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Abstract
In this paper, we deal with reversing and extended symmetries of subshifts generated
by bijective substitutions. We survey some general algebraic and dynamical proper-
ties of these subshifts and recall known results regarding their symmetry groups. We
provide equivalent conditions for a permutation on the alphabet to generate a revers-
ing/extended symmetry, and algorithms how to compute them.Moreover, for any finite
group H and any subgroup P of the d-dimensional hyperoctahedral group, we con-
struct a bijective substitution which generates an aperiodic subshift with symmetry
group Z

d × H and extended symmetry group (Zd
� P) × H . A similar construction

with the same symmetry group, but with extended symmetry group (Zd × H) � P is
also provided under a mild assumption on the dimension.
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1 Introduction

The study of symmetry groups, often also known as automorphismgroups, is an impor-
tant part of the analysis of a dynamical system, as it can offer insight on the behavior
of the system, as well as allowing classifications of distinct families of dynamical
systems (acting as a conjugacy invariant). In particular, symmetry groups of subshifts
have been thoroughly studied (see e.g. the analysis of the symmetry group of the full
shift [9], the series of works on symmetries in low-complexity subshifts [15–17], and
recent works on shifts of algebraic and number-theoretic origin [3,19]).

Symmetries of subshifts can be algebraically defined as elements of the topological
centralizer of the group 〈σ 〉 generated by the shift, seen as a subgroup of the space
Aut(X) of all self-homeomorphisms of X onto itself. Thus, a natural question at this
point is whether the corresponding normalizer has an interesting dynamical interpreta-
tion aswell. This leads to the concept of reversing symmetries (for d = 1); see [5,6,23],
themonograph [33] for a group-theoretic exposition, and [28] for amore physical back-
ground. These are special types of flip conjugacies; see [8]. In higher dimensions, one
talks of extended symmetries; see [1,6], which are examples of GL(d, Z)-conjugacies;
compare [3,27]. These kinds of maps are related to phenomena such as palindromicity
and several properties of geometric and topological nature, with the latter being more
evident in the higher-dimensional setting [6,10].

High complexity is often (but not always, see for instance the square-free sub-
shift [3]) linked to a complicated symmetry group. For instance, determining whether
the symmetry groups of the full shifts in two and three symbols are isomorphic has
consistently proven to be a difficult question [9]. The low-complexity situation, thus,
often allows for a more in-depth analysis and more complete descriptions, up to and
including explicit computation of these groups in many cases.

The particular case of substitutive subshifts has gathered significant attention and
here a lot of progress has been made; see [26,32]. Unsurprisingly, the presence of
non-trivial symmetries is also tied to the spectral structure of the underlying dynam-
ical system; see [21,34]. In this work, we restrict to systems generated by bijective
substitutions, both in one and in higher dimensions. These substitutions are typically
n-to-1 extensions of odometers and generate colored tilings ofZ

d by unit cubes, where
one usually identifies a letter with a unique color; see [21]. Some natural questions in
this direction are:

– What kinds of groups can appear as symmetry groups/extended symmetry groups
of specific substitutive subshifts?

– Given a specific group H , canwe construct a substitutionwhose associated subshift
has H as its symmetry group/extended symmetry group?

Both questions are accessible for bijective substitutions. For symmetry groups, the
second question is answered in full in [17], which extends to higher dimensions with
no additional assumptions; see [13] for realization results for more general group
actions.

The paper is organized as follows: In Sect. 2.1 we discuss the general properties of
bijective substitution subshifts, which is followed by a discussion on their associated
symmetry groups in Sect. 2.2.While most results in this section are known, we present
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them for completeness and to provide an overview regarding symmetry groups for this
subclass. The readermay jumpback and forth betweenSects. 2.2 and 3 to compare both
symmetry groups, where the extended one is now heavily dependent on the geometry
of the supertiles and the relative positions of the permutations within the supertiles.
This not only motivates the main results in Sect. 3, but also presents general structures
which might be of independent interest apart from the study of symmetry groups. In
particular, subshifts generated by bijective substitutions also provide good examples
for studying other dynamical, combinatorial and spectral properties; see [7,26,34] for
works on the Ellis semigroup, the dynamical spectrum and arithmetic progressions.
It is conjectured that the dynamical spectrum of primitive bijective substitutions is
purely singular, but the case when the group generated by the columns is non-abelian
remains open [7].

We also provide an algorithm on how to compute the symmetry group given the
substitution, where it is made apparent that the geometry does not play any role in
determining the symmetry group; see Algorithm 1.

The main results of the paper concern extended symmetries and we develop them
in Sect. 3. We deal with the one-dimensional case in Sect. 3.1. In Theorem 3.5, we
provide equivalent conditions for the existence of reversing symmetries, and an algo-
rithm which allows one to check whether such exist given a specific substitution; see
Algorithm 2. We extend the analysis in higher dimensions in Sect. 3.2, where we gen-
eralize Theorem 3.5 in Theorem 3.13 to cover extended symmetries. We also provide
sufficient conditions to rule out certain extended symmetries in Theorem 3.11.

As a corollary of Theorem 3.13, given any dimension d, a finite group H , and a sub-
group P of the hyperoctahedral group P , we provide a construction in Theorem 3.18
of a bijective substitution whose subshift has symmetry group and extended symmetry
groupZ

d ×H and (Zd
� P)×H , respectively. A similar construction, with a different

structure for the extended symmetry group, is done in Theorem 3.25.

2 Bijective Constant-Length Substitutions

2.1 Setting and Basic Properties

Let A be a finite alphabet and A+ = ⋃
L≥1AL be the set of finite non-empty words

overA;we shallwriteA∗ = A+∪{ε},where the latter is the emptyword.A substitution
is a map � : A → A+. If there exists an L ∈ N such that �(a) ∈ AL for all a ∈ A,
� is called a constant-length substitution. Substitutions may be extended to arbitrary
words from A∗ by concatenation: for u, v ∈ A∗, we have �(uv) := �(u)�(v). This
allows one to define powers of � inductively via �k(a) := �k−1(�(a)) for k ≥ 2. If
there exists a power k such that �k(a) contains all letters in A, for every a ∈ A, we
call � primitive.

The full shift is the set AZ of all functions (configurations) x : Z → A. More
generally, we define the d-dimensional full shift as the set AZ

d
. To this space, we

assign the product topology, givingA the discrete topology. This is a particular version
of the local topology used in tiling spaces and discrete point sets, in which two tilings
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(or point sets) x and y are said to be ε-close if a small translation of x (of magnitude
less than ε) matches y on a large ball (of radius at least 1/ε) around the origin; this
can be used to define a metric d(x, y). In the particular case of subshifts seen as tiling
spaces, since tiles are aligned with Z

d , we can disregard the translation and get, e.g.,
the following as an equivalent metric:

d(x, y) = 2− inf {n:x |[−n,n]d 	=y|[−n,n]d }
.

This space is endowedwith the shift action ofZd onAZ
d
, which is the action ofZd over

configurations by translation, and can be defined via the equality (σn(x))m = xn+m

for all x ∈ AZ
d
, m, n ∈ Z

d (in particular, in one dimension we have the shift map
σ = σ1, which completely determines the group action).

A subshift is a topologically closed subset X ⊆ AZ
d
which is also invariant under

the shift action. Thus, a subshift combined with the restriction of this group action to
X defines a topological dynamical system, which can be endowed with one or more
measures to obtain a measurable dynamical system. In the one-dimensional case, the
language (or dictionary) of a subshiftX is the set of all words that may appear in some
x ∈ X, that is:

L(X) = {x |[0,n] : x ∈ X, n ≥ 0} ∪ {ε}.

We may verify that any non-empty set of words L which is extensible (that is, any
w ∈ L is a subword of a longer word uwv ∈ L, with u, v non-empty), and closed
under taking subwords is the language of a subshift, and two subshifts are equal if and
only if they share the same language.

Higher-dimensional subshifts have a similar combinatorial characterization, where
the role of words is taken by patterns, that is, finite configurations of the form
P : U ⊂ Z

d → A, |U | < ∞; we identify a pattern with any of its translations.
In most cases1 (and, in particular, in the rest of this work), it makes no difference to
allow arbitrary “shapes” U or to restrict ourselves to only rectangular patterns, i.e.,
products of intervals of the form U = ∏d

i=1[0, ni − 1]. Regardless of our chosen
convention, we collect all valid patterns x |U that appear in some x ∈ X into a setL(X)

as above, which we once again call the language of X. As in the one-dimensional
case, a language closed under taking subpatterns and where every pattern of shape U
is contained in a pattern of shape V ⊃ U for any larger (finite) V defines a unique
subshift, and vice versa.

Thus, given that iterating a primitive substitution � : A → AL of constant length
L > 1 over a symbol a ∈ A produces words of increasing length, the set L� of all
words that are subwords of some �k(a) for some k ≥ 1 and a ∈ A is the language
of a unique subshift that depends only on �, which we shall call the substitutive
subshift defined by � and denote by X�. This definition extends to d-dimensional

1 Pattern shapes domatterwhen studying certain generalizations of topologicalmixing in the d-dimensional
setting, where either restricting ourselves to specific shapes (rectangles, L-shapes, hollow rectangles, etc.)
or allowing arbitrary ones may be preferable depending on context. However, we are not concerned with
these kinds of properties here.
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rectangular substitutions � : A → AR (where R is a product of intervals), which are
higher-dimensional analogues of constant-length substitutions; see [7,21,34]. It is well
known that the primitivity of � implies that X� is strictly ergodic (uniquely ergodic
and minimal); see [4,34]. We refer the reader to [31] for a treatment of substitutions
which are non-primitive.

Definition 2.1 A constant-length substitution � : A → AL is called bijective if the
map which is given by � j : a �→ �(a) j is a bijection on A, for all indices 0 ≤ j ≤
L − 1. Equivalently, � is bijective if there exist L (not necessarily distinct) bijections
�0, . . . , �L−1 : A → A such that �(a) = �0(a) . . . �L−1(a) for every a ∈ A. We shall
refer to the mapping � j as the j-th column of the substitution �.

Consider {� j }L−1
j=0 ⊂ S|A|. Let � : S|A| → GL(|A|, Z) be the representation via

permutation matrices. One then has the following; compare [21, Cor. 1.2].

Fact 2.2 Let � be a primitive, bijective substitution, whose columns are given by
{�0, . . . , �L−1}. Then the substitution matrix M is given by M = ∑L−1

j=0 �(�−1
j ).

Moreover, (1, 1, . . . , 1)T is a right Perron–Frobenius eigenvector of M, so each letter
has the same frequency for every element in the subshift X�, i.e., νa = 1/|A| for all
a ∈ A and all x ∈ X�.

Define the n-th column group G(n) to be the following subgroup of the symmetric
group of bijections A → A:

G(n) := 〈{
� j1 ◦ · · · ◦ � jn : 0 ≤ j1, . . . , jn ≤ L − 1

}〉
.

