irreducible sets
of simple d.i. (the proof of this proposition is very technical and is postponed until Section
2.5). Thus, even if in some cases it is not necessary, most of the notions appearing in this
section will be considered only for simple d.i.

For the rest of the chapter each time we use a letter D to denote a d.i. on W , then it double
interprets the word d ∈ A+ and is written D = (ID = dL, dM , dR, aD; I

′
D = d′L, d

′
M , d

′
R, a

′
D).

Definition 2.3 Given U = (uM , uR, u
′
L, u

′
M , u

′
R, ℓ) ∈ W5 × N, we define DU as the set of

simple W-d.i. D such that:

(1) either dM ∈ W∗uM or dM = 1 and dL ≤s uM ;

(2) dRaD ≤p uR and |uR| = min{|w| : dRaD ≤p w, w ∈ W};

(3) d′Ra
′
D ≤p u

′
R, d

′
L ≤s u

′
L and |u′L| = min{|w| : d′L ≤s w, w ∈ W};

(4) d′M = 1 or d′M = v1 · · · vn ∈ W+, v1 = u′M and max1≤j≤n |vj| = ℓ.

It is easy to see that

D :=
⋃

U∈W5×N

DU

is the set of all simpleW-d.i. of words in A+. Moreover, from ((4)) of Definition 2.3 we have
that ℓ ∈ {|w| : w ∈ W}∪{0} when DU ̸= ∅, so D is the union of no more than #W5(#W+1)
sets DU .
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Figure 2.3: Diagram illustrating restrictions in Definition 2.3 for a simple d.i. in the case
dM , d

′
M ̸= 1.

Definition 2.4 Let D,E be simple d.i. on W . We say that,

(1) D is equivalent to E, and we write D ∼ E, if d and e have a common suffix of length
at least ⟨W⟩ (this makes sense by Remark 2.1).

(2) D reduces to E, and we write D ⇒ E, if e <s d.

Observe that, when D and E are simple d.i. on W with D ⇒ E, then, by Remark 2.1,
D ∼ E.

Definition 2.5 A subset D′ ⊆ D of simple d.i. is reducible if

(1) there are two different and equivalent elements in D′, or

(2) there exists D ∈ D′ that reduces to some simple d.i.

If D′ is not reducible, we say that it is irreducible.

The main combinatorial result about irreducible sets of simple d.i. is the following proposi-
tion, whose proof will be carried out in Section 2.5.

Proposition 2.6 Let U ∈ W5 × N. Any irreducible subset of DU has at most 61(#W)
elements.

The use of condition (2) of Definition 2.2 appears during the proof of this proposition. This
proof consists in directly showing that sets D′ ⊆ DU with more than 61(#W) elements are
reducible. For this, one finds elements in D′ that are equivalent or can be reduced. In this
process, one observes that eliminating condition (2) in the definition of simple d.i. has two
opposite effects. On one hand, it should be easier to find a reduction of a given simple
d.i., since more d.i. are simple; but on the other hand, without condition (2) being simple
means less structure, so it is more difficult to actually find the desired reductions during the
proof. Balancing this trade-off is the reason behind the technical condition (2). It is worth
mentioning that this condition (2) is only used in the proof of Lemma 2.11.
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2.4 Proof of main results

In this section we prove our main results. As we commented in the introduction, the proof
of Theorem 2.1 is based on two general steps: first we use a proposition from [DDMP16]
relating the number of asymptotic components with the “size” of the automorphism group
and secondly we develop a complete combinatorial analysis of the asymptotic classes arising
in an S-adic subshift of finite alphabet rank.

Let (X,S) be a topological dynamical system. Two points x, x′ ∈ X are (negatively) asymp-
totic if limn→−∞ dist(Snx, Snx′) = 0. We define the relation ∼ in X as follows: x ∼ x′

whenever x is asymptotic to Skx′ for some k ∈ Z. It is easy to see that ∼ is an equivalence
relation. An equivalence class for ∼ that is not the orbit of a single point is called an asymp-
totic class, and we write Asym(X,S) for the set of asymptotic classes of (X,S). Observe
that if (X,S) is a subshift, then x ∼ x′ if and only if x(−∞,k) = x′(−∞,ℓ) for some k, ℓ ∈ Z.

The following proposition, which is a direct consequence of Corollary 3.3 in [DDMP16], gives
a relation between the number of asymptotic classes and the cardinality of Aut(X,S)/⟨S⟩
under conditions that any infinite minimal subshift satisfies.

Proposition 2.7 Let (X,S) be a topological dynamical system. Assume there exists a point
x0 ∈ X with ω(x0) :=

⋂
n≥0 {Skx0 : k ≥ n} = X that is asymptotic to a different point. Then,

#Aut(X,S)/⟨S⟩ ≤ #Asym(X,S)!.

Now we prove our first combinatorial theorem.

Theorem 2.2 Let W ⊆ A+ be a set of nonempty words. Then, there exists B ⊆ A⟨W⟩ with
#B ≤ 122(#W)7 such that: if x, x′ ∈ AZ are factorizable over W , x(−∞,0) = x′(−∞,0) and
x0 ̸= x′0, then x[−⟨W⟩,0) ∈ B.

As will be clear from the proof, the bound “122(#W)7” is not necessarily optimal. Here,
the important point is that, despite the fact that the length of the elements in B is ⟨W⟩, the
cardinality of B depends only on #W , and not on ⟨W⟩.

Proof. We start by defining the set B. For each U = (uM , uR, u
′
L, u

′
M , u

′
R, ℓ) ∈ W5 × N, fix

D′
U ⊆ DU an irreducible subset of maximal size (we consider the empty set as an irreducible

set, so there always exists such set D′
U). We define

B :=
{
w ∈ A⟨W⟩ : ∃ U ∈ W5 × N, D ∈ D′

U , w ≤s d
}
,

where in this set d ∈ A+ represents the word that is double interpreted by D. We note that
this makes sense because |d| ≥ ⟨W⟩ for all simple d.i. As we observed previously, we have
ℓ ∈ {|w| : w ∈ W}∪{0} when DU is nonempty. Thus, there are no more than #W5(#W+1)
choices for U such that DU is nonempty. Using this and Proposition 2.6 we get:

#B ≤ 61#W ·#{U ∈ W5 × N : DU ̸= ∅},
≤ 61#W ·#W5(#W + 1) ≤ 122(#W)7.
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It rests to prove the main property of the theorem. In this purpose, let x, x′ ∈ AZ be
factorizable over W with x(−∞,0) = x′(−∞,0) and x0 ̸= x′0. From Lemma 2.5 we can find a
simple d.i. D of d ≤s x(−∞,0). Let

D =: D(0)⇒ D(1)⇒ D(2)⇒ · · · ⇒ D(n)

be a sequence of reductions that starts with D (where, possibly, n = 0 and D has no
reduction). We write, for convenience, D(j) = (I(j); I ′(j)) and d(j) for the word that is
double interpreted by D(j). Since |d(0)| > |d(1)| > . . . , any sequence like this ends after a
finite number of steps. In particular, we can take (and we are taking) this sequence so that
n is maximal. This implies that D(n) has no reduction.

Since D =
⋃

U∈W5×NDU , we can find U ∈ W5 × N satisfying D(n) ∈ DU . We claim that
there is a word e with a simple d.i. E = (IE; I

′
E) ∈ D′

U such that D(n) is equivalent to E.
Indeed, if D(n) ∈ D′

U then, since D(n) is equivalent to itself, we can take E := D(n). If
D(n) is not in D′

U , then, from the maximality of D′
U we see that D′

U ∪ {D(n)} is reducible.
Since D(n) has no reduction and D′

U is irreducible, there exists E ∈ D′
U equivalent to D(n).

This proves the claim.

Then, using the definitions of reduction and equivalence of simple d.i., we have that the suffix
w ∈ A⟨W⟩ of e satisfies

w ≤s d(n) <s d(n− 1) <s · · · <s d(0) ≤s x(−∞,0),

and w ∈ B since E ∈ D′
U . This finishes the proof.

Now we have all the ingredients to compute the number of asymptotic classes in the case of
S-adic subshifts of finite alphabet rank.

Theorem 0.4 Let (X,S) be an S-adic subshift given by an everywhere growing directive
sequence of alphabet rank K. Then, (X,S) has at most 122K7 asymptotic classes.

Proof. Set K ′ = 122K7. We are going to prove the following stronger result.

Claim 2.1 Let P be the set of pairs (x, y) ∈ X×X such that x(−∞,0) = y(−∞,0) and x0 ̸= y0.
Then, #{x(−∞,0) : (x, y) ∈ P} ≤ K ′.

First, we show how this claim implies the theorem. Suppose the claim is true and let
C0, . . . , CK′ be asymptotic classes for (X,S). For each j ∈ {0, . . . , K ′} we choose (zj, z′j) ∈ Cj

such that zj and z
′
j do not belong to the same orbit. Then, there exist mj,m

′
j ∈ Z such that

xj := Smjzj and yj := Sm′
jz′j satisfy

(xj)(−∞,0) = (yj)(−∞,0) and (xj)0 ̸= (yj)0, ∀j ∈ {0, . . . , K ′}. (2.1)

Thus, (xj, yj) ∈ P for all j ∈ {0, . . . , K ′} and, by the claim and the Pigeonhole Principle,
there exist different j, j′ ∈ {0, . . . , K ′} such that (xj)(−∞,0) = (xj′)(−∞,0). This implies Cj =
Cj′ and, thus, that (X,S) has at most K ′ asymptotic classes.
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Now we prove the claim. Let τ = (τn : A+
n+1 → A+

n )n≥0 be an everywhere growing directive
sequence of alphabet rank K generating X. By doing a contraction, if required, we can
suppose that #An = K for every n ≥ 1. For n ≥ 1 put Wn = τ[0,n)(An) and let Bn ⊆ A+

0 be
the set given by Theorem 2.2 when it is applied to Wn. By hypothesis, #Wn ≤ #An = K,
so #Bn ≤ 122(#Wn)

7 ≤ 122K7 = K ′.

For j ∈ {0, . . . , K ′} let (xj, yj) ∈ P . We have to show that (xj)(−∞,0) = (xj′)(−∞,0) for
different j, j′ ∈ {0, . . . , K ′}. Since for all n ≥ 1 and j ∈ {0, . . . , K ′} the points xj and yj are
factorizable over Wn (Lemma 1.2), from Theorem 2.2 we have that (xj)[−⟨Wn⟩,0) ∈ Bn. But
#Bn ≤ K ′ so by the Pigeonhole Principle there exist jn, j

′
n ∈ {0, . . . , K ′} with jn ̸= j′n such

that
(xjn)[−⟨Wn⟩,0) = (xj′n)[−⟨Wn⟩,0). (2.2)

Thus, again by the Pigeonhole Principle, we can choose 1 ≤ n1 < n2 < . . . such that
jn1 = jn2 = · · · = j ̸= j′ = j′n1

= j′n2
= . . . By (2.2),

(xj)[−⟨Wni ⟩,0) = (xj′)[−⟨Wni ⟩,0), ∀i ≥ 1. (2.3)

Since τ is everywhere growing, ⟨Wn⟩ goes to infinity when n → +∞. Thus, (2.3) implies
that (xj)(−∞,0) = (xj′)(−∞,0), as desired. This completes the proof.

We remark again that in previous result we do not assume minimality. This hypothesis is
needed in the next proof (of Theorem 2.1) only because we bound the size of the automor-
phism group by the number of asymptotic classes via Proposition 2.7. Thus, Theorem 2.1 is
mainly a consequence of combinatorial facts inherent to S-adic subshifts.

Theorem 2.1 Let (X,S) be a minimal S-adic subshift given by an everywhere growing
sequence of finite alphabet rank K. Then, its automorphism group is virtually Z.

Proof. From Proposition 2.7 and Theorem 0.4 we get

#Aut(X,S)/⟨S⟩ ≤ #Asym(X,S)! ≤
(
122K7

)
! < +∞.

This inequality proves that Aut(X,S) is virtually Z.

2.5 Proof of Proposition 2.6

In this last section we prove Proposition 2.6. All but one result we need (Lemma 2.4) are
presented and proved here, so the section is almost self contained.

We fix, for the rest of this section, a finite set of words W ⊆ A+ and a sequence U =
(uM , uR, u

′
L, u

′
M , u

′
R, ℓ) ∈ W5 × N. For D ∈ DU , we define:

d̃ := dR(d
′
Md′R)

−1 = (dLdM)−1d′L.

We need a last definition: two words u, v ∈ A∗ are prefix dependent (resp. suffix dependent)
if u ≤p v or v ≤p u (resp. u ≤s v or v ≤s u). In this case, u and v share a common prefix
(resp. suffix) of length min(|u|, |v|).
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Lemma 2.8 Consider different elements D,E in DU . If any of the following conditions
holds, then the set {D,E} is reducible:

(i) d′Md′RaD, e
′
Me′RaE are prefix dependent;

(ii) |dR| = |eR|;

(iii) |d̃| ≤ |ẽ| ≤ |d̃d′M | or |ẽ| ≤ |d̃| ≤ |ẽe′M |.

Proof. We will show that under conditions of the lemma one of the following relations occurs:
D ∼ E, E reduces to a simple d.i. or D reduces to a simple d.i.

(i) Without loss of generality, we can suppose that d′Md′RaD ≤p e′Me′RaE. We distinguish two
cases:

(1) d′Md′RaD = e′Me′RaE. Using item ((3)) of Definition 2.3 we can write d = d′Ld
′
Md′R ≤s

u′Ld
′
Md′R. Similarly, e ≤s u′Le

′
Me′R. This and hypothesis (a) imply that d and e are suffix

dependent. But, since D and E are simple d.i., by Remark 2.1 we have that |d|, |e| ≥ ⟨W⟩.
We conclude that d and e share a suffix of length at least min(|d|, |e|) ≥ ⟨W⟩, which implies
D ∼ E.

(2) d′Md′RaD <p e
′
Me′RaE (so, d′Md′RaD ≤p e

′
Me′R). We claim that ℓ > 0 in the definition of U .

Suppose that ℓ = 0. Then, d′M = e′M = 1 and we can write:

d′RaD ≤p e
′
R ≤p u

′
R.

Since by ((3)) of Definition 2.3 we also have d′Ra
′
D ≤p u′R, we conclude that aD = a′D. This

contradicts the fact that E is a d.i. Thus, ℓ > 0.

Now, ℓ > 0 and ((4)) of Definition 2.3 imply that vD := (u′M)−1d′M ∈ W∗ and vE :=
(u′M)−1e′M ∈ W∗. Let w := d′Md′R. Observe that JD = u′M , vD, d

′
R, a

′
D is an interpretation

of w. Moreover, since u′M ≤p w <p u′MvEe
′
R by hypothesis (b) and vE ∈ W∗, we can

obtain, using Lemma 2.3, an interpretation of w of the form JE = u′M , e
′′
M , e

′′
R, a

′′
E such that

wa′′E ≤p u
′
MvEe

′
R.

Next, we prove that F := (JD; JE) is a d.i. of w. Observe that vDd
′
RaD ≤p vEe

′
R by hypothesis

(b) and e′′Me′′Ra
′′
E ≤p vEe

′
R by the definition of JE. But vDd

′
R = (u′R)

−1w = e′′Me′′R, so aD = a′′E.
Hence, a′D ̸= aD = a′′E and F is a d.i. of w.

Finally, we note that since JD and JE start with u′M ∈ W , we can use Lemma 2.4 with F to
obtain a simple d.i. G of a word g such that g ≤s w <s d. This corresponds to the fact that
D reduces to G.

(ii) Assume |dR| = |eR|. Since, by ((2)) of Definition 2.3, we have that dR and eR are prefix of
uR, hypothesis (ii) implies that dR = eR. In addition, from ((1)) of Definition 2.3 we see that
dLdM and eLeM either share the suffix uM ∈ W or are suffix dependent. We conclude that
d = dLdMdR and e = eLeMeR share a suffix of length at least ⟨W⟩. This is, D ∼ E.

(iii) We consider the case |d̃| ≤ |ẽ| ≤ |d̃d′M |, the other one is symmetric.
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We start with some simplifications. Observe that condition ((2)) in Definition 2.3 implies

dRaD = d̃d′Md′RaD ≤p uR and eRaE = ẽe′Me′RaE ≤p uR. (2.4)

Then, if |d̃| = |ẽ|, we are in case (i), and if |dR| = |eR|, we are in case (ii). Thus, we can
suppose, without loss of generality, that

|d̃| < |ẽ|, (2.5)

|dR| ≠ |eR|. (2.6)

The idea of the proof is the following. We are going to define a word w, which is suffix of d
or e, and that has a d.i. F satisfying the hypothesis of Lemma 2.4. This would imply that
F (and then also D or E) reduces to a simple d.i., as desired.

From (2.5) and hypothesis (iii) we have that |d̃| ≠ |d̃d′M | and thus ℓ ̸= 0. In particular, this
last fact implies that vD := (u′M)−1d′M ∈ W∗ and vE := (u′M)−1e′M ∈ W∗. Also, from (2.4)
and (2.5) we see that it makes sense to define t := d̃−1ẽ ̸= 1. Then, JD = u′M , vD, d

′
R, a

′
D is

an interpretation of d′Md′R and JE = t, e′M , e
′
R, a

′
E is an interpretation of te′Me′R. Now, using

(2.4) and (2.6) we also obtain that either d′Md′R <p te
′
Me′R or te′Me′R <p d′Md′R. We analyze

these two cases separately:

(1) Assume d′Md′R <p te
′
Me′R. We define w = d′Md′R <s d. Note that JD is an interpretation of

w. By hypothesis (iii), we have t ≤p w <p te
′
Me′R, so we can use Lemma 2.3 with JE to obtain

an interpretation of w having the form J ′
E = t, e′′M , e

′′
R, a and satisfying wa ≤p e

′
Me′R. We set

F = (JD, J
′
E). Since wa ≤p te

′
Me′R = d̃−1eR ≤p d̃−1uR and waD = d′Md′RaD = d̃−1dRaD ≤p

d̃−1uR, we have a = aD. Being aD ̸= a′D as D is a d.i., we conclude that a ̸= a′D and that F is
a d.i. Recall that u′R ∈ W and observe that |t| ≤ |d′M | by hypothesis (iii). Thus, F satisfies
the hypothesis of Lemma 2.4. This implies that D is reducible.

(2) Suppose te′Me′R <p d
′
Md′R. Observe that from ((4)) of Definition 2.3 we know that there

exist n ≥ 0 and, for j ∈ {1, . . . , n}, vj ∈ W with |vj| ≤ ℓ, such that vD = v1 · · · vn (we
interpret v1 · · · vn = 1 when n = 0). We define w = te′Me′R <s e and vn+1 = d′R. See Figure
2.4 for an illustration of the definitions so far. Since |w| ≥ |u′R|, we have u′M ≤p w <p

u′Mv1 · · · vn+1 by (b), and thus, there exists a least integer m ∈ {1, . . . , n + 1} such that
w ≤p u

′
Mv1 · · · vm. Being m minimal, we can write w = u′Mv1 · · · vm−1v

′
m, with v

′
m ≤p vm and

wa ≤p d′Md′R for some a ∈ A. Then, J ′
D := u′M , v1 · · · vm−1, v

′
m, a and JE are interpretations

of w.

Figure 2.4: Diagram of the construction in Case (b) of the proof of Lemma 2.8. Observe
that conditions (b) and (2.4) say that d̃ <p ẽ ≤p ẽu′MvE ≤p d̃u′Mv1 · · · vn+1 ≤p uR. This and
the definitions of w and t are represented in the figure.
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We set F = (J ′
D, JE) and claim that F is a d.i. Indeed, on the one hand, the definition of

J ′
D gives wa ≤p d

′
Md′R ≤p d̃

−1uR. On the other hand, since w = d̃−1ẽe′Me′R = d̃−1eR, we have
waE ≤p d̃

−1uR by ((2)) of Definition 2.3. We conclude that a = aE. Then, a ̸= a′E (because
E is a d.i.) and F is a d.i.

Finally, we prove that F satisfies the hypothesis of Lemma 2.4. Since J ′
D starts with

u′M ∈ W , we only need to show that |t| ≤ |u′Mv1 · · · vm−1|. By contradiction, we as-
sume u′Mv1 · · · vm−1 <p t. This condition implies two things. First, that we can define
t′ = (u′Mv1 · · · vm−1)

−1t ̸= 1, and then, since u′Mv1 · · · vm−1v
′
m = te′Me′R, that v

′
m = t′e′Me′R. In

particular, ℓ ≤ |e′M | < |v′m|. The second fact is that m ≤ n. Indeed, by hypothesis (iii) we
have |u′Mv1 · · · vm−1| < |t| ≤ |d′M | = |u′Mv1 · · · vn|. Hence, ℓ < |v′m| ≤ |vm| ≤ ℓ, which is a
contradiction. This proves that Lemma 2.4 can be applied with F , so F (and then also E)
reduces to a simple d.i.

If u ∈ A+, then we write u∞ := uuu · · · and ∞u := · · ·uuu. Recall that an integer k ≥ 1 is a
period of w ∈ A+ if w ≤p u

∞ (equivalently, w ≤s
∞u) for some u ∈ Ak. The following result

(also known as the Fine and Wilf Lemma) is classical.

Lemma 2.9 (Proposition 1.3.2, [Lot97]) If p, p′ ≥ 1 are periods of w ∈ A+ and p+ p′ ≤ |w|,
then gcd(p, p′) is also a period of w.

We fix an irreducible subset D′ ⊆ DU . For D,E ∈ D′, since d̃, ẽ ≤p uR and d̃, ẽ ≤s u′L, we
have that d̃ and ẽ are both prefix and suffix dependent. So it makes sense to define in D′:

D ≤ E iff d̃ ≤p ẽ.

Observe that Lemma 2.8 part (iii) implies that D = E if and only if d̃ = ẽ. Therefore, ≤ is
a total order. In particular, we can use the notation D < E when D ≤ E and D ̸= E. In
this case it is not difficult to prove that |ẽ| − |d̃| is a period of ẽ.

Let D(1) < · · · < D(s) be all the elements in D′ (deployed in increasing order). We adopt
the mnemotechnical notation:

D(j) = (dL(j), dM(j), dR(j), a(j); d′L(j), d
′
M(j), d′R(j), a

′(j)); (2.7)

d(j) = dL(j)dM(j)dR(j), d̃(j) = (dL(j)dM(j))−1d′L(j). (2.8)

For D,E ∈ D′, since dRaD, ẽ ≤p uR, we have that dRaD ≤p ẽ if and only if |dR| < |ẽ|. Thus,
for j ∈ {1, . . . , s} we can define

D′(j) := {D ∈ D′ : dRaD ≤p d̃(j)} = {D ∈ D′ : |dR| < |d̃(j)|}

and D′(s + 1) := D′. By definition of the total order, this is a nondecreasing sequence.
Moreover, D′(j) ⊆ {D(k) : k ∈ {1, . . . , j − 1}} for all j ∈ {1, . . . , s + 1}. In particular,
D′(1) = ∅.
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Lemma 2.10 Let p ∈ {1, . . . , s + 1} be such that D′(p) is nonempty and let D(p′) :=
maxD′(p), where the maximum is taken with respect to the total order. Then, #(D′(p)\D′(p′)) ≤
6.

Proof. We prove the lemma by contradiction. Suppose #(D′(p)\D′(p′)) ≥ 7 and let D(j1) <
D(j2) < · · · < D(j7) be seven different elements in D′(p)\D′(p′).

We start by obtaining some relations. First, from part (iii) of Lemma 2.8 and the irreducibility
of D′, we get

d̃d′M <p ẽ for all D,E ∈ D′(p) such that D < E. (2.9)

Thus,

d̃(jk) ≤p d̃(jk)d
′
M(jk) <p d̃(jk+1) ≤p d̃(jk+1)d

′
M(jk+1) for all k ∈ {1, . . . , 6}. (2.10)

In Figure 2.5 we illustrate these conditions.

Figure 2.5: Diagram of conditions in equation (2.10). Observe that, since d̃d′Md′R = dR ≤p uR
for any D ∈ D′ by ((2)) of Definition 2.3, all the words in the figure occur inside uR.

We set vk = d̃(jk)d
′
M(jk), k ∈ {1, . . . , 6}. By (2.10),

v1 <p · · · <p v5 <p d̃(j6) <p v6 <p d̃(j7).

Also, observe that for any D ∈ D′(p)\D′(p′) we have D ≤ D(p′) and D ̸∈ D′(p′), which gives

d̃ ≤p d̃(p
′) ≤p dR ≤p uR. (2.11)

Equation (2.10), the first inequality of (2.11) used with d(j7) and the second inequality of
(2.11) used with d̃(jk) imply that

vk <p d̃(j7) ≤p d̃(p
′) ≤p dR(jk) for all k ∈ {1, . . . , 6}. (2.12)

From previous relations we can define the nonempty word w := v−1
1 d̃(j7). Let q ≤p w be such

that |q| is the least period of w. We will prove that |q| divides |v−1
1 vk| for all k ∈ {1, . . . , 5}.

On the one hand, the observation made before the proof shows that |d̃(j6)−1d̃(j7)| is a period
of d̃(j7), and thus also of w. On the other hand, if k ∈ {1, . . . , 6}, then from (2.12) and the
definition of d̃ we get

(v−1
1 vk)

−1w = v−1
k d̃(j7) ≤p v

−1
k dR(jk) = d′R(jk) ≤p u

′
R,
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being the last step true due to item ((3)) of Definition 2.3. In particular, for k = 1 we get
w ≤p u′R. These inequalities imply w ≤p (v−1

1 vk)
∞. Consequently, |v−1

1 vk| is a period of w.
Since, by (2.10), v−1

k d̃(j6) is defined for all k ∈ {1, . . . , 5}, then for these values of k we can
compute

|q|+ |v−1
1 vk| ≤ |d̃(j6)−1d̃(j7)|+ |v−1

1 vk| = |w| − |v−1
k d̃(j6)| ≤ |w|.

Hence, Lemma 2.9 can be applied to get that gcd(|q|, |v−1
1 vk|) is a period of w for k ∈

{1, . . . , 5}. In particular, |q| = gcd(|q|, |v−1
1 vk|) and |q| divides |v−1

1 vk| for k ∈ {1, . . . , 5}.

Then, we have w ≤p q
∞ and, by the claim, for k ∈ {1, . . . , 5} there exists nk ≥ 0 satisfying

v−1
1 vk = qnk . Moreover, from the definition of vk we have vk = v1q

nk , which implies

d′R(jk)a(jk) = v−1
k dR(jk)a(jk) ≤p v

−1
k uR = q−nkv−1

1 uR

and d′R(jk)a
′(jk) ≤p u′R. Thus, since a(jk) ̸= a′(jk), we deduce that d′R(jk) is the maximal

common prefix of q−nkv−1
1 uR and u′R.

Now, let n, n′ ≥ 0 and r, r′ <p q be maximal such that qnr ≤p v
−1
1 uR and qn

′
r′ ≤p u′R. We

conclude that

d′R(jk) = qn−nkr if n− nk < n′ and d′R(jk) = qn
′
r′ if n− nk > n′ (2.13)

for k ∈ {1, . . . , 5}.

We have all the elements to complete the proof. Since n2 < n3 < n4 < n5, we have
n2 < n3 < n − n′ or n5 > n4 > n − n′. We are going to show that both cases give a
contradiction, proving, thereby, the lemma.

First, suppose that n2 < n3 < n − n′. Then, for k ∈ {2, 3}, we have n − nk > n′, and
thus, by (2.13), d′R(jk) = qn

′
r′. If ℓ = 0, d(jk) = d′L(jk)d

′
R(jk) ≤s u′Lq

n′
r′. Then, d(j2) and

d(j3) are suffix dependent, which gives that D(j2) is equivalent to D(j3), contradicting the
irreducibility of D′. If ℓ > 0, we have dR(jk) = v1(v

−1
1 vk)d

′
R(jk) = v1q

nk+n′
r′. Then, using

(2.10),
|qnk | = |v−1

1 vk| ≥ |v−1
1 v2| ≥ |d′M(j2)| ≥ |u′M | ≥ ⟨W⟩,

and hence d(j2) and d(j3) share a common suffix of length ⟨W⟩. This is, D(j2) ∼ D(j3),
which is a contradiction.

Finally, assume n5 > n4 > n − n′. We have, by (2.13), that d′R(jk) = qn−nkr for k ∈ {4, 5}.
Hence, dR(jk) = v1(v

−1
1 vk)d

′
R(jk) = v1q

nkd′R(jk) = v1q
nr. In particular, condition (ii) of

Lemma 2.8 holds for {D(j4), D(j5)}, contradicting the irreducibility of D′. This completes
the proof.

Lemma 2.11 Let p ∈ {1, . . . , s} be such that #D′(p) ≥ 2 and let D(p′) = maxD′(p),
D(p′′) = maxD′(p) \ {D(p′)}. Then, there exist w ∈ W and w′ ≤p d̃(s)d̃(p′′)−1 such that w
and w′ are suffix dependent, |w| ≥ |d̃(p′)| and |w′| > |d̃(s)| − |d̃(p)|.

Proof. Note that p′′ < p′ < p. Before proving the main statement of the lemma, we highlight
two useful relations. First, note that

dL(p
′′)dM(p′′)d̃(p′′) = d′L(p

′′) (2.14)

27



as D(p′′) is simple. Second, since uR and u′L are, by Definition 2.3, the shortest words in W
satisfying dR(p

′′)a(p′′) ≤p uR and d′L(p
′′) ≤s u′L, respectively, we have, by condition ((2)) of

the definition of simple d.i., that |d′L(p′′)| ≥ min(|uR|, |u′L|) ≥ |d̃(k)| for k ∈ {1, . . . , s}. This
and the fact that d′L(p

′′) and d̃(k) are both suffix of u′L imply

d̃(k) ≤s d
′
L(p

′′) for k ∈ {1, . . . , s}. (2.15)

Now we are ready to prove the main statement of the lemma. Using (2.15) and d̃(p′) ≤p d̃(p),
we have (d′L(p

′′)d̃(p)−1)d̃(p′) ≤p d′L(p
′′). In addition, dL(p

′′) ≤p d′L(p
′′) by the simplicity of

D(p′′). Thus, (d′L(p
′′)d̃(p)−1)d̃(p′) and dL(p

′′) are prefix dependent. In what follows, we split
the proof in two cases according to which of these words is prefix of the other.

(a) (d′L(p
′′)d̃(p)−1)d̃(p′) ≤p dL(p

′′). Observe that d̃(s) ≤s u
′
L and dM(p′′)d̃(p′′) ≤s d

′
L(p

′′) ≤s

u′L, so d̃(s) and dM(p′′)d̃(p′′) are suffix dependent. In addition, from (2.14) and (a) we get

|dM(p′′)d̃(p′′)| = |d′L(p′′)| − |dL(p′′)| (2.16)

≤ |d′L(p′′)| − |(d′L(p′′)d̃(p)−1)d̃(p′)|
= |d̃(p)| − |d̃(p′)| ≤ |d̃(s)|.

We conclude that
dM(p′′)d̃(p′′) ≤s d̃(s).

Thus, it makes sense to define w′ := d̃(s)(dM(p′′)d̃(p′′))−1. Clearly, w′ ≤p d̃(s)d̃(p′′)−1. Let
w ∈ W be a word satisfying dL(p

′′) ≤s w, as in the definition of interpretation. Observe that,
by (2.15) and (2.14),

w′ ≤s d
′
L(p

′′)(dM(p′′)d̃(p′′))−1 = dL(p
′′) ≤s w,

so w and w′ are suffix dependent. It is left to prove that |w′| ≥ |d̃(s)|−|d̃(p)| and |w| ≥ |d̃(p′)|.
For this, we note that in (2.16) it was shown that |dM(p′′)d̃(p′′)| ≤ |d̃(p)| − |d̃(p′)|. Thus,

|w′| ≥ |d̃(s)| − |d̃(p)|+ |d̃(p′)| ≥ max(|d̃(s)| − |d̃(p)|, |d̃(p′)|).

We conclude that |w′| ≥ |d̃(s)| − |d̃(p)| and, since w′ ≤s w, |w| ≥ |w′| ≥ |d̃(p′)|. This
completes the proof in case (a).

(b) dL(p
′′) <p (d

′
L(p

′′)d̃(p)−1)d̃(p′). We start by claiming that

|d̃(p′′)|+ |d̃(p′)| < |d̃(p)|. (2.17)

Assume that (2.17) does not hold. Let q be the shortest word satisfying d̃(p) ≤s
∞q. As we

commented before Lemma 2.10, condition p′, p′′ < p implies that d̃(p′), as well as d̃(p′′), are
prefixes and suffixes of d̃(p). So |d̃(p)| − |d̃(p′)| and |d̃(p)| − |d̃(p′′)| are periods of d̃(p). More-
over, since we are assuming (2.17) is not true, we also have that (|d̃(p)| − |d̃(p′)|) + (|d̃(p)| −
|d̃(p′′)|) ≤ |d̃(p)|. Then, by Lemma 2.9, we obtain that |q| divides |d̃(p)|− |d̃(p′)| and |d̃(p)|−
|d̃(p′′)|. Hence, there exists n′, n′′ ∈ N such that qn

′
= d̃(p′)−1d̃(p) and qn

′′
= d̃(p′′)−1d̃(p).

Now, since p′, p′′ ∈ D′(p), we can write d′M(p′)d′R(p
′)a(p′) = d̃(p′)−1dR(p

′)a(p′) ≤p d̃(p
′)−1d̃(p) =

qn
′ ≤p q

∞ and, in a similar way, d′M(p′′)d′R(p
′′)a(p′′) ≤p q

∞. Thus, {D(p′), D(p′′)} is reducible
by part (i) of Lemma 2.8, which contradicts the irreducibility of D′. This proves the claim.
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From (2.17) and (2.14) we get

|(d′L(p′′)d̃(p)−1)d̃(p′)| = |d′L(p′′)| − |d̃(p)|+ |d̃(p′)|
< |d′L(p′′)| − |d̃(p′′)| = |d̃(p′′)−1d′L(p

′′)| = |dL(p′′)dM(p′′)|.

Then, since

(d′L(p
′′)d̃(p)−1)d̃(p′) ≤p (d

′
L(p

′′)d̃(p)−1)d̃(p) = d′L(p
′′) = dL(p

′′)dM(p′′)d̃(p′′),

we obtain that (d′L(p
′′)d̃(p)−1)d̃(p′) <p dL(p

′′)dM(p′′). This and (b) can be written together
as

dL(p
′′) <p (d

′
L(p

′′)d̃(p)−1)d̃(p′) <p dL(p
′′)dM(p′′). (2.18)

Since dL(p
′′)dM(p′′)d̃(p′′) = d′L(p

′′) by (2.14), we can represent the right-hand side of equation
(2.18) as in Figure 2.6.

Figure 2.6: Diagram of the right-hand side of equation (2.18).

By (2.18), we can write dL(p
′′)dM(p′′) = vwv′, where v ∈ dL(p

′′)W∗, w ∈ W , v′ ∈ W∗ and

v <p (d
′
L(p

′′)d̃(p)−1)d̃(p′) ≤p vw. (2.19)

The word w is the one we need in the statement of the lemma. To define w′, we first note
that d̃(s) ≤s d

′
L(p

′′) and v′d̃(p′′) ≤s dL(p
′′)dM(p′′)d̃(p′′) = d′L(p

′′), so d̃(s) and v′d̃(p′′) are suffix
dependent. Moreover, using (2.19) we get

|v′d̃(p′′)| = |d′L(p′′)| − |vw| ≤ |d′L(p′′)| − |(d′L(p′′)d̃(p)−1)d̃(p′)| = |d̃(p)| − |d̃(p′)|. (2.20)

Then, |v′d̃(p′′)| ≤ |d̃(p)| − |d̃(p′)| ≤ |d̃(s)| and v′d̃(p′′) ≤s d̃(s). Now it makes sense to define
w′ := d̃(s)(v′d̃(p′′))−1, which clearly verifies w′ ≤p d̃(s)d̃(p

′′)−1. It is also clear that w and w′

are suffix dependent. Indeed, from (2.15) and (2.14) we have w′ ≤s d
′
L(p

′′)(v′d̃(p′′))−1 = vw.

Now, from (2.20), |w′| ≥ |d̃(s)|−|d̃(p)|+ |d̃(p′)| ≥ |d̃(s)|−|d̃(p)|, proving the desired condition
on the length of w′. It only rests to prove that |w| ≥ |d̃(p′)|. We argue by contradiction.
Assume that

|w| < |d̃(p′)|. (2.21)

First, we prove that it makes sense to define the word

w′′ := ((d′L(p
′′)d̃(p)−1)−1v)−1dR(p

′) ∈ A+. (2.22)

From (2.19) and (2.21) we get |v| ≥ |(d′L(p′′)d̃(p)−1)d̃(p′)| − |w| > |d′L(p′′)d̃(p)−1|. But,
v ≤p dL(p

′′)dM(p′′) ≤p d′L(p
′′) and d′L(p

′′)d̃(p)−1 ≤p d′L(p
′′), so d′L(p

′′)d̃(p)−1 <p v and
(d′L(p

′′)d̃(p)−1)−1v exists and is not the empty word. Hence, by (2.19),

(d′L(p
′′)d̃(p)−1)−1v <p d̃(p

′) ≤p dR(p
′) (2.23)
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and w′′ is well defined.

Now, we have vw ≤p dL(p
′′)dM(p′′) ≤p d

′
L(p

′′) and, using p′ ∈ D′(p), that (d′L(p
′′)d̃(p)−1)dR(p

′) ≤p

(d′L(p
′′)d̃(p)−1)d̃(p) = d′L(p

′′). Thus, vw and
(d′L(p

′′)d̃(p)−1)dR(p
′) are prefix dependent. Therefore, there are two cases: vw is prefix of

(d′L(p
′′)d̃(p)−1)dR(p

′) and (d′L(p
′′)d̃(p)−1)dR(p

′) is a strict prefix of vw; in each of these cases
we will build a reduction for D(p′), producing a contradiction.

(b.1) vw ≤p (d
′
L(p

′′)d̃(p)−1)dR(p
′). We start by building a d.i. of w′′. Note that

w′′a(p′) ≤p wv
′d̃(p′′). (2.24)

Indeed, sinceD(p′) ∈ D′(p) and (d′L(p
′′)d̃(p)−1)d̃(p) = d′L(p

′′) = vwv′d̃(p′′), we have dR(p
′)a(p′) ≤p

d̃(p) = (d′L(p
′′)d̃(p)−1)−1vwv′d̃(p′′), which implies (2.24). Now, since w ∈ W , v′ ∈ W∗ and

d̃(p′) <p uR, the word wv
′d̃(p′) has an interpretation of the form J = w, v′, d̃(p′), a. Moreover,

using (b.1) we can get |w′′| = |dR(p′)|+ |d′L(p′′)d̃(p)−1| − |v| ≥ |w|. Hence, by (2.24), Lemma
2.3 can be applied with J to obtain an interpretation of w′′ having the form I ′ = w, r, r′, a(p′).
We need another interpretation of w′′. Note that in the middle step of (2.23) we showed that
(d′L(p

′′)d̃(p)−1)−1v <p d̃(p′). In particular, the word ((d′L(p
′′)d̃(p)−1)−1v)−1d̃(p′) is nonempty

and is a suffix of u′L ∈ W . Then,

I := ((d′L(p
′′)d̃(p)−1)−1v)−1d̃(p′), d′M(p′), d′R(p

′), a′(p′))

is an interpretation of w′′ (here, we used that d̃(p′)d′M(p′)d′R(p
′) = dR(p

′)). We set D = (I, I ′).
Since a(p′) ̸= a′(p′), D is a d.i. of w′′.

Now we can conclude the proof of this case. From (2.19) we have |v| ≥
|(d′L(p′′)d̃(p)−1)d̃(p′)| − |w|, which implies |((d′L(p′′)d̃(p)−1)−1v)−1d̃(p′)| ≤ |w| ≤ |wr|. This
and that w ∈ W allow us to use Lemma 2.4 to obtain a simple d.i. E of a word e such that
e ≤s w

′′. Since w′′ <s dR(p
′) <s d(p

′), we have that D(p′) reduces to E. This is the desired
contradiction.

(b.2) (d′L(p
′′)d̃(p)−1)dR(p

′) <p vw. We are going to build a simple d.i. D = (I; I ′) of
dR(p

′) <s d(p
′), proving, thereby, that D(p′) has a reduction.

Let I ′ = d̃(p′), d′M(p′), d′R(p
′), a′(p′). It is clear that I ′ is an interpretation of dR(p

′) since
d̃(p′) ≤s u

′
L, d

′
M(p′) ∈ W∗, d′R(p

′)a′(p′) ≤p u
′
R and |d̃(p′)| > |d̃(p′′)| ≥ 0. To define I, observe

that in the proof of (2.22) we showed that (d′L(p
′′)d̃(p)−1)−1v exists and is not the empty

word. But, moreover, from v ∈ dL(p
′′)W∗ we see that we can write (d′L(p

′′)d̃(p)−1)−1v = rr′

in such a way that r is a nonempty suffix of some word in W and r′ ∈ W∗. Since, by
definition, dR(p

′) = rr′w′′, to prove that I := r, r′, w′′, a(p′) is an interpretation of dR(p
′) it is

enough to show that w′′a(p′) ≤p w. From (b.2) we get rr′w′′ = dR(p
′) <p rr

′w, so w′′a′ ≤p w
for some a′ ∈ A. Then, using that vw ≤p vwv

′d̃(p′′) = d′L(p
′′), we obtain

dR(p
′)a′ ≤p rr

′w = (d′L(p
′′)d̃(p)−1)−1vw

≤p (d
′
L(p

′′)d̃(p)−1)−1d′L(p
′′) = d̃(p) ≤p uR.

Since we also have dR(p
′)a(p′) ≤p uR, we deduce that a′ = a(p′). Hence, w′′a(p′) ≤p w and I

is an interpretation of dR(p
′). Being a(p′) ̸= a′(p′), we conclude that D := (I; I ′) is a d.i. of

dR(p
′).

30



Finally, we prove thatD is simple. Using the middle step in (2.23) we get rr′ = (d′L(p
′′)−1d̃(p))−1v <p

d̃(p′). This implies that d′M(p′)d′R(p
′) = d̃(p′)−1dR(p

′) ≤s (rr′)−1dR(p
′) = w′′, which is the

first condition in Definition 2.2. Since w′′a(p′) ≤p w and, by (2.21), |d̃(p′)| ≥ |w|, the second
condition also holds. Hence, D is simple and D(p′) reduces to it.

Remark that in the last paragraph it was the first time that in a proof we build a reduction
to a simple d.i. satisfying the second condition of ((2)) in Definition 2.2.

2.5.1 Proof of Proposition 2.6

Proposition [ 2.6] Any irreducible subset of DU has at most 61(#W) elements.

Proof. Let D′ be an irreducible subset of DU . Recall that, with the notation introduced
above, D(1) < · · · < D(s) are the elements of D′ deployed in increasing order, D′(s+1) = D′

and D′(j) = {D ∈ D′ : dRaD ≤p d̃(j)} = {D ∈ D′ : |dR| < |d̃(j)|} for j ∈ {1, . . . , s}.

We define recursively a finite decreasing sequence (pi)
t+1
i=0. We start with p0 = s + 1. Then,

for i ≥ 0: a) if #D′(pi) ≤ 1 we put pi+1 = 1 and the procedure stops; b) if #D′(pi) > 1,
set D(pi+1) = maxD′(pi). Observe that D′(pi+1) ⊊ D′(pi). Let t ≥ 0 be the first integer for
which #D′(pt) ≤ 1, so that D′(pt+1) = D′(1) = ∅. This construction gives

D′ =
t⋃

i=0

D′(pi)\D′(pi+1).

From Lemma 2.10 we get that #D′ ≤ 6t + 1. To complete the proof we are going to show
that t ≤ 8#W + 2.

We proceed by contradiction, so we suppose t > 8#W + 2. This will imply that D′ is
reducible, which contradicts our hypothesis.

Let 1 ≤ i ≤ t − 1. Since pi ̸= s + 1 and #D′(pi) > 1, we can define D(p′′i ) = maxD′(pi) \
{D(pi+1)} and use Lemma 2.11 with D′(pi) to obtain suffix dependent words wi ∈ W and
w′

i ∈ A∗ such that

(i) |wi| > |d̃(pi+1)|, (ii) |w′
i| ≥ |d̃(s)| − |d̃(pi)|, (iii) w′

i ≤p d̃(s)d̃(p
′′
i )

−1. (2.25)

Then, by the Pigeonhole Principle, we can find 1 ≤ i5 < · · · < i1 ≤ t− 1 such that

(a) w := wi1 = · · · = wi5 and (b) ik+1 + 2 ≤ ik for any k ∈ {1, . . . , 4}.

Using (a) and (b) we are going to obtain relations (2.26) and (2.27) below.

First, we use (b) to prove that

d̃(s)d̃(pik+1
)−1 <p w

′
ik+1
≤p d̃(s)d̃(pik)

−1 <p w
′
ik

for any k ∈ {1, . . . , 4}. (2.26)

Let k ∈ {1, . . . , 4}. By (b), we have ik+1 ≤ ik+1 + 1 < ik+1 + 2 ≤ t− 1. Thus, D(pik+1+2) <
D(pik+1+1) and D(pik+1+1), D(pik+1+2) ∈ D′(pik+1

), which implies that p′′ik+1
≥ pik+1+2 by the
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definition of p′′ik+1
. Being pik+1+2 ≥ pik by (b), we obtain p′′ik+1

≥ pik . This and (iii) of

(2.25) imply w′
ik+1
≤p d̃(s)d̃(p′′ik+1

)−1 ≤p d̃(s)d̃(pik)
−1. This proves the middle inequality

of (2.26). Let k ∈ {1, . . . , 5}. Since w′
ik
≤p d̃(s)d̃(p′′ik)

−1 ≤p d̃(s) by (iii) of (2.25) and

d̃(s)d̃(pik)
−1 ≤p d̃(s), we have that w′

ik
and d̃(s)d̃(pik)

−1 are prefix dependent. Moreover,

|w′
ik
| > |d̃(s)d̃(pik)−1| by (ii) of (2.25), so d̃(s)d̃(pik)

−1 <p w
′
ik
. This proves the first and last

inequality of (2.26), completing the proof.

Thanks to (2.26), the word (d̃(s)d̃(pik)
−1)−1w′

ik′
exists for any 1 ≤ k′ ≤ k ≤ 5. We will use

this fact freely through the proof.

Next, we want to obtain from (a) that

(d̃(s)d̃(pi4)
−1)−1w′

ik
≤s w for k ∈ {1, . . . , 4}. (2.27)

By (a) and (i) of (2.25), we have |d̃(pi4)| ≤ |d̃(pi5+1)| ≤ |w|. This and (iii) imply

|(d̃(s)d̃(pi4)−1)−1w′
ik
| ≤ |d̃(s)d̃(p′′ik)

−1| − |d̃(s)d̃(pi4)−1| ≤ |d̃(pi4)| ≤ |w|.

But, being w and (d̃(s)d̃(pi4)
−1)−1w′

ik
suffix dependent since w and w′

ik
have the same property

and (d̃(s)d̃(pi4)
−1)−1w′

ik
≤s w

′
ik
, we obtain that (d̃(s)d̃(pi4)

−1)−1w′
ik
≤s w, as desired.

Now we use relations (2.26) and (2.27) to obtain restrictions on the smallest period of v :=
(d̃(s)d̃(pi4)

−1)−1w′
i1
. More precisely, we claim that if q ∈ A+ is the shortest word satisfying

v ≤p q
∞, then |q| divides |d̃(pi4)| − |d̃(pik)| for k ∈ {2, 3}.

Fix k ∈ {2, 3}. First, observe that v ≤s w and v((w′
i2
)−1w′

i1
)−1 =

(d̃(s)d̃(pi4)
−1)−1w′

i2
≤s w by (2.27). Being (w′

i2
)−1w′

i1
̸= 1 by (2.25), we deduce that

v ≤s
∞
((w′

i2
)−1w′

i1
). This implies that |q| ≤ |(w′

i2
)−1w′

i1
|. Thus,

|q|+ |d̃(pi4)d̃(pik)−1| ≤ |(w′
i2
)−1w′

i1
|+ |d̃(pi4)d̃(pik)−1| (2.28)

= |v|+ |(d̃(s)d̃(pik)−1)−1w′
i2
| ≤ |v|,

where (d̃(s)d̃(pik)
−1)−1w′

i2
exists because k ≥ 2.

Second, since w′
i1
≤p d̃(s) by (iii) of (2.25), we have that v = (d̃(s)d̃(pi4)

−1)−1w′
i1
≤p d̃(pi4) ≤p

uR and (d̃(s)d̃(pik)
−1)−1w′

i1
≤p d̃(pik) ≤p uR. Therefore,

v ≤p uR and (d̃(pi4)d̃(pik)
−1)−1v = (d̃(s)d̃(pik)

−1)−1w′
i1
≤p uR.

This and the fact that, by (2.25), (d̃(pi4)d̃(pik)
−1) ̸= 1 imply that v ≤p (d̃(pi4)d̃(pik)

−1)∞.
Hence,

|d̃(pi4)d̃(pik)−1| is a period of v. (2.29)

Then, from (2.28) and (2.29), we can use Lemma 2.9 with v to deduce that |q| divides
|d̃(pi4)d̃(pik)−1|, proving the claim.

Let now q̃ ∈ A+ be the shortest word such that d̃(pi4) ≤p q̃
∞. From the last claim, we have

for k ∈ {2, 3} that d̃(pi4)d̃(pik)
−1 = qnk for some nk ≥ 1. Then, since |d̃(pi4)d̃(pik)−1| is a
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period of d̃(pi4) as pik < pi4 , we obtain d̃(pi4) ≤p (d̃(pi4)d̃(pik)
−1)∞ = q∞ and q̃ ≤p q. Since,

v ≤p d̃(pi4) ≤p q̃
∞, we also have q ≤p q̃. Therefore, q̃ = q.

Now we can finish the proof of the proposition. Since d̃(pi4) ≤p q
∞, there are n ≥ 0 and

r <p q such that d̃(pi4) = qnr. Then, for k ∈ {2, 3}, we have d̃(pik) = q−nk d̃(pi4) = qn−nkr.
Being pi2 , pi3 ∈ D′(pi4), we get

d̃′M(pik)d̃
′
R(pik)a(pik) = d̃(pik)

−1d̃R(pik)a(pik) ≤p d̃(pik)
−1d̃(pi4) = r−1qnk ≤p r

−1q∞.

Thus, condition (i) of Lemma 2.8 holds, which implies that {D(pi2), D(pi3)} is reducible,
contradicting our hypothesis.
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Chapter 3

Symbolic factors

3.1 Introduction

The class of finite topological rank subshifts have shown to be both a broad class of symbolic
systems [DDMP16; DDMP21], containing many of the most studied types of subshifts, and
to present high degrees of rigidity [BKMS13; BDM10; EM21]. Hence, it arises as a possible
framework for studying minimal subshifts and proving general theorems.

In this direction, a fundamental question is the following:

Question 3.1 Is the finite topological rank class closed under symbolic factors?

Indeed, the topological rank aims to measure how complex is the system, so an affirmative
answer is expected to this question. However, symbolic factors inherit a natural yet non-
recognizable S-adic structure with finite alphabet rank from their extensions, and thus it is
not clear if a structure that is, in addition, recognizable can always be obtained. Thus, an
answer to this question seems to be fundamental to the understanding of finite topological
rank systems.

In this chapter, we obtain the optimal answer to Question 3.1 in a more general, non-minimal
context:

Theorem 3.1 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of alphabet rank equal to K, and π : (X,S)→ (Y, S) be an aperiodic
subshift factor. Then, (Y, S) is an S-adic subshift generated by an everywhere growing, proper
and recognizable directive sequence of alphabet rank at most K.

Theorem 3.1 implies that the topological rank cannot increase after a factor map (Corollary
3.19).