As it turns out, the groups G(n) generated by the columns give a good description of
the substitution � in the bijective case; see [26] for its relation to the corresponding
Ellis semigroup of X�. The primitivity of � may be characterized entirely by this
family of groups, as seen below. Recall that a subgroup G ≤ Sn of the symmetric
group on {1, . . . , n} is transitive if for all 1 ≤ j, k ≤ n there exists τ ∈ G such that
τ( j) = k. Here, we let N ∈ N be the minimal power such that �N

j = id for some

0 ≤ j ≤ LN − 1; compare [34, Lem. 8.1]. In [26], G(N ) is called the structure group
of �.

Proposition 2.3 Let � : A → AL be a bijective substitution. Then, the following are
equivalent:

(i) The substitution � is primitive.
(ii) All groups G(n), n ∈ N, are transitive.

(iiii) The group G(N ) is transitive.

Proof Evidently, (ii)⇒ (iii), so we only need to prove (iii)⇒ (i)⇒ (ii). To see the first
implication, note first that the columns of the iterated substitution �N are compositions
of the form � j1,..., jN := � j1 ◦ · · · ◦� jN , 0 ≤ j1, . . . , jN ≤ L−1, that is, for any a ∈ A
the following holds:

�N (a) = �0,...,0,0(a)�0,...,0,1(a) . . . �0,...,0,L−1(a)�0,...,1,0(a) . . . �L−1,...,L−1,L−1(a).
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Since, by (iii), the group G(N ) is transitive, the substitution matrix M�N is irreducible,
i.e., it is the adjacency matrix of a strongly connected directed graph. In other words,
for all a, b ∈ A, there exists a composition of columns q, q ′, . . . , q ′′ of �N such that
q ◦q ′ ◦· · ·◦q ′′(a) = b, whichmay be identified with a path in the graphwhose vertices
are the letters ofA and with one edge from c to r(c) for any c ∈ A and column r . The
choice of N also shows that M�N has a non-zero diagonal, since one of the columns
of �N is the identity. These two conditions immediately imply that M�N is a primitive
matrix (see [30, Chap. 2]) which in turn implies primitivity of �, as desired.

To prove (i)⇒ (ii), note that primitivity of � implies that, for some k > 0 and for
all a ∈ A, the word �k(a) contains all symbols of the alphabet A, including a itself.
Since the columns of �k generate G(k), this implies that for all a, b ∈ A there is some
generator of this group that maps a to b, i.e., G(k) is transitive. Since �k(a) contains a
as a subword, this implies that �2k(a) contains �k(a) as a subword, and, by induction,
that �mk(a) contains �k(a) as a subword for all m ≥ 1; thus, all groups G(mk) are
transitive. Now, it is easy to see that G(n) ≤ G(d) if d | n. Then, for all n ∈ N, G(n)

has G(nk) as a transitive subgroup and hence it is transitive. ��
The bijective structure of � can also be exploited to conclude the aperiodicity of X�

by just looking at simple features of �. In the next result, we provide a criterion for
aperiodicity in terms of |A|, L .
Proposition 2.4 Let X� be the subshift of a primitive, bijective substitution � of length
L on a finite alphabet A. If gcd(|A|, L) > 1 then X� is aperiodic.

Proof Assume that w∞ is a periodic word in X� with least period p, i.e., w∞ = v∞
with v being a prime period (|v| = p). Then without loss of generality, we assume
that w∞ is fixed under � by replacing it with a power �k such that the first column of
�k is the identity. We choose the smallest possible constants c, d ∈ N which satisfy
cL = dp. That is, the word w∞|[0,cL−1] is an inflation of c letters and, at the same
time, d copies of the prime period. Since � is a bijective substitution of length L ,
every inflation word of length cL has exactly one preimage under �, which is a word
of length c. In particular, since w∞ is fixed under �, the preimage of w∞|[0,cL−1]
under � must be an initial segment x1 . . . xc of w∞ of length c. As cL is a multiple
of p, then, for any k ∈ Z, w∞|[0,cL−1] = (σ kcL(w∞))[0,cL−1], which all have the
same preimage under �. This means that w∞ is an infinite concatenation of copies of
x1 . . . xc and is thus c-periodic. As p is the least period, we must have c = ep for some
integer e. Since c is minimal c = p and thus d = L , which certainly solves cL = dp.

From Fact 2.2 we know that every letter has the same frequency for any element
in X�. This, together with the fact that w∞ is a concatenation of v, implies that every
letter appears equally often within v, so |A| | p. If gcd(|A|, L) > 1 then gcd(p, L) =
a > 1 as well. But then cL/a = dp/a holds and c′ = c/a and d ′ = d/a are smaller
integer constants contradicting the minimality of c and d. So our assumption that w∞
is periodic has to be false. ��
Another way to get aperiodicity is through the existence of proximal pairs; see [17,
Sect. 3.2.1] and [4, Cor. 4.2 and Thm. 5.1]. Two elements x 	= y ∈ (X, σ ) are said to be
proximal if there exists a subsequence {nk} ofNor−N such that d(σ nk x, σ nk y) → 0 as
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k → ∞. A stronger notion is that of asymptoticity, which requires d(σ nx, σ n y) → 0
as n → ∞ or −∞. For bijective substitutions, these two notions are equivalent, and
asymptotic pairs are completely characterized by fixed points of �. The following is
an equivalent condition for aperiodicity in terms of existence of certain legal words;
see [26].

Proposition 2.5 [26, Prop. 4.1] Let � be a primitive, bijective substitution on a finite
alphabet A in one dimension. Then the subshift X� is aperiodic if and only if there
exist distinct legal words of length 2 which either share the same starting or ending
letter.

Example 2.6 The substitution � : a �→ aba, b �→ bab is primitive, bijective and
admits a periodic subshift. Here, the only legal words of length 2 are ab and ba. Note
that � generates the same subshift as the substitution �′ : a, b �→ ab.

2.2 Symmetries

In the following sections, we deal with the symmetry groups of our subshifts of interest,
which are certain homeomorphisms of the subshift which preserve the dynamics of
the shift action in a specific sense.

Definition 2.7 Let X be a Z
d -subshift. The symmetry group (often called automor-

phism group2) is the set S(X) of all homeomorphisms X → X which commute with
the shift action, i.e.,

(∀ n ∈ Z
d) : σn ◦ f = f ◦ σn. (1)

That is, S(X) is the centralizer of the set of shift maps in the group of all self-
homeomorphisms of the spaceX. In this context, every symmetry f ∈ S(X) is entirely
determined by a local function, a mapping F : AU → A, withU ⊂ Z

d finite, such that
for every n ∈ Z

d , f (x)n = F(x |n+U ). This fact is known as the Curtis–Hedlund–
Lyndon (or CHL) theorem; see [30] for the formulation in one dimension and [11,
Thm. 1.8.1] for the general setting whereAG is the full shift, G being a general group.
We say that f has radius r ≥ 0 if this is the least non-negative integer for which we
may find U ⊆ [−r , r ]d .

Symmetry groups of one-dimensional bijective substitutions are a thoroughly
studied subject, both in the topological and ergodic-theoretical contexts. Complete
characterizations of these groups are known, as seen in e.g. [14] for a two-symbol
alphabet, or [29] for a characterization in the measurable case; see also [15,21] for
further elaboration in the description of the symmetries in this category of subshifts.
The following theorem summarizes this classification:

Theorem 2.8 Let X� be the subshift generated by an aperiodic, primitive, bijective
substitution � on Z

d . Then, the symmetry group S(X�) is isomorphic to the direct
product of Z

d , generated by the shift action, with a finite group of radius-0 sliding

2 In this work, we follow the notational conventions of [6], and thus we avoid the term “automorphism
group” as it may be understood as the set of all homeomorphisms f : X → X.
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block codes τ∞ : X� → X� given by τ∞((x j ) j∈Zd ) = (τ (x j )) j∈Zd for some bijection

τ : A → A. Moreover, let N be any integer such that �N
j is the identity for some j

(note that such an N always exists). Then, τ : A → A induces a symmetry if and only
if τ ∈ centS|A|G

(N ).

As a consequence, every symmetry on X� is a composition of a shift map and a
radius-0 sliding block code as above. These conditions arise as a consequence of such
a symmetry having to preserve the supertile structure of any x ∈ X� at every scale,
which in particular implies that a level-k supertile �k(a), a ∈ A, has to be mapped to
some �k(b) for some other b ∈ A by the “letter exchange map” τ . The choice of N
above ensures that, when k is a multiple of N , the equality a = b holds, which implies
that τ commutes with the columns of �N , and thus �N ◦ τ∞ = τ∞ ◦ �N . This in turn
implies (1). For further elaboration on the proof of the above result, the reader may
consult [15,21], among others.

Example 2.9 Consider the following substitution � on the three-letter alphabet A =
{a, b, c}:

� : a �→ abc, b �→ bca, c �→ cab.

The columns correspond to the three elements of the cyclic group generated by τ =
(a b c). It is not hard to verify that the only elements of S3 = D3 that commute with
τ are the powers of τ themselves, and thus S(X�) � Z ×C3, with the finite subgroup
C3 being generated by the symmetries induced by the powers of τ .

As it turns out, Theorem 2.8 provides an algorithm to compute S(X�) explicitly. To
introduce this algorithm, let us recall some easily verifiable facts from group theory
[24, Chaps. 1 and 5]:

Fact 2.10 Let G be any group and H = 〈S〉 ≤ G be a subgroup generated by S ⊂ G.
Then,

centG(H) = {c ∈ G : (∀ h ∈ H) : ch = hc} =
⋂

s∈S
centG(s).

Fact 2.11 Any permutation decomposes uniquely (up to reordering) as a product of
disjoint cycles. Conjugation by some τ ∈ Sn can be computed from this decomposition
using the identity:

τ(a1 a2 . . . an)τ
−1 = (τ (a1)τ (a2) . . . τ (an)).

A permutation τ ∈ Sn belongs to centSn (π) if and only if τπτ−1 = π , and thus:

π = (a1a2 . . . ak1)(b1b2 . . . bk2) · · · (c1c2 . . . ckr )

= (τ (a1)τ (a2) . . . τ (ak1))(τ (b1)τ (b2) . . . τ (bk2)) · · · (τ (c1)τ (c2) . . . τ (ckr )).

Hence, the uniqueness of this decomposition implies that every cycle in the second
decomposition is equal to a cycle of the same length in the first one.
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Thus, to compute the letter exchange maps that determine S(X�), we need to find all
permutations τ that preserve certain cycle decompositions. From Facts 2.10 and 2.11,
we obtain the following procedure:

Algorithm 1. Assuming that � is a primitive, bijective, aperiodic substitution, the following algorithm
computes S(X�) explicitly.

• Input: � is a length-L bijective substitution, which may be represented as a function (dictionary)
� : A → AL or a set of L permutations �0, �1, . . . , �L−1 : A → A, corresponding to each column.

• Output: A (finite) set of permutations C forming a group, so that S(X�) = Z
d × H .

(1) Compute the least positive integer N such that �N
j is the identity on A for some column of the

substitution �. N equals the least common multiple of all cycle lengths in the decomposition of the
columns � j into disjoint cycles (and is thus finite).

(2) Determine all columns � j1 ◦ · · · ◦ � jN of the iterated substitution �N . This is a generating set for the

group G(N ).
(3) For every column computed in (2), compute G j1,..., jN = centSn (� j1 ◦ · · · ◦� jN ) by taking the cycle

decomposition of this permutation (in where we identifyAwith the set {1, 2, . . . , |A|}) and employing
the characterization above.

(4) Let H = ⋂
j1,..., jn

G j1,..., jN . As H can be biunivocally identifiedwith the set of valid letter exchange

maps modulo a shift, return S(X�) = Z
d × H as output.

Example 2.9 above corresponds to a simple case in which G(N ) = G(1) is a cyclic
group, and we derive an abelian subgroup of S3 corresponding to the valid letter
exchange maps. We can use the above procedure to construct examples with more
complicated symmetry groups, see Example 2.12.

Example 2.12 We take as alphabet the quaternion group Q8 = {e, i, j, k, ē, ı̄, j̄ , k̄}
(see [24] for the multiplication table and basic properties of this group, which is
generated by the two elements i and j). With this, we construct a length-3 bijective
substitution defined by right multiplication, x �→ (x · i)(x · j)(x · k), given in full by

e �→ i jk, ē �→ ı̄ j̄ k̄, i �→ ēkj̄ , ı̄ �→ ek̄ j,

j �→ k̄ēi, j̄ �→ keı̄, k �→ j ı̄ ē, k̄ �→ j̄ ie.

– The three permutations obtained from the columns which generate G(1) are

Ri := (e i ē ı̄)( j k̄ j̄ k), R j := (e j ē j̄ )(i k ı̄ k̄), Rk := (e k ē k̄)( j i j̄ ı̄).

Thus, the substitution �3 has as columns Rxyz(g) = g ·xyz with x, y, z ∈ {i, j, k};
in particular, since j ik = e, �3 must have an identity column.

– By direct computation, G(n) = G(1) � Q8 for all n, making the substitution
primitive (as Q8 acts transitively on itself in an obvious way). Also, since G(3) =
G(1), this group is the right Cayley embedding of Q8 into S8.

– By applying the above algorithm, we obtain that the group of letter exchange maps
is generated by the following two permutations:

π0 := (e i ē ı̄)( j k j̄ k̄), π1 := (e j ē j̄ )(i k̄ ī k).
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We can verify that these permutations generate the left Cayley embedding of Q8
into S8. Alternatively, if we consider the transposition ν = (k k̄), we can use Fact
2.11 above to see that π0 = νRiν

−1 and π1 = νR jν
−1, which in turn implies

that the group generated by π0 and π1 is conjugate to the group generated by Ri

and R j , the latter being isomorphic to Q8. This shows that S(X�) � Z × Q8.

It is well known that symmetry groups of aperiodicminimal one-dimensional subshifts
are virtually Z. The following result gives a full converse for shifts generated by
bijective substitutions.

Theorem 2.13 [17, Thm. 3.6] For any finite group H, there exists an explicit primitive,
bijective substitution �, on an alphabet on |H | letters, such that S(X�) � Z × H.

The proof, which may be consulted in [17], follows a similar schema to the analysis
done in Example 2.12 above. In [21, Sect. 4.1], it was shown that the number of letters
needed in Theorem 2.13 is actually a tight lower bound. Below, we actually prove
something stronger.

Proposition 2.14 Let � be an aperiodic, primitive and bijective substitution on a finite
alphabetA. If S(X�) � Z × H, then H must act freely onA, and the order of H has
to divide |A|.
Proof As seen in [21, Sect. 4.1], if we replace � with a suitable power, we may ensure
that the word �q(a) starts with a and contains every other symbol, for all a ∈ A.
Thus, for any π ∈ Sn , the equality π(a) = b implies π(�q(a)) = �q(b), which in turn
determines the images of every symbol in the alphabet; the bound |H | ≤ |A| follows
from here.

Note as well that, since � is bijective, if π(a) 	= a, then π(c) 	= c for every c ∈ A
as the words �q(a) and �q(b) are either equal or differ at every position. This implies
that if π has any fixed point then it must be the identity, i.e., that, if we identify H
with the corresponding group of permutations overA, the action of H on the alphabet
is free. Equivalently, the stabilizer Stab(c) of any c ∈ A is the trivial subgroup.

The elements of H commute with every column of �q . Due to primitivity, there
always exists a column �∗ = � j1 ◦ · · · ◦ � jq which maps this a to any desired c ∈ A.
Since �∗ commutes with every π ∈ H (i.e., it is an equivariant bijection for the
action of H on A), we have that Orb(c) = �∗[Orb(a)], i.e., the orbit of c under H is
necessarily the image of the orbit of a under �∗. Thus, every orbit is a set of the same
cardinality. This means that H induces a partition ofA into disjoint orbits of the same
cardinality 
, which then must divide |A|. By the freeness of the group action and the
orbit-stabilizer theorem, |H | = |Orb(a)| · |Stab(a)| = 
, and thus |H | divides |A|. ��
Remark 2.15 It follows from Theorem 2.14 that the substitution in Example 2.12 is a
minimal one in the sense that for one to get a Q8-extension in S(X�), one needs at
least eight letters.

Remark 2.16 At no point in the proof of Theorem 2.13 found in [17] nor in The-
orem 2.14 above the fact that the substitution was one-dimensional is actually used.
Thus, since Theorem 2.8 is known to be valid for general rectangular substitutions, the
two theorems abovemust be valid in thismore general setting aswell, provided that the
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substitution is aperiodic in Z
d , which one can always guarantee; see Propositions 2.5

and 3.16.

Corollary 2.17 For any finite group H, there exists an explicit primitive, bijective
d-dimensional rectangular substitution �, on an alphabet of |H | letters, such that
S(X�) � Z

d × H. Furthermore, this is the least possible alphabet size: for any
bijective, primitive and aperiodic d-dimensional rectangular substitution � on the
alphabet A, if S(X�) � Z

d × H, then H acts freely on A, and |H | divides |A|.

3 Extended and Reversing Symmetries of Substitution Shifts

3.1 One-Dimensional Shifts

Since the term symmetry group does not cover everything that can be thought of as a
symmetry (in the geometric sense of the word) we introduce the notion of the reversing
symmetry group; see [6] for a detailed exposition.Wewill exclusively look at subshifts
X� which are given by a bijective, primitive substitution � and we will exploit this
additional structure in determining the reversing symmetry group for this class.

Definition 3.1 The extended symmetry group of a subshift X is given as

R(X) := normAut(X)(G) = { f ∈ Aut(X) : f G = G f },

where G is the group generated by the shift action. In the case where the subshift is
one-dimensional, we call R(X) the reversing symmetry group given by

R(X) = { f ∈ Aut(X) : f ◦ σ ◦ f −1 = σ±1}.

A homeomorphism f ∈ Aut(X) which satisfies f ◦ σ ◦ f −1 = σ−1 is called a
reversor or a reversing symmetry. A Curtis–Hedlund–Lyndon-type characterization
of reversing symmetries, which incorporates the mirroring component (GL(d, Z)-
component in higher dimensions) can be found in [6].

In what follows, we investigate the effect of a reversor f on inflated words
when one restricts to bijective substitutions. Given a substitution � : A → AL ,
� := �0�1 . . . �L−1, the mirroring operation m acts on the columns of � via
m(�(a)) = �L−1(a) . . . �2(a)�0(a). We may extend this to infinite configurations
over Z in two non-equivalent ways, given by m(x)k = x−k and m′(x)k = x1−k ,
respectively; we shall refer to both as basic mirroring maps.

Proposition 3.2 Let � be an aperiodic, primitive, bijective substitution. Then, any
reversor is a composition of a letter exchange map π ∈ Sn, where n = |A|, a shift
map σ k and one of the two basic mirroring maps m or m′ (depending only on whether
the substitution has odd or even length, respectively).

Essentially, reversors are radius-0maps except for the shift component; see [6, Prop. 1]
and Theorem 2.8. This result, while desirable, is not immediately obvious (and can
indeed be false for non-bijective substitutions, which may have reversors whose local
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Fig. 1 A reversor f establishes a 1–1 correspondence between words �k (a) in a point x and its image f (x)

functions have positive radius), and thus we show this result as a consequence of
bijectivity.

Proof Suppose f : X� → X� is a reversor of positive radius r ≥ 1, i.e., x |[−r ,r ] =
y|[−r ,r ] implies that one has f (x)0 = f (y)0. There is some power k ≥ 1 such that
the words �k(a) of length Lk are longer than the local window of f , which has length
2r + 1 (say, k = �log(2r + 1)/log L�). Any point of X� is a concatenation of words
of the form �k(a), a ∈ A, which is unique up to a shift because of aperiodicity; see
[37]. In particular, if we choose a fixed x ∈ X� and let y = f (x), both points have
such a decomposition.

Now, suppose that the value Lk = 2
+1 is odd (the casewhere L is even is dealtwith
similarly). By composing f with an appropriate shift map (say f̃ = f ◦ σ h), we can
ensure that the central word �k(a) in the aforementioned decomposition has support
[−
, 
] for both x and y (note that we employ the uniqueness of the decomposition
here, to avoid ambiguity in the chosen h). Since Lk = 2
 + 1 ≥ 2r + 1, we must
have 
 ≥ r , and thus y0 is entirely determined by x |[−
,
], which is a substitutive word
�k(a); see Fig. 1. But, since � is bijective, this word is in turn completely determined
by its central symbol x0.

A similar argument shows that, for any n ∈ Z, if n ∈ mLk+[−
, 
], then yn depends
only on the word x |−mLk+[−
,
], which contains (and is thus entirely determined

by) x−n . Since any point in X� is transitive, f̃ is entirely determined by the points x
and y, and thus, f̃ is a map of radius 0. Equivalently, for some bijection π : A → A,
we have f̃ (x)−n = π(xn), that is, f̃ = f ◦ σ h = π ◦m (identifying π with the letter
exchange map AZ → AZ). We conclude that f is a composition of a letter exchange
map, a mirroring map and a shift map. ��

Remark 3.3 With some care, it can be shown that the same argument applies in the
higher-dimensional case, where an element of the normalizer is a composition of a
letter exchange map, a map of the form f (x)n = xAn, with A a linear map from the
hyperoctahedral group (see Theorem 3.9), and a shift map; see [6, Prop. 3] for a more
general formulation.

This result leads to the following criterion for the existence of a reversor in terms of
the columns �i .