We are also able to prove the following theorems, which give a finer description of symbolic
factors.
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Corollary 3.2 Let (X,S) be an S-adic subshift generated by an everywhere growing and

proper directive sequence of alphabet rank equal to K, and (X,S)
π1→ (X1, S)

π2→ . . .
πL→ (XL, S)

be a chain of aperiodic subshift factors. If L > log2K, then at least one πj is a conjugacy.

Theorem 3.3 Let π : (X,S)→ (Y, S) be a factor map between aperiodic minimal subshifts.
Suppose that (X,S) has topological rank equal to K. Then π is almost k-to-1 for some k ≤ K.

Theorem 3.4 Let (X,S) be a minimal subshift of topological rank K. Then, (X,S) has at
most (3K)32K aperiodic subshift factors up to conjugacy.

This chapter was published as a standalone article in [Esp22a].

3.1.1 Organization

This chapter consists of 6 sections. In the first one, we give the additional needed back-
ground in topological and symbolic dynamics. Section 3.3 is devoted to prove some technical
combinatorial lemmas. The main results about the topological rank of factors are stated and
proved in Section 3.4. Next, in Section 3.5, we prove Theorem 3.3. In Section 3.6, we study
the problem about the number of symbolic factors and prove Theorem 3.4. The last section
contains a combinatorial proof of Proposition 3.15.

3.2 Preliminaries

The hyperspace of (X,S) is the system (2X , S), where 2X is the set of all closed subsets of X
with the topology generated by the Hausdorff metric dH(A,B) = max(supx∈A d(x,A), supy∈B d(y, A)),
and S the action A 7→ S(A).

A factor between the topological dynamical systems (X,S) and (Y, T ) is a continuous function
π from X onto Y such that π◦S = T ◦π. We use the notation π : (X,S)→ (Y, T ) to indicate
the factor. A factor map π : (X,S) → (Y, T ) is almost K-to-1 if #π−1(y) = K for all y in a
residual subset of Y . We say that π is distal if whenever π(x) = π(x′) and x ̸= x′, we have
infk∈Z dist(S

kx, Skx′) > 0.

Given a system (X,S), the Ellis semigroup E(X,S) associated to (X,S) is defined as the
closure of {x 7→ Snx : n ∈ Z} ⊆ XX in the product topology, where the semi-group operation
is given by the composition of functions. On X we may consider the E(X,S)-action given
by x 7→ ux. Then, the closure of the orbit under S of a point x ∈ X is equal to the orbit of
x under E(X,S). If π : (X,S)→ (Y, T ) is a factor between minimal systems, then π induces
a surjective map π∗ : E(X,S)→ E(Y, T ) which is characterized by the formula

π(ux) = π∗(u)π(x) for all u ∈ E(X,S) and x ∈ X.

If the context is clear, we will not distinguish between u and π∗(u). When u ∈ E(2X , S), we
write u ◦ A instead of uA, the last symbol being reserved to mean uA = {ux : x ∈ A}. We
can describe more explicitly u ◦A as follows: it is the set of all x ∈ X for which we can find
nets xλ ∈ A and mλ ∈ Z such that limλ S

mλxλ = x and limλ S
mλ = u. Finally, we identify
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X with {{x} ⊆ 2X : x ∈ X}, so that the restriction map E(2X , S) → E(X,S) which sends
u ∈ E(2X , S) to the restriction u|X : X → X is an onto morphism of semigroups. As above,
we will not distinguish between u ∈ 2X and u|X .

3.2.1 Basics in symbolic dynamics

Words and subshifts

The pair (x, x̃) ∈ AZ ×AZ is right asymptotic if there exist k ∈ Z satisfying x(k,∞) = x̃(k,∞)

and xk ̸= x̃k. If moreover k = 0, (x, x̃) is a centered right asymptotic. A right asymptotic
tail is an element x(0,∞), where (x, x̃) is a centered right asymptotic pair. We make similar
definitions for left asymptotic pairs and tails.

Morphisms and substitutions

We say that τ is positive if for every a ∈ A, all letters b ∈ B occur in τ(a), is r-proper, with
r ≥ 1, if there exist u, v ∈ Br such that τ(a) starts with u and ends with v for any a ∈ A,
is proper when is 1-proper, and is letter-onto if for every b ∈ B there exists a ∈ A such
that b occurs in a. The minimum and maximum length of τ are, respectively, the numbers
⟨τ⟩ := ⟨τ(A)⟩ = mina∈A |τ(a)| and |τ | := |τ(A)| = maxa∈A |τ(a)|.

Let X ⊆ AZ and Z ⊆ CZ be subshifts and π : (X,S) → (Z, S) a factor map. The clas-
sic Curtis–Hedlund–Lyndon Theorem asserts that π has a local code, this is, a function
ψ : A2r+1 → C, where r ∈ N, such that π(x) = (ψ(x[i−r,i+r]))i∈Z for all x ∈ X. The integer
r is called the a radius of π. The following lemma relates the local code of a factor map to
proper morphisms.

Lemma 3.5 Let σ : A+ → B+ be a morphism, X ⊆ AZ and Z ⊆ CZ be subshifts, and
Y =

⋃
k∈Z S

kσ(X). Suppose that π : (Y, S) → (Z, S) is a factor map of radius r and that σ
is r-proper. Then, there exists a proper morphism τ : A+ → C+ such that |τ(a)| = |σ(a)| for
any a ∈ A, Z =

⋃
k∈Z S

kτ(X) and the following diagram commutes:

X

Y Z

σ τ

π

(3.1)

Proof. Let ψ : A2r+1 → B be a local code of radius r for π and u, v ∈ Br be such that σ(a)
starts with u and ends with v for all a ∈ A. We define τ : A → C+ by τ(a) = ψ(vσ(a)u).
Then, since σ is r-proper, τ is proper and we have π(σ(x)) = τ(x) for all x ∈ X (this is,
Diagram (3.1) commutes). In particular,⋃

k∈Z

Skτ(X) =
⋃
k∈Z

Skπ(σ(X)) = π(Y ) = Z.
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S-adic subshifts

The levels X
(n)
σ can be described in an alternative way if σ satisfies the correct hypothesis.

Lemma 3.6 Let σ = (σn : A+
n+1 → A+

n )n∈N be an everywhere growing and proper directive
sequence. Then, for every n ∈ N,

X(n)
σ =

⋂
N>n

⋃
k∈Z

Skσ[n,N)(AZ
N) (3.2)

Proof. Let Z be the set in the right-hand side of (3.2). Since, by Lemma 1.2, X
(n)
σ =⋃

k∈Z S
kσ[n,N)(X

(N)
σ ) for any N > n, we have that X

(n)
σ included in Z.

Conversely, let x ∈ Z and ℓ ∈ N. We have to show that x[−ℓ,ℓ) occurs in σ[n,N)(a) for some
N > n and a ∈ AN . Let N > n be big enough so that σ[n,N) is ℓ-proper. Then, by the
definition of Z, there exists y ∈ AZ

N such that x[−ℓ,ℓ) occurs in σ[n,N)(y). Since ⟨σ[n,N)⟩ ≥ ℓ
(as σ[n,N) is ℓ-proper), we deduce that

x[−ℓ,ℓ) occurs in σ[n,N)(ab) for some word ab of length 2 occurring in y. (3.3)

Hence, by denoting by u and v the suffix and prefix of length ℓ of τ[n,N)(a) and τ[n,N)(b),
respectively, we have that x[−ℓ,ℓ) occurs in σ[n,N)(a), in τ[n,N)(b), or in uv. In the first two
cases, we are done. In the last case, we observe that since σ[n,N) is ℓ-proper, the following is
true: for every M > N such that ⟨σ[N,M)⟩ ≥ 2, vu ⊑ σ[n,M)(c) for any c ∈ AM . In particular,

x[−ℓ,ℓ) ⊑ τ[n,M)(c) for such M and c. We have proved that x ∈ X(n)
σ .

Finite alphabet rank S-adic subshifts are eventually recognizable:

Theorem 3.7 ([DDMP21], Theorem 3.7) Let σ be an everywhere growing directive sequence
of alphabet rank equal to K. Suppose that Xσ is aperiodic. Then, at most log2K levels

(X
(n)
σ , σn) are not recognizable.

We will also need the following property.

Theorem 3.8 ([EM21], Theorem 3.3) Let (X,S) be an S-adic subshift generated by an
everywhere growing directive sequence of alphabet rank K. Then, X has at most 144K7 right
(resp. left) asymptotic tails.

Proof. In the proof of Theorem 3.3 in [EM21] the authors show the following: the set
consisting of pairs (x, y) ∈ X × X such that x(−∞,0) = y(−∞,0) and x0 ̸= y0 has at most
144K7 elements. In our language, this is equivalent to saying that X has at most 144K7

left asymptotic tails. Since this is valid for any S-adic subshift generated by an everywhere
growing directive sequence of alphabet rank K, 144K7 is also an upper bound for right
asymptotic tails.
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3.3 Combinatorics on words lemmas

In this section we present several combinatorial lemmas that will be used throughout the
chapter.

3.3.1 Lowering the rank

Let σ : A+ → B+ be a morphism. Following ideas from [RS97], we define the rank of σ
as the least cardinality of a set of words D ⊆ B+ such that σ(A+) ⊆ D+. Equivalently,
the rank is the minimum cardinality of an alphabet C in a decomposition into morphisms
A+ q−→ C+ p−→ B+ such that σ = pq. In this subsection we prove Lemma 3.12, which states
that in certain technical situation, the rank of the morphism σ under consideration is small
and its decomposition σ = pq satisfies additional properties.

We start by defining some morphisms that will be used in the proofs of this subsection. If
a ̸= b ∈ A are different letters and ã is a letter not in A, then we define ϕa,b : A+ → (A\{b})+,
ψa,b : A+ → A+ and θa,ã : A+ → (A ∪ {ã})+ by

ϕa,b(c) =

{
c if c ̸= b,

a if c = b.
ψa,b(c) =

{
c if c ̸= b,

ab if c = b.
θa,ã(c) =

{
c if c ̸= a,

ãa if c = a.

Observe that these morphisms are letter-onto. Before stating the basic properties of these
morphisms, we need one more set of definitions.

For a morphism σ : A+ → B+, we define |σ|1 =
∑

a∈A |σ(a)|. When u, v, w ∈ A+ satisfy
w = uv, we say that u is a prefix of w and that v a suffix of w. Recall that 1 stands for the
empty word.

Lemma 3.9 Let σ : A+ → B+ be a morphism.

(i) If σ(a) = σ(b) for some a ̸= b ∈ A, then σ = σ′ϕa,b, where σ
′ : (A \ {b})+ → B+ is the

restriction of σ to (A \ {b})+.

(ii) If σ(a) is a prefix of σ(b) and σ(b) = σ(a)t for some nonempty t ∈ B+, then σ = σ′ψa,b,
where σ′ : A+ → B+ is defined by

σ′(c) =

{
σ(c) if c ̸= b,

t if c = b.
(3.4)

(iii) If σ(a) = st for some s, t ∈ B+ and a ∈ A, then σ = σ′θa,ã, where σ
′ : (A∪{ã})+ → B+

is defined by

σ′(c) =


σ(c) if c ̸= a, ã,

s if c = ã,

t if c = a.

(3.5)

Proof. The lemma follows from unraveling the definitions. For instance, in case (ii), we have
σ′(ψa,b(a)) = σ′(a) = σ(a), σ′(ψa,b(b)) = σ′(ab) = σ(a)t = σ(b), and σ′(ψa,b(c)) = σ′(c) =
σ(c) for all c ̸= a, b, which shows that σ′ψa,b = σ.
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Lemma 3.10 Let {σj : A+ → B+
j }j∈J be a set of morphisms such that

for every fixed a ∈ A, ℓa := |σj(a)| is constant for any chosen j ∈ J , (3.6)

and u, v ∈ A+, with u of length at least ℓ :=
∑

a∈A ℓa. Assume that u and v start with
different letters and that σj(u) is a prefix of σj(v) for every j ∈ J .

Then, there exist a letter-onto morphism q : A+ → C+, with #C < #A, and morphisms
{pj : C+ → B+

j }j∈J satisfying a condition analogous to (3.6) and such that σj = pjq.

Remark 3.1 If in the previous lemma we change the last hypothesis to “u and v end with
different letters and σj(u) is a suffix of σj(v) for every j ∈ J”, then the same conclusion
holds. This observation will be used in the proof of Lemma 3.31.

Proof (of Lemma 3.10). By contradiction, we assume that u, v and {σj}j∈J , are counterex-
amples for the lemma. Moreover, we suppose that ℓ is as small as possible.

Let us write u = au′ and v = bv′, where a, b ∈ A. Since σj(u) is a prefix of σj(v), we have
that for every j ∈ J ,

one of the words in {σj(a), σj(b)} is a prefix of the other. (3.7)

We consider two cases. First, we suppose that ℓa = ℓb. In this case, (3.7) implies that
σj(a) = σj(b) for every j ∈ J . Hence, we can use (1) of Lemma 3.9 to decompose each σj as
σ′
jϕa,b, where σ

′
j is the restriction of σj to (A\{b})+. Since ϕa,b is letter-onto and ℓc = |σ′

j(c)|
for every j ∈ J , c ∈ A\{b}, the conclusion of the lemma holds, contrary to our assumptions.

It rests to consider the case in which ℓa ̸= ℓb. We only do the case ℓa < ℓb as the other is
similar. Then, by (3.7), for every j ∈ J there exists a nonempty word tj ∈ Bℓb−ℓa

j of length
ℓb− ℓa such that σj(b) = σj(a)tj. Thus, we can use (2) of Lemma 3.9 to write, for any j ∈ J ,
σj = σ′

jψa,b, where σ
′
j is defined as in (3.4).

Let ũ = ψa,b(u
′) and ṽ = bψa,b(v

′). We want now to prove that ũ, ṽ and {σ′
j : j ∈ J} satisfy

the hypothesis of the lemma. First, we observe that for every j ∈ J ,

if c ̸= b, then |σ′
j(c)| = ℓc, and |σ′

j(b)| = |tj| = ℓb − ℓa. (3.8)

Therefore, {σ′
j}j∈J satisfy condition (3.6). Also, since ψa,b(c) never starts with b, we have

that
ũ, ṽ start with different letters. (3.9)

Furthermore, by using the symbol ≤p to denote the prefix relation, we can compute:

σj(a)σ
′
j(ũ) = σj(a)σj(u

′) = σj(u) ≤p σj(v) = σ′
j(ψa,b(v)) = σ′

j(a)σ
′
j(ṽ).

This and the fact that σj(a) is equal to σ
′
j(a) imply that

σ′
j(ũ) is a prefix of σ′

j(ṽ) for every j ∈ J . (3.10)
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Finally, we note

|ũ| ≥ |u| − 1 ≥
∑
c∈A

ℓc − ℓa =: ℓ′. (3.11)

We conclude from equations (3.8), (3.9), (3.10) and (3.11) that ũ, ṽ and {σ′
j : j ∈ J} satisfy

the hypothesis of this lemma. Since ℓ′ < ℓ, the minimality of ℓ implies that there exist a
letter-onto morphism q′ : A+ → C+, with #C < #A, and morphisms {pj : C+ → B+

j }j∈J
satisfying σ′

j = pjq
′ and a property analogous to (3.6). But then q := q′ψa,b is also letter-onto

and the morphisms {pj}j∈J satisfy σj = pjq and a property analogous to (3.6). Thus, the
conclusion of the lemma holds for {σj}j∈J , contrary our assumptions.

Lemma 3.11 Let σ : A+ → B+ be a morphism, u, v ∈ A+, a, b be the first letters of u, v,
respectively, and σ(a) = st be a decomposition of σ(a) in which t is nonempty. Assume that
σ(u) is a prefix of sσ(v), |u| ≥ |σ|1 + |s|, and either that s = 1 and a ̸= b or that s ̸= 1.

Then, there exist morphisms q : A+ → C+ and p : C+ → B+ such that #C ≤ #A, q is
letter-onto, |p|1 < |σ|1, and σ = pq.

Remark 3.2 As in Lemma 3.10, there are symmetric hypothesis for the previous lemma
that involve suffixes instead of prefixes and which give the same conclusion. We will use this
in the proof of Lemma 3.12.

Proof (of Lemma 3.11). Let us write u = au′ and v = bv′. We first consider the case in which
s = 1. In this situation, u and v start with different letters, so Lemma 3.10 can be applied
(with the index set J chosen as a singleton) to obtain a decomposition A+ q→ C+ p→ B+ such
that q is letter-onto, #C < #A, and σ = pq. Since C has strictly fewer elements than A, we
have |p|1 < |σ|1. Hence, the conclusion of the lemma holds in this case.

We now assume that s ̸= 1. In this case, t and s are nonempty, so we can use (3) of Lemma
3.9 to factorize σ = σ′θa,ã, where ã is a letter not in A and σ′ is defined as in (3.5). We set
ũ = aθa,ã(u

′) and ṽ = θa,ã(v). Our plan is to use Lemma 3.10 with ũ, ṽ and σ′.

Observe that θa,ã(c) never starts with a, so

ũ, ṽ start with different letters. (3.12)

Also, by using, as in the previous proof, the symbol ≤p to denote the prefix relation, we can
write:

sσ′(ũ) = sσ′(a)σ′(θa,ã(u
′)) = stσ(u′) = σ(u) ≤p sσ(v) = sσ′(θa,ã(v)) = sσ′(ṽ),

which implies that
σ′(ũ) is a prefix of σ′(ṽ). (3.13)

Finally, we use (3.5) to compute:

|ũ| ≥ |u| − 1 ≥ |σ|1 + |s| − 1 ≥ |σ|1 = |σ′|1. (3.14)

We conclude, by equations (3.12), (3.13) and (3.14), that Lemma 3.10 can be applied with
ũ, ṽ and σ′ (and J as a singleton). Thus, there exist morphisms q′ : (A ∪ {ã})+ → C+ and
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p : C+ → B+ such that #C < #(A ∪ {ã}), q′ is letter-onto and σ′ = pq′. Then, #C ≤ #A,
q := q′θa,ã is letter-onto and σ = pq′θa,ã = pq. Moreover, since θa,ã is not the identity function,
we have |p|1 < |σ|1.

The next lemma is the main result of this subsection. To state it, we introduce additional
notation. For an alphabet A, let A++ be the set of words w ∈ A+ in which all letters occur.
Observe that σ : A+ → B+ is letter-onto if and only if σ(A++) ⊆ B++.

Lemma 3.12 Let ϕ : A+ → C+, τ : B+ → C+ be morphisms such that τ is ℓ-proper, with
ℓ ≥ |ϕ|41, and ϕ(A+) ∩ τ(B++) ̸= ∅. Then, there exist B+ q−→ D+ p−→ C+ such that

(i) #D ≤ #A, (ii) τ = pq, (iii) q is letter-onto and proper.

Proof. By contradiction, we suppose that the lemma does not hold for ϕ and τ and, moreover,
that |ϕ|1 as small as possible.

That ϕ(A)+ ∩ τ(B++) is nonempty means that there exist u = u1 · · ·un ∈ A+ and w =
w1 · · ·wm ∈ B++ with ϕ(u) = τ(w). If m = 1, then, since w ∈ B++, we have #B = {v1} and
the conclusion of the lemma trivially holds for D = {a ∈ C : a occurs in τ(w1)}, q : B+ → D+,
w1 7→ τ(w1), and p : D+ → C+ the inclusion map, contradicting our initial assumption.
Therefore, m ≥ 2 and {1, . . . ,m− 1} is nonempty.

Let k ∈ {1, . . . ,m − 1}. We define ik as the smallest number in {1, . . . , n} for which
|τ(w1 · · ·wk)| < |ϕ(u1 · · ·uik)| holds. Since |ϕ(u1)| ≤ |ϕ|1 ≤ ℓ ≤ |τ(w1 · · ·wk)|, ik is at
least 2 and, thus, |ϕ(u1 · · ·uik−1)| ≤ |τ(w1 · · ·wk)| by minimality of ik. Hence, there exists a
decomposition ϕ(uik) = sktk such that tk is nonempty and

tkϕ(uik+1 . . . un) = τ(wk+1 . . . wm). (3.15)

Our next objective is to use Lemma 3.11 to prove that sk and uk have a very particular form:

Claim 3.1 For every k ∈ {1, . . . ,m− 1}, sk = 1 and u1 = uik .

Proof. To prove this, we suppose that it is not true, this is, that there exists k ∈ {1, . . . ,m−1}
such that

sk ̸= 1 or u1 ̸= uik . (3.16)

Let ũ := uik . . . uik+|ϕ|21−1 and ṽ := u1 . . . u|ϕ|31 . We are going to check the hypothesis of Lemma
3.11 for ũ, ṽ and ϕ.

First, we observe that, since ϕ(u) = τ(v), we have that ϕ(ṽ) is a prefix of τ(v). Moreover,
given that |ϕ(ṽ)| ≤ |ϕ|41 ≤ ℓ and that τ is ℓ-proper, ϕ(ṽ) is a prefix of τ(b) for every b ∈ B.
In particular,

ϕ(ṽ) is a prefix of τ(wk). (3.17)

Second, from (3.15) and the inequalities |tkϕ(uik+1 . . . uik+|ϕ|21−1)| ≤ |ϕ|31 ≤ ℓ ≤ |τ(wk)| we
deduce that tkϕ(uik+1 . . . uik+|ϕ|21−1) is a prefix of τ(wk). Therefore,

ϕ(ũ) = sktkϕ(uik+1 . . . uik+|ϕ|21−1) is a prefix of skτ(wk). (3.18)
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We conclude from (3.17), (3.18) and the inequality |ϕ(ũ)| ≤ |ϕ|31 = |ṽ| ≤ |skϕ(ṽ)| that
ϕ(ũ) is a prefix of skϕ(ṽ).

This, the inequality |ũ| ≥ |ϕ|1 + |sk| and (3.16) allow us to use Lemma 3.11 with ũ, ṽ and

ϕ and obtain morphisms A+ q̃−→ Ã+ ϕ̃−→ C+ such that #Ã ≤ #A, ϕ = ϕ̃q̃ and |ϕ̃|1 < |ϕ|1.
Then, ℓ ≥ |ϕ|41 > |ϕ̃|41 and ϕ̃(Ã+) ∩ τ(B++) contains the element ϕ̃(q̃(u)) = τ(w), and so
τ and ϕ̃ satisfy the hypothesis of this lemma. Therefore, by the minimality of |ϕ|1, there
exists a decomposition B+ q→ D+ p→ C+ of τ satisfying (i-iii) of this lemma, contrary to our
assumptions. □

An argument similar to the one used in the proof of the previous claim gives us that

un = uik−1 for every k ∈ {1, . . . ,m− 1}. (3.19)

We refer the reader to Remark 3.2 for further details.

Now we can finish the proof. First, from (3.15) and the first part of the claim we get that
τ(wk) = ϕ(uik−1

· · ·uik−1) for k ∈ {2, . . . ,m − 1}, τ(w1) = ϕ(u1 · · ·ui1−1) and τ(wm) =
ϕ(uim−1 · · ·un). Being w ∈ B++, these equations imply that each τ(b), b ∈ B, can be
written as a concatenation x1 · · ·xN , with xj ∈ ϕ(A). Moreover, by the second part of
the claim and (3.19), we can choose this decomposition so that x1 = u1 and xN = un.

This defines (maybe non-unique) morphisms B+ q−→ D+
1

p1−→ C+ such that τ = p1q,
#D1 ≤ #{ϕ(u1), . . . , ϕ(un)} ≤ #A and q is proper. If we define D as the set of letters
d ∈ D1 that occur in some w ∈ q(B), and p as the restriction of p1 to D, then we obtain a

decomposition B+ q−→ D+ p−→ C+ that still satisfies the previous properties, but in which q
is letter-onto. Hence, p and q met conditions (i), (ii) and (iii).

3.3.2 Periodicity lemmas

We will also need classic results from combinatorics on words. We follow the presentation of
[RS97, Chapter 6].

Let w ∈ A∗ be a nonempty word. We say that p is a local period of w at the position |u| if
w = uv, with u, v ̸= 1, and there exists a word z, with |z| = p, such that one of the following
conditions holds for some words u′ and v′:

(i) u = u′z and v = zv′;

(ii) z = u′u and v = zv′;

(iii) u = u′z and z = vv′;

(iv) z = u′u = vv′.

(3.20)

Further, the local period of w at the position |u|, in symbols per(w, u), is defined as the smallest
local period of w at the position u. It follows directly from (3.20) that per(w, u) ≤ per(w).

Figure 3.1: The illustration of a local period.
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The following result is known as the Critical Factorization Theorem.

Theorem 3.13 (Theorem 6.2, Chapter 6, [RS97]) Each nonempty word w ∈ A∗, with |w| ≥
2, possesses at least one factorization w = uv, with u, v ̸= 1, which is critical, i.e., per(w) =
per(w, u).

3.4 Rank of symbolic factors

In this section we prove Theorem 3.1. We start by introducing the concept of factor between
directive sequences and, in Proposition 3.15, its relation with factor maps between S-adic
subshifts. These ideas are the S-adic analogs of the concept of premorphism between ordered
Bratteli diagrams from [AEG15] and their Proposition 4.6. Although Proposition 3.15 can
be deduced from Proposition 4.6 in [AEG15] by passing from directive sequences to ordered
Bratteli diagrams and backwards, we consider this a little bit artificial since it is possible to
provide a direct combinatorial proof; this is done in the Appendix. It is interesting to note
that our proof is constructive (in contrast of the existential proof in [AEG15]) and shows
some additional features that are consequence of the combinatorics on words analysis made.

Next, we prove Theorem 3.1. We apply these results, in Corollary 3.19, to answer affirmatively
Question 3.1 and, in Theorem 3.2, to prove a strong coalescence property for the class of
systems considered in Theorem 3.1. It is worth noting that this last result is only possible
due the bound in Theorem 3.1 being optimal. We end this section by proving that Cantor
factors of finite topological rank systems are either subshifts of odometers.

3.4.1 Rank of factors of directive sequences

The following is the S-adic analog of the notion of premorphism between ordered Bratteli
diagrams in [AEG15].

Definition 3.1 Let σ = (A+
n+1 → A+

n )n∈N, τ = (B+
n+1 → B+

n )n∈N be directive sequences.
A factor ϕ : σ → τ is a sequence of morphisms ϕ = (ϕn)n∈N, where ϕ0 : A+

1 → B+
0 and

ϕn : A+
n → B+

n for n ≥ 1, such that ϕ0 = τ0ϕ1 and ϕnσn = τnϕn+1 and for every n ≥ 1.

We say that ϕ is proper (resp. letter-onto) if ϕn is proper (resp. letter-onto) for every n ∈ N.

Remark 3.3 Factors are not affected by contractions. More precisely, if 0 = n0 < n1 <
n2 < . . . , then ϕ′ = (ϕnk

)k∈N is a factor from σ′ = (σ[nk,nk+1))k∈N to τ ′ = (τ[nk,nk+1))k∈N.

The next lemma will be needed at the end of this section.

Lemma 3.14 Let ϕ = (ϕn)n≥1 : σ → τ be a factor. Assume that σ and τ are everywhere

growing and proper and that ϕ is letter-onto. Then, Xτ =
⋃

k∈Z S
kϕ0(X

(1)
σ ) and X

(n)
τ =⋃

k∈Z S
kϕn(X

(n)
σ ) for every n ≥ 1.
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Proof. We start by proving that X
(n)
τ ⊆

⋃
k∈Z S

kϕn(X
(n)
σ ). Let y ∈ X(n)

τ and ℓ ∈ N. There
exist N > n and b ∈ Bn such that y[−ℓ,ℓ] occurs in τ[n,N)(b). In addition, since ϕN is letter-
onto, there exists a ∈ AN for which b occurs in ϕN(a). Then, y[−ℓ,ℓ] occurs in τ[n,N)ϕN(b) and,
consequently, also in ϕnσ[n,N)(b) as τ[n,N)ϕN = ϕnσ[n,N). Hence, by taking the limit ℓ → ∞
we can find (k′, x) ∈ Z×X(n)

σ such that y = Sk′ϕn(x). Therefore, y ∈
⋃

k∈Z S
kϕn(X

(n)
σ ). To

prove the other inclusion, we use Lemma 3.6 to compute:

ϕn(X
(n)
σ ) =

⋂
N>n

⋃
k∈Z

Skϕnσ[n,N)(AZ
N) =

⋂
N>n

⋃
k∈Z

Skτ[n,N)ϕN(AZ
N)

⊆
⋂
N>n

⋃
k∈Z

Skτ[n,N)(BZ
N) = X(n)

τ .

As we mentioned before, the following proposition is consequence of the main result in
[AEG15]. We provide a combinatorial proof in the Appendix.

Proposition 3.15 Let σ be a letter-onto, everywhere growing and proper directive sequence.
Suppose that Xσ is aperiodic. Then, there exist a contraction σ′ = (σ′

n)n∈N, a letter-onto,
everywhere growing, proper and recognizable τ = (τn)n∈N generating Xσ, and a letter-onto
factor ϕ : σ′ → τ , ϕ = (ϕn)n∈N, such that ϕ0 = σ′

0.

The next proposition is the main technical result of this section. To state it, it is convenient
to introduce the following concept. The directive sequences σ and τ are equivalent if σ = ν ′,
τ = ν ′′ for some contractions ν ′, ν ′′ of a directive sequence ν. Observe that equivalent
directive sequences generate the same S-adic subshift.

Proposition 3.16 Let ϕ : σ → τ be a letter-onto factor between the everywhere growing
and proper directive sequences. Then, there exist a letter-onto and proper factor ψ : σ′ → ν,
where

(1) σ′ is a contraction of σ;

(2) ν is letter-onto, everywhere growing, proper, equivalent to τ , AR(ν) ≤ AR(σ), and the
first coordinate of ψ and ϕ coincide;

(3) if τ is recognizable, then ν is recognizable.

Proof. Let us write σ = (A+
n+1 → A+

n )n∈N and τ = (B+
n+1 → B+

n )n∈N. Up to contractions,
we can suppose that for every n ≥ 1, #An = AR(σ) and that τn is |ϕn|41-proper (for the last
property we used that τ is everywhere growing and proper).

Using that ϕn+1 is letter-onto, we can compute:

τn(B++
n+1) ⊇ τn(ϕn+1(A++

n+1)) = ϕn(σn(A++
n+1)) ⊆ ϕn(A+

n ),

where in the middle step we used the commutativity property of ϕ. We deduce that

τn(B++
n+1) ∩ ϕn(A+

n ) ̸= ∅ for every n ∈ N.
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This and the fact that τn is a |ϕn|41-proper morphism allow us to use Lemma 3.12 to find

morphisms B+
n+1

qn+1−→ D+
n+1

pn−→ B+
n such that

(i) #Dn+1 ≤ #An, (ii) τn = pnqn+1, (iii) qn+1 is letter-onto and proper.

We define ν0 := p0, the morphisms νn := qnpn : D+
n+1 → D+

n and ψn := qnϕn : A+
n → D+

n ,
n ≥ 1, and the sequences ν = (νn)n∈N and ψ = (ψn)n∈N, where ψ0 := ϕ0. We are going to
show that these objects satisfy the conclusion of the proposition.

We start by observing that it follows from the definitions that the diagram below commutes
for all n ≥ 1:

A+
n B+

n D+
n

A+
n+1 B+

n+1 D+
n+1

ϕn qn

σn

ϕn+1

τn

qn+1

pn
νn

In particular, νnνn+1 = qnτnpn+1, so ⟨ν[n,n+1]⟩ ≥ ⟨τn⟩. Being τ everywhere growing, this
implies that ν has the same property. We also observe that (iii) implies that νn = qnpn is
letter-onto and proper. Altogether, these arguments prove that, up to contracting the first
levels, ν is everywhere growing and proper.

Next, we note that ν and τ are equivalent as both are contractions of (p0, q1, p1, q2, . . . ). This
implies, by Lemma 1.1, that ν is recognizable if τ is recognizable. Further, by (i), ν has
alphabet rank at most AR(σ).

It is only left to prove that ψ is a letter-onto and proper factor. By unraveling the definitions
we can compute:

ψ0 = ϕ0 = τ0ϕ1 = p0q1ϕ1 = ν0ψ1,

and from the diagram we have σnψn = ψn+1τn for all n ≥ 1. Therefore, ψ is a factor. Finally,
since qn is letter-onto and proper by (iii) and ϕ was assumed to be letter-onto, ψn = qnϕn is
letter-onto and proper.

3.4.2 Rank of factors of S-adic subshifts

In this section, we will prove Theorem 3.1 and its consequences. We start with a technical
lemma.

The next lemma will allow us to assume without loss of generality that our directive sequences
are letter-onto.

Lemma 3.17 Let τ = (τn : A+
n+1 → A+

n )n∈N be an everywhere growing and proper directive

sequence. If Ãn = An ∩ L(X(n)
σ ), τ̃n is the restriction of τn to Ãn+1 and τ̃ = (τ̃0, τ̃1, . . . ),

then τ̃ is letter-onto and X
(n)
τ̃ = X

(n)
τ for every n ∈ N. Conversely, if τ is letter-onto, then

An ⊆ L(X(n)
τ ) for every n ∈ N.

Proof. By Lemma 1.2, τ̃n is letter-onto mapping Ã+
n+1 into Ãn. Moreover, that lemma also

gives that for every x ∈ X
(n)
τ and N > n, there exists a τ[n,N)-factorization (k′, x′) of x in
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X
(N)
τ . This together with the inclusion X

(N)
τ ⊆ ÃZ

N imply that

Z :=
⋂
N>n

⋃
k∈Z

Skτ[n,N)(ÃZ
N) ⊇ X(n)

τ

Now, τ̃ is everywhere growing and proper, so we can apply Lemma 3.6 to obtain that X
(n)
τ̃ =

Z ⊇ X
(n)
τ . Since it is clear that X

(n)
τ̃ ⊆ X

(n)
τ as ÃN ⊆ AN for every N , we conclude that

X
(n)
τ̃ = X

(n)
τ .

If τ is letter-onto, then An ⊆ L(
⋃

k∈Z S
kτ[n,N)(AZ

N)) for every N > n, and hence, by the

formula in Lemma 3.6, An ⊆ L(X(n)
τ ).

Now we are ready to prove Theorem 3.1. We re-state it in a more precise way.

Theorem 3.1 Let π : (X,S) → (Y, S) be a factor map between aperiodic subshifts. Sup-
pose that X is generated by the everywhere growing and proper directive sequence σ =
(σn : A+

n+1 → A+
n )n∈N of alphabet rank K. Then, Y is generated by a letter-onto, everywhere

growing, proper and recognizable directive sequence τ of alphabet rank at most K.

Moreover, if σ is letter-onto, then, up to contracting the sequences, there exists a proper
factor ϕ : σ → τ such that π(σ0(x)) = ϕ0(x) for all x ∈ X

(1)
σ and |σ0(a)| = |ϕ0(a)| for all

a ∈ A1

Proof. Thanks to Lemma 3.17, we can assume without loss of generality that σ is letter-onto.
Moreover, in this case we have:

An ⊆ L(X(n)
σ ) for every n ∈ N. (3.21)

Let us write σ = (σn : A+
n+1 → A+

n )n∈N. By contracting σ, we can further assume that σ0 is
r-proper and π has radius r. Then, Lemma 3.5 gives us a proper morphism τ : A+

1 → B+,
where B is the alphabet of Y , such that

π(σ0(x)) = τ(x) for all x ∈ X(1)
σ and |σ0(a)| = |τ(a)| for every a ∈ A1. (3.22)

In particular, π(σ[0,n)(x)) = τσ[1,n)(x) and |σ[0,n)(a)| = |τσ[1,n)(a)| for all n ∈ N, x ∈ X(n)
σ and

a ∈ An, so (3.22) holds for any contraction of σ.

We define σ̃ = (τ, σ1, σ2, . . . ) and observe this is a letter-onto, everywhere growing and proper
sequence generating Y . This and that Y is aperiodic allow us to use Proposition 3.15 and
obtain, after a contraction, a letter-onto factor ϕ̃ : σ̃ → τ̃ , where ϕ̃0 = σ̃0 = τ and τ̃ is a
letter-onto, everywhere growing, proper and recognizable directive sequence generating Y .
The sequence τ̃ has all the properties required by the theorem but having alphabet rank
bounded by K. To overcome this, we use Proposition 3.16 with ϕ̃ and do more contractions
to obtain a letter-onto and proper factor ϕ : σ̃ → τ such that ϕ0 = ϕ̃0 = τ and τ is a
letter-onto, everywhere growing, proper and recognizable directive sequence generating Y
and satisfying AR(τ ) ≤ AR(σ̃) = AR(σ).
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It is left to prove the last part of the theorem. Observe that since σ̃ and σ differ only at
their first coordinate, ϕ is also a factor from σ to τ . Further, by equation (3.22) and the

fact that ϕ0 = τ , we have π(σ0(x)) = τ(x) = ϕ0(x) and |σ0(a)| = |ϕ0(a)| for every x ∈ X(1)
σ

and a ∈ A1.

Corollary 3.18 Let (X,S) be an aperiodic minimal subshift of generated by an everywhere
growing and proper directive sequence of alphabet rank K. Then, the topological rank of X is
at most K.

Proof. We can use Theorem 3.1 to obtain an everywhere growing, proper and recognizable
directive sequence τ = (τn : B+

n+1 → B+
n )n∈N generating X and having of alphabet rank at

most K. Due to Lemma 3.17, we can assume that τ is letter-onto. In particular, Bn ⊆
L(X(n)

τ ) for every n ∈ N.

We claim that X
(n)
τ is minimal. Indeed, if Y ⊆ X

(n)
τ is a subshift, then τ[0,n)(Y ) is closed (as

τ[0,n) : X
(n)
τ → Xτ is continuous), so

⋃
k∈Z S

kτ[0,n)(Y ) =
⋃

|k|≤|τ[0,n)| S
kτ[0,n)(Y ) is a subshift in

Xτ which, by minimality, is equal to it. Thus, any point x ∈ X(n)
τ has a τ[0,n)-factorization

(k, z) with z ∈ Y . The recognizability property of (X
(n)
τ , τ[0,n)) then implies that Y = X

(n)
τ .

Now, we prove that for any n ∈ N there exists N > n such that τ[n,N) is positive. This
would imply that the topological rank of X is at most K and hence would complete the
proof. Let n ∈ N and R be a constant of recognizability for (X

(n)
τ , τ[0,n)). Since X

(n)
τ is

minimal, there exists a constant L ≥ 1 such that two consecutive occurrences of a word
w ∈ L(X(n)

τ ) ∩ B2R+1
n in a point x ∈ X

(n)
τ are separated by at most L. Let N > n be big

enough so that ⟨τ[0,N)⟩ ≥ L+2R. Then, for all a ∈ BN ⊆ L(X(N)
τ ) and w ∈ L(X(n)

τ )∩B2R+1
n , w

occurs at a position i ∈ {R,R+1, . . . , |τ[0,N)(a)|−R} of τ[0,N)(a). Since R is a recognizability

constant for (X
(n)
τ , τ[0,n)), we deduce that for all a ∈ BN and b ∈ Bn, b occurs in τ[n,N)(a).

Thus, τ[n,N) is positive.

We can now prove Corollary 0.6.

Corollary 0.6 Let (X,S) be an aperiodic minimal subshift generated by an everywhere
growing directive sequence of finite alphabet rank. Then, the topological rank of (X,S) is
finite.

Proof. We are going to prove that X is generated by an everywhere growing and proper
directive sequence τ of finite alphabet rank. This would imply, by Corollary 3.18, that the
topological rank of X is finite. Let σ = (σn : A+

n+1 → A+
n )n∈N be an everywhere growing

directive sequence of finite alphabet rank generating X. We contract τ in a way such that
#An ≤ K for every n ≥ 1.

We are going to inductively define subshifts Xn, n ∈ N. We start with X0 := X. We now
assume that Xn is defined for some n ∈ N. Then the set X ′

n+1 = {x ∈ X
(n+1
σ : σn(x) ∈ Xn}

is a subshift. We define Xn+1 as any minimal subshift contained in X ′
n+1. It follows from the
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definition of Xn+1 that
⋃

k∈Z S
kσn(Xn+1) ⊆ Xn. Being Xn minimal, we have⋃

k∈Z

Skσn(Xn+1) = Xn. (3.23)

Let Ãn = An ∩ L(Xn). Equation (3.23) and the fact that σ is everywhere growing allow us
to assume without loss of generality that, after a contraction of σ, the following holds for
every n ∈ N:

if a ∈ Ãn+1 and w ∈ L(Xn) has length 3, then w occurs twice in σn(a). (3.24)

Let us fix a word wn = anbncb ∈ L(Xn) of length 3. Then, by (3.24), we can decompose
σn(a) = un(a)vn(a) in a way such that

un(a) ends with an, vn(a) starts with bncn and |vn(a)| ≥ 2. (3.25)

To define τ , we need to introduce additional notation first. Let Bn be the alphabet consisting
of tuples

[
a
b

]
such that ab ∈ L(Xn). Also, if w = w1 . . . w|w| ∈ L(Xn) has length |w| ≥ 2,

then χn(w) :=
[
w1

w2

][
w2

w3

]
. . .

[
w|w|−1

w|w|

]
∈ B+

n , and if w′ =
[
w1

w2

]
. . .

[
w|w|−1

w|w|

]
∈ B+

0 , then η(w′) :=

w1 . . . w|w|−1 ∈ A+
0 . Observe that η : B+

0 → A+
0 is a morphism.

We now define τ . Let τn : B+
n+1 → B+

n be the unique morphism such that τn(
[
a
b

]
) =

χn(vn(a)un(a)bn) for every
[
a
b

]
∈ Bn+1. Observe that since vn(a)un(a)bn ∈ L(Xn), it is

indeed the case that τn(
[
a
b

]
) ∈ B+

n . We set τ = (ητ0, τ1, τ2, . . . ).

It follows from (3.25) that for every n ∈ N and
[
a
b

]
∈ Bn+1, τn(

[
a
b

]
) starts with

[
bn
cn

]
and ends

with
[
an
bn

]
. Thus, τ is proper. Moreover, since |vn(a)| ≥ 2, we have |vn(a)un(a)bn| ≥ 3 and

thus |τn(
[
a
b

]
)| ≥ 2. Therefore, ⟨τn⟩ ≥ 2 and τ is everywhere growing. Also, #Bn ≤ #A2

n ≤ K2

for every n ∈ N, so the alphabet rank of τ is finite.

It remains to prove that X = Xτ . By minimality, it is enough to prove that X ⊇ Xτ .
Observe that since τnχn+1(ab) = χn(vn(a)un(b)bn), the word τnχn+1(ab) occurs in χnσn(ab).

Moreover, for every w = w1 . . . w|w| ∈ L(X(n)
σ ), τnχn+1(w) occurs in χnσn(w). Then, by

using the symbol ⊑ to denote the “subword” relation, we can write for every n ∈ N and
ab ∈ L(X(n)

σ ):

τ[0,n)χn(ab) ⊑ τ[0,n−1)χn−1σn−1(ab)

⊑ τ[0,n−2)χn−2σ[n−2,n)(ab) ⊑ · · · ⊑ χ0σ[0,n)(ab)

Hence, ητ[0,n)(
[
a
b

]
) ⊑ ηχ0σ[0,n)(ab) ⊑ σ[0,n)(ab). We conclude that Xτ ⊆ Xσ = X.

Corollary 3.19 Let (X,S) be a minimal subshift of topological rank K and π : (X,S) →
(Y, S) a factor map, where Y is an aperiodic subshift. Then, the topological rank of Y is at
most K.

Proof. By Theorem 0.1, (X,S) is generated by a proper and primitive directive sequence
σ of alphabet rank equal to K. In particular, σ is everywhere growing and proper, so we
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can use Theorem 3.1 to obtain an everywhere growing, proper and recognizable directive
sequence τ = (τn : B+

n+1 → B+
n )n≥0 generating (Y, S) and having of alphabet rank at most

K. Then, the hypothesis of Corollary 3.18 hold for (Y, S), and thus the topological rank of
(Y, S) is at most K.

The following notion will be used in the proof of the theorem below: σ = (σn : A+
n+1 → An)n≥0

has exact alphabet rank at most K if #An ≤ K for all n ≥ 1.

Corollary 3.2 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper sequence of alphabet rank K, and πj : (Xj+1, S)→ (Xj, S), j = 0, . . . , L, be a chain of
aperiodic symbolic factors, with XL = X. Suppose that L > log2(K). Then πj is a conjugacy
for some j.

Proof. We start by using Theorem 3.1 with the identity function id : (X,S) → (X,S) to
obtain a letter-onto, everywhere growing, proper and recognizable directive sequence σL of
alphabet rank at most K generating X. By doing a contraction, we can assume that σL has
exact alphabet rank at most K.

By Theorem 3.1 applied to πL−1 and σL, there exists, after a contraction of σL, a letter-
onto factor ϕL−1 : σL → σL−1, where σL−1 is letter-onto, everywhere growing, proper,
recognizable, has alphabet rank at most K, generates XL−1, and, if ϕL−1,0 and σL,0 are the
first coordinates of ϕL−1 and σL, respectively, then πL−1(σL,0(x)) = ϕL−1,0(x) for every

x ∈ X(1)
σL and |σL,0(a)| = |ϕL−1,0(a)| for every letter a in the domain of σL,0. By contracting

these sequences, we can also suppose that σL−1 has exact alphabet rank at most K. The
same procedure applies to πL−2 and σL−1. Thus, by continuing in this way we obtain for
every j = 0, . . . , L− 1 a letter-onto factor ϕj : σj+1 → σj such that

• σj is letter-onto, everywhere growing, proper, recognizable, has exact alphabet rank at

most K, generates Xj, πj(σj+1,0(x)) = ϕj,0(x) for every x ∈ X(1)
σj+1 , and |σj+1,0(a)| =

|ϕj,0(a)| for every a ∈ Aj+1,1.

Here, we are using the notation σj = (σj,n : A+
j,n+1 → A+

j,n)n∈N, ϕj = (ϕj,n : A+
j+1,n →

A+
j,n)n∈N and X

(n)
j = X

(n)
σj . We note that

(△1) for every x ∈ X(1)
j+1, πj(σj+1,0(x)) = ϕj,0(x) = σj,0ϕj,1(x) since ϕj,0 = σj,0ϕj,1;

(△2) X
(1)
j =

⋃
k∈Z S

kϕj,1(X
(1)
j+1) by Lemma 3.14.

Hence, the following diagram commutes:

X
(1)
0 · · · X

(1)
j X

(1)
j+1 · · · X

(1)
L

X
(0)
0 · · · X

(0)
j X

(0)
j+1 · · · X

(0)
L

σ0,0 σj,0

ϕ0,1

σj+1,0

ϕj,1

σL,0

ϕL−1,1

π0 πj πL−1
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Claim 3.2 If (X
(1)
j+1, ϕj,1) is recognizable, then πj is a conjugacy.

Proof. Let us assume that (X
(1)
j+1, ϕj,1) is recognizable and let, for i = 0, 1, xi ∈ X(1)

j+1 such
that y = πj(x

0) = πj(x
1). We have to show that x0 = x1. First, we use Lemma 1.2 to find a

centered σj+1,0-factorization (ki, zi) of xi in X
(1)
j+1. Then, equation △1 allows us to compute:

Sk0σj,0ϕj,1(z
0) = Sk0πj(σj+1,0(z

0)) = πj(x
0) = πj(x

1) = Sk1σj,0ϕj,1(z
1).

This implies that (ki, zi) is a σj,0ϕj,1-factorization of y in X
(1)
j+1 for i = 0, 1. Moreover, these

are centered factorizations as, by •, |σj,0ϕj,1(a)| = |σj+1,0(a)| for all a ∈ Aj+1,1. Now, being

(X
(1)
j , σ0,j) and (X

(1)
j+1, ϕj,1) recognizable, Lemma 1.1 gives that (X

(1)
j+1, σj,1ϕj,1) is recognizable,

and thus we have that (k0, z0) = (k1, z1). Therefore, x0 = x1 and π is a conjugacy. □

Now we can finish the proof. We assume, by contradiction, that πj is not a conjugacy for all
j. Then, by the claim,

(X
(1)
j , ϕ1,j) is not recognizable for every j ∈ {0, . . . , L− 1}. (3.26)

Let
ν = (ϕ0,1, ϕ1,1, ϕ2,1, . . . , ϕL−1,1, σL,1, σL,2, σL,3, . . . ).

The idea is to use Theorem 3.7 with ν to obtain a contradiction. To do so, we first note
that, since ν and σ(L) have the same “tail”, X

(m+L)
ν = X

(m+1)
L for all m ∈ N. Moreover, △2

and the previous relation imply that

X(j)
ν =

⋃
k∈Z

Skϕj,1(X
(j+1)
ν ) = · · · =

⋃
k∈Z

Skϕj,1 . . . ϕL−1,1(X
(L)
ν )

=
⋃
k∈Z

Skϕj,1 . . . ϕL−1,1(X
(1)
L ) =

⋃
k∈Z

Skϕj,1 . . . ϕL−2,1(X
(1)
L−1) = · · · = X

(1)
j .

This and (3.26) imply that for every j ∈ {1, . . . , L−1}, the level (X(j)
ν , ϕj,1) of ν is not recog-

nizable. Being ν everywhere growing as σL has this property, we conclude that Theorem 3.7
can be applied and, therefore, that X

(1)
0 = Xν is periodic. But then X0 =

⋃
k∈Z S

kσ0,0(X
(1)
0 )

is periodic, contrary to our assumptions.

A system (X,S) is coalescent if every endomorphism π : (X,S)→ (X,S) is an automorphism.
This notion has been relevant in the context of topological dynamics; see for example [Dow97].

Corollary 3.20 Let (X,S) be an S-adic subshift generated by an everywhere growing and
proper directive sequence of finite alphabet rank. Then, (X,S) is coalescent.

Remark 3.4 A linearly recurrent subshift of constant C is generated by a primitive and
proper directive sequence of alphabet rank at most C(C + 1)2 ([Dur00], Proposition 6). In
[DHS99], the authors proved the following

Theorem 3.21 ([DHS99], Theorem 3) For a linearly recurrent subshift X of constant C,
in any chain of factors πj : (Xj, S) → (Xj+1, S), j = 0, . . . , L, with X0 = X and L ≥
(2C(2C + 1)2)4C

3(2C+1)2 there is at least one πj which is a conjugacy.
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Thus, Theorem 3.2 is not only a generalization of this result to a much larger class of systems,
but also improves the previous super-exponential constant to a logarithmic one.

In Proposition 28 of [DHS99], the authors proved that Cantor factors of linearly recurrent
systems are either subshifts or odometers. Their proof only uses that this kind of systems
satisfy the strong coalescence property that we proved in Corollary 3.20 for finite topological
rank systems. Therefore, by the same proof, we have:

Corollary 3.22 Let π : (X,S)→ (Y, T ) be a factor map between minimal systems. Assume
that (X,S) has finite topological rank and that (Y, T ) is a Cantor system. Then, (Y, T ) is
either a subshift or an odometer.

Proof. We sketch the proof from [DHS99] that we mentioned above.

Let (Pn)n∈N be a sequence of clopen partitions of Y such that Pn+1 is finer than Pn and
their union generates the topology of Y . Also, let Yn be the subshift obtained by codifying
the orbits of (Y, T ) by using the atoms of Pn. Then, the fact that Pn is a clopen partition
induces a factor map πn : (Y, T )→ (Yn, S). Moreover, since Pn+1 is finer than Pn, there exists
a factor map ξn : (Yn+1, S) → (Yn, S) such that ξnπn+1 = πn. Hence, we have the following
chain of factors:

(X,S)
π−→ (Y, T )

πn−→ (Yn, S)
ξn−1−→ (Yn−1, S)

ξn−2−→ . . .
ξ1−→ (Y0, S).