Proposition 3.4 Let � be an aperiodic, primitive and bijective substitution � of length
L on a finite alphabet A of n letters. Suppose that there exists a letter-exchange map
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π ∈ Sn, π : A → A, which gives rise to a reversing symmetry. Then one has

π−1 ◦ �i ◦ �−1
j ◦ π = �L−(i+1) ◦ �−1

L−( j+1) (2)

for all 0 ≤ i, j ≤ L − 1, where �i is the i th column of � seen as an element of Sn.

Proof Let a ∈ A. Let m be the mirroring operation and suppose that there exists
π ∈ Sn such that m ◦ π extends to a reversor f ∈ R(X�). One then has

�(a) = �0(a) . . . �L−1(a)
m�−→ �L−1(a) . . . �0(a)

π�−→ π ◦ �L−1(a) . . . π ◦ �0(a).

Since Proposition 3.2 guarantees that this must result in mapping substituted words to
substituted words, one gets

π ◦ �L−1(a) . . . π ◦ �0(a) = �0(b) . . . �L−1(b) = �0 ◦ τ(a) . . . �L−1 ◦ τ(a), (3)

where the permutation τ describes precisely this induced shuffling of inflation words.
This yields

τ = �−1
j ◦ π ◦ �L−( j+1)

for all 0 ≤ j ≤ L − 1. Equating the corresponding right hand-sides for some pair i, j
yields (2). The claim follows since this must hold for all 0 ≤ i, j ≤ L − 1. ��
Theorem 3.5 Let � be as in Proposition 3.4. Suppose further that �i = �L−(i+1) = id
for some 0 ≤ i ≤ L − 1. Then, given a permutation (letter exchange map) π ∈ Sn,
π : A → A, the following are equivalent:

(i) The letter exchangemapπ gives rise to a reversing symmetry f ∈ R(X�)\S(X�)

given by either f (x)n = π(x−n) or f (x)n = π(x1−n).
(ii) The permutation π satisfies the system of equations

π−1 ◦ �i ◦ π = �L−(i+1) (4)

for all 0 ≤ i ≤ L − 1.
(iii) There exist κ0, κ1, . . . , κL−1 ∈ Sn, where each κi satisfies κ−1

i ◦ �i ◦ κi =
�L−(i+1), such that the following intersection of cosets is non-empty:

K =
L−1⋂

i=0

centSn (�i )κi , (5)

and π ∈ K.

Proof It is clear that (4) implies (2). Note that it is sufficient to satisfy (2) for j = i +1
mod L as any term can be obtained by multiplying sufficient numbers of succeeding
terms. Under the extra assumption that there exist a column pair which is the identity,
(2) simplifies to (4). This shows that (i)⇒ (ii).
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For the other direction, we show that if (4) is satisfied by the level-1 inflation
words, then these sets of equations must also be fulfilled by any power �k of �.
Remember that, from any arbitrary bijective substitution �, we may derive another
bijective substitution �′ that satisfies the additional condition of having two identity
columns in opposing positions by choosing k = lcm(|�0|, |�L−1|) and replacing � by
its kth power, �′ := �k . This makes no difference when studying R(X�), because �

and �k define the same subshift and the group of reversing symmetries is a property
of the subshift.

First, we prove an important property of the columns of powers. Fix a power k ∈ N

and pick a column �i of �k , where 0 ≤ i ≤ Lk − 1. One then has �i = �i0 . . . �ik−1

where i0i1 . . . ik−1 is the L-adic expansion of i and �i
 are columns of the level-1
substitution �.

The corresponding L-adic expansion of Lk − (i + 1) is then given by

Lk − (i + 1) = (L − (i0 + 1)) . . . (L − (ik−1 + 1)).

This can easily be shown via the following direct computation:

k−1∑

j=0

(L − (i j + 1))L j =
k−1∑

j=0

(L j+1 − L j ) −
k−1∑

j=0

i j L
j = Lk − (i + 1).

This implies that if one considers the corresponding column �Lk−(i+1) one gets that

�Lk−(i+1) = �L−(i0+1) . . . �L−(ik−1+1). (6)

This has two consequences. First, if � has an identity column pair, then all powers
of � admit at least one identity column pair. For each power k one just needs to
choose � j with j = i i i . . . i , which implies � j = �k

i = id. By (6), we also get that
�Lk−( j+1) = (�L−(i+1))

k = id. In fact, �k contains at least 2k−1 pairs of identity
columns.

Second, this property allows one to prove that if � satisfies the system of equations
in (4), then it is satisfied at all levels, i.e., by all powers of �. To this end, choose
0 ≤ i ≤ Lk − 1 with L-adic expansion i0i1 . . . ik−1. From (4) one then obtains

π−1 ◦ �i ◦ π = π−1 ◦ �i0 . . . �ik−1 ◦ π = π−1�i0ππ−1 . . . ππ−1�ik−1π

= �L−(i0+1) . . . �L−(ik−1+1) = �Lk−(i+1).

Since i is chosen arbitrarily and π induces a permutation of the substituted words
at all levels, this means it extends to a map f = σn ◦ m ◦ π : X� → X�, which by
Proposition 3.2 is a reversor. This shows (ii)⇒ (i).

To prove the remaining equivalences, note that if π1, π2 ∈ Sn are two permutations
satisfying the equality π−1 ◦ �i ◦ π = �L−(i+1), then we have

π1 ◦ �L−(i+1) ◦ π−1
1 = �i �⇒ (π2 ◦ π−1

1 )−1 ◦ �i ◦ (π2 ◦ π−1
1 ) = �i ,
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that is, (π2 ◦ π−1
1 ) ∈ centSn (�i ). As a consequence, π1 belongs to the right coset

centSn (�i )π2 for any choice of π1, π2, and, since right cosets are either equal or
disjoint, this means that all solutions of (4), for a fixed i , lie in the same right coset of
centSn (�i ). Reciprocally, if π satisfies (4) and γ ∈ centSn (�i ), it is easy to verify that
γ ◦ π satisfies (4) as well. Thus, the set of solutions of this equation is either empty
or the aforementioned uniquely defined right coset.

Thus, suppose that π satisfies (4) for all 0 ≤ i ≤ L − 1. The set of solutions for
each i equals the unique coset centSn (�i )π , and thus the set of all permutations that
satisfy (4) for all i is exactly the intersection of all these cosets, i.e.,

⋂L−1
i=0 centSn (�i )π .

Taking κi = π for all i , we see that this is exactly the set K from (5). Evidently, π

belongs to this intersection, and so we conclude that (ii)⇒ (iii).
As stated before, our choice of κi ensures that the set centSn (�i )κi is exactly the

set of solutions of (4) for a given i ; thus, any permutation π that satisfies all of these
equalities must be in all of these cosets and thus in the intersection (5), which is
therefore non-empty. This shows that (iii)⇒ (ii), concluding the proof. ��
Remark 3.6 It is a known fact from group theory that, if g1, . . . , gr are elements of
a group G and H1, . . . , Hr are subgroups of this group, the intersection of cosets⋂r

i=1 gi Hi is either empty or a coset of
⋂r

i=1 Hi . In this case, the latter intersection is
exactly the group of non-trivial standard symmetries modulo a shift (letter exchanges),
and thus, if there exist non-trivial reversing symmetries, these must all belong to a
single coset of the group of valid letter exchanges. This is consistent with the fact that
R(X�) is at most an index 2 group extension of S(X�) (in the 1-dimensional case).

Item (iii) in Theorem 3.5 provides an explicit algorithm to compute the group of
permutations π which define extended symmetries, which is a counterpart to that in
Sect. 2.2 for standard symmetries. As stated previously, the centralizers centSn (� j )

can be computed for each column using Fact 2.11, and thus the problem reduces
to obtaining a suitable candidate for each κi , which once again can be done by an
application of Fact 2.11. The algorithm is as follows:

Algorithm 2. Assuming that � is a primitive, bijective, aperiodic substitution, the following algorithm
computes the set K of permutations that induce reversors, which determines R(X�).

• Input: � is a length-L bijective substitution, represented either as a function or a set of columns.
• Output: A (finite) set of permutations K , either empty or a coset of the group H computed by the

previous algorithm, so that R(X�)/〈σ 〉 � H ∪ K (i.e., R(X�) � Z �ϕ (H ∪ K ), with ϕ(g, n) = n
if g ∈ H , and −n if g ∈ K ).

(1) Let N be the least positive integer which ensures that two opposite columns of �N are the identity
map. This can be computed as:

N = min
{
lcm

(
ord(�i ), ord(�L−(i+1))

) : 0 ≤ i ≤ N/2
}
.

(2) For each 0 ≤ i ≤ N/2, compute κi via the following subroutine:

(2.i) If �i and �L−(i+1) are non-conjugate (i.e., their cycle decomposition has a different number of
cycles of some length), stop the algorithm, as reversors do not exist (see Theorem 3.5).

(2.ii) Sort the cycles from the disjoint cycle decomposition of �i by increasing order of length. Using
this as a basis, by appropriately sorting the elements of each cycle in this decomposition, define
a total order relation < on A, given by, say, a1 < . . . < an , such that all of the elements of a
given cycle come before the elements of the following cycle, in the sorting by left. Do the same
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for �L−(i+1), defining a corresponding total order <′ given by b1 <′ . . . <′ bn . This ensures that
there are cycle decompositions of both permutations such that the corresponding cycles, ordered
from left to right, have the same length, as follows:

�i = (a1 . . . a j )(a j+1 . . . a j ′ ) · · · (a j ′′+1 . . . an),

�L−( j+1) = (b1 . . . b j )(b j+1 . . . b j ′ ) · · · (b j ′′+1 . . . bn),

with 1 ≤ j ≤ j ′ ≤ . . . ≤ j ′′ ≤ n.
(2.iii) Define:

κi =
(
a1 a2 · · · an
b1 b2 · · · bn

)

, κL−(i+1) = κ−1
i .

(3) Compute each centralizer H (i) = centSn (�i ), using the same procedure as in the computation of
S(X�).

(4) Return K = ⋂N
i=1 H

(i)κi . Any element of K induces a reversor; if K is empty, reversors do not exist.

Any programming environment with suitable data structures (e.g. computer algebra
systems such as Sagemath® or Mathematica®) is amenable to the implemen-
tation of this algorithm, providing effective procedures to entirely characterize the
groups S(X�) andR(X�) from a suitable description of the substitution �, e.g. using
a dictionary.

Example 3.7 Going back to Example 2.12, we may apply the previous algorithm to
determine whether reversors for this substitution do exist. Following the steps of
Algorithm 2, we obtain:

(1) For the algorithm to work properly, we need two columns in opposite positions to
be identity columns. Since every element in the quaternion group Q8 has order 4,
we may just take N = 4 (and indeed, inspection shows that this is the smallest
value of N that satisfies this property).