We conclude, by also using the fact that the partitions Pn generate the topology of Y , that

(Y, S) is conjugate to the inverse limit
←−
limn→∞(Yn; ξn).

Now we consider two cases. If Yn is periodic for every n ∈ N, then Y is the inverse limit of
periodic system, and hence an odometer. In the other case, we have, by Corollary 3.2, that
ξn is a conjugacy for all big enough n ∈ N, and thus that (Y, S) is conjugate to one of the
subshifts Yn.

3.5 Fibers of symbolic factors

The objective of this section is to prove Theorem 3.3, which states that factor maps π : (X,S)→
(Y, S) between S-adic subshifts of finite topological rank are always almost k-to-1 for some
k bounded by the topological rank of X. We start with some lemmas from topological
dynamics.

Lemma 3.23 ([Aus88]) Let π : X → Y be a continuous map between compact metric spaces.
Then π−1 : Y → 2X is continuous at every point of a residual subset of Y .

Next lemma gives a sufficient condition for a factor map π to be almost k-to-1. Recall that
E(X,S) stands for the Ellis semigroup of (X,S).

Lemma 3.24 Let π : (X,S)→ (Y, T ) be a factor map between topological dynamical systems,
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with (Y, T ) minimal, and K ≥ 1 an integer. Suppose that for every y ∈ Y there exists
u ∈ E(2X , S) such that #u ◦ π−1(y) ≤ K. Then, π is almost k-to-1 for some k ≤ K.

Proof. First, we observe that by the description of u ◦ A in terms of nets at the end of
Subsection 3.2, we have

#u ◦ A ≤ #A, ∀u ∈ E(2X , S), A ∈ 2X . (3.27)

Now, by previous lemma, there exists a residual set Ỹ ⊆ Y of continuity points for π−1.
Let y, y′ ∈ Ỹ be arbitrary. Since Y is minimal, there exists a sequence (nℓ)ℓ such that
limℓ T

nℓy = y′. If w ∈ E(2X , S) is the limit of a convergent subnet of (Snℓ)ℓ, then wy = y′.
By the continuity of π−1 at y′ and (3.27), we have

#π−1(y′) = #π−1(wy) = #w ◦ π−1(y) ≤ #π−1(y).

We deduce, by symmetry, that #π−1(y′) = #π−1(y). Hence, k := π−1(y) does not depend on
the chosen y ∈ Ỹ . To end the proof, we have to show that k ≤ K. We fix y ∈ Ỹ and take,
using the hypothesis, u ∈ E(2X , S) such that #u ◦ π−1(y) ≤ K. As above, by minimality,
there exists v ∈ E(2X , S) such that vuy = y. Then, by the continuity of π−1 at y,

π−1(y) = π−1(vuy) = (vu) ◦ π−1(y) = v ◦ (u ◦ π−1(y)).

This and (3.27) imply that k = #π−1(y) ≤ #u ◦ π−1(y) ≤ K.

Let σ : A+ → B+ be a morphism, (k, x) a centered σ-factorization of y ∈ BZ in AZ and ℓ ∈ Z.
Note that there exists a unique j ∈ Z such that ℓ ∈ [cσ,j(k, x), cσ,j+1(k, x)) (recall the notion
of cut from Definition 4.2). In this context, we say that (cσ,j(k, x), xj) is the symbol of (k, x)
covering position ℓ of y.

Theorem 3.3 Let π : (X,S) → (Y, S) be a factor between subshifts, with (Y, S) minimal
and aperiodic. Suppose that X is generated by a proper and everywhere growing directive
sequence σ of alphabet rank K. Then, π is almost k-to-1 for some k ≤ K.

Proof. Let σ = (σn : An+1 → An)n≥0 be a proper and everywhere growing directive sequence
of alphabet rank at mostK generatingX. Due the possibility of contracting σ, we can assume
without loss of generality that #An ≤ K for every n ≥ 1 and that σ0 is r-proper, where r
is the radius of π. Then, by Lemma 3.5, Y is generated by an everywhere growing directive
sequence of the form τ = (τ, σ1, σ2, . . . ), where τ : A+

1 → B+ is such that τ(x) = π(σ0(x))

for every x ∈ X(1)
τ = X

(1)
σ . We will use the notation τ[0,n) = τσ[1,n). Further, for y ∈ Y and

n ≥ 1, we write Fn(y) to denote the set of τ[0,n)-factorizations of y in Y
(n)
τ .

Before continuing, we prove the following claim.

Claim 3.3 There exist ℓn ∈ Z and Gn ⊆ Z × Bn+1 with at most K elements such that if
(k, x) ∈ Fn(y), then the symbol of (k, x) covering position ℓn of y is in Gn.
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First, since Y is aperiodic, there exists L ∈ N such that

all words w ∈ L(Y ) of length ≥ L have least period greater than |τ[0,n)|. (3.28)

We assume, by contradiction, that the claim does not hold. In particular, for every ℓ ∈ [0, L)

there exist K + 1 τ[0,n)-factorizations (x, k) of y in Y
(n)
τ such that their symbols covering

position ℓ of y are all different. Now, since #τ[0,n)(An+1) ≤ K, we can use the Pigeonhole
Principle to find two of such factorizations, say (k, x) and (k′, x′), such that if (c, a) and
(c′, a′) are their symbols covering position ℓ of y then a = a′ and c < c′. Then,

y(c,c+|τ[0,n)(a)|] = τ[0,n)(a) = y(c′,c′+|τ[0,n)(a)|]

and, thus, y(c,c′+|τ[0,n)(a)|] is (c
′ − c)-periodic. Being ℓ ∈ (c′, c+ |τ[0,n)(a)|), we deduce that the

local period of y[0,L) at ℓ is at most c′ − c ≤ |τ[0,n)|. Since this true for every ℓ ∈ [0, L) and
since, by Theorem 3.13, per(y[0,L)) = per(y[0,L), y[0,ℓ)) for some ℓ ∈ [0, L), we conclude that
per(y[0,L)) ≤ |τ[0,n)|. This contradicts (3.28) and proves thereby the claim.

Now we prove the theorem. It is enough to show that the hypothesis of Lemma 3.24 hold.
Let y ∈ Y and F̃n(y) ⊆ Fn(y) be such that #F̃n(y) = #Gn and the set consisting of all the
symbols of factorizations (k, x) ∈ F̃n(y) covering position ℓn of y is equal to Gn. Let z ∈
π−1(y) and (k, x) be a σ[0,n)-factorization of z in X

(n)
σ . Then, Skτ[0,n)(x) = Skπ(σ[0,n)(x)) =

π(z) = y and (k, x) is a τ[0,n)-factorization of y in Y
(n)
τ . Thus, we can find (k′, x′) ∈ F̃n(y)

such that the symbols of (k, x) and (k′, x′) covering position ℓn of y are the same; let (m, a)
be this common symbol. Since σ is proper, we have

z[m−⟨σ[0,n−1)⟩,m+|σ[0,n)(a)|+⟨σ[0,n−1)⟩] = z′[m−⟨σ[0,n−1)⟩,m+|σ[0,n)(a)|+⟨σ[0,n−1)⟩],

where z′ = Sk′σ[0,n)(x
′) ∈ X is the point that (k′, x′) factorizes in (X

(n)
σ , σ[0,n)). Then, as

ℓn ∈ (m,m+ |σ[0,n)(a)|],

z(ℓn−⟨σ[0,n−1)⟩,ℓn+⟨σ[0,n−1)⟩] = z′(ℓn−⟨σ[0,n−1)⟩,ℓn+⟨σ[0,n−1)⟩].

Thus, dist(Sℓnz, SℓnPn(y)) ≤ exp(−⟨σ[0,n−1)⟩), where Pn(y) ⊆ π−1(y) is the set of all points

Sk′′σ[0,n)(x
′′) ∈ X such that (k′′, x′′) ∈ F̃n(y). Since this holds for every n ≥ 1, we obtain that

dH(S
ℓnπ−1(y), SℓnPn(y)) converges to zero as n goes to infinity (where, we recall, dH is the

Hausdorff distance). By taking an appropriate convergent subnet u ∈ E(2X , S) of (Sℓn)n∈N
we obtain #u ◦ π−1(y) ≤ supn∈N #Pn = supn∈N #Gn ≤ K. This proves that the hypothesis
of Lemma 3.24 holds. Therefore, π is almost k-to-1 for some k ≤ K.

3.6 Number of symbolic factors

In this section we prove Theorem 3.4. In order to do this, we split the proof into 3 subsections.
First, in Lemma 3.27 of subsection 3.6.1, we deal with the case of Theorem 3.4 in which the
factor maps are distal. Next, we show in Lemma 3.31 from Subsection 3.6.2 that in certain
technical situation -which will arise when we consider non-distal factor maps- it is possible
to reduce the problem to a similar one, but where the alphabet are smaller. Then, we prove
Theorem 3.4 in subsection 3.6.3 by a repeated application of the previous lemmas.
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3.6.1 Distal factor maps

We start with some definitions. If (X,S) is a system, then we always give Xk the diagonal
action S[k] := S × · · · × S. If π : (X,S) → (Y, T ) is a factor map and k ≥ 1, then we define
Rk

π = {(x1, . . . , xk) ∈ Xk : π(x1) = · · · = π(xk)}. Observe that Rk
π is a closed S[k]-invariant

subset of Xk.

Next lemma follows from classical ideas from topological dynamics. See, for example, Theo-
rem 6 in Chapter 10 of [Aus88].

Lemma 3.25 Let π : (X,S) → (Y, T ) be a distal almost k-to-1 factor between minimal
systems, z = (z1, . . . , zk) ∈ Rk

π and Z = orbS[k](z). Then, π is k-to-1 and Z is minimal

We will also need the following lemma:

Lemma 3.26 ([Dur00], Lemma 21) Let πi : (X,S)→ (Yi, Ti), i = 0, 1, be two factors between
aperiodic minimal systems. Suppose that π0 is finite-to-one. If x, y ∈ X are such that
π0(x) = π0(y) and π1(x) = T p

1 π1(y), then p = 0.

Lemma 3.27 Let (X,S) be an infinite minimal subshift of topological rank K and J an
index set of cardinality #J > K(144K7)K. Suppose that for every j ∈ J there exists a distal
symbolic factor πj : (X,S)→ (Yj, S). Then, there are i ̸= j ∈ J such that (Yi, S) is conjugate
to (Yj, S).

Proof. We start by introducing the necessary objects for the proof and doing some general
observations about them. First, thanks to Theorem 3.3, we know that πj is almost kj-
to-1 for some kj ≤ K, so, by the Pigeonhole Principle, there exist J1 ⊆ J and k ≤ K
such that #J1 ≥ #J/K > (144K7)K and kj = k for every j ∈ J1. For j ∈ J1, we fix
zj = (zj1, . . . , z

j
k) ∈ Rk

πj
with zjn ̸= zjm for all n ̸= m. Let Zj = orbS[k](zj) and ρ : Xk → X be

the factor map that projects onto the first coordinate. By Lemma 3.25, πj is k-to-1 and Zj

minimal. This imply that if x = (x1, . . . , xk) ∈ Zj, then

{x1, . . . , xk} = π−1
j (πj(xn)) for all n ∈ {1, . . . , k}, (3.29)

xn ̸= xm for all n,m ∈ {1, . . . , k}. (3.30)

Indeed, since Zj is minimal, (S[k])nℓz → x for some sequence (nℓ)ℓ, so,

inf
n̸=m

dist(xn, xm) ≥ inf
n̸=m,l∈Z

dist(Slzn, S
lzm) > 0,

where in the last step is due the fact that πj is distal. This gives (3.30). For (3.29) we first
note that {x1, . . . , xk} ⊆ π−1

j (πj(xn)) as x ∈ Rπj
, and then that the equality must hold since

#π−1
j (πj(xn)) = k = #{x1, . . . , xk} by (3.30).

The next step is to prove that asymptotic pairs in Zj are well-behaved:

Claim 3.4 Let j ∈ J1 and (xj = (xj1, . . . , x
j
k), x̃

j = (x̃j1, . . . , x̃
j
k)) be a right asymptotic pair
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in Zj, this is,
lim

n→−∞
dist((S[k])nxj, S[k]x̃j) = 0 and xj ̸= x̃j. (3.31)

Then, (xjn, x̃
j
n) is right asymptotic for every n ∈ {1, . . . , k}.

Proof. Suppose, with the aim to obtain a contradiction, that (xjn, x̃
j
n) is not right asymptotic

for some n ∈ {1, . . . , k}. Observe that (3.31) implies that

for every m ∈ {1, . . . , k}, either (xjm, x̃jm) is right asymptotic or xjn = x̃jn. (3.32)

Therefore, xjn = x̃jn. Using this and that xj, x̃j ∈ Rk
πj

we can compute:

πj(x
j
m) = πj(x

j
n) = πj(x̃

j
n) = πj(x̃

j
l ) for all m, l ∈ {1, . . . , k},

and thus, by (3.29),

{xj1, . . . , x
j
k} = π−1

j (πj(x
j
n)) = π−1

j (πj(x̃
j
n)) = {x̃

j
1, . . . , x̃

j
k}.

The last equation, (3.30) and that xj ̸= x̃j imply that there exist m ̸= l ∈ {1, . . . , k} such
that x̃jl = xjm. This last equality and (3.32) tell us that xjm and xjl are either asymptotic or
equal. But in both cases a contradiction occurs: in the first one with the distality of π and
in the second one with equation (3.30). □

Let j ∈ J1. Since Yj is infinite, Zj is a infinite subshift. It is a well-known fact from symbolic
dynamics that this implies that there exists a right asymptotic pair (xj = (xj1, . . . , x

j
k),

x̃j = (x̃j1, . . . , x̃
j
k)) in Zj. We are now going to use Theorem 3.8 to prove the following:

Claim 3.5 There exists i, j ∈ J1, i ̸= j, such that Zi = Zj.

Proof. On one hand, by the previous claim, (xjn, x̃
j
n) ∈ X2 is right asymptotic for every

n ∈ {1, . . . , k} and j ∈ J1. Let pjn ∈ Z be such that (Spjnxjn, S
pjnx̃jn) is centered right

asymptotic. On the other hand, Theorem 3.8 asserts that the set

{x(0,∞) : (x, x̃) is centered right asymptotic in X}

has at most 144K7 elements. Since #J1 > (144K7)K , we conclude, by the Pigeonhole
principle, that there exist i, j ∈ J1, i ̸= j, such that

Spinxin and Spjnxjn agree on (0,∞) for every n ∈ {1, . . . , k}. (3.33)

We are going to show that Zi = Zj.

Using (3.33), we can find u ∈ E(X,S) such that uSpinxin = uSpjnxjn for every n. Then, by
putting yin = uxin, y

j
n = uxjn and qn = pjn − pin, we have

yi := (yi1, . . . , y
i
k) ∈ Zi, y

j := (yj1, . . . , y
j
k) ∈ Zj and y

i
n = Sqnyjn.

Hence, π(yin) = Sqnπ(yjn) and Lemma 3.26 can be applied to deduce that q := qn has the
same value for every n. We conclude that yi = Sqyj ∈ SqZj = Zj, that Zi ∩ Zj is not empty
and, therefore, that Zi = Zj as these are minimal systems. □
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We can now finish the proof. Let i ̸= j ∈ J1 be the elements given by the previous claim,
so that Z := Zi = Zj. Let y ∈ Yi and x = (x1, . . . , xk) ∈ ρ−1π−1

i (y) ∩ Z. Then, by (3.29),
π−1
i (y) = {x1, . . . , xk} = π−1

j (πj(x1)), and so πjπ
−1
i (y) contains exactly one element, which

is πj(x1). We define ψ : Yi → Yj by ψ(y) = πj(x1).

Observe that π−1
i : Yi → 2X is continuous (as πi is distal, hence open) and commutes with S.

Being πj a factor map, ψ is continuous and commutes with S. Therefore, ψ : (Yi, S)→ (Yj, S)
is a factor map. A similar construction gives a factor map ϕ : Yj → Yi which is the inverse
function of ψ. We conclude that ψ is a conjugacy and, thus, that Yi and Yj are conjugate.

3.6.2 Non-distal factor maps

To deal with non-factor maps, we study asymptotic pairs belonging to fibers of this kind of
factors. The starting point is the following lemma.

Lemma 3.28 Let π : (X,S)→ (Y, S) be a factor between minimal subshifts. Then, either π
is distal or there exists a fiber π−1(y) containing a pair of right or left asymptotic points.

Proof. Assume that π is not distal. Then, we can find a fiber π−1(y) and proximal points
x, x′ ∈ π−1(y), with x ̸= x′. This implies that for every k ∈ N there exist a (maybe infinite)
interval Ik = (ak, bk) ⊆ Z, with bk−ak ≥ k, for which x and x′ coincide on I and Ik is maximal
(with respect to the inclusion) with this property. Since x ̸= x′, then ak > −∞ or bk < ∞.
Hence, there exists an infinite set E ⊆ N such that ak > −∞ for every k ∈ E or bk <∞ for
every k ∈ E. In the first case, we have that (Sbk(x, x′))k∈E has a left asymptotic pair (z, z′)
as an accumulation point, while in the second case it is a right asymptotic pair (z, z′) who
is an accumulation point of (Sak(x, x′))k∈E. In both cases we have that (z, z′) ∈ R2

π since
(Sbk(x, x′))k∈E and (Sak(x, x′))k∈E are contained in R2

π and R2
π is closed. Therefore, the fiber

π−1(π(z)) contains a pair z, z′ of asymptotic points.

The next lemma allows us to pass from morphisms σ : X → Y to factors π : X ′ → Y in such
a way that X ′ is defined on the same alphabet as X and has the “same” asymptotic pairs.
We remark that its proof is simple, but tedious.

Lemma 3.29 Let X ⊆ A+ be an aperiodic subshift, σ : A+ → B+ be a morphism and
Y =

⋃
k∈Z S

kσ(X). Define the morphism iσ : A+ → A+ by iσ(a) = a|σ(a)|, a ∈ A, and X ′ =⋃
k∈Z S

kiσ(X). Then, centered asymptotic pairs in X ′ are of the form (iσ(x), iσ(x̃)), where
(x, x̃) is a centered asymptotic pair in X, and there exists a factor map π : (X ′, S)→ (Y, S)
such that π(iσ(x)) = τ(x) for all x ∈ X.

Proof. Our first objective is to prove that (X, iσ) is recognizable. We start by observing
that

if (k, x), (k̃, x̃) are centered iσ-factorizations of y ∈ X ′, then x0 = x̃0. (3.34)

Indeed, since the factorization are centered, we have x0 = iσ(x0)k = y0 = iσ(x̃0)k̃ = x̃0.
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Let Λ be the set of tuples (k, x, k̃, x̃) such that (k, x), (k̃, x̃) are centered iσ-factorizations
of the same point. Moreover, for R ∈ {=, >}, let ΛR be the set of those (k, x, k̃, x̃) ∈ Λ
satisfying k R k̃.

Claim 3.6 If (k, x, k̃, x̃) ∈ Λ=, then (0, Sx, 0, Sx̃) ∈ Λ=, and if (k, x, k̃, x̃) ∈ Λ>, then
(|iσ(x0)| − k + k̃, x̃, 0, Sx) ∈ Λ>.

Proof. If (k, x, k̃, x̃) ∈ Λ=, then, since x0 = x̃0 by (3.34), we can write iσ(Sx) = Skiσ(x) =

S k̃iσ(x̃) = iσ(Sx̃). Thus, (0, Sx, 0, Sx̃) ∈ Λ=. Let now (k, x, k̃, x̃) ∈ Λ> and y := Skiσ(x) =

S k̃iσ(x̃). We note that

S|iσ(x0)|−k+k̃iσ(x̃) = S|iσ(x0)|−ky = S|iσ(x0)|iσ(x) = iσ(Sx),

so (|iσ(x0)| − k+ k̃, x̃) and (0, Sx) are iσ-factorization of the same point. Now, since x0 = x̃0
(by (3.34)) and (k, x), (k̃, x̃) are centered, we have k, k̃ ∈ [0, |iσ(x0)|). This and and the fact
that k > k̃ imply that k − k̃ ∈ (0, |iσ(x0)|). Therefore, |iσ(x0)| − k + k̃ ∈ (0, |iσ(x0)|) and,
consequently, (|iσ(x0)| − k + k̃, x̃, 0, Sx) ∈ Λ>. □

We prove now that (X, iσ) is recognizable. Let (k, x, k̃, x̃) ∈ Λ. We have to show that
(k, x) = (k̃, x̃). First, we consider the case in which k = k̃. In this situation, the previous
claim implies that (0, Sx, 0, Sx̃) ∈ Λ=. We use again the claim, but with (0, Sx, 0, Sx̃), to
obtain that (0, S2x, 0, S2x̃) ∈ Λ=. By continuing in this way, we get (0, Snx, 0, Snx̃) ∈ Λ= for
any n ≥ 0. Then, (3.34) implies that xn = x̃n for all n ≥ 0. A similar argument shows that
xn = x̃n for any n ≤ 0, and so (k, x) = (k̃, x̃). We now do the case k > k̃. Another application
of the claim gives us (p1, x̃, 0, Sx) ∈ Λ> for some p1 ∈ Z. As before, we iterate this procedure
to obtain that (p2, Sx, 0, Sx̃) ∈ Λ>, (p3, Sx̃, 0, S

2x) ∈ Λ> and so on. From these relations and
(3.34) we deduce that x0 = x̃0, x̃0 = (Sx)0 = x1, x1 = (Sx)0 = (Sx̃)0 = x̃1, x̃1 = (Sx̃)0 =
(S2x)0 = x2, etc. We conclude that xn = x̃n = x0 for any n ≥ 0. Then, by compacity, the
periodic point · · ·x0.x0x0 · · · belongs to X, contrary to our aperiodicity hypothesis on X.
Thus, the case k > k̃ does not occurs. This proves that (X, iσ) is recognizable.

Using the property we just proved, we can define the factor map π : X ′ → Y as follows: if
x′ ∈ X ′, then we set π(x′) = Skτ(x) ∈ Y , where (k, x) is the unique centered iσ-factorization
of x′ in X. To show that π is indeed a factor map, we first observe that since

|τ(a)| = |iσ(a)| for all a ∈ A, (3.35)

π commutes with S. Moreover, thanks to (iii) in Remark 1.1, π is continuous. Finally, if
y ∈ Y , then by the definition of Y there exist a centered (k, x) τ -factorization of y in X.
Thus, by (3.35), (k, x) is a centered iσ factorization of x′ := Skiσ(x). Therefore, π(x

′) = y and
π is onto. Altogether, these arguments show that π is a factor map. That π(iσ(x)) = τ(x)
for every x ∈ X follows directly from the definition of π.

It is left to prove the property about the asymptotic pairs. We only prove it for left asymptotic
pairs since the other case is similar. We will use the following notation: if Z is a subshift,
then A(Z) denotes the set of centered left asymptotic pairs. To start, we observe that
(iσ(x), iσ(x

′)) ∈ A(X ′) for every (x, x̃) ∈ A(X). Let now (z, z̃) ∈ A(X ′), and (k, x) and (k̃, x̃)
be the unique centered iσ-factorizations of z and z̃ in X, respectively. We have to show that
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k = k̃ = 0 and that (x, x̃) ∈ A(X). Due to (iii) in Remark 1.1, (X, iσ) has a recognizability
constant. This and the fact that (z, z̃) is centered left asymptotic imply that (k, x) and (k̃, x̃)
have a common cut in (−∞, 0], this is, that there exist p, q ≤ 0 such that

m := −k − |iσ(x[p,0))| = −k̃ − |iσ(x̃[q,0))| ∈ (−∞, 0].

We take m as big as possible with this property. Then, xp ̸= x̃q. Moreover, being zm = xp
and z̃m = x̃p by the definition of iσ, we have that zm ̸= z̃m and consequently, by also using
that (z, z̃) is centered left asymptotic, that m ≥ 0. We conclude that m = 0, this is, that
k + |iσ(x[p,0))| = k̃ + |iσ(x̃[q,0))| = 0. Hence, k = k̃ = p = q = 0. Now, it is clear that
x(−∞,p] = x̃(−∞,q], so from the last equations we obtain that (x, x̃) ∈ A(X). This completes
the proof.

We will also need the following lemma to slightly strengthen Proposition 3.8.

Lemma 3.30 Let X ⊆ AZ be an aperiodic subshift with L asymptotic tails. Then, (X,S)
has at most 2L2 ·#A2 centered asymptotic pairs.

Proof. Let Pr be the set of centered right asymptotic pairs in X and Tr = {x(0,∞) : (x, x̃) ∈
Λ} ⊆ AN≥1 be the set of right asymptotic tails, where N≥1 = {1, 2, . . . }. We are going to
prove that

#Pr ≤ #T 2
r ·#A2. (3.36)

Once this is done, we will have by symmetry the same relation for the centered left asymptotic
pairs Pl, and thus we are going to be able to conclude that the number of centered asymptotic
pairs in X is at most (#T 2

r +#T 2
l ) ·#A2 ≤ 2L2 ·#A2, completing the proof.

Let (x, x̃) ∈ Pr and Rx = {k ≤ 0 : x(k,∞) ∈ Tr}. We claim that #Rx ≤ #Tr. Indeed, if this
is not the case, then, by the Pigeonhole principle, we can find k′ < k and w ∈ Tr such that
w = x(k,∞) = x(k′,∞). But this implies that w has period k − k′, and so X contains a point
of period k − k′, contrary to the aperiodicity hypothesis. Thus, Rx is finite and, since Rx is
nonempty as it contains x(0,∞), kx := minRx is a well-defined non-positive integer.

Let now ϕ : Pr → T 2
r ×A2 be the function defined by

ϕ(x, x̃) = (x(kx,∞), x̃(kx̃,∞), xkx , x̃kx̃)

If ϕ is injective, then (3.36) follows. Let us then prove that ϕ is injective.

We argue by contradiction and assume that there exist (x, x̃) ̸= (y, ỹ) such that ϕ(x, x̃) =
ϕ(y, ỹ) = (z, z̃, a, ã). Without loss of generality, we may assume that x ̸= y. Then,
x(kx,∞) = z = y(ky ,∞) and xkx = a = yky . Being x ̸= y, this implies that (x, y) is asymptotic.
Furthermore, it implies that there exist p < k and q < ℓ such that (Spx, Sqy) is centered
right asymptotic. In particular, x(p,∞) ∈ Tr and p < kx, contrary to the definition of kx. We
conclude that ϕ is injective and thereby complete the proof of the lemma.

Lemma 3.31 Let X ⊆ AZ be a subshift of topological rank K, J be an index set and, for
j ∈ J , let τj : A+ → B+

j be a morphism. Suppose that for every j ∈ J
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(I) Yj =
⋃

k∈Z S
kτj(X) is aperiodic;

(II) for every fixed a ∈ A, |τj(a)| is equal to a constant ℓa independent of j ∈ J .

Then, one of the following situations occur:

(1) There exist i, j ∈ J , i ̸= j, such that (Yi, S) is conjugate to (Yj, S).

(2) There exist ϕ : A+ → A+
1 with #A1 < #A, a set J1 ⊆ J having at least #J/2#A2(144K7)2−

K(144K7)K elements, and morphisms τ ′j : C+1 → Bj, j ∈ J1, such that τj = τ ′jϕ. In
particular, the hypothesis of this lemma hold for X1 :=

⋃
k∈Z S

kϕ(X) and τ ′j, j ∈ J1.

Proof. Let i : A+ → A+ be the morphism defined by i(a) = aℓa , a ∈ A, and X ′ =⋃
k∈Z S

ki(X). We use Lemma 3.29 withX and τj to obtain a factor map πj : (X
′, S)→ (Yj, S)

such that
π(i(x)) = τj(x) for every x ∈ X. (3.37)

If πj is distal for K(144K7)K + 1 different values of j ∈ J , then by Lemma 3.27 we can
find i, j such that (Yi, S) is conjugate to (Yj, S). Therefore, we can suppose that there exists
J ′ ⊆ J such that

#J ′ ≥ #J −K(144K7)K and πj is not distal for every j ∈ J ′. (3.38)

From this and Lemma 3.28 we obtain, for every j ∈ J ′, a centered asymptotic pair (x(j), x̃(j))
in X ′ such that πj(x

(j)) = πj(x̃
(j)). This and (3.37) imply that

τj(x
(j)) = πj(x

(j)) = πj(x̃
(j)) = τj(x̃

(j)). (3.39)

Now, by Lemma 3.30, X has at most 2#A2(144K7)2 centered asymptotic pairs and thus,
thanks to Lemma 3.29, the same bound holds for X ′. Therefore, by the Pigeonhole principle,
there exist J1 ⊆ J satisfying #J1 ≥ #J ′/2#A2(144K7)2 ≥ #J/2#A2(144K7)2−K(144K7)K

and a centered asymptotic pair (x, x̃) in X ′ such that (x, x̃) = (x(j), x̃(j)) for every j ∈ J1.

We assume that (x, x̃) is right asymptotic as the other case is similar. Then, equation (3.39)
implies that if ℓ =

∑
a∈A ℓa, then, for every j ∈ J1,

one of the words in {τj(x[0,ℓ)), τj(x̃[0,ℓ))} is a prefix of the other. (3.40)

This, hypothesis (II) and the fact that, since (x, x̃) a centered asymptotic pair, x0 ̸= x̃0 allow
us to use Lemma 3.10 with u := x[0,ℓ), v := x̃[0,ℓ), J := J1 and wj := τj(x[0,∞))[0,ℓ) and obtain
morphisms ϕ : A+ → A+

1 and τ ′j : A+
1 → B+

j , j ∈ J1, such that #A1 < #A, τj = τ ′jϕ and

for every a ∈ A1, ℓ
′
a := |τ ′j(c)| does not depend on the chosen j ∈ J . (3.41)

Finally, we observe that X1 and τ ′j, j ∈ J1, satisfy the hypothesis of the lemma: condition
(I) holds since, by the relation τj = τ ′jϕ, the subshift X1 :=

⋃
k∈Z S

kϕ(X) satisfies that⋃
k∈Z S

kτ ′j(X1) = Yj is aperiodic; condition (II) is given by (3.41).
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3.6.3 Proof of main result

We now prove Theorem 3.4. We restate it for convenience.

Theorem 3.4 Let (X,S) be an minimal subshift of topological rank K. Then, (X,S) has
at most (3K)32K aperiodic symbolic factors up to conjugacy.

Proof. We set R = (3K)32K . We prove the theorem by contradiction: assume that there
exist X ⊆ AZ of topological rankK and, for j ∈ {0, . . . , R}, factor maps πj : (X,S)→ (Yj, S)
such that (Yi, S) is not conjugate to (Yj, S) for every i ̸= j ∈ {0, . . . , R}. We remark that X
must be infinite as, otherwise, it would not have any aperiodic factor.

To start, we build S-representations for the subshifts X and Yj. Let σ = (σn : A+
n+1 →

A+
n )n∈N be the primitive and proper directive sequence of alphabet rank K generating X

given by Theorem 0.1. Let r ∈ N be such that every πj has a radius r and let Bj the
alphabet of Yj. By contracting σ, we can assume that σ0 is r-proper and #An = K for all
n ≥ 1. Then, we can use Lemma 3.5 to find morphisms τj : A+

1 → B+
j such that

πj(σ1(x)) = τj(x) for all x ∈ X(1)
σ and |τj(a)| = |σ0(a)| for all a ∈ A1. (3.42)

Next, we inductively define subshifts Xn ⊆ CZn and morphisms {τn,j : C+n → Bj : j ∈ Jn} such
that

(i) Xn has topological rank at most K;

(ii) Yj =
⋃

k∈Z τn,j(Xn);

(iii) for every c ∈ Cn, ℓn,a := |τn,j(c)| does not depend on the chosen j ∈ Jn.

First, we set X0 = X
(1)
σ , C0 = A1, J0 = J and, for j ∈ J0, τ0,j = τj, and note that by

the hypothesis and (3.42), they satisfy (i), (ii) and (iii). Let now n ≥ 0 and suppose that
Xn ⊆ CZn and τn,j, j ∈ Jn, has been defined in a way such that (i), (ii) and (iii) hold. If
#Jn/2#A2(144K7)2−K(144K7)K ≤ 1, then the procedure stops. Otherwise, we define step
n + 1 as follows. Thanks to (i), (ii), (iii) we can use Lemma 3.31, and since there are no
two conjugate (Yi, S), this lemma gives us a morphism ϕ : C+n → C+n+1, a set Jn+1 ⊆ Jn and
morphisms {τn+1,j : C+n+1 → B+

j : j ∈ Jn+1} such that

#Cn+1 < #Cn, #Jn+1 ≥ #Jn/2#C2n(144K7)2 −K(144K7)K and τn,j = τn+1,jϕn.

Furthermore, Xn+1 :=
⋃

k∈Z S
kϕn(Xn) and τn+1,j satisfy the hypothesis of that lemma, that

is, conditions (ii) and (iii) above. Since (ϕn . . . ϕ0σ1, σ2, σ3, . . . ) is a primitive and proper
sequence of alphabet rank K generating Xn+1, Theorem 3.1 implies that condition (i) is met
as well.

Since #C0 > #C1 > . . . , there is a last CN defined. Our next objective is to prove that
N ≥ K. Observe that #Cn ≤ K, so

#Jn+1 ≥ #Jn/2K
2(144K7)2 −K(144K7)K for any n ∈ {0, . . . , N − 1}.
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Using this recurrence and the inequalities #J0 > (3K)32K and K ≥ 2, it is routine to verify
that the following bound holds for every n ∈ {0, . . . , K−1} such that the nth step is defined:

#Jn/2#C2n(144K7)2 −K(144K7)K > 1

Therefore, N ≥ K. We conclude that #CN ≤ #C0 −K = 0, which is a contradiction.

Remark 3.5 In Theorem 1 of [Dur00], the author proved that linearly recurrent subshifts
have finitely many aperiodic symbolic factors up to conjugacy. Since this kind of systems
have finite topological rank (see Remark 3.4), Theorem 3.4 generalizes the theorem of [Dur00]
to the much larger class of minimal finite topological rank subshifts.

3.7 Appendix

To prove Proposition 3.15, we start with some lemmas concerning how to construct recog-
nizable pairs (Z, τ) for a fixed subshift Y =

⋃
k∈Z S

kτ(Z).

3.7.1 Codings of subshifts

If Y ⊆ BZ is a subshift, U ⊆ Y and y ∈ Y , we denote by RU(y) the set of return times of
y to U , this is, RU(y) = {k ∈ Z : Sky ∈ U}. We recall that the set Cτ (k, z) in the lemma
below corresponds to the cuts of (k, z) (see Definition 4.2 for further details).

Lemma 3.32 Let Y ⊆ BZ be an aperiodic subshift, with B ⊆ L(Y ). Suppose that U ⊆ Y is

(I) d-syndetic: for every y ∈ Y there exists k ∈ [0, d− 1] with Sky ∈ U ,

(II) of radius r: U is a union of sets of the form [u.v], with u, v ∈ Ar,

(III) ℓ-proper: U ⊆ [u.v] for some u, v ∈ Aℓ,

(IV) ρ-separated: U, SU, . . . , Sρ−1U are disjoint.

Then, there exist a letter-onto morphism τ : C+ → B+ and a subshift Z ⊆ CZ such that

(1) Y =
⋃

n∈Z S
nτ(Z) and C ⊆ L(Y ),

(2) (Z, τ) is recognizable with constant r + d,

(3) |τ | ≤ d, ⟨τ⟩ ≥ ρ and τ is min(ρ, ℓ)-proper,

(4) Cτ (k, z) = RU(y) for all y ∈ Y and τ -factorization (k, z) of y in Z.

Remark 3.6 If U ⊆ Y satisfies (III), then U is ρ := min per(Lℓ(Y ))-separated. Indeed, if
U ∩SkU ̸= ∅ for some k > 0, then [v]∩Sk[v] ̸= ∅, where v ∈ Aℓ is such that U ⊆ [v]. Hence,
v is k periodic and k ≥ ρ.
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Proof. Let y ∈ Y . By (I), the sets RU(y) ∩ [0,∞), RU(y) ∩ (−∞, 0] are infinite. Thus,
we can write RU(y) = {. . . k−1(y) < k0(y) < k1(y) . . . }, with min{i ∈ Z : ki(y) > 0} = 1.
Let W = {y[ki(y),ki+1(y)) : y ∈ Y, i ∈ Z} ⊆ B+. By (I), W is finite, so we can write C :=
{1, . . . ,#W} and choose a bijection ϕ : C → W . Then, ϕ extends to a morphism τ : C+ → B+.
As B ⊆ L(Y ), ϕ is letter-onto. We define ψ : Y → CZ by ψ(y) = (ϕ−1(y[ki(y),ki+1(y))))i∈Z and
set Z = ψ(Y ). We are going to prove that τ and Z satisfy (1-4).

Claim 3.7

(i) If y[−d−r,d+r] = y′[−d−r,d+r], then ψ(y)0 = ψ(y′)0,

(ii) τ(ψ(y)) = Sk0(y)y,

(iii) Sjψ(y) = ψ(Sky) for j ∈ Z and k ∈ [kj(y), kj+1(y)).

Proof. Let y, y′ ∈ Y such that y[−d−r,d+r] = y′[−d−r,d+r]. By (I), we have ki+1(y) − ki(y) ≤ d

for all i ∈ Z and, thus, |k0(y)|, |k1(y)| ≤ d. Since U has radius r and y[−d−r,d+r] = y′[−d−r,d+r],

we deduce that k0(y) = k0(y
′) and k1(y) = k0(y

′). Hence, ψ(y)0 = ϕ−1(y[k0(y),k1(y))) =
ϕ−1(y′[k0(y′),k1(y′))) = ψ(y′)0. To prove (ii) we compute:

τ(ψ(y)) = τ(· · ·ϕ−1(y[k−1(y),k0(y))).ϕ
−1(y[k0(y),k1(y))) · · · )

= · · · y[k−1(y),k0(y)).y[k0(y),k1(y)) · · · = Sk0y.

Finally, for (iii) we write, for k ∈ [kj(y), kj+1(y)),

Sjψ(y) = . . . ϕ−1(y[kj−1(y),kj(y))).ϕ
−1(y[kj(y),kj+1(y))) · · · = ψ(Sky).

□

Now we prove the desired properties of τ and Z.

(1) From (i), we see that ψ is continuous and, therefore, Z is closed. By (iii), Z is also
shift-invariant and, then, a subshift. By (ii), Y =

⋃
n∈Z S

nτ(Z). The condition C ⊆ L(Y )
follows from the definition of W and τ .

(2) We claim that the only centered τ -interpretation in Z of a point y ∈ Y is (−k0(y), ψ(y)).
Indeed, this pair is a τ -interpretation in Z by (ii), and it is centered because k0(y) ≤ 0 <
k1(y) implies −k0(y) ∈ [0, k1(y) − k0(y)) = [0, |ψ(y)0|). Let (n, z) be another centered τ -
interpretation of y in Z. By the definition of Z, there exists y′ ∈ Y with z = ψ(y′). Then,
by (ii),

Sn+k0(y′)y′ = Snτ(ψ(y′)) = Snτ(z) = y. (3.43)

Now, on one hand, we have |τ(z0)| = |τ(ψ(y′)0)| = k1(y
′)− k0(y′). On the other hand, that

(n, ψ(y′)) is centered gives that n ∈ [0, |τ(z0)|). Therefore, n + k0(y
′) ∈ (k0(y

′), k1(y
′)]. We

conclude from this, (iii) and (3.43) that ψ(y′) = ψ(y). Hence, y = Snτψ(y′) = Snτψ(y) =
Sn+k0(y)y, which implies that n = −k0(y) as Y is aperiodic. This proves that (−k0(y), ψ(y))
is the only τ -interpretation of y in Z. From this and (i) we deduce property (2).
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(3) Since U is d-syndetic, |τ(ψ(y)i)| = |y[ki(y),ki+1(y))| = ki+1(y) − ki(y) ≤ d for y ∈ Y and
i ∈ Z, so |τ | ≤ d. Similarly, we can obtain ⟨τ⟩ ≥ ρ using that U is ρ-separated. Let
u, v ∈ Bℓ satisfying U ⊆ [u.v]. Since ki, ki+1 ∈ RU(y), we have that u = y[ki(y),ki(y)+|u|),
v = y[ki+1(y)−|v|,ki+1(y)) and, thus, that τ is min(ℓ, ⟨τ⟩)-proper. In particular, it is min(ℓ, ρ)-
proper.

(4) This follows directly from the definition of τ and RU(y).

Lemma 3.33 For j ∈ {0, 1}, let σj : A+
j → B+ be a morphism and Xj ⊆ AZ

j be a subshift
such that Y :=

⋃
n∈Z S

nσj(Xj) and Aj ⊆ L(Xj) for every j ∈ {0, 1}. Suppose that:

(1) (X0, σ0) is recognizable with constant ℓ,

(2) σ1 is ℓ-proper,

(3) Cσ0(k
0, x0)(y) ⊇ Cσ1(k

1, x1)(y) for all y ∈ Y and σj-factorizations (kj, xj) of y in Xj,
j = 0, 1.

Then, there exist a letter-onto and proper morphism ν : A+
1 → A+

0 such that σ1 = σ0ν and
X0 =

⋃
k∈Z S

kν(X1).

Proof. Since σ1 is ℓ-proper, we can find u, v ∈ Bℓ such that σ1(a) starts with u and ends
with v for every a ∈ A1. We define ν as follows. Let a ∈ A1 and x ∈ X1 such that a = x0.
Since σ1 is ℓ-proper, the word v.σ1(a)u occurs in σ1(x) ∈ Y at position 0. By (3), we can
find w ∈ L(X0) with σ1(x0) = σ0(w). We set ν(a) = w. Since (X0, σ0) is recognizable
with constant ℓ and u, v have length ℓ, w uniquely determined by v.σ1(a)u and, therefore,
ν is well defined. Moreover, the recognizability implies that the first letter of ν(a) depends
only on v.u, so ν is left-proper. A symmetric argument shows that ν is right-proper and,
in conclusion, that it is proper. We also note that ν is letter-onto as A0 ⊆ L(X0). It
follows from the definition of ν that σ1 = σ0ν. Now, let x ∈ X1 and (k, x′) be a centered
σ0-factorization of σ1(x) in X0. By (3), k = 0 and σ1(xj) = σ0(x

′
[kj ,kj+1)

) for some sequence

... < k−1 < k0 < ... Hence, by the definition of ν, ν(x) = x′ ∈ X0. This argument shows that
X ′

0 :=
⋃

n∈Z S
nν(X1) ⊆ X0. Then,

⋃
n∈Z S

nσ0(X
′
0) =

⋃
n∈Z S

nσ0ν(X1) = Y , where in the last
step we used that σ0ν = σ1. Since the points in Y have exactly one σ0-factorization, we must
have X ′

0 = X0. This ends the proof.

3.7.2 Factors of S-adic sequences

Now we are ready to prove Proposition 3.15. For convenience, we repeat its statement.

Proposition 3.34 Let σ = (σn : An → An−1)n≥0 be a letter-onto, everywhere growing and
proper directive sequence. Suppose that Xσ is aperiodic. Then, there exists a contraction σ′ =
(σnk

)k∈N and a letter-onto and proper factor ϕ : σ′ → τ , where τ is letter-onto, everywhere
growing, proper, recognizable and generates Xσ.
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Proof. We start by observing that from Lemma 3.17 we can get that

An ⊆ L(X(n)
σ ) for every n ∈ N. (3.44)

Let pn = min{per(σ[0,n)(a)) : a ∈ An}. Since σ is everywhere growing and Xσ is aperiodic,
limn→∞ pn =∞. Hence, we can contract σ in a way such that, for every n ≥ 2,

(In) pn ≥ 3|σ[0,n−1)|, (IIn) σ[0,n) is 3|σ[0,n−1)|-proper,

For n ≥ 2, let Un =
⋃

u,v∈A2
n
[σ[0,n)(u.v)]. Observe that Un is |σ[0,n)|-syndetic, has radius

2|σ[0,n)|, is 3|σ[0,n−1)|-proper and, by Remark 3.6, is pn-separated. Thus, by (In), U is

3|σ[0,n−1)|-separated. We can then use Lemma 3.32 with (X
(n)
σ , σ[0,n)) to obtain a letter-onto

morphism νn : B+
n → A+

0 and a subshift Yn ⊆ BZ
n such that

(P 1
n) Xσ =

⋃
k∈Z S

kνn(Yn) and Bn ⊆ L(Yn),

(P 2
n) (Yn, νn) is recognizable with constant 3|σ[0,n)|,

(P 3
n) |νn| ≤ |σ[0,n)|, ⟨νn⟩ ≥ 3|σ[0,n−1)|, and νn is 3|σ[0,n−1)|-proper,

(P 4
n) Cνn(k, y) = RUn(x) for all x ∈ Xσ and νn-factorization (k, y) of x in Yn.

We write Cνn(x) := Cνn(k, y) if x ∈ Xσ and (k, y) is the unique νn-factorization of x in
Yn. Observe that Un+1 ⊆ Un for n ≥ 2. Thus, Cνn+1(x) = RUn+1(x) ⊆ RUn(x) = Cνn(x)
for all x ∈ Xσ. This, (P 2

n) and (P 3
n+1) allow us to use Lemma 3.33 with (Yn+1, νn+1) and

(Yn, νn) and find a letter-onto and proper morphism τn : B+
n+1 → B+

n such that νnτn = νn+1

and Yn =
⋃

k∈Z S
kτn(Yn+1).

Next, we claim that Cνn(x) ⊇ Cσ[0,n+1)
(k, z) for all x ∈ Xσ and σ[0,n+1)-factorization (k, z) of

x in X
(n+1)
σ . Indeed, if j ∈ Z, then Scσ[0,n+1),j

(k,z)
x ∈ [σ[0,n+1)(zj−1.zjzj+1)] ⊆ [σ[0,n)(a.bc)] ⊆

Un, where a is the last letter of σn(zj−1) and bc the first two letters of σn(zjzj+1), so
cσ[0,n+1),j(k, z) ∈ RUn(x) = Cνn(x), as desired.

Thanks to the claim, (P 2
n), (In+1) and (3.44), we can use Lemma 3.33 with (Yn, νn) and

(X
(n+1)
σ , σ[0,n+1)) to obtain a proper morphism ϕn : A+

n+1 → B+
n such that σ[0,n+1) = νnϕn and

Yn =
⋃

k∈Z S
kϕn(X

(n+1)
σ ).

Now we can define the morphisms τ1 := ν2 and ϕ1 := ν2ϕ2 and the sequences:

ϕ = (ϕn)n≥1, τ = (τn)n≥1 and σ′ = (σ[0,2), σ2, σ3, . . . )n≥2.

We are going to prove that ϕ, σ′, and τ are the objects that satisfy the conclusion of the
Proposition.

These sequences are letter-onto as each νn and each ϕn is letter-onto. Next, we show that ϕ
is a factor. The relation ϕ1 = τ1ϕ2 follows from the definitions. To prove the other relations,
we observe that from the commutative relations for τn and ϕn, we have that

νnϕnσn+1 = σ[0,n+1)σn+1 = σ[0,n+2) = νn+1ϕn+1 = νnτnϕn+1. (3.45)
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In particular, νnϕnσn+1(x) = νnτnϕn+1(x) for any x ∈ X(n+2)
σ . Since ϕnσn+1(x) and τnϕn+1(x)

are both elements of Yn and (Yn, νn) is recognizable, we deduce that ϕnσn+1(x) = τnϕn+1(x)

for any x ∈ X(n+2)
σ . Thus, one of the words in {ϕnσn+1(x0), τnϕn+1(x0)} is a prefix of the

other. Since An+2 ⊆ L(X(n+2)
σ ), we deduce that, for any a ∈ An+2, one of the words in

{τnϕn+1(a), νnϕnσn+1(a)} is a prefix of the other. But, by (3.45), the words νnτnϕn+1(a) and
νnϕnσn+1(a) have the same length, so ϕnσn+1(a) must be equal to τnϕn+1(a) for every n ≥ 2.
This proves that ϕnσn+1 = τnϕn+1 for every n ≥ 2 and that ϕ : σ′ → τ is a factor.

The following commutative diagram, valid for all n ≥ 2, summarizes the construction so far:

A+
n+2 A+

n+1 A+
0

B+
n+1 B+

n

σn+1

ϕn+1

σ[0,n+1)

ϕn

τn

νn+1 νn

As shown in the diagram, we have that νnτn = νn+1 for n ≥ 2. Thus, τ1τ2 · · · τn = νn+1, and
hence ⟨τ1τ2 · · · τn⟩ ≥ ⟨νn+1⟩ ≥ pn →n→∞ ∞. Therefore, τ is everywhere growing. Also, by
using Lemma 1.1 with (Yn, νn) = (Yn, τ1τ2 · · · τn−1), we deduce that (Yn, τn−1) is recognizable
for every n ≥ 2, which implies that τ is recognizable. Finally, as each τn is proper, τ is
proper.
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Chapter 4

A solution to the S-adic conjecture

A interesting intuition in symbolic dynamics of zero entropy is that a subshift of low enough
complexity should be very restricted, and thus hide a strong structure. This idea dates back
to the 70s, and matured in the 80s and 90s until it was finally established as the following
more concrete question.

Question 4.1 Consider the class (L) of linear-growth complexity subshifts, defined by re-
quiring that pX(n) ≤ dn for some d > 0. Is there an S-adic characterization of the class
(L)?

Question 4.1 is known as the S-adic conjecture.

In this chapter, we completely solve the S-adic conjecture for minimal subshifts by proving
the following theorem.

Theorem 4.1 A minimal subshift X has linear-growth complexity, i.e., X satisfies

lim sup
n→+∞

pX(n)/n < +∞,

if and only if there exist d > 0 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 generating

X such that, for every n ≥ 0, the following holds:

(P1) #(rootσ[0,n)(An)) ≤ d †.

(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

(P3) |σn−1(a)| ≤ d for every a ∈ An.

We are able to give a similar structure for nonsuperlinear complexity subshifts (NSL).

†For a word u, rootu denotes the shortest prefix v of u such that u = vk for some k; for a set of words
W, rootW = {rootw : w ∈ W}.
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Theorem 4.2 A minimal subshift X has nonsuperlinear-growth complexity, i.e., X satisfies

lim inf
n→+∞

pX(n)/n < +∞,

if and only if there exist d > 0 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 generating

X such that, for every n ≥ 0, the following holds:

(P1) #(rootσ[0,n)(An)) ≤ d.

(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

We show in Section 4.10 how these theorems provide a unified framework and simplified
proofs of several known results on (L) and (NSL), including Cassaigne’s Theorem [Cas95].
We also prove, in Theorem 4.77, that Condition (P1) in Theorems 4.1 and 4.2 cannot be
improved to a uniform bound on the cardinalities of the alphabets.

This chapter was published as a standalone article in [Esp22b].

Strategy of the proof

The hard part of the proofs of Theorems 4.1 and 4.2 is constructing an S-adic sequence
satisfying properties (Pi) from the complexity hypothesis. We detail here the strategy for
doing so in the case of Theorem 4.1; the proof of Theorem 4.2 is similar.

It is convenient to introduce the following terminology: a coding of a subshift X ⊆ AZ

is a pair (Z, σ), where Z ⊆ CZ is a subshift and σ : C → A+ a substitution such that
X =

⋃
k∈Z S

kσ(Z). It is a standard fact that if τ is an S-adic sequence then there are

subshifts X
(n)
τ , with X

(0)
τ = X, such that (X

(m)
τ , τ[n,m)) is a coding of X

(n)
τ for any n < m,

where τ[n,m) = τnτn+1 . . . τm−1.

Let X be a linear-growth complexity subshift and d = supn≥1 pX(n)/n. The typical method
for building an S-adic sequence for a subshift X is an inductive process: First, X0 := X;
then, a coding (Xi+1, σi+1) of Xi is defined. In this way, σ := (σn)n≥0 is an S-adic sequence
that, under mild conditions, generates X. We, instead, take a more direct approach, similar
to that in [DDMP21, Theorem 4.3] and [Esp22a, Corollary 1.4], but with additional technical
details. We consider an increasing sequence of positive integers (ℓn)n≥0 with adequate growth
and build codings (Xn ⊆ CZn , σn : Cn → A+) of X ⊆ AZ satisfying (P1),

1
d′
ℓn ≤ |σ(a)| ≤ d′ℓn

for all letters a and with d′ depending on d, and such that certain technical properties hold.
These technical properties allow us to define connecting substitutions τn : Cn+1 → C+n in such
a way that σnτn(x) is, up to a shift, equal to σn+1(x), for all x ∈ Xn+1. Then, we can prove
that τ = (σ0, τ0, τ1, τ2, . . . ) generates X and satisfies all the properties in Theorem 4.1.

The main idea for constructing the codings (Xn, σn) is that, thanks to a modification of
the technique from [Fer96, Proposition 5], we can build a coding (X ′

n, σ
′
n) of X (which is

described in Proposition 4.28) in such a way that the words σ′(a) are either strongly aperiodic
or strongly periodic. The aperiodic words greatly contribute to the complexity, so we can
efficiently control them using d. For controlling the periodic words, we rely on tricks from
combinatorics on words. These two ideas are used to obtain, in Sections 4.6 to 4.7, two
variations of (X ′

n, σ
′
n), with increasingly better properties, and where the last one is (Xn, σn).
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Organization

The chapter has three parts. The first one consists of Sections 4.1, 4.2 and 4.3 and provide
the necessary background and some lemmas for handling periodic words. Then, in Sections
4.4 to 4.8, we carry out the proofs of Theorems 4.1 and 4.2. Finally, we prove Theorem 4.77
and present applications of our main results in Sections 4.9 and 4.10.

4.1 Preliminaries

The word w ∈ A+ is |u|-periodic, with u ∈ A+, if w occurs in un for some n ≥ 1. We denote
by per(w) the least p for which w is p-periodic.

In order to describe more precisely the periodicity properties of w, we use the notion of root,
which will play a key role throughout the chapter.

Definition 4.1 The minimal root, or just root for short, of w ∈ A∗ is the shortest prefix u
of w for which w = uk for some k ≥ 1, and it is denoted by rootw.

We remark that per(w) is an integer but that rootw is a word, and that per(w) is in general
different from | rootw|.

Let X ⊆ AZ be a subshift and v ∈ A+. We will use the notation v∞ = vvv · · · ∈ AN and
bZ = . . . vv.vv · · · ∈ AZ. We denote by PowX(v) the set of words vk, where k ≥ 1, for which
there exist u,w ∈ A+ \ {v} of length |v| such that uvkw ∈ L(X). The power complexity
of X is the number pow-com(X) = supv∈A+ #PowX(v). Remark that pow-com(X) may
be infinite. Examples with finite power complexity include linearly recurrent subshifts and
subshifts in which the extension graph of every long enough word is acyclic (in particular,
Sturmian subshifts and codings of minimal interval exchange transformations).

4.1.1 Morphisms and codings

We say that τ is positive if for every a ∈ A, all letters b ∈ B occur in τ(a), that τ is proper if
there exist letters a, b ∈ B such that τ(c) starts with a and ends with b for any c ∈ A, and
that τ is injective on letters if for all a, b ∈ B, τ(a) = τ(b) implies a = b.

Factorizations and recognizability

We now introduce factorizations, the recognizability property and the associated notation.

Definition 4.2 Let Y ⊆ BZ be a subshift and τ : B+ → A+ be a morphism. We say that
(k, y) ∈ Z× Y is a τ -factorization of x ∈ AZ in Y if x = Skτ(y) and 0 ≤ k < |τ(y0)|.

The pair (Y, τ) is recognizable if every point x ∈ AZ has at most one τ -factorization in Y . We
say that (Y, τ) is d-recognizable, with d ≥ 1, if whenever (k, y) and (k̃, ỹ) are τ -factorizations
of x, x̃ ∈ AZ in Y , respectively, and x[−d,d) = x̃[−d,d), we have that k = k̃ and y0 = ỹ0.
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The cut function c : Z→ Z of the τ -factorization (k, y) of x in Y is defined by

cj =

{
−k + |τ(y[0,j))| if j ≥ 0,

−k − |τ(y[j,0))| if j < 0.
(4.1)

When (Y, τ) is recognizable, we write (c, y) = F(Y,τ)(x) and (c0, y0) = F0
(Y,τ)(x).

Remark 4.1 In the context of the previous definition:

(1) If (Y, τ) is recognizable, then a compacity argument shows that it is d-recognizable for
some d ≥ 1.

(2) Suppose that (Y, τ) is recognizable. Let x ∈ X, (c, y) = F(Y,τ)(x) and i ∈ Z. Then,
there exists a unique j ∈ Z such that i ∈ [cj, cj+1). Note that the last condition is
equivalent to F0

(Y,τ)(S
ix) = (cj − i, yj).

Lemma 4.3 Let σ : C → B+ and τ : B → C+ be morphisms and Z ⊆ CZ be a subshift. We set
Y =

⋃
k∈Z S

kσ(Z) and X =
⋃

k∈Z S
kτ(Y ). Suppose that (Z, τσ) is recognizable. Let x ∈ X,

(k, Y ) be a τ -factorization of x in Y and (ℓ, z) be a τσ-factorization of x in Z. Then, there
exists m ∈ [0, |σ(z0)|) such that y = Smσ(z) and k = |σ(z[−m,0))|+ ℓ.

Proof. Being (ℓ, z) a τσ-factorization of x, we have that ℓ ∈ [0, |τ(σ(z0))|). Hence, there
exists m ∈ [0, |σ(z0)|) such that

|σ(z)[0,m)| ≤ ℓ < |σ(z)[0,m]|. (4.2)

Therefore, as (ℓ, z) is a τσ-factorization of x, we can write

Sℓ−|τ(σ(z)[0,m))|τ(Smσ(z)) = Sℓτσ(z) = x.

This and (4.2) ensure that (ℓ − |τ(σ(z)[0,m))|, Smσ(z)) is a τ -factorization of x in Y . We
conclude, using that (Y, τ) is recognizable by Lemma 1.1, that ℓ − |τ(σ(z)[0,m))| = k and
Smσ(z) = y.

Codings of a subshift

We fix a subshift X ⊆ AZ. A coding of X is a pair (Y, τ), where Y ⊆ BZ is a subshift
and τ : B+ → A+ a morphism satisfying X =

⋃
k∈Z S

kτ(Y ). We present in Proposition 4.4 a
general method for building recognizable codings of a subshift X. This idea occurs commonly
in the literature under several different names and with different degrees of generality. Our
Proposition 4.4 is inspired by the coding based on return words from [Dur98].

Let U ⊆ X be a clopen (i.e., open and closed) set. We say that U is

(1) ℓ-syndetic if for all x ∈ X there exists k ∈ [0, ℓ) such that Skx ∈ U ;

(2) of radius r if U is an union of sets of the form {x ∈ X : x[−|u|,|v|) = uv}, where u, v ∈ Ar.
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Remark that, in a minimal X, any nonempty clopen set U is ℓ-syndetic and of radius r for
some ℓ and r.

Proposition 4.4 Let U ⊆ X be a nonempty clopen set. There exists a recognizable coding
(Y ⊆ BZ, σ : B → A+) of X, with σ injective on letters, such that if x ∈ X, (c, y) = F(Y,σ)(x)
and i ∈ Z, then Six ∈ U if and only if i = cj for some j ∈ Z.

If U is ℓ-syndetic and of radius r, then (Y, σ) additionally satisfies that:

(1) |σ(a)| ≤ ℓ for all a ∈ B.

(2) (Y, σ) is (ℓ+ r)-recognizable.

4.1.2 The complexity function

The complexity function pX : Z≥1 → Z≥1 of a subshift X is defined by pX(n) = #L(X)∩An.
Equivalently, pX(n) counts the number of words of length n that occur in at least one x ∈ X.

Definition 4.3 We say that X has

(1) linear-growth complexity if there exists d > 0 such that pX(n) ≤ dn for all n ≥ 1;

(2) nonsuperlinear-growth complexity if there exists d > 0 such that pX(n) ≤ dn for in-
finitely many n ≥ 1.

Remark 4.2 When X is infinite, then a classic theorem of Morse and Hedlund [MH38]
ensures that pX(n) ≥ n + 1 for all n ≥ 0. Thus, an infinite subshift of linear-growth
complexity satisfies n ≤ pX(n) ≤ dn, and so pX grows linearly.

The following theorem is classic.

Theorem 4.5 ([Cas95]) Let X be a transitive linear-growth complexity subshift. Then,
pX(n+ 1)− pX(n) is uniformly bounded.

For the proof of Theorems 4.75 and 4.76 in Section 4.8, we will need only the following two
weaker versions of Cassaigne’s Theorem.

Lemma 4.6 Let X be a subshift and d ≥ 1 be such that pX(n) ≤ dn for all n ≥ 1. Then,
for every n ≥ 1 there exists m ∈ [n, 2n) such that pX(m+ 1)− pX(m) ≤ 2d.

Proof. Let n ≥ 1. We observe that the average of pX(m + 1) − pX(m) for m ∈ [n, 2n) can
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be bounded as follows by using that pX(2n) ≤ 2dn:

1

n

2n−1∑
m=n

pX(m+ 1)− pX(m) =
1

n
(pX(2n)− p(n)) ≤ 2d.

Thus, there exists m ∈ [n, 2n) satisfying pX(m+ 1)− pX(m) ≤ 2d.

Lemma 4.7 Let X ⊆ AZ be a subshift and d ≥ 1 be such that pX(n) ≤ dn for infinitely many
n ≥ 1. Then, there are infinitely many m such that pX(m) ≤ 3dm and pX(m+1)−pX(m) ≤
2d.

Proof. Let n ≥ 1 be arbitrary. The hypothesis permits to find k ≥ 2n such that pX(k) ≤ dk.
We now observe that

1

⌈k/2⌉

k∑
m=⌊k/2⌋

pX(m+ 1)− pX(m) ≤ 1

⌈k/2⌉
pX(k) ≤ 2d.

Therefore, there exists m such that ⌊k/2⌋ ≤ m ≤ k and pX(m+ 1)− pX(m) ≤ 2d. The first
condition ensures that m ≥ n and pX(m) ≤ pX(k) ≤ dk ≤ 3dm.

4.2 Some combinatorial lemmas

In order to prove our main results, we will need to extensively deal with strongly periodic
words. The objective of this section is to give the necessary tools for doing so.

A basic result on periodicity of words is the Fine and Wilf Theorem, which we state below.

Theorem 4.8 Let u, v, w ∈ A+ and suppose that w is a prefix of u∞ and v∞. If |w| ≥
|u|+ |v| − 1, then there exists t ∈ A+ such that u and v are powers of t.

A proof of Theorem 4.8 can be found in [RS97, Chapter 6, Theorem 6.1].

Lemma 4.9 Let u be a word such that |u| ≥ 2| rootu|. Then, | rootu| = per(u).

Proof. Note that u is a prefix of (rootu)Z and thus that per(u) ≤ | rootu|. It is left to prove
the other inequality.

Let t be the prefix of u of length per(u). Then u is a prefix of both t∞ and (rootu)∞. We
deduce, as |u| ≥ 2 per(u) ≥ |t| + | rootu|, that the hypothesis of Lemma 4.8 is complied.
Hence, t and rootu are powers of a common word r. In particular, u is a power of r, so we
must have that rootu = r. Therefore, | rootu| = |r| ≤ |t| = per(u).

Remark 4.3 The previous lemma ensures that if u is a word and k ≥ 1, then rootuk = rootu.
In particular, if u and v are powers of a common word, then they have the same root. These
basic relations will be freely used throughout the chapter.

71



The next proposition will allow us to synchronize occurrences of strongly periodic words.

Proposition 4.10 Let t, s ∈ A+.

(1) Suppose that ℓ ≥ |s|+ |t|−1 and i, j ∈ Z are such that tZ[i,i+ℓ) = sZ[j,j+ℓ) Then, S
it = Sjs.

(2) An integer i satisfies SitZ = tZ if and only if i = 0 (mod | root t|).

Proof. We first prove Item (1). Let t0 = tZ[i,i+|t|), s0 = sZ[j,j+|s|) and w = tZ[i,i+ℓ) = sZ[j,j+ℓ).

Then, w is a prefix of both t∞0 and s∞0 . Since |w| = ℓ ≥ |s|+ |t| − 1 = |s0|+ |t0| − 1, we can
use Theorem 4.8 to deduce that s0 and t0 are powers of a common word r. We then have
SisZ = sZ0 = rZ = tZ0 = SjtZ.

We now prove Item (2). It is clear that if i = 0 (mod | root t|) then SitZ = tZ. Let us
suppose that SitZ = tZ. We argue by contradiction and assume that i ̸= 0 (mod | root t|).
We write root t = ss′, where |s| = i (mod | root t|). Then, (s′s)Z = SitZ = tZ = (ss′)Z,
so Theorem 4.8 implies that s′s and ss′ are powers of a common word r. In particular,
root(s′s) = root(ss′) = root r. This implies that

| root(s′s)| = | root(ss′)| = | root root t| = | root t| = |ss′| = |s′s|,

so root(s′s) = s′s. Hence, s′s = ss′. Now, since i ̸= 0 (mod | root t|), s and s′ are not the
empty word. This and the condition s′s = ss′ imply that s′s is a prefix of s∞ and of s′∞.
We can then use Theorem 4.8 to deduce that s and s′ are powers of a common word r′.
Therefore, as root = ss′, ss′ = root t = root s = root s′. This is possible only if s = 1 or
s′ = 1. Consequently, |s| ∈ {0, | root t|} and i = |s| = 0 (mod | root t|), contradicting our
assumptions.

The rest of the section is devoted to prove Propositions 4.12 and 4.13. These results describe
situations in which information about the global period of a word can be retrieved from
small subwords of it. We remark that Propositions 4.12 and 4.13 can be obtained as a direct
consequence of the Critical Factorization Theorem, a fundamental result in combinatorics
on words; here we give proofs that depend only on Theorem 4.8 in order to maintain our
presentation as self-contained as possible.

Lemma 4.11 Let u, v, w, s and t be words in A.

(1) Suppose that uv occurs in t∞ and that vw occurs in s∞. If, |v| ≥ |t|+ |s|− 1, then uvw
occurs both in t∞ and in s∞.

(2) Suppose that uv is a prefix of t∞ and that vw is a suffix of t∞. If |v| ≥ 2|t|, then uvw
is a power of root t.

(3) If |v| ≥ per(uv) + per(vw), then per(uvw) = per(uv) = per(vw).

Proof. Assume that the hypothesis of Item (1) holds. Then, uv = tZ[i,i+|uv|) and vw =

sZ[j,j+|vw|) for some i, j ∈ Z. Hence, tZ[i+|u|,i+|uv|) = sZ[j,j+|v|). This and the inequality |v| ≥
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|t| + |s| − 1 allows us to use Item ((1)) in Proposition 4.10 to get that Si+|u|tZ = SjsZ. We
conclude that

uvw = tZ[i,i+|uv|)s
Z
[j+|v|,j+|vw|) = tZ[i,i+|uv|)t

Z
[i+|u|+|v|,i+|u|+|vw|) = tZ[i,i+|uvw|),

and that uvw occurs in t∞. Similarly, uvw occurs in s∞.

We now assume that the hypothesis of Item (2) holds. Let t0 = root t Then, uv = (tZ0 )[0,|uv|)
and vw = (tZ0 )[−|vw|,0). This implies that (tZ0 )[|u|,|uv|) = (tZ0 )[−|vw|,−|w|), and then, since |v| ≥
2|t| ≥ 2|t0|, Item ((1)) in Proposition 4.10 ensures that

S|u|tZ0 = S−|vw|tZ0 and uvw = (tZ0 )[0,|uvw|). (4.3)

Now, from the first equation in (4.3) and Item ((2)) in Proposition 4.10 we get that |u| =
−|vw| (mod |t0|), that is, |uvw| = 0 (mod |t0|). This and the second equation in (4.3) give
that uvw = (tZ0 )[0,|uvw|) is a power of t0 = root t.

We finally prove Item (3). Clearly, per(uv) ≤ per(uvw) and per(vw) ≤ per(uvw). Let t0 be
the prefix of uv of length per(uv) and s0 be the prefix of vw of length per(vw). Then, uv
occurs in t0 and vw occurs in s0. This and the inequality |v| ≥ |u| + |v| ≥ |t0| + |s0| allow
us to use Item (1) of this lemma to deduce that uvw occurs in tZ0 and sZ0 . We deduce that
per(uvw) ≤ |t0| = per(uv) and per(uvw) ≤ |s0| = per(vw). Therefore, per(uvw) = per(uv) =
per(vw).

Proposition 4.12 Let V ⊆ A+ and u ∈ A+ be such that |u| ≥ 2|V|. Suppose that for any
subword v of u with length |v| = 2|V| there exists wv ∈ V such that v occurs in wZ

v . Then,
for any such word v, u occurs in wZ

v . In particular, per(u) ≤ |V|.

Proof. The case |u| = 2|V| follows directly from the hypothesis. Suppose the lemma is true
for words u′ of length 2|V| ≤ |u′| < |u|. Let v be a subword of u with length |v| = 2|V|. We
have to prove that w occurs in wZ

v . Let us write u = au′ = u′′b for certain letters a, b and
words u′, u′′. There is no loss of generality in assuming that v occurs in u′. Since |u| > 2|V|,
we can take a subword v′ of u′′ with length |v′| = 2|V|. Then, the inductive hypothesis can
be used to deduce that u′ occurs in wZ

v and that u′′ occurs in wZ
v′ . Now, u′ and u′′ have a

common subword of length |u| − 2 ≥ 2|W| − 1 ≥ |wv| + |wv′ | − 1. Therefore, Item ((1)) of
Lemma 4.11 can be applied and we deduce that w occurs in wZ

v . This proves the inductive
step and thereby the proposition.

Proposition 4.13 Let u be a word.

(1) If t is a word occurring in u and |t| ≥ 2 per(u), then per(t) = per(u).

(2) Let k ≥ 1. If |u| ≥ 2k and per(u) > k, then there exists t occurring in u with |t| = 2k
and per(t) > k.

Proof. We start with Item (1). Note that per(t) ≤ per(u), so we only have to prove the other
inequality. Let s (resp. s′) be the prefix of t of length per(t) (resp. per(u)). Then, t occurs
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in sZ and s′Z. Being |t| ≥ 2 per(u) ≥ |s| + |s′|, we can use Item ((1)) in Proposition 4.10 to
deduce that sZ = Sℓs′Z for some ℓ ∈ Z. This implies, as u occurs in s′Z, that u occurs in sZ.
In particular, per(u) ≤ |s| = per(t).

Next, we prove Item (2) by contradiction. Assume that k ≥ 1 and u are such that |u| ≥ 2k
and per(u) > k, but that for all word t occurring in u of length |t| = 2k we have that
per(t) ≤ k. We define, for all such t, st as the prefix of t of length per(t), and note that t
occurs in sZt and that |st| ≤ k. Therefore, the set V consisting of the words st and the word
u comply with the hypothesis of Proposition 4.12. We conclude that per(u) ≤ |V| ≤ k.

4.3 The classic coding based on special words

The notion of right-special word is an important concept for studying linear-growth complex-
ity subshifts. In this section, we present basic results on right-special words and the coding
associated to them. Most of these ideas are common to many works on the S-adic conjecture
and related problems. One of the new ingredients of our work is Proposition 4.16.

Definition 4.4 Let X be a subshift. A word w ∈ L(X) is called right-special if there exist
two different letters a and b such that wa,wb ∈ L(X). We denote by RSn(X) the set of all
right special words of X having length n.

Remark 4.4 We can also define left-special words, which together with right-special words
form the set of special words of X. In our work, we will only use right-special words.

The next proposition summarizes the facts about RSn(X) and its relation to the complexity
of X that are important for us. A return word to a clopen set U is an element w ∈ A+ such
that there exists x ∈ X satisfying Skx ∈ U if k ∈ {0, |w|} and Skx ̸∈ U if k ∈ (0, |w|).

Proposition 4.14 Let X ⊆ AZ be an aperiodic subshift and U the clopen set U = {x ∈ X :
x[0,n) ∈ RSn(X)}.

(1) We have the following bounds on the number of right-special words:

1

#A
(pX(n+ 1)− pX(n)) ≤ #RSn(X) ≤ pX(n+ 1)− pX(n).

(2) The set U is (pX(n) + n)-recurrent in X.

(3) The number of return words to U is at most #A ·#RSn(X).

Proof. A proof of Items (1), (2) and (3) can be found, with a different notation, in [LR13].

We can combine Propositions 4.14 and 4.4 to obtain the following proposition.
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Proposition 4.15 Suppose that X ⊆ AZ is an aperiodic subshift and let d be the maximum
of ⌈pX(n)/n⌉, pX(n+1)−pX(n) and #A. Let (Z ⊆ CZ, τ : C+ → A+) be the coding obtained
from Proposition 4.4 with U = {x ∈ X : x[0,n) ∈ RSn(X)}. Then:

(1) #C ≤ d3.

(2) |τ(a)| ≤ (d+ 1)n for all a ∈ C.

(3) (Z, τ) is (d+ 2)n-recognizable.

(4) If x ∈ X, (c, z) = F(Z,τ)(x) and i ∈ Z, then i = cj for some j ∈ Z if and only if
x[i,i+n) ∈ RS(X).

Proposition 4.15 is the starting point of other works on the S-adic conjecture; see for example
[Fer96; Ler12].

Proposition 4.16 Let (Z, τ) be the coding in Proposition 4.15. Let x ∈ X and (c, z) =
F(Z,τ)(x) and suppose that i, j ∈ Z satisfy i+d < j and ℓ := max{|τ(zk)| : k ∈ [i, j)} ≤ n/6d.
Then, per(x[ci−n/3,cj−d)) ≤ dℓ.

Proof. We start by noticing that, since x[cm−n,cm) ∈ RSn(X) for all m ∈ Z and since
#RSn(X) ≤ d, we can use the Pigeonhole principle to obtain, for each k ∈ [i, j− d), integers
pk, qk ∈ [k, k + d) such that pk < qk and x[cpk−n,cpk )

= x[cqk−n,cqk )
. These conditions imply

that per(x[cpk−n,cqk )
) ≤ cqk − cpk ≤ dℓ. Therefore, as cpk − n ≤ ck + dℓ − n ≤ ck − 2n/3 and

cqk ≥ ck+1,
x[ck−2n/3,ck+1) for all k ∈ [i, j − d). (4.4)

We will use (4.4) to prove the lemma by contradiction. Assume that per(x[ci−n/3,cj−d)) >
dℓ. Then, by Item ((2)) in Lemma 4.13, there exists m ∈ [ci − n/3 + 2dℓ, cj−d) such that
per(x[m−2dℓ,m)) > dℓ. Now, the condition m ∈ [ci − n/3 + 2dℓ, cj−d) allows us to find k ∈
[i, j−d) such thatm ∈ [ck−n/3, ck+1). Hence, as 2dℓ ≤ n/3, x[m−2dℓ,m) occurs in x[ck−2n/3,ck+1),
which yields per(x[ck−n/3,ck+1)) ≥ per(x[m−2dℓ,m)) > ε. This contradicts (4.4) and completes
the proof.

4.4 The first coding

In this section, we begin the proof of the main results: Theorems 4.75 and 4.76. We start by
constructing the codings described in Proposition 4.17. Then, in Sections 4.5, 4.6, and 4.7,
we will modify these codings to obtain new versions of them, each with better properties than
the previous one. We will show in Subsection 4.7.2 that the final codings can be connected
with morphisms, and we will use this fact in Section 4.8 to complete the proof of the main
results.

Proposition 4.17 Let X be a minimal infinite subshift, n ≥ 1 and let d be the maximum of
⌈pX(n)/n⌉, pX(n+1)−pX(n), #A and 104. Then, there exist a coding (Z ⊆ CZ, τ : C → A+)
of X and ε ∈ [n/d2d

3+4, n/d) satisfying the following conditions:

75



(1) C has at most d3 elements.

(2) |τ(a)| ≤ 3dn for all a ∈ C.

(3) (Z, τ) is 3dn-recognizable.

(4) The periodicity properties in Proposition 4.18 are satisfied.

Proposition 4.18 Consider the coding described in Proposition 4.38. Let z ∈ Z, x = τ(z)
and (c, z) = F(Z,τ)(x). We define Qp(z) as the set of integers j ∈ Z such that | root τ(zj)| ≤ ε
and x[cj−99ε,cj+1+99ε) = (root τ(zj))

Z
[−99ε,|τ(zj)|+99ε).

(1) 0 ̸∈ Qp(z) and |τ(z0)| > 401ε implies that per(x[c0+97ε,c1−97ε)) > ε.

(2) Suppose that 0 ̸∈ Qp(z) and |τ(z0)| ≤ 401ε. If −1 ∈ Qp(z) or 1 ∈ Qp(x), then
per(x[c0+97ε,c1−97ε)) > ε.

(3) If k > d and |τ(zj)| ≤ 401ε for all j ∈ [0, k), then [0, k) ⊆ Qp(z).

(4) Let z′ ∈ Z and assume that 0 ∈ Qp(z), 0 ∈ Qp(z
′) and that root τ(z0) is conjugate to

root τ(z′0). Then root τ(z0) = root τ(z′0).

We fix, for the rest of the section, the following notation. Let X ⊆ AZ be a minimal infinite
subshift, n ≥ 0 and d be the maximum of pX(n)/n, pX(n + 1) − pX(n), #A and 104. We
denote by (Y ⊆ BZ, σ : B → A+) the coding given by Proposition 4.15 when it is used with
X and n.

4.4.1 Construction of the first coding

Lemma 4.19 Let W be a finite set of words. Then, there exists ε ∈ [|W|/d2#W+4, |W|/d)
such that for all w ∈ W, either |w| > 104ε or |w| ≤ ε/d.

Proof. Let d0 = 104d and, for ℓ ∈ [1,#W + 1], Wℓ = {w ∈ W : |W|/dℓ+1
0 < |w| ≤

|W|/dℓ0}. The Pigeonhole principle ensures that Wℓ is empty for some ℓ ∈ [1,#W + 1].
We set ε = ⌊d|W|/dℓ+1

0 ⌋ and note that for any w ∈ W , either w ∈ ∪ℓ′<ℓWℓ′ and |w| >
104ε, or w ∈ ∪ℓ′>ℓWℓ′ and |w| ≤ ε/d. Also, since ℓ ∈ [1,#W + 1], we have that ε ∈
[|W|/d2#W+4, |W|/d).

We use Lemma 4.19 with the set σ(B) to obtain ε ∈ [n/d2#W+4, n/d) such that

for all a ∈ B, either |σ(a)| > 104ε or |σ(a)| ≤ ε/d. (4.5)

Note that ε ∈ [n/d2d
3+4, n/d) as d3 ≥ #σ(B) by Item ((1)) in Proposition 4.15.

We now define a setWε ⊆ A+ that will be important for controlling the periodicity properties
in Proposition 4.17. We start by introducing classic notions related to periodicity of words.
Recall that two words u, v ∈ A+ are conjugate if ur = rv for some r ∈ A∗. The relation
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u ∼R v iff u and v are conjugate is an equivalence relation, and a ∼R-equivalence class is
called a rotation class. A word u ∈ A+ is primitive if u = rootu ‡. We fix a set Wε ⊆ A+

consisting of one element of the rotation class of each primitive word w ∈ A+ such that
|w| ≤ ε.

Lemma 4.20 Let t ∈ A+ be such that per(t) ≤ ε and |t| ≥ 198ε + per(t). Then, for some
s ∈ Wε, s

Z
[−99ε,99ε) occurs in t.

Proof. Let u be the prefix of t of length per(t). Note that u is primitive as otherwise
per(t) ≤ | rootu| < |u| = per(t), which is a contradiction. The primitiveness of u and the
inequality |u| = per(t) ≤ ε imply that there exist s ∈ Wε and a suffix u′ of s such that
|s| = |u| and u′s is a prefix of uu. Being per(t) = |u| = |s|, we then have that

t is a prefix of u′s∞. (4.6)

We set k =
⌈
99ε−|u′|

|s|

⌉
. Observe that, since |s| ≤ ε.

|u′sk| = |u′|+ k|s| ≤ per(t) +

⌈
99ε

ε

⌉
ε = 99ε+ per(t).

Hence, |u′sk| + 99ε ≤ |t|. From this and Equation (4.6) we deduce that if v is the prefix of
s∞ of length 99ε, then u′skv is a prefix of t. Now, we have the bound

|u′sk| = |u′|+
⌈
99ε− |u′|
|s|

⌉
|s| ≥ 99ε.

Hence, sZ[−99ε,99ε) is a suffix of u′skv. We conclude that sZ[−99ε,99ε) occurs in t.

Lemma 4.21 Let w be a word of length n. Then, there exists a decomposition w = vuu′v′

satisfying one of the following sets of conditions.

(a) |u| = |u′| = 99ε, |v|, |v′| ≥ n/2− 500ε, and uu′ = sZ[−99ε,99ε) for some s ∈ Wε.

(b) |u| = |u′| = 500ε, |v| = ⌊n/2 − 500ε⌋, |v′| ≥ n/2 − 500ε, and sZ[−99ε,99ε) does not occur
in uu′ for all s ∈ Wε.

Proof. Since |w| ≥ 2 · 500ε, there is a decomposition w = v0tv
′
0, where |v0| = ⌊n/2− 500ε⌋,

|v′0| ≥ n/2− 500ε and |t| = 2 · 500ε. There are two cases:

(i) sZ[−99ε,99ε) occurs in t for some s ∈ Wε.

(ii) sZ[−99ε,99ε) does not occur in t for all s ∈ Wε.

Suppose first that case (i) occurs. It is then possible to write t = v1uu
′v′1, where uu

′ =
sZ[−99ε,99ε) and |u| = |u′| = 99ε. We set v = v0v1 and v′ = v′1v

′
0 and note that w = vuu′v′

satisfies Condition (a).

‡We recall the reader that rootu is the shortest prefix v of u such that u = vk for some k ≥ 1
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We now assume that (ii) holds. Being the length of t equal to 2 ·500ε, we can write w0 = uu′,
where |u| = |u′| = 500ε. Then, the decomposition w = v0uuv

′
0 satisfies Condition (b).

We now can define (Z, τ).

Definition 4.5 For w ∈ RSn(X), we use Lemma 4.21 to fix a decomposition w = vwuwu
′
wv

′
w

satisfying one of the following conditions:

(Pa) |uw| = |u′w| = 99ε, |vw|, |v′w| ≥ n/2− 500ε, and uwu
′
w = sZ[−99ε,99ε) for some s ∈ Wε.

(Pb) |uw| = |u′w| = 500ε, |vw| = ⌊n/2 − 500ε⌋, |v′w| ≥ n/2 − 500ε, and sZ[−99ε,99ε) does not
occur in uwu

′
w for all s ∈ Wε.

Moreover, we choose this decomposition so that |vwuw| is as small as possible. We define
(Z ⊆ CZ, τ : C → A+) as the coding of X obtained from Proposition 4.4 and the clopen set
U = {x ∈ X : ∃w ∈ RSn(X), x[−|vwuw|,|u′

wv′w|) = w}.

4.4.2 Basic properties of the first coding

Lemma 4.22 Let x ∈ X and i, j ∈ Z with i < j. Suppose that x[i−|vwuw|,i+|u′
wv′w|) = w and

x[j−|vw̃uw̃|,j+|u′
w̃v′w̃|) = w̃ for some w, w̃ ∈ RSn(X). Then, i+ |u′wv′w| < j + |u′w̃v′w̃|.

Proof. We assume, with the aim of obtaining a contradiction, that i+ |u′wv′w| ≥ j + |u′w̃v′w̃|.

First, we consider the case i+ |u′wv′w| = j + |u′w̃v′w̃|. Then,

w = x[i+|u′
wv′w|−n,i+|u′

wv′w|) = x[j+|u′
w̃v′w̃|−n,j+|u′

w̃v′w̃|) = w̃.

Hence, u′wv
′
w = u′w̃v

′
w̃, and therefore

i = (i+ |u′wv′w|)− |u′wv′w| = (j + |u′w̃v′w̃|)− |u′w̃v′w̃| = j.

This contradicts that i < j.

Next, we assume that
i+ |u′wv′w| > j + |u′w̃v′w̃|. (4.7)

Note that this is equivalent to i− |vwuw| > j − |vw̃uw̃|. This fact will be freely used through
the proof.

We consider the following two cases:

(i) i+ |u′w| < j + |u′w̃|.

(ii) i+ |u′w| ≥ j + |u′w̃|.

Suppose first that case (i) occurs. We are going to define a decomposition w̃ = vuu′v′ as the
one in Definition 4.5 and such that |vuw| < |vw̃uw̃|. This would contradict the minimality of
|vw̃uw̃|.
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We start by noting that, thanks to (4.7), if we set v = x[j−|vw̃uw̃|,i−|uw|) and v
′ = x[i+|u′

w|,j+|u′
w̃v′w̃|),

then w̃ = vuwu
′
wv

′. Note that from (4.7) we have that

|v| = |x[j−|vw̃uw̃|,i−|vwuw|)|+ |vw| ≥ n/2− 500ε.

Also, (i) implies that

|v′| = |x[i+|u′
w|,j+|u′

w̃v′w̃|)| ≥ |x[j+|u′
w̃|,j+|u′

w̃v′w̃|)| = |v′w̃| ≥ n/2− 500ε.

We conclude, as w = vwuwu
′
wv

′
w satisfies Condition (Pa) or (Pb) in Definition 4.5, that

w = vuwu
′
wv

′ satisfies (Pa) or (Pb). Moreover, since |vuw| = |x[j−|uw̃vw̃|,i)| and |vw̃uw̃| =
|x[j−|vw̃uw̃|,j)|, we have that

|vw̃uw̃| = |vuw|+ j − i > |vuw|.

Thus, w = vuwu
′
wv

′ satisfies (Pa) or (Pb), and |vuw| is strictly smaller than |vw̃uw̃|. This
contradicts the minimality of |vw̃uw̃|.

Next, we assume that i+|u′w| ≥ j+|u′w̃|. Then, as i < j, we have that [j, j+|u′w̃|) ⊊ [i, i+|u′w|).
This implies two things. First, since |uw̃| = |u′w̃| and |uw| = |u′w|, that

[j − |uw̃|, j + |u′w̃|) ⊊ [i− |uw|, i+ |u′w|). (4.8)

Second, that |u′w̃| < |u′w|. Being |u′w|, |u′w̃| ∈ {99ε, 500ε}, the last relation is possible only if

|u′w̃| = 99ε and |u′w| = 500ε. (4.9)

Therefore, Condition (Pa) holds for w̃ = vw̃uw̃u
′
w̃v

′
w̃ and Condition (Pb) holds for w =

vwuwu
′
wv

′
w. In particular, we can find s ∈ Vε such that uw̃u

′
w̃ = sZ[−99ε,99ε). This implies,

by (4.8), that sZ[−99ε,99ε) = uw̃u
′
w̃ occurs in uwu

′
w. But then Condition (Pb) cannot hold for

w = vwuwu
′
wv

′
w, contradicting our assumptions.

It is convenient to introduce some notation. Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) =
F(Z,τ)(x). For j ∈ Z, we define wj(x) = x[cj−n,cj) ∈ RSn(X), vj(x) = vwj(x), uj(x) = uwj(x),
u′j(x) = u′wj(x)

and v′j(x) = v′wj(x)
. Then,

x[cj−n,cj) = wj(x) = vj(x)uj(x)u
′
j(x)v

′
j(x).

Observe that if j ∈ Z then x[fj−|vwuw|,fj+|u′
wv′w|) = w for some w ∈ RSn(X), so there exists

i ∈ Z such that fj + |u′i(x)v′i(x)| = ci. We define ϕx(j) as the smallest integer such that

fj + |u′ϕx(j)(x)v
′
ϕx(j)(x)| = cϕx(j). (4.10)

Then, by Lemma 4.22,

ϕx(i) < ϕx(j) for all x ∈ X and i < j. (4.11)

Lemma 4.23 Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). If i ∈ Z and k ∈
[ϕx(i), ϕx(i+ 1)), then fi + |u′k(x)v′k(x)| = ck.

79



Proof. Observe that, since x[ck−n,ck) = wk(x), there exists j ∈ Z such that fj = ck −
|u′k(x)v′k(x)|. We are going to prove that j = i.

First, we note that, since k ∈ [ϕx(i), ϕx(i+ 1)) and ck = fj + |u′k(x)v′k(x)|,

fi + |u′ϕx(i)(x)v
′
ϕx(i)(x)| = cϕx(i) ≤ fj + |u′k(x)v′k(x)|

< cϕx(i+1) = fi+1 + |u′ϕx(i+1)(x)v
′
ϕx(i+1)(x)|. (4.12)

This implies, by Lemma (4.22), that i ≤ j ≤ i + 1. Now, if j = i + 1, then Equation (4.12)
ensures that fi+1 + |u′k(x)v′k(x)| is strictly smaller than fi+1 + |u′ϕx(i+1)(x)v

′
ϕx(i+1)(x)|, which

contradicts the minimality of ϕx(i+ 1). We conclude that j = i.

Lemma 4.24 The set C has at most d3 elements.

Proof. Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). We drop the dependency on x
in ϕx and just write ϕ. The lemma follows from the following claim.

(•) For j ∈ Z, let ζ(j) = (wϕ(j+1)−1, xcϕ(j+1)−1
) ∈ RSn(X) × A. Then, ζ(i) = ζ(j) implies

that x[fi,fi+1) = x[fj ,fj+1).

Indeed, being Z minimal (as X is minimal and (Z, τ) is recognizable), (•) implies that

#τ(C) = #{x[fj ,fj+1) : j ∈ Z} ≤ #RSn(X) ·#A ≤ d3,

where we used that #RSn(X) ≤ #A· (pX(n+1)− pX(n)) by Item ((1)) in Proposition 4.14.
This implies, as τ is injective on letters by Proposition 4.4, that #C = #τ(C) ≤ d3.

Let us prove the claim. Suppose that i, j ∈ Z satisfy ζ(i) = ζ(j) = (w, a). We start with
some observations. First, the condition ζ(i) = ζ(j) = (w, a) implies that

(i) w = x[cϕ(j+1)−1−n,cϕ(j+1)−1) = x[cϕ(i+1)−1−n,cϕ(i+1)−1); and

(ii) a = xcϕ(j+1)−1
= xcϕ(i+1)−1

.

Also, Equation (4.11) ensures that ϕ(i) < ϕ(i+ 1) and ϕ(j) < ϕ(j + 1), so

ϕ(i) ≤ ϕ(i+ 1)− 1 < ϕ(i+ 1) and ϕ(j) ≤ ϕ(j + 1)− 1 < ϕ(j + 1). (4.13)

We now prove the claim (•). The definition of cϕ(j+1)−1 and cϕ(j+1) guarantees that the
words x[k−n,k), k ∈ (cϕ(j+1)−1, cϕ(j+1)), are not right-special. Thus, x[cϕ(j+1)−1,cϕ(j+1)) is deter-
mined by x[cϕ(j+1)−1−n,cϕ(j+1)−1) and xcϕ(j+1)−1

. A similar observation holds for x[cϕ(i+1)−1,cϕ(i+1)).
Combining these two things with (i) and (ii) yields that

x[cϕ(j+1)−1,cϕ(j+1)) = x[cϕ(i+1)−1,cϕ(i+1)). (4.14)

Then, by (i),

wϕ(j+1)(x) = x[cϕ(j+1)−n,cϕ(j+1)) = x[cϕ(i+1)−n,cϕ(i+1)) = wϕ(i+1)(x).
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Let us write w̃ = wϕ(j+1)(x) = wϕ(i+1)(x). With this notation, we have, by (4.10), that

x[fj+1,cϕ(j+1)) = x[fi+1,cϕ(i+1)) = u′w̃v
′
w̃. (4.15)

Now, Equation (4.13) allows us to use Lemma 4.23 with ϕ(i + 1) − 1 and ϕ(j + 1) − 1; we
deduce, as w = wϕ(j+1)−1 = wϕ(i+1)−1, that

fj + |u′wv′w| = cϕ(j+1)−1 and fi + |u′wv′w| = cϕ(i+1)−1.

In particular,
x[fj ,cϕ(j+1)−1) = x[fi,cϕ(i+1)−1) = u′wv

′
w.

This and Equation (4.14) then give that

x[fj ,cϕ(j+1)) = x[fi,cϕ(i+1)).

We conclude using (4.15) that x[fj ,fj+1) = x[fi,fi+1). This completes the proof of the claim and
thereby the proof of the lemma.

Lemma 4.25 Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). Then:

(1) |σ(yk)| ≤ |τ(z0)|+ 2 · 401ε for any k ∈ [ϕx(0), ϕx(1)).

(2) |τ(z0)| ≤ |σ(yϕ(1)−1)|+ 2 · 401ε.

Proof. We write, for simplicity, ϕ = ϕx. Let k ∈ [ϕ(0), ϕ(1)). Then, by Lemma 4.23,
f0 + |u′k(x)v′k(x)| = ck. Hence,

τ(z0) · u′ϕ(1)(x)v′ϕ(1)(x) = x[f0,f1) · x[f1,cϕ(1))
= x[f0,ck) · x[ck,cϕ(1)) = u′k(x)v

′
k(x) · σ(y[k,ϕ(1))).

In particular, ∣∣|τ(z0)| − |σ(y[k,ϕ(1)))|∣∣ = ∣∣|u′ϕ(1)(x)v′ϕ(1)(x)| − |u′k(x)v′k(x)|∣∣. (4.16)

Now, Conditions (Pa) and (Pb) in Definition 4.5 ensure that for any w ∈ RSn(X) the in-
equalities n/2− 401ε ≤ |u′wv′w| ≤ n/2 + 401ε hold. Putting this in (4.16) produces∣∣|τ(z0)| − |σ(y[k,ϕ(1)))|∣∣ ≤ 2 · 401ε for all k ∈ [ϕ(0), ϕ(1)). (4.17)

Item (1) of this lemma follows. Moreover, since yϕ(1)−1 = y[ϕ(1)−1,ϕ(1)), Item (2) is also a
consequence of (4.17).

4.4.3 Proof of Propositions 4.17 and 4.18

We now prove Proposition 4.17.
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Proof of Proposition 4.17. Item (1) follows directly from Lemma 4.24.

Let us prove Items (2) and (3). We define U ′ = {x ∈ X : x[0,n) ∈ RSn(X)} and U = {x ∈
X : ∃w ∈ RSn(X), x[−|uwvw|,|u′

wv′w|) = w}. First, we recall that (Z, τ) is defined as the coding
of X obtained from U as in Proposition 4.4. Observe that, since |vwuw| ≤ |w| = n and
|u′wv′w| ≤ |w| = n for all w ∈ RSn(X), U has radius n. Also, Item ((2)) in Proposition
4.14 ensures that U ′ is (d + 1)n-syndetic, and thus that U is (d + 3)n-syndetic. Therefore,
Proposition 4.4 ensures that |τ(a)| ≤ (d + 3)n for all a ∈ C and that (Z, τ) is (d + 4)n-
recognizable. Since d ≥ #A ≥ 2, Items (2) and (3) follow.

The rest of the section is devoted to prove Proposition 4.18.

Lemma 4.26 Let x ∈ X and (c, z) = F(Z,τ)(x). We use the notation w = wϕx(0) and
w̃ = wϕx(1). Then, the following are equivalent:

(1) | root τ(z0)| ≤ ε and x[c0−99ε,c1+99ε) = (root τ(z0))
Z
[−99ε,|τ(z0)|+99ε).

(2) The decompositions w = vwuwu
′
wv

′
w and w̃ = vw̃uw̃u

′
w̃v

′
w̃ satisfy Condition (Pa) in

Definition 4.5 and per(x[c0+97ε,c1−97ε)) ≤ ε.

Moreover, if any of the previous condition holds, then root τ(z0) ∈ Wε.

Proof. We assume that Item (1) holds. Let s = root τ(z0) and note that Item (1) ensures
that

|s| ≤ ε and x[c0−99ε,c1+99ε) = sZ[−99ε,|τ(z0)|+99ε). (4.18)

This allows us to use Lemma 4.20 with x[c0−99ε,c0+|s|+99ε) and find t ∈ Wε such that tZ[−99ε,99ε)

occurs in x[c0−99ε,c0+|s|+99ε). Since |s| ≤ ε, we have in particular that tZ[−99ε,99ε) occurs in
x[c0−500ε,c0+9ε). This is incompatible with the decomposition w = vwuwu

′
wv

′
w satisfying Con-

dition (Pb) in Definition 4.5; therefore, w = vwuwu
′
wv

′
w satisfies Condition (Pa). A similar

argument shows that w̃ = vw̃uw̃u
′
w̃v

′
w̃ also satisfies Condition (Pa). Finally, it follows from

(4.18) that per(x[c0+97ε,c1−97ε)) ≤ |s| ≤ ε.

We assume that Item (2) holds. Then, by Definition 4.5, there exist s, s̃ ∈ Wε such that

sZ[−99ε,99ε) = uwu
′
w = x[c0−99ε,c0+99ε) and s̃Z[−99ε,99ε) = uw̃u

′
w̃ = x[c1−99ε,c1+99ε). (4.19)

We claim that
per(x[c0−99ε,c1+99ε)) ≤ ε. (4.20)

Assume, with the objective of obtaining a contradiction, that (4.20) is not satisfied. Then,
Item ((2)) in Proposition 4.13 gives i ∈ [c0 − 98ε, c1 + 98ε) such that per(x[i−ε,i+ε)) > ε. We
consider three cases. If i ∈ [c0 − 98ε, c0 + 98ε), then x[i−ε,i+ε) occurs in uwu

′
w. Thus, by

(4.19) and since s ∈ Wε implies that |s| ≤ ε, per(x[i−ε,i+ε)) ≤ |s| ≤ ε. This contradicts our
assumptions. In the case i ∈ [c1 − 98ε, c1 + 98ε), a similar argument gives a contradiction.
Finally, if i ∈ [c0 + 98ε, c1 − 98ε), then x[i−ε,i+ε) occurs in x[c0+97ε,c1−97ε) and thus, by the
hypothesis, per(x[i−ε,i+ε)) ≤ ε. This proves (4.20).
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Our next objective is to use the claim for proving that

|s| = |s̃| = per(x[c0−99ε,c1+99ε)). (4.21)

We note that |s| ≤ ε as s ∈ Wε. Hence, Equations (4.19) and (4.20) allows us to use Item ((1))
of Proposition 4.13 and deduce that per(x[c0−99ε,c1+99ε)) is equal to per(x[c0−99ε,c0+99ε)). Also,
(4.20) ensures that per(x[c0−99ε,c0+99ε)) ≤ |s|, so by Item ((1)) in Proposition 4.13 we have that
per(x[c0−99ε,c0+99ε)) is equal to per(s2). Moreover, by Lemma 4.9, per(s2) = | root s2| = |s|.
Combining all these relations produces

per(x[c0−99ε,c1+99ε)) = per(x[c0−99ε,c0+99ε)) = per(s2) = |s|.

Similarly, per(x[c0−99ε,c1+99ε)) = |s̃|. Equation (4.21) follows.

We combine (4.21) with (4.19) to obtain that

sZ[−99ε,|τ(z0)|+99ε) = s̃Z[−|τ(z0)|−99ε,99ε) = x[c0−99ε,c1+99ε). (4.22)

Being |s| equal to |s̃|, we get that s and s̃ are conjugate. Moreover, since s, s̃ ∈ Wε and since
Wε contains at most one element of a given rotational class, we have that

s = s̃. (4.23)

We use (4.23) to prove that Item (1) of the lemma holds. Observe that Equation (4.19) and
(4.23) imply that sZ[−99ε,99ε) = (S|τ(z0)|s)[−99ε,99ε). This and the fact that |s| ≤ ε (as s ∈ Wε)

allow us to use Item ((1)) in Proposition 4.10 and deduce that sZ = S|τ(z0)|sZ. Item ((2)) of
Proposition 4.10 then gives that |τ(z0)| = 0 (mod |s|). We conclude that x[c0,c1) is a power of
s and that root τ(z0) = root s = s. Item (1) of this lemma is a consequence of the last relation
and (4.22). This also shows that if Item (2) of the lemma holds, then root τ(z0) ∈ Wε.

Lemma 4.27 Let x ∈ X, (f, z) = F(Z,τ)(x) and i, j ∈ Z with j > i + d. Suppose that
|τ(zk)| ≤ 401ε for all k ∈ [i, j). Then:

(1) root τ(zk) = root τ(zi) for all k ∈ [i, j) and | root τ(zi)| ≤ ε.

(2) x[fi−99ε,fj+99ε) = (root τ(zi))
Z
[−99ε,|τ(z[i,j))|+99ε).

Proof. Let (c, y) = F(Y,σ)(x). We will use Lemma 4.16 with y and [ϕx(i), ϕx(j)) to prove the
following:

per(x[fi−500ε,fj+500ε)) is at most ε. (4.24)

Let us check the hypothesis of Lemma 4.16. Let k ∈ [ϕx(i), ϕx(j)) be arbitrary. There exists
ℓ ∈ [i, j) such that k ∈ [ϕx(ℓ), ϕx(ℓ + 1)). Putting the hypothesis |τ(zk)| ≤ 401ε in the
inequality of Lemma 4.25 produces the bound |σ(yk)| ≤ |τ(zℓ)|+ 2 · 401ε ≤ 104ε. Hence, by
(4.5),

|σ(yk)| < ε/d for all k ∈ [ϕx(i), ϕx(j)). (4.25)

Since ε ≤ n/104, Equation (4.25) and the inequalities ϕx(j) ≥ (j − i) + ϕx(i) > d + ϕx(i)
allow us to use Lemma 4.16 and deduce that per(x[cϕx(i)−n/3,cϕx(j)−d)) ≤ ε. Now, observe that,
for any k ∈ Z,

cϕx(k) − fk = |u′ϕx(k)v
′
ϕx(k)| ∈ [n/2− 401ε, n/2 + 401ε)
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Hence, as (4.25) ensures that cϕx(j)−d ≥ cϕ(j) − ε and since ε ≤ n/104, we have that
x[fi−500ε,fj+500ε) occurs in x[cϕx(i)−n/3,cϕx(j)−d). Therefore, (4.24) holds.

Next, we use (4.24) to prove the following:

∀k ∈ [i, j], the decomposition wϕx(k) = vϕx(k)uϕx(k)u
′
ϕx(k)v

′
ϕx(k)

satisfies (Pa) in Definition 4.5. (4.26)

Let k ∈ [i, j]. We note that (4.24) implies that per(x[ck−500ε,ck+500ε)) ≤ ε. Thus, by Lemma
4.20, there exists s ∈ Wε such that sZ[−99ε,99ε) occurs in x[ck−500ε,ck+500ε). This implies that

if (Pb) in Definition 4.5 holds for the decomposition wϕx(k) = vϕx(k)uϕx(k)u
′
ϕx(k)

v′ϕx(k)
, then

sZ[−99ε,99ε) occurs in uϕx(k)u
′
ϕx(k)

= x[ck−500ε,ck+500ε), contradicting (Pb). Therefore, wϕx(k) =

vϕx(k)uϕx(k)u
′
ϕx(k)

v′ϕx(k)
satisfies (Pa) and (4.26) is proved.

We now prove the properties in the statement of the lemma. Let k ∈ [i, j). Then, Equations
(4.24) and (4.26) imply that Item (1) in Lemma 4.26 is satisfied. Hence, for all k ∈ [i, j),

| root τ(zk)| ≤ ε and x[ck−99ε,ck+1+99ε) = (root τ(zk))
Z
[−99ε,|τ(zk)|+99ε). (4.27)

In particular, we have for every k ∈ [i, j − 1) that

(root τ(zk))
Z
[0,99ε) = x[ck,ck+99ε) = x[ck+1,ck+1+99ε) = (root τ(zk+1))

Z
[0,99ε).