(2) It is not hard to see that the columns of �4 are, in order, Ri4 , Ri3 j , Ri3k, Ri2 j i , . . . ,

Rk2 jk, Rk3i , Rk3 j , Rk4 , and thus, due to the nature of the elements of Q8 (namely,
that the mapping that sends i and j to any two of the three elements {i, j, k} is a
group automorphism), opposite columns are conjugate. We need to find mappings
κr such that the r th column from left to right is conjugate to the corresponding
column from right to left under k. For example, the second and penultimate column
are given by

Ri3 j = Rk̄ = (e k̄ ē k)(i j ı̄ j̄ ), Rk3 j = Ri = (e i ē ı̄)( j k̄ j̄ k).

Using Fact 2.11, we see that if κ1 is a permutation that maps Ri3 j to Rk3 j via
conjugation, choosing the images of one element of the first cycle and one of the
second is enough to determine the whole permutation. If κ1(e) = k and κ1(i) = e,
then it must map the following elements of each cycle of Ri3 j to the following
elements of the corresponding cycle in Rk3 j , and thus we obtain

κ1 =
(
e i j k ē ı̄ j̄ k̄
j̄ i ē k̄ j ı̄ e k

)

= (e j̄ )( j ē)(k̄ k).
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Thus, any element of the coset centS8(Ri3 j )κ1 in S8 maps the second column to the
penultimate one by conjugation. Note that the corresponding step of Algorithm 1
above actually returns a different permutation, κ ′

1 = (k̄ i j)(k ı̄ j̄ ), but direct com-
putation shows that κ1 and κ ′

1 belong to the same coset of centS8(Ri3 j ) and thus
the algorithm proceeds in the same way for either; we choose κ1 instead of κ ′

1 for
mere convenience. After this, we repeat the same procedure for the remaining 40
pairs of columns (including the center, which is paired with itself) and compute
the intersection of the obtained cosets.

(3) We note that the computed permutation κ1 appears in every coset centS8((�
4)r )κr ,

and thus the intersection of all cosets involved equals a right coset of the left Cayley
embedding of Q8 in S8, which must equal K = L(Q8)κ1. It can be verified from
computation that the union L(Q8) ∪ K of this embedding and the corresponding
coset is also a subgroup of S8.

(4) Thus, every element ofR(X�) is associated with a letter swap from the subgroup
G = L(Q8)∪ K of S8, with reversors corresponding to elements of K = G \ Q8.
Note that this group has order 16. Besides, {Re, κ1} is an order 2 subgroup of G
with trivial intersection with Q8, which is normal in G due to being of index 2;
thus, this group has a natural semidirect product structure as G � Q8 � C2.
Computation aided with computer algebra software shows that this group G has
fifteen subgroups and seven different conjugacy classes. The only group of order 16
with both properties is the semidihedral group, SD16. Thus, we obtain a complete
description of R(X) as the semidirect product Z � SD16 � (Z × Q8) � C2.

3.2 Higher-Dimensional Subshifts

Now, we turn our attention to the situation in higher dimensions. The extended
symmetry group of a Z

d -shift is defined as R(X) = normAut(X)(G), where now
G = 〈σe1 , . . . , σed 〉 � Z

d ; see [3,6,10]. In this more general context, an extended
symmetry is an element f ∈ R(X) \ S(X).

Similar to standard symmetries, there is a direct generalization of the characteriza-
tion of extended symmetries from Proposition 3.2 and the subsequent theorem to the
higher-dimensional setting, which is given by the following.

Proposition 3.8 Let � be an aperiodic, primitive, bijective, block substitution in Z
d .

Then any extended symmetry f ∈ R(X�)\S(X�)must be (up to a shift) a composition
of a permutation and a rearrangement function fA given by fA(x)n = xAn, with
A ∈ GL(d, Z) \ {I}, where I is the identity matrix.

For shifts generated by bijective rectangular substitutions one has the following restric-
tion on the linear component A of an extended symmetry f .

Theorem 3.9 [10, Thm. 18] Let � an aperiodic, primitive, bijective rectangular sub-
stitution in Z

d . One then has

R(X�)/S(X�) � P ≤ Wd ,
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where Wd � Cd
2 � Sd is the d-dimensional hyperoctahedral group, which represents

the symmetries of the d-dimensional cube.

Using Theorem 3.9, one can show that all extended symmetries of such subshifts are
of finite order. The proof of the following result is patterned from [5, Prop. 2], which
deals with the order of reversors of an automorphism h of a general dynamical system
with ord(h) = ∞; compare [23]. The crucial component here is the finiteness of Wd ,
which implies that all of its elements are of finite order. We note here that there exist
subshifts of number-theoretic origin where R(X)/S(X) = GL(d, Z), and hence for
which extended symmetries of infinite order exist; see [3].

Proposition 3.10 LetX� be the same as above with symmetry groupS(X�) = Z
d×H.

Let f ∈ R(X�)\S(X�) be an extended symmetry, whose associatedmatrix is A ∈ Wd.
Then ord( f ) divides ord(A) · |H |. Moreover, ord( f ) ≤ 2|H | ·max {ord(τ ) : τ ∈ Sd}.
Proof From Proposition 3.8, f ◦ σm ◦ f −1 = σAm holds for all m ∈ Z

d , which yields

f 
 ◦ σm ◦ f −
 = σA
m (7)

f ◦ σnm ◦ f −1 = σnAm (8)

for all 
, n ∈ N. Choosing 
 = ord(A), (7) gives f ord(A) ∈ S(X�). From Theorem 2.8,
f ord(A) = σ p◦π , for some p ∈ Z

d and letter-exchangemapπ . From the direct product
structure of the symmetry group, one has σ p◦π = π ◦σ p, which implies f ord(A)·|H | =
σ|H | p◦π |H | = σ|H | p. Using the two equations above, one gets f ord(A)·|H | = σ|H |A
( p)
for all 
 ∈ N. Since f is an extended symmetry, A 	= I. Next we show that p cannot
be an eigenvector of A.

Suppose A p = p with p 	= 0. Note that f −ord(A)|H | = σ−|H | p. From (7) and (8),
one also has f −1 ◦σ|H |A−1 p ◦ f = σ−|H | p, which implies A−1 p = − p, contradicting
the assumption on p. Since ord(σ p) = ∞, this forces p = 0 and hence f ord(A)·|H | = id
from which the first claim is immediate. The upper bound for the order follows from
the upper bound for the order of the elements of the hyperoctahedral group Wd ;
see [2]. ��
Due to the fact that R(X�) is (possibly) a larger extension of S(X�) (that is, the
corresponding quotient can have up to 2dd! − 1 non-trivial elements instead of just
one), we would end up with a much larger number of equations of the form of (2),
one for each element of the hyperoctahedral group Wd except the identity. This leads
us to another problem of different nature: if the rectangle R, which is the support
of the level-1 supertiles of �, is not a cube in Z

d , some symmetries from Wd may
not be compatible with R, i.e., they may map R to a different rectangle that is not a
translation of R, so the corresponding equation does not have a proper meaning (as it
may compare an existing column with a non-existent one).

This could be taken as a suggestion that such symmetries cannot actually happen,
imposing further limitations on the quotient R(X�)/S(X�). Interestingly, this is not
actually the case. For instance, consider the two-dimensional rectangular substitution
from Fig. 2. As the support for this substitution is a 4 × 2 rectangle, we could guess
that this substitution is incompatible with rotational symmetries or reflections along
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Fig. 2 A non-square substitution that generates the two-dimensional Thue–Morse subshift

a diagonal axis, which would produce a 2 × 4 rectangle instead. However, further
examination shows that the subshift generated by this substitution is actually the same
as the subshift of the two-dimensional Thue–Morse substitution as seen in e.g. [10],
which is compatible with every symmetry from W2 = D4. Thus, only geometrical
considerations are not enough to exclude candidates for extended symmetries.

Fortunately, there is a subcase of particular interest in which this geometrical intu-
ition is actually correct, which involves an arithmetic restriction on the side lengths
of the support rectangle R. It turns out that coprimality of the side lengths is a suffi-
cient condition (although it can beweakened even further) to rule out such symmetries,
e.g. there are no extended symmetries compatible with rotations when R is a, say, 2×5
rectangle. The following result makes this observation precise, providing a sufficient
criterion to rule out the existence of certain extended symmetries.

Theorem 3.11 Let � : A → AR be a bijective rectangular substitution with faithful
associated shift action. Suppose that R = [0, L − 1] with L = (L1, . . . , Ld) (that is,
R is a d-dimensional rectangle with side lengths L1, L2, . . . , Ld) and that for some
indices i, j there is a prime p such that p | L j but p 	 | Li , i.e., Li and L j have different
sets of prime factors. Let A ∈ Wd ≤ GL(d, Z) and suppose that A is the underlying
matrix associated to an extended symmetry f ∈ R(X�). Then Ai j = A ji = 0.

The underlying idea is that, if A ∈ Wd induces a valid extended symmetry for some
substitution � with support U , we can find another substitution η with support A · U
(up to an appropriate translation) such thatX� = Xη, and thenwe use the known factor
map from an aperiodic substitutive subshift onto an associated odometer to rule out
certain matrices A. Similar exclusion results have been studied by Cortez and Durand
[12].

Proof Let ϕ : X� � ZL1 × · · · × ZLd = ZL be the standard factor map from the
substitutive subshift to the corresponding product of odometers. It is known [6, Thm. 5]
that, for any extended symmetry f : X� → X� with associated matrix A, there exists
k f = (k1, . . . , kd) ∈ ZL and a group automorphism α f : ZL → ZL satisfying the
following equation:

ϕ( f (x)) = k f + α f (ϕ(x)), (9)

where α f is the unique extension of the map n �→ An, defined in the dense subset Zd ,
to ZL . In particular, for any n ∈ Z

d , if f = σn is a shift map, then kσn = n and
ασn = idZL .

Now, consider the sequence hm = Lm
i ei , and suppose A ji = ±1. Equivalently,

Aei = ±e j , since A is a signed permutation matrix. Without loss of generality, we

may assume the sign to be +. One has Lm
i

m→∞−−−−→ 0 in the Li -adic topology, and thus

ϕ(σhm (x)) = hm +ϕ(x)
m→∞−−−−→ ϕ(x), as it does so componentwise. By compactness,
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we may take a subsequence hβ(m) such that σhβ(m)
(x) converges to some x∗; then, as

the factor map ϕ is continuous, we have ϕ(x∗) = ϕ(x).
Equation (9) and this last equality imply that ϕ( f (x)) = ϕ( f (x∗)) as well. Writing

x∗ as a limit, we obtain from continuity that

ϕ(x∗) = lim
m→∞ ϕ( f (σhβ(m)

(x))) = lim
m→∞ ϕ(σAhβ(m)

( f (x)))

= ϕ(x) + lim
m→∞ Ahβ(m) = ϕ(x) + lim

m→∞ Lβ(m)
i Aei

�⇒ lim
m→∞ Lβ(m)

i e j = ϕ(x∗) − ϕ(x) = 0.