This and the inequalities | root τ(zk)| ≤ ε and | root τ(zk+1)| ≤ ε allow us to use Theorem
4.8 to deduce that root τ(zk) and root τ(zk+1) are powers of a common word, and thus that
root τ(zk) = root τ(zk+1). And inductive argument then yields Item (1) of this lemma, and
therefore, by (4.27), that Item (2) holds as well.

We have all the necessary elements to prove Proposition 4.18.

Proof of Proposition 4.18. We prove Item (1) by contradiction, Suppose that 0 ̸∈ Qp(z),
|τ(z0)| > 401ε and that per(x[c0+97ε,c1−97ε)) is at most ε. Let us write w = wϕx(0) and
w̃ = wϕx(1). Then, the condition 0 ̸∈ Qp(z) ensures that Item (1) in Lemma 4.26 does not hold.
Hence, Item (2) does not hold either. This implies, as per(x[c0+97ε,c1−97ε)) at most ε, that one
of the decompositions w = vwuwu

′
wv

′
w or w̃ = vw̃uw̃u

′
w̃v

′
w̃ satisfies (Pb) in Definition 4.5. We

assume, without loss of generality, that w = vwuwu
′
wv

′
w satisfies (Pb). Then, for any s ∈ Wε,

sZ[−99ε,99ε) does not occur in uwu
′
w = x[c0−401ε,c0+401ε). In particular, sZ[−99ε,99ε) does not occur

in x[c0+97ε,c0+304ε). Being this valid for all s ∈ Wε and since x[c0+97ε,c0+304ε) has length at least
2ε, we deduce from Lemma 4.20 that per(x[c0+97ε,c0+304ε)) > ε. But c1 − c0 = |τ(z0)| > 401ε
so x[c0+97ε,c0+304ε) occurs in x[c0+97ε,c1−97ε) and thus per(x[c0+97ε,c1−97ε)) > ε. This contradicts
our assumptions and thereby proves Item (1).

We continue with Item (2). The proof is by contradiction. We assume that the hypothesis
of Item (2) holds and that per(x[c0+97ε,c1−97ε)) ≤ ε. Let us further assume, without losing
generality, that 1 ∈ Qp(z). We will use the notation w = wϕx(0) and w̃ = wϕx(1). Then,
the condition 1 ∈ Qp(z) is equivalent to Item (1) of Lemma 4.26 being satisfied by Sz;
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hence, Item (2) of that lemma holds with Sz. In particular, w̃ = vw̃uw̃u
′
w̃v

′
w̃ satisfies (Pa) in

Definition 4.5, that is,

x[c1−99ε,c1+99ε) = uw̃u
′
w̃ = sZ[−99ε,99ε) for some s ∈ Wε.

Now, the condition 0 ̸∈ Qp(z) implies, by Lemma 4.26, that Item (2) of that lemma is not
satisfied by z. This implies, since w̃ = vw̃uw̃u

′
w̃v

′
w̃ satisfies (Pa) and since we assumed that

per(x[c0+97ε,c1−97ε)) ≤ ε, that w = vwuwu
′
wv

′
w satisfies (Pb). Therefore,

x[c1−99ε,c1+99ε) = sZ[−99ε,99ε) does not occur in x[c0−500ε,c0+500ε). (4.28)

But, since c1 − c0 = |τ(z0)| ≤ 401ε, we have that [c1 − 99ε, c1 + 99ε) is contained in [c0 −
500ε, c1 + 500ε), and thus that x[c1−99ε,c1+99ε) occurs in x[c0−500ε,c1+500ε). This contradicts
(4.28), finishing the proof of Item (2).

Next, we consider Item (3). Assume that k > d and that |τ(zj)| ≤ 401ε for all j ∈ [0, k).
Then, we can use Lemma 4.27 to deduce that

(1) root τ(zj) = root τ(z0) for all j ∈ [0, k) and | root τ(z0)| ≤ ε;

(2) x[f0−99ε,fk+99ε) = (root τ(z0))
Z
[−99ε,|τ(z[0,k))|+99ε).

In particular, x[cj−99ε,cj+1+99ε) = (root τ(zj))
Z
[−99ε,|τ(zj)|+99ε) and | root τ(zj)| ≤ ε for all j ∈

[0, k). We conclude that [0, k) ⊆ Qp(z).

Finally, we prove Item (4). Let z′ ∈ Z and assume that 0 ∈ Qp(z)∩Qp(z
′) and that root τ(z0)

is conjugate to root τ(z′0). The condition 0 ∈ Qp(z) ∩ Qp(z
′) permits to use Lemma 4.26 to

deduce that root τ(z0) and root τ(z′0) belong to Wε. Since root τ(z0) conjugate to root τ(z′0),
the definition of Wε ensures that root τ(z0) = root τ(z′0).

4.5 The second coding

We continue the proof of the main theorems. The main result of this section is Proposition
4.28, which describes a modification of the coding in Proposition 4.4. The principal new
element in Proposition 4.28 is a period dichotomy for the words τ(a). This property is
shared by the codings constructed in Sections 4.6 and 4.7, so we introduce it as a definition.

Definition 4.6 Let (Z ⊆ CZ, τ : C → A+) be a recognizable coding of the subshift X ⊆ AZ,
Cap ∪ Cp be a partition of C, and ε ≥ 1. We say that (Z, τ) has dichotomous periods w.r.t.
(Cap, Cp) and ε if for x ∈ X and (c, z) = F(Z,τ)(x) the following holds:

(1) z0 ∈ Cap implies that per(x[c0+ε,c1−ε)) > ε.

(2) z0 ∈ Cp implies that | root τ(z0)| ≤ ε and that x[c0−ε,c1+ε) is equal to (root τ(z0))
Z
[−ε,|τ(z0)|+ε).

(3) If a ∈ Cp and root τ(z0) is conjugate to root τ(a), then root τ(z0) = root τ(a).
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Proposition 4.28 Let X be a minimal infinite subshift, n ≥ 0 and let d be the maximum
of ⌈pX(n)/n⌉, pX(n + 1) − pX(n), #A and 104. There exist a recognizable coding (Z ⊆
CZ, τ : C → A+) of X, a partition C = Cap ∪ Cp, and ε ∈ [n/d2d

3+4, n/d) such that:

(1) #Cap ≤ 2d3d+6, #Cp ≤ 2d3d+9 pow-com(X) and # root τ(C) ≤ 3d3d+9.

(2) |τ(a)| ≤ 10d2n for a ∈ Cap and |τ(a)| ≥ 80ε for a ∈ C.

(3) (Z, τ) satisfies the recognizability property in Proposition 4.29.

(4) (Z, τ) has dichotomous periods w.r.t. (Cap, Cp) and 8ε.

(5) The set Cp satisfies the following: if z ∈ Z, then z0 and z1 does not simultaneously
belong to Cp.

Proposition 4.29 Consider the coding described in Proposition 4.38. Let x, x̃ ∈ X be such
that per(x[−ε,ε)) > ε and x[−7d2n,7d2n) = x̃[−7d2n,7d2n). Then, F

0
(Z,τ)(x) is equal to F0

(Z,τ)(x̃).

The strategy for proving Proposition 4.28 is as follows. We consider the coding (Y, σ) given
by Proposition 4.17 and, for a point y ∈ Y , we glue together letters yi to form words yI ,
where I is an interval, in such a way that yI corresponds either to a maximal periodic part
of σ(y) or to an aperiodic part of σ(y) of controlled length. This will produce a new coding
where the letters are in correspondence with the words yI and that satisfies all the properties
in Proposition 4.28 except for the lower bound in Item ((2)) for the letters associated to
periodic parts yI . We solve this by slightly moving the edges of the words σ(yI).

We start, in Subsection 4.5.1, by defining stable intervals, which correspond to the intervals
I described in the last paragraph. The definition of the coding of Proposition 4.28 is given
in Subsection 4.5.2, together with the proof of its basic properties. In the final subsection,
we prove Propositions 4.28 and 4.29.

We fix the following notation for the rest of the section. Let X ⊆ AZ be a minimal infinite
subshift, n ≥ 0 and let d be the maximum of ⌈pX(n)/n⌉, pX(n + 1) − pX(n), #A and 104.
Then, Proposition 4.17 applied to X and n gives a recognizable coding (Y ⊆ BZ, σ : B → A+)
of X and an integer ε ∈ [n/d2d

3+4, n/d).

4.5.1 Stable intervals

Let y ∈ Y , x = σ(y) and (c, y) = F(Y,σ)(x). We define

Qshort(y) = {i ∈ Z : |σ(yi)| ≤ 401ε} and Qlong(y) = Z \Qlong.

Let Qp(y) be the set of integers i ∈ Z such that

| rootσ(yi)| ≤ ε and x[ci−99ε,ci+1+99ε) = (rootσ(yi)
Z)[−99ε,|τ(yi)|+99ε). (4.29)

We set Qap(y) = Z \ Qp(y). Remark that the definition of Qp(y) coincides with the one in
Proposition 4.18.
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Definition 4.7 A stable interval for y is a finite interval I = [i, j) ⊆ Z satisfying one of the
following conditions.

(1) I ⊆ Qp.

(2) I ⊆ Qap, #(I ∩Qlong) ≤ 1, and if i ∈ Qshort then i− 1 ∈ Qp.

The interval I is of periodic type if it satisfies Item (1) of this definition, and of aperiodic
type if it satisfies Item (2). We say that I is a maximal stable interval if for all stable interval
I ′ ⊇ I we have that I ′ = I.

Remark 4.5 We stress on the fact that the previous definition does not depend just on y,
but also on σ and ε.

Lemma 4.30 Let I = [i, j) be a stable interval set for y of periodic type. Then:

(1) rootσ(y[i,j)) = rootσ(yk) for all k ∈ [i, j) and x[ci−99ε,cj+99ε) is equal to (rootσ(yi))
Z
[−99ε,|σ(y[i,j))|+99ε).

(2) If I is maximal, I ′ = [i′, j′) is a stable interval and either i′ = j or j′ = i, then I ′ is of
aperiodic type.

(3) If y′ ∈ Y , 0 ∈ Qp(y
′) and rootσ(yi) is conjugate to rootσ(y′0), then rootσ(yi) =

rootσ(y′0).

Proof. We first prove Item (1). Let sk = rootσ(yk). Being I of periodic type, we have by
Definition 4.7 that

|sk| ≤ ε and x[ck−99ε,ck+1+99ε) = (sZk )[−99ε,|σ(yk)|+99ε) for all k ∈ [i, j). (4.30)

Then, for any k ∈ [i, j − 1),

(sZk )[0,99ε) = x[ck,ck+99ε) = x[ck+1,ck+1+99ε) = (sZk+1)[0,99ε).

Combining this with the inequalities |sk|, |sk+1| ≤ ε and Theorem 4.8 produces a word t such
that sk and sk+1 are powers of t. Hence, as sk and sk+1 are roots of a word, sk = sk+1 = t
for any k ∈ [i, j − 1). Item (1) of the lemma follows from this and (4.30).

For Item (2), we note that if I ′ is of periodic type then I ∪ I ′ is an interval contained in
Qp(y), and so I ∪ I ′ is a stable interval for y. This would contradict the maximality of I;
therefore, I ′ is of aperiodic type.

Let us now assume that the hypothesis of Item (3) holds. Then, since i ∈ I ⊆ Qp(y),
0 ∈ Qp(y

′) and rootσ(yi) is conjugate to rootσ(y′0), the points Siy and y′ comply with the
hypothesis of Item ((4)) of Proposition 4.18. We conclude tat rootσ(yi) = rootσ(y′0).

Lemma 4.31 Let y ∈ Y and I = [i, j) be a stable interval for y of aperiodic type. Then,

(1) per(x[ci+97ε,cj−97ε)) > ε;
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(2) I has length at most 2d+ 1;

(3) 195ε ≤ |σ(yI)| ≤ 9d2n.

Proof. We prove Item (1) by considering two cases. Suppose that i ∈ Qlong(y). Then, i ∈
Qlong(y)∩Qap(y) and we can use Item ((1)) of Proposition 4.18 to obtain that per(x[ci+97ε,ci+1−97ε)) >
ε. Assume now that i ∈ Qshort(y). Then, Definition 4.7 ensures that i − 1 ∈ Qp(y). Hence,
Item ((2)) of Proposition 4.18 applies and so per(x[ci+97ε,ci+1−97ε)) > ε. In particular, Item
(1) holds.

We prove Item (2) by contradiction. Assume that #I > 2d + 1. Then, it follows from
Definition 4.7 that there exists I ′ ⊆ I such that #I ′ > d and I ′ ⊆ Qshort. These conditions
allow us to use Item ((3)) in Proposition 4.18 and deduce that I ′ ⊆ Qp(y), contradicting the
fact that I is of aperiodic type.

Finally, we consider Item (3). Item (2) of this lemma and Item ((2)) produce that |σ(yI)| ≤
(2d + 1) · 3dn, from which the upper bound in Item (3) follows. To prove the lower bound,
we consider two cases. If there exists k ∈ I ∩ Qlong(y), then |σ(yI)| ≥ |σ(yk)| ≥ 401ε.
Assume now that I ∩ Qlong(y) is empty. Then, i ∈ Qshort(y), and so Definition 4.7 indicates
that i − 1 ∈ Qp(y). This allows us to use Item ((2)) of Proposition 4.18 to obtain that
per(x[ci+97ε,ci+1−97ε)) > ε. In particular, |x[ci+97ε,ci+1−97ε)| > ε; hence,

|σ(yI)| ≥ |σ(yi)| = |x[ci+97ε,ci+1−97ε)|+ 2 · 97ε > 195ε.

Lemma 4.32 There exists a constant C depending only on X such that for any y ∈ Y and
stable interval I for Y , we have that #I ≤ C. In particular, any stable interval is contained
in a maximal stable interval.

Proof. Let C0 be the length of the longest word w that occurs in some x ∈ X such that
per(w) ≤ ε. We remark that C0 is finite as X is assumed to be minimal and infinite. Let
C = max{C0, 2d + 1}. We claim that for any y ∈ Y , any stable interval I for y has length
at most C. Indeed, if I is of aperiodic type, then Item (3) of Lemma 4.31 implies that
#I ≤ 2d + 1 ≤ C, and if I is of periodic type, then Item (1) of Lemma 4.30 ensures that
per(σ(yI)) ≤ ε, and thus that #I ≤ |σ(yI)| ≤ C0 ≤ C.

Lemma 4.33 Let y ∈ Y . Then, the set of all maximal stable intervals for y is a partition
of Z.

Proof. We first prove that any k ∈ Z is contained in a stable interval. This would imply
that any k is contained in a maximal stable interval by Lemma 4.32.

Let k ∈ Z be arbitrary. We consider two cases. If k ∈ Qp(y) or k ∈ Qap(y) ∩ Qlong(y), then
{k} is stable interval and we are finished. Suppose now that k ∈ Qap(y)∩Qshort(y). Let i < k
be the biggest integer such that i ̸∈ Qap(y)∩Qshort(y). Note that [i+1, k] ⊆ Qap(y)∩Qshort(y).
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Hence, if i ∈ Qap(y)∩Qlong(y), then [i, k] is stable interval of aperiodic type, and if i ∈ Qp, then
[i+1, k] is stable interval of aperiodic type. These are the only cases as i ̸∈ Qap(y)∩Qshort(y),
and so we conclude that i belongs to a stable interval.

Next, we prove that for any maximal stable intervals I, I ′, either I = I ′ or I ∩ I ′ = ∅. The
lemma follows from this and the fact that any k is contained in a maximal stable interval.

Let I = [i, j) and I ′ = [i′, j′) be maximal stable intervals with nonempty intersection. There
is no loss of generality in assuming that i ≤ i′ < j ≤ j′. Note that if i = i′ or j = j′, then
I ∪ I ′ ∈ {I, I ′}, so I = I ′ = I ∪ I ′ by maximality. Hence, we may assume that i < i′ < j < j′.
Remark that this implies that j − 1 ∈ I ∩ I ′.

In order to continue, we consider three cases.

(1) If j − 1 ∈ Qp(y), then, as j − 1 ∈ I ∩ I ′, Definition 4.7 implies that I and I ′ are of
periodic type. It then follows from Definition 4.7 that I∪I ′ is stable interval of periodic
type, and so I = I ′ = I ∪ I ′ by maximality.

(2) If j − 1 ∈ Qap(y) ∩ Qlong. Then, since j − 1 ∈ I ∩ I ′, Definition 4.7 ensures that
[i, j − 1) ∪ [j + 1, j′) ⊆ Qap(y) ∩ Qshort(y). Hence, [i, j′) = I ∪ I ′ is a stable interval of
aperiodic type, which implies that I = I ′ = I ∪ I ′ by maximality.

(3) If j − 1 ∈ Qap(y) ∩ Qshort(y). Then, as j − 1 ∈ I ∩ I ′, Definition 4.7 guarantees that
I and I ′ are of aperiodic type. In particular, as i′ − 1 ∈ I, i′ − 1 ∈ Qap(y) and
therefore, by Definition 4.7, i′ ∈ Qlong(y). We conclude, using Definition 4.7, that
[i, i′) ⊆ Qap(y)∩Qshort(y), i

′ ∈ Qap(y)∩Qlong(y) and that [i′+1, j′) ⊆ Qap(y)∩Qshort(y).
Hence, [i, j′) = I ∪ I ′ is a stable interval of aperiodic type and I = I ′ = I ∪ I ′ by
maximality.

4.5.2 Construction of the second coding

The coding (Z, τ) is obtained by modifying the cut function c in F(Y,σ)(x) of the points x ∈ X.
We give the construction of the modified cut function as the proof of the following lemma,
and we define (Z, τ) right after.

Lemma 4.34 Let x ∈ X and set (c, y) = F(Y,σ)(x). There exist unique increasing sequences
of integers satisfying (kx(j))j∈Z and (rx(j))j∈Z satisfying the following conditions.

(1) {[kx(j), kx(j + 1)) : j ∈ Z} is the set of all maximal stable intervals of y.

(2) For any j ∈ Z,

(1) if [kx(j), kx(j + 1)) is of aperiodic type, then rx(j) = ckx(j).

(2) if [kx(j), kx(j + 1)) is of periodic type, then rx(j) = ckx(j) − |sℓ|, where s =
rootσ(y[kx(j),kx(j+1))) and ℓ = ⌈80ε/|s|⌉
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(3) 0 belongs to [rx(0), rx(1)).

Moreover, in this case, rx(j + 1) ≥ rx(j) + 80ε for all j ∈ Z.

Proof. Lemma 4.33 ensures that the set of all maximal stable intervals of y can be described
as {[k(j), k(j + 1)) : j ∈ Z} for some increasing sequence of integers (kj)j∈Z. The sequence
(kj)j∈Z is unique up to an index shift.

We define r(j) as follows:

(i) if [k(j), k(j + 1)) is of aperiodic type, then r(j) = ck(j).

(ii) if [k(j), k(j+1)) is of periodic type, then r(j) = ck(j)−|sℓ|, where s = rootσ(y[k(j),k(j+1)))
and ℓ = ⌈80ε/|s|⌉

It is important to remark that, in case (ii), Lemma 4.30 ensures that |s| ≤ ε.

We claim that
r(j + 1) ≥ r(j) + 80ε for all j ∈ Z. (4.31)

First, we note that the definition of r(j) and r(j + 1) guarantees that

k(j)− 81ε < r(j) ≤ k(j) and k(j + 1)− 81ε < r(j + 1) ≤ k(j + 1). (4.32)

We now consider two cases. If [k(j), k(j + 1)) is of aperiodic type, then, by Lemma 4.31,
|σ(y[k(j),k(j+1)))| is at least 195ε. Combining this with (4.32) yields

|x[r(j),r(j+1))| ≥ |x[ck(j),ck(j+1))| − 81ε = |σ(y[k(j),k(j+1)))| − 81ε ≥ 80ε

Assume now that [k(j), k(j+1)) is of periodic type. Then, [k(j+1), k(j+2)) is of aperiodic
type by Lemma 4.30. In particular, r(j + 1) = ck(j+1) by (i). Also, since [k(j), k(j + 1)) is of
periodic type, (ii) ensures that r(j) ≤ k(j)−80ε. These two things imply that |x[r(j),r(j+1))| ≥
|x[ck(j)−80ε,ck(j+1))| ≥ 80ε, completing the proof of the claim.

Equation (4.31) implies that (r(j))j∈Z is increasing. Thus, there exists a unique ℓ ∈ Z such
that 0 ∈ [r(ℓ), r(ℓ+1)). We define kx(j) = k(j+ℓ) and rx(j) = r(j+ℓ). Then, (kx(j))j∈Z and
(rx(j))j∈Z satisfy Items (1), (2) and (3) of the lemma. Moreover, being (r(j))j∈Z increasing,
it is clear ℓ (and then also (kx(j))j∈Z and (rx(j))j∈Z) is unique.

We now define (Z, τ). It follows from the recognizability property of (Y, σ) and Lemma 4.32
that the map x 7→ rx(0) is continuous. In particular, U = {x ∈ X : rx(0) = 0} is clopen (and
nonempty). We define (Z ⊆ CZ, τ : C → A+) as the recognizable coding of X obtained from
U as in Proposition 4.4.

4.5.3 Basic properties of the second coding

We fix, for the rest of the section, the following notation. Let x denote an element of X,
(c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). We also define (kx(j))j∈Z and (rx(j))j∈Z as the
sequences given by Lemma 4.34.
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Lemma 4.35 We have that rx(j) = fj for all j ∈ Z.

Proof. Note that {k ∈ Z : Skx ∈ U} is equal to {rx(j) : j ∈ Z}. Then, by Item (1) in
Proposition 4.4, there exists a bijective map g : Z → Z such that rj(x) = fg(j) for all j ∈ Z.
Now, since Lemma 4.34 states that rx(j) < rx(j + 1) for all j ∈ Z, the map g is increasing.
As it is also bijective, we conclude that there exists ℓ ∈ Z satisfying g(j) = j+ ℓ for all j ∈ Z.
Finally, by Item (3) in Lemma 4.34 and the definition of f , we have that 0 ∈ [f0, f1) and
0 ∈ [rx(0), rx(1)) = [fg−1(0), fg−1(0)+1). Hence, g

−1(0) = 0, ℓ = 0 and the lemma follows.

The last lemma allows us to drop the notation rx(j) and use only fj. In particular, Items
(2) and (3) of Lemma 4.34 hold with fj.

We define a partition Ca ∪ Cap of C as follows:

Cap = {a ∈ C : per(τ(a)) > ε} and Cp = {a ∈ C : per(τ(a)) ≤ ε}.

Lemma 4.36 Let j ∈ Z. The following are equivalent:

(1.a) zj ∈ Cp.

(1.b) [kx(j), kx(j + 1)) is of periodic type for y.

(1.c) Let s = root τ(zj). Then, |s| ≤ ε, x[fj−8ε,fj+1+8ε) = sZ[−8ε,|τ(zj)|+8ε) and s = rootσ(y[kx(j),kx(j+1))).

The following are also equivalent:

(2.a) zj ∈ Cap.

(2.b) [kx(j), kx(j + 1)) is of aperiodic type for y.

(2.c) per(x[fj+8ε,fj+1−8ε)) > ε.

Proof. We start with a general observation. Let us write k(j) = kx(j). Then, Item ((2)) in
Lemma 4.34 ensures that

ck(j) − 81ε < fj ≤ ck(j) and ck(j+1) − 81ε < fj+1 ≤ ck(j+1).

Hence,
∅ ≠ [ck(j), ck(j+1) − 81ε) ⊆ [fj, fj+1) ⊆ [ck(j) − 81ε, ck(j+1) + 81ε) (4.33)

We now prove the lemma. Let us assume that (1.a) holds. Then, (4.33) implies that
per(x[ck(j)+97ε,ck(j+1)−97ε)) ≤ per(x[fj ,fj−1)) ≤ ε. Hence, by Lemma 4.31, [k(j), k(j + 1)) is
not of aperiodic type, that is, [k(j), k(j + 1)) is of periodic type.

Assume next (1.b). Then, Lemma 4.30 states that s = rootσ(y[k(j),k(j+1))) satisfies |s| ≤ ε,
s = rootσ(yk) for all k ∈ [k(j), k(j + 1)) and

x[ck(j)−99ε,ck(j+1)+99ε) = sZ[−99ε,ck(j+1)−ck(j)+99ε). (4.34)
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Moreover, Item (2) in Lemma 4.30 guarantees that [k(j + 1), k(j + 2)) is of aperiodic type.
Hence, by Item ((2)) in Lemma 4.34, fj = ck(j)−|sℓ| and fj+1 = ck(j+1), where ℓ = ⌈80ε/|s|⌉.
We can then compute, thanks to (4.34) and (4.33),

x[fj−8ε,fj+1+8ε) = sZ[−|sℓ|−8ε,ck(j+1)−ck(j+1)+8ε)

= sZ[−8ε,|sℓ|+ck(j+1)−ck(j+1)+8ε) = sZ[−8ε,fj+1−fj+8ε).

Note that the last computation also shows that τ(zj) = x[fj ,fj+1) is equal to s
Z
[−|sℓ|,ck(j+1)−ck(j+1))

=

sZ
[−|sℓ|,0)σ(y[k(j),k(j+1))). Hence, root τ(zj) = root s = s and we have proved (1.c).

Observe that if (1.c) holds, then per(τ(zj)) ≤ |s| ≤ ε and zj ∈ Cp by the definition of Cp.

We now assume (2.a). Then, Equation (4.33) implies that per(x[fj ,fj+1)) ≥ per(x[ck(j),ck(j+1)−81ε)) >
ε. Hence, by Lemma 4.30, [k(j), k(j + 1)) is not of periodic type, that is, [k(j), k(j + 1)) is
of aperiodic type.

Let us suppose that (2.b) holds. In this case, Lemma 4.31 and (4.33) allows us to compute

per(x[fj+8ε,fj+1−8ε)) ≥ per(x[ck(j)+97ε,ck(j+1)−97ε)) > ε.

Finally, if (2.c) is satisfied, then per(τ(zj)) ≥ per(x[fj+8ε,fj+1−8ε)) > ε.

Lemma 4.37 Suppose that z−1z0z1 ∈ CapCpCap. Then, there exists a decomposition τ(z−1z0z1) =
usmu′ such that:

(1) ε ≤ |u| ≤ |τ(z−1)| − 2ε and ε ≤ |u′| ≤ |τ(z1)| − 2ε.

(2) s ∈ rootσ(B).

(3) s is not a suffix of u and is not a prefix of u′.

Proof. Let us denote k(j) = kx(j). We define s = root τ(z0). Then, as z0 ∈ Cp, Lemma 4.36
ensures that |s| ≤ ε, x[f0−8ε,f1+8ε) = sZ[−8ε,f1−f0+8ε), s = rootσ(y[k(0),k(1))) and that [k(0), k(1))

is of periodic type in y. Thus, by Lemma 4.30, s = rootσ(yk(0)) ∈ σ(B). In particular, s
satisfies Item (2) of this lemma.

Now, we can find an interval I = [i, j) containing [f0− 8ε, f1 +8ε) such that xI = sZ[i−f0,j−f0)

and that no other interval strictly containing I satisfies the same properties. We observe
that i ≥ f−1 + 8ε as, otherwise, per(x[f−1+8ε,f0−8ε)) ≤ ε, contradicting the fact that, since
z−1 ∈ Cap, Item ((2.c)) Lemma 4.36 holds. Similarly, j ≤ f2− 8ε. From these two things and
the fact that I contains [f0 − 8ε, f1 + 8ε) we obtain that

f−1 + 8ε ≤ i ≤ f0 − 8ε and f1 + 8ε ≤ j ≤ f2 − 8ε. (4.35)

This allows us to write x[f−1,f1) = usmv, where |u| ∈ [i − f−1, i − f−1 + |s|), m ≥ 0 and
|v| ∈ [f2 − j, f2 − j + |s|).
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We have from (4.35) that |u| ≥ i − f−1 ≥ 8ε and |v| ≥ f2 − j ≥ 8ε. Moreover, as |s| ≤ ε,
|u| ≤ f0 − f−1 − 7ε = |τ(a)| − 7ε and |v| ≤ f2 − f1 − 7ε = |τ(a′)| − 7ε. This proves that
Item (1) of the lemma holds. Item (3) follows from the fact that |s| ≤ ε, (4.35) and the
maximality of I.

4.5.4 Proof of Propositions 4.28 and 4.29

We are ready to prove the main results of this section.

Proof of Proposition 4.29. Let x, x̃ ∈ X be such that per(x[−ε,ε)) > ε and x[−7d2n,7d2n) =

x̃[−7d2n,7d2n). We define (c, y) = F(Y,σ)(x), (c̃, ỹ) = F(Y,σ)(x̃), (f, z) = F(Z,τ)(x) and (f̃ , z̃) =

F(Z,τ)(x̃). Let k(j) = kx(j) and k̃(j) = kx̃(j) be the sequences from Lemma 4.34. With this

notation, we have to prove that f0 = f̃0 and z0 = z̃0.

Note that per(x[f0−8ε,f1+8ε)) ≥ per(x[−ε,ε)) > ε. Thus, by Lemma 4.36, [k(0), k(1)) is of
aperiodic type in y.

We claim that

[ck(0)−1 − 3dn, ck(1)+1 + 3dn) is contained in [−7d2n, 7d2n) (4.36)

Note that, by Items ((2)) and ((3)) in Lemma 4.34, ck(0) ≤ f0+81ε ≤ 81ε and ck(1) ≥ f1 ≥ 0.
Hence, ck(1)+1 ≤ ck(0) + (k(1) − k(0) + 1)|σ| ≤ 81ε + (k(1) − k(0) + 1)|σ| and ck(0)−1 ≥
ck(1) − (k(1)− k(0) + 1)|σ| ≥ −(k(1)− k(0) + 1)|σ|. Since, by Lemma 4.31, [k(0), k(1)) has
at most 2d + 1 elements, and since |σ| ≤ 3dn by Item ((2)) in Proposition 4.17, we obtain
that ck(1)+1 + 3dn ≤ 7d2n and ck(0)−1 − 3dn ≥ −7d2n. This shows (4.36).

Thanks to (4.36), we can use the fact that (Y, σ) is 3dn-recognizable (Item ((3)) of Proposition
4.17) to deduce that

ck = c̃k and yk = ỹk for all k ∈ [k(0)− 1, k(1) + 1). (4.37)

We now observe that (4.36) and the hypothesis guarantees that

x[ck−99ε,ck+1+99ε) = x̃[c̃k−99ε,c̃k+1+99ε) for every k ∈ [k(0)− 1, k(1) + 1). (4.38)

Thus, for any such k, k ∈ Qp(y) if and only if Qp(ỹ). It is then not difficult to verify, using
the definition of stable interval, that if i ∈ {0, 1} then

(I) k(i) = k̃(i);

(II) the type of [k(i), k(i+ 1)) in y and the type of [k̃(i), k̃(i+ 1)) in ỹ are equal.

Then, (I) and (4.38) imply that

x[k(0)−99ε,k(1)+99ε) = x̃[k̃(0)−99ε,k̃(1)+99ε). (4.39)

We claim that
f0 = f̃0 and f1 = f̃1. (4.40)
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Let i ∈ {0, 1}. We consider two cases. First, we assume that [k(i), k(i + 1)) is of aperiodic
type in y. Then, then by (II), [k̃(i), k̃(i+ 1)) is of aperiodic type in ỹ. Hence, by Item ((2))
in Lemma 4.34, fi = ck(i) and f̃i = c̃k̃(i). This gives fi = f̃i by (I) and (4.37).

Next, we assume that [k(i), k(i+1)) is of periodic type in y. Then, [k̃(i), k̃(i+1)) is of periodic
type in ỹ by (II). Hence, by Lemma 4.30, s = rootσ(y[k(i),k(i+1))) and s̃ = rootσ(ỹ[k̃(i),k̃(i+1)))

satisfy |s|, |s̃| ≤ ε, x[ck(i),ck(i)+2ε) is equal to s
Z
[0,2ε) and x̃[c̃k̃(i),c̃k̃(i)+2ε) is equal to s̃

Z
[0,2ε). In this

situation, (I) and (4.38) ensures that

sZ[0,2ε) = x[ck(i),ck(i)+2ε) = x̃[c̃k̃(i),c̃k̃(i)+2ε) = s̃Z[0,2ε).

Since |s|, |s̃| ≤ ε, this allows us the use of Theorem 4.8 and deduce that s = s̃. Putting
this and the fact that [k(i), k(i+ 1)) and [k̃(i), k̃(i+ 1)) are of periodic type in Item ((2)) of
Lemma 4.34 produces fi = ck(i)− |sℓ| and f̃i = c̃k̃(i)− |sℓ|, where ℓ = ⌈80ε/|s|⌉. Therefore, as
ck(i) = c̃k̃(i) by (I) and (4.37), fi = f̃i. This completes the proof of (4.40).

Finally, we show that z0 = z̃0. Item (2) in Lemma 4.34 gives that |fi−ck(i)| ≤ 81ε. Hence, by
(4.39) and (4.40), x[f0,f1) = x̃[f0,f1) = x̃[f̃0,f̃1). We conclude that τ(z0) = τ(z̃0), and therefore
that z0 = z̃0 as τ is injective on letters by Proposition 4.4.

We end this section with the proof of Proposition 4.28.

Proof of Proposition 4.28. Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). Let k(j) =
kx(j) be the sequence from Lemma 4.34.

We start with Item (ii). Let a ∈ Cap. By minimality, there exists j ∈ Z such that zj = a. We
compute as follows:

|τ(zj)| = |fj+1 − fj| ≤ |fj+1 − ck(j+1)|+ (k(j + 1)− k(j))|σ|+ |fj − ck(j)|. (4.41)

On one hand, we have by Item (2) in Lemma 4.34 that |fj+1 − ck(j+1)| and |fj − ck(j)| are at
most 81ε. On the other hand, since zj ∈ Cap, Lemma 4.36 ensures that [k(j), k(j + 1)) is of
aperiodic type in y. Hence, by Lemma 4.31, #[k(j), k(j + 1)) ≤ 2d + 1. Putting these two
things in (4.41) yields |τ(zj)| ≤ 2 · 81ε+ (2d+ 1)|σ| ≤ 10d2n.

Let now a ∈ C and j ∈ Z be such that zj = a. Then, by Lemma 4.34, |τ(a)| = fj+1−fj ≥ 80ε.

Next, we consider Item (i) and the inequality #Cap ≤ 2d3d+6. Observe that Lemmas 4.30 and
4.31 ensure that

|σ(y[k(j),k(j+1)))| ≥ pε for all j ∈ Z. (4.42)

This allows us to define uj as the prefix of σ(y[k(j),k(j+1))) of length 2ε.

We claim that

if [k(j), k(j + 1)) is of periodic type, then

rootσ(y[k(j),k(j+1))) is the prefix of uj of length per(uj). (4.43)
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Let us suppose that [k(j), k(j + 1)) is of periodic type. Then, Lemma 4.30 states that
s = rootσ(y[k(j),k(j+1))) satisfies |s| ≤ ε and x[ck(j)−99ε,ck(j+1)+99ε) = sZ[−99ε,|σ(y[k(j),k(j+1)))|+99ε). In

particular, since uj = x[ck(j),ck(j)+2ε), s
Z
[0,2ε) = uj. Being |s| ≤ ε, we obtain that s2 is a prefix of

uj and that per(uj) ≤ |s|. This permits to use Item ((1)) in Proposition 4.13 to obtain that
per(s2) = per(uj). Moreover, |s| = per(s2) by Lemma 4.9; therefore, |s| = per(s2) = per(uj).
Since sZ[0,2ε) = uj, this shows that s is the prefix of uj of length per(uj), completing the proof
of the claim.

We now use (4.43) to prove the following:

if zj ∈ Cap, then τ(zj) is uniquely determined by

σ(y[k(j),k(j+1))) and wheter zj+1 belongs to Cap. (4.44)

Suppose that zj ∈ Cap. We consider two cases. If zj+1 ∈ Cap, then Lemma 4.36 ensures
that [k(j), k(j + 1)) and [k(j + 1), k(j + 2)) are of aperiodic type in y, and so, by Item
((2)) in Lemma 4.34, that τ(zj) = σ(y[k(j),k(j+1))). If zj+1 ∈ Cap, then Lemma 4.36 ensures
that [k(j), k(j + 1)) is of aperiodic type and that [k(j + 1), k(j + 2)) is of periodic type.
Hence, by ((2)) in Lemma 4.34, τ(zj) = x[ck(j),ck(j+1)−|sℓ|), where s = rootσ(y[k(j+1),k(j+2))) and

ℓ = ⌈80ε/|s|⌉. Now, (4.43) says that s is determined by σ(y[k(j),k(j+1))), and the definition of
ℓ depends only on s. Therefore, τ(zj) = x[ck(j),ck(j+1)−|sℓ|) is determined σ(y[k(j),k(j+1))). The

proof of (4.44) is complete.

Finally, we bound Cap. Condition (4.44) implies that #τ(Cap) is at most 2 times the number
of words of the form σ(y[k(j),k(j+1))), where j ∈ Z is such that zj ∈ Cap. Note that if zj ∈ Cap
then Lemma 4.36 gives that [k(j), k(j + 1)) is of aperiodic type, and thus, by Lemma 4.31,
we have that the length of [k(j), k(j+1)) is at most 2d+1. Hence, there are at most #Bd+2

words σ(y[k(j),k(j+1))) such that zj ∈ Cap. We conclude that #τ(Cap) ≤ 2·#Bd+2, and therefore
that #Cap ≤ 2d3d+6 by Item ((2)) in Proposition 4.17 and the fact that τ is injective on letters

Next, we prove that # root τ(C) ≤ 3d3d+6. Since # root τ(Cap) ≤ #Cap ≤ 2d3d+6 by what we
just proved and since # rootσ(B) ≤ #B ≤ d3 by Item ((2)) in Proposition 4.17, it is enough
to show that

root τ(Cap) ⊆ {rootσ(y0) : y ∈ Y, 0 ∈ Qp(y)}. (4.45)

Let a ∈ Cp and j ∈ Z be such that zj = a. Thanks to Lemma 4.36, we have that root τ(zj) =
rootσ(y[k(j),k(j+1))) and that [k(j), k(j + 1)) is of periodic type in y. Hence, by Lemma 4.30,
root τ(zj) = rootσ(yk(j)). This proves (4.45) and thereby that # root τ(C) ≤ 3d3d+6.

We now prove that #Cp ≤ 2d3d+9 pow-com(X) using Lemma 4.37. Let U = {zj−1zjzj+1 : j ∈
Z, zj ∈ Cp}. We define the map π : U → ∪s∈rootσ(B)PowX(s) as follows. For aba

′ ∈ U , Lemma
4.37 gives a decomposition τ(aba′) = usmu′. We set π(aba′) = sm. Observe that Item (3) in
Lemma 4.37 ensures that sm ∈ PowX(s), and, by Item (2) of the same lemma, s ∈ rootσ(B).

We claim that
if aba′, ab̃a′ ∈ U and π(aba′) = π(ab̃a′), then b = b̃. (4.46)

Let τ(aba′) = usmu′ and τ(ab̃a′) = ũs̃m̃ũ′ be the decompositions from the definition of π.
With this notation, the hypothesis π(aba′) = π(ab̃a′) is equivalent to sm = s̃m̃. Then, as
s = root s and s̃ = root s̃, s = s̃ and m = m̃.
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We now prove that u = ũ. First, we assume without loss of generality that |ũ| ≤ |u|. Then,
Lemma 4.37 ensures that

τ(a) is prefix of both usm and ũsm and that |ũ| ≤ |u| ≤ |τ(a)| − 2ε. (4.47)

This implies that sZ[0,|τ(a)|−|u|) = (S|u|−|ũ|sZ)[0,|τ(a)|−|u|). Combining this with the bound |τ(a)|−
|u| ≥ 2ε ≥ 2|s| given by (4.47) allow us to use Item ((1)) in Proposition 4.10 and conclude
that sZ = S|u|−|ũ|sZ. Then, by Item ((2)) of the same proposition, |u| = |ũ| (mod |s|). From
this and (4.47) we deduce that u = ũsℓ for some ℓ ≥ 0. But since, by Item (3) in Lemma
4.37, s is not a suffix of u, we must have that ℓ = 0. Therefore, u = ũ.

We can show, in a similar fashion, that u′ = ũ′. This allows us to conclude that τ(aba′) =
τ(ab̃a′) = usmu′, and thus that τ(b) = τ(b̃). Being τ injective on letters by Proposition 4.4,
b = b′ and the claim is proved.

Condition (4.46) implies that #Cp ≤ #C2ap ·#(∪s∈rootσ(B)PowX(s)). Hence, #Cp ≤ #C2ap ·#B ·
pow-com(X). Since #Cap ≤ 2d3d+6 and since #B ≤ d3 by Item ((2)) in Proposition 4.17, it
follows that Cp ≤ 2d3d+9 pow-com(X).

Item ((3)) is a direct consequence of Proposition 4.29.

Let us prove Item ((4)). Lemma 4.36 ensures that (Z, τ) satisfies Items ((1)) and ((2)) of
Definition 4.6. Let now x ∈ X, (c, z) = F(Z,τ)(x) and a ∈ Cp be such that root τ(z0) is
conjugate to root τ(a). We note that, by Lemma 4.36, | root τ(z0)| = | root τ(a)| ≤ ε. Hence,
per(x[c0+8ε,c1−8ε)) ≤ | root τ(z0)| ≤ ε. This implies, by Lemma 4.36, that z0 ∈ Cap. We can
then use (4.45) to get that root τ(z0) = rootσ(y0) and root τ(a) = rootσ(y′0) for certain y, y

′ ∈
Y such that 0 ∈ Qp(y) ∩ Qp(y

′). We remark that, since root τ(z0) is conjugate to root τ(a),
the words rootσ(y0) and rootσ(y′0) are conjugate. Therefore, y and y′ satisfy the hypothesis
of Item (3) of Lemma 4.30. We conclude that root τ(z0) = rootσ(y0) = rootσ(y′0) root τ(a).

It is left to prove Item ((5)). Let j ∈ Z. We have, from Lemma 4.30, that [k(j), k(j + 1)) or
[k(j+1), k(j+2)) is of aperiodic type. Hence, by Lemma 4.36, zj or zj+1 belongs to Cap.

4.6 The third coding

We continue refining the codings. The main addition to this version is that the words τ(a)
have controlled lengths. The properties of the new coding are summarized in Proposition
4.38.

Proposition 4.38 Let X ⊆ AZ be a minimal infinite subshift, n ≥ 1 and let d be the
maximum of ⌈pX(n)/n⌉, pX(n+ 1)− pX(n), #A and 104. There exist a recognizable coding
(Z ⊆ CZ, τ : C → A+) of X, a partition Cap∪Csp∪Cwp of C and ε ∈ [n/d2d

3+4, n/d) such that:

(1) #Cap ≤ 2d3d+6, #Csp ≤ 3d3d+6, #Cwp ≤ 2d3d+9 pow-com(X)4 and # root τ(C) ≤ 5d3d+6.

(2) 20ε ≤ |τ(a)| ≤ 10d2n for all a ∈ C.

(3) (Z, τ) satisfies the recognizability property described in Proposition 4.39.
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(4) (Z, τ) has dichotomous periods w.r.t. (Cap, Csp ∪ Cwp) and 8ε.

(5) The set Csp satisfies the property described in Proposition 4.40.

Remark 4.6 Assume the notation of Proposition 4.38. Then, a ∈ C \ Cap implies that
| root τ(a)| = per(τ(a)). Indeed, Item ((4)) ensures that | root τ(a)| ≤ ε, and Item ((2)) that
|τ(a)| ≥ 2ε, therefore, by Lemma 4.9, | root τ(a)| = per(τ(a)).

Proposition 4.39 Consider the coding described in Proposition 4.38. For any x, x̃ ∈ X, we
have that:

(1) If per(x[−ε,ε)) > ε and x[−7d2n,7d2n) = x̃[−7d2n,7d2n), then F0
(Z,τ)(x) is equal to F(Z,τ)(x̃).

(2) If k ≥ 0, x[−50d2n,k+50d2n) = x̃[−50d2n,k+50d2n) and F0
(Z,τ)(x) is equal to F(Z,τ)(x̃), then

F0
(Z,τ)(S

kx) is equal to F(Z,τ)(S
kx̃).

Proposition 4.40 The coding of Proposition 4.38 satisfies the following.

(1) If z ∈ Z and i < j are integers such that zk ∈ C \ Cap for all k ∈ [i, j + 1), then
zk = zi ∈ Csp for all k ∈ [i, j) and root τ(zk) = root τ(zi) for all k ∈ [i, j + 1).

(2) If a ∈ Csp, then τ(a) = (root τ(a))2
r
, where r is the unique integer for which 2r| root τ(a)|

belongs to [20ε, 40ε).

We now introduce the notation that will be used in this section. Let X ⊆ AZ be a minimal
infinite subshift, n ≥ 1 and let d be the maximum of ⌈pX(n)/n⌉, pX(n + 1) − pX(n), #A
and 104. Then, Proposition 4.28 applied to X and n gives a recognizable coding (Y ⊆
CZY , σ : C → A+) of X, a partition CY = Cp∪Cap, and an integer ε ∈ [n/d2d

3+4, n/d) satisfying
the properties described in Proposition 4.28.

The strategy to prove the main proposition of this section is the following. The coding (Z, τ)
will be obtained from (Y, σ) by splitting the words in σ(Cp) into subwords of carefully chosen
lengths. This will maintain most of the properties of (Y, σ) at the same time that we gain
control on the lengths of all the words τ(a). A delicate part involves defining the splittings of
the words in σ(Cp) in such a way that (Z, τ) has the recognizability properties in Proposition
4.39.

4.6.1 Construction of the third coding

For s ∈ rootσ(Cp), we define ζ(s) as the unique power of two such that ζ(s) · |s| lies in
[20ε, 40ε). Note that, by Item ((4)) of Proposition 4.28, we have that ζ(s) ≥ 1. Then, for
a ∈ Cp, we can define pa and qa as the unique integers satisfying

pa · ζ(rootσ(a)) + qa =
|σ(a)|

| rootσ(a)|
and 0 < qa ≤ ζ(rootσ(a)). (4.48)

It is important to remark that Item ((2)) in Proposition 4.28 ensures that pa ≥ 2.
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For a ∈ Cp, let

ψsp(a) = (rootσ(a))ζ(rootσ(a)) and ψwp(a) = (rootσ(a))ζ(rootσ(a))+qa .

Note that
σ(a) = ψsp(a)

pa−1ψwp(a) for all a ∈ Cp.

We also choose bijections

ϕsp : Csp → ψsp(Cp) and ϕwp : Cwp → ψwp(Cp),

where Csp, Cwp and Cap are pairwise disjoint. Then, we define for a ∈ CY ,

η(a) =

{
a if a ∈ Cap
ϕ−1
sp (ψsp(a))

pa−1ϕ−1
wp(ψwp(a)) if a ∈ Cwp

(4.49)

Let CZ = Cap ∪ Csp ∪ Cwp and, for a ∈ CZ , we set

τ(a) =


σ(a) if a ∈ Cap
ϕsp(a) if a ∈ Csp
ϕwp(a) if a ∈ Cwp

(4.50)

It then follows that
σ = τη. (4.51)

Finally, we set Z =
⋃

k∈Z S
kη(Y ).

Let us comment on the definition of τ . Equation (4.51) says that σ(a) = τ(a) if a ∈ Cap and
that σ(a) = τ(b)pa−1τ(c) if a ∈ Cp, b = ϕ−1

sp (ψsp(a)) and c = ϕ−1
wp(ψwp(c)). In other words, τ is

obtained from σ by slicing the words σ(a).

4.6.2 Proof of Propositions 4.38, 4.39 and 4.40

Proof of Proposition 4.38. We start with Item (1). Item ((1)) in Proposition 4.28 gives the
bound #Cap ≤ 2d3d+6. Also, it follows from the definitions and Item ((1)) in Proposition 4.28
that

#Csp = #ψsp(Cp) = # rootσ(Cp) ≤ 3d3d+6 and

#Cwp = #ψwp(Cp) ≤ #Cp ≤ 2d3d+9 · pow-com(X).

Now, using 4.50 yields root τ(CZ \ Cap) = rootσ(Cp). Therefore, # root τ(CZ) ≤ #Cap +
# rootσ(Cp), which gives # root τ(CZ) ≤ 4d3d+6 if we use the bounds #Cap ≤ 2d3d+6 and
# rootσ(CY ) ≤ 3d3d+6, where the last bound is given by Item ((1)) in Proposition 4.28.

We now consider Item (2). Let a ∈ CZ . If a ∈ Cap, then by Item ((2)) in Proposition 4.28
we have that 20ε ≤ |τ(a)| = |σ(a)| ≤ 10d2n. If a ∈ CZ \ Cap and s = root τ(a), then (4.50)
implies that

|τ(a)| =

{
ζ(s)|s| if a ∈ Csp
(ζ(s) + qa)|s| if a ∈ Cwp
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Since 20ε ≤ ζ(s)|s| < 40ε and 0 < qa ≤ |ζ(s)|, we obtain that 20ε ≤ |τ(a)| ≤ 80ε ≤ 10d2n.

Next, we prove Item (3). Let x ∈ X, (c, y) = F(Y,σ) and (f, z) = F(Z,τ)(x). We use Lemma
4.3 to obtain m ∈ [0, |η(y0)|) such that

η(y0) = z[−m,−m+|η(z0)|) and c0 = f0 − |τ(z[−m,0))|. (4.52)

We first assume that z0 ∈ Cap. Then, Equation (4.52) implies that z0 occurs in η(y0), and
thus, since z0 ∈ Cap, Equation (4.49) ensures that η(y0) = y0 ∈ Cap. Hence, m = 0, z0 = y0,
c0 = f0 and c1 = c0 + |σ(y0)| = f0 + |τ(z0)| = f1. Using this and Item ((4)) of Proposition
4.28 with x and (c, y) produces

per(x[f0+8ε,f1−8ε)) = per(x[c0+8ε,c1−8ε)) > ε.

Let us now assume that z0 ∈ CZ \Cap. This condition and Equation (4.49) imply that y0 ∈ Cp.
Hence, we can use Item ((4)) in Proposition 4.28 to obtain that per(x[c0−8ε,c1+8ε)) ≤ ε. We
conclude, since (4.49) guarantees that [f0, f1) is contained in [c0, c1), that per(x[f0−8ε,f1+8ε)) ≤
per(x[c0−8ε,c1+8ε)) ≤ ε.

It rests to prove that (Z, τ) satisfies Item ((3)) of Definition 4.6. Let a ∈ CZ \ Cap be such
that root τ(z0) is conjugate to root τ(a). We have from (4.52) that z0 occurs in η(y0), so, by
(4.49), root τ(z0) = rootσ(y0). Similarly, a occurs in η(b) and root τ(a) = rootσ(b) for some
b ∈ CY . The first condition and (4.49) imply, as a ∈ CZ \Cap, that b ∈ Cp. Now, the hypothesis
ensures that rootσ(y0) is conjugate to rootσ(b). Therefore, as (Y, σ) has dichotomous periods
w.r.t. (Cap, Cp), we can use Item (3) of Definition 4.6 to obtain that rootσ(y0) = rootσ(b).
We conclude that root τ(z0) = root τ(a), completing the proof of Item (3).

Finally, for Items (4) and (5), we present the proofs of Propositions 4.39 and 4.40 hereafter.

Lemma 4.41 Let Cblock be the set of words aℓb, where a ∈ Csp, b ∈ Cwp, ℓ ≥ 1 and root τ(a) =
root τ(b). Then, any z ∈ Z can be written as z = . . . w−1w0w1 . . . , where wj ∈ Cblock or
wj ∈ Cap and wjwj+1 ̸∈ C2block.