The last equality implies that, in the topology of ZL j , the sequence Lβ(m)
i converges

to 0. However, since there is a prime p that divides L j but not Li , due to transitivity we
must have L j 	 | Ln

i for all n, as otherwise p | Ln
i and thus p | Li . Thus, in base L j , the

last digit of Lβ(m)
i is never zero, and thus Lβ(m)

i remains at fixed distance 1 from 0 (in
the L j -adic metric), contradicting this convergence. Thus, A ji cannot be 1 and must
necessarily equal 0. For Ai j , the same reasoning applies to f −1, which is associated
to A−1. Since A is a signed permutationmatrix, Ai j = ±1would imply (A−1) j i = ±1,
again a contradiction. ��
Wenow proceed to the generalization of Theorem 3.5 in higher dimensions. As before,
for a block substitution �, we have R = ∏d

i=1[0, Li − 1], with Li ≥ 2 and the
expansive map Q = diag(L1, L2, . . . , Ld). Let A ∈ Wd ≤ GL(d, Z) be a signed
permutation matrix. First, we assume that the location of a tile in any supertile is
given by the location of its center. Define the affine map A(1) : R → R via A(1)(i) =
A(i − x1) + |A|x1 where i ∈ R and x1 = Qv − v with v = (1/2)(1, 1, . . . , 1)T .
Here, (|A|)i j = |Ai j |. The vector |A|x1 is the translation needed to shift the center
of the supertile to the origin, which we will need before applying the map A and
shifting it back again. We extend A(1) to any level-k supertile by defining the map
A(k) : R(k) → R(k) given by

A(k)(i) = A(i − xk) + |A|xk, (10)

with i ∈ R(k) and xk = Qkv−v. Here R(k) := ∏d
i=1[0, Lk

i −1] is the set of locations
of tiles in a level-k supertile.

Example 3.12 Let � be a two-dimensional block substitution with

Q =
(
2 0
0 2

)

and A be the counterclockwise rotation by 90◦, with corresponding matrix

A =
(
0 −1
1 0

)

.
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= (4,7)T  
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Fig. 3 The transformation of a marked level-3 location set R(3) under the map A(3)

Consider the level-3 supertile and let i = (7, 3)T ∈ R(3), with Q-adic expansion
i =̂ i2 i1 i0. Here one has i0 = i1 = e1 + e2 and i2 = e1. One then gets A(3)(i) =
(4, 7)T ; see Fig. 3. One can check that

∑2
j=0 Q

j (A(1)(i j )) = A(3)(i).

The following result is the analog of Theorem 3.5 in Z
d . Most parts of the proof

mimics those of the proof of Theorem 3.5, where one replaces the mirroring operation
m with a more general map A ∈ Wd .

Theorem 3.13 Let � be an aperiodic, primitive, bijective block substitution � : A →
AR. Let Wd be the d-dimensional hyperoctahedral group and let A ∈ Wd. Suppose
there exists � ∈ R such that ��′ = id for all �′ ∈ OrbA(�). Assume further that
[A, Q] = 0 and |A|x1 = x1. Then π , together with A, gives rise to an extended
symmetry f ∈ R(X�) if and only if

π−1 ◦ �i ◦ π = �A(1)(i) (11)

for all i ∈ R.

Proof In higher dimensions, the form of an extended symmetry is given in Proposi-
tion 3.8. From this and from the assumptions above, one gets an analogous system of
equations as in those coming from (3) in the proof of Proposition 3.4 which one can
use directly to show the necessity direction.

To prove sufficiency, we show that if (11) is satisfied for all i ∈ R, then
it also holds for all positions in any level-k supertile. Let i ∈ R(k), which
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admits the unique Q-adic expansion given by i =̂ ik−1 ik−2 . . . i1 i0, i.e., i =∑k−1
j=0 Q

j (i j ). We now show that the Q-adic expansion of A(k)(i) is given by

A(k)(i) =̂ A(1)(ik−1)A(1)(ik−2) . . . A(1)(i0). Plugging in the expansion of i into (10),
one gets A(k)(i) = ∑k−1

j=0 AQ
j (i j ) − Axk + xk . On the other hand, one also has

k−1∑

j=0

Q j (A(1)(i j )) =
k−1∑

j=0

Q j (A(i − Qv + v) + Qv − v
)

=
k−1∑

j=0

Q j A(i j ) +
k−1∑

j=0

(−AQ j+1v + AQ jv) +
k−1∑

j=0

(Q jv − Q jv)

=
k−1∑

j=0

AQ j (i j ) − AQkv + Av
︸ ︷︷ ︸

−Axk

+ Qkv − v
︸ ︷︷ ︸

xk

= A(k)(i),

where the penultimate equality follows from [A, Q] = 0 and the evaluation of the two
telescoping sums. As in Theorem 3.5, one then obtains

π−1 ◦ �i ◦ π = π−1 ◦ �ik−1 ◦ �ik−2 ◦ · · · ◦ �i0 ◦ π = �A(k)(i),

whenever i =̂ ik−1 ik−2 . . . i0 and π−1 ◦ �i s ◦ π = �A(1)(i s ) for all i s ∈ R, which
finishes the proof. ��
Remark 3.14 The conditions [A, Q] = 0 and |A|x1 = x1 in Theorem 3.13 are auto-
matically satisfied if � is a cubic substitution, i.e., Li = L for all 1 ≤ i ≤ d, which
means one can use (11) to check whether a given letter-exchange map works for any
A ∈ Wd . For general �, these relations are only satisfied for certain A ∈ Wd , e.g.
reflections along coordinate axes, which means one needs a different tool to ascertain
whether it is possible for other rigid motions to generate extended symmetries. For
example, one can use Theorem 3.11 to exclude some symmetries.

Before we proceed, we need a higher-dimensional generalization of Proposition 2.5
regarding aperiodicity. For this, we use the following result, which is formulated in
terms of Delone sets. Here, S

d−1 is the unit sphere in R
d .

Theorem 3.15 [4, Thm. 5.1] Let X(Λ) be the continuous hull of a repetitive Delone
set Λ ⊂ R

d . Let {bi ∈ S
d−1 : 1 ≤ i ≤ d} be a basis of R

d such that for each i , there
are two distinct elements of X(Λ) which agree on the half-space {x : 〈bi |x〉 > αi }
for some αi ∈ R

d . Then one has that X(Λ) is aperiodic.

The proof of the previous theorem relies on the generalization of the notion of prox-
imality for tilings and Delone sets in R

d , which is proximality along s ∈ S
d−1; see

[4, Sect. 5.5] for further details. Note that from a Z
d -tiling generated by a rectangular

substitution, one can derive a (colored) Delone set Λ by choosing a consistent control
point for each cube (usually one of the corners or the center). Primitivity guarantees
that Λ is repetitive and the notion of proximality extends trivially to colored Delone
sets using the same metric. The two subshifts X(Λ) and X� are then mutually locally
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�

�2 2�

:

Fig. 4 The image of two distinct blocks under � coincide in the upper half-plane and are distinct in the
lower half-plane. In the limit, these legal seeds generate two fixed points which are neither left nor right
asymptotic with respect to σe1

derivable, and the aperiodicity of one implies that of the other.We then have a sufficient
criterion for the aperiodicity of X� in higher dimensions.

Proposition 3.16 Let � : A → AR be a d-dimensional rectangular substitution which
is bijective and primitive. If there exist two legal blocks u, v ∈ L of side-length 2 in
each direction such that u and v disagrees at exactly one position and coincides at all
other positions, then the subshift X� is aperiodic.

Proof The proof proceeds in analogy to Proposition 2.5. Here we choose the appro-
priate power to be

k = lcm

{

|�r | : r =
d∑

i=1

ri ei , ri ∈ {0, Li − 1}
}

.

If we then place u and v at the origin, the resulting fixed points x = �∞(u) and
x ′ = �∞(v) which cover Z

d will coincide at every sector except at the one where
u j 	= v j . One can then choose bi = ei and αi = 0 in Theorem 3.15, and for each i ,
x , and x ′ to be the two elements which agree on a half-space, which guarantees the
aperiodicity of X�. More concretely, x and x ′ are asymptotic, and hence proximal,
along ei for all 1 ≤ i ≤ d. ��
Remark 3.17 Obviously, one can have a lattice of periods of rank less than d in higher
dimensions. An example would be when � = �1 ×�2, where �1 is the trivial substitu-
tion a �→ aa, b �→ bb, and �2 is Thue–Morse. Although �1 is itself not primitive, the
product � is and admits the legal blocks given in Fig. 4, which generate fixed points
that are Ze1-periodic. If one requires that the shift component in S(X�) is Z

d , one
needs all elements of X� to be aperiodic in all cardinal directions, hence the stronger
criterion in Proposition 3.16.

The next result is the analog of Theorem 2.13 for extended symmetries, which holds
in any dimension.
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Theorem 3.18 Given a finite group H and a subgroup P of the d-dimensional
hyperoctahedral group Wd, there is an aperiodic, primitive, bijective d-dimensional
substitution � whose subshift satisfies

S(X�) � Z
d × H , R(X�) � (Zd

� P) × H .

Proof We start by taking a cursory look at the proof of [17, Thm. 3.6]. For a given
finite group H , we choose a generating set S = {s1, . . . , sr }, and build a substitution
whose columns correspond to the left multiplication maps Ls j (h) = s j · h, seen as
permutations of the alphabet A = H , plus an identity column if necessary so that
G(N ) = G(1) for all N . These permutations generate the left Cayley embedding of
H in the symmetric group on |H | elements, whose corresponding centralizer, which
induces all of the letter exchanges in S(X�), is the right Cayley embedding of H
generated by the maps Rs j (h) = h · s j . By construction, these columns generate a
transitive subgroup, which ensures primitivity by Proposition 2.3.

In what follows, we shall assume first that the group H is non-trivial, as the case
in which H is trivial requires a slightly different construction. We also assume that
the rectangular substitution we will construct engenders an aperiodic subshift, so that
the group generated by the shifts is isomorphic to Z

d . We delay the proof of this until
later on, to avoid cluttering our construction with extraneous details.

Since S(X�) depends only on the columns of the underlying substitution and not
their relative position, we shall construct a d-dimensional rectangular substitution
� with cubic support whose columns correspond to copies of the aforemen-
tioned Ls j , placed in adequate positions along the cube. We start with a cube
R = [0, 2|S| + 2d + 1]d of side length 2|S| + 2d + 2, where the additional layer
corresponding to the term 2 will be used below to ensure aperiodicity. This cube is
comprised of N = |S| + d + 1 “shells” or “layers”, which are the boundaries of the
inner cubes [ j, 2|S| + 2d + 2 − j]d ; we shall denote each of them by � j , where j
can vary from 0 to N − 1.

Fill the i th inner shell �N−i with copies of the column Lsi , for all 1 ≤ i ≤ r . This
ensures that, as long as every other column is a copy of Ls j for some j or an identity
column, the symmetry group S(X�) of the corresponding subshift will be isomorphic
to H , because in our construction the 2d corners of the point will always be identity
columns.

Now, note that N is chosen large enough so that the point p = (0, 1, . . . , d − 1)
lies in the outer N − r ≥ d shells and, moreover, the cube [0, d − 1]d is contained
in these outer shells as well. Thus, any permutation of the coordinates maps the cube
[0, d−1]d to itself and, in particular, two different permutations map this point to two
different points in this cube, that is, the orbit of p has d! different points. Combining
this with the fact that the mirroring maps send this cube to one of 2d disjoint cubes
(translations of [0, d−1]d ) in the corners of the larger cube [0, N −1]d , it can be seen
that Wd acts freely on the orbit of the point p, that is, there is a bijection between the
hyperoctahedral group Wd and the set Orb( p).

Next, choose a fixed s j ∈ S that is not the identity element of H , so that Ls j is
not an identity column. As P is a subgroup of Wd , it is bijectively mapped to the set
P · p = {h · p : h ∈ P}. Place a copy of Ls j in each position from P · p, and an
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Fig. 5 Examples of substitutions obtained by the above construction, for the Klein 4-group C2 × C2, the
cyclic group C4 and the wholeW2 = D4, respectively. The thicker lines mark the layer of identity columns
separating the inner cube from the outer shell

identity column in every other position from Orb( p). Fill every remaining position
in the cube with identity columns; see Fig. 5. This ensures that the group of letter
exchanges will remain isomorphic to H , and, for each matrix A ∈ Wd associated with
some element h ∈ P , the map f A given by the relation f A(x)n = xAn will be a valid
extended symmetry, as a consequence of Theorem 3.13.

Since every other extended symmetry is a product of such an f A with some letter-
exchange map that has to satisfy the conditions given by (11) in Theorem 3.13 due to
our construction, and Ls j cannot be conjugate to the identity column, the only other
extended symmetries are compositions of the already extant f A with elements from
S(X�), i.e.,R(X�)/S(X�) has the equivalence classes of each f A as its only elements.
As the set of all f A is an isomorphic copy of P contained inR(X�), we conclude that
R(X�) is isomorphic to the semi-direct product S(X�) � P . However, since every
letter exchange from H commutes with every f A trivially, this semi-direct product
may be written as R(X�) � (Zd

� P) × H , as desired.
In the casewhere H is trivial, wemay choose an alphabet with at least three symbols

(to ensure that S|A| is non-Abelian) and repeat the construction above with a collection
of columns �0, . . . , �r−1 that generates some subgroup of S|A| with trivial centralizer.
For instance, this triviality is ensured if at least two columns generate S|A| . The rest
of the proof proceeds in the same way.

To properly conclude the proof, we need to verify that the constructed substitution
generates an aperiodic subshift. We focus on the case d > 1, as the one-dimensional
case is a straightforwardmodificationof the construction fromTheorem2.13. Since our
d-dimensional cube has at least d+1 ≥ 3 outer layers, we see that there is a 2×· · ·×2
cube R0 contained in the outer layers that does not overlap any of the 2d cubes of size
d×· · ·×d on the corners nor the inner cube of size 2|S|×· · ·×2|S|. As a consequence,
this cube R0 contains only identity columns. We have a layer �d consisting only of
identity columns directly enveloping the inner cube �d+1 ∪ · · · ∪ �d+|S|. Hence,
the layer immediately following �d consists only of non-identity columns, which are
copies of the same bijectionπ : A → A. The 2d corners of the hollow cube�d∪�d+1
are then 2× · · · × 2 cubes R1, . . . , R2d having exactly one non-identity column each,
with this non-identity column τ being placed in every one of the 2d possible positions
on these cubes.

Since τ is not the identity, there must exist some a ∈ A such that τ(a) 	= a. The
previous discussion thus implies that there is an admissible pattern Pa of size 2×· · ·×2
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comprised only of copies of the symbol a, and 2d + 1 other admissible patterns P(n)
a

that differ from Pa only in the position n ∈ [0, 1]d . Using the proximality criterion
from Proposition 3.16, we conclude that the subshift obtained is indeed aperiodic, as
desired. ��
Remark 3.19 An alternative Cantor-type construction, which produces the prescribed
symmetry and extended symmetry groups, involves putting the non-trivial columns on
the faces of R and labelling all columns in the interior to be the identity. Let H and P
be given. From Theorem 2.13, there exists a substitution onA with S(X�) = Z × H .
Let �0, . . . , �r−1 be the non-trivial columns of �. Pick L to be large enough such that
Wd acts freely on the faces of R = [0, L − 1]d . Choose j0 ∈ R and consider the orbit
of j0 under P , i.e.,O0 := P · j0 = {A · j0 : A ∈ P}where A · j = A(1)( j) as in (10).
Label all the columns in O0 with �0. We then expand R via Q = diag(L, . . . , L) to
get the d-dimensional cube Q(R) of side length L2. Consider B1 := Q(O0)+ R, pick
j1 ∈ B1 and letO1 = P · j1. Relabel all columns in B1 \O1 with �0 and all columns
in O2 with �1. One can continue this process until all needed column labels appear;
see Fig. 6 for a two-dimensional example.

Note that one has �i = �A(1)(i) for all A ∈ P and i ∈ R = [0, L − 1]d by
construction, which means π = id gives rise to an element of R(X�) for all A ∈ P
by Theorem 3.13. No other extended symmetries can occur because all the location
sets Bi only contain non-trivial labels and are P-invariant, whereas if A /∈ P induces
an extended symmetry, one must have �� = id for some � ∈ Br .

The resulting block substitution is primitive, since reordering the columns does not
affect primitivity. It is also aperiodic because one has enough identity columns, and
hence one can find the legal words required in Proposition 3.16. For example, in the
constructed substitution in Fig. 6, the legal seeds can be derived from the 2× 2 block
consisting of all identity columns (i.e., all white squares), and another one with all
columns being the identity except at exactly one corner, where it is light gray. This
completes the picture and one has S(X�) � Z

d × H and R(X�) � (Zd
� P) × H .

We now turn our attention to examples where the letter-exchangemap π that generates
f ∈ R(X�) is not given by the identity. In particular, in these examples, π does not
commute with the letter-exchanges which correspond to the standard symmetries in

(a)O0 in light gray (b) B1 \ O1 in light gray, O1 in
dark gray

(c) B2 \ O2 in black

Fig. 6 An example in Z
2 with three non-trivial columns �0 (light gray), �1 (dark gray) and �2 (black).

Here, one has H = centS|A| 〈�0, �1, �2〉 and P � V4, where V4 ≤ D4 = W2 is the Klein-4 group
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S(X�). To avoid confusion, we will use letters for our substitution and the action
of the hyperoctahedral group will be given by numbers, seen as permutations of the
coordinates. Mirroring along a hyperplane will be denoted by mi , where i is the
respective coordinate.

Example 3.20 We explicitly give a substitution ε whose symmetry group is S(Xε) =
Z
d × C3 and build another C3 component in R(Xε), which produces reversors of

order 9. With the requirement onR(Xε)/S(Xε), the space has to be at least of dimen-
sion 3. Apart from the identity, we use the following permutations as columns:

A = (a d g)(b e h)(c f i), B = (a b c)(d e f )(g h i),

E = (a g d)(b h e)(c i f ), C = (b c d)(e f g)(h i a),

D = (c d e)( f g h)(i a b).

Here one hasS(Xε) = Z
3×C3,which is generated by (a d g)(b e h)(c f i). Depending

on the positioning of the columns, R(Xε) can either be Z
3

� C9, Z
3

� C3 × C3 or
Z
3 × C3. The group Z

3
� C3 × C3 can be realized using the construction from

Theorem 3.18. On the other hand, Z
3 × C3 is obtained if one orbit of maximal size

is labeled with just one non-identity say B once, while the remaining positions in the
orbit are filled with the identity.

Note that π = (a b c d e f g h i) sends B → C → D → B and A → A, E →
E. Taking the cube of (a b c d e f g h i) gives (a d g)(b e h)(c f i) ∈ centS9(G

(1)),
where G(1) is the group generated by the columns. This is consistent with the bounds
calculated in Proposition 3.10. We will illustrate the positioning of a few elements
following the construction in Theorem 3.18 with the origin being the front left lower
corner; see Fig. 7. We look at a position that has the maximum orbit size under W3,
for example (0, 1, 2) ∈ R. The orbit under C3 is (0, 1, 2), (1, 2, 0), (2, 0, 1), which
is obtained by cyclically permuting the coordinates. We place B at position (2, 0, 1),
C at position (0, 1, 2) and D at position (1, 2, 0). Since A,E ∈ centS9(H), we will
position themeach along a different orbit.All remaining positionswill be filledwith the
identity to ensure that we cannot have additional symmetries. We use Proposition 3.16
to ensure aperiodicity. It is easy to see that one gets the required patches by choosing
the 2×2×2 cube in the upper right corner from the first and second slices and the other
one from the second and third. For this configuration, one obtainsR(Xε) = Z

3
�C9.

Remark 3.21 As a generalization of Example 3.20, for any given cyclic groups Cn

and Ck , we can construct a substitution � in Z
n , such that X� has the symmetry group

Z
n ×Ck and its extended symmetry group is given by (Zn ×Ck)�Cn . More precisely,

since the extended symmetry group contains an element of order nk,R(X�) = Z
n

�

Cnk . The substitution can be realized by the following columns:

ε0 = (a1 ak+1 . . . a(n−1)k+1) . . . (ak . . . ank),

εi = (ai ai+1 . . . ak−1+i )(ak+i ak+i+1 . . . a2k+i−1) . . .

(a(n−1)k+i a(n−1)k+i+1 . . . ank−1+i ),

εn+1 = id.
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A
D

A

A

E

C

A

D

A

B B

Fig. 7 The letters indicate the respective permutations placed in each cube. The empty cubes are filled with
the identity

where i runs from 1 to n, where the values are seen modulo nk. From the columns εi
with i 	= 0 we can see that the centralizer can only be the permutation of the cycles
limiting the centralizer to Sk , while ε0 limits it further to be Ck , since this copy of Sk
operates on the cycles independently and the centralizer of a cycle is just the cycle
itself. The extended symmetry is realized by the permutation (a1 . . . akn) which maps
εi to εi+1. Its orbit is determined by the action of Cn ≤ Wn on the positioning of the
columns.

In the next example we illustrate how important it is to choose compatible structures
for the letter-exchange map and the corresponding action in Wd .

Example 3.22 We look at a substitution � on a four-letter alphabet, whose columns
generate S4, thus implying that the subshift has a trivial centralizer; see Theorem 2.8.
We plan to have S3 � R(X�)/S(X�), so we place the columns in a three-dimensional
cube; see Fig. 8. As in the previous example, we use the following permutations to
build the substitution �:

A = (a b c d), B = (a b d c), C = (a c b d),

D = (a c d b), E = (a d b c), F = (a d c b).
(12)

The symmetry group is trivial since the columns generate S4. Conjugation with τ =
(c d) maps A to B, just as any τκ , with κ ∈ centS4(B).