Proof. Let z ∈ Z and (c, y) = F(Y,σ)(τ(z)). We set wj = η(yj). The definition of η in (4.49)
ensures that wj ∈ Cblock∪Cap. Moreover, Item ((5)) in Propositions 4.28 says, in this context,
that wjwj+1 ̸∈ C2block for all j ∈ Z. Finally, by Lemma 4.3 we have that z = Sℓη(y) for some
ℓ ∈ Z, and thus that z = . . . w−1w0w1 . . .

We can now present the proof of Proposition 4.40.

Proof of Proposition 4.40. Item ((2)) directly follows from the definition of τ in (4.50).
Let us prove Item ((1)). Let z ∈ Z be such that z[i,j+1) ⊆ (CZ \ Cap)+. We write z =
. . . w−1w0w1 . . . as in Lemma 4.41 and let Cblock be the set defined in Lemma 4.41. Then, the
hypothesis z[i,j+1) ∈ (CZ \ Cap)+ and the condition wkwk+1 ̸∈ Cblock imply that z[i,j+1) occurs
in wk for certain k ∈ Z such that wk ∈ Cblock. Hence, zℓ = zi ∈ Csp for all ℓ ∈ [i, j) and
root τ(zk) = root τ(zi) for all k ∈ [i, j + 1).
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Lemma 4.42 Let z, z̃ ∈ Z and ℓ ≥ 1 be such that τ(z̃[0,ℓ)) is a prefix of τ(z0). Then,
z0 ∈ CZ \ Cap implies that z̃i ∈ CZ \ Cap and root τ(z̃i) = root τ(z0) for all i ∈ [0, ℓ).

Proof. First, we note that, by Item ((4)) in Proposition 4.38, per(τ(z̃i)) ≤ per(τ(z0)) ≤ ε for
all i ∈ [0, ℓ). Thus, by Item ((4)) in Proposition 4.38, z̃i ∈ CZ \ Cap for all i ∈ [0, ℓ).

Let s = root τ(z0). In order to continue, we claim that

if a ∈ CZ \ Csp and τ(a) is a prefix of s∞, then root τ(a) = s.

First, we note τ(a) is a prefix of (root τ(a))∞. Also, Item ((4)) in Proposition 4.38 guarantees
that | root τ(a)| ≤ ε and that |s| ≤ ε. Hence, as |τ(a)| ≥ 2ε by Item ((2)) in Proposition
4.38, we can use Theorem 4.8 to deduce that root τ(a) and s are powers of a common word
r. This implies that s = root τ(a) = root r.

We now prove that root τ(z̃i) = s for i ∈ [0, ℓ) by induction on i. If i = 0, then we have from
the hypothesis that τ(z̃0) is a prefix of τ(z0) and that z̃0 ∈ CZ \ Cap. Thus, root τ(z̃0) = s by
the claim. Let us assume now that 0 < i < ℓ and that root τ(z̃j) = s for j ∈ [0, i). Then,
τ(z̃[0,i)) is a power of s. Being τ(z̃[0,i]) a prefix of τ(z0)

∞ = s∞, we deduce that τ(z̃i) is a
prefix of s∞. This allows us to use the claim and obtain that root τ(z̃i) = s. This finishes the
inductive step and the proof of the lemma.

Finally, we prove Proposition 4.39

Proof of Proposition 4.39. We fix the following notation for this proof. Let x, x̃ ∈ X,
(f, z) = F(Z,τ)(x), (f̃ , z̃) = F(Z,τ)(x̃), (c, y) = F(Y,σ)(x) and (c̃, ỹ) = F(Y,σ)(x̃).

We start by proving Item (1). Assume that per(x[−ε,ε)) > ε and that x[−7d2n,7d2n) = x′[−7d2n,7d2n).

We have to show that f0 = f̃0 and z0 = z̃0.

We claim that

(i) c0 = c̃0 and y0 = ỹ0;

(ii) y0 ∈ Cap and ỹ0 ∈ Cap;

(iii) z0 = y0, f0 = c0, z̃0 = ỹ0 and f̃0 = c̃0.

Item (i) follows from the fact that the current hypothesis allows us to use Item ((3)) of
Proposition 4.28 to get that F0

(Y,σ)(x) = F0
(Y,σ)(x̃), which is equivalent to (i). For Item

(ii), we note that if y0 ∈ CY \ Cap = Cp, then Item ((4)) in Proposition 4.28 implies that
per(x[c0−8ε,c1+8ε)) ≤ ε. Hence, as [−ε, ε) is included in [c0 − 8ε, c1 + 8ε), per(x[−ε,ε)) ≤ ε,
contradicting our hypothesis. Therefore, y0 = ỹ0 ∈ Cap.

To prove Item (iii), we first note that Lemma 4.3 gives an integer m ∈ [0, |τ(z0)|) such that

y[−m,−m+|η(z0)|) = η(z0) and −c0 = −f0 + |η(z)[0,m)|. (4.53)

In particular, y0 occurs in η(z0). Since Item (ii) ensures that y0 ∈ Cap, it follows from the
definition of η in (4.49) that η(y0) = y0 = z0. Putting this in (4.53) gives that m = 0 and
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c0 = f0. A similar argument shows that z̃0 = ỹ0 and f̃0 = c̃0 as well. This completes the
proof of the claim.

Items (i) and (iii) of the claim imply that (f0, z0) = (f̃0, z̃0), proving Item (1) of the proposi-
tion.

Before proving Item (2), we claim that

if z0 ∈ Cap and x[−17d2n,17d2n) = x̃[−17d2n,17d2n), then F0
(Z,τ)(x) = F0

(Z,τ)(x̃). (4.54)

To prove (4.54), we start by using Item ((4)) in Proposition 4.38 to obtain that per(x[f0+8ε,f1−8ε)) >
ε. Thus, by Item ((2)) in Proposition 4.13, there exists j ∈ [f0 + 8ε, f1 − 8ε) satisfying

per(x[j−ε,j+ε)) > ε. (4.55)

Now, since j ∈ [f0+8ε, f1−8ε) and |τ | ≤ 10d2n, we have that j ∈ [−10d2n, 10d2n). Therefore,
by the hypothesis x[−17d2n,17d2n) = x̃[−17d2n,17d2n), x̃[j−7d2n,j+7d2n) = x[j−7d2n,j+7d2n). Combining
this with (4.55) allows us to use Item (1) of this proposition and deduce that

F0
(Z,τ)(S

jx) = F0
(Z,τ)(S

jx̃). (4.56)

Observe that the condition j ∈ [f0 + 8ε, f1 − 8ε) implies that F0
(Z,τ)(S

jx) = (f0 − j, z0). Let
i be the integer satisfying f̃i ≤ j < f̃i+1 and note that F0

(Z,τ)(S
jx̃) = (f̃i − j, z̃i). Then, by

(4.56), f0 = f̃i and z0 = z̃i. In particular, f̃i = f0 ≤ 0 < f1 = f̃i+1, so i = 0. We conclude
that F0

(Z,τ)(x) = (f0, z0) = (f̃0, z̃0) = F0
(Z,τ)(x̃).

We now prove Item (2). Assume that F0
(Z,τ)(x) = F0

(Z,τ)(x̃). The is equivalent to z0 = z̃0 and

f0 = f̃0, so f1 = f̃1 as well. Hence,

F0
(Z,τ)(S

ix) = F0
(Z,τ)(S

ix̃) for all i ∈ [f0, f1). (4.57)

We are going to prove that

if x[−50d2n,50d2n) = x̃[−50d2n,50d2n), then F0
(Z,τ)(S

f1x) = F0
(Z,τ)(S

f1x̃). (4.58)

The lemma then follows from an inductive argument on k that uses Equations (4.57) and
(4.58).

Let us assume that x[−50d2n,50d2n) = x̃[−50d2n,50d2n). We consider two cases. First, we as-
sume that z1 or z̃1 belongs to Cap. There is no loss of generality in assuming that z1
is the one belonging to Cap. Observe that the hypothesis and that |τ | ≤ 10d2n ensure
that x[f1−7d2n,f1+7d2n) = x̃[f1−7d2n,f1+7d2n). This allows us to use (4.54) and deduce that
F0

(Z,τ)(S
f1x) = F0

(Z,τ)(S
f1x̃).

We now consider the case in which z1 and z̃1 belong to CZ \ Cap. Observe that, since f1 = f̃1,
we have that F0

(Z,τ)(S
f1x) = (0, z1) and F0

(Z,τ)(S
f1x̃) = (0, z̃1). Thus, it is enough to show

that z1 = z̃1.
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We assume without loss of generality that |τ(z1)| ≥ |τ(z̃1)|. Let ℓ be the integer satisfying
f̃ℓ ≤ f2 < f̃ℓ+1. Remark that ℓ ≥ 2 as f̃2 = f̃1 + |τ(z̃1)| ≤ f1 + |τ(z1)| = f2. Being f̃1 = f1
and f̃ℓ ≤ f2, the hypothesis x[−50d2n,50d2n) = x̃[−50d2n,50d2n) and the bound |τ | ≤ 7d2n ensure
that τ(z̃[1,ℓ)) is a prefix of τ(z1). Hence, since we assumed that z1 ∈ CZ \ Csp, Lemma 4.42
yields that

z̃i ∈ CZ \ Cap and root τ(z̃i) = root τ(z1) for all i ∈ [1, ℓ). (4.59)

We set s = root τ(z1). It then follows from 4.59 and 4.50 that for any i ∈ [1, ℓ)

z1 =

{
sζ(s) if z1 ∈ Csp
sζ(s)+qz1 if z1 ∈ Cwp

z̃i =

{
sζ(s) if z̃i ∈ Csp
sζ(s)+qz̃i if z̃i ∈ Cwp

(4.60)

We can use this to prove that |τ(z1)| = |τ(z̃1)| implies that z1 = z̃1. Indeed, in the case
z1 ∈ Csp, it follows from (4.60) and the fact that qa > 0 for all a ∈ Cwp that τ(z̃1) =
τ(z1) = sζ(s), and thus that z̃1 = z1 = ψ−1

sp (sζ(s)). Similarly, if z1 ∈ Cwp, then (4.48) and
the equation root τ(z1) = root τ(z̃1) ensure that qz1 = qz̃1 , and thus from (4.60) we get that
τ(z̃1) = τ(z1) = sζ(s)+qz1 . In particular, z̃1 = z1 = ψ−1

wp (s
ζ(s)+qz1 ).

It is left to consider the case |τ(z1)| > |τ(z̃1)|, so let us assume that this condition is satisfied.
Then, by (4.60) and the fact that qa > 0 for all a ∈ Cwp,

z1 ∈ Cwp and z̃1 ∈ Csp. (4.61)

In this situation, Item ((1)) in Proposition 4.40 ensures that z2 ∈ Cap. Now, observe that
f3 ≤ 3|τ | ≤ 30d2n and f2 ≥ 0; so the hypothesis x[−50d2n,50d2n) = x̃[−50d2n,50d2n) gives that
x[f2−7d2n,f3+7d2n) = x̃[f2−7d2n,f3+7d2n). Hence, we can use (4.54) to obtain that F0

(Z,τ)(S
f2x) is

equal to F0
(Z,τ)(S

f2x̃). More precisely, since f̃ℓ ≤ f2 < f̃ℓ+1, we can write

(f̃ℓ − f2, z̃ℓ) = F0
(Z,τ)(S

f2x̃) = F0
(Z,τ)(S

f2x) = (0, z2).

Hence, the equation F0
(Z,τ)(S

f2x) = F0
(Z,τ)(S

f2x̃) is equivalent to

f̃ℓ = f2 and z̃ℓ = z2. (4.62)

In particular, τ(z̃[1,ℓ)) = τ(z1).

Now, since z1 ∈ Cwp, we have by Item ((1)) in Proposition 4.40 that z̃ℓ = z2 ∈ Cap. Therefore,
Item ((1)) in Proposition 4.40 guarantees that z̃i ∈ Csp for all i ∈ [0, ℓ − 1) and z̃ℓ−1 ∈ Csp.
Combining this with (4.60) and the equality τ(z̃[1,ℓ)) = τ(z1) produces that

(ζ(s) + qz1)|s| = |τ(z1)| = |τ(z̃[0,ℓ))| = (ℓζ(s) + qz̃ℓ−1
)|s|.

Since qz1 ≤ ζ(s) and qz̃ℓ−1
> 0, we conclude that ℓ ≤ 1. But then τ(z1) = τ(z̃[1,ℓ)) is the

empty word, which contradicts the definition of τ . Therefore, the case |τ(z1)| > |τ(z̃1)| does
not occur and the proof is complete.

4.7 The fourth coding

In this section, we give the final versions of the codings needed in the proof of the main
theorems. The new element of these codings is that it is possible to connect them using
morphisms.
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The section has two parts. In the first one, we construct the new codings, using Proposition
4.38 and a modified higher block construction, and present their basic properties. Then,
in the second one, we show how we can connect two of these codings using the morphism
described in Subsection 4.7.2.

4.7.1 Construction of the fourth coding

Let X ⊆ AZ be an infinite minimal subshift, n ≥ 0 and let d be the maximum of ⌈pX(n)/n⌉,
pX(n+1)−pX(n), #A and 104. We use Proposition 4.38 withX and n to obtain a recognizable
coding (Y ⊆ BZ, σ : B → A+) of X, a partition B = Bap ∪ Bsp ∪ Bwp and an integer ε ∈
[n/d2d

3+4, n/d) satisfying Items (1) to (5) of Proposition 4.38.

We start with the following observation. Since (Y, σ) is a recognizable coding of a minimal
subshift, Y is minimal; thus, for all y ∈ Y there exists k < 0 such that yk ∈ Bap. This
observation allows us to define the map L(y) = max{k < 0 : yk ∈ Bap} that returns the index
of the first-to-the-left symbol in Bap.

Let ψ0 : Y → B4 be the map y 7→ yL(y)y−1y0y1 and ψ(y) = (ψ0(S
jy))j∈Z. We treat ψ(y) as a

sequence over the alphabet B4 and define Z = ψ(Y ) ⊆ (B4)Z. We set

C = {z0 : z ∈ Z} ⊆ B4. (4.63)

Let θ(aa−1a0a1) = a0 for aa−1a0a1 ∈ C and τ = σθ. Remark that

θψ(y) = y for any y ∈ Y . (4.64)

We abuse a bit of the notation and define L(z) = max{k < 0 : zk ∈ Cap} for z ∈ Z. Note
that L(ψ(y)) = L(y) for y ∈ Y .

Basic properties of the fourth coding

We present here the basic properties of (Z, τ).

Lemma 4.43 The pair (Z, τ) is a recognizable coding of X.

Proof. It follows from the definitions that ψ commutes with the shift and that it is continu-
ous; hence Z = ψ(Y ) is a subshift. Also, by (4.64), we have that θψ(y) = y for any y ∈ Y , so
Y = θψ(Y ) = θ(Z). Therefore, (Z, θ) is a coding of Y . It is easy to see from the definition
of Z that (Z, θ) is recognizable. Hence, as (Y, σ) is recognizable as well, Lemma 1.1 tells us
that (Z, σθ) is recognizable. Being τ = σθ, we conclude that (Z, τ) is recognizable.

Thanks to the last lemma, F(Z,τ)(x) and F0
(Z,τ)(x) are defined for every x ∈ X.

Lemma 4.44 Let x ∈ X, (c, y) = F(Y,σ)(x) and (f, z) = F(Z,τ)(x). Then, ck = fk and
ψ0(S

ky) = zk for all k ∈ Z.
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Proof. On one hand, (4.64) implies that τψ(y) = σθψ(y) = σ(y), and thus that S−c0τ(ψ(y))
is equal to S−c0σ(y) = x. On the other hand, σ(y0) is equal to τ(ψ0(y)) = τ(ψ(y)0); so, as
(−c0, y) is a σ-factorization, [0, |σ(y0)|) = [0, |τ(ψ(y)0)|) contains −c0. From these two things,
we conclude that (−c0, ψ(y)) is a τ -factorization of x. Then, since (Z, τ) is recognizable by
Lemma 4.43, (−c0, ψ(y)) and (−f0, z) are the same τ -factorization, that is, c0 = f0 and
ψ(y) = z. We use this to compute, for j ≥ 0,

fj = −f0 + |τ(z[0,j))| = −c0 + |τ(ψ(y)[0,j))| = −c0 + |σ(y[0,j))| = cj,

where in the last step we used that τ(ψ(y)) = σ(y). A similar computation shows that fj = cj
for j < 0 as well.

The last lemma has the following important consequence. For any x ∈ X, the cut functions of
its σ-factorization in Y and of its τ -factorization in Z are the same. Therefore, we can simply
write (c, y) = F(Y,σ)(x) and (c, z) = F(Z,τ)(x). This will be tacitly used in this subsection.

Lemma 4.45 Let x, x̃ ∈ X, (c, z) = F(Z,τ)(X) and (c̃, z̃) = F(Z,τ)(x̃). If z0 = z̃0, then
x[cL(z),cL(z)+1) = x̃[c̃L(z̃),c̃L(z̃)+1) and x[cj ,cj+1) = x̃[c̃j ,c̃j+1) for j ∈ [−1, 1].

Proof. Let (c, y) = F(Y,σ)(x) and (c̃, ỹ) = F(Y,σ)(x̃). Then, by Lemma 4.44 and the hypothesis

yL(y)y−1y0y1 = ψ0(y) = z0 = z̃0 = ψ0(ỹ) = ỹL(ỹ)ỹ−1ỹ0ỹ1.

Hence,
x[cL(z),cL(z)+1) = σ(yL(y)) = σ(ỹL(ỹ)) = x̃[c̃L(z̃),c̃L(z̃)+1).

Similarly, x[c−1,c2) = σ(y−1y0y1) is equal to x̃[c̃−1,c̃2) = σ(ỹ−1ỹ0ỹ1).

Let
Cap = θ−1(Bap), Cwp = θ−1(Bwp) and Csp = θ−1(Bsp). (4.65)

Note that, since Bap ∪Bwp ∪Bsp is a partition of B, the sets Cap, Cwp and Csp form a partition
of C = θ−1(B).

Proposition 4.46 The following conditions hold:

(1) 20ε ≤ |τ(a)| ≤ 10d2n for all a ∈ C.

(2) #τ(Cap) ≤ 2d3d+6, #(root τ(C)) ≤ 5d3d+6 and #C ≤ 74d12d+36 pow-com(X)4.

(3) (Z, τ) has dichotomous periods w.r.t. (Cap, Csp ∪ Cwp) and 8ε.

Proof. We start with the proof of Items ((2)) and ((1)). We have, from the equation τ = σθ
and (4.65), that

τ(Cap) = σ(Bap) and τ(C) = B.

Thus, by Item ((1)) in Proposition 4.38, #τ(Cap) = #σ(Bap) ≤ 2d3d+6 and #(root τ(C)) =
#(rootσ(B)) ≤ 5d3d+6. Also, from the definition of C we get that #C ≤ #B4. Putting the
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bounds from Item ((1)) of Proposition 4.38 in this inequality gives that #C ≤ 74d12d+36 pow-com(X)4.
Item ((1)) follows from the equation τ(C) = B and Item ((2)) of Proposition 4.38.

We now prove Item ((3)). Let x ∈ X be arbitrary and define (c, z) = F(Z,τ)(x) and (c, y) =
F(Y,σ)(x). Equation (4.65) ensures that y0 ∈ Bap if and only if z0 ∈ Cap. We also note that, by
Lemma 4.44, root τ(z0) = rootσ(y0). Therefore, Item ((3)) of this proposition follows Item
((4)) in Proposition 4.38.

Remark 4.7 As was similarly observed in Remark 4.6, a consequence of Items ((3)) and
((1)) in Proposition 4.46 is that, for all a ∈ C \ Cap, | root τ(a)| = per(τ(a)).

Proposition 4.47 Let z ∈ Z.

(1) If i < j are integers such that zk ∈ C \ Cap for all k ∈ [i, j), then root τ(zk) = root τ(zi)
if k ∈ [i, j), zk ∈ Csp if k ∈ [i, j − 1), and zk = zi+1 for all i ∈ [i+ 1, j − 1).

(2) If z0 ∈ Csp, then τ(a) = (root τ(a))2
r
, where r is the unique integer for which 2r| root τ(a)|

belongs to [20ε, 40ε).

Proof. Suppose that i < j satisfy zk ∈ C \Cap for all k ∈ [i, j+1). Let us denote F(Y,σ)(τ(z))
by (c, y). Then, by Lemma 4.44, yk = θ(zk) ∈ B\Bap for all k ∈ [i, j+1). In this context, Item
((1)) of Proposition 4.40 ensures that rootσ(yk) = rootσ(yi) if k ∈ [i, j+1) and yk = yi ∈ Bsp
if k ∈ [i, j) We deduce, as τ(zk) = σ(yk), that root τ(zk) = root τ(zi) for all k ∈ [i, j + 1).
Also, for any k ∈ [i, j), we have that zk ∈ θ−1(yk) ∈ Bsp. Now, since yk ∈ C \ Cap if [i, j + 1),
we have that yL(Sky) = yL(Siy) for all k ∈ [i, j + 1). Combining this with the fact that yk = yi
if k ∈ [i, j) yields

ψ0(S
ky) = yL(Sky)yk−1ykyk+1 = yL(Siy)yiyiyi for all k ∈ [i+ 1, j − 1).

We conclude, using Lemma 4.44, that zk = zi+1 for k ∈ [i+ 1, j − 1).

Lemmas 4.48, 4.50 and 4.49 will use the following notation:

E = 50d2n.

Observe that |σ| ≤ E, |τ | ≤ E and that E is bigger than or equal to the constants 7d2 and
50d2n appearing in Proposition 4.39.

Lemma 4.48 Let x, x̃ ∈ X be such that x[−3E,3E) = x̃[−3E,3E) and per(x[−ε,ε)) > ε. Let
(c, z) = F(Z,τ)(x) and (c̃, z̃) = F(Z,τ)(x̃). Then, τ(z0) = τ(z̃0) and F0

(Z,τ)(S
c1x) = F0

(Z,τ)(S
c1x̃).

In particular, c0 = c̃0 and c1 = c̃1.

Proof. We use the notation (c, y) = F(Y,σ)(x) and (c̃, ỹ) = F(Y,σ)(x̃). Observe that the
hypothesis x[−3E,3E) = x̃[−3E,3E) allows us to use Item ((3)) in Proposition 4.38 to obtain that

F0
(Y,σ)(S

ix) = F0
(Y,σ)(S

ix̃) for all i ∈ [0, 2E]. (4.66)
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In particular, c0 = c̃0 and y0 = ỹ0. Thus, by Lemma 4.44, τ(z0) = σ(y0) = σ(ỹ0) = τ(z̃0).
Also, for j ∈ {1, 2} we have that 0 ≤ cj ≤ c2 ≤ 2E, so (4.66) can be applied to deduce that
F0

(Y,σ)(S
cjx) = F0

(Y,σ)(S
cj x̃). Then,

y[0,3) = ỹ[0,3) and cj = c̃j for all j ∈ [0, 3). (4.67)

Before continuing, we prove that
y0, ỹ0 ∈ Cap. (4.68)

We note that if y0 ∈ C\Cap, then Item ((3)) in Proposition 4.46 gives that per(x[c0−8ε,c1+9ε)) ≤
ε, which is impossible since we assumed that per(x[−ε,ε)) > ε. Thus, y0 ∈ Cap. Similarly,
ỹ0 ∈ Cap as x̃[−ε,ε) = x[−ε,ε).

We can now finish the proof. The condition c1 = c̃1 follows from (4.67). Also, we have
from Lemma 4.44 that z1 = ψ0(Sy) = L(Sy)y0y1y2 and z̃1 = ψ0(Sy) = L(Sỹ)ỹ0ỹ1ỹ2. Now,
Equation (4.68) guarantees that L(Sy) = y0 and L(Sỹ) = ỹ0. Therefore, by Equation (4.67),
z1 = z̃1. We conclude, using that c1 = c̃1, that

F0
(Z,τ)(S

c1x) = (0, z1) = (0, z̃1) = F0
(Z,τ)(S

c1x̃). (4.69)

Lemma 4.49 Let x, x̃ ∈ X, (c, z) = F(Z,τ)(x) and (c̃, z̃) = F(Z,τ)(x̃). Suppose that x[−4E,4E) =
x̃[−4E,4E) and z0 ∈ Cap. Then, τ(z0) = τ(z̃0) and F0

(Z,τ)(S
c1x) = F0

(Z,τ)(S
c1x̃). In particular,

c0 = c̃0 and c1 = c̃1.

Proof. The condition z0 ∈ Cap implies, by Item ((3)) in Proposition 4.46, that per(x[c0,c1)) >
ε. Thus, by Item ((2)) in Lemma 4.13, there is i ∈ [c0, c1) such that per(x[i−ε,i+ε)) > ε. Now,
since |τ | ≤ E, the hypothesis ensures that (Six)[i−ε,i+ε) is equal to (Six̃)[i−ε,i+ε). Therefore,
we can use Lemma 4.48 and conclude that τ(z0) = τ(z̃0) and F0

(Z,τ)(S
c1x) = F0

(Z,τ)(S
c1x̃).

Lemma 4.50 Let x, x̃ ∈ X and k ≥ 0 be an integer. Suppose that F0
(Z,τ)(x) = F0

(Z,τ)(x̃) and

that x[−3E,k+3E) = x̃[−3E,k+3E). Then, F
0
(Z,τ)(S

ix) = F0
(Z,τ)(S

ix̃) for all i ∈ [0, k].

Proof. We only prove that F0
(Z,τ)(Sx) = F0

(Z,τ)(Sx̃) if F
0
(Z,τ)(x) = F0

(Z,τ)(x̃) and that x[−3E,1+3E) =
x̃[−3E,1+3E), as then an inductive argument on i gives the lemma.

Let us write (c, y) = F(Y,σ)(x) and (c̃, ỹ) = F(Y,σ)(x). Then, by Lemma 4.44, z = ψ(y) and
z̃ = ψ(ỹ) satisfy (c, z) = F(Z,τ)(x) and (c̃, z̃) = F(Z,τ)(x). Hence, the hypothesis F0

(Z,τ)(x) =

F0
(Z,τ)(x̃) is equivalent to z0 = z̃0 and c0 = c̃0. This implies two things:

(i) yL(y)y−1y0y1 = ψ0(y) = z0 = z̃0 = ψ0(ỹ) = ỹL(ỹ)ỹ0ỹ1ỹ2.

(ii) c1 = c0 + |σ(y0)| = c̃1 + |σ(ỹ0)| = c̃1 and, similarly, c2 = c̃2.

We deduce that, for any i ∈ [0, c1),

F0
(Z,τ)(S

ix) = (c0 − i, z0) = (c̃0 − i, z̃0) = F0
(Z,τ)(S

ix̃).
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In particular, if c1 > 0 then F0
(Z,τ)(Sx) = (c0 − 1, z0) is equal to F0

(Z,τ)(Sx̃) = (c̃0 − 1, z̃0) and
the proof is complete.

We now assume that c1 = 1 (so c̃1 = 1 as well by (ii)). In this case, F0
(Z,τ)(Sx) = (0, z1) and

F0
(Z,τ)(Sx̃) = (0, z̃1); thus, it is enough to prove that z1 = z̃1.

We observe that, since z1 = ψ0(Sy) and z̃1 = ψ0(Sỹ),

(1) z1 = y0y0y1y2 if y0 ∈ Bap and z1 = yL(y)y0y1y2 if y0 ̸∈ Bap, and

(2) z̃1 = ỹ0ỹ0ỹ1ỹ2 if ỹ0 ∈ Bap and z̃1 = ỹL(ỹ)ỹ0ỹ1ỹ2 if ỹ0 ̸∈ Bap.

From these relations and (i) we deduce that

z1 = z̃1 if and only if y2 = ỹ2.

Now, since F0
(Y,σ)(x) = (c0, y0) = (c̃0, ỹ0) = F0

(Y,σ)(x̃) and since we assumed that x[−3E,1+3E) =

x̃[−3E,1+3E), we can use Item ((3)) in Proposition 4.38 to obtain that F0
(Y,σ)(S

ix) is equal to

F0
(Y,σ)(S

ix̃) for any i ∈ [0, 2E]. In particular, since c2 satisfies 0 ≤ c2 ≤ c0 + 2|σ| ≤ 2E, we
have that

(0, y2) = F0
(Y,σ)(S

c2x) = F0
(Y,σ)(S

c2x̃) = F0
(Y,σ)(S

c̃2x̃) = (0, ỹ2),

where we used that c2 = c̃2 by (ii). It follows that y2 = ỹ2 and thus that F0
(Z,τ)(Sx) is equal

to F0
(Z,τ)(Sx̃).

4.7.2 Connecting two levels

In this subsection, we consider two of the codings constructed in Subsection 4.7.1 and prove
several lemmas that relate them. We start by fixing the necessary notation.

Let X be a minimal infinite subshift, n, n′ ≥ 1 be integers and let d be the maximum of
⌈pX(n)/n⌉, ⌈pX(n′)/n′⌉, pX(n+1)−pX(n), pX(n′+1)−pX(n′), #A and 104. Let E = 50d2n
and E ′ = 50d2n′. We will assume throughout the subsection that

n′ ≥ d2d
3+4 · 500d2n. (4.70)

We consider the recognizable codings (Z ⊆ CZ, τ : C → A+) and (Z ′ ⊆ C ′Z, τ ′ : C ′ → A+) of
X obtained from n and n′ as in Subsection 4.7.1, respectively. Let also ε′ ∈ [n′/d2d

3+4, n′/d)
and ε ∈ [n/d2d

3+4, n/d) be the constants defined in Subsection 4.7.1, and let us denote by
Cap∪Csp∪Cwp and C ′ap∪C ′sp∪C ′wp the partitions of C and C ′ defined there. Let L(z) = max{k <
0 : zk ∈ Cap} and L′(z′) = {k < 0 : z′k ∈ C ′ap} for z ∈ Z and z′ ∈ Z ′.

The crucial relation between (Z ′, τ ′) and (Z, τ) is the following inequality, which is a conse-
quence of (4.70):

ε′ ≥ 10E. (4.71)

Preliminary lemmas

We fix, for the rest of Subsection 4.7.2, a point x ∈ X and the notation (c, z) = F(Z,τ)(x)
and (c′, z′) = F(Z′,τ ′)(x).
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Lemma 4.51 Suppose that per(τ ′(z′0)) ≤ ε. Let i ∈ [c′0 − 7ε′, c′1 + 7ε′) and j be the integer
satisfying i ∈ [cj, cj+1). Then, zj = z0 ∈ Csp, | root τ(zj)| = | root τ ′(z′0)| and cj = c0
(mod | root τ ′(z′0)|).

Proof. The condition per(τ ′(z′0)) ≤ ε ≤ ε′ implies that z′0 ∈ C ′ \ C ′ap. Hence, by Item ((3)) in
Proposition 4.46,

x[c′0−8ε′,c′1+8ε′) = (root τ ′(z′0))
Z
[−8ε′,|τ ′(z′0)|+8ε′) (4.72)

and
| root τ ′(z′0)| = per(τ ′(z′0)) ≤ ε. (4.73)

Equation (4.72) implies the following: If k is the integer satisfying c′0−7ε′ ∈ [ck, ck+1) and ℓ is
the integer satisfying c′0−7ε′ ∈ [cℓ, cℓ+1), then τ(zj) ∈ C \Cap for all j ∈ [k, ℓ). Indeed, for any
such j, we have that τ(zj) = x[cj ,cj+1) occurs in x[c′0−7ε′−3E,c′1+7ε′+3E), and so per(τ(zj)) ≤ ε,
which implies, by Item ((3)) in Proposition 4.46, that zj ∈ C \ Cap. We can then use Item
((1)) in Proposition 4.47 to get that

zj = zk+1 ∈ Csp and cj = ck+1 (mod | root τ(zk+1)|) for all j ∈ [k + 1, ℓ− 1).

Since ε′ ≥ |τ |, ck+1 ≤ c0 ≤ cℓ−1, so we in particular have that

zj = z0 ∈ Csp and cj = c0 (mod | root τ(z0)|). (4.74)

We are now going to prove that | root τ(z0)| is equal to | root τ ′(z′0)|. The lemma would follow
from this and (4.74).

Note that τ ′(z′0) and τ(z0) occur in x[c′0−8ε′,c′1+8ε′). Also, Item ((1)) in Proposition 4.46 ensures
that τ ′(z′0) and τ(z0) have length at least 2ε. Then, as per(x[c′0−8ε′,c′1+8ε′)) ≤ ε by (4.72) and
(4.73), we can use Item ((1)) of Proposition 4.13 to deduce that

per(τ(z0)) = per(x[c′0−8ε′,c′1+8ε′)) = per(τ ′(z′0)) ≤ ε.

In this situation, Item ((3)) in Proposition 4.46 guarantees that z0 ∈ C\Cap and | root τ(z0)| =
per(τ(z0)) = per(τ ′(z′0)). Equation (4.73) then yields | root τ(z0)| = | root τ ′(z′0)|.

Lemma 4.52 Assume that z′0 ∈ C ′ \ C ′ap and that per(τ ′(z′0)) > ε. Let x̃ ∈ X and suppose

that x[−3ε′,3ε′) = x̃[−3ε′,3ε′). Then, F
0
(Z,τ)(x) = F0

(Z,τ)(x̃).

Proof. The hypothesis gives that per(x[c′0,c′1)) = per(τ ′(z′0)) > ε, and Item ((1)) in Proposition
4.46 that |x[c′0,c′1)| ≥ 2ε. Hence, we can use Item ((2)) of Proposition 4.13 to obtain i0 ∈ [c′0, c

′
1)

such that
per(x[i0−ε,i0+ε)) > ε.

Now, since z′0 ∈ C ′ \ C ′ap, Item ((3)) of Proposition 4.46 applies, so

per(x[c′0−8ε′,c′1+8ε′)) ≤ ε′.

This implies, as ε ≤ ε′, that there exists i ∈ [−2ε′,−ε′) such that x[i−ε,i+ε) = x[i0−ε,i0+ε).
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Our plan is to derive the lemma using Lemma 4.48 with Six and Six̃. First, we note that

per((Six)[−ε,ε)) = per(x[i−ε,i+ε)) = per(x[i0−ε,i0+ε)) > ε. (4.75)

Also, since 4E ≤ ε′ and i ∈ [−2ε′,−ε′), we have that [i − 4E, i + 3ε′ + 4E) is contained in
[−3ε′, 3ε′). Thus, by the hypothesis x[−3ε′,3ε′) = x̃[−3ε′,3ε′),

(Si+Ex)[−4E,3ε′+3E) = x[i−3E,i+3ε′+4E)

= x̃[i−3E,i+3ε′+4E) = (Si+Ex̃)[−4E,3ε′+3E). (4.76)

In particular,
(Six)[−3E,3E) = (Six̃)[−3E,3E). (4.77)

Equations (4.75) and (4.77) allow us to use Lemma 4.48 and deduce that

F0
(Z,τ)(S

i+Ex) = F0
(Z,τ)(S

i+Ex̃).

Furthermore, the last equation and (4.76) are the hypothesis of Lemma 4.50; hence,

F0
(Z,τ)(S

i+E+kx) = F0
(Z,τ)(S

i+E+kx̃) for any k ∈ [0, 3ε′). (4.78)

Since i ∈ [−2ε′,−ε′) and E ≤ ε′, k := −(i + E) belongs to [0, 3ε′), so (4.78) gives that
F0

(Z,τ)(x) = F0
(Z,τ)(x̃).

Lemma 4.53 Suppose that z′0 ∈ C ′sp. Then,

F0
(Z,τ)(S

c′0+ix) = F0
(Z,τ)(S

c′1+ix) for any i ∈ [−5ε′, 5ε′).

Proof. We consider two cases. First, we assume that per(τ ′(z′0)) ≤ ε. This allows us to
use Lemma 4.51 and obtain that, if i ∈ [c′0 − 7ε, c′1 + 7ε) and j is the integer satisfying
i ∈ [cj, cj+1), then

cj = c0 (mod | root τ ′(z′0)|), zj = z0 ∈ Csp and

| root τ(zj)| = | root τ ′(z′0)|. (4.79)

Let i ∈ [−5ε′, 5ε′) be arbitrary and denote by k and ℓ the integers satisfying c′0+ i ∈ [ck, ck+1)
and c′1+i ∈ [cℓ, cℓ+1). With this notation, F0

(Z,τ)(S
c′0+ix) = (ck−c′0−i, zp) and F0

(Z,τ)(S
c′1+ix) =

(cℓ − c′1 − i, zq), so we have to prove that zk = zℓ and ck − c′0 − i = cℓ − c′1 − i.

We have, by (4.79), that zk = zℓ. Thus, it only rests to prove that ck − c′0 − i = cℓ − c′1 − i.

We note that the definition of k and ℓ ensures that

(i) ck ≤ c′0 + i < ck+1 = ck + |τ(zk)|; and

(ii) cℓ ≤ c′1 + i < cℓ+1 = cℓ + |τ(zℓ)|.
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If we use the equality cℓ = ck + (ℓ − k)|τ(z0)|, which is a consequence of (4.79), and that
c′1 = c′0 + |τ ′(z′0)| to replace cℓ and c

′
1 in (ii), we get that

ck ≤ c′0 + i+ (|τ ′(z′0)| − (ℓ− k)|τ(z0)|) < ck + |τ(z0)|.

This and (i) yield
||τ ′(z′0)| − (ℓ− k)|τ(z0)|| < |τ(z0)|. (4.80)

Now, since z0 ∈ Csp and | root τ(zk)| = | root τ ′(z′0)| by (4.79) and since z′0 ∈ C ′sp by the
hypothesis, the definition of Csp and C ′sp in Proposition 4.46 guarantees that |τ(z0)| divides
|τ ′(z′0)|. Therefore, the inequality in (4.80) is possible only if |τ ′(z′0)| = (ℓ − k)|τ(z0)|. We
conclude, as (4.79) implies that cℓ = ck + (ℓ− k)|τ(z0)|, that

cℓ = ck + (ℓ− k)|τ(z0)| = ck + |τ ′(z′0)| = ck + c′1 − c′0.

Hence, ck − c′0 − i = cℓ − c′1 − i and the proof of the first case is complete.

Next, we assume per(τ ′(z′0)) > ε. Observe that the condition z′0 ∈ C ′sp implies that z′0 ∈ C ′\C ′ap.
Hence, by Item ((3)) in Proposition 4.46, x[c′0−8ε′,c′1+8ε′) = (root τ ′(z′0))

Z
[−8ε′,|τ ′(z′0)|+8ε′) and

| root τ ′(z′0)| = per(τ ′(z′0)) ≤ ε. In particular, if i ∈ [−5ε′, 5ε′), then x[c′0+i−3ε′,c′0+3ε′) is equal

to x[c′1+i−3ε′,c′1+3ε′). Then, the hypothesis of Lemma 4.52 is satisfied for Sc′0+ix and Sc′1+ix,

and thus we obtain that F0
(Z,τ)(S

c′0+ix) = F0
(Z,τ)(S

c′1+ix) for any i ∈ [−5ε′, 5ε′).

Lemma 4.54 Let x̃ ∈ X and (c̃, z̃) = F(Z,τ)(x̃). Suppose that z′0 ∈ Cap, k ≥ 1, and that
x[c0,c1+k+8ε′) = x̃[c̃0,c̃1+k+8ε′). Then,

F(Z,τ)(S
c′1+ix) = F(Z,τ)(S

c̃′1+ix̃) for all i ∈ [−7ε′, k + 7ε′). (4.81)

Proof. First, Item ((3)) in Proposition 4.46 ensures that per(x[c′0+8ε′,c′1−8ε′)) > ε′ ≥ ε. Thus,
Item ((2)) in Proposition 4.13 ensures that there exists an integer m such that

m ∈ [c′0 + 8ε′, c′1 − 8ε′) and per(x[m−ε,m+ε)) > ε. (4.82)

Using that 4E ≤ ε′ and m ∈ [c′0+8ε′, c′1− 8ε′) it can be checked that [m− 3E, c′1+7ε′+3E)
is contained in [c′0, c

′
1 + 8ε′). Hence, by the hypothesis x[c′0,c′1+8ε′) = x̃[c̃′0,c̃′1+8ε′),

(Sm+Ex)[−4E,c′1+7ε′−m+3E) = x[m−3E,c′1+7ε′+4E)

= x̃[m−3E+c̃′0−c′0,c
′
1+7ε′+4E+c̃′0−c′0)

= (Sm+c̃′0−c′0+Ex̃)[−4E,c′1+7ε′−m+3E). (4.83)

In particular, as c′1 −m ≥ 0 by (4.82),

(Smx)[−3E,3E) = (Sm+c̃′0−c′0x̃)[−3E,3E).

This and (4.82) allow us to use Lemma 4.48 and deduce that

F0
(Z,τ)(S

m+Ex) = F0
(Z,τ)(S

m+c̃′0−c′0+Ex̃).
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The last equation and (4.83) imply that the hypothesis of Lemma 4.50 holds; therefore, for
every j ∈ [0, c′1 + 7ε′ −m), F0

(Z,τ)(S
m+E+jx) = F0

(Z,τ)(S
m−c′0+c̃′0+E+jx̃). Equivalently,

F0
(Z,τ)(S

jx) = F0
(Z,τ)(S

−c′0+c̃′0+jx̃) for all j ∈ [m+ E, c′1 + (r − 1)ε′). (4.84)

We will derive (4.81) from this.

Let i ∈ [−7ε′, 7ε′) be arbitrary. Then, (4.82) and the inequality E ≤ ε′ imply that j :=
c′1 + i ∈ [m+ E, c′1 + 7ε′). Hence, Equation (4.84) gives that

F0
(Z,τ)(S

c′1+ix) = F0
(Z,τ)(S

i+c′1−c′0+c̃′0x̃). (4.85)

Now, we observe that
c′1 − c′0 = |τ(z′0)| = |τ(z̃′0)| = c̃′1 − c̃′0,

so i+ c′1 − c′0 + c̃′0 = i+ c̃1. Therefore, the lemma follows from (4.85).

Proposition 4.55 Let x, x̃ ∈ X and suppose that F0
(Z′,τ ′)(x) = F0

(Z′,τ ′)(x̃). Then,

F0
(Z,τ)(S

ix) = F0
(Z,τ)(S

ix̃) for all i ∈ [c′0 − 4ε′, c′2 − ε′). (4.86)

Proof. The hypothesis implies that c′0 = c̃′0 and z′0 = z̃′0. Combining this with Lemma 4.45
yields

x[c′
L′(z′),c

′
L′(z′)+1

) = x̃[c̃′
L′(z̃′),cL′(z̃′)+1)

, x[c′j ,c′j+1)
= x̃[c′j ,c′j+1)

and c′j = c̃′j for j ∈ [−1, 1]. (4.87)

This and the lower bound in Item ((1)) of Proposition 4.46 ensure that

x[c′0−8ε′,c′1+8ε′) = x̃[c̃′0−8ε′,c̃′1+8ε′). (4.88)

Next, we show that the following facts hold.

(i) (Sckx)[−8ε′,8ε′) = (Sclx)[−8ε′,8ε′) for all L
′(y′) < k, l ≤ 0.

(ii) (S c̃k x̃)[−8ε′,8ε′) = (S c̃lx̃)[−8ε′,8ε′) for all L
′(ỹ′) < k, l ≤ 0.

(iii) x[c′
L′(y′),c

′
L′(y′)+1

+8ε′) = x̃[c̃′
L′(ỹ′),c̃

′
L′(ỹ′)+1

+8ε′).

We start with Item (i). If L′(y′) = −1, then (i) is vacuously true. We assume that L′(y′) <
−1. Let k be such that L′(y′) < k < 0. The definition of L′ ensures that z′k ∈ C ′ \ C ′ap. So,
by Item ((3)) in Proposition 4.46, s := root τ ′(z′k) satisfies x[ck−8ε′,ck+1+8ε′) = sZ[−8ε′,|τ ′(z′k)|+8ε′).

In particular, as |τ ′(z′0)| = 0 (mod |s|),

x[ck−8ε′,ck+8ε′) = sZ[−8ε′,8ε′) = (S|τ ′(z′k)|sZ)[−8ε′,8ε′) = x[ck+1−8ε′,ck+1+8ε′).

Being this valid for all k ∈ [L′(z′) + 1, 0), an inductive argument gives (i). Fact (ii) follows
analogously. For (iii), we use (4.88), (i) and (ii) to deduce that

x[c′
L′(z′)+1

,c′
L′(z′)+1

+8ε′) = x[c0−8ε′,c0+8ε′) = x̃[c̃0−8ε′,c̃0+8ε′) = x̃[c̃′
L′(z̃′)+1

,c̃′
L′(z̃′)+1

+8ε′).
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Fact (iii) follows from this and the first equality in (4.87).

Now, since z′L′(z′) ∈ C
′
ap and since (iii) holds, the hypothesis of Lemma 4.54 are satisfied.

Therefore,

F0
(Z,τ)(S

c′
L′(z′)+1

+i
x) = F0

(Z,τ)(S
c̃′
L′(z̃′)+1

+i
x̃) for all i ∈ [−7ε′, 7ε′). (4.89)

In order to continue, we need to consider two cases. We first assume that L′(z′) = −1. Then,
z′−1 ∈ Cap, so (4.87) and Item ((3)) in Proposition 4.46 give

per(x̃[c̃′−1+8ε′,c̃′0−8ε′)) = per(x[c′−1+8ε′,c′0−8ε′)) > ε′.

This implies, by Item ((3)) in Proposition 4.46, that z̃−1 ∈ Cap. Hence, L′(z̃) = −1 and then
(4.86) follows from (4.89).

Next, we assume that L′(z′) ≤ −2. In this case, we first prove the following.

(a) F0
(Z,τ)(S

c′
L′(y′)+1

+i
x) = F0

(Z,τ)(S
c′−1+ix) for all i ∈ [−5ε′, 5ε′).

(b) F0
(Z,τ)(S

c̃′
L′(ỹ′)+1

+i
x̃) = F0

(Z,τ)(S
c̃′−1+ix̃) for all i ∈ [−5ε′, 5ε′).

We only prove (a) as (b) follows from an analogous argument. If L′(z′) = −2, then (a) is
trivially true. Assume then that L′(z′) ≤ −3. The definition of L′ ensures that z′j ∈ C ′ \ Cap
for all L′(z′) + 1 ≤ j ≤ −1. Thus, by Item ((1)) in Proposition 4.47, z′j ∈ Csp for all
L′(z′) + 1 ≤ j ≤ −2. This allows us to inductively apply Lemma 4.53 and deduce that, for
any i ∈ [−5ε′, 5ε′),

F0
(Z,τ)(S

c′
L′(z′)+1

+i
x) = F0

(Z,τ)(S
c′
L′(z′)+2

+i
x) = · · · = F0

(Z,τ)(S
c′−1+ix).

This shows (a).

Now, combining Equation (4.89), (a) and (b) produces

F0
(Z,τ)(S

c′−1+ix) = F0
(Z,τ)(S

c̃′−1+ix̃) for all i ∈ [−5ε′, 5ε′). (4.90)

We are going to derive (4.86) from this and (4.87).

Let i ∈ [c′0 − 4ε′, c′2 − ε′) be arbitrary. We note that (4.90) gives, in particular, that
x[c−1−5ε′,c−1+5ε′) = x̃[c̃−1−5ε′,c̃−1+5ε′). From this, (4.87) we get that

x[c−1−5ε′,c2) = x̃[c̃−1−5ε′,c̃2). (4.91)

In view of Equations (4.90) and (4.91) and of 3E ≤ ε′, the hypothesis of Lemma 4.50 holds;
hence,

F0
(Z,τ)(S

c′−1+jx) = F0
(Z,τ)(S

c̃′−1+jx̃) for all j ∈ [−4ε′, c′2 − c′−1 − ε′).
We set j = i − c′−1 and note that j ∈ [−4ε′, c′2 − c′−1 − ε′). Therefore, the last equation can
be used to obtain that

F0
(Z,τ)(S

ix) = F0
(Z,τ)(S

c′−1+jx) = F0
(Z,τ)(S

c̃′−1+jx̃) = F0
(Z,τ)(S

i+c̃′−1−c′−1x̃).

Being c̃′−1 = c′−1 by (4.87), we deduce that (4.86) holds.
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The connecting morphism

In this subsection, we build a morphism γ that connects (Z ′, τ ′) with (Z, τ). We start by
introducing the auxiliary map r : Z ′ → Z and proving some properties for it. The crucial
Proposition 4.57 will allow us to define the connecting morphism γ. We finish the section
with Propositions 4.60, 4.61 and 4.62, which will be crucial for proving (P1) in Theorems
4.75 and 4.76.

For z′ ∈ Z ′ and (c, z) = F(Z,τ)(τ
′(z′)), let

r(z′) =

{
0 if per(τ ′(z′0)) ≤ ε

min{i ≥ 0 : zi ∈ Cap} if per(τ ′(z′0)) > ε
(4.92)

Lemma 4.56 Let z′ ∈ Z ′ and (c, z) = F(Z,τ)(τ
′(z′)).

(1) If z′0 ∈ C ′ap, then cr(z′) ∈ [−ε′, |τ ′(z′0)| − 8ε′).

(2) If ε < | root τ ′(z′0)| ≤ ε′ and i is the integer satisfying |τ ′(z′0)| ∈ [ci, ci+1), then cr(z′) ∈
[−ε′, ε′) and ci+r(Sz′) ∈ [|τ ′(z′0)| − ε′, |τ ′(z′0)|+ ε′).

(3) If | root τ ′(z′0)| ≤ ε, then cr(z′) ∈ [−ε′, ε′).

Proof. We start with Item ((1)). Being r(z′) nonnegative by the definition of r, we have that
cr(z′) ≥ c0. Hence, cr(z′) ≥ −|τ | ≥ −ε′. To prove the other inequality, we note that the con-
dition z′0 ∈ C ′ap implies, by Item ((3)) in Proposition 4.46, that per(τ ′(z′)[8ε′,|τ ′(z′0)|−8ε′)) > ε.
Using Item (2) of Lemma 4.13, we get k ∈ [8ε′, |τ ′(z′0)|−8ε′) satisfying per(τ ′(z′)[k−ε′,k+ε′)) > ε.
Let j be the integer satisfying k ∈ [cj, cj+1). Then, per(τ

′(z′)[cj−8ε,cj+1+8ε)) ≥ per(τ ′(z′)[k−ε,k+ε)) >
ε, so zj ∈ Cap by Item ((3)) in Proposition 4.46. Also, since cj+1 ≥ k ≥ 0, we have that j ≥ 0.
We conclude, by the minimality condition in the definition of r, that r(z′) ≤ j. Therefore,
cr(z′) ≤ cj ≤ k ≤ |τ ′(z′0)| − 8ε′.

We now consider Item ((2)). Let s = root τ ′(z′0). Since |s| ≤ ε′, Item ((3)) in Proposition
4.46 ensures that per(τ ′(z′0)) = |s| ∈ (ε, ε′]. Thus, by Item (2) of Lemma 4.13, there is
k ∈ [0, |τ ′(z′0)|) such that per(τ ′(z′)[k−ε′,k+ε′)) > ε. Moreover, the condition |s| ≤ ε′ implies,
by Item ((3)) in Proposition 4.46, that per(τ ′(z′)[−8ε′,|τ ′(z′0)|+8ε′)) is at most ε′. Therefore, we
can find k0 ∈ [0, ε′) and k1 ∈ [|τ ′(z′0)|, |τ ′(z′0)|+ε′) satisfying τ ′(z′)[k−ε,k+ε) = τ ′(z′)[k0−ε,k0+ε) =
τ ′(z′)[k1−ε,k1+ε). In particular,

per(τ ′(z′)[k−ε,k+ε)) = per(τ ′(z′)[k0−ε,k0+ε)) = per(τ ′(z′)[k1−ε,k1+ε)) > ε. (4.93)

Let j0, j1 ∈ Z be the integers satisfying k0 ∈ [cj0 , cj0+1) and k1 ∈ [cj1 , cj1+1). Observe that, by
(4.93) and Item ((3)) in Proposition 4.46, zj0 and zj1 belong to Cap. Also, since cj0+1 ≥ k0 ≥ 0
and cj1+1 ≥ k1 ≥ |τ ′(z′0)| (where i is the element defined in the statement of the lemma),
we have that j0 ≥ 0 and j1 ≥ i. We conclude, from the definition of r, that r(z′) ≤ j0
and i + r(Sz′) ≤ j1. Therefore, cr(z′) ≤ cj0 ≤ k0 ≤ ε′ and ci+r(Sz′) ≤ cj1 ≤ |τ ′(z′0)| + ε′.
Finally, (4.92) ensures that r(z′) ≥ 0 and i + r(Sz′) ≥ i, so cr(z′) ≥ −|τ | ≥ −ε′ and
ci+r(Sz′) ≥ |τ ′(z′0)| ≥ |τ ′(z′0)| − ε′. This completes the proof of Item ((2)).
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For Item ((3)), we note that the condition |s| ≤ ε implies that per(τ ′(z′0)). Hence, r(z
′) = 0

and cr(z′) ∈ [−|τ |, 0] ⊆ [−ε′, ε′).