Remark 3.23 The illustration in Fig. 8 contains mostly identity columns for better
visibility and to highlight the construction. Being consistent with the first placement,
we could fillmost positions of the figure non trivially. For our theoremswe only require
one orbit of identity columns which can always be obtained by looking at powers of
the substitution.

Here C3 � C2 � S3 is realized by (b c d)(0 1 2) and (c d)(0 1). The transposition
(c d) cannot be realized in Wd by mirroring along an axis in the cube since that is not
consistent with the interaction between (b c d) and (c d). This can be easily be seen
by looking at mirroring along all hyperplanes.
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A

B

C

D

E

F

Fig. 8 We illustrate a possible realization with the letters indicating the respective columns. The empty
cubes are filled with the identity

(a b c d)(2, 1, 0) (a c d b)(0, 2, 1)

(a b d c)(1, 2, 3) (a d c b)/(a c b d)(3, 1, 2)

(b c d)

(0 1 2)

m012(c d) m012(c d)

(b c d)

(0 1 2)

We see that the diagram does not commute, thus there is no way to assign a single
column to the vertex (3, 1, 2). One can do this for all axes, which rules out the C3

2
component in W3, thus yielding R(X�) = Z

d
� S3.

Remark 3.24 One can also ask whether, starting with a group H , one can build the
centralizer S(X�) and normalizerR(X�) organically from H , under a suitable embed-
ding of H . Consider the Cayley embedding H ↪→ S|H | as in Example 2.12. We know
that centS|H |(H) � H and normS|H |(H) � H �Aut(H); see [36]. Since the automor-
phisms of H are given by conjugation in S|H |, they define letter-exchange maps which
are compatible with reversors in R(X�). By choosing the dimension appropriately,
one can construct a substitution � on A = H such that the extended symmetry group
is given by

R(X�) = (Zd(H) × H) � Aut(H),

where we choose d(H) such that Aut(H) ≤ Wd(H). This can always be done for
d(H) = |H |, but depending on Aut(H), a smaller dimension is possible. Let π ∈
Aut(H) and let Aπ ∈ Wd . The construction from the proof of Theorem 3.18 can
be applied. Here, the orbits of Aπ will not be filled with the same element, but with
columns that are determined by π , i.e., �Aπ (i) = π ◦ �i ◦ π−1, where π is seen as an
element of S|H |.
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These series of examples with more complicated structure can be generalized for
arbitrary groups H and P . Here, we have the following version of Theorem 3.18where
the letter exchange map is no longer π = id. This means that for these subshifts, the
permutations which yield non-trivial symmetries in S(X�) no longer commute with
the extended symmetries inR(X�), which accounts for a different semi-direct product
structure for R(X�).

Theorem 3.25 Let H , P be arbitrary finite groups. Then for all 
 ≥ c(P), where c(P)

is a constant which depends only on the group P, there is a subshiftX� of an aperiodic,
primitive and bijective substitution � such that

S(X�) = Z

 × H , R(X�) = (Z
 × H) � P.

Proof The proof is divided in twoparts, beginningwith amanual for the construction of
the substitution and a second part where we verify the claims made in the construction
and check that the subshift has the desired properties. Here we keep in mind that a
valid extended symmetry satisfies the conditions in Theorem 3.13, as in Theorem 3.18.

• We first turn our attention to the construction of P which later is supposed to
be isomorphic to R(X�)/S(X�). For that purpose we embed P ↪→ S
 which is
certainly possible for some 
. It is clear that there is a minimal c(P) ∈ N for which
this embedding is possible, and that every 
 ≥ c(P) gives a valid embedding as
well. Thismeans the choice of 
 has a lower bound, but can be increased arbitrarily.
This chosen 
 determines the dimension of the space Z


 where the subshift is
constructed. Let us now fix a suitable 
, excluding 
 = 2, 3, 6 since we want to
use AutS


(S
) = InnS

(S
) � S
 which does not hold for these values of 
; see

[35].
• Next, we look for suitable columns for our substitution. Choose the set T =

{ε1, . . . , εk} of all transpositions in S
, together with the identity column as the
set of columns. T generates S
 and the action of S
 (viewed as the automorphism
group) acts faithfully on T . From this, we get that P ⊂ S
 � InnS


(S
) ⊂
normS


({ε1, . . . , εk}). This is enough for now, since P ⊂ normS

({ε1, . . . , εk})

and we can exclude the surplus later.
• Now, we compute the centralizer of the column group. In our current construction
the centralizer is trivial,which iswhyweneed tomodify our columns.Wedo this by
extending the set {a, . . . , 
} toA = {a1, . . . , a|H |, b1, . . . , b|H |, . . . , 
1, . . . , 
|H |},
whichwill be our alphabet.We simply duplicate the cycles in each column:The ele-
ments of T are embedded into SA via εi = (x y) �→ εi = (x1 y1) · · · (x|H | y|H |),
where x, y ∈ {a, . . . , 
}.

• We embed H ↪→ S|H | via the usual Cayley embedding. This group only acts on
the indices of the letters in the new alphabet. The action on the indices is applied
to every {a, . . . , 
}, giving the final set of columns {η1, . . . , η|H |} added to the set
{ε1, . . . , εk}, which will be the final set of columns we use in building �. Every ηi
is of the form
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ηi =
∏

m

(am aτ(m) aτ 2(m) . . .)(bm bτ(m) bτ 2(m) . . .) . . . (
m 
τ(m) 
τ 2(m) . . .),

where τ ∈ H and where we are multiplying over all orbit representatives m of τ .
Here we define G� = 〈ε1, . . . , εk, η1, . . . , η|H |〉.

• The Cayley embedding guarantees that centS
|H |(G�) � H , where G� = G(1) is
the column group of �. We can decrease the size ofR(X�)/S(X�) with the same
arguments as in Theorem 3.18. This way we achieve a groupR(X�)/S(X�) � P
where the letter exchange component π of the extended symmetries is not in
centS
|H |(G�).

Aperiodicity of X� can be easily obtained via proximal pairs. Regarding primitivity,
it is sufficient to check the transitivity of G� and use Proposition 2.3. For any pair
(x j , yk) of letters with indices chosen from the alphabet we need to find a g ∈ G�

such that gx j = yk . Note that the permutation (x1 y1) . . . (x j y j ) . . . (x|H | y|H |) ∈ G�

and maps x j to y j . Now we need to map y j to yk , which is an action solely on the
indices. The mapping on the indices can be realized by the right embedding copy of
H in S|H | and thus by an element composed of the columns {η1, . . . , η|H |}.

Let us prove that the centralizer is indeed isomorphic to H . The centralizer of
G{ε1,...,εk } can only contain elements that are pure index permutations, since those
columns generate S
, which is diagonally embedded into S
|H |. Since the structure of
the cycles in each column is independent of the index, any index permutation is an
element of centS
|H |(G{ε1,...,εk }) = S|H |.

Wecontinuebydetermining centS
|H |(G{η1,...,η|H |})∩S|H |. Fromabove, S|H | consists
of the pure index switches and since η1, . . . , η|H | are the columns generated by the
Cayley embedding of H into S|H | their centralizer is isomorphic to H . This completes
the proof that centS
|H |(G�) = H ∩ S|H | = H .

An automorphism α′ ∈ AutS

(〈T 〉) = S
 lifts to an automorphism α on G� as

follows:

if α′(εi ) = ε j , then α(εi ) := ε j and α(ηi ) := ηi .

Thus S
 ≤ InnS
|H |(G�) ≤ AutS
|H |(G�) and hence P ≤ InnS
|H |(G�). Then we can
use the geometric placement of the columns in Theorem 3.18 in the substitution to
exclude any unwanted W
-component by setting π ◦ �i ◦ π−1 	= �Aπ i for at least one
i ∈ R whenever Aπ /∈ P . The desired symmetries are obtained by positioning the
columns such that the previous equation yields an equality, which finishes the proof.

��
Remark 3.26 Theorems 3.18 and 3.25 fall under realization theorems for subshifts.
The most general current result along this vein known to the authors is that of Cortez
and Petite, which states that every countable group H can be realized as a subgroup
H ≤ R(X, Γ ), whereR(X, Γ ) is the normalizer of the action of a free abelian group
Γ on an aperiodic minimal Cantor space X; see [13].
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4 Concluding Remarks

While the higher-dimensional criteria inTheorems3.13 and3.11,which confirmor rule
out the existence of extended symmetries, are rather general, it remains unclear how to
find a way to extend this to a larger (possibly all) class of systems, with no constraints
on the geometry of the supertiles. This is related to a question of determining whether,
given a substitution in Z

d (or R
d ), one can come up with an algorithm which decides

whether there is a simpler substitution which generates the same or a topologically
conjugate subshift, which is easier to investigate. This is exactly the case for the two-
dimensional Thue–Morse substitution in Fig. 2. Such an issue is non-trivial both in
the tiling and the subshift context; see [12,18,25].

Note that the letter-exchange map π ∈ S|A| in Theorem 3.13 always induces a
conjugacy between columns whenever it generates a valid reversor. It would be inter-
esting to know whether outer automorphisms in this case can yield valid reversors for
a bijective substitution subshift in Z

d , for example for those whose geometries are not
covered by Theorems 3.13 and 3.11. For instance, Aut(S6) contains elements which
are not realized by conjugation.

Another natural question would be to determine other possibilities for S(X�)

and R(X�) outside the class of bijective, constant-length substitutions. Here, the
higher-dimensional generalizations of the Rudin–Shapiro substitution would be good
candidates; see [20]. There are also substitutive planar tilings with |R(X)/S(X)| =
D6, which arises from the hexagonal symmetry satisfied by the underlying tiling. For
these classes, and in the examples treated above, the simple geometry of the tiles
introduces a form of rigidity which leads to R(X) being a finite extension of S(X);
see [6, Sect. 5] for the notion of hypercubic shifts. There are substitution tilings whose
expansive maps Q are no longer diagonal matrices, and whose supertiles have fractal
boundaries; compare [22, Ex. 12], which allows more freedom in terms of admissible
elements of GL(d, Z) which generate reversors. This raises the following question:

Question 4.1 What is the weakest condition on the subshift/tiling dynamical system
X which guarantees [R(X) : S(X)] < ∞?

This is always true in one dimension regardless of complexity, since either the sub-
shift is reversible or not, but is non-trivial in higher dimensions because |GL(d, Z)| =
∞ for d > 1, so infinite extensions are possible; see [3]. We suspect that this is
connected to the notions of linear repetitivity, finite local complexity, and rotational
complexity; compare [6, Cor. 4] and [25]. For inflation systems, the compatibility
condition [A, Q] = 0 in Theorem 3.13 might also be necessary in general when the
maximal equicontinuous factor (MEF) has an explicit form.
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