Proposition 4.57 Let z′, z̃′ ∈ Z ′, (c, z) = F(Z,τ)(τ
′(z′)) and (c̃, z̃) = F(Z,τ)(τ

′(z̃′)). We
define i and j as the integers satisfying |τ ′(z′0)| ∈ [ci, ci+1) and |τ ′(z̃′0)| ∈ [c̃j, c̃j+1). If z

′
0 = z̃′0,

then cr(z′) = c̃r(z̃′), ci+r(Sz′) = c̃j+r(Sz̃′) and z[r(z′),i+r(Sz′)) is equal to z̃[r(z̃′),j+r(Sz̃′)).

Proof. We start with some observations that will be used throughout the proof. Since
z′0 = z̃′0, Lemma 4.45 gives that

τ ′(z′−1) = τ ′(z̃′−1), τ
′(z′0) = τ ′(z̃′0) and τ ′(z′1) = τ ′(z̃′1).

In particular,
τ ′(z′0)[−|τ ′(z′−1)|,|τ ′(z′0z′1)|) = τ ′(z̃′0)[−|τ ′(z′−1)|,|τ ′(z′0z′1)|). (4.94)

Also, since z′0 = z̃′0, we have from Proposition 4.55 that

F0
(Z,τ)(S

kτ ′(z′)) = F0
(Z,τ)(S

kτ ′(z̃′)) for all k ∈ [−4ε′, |τ ′(z′0)|+ 4ε′). (4.95)

We now prove that
cr(z′) = c̃r(z̃′) and zr(z′) = z̃r(z̃′). (4.96)

Note that Lemma (4.56) ensures that

cr(z′), c̃r(z̃′) ∈ [−ε′, |τ ′(z′0)| − 8ε′). (4.97)

Hence, from (4.95) we get that F0
(Z,τ)(S

cr(z′)τ ′(z′)) = F0
(Z,τ)(S

cr(z′)τ ′(z̃′)). This implies the
following: If ℓ is the integer satisfying cr(z′) ∈ [c̃ℓ, c̃ℓ+1), then

cr(z′) = c̃ℓ and zr(z′) = z̃ℓ. (4.98)

Note that ℓ ≥ 0 (as c̃ℓ+1 = cr(z′)+1 ≥ 0). Being τ ′(z′0) = τ ′(z̃′0), we get, from (4.92), that
r(z̃′) ≤ ℓ. In particular, c̃r(z̃′) ≤ c̃ℓ = cr(z′). A symmetric argument shows that cr(z′) ≤ c̃r(z̃′),
which allows us to conclude that c̃r(z̃) = cr(z′). Then, it follows from (4.98) that c̃r(z̃) = c̃ℓ.
Therefore, r(z̃) = ℓ, and thus zr(z′) = z̃ℓ = z̃r(z̃) by (4.98). This proves (4.96).

Observe that (4.96) implies that F(Z,τ)(S
cr(z′)τ ′(z′)) is equal to F(Z,τ)(S

cr(z′)τ ′(z̃′)). This,
(4.94) and (4.97) permit to use Lemma 4.50 and obtain that

F0
(Z,τ)(S

kτ ′(z′)) = F0
(Z,τ)(S

kτ ′(z̃′)) for all k ∈ [cr(z′), |τ ′(z′0z′1)| − ε′). (4.99)

Then, since cr(z′) = c̃r(z̃′), we have, for any k ∈ Z such that ck ∈ [cr(z′), |τ ′(z′0z′1)| − ε′), that

ck = c̃k−r(z′)+r(z̃′) and zk = z̃k−r(z′)+r(z̃′). (4.100)

To continue, we consider two cases. Assume that per(τ ′(z′1)) ≤ ε. We note that, since
τ ′(z′1) = τ ′(z̃′1), per(τ

′(z̃′1)) ≤ ε. Hence, by (4.92), r(Sz′) = r(Sz̃′) = 0. Now, the definition
of i and j and (4.100) imply that ci = c̃j and zi = z̃j. Therefore, ci+r(Sz′) = c̃j+r(Sz̃′) and
zi+r(Sz′) = z̃j+r(Sz̃′). This completes the proof in this case.
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Let us now assume that per(τ ′(z′1)) > ε. We are going to argue as in the proof of (4.96).
Being τ ′(z′1) = τ ′(z̃′1), we have that per(τ ′(z̃′1)) > ε. Hence, by the definition of r, zi+r(Sz′)

and z̃j+r(Sz̃′) belong to Cap. Then, since ci+r(Sz′) ∈ [|τ ′(z′0) − ε′, |τ ′(z′0z′1)| − 8ε′) by Lemma
4.56, it follows from (4.99) that

F0
(Z,τ)(S

ci+r(Sz′)τ ′(z′)) = F0
(Z,τ)(S

ci+r(Sz′)τ ′(z̃′)).

Therefore, if k is the integer satisfying ci+r(Sz′) ∈ [c̃k, c̃k+1), then ci+r(Sz′) = c̃k and zi+r(Sz′) =
z̃k. As per(τ ′(z′1)) > ε, we have that z̃k = zi+r(Sz′) ∈ Cap. Also, since |τ ′(z′0)| = |τ ′(z̃′0)|,
c̃k+1 = ci+r(Sz′)+1 ≥ |τ ′(z̃′0)|, so k ≥ j. The last two things imply, by the definition of r(Sz̃′),
that c̃j+r(Sz̃′) ≤ c̃k = ci+r(Sz′). Similarly, ci+r(Sz′) ≤ c̃j+r(Sz̃′). We conclude that k = j+r(Sz̃′),
c̃j+r(Sz̃′) = ci+r(Sz′) and that z̃j+r(Sz̃′) = zi+r(Sz′).

Definition 4.8 The last proposition allows us to define γ : C ′ → C+ in such a way that, if
z′ ∈ Z ′, (c, z) = F(Z,τ)(τ

′(z′)) and i is the integer satisfying |τ ′(z′0)| ∈ [ci, ci+1), then

γ(z′0) = z[r(z′),i+r(Sz′)). (4.101)

We call γ the connecting morphism from (Z ′, τ ′) to (Z, τ).

Remark 4.8 Let z′ ∈ Z ′ and (c, z) = F(Z,τ)(τ
′(z′)). Then, (4.101) ensures that r(z′) +

|γ(z′0)| = i+ r(Sz′), where i is the integer satisfying |τ ′(z′0)| ∈ [ci, ci+1). This relation will be
freely used throughout this subsection.

The rest of this section is devoted to prove the main properties of γ. We first introduce some
notation. Let ρ(a′) = τ ′(a′) if a′ ∈ C ′ap and ρ(a′) = root τ ′(a′) if a′ ∈ C ′ \ C ′ap. We define
ψ(z′) = (ρ(z′−1), τ

′(z′0), ρ(z
′
1)) if z

′ ∈ Z ′. Let ρ(a) and ψ(z) be defined analogously for a ∈ C
and z ∈ Z.

We fix, for the rest of the section, points z′, z̃′ ∈ Z ′ and the notation (c, z) = F(Z,τ)(τ
′(z′))

and (c̃, z̃) = F(Z,τ)(τ
′(z̃′)).

Lemma 4.58 Let x, x̃ ∈ X, (c, z) = F(Z,τ)(x) and (c̃, z̃) = F(Z,τ)(x̃). If x[−ε′,ε′) = x̃[−ε′,ε′)

and z0 ∈ Cap, then ψ(z) = ψ(z̃).

Proof. The hypothesis implies that (Sc0x)[−E,E) = (Sc0x̃)[−E,E). Then, as z0 ∈ Cap, we
can use Lemma 4.49 to deduce that c0 = c̃0 and τ(z0) = τ(z̃0). It is left to show that
ρ(z−1) = ρ(z̃−1) and ρ(z1) = ρ(z̃1). We will only prove the first equality as the other follows
from a similar argument.

There are three cases. Assume first that z−1 ∈ Cap. Then, the hypothesis ensures that
(Sc0−1x)[−E,E) = (Sc0−1x̃)[−E,E). Since z−1 ∈ Cap, this permits using Lemma 4.49 with Sc0−1x
and Sc0−1x̃ to deduce that τ(z−1) = τ(z̃−1). The case z̃−1 ∈ Cap is analogous.

Let us now assume that z−1, z̃−1 ∈ C \Cap. We define s = root τ(z−1) and s̃ = root τ(z̃−1). We
have to prove that s = s̃. Observe that, by Item (3) in Proposition 4.46, sZ[−8ε,0) = x[c0−8ε,c0)

and s̃Z[−8ε,0) = x̃[c̃0−8ε,c̃0). Being c0 equal to c̃0 and since x[−ε′,ε′) = x̃[−ε′,ε′), we deduce that
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sZ[−8ε′,0) = s̃Z[−8ε′,0). Then, by Theorem 4.8, s and s̃ are power of a common word, which
implies that s = s̃.

Lemma 4.59 Suppose that ρ(z′0) = ρ(z̃′0) and that per(τ ′(z′0)) > ε. Assume that ρ(z′−1) =
ρ(z̃′−1) or that per(τ ′(z′0)) ≤ ε′. Then, cr(z′) = c̃r(z̃′) and ψ(S

r(z′)z) = ψ(Sr(z̃′)z̃).

Proof. We first prove the lemma in the case per(τ ′(z′0)) ≤ ε′. Note that the condition
ρ(z′0) = ρ(z̃′0) and Items ((1)) and ((3)) in Proposition 4.46 guarantee that per(τ ′(z̃′0)) =
per(τ ′(z′0)) ≤ ε′ and z′0, z̃

′
0 ∈ C ′ \ C ′ap. The first thing and Lemma 4.56 give

cr(z′), c̃r(z̃) ∈ [−ε′, ε′). (4.102)

The second thing and the hypothesis ρ(z′0) = ρ(z̃′0) imply that

τ ′(z′)[−8ε′,8ε′) = τ ′(z̃′)[−8ε′,8ε′). (4.103)

Now, we know from the definition of r and the condition per(τ ′(z′0)) = per(τ ′(z̃′0)) > ε that
zr(z′), z̃r(z̃′) ∈ Cap. Hence, by Equations (4.102) and (4.103), we can use Lemma 4.49 and
deduce the following: If i and j are the integers satisfying cr(z′) ∈ [c̃i, c̃i+1) and c̃r(z̃′) ∈
[cj, cj+1), then cr(z′) = c̃i and c̃r(z̃′) = cj. Therefore, by the definition of r, that c̃r(z̃′) ≤ c̃i =
cr(z′) and cr(z′) ≤ cj = c̃r(z̃′). We conclude that cr(z′) = c̃r(z̃′). This and Equations (4.102) and
(4.103) allow us to use Lemma 4.58, yielding ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃).

We now assume that ρ(z′−1) = ρ(z̃′−1) and that per(τ ′(z′0)) > ε′. Then, z′0 ∈ C ′ap, so, since
ρ(z′0) = ρ(z̃′0), we have that τ

′(z′0) = τ ′(z̃′0). Combining this with the equation ρ(z′−1) = ρ(z̃′−1)
and Item ((3)) of Proposition 4.46 produces

τ ′(z′)[−8ε′,|τ ′(z′0)|+8ε′) = τ ′(z̃′)[−8ε′,|τ ′(z′0)|+8ε′). (4.104)

Now, by Lemma 4.56,
cr(z′), c̃r(z̃′) ∈ [−ε′, |τ ′(z′0)| − 8ε′). (4.105)

Equations (4.104) and (4.105) imply that

(Scr(z′)τ ′(z′))[−ε′,ε′) = (Scr(z′)τ ′(z̃′))[−ε′,ε′)

and (S c̃r(z̃′)τ ′(z′))[−ε′,ε′) = (S c̃r(z̃′)τ ′(z̃′))[−ε′,ε′). (4.106)

Since zr(z′), z̃r(z̃′) ∈ Cap by (4.92), we can use Lemma 4.49 to deduce the following: If i
and j are the integers satisfying cr(z′) ∈ [c̃i, c̃i+1) and c̃r(z̃) ∈ [cj, cj+1), then cr(z′) = c̃i
and c̃r(z̃) = cj. We can then argue as in the first case to conclude that cr(z′) = c̃r(z̃′) and
ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃).

Proposition 4.60 Suppose that z′0, z̃
′
0 ∈ C ′ap and ψ(z′) = ψ(z̃′). Then:

(1) cr(z′) = c̃r(z̃′) and cr(z′)+|γ(z′0)| = c̃r(z̃′)+|γ(z̃′0)|.

(2) ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃) and ψ(Sr(z′)+|γ(z′0)|z) = ψ(Sr(z̃′)+|γ(z̃′0)|z̃).
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Proof. We have, from the condition ψ(z′) = ψ(z̃′), that ρ(z′−1) = ρ(z̃′−1) and ρ(z
′
0) = ρ(z̃′0).

Also, since z′0 ∈ C ′ap, we have that per(τ ′(z′0)) > ε. Hence, we can use Lemma 4.59 to deduce
that

cr(z′) = c̃r(z̃′) and ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃). (4.107)

Now, from Lemma 4.56 we have that cr(z′) ∈ [−ε′, |τ ′(z′0)| − 8ε′). Also, the hypothesis and
Item ((1)) in Proposition 4.46 give

τ ′(z′)[−8ε′,|τ ′(z′0)|+8ε′) = τ ′(z̃′)[−8ε′,|τ ′(z′0)|+8ε′) (4.108)

These two things, together with the fact that zr(z′) ∈ Cap, allow us to use Lemma 4.49 and
deduce that

F0
(Z,τ)(S

cr(z′)+1τ ′(z′)) = F0
(Z,τ)(S

cr(z′)+1τ ′(z′)). (4.109)

In particular, cr(z′)+1 = c̃r(z̃′)+1.

To continue, we have to consider two cases. We first assume that z′1 ∈ C ′ap. Then, since ψ(z′) =
ψ(z̃′), we can use Lemma 4.59 to obtain that cr(z′)+|γ(z′0)| = c̃r(z̃′)+|γ(z̃′0)| and ψ(S

r(z′)+|γ(z′0)|z) =

ψ(Sr(z̃′)+|γ(z̃′0)|z̃).

It rests to consider the case z′1 ∈ C ′ \ C ′ap. Equations (4.108) and (4.109) enable us to

use Lemma 4.50 and deduce that F0
(Z,τ)(S

kτ ′(z′)) is equal to F0
(Z,τ)(S

kτ ′(z̃′)) for all k ∈
[cr(z′)+1, |τ ′(z′0)|+ 7ε′). Since cr(z′)+1 ≤ |τ ′(z′0)| − 7ε′, we in particular have that

F0
(Z,τ)(S

kτ ′(z′)) = F0
(Z,τ)(S

kτ ′(z̃′)) for all k ∈ [|τ ′(z′0)| − 7ε′, |τ ′(z′0)|+ 7ε′). (4.110)

Now, the condition ψ(z′) = ψ(z̃′) implies that z̃1 ∈ C ′ \ C ′ap. Thus, by Lemma 4.56,

cr(z′)+|γ(z′0)|, c̃r(z̃′)+|γ(z̃′0)| ∈ [|τ ′(z′0)| − ε′, |τ ′(z′0)|+ ε′).

We conclude, using (4.110), that cr(z′)+|γ(z′0)| = c̃r(z̃′)+|γ(z̃′0) and zr(z′)+|γ(z′0)| = z̃r(z̃′)+|γ(z̃′0). The
lemma follows.

Proposition 4.61 Suppose that ρ(zn0 ) = ρ(z̃n0 ) and ε < | root τ ′(z′0)| ≤ ε′. Then:

(1) cr(z′) = cr1(z′)+|γ(z′0)| − |τ
′(z′0)| = c̃r(z̃′) = c̃r(z̃′)+|γ(z̃′0)| − |τ

′(z̃′0)|.

(2) zr(z′) = zr(z′)+|γ(z′0)| = z̃r(z̃′) = z̃r(z̃′)+|γ(z̃′0)|.

Proof. Note that, by Item (3) in Proposition 4.46, per(τ ′(z′0)) = | root τ ′(z′0)| ∈ (ε, ε′]. This
and the condition ρ(zn0 ) = ρ(z̃n0 ) permit to use Lemma 4.59 to obtain that cr(z′) = c̃r(z̃′).
Then, since z′0 ∈ C ′ \ C ′ap, from Lemma 4.56 we have that

cr(z′) = c̃r(z̃′) ∈ [−ε′, ε′).

Now, the hypothesis allows us to use Lemma 4.52 and deduce that F0
(Z,τ)(S

cr(z′)τ ′(z′)) =

F0
(Z,τ)(S

cr(z′)τ ′(z̃′)). Since cr(z′) = c̃r(z̃′), we get that

zr(z′) = z̃r(z̃′).
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We use again Lemma 4.52 to obtain that F0
(Z,τ)(S

kτ ′(z′)) = F0
(Z,τ)(S

k+|τ ′(z′0)|τ ′(z̃′)) for all
k ∈ [−4ε′, 4ε′). This implies, since cr(z′) ∈ [−ε′, ε′), that

cr(z′)+|γ(z′0)| = cr(z′) + |τ ′(z′0)|.

Similarly, c̃r(z̃′)+|γ(z̃′0)| = c̃r(z̃′) + |τ ′(z′0)|.

Proposition 4.62 Let k, ℓ ≥ 1 and s be such that |s| ≤ ε and s = root τ ′(z′i) = root τ ′(z̃′j)
for all i ∈ [0, k) and j ∈ [0, ℓ). Then:

(1) There is t such that |t| = |s| and t = root τ(zi) = root τ(z̃j) for all i ∈ [r(z′), r(z′) +
|γ(z′[0,k))|) and j ∈ [r(z̃′), r(z̃′) + |γ(z̃′[0,ℓ))|).

(2) cr(z′) = c̃r(z̃′) = cr(z′)+|γ(z′
[0,k)

)| = c̃r(z̃′)+|γ(z̃′
[0,ℓ)

) (mod |s|).

(3) ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃) and, if ρ(z′k) = ρ(z̃′ℓ), then ψ(S
r(z′)+|γ(z′

[0,k)
)|z) = ψ(Sr(z̃′)+|γ(z̃′

[0,ℓ)
)|z̃).

Proof. We note that, since |s| ≤ ε, Lemma 4.56 implies that

cr(z′), c̃r(z̃′) ∈ [−ε′, ε′). (4.111)

Hence, by Lemma 4.51, every i ∈ Z such that ci ∈ [−4ε′, |τ ′(z′[0,k))|+ 4ε′) satisfies

t :== root τ(zr(z′)) = root τ(zi), |t| = |s| and ci = cr(z′) (mod |s|) (4.112)

Similarly, for all j ∈ Z such that c̃j ∈ [−4ε′, |τ ′(z̃′[0,ℓ))|+ 4ε′),

t̃ :== root τ(z̃r(z̃′)) = root τ(z̃j), |t̃| = |s| and c̃j = c̃r(z̃′) (mod |s|) (4.113)

We will use these relations to prove the following:

cr(z′) = c̃r(z̃′) (mod |s|) and t = t̃. (4.114)

Since |s| ≤ ε ≤ ε′, we can use Item ((3)) in Proposition 4.46 and (4.111) to get that
sZ[cr(z′),cr(z′)+8ε) = τ ′(z′)[cr(z′),cr(z′)+8ε) = tZ[0,8ε). As |s| = |t| ≤ ε, Item ((1)) of Lemma 4.10

gives that Scr(z′)sZ = tZ. Similarly, S c̃r(z̃′)sZ = t̃Z. We conclude that

S−cr(z′)tZ = S−c̃r(z̃′) t̃Z. (4.115)

Since | root τ(zr(z′))| = | root τ(z̃r(z̃′))| = |s|, we deduce that t and t̃ are conjugate. Therefore,
by Item ((3)) in Proposition 4.46, t = t̃. Putting this in (4.115) and then using Item ((2)) of
Lemma 4.10 yields cr(z′) = c̃r(z̃′) (mod |s|). This completes the proof of (4.114).

Let α be the integer satisfying |τ ′(z′[0,k))| ∈ [cα, cα+1). We have, by (4.112), that zi ∈ C \ Cap
for all i ∈ [r(z′), α). Also, by the definition of r, we have that zi ∈ C \ Cap for all i ∈
[α, α + r(Skz′)). Hence, by ((1)) in Proposition 4.47, root τ(zi) = root τ(zr(z′)) = t for every
i ∈ [r(z′), α + r(Skz′)). In particular, cα+r(Skz′) = cr(z′) (mod |s|). Since α + r(Skz′) =
r(z′) + |γ(z′[0,k))|, we get that cr(z′)+|γ(z′

[0,k)
)| = cr(z′) (mod |s|) and that root τ(zi) = t for
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every i ∈ [r(z′), r(z′) + |γ(z′[0,k))|). We can prove in a similar way that c̃r(z̃′)+|γ(z̃′
[0,ℓ)

)| = c̃r(z̃′)

(mod |s|) and that root τ(z̃j) = t̃ for every j ∈ [r(z̃′), r(z̃′) + |γ(z̃′[0,ℓ))|). Being t equal to t̃,

we obtain Item (1). Moreover, since cr(z′) = c̃r(z̃′) (mod |s), we also have Item (2).

It is left to prove Item (3). We note that, since t = t̃, Equations (4.112) and (4.113) imply
that ψ(Sr(z′)z) = ψ(Sr(z̃′)z̃) = (t, t, t). Let us now assume that ρ(z′k) = ρ(z̃′ℓ). There are
two cases. First, we assume that | root τ ′(z′k)| ≤ ε. Then, by Lemma 4.56, cr(z′)+|γ(z′

[0,k)
)| ∈

[|τ ′(z′[0,k))|−ε′, |τ ′(z′[0,k))|+ε′). We get, using (4.112), that ψ(Sr(z′)+|γ(z′
[0,k)

)|z) = (t, t, t). Now,

since ρ(z′k) = ρ(z̃′ℓ), we have that | root τ ′(z̃′ℓ)| ≤ ε. Hence, a similar argument shows that

ψ(Sr(z̃)+|γ(z̃′
[0,ℓ)

)|z̃) = (t, t, t) = ψ(Sr(z′)+|γ(z′
[0,k)

)|z). Next, we assume that | root τ ′(z′k)| > ε.
Then, as ρ(z′k) = ρ(z̃′ℓ) and ρ(z

′
k−1) = ρ(z̃′ℓ−1) = s, we can use Lemma 4.59 with z′k and z̃′ℓ to

deduce that ψ(Sr(z̃)+|γ(z̃′
[0,ℓ)

)|z̃) = ψ(Sr(z′)+|γ(z′
[0,k)

)|z).

4.8 Main Theorems

We now complete the proofs of Theorems 4.75 and 4.76. The part of the proof in which
we have to obtain a complexity restriction from the S-adic structures can be done without
difficulties with Lemma 4.74. For the other part, we first present in Theorem 4.63 sufficient
condition under which an S-adic structure as the ones in Theorems 4.75 and 4.76 can be
obtained. Then, we check that linear-growth and nonsuperlinear-growth complexity subshifts
satisfy these conditions using Lemmas 4.6 and 4.7.

4.8.1 A set of sufficient conditions

This subsection is devoted to prove the following theorem.

Theorem 4.63 Let X ⊆ AZ be an infinite minimal subshift. Let (ℓn)n≥0 be an increasing
sequence of positive integers and d ≥ max{104,#A}. Suppose that for every n ≥ 0

pX(ℓn) ≤ d, pX(ℓn + 1)− pX(ℓn) ≤ d, and
ℓn+1

ℓn
≥ 104d2d

3+6. (4.116)

Then, there exists a recognizable S-adic sequence σ = (σn : An+1 → A+
n )n≥0 generating X

such that for all n ≥ 1:

(P1) #(rootσ[0,n)(An)) ≤ 35d12d+24 and #An ≤ 74d12d+36 · pow-com(X)4.

(P2) |σ[0,n)(a)| ≤ 4dd
3+6 · |σ[0,n)(b)| for every a, b ∈ An.

(P3) |σn−1(a)| ≤ 40d2d
3+8 · ℓn

ℓn−1
for every a ∈ An.

The proof is presented as a series of lemmas.

We fix an infinite minimal subshift X ⊆ AZ, an increasing sequence (ℓn)n≥0 of positive
integers and d ≥ max{104,#A} such that (4.116) holds for every n ≥ 0.
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We start by defining σ. Let (Zn ⊆ CZn , τn : Cn → A+) be the coding constructed in Subsection
4.7.1 using ℓn, and let εn ∈ [ℓn/d

2d3+4, ℓn/d) and Cn = Cn,ap ∪ Cn,wp ∪ Cn,sp be the constant
and the partition that appear in this construction. In this context, Proposition 4.46 states
the following:

(i) (# root τn(Cn)) ≤ 5d3d+6, #Cn ≤ 74d12d+36 pow-com(X)4 and #τ(Cn,ap) ≤ 2d3d+6.

(ii) 2εn ≤ |τn(a)| ≤ 10d2ℓn for all a ∈ Cn.

Also, the definition of Cn in (4.63) guarantees that

(iii) For all a ∈ Cn there is z ∈ Zn such that z0 = a.

Moreover, (4.116) implies that 500d2ℓn ≤ ℓn+1/d
2d3+4, so the results from Subsection 4.7.2

can be used with (Zn+1, ℓn+1) and (Zn, τn). In particular,

(iv) Propositions 4.57, 4.60, 4.61 and 4.62 can be used with (Zn+1, ℓn+1) and (Zn, τn).

We define the map rn as follows. If z′ ∈ Zn+1 and (c, z) = F(Zn,τn)(τn+1(z
′)), then

rn(z
′) =

{
0 if per(τn+1(z

′
0)) ≤ ε

min{i ≥ 0 : zi ∈ Cn,ap} if per(τn+1(z
′
0)) > ε

(4.117)

Note that this is analogous to the definition of r in (4.92). Therefore, Proposition 4.57
ensures that the connecting morphism σn : Cn+1 → C+n described in Definition 4.8 is well-
defined. The morphism σn satisfies the following: If z′ ∈ Zn+1, (c, z) = F(Zn,τn)(τn+1(z

′)) and
i is the integer satisfying |τn+1(z

′
0)| ∈ [ci, ci+1), then

σn(z
′
0) = z[rn(z′),i+rn(Sz′)). (4.118)

We set σ0 = τ0 and σ = (σn)n≥0.

Next, we describe σ[0,n)(z
′
0) in terms of τn(z

′
0) and the auxiliary functions qj,n that we now

define. For z′ ∈ Zn, we set qn,n(z
′) = 0 and then inductively define, for 0 ≤ j < n,

qj,n(z
′) = qj+1,n(z

′) + crj(z), (4.119)

where (c, z) = F(Zj+1,τj+1)(S
qj+1,n(z

′)τn(z
′)). An inductive use of (4.119) yields the formula

σ[0,n)(z
′
0) = τn(z

′)[q0,n(z′),|τn(z′0)|+q0,n(Sz′)). (4.120)

In particular,
σ[0,n)(z

′) = Sq0,n(z′)τn(z
′) for all n ≥ 1 and z′ ∈ Zn. (4.121)

We now prove that σ satisfies all the conditions in Theorem 4.63.

Lemma 4.64 Let τ = (τn : An+1 → A+
n )n≥0 be an S-adic sequence. Suppose there are

subshifts Zn ⊆ AZ
n satisfying An ⊆ L(Zn). Then, for every x ∈ Xτ there are sequences

(nℓ)ℓ≥0 and xℓ ∈ ∪k∈ZSkτ[0,nℓ)(Znℓ
) such that x is the limit of (xℓ)ℓ≥0.
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Proof. Let x ∈ Xτ . Then, for all ℓ ≥ 0 there exist nℓ ≥ 0 and aℓ ∈ Anℓ
for which x[−ℓ,ℓ)

occurs in τ[0,nℓ)(aℓ). The hypothesis permits to find zℓ ∈ Znℓ
such that (zℓ)0 = aℓ. Being

x[−ℓ,ℓ) a subword of τ[0,nℓ)((zℓ)0), there is a point of the form xℓ = Skℓτ[0,nℓ)(zℓ) satisfying
(xℓ)[−ℓ,ℓ) = x[−ℓ,ℓ). Then, x is the limit of (xℓ)ℓ≥0. The lemma follows.

Lemma 4.65 The S-adic sequence σ is recognizable and generates X.

Proof. First, we show that σ generates X. Note that (4.121) ensures that⋃
k∈Z

Skσ[0,n)(Zn) ⊆
⋃
k∈Z

Skτn(Zn) = X.

Now, thanks to Condition (iii), we can use Lemma 4.64, so any x ∈ Xσ is an adherent point
of a sequence xn ∈ ∪k∈ZS

kσ[0,n)(Zn) = X. Therefore, Xσ ⊆ X. We conclude that Xσ = X
by the minimality of X.

It rests to prove that (Zn, σ[0,n)) is recognizable. Let (k, z) and (k̃, z̃) be two σ[0,n)-factorizations
in Zn of x ∈ X. Then, Equation (4.121) implies that

Sk+q0,n(z)τn(z) = Skσ[0,n)(z) = S k̃σ[0,n)(z̃) = S k̃+q0,n(z̃)τn(z̃).

In particular, Sℓτn(z) = τn(z̃) where ℓ = k+ q0,n(z)− k̃− q0,n(z̃). Without loss of generality,
we assume that ℓ ≥ 0. We can find i ≥ 0 such that (ℓ− |τn(z[0,i))|, Siz) is a τn-factorization
of Sℓτn(z) in Zn. Then, as (0, z̃) is a τn-factorization of Sℓτn(z) in Zn, we deduce from the
recognizability property of (Zn, τn) that

ℓ = k + q0,n(z)− k̃ − q0,n(z̃) = |τn(z[0,i))| and Siz = z̃ (4.122)

Using this and the fact that (k, z) and (k̃, z̃) are σ[0,n)-factorizations of x, we can write

σ[0,n)(z) = S k̃−kσ[0,n)(z̃) = S k̃−kσ[0,n)(S
iz)

= Sq0,n(z)−q0,n(z̃)−|τn(z[0,i))|+|σ[0,n)(z[0,i))|σ[0,n)(z).

Being Zn aperiodic (as X is aperiodic), we get that q0,n(z) − q0,n(z̃) + |σ[0,n)(z[0,i))| is equal
to |τn(z[0,i))|. Putting this in (4.122) produces |σ[0,n)(z[0,i))| = k− k̃. Since k ∈ [0, |σ[0,n)(z0)|)
and k̃ ∈ [0, |σ[0,n)(z̃0)|), we obtain that

|σ[0,n)(z[0,i))| ≤ k < |σ[0,n)(z0)|.

We deduce that i = 0, and then, from (4.122), that z = z̃ and k = k̃.

Before continuing, we give some bounds for q0,n.

Lemma 4.66 Let n ≥ 1 and z′ ∈ Zn. Then,

−2εn ≤ q0,n(z
′) ≤ |τn(z′0)| − 7εn. (4.123)

Moreover, if z′0 ∈ Cn \ Cn,ap, then

−2εn ≤ q0,n(z
′) ≤ 2εn. (4.124)
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Proof. Lemma (4.56) gives the bound −εj ≤ cr(z) ≤ |τj+1(z0)| − 8εj for all 0 ≤ j < n and
z ∈ Zj+1. Thus, from (4.120), −εn ≤ qn−1,n(z

′) ≤ |τn(z′0)| − 8εn and qj+1,n(z
′) − |τj+1| ≤

qj,n(z
′) ≤ qj+1,n(z

′) + |τj+1|.. We obtain that

−εn −
n−2∑
j=0

|τj+1| ≤ q0,n(z
′) ≤ |τn(z′0)| − 8εn +

n−2∑
j=0

|τj+1|. (4.125)

Now, since |τj| ≤ 10d2ℓj and 500d2d
3+6 · ℓj ≤ ℓj+1, we have the bound dn−2−j|τj| ≤ ℓn−1 for

every j ∈ [0, n− 1). Therefore,

n−2∑
j=0

|τj+1| ≤
n−2∑
j=0

1

dn−2−j
ℓn−1 ≤ 2dℓn−1 ≤ εn.

Putting this in (4.125) yields (4.123). Moreover, if z′0 ∈ Cn \ Cn,ap, then Lemma 4.56 gives
that qn−1,n(z

′) ∈ [−εn, εn). So, the previous argument shows, in this case, that q0,n(z
′) ∈

[−2εn, 2εn).

Lemma 4.67 For every n ≥ 1 and z′ ∈ Zn,

5

dd3+4
ℓn ≤ |σ[0,n)(z′0)| ≤ 20d2ℓn. (4.126)

In particular, σ satisfies Items (P2) and (P3) of Theorem 4.63.

Proof. We first show that (4.126) implies that σ satisfies Items (P1) and (P2) of Theorem
4.63. Observe that, by Condition (iii), (4.126) gives, for every n ≥ 1 and a, b ∈ Cn, that

|σ[0,n)(a)| ≤ 20d2ℓn ≤ 4dd
3+6 · |σ[0,n)(b)|. (4.127)

Thus, (P2) is satisfied. For Item (P3), we note that, for any pair of morphisms ξ and ξ′ such
that ξξ′ is defined, we have that |ξξ′| ≥ ⟨ξ⟩|ξ′|. Therefore,

|σ[0,n+1)| ≥ ⟨σ[0,n)⟩|σn|.

Then, by Item (4.127),

|σn| ≤
|σ[0,n+1)|
⟨σ[0,n)⟩

≤ 10d2ℓn+1

1/4d2d3+6ℓn
= 40d2d

3+8 ℓn+1

ℓn
.

We now prove (4.126). Let n ≥ 0 and z′ ∈ Zn be arbitrary. On one hand, from (4.120) we
have that

|σ[0,n)(z′0)| = |τn(z′0)| − q0,n(z′) + q0,n(Sz
′) for any z′ ∈ Zn.

Hence, by (4.123) and Condition (ii),

|σ[0,n)(z′0)| = |τn(z′0)| − q0,n(z′) + q0,n(Sz
′) ≤ |τn(z′0)|+ |τn(z′1)| − 5εn ≤ 20d2ℓn.

Similarly,

|σ[0,n)(z′0)| = |τn(z′0)| − q0,n(z′) + q0,n(Sz
′) ≥ 5εn ≥

5

dd3+4
ℓn.
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We now introduce some notation. Let ρ(a) = a if a belongs to Cn,ap for some n ≥ 1 and let
ρ(a) = root τn(a) if n ≥ 1 and a ∈ Cn \ Cn,ap. We set ψ(z) = (ρ(z−1), ρ(z0), ρ(z1)) for n ≥ 1
and z ∈ Zn. Note that these definitions are consistent with the ones in Subsection 4.7.2.

The proof of the following lemma will be postponed until the end of the subsection.

Lemma 4.68 Let z, z̃ ∈ Zn be such that ψ(z) = ψ(z̃). Then, rootσ[0,n)(z0) = rootσ[0,n)(z̃0).

Lemma 4.69 Item (P1) of Theorem 4.63 is satisfied by σ.

Proof. The inequality #Cn ≤ 74d12d+36 pow-com(X)4 in Item (P1) follows from Condition
(i). To prove the other inequality, we note that Lemma 4.68 implies that

# rootσ[0,n)(Cn) ≤ #ψ(Zn) ·# root τn(Cn).

Now, it follows from the definition of ψ that #ψ(Zn) is at most (# root τn(Cn)+#τn(Cn,ap))3.
Combining this with the bounds given by Condition (i) yields

# rootσ[0,n)(Cn) ≤ #ψ(Zn) ·# root τn(Cn)
≤ (5d3d+6 + 2d3d+6)3 · 5d3d+6 ≤ 35d12d+24.

It only rests to prove Lemma 4.68. We start by fixing some notation. Let zn, z̃n ∈ Zn

be such that ψ(zn) = ψ(z̃n). We set s = root τn(z
n
0 ) = root τn(z̃

n
0 ). For j ∈ [0, n), we

inductively define zj = σj(z
j+1) and z̃j = σj(z̃

j+1). Let (cj, yj) = F(Zj ,τj)(τj+1(z
j+1)) and

(c̃j, ỹj) = F(Zj ,τj)(τj+1(z̃
j+1))

With the notation introduced, we have, for every j ∈ [0, n), that

Srj(z
j+1)yj = zj (4.128)

and that
zj = σ[j,n)(z

n). (4.129)

We can also write, thanks to (4.119),

qj,n(z
n) = qj+1,n(z

n) + cj
rj(zj+1)

and qj,n(Sz
n) = qj+1,n(Sz

n) + cj
rj(zj+1)+|σ[j,n)(z

n
0 )|

(4.130)

for every j ∈ [0, n). Similar relations hold for z̃n.

The next three lemmas are the core of the proof of Lemma 4.68.

Lemma 4.70 Suppose that ψ(zn) = ψ(z̃n) and that εn < |s|. Then, for every j ∈ [0, n], the
following holds:
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(a) qj,n(z
n) = qj,n(z̃

n) and qj,n(Sz
n) = qj,n(Sz̃

n).

(b) ψ(zj) = ψ(z̃j) and ψ(S|σ[j,n)(z
n)|zj) = ψ(S|σ[j,n)(z̃

n)|z̃j).

(c) zj0, z̃
j
0, z

j
|σ[j,n)(z

n)|, z̃
j
|σ[j,n)(z̃

n)| ∈ Cj,ap.

Proof. We prove the claim by induction on j. The case j = n is a direct consequence of
the hypothesis. Assume that j ∈ [0, n) and that the claim is true for j + 1. The inductive
hypothesis gives that zj+1

0 and z̃j+1
0 belong to Cj+1,ap. In particular, per(τj+1(z

j+1
0 )) and

per(τj+1(z̃
j+1
0 )) are greater than εj+1. Hence, by the definition of rj and (4.128), zj0 =

yj
rj(zj+1)

∈ Cj,ap and z̃j0 ∈ Cj,ap.

Next, by Items (b) and (c) of the induction hypothesis, zj and z̃j satisfy the hypothesis of
Lemma 4.60. Hence, by (4.128),

(1) cj
rj(zj+1)

= c̃j
rj(z̃j+1)

, and

(2) ψ(zj) = ψ(Srj(z
j+1)yj) = ψ(Srj(ỹ

j+1)z̃j) = ψ(z̃j).

Putting the first equation and Item (a) of the induction hypothesis in the definition of qj,n
yields

qj,n(z
n) = qj+1,n(z

n) + cj
rj(zj+1)

= qj+1,n(z̃
n) + c̃j

rj(z̃j+1)
= qj,n(z̃

n).

The rest of the inductive step follows from similar arguments.

Lemma 4.71 Suppose that ρ(zn0 ) = ρ(z̃n0 ) and εn−1 < |s| ≤ εn. Then, for every j ∈ [0, n),
the following holds:

(a) qj,n(z
n) = qj,n(z̃

n) = qj,n(Sz
n) = qj,n(Sz̃

n).

(b) ψ(zj) = ψ(z̃j) = ψ(S|σ[j,n)(z
n)|zj) = ψ(S|σ[j,n)(z̃

n)|z̃j).

(c) zj0, z̃
j
0, z

j
|σ[j,n)(z

n)| and z̃
j
|σ[j,n)(z̃

n)| belong to Cj,ap.

Proof. We first assume that j = n−1. Let us write r = rn−1, cj = cn−1
j , z = zn−1, y = yn−1,

etc. Since εn−1 < |s| ≤ εn and ρ(zn0 ) = ρ(z̃n0 ), we can use Lemma 4.61 with zn0 and z̃n0 to
deduce the following:

(a’) cr(zn) = c̃r(z̃n) = cr(zn)+|σn−1(zn0 )| − |τn(z
n
0 )| = c̃r(z̃n)+|σn−1(z̃n0 )| − |τn(z̃

n
0 )|.

(b’) yr(zn) = ỹr(z̃n) = yr(zn)+|σn−1(zn0 )| = ỹr(z̃n)+|σn−1(z̃n0 )|.

Item (b’) implies, by (4.128), that Item (b) of the claim holds for j = n− 1. Also, since |s| >
εn−1, the definition of r ensures that z0 = yr(zn) ∈ Cn−1,ap, so Item (c) of the claim holds. For
Item (a), we note that, since qn,n ≡ 0, the definition of qn−1,n ensures that qn−1,n(z

n) = cr(zn),
qn−1,n(z̃

n) = c̃r(c̃n), qn−1,n(Sz
n) = cr(zn)+|σn−1(zn0 )|−|τn(z

n
0 )| and qn−1,n(Sz̃

n) = c̃r(z̃n)+|σn−1(z̃n0 )|−
|τn(z̃n0 )|. Therefore, Item (a) of the claim follows from Item (a’).
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We now assume that j ∈ [0, n − 1) and that the claim holds for j + 1. Item (c’) of the
induction hypothesis ensures that

zj+1
0 , z̃j+1

0 ∈ Cj+1,ap and ψ(zj+1) = ψ(z̃j+1). (4.131)

Then, by the definition of rj and (4.128), zj0 = yj
rj(zj+1)

∈ Cj,ap and z̃j0 ∈ Cj,ap. Equation

(4.131) also allows us to use Lemma 4.60 with zj+1 and z̃j+1 and deduce the following:

(a’) cj
rj(zj+1)

= c̃j
rj(z̃j+1)

.

(b’) ψ(Srj(z
j+1)yj) = ψ(Srj(z̃

j+1)ỹj).

Equation (4.128) ensures that Item (b’) is equivalent to ψ(zj) = ψ(z̃j). Now, putting Item
(a’) and Item (a) of the induction hypothesis in the definition of qj,n yields

qj,n(z
n) = qj+1,n(z

n
0 ) + cj

rj(zj+1)
= qj+1,n(z̃

n
0 ) + c̃j

rj(z̃j+1)
= qj,n(z̃

n).

Similar arguments, which rely on using Lemma 4.60 with S|σ[j+1,n)(z
n
0 )|zj+1 and S|σ[j+1,n)(z̃

n
0 )|z̃j+1,

show that zj|σ[j,n)(z
n)|, z̃

j
|σ[j,n)(z̃

n)| ∈ Cj,ap, ψ(S
|σ[j,n)(z

n)|zj) = ψ(S|σ[j,n)(z̃
n)|z̃j) and qj,n(Sz

n) =

qj,n(Sz̃
n).

To complete the proof, it is enough to show that ψ(zj) = ψ(S|σ[j,n)(z
n)|zj) and qj,n(z

n) =
qj,n(Sz

n). We observe that Item (b) of the inductive hypothesis guarantees that ψ(zj+1) =
ψ(S|σ[j+1,n)(z

n
0 )|zj+1). Since we know that zj+1

0 and zj+1
|σ[j+1,n)(z

n
0 )|

belong to Cj+1,ap, we can use

Lemma 4.60 with zj+1 and S|σ[j+1,n)(z
n
0 )|zj+1 to obtain the following:

(a”) cj
rj(zj+1)

= cj
rj(zj+1)+|σ[j,n)(z

n
0 )|
− |τj+1σ[j+1,n)(z

n
0 )|.

(b”) ψ(Srj(z
j+1)yj) = ψ(Srj(z

j+1)+|σ[j,n)(z
n
0 )|yj).

Item (b”) implies, by (4.128), that ψ(zj) = ψ(S|σ[j,n)(z
n
0 )|zj). Also, using the definition of

qj+1,n and Item (a”) we can write

qj,n(Sz
n)− qj+1,n(Sz

n) = cj
rj(zj+1)+|σ[j,n)(z

n
0 )|
− |τj+1σ[j+1,n)(z

n
0 )|

= cj
rj(zj+1)

= qj,n(z
n)− qj+1,n(z

n).

This and Item (a) of the induction hypothesis gives that qj,n(Sz
n) = qj,n(z

n).

Lemma 4.72 Suppose that ρ(zn0 ) = ρ(z̃n0 ) and that |s| ≤ εn−1. Let j0 ∈ [0, n) be the least
element satisfying |s| ≤ εj0. Then, for every j ∈ [j0, n], the following holds:

(a) There is sj such that |sj| = |s| and sj = root τj(z
j
k) = root τj(z̃

j
ℓ ) for all k ∈ [0, |σ[j,n)(zn0 )|)

and ℓ ∈ [0, |σ[j,n)(z̃n0 )|).

(b) qj,n(z
n) = qj,n(z̃

n) = qj,n(Sz
n) = qj,n(Sz̃

n) (mod |s|).

(c) ψ(zj) = ψ(z̃j) and ψ(S|σ[j,n)(z
n)|zj) = ψ(S|σ[j,n)(z̃

n)|z̃j).
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Proof. The case j = n follows directly from the hypothesis. Assume that j ∈ [j0, n) and that
the claim holds for j +1. We observe that, by Items (a) and (c) of the induction hypothesis,
zj+1
[0,|σ[j,n)(z

n
0 )|)

and z̃j+1
[0,|σ[j,n)(z̃

n
0 )|)

comply with the hypothesis of Lemma 4.62. Therefore, by

(4.128), Items (a) and (c) hold for j. Moreover, we have that

cj
rj(yj+1)

= c̃j
rj(ỹj+1)

= cj
rj(yj+1)+|σ[j,n)(z

n
0 )|

= c̃j
rj(ỹj+1)+|σ[j,n)(z̃

n
0 )|

(mod |s|). (4.132)

Now, Item (b) of the induction hypothesis gives that qj+1,n(z
n) = qj+1,n(z̃

n) = qj+1,n(Sz
n) =

qj+1,n(Sz̃
n) (mod |s|). Hence, by the definition of qj,n,

qj,n(z
n) = qj+1,n(z

n) + cj
rj(yj+1)

= qj+1,n(z̃
n) + cj

rj(ỹj+1)
= qj,n(z̃

n) (mod |s|).

We note that, since Item (a) holds for j, we have that |τ(zj[0,|σ[j,n)(z
n
0 )|)

)| = 0 (mod |s|). Hence,
by the definition of qj,n,

qj,n(Sz
n)− qj+1,n(Sz

n) = cj
rj(yj+1)+|σ[j,n)(z

n
0 )|
− |σ[j,n)(zn0 )|

= cj
rj(yj+1)+|σ[j,n)(z

n
0 )|

(mod |s|)

Thus, by (4.132) and Item (b) of the induction hypothesis, qj,n(Sz
n) = qj,n(z

n). Similarly,
qj,n(Sz̃

n) = qj,n(z̃
n). We conclude that Item (b) holds for j.

The last ingredient for the proof of Lemma 4.68 is the following lemma.

Lemma 4.73 Suppose that ψ(zn) = ψ(z̃n).

(1) If zn0 ∈ Cn,ap, q0,n(zn) = q0,n(z̃
n) and q0,n(Sz

n) = q0,n(Sz̃
n), then σ[0,n)(z

n
0 ) = σ[0,n)(z̃

n
0 ).

(2) Let s = root τn(z
n
0 ) and suppose that |s| ≤ εn and q0,n(z

n) = q0,n(z̃
n) = q0,n(z

n) =
q0,n(z̃

n) (mod |s|). Then, rootσ[0,n)(zn0 ) = rootσ[0,n)(z̃
n
0 ).

Proof. Assume that the hypothesis of Item (1) holds. We also assume, without loss of
generality, that |τn(zn1 )| ≤ |τn(z̃n1 )|. We start by noticing that, since zn0 ∈ Cn,ap and ψ(zn) =
ψ(z̃n), we have that τn(z

n
0 ) is equal to τn(z̃

n
0 ). Furthermore, by Condition (ii) we have that

τn(z
n)[−8εn,|τn(zn0 zn1 )|) = τn(z̃

n)[−8εn,|τn(zn0 zn1 )|). (4.133)

Now, from Lemma 4.66 and the hypothesis we get that

q0,n(z̃
n) = q0,n(z

n) ∈ [−2εn, |τn(zn0 )| − 7εn)

and q0,n(Sz̃
n) = q0,n(Sz

n) ∈ [|τn(zn0 )| − 2εn, |τn(zn0 zn1 )| − 7εn).

We conclude, using (4.133), that

σ[0,n)(z
n
0 ) = τn(z

n)[q0,n(zn),|τn(zn0 )|+q0,n(Szn))

= τn(z̃
n)[q0,n(z̃n),|τn(z̃n0 )|+q0,n(Sz̃n)) = σ[0,n)(z̃

n
0 ).
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Next, we assume that the hypothesis of Item (2) holds. The condition |s| ≤ εn enables us to
use (4.124) from Lemma 4.66, so

q0,n(z
n) ∈ [−2εn, 2εn).

Also, since |s| ≤ εn, Item ((3)) in Proposition 4.46 guarantees that

τn(z
n)[−8εn,|τn(zn0 )|+8εn) = sZ[−8εn,|τn(zn0 )|+8εn).

Therefore,
σ[0,n)(z

n
0 ) = sZ[q0,n(zn),|τn(zn0 )|+q0,n(Szn))

. (4.134)

Now, by the hypothesis, there is k ∈ Z such that k = q0,n(z
n) = q0,n(Sz

n) (mod |s|). We
deduce from (4.134) that

rootσ[0,n)(z
n
0 ) = s[k,k+|s|).

Being ψ(zn) equal to ψ(z̃n), we have that s = root τn(z̃
n
0 ). Hence, we can give simi-

lar arguments to prove that rootσ[0,n)(z̃
n
0 ) = s[k̃,k̃+|s|), where k̃ = q0,n(z̃

n) = q0,n(Sz̃
n)

(mod |s|). We conclude, as the hypothesis ensures that k = k̃ (mod |s|), that rootσ[0,n)(zn0 ) =
rootσ[0,n)(z̃

n
0 ).

We have all the necessary elements to prove Lemma 4.68.

Proof of Lemma 4.68. Let z′, z̃′ ∈ Zn be such that ψ(z′) = ψ(z̃′) and let s = root τ(z′0) =
root τ(z̃′0). We split the proof into two cases. Let us first assume that |s| > εn. Then, we
can use Lemma 4.70 and deduce that q0,n(z

n) = q0,n(z̃
n) and q0,n(Sz

n) = q0,n(Sz̃
n). Thus,

by Lemma 4.73, σ[0,n)(z
n
0 ) = σ[0,n)(z̃

n
0 ), which implies that rootσ[0,n)(z

n
0 ) = rootσ[0,n)(z̃

n
0 ).

Next, we assume that |s| ≤ εn. Let j ∈ [0, n] be the least element satisfying |s| ≤ εj. We
claim that the following is true:

(a) If j < n, then root τj(z
j) is equal to root τj(S

|σ[j,n)(z
n)|−1zj) and has length |s|.

(b) qj,n(z
n) = qj,n(z̃

n) = qj,n(Sz
n) = qj,n(Sz̃

n) (mod |s|).

(c) ψ(zj) = ψ(z̃j) and ψ(S|σ[j,n)(z
n)|zj) = ψ(S|σ[j,n)(z̃

n)|z̃j).

If j = n, then the claim is equivalent to the hypothesis ψ(z′) = ψ(z̃′). We assume that j < n.
Then, |s| ≤ εn−1, which permits to use Lemma 4.72 and conclude that Items (b) and (c)
of the claim hold. Moreover, Lemma 4.72 also states that there is t such that |t| = |s| and
t = root τj(z

j
k) = root τj(z̃

j
ℓ ) for all k ∈ [0, |σ[j,n)(zn0 )|) and ℓ ∈ [0, |σ[j,n)(z̃n0 )|). In particular,

Item (a) holds. This completes the proof of the claim.

Next, we now prove that

q0,n(z
n) = q0,n(z̃

n) = q0,n(Sz
n) = q0,n(Sz̃

n) (mod |s|) (4.135)

If j = 0, then (4.135) follows from the claim. Let us assume that j > 0. Then, εj−1 < |s| ≤ εj.
This and Items (a) and (c) of the claim allow us to use Lemma 4.71 twice, first with zj and
z̃j, and then with S|σ[j,n)(z

n)|−1zj and S|σ[j,n)(z̃
n)|−1z̃j. We get

q0,j(z
j) = q0,j(z̃

j). and q0,j(S
|σ[j,n)(z

n)|zj) = q0,j(S
|σ[j,n)(z̃

n)|z̃j).
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Moreover, since root τj(z
j) is equal to root τj(S

|σ[j,n)(z
n)|−1zj) and has length |s| ≤ εj, we

can use Lemma 4.71 with zj and S|σ[j,n)(z
n)|−1zj to obtain that q0,j(z

j) = q0,j(S
|σ[j,n)(z

n)|zj).
Therefore,

q0,j(z
j) = q0,j(z̃

j) = q0,j(S
|σ[j,n)(z

n)|zj) = q0,j(S
|σ[j,n)(z̃

n)|z̃j). (4.136)

Now, from the definition of q0,n we have that q0,n(z
n) = qj,n(z

n) + q0,j(z
j) and q0,n(z̃

n) =
qj,n(z̃

n) + q0,j(z̃
j). Putting (4.136) and Item (b) of the claim in this relation produces

q0,n(z
n) = q0,n(z̃

n) (mod |s|). The rest of the equalities in (4.135) follow from (4.136) and
Item (b) of the claim in the same way. The proof of (4.135) is complete.

We recall that we assumed that ψ(zn) = ψ(z̃n) and |s| ≤ εn. These two things and (4.135)
permit to use Lemma 4.73 and conclude that rootσ[0,n)(z

n
0 ) = rootσ[0,n)(z̃

n
0 ).

4.8.2 Proof of the main theorems

Lemma 4.74 Let X be a subshift and W a set of words such that X ⊆
⋃

k∈Z S
kWZ. Then,

pX(⟨W⟩) ≤ |W| ·#(rootW)2.

Proof. The hypothesis implies that any w of length ⟨W⟩ occurring in some x ∈ X occurs
in a word of the form uv, where u, v ∈ W . In particular, w occurs in (rootu)|W|(root v)|W|.
There are at most |W| · #(rootW)2 words satisfying this condition, so pX(⟨W⟩) ≤ |W| ·
#(rootW)2.

Theorem 4.75 A minimal subshift X has linear-growth complexity i.e.

lim sup
n→+∞

pX(n)/n < +∞,

if and only if there exist d ≥ 1 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 such that

for every n ≥ 0:

(P1) #(rootσ[0,n)(An)) ≤ d.

(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

(P3) |σn−1(a)| ≤ d for every a ∈ An.

If X is infinite and has linear-growth complexity, then σ can be chosen to be recognizable and
satisfying #An ≤ d · pow-com(X)4 for all n ≥ 0.

Theorem 4.76 A minimal subshift X has nonsuperlinear-growth complexity i.e.

lim inf
n→+∞

pX(n)/n < +∞,

if and only if there exists d ≥ 1 and an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 such that

for every n ≥ 0

(P1) #(rootσ[0,n)(An)) ≤ d.
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(P2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

If X is infinite and has nonsuperlinear-growth complexity, then σ can be chosen to be recog-
nizable and satisfying #An ≤ d · pow-com(X)4 for all n ≥ 0.

We prove Theorems 4.75 and 4.76 simultaneously.

Proof of Theorems 4.75 and 4.76. Let d = lim infk→+∞ pX(k)/k and d′ = supk≥0 pX(k)/k.

We first assume that pX has nonsuperlinear- or linear-growth and show that there exists an
S-adic sequence as the ones in Theorems 4.75 and 4.76, respectively.

If pX has nonsuperlinear-growth, then d is finite and so, using Lemma 4.7, we obtain a
sequence (ℓn)n≥0 such that for all n ≥ 0

ℓn+1 ≥ dℓn, pX(ℓn) ≤ dℓn and pX(ℓn + 1)− pX(ℓn) ≤ d. (4.137)

If pX has linear growth, then d′ is finite and using Lemma 4.6 we get a sequence (ℓn)n≥0 that
satisfies (4.137) and

ℓn+1 ≤ d′ℓn for every n ≥ 0. (4.138)

We use Theorem 4.63 with the sequence (ℓn)n≥0. This produces a recognizable S-adic se-
quence σ = (σn : An+1 → A+

n )n≥0 generating X such that for every n ≥ 1:

(P ′
1) #(rootσ[0,n)(An)) ≤ d and #An ≤ pow-com(X).

(P ′
2) |σ[0,n)(a)| ≤ d · |σ[0,n)(b)| for every a, b ∈ An.

(P ′
3) |σn−1(a)| ≤ dℓn/ℓn−1 for every a ∈ An.

In particular, the conclusion of Theorem 4.76 holds. Moreover, if pX has linear growth, then
Equation (4.138) holds, so we also have the bound |σn−1(a)| ≤ dd′ for every n ≥ 1 and
a ∈ An. Therefore, in this case, σ satisfies the conclusion of Theorem 4.75.

We now assume that there exists an S-adic sequence σ = (σn : An+1 → A+
n )n≥0 satisfying

the conclusion of Theorem 4.76 or the one of Theorem 4.75.

Note that since σ generates X, we have that

X ⊆
⋃
k∈Z

Skσ[0,n)(AZ
n)

for any n ≥ 1. Thus, by Lemma 4.74, pX(⟨σ[0,n)⟩) is at most |σ[0,n)| · #(rootσ[0,n)(An))
2.

Items (P1) and (P2) of Theorems 4.76 and 4.75 then imply that

pX(⟨σ[0,n)⟩) ≤ d3⟨σ[0,n)⟩ for all n ≥ 1. (4.139)

This proves that X has nonsuperlinear-growth complexity.

It rests to prove that X has linear-growth complexity when the conclusion of Theorem 4.75
holds. We assume that σ satisfies Items (P1), (P2) and (P3) of Theorem 4.75. Let k ≥ 1 be
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arbitrary and let n ≥ 1 be the biggest integer such that ⟨σ[0,n)⟩ ≤ k. Then, by the maximality
of n and Items (P2) and (P3) of Theorem 4.75, we can compute

k < ⟨σ[0,n+1)⟩ ≤ |σ[0,n)| · |σn| ≤ d2⟨σ[0,n)⟩ ≤ d2k.

Combining this with (4.139) yields pX(k) ≤ d5k. This proves that X has linear-growth
complexity.

4.9 Bounded alphabet structures

Theorems 4.75 and 4.76 provide S-adic structures for linear-growth complexity subshifts and
nonsuperlinear-growth complexity subshifts. These are not the only representations known
for these classes: for instance, in [DDMP21] it is proved that if X has nonsuperlinear-growth
complexity, then X is generated by a recognizable, proper and primitive S-adic sequence
σ = (σn : An+1 → A+

n )n≥0 such that #An is uniformly bounded. The last condition is known
as the bounded alphabet property and it is considered natural in the low complexity setting;
see [Fer96; DLR13; Esp22a]. Note that the representations given by Theorems 4.75 and 4.76
do not necessarily satisfy this property. In fact, our construction gives a bonded alphabet
S-adic sequence if and only if the subshift has finite power complexity. Thus, it is natural
to ask whether it is possible to modify Theorems 4.75 and 4.76 so that they give bounded
alphabet S-adic sequences. In this section, we show that such a strengthening is not possible
for Theorem 4.75. More precisely, we prove the following:

Theorem 4.77 There exists a minimal subshift X such that:

(1) X has linear-growth complexity.

(2) If σ = (σn : An+1 → A+
n )n≥0 is an S-adic sequence generating X and satisfying Items

(1), (2) and (3) of Theorem 4.75, then supn≥1#An = +∞.

We were not able to obtain an analogous result for Theorem 4.76, so we leave this as an open
question.

It is interesting to compare Theorem 4.77 with the main result of [Ler14], which describes
bounded alphabet S-adic representations of minimal subshifts whose complexity function
satisfies pX(n+ 1)− pX(n) ≤ 2 for all n ≥ 1. We are led to ask the following.

Question 4.2 How small can supn≥1 pX(n+ 1)− pX(n) be made in Theorem 4.77?

We now turn into proving Theorem 4.77. We start with some technical lemmas.

Let n, n0, d, ℓ ≥ 1. We define P (n, n0, ℓ) as the set of integer sequences (p1, . . . , pℓ) such that
pjn0 ∈ [8jn, 2 · 8jn). Let K(n, d, ℓ) be the set of integer sequences (k1, . . . , kℓ) ∈ P (n, n0, ℓ)
for which there exists E ⊆ [d−1n, dn), with at most d elements, such that every kj can be
written as

∑
e∈E αee, where αe ∈ Z≥0.
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Lemma 4.78 Suppose that n > n3
0, n > ℓ18ℓ

2
and ℓ > 3d > 8. Then, P (n, n0, ℓ) \K(n, d, ℓ)

is nonempty.

Proof. We will show that #P (n, n0, ℓ) > K(n, d, ℓ), which implies that P (n, n0, ℓ)\K(n, d, ℓ)
is nonempty. We first estimate #P (n, n0, ℓ). Note that there are at least (2 · 8jn− 8jn)/n0

ways of choosing pj in a sequence (p1, . . . , pℓ) ∈ P (n, n0, ℓ). Thus,

#P (n, n0, ℓ) ≥
ℓ∏

j=1

8jn/n0 ≥ (n/n0)
ℓ. (4.140)

Next, we estimate #K(n, d, ℓ). Choosing a set E ⊆ [d−1n, dn) with at most d elements can
be done in no more than (dn− d−1n)d ≤ (dn)d different ways. For each set E and j ∈ [1, d],
there are at most (2 · 8jn/d−1n)d numbers

∑
e∈E αee in [8jn, 2 · 8jn). Thus, each E generates

at most (2d · 81)d · (2d · 82)d . . . (2d · 8ℓ)d sequences (k1, . . . , kℓ) ∈ K(n, d, ℓ). Therefore,

#K(n, d, ℓ) ≤ (dn)d · (2d · 81) · (2d · 82) . . . (2d · 8ℓ)
≤ d2dnd2ℓ8(ℓ+2)2 ≤ ndℓ6ℓ

2

, (4.141)

where we used that ℓ > 3d > 8.

Now, since we assumed that n > n3
0, we have that (n/n0)

ℓ > n2ℓ/3. Hence, as the hypothesis
ensures that ℓ > 3d and n > ℓ18ℓ

2
,

(n/n0)
ℓ > ndnℓ/3 > ndℓ6ℓ

2

.

This and Equations (4.140) and (4.141) imply that P (n, n0, ℓ) \K(n, d, ℓ) is nonempty.

Lemma 4.79 Let (ℓn)n≥0 be a sequence of positive integers. We consider, for each n ≥ 0,
kn ≥ 1 and a sequence (pn1 , . . . , p

n
ℓn
) such that pnj ∈ [8jkn, 2 · 8jkn). For a ∈ {0, 1} and

ā = 1− a, we define
τn(a) = ap

n
1 āp

n
1 ap

n
2 āp

n
2 . . . ap

n
ℓn āp

n
ℓn . (4.142)

and τ = (τn)n≥0. Then:

(1) Xτ is infinite, minimal and with linear-growth complexity.

(2) |τ[0,n)(0)| = |τ[0,n)(1)|.

(3) (X
(n)
τ , τ[0,n)) is |τ[0,n)|-recognizable.

(4) 10p
n
j 1 ∈ L(X(n)

τ ) for all j ∈ [1, ℓn].

Proof. Let A = {0, 1}. For a ∈ A, n ≥ 0 and j ∈ [1, ℓn], we use the notation wn,j(a) =
τ[0,n)(a)

pnj and

Wn,j(a) = wn,1(a)wn,1(ā) . . . wn,2(a)wn,2(ā) . . . wn,j(a)wn,j(ā). (4.143)

Remark that Wn,ℓn(a) = τ[0,n+1)(a).

We start by proving the following properties of the morphisms τn.
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(i) |wn,j(0)| = |wn,j(1)| and |Wn,j(0)| = |Wn,j(1)| for all n ≥ 0 and j ∈ [1, ℓn].

(ii) 8jkn|τ[0,n)| ≤ |wn,j(a)| ≤ 2 · 8jkn|τ[0,n)| and 2 · 8jkn|τ[0,n)| ≤ |Wn,j(a)| < 8j+1kn|τ[0,n)|.

(iii) If n ≥ 0, a, b ∈ A and t is a word such that |t| ≥ |τn|/2, t is a prefix of τn(a) and t is a
suffix of τn(b), then τn(a) = τn(b) = t.

Item (i) directly follows from (4.142). In Item (ii), the first inequality is a consequence of the
equality |wn,j(a)| = pnj |τ[0,n)| and that, by the hypothesis, pnj ∈ [8jkn, 2 · 8jkn). We can use
this to compute |Wn,j(a)| ≥ 2|wn,j(a)| ≥ 2 · 8jkn|τ[0,n)| and

|Wn,j(a)| =
j∑

i=1

|wn,j(a)wn,j(ā)| ≤ 2

j∑
i=1

2 · 8ikn|τ[0,n)| < 8j+1kn|τ[0,n)|,

which shows the second inequality in (ii). Finally, we prove Item (iii). We note that (4.143)
implies that |τ[0,n+1)| = |Wn,ℓn(0)| ≥ 2|wn,ℓn(0)|. Hence, as (i) ensures that |τ[0,n)(0)| =
|τ[0,n)(1)|,

|τn| = |τ[0,n+1)|/|τ[0,n)| ≥ 2|wn,ℓn(a)|/|τ[0,n)| = 2|apnℓn |,

which allows us to bound |t| ≥ |τn|/2 ≥ |ap
n
ℓn |. Being t a suffix of τn(a), this implies that

ap
n
ℓn is a suffix of t. Moreover, since t is a prefix of τn(b), a

pnℓn occurs in τn(b). But (4.142)
guarantees that ap

n
ℓn occurs in τn(b) only as a suffix, so we must have that t = τn(b). Therefore,

τn(a) = τn(b) = t.

We now prove that τ satisfies the properties of the lemma. The morphisms τn are positive,
so X is minimal. It follows from (4.142) that 0p

n
1 1 and 0p

n
0 0 belong to L(X(n)

τ ) for all n ≥ 0,
so τ[0,n)(0)1 and τ[0,n)(0)0 are elements of L(X). This shows that X has infinitely many right-
special words, and thus that X is infinite. To prove that X has linear-growth complexity,
we will show that pX(k) ≤ 1024k for all k ≥ 1. Let k ≥ 1 be arbitrary. We take n ≥ 0 such
that |τ[0,n)| ≤ k < |τ[0,n+1)|. We consider three cases. Assume first that k < |wn,1(0)|. Then,
from (4.142) we have that any w ∈ L(X) ∩ Ak occurs in a word of the form wn,1(a)wn,1(b)
for some a, b ∈ A. This implies, since |w| ≥ |τ[0,n)(a)| and wn,1(a) = τ[0,n)(a)

pn1 for any a ∈ A,
that pX(k) ≤ #A2 · k = 4k.

Let us now assume that |wn,1(0)| ≤ k < |Wn,ℓn−1(0)|. Let j ∈ [1, ℓn − 1] be the least integer
satisfying k < |Wn,j(0)|. Then, by (ii),

k ≤ |wi,n(a)| = |τ[0,n)(0)p
n
i | for all i ∈ [j + 1, ℓn] and a ∈ A.

Using this, (4.142) and the definition of wn,i(a) we deduce that any w ∈ L(X)∩Ak occurs in
a word having either the form Wn,j(a)τ[0,n)(b)

pnj+1 or the form τ[0,n)(a)
pnj+1τ[0,n)(b)

pnj+1 , where
a, b ∈ A. Therefore,

pX(k) ≤ #A2 · (|Wn,j(0)τ[0,n)(0)
pnj+1|+ |τ[0,n)(0)p

n
j+1τ[0,n)(0)

pnj+1|).

Putting that |Wn,j(0)| ≤ |τ[0,n)(0)p
n
j+1 | in the last inequality yields

pX(k) ≤ 16pnj+1|τ[0,n)(0)| = 16|wn,j+1(0)|.
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Now, if j = 1, then 16|wn,2(0)| ≤ 16 · 16|wn,1(0)| ≤ 256k by (ii), and so pX(k) ≤ 256k. If
j > 1, then the minimality of j implies that k ≥ |Wn,j−1(0)|. Hence, by (ii), 16|wn,j+1(0)| ≤
16 · 82|Wn,j(0)| ≤ 1024k, and therefore pX(k) ≤ 1024k.

Finally, we assume that k ≥ |Wn,ℓn−1(0)|. Since k < |τ[0,n+1)|, we have that any w ∈ L(X)∩Ak

occurs in a word of the form τ[0,n+1)(a)τ[0,n+1)(b), where a, b ∈ A. Thus, pX(k) ≤ 4|τ[0,n+1)|.
Moreover, being |Wn,ℓn−1(0)| at most k, we have from (ii) that 4|τ[0,n+1)| = 4|Wn,ℓn(0)| ≤
82|Wn,ℓn−1(0)| ≤ 82k; therefore, pX(k) ≤ 64k.

We conclude that pX(k) ≤ 1024k for every k ≥ 1 and that X has linear-growth complexity.

Items (2) and (4) of the lemma follow from (4.142). Thus, it only left to prove Item (3). We
note that, since |τ[0,n)| = |τ0| · · · |τn−1|, it is enough, by Lemma 1.1, to prove that (AZ, τn) is

|τn|-recognizable for all n ≥ 0. Let x, x̃ ∈ An and (k, y), (k̃, ỹ) be τn-factorizations of x, x̃ in
AZ, respectively, and assume that x[−|τn|,|τn|) is equal to x̃[−|τn|,|τn|). We assume with no loss of

generality that k ≤ k̃. There are two cases. If k̃− k ≤ |τn|/2, then x[−k,−k̃+|τn|) has length at
least |τn|/2 and is a suffix of τn(y0). As x[−|τn|,|τn|) = x̃[−|τn|,|τn|), we also have that x[−k,−k̃+|τn|)
is a prefix of τn(ỹ1). We deduce, using (iii), that τn(y0) = τn(ỹ0) = x[−k,−k̃+|τn|), and thus

that y0 = ỹ0. Moreover, since k, k̃ ∈ [0, |τn|), k = k̃. Let us now suppose that k̃− k ≥ |τn|/2.
Then, |x[−k̃,−k)| ≥ |τn|/2 and x[−k̃,−k) is both a suffix of τn(ỹ−1) and a prefix of τn(y0). Hence,

by (iii), τn(ỹ−1) = τn(y0) = x[−k,−k̃), which is impossible as k, k̃ ∈ [0, |τn|). We conclude that

(X
(n)
τ , τn) is |τn|-recognizable.

We can now prove Theorem 4.77.

Proof of Theorem 4.77. Let (ℓn)n≥0 and (dn)n≥0 be nondecreasing diverging sequences of
integers with ℓn > 3dn > 8. We inductively define Mn, mn, (p

n
1 , . . . , p

n
ℓn
) and τn as follows.

Let m0 = 1 and M0 be such that M0 > m3
0 and M0 > ℓ

18ℓ20
0 . Then, we can use Lemma 4.78

to find
(p01, p

0
2, . . . , p

0
ℓ0
) ∈ P (M0,m0, ℓ0) \K(M0, d0, ℓ0).

We define τ0 using (p01, . . . , p
0
ℓ0
) as in (4.142). Suppose now that Mn, mn, (p

n
1 , . . . , p

n
ℓn
) and τn

are defined. We setmn+1 = |τ[0,n+1)| and takeMn+1 so thatMn+1 > m3
n+1 andMn+1 > ℓ

18ℓ2n+1

n+1 .
Then, we can use Lemma (4.142) to find

(pn+1
0 , pn+1

1 , . . . , pn+1
ℓn

)ℓnj=1 ∈ P (Mn+1,mn+1, ℓn+1) \K(Mn+1, dn+1, ℓn+1) (4.144)

and define τn+1 using (pn+1
1 , . . . , pn+1

ℓn+1
) as in (4.142).

We set τ = (τn)n≥0. Then, Items (1) to (4) in Lemma 4.79 hold. In particular, Xτ is minimal
and has linear-growth complexity. We prove that Xτ satisfies the conclusion of the theorem
by contradiction. Suppose that there exist d and σ = (σn : An+1 → A+

n )n≥0 satisfying Items
(1), (2) and (3) of Theorem 4.75 and #An ≤ d for all n ≥ 1.

We claim that there exists n, n′ ≥ 0 such that

dn ≥ 2d6 + d, 2mn ≤
1

6d2
Mn ≤ ⟨σ[0,n′)⟩ and |σ[0,n′)| ≤

1

6
Mn. (4.145)
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We take n ≥ 0 big enough so that dn ≥ 12d4 + d and mn ≥ 12d2. Let n′ ≥ 0 be the integer
satisfying |σ[0,n′)| ≤ 1

6
Mn < |σ[0,n′+1)|. Then, by Items (2) and (3) in Theorem 4.75,

1

6
Mn < |σ[0,n′+1)| ≤ d2⟨σ[0,n′)⟩.

Also, since we choseMn and n so thatMn > m3
n and mn ≥ 12d2, we have that mn ≤ 1

12d2
Mn.

This completes the proof of the claim.

Let wa = τ[0,n)(a) for a ∈ {0, 1}. Then, by Item (4) in Lemma 4.79, 10p
n
j 1 ∈ L(X(n)

τ ) for

every j ∈ [1, pnℓn ]. Being Xτ generated by σ, there exist uj ∈ A+ such that w1w
pnj
0 w1 occurs

in σ[0,n′)(uj). Moreover, we can take uj so that the following condition holds: If aj is the first
letter of uj and bj is the last letter of uj, then there exists a prefix sj of σ[0,n′)(aj) and a suffix

tj of σ[0,n′)(bj) such that sjw1w
pnj
0 w1tj = σ[0,n′)(uj). Observe that |σ[0,n′)(uj)| ≥ |w

pn1
0 | = Mn,

so
|uj| ≥ |σ[0,n′)(uj)|/|σ[0,n′)| ≥Mn/|σ[0,n′)| ≥ 6. (4.146)

We define aja
′
ja

′′
j as the first three letters of uj and b

′′
j b

′
jbj as the last three letters of uj.

We claim that

if i, j ∈ [1, ℓn] and aia
′
ia

′′
i b

′′
i b

′
ibi = aja

′
ja

′′
j b

′′
j b

′
jbj, then si = sj and ti = tj. (4.147)

The inequality |w1| = mn ≤ |σ[0,n′)| and (4.146) ensure that σ[0,n)(ai) is a prefix of siw1w
∞
0 .

Hence, as si is a prefix of σ[0,n)(ai), we can write σ[0,n)(aia
′
i) = siw1w

qi
0 ri, where qi ≥ 1 and ri is

a prefix of w0 different from w0. Similarly, σ[0,n)(aja
′
j) = sjw1w

qj
0 rj for some qj ≥ 2 and prefix

rj of w0 different from w0. Then, as the hypothesis implies that σ[0,n)(aia
′
ia

′′
i ) = σ[0,n)(aja

′
ja

′′
j ),

Item (4) in Lemma 4.79 can be used to obtain ri = rj. We obtain that

siw1w
qi
0 ri = σ[0,n)(aia

′
i) = σ[0,n)(aja

′
j) = sjw1w

qj
0 rj = sjw1w

qj
0 ri.

Therefore, if qi ̸= qj then w0 = w1, which contradicts the fact that X is infinite. We conclude
that qi = qj, and thus that si = sj. A similar argument shows that ti = tj, and the claim
follows.

Thanks to the claim, we have that the set

S = {|σ[0,n′)(aka
′
k)| − |skw1|, |σ[0,n′)(b

′
kbk)| − |w1tk| : k ∈ [1, ℓn]}

∪ {|σ[0,n′)(a)| : a ∈ An′}

has no more than 2#A6
n′ +#An′ elements. Thus, by the choice of dn,

#S ≤ 2d6 + d ≤ dn. (4.148)

Also, by (4.145), maxS ≤ 2|σ[0,n′)| ≤ Mn. Moreover, as |sjw1| ≤ |σ[0,n′)(aj)| + mn and
|w1tj| ≤ |σ[0,n′)(bj)| +mn, we have that minS ≥ ⟨σ[0,n′)⟩ −mn ≥ 1

12d2
Mn, where in the last

step we used (4.145). Therefore, as dn ≥ 2d6 + d,

S ⊆ [
1

dn
Mn, dnMn]. (4.149)
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Let us write uj = aja
′
jvjb

′
jbj for certain vj. Then, the equation σ[0,n)(uj) = siw1w

qi
0 ri implies

that

pnjmn = |wpnj
0 | = (σ[0,n′)(aja

′
j)− |sjw1|) + |σ[0,n′)(vj)|+ (σ[0,n′)(b

′
jbj)− |w1tj|).

This shows that

every pnjmn can be written as
∑
e∈S

γee for certain γe ∈ Z≥0. (4.150)

We conclude, from Equations (4.148), (4.149) and (4.150) that (pn1 , . . . , p
n
ℓn
) belongs to

K(Mn, dn, ℓn). This contradicts (4.144).

4.10 Applications

We present in this section new and simpler proofs, based on Theorems 4.75 and 4.76, of
known results about linear-growth and nonsuperlinear-growth complexity subshifts.

4.10.1 Cassaigne’s Theorem

A classic result on linear-growth complexity subshift is Cassaigne’s Theorem [Cas95], which
states that, for any transitive subshift X in this complexity class, pX(n + 1) − pX(n) is
uniformly bounded. We show in this subsection how to use Theorem 4.75 to give a different
proof of this result, in the case in which X is minimal.

We start with a lemma containing the technical core of our approach.

Lemma 4.80 Let x, y ∈ AZ, p1, . . . , pn ∈ Z be a collection of different integers and ℓ1, . . . , ℓn ≥
1. Suppose that:

(1) x[pj ,pj+ℓj) = y[0,ℓj) for all j ∈ [1, n].

(2) |pj − pi| ≤ 1
2
ℓk for all i, j, k ∈ [1, n].

Then, there exists w ∈ A+ such that, for all i, j ∈ [1, n], x[pi,pj) is a power of w and
x[pi,pj+min(ℓi,ℓj)) is a prefix of w∞.

Proof. Being the pj different, there is no loss of generality in assuming that p1 < p2 < · · · <
pn. We define, for i, j ∈ [1, n] with i < j, wi,j = rootx[pi,pj) and ℓi,j = min(ℓi, ℓj). Then,
Item (1) in the statement of the lemma ensures that x[pi,pi+ℓi,j) = x[pj ,pj+ℓi,j), and thus that
x[pi,pj+ℓi,j) is a prefix of w∞

i,j. In particular, as pi < pj and wi,j = rootx[pi,jj), we have that for
all i, j ∈ [1, n] with i < j,

x[pi,pi+ℓi,j ] and x[pj ,pj+ℓi,j) are prefixes of w∞
i,j. (4.151)

Therefore, it is enough to find w such that w = wi,j for all i < j.

First, we show that

wi,k = wj,k for all i, j, k ∈ [1, n] with i, j < k. (4.152)
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Observe that, in this situation, we have from (4.151) that ifm = min(ℓi,k, ℓj,k), then x[pk,pk+m)

is a prefix of w∞
i,k and x[pk,pk+m) is a prefix of w∞

j,k. Thus,

(wZ
i,k)[0,m) = (wZ

j,k)[0,m). (4.153)

Now, by Item (2) in the statement of the lemma and the definition of wi,k and wj,k, wi,k and
wj,k have length at most m/2. This and (4.153) permits to use Theorem 4.8 and obtain that
wi,k and wj,k are powers of a common word. This implies, since wi,k and wj,k are defined as
roots, that wi,k = wj,k.

We now note that if i, j ∈ [1, n] and i < j, then (4.152) ensures that w1,j = wi,j. Hence, as
x[p1,pj) = x[p1,pi)x[pi,pj), w1,i = w1,j = wi,j. Being i, j arbitrary, this implies that w1,2 = w1,j =
wi,j. Therefore, the lemma follows from defining w := w1,2.

The proposition below uses Lemma 4.80 to give a bound for pX(n + 1) − pX(n) in a very
general context.

Proposition 4.81 Let W ⊆ A+ and X ⊆
⋃

k∈Z S
kWZ. Then, for any ℓ < ⟨W⟩,

pX(ℓ+ 1)− pX(ℓ) ≤ 256#A ·#(rootW)2|W|2/ℓ2.

Proof. We prove the proposition by contradiction. Suppose that ℓ < ⟨W⟩ and that pX(ℓ +
1) − pX(ℓ) ≥ 256#A · #(rootW)2|W|2/ℓ2. Then, by Proposition 4.14, we can find at least
256#(rootW)2|W|2/ℓ2 right-special words {ui : i ∈ I} of length ℓ in X. Let uiai,0 and uiai,1
be two different right extensions for ui in X. We are going to prove that ai,0 = ai,1 for some
i ∈ I, contradicting the fact that uiai,0 and uiai,1 are different.

Let X ′ = {. . . vvv.v′v′v′ · · · : v, v′ ∈ rootW} ⊆ AZ. Then, it is not difficult to check that:

(a) every w ∈ L(X) of length at most ⟨W⟩ occurs in some x ∈ X ′.

(b) #X ′ ≤ #(rootW)2.

In particular, each uiai,j occurs in some xi,j = . . . vi,j.v
′
i,j · · · ∈ X ′, so

uiai,j = (xi,j)[βi,j ,βi,j+ℓ] for some βi,j ∈ [−|W|, |W|). (4.154)

We use (b) and the Pigeonhole principle to obtain a set I ′ ⊆ I and x0, x1 ∈ X ′ such that
#I ′ ≥ 256|W|2/ℓ2 and xj = xi,j for all i ∈ I ′ and j ∈ {0, 1}. We use again the Pigeonhole
principle to find I ′′ ⊆ I ′ satisfying #I ′′ ≥ #I ′/(8|W|/ℓ)2 ≥ 4 and

|βi,j − βi′,j| ≤ 2|W|/(8|W|/ℓ) = ℓ/4 for all i, i′ ∈ I ′′ and j ∈ {0, 1}. (4.155)

Let β = max{βi,1 : i ∈ I ′′} and, for i ∈ I ′′, γi = βi,0 − βi,1 + β. We claim that for all i ∈ I ′′,

(i) βi,1 ≤ β ≤ βi,1 + ℓ/4 and βi,0 ≤ γi ≤ βi,0 + ℓ/4;
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(ii) ui has a suffix u′i of length at least 3
4
ℓ such that u′iai,0 = (x0)[γi,γi+|u′

i|] and u′iai,1 =
(x1)[β,β+|u′

i|];

(iii) if p, q ∈ I ′′ are different, then γp + |u′p| ≠ γq + |u′q| and γp ̸= γq.

Item (i) follows from (4.155). For Item (ii), we first note that the definition of γi ensures that
mi := ℓ+ βi,1 − β = ℓ+ βi,0 − γi, and that (i) gives 3

4
ℓ ≤ mi ≤ ℓ. Thus, ui has a suffix u′i of

length mi ≥ 3
4
ℓ such that, by (4.154), satisfies Item (ii). It is left to prove (iii). Assume that

p, q ∈ I ′′ and γp + |u′p| = γq + |u′q|. Then, βp,0 = γp + |u′p| − ℓ = γq + |u′q| − ℓ = βq,0 and hence
up = uq, which implies that p = q. Let us now suppose that γp = γq. Note that if |u′p| = |u′q|
then γp + |u′p| = γq + |u′q|, and so p = q by what we just proved. Thus, there is no loss of
generality in assuming that |u′p| < |u′q|. Then, (ii) allows us to write u′pap,0 = (x0)[γp,γp+|u′

p|]
and u′q = (x0)[γp,γp+|u′

q |]. In particular, u′pap,0 is a prefix of u′q. Similarly, (ii) implies that
u′pap,1 = (x1)[β,β+|u′

p|] is a prefix of u′q = (x1)[β,β+|u′
q |). Therefore, u′pap,0 = u′pap,1, which

contradicts the definition of ap,0 and ap,1. This shows that the case |u′p| < |u′q| does not
occur, so |u′p| = |u′q| and p = q. This completes the proof of the claim.

Thanks to the claim, we have that (x0)[γi,γi+|u′
i|) = (Sβx1)[0,|u′

i|) and |γi − γi′| ≤
1
2
|u′i| for all

i, i′ ∈ I ′′. Moreover, all the γi are different by (iii). Therefore, we can use Lemma 4.80 and
deduce that there exists w ∈ A+ such that for any p, q ∈ I ′′,

(x0)[γp,γq) is a power of w

and (x0)[γp,γp+min(|u′
p|,|u′

q |)) is a prefix of w∞. (4.156)

We use Item (iii) of the claim and that #I ′′ ≥ 4 to find p, q ∈ I ′′ such that |u′t| < |u′p| < |u′q|
for all t ∈ I ′′ \ {p, q}. Furthermore, (iii) allows us to find r, s ∈ I ′′ \ {p, q} such that
γr + |u′r| < γs + |u′s|.

We observe that, since |u′s| < |u′p|, the second part of (4.156) ensures that that u′s =
(x0)[γs,γs+|u′

s|) is a prefix of w∞. Then, by the first part of (4.156), (x0)[γr,γs+|u′
s|) is a pre-

fix of w∞. Since γr + |u′r| < γs + |u′s|, we get that

u′rar,0 = (x0)[γr,γr+|u′
r|] is a prefix of w∞. (4.157)

Now, the definition of r and p guarantees that |u′r| < |u′p|, so, by (4.154), u′rar,1 = (x1)[β,β+|u′
r|])

is a prefix of (x0)[γp,γp+|u′
p|) = (x1)[β,β+|u′

p|). Moreover, as |u′p| < |u′q|, the second part of (4.156)
gives that (x0)[γp,γp+|u′

p|) is a prefix of w∞. We conclude that u′rar,1 is a prefix of w∞. But
then (4.157) implies that u′rar,1 = u′rar,0, contradicting our assumptions.

Theorem 4.82 ([Cas95]) Let X be a minimal linear-growth complexity subshift. Then,
pX(ℓ+ 1)− pX(ℓ) is uniformly bounded.

Proof. Let ℓ ≥ 1 be arbitrary. The theorem is trivial if X is finite, so we assume that X
is infinite. Then, we can use Theorem 4.75 to obtain an S-adic sequence σ = (σn : A+

n+1 →
A+

n )n≥1 generating X and d ≥ 1 such that the conditions (1), (2) and (3) of Theorem 4.75
hold.
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Let n ≥ 1 be the least integer such that ⟨σ[0,n)⟩ > ℓ. Then, X is a subset of
⋃

k∈Z S
kσ[0,n)(AZ

n),
so Proposition 4.81 and the conditions in Theorem 4.75 give the bounds:

pX(ℓ+ 1)− pX(ℓ) ≤ 256#A0#(rootσ[0,n)(An))
2|σ[0,n)|2/ℓ2

≤ 256#A0 · d2 · |σ[0,n)|2/ℓ2.

Now, the minimality of n ensures that ⟨σ[0,n−1)⟩ ≤ ℓ, so by Items (2) and (3) in Theorem
4.75,

|σ[0,n)| ≤ |σn−1| · |σ[0,n−1)| ≤ d2⟨σ[0,n−1)⟩ ≤ d2ℓ.

Therefore, pX(ℓ+1)− pX(ℓ) ≤ 256#A0 · d6 and pX(ℓ+1)− pX(ℓ) is uniformly bounded.

4.10.2 A theorem of Cassaigne, Frid, Puzynina and Zamboni

The following result was proven in [CFPZ18].

Theorem 4.83 Let x ∈ AN be an infinite sequence. The following conditions are equivalent:

(1) x has linear-word complexity.

(2) There exists S ⊆ A∗ such that S2 ⊇ L(x) and supn≥1 pS(n) < +∞.

In this subsection, we give a different proof of Theorem 4.83 for the case of minimal subshifts.
We start by proving the following corollary of Theorem 4.75.

Proposition 4.84 Let X be an infinite minimal subshift of linear-growth complexity. There
exists d ≥ 1 such that for any d′ ≥ 2 we can find τ = (τn : An+1 → A+

n )n≥0 generating X
such that:

(1) #(root τ[0,n)(An)) ≤ d.

(2) |τ[0,n)(a)| ≤ d · |τ[0,n)(b)| for all a, b ∈ An.

(3) d′ ≤ |τn−1(a)| ≤ d6 log2 d
′
for all a ∈ An.

Proof. Let τ ′ = (τn : An+1 → A+
n )n≥0 and d be the elements given by Theorem 4.75 when it

is applied with X, and let d′ ≥ 1 be arbitrary. We will construct τ by carefully contracting
τ ′.

Let n0 = 0 and inductively define nk+1 as the smallest integer such that nk+1 > nk and
⟨τ[nk,nk+1)⟩ ≥ 2. We observe that, since ⟨τ[nk,nk+1−1)⟩ = 1 by the minimality of nk+1, we have
that ⟨τ[0,nk+1−1)⟩ ≤ |τ[0,nk)|. Then, by Items (2) and (3) in Theorem 4.75, we can bound

|τ[0,nk+1)| ≤ |τ[0,nk+1−1)||τnk+1−1| ≤ d⟨τ[0,nk+1−1)⟩ · d ≤ d2|τ[0,nk)| ≤ d3⟨τ[0,nk)⟩.

We note now that for any pair of morphisms σ and σ′ for which σσ′ is defined we have that
|σσ′| ≥ ⟨σ⟩|σ′|. Therefore,

|τ[nk,nk+1)| ≤
|τ[0,nk+1)|
⟨τ[0,nk)⟩

≤ d3. (4.158)
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We set ℓ = ⌈log2 d′⌉ and consider the contraction τ = (τ[nℓk,nℓ(k+1)))k≥0. It follows from the

definition of nk that ⟨τ[nℓk,nℓ(k+1))⟩ ≥ 2ℓ ≥ d′, and, from (4.158), that |τ[nℓk,nℓ(k+1))| ≤ d3ℓ ≤
d6 log2 d

′
. Thus, τ satisfies Item (3) of this proposition. Moreover, since τ ′ satisfies Item

(1) and (2) in Theorem 4.75 and since τ is a contraction of τ ′, Items (1) and (2) of this
proposition hold.

Lemma 4.85 Let w ∈ A+ and ℓ ≤ |w|. There exists a set of words V such that:

(1) #V ∩ An ≤ 25|w|/ℓ for all n ≥ 1.

(2) ⟨V⟩ ≥ ℓ, |V| ≤ |w|.

(3) For any u occurring in w of length |u| ≥ 26ℓ we have that u ∈ V2.

Proof. For i ≥ 0 and j ∈ [0, 7], let w = ui,j(1)ui,j(2) . . . ui,j(2
i) be the (unique) decomposition

of w into 2i words ui,j(k) ∈ A∗ such that |ui,j(1) . . . ui,j(k)| = ⌊(8k + j)|w|/2i+3⌋ for all
k ∈ [1, 2i]. We define Vi as the set of words that are a prefix or a suffix of length at least ℓ
of some ui,j(k). Set V := ∪0≤i<log2(|w|/ℓ)Vi.

It follows from the definition of V that ⟨V⟩ ≥ ℓ and that |V| ≤ |w|, so Item (2) holds. For
Item (1), we note that if n ≥ 1, then each ui,j(k) has at most one prefix of length n and
at most one suffix of length n. Hence, #Vi ∩ An is bounded by above by 2 · 8 · 2i = 2i+4.
Therefore, #V ∩ An ≤

∑
0≤i<log2 |w|/ℓ 2

i+4 ≤ 25|w|/ℓ.

We now prove Item (3). Let u be a word of length |u| ≥ 26ℓ that occurs in w. Let us write
w = tus, where t, s ∈ A∗, and take i ≥ 0 such that |w|/2i+1 < |u| ≤ |w|/2i. Remark that
i < log2(|w|/ℓ) as |u| ≥ 26ℓ. We also consider the unique pair (k, j) ∈ [1, 2i]× [0, 7] such that

(8k + j)|w|/2i+3 ≤ |t|+ |w|/2 < (8k + j + 1)|w|/2i+3.

Then, we can write u = u′u′′ in such a way that |tu′| = ⌊(8k + j)|w|/2i+3⌋. It is not
difficult to check that u′ is a suffix of ui,j(k) and that u′′ is a prefix of ui,j(k + 1). Moreover,
|u′|, |u′′| ≥ |w|/2i ≥ ℓ, so u′, u′′ ∈ Vi and u ∈ V2.

Theorem 4.86 Let X ⊆ AZ be an minimal subshift. The following conditions are equivalent:

(1) X has linear-word complexity.

(2) There exists S ⊆ A∗ such that S2 ⊇ L(X) and supn≥1 pS(n) < +∞.

Proof. We first suppose that X satisfies Condition (2) and define d = supn≥1 pS(n). Then
L(X) ∩ An ⊆ {ss′ : s, s′ ∈ S, |s| = n− |s′|}. Hence,

pX(n) ≤
n∑

k=0

pS(k)pS(n− k) ≤ (n+ 1)d2

and pX has linear growth.
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Let us now suppose that X has linear-growth complexity. The case in which X is finite is
trivial; hence, we assume that X is infinite. Using Proposition 4.84 with d′ = 2, we can find
a constant d and an S-adic sequence τ = (τn : An+1 → A+

n )n≥0 generating X such that Items
(1), (2) and (3) in Proposition 4.84 hold.

We define S as follows. Let n ≥ 1. For u ∈ root τ[0,n)(An), we take pn,u ≥ 1 such that
|τ[0,n)| ≤ |upn,u| < 2|τ[0,n)|. We define Wn = {upn,uvpn,v : u, v ∈ root τ[0,n)(An)}. For each
w ∈ Wn, we use Lemma 4.85 with ℓ = ⟨τ[0,n−1)⟩/26 to obtain a set Vn,w satisfying the
following:

(a) #Vn,w ∩ Ak ≤ 211|w|/⟨τ[0,n−1)⟩ for all k ≥ 1.

(b) ⟨Vn,w⟩ ≥ ⟨τ[0,n−1)⟩/26, |Vn,w| ≤ |w|.

(c) if u occurs in w and |u| ≥ ⟨τ[0,n−1)⟩, then w ∈ V2
n,w.

We set S = ∪n≥1 ∪w∈Wn Vn,w.

Before continuing, we make some observations about the definitions. It follows from the
definition of Wn and Item (1) in Proposition 4.84 that

#Wn ≤ #(root τ[0,n)(An))
2 ≤ d2. (4.159)

We also have that

if a, b ∈ An and v occurs in τ[0,n)(ab), then v occurs in some w ∈ Wn. (4.160)

Note that since |w| ≤ 2|τ[0,n)| for all w ∈ Wn, (a) and (b) imply that

|Vn,w| ≤ 2|τ[0,n)| and #Vn,w ≤ 212|τ[0,n)|/⟨τ[0,n−1)⟩ ≤ 212d2, (4.161)

where in the last step we used Items (2) and (3) of Proposition 4.84.

We now prove that S satisfies the desired properties. Let us start by showing that L(X) ⊆
S2. Let u ∈ L(X) and let n ≥ 1 be the biggest integer such that |u| ≥ ⟨τ[0,n)⟩. Then,
|u| < ⟨τ[0,n+1)⟩ and, thus, as τ generates X, there exists a, b ∈ An+1 such that u occurs
in τ[0,n+1)(ab). Hence, by (4.160), u occurs in some w ∈ Wn+1, which implies, by (c), that
u ∈ V2

n+1,w ⊆ S2.

It remains to prove that pS is uniformly bounded. Let Sn = ∪w∈WnVn,w. We claim the
following:

(i) #pSn(k) ≤ 212d4 for all n ≥ 0 and k ≥ 0.

(ii) for any k ≥ 0, there are at most log2(d) + 7 integers n such that Sn ∩Ak is not empty.

Observe that (i) and (ii) allow us to write

pS(k) ≤
∑

n:Sn∩Ak ̸=∅

pSn(k) ≤ (log2 d+ 7) · 212d4,

which would show that pS is uniformly bounded and would complete the proof.
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Let us first prove (i). The definition of Sn ensures that pSn(k) ≤ #Wn ·max{#Vn,w ∩ Ak :
w ∈ Wn}. Hence, by (4.159) and (4.161), pSn(k) ≤ d2 · 212d2.

Next, we prove (ii) by contradiction. Assume that there are more than log2 d+ 7 integers n
such that Sn ∩ Ak ̸= ∅. Then, we can find n and m such that Sn ∩ Ak ̸= ∅, Sm ∩ Ak ̸= ∅
and m > n + log2 d + 7. We have, on one hand, that the definition of Sm ensures that
k ≥ minw∈Wn⟨Vn,w⟩. Hence, by (b) and Item (3) in Proposition 4.84,

k ≥ ⟨τ[0,m−1)⟩/26 ≥ 2m−n−7⟨τ[0,n)⟩. (4.162)

On the other hand, the definition of Sn guarantees that k ≤ maxw∈Wn |Vn,w|. Combining this
with (4.161) and Item (2) in Proposition 4.84 produces

k ≤ 2|τ[0,n)| ≤ 2d⟨τ[0,n)⟩. (4.163)

Equations (4.162) and (4.163) are incompatible as m − n − 7 > log2 d. This contradiction
proves (ii) and completes the proof of the theorem.

4.10.3 Topological rank

The topological rank of a minimal subshift X is the least element k ∈ [1,+∞] such that
there exists a recognizable S-adic sequence τ = (τn : An+1 → A+

n )n≥0 satisfying, for every
n ≥ 1, that #An ≤ k and that τn is positive and proper. The class of finite topological
rank subshifts satisfies several rigidity properties, and many tools have been developed to
handle it; a non-exhaustive list includes [BKMS13; DFM19; Esp22a; EM21; DM08; BSTY19;
HPS92].

It was proved in [DDMP21] that a minimal subshift of nonsuperlinear-growth complexity
has finite topological rank, and thus that the aforementioned rigidity properties hold for this
class. We present in this subsection a new proof of this fact based in Theorem 4.76.

Theorem 4.87 ([DDMP21], Theorem 5.5) Let X be a minimal subshift of nonsuperlinear-
growth complexity. Then, X has finite topological rank.

Proof. The case in which X is finite is trivial, and so we may assume that X is infinite.
Then, Theorem 4.76 gives d and a recognizable S-adic sequence σ = (σn : An+1 → A+

n )n≥0

generating X such that Items (1) and (2) of Theorem 4.76 hold. In particular,

X ⊆
⋃
k∈Z

Sk(rootσ[0,n)(An))
Z for all n ≥ 1. (4.164)

Now, since |σ[0,n)| goes to +∞ as n → +∞ and d|σ[0,n)| ≤ ⟨σ[0,n)⟩ by Item (2) in Theorem
4.76, we have that ⟨σ[0,n)⟩ diverges to +∞ as n→ +∞. Hence, since X is aperiodic,

lim
n→+∞

⟨rootσ[0,n)(An)⟩ = +∞.

This and (4.164) allow us to use [Esp22a, Corollary 1.4] or [DDMP21, Theorem 4.3] to
conclude that X has finite topological rank.
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Chapter 5

Perspectives and future work

In this final chapter, we will present some open questions and comments that have emerged
from the thesis work. These ideas correspond to a future research plan.

5.1 More on symbolic factors

The theorems in Chapter 3 provide a fine description of the symbolic factors for a general class
of subshifts: those having finite topological rank. It is then natural to search for applications
within the finite topological rank class. We now describe two ideas for doing this.

5.1.1 Symbolic factors of eventually dendric shifts

The class of minimal dendric subshifts was introduced in [Ber+14] (under the name of tree
shifts) and are a generalization of Arnoux-Rauzy subshifts and (the natural coding of) interval
exchanges. This class presents interesting rigidity properties, such as that any set of return
words is a basis of the free group of a fixed cardinality or that the complexity function is an
affine function [Ber+14]. Moreover, the closely related class of eventually dendric subshifts
was independently discovered in [DF22] while generalizing a theorem on the number of ergodic
measures of interval exchanges. Due to this, dendric and eventually dendric shifts have gained
attention, and, in particular, the question about their symbolic factors has become relevant.

Problem 5.1 Describe the symbolic factors of (eventually) dendric shifts.

There are examples of dendric subshifts with non-dendric symbolic factors. However, all
known such factors are eventually dendric. This has led to the following conjecture.

Conjecture 5.1 Are all symbolic factors of a given eventually dendric shift eventually den-
dric?

Interestingly, a finite topological rank structure for minimal eventually dendric subshift was
recently obtained [GL22]. Therefore, the methods developed in Chapter 3 can be applied to
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this case and, by doing so, we may be able to shed some light on the conjecture.

5.1.2 Symbolic factors of interval exchanges

The following is an old question regarding interval exchange transformations:

Question 5.1 Let F be the set of interval exchange transformations that do not have non-
trivial measure-theoretic factors. Is F generic?

Observe that an affirmative answer to this question has, as a particular case, the Avila-Forni
Theorem, so it is probably a difficult problem. We consider instead a topological version of
it.

Question 5.2 Let Ftop be the set of interval exchange transformations whose natural coding
does not have non-trivial symbolic factors. Is Ftop generic?

In a work in progress with Vincent Delecroix, we have outlined a strategy, using the ideas of
Chapter 3, for giving an affirmative answer to Question 5.2. This would represent progress
towards Question 5.1.

5.2 More on the S-adic conjecture

Our work on the S-adic conjecture opened at least two new directions of research, which we
now discuss.

5.2.1 Applications of the structure theorems

The S-adic characterization obtained in Chapter 4 permit the use of the S-adic machinery
to study linear- and nonsuperlinear-growth complexity subshifts. Some cases in which this
idea produces interesting results were presented in Section 4.10 of Chapter 4. We plan
on continuing investigating in this direction. In particular, it seems that the absence of
the strong mixing property and the partial rigidity (with respect to an ergodic measure)
may be better understood using the methods in [BKMS13]. More generally, any of the
currently known techniques for handling S-adic sequences can now be applied to linear- and
nonsuperlinear-growth complexity subshifts, see [HPS92; BKMS13; DFM19; Ber+21]. In
some cases, non-proper variations of those techniques must be developed first.

5.2.2 Finite alphabet rank structures

Let (L) and (NSL) be the classes of linear- and nonsuperlinear-growth complexity subshifts,
respectively. We showed in Theorem 4.77 that the structure provided we obtained for (L)
must have, in some cases, infinite alphabet rank †. Now, most of the techniques for handling
S-adic sequences are designed for finite alphabet rank sequences. Although some of them
can be adapted to our case, the following question seems natural:

†The alphabet rank of τ = (τn : A+
n+1 → A+

n )n≥0 is lim infn→+∞ #An.
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Question 5.3 Let C be (L) or (NSL). Is there a finite alphabet rank S-adic characterization
of C?

This question is sometimes called the strong S-adic conjecture. Observe that this question is
ill-defined in the same sense as the S-adic conjecture is.

In the direction of Question 5.3, a close inspection of the proof of Theorem 4.77 shows
that, in some cases, the sets PowX(w) encode certain long-range information that seems
to be incompatible with finite alphabet rank S-adic sequences. Therefore, we suspect that
Question 5.3 has a negative answer.
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